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The actuation is the pitch angle of the satellites, considering saturation. The control

scheme guarantees asymptotic stability of the system up to a certain magnitude of the

state vector, which is determined by the uncertainties. Numerical simulations show

that the method exhibits consistent robustness to accomplish the maneuvers, even in

presence of realistic modeling of density fields, drag coefficients, the co-rotation of the

atmosphere and zonal harmonics up to J8.
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Nomenclature

ā = mean semi-major axis [km]

aD = drag force per unit mass [km/s2]

Ai = Cross-sectional area of the surface i of the spacecraft [m2]

CB = Spacecraft’s ballistic coefficient [m2/kg]

CDi
= Drag coefficient of the surface i of the spacecraft

ī = mean inclination [rad]

m = Spacecraft’s mass [kg]

P = Positive definite matrix, solution of the algebraic Riccati Equation

r = Spacecraft’s inertial position [km]

Si = Surface of the face i of the spacecraft [m2]

v = Spacecraft’s inertial velocity [km/s]

vatm = Earth Atmosphere’s inertial velocity [km/s]

vrel = Velocity vector of the spacecraft relative to the atmosphere [km/s]

β = attitude angle [deg]

η = uncertainties (modeling errors) in the input [1/km]

µ = Earth’s gravitational parameter [km3/s2]

ν = Control input to the system [1/km]

θ̄ = argument of latitude [rad]

ρ = Earth’s atmospheric density [kg/m3]

I. Introduction

In low Earth’s orbits (LEO), the drag force constitutes one of the main perturbations affecting

satellite dynamics. The specific force (force per unit mass) aD generated by the drag force is usually

modeled as [1, Page 549]

aD = −ρvrel ‖vrel‖ CB (1)
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where vrel denotes the velocity vector of the satellite relative to the atmosphere, ρ represents the

atmospheric density, and CB is the ballistic coefficient. The ballistic coefficient is defined as

CB ,
1

2m

N∑
i

CDi Ai (2)

where Ai stands for the cross-sectional area of the ith surface impinged by the particles, CDi
is the

corresponding drag coefficient, and m denotes the mass of the spacecraft. Equation (1) shows that

aD acts always in the direction opposed to the vector vrel, which represents the inertial velocity

of the satellite relative to the atmosphere. Since the atmosphere inertial velocity is usually a

small component compared to the inertial velocity of a LEO satellite, it is frequently neglected

for theoretical developments, leading to use the inertial velocity of the satellite v instead of vrel

in Eq. (1). Under this assumption, drag forces cannot have components perpendicular to the

instantaneous plane of motion. This is a significant limitation for the use of drag to maneuver. Yet,

within the plane of motion, certain relative maneuvers can be achieved by use of drag only, reducing

the propellant needs in certain missions [2, 3].

The main effect of the drag force is reducing the semi-major axis and eccentricity of the orbit.

If the variables of Eq. (1) are judiciously exploited, relative accelerations between two or more

satellite can be generated, such that they are steered towards relative states desirable for specific

multiple-satellite applications. This idea is usually termed differential-drag (DD) maneuvering. In

recent years, the use of DD for satellite relative maneuvers has been actively investigated due to

its potential for reducing the propellant needs in formation flying and cluster flight missions. Yet,

one should keep in mind that DD maneuvers might increase the orbital decay of the satellites, if

the implemented controllers require high values of aD. Other factors limiting the use of differential

drag are the vanishing effects of the drag force at altitudes above 600 km, and the time required to

conduct a maneuver, which could be weeks or months.

Leonard et. al. [4, 5] derived a control scheme that utilizes drag plates acting at either maximum

or minimum drag. To that end, the in-plane dynamics was modeled with the Clohessy-Wiltshire

equations [6], and the density was assumed constant. Carter and Humi [7] derived linearized equa-
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tions of relative motion that include effects caused by drag, assuming a drag force model proportional

to the square of the velocity. Kumar and Ng [3] extended the work by Leonard et. al. to consider

other acting perturbations, erroneous measurements and inter-satellite distances slightly larger than

those considered by Leonard et. al., but still in the order of magnitude of few tens of kilometers.

Bevilacqua et. al. [8, 9] utilized the linear formulation obtained by Schweighart and Sedwick [10]

to derive a DD-based control algorithm for steering the in-plane relative coordinates to zero. They

assumed a constant density, and actuation provided by drag plates with two possible configurations:

parallel or perpendicular to the the velocity vector, thus providing minimum or maximum drag force

respectively. Based on Schweighart-Sedwick equations [10] and the same aforementioned drag-plates

actuation, Pérez and Bevilacqua [11] removed the assumption on constant atmospheric density and

proposed an adaptive Lyapunov based controller to perform rendezvous between two spacecraft.

Moreover, an analytical expression for a critical value of the relative acceleration due to drag was

proposed. The relative acceleration due to drag must be above this value to ensure convergence of

the maneuver. Ben-Yaacov and Gurfil used DD to perform relative maneuvers for cluster-keeping

purposes [12] and developed a controller based on the nonlinear dynamics of the Relative Orbital

Elements (ROE) [13]. Linearized equations of motion of ROE accounting for secular J2 effects and

DD were derived by Schaub in [14]. Harris and Açıkmeşe [15] applied Optimal control for DD based

maneuvers. Dell’Elce and Kerschen [16] utilize pseudospectral methods and model predictive control

for planning and effectuating rendezvous maneuvers. The control input is a torque exerted onto a

reaction wheel that modifies the attitude of the satellite, thereby modifying the acceleration due

to drag exerted onto the satellites. Moreover, Dell’Elce et. al. [17, 18] proposed a robust optimal

control approach for DD based rendezvous maneuvers.

So far, the research in this area has been mainly oriented to close-proximity maneuvers, whereas

the potential of differential-drag based maneuvers can go beyond close-proximity operations. Indeed,

the ORBCOMM constellation [19] utilizes differential drag, in an open-loop manner, to control the

relative phase angles of the satellites. Moreover, Finley et al. [2] proposed to use DD to separate

in phase a number of satellites which are initially in close proximity. One could also envision

applications that require to guide satellites, which are initially separated by large distances (order
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of magnitude of ∼ 1000 km) in the same orbital plane, along trajectories that drive them into

close-proximity configurations. For this purpose, DD can be also utilized, enabling reductions in

the propellant requirements.

One of the main difficulties of designing differential-drag maneuvers is the inherent uncertainties

existing in some of the quantities in Eq. (1). The models of the Earth’s atmospheric density field,

as well as the drag coefficient values associated to various satellite geometries can be inaccurate [20],

leading to uncertainties in the effects of differential-drag based maneuvers. Hence, when designing

differential-drag based maneuvers these uncertainties should be accounted for.

One of the goals of this work is to design differential-drag cooperative maneuvers explicitly

considering uncertainties in the drag models, which at the best knowledge of the authors has not

received much attention. These maneuvers are aimed at steering the satellites from given initial

conditions, to close-proximity configurations oriented to a rendezvous. Inspired by the flourishing

Cube-sat format, this work assumes that the satellite geometries are rectangular parallelepipeds

that can change their pitch angles in a continuous manner, hence varying the cross-sectional area

and the resulting differential-drag accelerations.

The proposed approach aims at dealing with the uncertainties in the atmospheric density mod-

els and in the ballistic coefficients. To derive the control laws of the maneuvers, the problem is

formulated using a linearized relative motion representation, based on orbital elements. The lin-

earization is based on the main assumption that the difference in mean semi-major axes between

the two satellites is small compared to the mean semi-major axes values. Unlike other linearized

formulations [6, 10], this model allows large distances between the satellites, as long as both mean

semi-major axes are kept close one to each other. In this manner, one can consider initially large

phase-separations between the satellites, and drive them into close-proximity configurations. In this

context, a Linear Quadratic Regulator (LQR) is proposed. Moreover, an analysis of the convergence

of the system driven by the proposed LQR controller in the presence of bounded uncertainties is

presented. This leads to determine gains ensuring that the system still converges, under these un-

certainties, up to a certain norm of the state vector. Since the cross-sectional area of the satellites

is limited, an assessment of the system under saturation is provided, showing that convergence is
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still achieved.

The approach presented is tested using maneuver simulations that include: space and time

varying density using NRLMSISE-00 including the influence of the solar and geomagnetic activity,

the effects of the rotation of atmosphere on the drag force, a realistic model for the drag coefficient

which takes into account the composition of the surfaces, their orientation, and the thermal difference

between the surfaces and the atmosphere, and a gravitational geopotential due to zonal harmonics

up to J8. The effects of these factors on the resulting maneuvers are studied by running different

scenarios with different combinations of these factors.

The advancements on the state of the art in this work are:

• Development of an LQR approach for DD based maneuvering which guarantees convergence

up to a bound around the desired final state under uncertainties in the density and the drag

coefficient.

• For the developed dynamical model, the control law is augmented with a saturation function,

still providing convergence.

• Validation of the LQR approach using numerical simulations for a long range re-phasing ma-

neuver, including realistic density, variable drag coefficient, co-rotating atmosphere, and zonal

harmonics up to J8.

The remainder of the paper is organized as follows: Section II introduces the geometrical setup

assumed to tackle the problem; Section III addresses the problem with a formulation based on

orbital elements, deriving an LQR controller; Section IV shows numerical simulations supporting

the theoretical statements. Finally, concluding remarks are provided in Section V.

II. Description of the Problem

Let two satellites, Chaser and Target, be in coplanar circular orbits. The main goal of this

work is to derive DD based, closed-loop controllers that steer the satellites to an encounter. These

maneuvers will be performed by varying the drag force generated on either satellite, with no thrust

usage.
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Fig. 1 Assumed geometry of the satellite.

Motivated by the rapid increase in the number of missions composed of Cube-sats, this work

assumes that the satellite geometries are rectangular parallelepipeds, as the one illustrated in the

3D View of Figure 1. In this paper, these bodies are endowed with one rotational degree of freedom,

being the axis of rotation always perpendicular to the plane of motion and depicted as a "dash-dot"

line in the 3D View of Fig. 1. The input considered for the control laws is the attitude of the

satellite parameterized by the angle β, according to Fig. 1. To measure β, define a line lying on

the orbital plane, perpendicular to the inertial velocity vector of the satellite v, as the dashed line

illustrated in the 2D View and Orbital View of Fig. 1. β is measured from the aforementioned line

towards the satellite velocity vector. In Fig. 1, S1 and S2 denote the surfaces perpendicular to the

plane of motion, whereas the face S3 remains parallel to the plane of motion. For the forthcoming

analytical developments, the velocity of the atmosphere is neglected, but it will then be incorporated

in numerical simulations to assess the effects on the developed controller. Hence, the total product

of the drag coefficient by cross-sectional area is given by

2∑
i=1

Si CDi
= CD1

S1| cosβ|+ CD2
S2| sinβ| (3)

Changing β modifies the cross-sectional areas and consequently the magnitude of the exerted accel-

eration aD. Due to the periodicity of the cross-sectional areas with β, for the purposes of this work
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β can be restricted to the range β ∈ [0◦ , 90◦], which allows to remove the absolute value operator

from Eq. (3).

Because of the general lack of knowledge on the drag coefficient behaviours, for the purpose of

the controller development the drag coefficient will be assumed to be a constant value, and equal for

both satellites since the geometries are alike. However, since a constant value might be an erroneous

modeling, the effects on the dynamics due to uncertain variations of the real values with respect

to the assumed constant values will be theoretically assessed. Hence, assuming CDi = CD and

constant, Equation (3) can be reformulated as

2∑
i=1

CDi Si = CD S = CD S0 cos (β − ψ) (4)

where S0 =
√
S2

1 + S2
2 and ψ = arctan

(
S2

S1

)
. It can be seen that

∑2
i=1 CDi

Si has a maximum at

β = ψ > 0, and a minimum at β = 90◦. Hence, for the purposes of this work, the range of β can be

restricted even more: β ∈ [ψ , 90◦].

III. Re-phasing Maneuvers under Uncertainties

This section presents an approach to drive two satellites that are initially in circular orbits, in

the same orbital plane but separated in phase, i.e. with different arguments of latitude, towards a

close-proximity configuration. This configuration is attained by matching the mean semi-major axes

ā of the satellites and the mean argument of latitude θ̄. Notice that for initially circular orbits (very

low eccentricities), neither the Earth’s oblateness nor drag effects increase the mean eccentricities,

i.e. the orbits will remain circular (in fact, drag reduces the eccentricity of orbits [1, Page 671]).

Hence, matching ā and θ̄ brings the two satellites into a close-proximity configuration.

A. Dynamic Model

Let ā, ē, ī, ω̄, and M̄ respectively denote the mean semi-major axis, eccentricity, inclination,

argument of perigee, and mean anomaly. Under the influence of drag and the first term of the

gravitational geopotential due to zonal harmonics (J2), the time-variation of the mean argument of
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perigee ω̄ and the mean mean anomaly M̄ are respectively given by [21] :

˙̄ω =
3

4
J2 n̄

(
Req
p̄

)2 (
5 cos2 ī− 1

)
(5)

˙̄M = n̄+
3

4
J2 n̄

(
Req
p̄

)2√
1− ē2

(
3 cos2 ī− 1

)
(6)

where p̄ and n̄ denote the parameter (semilatus rectum) of the orbits and the mean motion, respec-

tively, and Req represents the mean equatorial radius of the Earth.

The argument of latitude θ is defined as θ , ω+f , where f denotes the true anomaly. Assuming

circular orbits, the variation of the mean argument of latitude can be modeled as

˙̄θ = ˙̄M + ˙̄ω

=

√
µ

ā3
+

3

4
J2

√
µ

ā3

(
Req
ā

)2 (
8 cos2 ī− 2

)
(7)

To model the rate of change of the mean semi-major axis, we use the Gauss variational equations

(GVE) and the premise that "the effects of the control vector u is assumed to have the same effect

on the mean orbit elements as it has on the osculating orbit elements" as mentioned by Schaub and

Alfriend [22]. In this work, the vector u will be generated using drag forces. Hence, the effects of

the drag on the mean semi-major axis will be approximated by the effect that the same drag would

generate on the corresponding osculating semi-major axis. This approximation has been proposed

and assessed in a few papers [21, 23, 24] showing its validity.

Using the GVE resolved in tangential and normal axes [25, Page 489], the time-variation of the

semi-major axis a is formulated as

ȧ =
2 a2 v

µ
Γt (8)

where v , ‖v‖ , and Γt represents the disturbance acceleration component along the inertial velocity

vector. The perturbation due to J2 has no effect on ā. Neglecting any motion of the atmosphere
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and considering Eq. (4), the input Γt due to drag is given by

Γt = −1

2
ρ v2CD

m
S0 cos (β − ψ) (9)

Since for circular orbits v =
√
µ/a, introducing Eq. (9) into Eq. (8), and recalling that the rate

of change of the mean semi-major axis due to drag will be approximated by the rate of change that

the drag would induce onto the osculating semi-major axis [22], ˙̄a is approximated by

˙̄a = −2
√
µ ā ρ

CD S0

2m
cos (β − ψ) (10)

The quantity CD S0/ (2m) will be denoted by CB0 and will be considered constant for the develop-

ment of the control law. However, in reality, the real drag coefficient is affected by variations of the

attitude, temperature and chemical composition of the surface of the spacecraft and the environ-

ment [26–28]. The effects of these uncertain variations in the performance of the control law will be

addressed in Section III C.

Recall that under J2 and drag influence, the mean inclination ī remains constant, and thus it

actually represents a parameter. It is important to mention that the reduced state
[
θ̄ , ā

]> represents

only the in-plane motion.

The relative orbital elements are defined as:

∆θ̄ , θ̄C − θ̄T (11)

∆ā , āC − āT (12)

In Eqs. (11) and (12), as well as for the remainder of the paper, the sub-indices (·)C or (·)T refer to

the parameter or variable (·) associated to the Chaser or Target respectively. The lack of sub-index

in certain expressions indicates that the expression is valid for either spacecraft indistinctly.

Generally speaking, in multiple-satellite missions that involve coordinated relative motion, the
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mean semi-major axes should be close on to each other, i.e. |āC−āT |āT
� 1; otherwise there would be

high natural drift rates that could rapidly dismantle any desired configuration.

Consider a virtual satellite 0, in a circular orbit, with constant mean semi-major axis ā0 (i.e.

unaffected by drag). Assume ā0 is sufficiently close to āC and āT , and the inclination ī0 = īC = īT =

ī. Considering Eq. (7), the difference in the rate of change of the arguments of latitude between

the satellites C and 0 can be linearized as

˙̄θC − ˙̄θ0 '
∂ ˙̄θ

∂ā

∣∣∣
ā=ā0

(āC − ā0) (13)

The difference in the rate of change of the arguments of latitude between the satellites T and 0 can

be obtained in a similar manner. Finally,

∆ ˙̄θ = ˙̄θC − ˙̄θ0 −
(

˙̄θT − ˙̄θ0

)
= −P0 ∆ā (14)

where

P0 ,
√
µ

[
3

2

1

ā
5/2
0

+
21

8

J2R
2
eq

(
8 cos2 ī− 2

)
ā

9/2
0

]
(15)

Eq. (14) represents the evolution of the relative mean argument of latitude, as a function of the mean

relative semi-major axis. Due to the linearizations, this equation remains valid as long as the mean

semi-major axes of Chaser and Target remain sufficiently close to ā0. As previously stated, because

of the coordinated motion, āC and āT are expected to remain relatively close one to each other;

otherwise, there would be a high drift hindering any possible coordinated maneuver. Moreover,

during the maneuvers, the variations of the mean semi-major axes due to drag are expected to be

sufficiently small holding the linearizations valid, i.e. |ā(t)−ā0|
ā0

� 1. These assumptions will be

validated during the extensive numerical simulations, presented in Section IV.

To obtain ∆˙̄a, considering Eq. (10), and taking the 0th order Taylor expansion about ā = ā0,
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yields

∆˙̄a = −2
√
µ ā0 (ρC uC − ρT uT ) (16)

where

uC , CB0 cos (βC − ψ) uT , CB0 cos (βT − ψ) (17)

Defining w ,
[
∆θ̄,∆ā

]>, the obtained linear system can be written as follows

ẇ =

0 −P0

0 0

w +

0

b

 (−ρC uC + ρT uT ) (18)

where b , 2
√
µ ā0. The dynamical system (18) may be considered linear time-invariant (LTI). The

input of this system is given by the term −ρC uC + ρT uT . Notice that the uncertainties in the

densities ρC and ρT , and in the drag coefficient CD, constitute uncertainties in the input.

B. Controller Derivation

Assuming no constraints on the input, an infinite-horizon LQR approach will be initially imple-

mented. Since the range of ν , −ρC uC +ρT uT is limited, a saturation function will be proposed in

the sequel, and it will be shown that convergence is still achieved. Recall that, in an infinite-horizon

LQR, if w denotes the state vector, the input is given by [29, Chapter 3.3]

νLQR = −R−1 B>Pw (19)

where P is the matrix that solves the algebraic Riccati Equation formulated as

A>P + P A−P BR−1 B>P + Q = O (20)
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For the problem in question, the matrices are given by

• A =

0 −P0

0 0

,

• B =

0

b

,
• R > 0,

• Q is a positive definite matrix defined as Q ,

q1 0

0 q2

, i.e. q1 > 0 and q2 > 0,

• P is a positive definite matrix defined as P ,

Π1 Π2

Π2 Π3

,

• O ,

0 0

0 0

.
For the discussed problem, P is sought such that the matrix

A∗ , A−BR−1 B>P (21)

is Hurwitz, i.e. all the eigenvalues of A∗ must have negative real part. Hence, the expressions for

the entries of the matrix P are determined as

Π1 =

√
q1

√
2P0

√
q1R+ q2 b

P0

√
b

(22)

Π2 =−
√
q1R

b
(23)

Π3 =

√
R
√

2P0

√
q1R+ q2 b

b3/2
(24)

and the gain K is

K = R−1 B>P =

[
−
√

q1
R

√
2P0

b

√
q1
R + q2

b

]
(25)
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With K already computed, then the desired input to the system is

νdes = −K
[
∆θ̄ , ∆ā

]> (26)

Now, assuming that

(−ρC + ρT ζ)CB0 ≤ νdes ≤ (−ρC ζ + ρT )CB0 (27)

where ζ , cos (π/2− ψ), one should find βC and βT (the pitch angles of the Chaser and Target,

respectively), such that

− ρCuC + ρTuT = νdes (28)

If the constraints (27) are not satisfied, there are no βC ∈ R and βT ∈ R that satisfy Eq. (28). This

case will be addressed in the sequel.

C. Effects of the Uncertainties in the Implementation

In order to find βC and βT that solve Eq. (28), a model for the atmospheric density must

be selected, from which the densities for the Chaser and Target are respectively assumed to be

ρ∗C , ρ
∗
T . Similarly, one should also consider a nominal value for the drag coefficient C∗D, which

leads to a nominal value C∗B0 = S0 C
∗
D/ (2m), yielding assumed u∗C = C∗B0 cos (βC − ψ) and u∗T =

C∗B0 cos (βT − ψ). Hence, if

(−ρ∗C + ρ∗T ζ)C∗B0 ≤ νdes ≤ (−ρ∗C ζ + ρ∗T )C∗B0 (29)

βC and βT are actually found from the equation

(−ρ∗Cu∗C + ρ∗Tu
∗
T ) = νdes (30)
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However, considering that the models are uncertain, the real densities affecting the spacecraft are

given by ρC = ρ∗C + δρC and ρT = ρ∗T + δρT , where δρC and δρT denote the differences between

the real and assumed density, for Chaser and Target respectively. Correspondingly, the real value

of uC and uT are given by uC = u∗C + δuC and uT = u∗T + δuT .

Hence, the true input of the system is given by

νtrue = − (ρ∗C + δρC) (u∗C + δuC) + (ρ∗T + δρT ) (u∗T + δuT )

= νdes + η (31)

where

η , −ρ∗CδuC + ρ∗T δuT − δρCu∗C + δρTu
∗
T − δρCδuC + δρT δuT (32)

For the forthcoming analysis, the respective quantities are considered normalized by the correspond-

ing units; i.e. distances by 1 km, angles by 1 rad, mass by 1 kg, and time by 1 second. To assess the

effects on the maneuvers caused by the errors in the density models and drag coefficient, consider

the positive definite function V = w>P w. Considering Eq. (18), its time derivative is then given

by

V̇ = 2w>P [A w + B (− (ρ∗C + δρC) (u∗C + δuC) + (ρ∗T + δρT ) (u∗T + δuT ))] (33)

Introducing Eqs. (26), (30) and (32), yields

V̇ =2w>P [Aw + B (νdes + η)]

=2w>P [(A−B K) w + Bη]

=w>
[
P (A−B K) + (A−B K)

>
P
]

w + 2w>PBη

=−w>
(
Q + PBR−1B>P

)
w + 2w>PBη (34)
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which can be upper bounded by

V̇ ≤ Υ (‖w‖) , −‖w‖2 λmin + 2 ‖w‖ ‖PB‖ η̄ (35)

where η̄ ≥ |η|, λmin > 0 denotes the smallest eigenvalue of the symmetric matrix Ξ , Q +

PBR−1B>P. Based on Eq. (32), an upper bound for |η| can be formulated as

|η| ≤ η̄ , 2
(
ρ∗M δuM + u∗M δρM + δρM δuM

)
(36)

where the supra-script M indicates that the maximum possible value is taken for the corresponding

parameter. Generally speaking, η̄ could be computed based on the maximum expected errors for a

given model of density and a given model of the ballistic coefficient. This will be discussed further

in the sequel with specific models.

Considering the errors in the atmospheric density models and in the ballistic coefficients, V̇ will

be always bounded from above by Υ (‖w‖), which is a parabola in ‖w‖. Its roots are located at

‖w‖ = 0 and ‖w‖ = 2‖PB‖
λmin

η̄ > 0. Hence, as long as ‖w‖ > 2‖PB‖
λmin

η̄, V̇ will be negative, as required

for convergence [30, Chapter 4]. Since V is positive definite, due to continuity and as long as V̇ < 0,

eventually ‖w‖ becomes 2‖PB‖
λmin

η̄ and the decreasing rate of V cannot be guaranteed. Hence, there

is interest in reducing the ratio ‖P B‖ /λmin, which is a function of Q and R, to reduce the range

in which V̇ < 0 cannot be guaranteed.

The matrix Ξ = Q + PBR−1B>P is given by

Ξ =

Ξ1 Ξ2

Ξ2 Ξ3

 (37)

where

• Ξ1 = 2 q1

• Ξ2 = −
√

q1
b

√
2P0

√
q1R+ q2b

• Ξ3 = 2 q2 + 2P0

√
q1R

b
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from which its eigenvalues are computed as:

λmax,min =
q2 b+ P0

√
q1R+ q1 b±

√
q2
2 b

2 + 2 q2 b P0

√
q1R− q1 q2 b2 + q1RP 2

0 + q2
1 b

2

b
(38)

Hence,

‖P B‖
λmin

=

√
q̃1 + q̃2 + 2P0

b

√
q̃1

(q̃1 + q̃2) + P0

b

√
q̃1 −

√
(q̃2

1 + q̃2
2) +

(
P0

b

)2
q̃1 + 2 P0

b

√
q̃1 q̃2 − q̃1 q̃2

(39)

where q̃1 , q1/R and q̃2 , q2/R. Notice that the right-hand side of Eq. (39) does not depend on

q1, q2 or R explicitly, but on q̃1 and q̃2. Moreover, ‖P B‖ /λmin is a positive function of q̃1 and q̃2,

which can be selected to reduce ‖P B‖ /λmin as much as desired, while keeping in mind that this

affects the required control efforts and might generate saturation in the system. Yet, next section

shows that if the system is saturated, it will eventually reach a non-saturated configuration where

Eq. (29) is satisfied, and thus convergence up to ‖w‖ = 2‖PB‖
λmin

η̄ > 0 can be achieved.

D. Saturation

According to the proposed controller, the desired input of the system is given by Eq. (26).

On the other hand, the required attitude angles βC and βT are computed according to Eq. (30).

As previously mentioned, in order to find βC ∈ R and βT ∈ R, the inequality (29) must hold.

However, for certain values of ∆θ̄ and ∆ā the inequality (29) might be not satisfied, and thus there

are no valid βC and βT satisfying Eqs. (26) and (30). This occurs because the ballistic coefficients

of the satellites are limited, whereas the input of a linear controller of the form of Eq. (26) can,

theoretically, attain any value.

To address this problem, this work proposes to implement a saturation function. Whenever the

inequality (29) is not satisfied, the system implements attitudes βC and βT such that the maximum

or minimum feasible differential drag acceleration is obtained. It yields,
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βC =
π

2
and βT = ψ, if −K

[
∆θ̄ , ∆ā

]> ≥ CB0 (−ρ∗Cζ + ρ∗T ) (40)

βC = ψ and βT =
π

2
, if −K

[
∆θ̄ , ∆ā

]> ≤ CB0 (−ρ∗C + ρ∗T ζ) (41)

C∗B0 (−ρ∗C cos (βC − ψ) + ρ∗T cos (βT − ψ)) = −K
[
∆θ̄ , ∆ā

]>
, otherwise (42)

The goal of this section is showing that the dynamical system given by Eqs. (14) and (16) still

converges to the origin, if it is driven by the control law stated by Eqs. (40-42). This will be done

by depicting the phase portrait of the system and analysing the resulting trajectories.

Since the atmospheric density certainly depends on the altitude of the satellites, it is necessary

to assume a density field model that captures the main density behavior due to changes in the

semi-major axes of the satellites. Analytical expressions of the density as a function of the altitude

show an exponential decay due to hydrostatic equilibrium. On the other hand, there exist variations

of the density due to effects other than altitude, like solar activity, diurnal cycles, etc.. Yet, the

simplest models tend to average out these variations, showing only variations due to altitude. The

forthcoming analysis examines the behavior of the two satellites, under saturation, assuming that

the main variations of the density are due to altitude, and any other effect is averaged out. Still,

the effects due to the expected uncertainties on the dynamics will be addressed. Hence, for the

forthcoming analysis, the exponential atmospheric model CIRA-72 published in [1, Page 564] will

be used, as it captures the aforementioned behavior and allows to keep the math tractable. In this

model, the atmospheric density is computed as

ρ(h) = ρHe
−h−h0

H (43)

where ρH , h0, and H denote model parameters that are tabulated in the aforementioned reference,

for various intervals of altitude h.

Since the orbits are assumed circular (assuming spherical Earth with radius Req), Eq. (43) can
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be approximately reformulated as

ρ (ā) = ρHe
− ā−(h0+Req)

H (44)

where the constant h0 represents the lowest altitude of the interval of interest. Since the mean

semi-major axes of the satellites are expected to be sufficiently close, from Eq. (44), ρ∗C can be

modeled as

ρ∗C ' ρ∗T +
∂ρ

∂ā

∣∣∣∣
āT

∆ā = ρ∗T

(
1− ∆ā

H

)
(45)

where H is selected for the proper range of altitudes. Any density variations due to solar activity

would result in time-varying coefficients for the model (44). Yet, the same relation (45) would be

obtained, provided that the semi-major axes of the satellites are sufficiently close. Moreover, notice

that for a constant density model, Eq. (44) is still valid with H that tends to infinity.

To proceed, the region in which Eq. (42) has solutions βC ∈ R and βT ∈ R is firstly determined.

From the inequality (29) and introducing Eq. (45), this region is obtained as

SU ∆θ̄ +MU ≥ ∆ā ≥ML + SL ∆θ̄ (46)

where

SU ,
−k1

k2 +
C∗B0

H
ρ∗T

> 0 (47)

SL ,
−k1

k2 +
C∗B0

H
ζ ρ∗T

> 0 (48)

MU ,
(1− ζ)CB0

k2

ρ∗T
+
C∗B0

H

> 0 (49)
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ML , −C
∗
B0 (1− ζ)

k2

ρ∗T
+
CB0

H
ζ

< 0 (50)

where k1 and k2 are the first and second components of the matrix K, respectively. Notice that,

for a given ρ∗T , ∆ā is bounded by an upper line LU and a lower line LL, of positive slopes. Figure

2 shows these lines (dash-dot) for arbitrary (but typical) values of the parameters of the inequality

(46), namely: CD = 2.2, C∗B0 = 0.0134 m2/kg, S1 = 0.06 m2 and S2 = 0.01 m2, m = 5 kg,

k1 = −1.8303 10−10 1/km and k2 = 1.8542 10−10 1/km2, H = 58.5150 km [1], and ρ∗T = 2.563 10−12

kg/m3 , corresponding to an altitude of 421.87 km [1]. For the following explanation, the zone in

between LU and LL will be referred to as non-saturated zone. Moreover, Fig. 2 also illustrates

the solid line O that satisfies ∆˙̄a = 0. This line is obtained by solving k1 ∆θ̄ + k2 ∆ā = 0. The

slope of this line is −k1/k2 > 0, and it passes through the origin. Above(below) O, ∆˙̄a < (>)0.

Furthermore, notice that above(below) the line ∆ā = 0, ∆ ˙̄θ < (>)0.

According to Eq. (16), there are two necessary conditions that must hold in order to be able to

generate differential drag for control purposes. These conditions are formulated as −ρ∗C + ρ∗T ζ < 0

and −ρ∗C ζ + ρ∗T > 0. If one of these conditions does not hold, ∆˙̄a could not be generated in

both directions, positive and negative. Considering Eq. (45), these conditions entail the following

requirements: 1 > ζ + ∆ā/H and 1 > ζ (1−∆ā/H). As it was previously mentioned, the expected

values of ∆ā are sufficiently small to avoid high natural drift rates, from which for the purposes

of this work they can be assumed as |∆ā| ≤ 10 km. Moreover, for 3U or longer Cube-sats, ζ =

cos (π/2− ψ) ≤ 0.32. Hence, 1 > ζ+∆ā/H and 1 > ζ (1−∆ā/H) do not appear difficult to satisfy.

It means that from the viewpoint of the control law (assuming no uncertainties), the differential

drag input, ρ∗Cu
∗
C + ρ∗Tu

∗
T , can be generated both positive and negative, as possibly required by the

controller.

If these conditions were not satisfied, the non-saturated zone would not exist, nor the line O

could be defined.

Figure 2 also depicts the phase portrait of the system (18) driven by (40-42). At each point

w =
[
∆θ̄ , ∆ā

]>, the slope of the flow direction is computed as d ∆ā
d ∆θ̄

= ∆˙̄a/∆ ˙̄θ. In the non-saturated
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zone, the slope of the flow direction is given by

d ∆ā

d ∆θ̄
=

b

P0

(
k1

∆θ̄

∆ā
+ k2

)
(51)

whereas out of this region, the slopes are given by

d ∆ā

d ∆θ̄
= − b

P0 ∆ā
(C∗B0 (−ρ∗C + ρ∗T ζ))

= −
bC∗B0 ρ

∗
T

(
ζ −

(
1− ∆ā

H

))
P0∆ā

, if w is above LU (52)

and

d ∆ā

d ∆θ̄
= − b

P0 ∆ā
(C∗B0 (−ρ∗Cζ + ρ∗T ))

= −
bC∗B0 ρ

∗
T

(
−ζ
(
1− ∆ā

H

)
+ 1
)

P0 ∆ā
, if w is below LL (53)

∆θ̄ [rad]

-0.6 -0.4 -0.2 0 0.2 0.4

∆
ā
[k
m
]

-0.6

-0.4

-0.2

0

0.2

0.4
Region II

Region IVL
L

Region I

L
U

O

Region III

Fig. 2 Phase Portrait of the System, depicted with Eqs. (51-53).

The line defined as ∆ā = 0 along with the line O determine four regions of the phase portrait,
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each of which has a distinctive flow direction. These regions are named I, II, III, and IV. In region

I, the flow has ∆˙̄a > 0 and ∆ ˙̄θ < 0. In region II, the flow evolves such that ∆˙̄a < 0 and ∆ ˙̄θ < 0. In

region III, the flow is characterized by ∆˙̄a < 0 and ∆ ˙̄θ > 0. Finally, in region IV, the flow moves

with ∆˙̄a > 0 and ∆ ˙̄θ > 0. Each of these regions has a sub-region within the non-saturated zone,

denoted by (·)N , and a sub-region that is outside the non-saturated zone, which is denoted by (·)S .

Hence, for instance, region I outside(inside) the non-saturated zone will be referred to as IS(N ).

As time elapses, considering the slow decay of āT and consequent growth of ρ∗T , the slopes

outside the non-saturated zone become steeper, as seen from Eqs. (52) and (53). Due to the flow

directions of regions IS and IIIS , the trajectories will eventually reach the non-saturated zone. In

region IVS , as long as

d ∆ā

d ∆θ̄
> SL (54)

the trajectories will reach either the region IVN or the region IS , in which case they also end up at

the non-saturated zone. Inequality (54), entails

∆ā >
ζ − 1

P0 SL

bC∗B0 ρ
∗
T

+ ζ
H

(55)

and with the same typical values used to build Fig. 2 was built, inequality (54) is satisfied as long

as ∆ā > −22.03 km. In region IIS , as long as

d ∆ā

d ∆θ̄
> SU (56)

the trajectories will flow towards the region IIN or IIIS in which case they will eventually reach the

non-saturated zone as well. Condition (56) implies

∆ā <
1− ζ

P0 SU

bC∗B0 ρ
∗
T

+ 1
H

(57)

With the same values used to build Fig. 2, inequality (56) is satisfied as long as ∆ā < 16.06 km.
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For practical purposes and due to aforesaid reasons, the value of |∆ā| is expected to be significantly

smaller than ∼16 km. Since the phase portrait shows that the trajectories always move towards and

eventually enter the non-saturated zone, they cannot leave once they reached it. Therefore, once

the trajectories are within the non-saturated zone, the LQR controller drives the system towards

the origin, with no saturation.

Under the presence of uncertainties, the input of the system is given by Eq. (31). η can actually

affect the slopes of the flow directions. To measure these effects consider the following.

∆˙̄a = b (νdes + η) (58)

while η does not explicitly affect ∆ ˙̄θ = −P0 ∆ā. As stated by Eq. (54), if in region IVS the slopes

d∆ā/d∆θ̄ = ∆˙̄a/∆ ˙̄θ are higher than SL, the system will eventually reach the non-saturated zone.

Hence,

∆ ˙̄θ SL < ∆˙̄a

−P0 ∆ā SL < bC∗B0 (−ρ∗C ζ + ρ∗T + η) (59)

for any η. If

|η| ≤ η̄ < ρ∗T

(
1− ζ

(
1− ∆ā

H

))
+
P0 ∆ā SL
bC∗B0

(60)

holds, as previously mentioned, the trajectories will reach either the region IVN or the region IS ,

in which case they also end up at the non-saturated zone. For region IIS , since ∆ ˙̄θ < 0,

∆ ˙̄θ SU > ∆˙̄a

−P0 ∆ā SU > bC∗B0 (−ρ∗C + ρ∗T ζ + η) (61)
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for any η. If

|η| ≤ η̄ < ρ∗T

(
1− ζ − ∆ā

H

)
− P0 ∆ā SU

bC∗B0

(62)

holds, as previously mentioned, the trajectories will reach either the region IIN or the region IIIS , in

which case they also end up at the non-saturated zone. Numerical values of the expressions involved

in the inequalities will be shown in Section IV.

E. Computation of βC and βT

Using Eqs. (40-42), the angles βC and βT are determined. If the system is within the non-

saturated zone, then βC and βT must satisfy Eq. (42), which constitutes a single equation with

two unknowns. In order to minimize the orbital decay, it is sought that the cross-sectional areas

are always as small as possible. Therefore, one of the angles may be arbitrarily set to yield the

minimum possible cross-sectional area, and the other one determined to solve Eq. (42). Hence, the

following algorithm is proposed to determine βC and βT .



βC = 90◦ and βT = 90◦, if āC = āT and θ̄C = θ̄T

βC = 90◦ and βT = arccos
[
−Kw>+ρ∗CC

∗
B0ζ

C∗B0ρ
∗
T

]
+ ψ, if −Kw ≥ 0

βT = 90◦ and βC = arccos
[
Kw>+ρ∗TC

∗
B0ζ

C∗B0ρ
∗
C

]
+ ψ, otherwise

(63)

IV. Numerical Simulations

The developed control law was tested in a few simulations. The scenarios were built such that

they include realistic effects that affect the dynamics of LEO satellites while maneuvering based

on DD. Five simulations will be elaborated here. They will be referred to as Cases, and they are

summarized in Table (1).

Every case implements the density model NRLMSISE-00 [31] as the true density field (hence giv-

ing ρC and ρT ), considering the corresponding variations of the F10.7 solar flux index as well as the

geomagnetic index AP. To that end, the values of these indices were retrieved from NASA/GSFC’s

OMNI data base through OMNIWeb. The data were retrieved for the entire years 2009 through
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Table 1 Summary of the cases simulated

Case # CD Co-rotation Zonal Harmonics īC/T Gains q̃1 = q̃2

I 2.39 No Up to J2 10 deg 5 · 10−17

II 2.39 No Up to J2 97 deg 5 · 10−17

III Eq. (66) No Up to J2 10 deg 5 · 10−17

IV Eq. (66) vatm = ΩE × r Up to J8 97 deg 5 · 10−17

V Eq. (66) vatm = ΩE × r Up to J8 97 deg 5 · 10−19

2011. The presented simulations start on January 11th, 2010, at 12:23:00 UT, and with the retrieved

data, they cannot extend beyond December 31st, 2011, at 23:59:59 UT, since simulations with re-

alistic indices were pursued. On the other hand, the density models that are assumed as known by

the controllers, ρ∗C and ρ∗T , were set as ρ∗C = ρ∗T = 1.1 · 10−12 kg/m3, which were arbitrarily set,

according to the density behavior for 2009 as modeled by NRLMSISE-00. Notice that ρ∗C and ρ∗T

could be also assumed to have some kind of variations. Whatever model is assumed for ρ∗C and ρ∗T ,

the bound for the uncertainties δρM should be estimated accordingly, if an accurate computation

of η̄ is desired.

NRLMSISE-00 was also used to obtain the true temperature. These temperature values were

used to implement models of drag coefficient variations, as will be elaborated in the following

subsections.

For Cases I and II, the real drag coefficient CD was arbitrarily considered to be 2.39 and

constant, whereas for other cases a more realistic model that accounts for the spacecraft attitude,

the temperatures of the atmosphere’s and surfaces of the spacecraft, as well as their chemical

composition was simulated. For all the cases, the C∗D assumed by the controller was set as C∗D = 2.2,

generating a realistic amount of uncertainty in this parameter. Moreover, the masses of the satellites

were set as 5 kg each, while S1 = 0.06 m2 and S2 = 0.01 m2.

The simulations were run in cartesian elements, with the corresponding nonlinear differential

equations. Since the theoretical developments consider the secular effects generated by the J2

zonal harmonics, all the simulations include the corresponding J2 terms in the equations of motion.

Moreover, to assess dynamical effects not considered in the development of the LQR, Cases IV and

V include zonal harmonics terms up to 8th degree as well as co-rotation of the atmosphere, which

add more uncertainties than those accounted for in the presented developments.
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The equations of motion integrated in the simulations are given by

r̈ = ∇R− 1

2m
ρ ‖v − vatm‖ (v − vatm)

3∑
i=1

Ai CDi
(64)

where Ai stands for the cross-sectional area of the surface i, and CDi denotes the drag coefficient

corresponding to the same surface, which in general will be considered as functions of the attitude.

vatm denotes the velocity of the atmosphere. For Cases I, II and III, it is assumed as vatm = 0, while

for Cases IV and V it was assumed as vatm = ΩE×r, where ΩE represents the angular velocity of the

Earth in an Earth Centered Inertial frame (ECI), assumed to be ΩE = [0 , 0 , 2π/86164.1]
> rad/s,

and r = [x , y , z]
> represents the position vector of the satellite in the ECI frame. R represents the

considered geopotential including zonal harmonics and is given by [1, pp. 543]:

R =
µ

r

[
1−

L∑
l=2

Jl

(
RE

r

)l
Pl

(z
r

)]
(65)

and ∇ the gradient operator taken in cartesian coordinates. Moreover, r = ‖r‖, and Pl
(
z
r

)
denotes

the Legendre polynomial of the first kind and order l, computed at the ratio z/r.

It is worth mentioning that in most works and simulations found in the literature, dealing with

DD maneuvering, the effects due to variations of solar and geomagnetic indices, the co-rotation

of the atmosphere, and the variation of the drag coefficient with the attitude and temperature are

neglected. Even simulations performed with Systems Tool Kit (STKr) using the High Precision Or-

bital Propagator (HPOP), tend to neglect some of these effects because HPOP considers a constant

CD.

Since the controllers are formulated in terms of mean orbital elements, but the dynamic equa-

tions are formulated in cartesian elements, transformations from mean(osculating) orbital elements

to osculating(mean) orbital elements should be implemented. To that end, this work implemented

the First Order Approximation of the Brouwer theory [32], which for the purpose of this work is

seen as a tool to convert from osculating(mean) elements to mean(osculating) representations.

In terms of mean elements, the considered initial conditions are given by āC (t0) = 6800 km,

ēC (t0) = 0.0005, āT (t0) = 6800.01 km, ēT (t0) = 0.001, Ω̄T (t0) = Ω̄C (t0) = 0 deg, ω̄T (t0) =
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ω̄C (t0) = 0 deg, and M̄T (t0) = 20 deg M̄C (t0) = 0 deg. Finally, the initial inclinations are specified

for each simulation in Table (1). These initial conditions are transformed into the corresponding

osculating counterparts, and then into cartesian elements, to be integrated. The gains utilized for

the simulations were q̃1 = q̃2 = 5 · 10−17, while a0 = āT (t0).

For the forthcoming simulations, the depicted results include the time history of ∆θ̄, ∆ā, V ,

βC and βT , ρC and ρT , ρ∗C and ρ∗T , āC and āT . Plots of the distance between the two satellites

and out-of-plane coordinate of the relative position vector are shown for cases IV and V, in which

co-rotation and J8 are taken into account. In Cases I, II and III, the behaviors of the distance

between the two satellites and the out-of-plane coordinate of the relative position vector were very

similar to those shown.

A. Numerical Estimation of the Uncertaity

This section provides an estimation of the uncertainty on the model with respect to the reality

defined for the simulations, based on Eq. (36). As previously stated, ρ∗C = ρ∗T = 1.1 · 10−12 kg/m3.

Considering the assumed ρ∗ and according to retrieved data of density for the expected time of the

maneuver, the δρM is considered as δρM = 1.0 ·10−12 kg/m3, which represents about a 90% of error

in the density model. According to Eq. (17), the maximum value for u∗C and u∗T can be stated as

u∗M = 0.013382 m2/kg. To estimate δuM , with Eq. (2) and a model for CDi
given by Eq. (66), the

variations of the ballistic coefficients as a function of the angle β and temperature of the atmosphere

was depicted. It is shown in Figure 3, which also includes the errors with respect to the modeled

ballistic coefficient given by CB0 cos (β − ψ).

From Fig. 3, it was determined that δuM = 0.005223 m2/kg. Finally, η̄ = 4.86966 · 10−11

1/km. Recalling, the inequalities (60) and (62), considering ∆ā up to 4.9 km and with the values

corresponding to the forthcoming simulations, the right hand sides of (60) and (62) attains values

larger than η̄, showing that under the expected uncertainties, the system will converge to the non-

saturated zone. Consider that the inequalities given by (60) and (62) are sufficient conditions, but

not necessary. With the aforementioned values for q̃1 and q̃2, the value for expression (39) is obtained

as ‖PB‖
λmin

= 2 · 108, which means that as long as the ‖w‖ > 0.02, V̇ < 0. Recall that the involved
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Fig. 3 Variation of u and δu with β and atmospheric temperature ranging from 700K to 1500K.

quantities were adimensionalized using 1km, 1rad, 1kg, and 1sec.

B. Case I and II

The first two cases consider CDi = 2.39 for every surface of both satellites. The initial mean

inclination of Case I was set as īT (t0) = īC (t0) = 10 deg, while for Case II it was set as īT (t0) =

īC (t0) = 97 deg. Since DD cannot exert controlled out-of-plane differential specific forces, the

simulations are always initiated with same orbital planes for Chaser and Target.

For these cases, the parameter L of Eq. (65) was set as 2, so it only considers the J2 zonal

harmonic.

The results for Case I are depicted in Figures 4 and 5, while for Case II they are plotted in

Figures 6 and 7. The final distance between the two satellites were 25.12km and 6.047km for cases

I and II, respectively, while the out-of-plane coordinate oscillated between ±1.28km and ±0.90km

for cases I and II, respectively.

Figures 4 and 6 show the convergence of the maneuver, as expected from the analysis performed

in the previous sections. However, the behaviors of the angles β look different. Case I presents less

oscillations in βC and βT than Case II. Examining the plots of the densities (Figs. 5 and 7 - middle

plot), it is observed that the differences between the real values of density and the values assumed for
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Fig. 4 Re-phasing Maneuver - Case I: ∆θ̄, ∆ā, and V .

Fig. 5 Re-phasing Maneuver - Case I: β, ρ, and ā.

tuning the controllers, δρ, are larger for Case II, reaching differences (uncertainties) of 90% during
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Fig. 6 Re-phasing Maneuver - Case II: ∆θ̄, ∆ā, and V .

Fig. 7 Re-phasing Maneuver - Case II: β, ρ, and ā.

most of the maneuvering time, while for Case I these differences are not so accentuated. These
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differences are believed to cause the oscillations in the angles β, which in Case II vary between the

extremes of the interval for almost 100 days, to overcome the high level of uncertainty in the input.

If this constituted a difficulty for implementation, improving the models of the density used for

the controller ρ∗C and ρ∗T , or fine tuning of the LQR gains can help resulting in a smoother action.

Although, the latter alternative could enlarge the region around the origin in which stability cannot

be guaranteed. Another alternative would be to change the ballistic coefficient by other means than

pitching the spacecraft, like for example rotating a set of panels, as the ORBCOMM satellites do

[19].

From Figs. 5 and 7, it is appreciated that the mean semi-major axes, āC and āT , undergo a

decay of 5 km approximately, validating the linearization proposed in Section IIIA.

C. Case III

The main purpose of this case is to introduce a more realistic model of the drag coefficient

in the assumed true dynamics, which varies with the attitude and temperature. In fact, Case III

differs from Case I only in the manner that the real drag coefficient is modeled. Still, C∗D assumed

by the controller was set as C∗D = 2.2. The same initial inclination as Case I was considered, i.e.

īT (t0) = īC (t0) = 10 deg.

Based on the works [26], [27] and [28], the drag coefficient of each surface is modeled as:

CDi
= 2

(
1 +

2

3

√
1 + αi

(
T isat
Tatm

− 1

)
sinφi

)
(66)

where

αi =
3.6ui

(1 + ui)
2 (67)

T isat denotes the temperature of the satellite surface i, Tatm represents the kinetic temperature of

the ambient gas molecules, and ui is the ratio of the mean mass of the incident gas atom to the mass

of the surface atom of the surface i. For the purposes of this work, the aforementioned parameters

were set as T isat = 273 K (as done in [27] and [28]), and the temperature Tatm was obtained from
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the NRLMSISE-00 model, with the corresponding F10.7 and AP indices. φi represents the angle

of attack of the ith surface, which in fact varies with β. Finally, ui = 0.215 was arbitrarily set,

assuming mean mass of the incident gas atom of 15 (nitrogen and oxygen atoms) and a mean mass

of the atoms of the satellite surface to be 69.7, corresponding to Gallium solar panels.

The results obtained from this simulation are depicted in Figures 8 and 9. The obtained

behaviors look very similar to those corresponding to Case I, suggesting that the performance of

the controller is not significantly affected by the incorporation of a more realistic model of the true

CD behavior, which varies with the attitude and temperature. The final distance between the two

satellites was 22.59km and the out-of-plane coordinate oscillated between ±1.28km.

Fig. 8 Re-phasing Maneuver - Case III: ∆θ̄, ∆ā, and V .

D. Case IV

The purpose of this simulation is to assess the effects of the co-rotational motion of the at-

mosphere and Zonal harmonics including up to 8th degree. Hence, The co-rotation is added by

considering vatm = ΩE × r, where ΩE = [0 , 0 , 2π/86164.1]
> rad/s. The initial inclination was set

as īT (t0) = īC (t0) = 97 deg.
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Fig. 9 Re-phasing Maneuver - Case III: β, ρ, and ā.

Since co-rotational motion of the atmosphere is considered, and the pitch axis is perpendicular

to the plane of motion, it is necessary to consider the drag generated by the impinging particles of

the atmosphere onto the lateral faces of the satellites. Hence, there will be an out-of-plane drag

force, corresponding to the components of the vector v−Ωatm × r perpendicular to v. The surface

of each lateral face of the satellite was assumed S3 = 0.06 m2, like S1. Furthermore, the variations

of the drag coefficients with attitude and temperature are modeled, while C∗D = 2.2.

The results of the simulation are shown in Figures 10, 11 and 12. it is observed that adding the

co-rotation and more terms of the zonal harmonics series to the real dynamics, actually generates

larger oscillations of the angles βC and βT , which seems to be required to counteract the effects due

to the added perturbations. This effect can be also associated to the implementation of the first

order model of the Brouwer transformation, which only consider first order J2 terms. Hence, it may

not be able to remove oscillations in the orbital elements caused by higher zonal harmonics, which

make the angles β to increase their oscillations. Fine tuning of the LQR gain can help to reduce these

oscillations. Nonetheless, under the level of uncertainty in the density and drag coefficients, and

the unconsidered perturbations in the dynamical models, the controller still performs satisfactorily,
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driving the two satellites to the expected encounter.

Fig. 10 Re-phasing Maneuver - Case IV: ∆θ̄, ∆ā, and V .

Fig. 11 Re-phasing Maneuver - Case IV: β, ρ, and ā.
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Fig. 12 Re-phasing Maneuver - Case IV: Inter-Satellite Distances and out-of-plane coordinate.

E. Case V

The purpose of this Case is to reduce the oscillations of the angles βC and βT by utilizing

smaller gains for the LQR. In this Case q̃1 = q̃2 were set to have a value of 5 · 10−19 while for all

the previous case they had a value of 5 · 10−17. Otherwise this Case is identical to Case IV.

The results of these simulations are shown in Figures 13, 14, and 15. Comparing Figures 11 to

14, it is observed that the smaller LQR gains results in a faster reduction of the oscillation amplitude

of the angles βC and βT , although the size of the region where V̇ < 0 cannot be ensured is enlarged.

Similarly to all the other Cases, Case V shows that under the level of uncertainty in the density

and drag coefficients, and the unconsidered perturbations in the dynamical models, the controller

also performs satisfactorily, driving the two satellites to the expected encounter.
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Fig. 13 Re-phasing Maneuver - Case V: ∆θ̄, ∆ā, and V .

Fig. 14 Re-phasing Maneuver - Case V: β, ρ, and ā.
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Fig. 15 Re-phasing Maneuver - Case V: Inter-Satellite Distances and out-of-plane coordinate.

V. Conclusions

In the last decades the idea of propellantless spacecraft relative maneuvering via differential drag

has received substantial attention. Nevertheless, the explicit inclusion of drag model uncertainties

in the control laws has been mostly neglected. This work presented a methodology to perform

differential drag relative maneuvering of coplanar spacecraft, towards rendezvous, under bounded

uncertainties in the drag force. The required differential drag accelerations were obtained by varying

the pitch angles of the satellites, thus changing their ballistic coefficients.

The developed approach enables to consider long-range maneuvers, assuming that both satellite

are initially in circular orbits. The developed dynamical system, based on mean semi-major axes

and mean arguments of latitude, allows for the implementation of an Linear Quadratic Regulator

with a saturation function. In presence of bounded uncertainties, convergence of the trajectories can

be proved up to a certain norm of the state vector, for which an analytical expression was provided

in terms of the uncertainties. The effect of saturation in the control was examined by analyzing the

phase portrait of the system, which showed that the system will eventually desaturate, and hence

converge.
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Several simulations were presented, including realistic effects like variation of the drag coeffi-

cients with the attitude and temperature, density field given by NRLMSISE-00 with realistic solar

flux and geomagnetic indices behavior and co-rotation of the atmosphere and zonal harmonics.

The simulations consistently show convergence of the maneuvers, illustrating the robustness of the

approach under actual uncertainties and modeling errors, supporting the analytical developments.

An interesting natural extension of this work would consider lift forces and three-dimensional

attitude variations, to examine the possibility of controlling the out-of-plane relative motion of the

satellites, which could also be relevant to maneuver spacecraft that lose the propulsion system due

to failures and/or propellant depletion.
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