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Abstract—In this work, we present a Bayesian non-parametric
approach to model the motion control of ATVs. The motion control
model is based on a Dirichlet Process-Gaussian Process (DP-GP)
mixture model. The DP-GP mixture model provides a flexible
representation of patterns of control manoeuvres along trajectories
of different lengths and discretizations. The model also estimates the
number of patterns, sufficient for modeling the dynamics of the ATV.
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I. INTRODUCTION

DERIVING an explicit dynamic model for an Articulated
Tracked Vehicles (ATVs) is a challenging task [1]. This

task requires an accurate analysis of all the forces acting on
the robot. Most of these forces are due to the interaction
between the robot and the environment and can not be
directly measurable due to the lack of suitable tactile sensors.
Therefore, exact dynamics is not straightforward, since it is not
possible to predict the exact motion of the vehicle only on the
basis of the velocities of all the active mechanical components.
Nevertheless, an effective dynamics approximation of the
vehicle is crucial for both motion planning and control for
real-time autonomous navigation.

In this work, we present a Bayesian non-parametric
approach to model the motion control of ATVs (see Fig.
1). The main idea is to estimate the control manoeuvres
to be applied to the robot to track a given trajectory from
the previously observed trajectories of the robot, the terrain
features associated with each trajectory and the control
commands sent to the robot to follow such trajectories. The
motion control model is based on a Dirichlet Process-Gaussian
Process (DP-GP) mixture model [2], [3]. The DP-GP mixture
model provides a flexible representation of patterns of
control manoeuvres along trajectories of different lengths
and discretizations. This representation allows us to group
trajectories sharing either patterns of control manoeuvres or
path segments. Finally, the model estimates the number of
patterns, sufficient for modeling the dynamics of the ATV.

II. RELATED WORK

Dynamic modeling is a key component of compliant and
force control for complex robots, especially for actively
articulated tracked robots [1]. However, due to unknown and
hard to model non-linearity, analytic models of the dynamics
for such systems are often only rough approximations.
Nowadays, machine learning techniques are commonly
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Fig. 1 Actively Articulated Tracked Vehicle Absolem, designed by
c�Bluebotics [4] for USAR applications: This platform is equipped with the

KINOVA Jarm Arm for pick and place opeartions

applied to significantly improve model-based control [5].
In this regard, a number of methods have been proposed
combining contextual policy search (CPS) [6] with prior
knowledge [7] and regression [8], [9]. CPS is a popular means
for multi-task reinforcement learning in robotic control [6].
CPS learns a hierarchical policy, in which the lower-level
policy is often a domain-specific behavior representation such
as dynamical movement primitives (DMPs) [10]. Learning
takes place on the upper-level policy that defines a distribution
over the parameters of the lower-level policy for a given
context. This context encodes properties of the environment
or the task. CPS is typically based on local search based
approaches such as regression. Locally Weighted Projection
Regression (LWPR), introduced in [11], is a local model
which approximates non-linear mappings in high-dimensional
space. Its computational complexity depends linearly on
the amount of the training instances. A drawback of this
approach is the large number of free parameters which
are hard to optimize. In [7], the authors introduced prior
knowledge in order to increase the generalization properties
of LWPR. A large portion of the literature is focused
on employing kernel-based methods for the estimation of
the inverse dynamics mapping by employing approaches,
such as Gaussian Process Regression (GPR) and Support
Vector Regression (SVR) [12]. Local Gaussian Process (LGP),
introduced in [8], handles the problem of real-time learning by
building local models on similar inputs, based on a distance
metric and uses the Cholesky decomposition for incrementally
updating the kernel matrix. In [13], the authors propose
a real-time algorithm, dubbed SSGPR, which incrementally
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updates the model using GPR as learning method. The
model is capable of learning non-linear mappings by using
random features mapping for kernel approximation whose
hyper-parameters are automatically updated. For the special
case of relatively low-dimensional search spaces combined
with an expensive cost function, which limits the number of
evaluations of the cost functions, global search approaches,
like Bayesian optimization are often superior, for instance
for selecting hyper-parameters [14]. Bayesian optimization has
been used for non-contextual policy search in robot grasping
[15] and for locomotion tasks [16], [17]. The proposed
approach for learning patterns of control manoeuvres for
the tracked vehicle in Fig. 1 resorts to the main concepts
underlying CPS. However, it differs from it by representing
both the upper-level and the lower-level policies with a unified
hierarchical model, defined by DP-GP mixture model where
the number of upper-level policies sufficient for describing
robot motions is also learned from data. Gibbs sampling [18]
and a hybrid Monte Carlo technique [19] are applied to obtain
estimates of the concentration upper-level policies and of the
the hyper-parameters of the lower-level policies, respectively.
A similar approach has been used for modeling non-linear
dynamics of moving targets [2], [3].

III. THE MOTION CONTROL MODEL OF THE ATV
Let us consider the ATV moving within a three-dimensional

environment, negotiating rubbles, stairs and adapting each
active sub-track to complex terrain surfaces. We assume that
the robot is endowed with a 3D SLAM algorithm, which, over
time, provides an estimation q(t) ∈ SE(3) of the robot pose
within the map, with respect to a global reference frame. A
trajectory τ is a sequence of robot poses {q(t)}Tt=1, which
denote a path between two different points of the environment
(e.g., the sequence of robot poses along a staircase, which
interconnects the basement of a building to its first floor). A
descriptor ϕ(t) ∈ Rd of the terrain features at a particular
pose q(t) of a trajectory is a vector of real values specifying
a measure of the heights z of the points of the 3D map, built by
the SLAM algorithm. A 3D voxel grid is centered and oriented
according to the pose q(t). The dimensions of the voxel grid
is fixed according to the size of the ATV. We denote with φ
the set of all the terrain descriptors {ϕ(t)}Tt=1, obtained by
sliding the voxel grid along the entire trajectory.

We denote with c a sequence of control manoeuvres u(t) ∈
Rn, for all t = 1, . . . , T (e.g., linear and angular velocity of
the robot body, angular velocities of sub-tracks), applied to
the ATV in order to suitably steer the robot along a trajectory
and simultaneously adapt its morphology to the terrain. This
said, let us assume that the robot has followed several paths
τ1, . . . , τN of different lengths, starting and ending to different
locations in the map, possibly sharing either the same sequence
of control manoeuvres or path segments. Let τj , φj and cj be
the j-th tracked trajectory, the j-th set of terrain descriptors
and the j-th sequence of control commands, respectively.
The dynamics of the ATV can be modeled by the following
non-linear system:

uj(t) = fi (qj(t),ϕj(t)) , j = 1, . . . , N. (1)

Here fi : R6 × Rd �→ Rn are unknown continuous functions
that code specific patterns of control manoeuvres such as
falling down all the sub-tracks of the ATV for nose line
climbing, lifting up the sub-tracks for riser climbing or for
rotational motion within narrow passages. We refer to fi (·) as
a the i-th pattern of control manoeuvres.

We assume that each pattern is drawn from a set F =
{f1, . . . , fM} of unknown continuous functions, whose number
M is also unknown. Note that, there is no bijection between
the set F of patterns and the set of all the tracked trajectories.
In fact, one or more trajectories followed by the robot within
the map of the environment may be described by the same
pattern, while some pattern in F may not describe any tracked
trajectory. Thus, in order to model the motion control of the
ATV we have to determine the set F as well as the relation
between the patterns fi ∈ F , the trajectories τj , the set of
terrain descriptors φj and the sequences of cj of control
commands.

According to (1), each function fi (·) projects both the
robot pose qj(t) and the terrain descriptors ϕj(t) of the
j-th trajectory to the control commands uj(t), at time t.
Therefore, each fi (·) can be viewed as a spatial phenomenon
that can be modeled by a Gaussian Process GPi, for any
i = 1, . . . ,M , q ∈ SE(3) and ϕ ∈ Rd [20]. Each GPi

is completely specified by a mean function mi(x̃) and a
positive semi-definite covariance function ki(x̃p, x̃q), with
x̃ ..=

�
q� ϕ���. In this work, we assume that each GPi

has the standard squared exponential covariance function:

ki(x̃p, x̃q)=σ2
i exp

�
− 1

2 (x̃p − x̃q)
�
Λ−1

i (x̃p − x̃q)
�
+

δ(x̃p, x̃q)σ
2
wi

Here δ(x̃p, x̃q) is the Kronecker delta function. Λi
..=

diag
��

l2i,1, . . . , l
2
i,6+d

��
depends on the characteristic

length-scales parameters li,h. The term σwi
represents

within-pose variation (e.g., due to noisy measurements); the
ratio of σwi and σi weights the reflective effects of noise
and influences from nearby poses. The above exponential
covariance function encodes similarities between the tracked
trajectories. If we denote with Σi the covariance matrix of
each GPi, with terms Σp,q = ki(x̃p, x̃q), then, for each
x̃ ∈ R6 × Rd, fi(x̃) ∼ GPi(mi,Σi), namely, GPi is the
distribution of the control commands over the workspace
specified by the i-th function fi(·) ∈ F . Now, we have to build
a relation that links a sequence cj of robot control commands
to a pattern fi(·). This relation has to be also able to capture
differences resulting from trajectories τj ending into different
locations within the 3D map.

Let us consider a discrete random variable gj ranging over
a set I = {1, . . . ,M} of indices. The event {gj = i}
represents the association of the sequence cj , applied to the
robot to track the trajectory τj , having terrain descriptors set
φj , with the i-th pattern fi ∈ F , as shown in (1). We assume
that gj ∼ Categorical(π), with π =

�
π1 . . . πM

�
prior

probabilities of every possible outcome of gj , for any cj , τj
and φj , with j = 1, . . . , N . Given these prior probabilities, the
probability of the j-th sequence of control commands, given
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Fig. 2 Bayesian network of the motion contol model of the ATV

the j-th tracked trajectory and of the observed j-th terrain
descriptors set φj is given by the following mixture model

Pr(u1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j ) =

=
�M

i=1 Pr(gj = i|π)Pr(u1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j , {mi,Σi})

However, we can not know a priori how many patterns of
control manoeuvres are sufficient for modeling the dynamics
of the ATV. To cope with this issue we resort to a Dirichlet
process (DP) mixture model to create an infinite mixture of
patterns of control manoeuvres and to place a prior over
the number of patterns. In this work, we choose a Gaussian
process GP0(μ0,Σ0) as the base distribution of the DP. On the
other hand, the support set of the process is chosen to be the set
of all the admissible sequences of control commands for the
robot. According to this model, the prior probability that a pair
τj , φj generates a sequence cj of control commands, through
an existing pattern fi(·) is Pr(gj = i|g−j ,α) = ni

N−1+α . On
the other hand, the probability that a pair τj , φj is projected to
a cj , through a new pattern fi(·) is Pr(gj = M +1|g−j ,α) =

α
N−1+α . Here, g−j refers to the pattern assignments for the
remaining trajectories, α is the concentration parameter of the
DP, ni is the number of pairs τj , φj assigned to fi(·), N
is the total number of observations and M is the number of
the observed fi(·). To close, the dynamics of the articulated
tracked robot can be represented by the following probabilistic
motion control model

π ∼ GEM(α)

mi ∼ GP0(μ0,Σ0)

Σi ∼W−1(W0, ν0)

gj |π ∼ Categorical(π)

fgj (x̃)|gj , {mgj ,Σgj}∼ GPgj (mgj ,Σgj ), ∀x̃ ∈ R6 × Rd

with i = 1, . . . ,∞ and j = 1, . . . , N . The associated
Bayesian network is illustrated in Fig. 2. In this model, an
Inverse-Wishart distribution of parameters W0, ν0 is given to
the covariance Σi. Both the parameters σgj and σwgj

are given
inverse gamma priors with hyper-hypers a and b (separately
for the two variances). We also give independent log normal
prior to the length-scales Λgj [18].

Fig. 3 Trajectories generated for training the motion control model over a
simulated harsh terrain. Terrain surface is represented through a mesh

IV. MODEL PARAMETERS LEARNING

The algorithm for learning the parameters of the Dirichlet
Process-Gaussian Process (DP-GP) mixture model of the robot
motion control is similar to the approach proposed in [18],
[21]. Let us consider a set D = {ut

j , (q
t
j ,ϕ

t
j)}

Tj ,N
t=1,j=1 of

observed trajectories, terrain features and control commands
(see Fig. 3). These trajectories have been generated by
manually steering the robot within different simulated
disaster scenarios (e.g., climbing stairs, overcoming obstacles,
traversing harsh terrains).

We resort to our knowledge about the robot as well as
about its locomotion capabilities to fix in advance an initial
value of the number M of patterns of control manoeuvres.
Thus, we initialize the mixture model with M components.
At each Gibbs sweep, estimates of the assignments of patterns
of control manoeuvres to sequences of control commands, as
well as the GP parameters are obtained by sampling from the
following distributions:

Pr(gj = i|u1:Tj

j ,α, {mi,Σi}) ∝

∝
�

ni
N−1+α

L(gj = i;u
1:Tj

j ) if i � M
α

N−1+α

�
L(gj = i;u

1:Tj

j )B(mi,Σi)dmidΣi if i = M + 1

and

Pr(mi,Σi|u1:Tj

j , gj ,m−i,Σ−i) ∝
�

j|gj=i L(gj = i;u
1:Tj

j )

B(mi,Σi)

Here L(gj = i;u
1:Tj

j ) = Pr(u1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j , {gj =
i}, {mi,Σi}) is the likelihood of the i-th pattern under
the sequence of control commands u

1:Tj

j . B(mi,Σi) =

Pr(mi,Σi|u1:Tj

j ,μ0,Σ0,W0, ν0). m−i and Σ−i refer to
the parameters of the GPi associated to the remaining
trajectories. Then, the DP concentration α is sampled using
standard Gibbs sampling techniques [18]. Finally, an hybrid
Monte Carlo technique is applied to obtain estimates of the
hyper-parameters σi, σwi

and Λi of each GPi [19]. Fig. 4
shows the number of control manoeuvres along trajectories
which have been estimated by the learning algorithm with
respect the number of Gibbs sweeps. Here the initial guess
M on the number of components has been set equal to 12.

Fig. 5 shows the relative Root Mean Square error (RMS) of
the DP-GP model in imitating the motion patterns. This error
is computed comparing the estimated target model to the real
underlying motion patterns [3].
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Fig. 4 Number of control manoeuvres along trajectories which have been
estimated by the learning algorithm with respect the number of Gibbs

sweeps
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Fig. 5 Relative Root Mean Square error (RMS) of the DP-GP model in
imitating the motion patterns over the number of Gibbs sweeps

The learned robot motion control model can be used to
predict a pattern of control manoeuvres, given both a trajectory
τj and the associated terrain features descriptors φj [2].

V. FUTURE WORK

In this work, we described the probabilistic model of the
motion control of ATVs based on a Dirichlet Process-Gaussian
Process (DP-GP) mixtures. This model is prevailing because
it permits the number of patterns of control manoeuvres to be
inferred directly from data and thus bypass the difficult model
selection problem on the pattern number. However, inference
with this model can be computationally inefficient because it
requires the inversion of the covariance matrices, though this
cost has been greatly alleviated by making use of the mixtures.
In order to increase the scalability of the inference as well as
to reduce the computational cost of the learning phase, an
approach based on Multi-Task learning could be employed
[22]. More precisely, the robot motion control task could be
separated into two different sub-tasks, namely, the trajectory
tracking task and the sub-tracks reconfiguration task. Both
these tasks are correlated and share the same representation.
Therefore a multi-task learning approach could be suitably
applied leading to both a better model for the main task and
an improvement of the performance of the learning process.
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