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Sarcopenia or loss of skeletal muscle mass is the major component of malnutrition and is a
frequent complication in cirrhosis that adversely affects clinical outcomes. These include sur-
vival, quality of life, development of other complications and post liver transplantation sur-
vival. Radiological image analysis is currently utilized to diagnose sarcopenia in cirrhosis.
Nutrient supplementation and physical activity are used to counter sarcopenia but have not
been consistently effective because the underlying molecular and metabolic abnormalities
persist or are not influenced by these treatments. Even though alterations in food intake,
hypermetabolism, alterations in amino acid profiles, endotoxemia, accelerated starvation
and decreased mobility may all contribute to sarcopenia in cirrhosis, hyperammonemia has
recently gained attention as a possible mediator of the liver-muscle axis. Increased muscle
ammonia causes: cataplerosis of a-ketoglutarate, increased transport of leucine in exchange
for glutamine, impaired signaling by leucine, increased expression of myostatin (a transform-
ing growth factor beta superfamily member) and an increased phosphorylation of eukaryotic
initiation factor 2a. In addition, mitochondrial dysfunction, increased reactive oxygen species
that decrease protein synthesis and increased autophagy mediated proteolysis, also play a
role. These molecular and metabolic alterations may contribute to the anabolic resistance
and inadequate response to nutrient supplementation in cirrhosis. Central and skeletal muscle
fatigue contributes to impaired exercise capacity and responses. Use of proteins with low
ammoniagenic potential, leucine enriched amino acid supplementation, long-term ammonia
lowering strategies and a combination of resistance and endurance exercise to increase muscle
mass and function may target the molecular abnormalities in the muscle. Strategies targeting
endotoxemia and the gut microbiome need further evaluation.
� 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights
reserved.

Introduction
Key point

Sarcopenia is a frequent
complication in cirrhosis. It
is the major component of
malnutrition and is not
reversed after liver trans-
plantation; in fact, it may
worsen.
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Malnutrition in liver disease has been used for dec-
ades to describe the phenotype of skeletal muscle
loss with or without loss of fat mass [1]. The major-
ity of ‘‘malnourished” patients with cirrhosis expe-
rience skeletal muscle wasting or sarcopenia, a
major predictor of adverse clinical outcomes
[2–4]. Although alterations in body composition
in cirrhosis have been reported using a number of
methods, radiographic image analysis is believed
to be the most precise technique to quantify muscle
mass and define sarcopenia [5,6]. Over the past few
years, a number of investigators have reported that
sarcopenia occurs in 30–70% of cirrhotic patients
[2,7–10]. The clinical significance of sarcopenia in
liver disease, primarily cirrhosis, is due to the high
prevalence and adverse impact on clinical outcome
measures including survival, quality of life, devel-
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opment of other complications of cirrhosis, and post
liver transplant outcomes [1,4,10–14]. Etiology and
severity of the underlying liver disease, duration of
illness, age and co-morbidities contribute to the
severity of sarcopenia [1,4,9,15,16]. Despite being
widely recognized as a major complication of cirrho-
sis, most therapies to date are based on the principle
of ‘‘deficiency replacement” rather than targeted
treatments, and have generally been ineffective
[17]. Nutritional supplementation has been a partic-
ular therapeutic focus because reduced dietary
intake was believed to be the major cause of malnu-
trition and sarcopenia. However, these approaches
have been frequently inadequate in improving sur-
vival [18–20]. An integrated metabolic-molecular
approach in a comprehensive array of models has
shown that hyperammonemia is a mediator of the
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liver-muscle axis [21,22]. Physical activity has been
suggested to improve functional capacity but the
effect on skeletal muscle mass is still unclear [23].
In recent years, a combination of sarcopenia with
obesity has been increasingly recognized, espe-
cially in patients with non-alcoholic fatty liver dis-
ease (NAFLD) and post liver transplantation.
Whether sarcopenia is mechanistically related to
obesity and NAFLD, however, is still under debate
[24,25]. The major deficiency in the field of sarcope-
nia in cirrhosis is the lack of understanding of the
mechanisms involved. A number of excellent recent
reviews have described the clinical relevance of sar-
copenia in cirrhosis but have not focused on the pos-
sible mechanisms and on the relevance of novel
therapeutic targets that have the potential for clini-
cal translation [1,17,26–29].

In the present review we will provide an over-
view of the clinical relevance of sarcopenia in liver
cirrhosis, but the emphasis will be on the possible
molecular and metabolic perturbations involved
and the promising novel therapeutic approaches
that could be made possible by these discoveries.
Diagnosis of sarcopenia in cirrhosis

Most studies to date have used the term ‘‘malnutri-
tion” to identify primarily skeletal muscle loss
determined by one or more criteria that are not
always uniform or precise and an alteration in
energy metabolism and potentially fat mass deple-
tion. The diagnosis of skeletal muscle loss requires
analysis of the body composition using one or more
of a number of available techniques (Table 1) as
well as the normal values to define the appropriate
cut-off values for sarcopenia [3,6,29]. Even though
few studies have directly compared different meth-
ods, computed tomography (CT; Supplementary
Fig. 1) with one of the image analysis programs is
being increasingly used since skeletal muscle can
be directly viewed and quantified [5,10,30–33].
Magnetic Resonance Imaging (MRI) has also been
proposed as a valuable method although objective
data in cirrhosis are scarce [34]. Abdominal CT
and MRI scans would be difficult to justify for
quantifying muscle mass due to the cost and/or
radiation exposure. However, most cirrhotic
patients have surveillance scans for focal liver
lesions, hepatocellular carcinoma, vascular disease
and pre-transplant evaluation.

Muscle mass depends on gender (lower in
females) and age (lower with increasing age), and
cut-off values for gender and age have been
recently reported [32]. Handgrip strength (a mea-
sure of muscle function) has been utilized in cir-
rhotic patients, but it may not be accurate when
normalized to body mass index in cirrhosis due to
fluctuations body water content.

Quantifying muscle mass by measurements in a
single anatomic area like the limb or abdominal
s: Dasarathy S, Merli M. Sarcopenia from mechanism to di
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muscles are believed to provide a reasonably accu-
rate measure of whole body muscle mass [35]. In
cirrhosis, as in most chronic diseases, a preferential
loss of type II or fast fibers is expected but in vivo
measurements of fiber type loss in cirrhotic patients
is still lacking. Appendicular muscle mass (limb
muscles) is strongly influenced by the activity level.
Measurements of psoas and abdominal muscle mass
on CT images at L3 or L4 vertebra are used due to
their relative independence from the activity level.
However these muscles contain both type I and type
IIA fibers [36], which also needs to be considered.
Another consideration is the quality of skeletal mus-
cle that has been reported based on the CT attenua-
tion that is lower in the muscles of cirrhotics
compared to controls [31] and is indicative of fatty
infiltration with adverse clinical outcomes [37,38].
Whether muscle quality can be determined by mea-
suring contractile function or by the CT attenuation
values needs to be ascertained (Table 2). The possi-
ble impact of these parameters on clinical outcomes
has not been systematically evaluated.
Clinical impact of sarcopenia in cirrhosis

A number of cross sectional and longitudinal studies
using different methods to quantify muscle mass
have reported that median survival and probability
of survival are lower in patients who have cirrhosis
with sarcopenia than those without sarcopenia
(Table 2) [7,9,10,33,39–52]. Some of these reports
suggest that sarcopenia adds to the prognostic value
of the model for end-stage liver disease (MELD)
scoring system [40,53]. The cause(s) of higher mor-
tality is however not as evident though both
increased risk of infection and encephalopathy
may be contributory factors [54]. Sarcopenia may
also impair diaphragmatic work due to reduced
muscle mass and this event may favor pulmonary
complications especially in the context of surgery
(liver resection or liver transplantation).

Sepsis related mortality is higher in sarcopenic
than non-sarcopenic cirrhosis [10,13,55]. For appro-
priate antibody and cytokine responses, adequate
amino acid supply is necessary that is impaired
when skeletal muscle mass is decreased but a direct
causal or mechanistic link between sarcopenia and
impaired immune function has not been shown
[56]. Furthermore, it is also possible that factors that
cause sarcopenia, including hormonal and biochem-
ical alterations as well as circulating endotoxins,
also contribute to the impaired immune function
and increase the risk of infection. Lack of mobility
or frailty in sarcopenia may also play a role [57].
Interestingly, cirrhotic patients with refractory
ascites seem particularly prone to malnutrition
and sarcopenia. Ascites is known to increase resting
energy expenditure [58] while food intake is
decreased due to raised abdominal pressure and
early satiety. Treating refractory ascites by
agnosis and treatment in liver disease. J Hepatol (2016),
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Table 1. Methods to quantify skeletal muscle evaluation in cirrhosis.

Methods for quantification
Single muscle or
groups of muscle

Anthropometry, DEXA, bioelectrical impedance analysis, 
impedance plethysmography, ultrasonography, CT or MRI, 

Quality of muscle CT scan attenuation
Muscle function Handgrip strength
Fiber type Muscle biopsy
Contractile function Measurement of maximum strength, maintenance of strength, 

fatigability

CT, computed tomography; DEXA, dual energy X-ray absorptiometry; MRI, magnetic resonance imaging.
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transjugular intrahepatic portosystemic shunt has
been shown to improve body composition in mal-
nourished cirrhotic patients [6,31].

Quality of life is lower in sarcopenic cirrhosis
patients, but it is unclear whether this is due to
the loss of muscle mass or impaired contractile
function and subsequent limited mobility, or
increased risk of other complications. This is still
a field that needs well-designed studies [1,11,12].
All domains of the quality of life are lower in mal-
nourished patients when measures that primarily
quantify skeletal muscle mass are utilized [1].

Hepatocellular carcinoma (HCC) is a frequent
complication in the natural history of chronic liver
disease and recent studies have reported that sar-
copenia is an independent prognostic factor
decreasing survival and increasing treatment
related mortality in patients with HCC [37,59].

Liver transplantation is currently the definitive
therapy to cure end-stage liver disease and sarcope-
nia adversely impacts outcomes in patients on the
transplant list, in the peri-transplant period and post
transplantation [7,9,45,60]. Survival is lower in sar-
copenic cirrhotic patients before liver transplantation
while increased length of hospitalization, prolonged
intensive care unit stay, and longer time of intubation
have been reported after transplantation compared
to patients without sarcopenia [9,27,45].

It is important to emphasize that clinical out-
comes also depend on other factors, but sarcopenia
is recognized as a major contributor to adverse out-
comes in the management of the cirrhotic patient
undergoing liver transplantation.
Key point

Other perturbations that
contribute to sarcopenia
include endotoxemia, increased
aromatase activity to lower
testosterone, and mitochon-
drial dysfunction.
Mechanisms of skeletal muscle loss in cirrhosis

Alterations in protein turnover, energy disposal and
metabolic changes induce muscle depletion in
cirrhotic patients

As seen above, a number of studies and reviews
have provided descriptive data on the high preva-
lence and adverse clinical impact of sarcopenia in
cirrhosis [1,4,7,10,26,60]. Skeletal muscle is the
major protein store in the human body [61]. Skele-
tal muscle mass is maintained by a balance
between protein synthesis, protein breakdown
and regenerative capacity regulated by muscle
satellite cell function [1]. Broadly, two types of
studies have contributed to the current under-
standing of the pathogenesis of sarcopenia in cir-
rhosis: metabolic-tracer kinetics and molecular
signaling pathway studies [21,22,62–66]. An inte-
grated approach using both strategies to examine
how metabolic perturbations alter molecular sig-
naling and vice-versa has allowed identification of
novel potential therapeutic targets.

Whole body turnover studies using labeled
phenylalanine and leucine as primed constant infu-
sion have yielded conflicting results with unaltered,
increased or decreased protein breakdown and
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protein synthesis [62–64]. Arteriovenous difference
studies and release of 3-methylhistidine to quantify
protein synthesis and breakdown suggest impaired
skeletal muscle protein synthesis [67]. Explanations
for these conflicting observations included hetero-
geneity in etiology, duration, age, and severity of
liver disease. Heterogeneity in methods used to
determine protein turnover and in the contribution
of different organs to whole body turnover also
explain these differences. Whole body substrate uti-
lization studies using indirect calorimetry have
shown that cirrhosis is a state of accelerated starva-
tion because fatty acid oxidation and gluconeogene-
sis are increased early in the postabsorptive or
fasting state [30,68,69]. Since glucose is a preferred
substrate in many tissues, and fatty acid carbon can-
not be used for gluconeogenesis, amino acids are
used for gluconeogenesis [70]. The primary source
of amino acids for gluconeogenesis is proteolysis in
the skeletal muscle that generates both aromatic
and branched chain amino acids (BCAA). Only BCAA
are catabolized in the skeletal muscle due to the
localization of the branched chain ketodehydroge-
nase and oxidation of the carbon skeleton as an
energy source [71]. As a consequence, plasma BCAA
concentrations are lower in cirrhotic patients. In
contrast, aromatic amino acids are primarily metab-
olized in the liver but due to both portosystemic
shunting and hepatocellular dysfunction, their
plasma concentrations are increased in chronic liver
disease [62,72–75]. This interpretation that acceler-
ated starvation and increased gluconeogenesis are
bioenergetics perturbations in cirrhosis is supported
by the low respiratory quotient in sarcopenia cir-
rhotics [30]. Most therapies to date have focused
on treating the amino acid imbalance rather than
targeting the mechanisms that contribute to these
alterations that finally result in sarcopenia.

Potential mediators of the liver – muscle axis in
cirrhosis

One of the major reasons for the very limited under-
standing of sarcopenia in cirrhosis has been the
difficulty in identifying the mediator(s) of the
liver-muscle axis. A number of potential mediators
have been proposed including increased ammonia,
decreased testosterone and growth hormone, and
endotoxemia [21,22,76,77]. Even though there is
evidence to support each of these potential media-
Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol (2016),
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Key point

Hyperammonemia mediated
upregulation of myostatin is
believed to be a mechanism
of impaired protein synthesis
and increased autophagy, that
contribute to sarcopenia.
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Table 2. Sarcopenia adversely impacts outcome in cirrhosis.

Author (year) N Method to define sarcopenia Outcome
Wang (2016) [39] 292 Effect of grip strength, muscle 

mass, muscle quality, SPPB on 
transplant wait list mortality

Grip strength (HR 0.74), SPPB (HR 0.89), muscle quality (0.77) but not muscle 
mass (0.91) decreased survival

Kalafateli (2016) [40] 232 L3 psoas area (CT) and Royal 
Free Hospital Global Assessment
CT measure of psoas muscle area 
at L3/L4 

CT measure of psoas at umbilicus

Post OLT infection (OR 6.55), ventilator requirement (OR 8.5), ICU stay >5 d (OR 
7.46) higher in sarcopenic patients.

Hanai (2016) [41] 149 Greater rate of muscle (>3.1%/year) loss increases mortality (HR 2.73)
Kim (2014) [42] 89 Increased mortality hazard risk 5.4 for sarcopenia
Masuda (2014) [43] 204 Sarcopenia 2 fold increased risk of death, 5.3 fold increased risk of sepsis
DiMartini (2013) [44] 338 Increased mortality only in men for each unit decrease in skeletal muscle index
Montano-Loza (2012) [10] 112 Increased mortality hazard risk 2.26 for sarcopenia
Tandon (2012) [7] 142 Increased mortality, hazard risk 2.36 for sarcopenia
Englesbe (2010) [45] 163 Lower post OLT survival, HR 3.7/1000 mm2 psoas area.
Durand (2014) [33] 376 Increased mortality for each unit decrease in muscle area
Hamaguchi (2014) [46] 200 Median post OLT survival in sarcopenic patients 17.6 m and in non-sarcopenic 

patients 33.9 m
Hara (2016) [47] 161 Bioelectrical impedance analysis 73 deaths over mean 1005 days follow up
Kaido (2013) [48] 124 Post living donor transplant lower with sarcopenia
Selberg (2002) [142] 305 Survival lower with phase angle <5.4°
Merli (2010) [9] 38 Anthropometrics (MAMA/TSF) MAMC <5th percentile:  relative risk of death 1.79.
Shahid (2005) [49] 61 Increased postoperative mortality.
Lai (2014) [50] 50 Frailty index, SPPB 45% greater mortality for each point increase in frailty index

19% increase in mortality for each point decrease in physical performance
Carey (2010) [51] 294 6 min walk test Each 100 m reduction in 6 min walk test reduces survival hazard risk 0.48
Alvares da-Silva (2005) [52] 121 Hand grip, anthropometrics Increased mortality for lower hand grip strength

CT, computed tomography; HR, hazard ratio; ICU, intensive care unit; MAMA, mid arm muscle area; OR, odd ratio; SPPB, short physical performance battery; TSF, triceps
skinfold thickness.
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tors, hyperammonemia has been studied most
extensively [17,21,22,78].

Of the hepatic metabolic functions, ammonia
disposal by ureagenesis is critical. Both hepatocel-
lular dysfunction and portosystemic shunting
that are components of the pathophysiological
changes in cirrhosis contribute to impaired
ureagenesis [79]. Ammonia is generated by a
number of mechanisms including amino acid
metabolism, purine metabolism, enterocyte glu-
taminase activity and urealysis in the gut [80].
Neurotoxicity is the best-studied cytotoxic effect
of ammonia [80,81]. Independent investigators
have reported increased skeletal muscle ammonia
uptake and conversion to glutamate and glu-
tamine in patients and models of liver disease
[82–85]. Despite the well recognized cytotoxic
effects of ammonia in the neurons and astrocytes,
skeletal muscle effects have only been recently
reported [21,22,86,87]. Studies in human skeletal
muscle, the hyperammonemic portacaval anasto-
mosis (PCA) rat, mice during hyperammonemia
and in vitro studies in myotubes cultures suggest
that ammonia accumulates in the skeletal muscle
and activates a program of molecular alterations
that contribute to sarcopenia [21,22,86,87]. Even
though the mechanism of entry of ammonia into
the skeletal muscle has not been well studied,
ammonia transporters including the Rh B and C
proteins are expressed in the muscle [88]. Follow-
ing entry, ammonia activates a series of signaling
s: Dasarathy S, Merli M. Sarcopenia from mechanism to di
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responses whose exact mechanisms are as yet
unclear.

Hyperammonemia contributes to muscle depletion:
intracellular signaling

In murine myotubes and murine cells cultures, the
response to hyperammonemia-mediated activation
of p65-NF-jB is an increased expression of myo-
statin, a TGFb superfamily member (Fig. 1) [22,89].
Increased expression of myostatin in the skeletal
muscle and plasma of cirrhotic patients has been
reported [89,90] and these results should be con-
firmed in future studies. Myostatin is a known inhi-
bitor of protein synthesis and potentially activates
the ubiquitin proteasome and autophagy mediated
proteolysis [21,22,91]. The ubiquitin-mediated pro-
teolysis is not activated but autophagy has been
found to be increased in muscle in experimental
models of cirrhosis or during hyperammonemia
[21,22]. Other potential mechanisms for activation
of autophagy include ammonia mediated mitochon-
drial dysfunction and generation of reactive oxygen
species [92]. Even though these molecular signaling
responses have been reported only in neural tissue,
similar perturbations may also occur in the skeletal
muscle [93].

Interestingly, skeletal muscle metabolic responses
to hyperammonemia are being increasingly recog-
nized albeit in preliminary data [93]. Physiologi-
cally, glutamine and glutamate serve as anaplerotic
agnosis and treatment in liver disease. J Hepatol (2016),
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substrates to generate a ketoglutarate (aKG) and
ammonia in most tissues to maintain sufficient
concentrations of the tricarboxylic acid (TCA) cycle
intermediates [94]. This reaction is catalyzed by the
bidirectional enzyme, glutamate dehydrogenase
(GDH). The reaction preferentially occurs in the
direction generating aKG, because the GDH Km
for ammonia is very high (�1 mM), a value that is
significantly supraphysiological [95]. However, in
cirrhosis, due to impaired ureagenesis and
decreased hepatic ammonia disposal, the skeletal
muscle functions as a metabolic partner for the
liver and skeletal muscle ammonia concentrations
are much higher potentially favoring cataplerosis
or loss of critical TCA cycle intermediate, aKG
[22]. This results in a number of potential conse-
quences including lower flux of the TCA cycle,
impaired mitochondrial function and decreased
adenosine triphosphate (ATP) synthesis. Since pro-
tein synthesis, especially translation initiation, is an
energy intense process, low ATP concentrations
may also cause reduced protein synthesis. Another
consequence of hyperammonemia that can explain
a number of clinical observations is that oxodehy-
drogenases are inhibited by ammonia in a tissue
specific manner [96]. These include pyruvate dehy-
drogenase, that catalyzes the conversion of pyru-
vate to acetyl coenzyme A (CoA), and aKG
dehydrogenase that catalyzes conversion of aKG
to succinyl CoA. An overview of these pathways is
shown in Fig. 2. A number of clinical studies and
meta-analyses have failed to show significant ben-
efit of nutritional supplementation in malnour-
ished cirrhotic patients [18–20,26]. This may be
due to the impaired acetyl CoA generation that
necessitates formation of acetyl CoA from non-
pyruvate sources including amino acids and fatty
acids. Continued mitochondrial dysfunction, gener-
ation of reactive oxygen species, and impaired
bioenergetics in the skeletal muscle all contribute
to impaired protein synthesis and activate a meta-
bolic, adaptive response, autophagy.

Reduced ATP in the muscle, impaired mitochon-
drial function, low concentrations of TCA cycle
intermediates, increased gluconeogenesis and an
increased fatty acid oxidation in the skeletal muscle
during hyperammonemia suggest a bioenergetics
crisis with a starvation like response. Decreased
cellular ATP is consistent with activation of the cel-
lular energy sensor, 5’ adenosine monophosphate-
activated protein kinase (AMPK) and impaired
mTORC1 signaling [66].

Increased cataplerosis and muscle catabolism of
branched chain amino acids as a source of energy
may be responsible for low circulating branched
chain amino acids with skeletal muscle concentra-
tions of BCAA expected to be decreased in the mus-
cle of cirrhotics due to increased utilization.
Reduced cellular amino acid concentrations acti-
vate adaptive responses that include increased
skeletal muscle autophagy that has been reported
Please cite this article in press as: Dasarathy S, Merli M.
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in both cirrhosis and hyperammonemia in myo-
tubes. Another response to intracellular amino acid
deficiency is the integrated stress response medi-
ated by activation of amino acid deficiency sensor,
general control non-depressed 2 (GCN2) via phos-
phorylation of eukaryotic initiation factor 2 that
are increased during hyperammonemia and cirrho-
sis [93]. Surprisingly, skeletal muscle concentrations
of branched chain have been mostly reported to be
unaltered except for a single study that reported
lower muscle concentrations of BCAA [73–75]. Pre-
liminary studies in hyperammonemic myotubes
increased cellular transport and concentrations of
leucine despite which supplementation with leucine
enriched BCAA resulted in reversal of GCN2 activa-
tion. This rescued impaired mTORC1 signaling in
patients with cirrhosis [66] and in myotubes during
hyperammonemia. Other amino acids with thera-
peutic potential include L citrulline that is a precur-
sor for L arginine and stimulates mTORC1 and
protein synthesis [97]. The beneficial effects of
citrulline are believed to be due to decreased
ureagenesis resulting in amino acid sparing, but it
is not known if impaired ureagenesis will aggravate
hyperammonemia and its consequences in cirrhosis
and need to be studied systematically.

Published data suggest that hyperammonemia is
a mediator of the liver-muscle axis and the skeletal
muscle does not function only as a metabolic sink
for ammonia [22]. Ammonia uptake and disposal
via glutamine synthesis in the muscle and transport
into the circulation may be involved in sarcopenia.
At the same time, if there is low muscle mass,
non-hepatic disposal of ammonia is impaired which
may cause further adverse effects. Consistently,
some investigators have reported that encephalopa-
thy is more frequent in sarcopenic than non-
sarcopenic cirrhotics [12,14].

Other potential mediators of the liver – muscle axis in
cirrhosis: testosterone, growth hormone

Other mediators of the liver-muscle axis include
the low testosterone due to increased aromatase
activity in liver disease [98]. Decreased growth hor-
mone concentrations or impaired growth hormone
response in the muscle are also likely contributors
to sarcopenia in cirrhosis [99,100]. Both growth
hormone and testosterone are known to inhibit
myostatin expression and signaling responses
[101,102] but it is not known if these hormonal
alterations of cirrhosis also contribute to the
impaired protein synthesis and increased myostatin
expression in cirrhosis. A recent randomized trial
showed that testosterone supplementation in male
cirrhotics did result in an increase in lean body mass
but not survival [103].

Hepatocellular and immune dysfunction as well
as portosystemic shunting worsen the endotoxemia
due to impaired gut barrier function and poten-
tially altered gut microbiome in cirrhosis [104].
Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol (2016),
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Fig. 1. Myostatin is transcriptionally upregulated by hyperammonemia in the skeletal muscle.
Ammonia enters the skeletal muscle via the transport proteins Rh B and G. In the muscle, ammonia
activates transforming growth factor b activated kinase 1 (TAK1) that activates TRAF6. Activated TRAF6
(k63 polyubiquitination) activates inhibitor of kappa B (IjB) kinase (IKK) that in turn phosphorylates
nuclear factor kappa B (NF-jB) inhibitor protein IjB. Phospho IjB is degraded via a proteasome
pathway releasing p65-NF-jB that enters the nucleus and transcriptionally upregulates myostatin.
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Endotoxemia via tumour necrosis factor (TNF)a
dependent and potentially TNF independent path-
ways may also impair protein synthesis and poten-
tially activate autophagy [105,106]. Careful
molecular studies on these mediators are not avail-
able and the cross talk between hyperammonemia
and other putative mediators such as those
described above are not presently known. The next
decade is likely to see major advances in our under-
standing of the molecular-metabolic interaction
and how it contributes to or causes sarcopenia in
liver disease.

Finally, sarcopenic obesity has been reported in
patients with NAFLD and after liver transplantation
[24,25,107]. It is possible that the combination of
skeletal muscle loss and increased fat mass may con-
tribute to the development of metabolic components
including insulin resistance, diabetes mellitus,
hyperlipidemia and possibly NAFLD but whether
there is a common underlying mechanism for both
sarcopenia and obesity is still not known [108].
Management strategies

There is compelling evidence that sarcopenia is
associated with adverse consequences while there
s: Dasarathy S, Merli M. Sarcopenia from mechanism to di
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are limited data showing that increasing muscle
mass improves survival in the non-transplanted
and post liver transplant population of cirrhotics
[31,32]. Therefore, reversing muscle mass is a prior-
ity area for therapeutic interventions in cirrhotic
patients (Fig. 3). Interventions that focus only on
deficiency replacement have generally been ineffec-
tive while targeted therapies have the potential to
reverse muscle loss [1,18–20,26,66,87]. The major
strategies that have been used to improve muscle
mass include supplemental calorie and protein
intake, increased physical activity, supplemental
hormone therapy, and mechanistic targeted treat-
ments [17,26,109–111]. The critical outcome mea-
sures include survival, hospitalization, quality of
life, development of and recovery from other com-
plications of cirrhosis. It is not clear if the improved
clinical outcomes are due to an increase in muscle
mass, amelioration in skeletal muscle contractile
dysfunction or a combination of the two. Despite
the current focus being on reversing sarcopenia, it
is also important to take into consideration skeletal
muscle function that include maximum contractile
strength, maintenance of contraction, and muscle
fatigue in response to persistent and repetitive con-
traction [78].
Supplemental nutrition

Since caloric and protein intake are frequently
decreased in cirrhosis, Guidelines and Consensus
papers have consistently recommended to provide
adequate amounts of calories and proteins either by
frequent feeding, through oral dietary supplementa-
tion or when indicated, by enteral or parenteral nutri-
tion [112–115]. Regimens providing extra calories via
high caloric feeding, and/or enteral feeding have been
extensively studied (Table 3) [114,116–123]. Interest-
ingly, few studies suggest improvement in nitrogen
retention or nutritional status using very heteroge-
neous criteria that measure primarily fat and non-
fat mass [17,19,20,122,124,125]. On the other hand,
a recent randomized controlled trial measured total
body protein utilizing perioperative immunonutrition
enriched in n-3 fatty acids, arginine, and nucleotides
vs. an isocaloric diet in patients undergoing liver
transplantation. Protein content was measured by
neutron activation analysis, from study entry until
immediately prior to LT but did not find any change
in total body protein. Postoperative outcomes were
also not influenced by the nutritional supplementa-
tion [114].

Another approach has been to shorten the dura-
tion of post-absorptive or fasting state in cirrhosis
because of the accelerated starvation that results
in proteolysis, because after food intake, recovery
of muscle mass is incomplete [68]. Daytime and
nocturnal feeding have been evaluated and there is
evidence that a late evening snack has the most ben-
eficial effects and it is currently believed that a late
evening and an early morning protein supplement
agnosis and treatment in liver disease. J Hepatol (2016),
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Fig. 2. Biochemical abnormalities in the skeletal muscle that contribute impaired protein synthesis
and increased autophagy with consequent sarcopenia. Metabolic and molecular perturbations that
can be potentially reversed by intervention at targeted sites. 1. Long-term ammonia lowering strategies.
2. Myostatin blocking agent including antagomirs. 3. L-leucine provides acetyl CoA, activates mTORC1
and protein synthesis. 4. Glucogenic amino acids can be a source of anaplerotic input to provide succinyl
CoA replacing the loss of (cataplerosis) of aKG that is converted to glutamate during hyperammonemia
(since skeletal muscle cannot generate urea). 5. Cell permeable esters of aKG are a potential strategy to
reverse cataplerosis and a novel method to increase muscle ammonia disposal. 6. Physical activity
stimulates mTORC1 via phosphatidic acid.
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Fig. 3. Overview of strategies to reverse sarcopenia and potentially contractile dysfunction in
cirrhosis. Molecular targets are depicted in blue boxes and putative interventions are outside the boxes.
Modified from [109] with permission.
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are likely to have the greatest benefit on preventing
continued muscle loss in cirrhosis [68,126]. Meta
analyses of supplemental nutrition in patients with
alcoholic hepatitis and those with cirrhosis were
disappointing, however, as nutritional supplemen-
tation by various routes did not improve survival
[18–20]. Even though the exact reason for very lim-
ited improvement in sarcopenia with nutritional
supplementation is not yet clear, cirrhosis can be
seen as a state of anabolic resistance and caloric
supplementation alone seems to be inadequate.
As mentioned earlier, despite providing calories,
impaired mitochondrial function and bioenergetics
in combination with impaired molecular responses
to nutrient administration in muscle are potential
reasons for lack of benefit. Whether other outcomes
including encephalopathy, sepsis and quality of life
improve with reversal of sarcopenia are currently
unknown.

Protein supplementation is another alternative
to improve the availability of essential amino acids.
However, cirrhosis and hyperammonemia may
accelerate amino acids catabolism with further
generation of skeletal muscle ammonia that can
impair protein synthesis and increase autophagy
further with little or no benefit in reversing sar-
copenia. Animal proteins have the added disadvan-
tage of being rich in aromatic amino acids that are
not metabolized by the skeletal muscle and may
worsen encephalopathy [72,127]. Vegetable pro-
teins are rich in BCAA and may have a beneficial
effect by removing one mole of ammonia per mole
of BCAA via the aKG? glutamate ? glutamine
pathway. Therefore, instead of protein supplemen-
tation, BCAA have been used in the past as treat-
ment for hepatic encephalopathy in a number of
acute and long-term studies [128–130]. A recent
Cochrane review suggested benefit in the primary
outcome, hepatic encephalopathy but not on sur-
vival, quality of life or nutritional parameters
[131]. Lack of benefit in nutritional parameters
was counter to expected outcomes, since BCAA pro-
vide a source of energy to the muscle in addition to
being substrates for protein synthesis. Another
mechanism by which BCAA may function is by
inhibiting the amino acid deficiency sensor, GCN2
and reversing eIF2a phosphorylation [132],
impaired protein synthesis and improve muscle
mass. Finally, leucine directly activates mTORC1
that stimulates protein synthesis and decreases
autophagy [133], both of which have the potential
to improve muscle mass. A recent study in human
cirrhosis reported that a leucine enriched BCAA
mixture was able to reverse the molecular pertur-
bations in the skeletal muscle downstream of myo-
statin in cirrhotic patients [66]. Tracer kinetic
studies with direct quantification of muscle protein
synthesis showed similar rates of protein synthesis
in response to a single oral dose of leucine enriched
BCAA mixture did reverse the GCN2-eIF2a medi-
ated impaired protein synthesis and increased
Please cite this article in press as: Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol (2016),
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Table 3. Studies about nutritional intervention in adult liver cirrhosis reporting data about changes in parameters dealing with muscle mass.

Author Treatment Setting Duration Patients (n) Proteins
g/day

Calories
kCal/day

Outcome on 
nutritional 
parameters

Outcome

Hirsch 1993 
[116]

Oral 
supplement vs. 
control

Cirrhotic 
patients of 
alcoholic 
origin, 
outpatients

1 year 26 nutritional 
supplement vs. 
25 controls

45 ± 10
+ 34 g 
supplement 

1580 ± 500
+ 1000 kCal
supplement

Similar 
improvement in 
both groups

Reduced severe 
infections
Reduced hospital 
admission
Similar survival

De Ledinghen
1997 [117]

Short term 
enteral nutrition 
vs. fasting

Cirrhotic 
patients after 
bleeding from 
esophageal 
varices

3 days
Follow-up 5 
weeks

12 enteral vs.
10 controls

74 g 2090 No change 
in nutritional 
parameters

No change in 
outcome or 
rebleeding

Le Cornu
2000 [118]

Oral 
supplementation 
to diet vs. diet

Malnourished 
cirrhotic 
patients in 
the waiting 
list for liver 
transplantation 

Variable
77 days

42 
supplementation 
vs. 40 controls

80 g 2419 kCal Treated improved 
arm circumference 
and arm muscle 
circumference + 
handgrip strength

No difference 
in outcomes or 
survival

Marchesini
2003 [119]

Oral 
supplement 
of BCAA vs. 
isocaloric and 
isonitrogen 
supplement

Advanced 
cirrhotic 
outpatients

12 months 59 BCAA vs.
56 L-alb vs.
56 malto-dextrin

0.8 g/kg/day
+ BCAA 14 
g/day
Or L-alb 14 
g/day
Or no protein 
supplement

30 kCal/day
+
200 kCal

Significant 
Improvement
of mid arm muscle 
area after BCAA 
supplement

Lower hospital 
admission in 
BCAA

Hu 2003 
[120]

Enteral vs.
parenteral vs.
controls

Postoperative 
patients with 
poor liver 
function

7 days 65 enteral vs.
40 parenteral 
vs. 30 controls

0.16 g N/kg 30 kCal/kg/
day

Enteral nutrition 
caused improved 
nitrogen balance 
Minor changes in 
body weight and 
arm circumference 

Enteral nutrition 
caused 
improvement in 
gut barrier

Dupont 2012 
[122]

Enteral 1 month 
and oral 2 
months vs. 
conventional 
treatment

Alcoholic 
cirrhotic 
patients with 
jaundice but 
no severe 
acute alcoholic 
hepatitis

12 month 44 enteral and 
oral nutritional 
supplementation 
vs. 55 controls

Oral diet 60 g
Enteral 1.2 
g/kg
Oral 
supplement
protein 20 g
Three times 
a day

Oral diet 
1800 kCal
Enteral 30-
35/kCal/kg
Oral 
supplement
320 kCal+ 
Three times 
a day

No change in 
arm muscle 
circumference

Similar 
complications and 
survival

Sorrentino 
2012 [123]

Parenteral 
nutrition post 
paracentesis 
(PNPS) and late 
evening snack 
(LES)

Cirrhotic 
patients with 
refractory 
ascites

12 months 40 PNPS and 
LES vs. 40 only 
LES
vs. 40 controls 
low sodium diet 

1.2-1.3 g/kg 
BW + PN 1.5 
g/kg/bw
LES 13.5 g/
day

30 kCal/kg/
day

Maintenance 
of arm muscle 
circumference in 
treated patients 
vs. deterioration 
of arm muscle 
circumference at 6 
and 12 months in 
+LES and controls 

Lower number of 
paracenthesis and 
better survival in 
patients treated 
with PN and LES

Plank 2015 
[114]

Oral/enteral 
immune
nutrition vs. 
isocaloric 
control

Before OLT
and 
postoperative

Variable before 
transplant 
and 5 days 
postoperatively
Follow-up 12 
months

52 
immunonutrition
vs. 49 isocaloric 
controls

80 g + 
supplement 
of 14 g 
arginine, 4 g 
omega3 fatty 
acids, 1.6 
ribonucleic 
acid

1860-1900 
kCal

Total body protein 
unchanged at 12 
months

Similar outcomes
In both groups

OLT, orthotopic liver transplantation; PN, parenteral nutrition.
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mTORC1 signaling [66]. These data provide the first
direct evidence of molecular perturbations in the
skeletal muscle in cirrhosis and in combination
with animal and in vitro cell culture data support
the role of hyperammonemia as a mediator of the
liver-muscle axis.
s: Dasarathy S, Merli M. Sarcopenia from mechanism to di
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Exercise and physical activity

The type of exercise determines the muscle related
outcomes [134]. Resistance exercise increases skele-
tal muscle mass by inducing muscle injury and
regeneration and protein synthesis [135]. Endurance
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Therapies including nutrient
supplementation and exercise
are not consistently effective
since they target replacing
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Key point

Therapies targeting mito-
chondrial function, including:
mitochondrial antioxidants,
mTORC1 signaling, and myo-
statin, hold promise for the
future.
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exercise improves functional capacity but does not
necessarily reverse sarcopenia. A combination of
resistance and endurance exercise have the poten-
tial to improve muscle mass and functional capac-
ity but such studies have not been performed in
cirrhosis. Randomized studies have reported
improvement in short-term outcomes in response
to exercise in cirrhotics [23]. Since direct compar-
isons of outcomes in healthy subjects and cirrhotic
patients in response to exercise have not been
reported, it is not possible to determine if the ana-
bolic resistance to nutrients is also observed with
exercise. There is evidence that protein kinase Cf
–phosphatidic acid mediates signal transduction
of mechanical activity to signaling responses by
activating mTORC1 signaling and protein synthesis
[136]. However, it is not known if these physiolog-
ical responses are blunted in cirrhosis and if ammo-
nia is the mediator of such blunted responses. A
recent study in a comprehensive array of models
including hyperammonemic rats, human subjects
and ex vivo muscle preparations does suggest that
hyperammonemia also alters contractile response
and increases fatigue in cirrhosis [78]. Whether
immobilization and injury responses in the cir-
rhotic skeletal muscle are altered has not been
studied but may explain the rapid deconditioning
observed during hospitalization.

Anabolic hormones

Testosterone and growth hormone have been used
in the past to improve nutritional status and,
potentially, muscle mass in cirrhosis but have not
been consistently beneficial [99,100,103,137,138].
Despite adverse effects, these therapies are not
effective in reversing nutritional status or sarcope-
nia. Increased aromatase activity contributes to
conversion of testosterone to estradiol that blunts
its effect [98]. Aromatase resistant androgens like
oxandrolone may therefore be beneficial but have
not been borne out in clinical practice [137]. Lack
of therapeutic benefit with hormone replacement
may also be due to impaired signaling responses
including mTORC1 response downstream of andro-
gen and growth hormone receptors may be respon-
sible for failure of these therapies. Increasing the
understanding of molecular and metabolic pertur-
bations in the skeletal muscle not only provides
explanations for the lack of clinical benefit of stan-
dard therapies but also is likely to help identify
novel, specific therapeutic targets for reversing
sarcopenia.

Ammonia lowering strategies

Current methods to lower ammonia include non-
absorbable disaccharides and antibiotics to prevent
gut generation of ammonia [139]. The primary out-
comes of these treatments are reversal of
encephalopathy and lowering of blood ammonia
Please cite this article in press as: Dasarathy S, Merli M.
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concentrations. It is, however, well known that
blood ammonia concentrations do not always corre-
late with the severity of encephalopathy, the most
studied response to hyperammonemia [140]. Skele-
tal muscle turnover is a slow process and lowering
ammonia transiently may not necessarily lower
muscle ammonia concentrations or reverse the
ongoing metabolic and molecular perturbations
rapidly. Studies on long-term ammonia lowering
strategies, quantifying muscle ammonia concentra-
tions and signaling responses to these interventions
are necessary before such an approach can be used
to reverse muscle loss and impaired contractile
function. Novel and potential methods to lower
muscle ammonia include the use of cell permeable
esters of aKG that can provide a direct anaplerotic
influx with removal of ammonia as glutamine. How-
ever, glutamine disposal will then become limiting
and strategies for long-term ammonia disposal to
protect the skeletal muscle are necessary. Isoleucine
and valine as anaplerotic substrates have been sug-
gested because they can remove one mole of ammo-
nia per mole of amino acid but the molecular and
functional responses to these interventions have not
been evaluated in preclinical or clinical studies to
lower muscle ammonia or reverse sarcopenia [82,83].

Novel molecular targeted strategies

Myostatin antagonists [91], direct mTORC1 activa-
tors [66,133], antioxidants, and mitochondrial pro-
tective agents have the potential to benefit skeletal
muscle protein turnover but have not been ade-
quately evaluated. Careful mechanistic studies are
necessary with preclinical testing before these inter-
ventions can be translated to clinical practice.

Post liver transplantation sarcopenia

The underlying molecular mechanisms and media-
tors need to be ascertained before therapies can be
recommended. Direct mTORC1 inhibitors that block
protein synthesis responses and accelerate autop-
hagy are largely used after liver transplantation, at
least in the United States [17]. Calcineurin inhibits
muscle growth and hypertrophy [141] and cal-
cineurin inhibitors are used in the vast majority of
post transplant patients. The contribution of these
medications to post transplant sarcopenia and sar-
copenic obesity needs to be evaluated. Whether
anabolic resistance of cirrhosis is reversed by liver
transplantation is not known and integrated
metabolic-molecular studies with muscle biopsies
are needed before specific therapies and preventive
measures can be developed. Finally, the reversibility
of hyperammonemia induced signaling responses
and impaired protein synthesis after liver transplan-
tation is not known. It is possible that epigenetic
changes in the regulatory molecules result in long-
term or persistent sarcopenia even after transplan-
tation or ammonia lowering therapies.
Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol (2016),
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Conclusion

In summary, there is compelling evidence to show
that sarcopenia is themajor complication of cirrhosis
and adversely affects outcomes during the entire
course of a cirrhotic patient’s life. Evidence to show
that sarcopenia can be reversed is much more lim-
ited and it is not clear if reversing sarcopenia will
indeed improve outcomes as expected. Nutritional
supplementation is not consistently effective in
improving outcomes but long-term BCAA with leu-
cine are promising therapies to prevent and treat
sarcopenia in cirrhosis. Long-term reduction of mus-
cle ammonia, novel approaches to enhance muscle
ammonia disposal, and strategies to block myostatin
hold potential for the future. Identification of molec-
ular and metabolic perturbations in the cirrhotic
skeletal muscle will allow development of targeted
therapies that focus in reversing the anabolic resis-
tance in these patients.
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