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In this paper, we apply reconstruction techniques to recover the potential parameters for a particular class
of single-field models, the α-attractor (supergravity) models of inflation. This also allows us to derive the
inflaton vacuum expectation value at horizon crossing. We show how to use this value as one of the input
variables to constrain the postaccelerated inflationary phase. We assume that the tensor-to-scalar ratio r is
of the order of 10−3, a level reachable by the expected sensitivity of the next-generation cosmic macrowave
background (radiation) experiments.
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I. INTRODUCTION

Different cosmological observations [1–5] have con-
verged by now to support ΛCDM as the concordance
model of modern cosmology. This model, and all its
possible other extensions, assumes as a paradigm the
inflationary scenario. This is needed for two reasons: on
one hand, to justify the observed flatness and isotropy
of the Universe, as well as the absence of magnetic
monopoles [6–10]; on the other hand, to exploit quantum
mechanisms for explaining the origin of matter [11–15] and
the production of those fluctuations responsible for the
formation of the large-scale structure of the Universe
[16–28]. However, two general questions still need to be
investigated: the shape of the inflationary potential and
its energy scale. The quantities related to these features
are the scalar spectral index, ns, and the tensor-to-scalar
ratio amplitude, r. The current estimations for these
parameters provide ns ¼ 0.968� 0.006 and r0.002 < 0.07
at the 95% confidence level (see [4,5]). Because of this, we
now have a clear idea on the health state of some specific
inflationary models: most of the minimally coupled power-
law potentials are ruled out, while exponential potentials
with a very flat region seem to be favored by current data,
as outlined especially in [4]. Furthermore, there is still room
to look into other aspects of inflation: the fundamental
mechanism that induces the inflationary phase; the initial
condition for the inflaton field, its nature, and its mass mϕ

[29–35]; and the possibility for a multifield inflation and
the induced non-Gaussianity in the cosmic macrowave
background (CMB) fluctuations [36]. In this paper we will
consider a tensor-to-scalar ratio r ≈ 10−3, consistent with
the expected sensitivity of the next-generation CMB
experiments [37–41]. We will show the statistical infor-
mation that can be derived on a very important class of
inflationary potential, the so-called α-attractor models
of inflation. This class of models can be generated in

different ways, although the most advanced version
emerges from the supergravity context (see Refs. [42–47]
for properties and details). It is important to stress that α-
attractors include the first plateau-type potential, the
Goncharov-Linde model [48], the Starobinsky modified
gravity R2 scenario [49,50], and Higgs inflation [51].
In particular we consider the E-model version of the
α-attractor class. To reach this goal we have to reconstruct
the inflationary potential. Among the different algorithms
proposed in the literature [52–63], we will focus on the
simple approach based on constraining the local shape of
the potential during the pure accelerated phase. This is
done by implementing a Taylor expansion around the
vacuum expectation value of the inflaton field at horizon
crossing, ϕ�, and by connecting the coefficients of the
expansion to the observables ns and r (details in [52,53]). In
its simplicity, this procedure provides a model-independent
estimation of the inflationary potential around ϕ�.
Hereafter, we show that for α-attractor models it is possible
to derive constraints also on the vacuum expectation value
ϕ�. Now, on one hand it is true that ϕ� by itself is not
important: the fundamental quantity that parametrizes the
inflationary evolution and the cosmological variables is
the number of e-foldingsN�. On the other hand, there could
be a couple of reasons to constrainϕ�. First, this value could
be of interest from the particle physics point of view.
Secondly, as we shall see later, it is simpler to directly use
ϕ� as one of the input variables to constrain N� and so the
reheating phase. In the following,we use the natural units of
particle and cosmology c ¼ ℏ ¼ kB ¼ 1, unless otherwise
indicated.
The paper is organized as follows. In Sec. II, we review the

general properties of inflation and of the slow roll dynamics.
In Sec. III, we focus on the magnitude of ϕ� in different
inflationary models. In Sec. IV, we discuss the basics of the
local potential reconstruction and we apply such a procedure
to evaluate the parameters of the chosen inflationary models.
Finally, the last section is dedicated to the discussion of our
findings and to possible extensions of this work.*alessandro.di.marco@roma2.infn.it
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II. INFLATIONARY SLOW ROLL DYNAMICS
AND ITS OBSERVABLES

Inflation is defined as an early accelerated expansionphase.
Therefore, the evolution of the scale factor is almost nearly
exponential, aðtÞ ∼ eN , where N is the so-called number of
e-foldings. Such a condition implies a nearly constantHubble
rate, HðtÞ, i.e., a nearly constant Hubble radius, RH ¼ c=H.
The simplest scenario for inflation involves a neutral and
homogeneous scalar field ϕ, called the inflaton, that is
minimally coupled to gravity with a canonical kinetic term.
When such a field dominates, inflation occurs, giving rise to
an accelerated expansion that occurred between 10−35s and
10−32s after the initial singularity, on an energy scale below
the Grand Unification Theory scale (E < 1016 GeV). The
inflaton field evolves accordingly to a potential VðϕÞ,
characterized by an almost flat region. The cosmological
action for early times is the following:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

pR −
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð1Þ

where R is the Ricci scalar, gμν is the metric tensor, g its
determinant, and Mp the reduced Planck mass. The infla-
tionary equations for a Friedmann-Robertson-Walker (FRW)
flat universe in the Hamilton-Jacobi formalism are

VðϕÞ ¼ 3M2
pH2ðϕÞ − 2M2

pH0ðϕÞ ð2Þ
_ϕ ¼ −2M2

pH0ðϕÞ; ð3Þ

where 0 denotes derivative with respect to the scalar field.
It is required that the sign of _ϕ does not change, in order to
have a monotonic evolution of the field. Therefore, without
loss of generality, we can choose _ϕ < 0 so thatH0 ≥ 0, or the
opposite case. Inflation startswhen the inflatonmoves slowly
through the almost flat region of the potential. In this phase,
the kinetic term in the action is negligible with respect to the
potential:

∂μϕ∂μϕ ≪ VðϕÞ: ð4Þ
Afterwards, when the inflaton reaches the potential global
minimum, the reheating phase can start (see [11–15] formore
details). In this phase, the field oscillates and decays,
producing entropy.
Once the functional form of the potential is given, one

can describe the inflaton dynamics via the potential slow
roll parameters (PSRP), defined as follows:

ϵVðϕÞ ¼
M2

p

2

�
V 0ðϕÞ
VðϕÞ

�
2

; ηVðϕÞ ¼ M2
p

�
V 00ðϕÞ
VðϕÞ

�
; ð5Þ

or alternatively, by the Hubble slow roll parameters (HSRP),

ϵðϕÞ ¼ 2M2
p

�
H0ðϕÞ
HðϕÞ

�
2

; ηðϕÞ ¼ 2M2
p

�
H00ðϕÞ
HðϕÞ

�
: ð6Þ

To first order,

ϵ≃ ϵV; η≃ ηV − ϵV: ð7Þ

For an exhaustive discussion on these two formalisms, their
properties, and their relation, we refer to Ref. [64]. Typically,
inflation occurs when ϵðϕÞ < 1 [or ϵVðϕÞ ≪ 1] and finishes
when ϵ ∼ 1.
Inflation also provides a solution for the origin of

primordial perturbations. In the inflationary universe there
are quantum fluctuations of thermal type with temperature
equal to the Gibbons-Hawking temperature TH ¼ H=2π.
These thermal fluctuations allow us to treat the inflaton
field as a quantum field ϕ̂ðx; tÞ with zero mean value in a
macro time scale. Such a condition implies fluctuations on
the stress-energy tensor and then on the metric tensor. The
cosmic acceleration due to inflation stretches fluctuations
up to astronomical scales. At this stage, fluctuations freeze
out and become classical metric perturbations. At the end of
inflation, the Hubble radius starts to grow, catching those
perturbations that will produce the anisotropies of the
CMB and the formation of the large-scale structures.
Let us now consider the cosmological perturbation field

δðx; tÞ, with power spectrum and spectral index

PðkÞ ¼ k3

2π2
jδðkÞj2 ð8Þ

nðkÞ ¼ dPðkÞ
d ln k

; ð9Þ

where k is the wave number. The first one describes the
presence of the perturbation on a given scale k, while the
second describes the variation of δðkÞ with respect to
the scale. Because of the homogeneity and isotropy of the
FRW background, one can decompose the perturbations
into scalar, vector, and tensor modes. In particular, inflation
excites only the scalar and tensor modes. The most familiar
forms of the power spectrum for the scalar and tensor
sector, to first order in the slow roll parameters, are

PsðkÞ ¼
1

8π2M2
p

H2

ϵ

����
k¼aH

ð10Þ

PtðkÞ ¼
2

π2
H2

M2
p

����
k¼ah

: ð11Þ

The corresponding spectral indices are defined as follows:

ns ¼ 1 − 4ϵþ 2η ð12Þ
nt ¼ −2ϵ; ð13Þ

and the tensor-to-scalar ratio of the perturbation
amplitudes is

r ¼ PsðkÞ
PtðkÞ

¼ 16ϵ ¼ −8nt ð14Þ
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(see [16–25], while for the Scalar-Vector-Tensor decompo-
sition, see [26–28]). The quantities ns and r can be computed
for any given theoretical model and, then, compared with the
ones estimated by the experiments. To do this, one can use
Eq. (7) to express ns and r in terms of the PSRP, providing the
following familiar relations:

ns ∼ 1 − 6ϵVðϕÞ þ 2ηVðϕÞ; r ∼ 16ϵVðϕÞ: ð15Þ
Note that these quantities are functions of the scalar field
because of Eq. (5) or Eq. (6). Their magnitudes are evaluated
by settingϕ ¼ ϕ�, whereϕ� is thevalue of inflaton field at the
horizon crossing epoch:

ns ¼ nsðϕ�Þ; r ¼ rðϕ�Þ: ð16Þ
In the following section, we discuss how to compute such
a value.

III. THE CLASSICAL TRAJECTORY: RELATION
BETWEEN ϕ� AND N�

The inflaton dynamics is quite interesting. In principle,
once a particular potential is chosen, one can follow
numerically the evolution of the function ϕðtÞ by solving
the system of Eqs. (2) and (3). However, if the slow roll
condition is satisfied, one can simplify the system with the
following formula [65]:

ΔN ¼ 1

Mp

Z
Δϕ

dϕ
1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵVðϕÞ

p ; ð17Þ

where the inflaton field can have, as discussed above, either
a positive or negative sign in its time derivative. Here,
Δϕ ¼ jϕ − ϕendj is the range of variation of the scalar field
up to the final value ϕend and ΔN the related number of
e-foldings. The solution of this integral represents the
classical trajectory of motion that we can rewrite as

ϕ ¼ ϕðϕend;ΔNÞ: ð18Þ

The inflationary trajectory is characterized by different
phases which are worthy of attention: the initial conditions
for both inflation and the cosmological fluctuations; the
epochs of the horizon crossing and of the end of inflation.
The end of inflation is quite simple to evaluate. In fact, it is
sufficient to solve the algebraic broken-inflation condition
ϵðϕendÞ ¼ 1 to get ϕend’s possible values. While the funda-
mental mechanism that induces the inflationary phase is
actually unknown, one can still say something about the
initial condition for inflation, ϕ0. In particular, in the case of
large field models, the inflationary trajectory is a “local”
attractor solution in the ϕ0 space, as summarized by
Brandenberger in [29]. Such evidence suggests that the
subsequent physical events, as the generation of cosmologi-
cal perturbations, do not depend explicitly on ϕ0 [30–32].

On the other hand, the generation of cosmological
fluctuations in the inflationary background occurs at an
epoch commonly associated with the Bunch-Davies
vacuum condition, which is an attractor in the (state) space.
This epoch is also related to the so-called “trans-Planckian”
problem, as again suggested in [29]. Finally, the horizon
crossing of cosmological fluctuations occurs when the
inflaton field explores the almost flat region of the effective
potential: as seen before, when the potential term is dominant
[see Eq. (4)], the value of the scalar field remains substan-
tially the same, say, ϕ�. The order of magnitude of ϕ�
depends on the inflationary potential VðϕÞ and on the
number of e-foldings N� before the end of inflation. From
Eq. (18), we have

ϕ� ¼ ϕ�ðϕend; βi; N�Þ; ð19Þ
where βi are the parameters describing the specific potential
function. As shown inEq. (16), the knowledge ofϕ� is useful
for calculatingns and r. However,ϕ� depends onN� through
Eq. (19). Then both ns and r can be explicitly calculated once
the fundamental parameter N� is given. The most common
prescription for an order-of-magnitude evaluation ofϕ� (and
also ns and r) requires N� ¼ 60. In Fig. 1, we show a
nonexhaustive plot for ϕ� (in units of Mp), in terms of the
predicted r, for some one-parameter inflationary models. In
particular, we present qualitative results for single power-law
models, anE-model version of theα-attractor class (see Sec. I
for references), and axion monodromy inflation [66–68].

IV. RECONSTRUCTING THE α-ATTRACTOR
SUPERGRAVITY MODELS FROM

NEXT-GENERATION CMB
EXPERIMENTS

The simplest version of the potential reconstruction
technique is based on a local constraint on the shape of
the inflationary potential. In fact, during inflation [52],

FIG. 1. Inflaton field values at horizon crossing vs tensor-to-
scalar ratio for monomial models with n ¼ 2, 3, 4 [8]; α-attractor
models with α ¼ 1=5; 1=4; 1=3; 1=2; 1 [42–47]; axion mono-
dromy models with n ¼ 2=5; 2=3; 1; 4=3 [66–68]. As expected,
the value of the inflaton field increases if one moves toward large
field scenarios.
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(i) The value of the inflaton field is approximately
constant, since _ϕ2 ≪ VðϕÞ, and

(ii) The observable modes are stretched out over the
Hubble radius, RH, when N� ∼ 60.

Therefore, it is possible to expand the potential around ϕ�,
the value of the inflaton field at the horizon crossing:

VðϕÞ ¼ Vðϕ�Þ þ V 0ðϕ�Þðϕ − ϕ�Þ

þ 1

2
V 00ðϕ�Þðϕ − ϕ�Þ2 þ � � �

At this point, one can write the coefficients of this
expansion in terms of the slow roll parameters and then
with respect to the observable quantities, ns and r. The
weights of the polynomial form are given by the Hamilton-
Jacobi equation [cf. Eq. (2)]. The expansion up to the
second order in Δϕ is given by [52]

VðϕÞ ¼ Λ4

�
1þ d1

�
Δϕ
Mp

�
þ 1

2
d2

�
Δϕ
Mp

�
2

þ � � �
	
; ð20Þ

where, to first order in ns and r, one has

Λ4 ¼ 3

2
π2M4

pPsðkÞr ð21Þ

and

d1 ¼
1

2

ffiffiffi
r
2

r
; d2 ¼

1

3

�
9
r
16

−
3

2
ð1 − nsÞ

	
: ð22Þ

Note that di are dimensionless quantities, as well as the
ratio Δϕ=Mp. These definitions provide a model-
independent constraint on the shape of the inflaton poten-
tial, as they are directly connected with the first and
second order derivatives of the potential. This formalism
has been used for example in [53], for comparing theory
with observations. Even if further approaches for the
reconstruction problem have been discussed in the liter-
ature (see references in Sec. I), here we want to use this
local analytical approach to constrain the parameters for a
class of inflationary potentials. The general recipe is the
following. Let us consider a specific model of inflation with
a potential VβiðϕÞ, where βi is the set of parameters that
modulates the potential function. We can expand this
potential up to second order around ϕ�:

VðϕÞ ¼ Λ4

�
1þ c1

�
Δϕ
Mp

�
þ 1

2
c2

�
Δϕ
Mp

�
2

þ � � �
	
: ð23Þ

The coefficients c1 and c2 are both functions of the inflaton
value, ϕ�, and of the free parameters, βi: c1 ¼ c1ðϕ�; βiÞ
and c2 ¼ c2ðϕ�; βiÞ. By comparing the model-independent
and model-dependent expansion, we have

c1 ¼ d1; c2 ¼ d2: ð24Þ

Using these relations, we can derive predictions for ϕ�
and βi in the form ϕ� ¼ ϕ�ðns; rÞ, βi ¼ βiðns; rÞ. The
functional dependency of d1 and d2 on ns and r is strongly
model dependent. So, there may be cases in which it is not
possible to write both ϕ� and βi in terms of the cosmo-
logical observables.
An interesting class of inflationary models is the

so-called α-attractor class (see Sec. I for details and
references). In particular, the E-model attractors are char-
acterized by the following standard function:

VðϕÞ ¼ Λ4ð1 − e−bϕ=MpÞ2; b ¼
ffiffiffiffiffiffi
2

3α

r
: ð25Þ

In the supergravity framework, the parameter α is related to
the Kähler curvature of the inflaton’s scalar manifold:

RK ¼ −
2

3α
: ð26Þ

This is a fundamental parameter in the framework of
attractor models. Let us now compute the quadratic
Taylor expansion of V:

VðϕÞ≃ Λ4

�
c0 þ c1

�
Δϕ
Mp

�
þ 1

2
c2

�
Δϕ
Mp

�
2
	
; ð27Þ

where

c0 ¼ 1 − 2e−bϕ�=Mp ∼ 1 ð28Þ

c1 ¼ 2be−bϕ�=Mp ð29Þ

c2 ¼ −2b2e−bϕ�=Mp; ð30Þ

with ϕ�=Mp ≫ 1. We can use these relations to evaluate ϕ�
and α from a given CMB experiment. From Eq. (24) it
follows that

d2
d1

¼ −b: ð31Þ

Moreover, from Eq. (29), we get

ϕ�
Mp

ðb; d1Þ ¼ −
1

b
ln

�
d1
2b

�
: ð32Þ

These equations provide information on the inflationary
models, given ns and r from CMB data. Since current
CMB experiments still do not provide a measurement on r,
this approach is by now not very effective. However, the
situation should rapidly change in the near future, with a
strong improvement on the knowledge of the tensor-to-
scalar ratio. Having this in mind, we discuss what kinds of
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constraints we may have on α-attractor models, assuming
that the next generation of CMB experiments will be able to
probe a tensor-to-scalar ratio of the order of r ∼ 10−3.
In the following, we simulate values of ns and r,

randomly extracted from a Gaussian multivariate distribu-
tion of the form

Gðns; rÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2ð1 − σnsσrρ
2Þ

q exp

�
−
Q2

2

�
: ð33Þ

Here

Q2 ¼
�ðns − μnsÞ2

σ2ns
þ ðr − μrÞ2

σ2r
þ 2

ðns − μnsÞðr − μrÞ
σnsσr

	
;

ð34Þ

where μns , μr and σns , σr are mean and rms values of the
scalar spectral index and the tensor-to-scalar ratio, respec-
tively, while ρ is the correlation coefficient. In particular,
we use (consistently with the current PLANCK data) the
values μns ¼ 0.968 and σns ¼ 0.006, while for r we choose
three different values (μr ¼ 0.001, 0.002, 0.003) with
σr ¼ 0.0001. The correlation coefficient between ns and
r is fixed to be ρ ¼ 0.1. We extract from the distribution of
Eq. (33) pairs of values for ns and r. For each extraction, we
reconstruct the coefficients d1 and d2 from Eq. (22). Then,
we use Eqs. (31) and (32) to estimate α, ϕ�, and RK, from a
sample of ≃104 draws. We note that, with increasing r, the
shape of the inflaton potential gets smoother, pushing ϕ� to
larger values, as shown in Fig. 2.
The resulting distribution functions for ϕ� are shown in

Figs. 3, 4, and 5, while those of p ¼ ln α are shown in
Figs. 6, 7, and 8. The mean and standard deviation values
for the distribution of the coefficients d1 and d2 are
summarized in Table I and in Table II. The resulting mean

FIG. 3. Distribution of the estimated ϕ� values for r ¼ 0.001.

FIG. 4. Distribution of the estimated ϕ� values for r ¼ 0.002.

FIG. 2. Shape of the potentials normalized to the energy density
Λ4 and the relative inflaton value at horizon exit: the solid lines
represent the three “mean” potential curves for the computed
simulations. When the mean value of r increases, the curve is less
steep. The dashed lines represent the three “mean” values of ϕ� at
horizon crossing. When r increases, ϕ� is always moved farther.

FIG. 5. Distribution of the estimated ϕ� values for r ¼ 0.003.
As one can expect, the vacuum expectation value of the scalar
field increases as r increases.

FIG. 6. Distribution of the p ¼ ln α values for r ¼ 0.001.
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and standard deviation values for the parameters ϕ�, p,
andRK are summarized in Tables III, IV, and V. Figures 3, 4,
and 5 and Figs. 6, 7, and 8 show the constraining power
of hypothetical CMB experiments of a new generation.

As expected in this inflationary scenario, when the mean
value of the tensor-to-scalar ratio increases, the mean values
of p and ϕ� increase as well. Indeed, the distribution
functions of the constrained parameters move to high values
in the frequency plots. The mean value of RK decreases (in
modulus) in complete agreementwith its definition, Eq. (26).

V. DISCUSSION AND PERSPECTIVES

In the previous section we reconstructed the probability
distributions for the vacuum expectation value (VEV) ϕ�,
the parameter α, and the scalar curvature RK for the
supergravity α-attractor models (E-model), starting from
a set of observations for the main inflationary observables:
the scalar spectral index, ns, and the tensor-to-scalar
ratio, r.
The advantage of this method stands on the fact that just

the computations of V 0 and V 00 are required. Then, the ratio
c1=c2 provides information on α. Note, as remarked in
Sec. III, that in the usual blind approach to reconstruct
the inflationary potential, the coefficients d1 and d2 given
by Eq. (22) do not seem to depend on ϕ�. On the contrary,
the main coefficients of the α-attractor potential expansion
c1 and c2 given by Eqs. (29) and (30) are explicitly field
dependent. So, one could ask how our procedure (i.e.,
matching c1 and c2 with d1 and d2) is consistent with

FIG. 7. Distribution of the p ¼ ln α values for r ¼ 0.002.

FIG. 8. Distribution of the p ¼ ln α values for r ¼ 0.003. The
vacuum expectation value of α itself increases as r increases,
recovering Starobinsky inflation α ∼ 1 for r ¼ 0.003.

TABLE I. Simulation results for the coefficients d1 of the
Taylor expansion. As we can see, the 1-σ value increases as the
mean value of r gets larger.

r d1 mean value d1 1-σ value

0.001 0.01117 0.00056
0.002 0.01581 0.00039
0.003 0.01936 0.00032

TABLE II. Simulation results for the coefficients d2 of the
Taylor expansion: the resulting 1-σ converges to the same
value up to the fifth decimal place. The negative sign suggests
that the shape of the inflationary potential about the horizon
crossing moment is locally described by a parabola which opens
downward.

r d2 mean value d2 1-σ value

0.001 −0.01583 0.00302
0.002 −0.01564 0.00302
0.003 −0.01545 0.00302

TABLE III. Simulation results for the vacuum expectation
value of the scalar field in the (supergravity) α-attractor models.
The table shows an increasing uncertainty σ as the mean value of
r increases.

r ϕ� mean value ϕ� 1-σ value

0.001 4.02 0.70
0.002 5.02 0.85
0.003 5.68 0.95

TABLE IV. Simulation results for the p ¼ ln α parameter.
In this case the uncertainty on the parameter is (by and large)
the same up to the second decimal place, for all three cases.

r p mean value p 1-σ value

0.001 −1.07 0.40
0.002 −0.34 0.40
0.003 0.08 0.41

TABLE V. Simulation results for the scalar Kähler curvature.
Here, the 1-σ value gets larger as r increases. In particular, it gets
smaller as the value of RK becomes larger.

r Rk mean value Rk 1-σ value

0.001 −2.09 0.79
0.002 −1.01 0.38
0.003 −0.66 0.25
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the general results of the blind expression. Actually, the
consistency is guaranteed by the fact that the coefficients of
the α-attractor potential expansion c1 and c2 are evaluated
at the moment of horizon exit, as well as d1 and d2. In fact,
in the blind reconstruction, the expansion is again per-
formed around ϕ�, but the dependence on ϕ� is hidden in
the choice of fixing (ns, r) from given experimental results,
and ns and r do depend on the value of the field (via slow
roll parameters) as shown in Eqs. (15) and (16) of Sec. II.
In our analysis it is clearly important to get an accurate
estimate of ϕ�. In fact, on the basis of Eq. (19), one can
infer that changing N� implies different values for ϕ�.
However, we can read this relation in the opposite sense: in
each model of inflation, N� is sensitive to ϕ� and to the
other free parameters of the model, α in our case. Therefore,
one can conclude that an independent estimate of ϕ� and α
can provide information on N�: N� ¼ N�ðϕ�; αÞ. In this
respect, it is also possible to put bounds on any deviations
from the most common assumed value N� ¼ 60. Another
important reason to explore this issue is that statistical
information on α and ϕ� may also imply information
on postinflationary physics. Indeed, distribution functions
such as those previously reconstructed for α and ϕ�
can be used to provide a collection of possible postinfla-
tionary energy density paths. This can be done by solving
numerically the appropriate system of coupled differential
equations. A discussion of this possibility is given in [69].
Moreover, N� (algebraically connected with ϕ�) depends
on the physical events from inflation to recent epochs, i.e.,
from a nontrivial collection of quantities, as also summa-
rized in [69–74]. Usually, it is often expressed as

N� ¼ 67 − ln

�
k�

a0H0

�
þ 1

4
ln

�
V2�

M4
pρend

�

þ 1 − 3weff

12ð1þ weffÞ
ln

�
ρreh
ρend

�
−

1

12
lnðgrehÞ: ð35Þ

Here, a0H0 is the actual Hubble scale, k� is a pivot scale
(typically of the order of 0.002 Mpc−1), V� ¼ Λ4 is the
inflationary energy scale, ρend is the energy density at the
end of inflation, weff ¼ p=ρ is the effective equation of
state of the reheating fluid, ρreh is the energy density when
reheating is completed, and greh is the effective number of
boson degrees of freedom at ρreh. However, from the
complete expression of N�, one can derive the number
of e-foldings during the reheating stage [72–74]:

Nreh ¼
4

1–3weff

�
−N� − ln

�
k�

a0H0

�
þ ln

�
T0

H0

�	

þ 4

1–3weff

�
1

4
ln

�
V2�

M4
pρend

�
−

1

12
lnðgrehÞ

	

þ 4

1–3weff

�
1

4
ln

�
1

9

�
þ ln

�
43

11

�1
3

�
π2

30

�1
4

	
: ð36Þ

So, once we know N� from Eq. (19), we can put better
constraints on several aspects of the reheating physics by
Eq. (36). For example, we can derive a distribution function
for the reheating temperature realized in the E-model
α-attractor framework by the relation

Treh ¼
�
40Vend

π2greh

�
1=4

exp

�
−
3

4
ð1þ weffÞNreh

	
: ð37Þ

An example of different reheating constraints can be found
in [72–74]. In a forthcoming paper, we plan to apply the
reconstruction technique presented above to describe the
α-attractor postaccelerated phase.
To conclude this last section, we want to discuss a

“naive" procedure to reconstruct the potential function. As
we have seen in Secs. II and III, when a potential function is
given, one can compute the related predictions in terms of
the number of e-foldings. In the case of α-attractor models,
at lowest order, one has

ns ∼ 1 −
2

N�
; r ∼

12α

N2�
: ð38Þ

However, starting from a given experimental or simulated
CMB data set, we can reconstruct the probability distri-
butions for α andN� (instead of ϕ�). This procedure is valid
but the estimation of N� is related only to ns with no direct
influence of r that is (on the contrary) important to specify
the attractor model, and this influences the estimation of α
or b:

N� ¼
2

1 − ns
; α ¼ r

3ð1 − nsÞ2
: ð39Þ

In the standard reconstruction scheme, we do not pass
through such a degree of approximation because of the
Hamilton-Jacobi equation: the estimation of α is more
precise than the “naïve” case. In fact, the limit of negligible

FIG. 9. Distribution function of the number of e-foldings before
the end of inflation, N�, related to the α-attractor model with
r ¼ 0.003 as a mean value of the tensor-to-scalar ratio. The result
has been computed by the approximate solution of the classical
equation of motion.
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r in Eq. (31) corresponds to the α-definition of Eq. (39).
Furthermore we also immediately provide information on
ϕ�. Hereafter, we can constrain N� using the potential
parameters and the VEVof the field (α, ϕ�) by the solution
(approximated or not) of the equation of motion. In Fig. 9
we report the resulting distribution of N� in the case of
r ¼ 0.003, using the first order solution of the classical
equation of motion given by Eq. (17).

VI. CONCLUSIONS

In this paper, we have used the potential reconstruction
method to evaluate the inflaton field at horizon crossing and
the potential parameter α of supergravity α-attractor mod-
els. We have shown the possible constraints that next-
generation CMB experiments can provide. The method is
applicable to different inflationary models and provides an
estimate of ϕ� completely independent of N�. In this sense,
it is possible to use the VEVas the input variable to estimate
the number of e-foldings before the end of inflation and

then the postaccelerated physics. There were two reasons
for choosing E-models. The first one lies in the capability
of the model to interpolate a broad range of predictions for
r. The second one is related to the capability of these
attractor models to reproduce during the accelerated phase,
for some values of α, the exponential potentials typically
developed in the string inflation moduli context (see [75–79]
for detailed papers).
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