
Network analysis and algorithm solutions in critical
emergency scenarios

PhD School of the Department of Computer Science at Sapienza University
of Rome
Dottorato di Ricerca in Informatica – XXIX Ciclo

Candidate
Stefano Ciavarella
ID number 1274110

Thesis Advisor
Prof. Novella Bartolini

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
January 2017

Thesis defended on February 2017
in front of a Board of Examiners composed by:

Network analysis and algorithm solutions in critical emergency scenarios
Ph.D. thesis. Sapienza – University of Rome

© 2016 Stefano Ciavarella. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 30, 2017
Author’s email: ciavarella@di.uniroma1.it

to those who love me and believed in me...

Contents

Introduction 1

I Network Recovery after Massive Failures 6
Introduction . 7
Related Works . 11
Nomenclature and Notation . 12

1 ISP: network recovery under complete knowledge of the dis-
ruption 14
1.1 The Network Recovery Problem 15
1.2 Iterative Split and Prune . 16

1.2.1 Routability test . 17
1.2.2 Centrality based ranking 18
1.2.3 Split of the demand . 20
1.2.4 On the use of a dynamic path metric 23
1.2.5 Recovery of nodes and edges 23
1.2.6 Pruning . 24

1.3 Properties of ISP . 25
1.4 Heuristics . 28

1.4.1 A multi-commodity based solution 28
1.4.2 Shortest Path Heuristic (SRT) 29
1.4.3 Greedy Heuristics . 30

1.5 Experiments . 33
1.5.1 First scenario: small size topology 33
1.5.2 Second scenario: big size topology 38
1.5.3 Third scenario: simulation time comparison 39

2 CEDAR: Progressive Network recovery Under Incomplete
Knowledge of the Disruption 42
2.1 Problem definition and assumptions 43

iv

CONTENTS CONTENTS

2.1.1 The PDAR optimization problem 44
2.2 The algorithm CeDAR . 47

2.2.1 Definitions and notation 48
2.2.2 CeDAR in details . 51

2.3 Properties of CeDAR . 54
2.4 Heuristics . 56

2.4.1 Shadow Price Progressive Recovery (ShP) 56
2.4.2 Progressive ISP (P-ISP) 57

2.5 Experiments . 61
2.5.1 Scenario A: Varying demand intensity 61
2.5.2 Scenario B: Varying number of demand pairs 64
2.5.3 Scenario C: Varying disruption extent 66
2.5.4 Scenario D: Execution time comparison 68

Conclusions . 70

II Mobile Wireless Sensor Networks 71
Introduction . 72
Related works . 75

3 On the Vulnerabilities of Voronoi-based Approaches to Mo-
bile Sensor Deployment 77
3.1 Vulnerabilities of the Voronoi approach 78

3.1.1 Background on the Voronoi approach 78
3.1.2 The Opportunistic movement attack 79
3.1.3 Efficacy of the BOM attack against the Voronoi approach 80

3.2 The SecureVor algorithm . 87
3.2.1 SecureVor in detail . 88

3.3 The SSD algorithm . 91
3.3.1 SSD in detail . 92

3.4 Algorithm properties . 95
3.4.1 Properties of SecureVor 96
3.4.2 Properties of SSD . 98

3.5 Experimental results . 99
3.5.1 Scenario A: SecureVor setting 100
3.5.2 Scenario B: SSD setting 103
3.5.3 Scenario C: Transmission radius sensitivity analysis . . 106
3.5.4 Scenario D: Mobile barrier attack 107

3.6 Conclusions . 109

v

CONTENTS CONTENTS

III Smart Grid 110
Introduction . 111
Related Works . 116

4 Managing Contingencies In Smart Grids Via The Internet
Of Things 117
4.1 The Problem of a System Operator 118
4.2 The Problem of a User . 119

4.2.1 Optimal emergency schedule 120
4.2.2 Learning Algorithm for Importance Factors 121

4.3 The Problem of a Load Serving Entity 123
4.3.1 Regression-based heuristic 124

4.4 Simulation Results . 125
4.4.1 The system operator’s problem 125
4.4.2 The users’ problem . 127
4.4.3 The LSE’s problem . 130

4.5 Conclusions . 132

Conclusions 134

Acknowledgments 138

Bibliography 139

vi

Introduction

1

CHAPTER 0. INTRODUCTION

The purpose of this thesis is to analyze and study the critical issues
that influence the operation of computer networks. In fact, nowadays each
computer network field should deal with the increasing problem of designing
networks that are able to work under unpredictable conditions. In particular,
such conditions include natural disasters (e.g., earthquake, tsunami, flood-
ing, tornado, hurricane, etc.), human hostile environments (e.g., wildfire, loss
of gas, presence of radiations, etc.) and even intentional attacks performed
by an external attacker that aims to drastically reduce the operation of the
network. Due to the general and wide application of the communication
networks in different areas of computer science, these vulnerabilities can se-
riously compromise and influence the safety of modern society.
For instance, a widespread collapse of the communication networks, occurred
after Hurricane Katrina hit the Gulf Coast of the United States in 2005. The
damage extended for an area of approximately 93,000 square miles. More
than 2,000 cell towers were knocked out. The backbone conduit for land-
line service was flooded as well as many central switching centers [59, 69].
Another example, in 2011 the ”great east Japan earthquake” hit a large
part of the north-east of Japan. The earthquake was just the start of a
widespread disaster, which also included a huge tsunami and the nuclear
failure at Fukushima. The tsunami destroyed most terrestrial communica-
tion infrastructures including many of the wired communication networks
and emergency municipal radio communication systems [77, 71]. In both
cases, the communication outage consequent to the disaster hampered the
assessment of residents’ safety. It also precluded efficient rescue operations
by government and public organizations, such as distribution of medical aid
and emergency supplies. The restoration of the communication infrastruc-
ture and its related services took months, a time window that is far from
meeting the requirements of critical services or normal local communications
of people living in the affected areas. For these reasons, a major challenge in
disaster management scenarios is to sufficiently recover the communication
network infrastructures so that it may support mission critical applications.
In this scenario, our goal is to optimize the restoration actions in the shortest
time and with minimum interventions, under the constraints posed by the
critical services requirements.
In the field of Mobile Wireless Sensors Network (MWSN), mobile wireless
sensors are used for monitoring inaccessible or hostile environments, where
manual positioning of static sensors is not feasible [80] due to natural disasters
as for example wildfires, chemical plumes or nuclear failures. These devices
can autonomously deploy over an Area of Interest (AoI) using algorithms
that determine the device movement and positioning rules. As shown in [9],
an adversary may capture several sensors and reprogram them to perform

2

CHAPTER 0. INTRODUCTION

several attacks to damage the network, exploiting the specific vulnerabilities
of the deployment algorithm in use. An attacker can influence the deploy-
ment of MWSN to reduce the area in which sensors are deployed, making
the network unable to monitor the AoI with sufficient coverage and raising
security issues [9]. In such a non monitored zone, the network is subject
to several vulnerabilities, as for example intrusion actions by an attacker.
In this thesis, we address the vulnerabilities of deployment algorithms for
Mobile Wireless Sensors Network (MWSN) based on Voronoi diagrams to
coordinate mobile sensors and guide their movements.
Since communication networks are widely applied in several fields, another
example of critical and emergency scenarios comes from the power grids.
Natural disaster phenomena or intentional attacks could damage the power
systems operation resulting in large-scale blackouts. A report by the U.S.
Executive Office of the President estimates that between 2003 and 2012, 679
large scale power outages occurred in the U.S., each affecting at least 50,000
customers [36, 18, 19]. The economical impact of this outage was significant,
as the costs range from 18 to 33 billion dollars per year [36]. We focused on
the power grids contingency analysis in Smart Grids to study the impact of
potential component failures. In particular we addressed the problem of how
to balance the end-users energy’s loads, after a system component failure in
the smart grid, to prevent a cascading failure phenomena that could lead to
a large-scale blackout.

Considering the detrimental effects of such phenomenons on several dif-
ferent kind of networks, this work analyzes and proposes at the same time,
protocols and algorithmic solutions to restore the full operation of the net-
work under emergency scenario. The rest of the thesis is organized as follows.
In part I, we focus on the problem of efficiently restoring sufficient resources
in a communications network to support the demands of mission critical ser-
vices (e.g., government offices, police stations, fire stations, power plants,
hospitals, etc.) after a large scale disruption. Because our society heavily de-
pends on communication networks to support these mission critical services,
especially in times of emergency, it is important that such infrastructures
be repaired quickly, at least to the point where mission critical services are
restored. We consider scenarios in which a major disruption of the communi-
cation network makes it unable to meet the bandwidth requirements (hereby
demand flows) of the mission critical services and therefore recovery actions
are needed. We model the recovery problem (MinR) as a mixed integer linear
programming (MILP) that aims to recover the damaged infrastructures in
order to minimize the cost of the recovery actions. The restoration of the mis-
sion critical services are performed through the recovery of damaged network

3

CHAPTER 0. INTRODUCTION

components or the deployment of new network elements. We show that the
problem is NP-hard and propose a polynomial time heuristic called Iterative
Split and Prune (ISP) to recover the network efficiently with a solution close
to the optimal, i.e., that minimizes the cost for reparations. ISP iteratively
selects the node with the highest centrality value, repairs it if damaged, and
splits some demand flows to force them to pass through the selected node.
Furthermore, ISP minimizes the repairs by concentrating flows towards the
areas of the network already repaired and it prunes the demand flows which
can be routed on the currently repaired network. ISP terminates in a finite
number of steps by returning both a recovery strategy and a routing solution
for the demand flows. Experimental results, show that ISP performs very
close to the optimal in terms of number of elements repaired.
To work properly, ISP assumes to have a perfect knowledge of the disrupted
area, i.e., ISP needs to know the exact sets of failed nodes and links. How-
ever, this information is not always available or it is only partially available.
In this context, a complete and detailed damage assessment required by ISP
could take long time for extensive monitoring and local inspections. It is
therefore fundamental that recovery interventions start as soon as possible
even if knowledge of the damage extension is incomplete. For this purpose,
we study the problem of progressive restoration of the mission critical ser-
vices in condition of partial knowledge. By progressive restoration we mean
a progressive process of monitor placement, network probing and repair in-
terventions, to gain information and restore the networks’ components over
time. We formulate the problem of Progressive Damage Assessment and net-
work Recovery (PDAR) which aims at progressively restoring critical services
in the shortest possible time, under constraints on the availability of recovery
resources and partial knowledge on the disruption. We propose a polynomial
time algorithm called Centrality based Damage Assessment and Restoration
(CeDAR) to dynamically schedule repair interventions, local inspections and
remote probing of network components, with the objective to restore critical
services in the shortest possible time with efficient use of recovery resources.
CeDAR restores critical demand flows iteratively by planning repair sched-
ules that are based on the current global view of the network. It schedules the
repairs of components that can be utilized immediately and with the high-
est advantage for the largest number of critical services first, maximizing
the accumulative service flow during the recovery process. Through exten-
sive simulations, we show that CeDAR recovers the network with the lower
cost of repairs, lower number of local inspections to discover the network’s
status and with the higher flow restored over time, compared to the other
approaches in all the experimental scenarios.
In part II, we move the attention on the vulnerabilities of the deployment

4

CHAPTER 0. INTRODUCTION

algorithms for Mobile Wireless Sensors Network (MWSN) based on Voronoi
diagrams to coordinate mobile sensors and guide their movements. Since,
previous deployment algorithms do not address potential security issues, an
attacker can easily prevent the network from achieving its coverage goals by
taking control of few nodes. We give a geometric characterization of possible
attack configurations, proving that a simple attack consisting of a barrier of
few compromised sensors can severely reduce network coverage, creating a
non monitored area subject to malicious actions by an attacker. Based on
the above characterization, we propose a new secure deployment algorithm,
named SSD (Secure Swap Deployment). This algorithm allows a sensor to
detect compromised nodes by analyzing their movements. We show that the
proposed algorithm is effective in defeating a barrier attack, achieving the
total coverage of the AoI and it has guaranteed termination. We perform
extensive simulations showing that SSD has better robustness and flexibility,
excellent coverage capabilities and deployment time, even in the presence of
an attack.
In part III, we study the detrimental effect of system failures in the Smart
Grid. Since these failures could lead to cascading failures phenomena and
could induce a large-scale blackout, it is extremely important to perform pre-
ventive actions. We propose a novel framework to alleviate this type of risks
by adjusting a large number of end-user loads through the concept of the
Internet of Things (IoT) [5, 91]. The assumption is that, for such emergency
cases, curtailing some non-critical loads to prevent cascading failures yields
greater aggregate utility than leaving the lights on and having cascading fail-
ures later. The proposed framework comprehensively involves the System
Operator (SO), the Load Serving Entities (LSEs), and the end-users’ smart
systems. The system operator prevents cascading failures by calculating the
load energy curtailment. When an LSE is notified of a load curtailment
amount, it computes the individual load curtailments of each users, in order
to maximize the aggregate utility, i.e., end-users’ satisfaction. Finally, the
Smart Home Management System calculates an emergency schedule, which
defines the best set of appliances that the user is allowed to use. This schedule
minimizes the impact of the curtailment on the user’s habits, while satisfy-
ing the power allowance requested by the LSE. The results show that the
proposed framework is effective in keeping the system stable during contin-
gencies, preventing cascading failures while maximizing the aggregate user
utility.

5

Part I

Network Recovery after
Massive Failures

6

Introduction

Introduction

Natural disasters or intentional attacks can severely disrupt critical infras-
tructures such as communication, power, and emergency control networks
[68] at a large scale. A complete recovery of these infrastructures may re-
quire months, during which there would be no sufficient support to the most
critical services, not to mention normal communications in the devastated ar-
eas. Disaster management requires the restoration of at least the minimum
necessary infrastructures to perform safety critical services, with the utmost
urgency. Because our society heavily depends on communication networks
to support mission critical services, especially in times of emergency, it is
important that such infrastructures be repaired quickly, at least to the point
where mission critical services are restored.
As example, a widespread collapse of critical infrastructures occurred after
Hurricane Katrina that hit the Gulf Coast of the United States in 2005. The
damage extended for an area of approximately 93,000 square miles. More
than 2,000 cell towers were knocked out. The backbone conduit for landline
service was flooded as well as many central switching centers [59, 69].
In 2011, the ”great east Japan earthquake” hit a large part of the north-east
of Japan. The earthquake was just the start of a widespread disaster, which
also included a huge tsunami and the nuclear failure at Fukushima. The
tsunami destroyed most terrestrial communication infrastructures including
many of the wired communication networks and emergency municipal radio
communication systems [77, 71].
In both cases, the communication outage consequent to the disaster ham-
pered the assessment of residents’ safety. It also precluded efficient rescue
operations by government and public organizations, such as distribution of
medical aid and emergency supplies. The restoration of the communication
infrastructure and its related services took months, a time window that is far
from meeting the requirements of critical services or normal local communi-
cations of people living in the affected areas.
For this reason, a major challenge in disaster management scenarios is to suf-
ficiently recover the communication network infrastructures so that it may
support mission critical applications in the shortest time and with minimum
interventions.
In this first part, we focus on the communication network and the mission
critical applications it supports. These applications represents critical ser-
vices such as communication between government offices, police stations, fire
stations, power plants, gas-duct control centers and hospitals, that rely on
the communication network for control and operation. These services are

7

Introduction

critical for first responders and typically show increased rate of requests as a
consequence of the occurred incidents [7]. We address the problem of restor-
ing critical services provided by the communication network through the
recovery of damaged network components or the deployment of new network
elements. Our goal is to optimize the restoration cost under the constraints
posed by the critical service requirements.

In Chapter 1, we initially model the communication network as a graph of
nodes (routers and access points) and links (physical lines) considering them
as the elements that may fail after a massive failure. We model the recovery
problem as a mixed integer linear programming (MILP) (Section 1.1). The
problem looks for the best strategy that recovers the damaged infrastructure
and deploys new links and nodes in order to minimize the cost of the recovery
actions under the constraints on network capacity and while satisfy the de-
mand flows. We show that the problem is NP-hard and propose a heuristic
called Iterative Split and Prune (ISP) to recover the network efficiently in
polynomial time with a solution close to the optimal (Section 1.2). ISP is
based on a new metric called demand based centrality, specifically designed
to measure the importance of a node with respect to multiple demand flows
of interest. ISP makes use of this metric to determine the most important
nodes to be repaired. In particular, ISP iteratively selects the node with
the highest centrality, repairs it if damaged, and splits some demand flows
to force them to pass through the selected node. This way, ISP minimizes
the repairs by concentrating flows towards the areas of the network already
repaired. Additionally, it prunes the demand flows which can be satisfied by
the currently repaired network.

To work properly, ISP assumes a perfect knowledge of the disrupted area,
i.e. ISP needs to know the exact sets of nodes and links failed. However,
this information is not always available or it is only available a partial knowl-
edge on the disrupted area. In this context, a complete and detailed damage
assessment required by ISP could take long time for extensive monitoring
and local inspections. It is therefore fundamental that recovery interven-
tions start as soon as possible even if knowledge of the damage extension
is incomplete. For this purpose, in Chapter 2 we focus on the operative
phases of damage assessment and network recovery of the communication
infrastructures. In particular, we study the problem of progressive restora-
tion of the mission critical services in condition of partial knowledge. By
progressive restoration we mean a progressive process of monitor placement,
network probing and repair interventions, to gain information and restore
the networks’ components over time. The reason why repair actions need

8

Introduction

to be performed progressively is twofold: 1) knowledge of the status of the
network elements can be increased incrementally by placing new monitors on
repaired network components; 2) the schedule of recovery interventions can
be adapted to the incremental knowledge availability and result in a more
efficient utilization of recovery resources (e.g. human workers). Performing
repairs in a progressive manner is also necessary for coping with unpredicted
variability and surges of the demand [7]. We formulate the problem of Pro-
gressive Damage Assessment and network Recovery (PDAR) which aims at
progressively restoring critical services in the shortest possible time, under
constraints on the availability of recovery resources and with partial knowl-
edge on the disrupted area (Section 2.1). We show that the PDAR problem
is NP-hard and may require an unsustainable computation time for large
networks. We propose a polynomial time algorithm called Centrality based
Damage Assessment and Restoration (CeDAR) which dynamically schedules
repair interventions, local inspections and remote probing of network compo-
nents, with the objective to restore critical services in the shortest possible
time with efficient use of recovery resources (Section 2.2). CeDAR restores
critical demand flows iteratively by planning repair schedules which are based
on the current global view of the network. It schedules the repair of compo-
nents that can be utilized immediately and with the highest advantage for
the largest number of critical services first, maximizing the accumulative ser-
vice flow during the recovery process. CeDAR chooses the best node to place
a monitor on the basis of a demand-based centrality metric that takes into
account the demand flows. Based on the information obtained by placing
monitors in each stage, CeDAR adapts its repair schedule by planning more
efficient interventions.
In both scenarios, we prove some properties of the proposed algorithms, prov-
ing that ISP and CeDAR terminate in a finite number of steps and in poly-
nomial time, by returning both a recovery strategy and a routing solution for
the demand flows (Sections 1.3 and 2.3). We also propose other heuristics
for comparison, based on the standard multi-commodity approach, greedy
approaches as well as other solutions proposed in literature and adapted to
correctly work in the recovery scenario. We compare the performances of ISP
and CeDAR with other solutions in a variety of scenarios. Such scenarios
include both real and synthetic network topologies, geographically correlated
failures, as well as different demand requirements (Sections 1.4 and 2.4). Re-
sults show that ISP and CeDAR always outperform other approaches and
always perform close to the optimal solution that is NP-hard (Sections 1.5
and 2.5).

9

Introduction

In summary the original contribution of our work is the following:

• We model, for the first time, the recovery problem (MinR) and progres-
sive recovery problem (PDAR) under complete and incomplete knowl-
edge, respectively.

• We show that the MinR and PDAR problems are NP-hard.

• We introduce a new metric of demand based centrality, specifically
meant to measure the importance of a node in a network of a multi-
commodity problem instance.

• We propose two polynomial time heuristic called Iterative Split and
Prune (ISP) and Centrality based Damage Assessment and Recovery
(CeDAR), to solve the MinR and PDAR problems, respectively.

• We analyze the properties of ISP and CeDAR and prove its correctness,
termination, and polynomial time complexity.

• We propose several heuristics based on the standard multi-commodity
approach, greedy heuristics and shortest paths repair approaches, as
well as we modified previous approaches in literature as baseline solu-
tions to MinR and CeDAR.

• We evaluate the proposed solutions through simulations under a wide
variety of scenarios. Results show that ISP and CeDAR perform close
to the optimal NP-hard solution, while other heuristics incur a much
higher cost to accommodate the demand flows in all the considered
scenarios.

• The ISP algorithm for network recovery is published on Dependable
Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP Interna-
tional Conference(http://ieeexplore.ieee.org/document/7579733/) [13]

• The CeDAR algorithm for the progressive network recovery is pub-
lished on IEEE Proceedings of the International Conference on Com-
puter Communications (IEEE INFOCOM 2017) [29]

10

Related works

Related Works

Numerous works address the case of sparse failures through the provision of
alternative paths, provided either proactively, as in the work of Todimala et.
al [82], or reactively, as in the work of Zheng et al. [92], whereas Suchara et.
al [81] jointly address recovery and traffic engineering, to minimize conges-
tion after a failure. Since our works address the problem of network recovery
from large scale failures, in this section we do not consider the previous work
on the first problem, and describe only works that are related or are appli-
cable to the case of massive failures.
The multi-commodity flow problem, addressed in a large amount of research
work, aims at finding the routing of several multi-commodity flows in a sup-
ply network, so as to optimize the totally routed flow. This problem seems
the most reasonable reduction of our problem to a classic problem. Neverthe-
less this approach has considerable limitations when applied to the problem
of recovery. We discuss these aspects in detail in Chapter 1, section 1.4.1.
Many heuristics have been proposed to solve several variants of the multi-
commodity flow problem. Most of these works [42, 6] rely on the idea that
a higher total flow can be obtained by balancing the load distributing the
flow over many paths. This idea is opposite to what is needed in the recov-
ery problem MinR, where we want to maximize the flow traversing repaired
paths, and concentrate the flow towards shared paths.
Some works focus on the rent or buy multi-commodity problem, which aims
at installing possibly unlimited capacities on the edges of a network so that
a prescribed amount of flow can be routed between several pairs of termi-
nals. The rent or buy problem assumes that each edge can obtain unlimited
capacity at a given cost. The works by Kumar et al. [56] and Fleischer et
al. [38] address this problem and propose polynomial time heuristics with a
given approximation of the optimal solution.
Other works address the problem of service restoration in the case of het-
erogeneous non-telecommunication networks. Among these, in their work
[60], Lee et al. address the problem of restoring service in an interconnected
network by creating new links. They propose a formulation of the problem
in terms of a high complexity optimization model.
Other works [3, 51] address the problem of recovery beyond the field of
telecommunications with solutions tailored to the specific type of network
being considered.
Finally, the work of Magnanti et al. [64] addresses the problem of network
design under connectivity only requirements. It shows that the simplified
version of MinR in which every demand pair requires only to be connected

11

Nomenclature and Notation

regardless of the capacity of the interconnecting paths, is a specific instance
of the Steiner Forest problem. The work by Wan, Qiao and Yu [86] intro-
duced a problem related to ours. They study the impact of recovery actions
in terms of improved throughput over time. Their work aims at formulating a
schedule of repair interventions under limited daily budget, so as to optimize
the achieved throughput. The authors modeled the problem as an MILP and
showed that is it NP-hard. They proposed a greedy heuristic for solving the
problem in multiple stages by analyzing the shadow prices of the related op-
timization problem and using an iterative evaluation of these values to repair
the edges with highest potential for contributing to the objective function.
Ferdousi et al. [37] tackle the problem of progressive datacenter recovery af-
ter a large-scale failure. The work aims at giving directions on how to select
which datacenters should be recovered at each recovery stage to maximize
cumulative content reachability from any source considering limited available
network resources.
All the mentioned works have different targets and are not directly appli-
cable to solve the MinR and PDAR problems. Furthermore, these works
assume perfect knowledge of the status (working or damaged) of network
elements, while PDAR specifically address the problem of recover a network
in absence of knowledge. In Section 2.4.1, we extended the work in [86] and
we adapt it to properly work in the scenario of partial knowledge to solve the
PDAR problem. Moreover, our algorithms also produce a routing solution
that guarantees that the demand flows are actually accommodated.

Nomenclature and Notation

In this section we define the nomenclature that will be used in the entire
Part I to model the network recovery problem scenario. We model the com-
munication network as an undirected graph G = (V,E), called the supply
graph, where V and E represent nodes and links of the network, respectively.
Each edge (i, j) ∈ E has capacity cij. We also consider a demand graph
H = (VH, EH), where VH ⊆ V , and EH ⊆ VH× VH is the set of pairs of nodes in
VH having a positive flow demand. Each pair (sh, th) ∈ EH has a source sh, a
destination th and an associated demand flow dsh,th . For the sake of simplic-
ity, we write h ∈ EH, when (sh, th) ∈ EH, and we shortly use the notation dh
for dsh,th when the context allows. Notice that the demand flows modeled by
the sets VH and EH can take emergency related priorities into account. These
sets define the endpoints of critical communication services and an estimate
of the related demand flow, which may account for the increased needs due
to the disaster [7].

12

Nomenclature and Notation

Notations Descriptions

G = (V,E) supply graph

G(n) = (V (n), E(n)) supply graph at iteration n

H = (VH, EH) demand graph

H(n) = (V
(n)
H , E

(n)
H) demand graph at iteration n

cij capacity of edge (i, j) ∈ V
dh = dsh,th demand flow of edge (sh, th) ∈ EH

c
(n)
ij , d

(n)
shth

capacity of (i, j), demand of (sh, th) at the n=th iter-
ation

VB ⊆ V and EB ⊆ E broken vertices and edges

V
(n)
B and E

(n)
B

VB and EB at iteration n

h ∈ EH, demand pair (sh, th) ∈ EH

kvi , keij cost of vertex i and edge (i, j)

fhij quantity of flow h from i to j

δij decision to use edge (i, j) ∈ E,

δi decision to use vertex i ∈ V
ηmax maximum degree of the network

bhi flow h generated at node i

`(p), l(ei) length of path p, length of edge ei
n(p) number of edges of p

c(p) capacity of path p: min
e∈p

ce

P(i, j) paths in G between i and j

P∗(i, j) shortest paths necessary to route demand dij
P∗

ij |v set of paths in P∗
ij that include v

cd(v) demand based centrality, see equation (1.3)

v
(n)
BC

node with highest centrality at iteration n

C(n)(v(n)BC) ⊆ E(n)
H

demand pairs that contributed to the centrality of v
(n)
BC ,

updated at iteration n
L(n) list of repairs, updated at iteration n

Table 1: Nomenclature and notation.

In order to model the network failure, we define the sets VB ⊆ V and
EB ⊆ E of damaged vertices and edges, respectively. We denote with kvi the
cost of repairing vertex i ∈ EB and with keij the cost of repairing the edge
(i, j) ∈ EB

1. The recovery costs are heterogeneous and dependent on the
location and on the technology in use. This notations will be extended in the
Chapter 2 to model the incompleteness of the information on the disruption.
Table 1 summarizes the notation used throughout this part.

1 Notice that this model can also be adopted as is to support decisions to replace broken
links with new links of higher capacity, or to deploy and connect new nodes, by formulating
a related decision space. These additional choices may be considered in the model as parts
of the sets EB and VB and included in the correspondent supply graph G. The model can
also be extended to the case of multiple choices for link technology and related capacity.
For simplicity of presentation, in this work we refer to the only case of recovery decisions.

13

Chapter 1

ISP: network recovery under
complete knowledge of the
disruption

14

CHAPTER 1. ISP The Network Recovery Problem

1.1 The Network Recovery Problem

In this section we formulate the Minimum Recovery (MinR) problem as
a mixed integer linear optimization problem. MinR aims at minimizing the
cost to repair broken nodes and links so as to restore the necessary network
capacity to meet a given demand.

We introduce the decision variables fhij ∈ R, with fhij ≥ 0, to represent the
fraction of the demand flow h that will be routed through the link (i, j) ∈ E,
going from vertex i to vertex j. Notice that other flows may traverse the
same edge in the opposite direction.

We also define the binary variables δij and δi. The variable δij represents
the decision to use link (i, j) ∈ E, therefore δij = 1 if link (i, j) is used, and
δij = 0 otherwise. If the link (i, j) ∈ EB, the decision to use this link implies
that it must be recovered. Similarly, δi represents the binary decision to use
the node i ∈ V , which has to be recovered if it is broken, that is if i ∈ VB.

The objective function of the MinR problem can be expressed as in Equa-
tion 1.1(a), where we optimize the cost of repairing the only vertices and edges
that are both used (the corresponding binary decision variable is 1) and that
were initially broken (the related vertices and edges belong to VB and to EB,
respectively).

The capacity constraint of our problem is expressed by Equation 1.1(b).
According to this constraint the total amount of flow traversing the edge
(i, j) in both directions cannot exceed the maximum capacity of the link.

Notice that if an edge (i, j) is used, the corresponding endpoints i and
j are also used, which implies that δi ≥ δij, ∀i, j ∈ V . To express this
constraint in a compact form, with fewer equations, we consider that the
degree of each vertex is lower than or equal to the maximum degree ηmax of
the network. Therefore the relationship between δi and δij can be expressed
by the constraint given by Equation 1.1(c).

We consider a flow balance constraint, in the form expressed by Equation
1.1(d). In this equation bhi = dh if i = sh, b

h
i = −dh if i = th, and bhi = 0

otherwise. This equation states that if vertex i is not the source nor the
destination of flow h, then the total portion of flow h entering the vertex i
should be the same as in the exit direction. By contrast if vertex i is the
source of flow h, then the amount of flow h in the exit direction from vertex
i is dh. Similarly if vertex i is the destination of flow h, the amount of flow h
entering vertex i is dh. Finally, Equation 1.1(e) shows that we are consid-
ering non negative, continuous decision variables for the flow assignment to
edges, while Equation 1.1(f) expresses the binary constraint for the decision

15

CHAPTER 1. ISP Iterative Split and Prune

variables which determines whether some vertices and edges are used in the
solution of the problem.

The MinR problem can therefore be formulated in linear terms in the
variables δij, δi and fhij as follows:

min
∑

(i,j)∈EB
keijδij +

∑
i∈VB

kvi δi (a)

cij · δij ≥
∑|EH|

h=1(fhij + fhji) ∀(i, j) ∈ E (b)
δi · ηmax ≥

∑
j:(i,j)∈E δij ∀i ∈ V (c)∑

j∈V f
h
ij =

∑
k∈V f

h
ki + bhi ∀(i, h) ∈ V × EH (d)

fhij ≥ 0 ∀(i, j) ∈ E, h ∈ EH (e)
δi, δij ∈ {0, 1} ∀i ∈ V, (i, j) ∈ E (f)

(1.1)

Theorem 1.1.1. The problem MinR is NP-Hard.

Proof. Let us consider a generic instance of the Steiner Forest problem [49,
64]. Given a graph Gsf = (Vsf, Esf), a set of node pairs Ssf = {(s1, t1), . . . ,
(sn, tn)} and a cost function csf : E → R+, the goal of the Steiner Forest
problem is to find a forest Fsf ⊆ E with minimum cost, such that for each
pair (si, ti), si and ti belong to the same connected component in Fsf.

We reduce this problem to an instance of MinR as follows. We consider
a supply graph G = (V,E) with V = Vsf and E = Esf. We consider EB = E
and VB = ∅. We create a unitary demand flow for each pair in Ssf. For each
edge in E we set the cost of repair equal to the cost of the corresponding
edge in Gsf, and its capacity equal to a value L that is sufficiently large that
any link of E can accommodate the sum of all demand flows. Therefore,
considering a requirement of one unit of flow for each demand pair, it is
L� |Ssf|.

Given such instance, MinR returns the set of nodes V ∗ ⊆ V and edges
E∗ ⊆ E to be repaired to accommodate all the demand flows. However,
V ∗ = ∅, since no node is damaged. Additionally, since the capacity of each
edge in E is large enough to accommodate an amount of flow exceeding the
sum of all demand flows, for each demand pair (si, ti) a single path from si
to ti is sufficient to accommodate the demand flow between si and ti. As a
result, the union of the links in E∗ generates a Steiner forest, since any cycle
would imply unnecessary repairs. This is also the forest with minimum cost,
since MinR minimizes the costs of repairs.

We can therefore conclude the reducibility of the Steiner Forest problem
to MinR, and consequently that the problem MinR is NP-Hard.

1.2 Iterative Split and Prune

To solve the MinR problem presented in the Section 1.1, we developed a novel
heuristic called ISP. The algorithm ISP (Iterative Split and Prune)

16

CHAPTER 1. ISP Iterative Split and Prune

works by iteratively selecting the best candidate nodes and links for repair,
then simplifying the demand by either removing (pruning) or reducing it in
smaller segments (split), so as to consider simpler instances of the problem
at every iteration. The termination condition is the complete removal of
the demand or the achievement of an instance whose demand is routable
through the currently working links. Notice that at the end of its execution
the algorithm ISP will output both the set of repairing interventions and the
corresponding routing of demands.

The pseudo-code of the algorithm is shown in Algorithm 1. More details
on the single activities can be found in the following sections.

ALGORITHM : Iterative Split and Prune (ISP)

Input: Supply graph G, demand graph H, broken nodes VB and broken edges EB

1 while routability test fails do
2 while pruning condition do
3 Prune demands satisfying pruning condition;
4 Update G and H;

5 if there are repairable links then
6 Repair broken repairable links;
7 Update G and EB;

8 else
9 Find best candidate vBC for split;

10 Repair vBC if broken;
11 Find best demand d to split on vBC;
12 Calculate the maximum splittable amount dx;
13 Split amount dx of demand d on vBC;
14 Update G, H, VB;

1.2.1 Routability test

At the basis of the algorithm is the use of flow balance equations and capac-
ity constraints to determine the feasibility of an action or the termination
condition. The algorithm should terminate whenever there is no demand left,
or the current demand can be routed without additional repairs.

For some specific topologies of both supply and demand graphs, as dis-
cussed by Schrijver in [78], the question whether a demand can be routed
through the links of the supply graph can be answered by verifying the so
called cut condition, namely whether for every cut the total capacity crossing
the cut is no less than the total demand crossing it. While the cut condition
is always necessary to ensure the routability of a set of demand flows through
a supply graph, it is not always sufficient, for example when the graphs G and

17

CHAPTER 1. ISP Iterative Split and Prune

H admit an odd p-spindle as a minor as motivated by Chakrabarty, Fleischer
and Weible in [26], or a bad-k4-pair as discussed in the already mentioned
work by Schijver [78].

The specific instances of graph pairs G and H of a multi-commodity flow
problem for which the verification of the cut condition is a necessary and
sufficient condition for the routability are called cut-sufficient instances. For
this part on the network recovery, we are not assuming cut-sufficiency for our
works, since we address general graph instances.

Without assuming any structural property of the supply and demand
graph, the routability of the demand over the supply graph can be determined
by solving the following set of inequalities, to which we will refer under the
name of routability conditions:{ ∑

h∈EH
(fhij + fhji) ≤ cij ∀(i, j) ∈ E∑

j∈V f
h
ij =

∑
k∈V f

h
ki + bhi ∀(i, h) ∈ V × EH

fhij ≥ 0 ∀(i, j) ∈ E, h ∈ EH

(1.2)

If the constraint system given by the routability conditions of Equation (1.2)
determines a non empty region, then we can assert that the supply graph
G has enough capacity to ensure the routability of the considered demand
H. Any feasible solution of the above system is a routing policy that can be
adopted to satisfy the demand H with routes in G.

Notice that at any iteration, the demand graph H and the residual capac-
ities of the edges of graph G are updated as a consequence of either prune, or
split actions. The sets VB and EB are also updated after any repair decision.

For this reason we define the supply graph at iteration n as G(n) =
(V (n), E(n)), with link capacities c

(n)
ij , and where V (n) = V \V (n)

B , and E(n) =

(E \ E(n)
B) \ {(i, j) s.t. |{i, j} ∩ V (n)

B | ≥ 1}. Analogously, we consider the
demand graph H(n), updated at iteration n. When necessary, the routability
test is performed on the problem instance defined at iteration n, with supply
graph G(n) and demand graph H(n).

1.2.2 Centrality based ranking

According to the classic definition, the betweenness centrality of a node v is
proportional to the number of shortest paths in the supply graph G = (V,E)
between any two vertices i, j ∈ V \ v, divided by the total number of node
pairs. When there are multiple shortest paths of equal length, their nodes
share centrality credits in equal proportions. Unfortunately, when demands
and capacities are taken into account, such a metric is no longer able to
quantitatively evaluate the centrality of a node, as it considers all the node

18

CHAPTER 1. ISP Iterative Split and Prune

pairs as equally important, and does not take account of the different amount
of flow potentially traversing each node.

Unlike previous definitions of node centrality [40, 22, 20, 48, 74], we intro-
duce a new measure of centrality (hereby demand based centrality), that takes
account of the ability of each node to route the demand flows throughout the
network. Our metric is a generalization of the classic notion of betweenness
centrality [40, 22].

We generalize the notion of betweenness centrality as follows. A path p
in the graph G is hereby defined as a list of edges p =< e1, e2, . . . , en >.
For shortness of notation, we will also say that a vertex v ∈ p when v is an
endpoint of an edge belonging to p. We denote with `(p) the length of the
path p, therefore `(p) =

∑
ei∈p l(ei), where l(ei) is the length of the edge ei.

The capacity of a path is denoted by c(p) and is equal to the minimum
capacity of the links in p, therefore c(p) = min

(i,j)∈p
cij.

We denote with P(i, j) the set of acyclic paths in G connecting nodes
i, j ∈ V . We also denote with P∗(i, j) ⊆P(i, j) the set of the first shortest
paths necessary to ensure the routability of the demand (i, j), when consid-
ered independently of the other demands.

The demand pair (i, j) ∈ EH contributes to the centrality of a node v with
all the paths p ∈ P∗

ij|v, where P∗
ij|v , {p|v ∈ p ∧ p ∈ P∗

ij}. In particular,
for each path p ∈P∗

ij|v, the pair (i, j) contributes to the centrality of v with
a fraction of the demand dij equal to the ratio between the capacity of p,
c(p), and the sum of the capacities of all the paths in P∗

ij. Given the supply
graph G (including broken elements) and the demand graph H, the demand
based centrality cd(v) of node v is defined as:

cd(v) ,
∑

(ij)∈EH


∑

p∈P∗ij |v
c(p)∑

p∈P∗ij

c(p)
· dij

 . (1.3)

Notice that, if a static distance metric is adopted to calculate the path
length, P∗(i, j) can be calculated offline for any demand pair (i, j), and
therefore it does not affect the complexity of ISP. Nevertheless, as we discuss
in Section 1.2.4, a dynamic notion of path length which takes account of
whether the considered network elements are working or not, may be used
to attract more flow to repaired elements.

If the adopted distance metric is dynamic, the centrality of a node may
vary significantly during the unfolding of the algorithm, according to the
actions provided by ISP. In this case node centrality cannot be calculated
offline and needs to be updated at every iteration. In order to have a low

19

CHAPTER 1. ISP Iterative Split and Prune

complexity, we calculate an estimated set of paths P̂∗
ij as follows. We use

Dijkstra’s algorithm to find the shortest path p between nodes i and j. Let
c(p) be the capacity of such path. If c(p) ≥ dij this path is sufficient, other-
wise we consider the residual graph in which we reduce the capacity of p by
c(p), and we calculate the next shortest path to satisfy a demand dij − c(p),
if available. For each demand dij, with endpoints (i, j) ∈ EH, we calculate

iteratively the estimated sets of shortest paths P̂∗
ij. For each shortest path

in P̂∗
ij, we can update the centrality of its nodes in linear time with respect

to the path length. As a result of this procedure, we obtain an estimate ĉd(v)
of the centrality of each node v, using the Equation 1.3, where we replace
P∗

ij with P̂∗
ij.

Notice that, the calculation of the centrality based ranking is performed at
each iteration considering the supply graph G(n) (including broken elements),
the current demand graph H(n) and the current values of link capacities which
may vary iteration by iteration as a consequence of pruning actions.

1.2.3 Split of the demand

At the n-th iteration, ISP selects the node v
(n)
BC ∈ V with highest demand

based centrality. The centrality ranking does not take account of disruptions,
but of the potentiality of a node to contribute to an efficient routing. Hence,
the centrality calculation considers the original complete supply graph G
(including the broken elements), with updated residual capacities, and the

current demand graph H(n). If v
(n)
BC ∈ V

(n)
B , then v

(n)
BC is virtually repaired

at the current iteration, therefore it is removed from the set V
(n)
B and it is

added to the list of items to be repaired, referred to with L(n). Notice that
once an element is inserted in the list L(n) it is thereafter considered by the
algorithm as if it were already repaired (more details on this list can be found
in Section 1.2.5).

The next step of the algorithm ISP is the split of a demand flow over
the node v

(n)
BC . Let us consider a split action occurring at the n-th iteration.

Let us consider also a demand pair (sh, th) ∈ E(n)
H of value d

(n)
h . Splitting dx

units of the demand d
(n)
h , with dx ≤ d

(n)
h is the action of removing dx units

from the demand associated to the couple (sh, th) and creation of two new

demand edges of dx units of flow on the node couples (sh, v
(n)
BC) and (v

(n)
BC , th).

Figure 1.1 illustrates the described split action.
The set of demand couples E

(n)
H will be updated as follows

E
(n+1)
H = {(sh, v(n)BC), (v

(n)
BC , th)} ∪ E

(n)
H . (1.4)

20

CHAPTER 1. ISP Iterative Split and Prune

s
h

t
h

u
1

u
i+1 u

n

d
h

u
i

s
h

t
h

u
1

v
BC

u
i+1 u

n

d
h
-d
x

u
i

d
x

d
x

v
BC

Figure 1.1: Split of dx units of demand

The demand flows associated to the edges of E
(n+1)
H will be the same as in

the previous iteration, with the exception of the split pair and the two new
derived pairs. Therefore,

d
(n+1)
zw = d

(n)
zw ,∀(z, w) 6= (sh, th), (1.5)

while

d
(n+1)
zw = d

(n)
zw − dx, if (z, w) = (sh, th) (1.6)

and the new demand pairs have the following flows:

d
(n+1)
zw = dx if (z, w) = (sh, v

(n)
BC)|(v(n)BC , th). (1.7)

Notice also, that whenever a split action creates a new demand over an
already existing demand pair, a unique demand link is created by summing
the new demand to the previous.

The split action implies a routing decision, by imposing that dx units of
the split demand between sh and th be routed across the intermediate node
v
(n)
BC through which the demand has been split. Although this action requires

the existence of a set of paths that can be used to route the demand, the only
routing decision implied by the split action is the traversal of the node v

(n)
BC

with dx units of the original demand d
(n)
h . The algorithm ISP can be tuned

to perform this action according to several criteria, to address two different
aspects following the selection of the vertex v

(n)
BC : (1) which demand should

be split, and (2) the amount of flow to split.

Let C(n)(v(n)BC) ∈ E
(n)
H be the set of demand pairs that positively con-

tributed to the centrality value of the node v
(n)
BC at the current iteration, that

is:
C(n)(v(n)BC) =

⋃
(i,j)∈E(n)

H

{(i, j) s.t. P∗(i, j)|
v
(n)
BC
6= ∅}.

21

CHAPTER 1. ISP Iterative Split and Prune

Decision (1): The algorithm ISP selects the demand pair h(n) ∈ C(n)(v(n)BC)
to be split as the one that can less likely be routed elsewhere, which can be
roughly estimated by taking the demand which, if split onto vBC, would more
likely use the major portion of the maximum flow between its endpoints.
Therefore

h(n) = arg max
(i,j)∈E(n)

H

min{d(n)ij ,
∑

p∈P∗(i,j)|v(n)
BC
c(n)(p)}

f ∗(i, j)
(1.8)

where f ∗(i, j) is the maximum flow between nodes i and j on the complete
supply graph G (including broken components) with currently updated ca-

pacities c(n)(·), while min{d(n)ij ,
∑

p∈P∗(i,j)|v(n)
BC
c(n)(p)} is the part of demand

d
(n)
ij that can be routed across node v

(n)
BC in case of no conflicts with other

demand pairs.
Decision (2): ISP decides the actual amount of demand that can be routed

across v
(n)
BC by taking account of all potential conflicts with the other demands

at the current iteration. Let dx be such an amount, that is the part of d
(n)
h

that can be split on v
(n)
BC without affecting the routability of the current

iteration instance of the problem on the supply graph G(n). The amount dx
can be calculated by solving the linear programming problem to maximize dx
under the constraints of dx ≤ d

(n)
h and to the flow conservation and capacity

constraints defined by equations (1.2), where the set E
(n)
H is defined according

to Equation (1.4), and the demand flows are defined according to Equations
(1.5), (1.6) and (1.7).

u
1

u
n

u
2 u

3
u

n-1c
12

supply link

demand link d

c
23

c
n-1,n

u
1

u
n

u
2 u

3
u

n-1c
12

- k

d-k

c
23

- k c
n-1,n

- k

Figure 1.2: Pruning of k units of demand

22

CHAPTER 1. ISP Iterative Split and Prune

1.2.4 On the use of a dynamic path metric

We use a measure of link length proportional to the cost of repairing the
link or its endpoints, if any of these is broken, and inversely proportional to
the link capacity. Such metric is updated every time a broken component is
repaired or the residual capacity of a link is reduced due to a pruning action
(see Section 1.2.6).

Formally, we define the length of the edge eij = (i, j) ∈ E at iteration n
as l(n)(eij) = [const + keij(n) + (kvi (n) + kvj (n))/2]/cij, where the terms const,
kvi (n) and keij(n) are as follows. The term const is a constant needed to
account for the length of a working link. The terms kvi (n) and keij(n) are non
null only if the corresponding elements are broken and not listed for repair in
any previous iteration: therefore kvi (n) = kvi if i ∈ V (n)

B , and null otherwise.

Similarly, keij(n) = keij if (i, j) ∈ E(n)
B and null otherwise.

This path metric gives an extraordinary strength to the algorithm ISP
because, if a decision to repair an element has been made, all successive
actions will be performed accordingly. For instance, the nodes belonging
to paths containing a repaired component will see an increased centrality
measure after the repair, because they more likely belong to shortest paths.
Henceforth, paths containing repaired components will more likely be selected
for subsequent split and pruning actions.

1.2.5 Recovery of nodes and edges

The algorithm ISP works by virtually recovering network components during
its execution until a sufficient number of edges and links are recovered to route
the entire demand. These progressive recovery decisions alter the problem
instance at any iteration. Therefore ISP considers a list of items to be repaired
L(n), which is updated at any new repairing decision.

At any iteration n of the algorithm, if the best candidate vBC is broken,
that is vBC ∈ V

(n)
B , it is added to the current list of repairs, so L(n + 1) =

L(n) ∪ {vBC}, and the set of broken vertices is updated as follows: V
(n+1)
B =

V
(n)
B \ {vBC}. Moreover, we repair a broken link in the supply graph if such

link directly connects two endpoints of a demand, and such demand cannot
be satisfied by the current repairs. Formally, if at any iteration n there
is a demand (sh, th) ∈ E

(n)
H that cannot be satisfied by any working path

(including the links in L(n)), and there is also a supply broken edge (sh, th) ∈
E ∩ E(n)

B with the same endpoints, then the supply edge (sh, th) is added to
the list of repairs, that is L(n+1) = L(n)∪{(sh, th)}. The set of broken edges

at the current iteration is also updated accordingly E
(n+1)
B = E

(n)
B \{(sh, th)}.

23

CHAPTER 1. ISP Iterative Split and Prune

1.2.6 Pruning

The algorithm ISP executes the pruning activity to simplify the problem
instance, when some units of demand can be routed over working paths.
This may occur at the beginning of the algorithm execution or during its
unfolding, after some split or repair actions.

According to ISP, k units of the demand flow d between a pair (u1, un) ∈
E

(n)
H , with k ≤ d, can be pruned at iteration n only if there is a working path

p between u1 and un in the supply graph with capacity at least k. This is
only a necessary condition for a demand to be prunable, and it does not imply
that it will certainly be pruned. Figure 1.2 illustrates the pruning action.
More formally, given the demand pair (u1, un) ∈ E(n)

H with a demand flow d,
k units of this demand (k ≤ d) can be pruned on path p if (1) p ⊆ E(n), and
(2) c(p) ≥ k. The pruning action consists in the removal of k units from the

demand edge (u1, un) ∈ E
(n)
H and routing these k units on a selected path

p, thus subtracting the related capacity from any of the composing edges.
Therefore, after the pruning action of k units, d

(n+1)
u1,un ← d

(n)
u1,un − k, and for

any edge of the selected path (i, j) ∈ p, c
(n+1)
ij ← c

(n)
ij − k. If a demand is

completely pruned, the demand pair is removed from E
(n)
H . Moreover, if one

or both of its endpoints do not belong to any other demand pair, then such
endpoints are removed from V

(n)
H .

It must be noted that, like the splitting action, the pruning action implies
a routing decision which may possibly lead to an unfeasible solution of the
problem. In the following, we give a sufficient condition for pruning to be
feasible.

Given a demand h between the pair (sh, th), the set Sh ⊂ V is a bubble
for h if it contains only vertices that cannot be reached by any demand node
in VH without traversing either sh or th. More formally, we give the following
definition.

Definition 1.2.1 (Bubble). Given a supply graph G = (V,E) and a demand
graph H = (VH, EH), a set Sh ⊆ V , is a bubble for demand h ∈ EH if
Sh ∩ VH = {sh, th}, and ∀(i, j) ∈ δG(Sh), it holds that |{i, j} ∩ {sh, th}| = 1,
where δG(Sh) = {(i, j) ∈ E, s.t. |{i, j} ∩ Sh| = 1} is the supply cut of Sh.

Theorem 1.2.2 (Prune conditions). Consider a supply graph G and a de-
mand graph H, which satisfy the routability conditions given by equations
(1.2). Let us consider a demand h ∈ EH between the pair (sh, th) and flow dh.
If there is a set of working paths P(sh, th) with maximum flow f ∗(P(sh, th))
that can satisfy the demand, such that the set of vertices Sh forming the paths
of P(sh, th) is a bubble for the demand h, then the demand between sh and

24

CHAPTER 1. ISP Properties of ISP

th can be pruned on the paths of P(sh, th) for an amount equal to kh , min
{f ∗(P(sh, th)), dh} without compromising the routability of the demand and
without worsening the final solution in terms of recovered components.

Proof. As the paths of P(sh, th) form a bubble, any potentially conflicting
demand which requires capacity from the links of the paths of P(sh, th)
should traverse the endpoints sh and th. Let us consider a potentially con-
flicting demand (sq, tq) requesting at least f ∗(sh, th) − kh + ε units of flow,
so that it is conflicting with demand (sh, th) for an amount of capacity ex-
actly equal to ε. Due to the hypothesis of routability of the overall demand,
if the conflicting demand of ε of the couple (sq, tq) is routed in P(sh, th),
there is an alternative set of paths of capacity at least ε which goes from
sh to th traversing the nodes of V \ Sh. Therefore such an alternative path
can equivalently be assigned to (sq, tq) without harming the routability of
the demand. In terms of routability the two solutions, routing either one or
the other of the two conflicting demands, are alike. Nevertheless in terms
of resource consumption, the bandwidth consumed to route the demand dh
over its bubble is lower than the one potentially consumed by routing the
conflicting demand dq over the bubble of dh. In fact, if dq is routed over
the bubble of dh, this last demand will require the traversal of more edges
than dq to reach the alternative path. Hence routing dh will result in the
same or in a lower number of repairs than with the corresponding alternative
solution.

Notice that, in order to find demand bubbles, ISP adopts a modified
breadth first search visit starting from one of the demand endpoints, and
discarding all paths that lead to any endpoint of another demand. As the
purpose of ISP is to minimize the number of repairs and not to find an effi-
cient routing of the demand, any of the feasible assignments of a demand to
one or several paths of one of its bubbles can be used for pruning. Moreover
the pruning action must be performed by routing on the selected path the
maximum amount of demand that is prunable, that is kh which is the min-
imum between the maximum flow f ∗(P(sh, th)) of the set of paths from sh
to th and the demand dh.

1.3 Properties of ISP

Theorem 1.3.1. The algorithm ISP terminates in a finite number of steps,
which is polynomial in the input size.

25

CHAPTER 1. ISP Properties of ISP

Proof. At each iteration, ISP performs either a repair, a split or a prune
action. The number of repairs is limited by the number of broken network
elements in the supply graph, that is |VB|+ |EB|.

Let us consider the case of split actions. When a demand dh between the
pair (sh, th), is split on the node v, ISP produces two new demand pairs for a
flow dx, namely (sh, v) and (v, th), and updates the original pair to a demand
d− dx.

Let us consider the case of a partial split, where dx is strictly lower than
d. In such a case, dx is the maximum value of splittable demand under
the constraints given by Equations 1.2, with the updated demands. Due to
the linearity of the problem, at least one capacity constraint acts as binding
constraint of the linear programming problem, and is met with an equality
in correspondence to the optimal. New partial splits will have new binding
capacity constraints. As there is a capacity constraint for every edge, it
follows that the number of partial splits is limited to the number of edges of
the supply graph, that is |E|. This also shows that split actions can never
produce infinitesimal demand values. This property is necessary to prove
that also complete splits (which do not create binding capacity constraints)
and pruning actions are executed a finite and limited amount of times.

We recall that the surplus [73] of a set of vertices U ⊂ V is defined as:
σ(U) =

∑
(i,j)∈δG(U) cij−

∑
(i,j)∈δH(U) dij, where δG(U) = {(i, j) ∈ E, s.t. |{i, j}∩

U | = 1} is a cut determined by U on the supply graph; similarly the cut on
the demand is δH(U) = {(i, j) ∈ EH, s.t. |{i, j} ∩ U | = 1}. We denote with
σ(n)(v) the surplus, at iteration n, of the set formed by the single vertex
v ∈ V . By using the properties of cuts given in [26] we can prove that the
algorithm actions affect the value of the surplus of single vertices as follows:
a split action of d demand units over the intermediate vertex v decreases
the surplus of v for a value of 2d, while it leaves the other individual ver-
tex cuts unaltered; a prune action of a demand amount of d along a path p
causes a decrease of 2d in the surplus of the nodes belonging to p that are
not endpoints of the pruned demand and leaves all other individual vertex
cuts unaltered. As routability is a requirement for any action of ISP the
action preserves the cut condition and all surplus will be non negative (cut
condition). Therefore the number of split of any demand d on a node v is
bounded by bσ(v)/2dc which is finite and limited. Finally, let us consider the
effect of pruning actions. A prune action of a demand d to a path p reduces
the capacity of the edges of p of an amount equal to min{d, c(p)}. Therefore,
as the capacity of each edge is limited, the number of prune actions is also
limited, as d is always finite.

26

CHAPTER 1. ISP Properties of ISP

Theorem 1.3.2. The computational complexity of ISP is polynomial.

Proof. Theorem 1.3.1 shows that ISP terminates in a polynomial number of
iterations. We now show that each algorithm iteration is also polynomial.
Let us consider the individual activities.

Complexity of routability test. Notice that the execution of the routability
test requires to decide the feasibility of the set of inequalities on continuous
variables (1.2), which has polynomial complexity, as detailed in [66, 45].

Notice that this complexity can be further reduced by considering the
only incremental modifications of the routability problem at each iteration
of the algorithm.

Complexity to calculate the demand based centrality ranking. If a static
distance metric is adopted to calculate the path length, the set P∗(i, j) of
any demand pair (i, j) can be calculated offline according to Equation 1.3,
and therefore does not affect the complexity of ISP. If the distance metric is
dynamic, as described in Section 1.2.4, this pre-calculation is not available
and the demand based centrality is determined using the estimate set P̂∗

ij

described in Section 1.2.2. The resulting complexity is O(|E(n)| × (|E(n)| +
|V (n)| log(|V (n)|)), since at each iteration we compute the shortest path be-
tween nodes i and j (complexity of the Dijkstra algorithm), which is either
sufficient to route the entire demand d(i, j) or at least one edge will be re-
moved from the residual graph and a new shortest path will be considered.
For each selected shortest path, we can update the centrality of its nodes in
linear time with respect to the path length. Thanks to this procedure, we
can refer to Equation (1.3) to obtain an estimate of the centrality of each
node.

Complexity of the split action. Finding the best candidate requires O(|V |)
steps. In order to select the demand to be split (Decision 1), we rank all
demands that contributed to the centrality of the best candidate on the
basis of Equation (1.8). Calculating the demand rank costs O(|E(n)

H | times
the calculation of the max flow between any demand pair, which is also
polynomial. We can then select the demand with highest rank in O(|EH|(n)).
Solving the linear programming problem to calculate dx (Decision 2), has also
polynomial complexity, using the interior point method [45] and, depending
on the iteration, it is performed on problem instances of decreasing size.

Complexity of the recovery action. For each demand pair (u, v) ∈ EH, ISP
checks if there exists a destroyed edge (u, v) ∈ E. The overall complexity is
then O(|EH|), using an adjacency matrix for E.

Complexity of the prune action. We can find the set of paths that form a
bubble for each demand pair (sh, th) by using a modified BFS visit starting

27

CHAPTER 1. ISP Heuristics

from sh. Such visit discards all paths that lead to a demand endpoint which
is not sh or th. Since the pruning action of a demand on a path can be
performed in linear time with respect to the path length, the complexity of
the pruning activity is the complexity of the visits, i.e. O(|EH|× (|V |+ |E|)).

1.4 Heuristics

In this section we describe some heuristics. Since the novelty of the problem,
there are no previous solutions. We developed several heuristics, inspired by
standard approaches in literature, that we propose as baseline comparison
with ISP.

1.4.1 A multi-commodity based solution

One way to address the problem of finding the subset of broken components
to be recovered is to minimize the amount of flow that makes use of broken
links.

min
∑

(i,j)∈EB
keij ·

∑
h∈EH

fhij (a)∑
h∈EH

(fhij + fhji) ≤ cij ∀(i, j) ∈ E (b)∑
j∈V f

h
ij =

∑
k∈V f

h
ki + bhi ∀(i, h) ∈ V × EH (c)

fhij ≥ 0 ∀(i, j) ∈ E, h ∈ EH (d)

(1.9)

In terms of recovery decisions, this approach repairs only those broken
links and vertices that are actually used by the optimal solution.

Notice that this new problem is a particular instance of the Multi-
Commodity Flow problem.

Under this formulation, which is a relaxation of the problem of Equation
(1.1), the problem is no longer NP-hard, but has polynomial time complex-
ity, being it solvable efficiently with LP methods such as the interior point
method [45].

Nevertheless, the multi-commodity flow formulation has a wide range of
equally optimal solutions which vary significantly in the number of repaired
edges and vertices. We denote with MCB and MCW the best and the worst
of these solutions, respectively, in terms of number of repaired elements.
Figure 1.3 illustrates the performance of MCB and MCW, versus the optimal
solution of MinR and the trivial solution of repairing all broken elements
(OPT and ALL in the figure, respectively). The results are obtained with
the Bell-Canada topology [2, 55] by increasing the demand flow per pair
under the experimental setting explained in Section 1.5. The results show

28

CHAPTER 1. ISP Heuristics

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Demand flow per pair

OPT

MCW

MCB

ALL

Figure 1.3: Total number of repairs of multi-commodity solution

that the multi-commodity approach has a wide solution space, which includes
solutions close to the optimum as well as solutions equivalent to repairing
all broken elements. Notice that the optimal solution of MinR repairs fewer
network elements than MCB because it takes account of both vertex and
edge repairs.

Note that finding MCB among the wide set of solutions is NP-hard, being
it an instance of MinR.

For this reason we do not include the multi-commodity approach in our
results.

1.4.2 Shortest Path Heuristic (SRT)

This heuristic is based on a very intuitive approach to the MinR problem,
that is to consider all the demand pairs (si, ti, di) in decreasing order of
demand di, and repair all the shortest paths that are necessary to meet the
demand requirements. Let Si be the set including the first shortest paths for
the i − th demand, such that the maximum flow traversing the sub-graph
formed by the only paths in Si is at least di. According to SRT, for each
demand di, all broken nodes and edges in Si are repaired. The pseudo-code
of SRT is shown in Algorithm SRT.

ALGORITHM SRT
Input: G, H, VB and EB

1 Sort demand pairs in EH in decreasing order of di;
2 for i = 1, . . . , |EH| do
3 Calculate the set Si for the demand pair (si, ti, di);
4 Repair nodes and links of all paths in Si;

29

CHAPTER 1. ISP Heuristics

This heuristic has polynomial time complexity, as it considers the demand
pairs one at a time without considering potential conflicts with other demand
pairs. For each demand pair, it requires to calculate the shortest paths to
be repaired iteratively on a residual graph. Paths are selected until they are
sufficient to meet the demand in a single flow scenario.

Notice that the sets of shortest paths of different demands may overlap,
therefore the repaired links may be insufficient to route all flows and there
can be some demand loss.

1.4.3 Greedy Heuristics

We developed two other heuristics based on a mapping between paths of the
MinR problem and objects of an instance of a Knapsack problem. According
to this mapping, we create a knapsack object for each path between a demand
pair in H. The cost of repairing such path is the weight of the corresponding
knapsack object, while the path capacity is the object value. Both heuristics
make use of the set P (H,G) of all simple paths between the demand pairs
in H.

Notice that the number of paths in P (H,G) is potentially exponential
in the graph size, hence these heuristics can only be adopted if paths are
pre-computed offline.

Thanks to the described Knapsack analogy, we can formulate two different
heuristics based on the greedy approach to Knapsack [65].

ALGORITHM GRD-COM
Input: G, H, VB, and EB

1 Calculate (offline) P (H,G);

2 for p ∈ P (H,G) do w(p) = cost(p)
capacity(p) ;

3 Sort paths according to their weight;
4 while ∃ unsatisfied demands and available paths do
5 Let p be the next path, (si, ti, di) its demand pair;
6 Repair p;
7 Assign a quantity of demand min{di, capacity(p)} to p;
8 Update G and H;
9 for each routable demand flow (sk, tk, dk), k 6= i do

10 Assign the maximum quantity of demand;
11 Update G and H;

30

CHAPTER 1. ISP Heuristics

Greedy Commitment (GRD-COM)

The first heuristic, called Greedy Commitment (GRD-COM), assigns to each

path p ∈ P (H,G) a weight w(p) = cost(p)
capacity(p)

, where cost(p) is the sum of the

costs of repairing the edges composing p, while capacity(p) is the residual
capacity of p.

GRD-COM sorts the paths in P (H,G) in ascending order of weight, and
iteratively repairs paths following this order. Let p be the path repaired
at the current iteration, and (si, ti, di) the demand pair for which p was
included in P (H,G). GRD-COM assigns the maximum possible quantity
of such demand to p, and updates the residual capacities of edges and the
residual demand accordingly. It then verifies if also some other demands
may be routed through the current graph, considering all the paths already
repaired including p. The algorithm proceeds to the next iteration, selecting
the next path in the order. GRD-COM terminates as soon as all demands
are satisfied, or there are no more paths to repair. The pseudo code is shown
in Algorithm GRD-COM.

Note that considering the residual graph capacities allows a lower amount
of repairs with respect to the following greedy heuristics GRD-NC, but as in
the case of SRT, there is no guarantee that all the demands can be satisfied
due to the possibility to have wrong routing decisions, which may create
inhibiting flow allocations, even if the capacity of the repaired edges is enough
to route the demand.

ALGORITHM GRD-NC
Input: G, H, VB, and EB

1 Calculate (offline) P (H,G);

2 for p ∈ P (H,G) do w(p) = cost(p)
capacity(p) ;

3 Sort paths according to their weight;
4 while routability test fails do
5 Repair the next path p;

Greedy Commitment (GRD-NC)

The second heuristic is called Greedy No-Commitment (GRD-NC). It is also
inspired by the Knapsack heuristics, and similarly to GRD-COM, it makes
use of the set of all paths P (H,G) and path weights w(·).

GRD-NC repairs paths one by one following the ascending order of weights,
but it does not provide a routing assignment of flows to paths unlike GRD-
COM. On the contrary, it evaluates the routability of the overall demand,

31

CHAPTER 1. ISP Heuristics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 e

dg
e

re
pa

irs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(a)

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 n

od
e

re
pa

irs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(c)

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8P
er

ce
nt

ag
e

of
 s

at
is

fie
d

de
m

an
d

Number of demand pairs

SRT
GRD-COM

ISP

(d)

Figure 1.4: Bell-Canada topology. Varying number of demand pairs (10 flow
units/pair). Repaired edges (a), repaired nodes (b), total repairs (c) and
demand loss (d).

given the current repaired paths, using the routability test described in Sec-
tion 1.2.1. GRD-NC terminates as soon as all demands are routable with the
current repairs. The pseudo code is shown in Algorithm GRD-NC.

Note that unlike GRD-COM, GRD-NC does not provide an update of
the path capacity at each step, since there is no routing assignment after the
repairs. As a consequence, this heuristic can repair more edges and vertices
than GRD-COM, but it has the advantage that if the demand is routable in
the original graph before the disruption, the heuristic finds a solution with
no demand loss.

32

CHAPTER 1. ISP Experiments

1.5 Experiments

In the experiments we consider both real and synthetic topologies of various
size to highlight different aspects of the performance of the algorithms.

We start the analysis with a real network topology of small size so that
optimal solutions may be obtained in a reasonable time, and to provide a
thorough experimental comparison of all the algorithms discussed in this
work.

In the second scenario we instead show the results on a real large size
topology, to evidence the good approximation of ISP to the optimal solution
even with a large problem size.

The last experimental scenario is based on synthetic topologies of varying
complexity, to study the computational time of the proposed heuristics and
of the optimal solution. We will evidence the poor scalability of the optimal
approach, motivating the need to resort to heuristic solutions.

In all the following experiments, where not otherwise stated, we average
the results over 20 runs.

1.5.1 First scenario: small size topology

In this set of experiments we consider the Bell-Canada topology, taken from
the Internet Topology Zoo [2, 55] collection. This network has 48 nodes and
64 edges. The data set provides uniform edge capacities, which we manually
altered to consider non homogeneous capacities. In particular we consider
two backbones with capacity 30 and 50, respectively, while all remaining
edges have capacity 20. We use a homogeneous unitary repairing cost for
damaged nodes and edges.

We build the demand graph H = (VH, EH) as follows. We select the
demand pairs to be far apart in the supply graph. In particular, we randomly
select the demand pairs among those which have a hop distance greater than
or equal to half the diameter of the network.

We perform four sets of experiments. In the first set (Section 1.5.1) we
fix the flow per pair, and increase the number of pairs in the demand graph.
In the second set (Section 1.5.1), we fix the number of demand pairs and
increase the demand flow per pair. In both these experiments, we considered
a complete destruction of the supply graph, in order to have the maximum
range of potential solutions. On the contrary, in the third set of experiments
(Section 1.5.1) we consider different failure scenarios according to a geograph-
ically correlated failure model. Finally, the fourth scenario considers the case
of heterogeneous costs.

33

CHAPTER 1. ISP Experiments

Variation of the number of demand pairs

In these experiments we increase the number of demand pairs from 1 to 7, and
each demand pair has a requirement of 10 flow units. Figures 1.4(a) and (b)
show the number of edges and nodes repaired by the considered approaches,
respectively. Figure 1.4(c) shows the cumulative number of repairs. In the
figures, the line ALL refers to the total number of destroyed nodes and links.

The experiments shown in Figures 1.4(a)-(c) highlight that by linearly
increasing the number of demand pairs, the number of repaired edges and
vertices also grows.

ISP is the closest to the optimal among the considered heuristics. In the
most critical setting, with 7 demand pairs, OPT repairs 37 edges, ISP repairs
42 edges, while GRD-COM repairs 49 edges and GRD-NC repairs 55 edges.
The number of repaired vertices are consequently proportional, as in this
experimental scenario the entire network is damaged by the destruction. We
highlight that the greedy solutions are much more computationally expensive
than ISP, due to the necessity to find all paths between any demand pairs. It
is also worth noting that ISP better approximates the optimal solution when
the demand requirements are low with respect to the available bandwidth in
the network. This result is visible in Figures 1.4 (a)-(c), when the number of
demand pairs is less than 4.

As the figures show, SRT results in the lowest number of repairs, however
SRT, and similarly GRD-COM, does not ensure that all demand flows can
be routed. In particular, SRT repairs the number of shortest paths up to the
minimum necessary to satisfy each demand, treating demands independently.
As the number of demand pairs increases, the paths selected by SRT are more
likely to be shared. Therefore when these shared paths are saturated, the
policy SRT is not able to satisfy all demands, as Figure 1.4(d) shows. In
these experiments, this occurs when the number of pairs grows from 2 to 3.
This behavior reflects the fact that two pairs can be commonly routed on a
path of 20 capacity units, but when 3 demand pairs require 30 capacity units,
the shortest paths may have some edge in common and a portion of demand
is lost. These arguments explain the initial constant behavior of the demand
loss shown in Figure 1.4(d) and in the analogous figures of the following sets
of experiments. Due to the similarity of the behavior of the policy SRT in
all the following experiments, we will not comment on this policy any longer

Variation of the demand intensity

In this section we introduce a dual experiment in which we fix the num-
ber of demand pairs to 4, and we vary the intensity of demand per pair.

34

CHAPTER 1. ISP Experiments

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Demand flow per pair

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(a)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18P
er

ce
nt

ag
e

of
 s

at
is

fie
d

de
m

an
d

Demand flow per pair

SRT
GRD-COM

ISP

(b)

Figure 1.5: Bell-Canada topology. Varying the intensity of demand flow (4
demand pairs). Total repairs (a), demand loss (b).

Figures 1.5(a) and (b) show the total number of repaired elements and the
demand loss. We observe a similar behavior to what we discussed for the
previous set of experiments. Nevertheless there are some aspects worthy of
note.

Even if the global demand increase of this experiment is the same of the
previous experiment, all policies tend to reveal a smoother increase in the
number of repairs when the number of demand pairs is fixed. This is due to
the need to repair damaged elements to at least connect the demand pairs,
even when the demand intensity is low with respect to the link capacity.
Such repairs are sufficient until the demand reaches an intensity for which
more repairs are needed. This justifies the step-wise behavior of OPT and
ISP.

The above reasoning helps understanding the trend of the greedy heuris-
tics with respect to the intensity of the demand. These approaches blindly
repair paths with high rank until all demands are satisfied. When the de-
mand intensity is low, and basically only connectivity between demand pairs
is needed, these heuristics still repair all paths in the list which have a higher
rank than those required for connectivity. As the demand increases, this high
number of paths is still sufficient to serve the demand, and hence further re-
pairs are not needed. However, when the demand increases further, a bunch
of additional paths are repaired, as shown in Figure 1.5(a) in correspondence
of the increase in demand intensity from 12 to 14 for the heuristic GRD-NC.

35

CHAPTER 1. ISP Experiments

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Variance of disruption

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160P
er

ce
nt

ag
e

of
 s

at
is

fie
d

de
m

an
d

Variance of disruption

SRT
GRD-COM

ISP

(b)

Figure 1.6: Bell-Canada topology. Varying the extent of destruction (4 de-
mand pairs, 10 flow units/pair). Total repairs (a) and demand loss (b).

Variation of the extent of destruction

In this experiment we consider the impact of the extent of destruction. We
consider a geographical failure model, to represent natural disasters and in-
tentional attacks.

We generated the disruption according to a bi-variate Gaussian distri-
bution of the disruption probability of network components. We varied the
variance of such a distribution and scaled the probability accordingly to ob-
tain larger failures with larger variance.

In these experiments we consider 4 demand pairs, each with a demand
intensity of 10. We consider an increase in the amount of disrupted compo-
nents obtained by varying the variance of the disruption. We consider the
epicenter at the barycenter of the nodes in the network, and same variance
in both dimensions of the bi-variate distribution of failures.

Figures 1.6(a) and (b) show the total number of repaired elements and
the percentage of demand loss, respectively. The line labeled ALL shows
how many edges or vertices are disrupted in the considered instance of the
problem.

Even in this setting we observe similar behavior of the considered policies,
which highlights the superiority of ISP. In particular, ISP performs close to
the optimal, and when the network is almost completely destroyed (i.e. a
variance equal to 150) ISP repairs only 53 elements, with respect to the 46
elements repaired by the optimal solution, whereas GRD-COM requires 63
repairs and GRD-NC requires 68 repairs.

36

CHAPTER 1. ISP Experiments

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Demand flow per pair

ISP-hom
ISP-het

OPT
ALL

(a)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 2 4 6 8 10 12 14

C
os

t o
f t

ot
al

 r
ep

ai
rs

Demand flow per pair

ISP-hom
ISP-het

OPT
ALL

(b)

Figure 1.7: Bell Canada topology. Heterogeneous recovery costs. Total re-
pairs (a), demand loss (b).

Heterogeneous costs

To complete our analysis on the Bell Canada topology, we considered a fi-
nal set of experiments, in which we modeled heterogeneous repair costs to
highlight the ability of ISP to adapt its choices to reduce the total cost of
repairs and not simply the number of repairs. To make this scenario more
realistic, we set the cost of the links according to their capacity, and con-
sidered a complete disruption of the network. We considered two backbones
of different capacity: the first with 50 capacity units, with 80 cost units per
link, and the second with 30 units of capacity and a corresponding cost per
link of 30 cost units. The rest of the links have 20 units of capacity and a
related cost of 4 units. We also considered a unitary uniform cost for node
recovery. We considered 4 demand pairs and we increased the corresponding
flow requirements.

The results are shown in Figure 1.7. In the figure, the optimal policy
is calculated with objective function equal to the number of repairs. We
consider two variants of ISP: ISP-hom which considers uniform repair costs
and therefore acts in a cost-blind manner, and ISP-het which takes account
of the cost when making its decisions, by considering a cost proportional
distance metric.

In terms of number of repairs, shown in Figure 1.7(a), ISP-hom performs
better than ISP-het, since at the same cost ISP-hom chooses the links with
highest capacity. By contrast in terms of total cost of repairs, as shown by
Figure 1.7(b), ISP-het performs better than ISP-hom by preferring decisions
that minimize the total cost of repairs.

37

CHAPTER 1. ISP Experiments

Figure 1.8: CAIDA topology AS28717, with 825 nodes and 1018 edges.

We did not run the greedy heuristics in these experiments, as despite
their simplicity, they do not scale to large topologies due to the necessity
to calculate all the paths between demand pairs, which is of exponential
complexity in the size of V .

1.5.2 Second scenario: big size topology

For this second scenario, we consider the real topology AS28717 of Figure 1.8,
taken from the CAIDA (Center for Applied Internet Data Analysis) resource
collection [23]. This topology represents IP-level connections between back-
bone/gateway routers of several ASs from major Internet Service Providers
(ISPs) around the globe. Since CAIDA topologies are often disconnected,
we selected the giant connected component, which has 825 nodes and 1018
edges.

In this set of experiments, we consider random capacity links between 20
and 50 units, 22 units of flow per demand and we focus on vary the number

38

CHAPTER 1. ISP Experiments

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Number of demand pairs

ISP
OPT

SRT

(a)

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7P
er

ce
nt

ag
e

of
 s

at
is

fie
d

de
m

an
d

Number of demand pairs

ISP
SRT

(b)

Figure 1.9: CAIDA topology AS28717. Varying the number of demand pairs
(22 flow units per pair). Total repairs (a), demand loss (b).

of demand pairs. Figure 1.9(a) shows the total number of repairs, while
Figure 1.9(b) shows the demand loss. Even in this scenario, ISP performs
close to the optimal, and does not show any demand loss. This behavior is
similar to the one shown in the previous scenario for small size topology. This
confirm that ISP is able to find a good approximation to MinR independently
from the size or the structure of the network. Notice that even for big
size topology scenario, the number of repairs under heuristic SRT is also
comparable to the optimal, but the demand loss in this case is considerably
high confirming that this heuristic is not able to accommodate all the demand
flows.

1.5.3 Third scenario: simulation time comparison

In this last scenario, we analyze the scalability of ISP and OPT. We consider
synthetic network topologies of increasing complexity and we evaluate the
performance and the computation time of the two algorithms.

We considered an Erdos-Renyi topology [35] with 100 nodes. We recall
that in an Erdos-Renyi graph, any two nodes are connected through an edge
with probability p (edge probability). In the experiments of Figure 1.10 we
varied the parameter p.

As the purpose of this set of experiments is to evaluate the algorithm
scalability, we consider a relatively simple problem instance in which we
have only a connectivity requirement, with a construction similar to the one
of the proof of Theorem 1.1.1 (an instance of the Steiner Forest problem).

We modeled the link capacity and flow demand as follows: we considered
5 demand pairs, of one unit each, and we analyzed the case of a completely
destroyed network, where each link has a capacity of 1,000 units of flow.

39

CHAPTER 1. ISP Experiments

Despite the relative simplicity of the problem formulation (only connectivity
requirements), by growing p we increase the difficulty of the problem.

In Figure 1.10(a) we focus on the execution time of ISP and OPT. For
the calculation of the optimal solution we implemented problem 1.1 using
Python and the Gurobi [1] library, which is known for its efficiency. For
these experiments we used a 20 core/40 thread architecture composed of
2 Intel(R) Xeon(R) CPU ES-2680 v2 (2.80GHz) and 64GB RAM, running
Ubuntu 14.04. The experiments show that the optimal solution has a pro-
hibitive execution time, which as expected grows significantly with the pa-
rameter p. For instance, we observe that when p=0.9 OPT requires 105 secs
(about 27 hours), on average.

The execution time of ISP is negligible and not affected by this parameter
setting. When p=1 the problem becomes trivial, as the supply network is a
clique, and the optimal solution consists in repairing the endpoints of each
demand pair and the edges connecting them.

Notice that, when p grows, the graph becomes non planar and in the case
of non-planar graphs, the Steiner Forest problem is known to be APX-hard
[49], hence we do not expect a good approximation of the optimal solution.

In fact, Figure 1.10(b) shows that the gap between ISP and OPT is much
higher than in the other experiments which used real topologies. This is
because, as observed in [21], real topologies are typically planar or mostly
planar. Nevertheless, ISP is still repairing a number of elements close to
the optimal, and lower than the number of repairs under SRT. Notice also
that in the case of p=1 the number of repairs is 15 for all the three plotted
algorithms, as the supply network is a clique and all the algorithms are able
to find the trivial solution of repairing the endpoints of each demand pair
and the links between them, for a total of 5 pairs.

For these experiments, the link capacity is so high that none of the heuris-
tics has any demand loss.

Notice also that we do not plot the greedy heuristics that are based on
the pre-computation of the list of all paths, because with high values of p
they would require O(N !) steps.

In the next Chapter 2, we remove any assumptions on the knowledge
of the disruption and we study how to progressively restore demand flows
among the critical infrastructures by alternating interventions for repair and
for monitoring the network status.

40

CHAPTER 1. ISP Experiments

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
tim

e
(1

03 s
ec

.)

Edge probability

ISP

SRT

OPT

(a)

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Edge probability

ISP

OPT

SRT

(b)

Figure 1.10: Erdos-Renyi topology. Varying edge probability p. Execution
time (a), number of total repairs (b).

41

Chapter 2

CEDAR: Progressive Network
recovery Under Incomplete
Knowledge of the Disruption

42

CHAPTER 2. CEDAR Problem definition and assumptions

In the previous Chapter 1, we addressed the problem on how to efficiently
restore critical services flow after a massive failure event. After modeling the
problem of MinR, we developed a polynomial algorithm ISP that approxi-
mate the solution of the NP-hard problem. As discussed, ISP assumes, as
input, the complete knowledge of the sets of nodes and links destroyed. How-
ever, this information is not always available or it is only available as a partial
information. In this chapter we remove any assumption on the knowledge on
the disrupted area, and we study how to alternate efficiently interventions
for repair and interventions for monitoring the network in a progressive man-
ner. Due to the progressive nature of the problem, the target is not anymore
the number of elements repaired, but how fast the flow among the critical
services is restored and made available.

2.1 Problem definition and assumptions

In this section, we introduce the problem of progressive damage assessment
and network recovery (PDAR) which aims at finding a schedule of repair
interventions to restore a set of critical demand flows as fast as possible, under
constrained recovery resources. Furthermore, PDAR works with partial and
progressively available knowledge of the status of the network which is the
result of network probing. As long as the repair interventions provided by
PDAR are executed, monitoring probes can find new working paths to explore
new areas of the network. Moreover, new working nodes can be used as
monitors.

The progressive damage assessment and network recovery considers sub-
sequent stages of execution as illustrated in Figure 2.1. Whenever new infor-
mation is available, the current stage ends and a new stage begins with the
information update action. The new information is then used to determine a
decision on the next schedule of repairs. A recovery phase follows, with re-
pair interventions and monitor placement, until the next information update
becomes available. Notice that, as the information available to PDAR is only
partial, a repair intervention may be scheduled also on network elements for
which no information is available on its status (unknown status). Due to
the uncertainty on the status of such elements, at a local inspection, them
may result to be properly working. In order to keep the problem formula-
tion simple, we do not incorporate monitor placement actions in the decision
problem, but we assume the following:

• software monitors are placed on all the nodes that are selected for a
repair intervention (both in the case of broken nodes that have been

43

CHAPTER 2. CEDAR Problem definition and assumptions

Figure 2.1: Stages of PDAR

repaired and in the case of nodes with unknown status that had been
scheduled for repair but were found working after a local inspection);

• each new monitor node probes the surrounding network until it is able
to determine its connected working component. In addition to probing,
cable diagnostic devices, such as reflectometers, are used, when avail-
able, to determine the status of the adjacent lines of a monitor, if the
next hop neighbors are unreachable;

• the demand endpoints are the first nodes to be repaired, and to host
network monitors.

Although for practical purposes it is often desirable to limit the monitor-
ing activity to a given number of hops from the monitor nodes, we assume
that a monitor obtains knowledge of its entire connected component in the
working graph GW. Notice that the monitoring activity and the consequent
information update, trigger the transition to a new stage of PDAR, because
it may find a more efficient repair schedule. Nevertheless, if the monitoring
activity does not provide any update, or the only unknown elements that are
discovered are actually broken or are isolated elements, the current schedule
is kept unchanged as PDAR would provide the same solution.

2.1.1 The PDAR optimization problem

Before formalizing the PDAR problem, we recall and extend the nomencla-
ture introduced in Chapter I to consider the partial knowledge of the network
failures. Therefore the set V is partitioned into the three sets VW, VB, and
Vu of working, broken and unknown-status nodes, respectively. The set E
is likewise partitioned into the sets EW, EB, and Eu. We define the working
graph GW = (VW, E

′
W), where E ′W = EW \ {(i, j) ∈ EW|{i, j} ∩ (VB ∪ Vu) 6= ∅}.

Namely, the working graph is formed by the working nodes of the supply
graph, and by the working edges that are not incident to broken nodes or
nodes with unknown status. Hereafter, we refer to a recovery action as the

44

CHAPTER 2. CEDAR Problem definition and assumptions

local intervention on a node v ∈ VB ∪ Vu or a link (i, j) ∈ EB ∪ Eu to deter-
mine its status if unknown, and to restore its functionality if broken1. The
recovery of a node includes the installation of a software monitor.

Since the PDAR problem works under the constrain of limited recov-
ery resources, we consider a time based budget of repair resources, denoted
with Brepairs, for instance human personnel or vehicles, which determines
the amount of repair interventions that can be performed in a same time
period. Due to the constrained repair resource budget, only a limited set of
repairs can be executed in parallel. For this reason, PDAR schedules repairs
according to the time availability of repair resources. It considers the stage
as a sequence of successive steps in which the maximum number of parallel
repairs is bounded due to the budget constraint Brepair.

Therefore, the PDAR optimization problem works in a sequence of at
most N repair steps to be performed at each stage, where N is the maximum
number of steps that are necessary to repair all the broken elements. Never-
theless, the sequence of repairs, which will be executed in the recovery phase
of the stage, will be terminated if a useful information update is determined.
In such a case PDAR will move to the next stage, before reaching the N -th
step.

At each step n, there is an update of the composition of the sets of work-
ing, broken and unknown network elements. We will add the argument (n) to
the notation of these sets when we want to refer to the specific composition
they have at stage n. Each stage s starts with n = 0, with input consisting of
the supply graph G, the demand graph H, and the current stage estimate of
the damages, represented by the sets of certainly broken elements V s

B (0) and
Es

B(0) and by the sets V s
u (0) and Es

u(0) of elements whose state is unknown.
For example, the discovery of the status of a node v ∈ V s

u (n−1) after a local
inspection implies that V s

u (n)← V s
u (n− 1) \ {v} and the node v is added to

either V s
W (n) if v is functional, or to V s

B (n) if v is broken. A similar update
occurs when the monitoring activity brings new information on the status of
a link which was previously unknown.

The purpose of PDAR is to find a step-based schedule of repairs, which
determines the sequence of repair interventions within V ∗ = V s

B (0) ∪ V s
u (0)

and E∗ = Es
B(0) ∪ Es

u(0) that optimizes the accumulative demand flow over
N steps F ∗(N). This value is defined as follows: F ∗(N) =

∑N
n=1 f(n), where

f(n) =
∑

h∈EH
dh · αh(n), and αh(n) ∈ [0, 1] is a variable representing the

percentage of the demand flow dh that is routed at the n-th step.

1For simplicity of presentation we only consider repair actions, although a more general
formulation is possible, considering that each broken network component can be repaired
or replaced with devices of analogous or different characteristics.

45

CHAPTER 2. CEDAR Problem definition and assumptions

Let the variables fhij(n) ∈ R, with fhij(n) ≥ 0, represent the fraction of the
demand flow h that is routed through the link (i, j) ∈ E, going from vertex i
to vertex j, at the completion of the n-th step. Notice that other flows may
traverse the same edge in the opposite direction.

Also consider the binary variables xij(n) and yi(n). The variable xij(n) =
1 if there is a recovery intervention on edge (i, j) ∈ E exactly at step n, while
xij(n) = 0 otherwise. The variable yi(n) = 1 if node i is repaired at step
n, and yi(n) = 0 otherwise. For an edge that has been repaired at the k-th
step, it is xij(k) = 1, and xij(l) = 0 for l 6= k. We consider working elements
as repaired at the 0-th step. For instance, if the node i ∈ VW it is yi(0) = 1
and yi(n) = 0 for any other step n 6= 0. For all the elements of (i, j) ∈ E∗ it
is xij(0) = 0 (initially broken), while if edge (i, j) ∈ EW it is xij(0) = 1, and
xij(n) = 0 if n 6= 0 (working links are considered as links that were repaired
at the 0-th stage). Similarly, yi(n) represents the binary decision to repair
node i ∈ V at the end of the n-th stage. If the node i ∈ VW it is yi(0) = 1
and yi(n) = 0 if n 6= 0. If the node i ∈ V ∗ then yi(0) = 0.

The capacity constraint of the problem is expressed by Equation 2.1(a).
If a link (i, j) is still broken at step n, its flow is null, otherwise the flow is
bounded by cij. Notice that if an edge (i, j) is repaired, the corresponding
nodes i and j must also be repaired if broken, which implies that

∑n
k=0 yi(k) ≥

xij(n), ∀i, j ∈ V, ∀n as in Equation 2.1(b).
The flow balance constraint is expressed by Equation 2.1(c). In this

equation bhi = dh if i is the source of the demand flow h, bhi = −dh if i is the
destination, and bhi = 0 otherwise to balance incoming and outgoing flow.

Finally, Equation 2.1(d) constrains the cost of repairs for each of the N
stages, to be limited to the per step budget Brepair

2. Equations 2.1(e-g)
denote the domain of the variables of the problem, while Equations 2.1(h-i)
initialize the values of the decision variables for the first stage.

We consider the optimization of the accumulative flow over a horizon of
N stages. The PDAR optimization problem is therefore formulated in the
variables xij(n), yi(n), αh(n) and fhij(n) as follows (we omit the statement

2This formulation does not consider budget rollover from one repair step to the next
in the case of partially depleted budget. This is because we want to use this model to
represent limited repair resources, such as vehicles or human personnel.

46

CHAPTER 2. CEDAR The algorithm CeDAR

∀n in all the constraints for clarity):

Max
∑N

n=1

∑
h∈EH

dh · αh(n)
subject to, for all n = 1, . . . , N :

cij ·
∑n

k=0 xij(k) ≥
∑|EH|

h=1(f
h
ij(n) + fhji(n)), ∀(i, j) (a)∑n

k=0 yi(k) ≥ xij(n), ∀(i, j) (b)∑
j∈V f

h
ij(n) =

∑
k∈V f

h
ki(n) + bhi · αh(n), ∀(i, h) (c)∑

(i,j)∈E∗ xij(n) · keij +
∑

i∈V ∗ yi(n) · kvi <= Brepair (d)

fhij(n) ≥ 0, h ∈ EH (e)
yi(n), xij(n) ∈ {0, 1}, ∀i ∈ V, (i, j) ∈ E (f)
αh(n) ∈ [0, 1], h ∈ EH (g)
yi(0) = 0, if i ∈ V ∗; yi(0) = 1, if i ∈ VW (h)
xij(0) = 0, if (i, j) ∈ E∗; xij(0) = 1, if (i, j) ∈ EW (i)

(2.1)

Since a simpler instance of the problem PDAR, i.e. the MinR problem,
has been proven to be NP-hard in Theorem 1.1.1 in Section 1.1, the PDAR
problem is also NP-hard.

2.2 The algorithm CeDAR

In this section, we propose a polynomial algorithm, called Centrality based
Damage Assessment and Recovery (CeDAR), to solve the PDAR problem
introduced in previous Section 2.1. We consider a progressive monitoring
and network recovery in multiple stages, as in Figure 2.1. CeDAR aims at
maximizing the accumulative flow over time, as follows:

• prioritizing the repair of network components that can accommodate
higher flow, by using a dynamic ranking of broken and unknown ele-
ments, based on their centrality with respect to the demand;

• scheduling the repairs of the same-path elements all at once (or in an
interrupted sequence, if not allowed by the time based constraint on
repair resources) in order to make the repaired components immediately
available for flow routing.

For these reasons, CeDAR obtains a high accumulative flow throughout
the entire execution period, even when the recovery and monitoring activities
are still in progress.

Before to describe in details CeDAR, we briefly focus how CeDAR works.
CeDAR determines a repair schedule by privileging the repair of paths whose

47

CHAPTER 2. CEDAR The algorithm CeDAR

nodes have high demand based centrality, as we defined in the previous chap-
ter in the designing of ISP (see Definition 1.3 in Section 1.2.2 for details).
Furthermore, we extended the definition of dynamic notion of distance intro-
duced in Section 1.2.4, to consider the unknown elements with their cost of
repair and link capacity. In this way, when CeDAR makes the decision to re-
pair an element, all successive actions will be performed accordingly. In fact,
according to this dynamic notion of distance, the length of a path contain-
ing repaired elements will be updated to a lower value, hence the centrality
of its nodes will increase, and the path will attract more flow. As result,
the algorithm will concentrate demand flows on the repaired components.
To make paths immediately available for routing flows, CeDAR aims at re-
pairing entire paths in uninterrupted sequence. To progressively reduce the
instance of the problem, CeDAR routes (prunes) demands on known paths
rather than to continue to place monitors to discover another potentially
shortest path. This policy allows CeDAR to drastically reduce the cost for
monitoring, achieving at the same time good performance in terms of number
of elements repaired, as confirmed in the simulations (Section 2.5).

2.2.1 Definitions and notation

To better understand the algorithm CeDAR in detail, we introduce the fol-
lowing notation and definitions.

Each iteration of CeDAR potentially provides an update of the current
view of the status of the network. Hence, subsequent iterations correspond
to different stages of the PDAR problem, according to the nomenclature
introduced in section 2.1. Notice that some iterations provide long sequences
of repair interventions, which may require several steps, within the time
constraint on the available repair resources.

At each stage CeDAR performs new repairs and simplifies the problem
instance by reducing demand and link capacities according to an operation
called demand pruning, formalized in Definition 2.2.1 and already introduced
in Chapter 1, Section 1.2.6. With GW(n) we denote the composition of the
working graph, and with dh(n), for (sh, th) ∈ EH(n) and ckl(n), for (k, l) ∈ E,
we denote the demand and capacities updated at the n-th stage. With dh(0)
and ckl(0) we denote the initial values of demand and capacity (before the
disruption).

Depending on the needs of the discussion, the same path is equivalently
described as an ordered list of links p, or as a subset of nodes and links, and
denoted with p̂.

48

CHAPTER 2. CEDAR The algorithm CeDAR

Definition 2.2.1 (Pruning of a demand). Let us consider a demand of x ≤
dh(n) units of flow between the endpoints sh and th, with (sh, th) ∈ EH(n),
at the current stage n. Let p be a path between sh and th in GW(n), that is
p̂ ⊂ VW(n) ∪ EW(n), for which x ≤ min(i,j)∈p̂cij(n), for all (i, j) ∈ p̂. Pruning
x units of demand dh(n) on path p consists in the decrease of demand dh(n),
so that dh(n + 1) = dh(n) − x, and in the corresponding update of the link
capacities of p: cij(n+ 1) = cij(n)− x, for all (i, j) ∈ p̂.

The following notion of routable instance, constitutes the core of the ter-
mination condition of the CeDAR. We recall the routability test introduced
in Chapter 1, Section 1.2.1. When the current demand is routable on the
current working graph, without the need of additional repairs, the algorithm
CeDAR terminates.

Definition 2.2.2 (Routable demand). Given a demand graph H(n) at stage
n, and the currently working graph GW(n), with currently updated capacities
cij(n), for any (i, j) ∈ EW(n), we say that H(n) is routable on GW(n) if the
capacity constraints and flow balance equations of the related flow routing
problem are satisfied, that is:

∑
h∈EH(n)

(fhij(n) + fhji(n)) ≤ cij(n)∑
j∈VW(n) f

h
ij(n) =

∑
k∈VW(n) f

h
ki(n) + bhi (n)

fhij(n) ≥ 0, ∀i ∈ VW(n), (i, j) ∈ EW(n), h ∈ EH(n)

(2.2)

Definition 2.2.3 (Residual capacity graph). We denote with GTOT(n) the
supply graph (i.e. containing all broken, working and unknown components),
with residual capacities, considering all the pruning actions performed until
stage n−1. Such a graph is shortly called the residual capacity graph. Notice
that GTOT(n) can be obtained from GW(n) repairing all broken nodes and links.

The following notion of feasible pruning establishes the necessary condi-
tions for the feasibility of a pruning action. Informally, if a pruning action re-
duces the capacity of the current graph to the point that the current demand
is no longer routable, even with complete repairs, then it would determine a
non-feasible instance of the problem and therefore should be prohibited.

Definition 2.2.4 (Feasible pruning). Given a demand graph H(n) at stage
n, and the currently working graph GW(n) with updated capacities cij(n), for
(i, j) ∈ EW(n), we say that the pruning of x units of demand dh(n) on path p
is feasible, if after the pruning of x on p, H(n+1) is routable on the residual
capacity graph GTOT(n+ 1).

49

CHAPTER 2. CEDAR The algorithm CeDAR

0.5

0.5

1

1

1

0.5

0.5
11

x y

s t

a

b

Figure 2.2: Infeasible set of paths for demand flows

Definition 2.2.5 (Infeasible set). Let P be a set of paths in the residual
capacity graph GTOT(n). P is an infeasible set for H(n) if for all paths p ∈ P,
and for all the demands dh(n) in H(n), there is no positive value ε > 0 such
that pruning of ε units of dh(n) is feasible in p.

An example of infeasible set is shown in Figure 2.2. In this example, there
are two pairs of demand dxy = {x, y} and dst = {s, t} with a demand of 1
and 0.5 unit of flow respectively, represented with green lines. The black and
solid lines represent the working links and the red and dashed lines represents
the broken links. The labels on each edge in the graph represent the residual
capacity.

The entire demand is routable on GTOT(n), i.e., on the graph of Figure
2.2, after the repair of the links (s, a) and (b, t).

In fact, dxy can be routed, using paths p1xy =< x, s, a, b, t, y > for 0.5 units
of flow, and p2xy =< x, s, a, t, y > for the remaining 0.5 units of flow, and dst
can be routed entirely on the path p1st =< s, b, t >. However, as both the
demand pairs have a working path, it may seem intuitive to use it for at least
one of them. Nevertheless the current working paths pwxy =< x, s, b, a, t, y >
and pwst =< s, b, a, t > form an infeasible set. In fact, the pruning of a
quantity ε > 0 of any of the two demands on its related path, precludes
the routability of the remaining demand on GTOT(n + 1), compromising the
solution of the problem.

To take care of the partial knowledge, i.e. the nodes and links with un-
known status, with the following definition we extend the notion of dynamic
path length introduced in the previous chapter, Section 1.2.4.

Definition 2.2.6 (Cost based path length). Let p be a path in G, that is
p̂ ⊂ V ∪E. Let V p

B|u(n) and Ep
B|u(n) be the sets of nodes and links traversed

by p which at the n-th stage are still broken or unknown. We define the cost

50

CHAPTER 2. CEDAR The algorithm CeDAR

based path length of p, at the current stage n as follows:

l(n)(p) ,
∑

(i,j)∈p̂\Ep
B|u(n)

a

cij(n)
+

∑
(i,j)∈Ep

B|u(n)

b ·
keij
cij(n)

+
∑

i∈V p
B|u(n)

c · kvi .

For simplicity we consider unitary values of the constants a, b and c, and
uniform costs of repair for broken elements keij = ke, and kvi = kv for (i, j) ∈
Ep
B|u(n) and i ∈ V p

B|u(n), respectively, with ke, kv � 1, for all (i, j) ∈ E and
i ∈ V .

With Definition 2.2.6, the length of a path depends on the number of
broken elements, hence varies from stage to stage. Thanks to this dynamic
notion of path length, a shortest path selection tends to prioritize paths with
fewer broken elements, and links with higher capacities.

We now briefly recall the formulation of demand based centrality, previ-
ously introduced in Chapter 1, Section 1.2.2. We use this centrality metric
for CeDAR since it consider the problem of flow routing among several nodes.

Definition 2.2.7 (Demand based centrality). The demand based centrality
cd(v) of a node v ∈ V is defined as:

cd(v) ,
∑

(ij)∈EH


∑

p∈P∗ij |v
c(p)∑

p∈P∗ij

c(p)
· dij

 (2.3)

where P∗(i, j) is the set of the first shortest paths necessary to route the
demand (i, j) when considered independently of the other demands, P∗

ij|v
is the set of the paths in P∗(i, j) traversing v, c(p) is the capacity of path
p ∈P∗(i, j), and dij is the demand flow of the pair (i, j) ∈ EH.

Notice that, when used by CeDAR the centrality of a node is calculated at
each stage to determine how likely the routing of the demand would benefit
from the repair of the node. Hence we calculate the value of cd(v) by con-
sidering the instance of the problem at the current stage n. To this purpose,
we consider the current demand graph H(n), while the set of paths P∗(i, j)
is calculated in GTOT(n), and the length of the paths takes account of the
current composition of the sets of broken, unknown, and working elements
VB(n), EB(n), Vu(n), Eu(n) and VW(n) and EW(n).

2.2.2 CeDAR in details

In Algorithm 1 we show the details of CeDAR.

51

CHAPTER 2. CEDAR The algorithm CeDAR

We assume that the algorithm has no initial knowledge of the disruption
and accumulates information iteratively, through network monitoring.

Initially, in lines 4-6, CeDAR repairs the demand endpoints if necessary,
and places a software monitor in all of them, to determine their connected
working component. CeDAR builds its current view of the working graph
GW(0) with all the nodes and links that were found to be working, and with
link capacities as in the original supply graph (before the disruption). IfGW(0)
is not sufficient to route all the existing demand flows, CeDAR proceeds with
a progressive repair and monitoring of the network, as described in lines 7-
23.

At stage n of this progressive recovery, in line 8, CeDAR computes the
set P that contains, for each demand di ∈ H(n) the corresponding shortest
path pi on GTOT(n), according to the distance metric given in Definition 2.2.6.
Nevertheless P may constitute an infeasible set for the current demand H(n),
according to Definition 2.2.5, tested in line 9. In such a case, none of the
paths in P can be used for routing and CeDAR, in line 10, resorts to the
Equations (2.2) calculated in GTOT(n), to determine a set of feasible paths
Pf .

As Pf may contain more than one path for each demand pair, in line 11,
CeDAR builds the new set P by choosing, for each demand di, the shortest
path in Pf .

CeDAR only schedules path repairs when the status of all the elements
of the path is known. This is meant to keep unnecessary local interventions
at a minimum. Therefore, in line 12, CeDAR looks for the paths pi ∈ P ,
such that p̂i ∩ (Vu ∪ Eu) = ∅ and, with these, it builds the set of paths with
known status Pk.

If there is more than one path in Pk (line 13), then in line 14 CeDAR
chooses the path pi such that pi = arg maxpi∈P min(k,l)∈pickl, namely, the path
of maximum capacity, where the capacity of a path is defined as the capacity
of the link with minimum capacity. Further ties are addressed by choosing
the path of shortest length (not detailed in the pseudocode). CeDAR then
schedules the repair of the entire set of broken elements in pi, which is p̂i ∩
(VB(n)∪EB(n)) in line 15, and then the pruning, in line 16, of the maximum
feasible quantity x of di(n), on pi. In line 17 CeDAR updates the graphs
GW(n+1), GTOT(n+1) and H(n+1), to keep track of the scheduled repairs and
of the updates in the demands and capacities due to the occurred pruning
actions.

If all the selected paths of P contain at least an unknown element (line
13), which implies that Pk = ∅, in line 18 CeDAR selects a new node vBC
in which to place a new monitor. To optimize the chance to obtain new
information on the area of the network that is of interest for routing the

52

CHAPTER 2. CEDAR The algorithm CeDAR

demand flows, CeDAR selects the node vBC in the set Vm(n) , {v ∈ V |v ∈
Vu(n) ∨ ∃w ∈ V , s.t. (v, w) ∈ Eu(n)} of nodes that are either unknown or
have an incident unknown link. Among the nodes of Vm(n), it selects the one
with highest demand based centrality: vBC = arg maxv∈Vm(n) c(v), according
to Definition 2.2.7.

If at the time of the local intervention, the node vBC is discovered to be
broken, it is scheduled for repair in line 20, then CeDAR places a monitor
in vBC, in line 21.

The new repairs and the monitor activity from vBC require an update of
the graphs GW(n+ 1) and GTOT(n+ 1) and the transition to a new stage.

The algorithm terminates with line 7 as soon as CeDAR determines that
the current demand H(n) is routable over the known working graph GW(n).

ALGORITHM 1: CeDAR
Input: Supply graph G, demand graph H, broken sets VB, EB, unknown sets Vu, Eu

Output: Schedule of repairs R
1 Initialize VB(0), EB(0), Vu(0), Eu(0), H(0), R(0)
2 Build current graphs GW(0) and GTOT(0)
3 n← 0
4 for x ∈ VH do
5 If x if broken, append x to R(n) and repair it
6 Monitor from x

7 while H(n) is not routable on GW(n) do
8 Build the set P of shortest paths pi in GTOT(n), ∀di(n) > 0
9 if P is an infeasible set for H(n) then

10 Solve Equations (2.2) in GTOT(n) to obtain feasible paths Pf

11 Build P with the shortest path pi ∈ Pf , ∀di ∈ H(n)

12 Pk = {pi|pi ∈ P and p̂i ∩ (Vu ∪ Eu) = ∅}
13 if Pk 6= ∅ then
14 Choose pi = arg maxpi∈Pk min(k,l)∈pi

ckl(n)
15 Append elements of p̂i to R(n) and repair them
16 Prune the max feasible x of di(n) over pi in G(n)
17 Build the new sets GW(n+ 1), GTOT(n+ 1) and H(n+ 1)

18 else
19 Choose vBC = arg maxv∈Vm(n) c(v)
20 If vBC is found broken, append vBC to R(n) and repair it
21 Deploy a monitor in vBC
22 Build the new graphs GW(n+ 1) and GTOT(n+ 1)

23 n← n+ 1

53

CHAPTER 2. CEDAR Properties of CeDAR

2.3 Properties of CeDAR

As already shown for ISP in the previous chapter, in this section we show
the properties of the proposed algorithm. In particular, we focus on the
termination, correctness and time complexity of CeDAR.

Theorem 2.3.1 (Termination and correctness of CeDAR). Let us consider a
demand graph H = (VH, EH) and a supply graph G = (V,E), which is partially
disrupted, such that VB, EB are the sets of broken nodes and links, and Vu, Eu
are nodes and links of unknown status, and VW, EW are the working elements.
In a finite number of stages NCeDAR, CeDAR produces a repair schedule R
such that the demand H is routable on the repaired graph GR = (V R, ER),
where V R = VW ∪ (R ∩ V) and ER = EW ∪ (R ∩ E).

Proof. We first prove that CeDAR terminates in a finite number of stages
(termination), then we prove that the demand is routable on the repaired
graph (correctness).

Termination. At each stage n, CeDAR selects a set of paths P . If there
is at least a path p ∈ P such that the status of all the elements of p̂ is known,
the algorithm enters lines 14-17. In this case CeDAR prunes the maximum
portion x of a demand di on the path pi, preserving the feasibility of the
instance. This requires the solution of an optimization problem with a new
variable x. The set of constraints will be the same as in Equations 2.2, on
the graph GTOT(n), with the additional equality constraints requiring that the
demand di be routed for a quantity equal to x on the edges of p̂ and for the
remaining quantity di − x in any other edges, possibly including those of p̂.
Notice that since the only inequality constraints of this optimization problem
are those related to link capacities, every time such optimization is executed,
there is a capacity constraint which acts as a binding constraint [45]. Given
a demand, new pruning decisions will create new binding constraints while
previous binding constraints will remain binding. As the number of capacity
constraints is equal to the number of links in GTOT(n) it follows that the
number of pruning operations for each demand is bounded by |ETOT(n)|.

Let us consider instead the case in which none of the paths in P is com-
pletely known, and for each path p ∈ P there is at least one unknown status
element, so ∀p ∈ P , p̂ ∩ (Vu ∪Eu) 6= ∅. In such a case, the algorithm actions
are provided by lines 18-22. Every time this happens a new node vBC is
selected from Vm(n) which is the set of nodes that are either unknown or
have adjacent unknown links. By placing a monitor in vBC, according to the
assumptions detailed in Section 2.1, we assess the status of (at least) vBC and
of all its adjacent links, so the number of elements of Vm(n) gradually de-

54

CHAPTER 2. CEDAR Properties of CeDAR

creases at each stage. Since this number is lower bounded by 0, the number
of monitoring actions is limited by the initial size of Vm.

Correctness. At each stage, CeDAR may either prune a demand, or it
may place a monitor and explore its connected component. The first case
(lines 14-17) CeDAR gradually reduces the total demand preserving the
feasibility of the instance, by means of repair and pruning actions, but it
requires knowledge of the status of entire paths. In the second case (lines
18-22) CeDAR gradually decreases the size of the unknown sets Vu(n) and
Eu(n), so it progressively enables more actions of the first kind. Therefore, at
each stage new portions of the network are discovered, or a non-infinitesimal
demand portion is pruned preserving the feasibility of the problem. As the
instance of the problem is feasible by assumption, CeDAR will eventually
prune enough demands and repair enough network elements to meet the
routability of the demand on the currently repaired graph GR = (V R, ER),
where V R = VW(n) ∪ (R(n) ∩ V) and ER = EW(n) ∪ (R(n) ∩ E).

Theorem 2.3.2 (Time Complexity of CeDAR). Let G=(V,E) be the graph
supply and let H be a feasible demand graph on G. CeDAR has polynomial
time complexity.

Proof. As we discussed in the proof of Theorem 2.3.1, the number of itera-
tions is bounded by the maximum number of demand pruning actions, which
is limited by the number of edges in the supply graph, for each demand pair,
therefore the number of iterations is O(|EH|× |E|). By focusing on the single
activities performed at each iteration we have the following analysis.
Determine the routability of current instance (line 7). It requires testing
the feasibility of the set Equations (2.2). This is known to be polynomial, as
detailed in [66, 45].
Determine set of shortest paths P (line 8). It requires the execution of
the Dijkstra’s algorithm for each demand d ∈ EH . Therefore it requires
O(|EH | · (|E|+ |V | log(|V |)).
Determine if P is a conflicting set (line 9). In the worst case, it requires
the solution of a linear programming problem (of gradually lower size), to
determine whether a non null demand quantity x can be pruned on each of
the paths in P (one for each demand).
Complexity of Pruning (line 16). While the maximum amount of demand
x that can be pruned for each demand pair is also calculated in the test to
determine whether P is a conflicting set, there is no need to recalculate it.
x units of demand d on the shortest path p and update of the supply and
demand graph require linear time in the length of p.

55

CHAPTER 2. CEDAR Heuristics

Complexity to find the best candidate (line 18). The demand based centrality
of each node is determined with the Equation 2.3. In order to calculate
the set of paths P̂∗

ij, at each iteration we use Dijkstra’s algorithm to find
the shortest path p between any pair of nodes u and v such that (u, v) ∈
EH. Let c(p) be the capacity of such a path. If c(p) ≥ du,v, where du,v
is the demand requirement between nodes u and v, this path is sufficient,
otherwise we consider the residual graph in which we reduce the capacity
of p by c(p), and we calculate the next shortest path at the next iteration

to satisfy a demand du,v − c(p), if The resulting complexity is O(|E(n)
H | ×

(|E(n)| + |V (n)| log(|V (n)|)), since at each iteration we compute the shortest
path using Dijkstra’s algorithm and we saturate the capacity of at least one
edge. For each selected shortest path, we can update the centrality of its
nodes in linear time with respect to the path length. Finding the node with
highest centrality requires linear time O(|V |).

In conclusion, as all the actions of each iteration can be performed in
polynomial time, and the number of iterations is always polynomial, we can
conclude that CeDAR has polynomial time complexity.

2.4 Heuristics

To the best of our knowledge there is no previous work in the literature that
addresses the problem of recovery in the case of incomplete knowledge of
the failure extent. To compare the performance of CeDAR, we modified two
previous approaches. In fact, since both of them assume perfect knowledge
of the disruption, it would be unfair to compare them to CeDAR in a setting
with incomplete information, for which CeDAR is specifically designed. For
this reason, we modify these approaches to make them able to determine
a progressive recovery schedule, where network monitoring is performed in
parallel to repairs, and the recovery plan can be progressively adjusted.

2.4.1 Shadow Price Progressive Recovery (ShP)

The work of Wang et al. [86] introduces a progressive recovery approach,
which we hereby call the Shadow Price (ShP) approach. ShP assumes com-
plete knowledge of the failure which can only affect links and not nodes, and
considers limited resource availability to perform simultaneous repairs in a
massively disrupted network. The purpose of ShP is to schedule the repairs
of the broken network components so as to optimize the weighted sum over
time of the flow of every demand pairs. The ShP approach considers the

56

CHAPTER 2. CEDAR Heuristics

progressive recovery problem as an MILP problem. By recognizing the NP-
hardness of the approach, the authors suggest to use an LP relaxation of the
problem and suggest to schedule link repairs according to a decreasing order
of the shadow prices of the link capacity constraints.

To make the comparison with CeDAR more fair, we modified ShP as
follows. First, as ShP cannot work with broken nodes, we let it assume
that all nodes are working, and whenever it selects an edge for repair, its
endpoint nodes are also repaired if broken, and a monitor is placed on one
of them. Second, we consider a progressive execution of ShP, in which ShP
is executed iteratively as a single stage process of repair, and a monitoring
activity is performed from the newly repaired nodes at each iteration. Finally,
we observe that since ShP aims at maximizing flow, and not at meeting
specific flow requirements, it may find solutions in which a large flow of one
demand compensates for an insufficient flow of another. We modified the LP
problem used by ShP, to include an upper bound on each demand flow equal
to its requirement, and stop the algorithm execution as soon as all demand
requirements are satisfied. With these three modifications we allow ShP to
work also under incomplete knowledge of the failed area and make it more
appropriate to meet specific demand requirements.
Why do we expect ShP to perform poorly in terms of accumulative flow over
time?

Notice that ShP requires that broken edges have a small residual capacity,
to avoid scenarios where all shadow prices are null. This is not realistic,
as broken links have null capacity, but is a requirement for the algorithm
to work. The values of these residual capacities influence the schedule of
repairs. As a consequence ShP does not perform the repair of the components
of a same path in an interrupted sequence, which is critical to have high
accumulative flow. In the experiments of Section 2.5 we set the residual
capacities of broken links to random values as suggested by the authors [86].

2.4.2 Progressive ISP (P-ISP)

In Chapter 1, we proposed a polynomial heuristic called ISP, to solve the
problem MinR a simpler instance of PDAR, introduced in Section 1.1, that
aims at minimize the cost of repair, while restoring critical demand flows.

However, as discussed, ISP is not designed to work under partial knowl-
edge of the disruption, and does not provide an adaptive schedule of repairs
that adjust repair decisions to the incremental knowledge of the network, as
required by the PDAR problem. To compare the performance of CeDAR with
ISP, we modified the ISP algorithm to work progressively with incremental
knowledge of the disruption. We briefly recall how ISP works to better

57

CHAPTER 2. CEDAR Heuristics

understand the changes made. For a detailed description of ISP, please refer
to Chapter1, Section 1.2.
ISP works by iteratively selecting the next node to repair, called best candi-
date, according to a centrality ranking on the basis of the notion of centrality
given in Section 1.2.2. After the repair of this node, ISP selects a demand
to split, thus creating two smaller demands with the best candidate as a
new end-point for both. The algorithm also provides a pruning operation,
which is similar to the one performed by CeDAR, but works under different
enabling conditions based on structural properties of the demand and supply
graph (for details see Section 1.2.6).

To make ISP able to work in the case of partial knowledge of the dis-
ruption, we designed a progressive variant, hereby called Progressive ISP
(P-ISP) as follows. First, we assume that network elements of unknown sta-
tus are broken, and let P-ISP consider them as high cost repair elements.
Second, we consider a progressive execution in stages, where at every stage
P-ISP executes both repair interventions, monitor deployment, and network
probing, according to a stage model similar to the one of Figure 2.1.

We now give more details of this modified variant. When the node s
with highest centrality is chosen for repair and demand split, a monitor is
first placed on s which probes the nodes of its connected component. Before
performing the actual demand split as provided by ISP, P-ISP recalculates
the centrality of the nodes on the basis of the new information available.
If s is still the best candidate, the split action goes on. Otherwise, a new
intervention of repair and monitoring is planned for the new node with high-
est centrality. This process is iteratively repeated until the new information
acquired by monitoring does not determine a new highest ranked node. The
pseudo-code of P-ISP is shown in the following Algorithm 2.

Why does ISP perform wrong irreversible decisions?
Although we modified ISP to make it work in the context of incomplete

knowledge of the failure, we expect that ISP performs worse than CeDAR.
In fact, P-ISP could still make wrong decisions due to the assumption that
components with unknown status are broken. This may cause P-ISP to split a
demand on a best candidate node which may result an inefficient choice when
more knowledge becomes available. Moreover, the split action determines an
irreversible routing decision that may compromise the entire solution of the
problem. In addition to this, ISP performs repairs one at a time, potentially
scheduling successive repairs in distant and unrelated portions of the network,
resulting in a low accumulative flow over time. An example of wrong choice
due to the partial knowledge of the disruption is shown in Figure 2.3. Figure
2.3 (a) shows a network, in which there is a demand flow between the green
nodes s and t, the broken elements are represented in red and with dashed

58

CHAPTER 2. CEDAR Heuristics

ALGORITHM 2: Progressive Iterative Split and Prune (P-ISP)

Input: Supply graph G, demand graph H, broken nodes VB and broken edges EB

Output: Schedule of repairs
1 for x ∈ VH do
2 Repair x if broken
3 Monitor from x

4 Build current sets VB(0), EB(0), Vu(0), Eu(0)
5 Build current graphs H(0), GW(0) and GTOT(0)
6 while H(n) is not routable on GW(n) do
7 while pruning condition do
8 Prune demands satisfying pruning condition on G(n);
9 Build the new sets GW(n+ 1), GTOT(n+ 1) and H(n+ 1);

10 if there are repairable links then
11 Plan interventions for the broken repairable links on G(n);
12 Build the new sets GW(n+ 1), GTOT(n+ 1);

13 else
14 while best candidate vBC changes do
15 Plan an intervention on vBC on G(n) ;
16 If vBC ∈ VB(n) repair and place a monitor;
17 Discover the network from vBC and update the centrality;

18 Find best demand d to split on vBC;
19 Calculate the maximum splittable amount dx;
20 Split amount dx of demand d on vBC;
21 Build the new sets GW(n+ 1), GTOT(n+ 1) and H(n+ 1);

59

CHAPTER 2. CEDAR Heuristics

(a) (b)

Figure 2.3: Progressive ISP: perfect knowledge (a) - split error due to partial
knowledge (b)

lines, and the working elements are black and with solid lines. In a scenario
with full knowledge, P-ISP would choose to repair the nodes along the path
p1 =< s, a, b, c, d, t > to minimize the number of repairs. , since it is almost
repaired if compared to the path p2 =< s, e, f, g, t > that is completely
destroyed. Hence with this information, P-ISP will perform the split actions
on the nodes on path p1, giving them a higher centrality than the nodes of
p2. However, when the information on the disruption is not available, P-ISP
treats the nodes on p1 and p2 =< s, e, f, g, t > equally (the same), as shown in
Figure 2.3 (b) where gray elements have unknown status. In such a scenario,
P-ISP chooses the path p2 to be repaired, since it potentially requires a lower
number of repairs with respect to p1. The side effect shown in 2.3, due to the
partial knowledge, forces P-ISP to perform a higher number of interventions
to find a stable best candidate, whose centrality does not change after the
monitoring phase.

Why we do not expect P-ISP to show a good accumulative flow over time?
P-ISP repairs links only when there is a demand between their endpoints.

In this way P-ISP may repair the network in a way that successive repairs
occur in possibly distant and unrelated portions of the network. Although P-
ISP eventually repairs all necessary paths to route the entire set of demands,
it does not work on one path at a time like CeDAR, but schedule node
repairs on the basis of a centrality rank. For this reason, when performed
progressively, P-ISP does not perform well in terms of accumulative flow over
time.

This result is confirmed in all experiments of Section 2.5, where P-ISP
requires high number of interventions for discovering the network.

60

CHAPTER 2. CEDAR Experiments

2.5 Experiments

In this section we study the behavior of the discussed approaches by means
of simulations. We consider a real network topology, taken from the CAIDA
(Center for Applied Internet Data Analysis) dataset [23]. This dataset in-
cludes real topologies describing the connections between backbone/gateway
routers of several autonomous systems. We used the topology AS28717, of
which we extracted the giant connected component with 825 nodes and 1018
edges, where we set the edge capacities randomly in a range between 20 and
50 units.

In the following experiments we considered three different scenarios in
which we varied the number of demands, the amount of flow for each demand,
and the extent of the disruption, randomizing the results for a minimum of
20 runs for each experiment.

In all the experiments, with the only exception being the optimal (OPT)
solution, we assume that the initial knowledge of the network state is only
partial, and determined by monitoring the network from the demand end-
points. The OPT solution instead is obtained by using complete knowledge
of the disruption and solving the NP-hard optimization problem PDAR of
Section 2.1.1. Therefore, we underline that OPT is an ideal solution and is
considered only as a baseline for comparisons, to evidence the margin of im-
provement that any algorithm can provide with respect to existing solutions.
For this reason we show the comparisons with OPT only in the first scenario.

2.5.1 Scenario A: Varying demand intensity

In this scenario we increase the load on the network by varying the amount
of flow of 5 uniform demand pairs, with randomly selected endpoints. We
generate the network disruption so as to form multiple disconnected portions.
To this purpose we generate a geographic distribution of the probability of
failure, in the form of a composition of two bi-variate Gaussian distributions,
representing two epicenters of maximum disruption probability. The disrup-
tion probability gradually decreases with the distance from the epicenters.
The extent of the disruption is such that 60% of the network components are
broken.

In Figure 2.4 we show the effects of the progressive recovery actions of the
three algorithms CeDAR, P-ISP and ShP and of the optimal solution OPT.
The figure shows the trend with time of the maximum amount of critical flow
that can be routed on the currently repaired supply network. In the figure,
the number of repairs grows in proportion with time as we consider that all

61

CHAPTER 2. CEDAR Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP
OPT

(a) 5 pairs of 12 units of flow

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP
OPT

(b) 5 pairs of 20 units of flow

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs P-ISP

12 units
20 units

(c) Difference CeDAR – P-ISP

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs ShP

12 units
20 units

(d) Difference CeDAR – ShP

Figure 2.4: Scenario A. 5 demand pairs with varying demand intensity.
Flow routed, 12 (a) and 20 (b) flow units per pair. Flow difference: CeDAR
vs. P-ISP (c), CeDAR vs. ShP (d)

the algorithms repair one network element at each time step, to mimic a
scenario with limited resources.

We consider two different load settings: a case with moderate flow in
Figure 2.4(a) corresponding to 12 flow units for each of the 5 demand pairs,
and a case with high flow in Figure 2.4(b), corresponding to 5 demand pairs
of 20 flow units each. The figure shows that CeDAR outperforms P-ISP and
ShP by routing more flow at each time step, with peaks of about 18 flow units
of difference, corresponding to the 30% of the total demand in the case of
moderate flow, and to the 18% in the case of high flow. Compared with OPT,
CeDAR shows a good approximation in the initial phase, with a difference
between the two within the 15% of the total demand, that gradually becomes
even lower, until the recovery process is halfway, when the difference between
CeDAR and OPT becomes negligible.

62

CHAPTER 2. CEDAR Experiments

Figures 2.4(c) and 2.4(d) emphasize the difference between CeDAR and
the other two algorithms by showing how much more flow CeDAR routes
in both the considered load settings. For instance, in the case of high load,
corresponding to the dashed lines of Figures 2.4(c) and 2.4(d), after about
20 rounds of repairs CeDAR routes an amount of flow that is 20 units higher
than P-ISP (see Figure 2.4(c)), and 15 units higher than ShP (see Figure
2.4(d)). It is important to notice that CeDAR does not incur a higher cost of
repair than the other two algorithms. In the entire execution period, CeDAR
routes more flow than ShP, despite the fact that ShP targets cumulative flow
as main objective function. We also recall that, while ShP optimizes the
total flow without guaranteeing any fairness among flows,to the point that
the optimal flow could be related to one only demand pair, CeDAR aims
at guaranteeing the satisfaction of each demand flow requirement. Figure
2.5 considers an experiment where we increased the amount of flow of each
of the 5 demand pairs from 4 to 24 flow units. Figure 2.5(a) shows the
number of repairs needed to route the entire flow demands. With respect
to the number of repairs, CeDAR outperforms ShP and performs the same
as P-ISP which instead is specifically meant to optimize repair cost. Notice
that the number of repairs performed by CeDAR and P-ISP is close to the
optimal OPT, which assumes full knowledge of the status of the network
nodes and links. By contrast, ShP needs to repair more network elements
than the other algorithms to route the same amount of flow. This is due
to the fact that ShP aims at optimizing cumulative flow at each iteration,
so it may decide to sacrifice cost, by repairing more elements than strictly
necessary for the purpose of satisfying the demand requirements.

Figure 2.5(b) shows that CeDAR deploys a lower number of monitors than
ShP and P-ISP. This means that CeDAR is able to perform the necessary
monitoring activity with a lower number of monitors, thanks to more focused
monitor deployment decisions that aim at obtaining information on portions
of the network that are more relevant to the demand requirements.

Figures 2.5(c) and (d) show the number of edges and nodes repaired by the
three algorithms. Notice that all the algorithms place a monitor on repaired
nodes to obtain maximum benefit from the local interventions. Nevertheless,
the number of monitors placed (Figure 2.5(b)) is higher than the number
of repaired nodes (Figure 2.5(d)) because the algorithms may need to place
monitors on nodes in the unknown area, and may discover that the selected
nodes are working properly only after the local inspection.

Finally, we underline that all the three algorithms terminate with no de-
mand loss since the termination condition is the routability test of Equation
2.2 for all of them.

63

CHAPTER 2. CEDAR Experiments

 20

 25

 30

 35

 40

 45

 5 10 15 20 25

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Flow per pair

CeDAR
P-ISP

ShP
OPT

(a)

 16

 18

 20

 22

 24

 26

 5 10 15 20 25

N
um

be
r

of
 m

on
ito

rs

Flow per pair

CeDAR
P-ISP

ShP

(b)

 10

 15

 20

 25

 30

 5 10 15 20 25N
um

be
r

of
 e

dg
e

re
pa

irs

Flow per pair

CeDAR
P-ISP

OPT
ShP

(c)

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25N
um

be
r

of
 n

od
e

re
pa

irs

Flow per pair

CeDAR
P-ISP

OPT
ShP

(d)

Figure 2.5: Scenario A. 5 demand pairs, with varying demand intensity:
total repairs (a), monitors (b). Number of edges (c) and nodes (d) repaired.

2.5.2 Scenario B: Varying number of demand pairs

In this set of experiments we considered the effect of the demand load by
varying the number of critical demand flows in the range from 1 to 6. We
consider critical demands of 22 flow units. The setting of this value is deter-
mined by the need to have a complex scenario where demands must be routed
across multiple paths and potentially generate conflicts with each other in
the competition for shared links. Also in this scenario, the disruption is gen-
erated according to the composition of two bi-variate Gaussian distributions
so that 40% of the network components are broken.

In Figures 2.6(a) and (b) we considered the case of 3 and 5 demand pairs,
respectively and show the increase in the amount of routed flow as long as the
network is progressively restored. Figure 2.6 shows instead the difference
between the flow routed by CeDAR with respect to P-ISP (Figure 2.6(c))
and ShP (Figure 2.6(d)). For instance, with 5 pairs of demand, after about
18 rounds of repairs, CeDAR routes about 25 more units of flow than P-ISP,

64

CHAPTER 2. CEDAR Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP

(a) 3 pairs of 22 units of flow

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP

(b) 5 pairs of 22 units of flow

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs P-ISP

3 pairs
5 pairs

(c) Difference CeDAR – P-ISP

-5

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs ShP

3 pairs
5 pairs

(d) Difference CeDAR – ShP

Figure 2.6: Scenario B: Varying demand pairs. Routed flow for 3 (a) and 5
(b) demand pairs. Flow difference: CeDAR vs. P-ISP (c), CeDAR vs. ShP
(d)

corresponding to the 23% of the total demand, and about 11 more units than
ShP, which is the 10% of the total demand.

We recall that P-ISP has the explicit objective to minimize the cost of
repairs, and it does not address the objective of cumulative flow over time.
CeDAR outperforms ShP with regard to the cumulative flow despite the
fact that this metric it the objective of ShP. With the last two figures, by
varying the number of demand pairs from 1 to 6, we show that CeDAR
routes the entire demand with a similar number of repairs as P-ISP, lower
than ShP, as shown in Figure 2.7(a) and with a lower number of monitors,
as shown in Figure 2.7(b). We conclude that in this scenario, with a number
of repairs close to those of P-ISP and lower than ShP, CeDAR achieves a
higher cumulative flow than both the other algorithms.

65

CHAPTER 2. CEDAR Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Number of demand pairs

CeDAR
P-ISP

ShP

(a)

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7

N
um

be
r

of
 m

on
ito

rs

Number of demand pairs

ShP
CeDAR

P-ISP

(b)

Figure 2.7: Scenario B. Varying demand pairs: repairs (a), monitors (b)

2.5.3 Scenario C: Varying disruption extent

In this last scenario, we investigate the behavior of the three algorithms by
varying the extent of the disruption. Similar to the previous experiments
we consider two epicenters of bi-variate Gaussian failure distribution. It
must be noted that when the network disruption is sparse, the monitoring
activity is particularly beneficial. Indeed by placing monitors on nodes of
the unknown area of the network, it is likely that these can discover large
connected working components of the network, and increase the speed of
the recovery process. By contrast, if the extent of the disruption is very
large, the monitoring activity is less effective as it is more likely that nodes
in the unknown area have broken adjacent links and therefore cannot send
monitoring probes to perform the exploration of the surrounding network.

We first consider two different settings, with moderate and complete dis-
ruption. The extent is such that 60% of the network elements are broken in
the first case, and 100% in the second. We consider 5 demand pairs with a
demand of 22 flow units each. In Figure 2.8(a) and Figure 2.8(b) is shown the
flow routed by all the algorithm considered. Even in this scenario, CeDAR
always routes the demand flows faster than P-ISP and ShP. The difference
between the amount of flow routed by CeDAR and the other algorithms is
particularly remarkable in both the considered scenarios. Figure 2.8(c) shows
the difference between the total flow routed by CeDAR and P-ISP. In the
case of complete disruption (dashed line), after 28 time units, the flow routed
by CeDAR is 30 units higher than with P-ISP, corresponding to about 27%
of the total demand. Similar to these results, Figure 2.8(d) shows that in
the case of complete disruption, after about 20 time units, CeDAR routes 23
more units of flow than P-ISP, corresponding to about the 21% of the total
demand.

66

CHAPTER 2. CEDAR Experiments

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP

(a) Disruption of 60%

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

F
lo

w
 R

ou
te

d

Time units

CeDAR
P-ISP

ShP

(b) Disruption of 100%

-5
 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs P-ISP

60%
100%

(c) Difference CeDAR – P-ISP

-5
 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50D
iff

er
en

ce
 o

f f
lo

w
 r

ou
te

d

Time units

CeDAR vs ShP

60%
100%

(d) Difference CeDAR – ShP

Figure 2.8: Scenario C: Varying disruption extent. Flow routed for 60% (a)
and 100% (b) of disruption. Flow difference: CeDAR vs. P-ISP (a), CeDAR
vs. ShP (b)

The figure shows analogous results for the case of moderate disruption
(solid line), where the accumulative flow of CeDAR is even higher as it allows
to route flow sooner, i.e., after about 7 time units, compared to the case of
complete disruption (dashed line), in which it requires 18 time units before
we start seeing a positive flow routed. It is evident that in the case of
moderate disruption there is more room for prioritizing the repair of the
network elements that can ensure a higher value of the cumulative flow over
time, while in the case of large disruption it is more likely that the first
recovery interventions will not be sufficient to accommodate any demand
flow nor to create enough working paths for monitoring.

The study of this scenario confirms the results discussed for Scenario A
and B. The higher cumulative flow routed by CeDAR is obtained through
a better scheduling of repairs and monitor placement. A more detailed
study, conducted by varying the disruption from 40% to 100% evidences

67

CHAPTER 2. CEDAR Experiments

 20

 25

 30

 35

 40

 45

 50

 55

 40 50 60 70 80 90 100

N
um

be
r

of
 to

ta
l r

ep
ai

rs

Percentage of Disruption

CeDAR
P-ISP

ShP

(a)

 16

 18

 20

 22

 24

 26

 28

 30

 40 50 60 70 80 90 100

N
um

be
r

of
 m

on
ito

rs

Percentage of Disruption

CeDAR
P-ISP

ShP

(b)

Figure 2.9: Scen. C. Varying disruption: repairs (a), monitors (b)

that CeDAR performs a number of repairs close to P-ISP and lower than
ShP, as shown in Figure 2.9(a) while Figure 2.9(b) shows that CeDAR also
requires a lower number of monitors. Notice that in the case of large disrup-
tion the number of monitors coincides with the number of repaired nodes as
most of the nodes selected to host monitors in the unknown area, are found
to be broken. Also in this case, we recall that all algorithms terminate ac-
cording to the routability test of Equation 2.2, and therefore ensure complete
satisfaction of the demand requirements.

2.5.4 Scenario D: Execution time comparison

In this last section, we compare the approaches in terms of execution time.
We performed experiments in which we varied the problem size and we tested
the algorithms on different topologies. We noticed that the average node
degree affects the computation time of the algorithms more than other as-
pects. We generated an Erdos-Renyi random graph with 100 nodes, and
we progressively increased the average node degree to study how it affects
the performance of the algorithms. Since in this set of experiments, we are
considering the execution time more than the demand flow routed, we used
low demand flows and large links capacities (only connectivity requirement).
The experimental results on the execution time are shown in Figure 2.10.
When the average node degree is about 30, i.e. p=0.3 in the picture, the
optimal solution OPT of the PDAR problem requires more than 3 hours of
execution time, while ShP takes about 2.5 hours, P-ISP and CeDAR less
than 5 minutes. For a degree of 80, i.e. p=0.8 in the picture, the compu-
tation time increases significantly to about 22.5 hour for the optimal, about
12.5 hours for ShP and less than 10 minutes for P-ISP and CeDAR. The dif-

68

CHAPTER 2. CEDAR Experiments

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
tim

e
(1

03 s
ec

.)

Edge probability

CeDAR

P-ISP

ShP

OPT

(a)

Figure 2.10: Erdos-Renyi topology. Varying edge probability p. Execution
time (a).

ference between the optimal and the heuristics becomes much more evident
when the algorithms need to be executed for larger networks. These results
show the excellent scalability of our algorithm CeDAR with respect to pre-
vious approaches. Notice that, even the progressive version of our ISP has a
similar behavior in terms of execution time (as confirmed by Section 1.5.3).
However , as discussed in the previous scenarios, P-ISP doesn’t achieve good
performance in the scheduling of repairs to make the demand flows available
faster.

69

CHAPTER 2. CEDAR Conclusions

Conclusions

In this first part of the thesis, we considered, for the first time, the problem
of how to efficiently restore critical services in a communication network af-
ter large scale failures. In the first chapter, we assumed to have a complete
knowledge of the disruption and we studied the problem of how to recover
the critical services with minimum cost of repairs. We modeled this problem,
named Minimum Recovery (MinR), as a Mixed Integer Linear Program-
ming (MILP) problem, and show it is NP-hard. We proposed ISP, an efficient
heuristic to solve MinR, based on a novel demand based centrality metric.
ISP makes use of this metric to iteratively select the best nodes for repair,
and concentrate the flow on them by means of split actions. It additionally
prunes demand flows if they can be satisfied by the currently repaired supply
network. We also proposed several greedy heuristics. Experimental results on
real and synthetic topologies show that ISP outperforms other approaches in
number of repairs and in execution time. In particular, it achieves a number
of repairs close to the optimum without incurring any demand loss.

In the second chapter, we removed any assumption on the knowledge of
the disruption. In this new scenario, we studied for the first time, the problem
of progressive recovery a communication network after large scale failure
under incomplete knowledge of the damage extent. We model the problem
of Progressive Damage Assessment and network Recovery (PDAR), which is
shown to be NP-hard. We proposed CeDAR, an efficient heuristic to solve
PDAR, that performs joint repair and monitor interventions, to progressively
restore critical services. We compared CeDAR with previous approaches
modified to deal with incomplete knowledge. Experimental results on real
topologies show that CeDAR outperforms the previous approaches with a
significantly higher accumulative flow over time and comparable repair cost.
Furthermore, CeDAR requires an execution time in the order of few minutes
even on giant network, while the optimal solution to PDAR could require up
to 25 hours to be solved.

In our future work, we will consider other aspects:

• different technologies : such as wired and wireless links, to achieve more
efficient recovery strategies for the given disaster scenario;

• network tomography : we will incorporate network tomography tech-
niques to infer the damaged area.

• failure propagation: we will consider the temporal failure propagation
even during the recovery phase.

70

Part II

Mobile Wireless Sensor
Networks

71

Introduction

Introduction

In recent years, technological developments have made possible the design
and realization of mobile sensors, i.e. devices with sensing, communication,
computation and locomotion capabilities. Thanks to these capabilities, the
sensors are able to accomplish complex tasks, such as cooperative monitor-
ing, autonomous deployment, and dynamic reorganization of the network if
certain events occur. To perform their actions, mobile sensors are endowed
with several different sensing units that allow them to monitor a wide range
of phenomena such as temperature, humidity, geographical location, pres-
sure, solar energy, wind power, presence/absence of certain kinds of objects,
etc. Furthermore, mobile sensors are able to coordinate with each other and
coordinates their movements to self-deploy over an Area of Interest (AoI).
Differently from static sensor networks, mobile wireless sensor networks are
suitable to monitor inaccessible areas, unknown or hostile to man, such as
areas in which there are gas leaks, the presence of radioactivity, rescue oper-
ations, forest fire detection etc. In fact, the inaccessible and often hazardous
scenarios typical of mobile sensor networks applications, impedes the manual
sensors positioning [80]. For these reasons, often these sensors are airborne
or released in a safe area in proximity of the AoI. From this initial configura-
tion, which does not meet target requirements, mobile sensors can use their
locomotion capabilities to achieve the desired deployment. Therefore there
is the need of distributed algorithms for the coordination of movements.

The problem of the deployment of mobile sensors was already studied in
literature. The proposed approaches can be classified as follows:

• approaches based on Virtual Forces, are inspired by the molecular in-
teractions of particles. Each sensor exerts a virtual force on the others,
that can be attractive or repulsive, depending on the distance. The
resulting force on the sensor determines its movement;

• approaches based on Computational Geometry, use geometrical struc-
tures, such as Voronoi diagrams and Delaunay triangulations, in order
to guide the sensors movement;

• approaches based on Geometric Pattern, aim at deploying sensors ac-
cording to a pre-defined pattern. Each sensor moves from its initial
position to some key position in a pattern.

Usually, the mobile sensors are not equipped with tamper-resistant hard-
ware (tamper-proof) and are hence subject to manipulations by an attacker.

72

Introduction

Indeed, it is possible for an attacker to compromise (via hardware or soft-
ware) a number of sensors and use them to performs attacks on the network.
Although in the literature there are several works on the safety of mobile
sensor networks, it has not been paid attention on the security issues of the
deployment of mobile sensor networks. Compromising some sensors of the
network, the attacker could deploy them over the AoI to prevent the natural
deployment of not compromised (legitimate sensors), precluding the objec-
tives of coverage. Only recently, in [9], the authors study for the first time
these vulnerabilities for approaches based on Virtual Forces introducing a
new type of attack, called Opportunist Movement (OM attack), which aims
to undermine the deployment of mobile sensor networks. The authors show
how such an attack is able to limit the coverage of the network and propose
a solution for the safe deployment of the sensors.

In this part, we analyze the vulnerabilities of the deployment of mobile
sensor networks for approaches based on Voronoi diagrams in the presence of
an attacker performing an OM attack. In a previous work [10], the authors
only show an experimental result on the vulnerabilities of Voronoi deploy-
ment approach again the OM attack. They also proposed a new deployment
algorithm based on Voronoi diagrams, called SecureVor, to counterattack the
OM attack. Starting from this experimental result, we significantly extend
the previous work in [10]. In particular, we give a novel geometric character-
ization and a formal proof of the efficacy of the OM attack [9] against this
deployment approach, showing that the attack can seriously compromise cov-
erage. We show that during the deployment of the network the OM attack is
more effective against Voronoi based solutions than against the virtual force
approach. In fact, with Voronoi based solutions, the efficacy of the attack
depends only on the perimeter of the area that the attacker wants to keep
uncovered, and there is no gain in increasing the number of legitimate sensors
deployed as occurs for Virtual Forces based solutions.

On the basis of the geometric characterization described above, we pro-
pose a new algorithm Secure Swap Deployment (SSD), which is designed to
counteract the OM attack. SecureVor [10] works under the assumption that
the transmission radius is at least four times larger than the sensing radius.
Under this operative setting, which is common to most outdoor application
scenarios, a sensor can determine the legitimacy of its neighbors movements
and communications.
Instead, SSD is designed to work in the same operative setting as the original
VOR algorithm presented in [85], i.e., Rtx > 2Rs, so that it is complementary
to SecureVor. SSD exploits sensor positions swaps to verify the neighbors
behavior.

73

Introduction

We show that both algorithms can defeat the OM attack in their respec-
tive operative settings, and we formally prove that both terminate in a finite
time.

We perform extensive simulations to study the performance of SecureVor
and SSD in comparison with the original solution VOR. The results show
that both algorithms are able to successfully neutralize the OM attack and
achieve coverage of the AoI at the expense of a small overhead in terms of
energy consumption and deployment time. SecureVor is more effective when
the transmission radius is sufficiently large with respect to the sensing radius,
while SSD is preferable when such an assumption does not hold.

The original contributions of this part are:

• For the first time, we point out and formally prove the vulnerabilities
of Voronoi-based deployment algorithms, giving a geometric character-
ization of possible attack configurations.

• We propose a new secure deployment algorithms called SSD, which
successfully counteract the OM attack, in different and complementary
operative settings of SecureVor [10].

• We show that both algorithms have a guaranteed termination, show
through simulation that both defeat the OM attack.

• Through simulations, we highlight the efficacy of the algorithms in
providing full coverage, even in the presence of an OM attack, under
a wide range of operative conditions, at the expense of a moderate
increase in energy consumption and deployment time.

• This work is published on IEEE Transactions on Mobile Computing
(http://ieeexplore.ieee.org/document/7401077/) [14].

74

Related works

Related works

In the following, we briefly recall the works on the security problems of ad-hoc
networks.

Communication. In [27] the authors propose three new mechanisms for
key establishment using the framework of pre-distributing a random set of
keys to each node. In [33], the authors use certain deployment knowledge
that is available a priori to propose a novel random key pre-distribution
scheme that exploits deployment knowledge and avoids unnecessary key as-
signments. In [84], Wander et al. quantify the energy cost of authentication
and key exchange based on public-key cryptography on an 8-bit microcon-
troller platform.

False position claims. In [61] , the authors study the security issues of
geographic routing (GR) protocols. In particular, they propose a location
verification algorithm to address the attacks falsifying the location informa-
tion. Furthermore, they also propose approaches for trust-based multi-path
routing, aiming to defeat attacks on GR. In [25], Capkun et al. propose and
analyze a new approach for securing localization and location verification in
wireless networks based on hidden and mobile base stations.

Sybil attack. In the Sybil attack, a node illegitimately claims multiple
identities. The work [72] analyzes the threat posed by the Sybil attack to
wireless sensor networks and demonstrates that the attack can be exceed-
ingly detrimental to many important functions of the sensor network such
as routing, resource allocation, misbehavior detection, etc. Furthermore, the
authors establish a classification of different types of the Sybil attack and
then propose several novel techniques to defend against it.

In addition to these well known vulnerabilities of wireless sensors net-
works, mobile sensors suffer of other kind of security issues. In fact, lack
tamper-proof hardware allows an adversary to capture several nodes, extract
their cryptographic material and reprogram them according to its malicious
goal. The reprogrammed sensors, hereafter called malicious sensors, may
perform several attacks to damage the network, exploiting the specific vul-
nerabilities of the deployment algorithm in use. All the previous solutions for
deploying mobile sensors fall in to one of three major families: approaches
based on virtual force models [50, 62, 93, 41, 58], on the formation of patterns
[11, 87], or on computational geometry techniques [85, 63, 12]. However none
of this work focus on the security issues of the deployment algorithm. Only
recently, the vulnerabilities of the virtual force approach for sensor deploy-
ment have been considered [9]. In this work, the authors introduce a simple
attack tailored for mobile sensor deployment algorithms, called the Oppor-

75

Related works

tunistic Movement (OM) attack that aims to impede the natural spread of
the network. Using a small set of malicious sensors, the attacker can influence
the deployment of legitimate sensors by exploiting the coordination mecha-
nism of the self-deployment approach. Malicious nodes may coordinate with
each other to reduce the area in which the legitimate sensors are deployed,
thus creating a non monitored zone.

While the work in [9] shows the detrimental effects of the OM attack
against the virtual force approach, in [10] the authors provide only an ex-
perimental evidence of similar vulnerabilities in computational geometry ap-
proaches, and in particular in the Voronoi approach to mobile sensor deploy-
ment [85, 12].

In the present work we significantly extend the previous results on the
vulnerabilities of Voronoi based approaches. In fact, we provide, for the
first time in the literature, an analytic study of the vulnerabilities of such
an approach and we formally prove the efficacy of the OM attack again the
Voronoi based approaches. Furthermore, we propose a new secure algorithm
SSD to counterattack the OM attack and guarantee the coverage goals in a
complementary scenario with respect to SecureVor [10].

76

Chapter 3

On the Vulnerabilities of
Voronoi-based Approaches to
Mobile Sensor Deployment

77

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

3.1 Vulnerabilities of the Voronoi approach

In this section, we study how the OM attack presented in [9] is able to com-
promise the coverage goals of deployment algorithms based on the Voronoi
approach. We first recall the deployment protocol VOR proposed by Wang
et al. in [85], which is one of the most cited in the literature on Voronoi
based deployment algorithms. After, we focus on the detrimental effects of
the OM attack on the VOR algorithm. We conclude this section with a novel
geometrical analysis that formally proves the effectiveness of the OM attack
on the Voronoi based deployment approaches.

3.1.1 Background on the Voronoi approach

The Voronoi approach (VOR) to mobile sensor deployment has been intro-
duced in [85]. It makes use of Voronoi diagrams to guide sensor movements
within the AoI. According to [85], sensors communicate within a distance Rtx

(communication radius), they sense over a circular area of radius Rs (sensing
radius), with Rtx > 2Rs. Nodes can move in any direction inside the AoI,
are endowed with low cost GPS, and are loosely synchronized.

VOR is executed in a distributed manner at each node and is round
based. At each round t any sensor s broadcasts its position coordinates,
and determines its set of neighbors N(t)

tx (s), i.e. the sensors located within
its communication radius. It then calculates its Voronoi polygon V (t)(s).
Sensor s determines its next destination according to one of two movement
criteria: the Farthest Vertex (FV) and the MiniMax (MM) [85].

According to FV a sensor s moves along the segment connecting its posi-
tion and the farthest vertex of its polygon. Its destination is a point on this
segment at distance Rs from the farthest vertex.

According to MM, the destination of s is the point that minimizes the
maximum distance from the vertices of V (t)(s), which is the center of the
minimum circle enclosing its polygon.

Regardless of the adopted movement criterion, a sensor s moves to its des-
tination only if its movement provides a better coverage of V (t)(s), otherwise
it remains still.

Furthermore, according to [85], s can traverse a maximum distance per
round dmax = Rtx/2−Rs, to take into account possible inaccuracies in the dis-
tributed construction of Voronoi polygons, which may be due to the limited
transmission radius.

78

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

3.1.2 The Opportunistic movement attack

The original work [85] does not address the security vulnerabilities of the
VOR approach. Since sensors lack tamper-proof hardware, an adversary
may capture some nodes, and extract their cryptographic related information
and reprogram them. Such malicious sensors may not be recognized by
legitimate sensors as they are able to send valid messages containing a valid
ID, and make use of legitimate cryptographic information. The attacker can
thus exploit these corrupted nodes to perform malicious attacks to prevent a
successful network deployment. For instance, the attacker can be interested
in creating a non monitored area around a zone of interest, or isolating a part
of the network. To pursue its goal, the attacker utilizes a set of malicious
nodes that are able to collude with each other by performing coordinated
movements and communications in order to influence the movements of the
legitimate sensors.

The OM attack introduced in [9] aims at reducing the network coverage.
To this purpose, malicious sensors initially form an attack configuration over
the AoI. From such a configuration, malicious nodes start the attack by
moving according to the adversary strategy, but communicating according
to the communication protocol provided by the deployment algorithm.

The OM attack is a general attack which can be performed in different
manners, depending on the movement strategy of malicious sensors. A par-
ticularly effective strategy is the Barrier Opportunistic Movement (BOM),
in which malicious sensors form a linear barrier over the AoI [9, 10].

As provided by the OM attack, malicious sensors periodically communi-
cate their positions at the beginning of each round in a legitimate way. By
contrast, they move according to the attacker strategy. In particular, the
malicious sensors forming the barrier may move towards legitimate sensors
or remain still, in order to prevent legitimate sensors from spreading over
uncovered areas.

In Figure 3.1, we show an example of a BOM attack. The red circular
areas represent the sensing disks of the malicious nodes performing the BOM
attack. The grey circles are the sensing ranges of the legitimate sensors that
are spreading over the AoI according to VOR. The two figures 3.1(a) and
(b) represent the initial and the final deployment, respectively. A barrier
of malicious sensors is initially deployed over the AoI as in Figure 3.1(a),
limiting the movements of legitimate sensors that will be able to spread
only in the area limited by the barrier, as in Figure 3.1(b). The malicious
nodes remain still, forming a barrier that prevents further movements of the
legitimate sensors. In fact, the legitimate sensors that come in proximity
with the barrier nodes stop moving. They do not move towards and across

79

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

(a) (b)

Figure 3.1: BOM Attack. (a) Initial deployment and (b)final deployment
under VOR.

the barrier because, from the information received by malicious nodes, they
derive that there is no way and no necessity to improve their local coverage.

In this work, we give a geometric characterization of the vulnerabilities
of the Voronoi approach to mobile sensor deployment. Moreover, we ex-
ploit the information derived from the geometric characterization to design
a novel algorithm SSD, which is able to neutralize the attack and works in
complementary scenario with respect to SecureVor [10]. In fact, SecureVor
is designed for an operative setting in which the communication radius is at
least four times greater than the sensing radius, i.e. Rtx > 4Rs. SSD, instead,
is designed to work in the same operative settings as the VOR approach, i.e.
Rtx > 2Rs.

Similarly to [9, 10], in order to highlight the strength of the BOM attack,
in this work we do not consider other attacks which may be performed in
conjunction with BOM. Our goal is to show how the BOM attack, alone, can
produce detrimental effects in terms of coverage to VOR based solutions.

3.1.3 Efficacy of the BOM attack against the Voronoi
approach

In this section we formally analyze the vulnerabilities of VOR against the
BOM attack. We refer the reader to [32] for a brief survey of the properties
of Voronoi tessellations.

We consider the diagram of Figure 3.2, where a Cartesian reference models
the AoI. Malicious sensors are evenly deployed along the axis x = 0, with

80

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

Figure 3.2: A legitimate sensor in P approaches a d-spaced barrier (sensors
deployed in (0, d/2 +k ·d), with k ∈ N). As P is on the left of line r1, it does
not cross the barrier, as long as d ≤

√
3Rs.

step size d, occupying the positions (0, d/2 + k · d), with k ∈ N. We hereby
call such a configuration a d-spaced barrier of malicious sensors.

We define ∆(Rs, d) ,
√
R2

s − d2/4, also referred to as ∆. Let w be the
width of the overlapping region between two adjacent malicious sensors. In
Figure 3.2, w = d(C,Q) = 2∆, where d(·, ·) is the Euclidean distance between
two points. Notice that such a width is larger than Rs if d ≤

√
3 ·Rs.

We use the following notation. We denote with L(`) and R(`) the half-
planes at the left and right side of the line `, respectively, where ` is a generic
line of equation x = x`. For brevity, we will use the same notation for a point
P = (xp, yp), denoting with L(P) and R(P), the half-planes L(x = xp) and
R(x = xp), respectively.

Let us consider the lines r0, r1 and r2, with equations x = −∆, x =
−Rs + ∆, and x = ∆, respectively. Notice that if d ≤

√
3 · Rs, the line

81

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

r1 falls between the lines r0 and r2. We will prove that the line r1 acts
as a frontline of the barrier, precluding legitimate sensors from traversing
it, independently of the moving criterion adopted by the Voronoi algorithm
VOR.

Given a sensor s positioned in P , we denote with V (s) its Voronoi poly-
gon, and with C(s) its sensing circle. The following Lemma 3.1.1 recalls a
general property of Voronoi polygons that is necessary for the following dis-
cussion. It is a specific case of a more general theorem given in [12] (Theorem
3.1) and states that if a point of V (s) is covered by any sensor, then it is also
covered by s.

Lemma 3.1.1 (Theorem 3.1 of [12]). Let us consider N sensors si, i =
1, . . . , N , with positions Pi = (xi, yi), sensing circles C(si) and sensing radius
Rs. Let V (si) be the Voronoi polygon of si. For all k and j = 1, 2, . . . , N ,
V (sk) ∩ C(sj) ⊆ C(sk).

Let us denote with Acritical the locus of points determined by this equa-
tion:

Acritical = ∪
k∈N
{(x, y)|(x−∆)2 + (y − k · d)2 = R2

s, x ≤ 0}. (3.1)

The shape of this locus is a periodic sequence of circular segments, along
the y-axis, as depicted in Figure 3.2.

Extending the previous notation, we denote with L(Acritical) and with
R(Acritical) the regions on the left and right side of Acritical, respectively.

Lemma 3.1.2 (Frontline). Let us consider a legitimate sensor s, positioned
in P = (xp, yp), with P ∈ L(Acritical), with a d-spaced barrier of malicious
sensors, with d ≤

√
3 ·Rs. It holds that V (s) ∩R(r0) ⊆ C(s).

In other words, the portion of the Voronoi polygon of s located on the
right side of the line r0 is completely covered, and is covered by s itself.

Proof. Consider the diagram of Figure 3.2. By contradiction, let us consider
a point Z ∈ V (s)∩R(r0) and assume that Z is not in C(s). As a consequence
of Lemma 3.1.1, Z is not covered by any sensor. Since the region between
the lines r0 and r2 is covered by [at least] the barrier sensors, Z must be
in R(r2). Therefore, as Voronoi polygons are convex, V (s) must have an
uncovered vertex Vz in R(r2).

Let us now remove from the diagram every sensor but s itself and the two
closest barrier sensors m1 and m2, positioned in the points M1 = (0, d/2) and
M2 = (0,−d/2). We obtain a new Voronoi polygon V ′(s) for s, such that
V (s) ⊆ V ′(s). As s does not cover the vertex Vz, it also does not cover the
unique vertex of the bigger enclosing polygon V ′(s). Let us denote with V

82

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

such a vertex, which is the unique intersection of the perpendicular bisectors
of the segments PM1, PM2 and M1M2, as shown in Figure 3.2.

V = (xv, yv) =

(
x2p + y2p − d2/4

2 · xp
, 0

)
.

As V is not covered, it must also be located in R(r2), therefore xv > ∆,
from which, recalling that xp < 0, we derive: (xp−∆)2+y2p ≤ d2/4+∆2 = R2

s.
Therefore the vertex V , generated when the sensor s is in L(Acritical),

would actually be uncovered only if the sensor s were also located inR(Acritical),
which is a contradiction. This implies that Z /∈ R(r2), concluding the proof
that if Z ∈ V (s) ∩R(r0) then Z must also belong to C(s).

The above Lemma 3.1.2 admits the following special case that follows by
considering that r1 is tangential to Acritical.

Lemma 3.1.3. Let us consider a legitimate sensor s, positioned in P =
(xp, yp), with P ∈ L(r1), and a d-spaced barrier of malicious sensors, with
d ≤
√

3 ·Rs. It holds that V (s) ∩R(r1) ⊆ C(s).

Lemma 3.1.3 is necessary to demonstrate that no sensor located in L(r1)
crosses the barrier with a Voronoi based movement. Therefore a minimum
distance threshold

dT (Rs, d) , Rs −
√
R2

s − d2/4

can be defined, so that no sensor located at a distance higher than dT from
the barrier can cross it by means of a pure Voronoi based movement. We
study the two criteria separately.

Theorem 3.1.4. Let us consider a network of mobile sensors, with sensing
radius Rs, being deployed according to the FV criterion. Let us consider a
d-spaced barrier of malicious sensors with step d ≤

√
3 · Rs. No legitimate

sensor located at a distance longer than dT (Rs, d) from the barrier, is able to
traverse it.

Proof. Let us consider a Cartesian reference so that the barrier is deployed
along the axis x = 0, in the positions (0, d/2 + k · d), with k ∈ N. Due to
symmetry we consider the left side only.

Consider a legitimate sensor s, located at a distance higher than dT (Rs, d)
from the barrier, on the left side of it. It follows that Ps ∈ L(r1), where r1 is
the line of equation x = −dT (Rs, d). Thanks to Lemma 3.1.3, we can assert
that the Voronoi polygon V (s) of the sensor s does not have any uncovered
vertex on the right side of the line r1. Therefore, given the rules of the FV

83

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

criterion described in Section 3.1.1, either the sensor s does not move, or its
destination D is also in the left side of the line r1, that is D ∈ L(r1). Since
any movement of s, even if performed in multiple steps, will carry s from its
current position Ps in L(r1) to a destination D which is also in L(r1), and
since the region L(r1) is convex, all the paths traversed by s are internal to
L(r1) and s never crosses the line x = 0 at which the barrier is deployed.

We proceed with the analysis of the MiniMax criterion. We recall that
the MiniMax point of a polygon is the center of its smallest enclosing circle.

Lemma 3.1.5. Let P be a convex polygon with N vertices, and let EP be
the minimum enclosing circle of P. Every arc of 180◦ degrees in EP must
traverse at least one vertex of the polygon P.

Proof. The minimum enclosing circle EP of a polygon P has at least two
vertices of P on its boundary. As discussed in [32] we have two cases. Case
(1): only two vertices of P are on the boundary of EP , and they are antipodal.
In such a case the two vertices divide EP into two half-circles. Case (2): more
than two vertices of P are on the boundary of EP , and three of these vertices
form a non-obtuse triangle (or EP would not be minimal). In this case, the
center of EP would coincide with the circumcenter of such a triangle and the
angular distance between any two vertices would be less than or equal to 180◦

degree. It follows that in both cases every arc of the circumference whose
length is 180◦ degree must contain at least one vertex of the polygon P .

We now give a characterization of the possible positions of the MiniMax
point of V (s) on the basis of the position of the sensor s with respect to the
barrier.

Lemma 3.1.6. Let us consider a d-spaced barrier of malicious sensors, with
d ≤
√

3Rs, along the y-axis of a Cartesian reference and consider a legitimate
sensor s positioned in P ∈ R(r0) ∩ L(Acritical). If the Voronoi polygon V (s)
is not completely covered then its MiniMax point M ∈ L(P).

Proof. Let us refer to Figure 3.2. As the lines r0 and r2 cross the intersection
points between pairs of sensing circles of barrier sensors, the region R(r0) ∩
L(r2) is completely covered by the barrier sensors. The width of such a
region is w = 2∆. Since d ≤

√
3Rs then w ≥ Rs. For vertical periodicity

and horizontal symmetry in the construction, let us only consider the case
with 0 ≤ yp ≤ d

2
.

We initially neglect the presence of other sensors but s and the barrier
sensors located in M0 = (0, 3d

2
), M1 = (0, d

2
), and M2 = (0, −d

2
). As sensor s

84

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

approaches the barrier, C(s) can have a non null intersection with the barrier
sensors, generating two vertices of the Voronoi polygon V (s) (drawn in blue
in Figure 3.2). As the closest barrier sensors are M1 and M2, the vertex V
generated with these sensors is the closest to the barrier. Due to Lemma
3.1.2, as s ∈ R(r0) ∩ L(Acritical), the portion of its Voronoi polygon V (s)
located in R(r0) is completely covered and is covered by s. Therefore the
uncovered points of V (s) lie in the region L(r0).

Let us denote with I1 and I2 the intersection points of V (s) with the
boundary of the sensing circle C(s). The uncovered points of V (s) must be

located beyond the arc
_

I1I2, in the left region of the segment I1I2. P is more
distant than Rs from the uncovered points whereas its distance from all the
vertices in R(P) is lower than Rs.

We will now prove that no point of V ′′(s) , V (s) ∩ R(P) can be the
MiniMax of V (s). We proceed by contradiction. Assume that X ∈ V ′′(s) is
the MiniMax of V (s), and V (s) has uncovered points. The requirement given
by Lemma 3.1.5, establishes that X be the center of a circle which crosses at
least one vertex of V (s) every 180◦ degrees.

As the angle formed by I1 and I2, with any point of V ′′(s) at the right
hand side of the segment I1I2 is wider than 180◦ degrees, Lemma 3.1.5 states
that an enclosing circle centered in X must cross one of the two vertices
V and J , formed with M1 and M2 in addition to one or more uncovered

vertices at the left side of the arc
_

I1I2, for a total of two or three vertices.
Furthermore, the enclosing circle must cross the circumference C(s) in two
points (in order to include an external region), which requires X to be in
L(P)1.

In order to finish the proof we recall that in all this reasoning we neglected
the presence of other sensors besides s, and the three barrier sensors located
in M0, M1 and M2. The argument remains valid even when considering
other sensors, as they would cover additional portions of the AoI and of

V (s), and the potentially uncovered portion of the arc
_

I1I2 could only be
smaller, leaving even wider angles at its right than we considered in the
first part of the proof. Therefore, although having additional sensors may
reduce the size of V (s), when coverage of V (s) is incomplete and s is in
P ∈ R(r0) ∩ L(Acritical), the MiniMax point would be in L(P).

1This is because: 1) an enclosing circle bigger than C(s) and centered in R(P) would
not touch any vertex in an angle wider than 180◦ degrees, contradicting Lemma 3.1.5.
Therefore if X had a radius RX > Rs, it would be in L(P); 2) an enclosing circle of the
same size as C(s) or even smaller is also possible, but in order for it to include points that

are external to C(s) on the left side of the arc
_

I1I2, in addition to both vertices in R(P)
it must be centered in X ∈ L(P).

85

CHAPTER 3. WSN Vulnerabilities of the Voronoi approach

Theorem 3.1.7. Let us consider a network of mobile sensors, with sensing
radius Rs, being deployed according to the MiniMax criterion. Let us consider
a d-spaced barrier of malicious sensors, with step d ≤

√
3 ·Rs. No legitimate

sensor located at a distance longer than dT (Rs, d) from the barrier, is able to
traverse it.

Proof. Thanks to symmetry, we can consider the only left side of our reference
plane.

Consider a legitimate sensor s, located at a distance higher than dT (Rs, d)
from the barrier, on the left side of it. Then Ps ∈ L(r1). If Ps is located in
L(r0), it may have uncovered portions of its polygon V (s) in the half plane
R(P). Therefore its MiniMax point can also be in R(P). Nevertheless,
by analyzing the coordinates of the point V , we derive that V ∈ L(r1).
Therefore, the whole polygon V (s) and so its MiniMax point M , are also in
L(r1).

By contrast, if Ps ∈ R(r0)∩L(r1), Lemma 3.1.6 allows us to conclude that
the MiniMax point M resides in L(r1) or the polygon is completely covered
and no movement occurs. Therefore, the destination D is also in the left side
of the line r1. Since any movement of s, even if performed in multiple steps,
will carry s from its current position Ps in L(r1) to a destination D which
is also in L(r1), and since the region L(r1) is convex, all the path traversed
by s must be internal to L(r1). Therefore s never crosses the line x = 0 at
which the barrier is deployed.

The above theorems show that the number of malicious sensors necessary
to impede complete coverage of an area only depends on the perimeter of the
area, regardless of the number of legitimate sensors deployed.

Notice also that the OM attack has no impact on an already deployed
network which provides full coverage of the AoI.

Theorem 3.1.8. Under VOR, once legitimate sensors have achieved full cov-
erage of the AoI, the OM attack cannot cause the movement of any sensors.

Proof. Let us consider a legitimate sensor s with neighbors N(s). Since the
AoI is completely covered, V (s) is also completely covered, hence s does not

move. When the OM attack starts, s has a set of neighbors N̂(s), which

may include some additional malicious sensors, and a polygon V̂ (s). Since

N(s) ⊆ N̂(s) then V̂ (s) ⊆ V (s), thus V̂ (s) is also completely covered, hence
s does not move, in agreement with the rules described in Section 3.1.1.

86

CHAPTER 3. WSN The SecureVor algorithm

3.2 The SecureVor algorithm

In this Section we introduce a first preliminary result called SecureVor [10],
a secure Voronoi-based deployment algorithm designed to counterattack the
BOM attack explained in Section 3.1.2.

SecureVor is designed on the basis of the adversary model introduced in
Section 3.1. It assumes a signature protocol to verify the exchanged messages,
and an algorithm to verify position claims of nodes within the communication
range Rtx [34, 90]2. SecureVor assumes that Rtx > 4Rs and sets dmax =
Rtx/4−Rs. We relax this assumption with the algorithm SSD, discussed in
Section 3.3. Notice that, we do not require the communication range of a
sensor to be a perfect disk. Indeed, there can be anisotropies provided that
a sensor is able to communicate with all sensors located at a distance up to
4Rs from itself. Finally, similar to previous works [85, 12] on mobile sensor
deployment, we assume that nodes are endowed with consumer grade GPS3

and that they are loosely synchronized.
SecureVor provides a method to recognize malicious sensors and detect

malicious movements when the deployment is based on VOR. It can be ap-
plied to both moving strategies FV and MiniMax. The idea of SecureVor
is to detect malicious nodes by verifying the compliance of their movements
to the rules of the deployment algorithm in use. This verification activity
allows each sensor to formulate its own list of trusted and untrusted sensors.
Each sensor will ignore untrusted neighbors and use only the information
exchanged with trusted ones to determine future movements.

In order to let sensors reciprocally verify each other’s movement, at the
beginning of each round every sensor s is required to declare the set of its
trusted neighbors, namely the set of sensors that it will use to determine its
polygon. Notice that, a sensor determines this set only on the basis of its
local observation, since SecureVor does not require transitive trust among
sensors. The neighbor sensors of s locally calculate the polygon of s, based
on its stated set, and verify whether its movement is in compliance with

2 Location verification can be achieved by using dedicated hardware and/or previ-
ously deployed anchor nodes. Sensors can autonomously verify position claims if they
are equipped with a radar system [34, 90]. These radars conform to our requirements as
they are inexpensive, low power and provide object detection up to 20m distance. Alterna-
tively, Ultra Wide Band systems [39] and anchor nodes can be used for location verification
through Verifiable Multilateration (VM) [24]. In this case, anchor nodes are responsible
for the location verification and advertise false location claims when detected. Using VM,
a sensor incurs in a constant communication overhead for each anchor it communicates
with.

3Low-cost, consumer grade GPS currently available provide accuracy in the orders of
few decimeters [17] and have a cost around 200$ per unit [67].

87

CHAPTER 3. WSN The SecureVor algorithm

the deployment algorithm or not. If a malicious movement is detected, s is
marked as untrusted and ignored by its neighbors thereafter. SecureVor, and
similarly SSD, could be extended with reputation-based techniques [83, 57].

Let N be the set of sensors to be deployed. We recall from Section 3.1.1
that we denote by N(t)

tx (s) the neighbors of s, that is the set of sensors that
are, at round t, at a distance less then the communication radius Rtx from
s. The sets N(t)

trusted(s) and N(t)
untrusted(s) keep track, for a sensor s, of the

set of sensors that s considers as trusted and untrusted, respectively, until
round t. These sets are updated at each round. According to SecureVor, a
sensor s only considers neighbors at a distance less than Rtx/2 as potential
neighbors to calculate its own polygon. We refer to such neighbors at a round
t as Q(t)(s). This choice enables s to be in communication with the sensors
considered by its neighbors in Q(t)(s) to determine their polygon. Among
the nodes in Q(t)(s), s takes into account only the sensors that it considers
as trusted in order to determine its polygon. We define the set of sensors that
s actually considers at round t as N(t)

SV (s) = Q(t)(s)
⋂
N(t)
trusted(s). N(t)

SV (s)
may be empty if s has no trusted neighbor in its proximity at round t. In
such a case, V (t)(s) is the whole AoI. Finally, the position of sensor s at the
current round is denoted with pos(t)(s). Table 1 summarizes the adopted
notation.

Notation Description
V (t)(s) Polygon of s
N(t)

tx (s) Neighbors of s (distance ≤ Rtx)
Q(t)

tx (s) Neighbors of s (distance ≤ Rtx/2)
N(t)
trusted(s) Sensor s trusted neighbors until round t

N(t)
untrusted(s) Sensor s untrusted neighbors until round t

pos(t)(s) Position of s

p̂ost(s) Expected position of s
N(t)
SV (s) Sensors considered by s to build V (t)(s)

Table 3.1: Summary of adopted notation. All notations refer to round t.

3.2.1 SecureVor in detail

SecureVor is round based similar to VOR. In particular, it comprises four
phases, namely: Position communication, Movement verification, Trusted
neighbors communication and Coverage evaluation and movement. Notice
that we do not consider localization errors of the GPS positioning system

88

CHAPTER 3. WSN The SecureVor algorithm

or of the location verification algorithm. SecureVor can be extended to take
these aspects into account with the same approach described in Section 8.4
of [9].

The pseudo-code is shown as Algorithm SecureVor.

ALGORITHM SecureVor, node s at round t.

// Position communication:

1 Broadcast pos(t)(s);
2 Receive and verify neighbor positions;

3 Determine the sets N(t)
tx (s) and Q(t)(s);

// Movement verification:

4 if t = 0 then
5 N(t)

untrusted(s) = ∅;
6 N(t)

trusted(s) = N ;

7 else
8 N(t)

untrusted(s) = N(t-1)
untrusted(s) ∪ (Q(t-1)(s) \N(t)

tx (s));

9 for q ∈ Q(t)(s) s.t. q /∈ N(t)
untrusted(s) do

10 if (s /∈ N(t-1)
trusted(q) ∨ N(t-1)

trusted(q) * N(t-1)
tx (s)) then

11 N(t)
untrusted(s)← q;

12 Calculate V (t-1)(q);

13 Calculate p̂os
t
(q);

14 if p̂os
t
(q) 6= post(q) then N(t)

untrusted(s)← q;
15 ;

16 N(t)
trusted(s) = N \N(t)

untrusted(s);

17 N(t)
SV (s) = Q(t)(s)

⋂
N(t)

trusted(s);

// Trusted neighbors communication:

18 Broadcast the list of nodes in N(t)
SV (s);

19 Receive N(t)
SV (z) from any z ∈ Q(t)(s);

// Coverage evaluation and movement:

20 Calculate V (t)(s) on the basis of N(t)
SV (s);

21 if V (t)(s) is completely covered then do not move;
22 ;
23 else Determine destination point and move accordingly. ;

Position communication (lines 1-3)
At the beginning of a round each sensor communicates its position to the
neighbors through a signed message and determines the sets N(t)

tx (s) and
Q(t)(s), which are the set of communication neighbors of s and the set of
nodes located at less than Rtx/2 from s, respectively.
Movement verification (lines 4-16)
In this phase, a sensor s verifies the movements of its neighbors to deter-

89

CHAPTER 3. WSN The SecureVor algorithm

mine N(t)
trusted(s), N

(t)
untrusted(s) and ultimately N(t)

SV (s). At the first round,
N(t)
trusted(s) = N and N(t)

untrusted(s) = ∅ (lines 4-6).
The set of untrusted neighbors at round t > 1, N(t)

untrusted(s), contains all
the sensors that were determined as untrusted in any of the previous rounds
N(t-1)
untrusted(s) plus the sensors that were in Q(t-1)(s) and that are no longer in

communication with s at the current round (line 8)4. Other sensors that are
detected as malicious in the current round are added to N(t)

untrusted(s) (lines
9-16) as explained in the following.

A sensor s verifies, for each sensor q in Q(t-1)(s), not yet in N(t)
untrusted(s),

the correctness of its movement in the previous round5. The first check that
s performs for a sensor q, in order to verify the correctness of its movement,
is on the truthfulness of the set N(t-1)

SV (q) (lines 12-13). Two inconsistencies
can be detected by s.
First inconsistency: the sensor q may have maliciously omitted s itself in
the set of its trusted neighbors. Since s knows that it has behaved correctly
according to the moving strategy, q must include s in its trusted set.
Second inconsistency: the sensor q may have fabricated the presence of some
sensors inN(t-1)

SV (q) which are not physically located in its proximity to justify
its movement. Sensor s can detect such malicious behavior because, accord-
ing to SecureVor, a sensor q must select the sensors in N(t-1)

SV (q) among those
in Q(t-1)(q). In order to be in N(t-1)

SV (q), a sensor must be at a distance at
most Rtx/2 from q which implies that it is at a distance at most Rtx from s,
being q at a distance at most Rtx/2 from s (q ∈ Q(t-1)(s)). More formally
N(t-1)
SV (q) ⊆ Q(t-1)(q) ⊆ N(t-1)(s).

If an inconsistency is detected, q is marked as untrusted and will be
ignored by s hereafter. If no inconsistency is detected, the sensor s verifies
whether q has moved according to the nodes belonging toN(t-1)

SV (q) (lines 14-
16). To this aim, s calculates the polygon of q at the previous round V (t-1)(q)
on the basis of N(t-1)

SV (q) and pos(t-1)(q). Sensor s then compares the current
position pos(t)(q), which q has just broadcast in the previous phase, with the
expected position of q at the current round, p̂os(t)(q), calculated considering
the polygon V (t-1)(q) and pos(t-1)(q). If pos(t)(q) is different from p̂os(t)(q),
sensor s marks q as untrusted.

4SecureVor imposes that a sensor travels a maximum distance dmax = Rtx/4 − Rs.
Hence even if two sensors, at a distance at most Rtx/2, move in opposite directions, they
will stop at a distance from each other less than Rtx/2 + 2(Rtx/4−Rs) which is less than
Rtx. This means that Q(t-1)(s) ⊆ N(t)

tx (s), so if a sensor in Q(t-1)(s) is not in N(t)
tx (s), s

can mark it as untrusted.
5Notice that, the trustworthiness of the sensors belonging to Q(t)(s) \Q(t-1)(s) will be

evaluated at the next round.

90

CHAPTER 3. WSN The SSD algorithm

Trusted neighbors communication (lines 19-20)
In this phase each sensor s broadcasts a signed message containing the IDs
of the nodes belonging to the set N(t)

SV (s) calculated in the previous phase.
This information enables the neighbors of s to verify its movement at the
next round.
Coverage evaluation and movement (lines 21-23)
This phase is the same as the original VOR approach described in Section
3.1, except that each sensor s calculates its Voronoi polygon V (t)(s) on the
basis of the sensors in N(t)

SV (s). Furthermore s looks for a destination point
p within a distance dmax = Rtx/4−Rs instead of dmax = Rtx/2−Rs.

3.3 The SSD algorithm

In this section we describe the SSD algorithm, designed to work in scenarios
for which the hardware available at the sensor nodes does not satisfy the
requirement on the transmission radius of SecureVor. In particular, unlike
SecureVor which requires Rtx > 4Rs, SSD works under the same assumption
of the original VOR algorithm, i.e. Rtx > 2Rs. Except for the transmission
radius, SSD adopts the same assumptions of SecureVor discussed in Section
3.1.1.

The algorithm SSD explicitly aims at solving the blocked movement sit-
uation geometrically characterized in Section 3.1.3, in which a legitimate
sensor does not move towards uncovered regions because it is in front of a
barrier of malicious sensors.

Because this algorithm works under the relaxed assumption Rtx > 2Rs,
sensors are not able to verify the movement of their neighbors only on the
basis of message exchanges. This is because the communication range is too
small to let a sensor verify whether its neighbors are behaving consistently
with what should be their Voronoi polygon. Hence a sensor is not able,
on the basis of messages alone, to distinguish a blocked movement situation
(under attack) from a normal condition in which it cannot contribute a better
coverage. In both cases the polygon of the sensor is completely covered and
the sensor is not required to move to increase coverage of its polygon.

For these reasons, SSD provides temporary position swaps among pairs of
neighbors to be performed when sensors are stationary and potentially in a
blocked movement situation. We show a high level pseudocode in Algorithm
SSD. As in the case of SecureVor, SSD requires each sensor s to maintain a
list of trusted neighbors at time t: N(t)

trusted(s). In the next section we describe
SSD in detail, making use of a similar nomenclature to the one introduced
for SecureVor in Section 3.2.

91

CHAPTER 3. WSN The SSD algorithm

3.3.1 SSD in detail

As in the case of SecureVor, according to SSD, each sensor s updates the list
of trusted neighbors N(t)

trusted(s) at each round t. Such a set initially includes
all the network nodes N (line 2). At round t, s calculates its Voronoi
polygon V (t)(s) by taking account only of the sensors in the set N(t)

SSD (s),
which is defined as the set of sensors in its radio proximity that s considers
as trusted, i.e. N(t)

SSD (s) = N(t)
trusted(s)

⋂
N(t)

tx (s) (lines 6-7).
If V (t)(s) is completely covered, s should remain still. Nevertheless this

situation may occur in the presence of an attack. Therefore SSD provides
the following mechanism to perform legitimacy checks of the behavior of its
Voronoi neighbors. In order to determine the presence of malicious sensors,
the sensor s selects one of its Voronoi neighbors and temporarily swaps its
position with it. In order to prevent conflicting requests, these are generated
at random times in a given time interval and served according to a FIFO
discipline.

We now describe the process and conditions that result from a legitimate
sensor being bound by a malicious barrier. When sensors are spread from a
safe location, a legitimate sensor encounters a barrier that was initially far
from it. When a sensor is blocked by some malicious sensors of the barrier, its
Voronoi polygon is determined by new neighbors which were not previously
observed, or by neighbors with which s forms a vertex that was uncovered
in any previous round. If the sensor s moves towards a steady barrier, it
converges to a position in which its polygon has vertices at the boundary
of the sensing regions of a barrier sensor and therefore of the sensor s itself;
this occurs because initially the sensor s forms uncovered vertices with barrier
sensors, and it performs additional movements of smaller and smaller size,
until it stops due to complete coverage. Figure 3.3 shows a legitimate sensor
at the left of a malicious barrier, which is in a blocked movement situation,
forming two vertices V and W which are both newly covered and located at
the boundary of the sensing region.

We call any of the Voronoi neighbors of s resulting from this scenario the
vertex neighbor of s6.

Sensor s invites one of its new vertex neighbors, let it be j, to perform a
swap of positions (lines 8-10). The purpose of this swap is to let s perform
a legitimacy check of j in order to calculate and verify its expected future
movement.

6Notice that in order to provide convergence in a finite number of steps both VOR
and SSD provide a movement threshold which prevents infinitesimal movements. Such a
threshold is also kept into account in the definition of a vertex neighbor.

92

CHAPTER 3. WSN The SSD algorithm

Figure 3.3: Boundary vertices V and W, between a legitimate sensor and two
barrier sensors.

As j itself calculates its Voronoi polygon on the basis of its set of neighbors
N(t)

SSD (j), the position swap requires also j to send this set to s in order to let s
be able to properly calculate the expected future movement of sensor j (line
11). After this information exchange, s moves to the position currently held
by j (line 12), while j is required to move towards the position previously
held by s. This last movement of j is required to ensure that the position of
s is continuously covered and that the movements of other neighbors of s can
be correctly verified. Sensor s exploits its location verification capabilities to
verify if j honored the position swap protocol, otherwise it removes j from
its local list of trusted sensors, therefore N(t)

trusted(s)← N(t)
trusted(s)\{j} (lines

14-15).
Once in the position previously held by sensor j, the sensor s sends a

neighbor discovery message. The discovered list of communication neighbors
of j is hereby denoted with N̂(t)

tx (j). Sensor s and j send the list of com-
munication trusted neighbors to each other. After this message exchange,
thanks to its location verification capabilities, s verifies the consistency of
the list of neighbors received by j, namely N(t)

SSD (j) (line 17), with the list

of neighbors it observed while in the place of j, namely N̂(t)
tx (j) (line 13).

If such consistency check fails, or if the trusted set of j does not include s,
s does not return to its original position and continues the algorithm execu-
tion from the former position of sensor j. If otherwise the consistency check

93

CHAPTER 3. WSN The SSD algorithm

ALGORITHM SSD, executed by node s at round t.

1 if t=0 then
2 N(t)

trusted(s)← N ;

3 Exchange position msgs, determine N(t)
tx (s);

// Movement verification:

4 if (swapped with j at time (t− 1)) ∧ (pos(t)(j) 6= p̂os
(t-1)

(j)) then
5 N(t)

trusted(s)← N(t)
trusted(s)\{j} ;

6 Let N(t)
SSD (s)← N(t)

trusted(s)
⋂
N(t)

tx (s);

7 Update V (t)(s) based on N(t)
SSD (s);

// Coverage evaluation and Swap Agreements:

8 if V (t)(s) is covered ∧ # of new vertex neighbors ≥ 2 then
9 Select a Vertex Neighbor j;

10 Send swap request to j;

11 Receive N(t)
SSD (j) from j and send N(t)

SSD (s) ;

12 Move to pos(t)(j) and send neighbor discovery msg;

13 Receive position msgs and determine N̂(t)
tx (j);

14 if (j did not reach pos(t)(s)) then
15 N(t)

trusted(s)← N(t)
trusted(s)\{j} ;

16 else

17 if (N(t)
SSD (j) ⊆ N̂(t)

tx (j)) then
18 Calculate V (t)(j) on the basis of N(t)

SSD (j);

19 Calculate p̂os
(t)

(j) ;

20 move to pos(t)(s);

// Voronoi’s Movement Phase

21 else
22 Move according to VOR criterion;

94

CHAPTER 3. WSN Algorithm properties

succeeds, sensor s is now able to calculate the Voronoi polygon of sensor j
and the expected movement that j should perform (lines 18-19). Sensors
s and j can now return to their original positions (line 20).

After this temporary swap activity, the algorithm SSD proceeds with the
execution of the regular activities provided by the Voronoi approach (lines
21-22). During the next movement phase, s verifies the movement of j
using the location verification capabilities. If, during the next movement
phase, sensor j fails to perform the expected movement calculated by s, it is
removed from the trusted list of sensor s to be used at the next round (lines
4-5). From now on, the sensor s will consider j as untrusted and will ignore
it and adapt its Voronoi polygon and coverage as if j did not exist.

SSD provides some additional mechanisms to prevent more complex be-
haviors of malicious sensors. For example, malicious sensors could refuse to
fulfill swap requests pretending to be involved in other position swap activ-
ities (with other malicious sensors). In order to prevent this behavior, first,
SSD requires that a sensor which refuses a swap request provide a proof of the
previous swap agreement (signed messages of both involved parties). Second,
according to SSD, a random permutation P (t) of the sensor IDs is generated
at each round, using the round counter t as a seed. This permutation is
common to all sensors, and it establishes a priority in the position swap ac-
tivities. In particular, sensors with higher priority at the current round have
precedence in swapping, thus preventing two malicious sensors to continu-
ously swap only between themselves. In addition, SSD allows the same pair
of sensors to swap positions only once. Although a higher number of swaps
per pair would increase the accuracy of detection of malicious sensors, this
would be at the expense of energy for movements. Furthermore, by limit-
ing the number of swaps, we prevent malicious sensors from extinguishing
the batteries of legitimate neighbor sensors demanding unnecessary swaps.
Note that, for the sake of simplicity the pseudo code in Algorithm SSD does
not address the additional mechanisms described above, nor does it cover
possible synchronization issues, and the case of s receiving swap requests
from other sensors, which is treated according to the permutation priority
described above.

3.4 Algorithm properties

In this section we provide a theoretical analysis of SecureVor and SSD. We
hereafter denote with L and M the set of legitimate and malicious sensors,
respectively. Hence, the total number of sensors deployed over the AoI is
|N | = |L|+ |M |.

95

CHAPTER 3. WSN Algorithm properties

3.4.1 Properties of SecureVor

We first study the capability of SecureVor to counteract the OM attack.
Notice that, if a malicious node m moves in compliance to VOR it cannot
be detected, since it is actually behaving as a legitimate sensor. Neverthe-
less, such movements are unlikely to meet the attacker goals. We define a
malicious movement of a malicious sensor as a movement which is not in
compliance with the deployment rules. Furthermore, given a malicious sen-
sor m ∈ M performing a malicious movement at round t, we define the set
Ltm as the set of legitimate sensors whose movement can be influenced by the
malicious movement of m.

Lemma 3.4.1. Given a malicious sensor m ∈ M performing a malicious
movement at round t, if Ltm 6= ∅ then m is marked as untrusted by at least
one sensor in Ltm at round t+ 1.

Proof. Since m can influence the movement of the sensors in Ltm, such sen-
sors consider m as trusted at the current round. Furthermore, since we
assume that a node considers only sensors at a distance Rtx/2 to determine
its polygon, ∀s ∈ Ltm d(s,m) < Rtx/2 thus s is able to verify if N(t)

SV (m) is
inconsistent. As a result, according to the assumptions made in Section 3.1,
the only degree of freedom that m has in order to try to justify its malicious
movement without being detected lies in the selection of the nodes to be
advertised in N(t)

SV (m). Notice that all nodes in Ltm are legitimate and are at
a distance less than Rtx/2 from m, thus such sensors should be included in
the trusted set of m. If m does not include one or more of them in N(t)

SV (m),
such sensors mark m as untrusted at round t+ 1 and the assertion is valid.

If, on the contrary, m includes all sensors in Ltm in N(t)
SV (m), such sensors

are in communication range with m at round t+ 1 since Rtx

2
+ 2dmax < Rtx.

As a result, sensors in Ltm are able to verify the correctness of the current
movement of m at the next round. Since m is performing the OM attack,
its malicious movement is detected and thus all sensors in Ltm mark m as
untrusted at round t+ 1.

We now prove that SecureVor terminates in a finite time. To this purpose,
we show that at each round, either at least a malicious sensor is detected,
or the overall coverage provided by legitimate sensors increases. We define a
network state as follows.

Definition 3.4.2. A network state under SecureVor is a vector SSV =<
c1, . . . , c|M |, s1, . . . , s|L|,m1, . . . ,m|M | > where cj is the number of legitimate
sensors which consider the malicious sensor mj ∈ M as untrusted, si ∈ L
for i = 1, . . . , |L| and mj ∈M for j = 1, . . . , |M |.

96

CHAPTER 3. WSN Algorithm properties

We define a function fSV : N|M |×L|L|×M |M | → N×R+ such that given a
network state SSV, fSV(SSV) = (

∑|M |
j=0 cj, Atotal), where Atotal is the size of the

area covered by legitimate sensors in SSV. Given two network states S1
SV, S

2
SV

we say that fSV(S
1
SV) ≺ fSV(S

2
SV) according to the lexicographic order. Notice

that, the function fSV is upper-bounded by the pair (|L||M |, AoI). In the
following, in order to prove the convergence of SecureVor, we show that at
each round the value of such function increases.

Theorem 3.4.3. The algorithm SecureVor converges.

Proof. Let us consider a generic state change from round t to round t+1. We
want to show that fSV(S

(t)
SV) ≺ fSV(S

(t+1)
SV). We recall that, for a malicious

sensor m ∈ M performing a malicious movement at round t, Ltm is the
set of legitimate nodes whose movement can be influenced by the malicious
movement of m. We consider two cases:

Case 1: ∃mj ∈M s.t. Ltmj
6= ∅.

Thanks to Lemma 3.4.1 we know that there exist at least one legitimate
sensor at round t + 1 that marks mj as untrusted. As a result, cj[S

(t)
SV] <

cj[S
(t+1)
SV], hence f(S(t)

SV) ≺ f(S(t+1)
SV).

Case 2: ∀mj ∈M , Ltmj
= ∅.

In this case no malicious movement influences the movement of legitimate
sensors. As a result no malicious sensor is detected at round t + 1, hence ∀
j = 1, . . . , |M |, cj[S(t+1)

SV] = cj[S
(t)
SV]. Notice that, if no malicious sensor is

detected SecureVor lets sensors deploy according to the rules of VOR. Under
VOR, if in a specific round at least one sensor moves, the provided coverage
increases (as shown in the proof of Theorem 4.1 of [12]), so also in this case
it holds that fSV(S

(t)
SV) ≺ fSV(S

(t+1)
SV). As the function fSV() is upper-bounded

and it increases at each round of the algorithm execution, we can conclude
that SecureVor converges.

The above theorem proves that SecureVor converges, nevertheless the
increase in coverage may be infinitesimal and the algorithm may require an
infinite number of rounds to terminate.

Corollary 3.4.4. The algorithm SecureVor terminates if movements are al-
lowed only if they provide a coverage increase which exceeds a positive mini-
mum threshold ε.

The introduction of ε ensures fast termination and power saving, at the
expense of a small loss in the coverage extension.

97

CHAPTER 3. WSN Algorithm properties

3.4.2 Properties of SSD

Similarly to SecureVor, to prove the termination of SSD we first show that it
converges. We consider a static barrier of malicious sensors performing the
BOM attack.

Definition 3.4.5. A network state under SSD is a vector SSSD =< a1, . . . , a|L|,
s1, . . . , s|L|,m1, . . . ,m|M | > where aj is the number of swaps performed by
the legitimate sensors sj, si ∈ L for i = 1, . . . , |L| and mj ∈ M for j =
1, . . . , |M |.

We define a function fSSD : N|L| × L|L| ×M |M | → N×R+ such that given
a network state SSSD, fSSD(SSSD) = (

∑|L|
j=0 aj, Atotal), where Atotal is the size

of the area covered by legitimate sensors in S. Given two network states
S1
SSD, S

2
SSD we say that fSSD(S

1
SSD) ≺ fSSD(S

2
SSD) according to the lexicographic

order.
Notice that, the function fSSD() is upper-bounded by the pair (|L|×(|L|−

1+|M |), AoI), since legitimate sensors are allowed to swap at most once with
another sensor, and the maximum area that can be covered is the whole AoI.
Similarly to the case of SecureVor, we show that during the unfolding of SSD
the value of such function increases.

Theorem 3.4.6. The algorithm SSD converges.

Proof. Let us consider a generic network state S(t)
SSD at round t. We want to

show that either the algorithm has terminated at round t, or there exists
k ∈ N s.t. fSSD(S

(t)
SSD) ≺ f(S(t+k)

SSD). We consider two cases:
Case 1: ∃si ∈ L that performs a movement at round t.
Legitimate sensors deploy according to the rules of the VOR approach.
Since under VOR if a sensor moves then the overall coverage increases [12],
this holds also under SSD. As a result, if at least one sensor moves then
fSSD(S

(t)
SSD) ≺ fSSD(S

(t+1)
SSD).

Case 2: @si ∈ L that performs a movement at round t.
This case occurs if no sensor can move and increase the coverage of its poly-
gon, hence sensors will also not move at subsequent rounds. As a result,
either the algorithm has terminated, or the network state may change as a
consequence of a swap. Let us consider a sensor si which wants to exchange
with sj. si may not be able to exchange with sj at round t, due to their pri-
ority in P (t). However, the random generation of permutations ensures that
there eventually exists k ∈ N s.t. in P (t+k), si has higher priority than sj,
and the swap can be performed. In this case, the number of swaps increases
from state S(t)

SSD to S(t+k)
SSD , and in particular a(t+k)i = a(t)i + 1. As a result,

fSSD(S
(t)
SSD) ≺ fSSD(S

(t+k)
SSD).

98

CHAPTER 3. WSN Experimental results

As fSSD() is upper-bounded and it increases at each round, SSD converges.

Similarly to SecureVor, to prove the termination of SSD we include a
positive threshold ε > 0, which prevents infinitesimal increase in coverage,
as stated by the following corollary.

Corollary 3.4.7. The algorithm SSD terminates provided that movements
are allowed only if they enable a coverage increase greater than a threshold
ε > 0.

Unlike SecureVor, we cannot formally prove that every time a malicious
node is encountered in SSD it is detected, due to the limited information
available at each sensor as a consequence of the smaller transmission radius
than with SecureVor. In particular, we cannot exclude that a malicious
sensor m is not detected during a swap, because its polygon is actually fully
covered by some legitimate sensors that crossed the barrier in a previous
round. Nevertheless, the experiments show that overall, SSD thwarts the
OM attack. Hence, in Section 3.5 the effectiveness of SSD in defeating the
OM attack is shown through extensive experiments, which also demonstrate
the capability of SSD to achieve full coverage of the AoI.

3.5 Experimental results

In this section we provide an analysis of the performance of SecureVor and
SSD. To this purpose, we developed a simulator on the basis of the Wireless
module of the Riverbed Opnet simulation environment [94]. In the simu-
lations we considered a squared AoI of size 80m×80m. Sensors can move
at a maximum speed of 1m/s. We set the threshold ε for minimum cover-
age increase to 0.001, for both SecureVor and SSD. We investigated several
scenarios which consider different settings of Rtx and Rs.

In the first scenario (Scenario A), we consider a setting favorable to Se-
cureVor, i.e. such that Rtx > 4Rs. In the second scenario (Scenario B), we
consider instead a setting for which SSD is designed, i.e. 4Rs > Rtx > 2Rs.
The third scenario (Scenario C) is devoted to a sensitivity analysis of both
algorithms to the setting of the transmission radius. While all these scenarios
consider a static BOM attack, the last experimental scenario (Scenario D)
considers a BOM attack with a mobile barrier.

99

CHAPTER 3. WSN Experimental results

(a) (b) (c)

Figure 3.4: Scenario A: Initial deployment of 150 legitimate sensors and 13
malicious sensors (a), final deployment of VOR (b), and SecureVor (c).

3.5.1 Scenario A: SecureVor setting

In this scenario we set Rtx = 30m and Rs = 5m, and investigate the per-
formance of SecureVor. Under this setting, the maximum moving distance
dmax is 2.5m. Malicious sensors perform the BOM attack by periodically
advertising their position during the Position communication phase while
remaining still. In order to avoid being easily detected by the surround-
ing legitimate sensors, each malicious sensor m, advertises a trusted set
N(t)
trusted(m) = Q(t)(m). Legitimate sensors are randomly deployed on the

left side of the AoI.
We compare the performance of SecureVor with respect to the results

obtained by the original VOR algorithm in the same setting. In order to
evaluate the overhead introduced by SecureVor, we also show the behavior
of VOR when all sensors are legitimate and expand freely (VOR-Free in the
figures) without a barrier.

Before showing the results, we provide an example of the detrimental
effect of the BOM attack in this scenario with 150 legitimate sensors and 13
malicious sensors. Figure 3.4(a) shows the initial deployment, while Figures
3.4 (b) and (c), show the final deployments achieved by VOR and SecureVor,
respectively. Under VOR legitimate sensors are not able to cross the barrier,
resulting in a significant loss of coverage. On the contrary, under SecureVor
legitimate sensors detect malicious sensors, and are able to cross the barrier
and achieve full coverage of the AoI.

In the experiments we set the number of malicious sensors to 13 and we
increase the number of legitimate sensors from 60 to 240. Figure 3.5(a) shows
the coverage of the AoI achieved by the considered algorithms. Legitimate
sensors under VOR are not able to cross the barrier of malicious sensors, no

100

CHAPTER 3. WSN Experimental results

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

%
 o

f c
ov

er
ag

e

Nr. of legitimate sensors

SecureVor
VOR

VOR-Free

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250

M
ov

in
g

di
st

an
ce

 (
m

)

Nr. of legitimate sensors

SecureVor
VOR

VOR-Free

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250

N
r

of
 m

ov
in

g
ac

tio
ns

Nr. of legitimate sensors

SecureVor
VOR

VOR-Free

(c)

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250

C
on

su
m

ed
 e

ne
rg

y
(e

u
x

10
00

)

Nr. of legitimate sensors

SecureVor
VOR

VOR-Free

(d)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250

T
er

m
in

at
io

n
tim

e
(s

ec
 x

 1
00

0)

Nr. of legitimate sensors

SecureVor
VOR

VOR-Free

(e)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30

%
 o

f c
ov

er
ag

e

Nr. of malicious sensors

SecureVor
VOR

(f)

Figure 3.5: Scenario A: coverage of the AoI (a), traversed distance (b), num-
ber of movements (c), consumed energy (d), termination time (e). Coverage
achieved with 140 legitimate sensors (f).

matter how many legitimate sensors are deployed. Therefore the coverage is
at most 60%.

101

CHAPTER 3. WSN Experimental results

On the contrary SecureVor, thanks to its security policy, detects and ig-
nores malicious sensors and successfully covers the AoI. Note that, SecureVor
achieves the same coverage of VOR-Free, that is the original Voronoi algo-
rithm with no attack. This shows that SecureVor completely defeats the
attack and maximizes the coverage.

Since under VOR sensors are not able to spread over the AoI when the
attack is in place, this algorithm achieves lower values of all the considered
performance metrics, such as traversed distance and consumed energy, with
respect to the other algorithms. This does not imply superior performance of
this algorithm, but just the inability to cover the AoI. For this reason, in the
following we do not discuss its results although we show them in the figures.

Figure 3.5(b) shows the average distance traversed by sensors. SecureVor
introduces a very small overhead in terms of traversed distance with respect
to VOR-Free. The peak in the traversed distance of all approaches is a
common behavior of mobile sensors deployment algorithms since, when few
sensors are available, all sensors move in order to contribute to the achieve-
ment of the final coverage. Instead, when more sensors are available, the
average traversed distance decreases, since only sensors detecting a coverage
hole are allowed to move.

Figure 3.5(c) shows the average number of moving actions. This is an
important metric to evaluate mobile sensor deployment algorithms, since a
sensor consumes a high amount of energy to start and stop a movement.
Similar considerations with respect to the traversed distance and the peaks
in the Figures discussed above can be made. SecureVor introduces a small
overhead in terms of number of movements due to the reduced traversed dis-
tance per round which results in an higher number of movements to traverse
the same distance.

We now show results related to sensor energy consumption. We adopt
the energy cost model commonly used in the literature for mobile sensors [11,
85, 8]. In particular, receiving a message costs 1 energy units (eu), sending
a message 1.125eu, traversing one meter costs 300eu and starting/stopping a
movement costs as one meter of movement. We consider a cumulative energy
consumption metric which takes into account all the above contributions.

Figure 3.5(d) shows the obtained results. All algorithms incur in a higher
communication cost as the sensor density increases. Such an overhead is
higher under SecureVor because of the additional messages required to com-
municate the trusted neighbor set. The energy consumption under VOR-Free
is 43% less energy with respect to SecureVor.

The termination time is shown in 3.5(e). SecureVor shows a shorter termi-
nation time with respect to VOR-Free. This is due to the shorter maximum
traversed distance of SecureVor which allows shorter movements that are

102

CHAPTER 3. WSN Experimental results

(a) (b)

Figure 3.6: Scenario B: Initial deployment (a), and final deployment under
SSD (b).

forbidden by VOR. As a result, under VOR sensors move only when a long
movement is possible, thus resulting in cascade movements which lengthens
the termination time. On the contrary, shorter movements enable sensors to
move more in parallel, resulting in a lower termination time for SecureVor.

In order to further study the performance of the considered algorithms,
we performed some experiments by setting the number of legitimate sensors
to 140 and by increasing the number of malicious sensors from 0 to 30. Figure
3.5(f) shows the achieved coverage. The vertical line represents the minimum
number of malicious sensors for which the distance d between them is less
than

√
3Rs. As proven in Theorems 3.1.4 and 3.1.7, legitimate sensors are

not able to cross the barrier if d is less than or equal to such a value. These
experiments show that legitimate sensors do not cross the barrier even when
a small number of malicious sensors is present. SecureVor is not affected by
the number of malicious sensors deployed, since legitimate sensors are able
to detect malicious sensors and cover the AoI.

3.5.2 Scenario B: SSD setting

In this section we consider a setting for which SSD is designed, that is where
4Rs > Rtx > 2Rs. In particular, we set Rtx = 12m, and Rs = 5m. Therefore,
the maximum moving distance dmax is 1m.

Similar to the previous scenario, we study the performance of SSD in pres-
ence of the BOM attack performed by 20 malicious sensors and by increasing
the number of legitimate sensors deployed. We compare the performance of
SSD to the original VOR algorithm and with the same algorithm in absence
of the attack (VOR-Free).

103

CHAPTER 3. WSN Experimental results

Figure 3.6(a) show an instance of this scenario with 150 legitimate sensors.
Figure 3.6(b) shows the final deployment achieved by SSD. Even with limited
transmission radius, legitimate sensors are able to detect malicious nodes
thanks to position swaps, and ultimately achieve full coverage.

Figure 3.7(a) shows the coverage of the AoI achieved by the considered
approaches. VOR achieves similar results as in the previous scenario, with
legitimate sensors unable to cross the barrier. On the contrary, SSD suc-
cessfully defeats the attack and enables legitimate sensors to cover the AoI,
achieving the same coverage of VOR-Free. Similarly to the previous scenario,
we do not discuss the performance of VOR in the following.

Figure 3.7(b) shows the average distance traversed by sensors. The figure
evidences the additional traversed distance of SSD with respect to VOR-
Free, due to the position swaps necessary to detect malicious sensors. As
mentioned for Scenario A, the peak in the traversed distance occurs in corre-
spondence to the minimum number of legitimate sensor necessary to achieve
full coverage.

Figure 3.7(c) shows the average number of start and stop actions. SSD
shows a lower number of starts and stops with respect to VOR-Free. This
apparently surprising result is due to the swap activity. In particular, when
a legitimate sensor swaps with a malicious sensor, the malicious sensor is
detected and the legitimate sensor does not move back to its original posi-
tion. As a result, such sensor performed a longer movement, whose length is
not limited by the parameter dmax, nor it is affected by small local position
adjustments.

Figure 3.7(d) shows the overall consumed energy. Such a measure includes
both the communication and the movement costs. SSD performs better than
VOR-Free in this case, thanks to the fewer number of start and stop actions,
that dominate the energy consumption.

The termination time is shown in Figure 3.7(e). The results detailed in
this figure reveal a longer termination time of SSD compared to VOR-Free.
This is due to the longer round length required to include swap activities
during every iteration of the algorithm. Nevertheless, this increased termi-
nation time allows SSD to defeat the attack, even in the restricted case of
the communication radius.

We finally show in Figure 3.7(f) the average number of swaps per sensor
under SSD. The number is relatively low, with a peak of eight swaps when the
number of sensors deployed is close to the minimum to achieve full coverage.
As the number of sensor increases, the number of swaps rapidly decreases.

We performed additional experiments varying the number of malicious
sensors. We do not show them as they look very similar to those obtained
for SecureVor and detailed in Figure 3.5 (d). These results confirm that

104

CHAPTER 3. WSN Experimental results

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

%
 o

f c
ov

er
ag

e

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(a)

 0

 50

 100

 150

 200

 0 100 200 300 400 500

M
ov

in
g

di
st

an
ce

 (
m

)

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(b)

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500N
r.

 o
f m

ov
em

en
ts

 (
un

its
 x

 1
00

0)

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(c)

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500C
on

su
m

ed
 E

ne
rg

y(
un

its
 x

 1
00

0)

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(d)

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500

T
er

m
in

at
io

n
tim

e
(s

ec
 x

 1
0)

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(e)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 100 200 300 400 500

N
r.

 o
f s

w
ap

Nr. of legitimate sensors

SSD
VOR

VOR-Free

(f)

Figure 3.7: Scenario B: coverage of the AoI (a), traversed distance (b), num-
ber of movements (c), consumed energy (d), termination time (e), average
number of swaps (f).

105

CHAPTER 3. WSN Experimental results

the performance of SSD also, is not significantly affected by the number of
malicious sensors.

3.5.3 Scenario C: Transmission radius sensitivity anal-
ysis

In this section we perform a sensitivity analysis to compare SecureVor and
SSD under various settings of the transmission radius. We recall that Se-
cureVor assumes that Rtx > 4Rs, while SSD is designed for the more re-
stricted scenario in which 4Rs > Rtx > 2Rs. In these experiments we in-
crease Rtx from the setting of SSD to the setting of SecureVor, and compare
the performance of the algorithms.

To enable SecureVor to work even when Rtx < 4Rs, we define a virtual
sensing radius Rvs, for which Rtx > 4Rvs. Using this modification, legitimate
sensors deploy as if the sensing radius were the virtual radius Rvs. This allows
legitimate sensor to detect malicious sensors. However the drawback of this
setting is a denser deployment, so more sensors are needed to achieve full
coverage.

In this experimental scenario, we consider 200 sensors with sensing ra-
dius Rs = 5m, while we let the transmission radius Rtx vary from 11 me-
ters up to 22 meters. As the maximum allowed distance for SecureVor de-
pends on the virtual radius according to the equation dmax = Rtx

4
− Rvs, we

fix the maximum moving distance dmax for SecureVor to 0.5m, and let the
value of Rvs grow according to the equation dmax = Rtx

4
− Rvs. Therefore

Rvs =min
{
Rs, (

Rtx

4
− dmax)

}
. Under such a setting, when Rtx spans from 11

meters to 22 meters, Rvs correspondently grows from 2.25 meters to 5 me-
ters. A further increase in Rtx would not cause any increase in the virtual
radius, which would be the same as the real sensing radius. This last set-
ting is what SecureVor requires to work at its best, deploying sensors at the
density required by VOR.

Figure 3.8, shows the coverage achieved by the two algorithms when the
transmission radius Rtx increases. As we can see, SSD always reaches full
coverage of the AoI, independently of the setting of Rtx. By contrast, Se-
cureVor is unable to complete the coverage when working with transmission
radius lower than 17m, because the corresponding virtual sensing radius is
too short to cover the area with only 200 sensors. These results highlight the
benefit of using SSD when the assumptions required of SecureVor are not
met by the available hardware. Although SecureVor can be used with minor
modifications, its performance can be significantly penalized. The results of

106

CHAPTER 3. WSN Experimental results

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20 22 24

%
 o

f c
ov

er
ag

e

Transmission radius (m)

SSD
SecureVor

(a)

 1

 10

 100

 1000

 10000

 8 10 12 14 16 18 20 22 24C
on

su
m

ed
 E

ne
rg

y(
un

its
 x

 1
00

0)

Transmission radius

SSD
SecureVor

(b)

Figure 3.8: Scenario C: coverage of the AoI (a) and consumed energy (b).

the other performance metrics have similar trends to those shown in Figure
3.5.

Figure 3.8 (b), shows the energy consumed by the two algorithms. This
figure highlights that SecureVor consumes less energy than SSD only when
the transmission radius is lower than 12m, when SecureVor does not perform
complete coverage. By contrast, when the transmission radius is larger than
12m, and even in the most favorable setting to SecureVor, the energy con-
sumption with SSD is lower than with SecureVor. This reveals the superiority
of SSD even in the scenarios which are more favorable to SecureVor.

3.5.4 Scenario D: Mobile barrier attack

The last set of experiments introduces a more complex attack, in which
malicious sensors initially form a barrier, and then start moving towards
legitimate sensors. Malicious movements are perpendicular to the barrier and
are of length dmax, according to the algorithm rules. A malicious sensor never
breaks the barrier when moving, therefore it only moves if it can maintain
a distance lower than

√
3Rs with neighbor malicious sensors. A malicious

sensor stops moving as soon as it reaches a distance lower than 2Rs from at
least one legitimate sensor. In this setting we use a setting of transmission
and sensing radius suitable for both SecureVor and SSD.

Figure 3.9(a) shows the initial deployment, with 150 legitimate sensors
and a moving barrier of 20 malicious sensors. This attack can severely com-
promise the coverage provided by legitimate sensors under VOR, which in
fact terminates the execution as shown in Figure 3.9(b). Malicious sensors
successfully confine legitimate sensors in a small portion of the AoI. Legiti-
mate sensors do not cross the barrier because the mutual distance between

107

CHAPTER 3. WSN Experimental results

(a) (b)

(c) (d)

Figure 3.9: Scenario D. Dynamic barrier: initial deployment (a), final de-
ployment with VOR (b), SecureVor (c) and SSD (d).

malicious sensors is always lower than
√

3Rs, which also confirms the theo-
retical results described in Section 3.1.3.

Under SecureVor legitimate sensors discover the malicious movements
resulting from the barrier movement. Consequently, legitimate sensors are
able to detect and ignore malicious sensors, and achieve full coverage as
shown in Figure 3.9(c). SSD requires a minor modification to work under
the attack of a dynamic barrier, with particular focus on the concept of vertex
neighbor. When a legitimate sensor approaches the barrier, the new vertex
can be located in a circular corona of the boundary, and not exactly on the
boundary, to take into account possible movements of the barrier sensors.
With such a modification, SSD successfully lets legitimate sensors discover
barrier sensors and ignore them, achieving full coverage as shown in Figure
3.9(d).

We conducted additional experiments with more complex configurations,
such as multiple barriers or barriers of various irregular shapes. Results show
that both SecureVor and SSD are able to defeat such attacks.

108

CHAPTER 3. WSN Conclusions

3.6 Conclusions

In this part, we focused on the application of wireless sensor networks in
critical, hostile to man and dangerous scenarios. We paid attention to the
security issues of the deployment protocol of mobile wireless sensor networks.
In particular, we addressed the vulnerabilities of one of the most acknowl-
edged approaches to mobile sensor deployment: the Voronoi based approach.
We considered a recently proposed attack to mobile sensor networks, the
OM attack, and characterized the geometric conditions under which such an
attack is effective if the network adopts the Voronoi approach to deployment.

We analyzed the previous solution SecureVor [10] and we developed a
new algorithm called Secure Swap Deployment (SSD) to counteract the OM
attack. The algorithms work in complementary operative settings. SecureVor
assumes that the transmission radius is sufficiently large to allow a sensor
to locally analyze its neighbors movements. Conversely, SSD relaxes this
assumption and sensors rely on position swaps to verify the correct behavior
of their neighbors. Both allow legitimate sensors to determine the malicious
nature of their neighbors by observing their movements. We formally proved
that SecureVor is able to defeat the OM attack, and that both SecureVor
and SSD have a guaranteed termination. Additionally, we performed an
extensive experimental analysis that confirmed that with these algorithms
the network achieves its monitoring goals even in the presence of an attack,
at the expense of a small overhead in terms of movements and deployment
time.

In our future work, we will consider other aspects, such as:

• temporal legitimate behavior : we will study the performance of the
proposed solution in the presence of an attacker that initially adopts a
legitimate behavior according to the protocol of deployment. After a
time window, the malicious sensors start to perform the attack to the
network.

• presence of obstacles : we will consider a scenario in which there is
the presences of obstacles of different shapes in the AoI. The major
challenge in this scenario is to correctly distinguish the obstacles and
the malicious sensors that aim to impede the natural deployment of
the network.

• deployment approaches : we will study how this kind of attack shown in
this part can influence the performance of other categories of deploy-
ment algorithms (Delaunay triangulations, Geometric Pattern etc.,).

109

Part III

Smart Grid

110

Introduction

Introduction

The term grid is used for an electricity system that generally support op-
erations such as electricity generation, electricity transmission, electricity
distribution, and electricity control. A smart grid (SG), also called smart
electrical/power grid, intelligent grid, is an enhancement of the 20th century
power grid. The traditional power grids are generally used to carry power
from a few central generators to a large number of users or customers. In
contrast, the SG uses two-way flows of electricity and information to cre-
ate an automated and distributed advanced energy delivery network. By
utilizing modern information technologies, the SG is capable of delivering
power in more efficient ways and responding to wide ranging conditions and
events. In fact, the SG is able to respond to events that occur anywhere in
the grid, such as power generation, transmission, distribution, and consump-
tion, and adopt the corresponding strategies. For instance, once a medium
voltage transformer failure event occurs in the distribution grid, the SG may
automatically change the power flow and recover the power delivery service.
More specifically, the SG can be regarded as an electric system that uses
information, two-way, cyber-secure communication technologies, and com-
putational intelligence in an integrated fashion across electricity generation,
transmission, distribution and consumption to achieve a system state that is
safe, secure, reliable, resilient, efficient, and sustainable. In order to realize
this new grid paradigm, the U.S. Energy Independence and Security Act of
2007 directed the National Institute of Standards and Technology (NIST)
provided a conceptual model [70], as shown in Figure 3.10, which can be
used as a reference for the various parts of the electric system where SG
standardization works are taking place. This conceptual model divides the
SG into seven domains. Each domain encompasses one or more SG actors,
including devices, systems, or programs that make decisions and exchange
information necessary for performing applications. A brief descriptions of
the domains and actors are given in [70].

In this part, we focused on the power grids contingency analysis in Smart
Grids to study the impact of potential component failures. For instance,
the N-1 contingency analysis refers to the ability to predict the behavior
of the electrical grid in response to a single random failure. Predicting the
behavior of the power grid after a failure is significantly relevant, since con-
tingencies could results in cascading failures. Although these events occur
at a low probability, cascading failures are critical issues in power systems
operation since can evolve into large-scale blackouts. A report by the U.S.
Executive Office of the President estimates that between 2003 and 2012, 679

111

Introduction

Figure 3.10: NIST Smart Grid Framework

large scale power outages occurred in the U.S., each affecting at least 50,000
customers [36, 18, 19]. The economical impact of cascading failures is also
significant, as the costs range from 18 to 33 billion dollars per year [36].

The cause of such cascading failures is often the relative primitiveness
of contingency management. On one hand, management often relies on
the judgments of human operators, who decide on possible countermeasures
based on their experience. On the other hand, such operators can only see
the high-voltage transmission levels of the grid, with little outlook on the
adjustable loads at the end-users’ level. Although during natural disaster
there could be a relationship between failures in the power grids and fail-
ures in communication networks, we focus the attention on the contingency
analysis of the smart grids. In fact, this work particularly examines contin-
gency cases where one or more of the system components are unexpectedly
down but the system balance is still achieved due to the strict reliability
criteria. Even when the system restores its balance after a contingency, how-
ever, there is a risk of cascading failures as with the 2003 North American
blackout case [36]. In fact, other lines can approach their maximum limits,
and eventually drive the system over the critical point beyond a stable state.
Therefore, precautionary measures to avoid cascading failures are necessary.

This work proposes a novel framework to alleviate this type of risks by
adjusting a large number of end-use loads. The assumption is that, for such
emergency cases, curtailing some non-critical loads to prevent cascading fail-
ures yields greater aggregate utility than leaving the lights on and having
cascading failures later. Therefore, in this work, all controlled loads, which

112

Introduction

Figure 3.11: Overview of the proposed system.

exclude critical loads such as life-support devices, are assumed to be cur-
tailable within a short time period, e.g., 1 hour. The end-user loads are
controlled by smart devices, realized through the emerging paradigm of the
Internet of Things [5, 91]. According to this paradigm, smart devices are
equipped with communication, computation and storage capabilities, and
they are connected to a smart home management system through wireless
access points. Each smart device controls an appliance such as a space
heater, an air conditioner, a refrigerator, etc.

The framework comprehensively involves the system operator, the load
serving entities (LSEs), and the end-users’ smart systems. The overview of
the system is shown in Figure 3.11. The system operator prevents cascading
failures by completing the following tasks after achieving the stable, but
still potentially risky, state of the power system: 1) identify the components
that violate the predetermined reliability criteria, and if there is any, 2)
calculate the load adjustment at different locations (i.e., buses) to alleviate
the additional stress in those particular components. Since it is assumed
that the system is in balance, the total amount of load curtailment at each

113

Introduction

Solve OPF for
(N−k) contingency

case

Reliability criteria
violated?

Calculate line flows
with the obtained

solution

No

Calculate load
curtailment at each

bus
Yes

LSE calculates power
allowance for each

user

Each user calculates
emergency schedule
of smart appliancesIs the system reverting to

normal conditions?

End of
procedure

Yes

No

Load curtailment
implemented

Figure 3.12: The flowchart of the contingency management framework

bus is efficiently calculated by a novel approach using the linearized network
equation.

When an LSE is notified of a load curtailment amount at its load bus,
it solves a mixed integer linear optimization problem that maximizes the
aggregate utility, i.e. the sum of its end-users’ utility. In this part utility is
defined as a quantifiable measure of user satisfaction from using a certain
appliance. To improve scalability of the LSE’s problem, an approximated
convex problem of the mixed integer optimization is solved, using an efficient
heuristic based on regression techniques.

The solution to the LSE’s problem is the individual load curtailments of
the LSE’s users. The smart home management system then calculates an
emergency schedule, which defines the best set of appliances that the user
is allowed to use. This schedule minimizes the impact of the curtailment
on the user’s habits, while satisfying the power allowance requested by the
LSE. The calculation of the emergency schedule requires the knowledge of
the future user interaction with appliances. To predict this interaction, the
framework uses the WRAP (Welch-based Reactive Appliance Prediction)
algorithm. WRAP uses smart devices to monitor the user habits and to
predict the appliance usage following the contingency.After load curtailments,
the system operator evaluates the system condition, and if the system is
not reverting to the normal condition, the procedure is repeated from the
beginning. The flowchart of the framework is shown in Figure 3.12.

Extensive simulations are performed on the IEEE New England 39-bus
test system, using real power consumption datasets, to validate the benefits
of this framework. The results show that the proposed method is effective in
calculating the load curtailments needed after a contingency, ensuring that
the lines operate within their capacity margins. Additionally, the WRAP
algorithm achieves highly accurate predictions of the appliance usage. Fi-

114

Introduction

nally, the regression-based heuristic performed by the LSEs closely matches
the results achieved by solving the original mixed integer programming prob-
lem. As a result, the proposed framework is effective in keeping the system
stable during contingencies, preventing cascading failures while maximizing
the aggregate user utility.

The main contributions of this work are the following:

• A comprehensive framework for contingency management using smart
appliances based on the paradigm of the Internet of Things;

• A novel and efficient method to enable system operators to calculate
the load curtailment needed in order to keep the system in a safe state
after a contingency;

• An efficient heuristic to distribute such curtailments across end-users;

• The Welch-based Reactive Appliance Prediction (WRAP) algorithm to
predict utilization of each appliance by a user;

• Extensive simulations on realistic system settings to validate the pro-
posed approach in managing contingencies while maximizing users’ util-
ity.

• This work is published on IEEE Transactions on Smart Grid
(http://ieeexplore.ieee.org/document/7425266/)[30].

115

Related Works

Related Works

There have been efforts in managing contingencies with adjustable demand.
The work in [43] considers dispatch of load curtailment at the system-level
operation alongside with generation, based on the bids submitted by the cus-
tomers. Presumably these customers represent the load serving entities, but
the dynamics or attributes of the individual load models are missing. In [28],
demand response is used in place of spinning reserves to restore the frequency
post contingencies. In [52], authors use demand response for efficient use of
transformers during contingencies. Instead, [75] corrects voltages adjusting
post contingency demands. The last three works are novel in terms of using
demand to manage contingencies, but have different purposes from this work,
where we alleviate congestions post contingencies.

There are also many works on predicting users’ power consumption by
appliance. Work [15] proposes an algorithm to identify the individual con-
sumptions of residential appliances. It works at a coarser granularity since it
is able to predict only the appliances future states (on/off) to compute the
future energy load requested. In [16], authors describe an approach to pre-
dict daily energy consumption of large groups of customers, but they consider
only electrical heating and cooling as appliances. In [54], user discomfort is
minimized with a Q-learning algorithm, which computes the optimal set of
appliances to switch off during the system peaks. However, this approach
assumes that the importance of an appliance to a user is known in advance.

Our work takes a step further from the literature on users’ demand and
utility, and proposes an effective algorithm that exploits smart appliances to
predict and maximize the users’ utility using historical data. Another novel
aspect of the proposed work is in modeling the system comprehensively from
the power transmission grid all throughout the end-users equipped with smart
home management systems. The objective is not only to manage contingen-
cies at the system level, which existing literature has studied extensively,
but to maximize the aggregate utility of all users, when a certain amount of
capacity is requested from the system operator.

116

Chapter 4

Managing Contingencies In
Smart Grids Via The Internet
Of Things

117

CHAPTER 4. SMART GRID The Problem of a System Operator

In this chapter we study the problem of how to prevent cascading failures
in the smart grid balancing the users’ load. We present this problem from the
point of view of each agent involved in the framework: the system operator,
the load serving entities and the end-users. At the same time, we present
and discuss the proposed solutions for each of them. Extensive simulations
on real users’ load traces and on real systems show the accuracy and the
efficiency of the proposed framework. The chapter is organized as follows.
Section 4.1 describes the problem of the system operator, while Sections 4.2
and 4.3 address the users’ and LSE’s problems, respectively. The simulation
results are presented in Section 4.4, and Section 4.5 concludes this part.

4.1 The Problem of a System Operator

The objective of the system operator in general is to keep the system reliable
at the least cost. After one or more lines failed, the power flows in other
lines can approach their limits. Therefore, in this work the system operator’s
objective is to find the load curtailment that can alleviate the line flows of
these additional lines at risk to prevent cascading failures.

The relationship between the active power flows in the lines and the
active power injected into each bus can be linearized with a power transfer
distribution factor (PTDF) matrix H. HP = F where P is a vector of active
power injection at each node except the slack bus, and F is a vector of active
power flow in each line [88, 79]. Therefore, demand curtailment ∆PD, defined
as a vector with the adjustable demand buses as its components, that yields
the line power flow difference ∆F can be calculated by solving

HCCD∆PD = ∆FC (4.1)

where ∆FC is the line adjustment vector with only the congested lines se-
lected from F , whose length is equal to NL, number of congested lines. CD
is a bus-demand connection matrix with a dimension (the number of total
buses in the system NB)-by-(the number of demand buses ND), whose ele-
ment is 1 when the bus (row) is a demand bus (column) and 0 otherwise. HC

is extracted from H with only the rows of the congested lines, thus NL-by-
NB. Usually since ND > NL, the solution to this equation can be obtained
as ∆PD = H+∆F where H+ is the Moore-Penrose pseudoinverse of H.

This calculation gives a solution with the minimal norm among the many
solutions of (4.1). Therefore, the sum of the solution, or the total system
load adjustments, can be negative, resulting in the need for more generation
to balance the supply and demand. In order to avoid this, the solution is

118

CHAPTER 4. SMART GRID The Problem of a User

sought so that the load adjustments in the system sums up to zero, i.e.,

ND∑
n=1

∆PD(n) = 0. (4.2)

Concatenating (4.1) and (4.2) yields an augmented power flow equation[
H

1TND

]
∆PD =

[
∆F

0

]
, or H̃∆PD = ∆F̃ (4.3)

where 1n denotes an n-length column vector that has 1 as all its elements.
The solution can be obtained in the same way by solving ∆PD = H̃+∆F̃ .

The solution to (4.3) can include negative load adjustments, which means
that some load buses need to increase their consumption. If the system
operator decides that this is unreasonable or if it is technically infeasible,
then the system operator can take the nonnegative solution ∆PD|+ where
∆PD(l)|+ = max [0,∆PD(l)] for all l, and resolve the power flows with this
adjusted solution. It should be noted that the power flows with this solution
may result in power flow adjustment smaller than the target ∆FC . However,
since the relationship between the load curtailment and the power flows is
linear, the load curtailment solution can be simply scaled by the factor of
the desirable power flow adjustment.

4.2 The Problem of a User

This section discusses the problem solved by the smart home energy manage-
ment system of a user. As a contingency occurs, the system operator sends
each LSE the load curtailment ∆PD(l) for each bus l. Let M l

max be the power
allowance that the LSE is allotted for Bus l. Then the LSE distributes M l

max

across its users, calculating the individual power allowance M l
1, . . . ,M

l
Nl

for
each of its Nl users so that

∑
M l

i = M l
max. Finally, the users’ smart home

management systems schedule the smart appliances to be used. Since most
variables and parameters for an LSE’s problem are defined in the users’ prob-
lem, to improve readability, the problem solved by the users is first presented,
followed by how an LSE distributes M l

max in Section 4.3.
In the proposed framework, a smart home has n smart devices d1, . . . , dn.

According to the paradigm of the Internet of Things, smart devices are
equipped with communication, computation and storage capabilities. In par-
ticular, they are connected to the smart home management system through
wireless access points deployed in the smart home. The framework exploits
their computation and storage capabilities to monitor and learn the user

119

CHAPTER 4. SMART GRID The Problem of a User

habits. Note that, critical appliances, such as life support medical devices,
are not considered by the framework for load curtailment. Appliances are
generally classified as critical and flexible. Critical appliances, such as life
support machines, need to be always operational. On the contrary, flexi-
ble appliances can be turned off if needed. In the following, only flexible
appliances are considered. The smart home management system identifies
critical appliances, and excludes them from the load curtailment procedure.
For each appliance, the framework defines a time-dependent importance fac-
tor, according to the user’s usage preference and patterns, which may vary
depending on the time of day, the season of year, and the user’s habits. The
goal is to use smart devices to learn the importance factors of the appliances
for each user u during normal system conditions. To calculate such factors,
the framework considers time slots τ1, τ2, . . . of arbitrary length, set to one
hour in this work. Let λui,j ∈ [0, 1] be the fraction of time that user u uses
the appliance i in time slot j. The importance factor γui,j of appliance i is
defined as:

γui,j =
λui,j∑n
h=1 λ

u
h,j

. (4.4)

Therefore, γui,j represents the relative usage time of appliance i with respect
to the other appliances during time slot j.

The approach assumes that the importance factor γui,j measures the contri-
bution of appliance i to the utility of user u during the time slot τj. Therefore,
given a set of appliances A, the utility that results from using such appli-
ances in time slot j for user u is

∑
di∈A γ

u
i,j. As soon as the LSE informs the

user u’s smart home management system of the new power allowance Mu, an
emergency schedule that determines the set of appliances that can be used is
calculated so that it maximizes the user utility.

4.2.1 Optimal emergency schedule

Using the importance factors defined previously, the framework makes use
of the following optimization problem to determine the emergency schedule
of a user u. The problem is solved by the smart home management system,
which receives a power allowance Mu from the LSE (the calculation of Mu

is described in Section 4.3). The description considers a load curtailment
during time slot τ . Let xi ∈ {0, 1} be a decision variable, where xi = 1 if
appliance i is allowed to be used during the emergency schedule, and xi = 0
otherwise. Additionally, let e1, . . . , en be the maximum power rating of the
appliances. For simplicity, the following discussion assumes the state of an

120

CHAPTER 4. SMART GRID The Problem of a User

appliance is either ON or OFF. Then the optimal scheduling problem is:

maximize
xi

n∑
i=1

γui,τxi (4.5)

subject to
n∑
i=1

xiei ≤Mu (4.6)

where the values of γui,τ are calculated according to (4.4), and are estimated
as described in the next subsection.

This optimization problem is clearly NP-hard. However, since smart
homes generally have a limited number of appliances, the problem can be
solved in a short time optimally, or through standard heuristics [31]. The
resulting schedule is enforced by the smart home management system, which
restricts the use to only the selected appliances.

4.2.2 Learning Algorithm for Importance Factors

In order to solve (4.5), the values of time-dependent importance factors γui,τ ’s
need to be known. However, since they represent the user’s future behavior,
they can only be predicted. This section describes the Welch-based Reactive
Prediction (WRAP) algorithm, executed by the smart home management
system. Note that these factors cannot be determined simply by looking at
historical data, since the use of appliances may present short- and long-term
variations. As an example, if a user is generally at home at a specific time
slot, but if on a certain day he is not, then the use of appliances in that day
is likely to significantly differ. Similarly, the user lifestyle may change during
the year, presenting long-term variations. For these reasons, WRAP makes
use of a statistical change detection mechanism based on the Welch’s t-test
[89] to predict the importance factors.

WRAP is based on the assumption that the fraction of time λui,j, during
which user u uses appliance i in time slot τj, is distributed over multiple days
as a Gaussian random variable. The means and standard deviations of λui,j’s
may change over time. The results in Section 4.4 prove that this assumption
enables accurate estimation of the importance factors and maximization of
user utility.

The smart home management system keeps track of the historical usage
of each appliance. In particular, for each time slot τj the system calculates
the historical mean µHi,j and the historical variance σHi,j. At the end of each
time slot, these historical values are updated with the newly observed values.

121

CHAPTER 4. SMART GRID The Problem of a User

Short-term change detection

WRAP adopts a change detection mechanism based on the Welch’s t-test
[89], to achieve high accuracy and reactivity, i.e., the ability to react to
changes in the usage pattern. In particular, the idea of detecting short-term
changes is to verify if the most recent utilization of an appliance is unusual
with respect to the historical data.

Consider an emergency period occurring at time period τj, hence the
importance factors need to be predicted for τj. Let < µHi,j, σ

H
i,j > be the

historical distribution for appliance i during τj, and < µWS
i , σWS

i > be the
distribution over only a recent time window WS, e.g. the last 60 minutes.
In order to detect if there is a change in user behavior, WRAP determines
whether the distribution < µHi,j, σ

H
i,j > and < µWS

i , σWS
i > belong to the same

population (null hypothesis) or not (alternative hypothesis).
The Welch’s t-test defines a parameter t, which depends on the two dis-

tributions [31]. WRAP performs the test for each appliance di and calculate
the value of ti as follows:

ti =
µHi,j − µ

WS
i√

σH
i,j

nH
+

σ
WS
i

nWS

(4.7)

where nH and nWS
are the numbers of samples used to calculate the historical

distributions and the distributions over WS, respectively. For each ti it is
possible to estimate the degree of freedom νi as follows [31]:

νi ≈
(
σH
i,j

nH
+

σ
WS
i

nWS

)2

(σH
i,j)

2

nH
2(nH−1)

+
(σ

WS
i)2

(nW)2(nWS
−1)

(4.8)

The test can verify if a change has occurred with a given probability. In
particular, it is possible to determine if the alternative hypothesis is verified
with probability α. To this purpose, given ti and νi of appliance di, Student’s
t distribution tables give the value βi, such that if ti > βi then a change has
occurred with probability α. WRAP has O(1) complexity, since prediction,
change detection and distributions update can be performed in constant time.

Prediction by the WRAP algorithm

WRAP exploits the property of Gaussian random variables that the mini-
mum mean square error estimate is equal to its mean [47]. The actual mean
used for the estimation of an appliance di can be either the historical mean,

122

CHAPTER 4. SMART GRID The Problem of a Load Serving Entity

or the mean in the recent time window WS, depending on whether a change is
detected for appliance di or not. As soon as the LSE alerts the smart home
management system of a new power allowance, WRAP verifies whether a
short-term change has occurred for each appliance di. If no change is de-
tected for di for time slot τj, the algorithm uses the historical mean, i.e.,
λi,j = µHi,j. If otherwise a change is detected, then the algorithm uses the

distribution of the most recent time window WS, i.e., λi,j = µWS
i . Given the

values of λi,j for each appliance, (4.4) is used to calculate the importance fac-
tors γi,j, which are then used to calculate the emergency schedule described
in Section 4.2.1.

Long-term change detection

In order to detect long-term changes in the user behavior, WRAP uses a
similar approach based on Welch’s t-test. In particular, we compare the
historical distribution < µHi,j, σ

H
i,j > with the recent time window distribution

< µWL
i , σWL

i >. WL can be set to several weeks. This test is performed
periodically, e.g. daily or weekly. If a change is detected, the historical
distribution no longer represents the current usage pattern of an appliance,
and hence the new recent set of samples in WL constitutes the historical
distribution.

4.3 The Problem of a Load Serving Entity

This section describes how LSEs calculate the power allowance Mu for each
user u, given the power allowance that resulted from the load curtailment at
Bus l requested by the system operator ∆PD(l). The following description
focuses on a single LSE and, without loss of generality, assumes one LSE is
responsible for all users at one bus, to drop the LSE index l. Let Mmax be the
maximum power allowance resulting from the curtailment for the considered
LSE. Intuitively, not all users need the same level of power, since the same
capacity may result in different values of utility for different users.

The goal of the LSE is to calculate the individual power allowance Mu

for each user u = 1, . . . , N , such that
∑

uMu = Mmax, and the aggregate
user utility is maximized. Aggregate user utility is defined as the sum of
the utilities of all users served by the LSE. To this purpose, after the LSE
receives a load curtailment request, the LSE inquires its users’ smart home
management systems and receives from them the importance factors for the
current time slot predicted by WRAP. The LSE then needs to solve the

123

CHAPTER 4. SMART GRID The Problem of a Load Serving Entity

following optimization problem for time slot τ :

maximize
xi,Mu

N∑
u=1

nu∑
i=1

γui,τx
u
i (4.9)

subject to
nu∑
i=1

xui e
u
i ≤Mu ∀ u;

N∑
u=1

Mu = Mmax (4.10)

where the user u has nu appliances, eui is the maximum power rating of
appliance dui , and xui = 1 when u is allowed to use dui , and 0 otherwise. Here,
unlike the user’s problem in (4.5), the power allowances Mu are variables to
be determined, and the importance factors γui,τ are given by the smart home
management systems.

Although the problem above is similar to the emergency schedule op-
timization in (4.5), it can suffer severe scalability issues because now the
dimension of the problem is multiplied by a large number of users. For this
reason, the framework exploits the following regression based heuristic, which
relaxes the problem into a convex optimization.

4.3.1 Regression-based heuristic

Consider a specific user u, and let Mu
max be the maximum consumption that

u can generate if he utilizes all his appliances at the same time, i.e. Mu
max =∑nu

i=1 ei. Setting Mu = Mu
max would obviously maximize the utility of user u.

Since the LSE is aware of the importance factors γui,j for each appliance i, it is
also able to solve the optimization problem in (4.5). In fact, according to the
heuristic, the LSE solves K instances of the problem for user u using different
power allowance levels. At the k-th instance, it sets the power allowance to
αkM

u
max, where αk ∈ [0, 1] and it is increased at each instance. Note that

solving these problems, although NP-hard, is feasible thanks to the limited
number of appliances per user.

Let δ1, . . . , δK be the optimal solutions of such instances, where δk is the
solution for αk. The pairs (αk, δk), k = 1, . . . , K are used to infer a continuous
function Hu : R+ → [0, 1], which relates the power allowance Mu to the utility
achieved by user u. A regression technique is adopted to approximate this
function. Since Hu(·) is monotonically increasing, power law regressions can
be used, that is H(·) can be approximated as H(M) = αMβ, where α, β ∈ R
[44], and β ≤ 1 to ensure that Hu(·) is concave.

124

CHAPTER 4. SMART GRID Simulation Results

The LSE calculates the functions Hu(·) for each of the N users, and solves
the following optimization problem:

maximize
Mu

N∑
u=1

Hu(Mu) (4.11)

subject to
N∑
u=1

Mu = Mmax; Mu ≤Mu
max ∀u (4.12)

The problem is a relaxation in the continuous domain of problem (4.9), and it
returns an assignment of the maximum loads Mu to the users. Note that the
problem does not solve for the decision variables xiu explicitly, which is the key
for the reduction in complexity. Since the objective function is concave, the
problem can be solved using standard convex optimization techniques [46].

Section 4.4.3 shows that the regression-based heuristic coupled with WRAP
are able to provide a aggregate user utility close to what would be achieved
by solving the NP-hard problem in (4.9) with the perfect knowledge of the
importance factors of the users’ appliances.

4.4 Simulation Results

The framework is tested on the IEEE 39-bus system modeled after the ISO
New England system with 10 generators, 46 lines, and 21 nonzero load
buses [4, 53]. The one-line diagram of this system is shown in Figure 4.1. All
nonzero load buses are assumed to have capability of load curtailment with
the Internet of Things technologies, but not all these buses are necessarily
subjected to a load curtailment in contingency cases. We use synthetic (ran-
domly generated) and real traces (dataset) to model user appliance usage.
Real traces are taken from the data repository Tracebase [76], which collects
the power consumption of various electrical appliances, with a resolution of
several samples per second. Some of the considered appliances and their
maximum power ratings are listed in Table 4.2.

4.4.1 The system operator’s problem

The following simulations concern contingencies where a single line has failed.
First, the one-component failure cases were identified by running the DC
optimal power flow (OPF) problems with each line taken out. As long as the
line failure did not isolate a generator bus with the rest of the system, the
solution existed, and only theses cases were studied in this work. When a

125

CHAPTER 4. SMART GRID Simulation Results

Figure 4.1: The IEEE 39-bus system used in the simulations.

generator is isolated as a result of a line failure, it changes the topology of
the system, which changes the network matrix and the PTDF matrix H of
the system.

This work focuses on the cases where the power flow solution exists even
after one line failed. The case where Line 16 that connects Buses 8 and 9
(marked as a thick line in Figure 4.1) has failed is presented. The resulting
active power flows in the lines as a result of the DC OPF for this case are
shown in Figure 4.2(a).

As can be seen from the figure, Line 1 (between Buses 1 and 2, marked
as a thick line in Figure 4.1) resulted in a power flow very close to the limit,
and the system operator may decide to reduce this line flow. The system
operator can set the criterion in advance for which s/he decides to take
actions and apply load curtailment. Once the criterion has been violated and
load curtailment is deemed appropriate, then ∆PD is calculated for all the
adjustable load buses, as described in Section 4.1. In this work 10% margin
of the line MVA rating is used as the reliability criterion. The difference of
the absolute power flows before and after the load curtailment is depicted in
Figure 4.2(b).

The total amount of system load to be curtailed as a result is 16.04 MW,
in order to reduce 6.37 MW of power flow in Line 1. Some generators were
able to reduce their output due to this curtailment, and the output reduction
from each of Generators 1, 3, 6, 9, and 10 was 3.25 MW, with the other
generators’ output unchanged. The amounts of load curtailment by bus is
shown in Table 4.1. All the other nonzero load buses that are not shown in

126

CHAPTER 4. SMART GRID Simulation Results

0 10 20 30 40
0

500

1000

1500

Line ID

F
lo

w
 (

M
W

)

(a)

0 10 20 30 40
0

5

10

15

Line ID

F
lo

w
 d

iff
er

en
ce

 (
M

W
)

(b)

Figure 4.2: (a) Active power flows in the lines after Line 16 is out with the
red markers denoting the line flow limits; (b) Active power flow difference in
all lines before and after load curtailments

Table 4.1: Load curtailment by bus

Bus ID Curtailment (MW) Bus ID Curtailment (MW)

1 15.9 8 0.00492

4 0.0246 15 0.0355

7 0.000189 18 0.0315

the table did not have any curtailment. The other single-line failure cases
yielded comparable results.

4.4.2 The users’ problem

This subsection first studies the prediction accuracy of the WRAP algorithm.
Subsequently, it analyzes the user utility achieved by the emergency schedule
calculated with the prediction provided by WRAP.

Accuracy of WRAP

Synthetic traces are first used for simulations since changes in the data pat-
tern can be manipulated at specific time instants. This shows the benefits
of WRAP’s change detection mechanisms in a controlled setting. Then the
performance in real settings is analyzed using the real traces from the data
repository Tracebase [76].

Synthetic Traces
To generate synthetic traces, the length of each time slot is set to 1 hour.

127

CHAPTER 4. SMART GRID Simulation Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200M
ea

n
S

qu
ar

e
E

rr
or

Day

AVG
MAVG
WRAP

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200M
ea

n
S

qu
ar

e
E

rr
or

Day

AVG
MAVG
WRAP

(b)

Figure 4.3: Prediction error: single time slot (a), average of all time slots
(b).

For each appliance di and time slot j, the utilization λi,j ∈ [0, 1] is randomly
generated. This represents the fraction of time that di is utilized on average
during time slot j. Then, to simulate the variability of the user behavior, for
each day the actual utilization at τj is generated using a Gaussian’s distri-
bution with mean λi,j and variance σ.

The traces consider 200 days of observations, simulating a change in the
user behavior by selecting a new value of λi,j, for each appliance di, every
50 days. Additionally, σ = 0.2, which according to the experiments, well
approximates the realistic variability in user habits.

Since WRAP considers each appliance independently, the following ex-
periment focuses on a single device. In particular, WRAP predicts the uti-
lization λi,j at the time slot j of the (k + 1)-th day, using the values of λi,j
generated for the same time slot of the previous k days. The results show
the accuracy of the predicted values in terms of the mean square error with
respect to the actual values in the traces.

WRAP is compared with two other standard prediction techniques. Av-
erage (AVG): this approach predicts the next (k + 1)-th value of λi,j as the
average of all the previous k values. Moving Average (MAVG): this scheme
predicts the next (k+1)-th value of λi,j as the average of the last observed w
values of λi,j, where w is the size of the time window. To ensure the reactivity
of the approach, we set w equal to 5 days.

Figure 4.3 (a) shows the results for the three approaches for a single time
slot, while Figure 4.3 (b) shows the average across all the time slots of a day.
Before the first change occurs, all the three approaches perform similarly,
since in the synthetic traces, the appliance utilization is drawn from the
same distribution. However, after 50 days, a change in the usage pattern

128

CHAPTER 4. SMART GRID Simulation Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Water d.Monitor PC Refrig.

M
ea

n
S

qu
ar

e
E

rr
or AVG

MAVG
WRAP

(a)

 0

 0.1

 0.2

 0.3

 0.4

Water d.Monitor PC Refrig.

M
ea

n
S

qu
ar

e
E

rr
or AVG

MAVG
WRAP

(b)

Figure 4.4: Prediction error: single day (a), average over 30 days (b).

occurs. The error of AVG suddenly increases, since it keeps using all the
previous dataset. MAVG, instead, is more reactive, but it still incurs high
errors for a few days after the change. Additionally, it often overreacts to
the fluctuation in user appliance utilization during stationary periods.

WRAP is able to promptly react to the changes and achieves significantly
lower error than the other approaches, thanks to the short- and long-term
change detection mechanisms. In fact, as soon as a change occurs, the short-
term mechanism detects the change and predicts using only the most recent
observed values. When the change in the user habits persists, the long-term
mechanism eventually discards the former knowledge and only considers the
observed values after the change.

Real Traces
These experiments consider as appliances PC, refrigerator, monitor, and wa-
ter dispenser, from the data repository Tracebase [76]. Note that these are
the only appliances for which the repository provides at least 30 days of data.
Similar experiments are performed as with the synthetic traces, in which k
days of observation are used to predict the (k + 1)th.

Figure 4.4(a) focuses on the 17th day and it shows the performance of
the approaches averaging the mean square errors across all the time slots
of that day. The results show that for some appliances, such as the water
dispenser, all approaches incur in a low estimation error due to the regular
usage pattern. Differently, for other appliances, the results for AVG and
MAVG strictly depend on the considered appliance. In particular, AVG
outperforms MAVG for appliances, such as refrigerator and PC, which have
a stationary utilization pattern, with minor short term variations. On the
contrary, for appliances with non-stationary pattern, such as monitor, AVG
is worse than MAVG, since the most recent days are more representatives of

129

CHAPTER 4. SMART GRID Simulation Results

the future utilization. WRAP, always achieves the lowest error with respect
to the other approaches, thanks to its adaptability to short and long term
variations. Figure 4.4(b) shows the average error over 30 days of predictions.
The results confirm that our approach achieves the best performance. Note
that, the difference between AVG and MAVG is smoothed by averaging over
several days.

User utility of emergency schedule

This section compares WRAP, AVG, and MAVG in terms of the individual
user utility achieved by the corresponding emergency schedule. The emer-
gency schedule defines the appliances that are allowed to be ON, and it is
calculated by solving the optimization problem in (4.5) with the predicted im-
portance factors and power allowance given by the LSE. The optimal sched-
ule (OPT) is also shown for comparison, which is calculated by solving the
optimization problem with the actual importance factors, assuming perfect
knowledge of the user future behavior. The user utility of a schedule is cal-
culated as the sum of the actual importance factors of the appliances allowed
by the schedule.

The experiments consider real traces for 12 appliances. A contingency
occurs on Day 16, and the previous 15 days are used for the prediction.
Recall that, as discussed in Section 4.2, given a power allowance Mu for user
u, the emergency schedule is a set of appliances that u is allowed to use, and it
is calculated by solving the optimization problem in (4.5). The user utility is
defined as the sum of the actual importance factors of the appliances allowed
by the schedule. Therefore, more accurate predictions result in higher user
utility. Figures 4.5(a) and (b) show the utility of a single user for time slots
11 a.m. and 2 p.m., respectively, under different power allowances given
by the LSE (x-axis). The accuracy of WRAP allows to perform very close
to the optimal, unlike the other methods. Note that only OPT yields a
monotonically increasing utility with respect to the power allowance. This is
because of the inaccuracy in predicting the importance factors by the other
methods.

4.4.3 The LSE’s problem

As described in Section 4.3, an LSE receives a load curtailment from the sys-
tem operator, and it calculates the power allowance for its users to maximize
the aggregate user utility. The LSE executes the regression-based heuristic
to efficiently approximate the optimal solution of (4.9). This section studies
the accuracy of the approximation provided by the heuristic. The experi-

130

CHAPTER 4. SMART GRID Simulation Results

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

%
 o

f U
se

r
U

til
ity

Power Allowance (KW)

OPT
AVG

MAVG
WRAP

(a)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 o

f U
se

r
U

til
ity

Power Allowance (KW)

OPT
AVG

MAVG
WRAP

(b)

Figure 4.5: Utility of a single user for time slot 11 a.m. (a) and 2 p.m. (b)

ments consider 8,000 users with 12 appliances each, using the real traces.
Since the traces do not provide data for multiple users, the available data
are replicated to represent the number of users in the simulations.

Figure 4.6 shows the aggregate user utility (i.e. the sum of individual
users’ utilities), expressed as the percentage of maximum utility achievable
with no curtailment. The experiments show the performance of the regression
heuristic (WRAP-Reg) given varying power allowances to the LSE (x-axis).
The results are compared with the other two solutions: the optimal solution
(OPT) assuming perfect knowledge of the future user behavior, which is
the solution to the NP-hard optimization problem defined in (4.9); and an
approximated solution (WRAP-OPT) where the LSE solves the same NP-
hard problem but uses WRAP to predict the importance factors.

WRAP-OPT well approximates the optimal solution, again validating the
accuracy of the prediction algorithm. However, this approach still requires
to solve an NP-hard problem, and is thus not applicable in scenario where
the LSE has a large number of users. Instead, WRAP-Reg achieves similar
results close to the optimal, with significantly lower complexity. It should be
noted that different prediction techniques would only impact the aggregate
user utility, and not the load curtailment quantities at the system level.

Now the specific case of the IEEE 39-bus system presented in Section
4.4.1 is considered. Recall that in this case scenario, Line 16 fails. The
system operator, to prevent a cascading failure, notifies the LSE at Bus 1
that a curtailment of 15.9 MW is needed. It is assumed that the LSE’s users’
demand was 40 MW before the curtailment, therefore the power allowance
at the LSE after curtailment is 24.1 MW.

The experiments compare OPT, WRAP-Reg and MAVG in this scenario
to distribute the 24.1 MW to the users. The results of AVG are omitted

131

CHAPTER 4. SMART GRID Conclusions

 0

 20

 40

 60

 80

 100

 0 200 400 600 800

%
 o

f A
gg

re
ga

te

 U
se

r
U

til
ity

Power Allowance (MW)

OPT
WRAP-OPT
WRAP-REG

Figure 4.6: Aggregate utility achieved by all methods with 8000 users

since it performs similar to MAVG. To calculate the power allowances Mu’s,
OPT optimally solves (4.9), while MAVG evenly distributes the power among
users, i.e. Mu = Mmax/N ∀u. To calculate the emergency schedule, OPT
uses the actual importance factors, while MAVG uses the factors predicted
with this strategy. WRAP-Reg adopts WRAP to predict the importance
factors and the regression heuristic to distribute the load.

Table 4.2 shows the solution of the LSE problem, and the emergency
schedules, for a specific user affected by the curtailment of the LSE at Bus
1. The LSE gives a power allowance to the user of 3,273 W under OPT,
3,267 W under Wrap-Reg, and 2,750 W under MAVG. The corresponding
utility is 99.93%, 99.93% and 33.17%, respectively. Note that the goal of the
framework is to maximize the aggregate user utility, not necessarily the utility
of an individual user. In this scenario, OPT achieves 83.1% aggregate utility,
while WRAP-Reg 73.6% and MAVG 47%. The inaccuracy of MAVG in
estimating the importance factors negatively affects both the power allowance
distribution and the emergency schedule, and ultimately the aggregate user
utility. Conversely, the high accuracy of WRAP-Reg is able to achieve only
10% less utility than OPT, which however assumes perfect knowledge of the
future users’ behavior and has higher complexity.

4.5 Conclusions

In this chapter we study for the first time how to prevent large-blackout in
smart grids where one or more of the system components fail. In particular,
we proposed a framework for contingency management that comprehensively
involves the system operator, the LSEs and the end-users. The framework
enables the system operator to prevent subsequent failures by relieving lines
possibly overloaded after the contingency. This is achieved through flexible

132

CHAPTER 4. SMART GRID Conclusions

Table 4.2: An example of the appliance schedule of a single user

Appliance
Power rating OPT WRAP MAVG

(W) (3273 W) (3267 W) (2750 W)
Coffee
maker

1305 ON ON OFF

Monitor 106 ON ON OFF
PC 166 OFF OFF ON

Refrigerator 1075 ON ON ON
Dish

washer
2132 OFF OFF OFF

Water
dispenser

360 ON ON OFF

User utility - 99.64% 99.59% 33.17%

loads at the user level realized with the emerging paradigm of the Internet of
Things. The framework provides efficient algorithmic solutions to: 1) deter-
mine the curtailment at each bus, 2) calculate the resulting power allowance
for each user and, 3) predict the user’s near-future behavior to minimize the
impact of the curtailment on the user utility. Results on the New England
39-bus test system, using real traces, show that the framework is effective
in keeping lines within their capacity margins, with minimal impact on the
user utility.

133

Conclusions

134

CHAPTER 4. CONCLUSIONS

In this dissertation we have studied some critical and emergency scenar-
ios of different computer networks. We have highlighted several dangerous
and unpredictable environmental conditions that are able to seriously com-
promise the safety of network applications in modern society. In particular,
we focused on the vulnerabilities of the network communications, wireless
sensor networks and smart grids.

In the first Part of this thesis, we analyzed the detrimental effects of a
massive disruption on a communication network. Since our society heavily
depends on communication networks to support critical services, it is impor-
tant that such infrastructures are repaired quickly. In this emergency sce-
nario, we focus on the problem of how efficiently restoring sufficient resources
in a communications network to support the demand of mission critical ser-
vices (e.g. government offices, police stations, fire stations, power plants,
hospitals etc.) after a large scale disruption. In Chapter 1, we modeled the
recovery problem (MinR) that aims to recover the damaged infrastructure
in order to minimize the cost of the recovery actions. We formally proved
that the problem is NP-hard and through experimental simulations showed
that it may require up to 27 hours to find the optimal solution on a relative
small size network. In order to approximate a solution to the MinR problem,
we proposed an original and polynomial time heuristic called Iterative Split
and Prune (ISP) to recover the network efficiently with a solution close to
the optimal. To select the node to be repaired, we introduced a new notion
of betweenness centrality, called demand centrality, to relate the importance
of a node with respect to the demand flows. ISP minimizes the repairs by
concentrating flows towards the areas of the network already repaired and
it prunes the demand flows which can be routed on the currently repaired
network. We proved some properties of ISP algorithm, such as the correct-
ness, the time complexity and the termination. Finally, experimental results
shown that ISP performs very close to the optimal in terms of number of
elements repaired and outperforms previous heuristic approaches.

However, all the approaches to MinR, even ISP, assume to have a per-
fect knowledge of the disrupted area, i.e. they need to know the exact sets
of nodes and failed links. Since this information is not always available, a
complete and detailed damage assessment could taken long time for extensive
monitoring and local inspections. Due to the emergency scenario, it is funda-
mental that recovery interventions start as soon as possible even if knowledge
of the damage extension is incomplete. For this purpose, in Chapter 2, we
studied the problem of progressive restoration of the mission critical services
in condition of partial knowledge. In this new scenario, for the first time, we
formulated the problem of Progressive Damage Assessment and network Re-
covery (PDAR), which aims at progressively restoring critical services in the

135

CHAPTER 4. CONCLUSIONS

shortest possible time, under constraints on the availability of recovery re-
sources and partial knowledge on the disruption. Since the PDAR problem is
proven to be NP-hard, we proposed a novel polynomial time algorithm called
Centrality based Damage Assessment and Restoration (CeDAR), which dy-
namically schedules repair interventions, local inspections and remote prob-
ing of network components, with the objective to restore critical services in
the shortest possible time with efficient use of recovery resources. CeDAR re-
stores critical demand flows iteratively by planning repair schedules which are
based on the current global view of the network, maximizing at the same time
the accumulative service flow during the recovery process. As did for ISP, we
proven the correctness, the time complexity and the termination properties
of CeDAR. To compare the performance of CeDAR, we extended two pre-
vious approaches to work in a scenario of incomplete knowledge. Through
extensive simulations, we shown that CeDAR recovers the network with min-
imum cost of repairs, minimum number of local inspections to discover the
network’s status and with the highest flow restored over time, compared to
the other approaches in all the experimental scenarios.

In the second Part, we moved the attention to the field of the wireless
sensor networks and on their application to monitor an area of interest. In
particular, we focused on the vulnerabilities of the deployment algorithms
for Mobile Wireless Sensors Network (MWSN) based on Voronoi diagrams to
coordinate mobile sensors and guide their movements. Recents works, show
how an attacker can easily prevent the network from achieving its coverage
goals by taking control of few nodes. The first contribution to this problem is
to give a geometric characterization of possible attack configurations, proving
that a simple attack consisting of a barrier of few compromised sensors can
severely reduce network coverage creating a non monitored area subject to
malicious actions by an attacker. Based on this analysis, we propose a new
secure deployment algorithm named SSD (Secure Swap Deployment). This
algorithm allows a sensor to detect compromised nodes by analyzing their
movements, under a different and complementary operative settings with re-
spect to a previous proposed solution named SecureVor [10]. We shown that
the proposed algorithm is effective in defeating a barrier attack, achieving
the total coverage of the AoI and has guaranteed termination. We performed
extensive simulations showing that SecureVor and SSD have better robust-
ness and flexibility, excellent coverage capabilities and deployment time, even
in the presence of an attack.
In the last Part III, we studied the detrimental effect of systems failures in
the smart grid. Since these failures could lead to a cascading failures phe-
nomenon and could induce a large-scale blackout, we have shown how much
important is to perform preventive actions. We proposed a novel framework

136

CHAPTER 4. CONCLUSIONS

to alleviate this type of risks by adjusting a large number of end-use loads
through the paradigm of the Internet of Things. Differently from previous
works, for the first time, we designed a framework that include all the do-
mains involved in this scenario: the System Operator (SO), the load serving
entities (LSEs), and the end-users’ smart systems. From the point of view
of the system operator, we formulated a novel approach for the linearized
network equation to compute the load curtailment needed to prevent the
cascading failures. When an LSE is notified of a load curtailment amount,
it estimates the individual load curtailments of each users, in order to max-
imize end-users’ satisfaction. Finally, the smart home management system
calculates the best set of appliances that the user is allowed to use and that
minimizes the impact of the curtailment on the user’s habits, while satisfy-
ing the power allowance requested by the LSE. To predict the future user
interaction with appliances we developed the WRAP (Welch-based Reac-
tive Appliance Prediction) algorithm. The results shown that the proposed
framework is effective in keeping the system stable during contingencies, pre-
venting cascading failures while maximizing the aggregate user utility.

137

Acknowledgements

There are many people that I would like to thank, since they have con-
tributed to achieve this important target.
First of all, my acknowledgments go to my advisor Prof. Novella Bartolini,
that guided me through these years. As advisor, she allowed me to under-
stand the world of research through her expert and wise guide, supporting
me, correcting me, pushing me to go beyond one’s limits and teaching me
that you can always improve. Her influence on my life goes beyond the aca-
demic role as advisor that she did during my Phd. In fact, in addition to
what I mentioned above, she represents an example of strength, intelligence,
determination, selflessness, kindness and congeniality. With her, I found a
special friend, and I know that everything that she did, it was for my own
good. In a person’s life, there are few people that strongly influence your
personality, and she is one of them.
A special thank goes to Prof. Simone Silvestri of Missouri University of Sci-
ence and Technology, that helped me through these years allowing me to
grow up as researcher by stimulating my ideas.
I wish to thank the Prof. Thomas F. La Porta of Pennsylvania State Univer-
sity and Prof. Sajal K. Das of Missouri University of Science and Technology
for the opportunity and the honor to work with them and be part of their
labs.
Special thanks are due to everyone who have always been there for me. In
particular. I want to express my gratitude to my family who have given
me the opportunity to complete this path, supporting my choices. I wish to
thank my aunt Rita, that has been a second mom for all this time and without
her patience and generosity nothing it would have been possible. Thanks to
my relatives and friends to have shared precious moments together. All these
people never missed the opportunity to show their love and their presence in
the hardest and lonely moments.

Bibliography

[1] Gurobi. ”http://gurobi.com”.Last accessed on November 2015.

[2] The internet topology zoo. ”http://www.topology-zoo.org/”.Last ac-
cessed on May 2015.

[3] A. Arab, A. Khodaei, Z. Han, and S. K. Khator. Proactive recovery of
electric power assets for resiliency enhancement. IEEE Access, 3:99–109,
2015.

[4] T. Athay, R. Podmore, and S. Virmani. A practical method for the
direct analysis of transient stability. Power Apparatus and Systems,
IEEE Transactions on, (2):573–584, 1979.

[5] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Elsevier Computer networks, 54(15):2787–2805, 2010.

[6] B. Awerbuch and R. Khandekar. Greedy distributed optimization of
multi-commodity flows. Distributed Computing, 21(5):317–329, 2009.

[7] S. R. Bailey. Disaster preparedness and resiliency. In Guide to Reliable
Internet Services and Applications, pages 517–543. Springer, 2010.

[8] N. Bartolini, G. Bongiovanni, T. La Porta, and S. Silvestri. On the
security vulnerabilities of the virtual force approach to mobile sensor
deployment. IEEE INFOCOM, 2013.

[9] N. Bartolini, G. Bongiovanni, T. La Porta, and S. Silvestri. On the
vulnerabilities of the virtual force approach to mobile sensor deployment.
IEEE Trans. on Mobile Computing, 13(11):2592–2605, 2014.

[10] N. Bartolini, G. Bongiovanni, T. L. Porta, S. Silvestri, and F. Vincenti.
Voronoi-based deployment of mobile sensors in the face of adversaries. In
Communications (ICC), 2014 IEEE International Conference on, pages
532–537. IEEE, 2014.

139

BIBLIOGRAPHY BIBLIOGRAPHY

[11] N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Silvestri.
Push & pull: autonomous deployment of mobile sensors for a complete
coverage. Wireless Networks, 16(3):607–625, 2010.

[12] N. Bartolini, T. Calamoneri, T. La Porta, and S. Silvestri. Autonomous
deployment of heterogeneous mobile sensors. IEEE Trans. on Mobile
Computing, 10(6):753 –766, 2011.

[13] N. Bartolini, S. Ciavarella, T. La Porta, and S. Silvestri. Network re-
covery after massive failures. IEEE DSN, June 2016.

[14] N. Bartolini, S. Ciavarella, S. Silvestri, and T. L. Porta. On the vul-
nerabilities of voronoi-based approaches to mobile sensor deployment.
Transactions on Mobile Computing, IEEE, 15(12):3114–3128, 2016.

[15] K. Basu, V. Debusschere, and S. Bacha. Residential appliance identifi-
cation and future usage prediction from smart meter. In IEEE IECON,
2013.

[16] K. Basu, V. Debusschere, and S. Bacha. Residential appliance identifi-
cation and future usage prediction from smart meter. In IEEE IECON,
2013.

[17] T. Beran, R. B. Langley, S. B. Bisnath, and L. Serrano. High-accuracy
point positioning with low-cost gps receivers. Navigation, 54(1):53–63,
2007.

[18] U.S.-Canada Power System Outage Task Force. Final report on the
august 14, 2003 blackout in the United States and Canada: Causes and
recommendations. Technical report, Natural Resources Canada and U.S.
Department of Energy, April 2004.

[19] U.S.-Canada Power System Outage Task Force. Final report on the
implementation of the task force recommendations. Technical report,
Natural Resources Canada and U.S. Department of Energy, September
2006.

[20] P. Bonacich. Power and centrality: A family of measures. American
journal of sociology, pages 1170–1182, 1987.

[21] R. Bowden, H. X. Nguyen, N. Falkner, S. Knight, and M. Roughan.
Planarity of data networks. In Teletraffic Congress (ITC), 2011 23rd
International, pages 254–261. IEEE, 2011.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[22] U. Brandes. A faster algorithm for betweenness centrality*. Journal of
mathematical sociology, 25(2):163–177, 2001.

[23] L. J. CAIDA. Ca,cooperative association for internet data analysis
(caida),.

[24] S. Capkun and J.-P. Hubaux. Secure positioning of wireless devices with
application to sensor networks. IEEE INFOCOM 2005, 3:1917–1928,
2005.

[25] S. Capkun, K. Rasmussen, M. Cagalj, and M. Srivastava. Secure loca-
tion verification with hidden and mobile base stations. IEEE Trans. on
Mobile Computing, 7(4):470–483, 2008.

[26] A. Chakrabarti, L. Fleischer, and C. Weibel. When the cut condition
is enough: a complete characterization for multiflow problems in series-
parallel networks. In Proceedings of the forty-fourth annual ACM sym-
posium on Theory of computing, pages 19–26. ACM, 2012.

[27] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes
for sensor networks. IEEE Symposium on Security and Privacy, 2003.

[28] L.-R. Chang-Chien, L. N. An, T.-W. Lin, and W.-J. Lee. Incorporating
demand response with spinning reserve to realize an adaptive frequency
restoration plan for system contingencies. Smart Grid, IEEE Transac-
tions on, 3(3):1145–1153, 2012.

[29] S. Ciavarella, N. Bartolini, H. Khamfroush, and T. L. Porta. Progressive
damage assessment and network recovery after massive failures. IEEE
Proceedings of the International Conference on Computer Communica-
tions (IEEE INFOCOM 2017).

[30] S. Ciavarella, J. Joo, and S.Silvestri. Managing contingencies in smart
grids via the internet of things. Transactions on Smart Grid, IEEE,
7(4):2134–2141, 2016.

[31] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[32] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computa-
tional geometry: Algorithms and applications. Springer-Verlag Berlin
Heidelberg, 2008.

[33] W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney. A key management
scheme for wireless sensor networks using deployment knowledge. IEEE
INFOCOM, 2004.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[34] P. K. Dutta, A. K. Arora, and S. B. Bibyk. Towards radar-enabled
sensor networks. ACM IPSN, pages 467–474, 2006.

[35] P. ERDdS and A. R&WI. On random graphs i. Publ. Math. Debrecen,
6:290–297, 1959.

[36] Executive Office of the President. Economic benefits of increasing elec-
tric grid resilience to weather outages. 2013.

[37] S. Ferdousi, F. Dikbiyik, M. Tornatore, and B. Mukherjee. Progres-
sive datacenter recovery over optical core networks after a large-scale
disaster. IEEE DRCN, 2016.

[38] L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer. Simple cost
sharing schemes for multicommodity rent-or-buy and stochastic steiner
tree. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 663–670. ACM, 2006.

[39] R. J. Fontana, E. Richley, and J. Barney. Commercialization of an ultra
wideband precision asset location system. IEEE UWST, pages 369–373,
2003.

[40] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, pages 35–41, 1977.

[41] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi. A dis-
tributed sensor relocation scheme for environmental control. IEEE
MASS, 2007.

[42] N. Garg and J. Koenemann. Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems. SIAM Journal
on Computing, 37(2):630–652, 2007.

[43] L. Goel, V. P. Aparna, and P. Wang. A framework to implement supply
and demand side contingency management in reliability assessment of
restructured power systems. Power Systems, IEEE Transactions on,
22(1):205–212, 2007.

[44] F. A. Graybill and H. K. Iyer. Regression analysis. Duxbury Press, 1994.

[45] B. Guenin, J. Könemann, and L. Tunçel. A gentle introduction to opti-
mization. Cambridge University Press, 2014.

[46] O. Güler. Foundations of optimization. Springer Science & Business
Media, 2010.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[47] A. Gut. An intermediate course in probability. Springer, 2009.

[48] P. Hage and F. Harary. Eccentricity and centrality in networks. Social
networks, 17(1):57–63, 1995.

[49] M. Hauptmann and M. Karpinski. A compendium on Steiner tree prob-
lems. ”http://theory.cs.uni-bonn.de/info5/steinerkompendium”.Last ac-
cessed on May 2015.

[50] N. Heo and P. Varshney. Energy-efficient deployment of intelligent mo-
bile sensor networks. IEEE Trans. on Syst., Man and Cyb., 35(1):78–92,
2005.

[51] H. Ho and A. Sumalee. Optimal recovery plan after disaster: Con-
tinuum modeling approach. Journal of Transportation Engineering,
140(8):04014034, 2014.

[52] M. Humayun, A. Safdarian, M. Z. Degefa, and M. Lehtonen. Demand
response for operational life extension and efficient capacity utilization
of power transformers during contingencies. Smart Grid, IEEE Trans-
actions on, 30(4):2160–2169, 2015.

[53] Illinois Center for a Smarter Electric Grid, Information Trust
Institute, University of Illinois at Urbana-Champaign. IEEE
39-Bus System. http://publish.illinois.edu/smartergrid/

ieee-39-bus-system/, 2015. [Online; accessed January 30, 2017].

[54] A. T. Kaliappan, S. Sathiakumar, and N. Parameswaran. Flexible power
consumption management using Q learning techniques in a smart home.
In IEEE CEAT, 2013.

[55] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in Communica-
tions, 29(9):1765–1775, 2011.

[56] A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor approxi-
mation algorithm for the multicommodity rent-or-buy problem. In Foun-
dations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE
Symposium on, pages 333–342. IEEE, 2002.

[57] B. Lagesse, M. Kumar, and M. Wright. Arex: An adaptive system
for secure resource access in mobile p2p systems. In IEEE P2P, pages
43–52, 2008.

143

http://publish.illinois.edu/smartergrid/ieee-39-bus-system/
http://publish.illinois.edu/smartergrid/ieee-39-bus-system/

BIBLIOGRAPHY BIBLIOGRAPHY

[58] M. Lam and Y. Liu. Two distributed algorithms for heterogeneous sensor
network deployment towards maximum coverage. IEEE ICRA, pages
3296–3301, 2008.

[59] W. M. Leavitt and J. J. Kiefer. Infrastructure interdependency and the
creation of a normal disaster the case of hurricane katrina and the city of
new orleans. Public works management & policy, 10(4):306–314, 2006.

[60] E. E. Lee II, J. E. Mitchell, and W. A. Wallace. Restoration of services in
interdependent infrastructure systems: A network flows approach. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 37(6):1303–1317, 2007.

[61] K. Liu, N. Abu-Ghazaleh, and K. Kang. Location verification and trust
management for resilient geographic routing. Elsevier JPDC, 67(2):215–
228, 2007.

[62] K. Ma, Y. Zhang, and W. Trappe. Managing the mobility of a mobile
sensor network using network dynamics. IEEE Trans. on Paral. and
Distr. Syst., 19(1):106–120, 2008.

[63] M. Ma and Y. Yang. Adaptive triangular deployment algorithm for unat-
tended mobile sensor networks. IEEE Trans. on Computers, 56(7):946–
847, 2007.

[64] T. L. Magnanti and S. Raghavan. Strong formulations for network design
problems with connectivity requirements. Networks, 45(2):61–79, 2005.

[65] S. Martello and P. Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[66] N. Megiddo. On the complexity of linear programming. IBM Thomas J.
Watson Research Division, 1986.

[67] Memsic. Mts420/400 datasheet.

[68] D. Mendonça. Decision support for improvisation in response to extreme
events: Learning from the response to the 2001 world trade center at-
tack. Decision Support Systems, 43(3):952–967, 2007.

[69] R. Miller. Hurricane katrina: Communications & infrastructure impacts.
Technical report, DTIC Document, 2006.

144

BIBLIOGRAPHY BIBLIOGRAPHY

[70] National Institute of Standards and Technology. . NIST frame-
work and roadmap for smart grid interoperability standards, re-
lease 1.0. http://www.nist.gov/public_affairs/releases/upload/
smartgrid_interoperability_final.pdf. [Online; accessed January
30, 2017].

[71] Y. Nemoto and K. Hamaguchi. Resilient ict research based on lessons
learned from the great east japan earthquake. IEEE Communications
Magazine, 52(3):38–43, 2014.

[72] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor
networks: analysis & defenses. ACM IPSN, 2004.

[73] H. Okamura and P. D. Seymour. Multicommodity flows in planar graphs.
Journal of Combinatorial Theory, Series B, 31(1):75–81, 1981.

[74] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. 1999.

[75] A. Rabiee, A. Soroudi, B. Mohammadi-Ivatloo, and M. Parniani. Correc-
tive voltage control scheme considering demand response and stochastic
wind power. Power Systems, IEEE Transactions on, 29(6):2965–2973,
2014.

[76] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov,
M. Werner, and R. Steinmetz. On the Accuracy of Appliance Identifi-
cation Based on Distributed Load Metering Data. In IFIP SustainIT,
2012.

[77] T. Sakano, Z. M. Fadlullah, T. Ngo, H. Nishiyama, M. Nakazawa,
F. Adachi, N. Kato, A. Takahara, T. Kumagai, H. Kasahara, et al.
Disaster-resilient networking: a new vision based on movable and de-
ployable resource units. IEEE Network, 27(4):40–46, 2013.

[78] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2002.

[79] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn. Spot
pricing of electricity. Springer Science & Business Media, 2013.

[80] G. Sibley, M. Rahimi, and G. Sukhatme. Mobile robot platform for
large-scale sensor networks. IEEE ICRA, pages 1143–1148, 2002.

145

http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[81] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford. Net-
work architecture for joint failure recovery and traffic engineering. ACM
SIGMETRICS, June 2011.

[82] A. Todimala and B. Ramamurthy. Approximation algorithms for surviv-
able multicommodity flow problems with applications to network design.
IEEE INFOCOM, April 2006.

[83] K. Walsh and E. G. Sirer. Experience with an object reputation system
for peer-to-peer filesharing. In USENIX NSDI.

[84] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz. Energy
analysis of public-key cryptography for wireless sensor networks. IEEE
PerCom, 2005.

[85] G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor deploy-
ment. IEEE Trans. on Mobile Computing, 5(6):640–652, 2006.

[86] J. Wang, C. Qiao, and H. Yu. On progressive network recovery after a
major disruption. In INFOCOM, 2011 Proceedings IEEE, pages 1925–
1933. IEEE, 2011.

[87] Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng. Efficient placement and dis-
patch of sensors in a wireless sensor network. IEEE Trans. on Mobile
Computing, 7(2):262–274, 2008.

[88] P. Wei, Y. Ni, and F. F. Wu. Decentralised approach for congestion man-
agement and congestion price discovering. IEE Proceedings-Generation,
Transmission and Distribution, 149(6):645–652, 2002.

[89] B. L. Welch. The generalization of student’s’ problem when sev-
eral different population variances are involved. JSTOR Biometrika,
34(1/2):28–35, 1947.

[90] G. Yan, S. Olariu, and M. C. Weigle. Providing vanet security
through active position detection. Elsevier Computer Communications,
31(12):2883–2897, 2008.

[91] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi. Internet
of things for smart cities. IEEE Internet of Things Journal, 2014.

[92] Q. Zheng, G. Cao, T. La Porta, and A. Swami. Optimal recovery from
large-scale failures in ip networks. IEEE ICDCS, 2012.

146

BIBLIOGRAPHY BIBLIOGRAPHY

[93] Y. Zou and K. Chakrabarty. Sensor deployment and target localiza-
tion in distributed sensor networks. ACM Trans. on Emb. Comp. Syst.,
3(1):61–91, 2003.

[94] Opnet technologies inc. http://www.opnet.com.

147

	Introduction
	I Network Recovery after Massive Failures
	Introduction
	Related Works
	Nomenclature and Notation
	ISP: network recovery under complete knowledge of the disruption
	The Network Recovery Problem
	Iterative Split and Prune
	Routability test
	Centrality based ranking
	Split of the demand
	On the use of a dynamic path metric
	Recovery of nodes and edges
	Pruning

	Properties of ISP
	Heuristics
	A multi-commodity based solution
	Shortest Path Heuristic (SRT)
	Greedy Heuristics

	Experiments
	First scenario: small size topology
	Second scenario: big size topology
	Third scenario: simulation time comparison

	CEDAR: Progressive Network recovery Under Incomplete Knowledge of the Disruption
	Problem definition and assumptions
	The PDAR optimization problem

	The algorithm CeDAR
	Definitions and notation
	CeDAR in details

	Properties of CeDAR
	Heuristics
	Shadow Price Progressive Recovery (ShP)
	Progressive ISP (P-ISP)

	Experiments
	Scenario A: Varying demand intensity
	Scenario B: Varying number of demand pairs
	Scenario C: Varying disruption extent
	Scenario D: Execution time comparison

	Conclusions

	II Mobile Wireless Sensor Networks
	Introduction
	Related works
	On the Vulnerabilities of Voronoi-based Approaches to Mobile Sensor Deployment
	Vulnerabilities of the Voronoi approach
	Background on the Voronoi approach
	The Opportunistic movement attack
	Efficacy of the BOM attack against the Voronoi approach

	The SecureVor algorithm
	SecureVor in detail

	The SSD algorithm
	SSD in detail

	Algorithm properties
	Properties of SecureVor
	Properties of SSD

	Experimental results
	Scenario A: SecureVor setting
	Scenario B: SSD setting
	Scenario C: Transmission radius sensitivity analysis
	Scenario D: Mobile barrier attack

	Conclusions

	III Smart Grid
	Introduction
	Related Works
	Managing Contingencies In Smart Grids Via The Internet Of Things
	The Problem of a System Operator
	The Problem of a User
	Optimal emergency schedule
	Learning Algorithm for Importance Factors

	The Problem of a Load Serving Entity
	Regression-based heuristic

	Simulation Results
	The system operator's problem
	The users' problem
	The LSE's problem

	Conclusions

	Conclusions
	Acknowledgments
	Bibliography

