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Abstract

Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex
and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these tech-
niques can explore intracellular dynamics with high time resolution at the nanoscale. Here we
extended one of the Image Correlation Spectroscopy (ICS) methods, i.e. the image Mean Square
Displacement, in order to study 2-dimensional diffusive and flow motion in confined systems, whose
driving speed is uniformly distributed in a variable angular range. Although these conditions are
not deeply investigated in the current literature, they can be commonly found in the intracellular
trafficking of nanocarriers, which diffuse in the cytoplasm and/or may move along the cytoskele-
ton in different directions. The proposed approach could reveal the underlying system’s symmetry
using methods derived from fluorescence correlation concepts and could recover dynamic and ge-
ometric features which are commonly done by single particle analyses. Furthermore, it improves
the characterization of low-speed flow motions, when compared to SpatioTemporal Image Correla-
tion Spectroscopy (STICS). Although we present a specific example (lipoplexes in living cells), the
emphasis is in the discussion of the method, its basic assumptions and its validation on numeric
simulations.

Keywords: Image Correlation Spectroscopy (ICS), intracellular trafficking, drug and gene
delivery.

Statement of Significance

Recent advances in nanoparticle-based drug and gene delivery systems have pointed out the
interactions at cellular and subcellular levels as key-factors for the efficiency of the adopted bioma-
terials. Such biochemical and biophysical interactions drive and affect the intracellular dynamics,
that is commonly characterized by means of fluorescence microscopy and spectroscopy techniques.
Here we present a novel Image Correlation Spectroscopy (ICS) method as a promising tool to
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capture the intracellular behavior of nanoparticles with high resolution and low background’s sen-
sitivity. This study overcomes some of the approximations adopted so far, by decoupling the flow
terms of the investigated dynamics and thus recovering ensemble’s information from specific single
particle behaviors. Finally, relevant implications for nanoparticle-based drug delivery are shown.

1. Introduction

One important task in biophysics concerns the characterization of motion of macromolecules in
living cells. This task is generally carried out by means of fluorescence microscopy or spectroscopy
techniques and provides a fundamental approach to the study of dynamics and interactions at
cellular and molecular levels. These methods explore a variety of biological processes involving
membrane proteins [1–4], protein-protein interactions [5], nucleic acids, lateral structure of biolog-
ical membranes [6], molecular diffusion and cytoplasmatic trafficking of nanoparticles (NPs) [7–9].
NPs offer unique possibilities for overcoming cellular barriers in order to improve the delivery of
various drugs and gene nanomedicines. Characterizing the intracellular mode of motion of nanocar-
riers is rapidly emerging as a key issue in drug delivery. In this regard, Single Particle Tracking
(SPT) represents the technique-of-choice [10–15], but it is extremely time consuming. On the other
side, variants of Fluorescence Correlation Spectroscopy (FCS) provide techniques by which fluo-
rescent labeled objects can be studied at high spatial and temporal resolution, without identifying
single particles. In detail, FCS measures spontaneous intensity fluctuations caused by small devia-
tions from thermal equilibrium [16, 17]. The analysis is commonly achieved by applying temporal
correlation functions, which can be coupled to spatial information, for example by means of laser
scanning techniques. Image Correlation Spectroscopy (ICS) operates on image stacks and globally
refers to the ensemble of simultaneously detected NPs. Average values but not their distribution
are obtained by ICS, but a great amount of data can be rapidly achieved due to its high statistics.
Many ICS-based methods have been developed, such as Raster Image Correlation Spectroscopy
(RICS) [18], Temporal and SpatioTemporal Image Correlation Spectroscopy (TICS and STICS
respectively) [1, 7, 9], Particle Image Correlation Spectroscopy (PICS) [19], image Mean Square
Displacement (iMSD) [2]. Each method has its own field of application such as dynamic processes
ranging from diffusion of cytosolic proteins, slower processes such as the assembly and disassembly
of large multiprotein complexes to determination of spatial maps of concentrations, aggregation,
and dynamics in living cells. However, all of these methods have not specifically being designed
to the study two-dimensional dynamical processes driven by flow terms, which are uniformly dis-
tributed within an angular range. These conditions are biologically relevant since they characterize
NPs that, in turn, controls the efficiency of drug delivery.

To fulfill this gap, here we present an ICS-based method that arises from Spatio Temporal Image
Correlation Spectroscopy (STICS) and image Mean Square Displacement (iMSD) and provides a
degree of spatial symmetry. Specifically, we decoupled the average flow vector from the strength of
the driving speed. These aspects become relevant whether a velocity map at the intracellular level is
computed or the chemical and biological interactions at the nanoscale are investigated. Furthermore,
the obtained results can be coupled to information arising from pair correlation-based techniques
[20], that do not require spatial averaging, but detect boundaries of confinement zones and barriers
to flow. We found out that this extension of the correlation analysis over a 3-dimensional domain
allows a correct NP’s motion characterization for low values of flow speed, under specific conditions
of symmetry. This was an unexpected result, since in these regimes of NPs speed and motion
symmetry, application of STICS-based techniques does result in incorrect categorization of the
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NPs mode of motion, leading to misleading interpretations. We mainly focused on the analytical
method, which has been validated by numeric simulations illustrating and supporting our basic
assumptions. Finally, a specific example of application is given. It involves the analysis of cationic
lipid/DNA nanoparticles (lipoplexes) in Chinese Hamster Ovary cells. To date, lipoplexes are are
considered to be the most promising class of organic nanoparticles for a wide variety of both in
vitro and in vivo applications (e.g. cell transfection, gene silencing, gene therapy etc.). Therefore,
a deeper insight on the intracellular dynamics of lipoplexes shall have a profound impact for the
development of further lipid-based gene delivery materials.

2. Material and methods

2.1. Preparation of complexes and confocal microscopy experiments

The cationic lipid 3β-[N-(N,N-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and the
zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE) were purchased from Avanti
Polar Lipids (Alabaster, AL) and used without further purification. For the preparation of cationic
liposomes, the binary lipid mixtures were first dissolved in chloroform and subsequently left to evap-
orate under vacuum for at least 24 h. The obtained lipid films were then hydrated with Nanopure
water until a final concentration of 1 mg/ml. Sonication to clarity was needed to obtain unilamellar
cationic liposomes. In order to form binary liposome/DNA complexes, 100 µl of phosphate buffered
saline (PBS) were added to a 5 µl dispersion containing binary liposomes. The same amount of
buffer was added to 1 µl of plasmid DNA (pDNA). The solutions were subsequently left to equili-
brate for a few minutes. Then, the pDNA solution was poured in the liposome dispersion and after
20 minutes the complexes were ready to use. CHO-K1 cells were purchased from American Type
Culture Collection (CCL-61 ATCC) and were grown in Hams F12K medium supplemented with
10% of Fetal Bovine Serum (FBS) at 37◦C and in 5% CO2. Confocal microscopy experiments were
carried out using a Fluoview FV-1000 (Olympus, Tokyo, Japan) microscope, provided with a 543
nm HeNe laser, as excitation source. Data were collected at 37◦C and were controlled by a proper
acquisition software (FV10-ASW, Olympus, Tokyo, Japan).

2.2. Numeric simulations and data analysis

In silico validations have been carried out by simulating image-stacks with tunable dynamic pa-
rameters (i.e. diffusion coefficient and strength, direction and angular distribution of flow speed),
total length, number and size of spot-like nanoparticles. First, a set of single particle tracks was
generated according to the dynamic input arguments. Then, the trajectories were randomly dis-
tributed over a square domain, which corresponds to the image matrix. Finally, the obtained
template was used to locate the Gaussian spots, frame by frame. All simulations and data analyses
were performed off-line using a commercial software package (MATLAB 7.13, The MathWorks Inc.,
Natick, MA, 2011).

3. Theory

ICS-based techniques focus on the correlation of fluorescence fluctuations, which are computed
from the intensities recorded in the image time-series, pixel by pixel, frame by frame. In detail, a
generalized spatiotemporal intensity fluctuation correlation function can be defined as

g(ξ, η, τ) =
〈δi(x, y, t) δi(x+ ξ, y + η, t+ τ)〉

〈i(x, y)〉t〈i(x, y)〉t+τ
(1)
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where ξ, η and τ represent two spatial and a temporal lag variables, respectively and δi(x, y, t) is
the intensity fluctuation at pixel position (x, y) and time t, i.e. δi(x, y, t) = i(x, y, t)− 〈i(x, y)〉t [1].
g(ξ, η, τ) is typically calculated by Fourier methods and fit to standard Gaussian functions. The
spatial correlation at time t can be evaluated from Eq. 1 by imposing a zero time-lag:

g(ξ, η, 0)t =
〈δi(x, y, t) δi(x+ ξ, y + η, t)〉

〈i(x, y)〉2t
(2)

Furthermore, the k-th spatial correlation function of the image-stack can be fitted by a 2-dimensional
Gaussian surface of scale factor G0(k), offset G∞(k) and variance ω2

k:

g(ξ, η, 0)k = G0(k) exp

{
−ξ

2 + η2

ω2
k

}
+G∞(k) (3)

Similarly, the temporal correlation function is defined by evaluating the generalized correlation
function at zero spatial-lag:

g(0, 0, τ) =
〈δi(x, y, t) δi(x, y, t+ τ)〉
〈i(x, y)〉t〈i(x, y)〉t+τ

(4)

Motion characterization and measurements of the dynamic parameters can be carried out by eval-
uating the time correlation function, i.e. by fitting g(ξ, η, τ) at the origin of the (ξ, η)-plane, with
the following curve:

g(0, 0, τ) = G∞ +G0

(
1 +

τ

τd

)−1
×

exp

{
−
(
τ

τf

)2(
1 +

τ

τd

)−1} (5)

where ω is the mean correlation radius, obtained by averaging the ωk-values, which have been
measured by fitting Eq. 3 for every image in the stack. v is the modulus of the flow speed, τd =
ω/(4D) and τf = ω/v represent the characteristic diffusion decay time and flow time, respectively
[1]. Particles undergoing Brownian diffusion tend to exit the correlation area in a symmetric
fashion, thus broadening the Gaussian surface in any direction [7]: the peak is then centered at
(ξ0, η0) = (0, 0) and its value decreases with time. If a flow term ~v along a specific direction φ0 is
added to the particle dynamics, a drift contribution affects the correlation function and the Gaussian
peak is subsequently shifted to the lag positions ξ0 = −vxτ = vξτ ; η0 = −vyτ = vητ . However, the
fitting procedure on the temporal correlation function alone (Eq. 5) is directionally blind to the
flow speed ~v. Instead its extension over a spatiotemporal domain adds information about speed’s
average direction and strength, but only measures the net resultant directed component [1]. Thus,
the aforementioned approaches yield different velocity values when particles uniformly flow within
a non-zero angular range.

This condition can be described as a system of M particles undergoing Brownian diffusion and
driven by a flow motion of speed ~vk (k = 1, 2 ...M), which is uniformly distributed around a fixed
direction φ0, within an angular range ψ. Hence, φ0 is responsible for the problem’s anisotropy
and ψ defines the system’s symmetry. As an instance, Figure 1 shows some representative sets of
trajectories, whose flow speed is centered at φ0 = π/4, for different ψ-values. In order to decouple
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Figure 1: (A, B, C) Sets of 50 tracks and (D, E, F) corresponding average displacements from the origin, for dynamics
driven by Brownian diffusion + uniformly distributed flow motion (D = 0.75 10−3 µm2 s−1; v = 1.5 10−2 µm s−1;
φ0 = π/4 and ψA = π/6, ψB = π, ψC = 3π/2).

the flow’s effects on the correlation function and take into account the symmetry properties arising
from the angular distribution of the driving speed, we adopted and extended the image-Mean
Square Displacement (i-MSD) method. The theory of iMSD has been developed and validated for
Brownian and confined diffusions to describe the protein lateral motion in cell membranes [2]. It
starts from the following expression of g(ξ, η, τ):

g(ξ, η, τ) = g0 p(ξ, η, τ)⊗W (ξ, η) (6)

where g0 defines the contrast of fluctuation and is related to the average number of particles in the
observation volume, W (ξ, η) is known as the instrument Point Spread Function (PSF) and p(ξ, η, τ)
is the probability function describing the dispersive dynamics. Its expression is strictly related to
the single particle’s transition probability P (~r ′|~r, τ), i.e. the probability that a particle originally
at ~r, will be at ~r ′ after a time period τ . For Brownian diffusion + directed motion it reads [14, 21]

P (~r ′|~r, τ) =
1

4πDτ
exp

{
−|~r

′ − ~r − ~vτ |2

4Dτ

}
(7)
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The spatiotemporal correlation gives overall information about the entire set of the investigated
particles. Thus, it involves an ensemble average of the single particle behaviors and it is affected by
the spatial distribution of the flow terms. Brownian diffusion yields linear trends of the correlation
Gaussian’s variance [2], ordered fluxes are responsible for the peak’s shift [7] and the system’s
symmetry contributes to a further (anisotropic) spread of the correlation function. For τ � τf ,
g(ξ, η, τ) can be approximated by the following relationship:

g(ξ, η, τ) = G∞ +G1(τ)×

exp

{
− [ξ − vξ τ ]2 + [η − vη τ ]2

σ2(τ)

}
(8)

where
vφ = (v2ξ + v2η)

1
2 = aφv < v (9)

and
~vφ = −〈~v〉 (10)

The negative sign arises from the fact that the Gaussian correlation peak moves in a direction
opposite to the flow. Therefore, the flow contribution to the peak’s shift can be quantified by the
aφ-parameter, which is related to the system’s symmetry, varies from 0 (ψ = 2π ⇒ 〈~v〉 = 0) to 1
(ψ = 0⇒ 〈~v〉 = v) and reads (Eq. 9)

a2φ =
〈~v〉2

〈v2〉
(11)

In order to explore the drift contribution over the entire domain (0 < ψ < 2π), we can first express
the position of the k-th particle at time t as ~rk = ~vkt. This corresponds to neglecting the effect of
the diffusion over the spatial distribution of the particle position. Under this assumption, after a
time period t every particle will be at a distance |~r(t)| from its starting position and

a2φ =
〈~r(t)〉2

〈r2(t)〉
(12)

Furthermore, 〈~r(t)〉 can be analytically related to the angular dispersion ψ. Indeed, by choosing a
reference axis along the φ-direction, it reads

〈~r〉 =

∫ ψ/2
0
|~r| cos θdθ∫ ψ/2
0

dθ
=

2

ψ
sin

(
ψ

2

)
|~r| (13)

and finally

a2φ =

[
2

ψ
sin

(
ψ

2

)]2
(14)

Hence, the correlation function moves in the φ-direction with a decreasing drift with respect to the
particle speed angular dispersion. This argument leads to the definition of another flow contribution,
which is not detectable from the peak’s shift, but is complementary to a2φ. It can be written as

a2σ = 1− a2φ =
〈r2(t)〉 − 〈~r(t)〉2

〈r2(t)〉
=
〈[~r(t)− 〈~r(t)〉]2〉

〈r2(t)〉
(15)
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Figure 2: (A) Symmetry parameter a2σ as function of ψ for strongly directed motion and diffusive + flow motion
(D = 0.75 10−3 µm2 s−1; v = 0.5 10−2 µm s−1). (B) Corresponding Gaussian’s variance for three different ψ-values.

and it is involved in the time evolution of the fitting Gaussian’s variance (i.e. σ2(τ) in Eq. 8). On
the other hand, the numerator in Eq. 15 is the second central moment of ~r, i.e. the mean square
displacement over the ensemble, at time t. Flow motions add a quadratic term to σ2(τ), that is
related to the complementary contribution a2σ. In other words

σ2(τ) = ω2 + 4Dτ + v2στ
2 (16)

where
v2σ = a2σv

2 (17)

Therefore, the parabolic term increases with the system’s symmetry (Fig. 2) and v can be finally
calculated as

v2 = v2φ + v2σ = (a2φ + a2σ)v2 (18)

The effect of the Brownian diffusion over the symmetry parameters is a deviation from the functional
relationship 14 (Fig. 2). This deviation is such that aφ follows the trend of a specific single track
asphericity. It is evaluated over the trajectory which is obtained by translating all the tracks of the
ensemble, one after the other. Therefore, the asphericity is an ensemble’s parameter arising from
single particle analyses. It is defined from the gyration tensor of the particle trajectories [22, 23] and
quantifies the mean square displacement of the particle positions along two orthogonal directions.

4. Results and discussion

4.1. Dynamic parameters and system’s symmetry

In order to validate the proposed method, tests on numerical simulation have been carried out.
In this section we present some representative examples mimicking the dynamics of nanoparticle
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Figure 3: iMSD analysis of two representative conditions with same dynamic parameters (D = 0.75 10−3 µm2 s−1;
v = 1.5 10−2 µm s−1; φ = −π/6) and different angular dispersions ψ1 = π/4 (top panles), ψ2 = 3π/2 (bottom
panels). (A, G) Top view and (B, H) 3D view of the correlation function, (C, I) peak’s position as function of time
(”×” for ξ0(τ), ”+” for η0(τ)), (D, J) time evolution of σ2 from τ = 0 to τ = τm = 30 s and (E, F, K, L) circular
sections g(ρ∞, θ, τ), g(ρ∞, θ, τm) for ρ∞ = ω.
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inside the cytoplasm. They consist on image-stacks of length N = 300 frames, size 256× 256 px2,
containing M = 50 spots undergoing Brownian diffusion (D = 0.75 10−3 µm2 s−1) + flow motion
(v = 1.5 10−2 µm s−1) and different angular dispersion (Fig 3). For low ψ-values (e.g. ψ = π/4, top
panels) the shift of the fitting surface is manifest and it can be measured through the centroid’s
position (ξ0(τ), η0(τ)) (Fig. 3C). Conversely, the parabolic contribution of the Gaussian’s variance
is very small (Fig. 3D). Finally, the angular distribution g(ρ∞, θ, τ) presents a peak centered at
θ = φ (Fig. 3 panels E, F). On the other side, high ψ-values (e.g. ψ = 3π/2) yield lower shifts
of the correlation function, corresponding to flatter angular distribution and remarkable quadratic
contribution to the time evolution of σ2 (Fig. 3, bottom panels). The intermediate conditions of
symmetry can be explored by varying ψ (Fig. 4). As expected, high drift contribution corresponds
to low quadratic terms in the variance curve, which approaches to linear trends for ψ → 0. On the
other hand, increasing ψ yields lower shifts and higher parabolic terms. Furthermore, the angular
distribution’s peak is centered at φ and the intercept of σ2(τ) is equal to the measured ω2, for any
ψ-value. Finally, we measured the symmetry parameter a2σ, the diffusion coefficient D and the flow
speed v, as functions of ψ. As expected, a slight underestimation of a2σ with respect to the ideal
curve (D = 0) has been found out. This trend is confirmed by the measurements of the dynamic
parameters, whose percentage deviations with respect to the input arguments are lower than 15%
for D and 5% for v.

4.2. Detection of low-speed flow motion

The lowest value of flow speed, which can be detected at a given diffusion coefficient, depends
on the experimental set up (through ω, pixel size and total period of acquisition) and on the system
itself (through D, v and ψ). As an instance, particles directed with small angular dispersion and
low flow speed (with respect to the diffusion coefficient) yield a detectable drift at high τ , which
can be out of the measurement range. Instead, if the symmetric contribution is dominant, the
measurement of v is based on the parabolic term of σ2, which can be imperceptible within the
observation time scale at a given ω. Under low-speed conditions, the analysis of the correlation
function over the (ξ, η)-plane improves the STICS motion characterization. Indeed, finite values of
ω can yield a negligible flow contribution to g(0, 0, τ), whose trend results indistinguishable from the
diffusive one. On the other side, the iMSD approach detects flow effects on the Gaussian variance
or the peak’s shift. Fig. 5 shows a representative example, obtained by simulating dynamics mainly
governed by Brownian diffusion, with a small speed term, for different angular dispersions. It is
found out that there exists a critical value ψc, such that STICS does not distinguish flow terms for
ψ < ψc. However, the characterization of motion is successfully carried out trough iMSD, which
discriminats the kind of dynamics for any ψ, even if the measured parameters are underestimated.
Of note, no thresholds are needed to carry out the analysis. More precisely, all the diffusive trends
are included in the general forms of the functional relationships and can be obtained from them if
v → 0. The fitting computation is carried out through the general forms 5, 16 and yields redundant
flow terms if the dynamic is driven only by diffusion. In other words, the measured v-values are
close to 0 and the fitting error δ(v) are very high, thus resulting in δ(v)/v →∞. Instead, dynamics
governed by Brownian diffusion + flow motion present finite values of v, δ(v)/v and higher fitting
determination coefficient R2, with respect to the simple diffusive models.

The detection limits are therefore dictated only by the adopted experimental conditions and the
investigated system. Indeed, the spatial average involved in the correlation ultimately determines
the spatial resolution of the method and the minimum time delay of the experimental apparatus
determines the behavior at very short time. Furthermore, the ability in discriminating Brownian
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Figure 4: (A) Circular section of the correlation function at ρ∞ = ω, τ = τm, for dynamics driven by same flow speed
v and different angular dispersions ψ. Remarkable drift’s effects are manifest for low ψ-values. (B) Corresponding
time evolution of σ2, The parabolic contribution increases with ψ, complementarily to the peak’s shift. The black
errorbar shows the square correlation radius, measured through Eq. 3. (C) Measured symmetry coefficient a2σ and
(D) relative residuals from the expected values of the dynamic parameters, as functions of ψ. Input arguments:
D = 0.75 10−3 µm2 s−1; v = 1.5 10−2 µm s−1; φ = −π/6.
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Figure 5: (A) Measured diffusion coefficient and (B) flow speed as functions of ψ, obtained from STICS and iMSD.
The vertical lines individuate ψc, the input parameters are shown as horizontal red and blue lines, respectively for
D = 1.5 10−3 µm2 s−1 and v = 0.5 10−2 µm s−1.

diffusions from flows involves the correlation radius, which is related to the geometry of laser beam
and the finite dimensions of spots. Therefore, although the discussion has been focused on slow
dynamics mimicking the cytoplasmatic trafficking of nanoparticles, other biophysical systems can
be studied through the proposed approach, with a preliminary optimization of the experimental and
analytical parameters (i.e. minimum time delay, total length of image-stacks, maximum time-lag
for correlation, pixel size, extension of the fitting domain).

4.3. Background’s effects

In the experiments the spatiotemporal correlation function is generally affected by changes of
the overall background within the region of calculation, in which case it is difficult to discriminate
the contribution of particles. Here, we discuss the effects of slowly changing background on the
measurement of the dynamic parameters. This argument is based on the analyses of simulations
and the comparison of results obtained from STICS and iMSD approaches. In order to mimic the
actual conditions of acquisition, a Gaussian noise of tunable strength and a sinusoid function of
random phase and temporal period Tb are added to the simulated signals, pixel by pixel. Thus, the
resulting image-stack contains moving spots over a varying background (Fig. 6 panels A and B).
The proportion between the intensities of spots and background defines the signal-to-noise ratio and
the intensity distribution quantifies the number of pixels with intensity within the range (i, i+ ∆i).
Common procedures of background removal act on the intensity distribution and filter the signals
which overcome a tunable threshold value.

The temporal correlation function is affected by the background (Fig. 6D), since it varies over
times and modulates the correlation at zero spatial-lag. The oscillations of g(0, 0, τ) depend on Tb
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Figure 6: (A) First frame of a simulated image-stack affected by slowly changing background. (B) Background
intensity as a function of time: a Gaussian noise is added to a modulating sinusoid function of period Tb. (C)
Intensity distribution over the image-stack, adopted to set the background filter. (D) Effects of background on the
temporal correlation function and (E) corresponding curves after the filtering procedure. (F) Background’s effect
on the Gaussian’s variance (Tb = 30 s). The presented dynamics is characterized by the following input parameters:
D = 10−3 µm2 s−1; v = 1.5 10−2 µm s−1; ψ = π; φ = π/6.

STICS iMSD
Tb(s) ∆D (%) ∆v (%) ∆D (%) ∆v (%)

1 17.7 -8.18 -6.80 -7.75
5 47.2 11.1 -6.89 -7.75
10 39.8 -2.75 -6.91 -7.75
15 37.0 -11.9 -6.60 -7.81
20 20.4 -7.93 -9.21 -7.75
30 71.3 -17.0 -6.12 -7.81
60 55.1 -2.43 -6.10 -6.07

Table 1: STICS and iMSD measurement of the dynamic parameters after the background removal. Results are shown
as percentage differences from the input data.

and alter the measurements of the dynamic parameters. However, the effect is reduced when the
background is removed from the original image-stack (Fig. 6E). On the other side, the background
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D (10−3µm2s−1) v (10−3µm s−1) φ0 (rad) a2σ (a.u.)
256×256 pixels 1.06 ± 0.16 4.64 ± 0.15 - 1.00
ROI a 1.05 ± 0.23 1.27 ± 0.04 0.10 0.00
ROI b 0.60 ± 0.26 6.30 ± 0.11 -0.55 0.00
ROI c 1.16 ± 0.11 6.86 ± 0.37 2.36 0.89

Table 2: Measurement of the dynamic parameters which define the velocity map of the presented example.

changes with no spatial periodicity and its fluctuation weakly affects the correlation over the entire
(ξ, η)-plane. Subsequently, the peak’s shift (not shown) and the time evolution of the Gaussian’s
variance (Fig. 6F) provide better estimations of the dynamic parameters. Of note, the background
removal is necessary to the STICS analysis, but slightly improves iMSD measurements. Thus, the
iMSD method is more stable and less sensitive to slowly changing background and its fluctuations.
As an instance, we found out this general trend for different value of Tb, at a fixed signal-to-noise
ratio of SNR=8.5. Tab. 1 shows the results obtained through STICS and iMSD analyses on filtered
images. The dynamics is driven by D = 10−3 µm2s−1, v = 1.5 10−2 µm s−1, at an angular dispersion
ψ = π.

4.4. Velocity map of lipid-based nanocarriers in living cells

As an example of application of the proposed method, we present the analysis of an image-stack
exploring the intracellular dynamics of lipid/DNA complexes in Chinese Hamster Ovary (CHO) cells
(Fig. 7A). In the proposed example, the pixel size is equal to 0.295 µm and the frame acquisition
time is ∆t = 5s (due to the slow dynamics of the complexes). The computation of the correlation
function and the characterization of motion are carried out over the entire 256 × 256 pixels image
and on three regions of interest (ROIs) of 128 × 128 pixels (Fig. 7B). The speed’s contributions (vφ
and vσ) are independently calculated by fitting the peak’s shift (ξ0(τ), η0(τ)) and the Gaussian’s
variance σ2 (Fig. 7 panels C, D). Thus, a velocity map is obtained, in terms of speed modulus (〈|~v|〉)
and average drift (~vφ = 〈~v〉). The analysis over the 256 × 256 pixels image does not reveal a peak’s
shift (a2φ = 0, a2σ = 1), but detects a parabolic trend of σ2. Therefore, the dynamics is characterized
by flowing particles with symmetrically distributed velocities and both the diffusion coefficient and
the flow speed are measured by fitting σ2(τ). Conversely, uniform motions of the correlation peaks
are detected for ROI a and ROI b. However, no quadratic terms affect the Gaussian’s variances,
thus resulting in a2φ = 1; a2σ = 0. The corresponding dynamics are governed by Brownian diffusion
+ flow motion with negligible angular dispersion and differ for the values of D and v (Tab. 2). ROI
c represents an intermediate condition: a small drift and a remarkable quadratic term are detected.
Subsequently, both the anisotropic and the symmetric contributions are included to characterize
the motion and measure the dynamic parameters. Tab. 2 summarizes the results. Incidentally,
the information arising from the decoupled flow terms provides a deeper understanding, which can
not be in general obtained by the STICS method. Furthermore, the iMSD approach is closer to
the single particle analyses, since it explores both the strength of the dynamic parameters and the
geometrical features of the investigated systems.

5. Conclusions

Through Image Correlation Spectroscopy, dynamic information about the investigated systems
can be obtained by directly analyzing image time series and without exploring single particle be-
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Figure 7: (A) fluorescence-labeled cationic liposomes/DNA complexes in CHO cells. (B) Velocity maps over the
entire image (yellow) and on single ROIs (cyan). The arrows indicate direction and modulus of the drift’s speed ~vφ
and the circumferences have radius proportional to the speed modulus v. Origin of flow vectors are placed on the
corresponding image center of mass. iMSD results are reported as peak’s shift (C) and time evolution of Gaussian’s
variance (D). Both anisotropic and symmetric terms contribute to the characterization of motion.

haviors. Diffusion coefficients and flow speeds are measured by fitting procedure, acting on the spa-
tiotemporal correlation function and defined over a domain which is included in the 3-dimensional
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lag-variable space. The iMSD approach allowed us to determine the system’s dynamic parameters
and recover geometrical features about particles undergoing Brownian diffusion and flow motion,
uniformly distributed within an angular range. This condition is a good approximation of the
intracellular dynamics of gene delivery vectors, which generally diffuse in the cytoplasm and can
be directed along microtubules, i.e. along manifold and different directions. By decoupling the
speed spatial distribution’s effects on the detected intensity fluctuations, symmetry properties and
average particle drift can be evaluated. These are strictly interconnected and represent the global
information arising from the motion of single particles. More precisely, if we are interested on
the average particle behavior (e.g. to compute a velocity map), only the peak’s drift should be
take into account. Instead, biochemical properties which are responsible for the flow motion (e.g.
the nanoparticle chemical affinity with the cytoskeleton), do not depend on specific directions and
can be studied through the modulus of the flow speed. Furthermore, this method improves the
motion characterization, especially when the diffusive contribution is dominant with respect to the
flow. Indeed, when compared to the STICS approach, the study of the correlation function over
the entire spatial lag-variable domain better characterize low-speed flow motion (under reasonable
experimental conditions). Finally, stability in the measurement procedure and low sensitivity to
slowly changing background have been demonstrated, resulting in good discrimination of the con-
tribution of particles under realistic experimental conditions.
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