
Configurable and Efficient Memory Access Tracing via
Selective Expression-based x86 Binary Instrumentation

Simone Economo, Davide Cingolani, Alessandro Pellegrini and Francesco Quaglia
DIAG - Sapienza University of Rome

{economo,cingolani,pellegrini,quaglia}@dis.uniroma1.it

Abstract—Memory access tracing is a program analysis
technique with many different applications, ranging from ar-
chitectural simulation to (on-line) data placement optimization
and security enforcement. In this article we propose a memory
access tracing approach based on static x86 binary instru-
mentation. Unlike non-selective schemes, which instrument
all the memory access instructions, our proposal selectively
instruments a subset of those instructions that are the most (or
fully) representative of the actual memory access pattern. The
selection of the memory access instructions to be instrumented
is based on a new method, which clusters instructions on the
basis of their compile/link-time observable address expressions
and selects representatives of these clusters. This allows for
reducing the runtime cost for running instrumented code, while
still enabling high accuracy in the determination of memory
accesses. The trade-off between overhead and precision of the
tracing process is user-tunable, so that it can be set depending
on the final objective of memory access tracing (say on-line
vs off-line exploitation). Additionally, our approach can track
memory access at different granularity (e.g., virtual-pages or
cache line-sized buffers), thus having applications in a variety
of different contexts. The effectiveness of our proposal is
demonstrated via experiments with applications taken from
the PARSEC benchmark suite.

I. INTRODUCTION

Memory access tracing is the art of collecting streams of
memory references generated by applications, for either off-
line or on-line exploitation. Applications of this type of trac-
ing include: (i) performance/energy-consumption evaluation
of alternative architectural designs of memory subsystems
[5], [16], [29]; (ii) the detection of security vulnerabilities
or leaked/corrupted memory in programs [21]; (iii) the
runtime optimization of applications in the context of highly-
heterogeneous systems, especially when it comes to the
determination of threads/virtual-pages affinity for optimizing
memory access in parallel NUMA (Non-Uniform Memory
Access) platforms [9], [13], [25].

A well-known method to perform memory access tracing
transparently to the applications is binary instrumentation,
which is based on either hardware or software facilities.
The former approach makes use of Performance Monitor-
ing Units (PMUs) embedded within modern processors,
which sample machine instructions in order to associate the
memory address involved in load/store operations with the
instruction/thread that issued the access. The accuracy and

overhead of this technique strongly depend on the frequency
of sampling, given that too low frequency may lead to
poor memory access tracing accuracy, while too frequent
sampling may give rise to significant execution slowdown
[23]. Furthermore, PMU-based sampling is essentially arbi-
trary, meaning that the sampled instructions might not be
representative of the memory access pattern of the program,
in fact they may not even interact with memory. In these
scenarios, tracing gives rise to low-quality samples, while
still paying the cost for taking them.

On the opposite side, software instrumentation resorts to
either just-in-time binary translation or ahead-of-time binary
rewriting. The first is a dynamic technique that patches the
application code of a program on-the-fly, while the program
itself is running [11], [26]. In the context of memory access
tracing, dynamic patching discovers memory-referencing
instructions at runtime in order to identify the target memory
location depending on, e.g., the addressing mode used by
the instruction and the CPU and/or program state. Ahead-of-
time binary rewriting is instead a static approach that patches
executables once and for all (before executing them) [18],
[24]. This leads to inject instrumenting code that is typically
able to identify memory locations targeted by memory-
referencing instructions in a faster manner compared to
dynamic patching (e.g., because of the exploitation of pre-
filled data referring to the instruction category and its ad-
dressing mode). Thanks to its reduced runtime intrusiveness,
the relevance of the static approach has recently grew up,
leading it to become a baseline technique in all the scenarios
where memory access traces are exploited for on-line (say
runtime) optimizations.

Nonetheless, independently of whether one relies on
the static or the dynamic approach, instrumenting all the
memory-referencing instructions may still lead to excessive
runtime overhead. On the other hand, arbitrary selection
(e.g. random sampling) of a subset of the instructions to be
instrumented, with the purpose of reducing runtime costs,
may lead the memory access tracing process to provide
excessively inaccurate outputs. Overall, one core problem
to tackle is to identify a reduced set of memory-referencing
instructions to be instrumented, so that memory access
tracing still provides accurate results for generic memory
access patterns. For the case of static instrumentation, this

is further complicated because compile/link-time analysis
cannot exploit relevant information characterizing the actual
execution flow of programs, especially in scenarios with
non-determinism, where alternative (non-disjoint) execution
paths might be taken along any thread.

In this article, we take the static instrumentation approach
to memory tracing and propose a method that is aimed
at selectively instrumenting the subsets of the memory-
referencing instructions that are identified as the most (or
fully) representative of the actual memory access pattern
the application will materialize at runtime, along any thread.
Hence our aim is to provide high accuracy of the memory
access tracing process, while also reducing its runtime
overhead.

In our method, the subset of memory-referencing instruc-
tions to be selected for instrumentation is based on memory
address expressions, which are used to build clusters of
instructions whose memory accesses (if materialized) can
be traced by logging the access issued by a representative
element of the cluster, namely the instrumented one. Further,
the granularity according to which memory accesses are
traced is user-tunable. This can result extremely useful in
scenarios where users are not interested in tracing byte-
level accesses, rather they want to trace accesses to coarser-
grained memory regions—such as operating system virtual-
pages or cache line-sized buffers. Thus we avoid paying
runtime costs for tracing accesses with granularity values
that are not fully suited for the specific (user-defined) target.
Also, our instrumentation discipline is able to provide a
count of the times that an access to a given target memory
location has been issued throughout the execution, thus
providing tracing with an additional accuracy dimension. In
fact, literature solutions aimed at reducing memory access
tracing costs, e.g. via the employment of techniques alter-
native to instrumentation such as operating system services
[9], [13], do not reach this level of precision. Indeed, they
are only able to determine whether a given area (mostly a
virtual-page) has been accessed, but not how many times it
happened along the lifetime of the application.

Our approach targets the x86 Instruction Set Architecture
(ISA) and ELF objects, although it could be suited for other
object formats. Further, our implementation exploits Thread
Local Storage (TLS) to improve the management of memory
access logs in concurrent applications based on the well-
established multi-thread technology. We also offer a user-
tunable parameter that can be exploited to control the trade-
off between the runtime overhead and the accuracy of the
tracing process, according to user-specific requirements.

Overall, the original contributions of this work can be
summed up as follows:

1) we propose an innovative instrumentation scheme to
select a subset of representative memory-referencing
instructions, suited for characterizing the overall mem-
ory access pattern of an application at reduced run-

time cost, by using only static code analysis tech-
niques;

2) our approach is able to provide a count of how many
times an access to a target buffer has been issued,
while still avoiding instrumenting all the accessing
instructions;

3) the instrumentation scheme can be configured in such
a way to well fit the desired memory access tracing
granularity;

4) the trade-off between tracing accuracy and overhead
(once fixed the tracing granularity) can be further con-
trolled through an instrumentation parameter which is
user-definable, leading to well suited configurations
just depending on the final objective of memory access
tracing.

We have experimented our method with applications taken
from the PARSEC benchmark suite. The outcoming results
confirm the capability of our proposal to deliver accurate
memory access tracing at reduced runtime costs.

The remainder of this article is organized as follows. In
Section II we discuss related work. The method for selective
identification of the memory-referencing instructions to in-
strument is illustrated in Section III. Experimental data are
provided in Section IV.

II. RELATED WORK

The issue of tracing the memory access pattern of ap-
plications has been long studied in literature. As for the
proposals based on dynamic binary instrumentation (see,
e.g., [11], [20]–[22]), they have been historically targeted
at off-line analysis of memory accesses, given the non-
negligible overhead they introduce. A few approaches slide
along the path of making the dynamic instrumentation
process more lightweight [26], e.g. by exploiting cached
disassembling results generated at runtime when instrument-
ing previous executions of the same instructions. As for
static instrumentation, which is typically less intrusive at
runtime, we can categorize literature approaches depending
on the objective they pursue. The work in [25] uses static
source-code instrumentation to dynamically (at runtime)
optimize thread/data placement on heterogeneous NUMA
machines. This work is however only targeted at tracing
the accesses to (large-size) arrays, in order to locate the
associated virtual-pages on the same NUMA nodes where
the threads mostly using them are hosted. Skeletonization
[15] has been presented as a means for emulating the effects
of specific inputs in terms of memory accesses performed by
the application. Compared to all these approaches we have
a different target, namely the one of providing a method
to identify what subsets of memory-referencing instructions
are those whose instrumentation would allow to capture the
overall memory access pattern by the application.

A few solutions rely on application-external libraries, like
MPI/OpenMP libraries (see, e.g., [7], [14], [28]), and are

aimed at determining the level of sharing in the access to
library-managed data across concurrent threads/processes.
The final target is to optimize the memory layout of the
accessed data structures, such as the memory buffers used
for data exchange. Variants of these proposals are based on
either a-priori knowledge of the source/destination threads
for specific data-exchange operations [12] or a knowledge
base of the communication pattern built by tracing previous
application executions [4], [10]. Our solution does not
exploit any specific library (since we rely on x86 binary
rewriting), thus being potentially usable in wider application
contexts. Also, it does not require any a-priori knowledge
base on memory accesses by applications.

Alternative methods to perform memory access tracing
build on hardware facilities. In this category we find so-
lutions exploiting the output from memory controllers [3],
[6], software-managed TLBs [19], [27] or instruction-based
sampling relying on PMUs [8]. Compared to these solutions,
we do not require specialized hardware, hence our approach
looks highly general. On the other hand, we share with
them the idea to provide a customizable memory access
tracing support. Indeed, we offer user-tunable parameters
that can be exploited to determine the trade-off between
tracing accuracy and tracing overhead, as well as the size
of the memory area representing the target buffer for the
tracing process.

As for operating system-based memory access tracing,
most of the literature proposals work at the granularity of
virtual-pages [9], [13], while in our approach we can select
the level of granularity associated with the memory buffers
whose accesses need to be intercepted and traced. Also,
these literature approaches are not able to count the number
of accesses to individual pages. Rather, they are mostly
tailored to the determination of whether a given virtual-
page is currently within the locality of the accesses by some
thread, which may help to dynamically place it on specific
NUMA nodes in parallel machines. Instead, our approach is
able to identify the count of accesses that are materialized
by the application run. Hence, we can determine both the
locality of the accesses and the hotness of the different
accessed locations.

III. THE SELECTIVE INSTRUMENTATION APPROACH

As hinted, our memory access tracing approach relies
on static binary instrumentation, a technique that operates
on (and transforms) the binary image of a program before
the program itself is run. Our tracing method is based
on selecting for instrumentation those memory-referencing
instructions, say instructions targeting memory as source or
destination, which are believed to be more representative
of the overall memory access pattern the program would
exhibit at runtime. Unfortunately, the problem of choosing
the representatives prior to runtime is complex mainly for
two reasons:

1) Memory accesses are encoded within a binary file as
expressions, i.e., arithmetic combinations of register
variables and constants.

2) A same memory-referencing instruction may be exe-
cuted multiple times targeting different memory loca-
tions, just depending on the program’s control flow at
runtime, along any of its threads.

These two aspects force us to see the “static” mem-
ory access pattern of a program, say the one observable
at compile/link-time, as a graph of machine instructions
containing memory address expressions. In contrast, the
“dynamic” memory access pattern, say the one materialized
by whichever thread at runtime, is a sequence of machine
instruction instances containing finalized memory addresses.

Given this premise, we are left with the compile/link-time
task of choosing which memory-referencing instructions to
instrument. To accomplish this task, our analysis relies on
a well-known program representation called Control-Flow
Graph (CFG) [2]. It is a directed graph of all the possible
ways in which a thread running a program can flow from
one instruction to another at runtime. A node in the CFG is
called basic block and represents a contiguous sequence of
instructions with one single entry point at the first instruction
and one single exit point at the last. An edge between two
blocks in the CFG establishes that the program’s control
flow is allowed to move (along any thread) from the last
instruction of the source, straight to the first instruction of the
destination. A basic block may reach multiple destinations
and be linked to multiple sources, though it does not admit
sideways entrances or departures. Therefore, if control flows
into a basic block, it must go through it from the first
instruction all the way to the last1. Basic blocks represent
atomic execution units for the program. For this reason,
in our approach we target the selection of what memory-
referencing instructions to instrument on a per-basic-block
basis.

We shall present our method by initially introducing the
baseline formalisms we rely on, and then the algorithms we
use for the selection task.

A. The BID abstract model and its templates

On real processors, memory references are represented
as address expressions, i.e., arithmetic combinations of a
fixed number of quantities. As for x86 processors, which
are our reference architecture, the most expressive form of
addressing is called SIB addressing (Scale-Index-Base) and

1Sideways entrances and/or departures may happen due to hardware
interrupts (e.g., for re-scheduling), as well as software interrupts (say, signal
handling). However, hardware interrupts are well beyond the scope of user
space program analysis, therefore they do not need to be captured by this
representation. As for signal handlers, typically they return control to the
interrupted code block so as to allow it to finalize its execution.

involves expressions that combine four quantities2. The base
register b specifies the base address from which the address
computation starts. The index register i is used as an index
value whenever b points to an array-like object or a regular
structure. The scale is used in conjunction with the index
register to specify the step size and can assume one of the
values in {1, 2, 4, 8}. To obtain the final memory address, a
displacement d is added to the result, as in the expression
b+ i× s+ d.

An issue with x86 expressions is that compilers and
programmers are not bound to adhere to the semantic of
SIB addressing. On Linux-GCC, statically-allocated objects
can be accessed by putting the base address of a data object
into the SIB displacement, since that address is already
known at compile-time. On the contrary, the base address of
a dynamically-allocated object is not known until the same
object effectively materializes in memory. Therefore, its base
address is concealed behind a register.

Due to its dependency on compiler’s and programmer’s
idioms, we discard SIB addressing in favor of a more
abstract model called BID addressing where only base, index
and displacement are considered3, which we denote as a
tuple {b, i, d}. Given a BID expression e, each parameter
pe in the associated tuple {be, ie, de} can map to either
a register or an immediate value. To discriminate the two
cases, we introduce the notion of expression template τe,
which is a tuple where each symbol indicates whether the
corresponding parameter in the expression e corresponds to
a register R or to an immediate I . Due to the way BID
addressing is used in x86 processors, we can model any
address expression by resorting to two alternative templates
only:

(i) the RRI template, which is suitable for address expres-
sions used to access dynamic objects, and

(ii) the IRR template, which better matches address expres-
sions associated with accesses to static data.

We note that a BID expression e can never lack its
base be, since it gives always the most significant bits of
an effective memory address. On the other hand, missing
quantities (index and/or displacement), if any, are modeled
in our analysis through a nil value, just to represent the fact
that they do not contribute to the actual value of expression e
(despite x86 supporting them). This leads the IRR template,
for instance, to gracefully reduce to absolute addressing
when both the registers appearing in the template are mapped
to the nil place-mark.

2We omit from the discussion other forms of addressing, such as the
RIP-relative and the absolute ones, since they can easily be reformulated
in terms of SIB expressions.

3To cope with the absence of a scale parameter, we can consider a revised
index quantity which is the result of multiplying the old index with the
scale. This makes the shape of expressions slightly simpler, without loss
of generality.

B. Stability analysis

Our approach to select the memory-referencing instruc-
tions to be instrumented (as representatives of memory ac-
cesses) within each basic block relies on rules that compare
x86 BID expressions at compile/link-time. However, BID
addressing is implicit, since it uses register values to derive
the effective address that will be associated at runtime with
a memory access. Hence, the complexity of dealing with
implicit expressions lies in that the value the register will
hold at runtime may be unpredictable. As an example, it
may depend on program inputs, or may materialize as any
of multiple values resulting from taking different execution
paths.

To cope with this aspect, our comparison rules for BID
expressions rely on stability analysis, a simple form of
machine-code analysis used to detect when an update may
have affected the value of a register. We restrict the scope
of such analysis to each single basic block, as opposed
to full data-flow analysis (see, e.g., [15]) which operates
on the entire CFG. Our stability analysis procedure works
as follows. When starting the inspection of a basic block,
all the CPU registers are deemed stable. As soon as an
x86 instruction that overwrites the value of some register
is found while scanning the instructions forming the basic
block, the register is assigned a new incarnation number,
that is a new version number, indicating that it logically
represents a new register instance. Two register parameters
appearing in BID expressions are then considered as equal if
and only if they use the same register identifier and the same
register incarnation number. Clearly, this approach may lead
to false negatives, since it checks for register updates on
an instruction-by-instruction basis. For example, it cannot
recognize when a sequence of value-changing operations
yields an unchanged register value as the final result. This, in
turn, may identify two BID expressions as good candidates
for being instrumented, even though logging the memory
access performed by a single of them via instrumentation
would still allow to trace the memory accesses performed
by both. However, this scenario can only lead to instrument
more memory instructions than strictly needed, thus only
increasing the overhead rather than reducing the accuracy.

C. Comparing BID expressions

To derive an effective algorithm for identifying the rep-
resentative memory-referencing instructions within a basic
block upon performing static code analysis, we need a way
to compare BID address expressions.

Intuitively, two BID expressions are equal if and only if
they share the same template (either RRI or IRR) and their
parameters b, i, and d have the same values. If templates
mismatch, then the expressions are deemed incomparable.
Within the same template, parameter-wise equality is defined
as expected for immediate values, while it relies on incar-
nation numbers for registers (according to stability analysis

as discussed in Section III-B). Formally speaking, given a
basic block b that contains a set Eb of memory address ex-
pressions (associated with memory-referencing instructions),
we introduce the equivalence relation = between any two
expressions (e, e′) belonging to Eb as follows:

e = e′ ⇔ (τe = τe′) ∧ (be = be′ ∧ ie = ie′ ∧ de = de′) (1)

By Equation (1), all the BID expressions of the basic
block b can be clustered into different classes, depending
on whether they are equivalent or not. We define the set of
candidate memory expressions Cb of basic block b as the
one formed by picking a single representative from each
equivalence class. It must be noted that the instrumentation
of a single element of Cb leads to capture the memory
accesses by all the memory-referencing instructions in the
same class. Indeed, given the property of any basic block b
to have all its instructions executed (if activated at runtime),
then the access to some target memory area performed by
an instrumented instruction in Cb can be counted as many
times as the cardinality of the corresponding equivalence
class. Therefore, this optimization has no detrimental effect
on the memory access tracing accuracy for block b. In fact,
by using the above notion of equivalence the possibility of
non-traced accesses (in case of actual execution of the basic
block b) is reduced to zero.

However, if we simply instrument all the memory-
referencing instructions associated with BID expressions in
Cb, we might still perform redundant memory access tracing
work. In particular, the granularity according to which mem-
ory access tracing needs to be carried out can play a role in
determining what elements of Cb to be actually instrumented.
Indeed, two or more elements, although ideally targeting
different memory locations, might target a same coarse-
grained buffer. Hence, if the user is interested in tracing the
accesses at such coarse-grain level, then just one memory
referencing instruction among the ones targeting the same
coarse-grained buffer could be selected for instrumentation
(as the one representative of all the accesses).

To take the requested memory access tracing granularity
into account for driving the selection of the elements in Cb
to be instrumented, we introduce the notion of expression
distance between two candidates e and e′. Informally, two
expressions e and e′ belonging to Cb, which are associ-
ated with different templates, cannot be related through a
distance. On the contrary, when e and e′ have the same
template, we can measure their distance by comparing their
characterizing quantities {be, ie, de} and {be′ , ie′ , de′} on a
parameter-by-parameter basis.

Figure 1 shows the algorithms we devised to imple-
ment the distance functions δRRI(e, e′) and δIRR(e, e′) for
expressions associated with the two alternative templates.
Formally speaking, we call score triplet a tuple of the form
〈sb, si, sd〉, where each value is a score for the respective
parameter p ∈ {b, i, d}. We define with aliases s3, s2 and

procedure δRRI (e, e′)
δ ← 0
if be = be′ then

if ie = ie′ then
if |de − de′ | ≥ C then

δ ← δ + s3
else

δ ← δ + s1
else

if ie = ie′ then
δ ← δ + s2

else
δ ← δ + s1 + s2

return δ

procedure δIRR(e, e′)
δ ← 0
if |be − be′ | ≥ C then

δ ← δ + s3
else

if ie = ie′ then
if de 6= de′ then

δ ← δ + s1
else

if de = de′ then
δ ← δ + s2

else
δ ← δ + s1 + s2

return δ

Figure 1. Algorithms implementing the distance functions for the two
templates RRI and IRR. Score triplets are respectively 〈s2, s1, s3〉 and
〈s3, s2, s1〉.

s1 the scores assigned to each parameter in decreasing order.
To obtain a valid scoring system, a triplet must satisfy the
constraints s1 < s2 < s3 and s1 + s2 < s3. Then, for
each parameter p characterizing e and e′, the algorithms in
Figure 1 increment the current distance between e and e′

by a value sp whenever pe 6= pe′ (for register parameters)
or |pe − pe′ | ≥ C (for immediate parameters). As a result,
similar expressions end up being ‘closer’ than other pairs of
expressions which have less similar parameter values. The
value C in the pseudo-code is the chunk size and allows to
specify the user-desired memory access tracing granularity.
By the structure of the algorithms that compute the distance
function for the two alternative templates, it comes out that
two expressions e and e′ belonging to Cb, which target two
different memory addresses with relative offset less than C,
will have distance zero.

Coming back to the selection of the memory-referencing
instructions to be instrumented, if the tracing process is
aimed at determining accesses to buffers of size at least C,
then we could discard instrumenting one of the two zero-
distance expressions. However, an issue that comes out is
when we need to trace accesses to buffers of size C with a
particular memory alignment. In such a case we might have
two expressions e and e′ at distance zero (i.e., at relative
offset less than C) which lead to hit two different memory
buffers of size C. An example is shown in Figure 2, where e
and e′ hit two different memory locations with relative offset
less than C = 4KB (meaning that we are tracing memory
accesses at page-level granularity) which fall in two adjacent
virtual-pages within the address space.

Anyhow, two expressions at distance zero have less value,
if both instrumented, since instrumenting a single of them
would likely allow capturing the access to a given target
buffer of size C. This concept is further exploited in our
approach when coming to the specification of the user
affordable per-basic-block tracing overhead, and its trade-
off vs accuracy. Overall, once we have computed distances
between same-template expressions belonging to Cb, we

page x (4 KB)

page x+1 (4 KB)

e

e’

Relative offset less than C = 4KB

Figure 2. Expressions at distance zero (say with relative offset less than
C = 4KB), which do not actually access the same 4KB sized buffer.

compute a so called “value of instrumentation” ve to be
associated with expression e in Cb. Such value is structured
as a tuple 〈|[e]|, δ̄e〉, where |[e]| is the size of the respective
equivalence class to which e belongs, while δ̄e is the average
distance of e towards all the other same-template candidates
based on an arithmetic mean. Given two values ve and ve′ ,
we have that:

ve < ve′ iff |[e]| < |[e′]| or |[e]| = |[e′]| ∧ δ̄e < δ̄e′

ve = ve′ iff |[e]| = |[e′]| ∧ δ̄e = δ̄e′ (2)

just to represent the fact that, the access count being equal,
expressions in Cb associated with greater average distance
from the others will exhibit a higher value of instrumenta-
tion.

D. Selecting BID expressions

After ve is computed for any element in Cb, the final selec-
tion of what memory-referencing instructions to instrument
is mapped to a (0,1)-knapsack problem, constructed as fol-
lows. We consider the cost introduced by the instrumentation
of a single memory-referencing instruction associated with
an element in Cb as our instrumentation cost unit. The total
weight of our knapsack problem is defined as W = dω ·me,
where ω is a user-defined cost-controlling parameter in [0, 1],
and m is the cardinality of the set Cb. We solve the knapsack
problem iteratively according to the following steps:

Step A: Starting from Cb, we generate the set Ĉb where
for any set of expressions originally present in Cb having
distance 0, we include in Ĉb a single element e, say the one
with maximum ve;

Step B: We select elements in Ĉb, corresponding to memory-
referencing instructions to be instrumented, by solving
the linear programming problem in Equation (3), whose
tractability is guaranteed by having equally-weighted items:

max
∑

e∈bCb

vexe such that
∑

e∈bCb

xe ≤W

xe ∈ {0, 1} ve ≥ 0 (3)

Step C: We eliminate from Cb any element e that has been
already selected in Step 2, and if room is still available in
the knapsack, then we repeat selecting elements by restarting
from Step A, with the only constraint that the elements
already in the knapsack are still kept there when running
again Step B. So we fill the knapsack incrementally across
subsequent iterations of these algorithmic steps.

E. Accuracy measures

By the above structure of our knapsack solving algorithm,
we initially discard instrumenting memory-referencing in-
structions associated with expressions at distance zero from
each other, since as discussed these would add lower con-
tribution to the accuracy of the tracing process. However, if
the user-specified cost-controlling parameter ω still allows
for instrumenting more instructions, then we start recovering
the instrumentation of the originally discarded instructions
by iterating again over the selection steps.

On the other hand, if the user is not interested in
memory alignment while tracing accesses, then the dis-
carded memory-referencing instructions could be somehow
reconsidered by counting the memory accesses they will
perform via some instrumented instruction at distance zero.
More in detail, if we have two zero-distance expressions
e and e′ in the same basic block, associated with two
equivalence classes, such that e is instrumented and e′ is not
instrumented, we can associate the sum of the two counters
|[e]| and |[e′]| to e, so that if e materializes at runtime, then
it will contribute to the memory access trace to its target
chunk via |[e]|+ |[e′]| accesses.

By the above reasoning, we can discriminate between two
different accuracy expressions for memory access tracing.
The minimal accuracy MAb ∈ [0, 1] is defined as the ratio
of instrumented accesses weighted by the cardinality of the
corresponding equivalence class, over all accesses in the
basic block b. Overall, MAb can be expressed as:

MAb =

∑
e∈Kb |[e]|
n

(4)

where Kb is the knapsack of exactly W expressions chosen
by our selection algorithm among all the possible candidates
in Cb, and n is the total number |Eb| of memory-referencing
instructions in the basic block. Note that, by virtue of our
selection algorithm, MAb is indirectly affected by the chunk
size. Indeed, by varying the size of the chunk, we affect
the number of zero-distance pairs seen by the selection
algorithm, which in turn can alter the selection of candidates
in Cb. As a result, it is possible for a discarded zero-distance
expression e′ to have an access count |[e′]| greater than the
one of another expression included in the knapsack.

The second expression for the accuracy, which we refer to
as Alignment-Independent Accuracy AIAb ∈ [0, 1] takes into
account zero-distance expressions within a basic block, and

the possibility to count the accesses by non-instrumented
instructions (those discarded in Step A of our algorithm,
and not eventually recovered) via instrumented ones. Given
an expression e ∈ Kb, we associate with it expressions e′

at distance zero, which do not belong to the knapsack Kb
(4). Denoting with |̂[e]| the sum of the cardinalities of all
the equivalence classes targeted by this association process
having e as fulcrum, AIAb can be expressed as:

AIAb =

∑
e∈Kb |̂[e]|
n

(5)

By construction, Equation (5) expresses an upper bound on
the accuracy that our approach can guarantee for a generic
basic block. In fact, the actual accuracy may be lower in
scenarios where the alignment of the accessed memory areas
must be considered. More in detail, associating zero-distance
expressions e and e′ (and summing the cardinality of the
corresponding equivalence classes) may lead to both false
positives and false negatives in the access trace. The former
arise when e and e′ touch subsequent memory aligned
chunks, but the accesses by e′ are falsely considered as
targeting the memory-aligned chunk targeted by e. The latter
may arise because the access count of e′ is erroneously
associated with the same chunk touched by e, and is not
associated with the adjacent chunk actually targeted by e′.
Hence the accesses to some memory-aligned chunk by the
expressions in the equivalence class associated with e′ are
lost. However, if memory alignment is a stringent constraint,
the determination of the accuracy can still (conservatively)
resort to MAb as expressed in Equation (4).

Clearly, the memory tracing accuracy of the entire pro-
gram execution can be computed as the weighted sum of
the accuracy of each basic block (either MA or AIA), with
weights corresponding to the number of instances of the
execution of each basic block, divided by the total number
of basic block executions.

F. Complexity of the instrumentation algorithm

Our selective algorithm instruments a single basic block
in Θ(n2) time in the worst case, with n being |Eb| and
assuming that the cost of applying either δRRI or δIRR
is constant. It takes at most n2 steps to produce the set
Cb, since equivalence classes can be computed in no more
than a single quadratic pass over instructions in the basic
block. To compute distances between representatives of each
class we need m2

RRI applications of the function δRRI and
m2
IRR applications of the function δIRR, where mRRI and

mIRR are the number of candidates belonging to the two
templates. A linear scan of m steps is needed to compute
the average distances for all elements in Cb. The selection
algorithm can be implemented by sorting all candidates in

4If e′ is at distance zero from more than one element in the knapsack,
then we associate e′ with one element only.

Cb according to their values in decreasing order. Candidates
are then read from the priority queue one at a time. If
the next available candidate must be discarded given the
current granularity C, we keep it in the queue and move to
the next element. Otherwise, we detach it from the queue
in constant time and flag as ‘discarded’ all others zero-
distance elements in the queue. Overall, scanning the queue
takes between W and m steps. The cost of discarding zero-
distance elements is linear in their number, provided that
they are all logically connected. If this connection can be
established while computing distances, overall discarding
elements will take between 0 and m− 1 steps. Finally, the
queue can be scanned at most W times, when each visit
detaches just a single element.

IV. EXPERIMENTAL ASSESSMENT

A. Implementation details

In our implementation we resorted to the Hijacker open
source framework [24], augmenting its capabilities in order
to fully support the proposed instrumentation method and
the algorithms it relies on5. Also, we offer to the user
different operation modes. One is based on decorating an
instrumented memory access instruction with a patch that
only logs any access it performs. A second one where, upon
logging the access, the instrumenting code also reports the
size of the equivalence class the instruction belongs to. This
mode is useful for generating memory access traces that
comply with MA. Finally, a third operation mode associates
with each logged access the size of all the equivalence
classes of expressions at distance zero which have been
aggregated, if any. This mode is useful for generating
memory traces adhering to AIA.

To avoid synchronization costs by the instrumenting code
when dealing with multi-threading, per-thread buffers need
to be used to temporarily log the access trace. Since our
implementation targets x86 and ELF objects, we resorted
to inserting a new symbol in the .tbss section used to
implement TLS. The symbol refers to the per-thread memory
area where each thread can log the accesses in isolation
with respect to any other concurrent thread. Finally, the
implementation also offers the possibility to transparently
inject in the binary a call to a stub-function that can be used
to consume the produced log in a custom manner depending
on the final target of memory tracing6.

B. Results

We report a set of representative data collected with five
benchmark applications taken from the PARSEC suite [17],
namely blackscholes, fluidanimate, canneal,
freqmine, and swaptions. All the experiments have

5Source code available at https://github.com/HPDCS/hijacker
6For example, the function could simply flush the logged accesses onto

files for post-analysis.

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
cc

ur
ac

y

Omega (%)

canneal

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
cc

ur
ac

y

Omega (%)

blackscholes

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
cc

ur
ac

y

Omega (%)

freqmine

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
cc

ur
ac

y

Omega (%)

swaptions
16

B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
cc

ur
ac

y

Omega (%)

fluidanimate

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

AIA MA

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

10 25 50 75 100 NS

S
lo

w
do

w
n

Omega (%)

canneal

16
B

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

4K
B

CPU Time

0.00
0.25
0.50
0.75
1.00
1.25
1.50

10 25 50 75 100 NS

S
lo

w
do

w
n

Omega (%)

blackscholes

16
B

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

4K
B

CPU Time

0
1
2
3
4
5
6
7
8
9

10 25 50 75 100 NS

S
lo

w
do

w
n

Omega (%)

freqmine

16
B

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

4K
B

CPU Time

0
1
2
3
4
5
6

10 25 50 75 100 NS

S
lo

w
do

w
n

Omega (%)

swaptions

16
B

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

4K
B

CPU Time

0
1
2
3
4
5
6
7

10 25 50 75 100 NS

S
lo

w
do

w
n

Omega (%)

fluidanimate

16
B

16
B

16
B

16
B

16
B

64
B

64
B

64
B

64
B

64
B

4K
B

4K
B

4K
B

4K
B

4K
B

CPU Time

Figure 3. Results with five representative benchmark applications from PARSEC.

been executed by running the applications on top of a 32-
core HP ProLiant server equipped with 64 GB of RAM,
running Linux (kernel 2.6). The achieved results are shown
in Figure 3, where we report both memory access trac-
ing accuracy results and results on the slowdown caused
by instrumentation, while varying the cost-controlling fac-
tor ω between 0.1 and 1 (where 1 means instrumenting
all the memory-referencing instructions falling in different
equivalence classes). We also report results for the case
of non-selective instrumentation (not considering equiva-
lence classes and expression distances), where any memory-
referencing instruction is instrumented, which is used as a
baseline especially for slowdown assessment of our pro-
posal. This configuration is marked as ‘NS’ in the plots. In
these experiments, slowdown is computed by including on

the critical path of the application execution only the latency
for producing the memory access trace within TLS, not for
logging (e.g. on stable storage) and manipulating it. The
actual need for generating logs and processing the logged
trace is in fact dependent on the specific target of memory
tracing, which can be considered as somehow orthogonal to
our technique. Also, the slowdown value reported in the plots
represents the percentage increase in the CPU time used by
the benchmark applications with respect to the one observed
with no instrumentation at all. As for the accuracy, we report
both MA and AIA, so as to provide indications on how our
method behaves with different user requirements, in terms
of memory alignment of the memory buffers towards which
the accesses need to be traced. In this set of experiments
we also varied the chunk size C determining the granularity

of memory access tracing between 16 bytes and 4KB. All
the runs have been carried out by relying on 32 threads,
and each reported sample (either for accuracy or slowdown)
represents the average over three executions.

By the data we see how our approach provides accuracy
values that scale with a factor grater than one with respect to
the scaling of the cost-controlling parameter ω. This allows
achieving values of AIA that are close (or slightly above)
0.5 when configuring ω in such a way to only instrument
one fourth of the memory-referencing instructions. Similarly,
except for canneal, we achieve values of AIA of the
order of 0.25 when instrumenting one tenth of the memory-
referencing instructions. As expected, the reduction of the
slowdown achieved by our approach compared to NS scales
(almost) linearly when reducing the value of ω. Also, except
for settings where ω has the value 10%, MA appears
to be (at least) the 60%/70% of AIA, which indicates
how a conservative instrumentation decision—based on the
will to determine memory accesses by also considering
strict alignment of the accessed chunks—does not lead to
excessive degradation of the accuracy of the tracing process
(once fixed the value of the cost-controlling factor ω). By
the data we also observe an impact (although limited) of
the chunk size C on both accuracy and slowdown. Indeed,
for all the benchmarks, except canneal, we observe an
increase of the accuracy (especially AIA) when increasing
the size of the chunk. Contextually, we generally note a
slight reduction of the slowdown with greater values of C.
As for the limited impact of the chunk size on accuracy,
this is also motivated by the fact that PARSEC applications
are generally characterized by basic blocks that are made
up by a reduced amount of memory-referencing instructions
(on average no more than 7). Therefore, the likelihood of
finding zero-distance expressions given any value of C is
low. Lastly, we do not exploit the possibility of correlations
between expressions in different basic blocks. Studying this
type of correlation will be the object of future research work.
Overall, our approach appears to provide memory access
tracing accuracy that can well scale vs the runtime cost spent
by the instrumented code, especially when the percentage
of memory-referencing instructions that are instrumented is
low.

V. CONCLUSIONS

We have presented a static instrumentation method for
x86/ELF objects allowing memory access tracing at different
granularity levels. The method is based on a policy that
selects what memory-referencing instructions to instrument
depending on the expressions that characterize the overall set
of memory accesses within each basic block of the program.
Our method also offers a user-configurable parameter that
enables the determination of suited trade-offs between the
runtime costs caused by the instrumented memory accesses
and the accuracy of the memory access tracing process. Also,

with our solution we do not only identify the memory buffers
that are accessed by a program, rather we can also count
the number of accesses to them (although not necessarily
instrumenting all the memory referencing instructions), thus
also being able to identify the relative hotness of the
different accessed memory areas. We have also provided an
open source implementation of our instrumenting tool, and
we tested it with benchmark applications taken from the
PARSEC suite. A step ahead along this research path would
the one of not only performing selective instrumentation
of the memory-referencing instructions within each single
basic block of code forming the program. Rather, we plan
to also include algorithms for the identification of the relative
importance of the different blocks of the program, in terms
of impact on memory access, so as to further improve the
trade-off between the cost one would admit—in terms of
amount of instrumented memory accesses—and the actual
benefits—in terms of accuracy of the tracing process, just
depending on the final objective of memory tracing.

ACKNOWLEDGEMENTS

Davide Cingolani and Alessandro Pellegrini are also
working with Value Up S.r.l., an InResLab partner. This
work is partially supported by the HeterOpt - “Transparent
Optimization of Software in the Era of Multi-Core Heteroge-
neous Systems” project funded by Nikesoft with the support
of MISE research funds.

REFERENCES

[1] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles,
Techniques, and Tools. Addison-Wesley (1986)

[2] Allen, F.E.: Control flow analysis. In: Proceedings of a
Symposium on Compiler Optimization, 1970, pp. 1-19.

[3] Awasthi, M., Nellans, D.W., Sudan, K., Balasubramonian, R.,
Davis, A.: Handling the problems and opportunities posed by
multiple on-chip memory controllers. In: Proceedings of the
19th International Conference on Parallel Architecture and
Compilation Techniques, 2010, pp. 319–330.

[4] Barrow-Williams, N., Fensch, C., Moore, S.W.: A communi-
cation characterisation of splash-2 and parsec. In: Proceedings
of the International Symposium on Workload Characteriza-
tion, 2009, pp. 86–97.

[5] Carrington, L., Snavely, A., Gao, X., Wolter, N.: A perfor-
mance prediction framework for scientific applications. In:
Proceedings of the Workshop on Performance Modeling and
Analysis, 2003, pp. 926–935.

[6] Casanova, H., Desprez, F., Suter, F.: On cluster resource
allocation for multiple parallel task graphs. J. Parallel Distrib.
Comput. 70(12), 1193–1203 (2010).

[7] Chen, H., Chen, W., Huang, J., Robert, B., Kuhn, H.: MPIPP:
an automatic profile-guided parallel process placement toolset
for SMP clusters and multiclusters. In: Proceedings of the
20th International Conference on Supercomputing, 2006, pp.
353–360.

[8] Dashti, M., Fedorova, A., Funston, J.R., Gaud, F., Lachaize,
R., Lepers, B., Quéma, V., Roth, M.: Traffic management: a
holistic approach to memory placement on NUMA systems.
In: Proceedings of the Conference on Architectural Support
for Programming Languages and Operating Systems, 2013,
pp. 381–394.

[9] Diener, M., da Cruz, E.H.M., Navaux, P.O.A., Busse, A.,
Heiß, H.: kmaf: automatic kernel-level management of thread
and data affinity. In: Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques,
2014, pp. 277–288.

[10] Diener, M., Madruga, F.L., Rodrigues, E.R., Alves, M.A.Z.,
Schneider, J., Navaux, P.O.A., Heiss, H.: Evaluating thread
placement based on memory access patterns for multi-core
processors. In: Proceedings of the 12th International Confer-
ence on High Performance Computing and Communications,
2010, pp. 491–496.

[11] DynamoRIO: http://www.dynamorio.org/

[12] Fujimoto, R.M., Panesar, K.S., Panesar, K.S.: Buffer manage-
ment in shared-memory time warp systems. In: Proceedings
of the Workshop on Parallel and Distributed Simulation, 1995,
pp. 149–156.

[13] Di Gennaro, I., Pellegrini, A., Quaglia, F.: OS-based NUMA
optimization: Tackling the case of truly multi-thread applica-
tions with non-partitioned virtual page accesses. In: Proceed-
ings of the 16th Intrnational Symposium on Cluster, Cloud
and Grid Computing, 2016, pp. 292–300.

[14] Karlsson, C., Davies, T., Chen, Z.: Optimizing process-to-core
mappings for application level multi-dimensional MPI com-
munications. In: Proceedings of the International Conference
on Cluster Computing, 2012, pp. 486–494.

[15] Ketterlin, A., Clauss, P.: Efficient memory tracing by program
skeletonization. In: Proceedings of the International Sym-
posium on Performance Analysis of Systems and Software,
2011, pp. 97–106.

[16] Laurenzano, M., Simon, B., Snavely, A., Gunn, M.: Low cost
trace-driven memory simulation using simpoint. Computer
Architecture News 33(5), 81–86 (2005).

[17] C. Bienia, Benchmarking Modern Multiprocessors, Princeton
University, 2011, January

[18] Laurenzano, M., Tikir, M.M., Carrington, L., Snavely, A.:
PEBIL: efficient static binary instrumentation for linux. In:
Proceedings of the International Symposium on Performance
Analysis of Systems and Software, 2010, pp. 175–183.

[19] Marathe, J., Mueller, F.: Hardware profile-guided automatic
page placement for ccnuma systems. In: Proceedings of the
Symposium on Principles and Practice of Parallel Program-
ming, 2006, pp. 90–99.

[20] Marathe, J., Mueller, F., Mohan, T., Mckee, S.A., De Supin-
ski, B.R., Yoo, A.: Metric: Memory tracing via dynamic
binary rewriting to identify cache inefficiencies. ACM Trans-
actional on Programming Languages and Systems 29(2),
12(2007).

[21] Nethercote, N., Seward, J.: How to shadow every byte of
memory used by a program. In: Proceedings of the 3rd
International Conference on Virtual Execution Environments,
2007, pp. 65–74.

[22] Nethercote, N., Seward, J.: Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In: Proceedings of
the Conference on Programming Language Design and Im-
plementation, 2007, pp. 89–100.

[23] Nowak, A., Bitzes, G.: The overhead of profiling
using PMU hardware counters (July 2014),
http://dx.doi.org/10.5281/zenodo.10800

[24] Pellegrini, A.: Hijacker: Efficient static software instrumen-
tation with applications in high performance computing. In:
Proceedings of the 2013 International Conference on High
Performance Computing & Simulation, 2013, pp. 650–655.

[25] Piccoli, G., Santos, H.N., Rodrigues, R.E., Pousa, C., Borin,
E., Quintão Pereira, F.M.: Compiler support for selective page
migration in NUMA architectures. In: Proceedings of the
23rd International Conference on Parallel Architectures and
Compilation Techniques, 2014, pp. 369–380.

[26] Pin: http://www.pintool.org/

[27] Tikir, M.M., Hollingsworth, J.K.: Hardware monitors for
dynamic page migration. Journal of Parallel and Distributed
Computing 68(9), 1186–1200 (2008).

[28] Trahay, F., Rué, F., Faverge, M., Ishikawa, Y., Namyst, R.,
Dongarra, J.: Eztrace: A generic framework for performance
analysis. In: Proceedings of the 11th International Symposium
on Cluster, Cloud and Grid Computing, 2011, pp. 618–619
(2011).

[29] Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation:
A survey. ACM Computing Surveys 29(2), 128–170 (1997).

