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Chemokines are small chemotactic molecules that play key roles in physiological and 
pathological conditions. Upon signaling via their specific receptors, chemokines regulate 
tissue mobilization and trafficking of a wide array of immune cells, including natural killer 
(NK) cells. Current research is focused on analyzing changes in chemokine/chemokine 
receptor expression during various diseases to interfere with pathological trafficking of 
cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lym-
phocyte population comprising several subsets endowed with distinct functional proper-
ties and mainly representing distinct stages of a linear development process. Because of 
their different functional potential, the type of subset that accumulates in a tissue drives 
the final outcome of NK cell-regulated immune response, leading to either protection 
or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and 
CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can 
be modulated during NK cell activation. At first, this review will summarize the current 
knowledge on the contribution of chemokines to the localization and generation of NK 
cell subsets in homeostasis. How an inappropriate chemotactic response can lead to 
pathology and how chemokine targeting can therapeutically affect tissue recruitment/
localization of distinct NK cell subsets will also be discussed.

Keywords: chemokine receptors, CXCR4, CXCR3, nK cell subsets, multiple sclerosis, multiple myeloma, cross-
inhibition, migration

inTRODUCTiOn

Natural killer (NK) cells are innate lymphocytes that play a key role in the immune response to 
tumors and infections through their ability to kill transformed or infected cells and to produce 
immunoregulatory cytokines and chemokines. Activation of NK cell effector functions can be 
achieved through a complex integration of inhibitory and activation signals provided by membrane 
expressed receptors and/or through cytokine stimulation (1).

Natural killer cells are widely distributed into different tissues such as the bone marrow (BM), 
liver, thymus, lymph node, and uterus, thus contributing to immune surveillance in homeostasis, 
and can be further recruited into tissues in pathological conditions (2, 3). While tissue-resident 
NK cells have been identified in uterus, liver, and skin, conventional NK cells continuously traffic 
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FigURe 1 | Differential chemoattractant receptor expression by nK cell subsets in human and mouse.
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and localize into tissue through a combination of stimuli able to 
promote their mobilization from storage compartments to blood 
circulation and their entry and retention into tissue (4–6).

Chemokines are a family of more than 50 small proteins, 
mostly secreted, that accomplish their function by interacting 
with heterotrimeric G protein-coupled receptors (GPCR). 
Chemokine binding promotes a conformational change in the 
receptor, triggering intracellular signals that drive cell polariza-
tion, migration, and adhesion, thus resulting in the induction 
of leukocyte trafficking and homing (3). Besides leukocyte 
chemotaxis, chemokines can affect a number of other leukocyte 
functions and are recognized as important regulators of the 
immune response (3). Chemokines may be grouped according 
to their modality of expression and function, as inflammatory or 
homeostatic (7).

CHeMOKine ReCePTOR eXPReSSiOn 
On nK CeLL SUBSeTS

A number of evidence indicates that the differential functional 
properties underlying NK cell-mediated protective effect in 
pathological conditions can be attributed to distinct NK cell pop-
ulations endowed with distinct expression patterns of activating 

and inhibitory as well as homing receptors. Two major subsets 
of mature NK cells were identified in human peripheral blood 
with respect to the neural cell adhesion molecule CD56 and the 
low affinity receptor for IgG, FcγRIII CD16. The CD56highCD16low 
subset accounts for around 10% of circulating CD56+ NK cells 
and exerts immunomodulatory effects producing large amount 
of cytokines such as IFNγ in response to activation, whereas 
CD56lowCD16high cells are the major cytotoxic population 
representing the majority of circulating CD56+ NK cells [for a 
review on human NK subsets, see Ref. (8)]. Although the exact 
relationship between these NK cell subsets still remains unclear, 
evidence suggest that CD56low NK cells originate from CD56high 
NK cells (9–12).

Natural killer cell subsets display a differential pattern of 
chemokine receptor expression (Figure  1). CD56high NK cells 
are targeted to lymph nodes via CCR7, preferentially express 
CXCR3 and have higher CXCR4 expression levels as compared 
with CD56low cells. CD56low NK cells uniquely express CXCR1, 
ChemR23, and CX3CR1 (Figure 1) (see Table 1 for a list of ligands 
of chemoattractant receptors expressed by human and mouse 
NK cell subsets) (13–18). More recently, a new CD56lowCD16low 
subset has been identified and found to be prominent in the BM 
of healthy pediatric donors, to display potent killing and IFNγ 
producing capacity, and to expresses higher levels of CXCR4 and 
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TABLe 1 | Chemokine receptor expression by nK cells and their 
respective ligands.

Chemokine receptor Chemokine ligand

CCR1 CCL3/MIP-1α, CCL5/RANTES, CCL7/MCP-3, 
CCL9/CCL10/MIP-1γ, CCL14/HCC-1, CCL15/
HCC-2, CCL16/HCC-4, CCL23/MPIF-1

CCR2 CCL2/MCP-1, CCL7/MCP-3, CCL12,  
CCL13/MCP-4, CCL16/HCC-4

CCR5 CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, 
CCL8/MCP-2, CCL14/HCC-1

CCR7 CCL19/MIP-3β/ELC, CCL21/SLC

CXCR1 CXCL8/IL-8

CXCR3 CXCL9/Mig, CXCL10/IP-10, CXCL11/I-TAC

CXCR4 CXCL12/SDF-1

CXCR6 CXCL16/SR-PSOX

CX3CR1 CX3CL1/fractalkine

Chemoattractant receptors Ligand

S1P5 S1P
ChemR23, CCRL2 Chemerin

The previous chemokine name follows the one currently used.

3

Bernardini et al. Chemokines and NK Cell Trafficking

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 402

CXCR3 compared with the other subsets (17). In addition, other 
subsets related to NK cell maturation, including cells coexpress-
ing CD57, a member of the glucuronyl-transferase gene family 
or the L-selectin within the CD56low NK cells are currently active 
field of investigation (19–21).

Mouse NK cells do not express the murine ortholog of CD56, 
but four different developmentally related subsets have been 
identified on the basis of the expression levels of the integrin 
chain CD11b and of a member of the TNF receptor superfamily, 
CD27: CD11blowCD27low, CD11blowCD27high, CD11bhighCD27high, 
and CD11bhighCD27low (22, 23). The inhibitory receptor KLRG1 
is acquired by the most mature subset and identifies NK cells with 
reduced effector functions (24). KLRG1 coexpression with the 
chemokine receptor CX3CR1 identifies an even later maturation 
stage with unique functional properties (25). Likewise, other NK 
cell subsets can be defined according to the expression of selected 
chemokine receptors: the prevalent expression of CXCR3 on 
CD56high was related to expression of the receptor on mouse 
CD27high NK cells and more in general to stronger proliferative 
and cytokine production capacity (26, 27). In addition, CXCR6 
was shown to identify an NK cell population resident in liver 
displaying in humans a CD56highCD16−CD57− phenotype, 
and expressing TRAIL in diseased liver, and in the mouse a 
DX5−TRAIL+ phenotype (28, 29).

CHeMOKine ReCePTOR inTeRPLAY FOR 
eFFiCienT MigRATiOn in COMPLeX 
CHeMOTACTiC enviROnMenT

Leukocytes express multiple chemokine receptors not only to 
robustly and promptly infiltrate tissues upon activation but also 
to navigate through the network provided by multiple competing 
chemotactic gradients perceived into tissue. Indeed, discrimina-
tion of a dominant chemoattractant is required to localize in the 

correct microenvironment and/or to make a decision on whether 
to stay or to leave a tissue (30, 31). The ability to preferentially 
respond to selected chemoattractants was at first demonstrated in 
neutrophils and was postulated to require heterologous receptor 
desensitization that is the transinhibition of a chemokine recep-
tor resulting from the activation of second messenger-dependent 
kinases by a dominant chemoattractant receptor (32–34). In this 
regard, triggering CXCR2 by KC was shown to be required for 
neutrophil egress from the BM not only by promoting neutrophil 
migration but also by inhibiting CXCR4-mediated BM retention 
(35). Afterward, our group showed that CXCR4 heterologous 
desensitization is also associated with NK cell egress from BM into 
circulation (36, 37). On the other hand, the sphingophospholipid 
chemoattractant sphingosine-1-phosphate (S1P) promotes NK 
cell egress from BM under steady state without inducing CXCR4 
heterologous desensitization (38). CX3CL1, a ligand for CX3CR1 
constitutively expressed in BM, acts similarly on a small highly 
differentiated subset which poorly expresses CXCR4 (25,  39). 
While homeostatic chemokines may be sufficient for NK cell 
egress under steady state, heterologous receptor desensitization 
could be a mechanism to rapidly switch NK cell responsiveness 
promoted by inflammatory chemokines, to promptly facilitate 
BM NK cell availability in circulation.

Besides desensitization, CXCR4-mediated transinhibition 
can occur through other mechanisms, including receptor 
heterodimerization and G protein scavenging (40). In regard to 
heterodimerization, it is becoming increasingly clear that recep-
tor dimers are constitutively formed, and that ligand binding to 
one receptor can reorganize receptor complexes thus affecting 
different aspects of the associated chemokine receptor activity, 
including ligand affinity, the activated signaling cascades, and the 
receptor internalization (41–43). For example, CXCR3/CXCR4-
heterodimerization was shown to reduce the binding affinity of 
CXCR4 for its ligand (44).

Apart from the mechanism involved, cross-regulation pro-
moted by CXCR3 was shown to be relevant in several pathological 
conditions in mouse disease models. For example, O’Boyle and 
coworkers demonstrated CXCR4 and CCR5 inhibition on T cells 
by using a mimetic of CXCL10, a CXCR3 ligand. The use of this 
mimetic in a humanized mouse air-pouch model demonstrated 
reduced trafficking of T cells toward synovial fluids from patients 
with active rheumatoid arthritis, indicating that the triggering of 
a single chemokine receptor can control the immune response in 
chronic inflammatory conditions where CXCL12 is produced at 
high levels (45, 46). More recently, our observations in a mouse 
model of multiple myeloma led us to hypothesize that increased 
expression of CXCR3 ligands in the tumor BM microenviron-
ment constitutes a new mechanism to avoid tumor infiltration by 
NK cells: ligand-induced CXCR3 activation on KLRG1− NK cells 
resulted in cross-desensitization of CXCR4 that together with the 
coincident down-modulation of CXCL12 protein levels promotes 
NK cell egress from BM into blood circulation. The final outcome 
of this process is the reduction of the localization of this subset 
at the tumor site (39). On the other hand, when studying human 
plasmacytoid dendritic cells (pDC), a positive cooperative 
interaction was observed between the two receptors (47). This 
observation, together with a consistent adjacent expression of 
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TABLe 2 | influence of dysregulation of chemokine receptor/ligand axes in pathologies on nK cell subsets.

nK cell 
subset

Chemokine-related 
alterations

Disease effects Reference

CD56low ↑CXCR4 Neuroblastoma Less recruitment to tumor site – tumor immune evasion (55)
↓CX3CR1

KLRG1− ↓CXCL12 Multiple myeloma Less recruitment to tumor site – tumor immune evasion (39)
↓CXCR3
↑CXCL9/10

NK cells ↑CXCR4 Multiple sclerosis Enhanced chemotaxis toward CXCL12 – neuroprotective role (69)

CD56high ↓CXCR4 Paroxysmal nocturnal hemoglobinuria Less secondary lymphoid tissue relocation (58)

CD56low ↓CXCR4 GATA2 deficiency Reduced chemotaxis toward CXCL12 (63)

NK cells ↑CXCR4 WHIM Enhanced chemotaxis toward CXCL12 (38, 64, 65)

CD27high ↑CXCL9/10 Cowpox virus infection Increased recruitment to lymph nodes (77)
Protection from infection

NK cells ↑CXCL10 HCV infection Less recruitment to liver – immune response dampening (81)
Truncated form

CD56low ↑CXCL9/10 Primary biliary cirrhosis Autologous cytotoxicity – tissue damage (82–85)

CD56high ↑CXCR3 Psoriatic skin Local inflammation – disease progression (86)
↑CXCL10

CD56high ↑CXCR3 ligands Periprosthetic osteolysis Local inflammation – immunoregulatory role (87)

↑ indicates up-modulation/increase frequency and ↓ indicates down-modulation/reduced frequency.
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CXCL12 with CXCR3 ligands in human tissues, led the authors 
to hypothesize that the cooperation between CXCR3 ligands and 
CXCL12 controls the tissue recruitment of pDCs.

Considering the highlighted importance of CXCR3/CXCR4 
interplay, hereafter we will document the critical role of CXCR3 
and of CXCR4 receptor/ligand axes in the regulation of NK cell-
mediated function in pathologies (summarized in Table 2).

CXCR4 ReCePTOR/LigAnD AXiS

CXCL12 displays a constitutive but restricted expression pattern 
in situ, with selective expression by CXCL12 abundant reticular 
(CAR) cells and osteoblasts in BM, by subpopulations of neuronal 
and endothelial cells in the brain, by dermal endothelial cells, and 
by invading trophoblast cells and lymph node high endothelial 
venules (48–54). Correspondingly, CXCR4/CXCL12 axis was 
reported to regulate NK cell functions in several physiological 
processes. It was shown that CXCL12 regulates the position-
ing in the BM of selected NK cell subsets at various stages of 
maturation; in addition, during pregnancy, human peripheral 
blood CD56highCD16− NK cells can be recruited by CXCL12 and 
migrate to the uterus (36, 48).

Considering the key role of CXCL12 in the localization of NK 
cells in BM, subversion of the CXCR4/CXCL12 axis has been 
hypothesized to represent a mechanism of immune evasion from 
NK-mediated immune surveillance in neuroblastoma and mul-
tiple myeloma (39, 55). TGF-β1 produced by neuroblastoma cell 
lines was shown to upregulate the surface expression of CXCR4 
and CXCR3 on both CD56high and CD56low NK cells, while it 
downregulated CX3CR1 in the CD56low subset. Increased CXCR3 
and reduced CX3CR1 expression was observed also in peripheral 
blood NK cells of stage 4 neuroblastoma patients, and it may rep-
resent an attempt to avoid NK cell cytolytic subset recruitment to 

the tumor site, while promoting the enrichment of immature and 
poorly cytotoxic CD56high subset in tumor leukocyte infiltrates 
(55, 56). Similarly, accumulation of CD56high NK cells was shown 
to occur in several tumors and may be related to the respon-
siveness of this subset to a combination of tissue-expressed 
chemokines: by analyzing the chemokine expression pattern 
of various normal solid tissues, Carrega and coworkers docu-
mented that some tissues are clearly oriented to recruit CD56high 
cells when CXCL12 is coexpressed with other chemokines (LN, 
colorectal, stomach, and liver tissues), while anatomic compart-
ments with the lowest proportion of CD56high within NK cells 
(lung and breast tissues) display a chemokine expression profile 
favoring CD56low NK cell recruitment (57). Similarly, decreased 
levels of CXCL12 in BM plasma samples from a cohort of patients 
with active multiple myeloma as compared with a premalignant 
stage support the hypothesis of a reduced NK cell surveillance 
based on reduced BM recruitment (39).

The key role of CXCR4 expression for NK cell homeostasis 
is also highlighted by genetic defects responsible for altered or 
lost CXCR4 function. For example, a more abundant proportion 
of circulating GPI−CD56high NK cells in paroxysmal nocturnal 
hemoglobinuria patients, a disease caused by dampened bio-
synthesis of glycosylphosphatidylinositol (GPI)-linked protein, 
was associated with reduced responsiveness of this population 
to the CXCR4 ligand CXCL12 (58, 59). In addition, deficiency 
of the transcription factor GATA2 is characterized by several 
hematological and non-hematological abnormalities among 
which NK cell cytopenia, with almost complete absence of 
circulating CD56high subset (60). Interestingly, CD56low NK cells 
display reduced CXCR4 surface expression levels and reduced 
chemotaxis to CXCL12 that was attributed decreased expression 
of filamin A and β-arrestin-1, two proteins regulating CXCR4 cell 
surface expression and endocytosis (61–63). On the other hand, 
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NK cells from patients affected by warts, hypogammaglobuline-
mia, infections, and myelokathexis (WHIM) syndrome display 
enhanced responsiveness to CXCL12 (38, 64, 65). Similarly, NK 
cells from mice displaying the most common mutation of the 
CXCR4 gene associated with WHIM syndrome show enhanced 
migration to CXCL12 that is linked to impaired CXCR4 desen-
sitization and internalization after CXCL12 stimulation. Possibly 
for this reason, NK cell distribution is altered, with CD11blow and 
CD11bhighCD27high NK cells accumulating in the BM.

Although CXCR4 mutation in WHIM syndrome was not 
associated with any NK cell-related disease, a selective defect of 
CXCR4 internalization after CXCL12 binding underlies a new 
rare immune deficiency documented in two cases of disseminated 
Mycobacterium avium infection, where a marked reduction in the 
number of circulating NK cells as well as neutrophils and B cells 
was observed (66).

An altered pattern of CXCL12 expression in brain has been 
reported in multiple sclerosis (67, 68), suggesting the involve-
ment of the CXCR4/CXCL12 axis in the leukocyte infiltration 
that characterizes this pathology. In this regard, while the inter-
ference with CXCR4/CXCL12 axis often leads to reduced NK 
cell protection in pathological conditions, Serrano-Pertierra and 
colleagues have found increased NK cell chemotaxis in response 
to CXCL12 in multiple sclerosis patients in the remitting phase 
and in clinically isolated syndrome patients with respect to 
relapsing multiple sclerosis patients and healthy controls. This 
finding has been associated with higher frequencies of NK cells 
expressing CXCR4 in the blood of the former patients’ cohorts 
(69). The enhanced NK cell migration in patients with a less 
active disease course supports the idea of a neuroprotective role 
for NK cells in multiple sclerosis (70). Unfortunately, NK cells 
have been studied as a whole, and the authors agree it would 
be of interest to analyze NK cell subsets, also considering that 
the size of the circulating CD56high NK cell pool is significantly 
associated with clinical remissions and that expansion of 
this population is associated with amelioration of diseases in 
response to therapy (71–75).

CXCR3 ReCePTOR/LigAnD AXeS

CXCR3 ligands are expressed at low levels in homeostatic condi-
tions, but their expression can be upregulated in both the hemat-
opoietic and non-hematopoietic compartment by IFN-γ and some 
related cytokines. Several studies in humans and mice reveal that 
NK cells can promote adaptive immune response by modulating 
dendritic cell (DC) function and T helper cell polarization (76). 
This important function is linked to CXCR3-mediated NK cell 
recruitment into draining lymph node in several conditions. In 
mouse, in accordance with higher and preferential expression 
levels of CXCR3, the NK cell population mostly affected by 
CXCR3 function is the CD27high subset that colonizes draining 
LN following DC vaccination, cowpox virus infection, and dur-
ing tumor growth (77, 78). Several studies have correlated high 
numbers of tumor-infiltrating NK cells with a good prognosis for 
cancer patients and with tumor cell clearance in mouse tumor 
models. This has been related to the IFN-γ promotion of CXCL9 
and CXCL10 production by tumor-infiltrating leukocytes, 

leading to the CXCR3-mediated recruitment of mouse CD27high 
NK cells, the population of NK cells with the higher functional 
potential (79).

The influence of CXCR3–CXCL10 axis on NK cell function 
was documented also in human pathologies. Upregulation of 
CXCR3 ligands in multiple myeloma patients with active disease 
corresponded to marked down-modulation of CXCR3 expres-
sion levels by BM NK cells, an event that was linked to reduction 
of NK cell localization in the BM in multiple myeloma-bearing 
mice. In addition, high CXCL9 and CXCL10 serum levels were 
associated with several established prognostic parameters and 
predicted poor overall survival (39, 80).

CXCL10/CXCR3 axis is involved in hepatic trafficking of 
NK cells, which also represent an important component of 
the intrahepatic lymphocyte pool and has been implicated in 
the pathogenesis of chronic hepatitis C virus (HCV) infection. The 
CD56highCXCR3+ NK cells display the strongest activity against 
hepatic stellate cells, thus regulating liver fibrosis. Although 
expanded in HCV-infected patients, the CD56highCXCR3+ NK 
cell subset display impaired functions that may be linked to 
HCV-associated liver fibrosis (27). Elevated levels of CXCL10 
were found in serum of patients and were predictive of the failure 
to respond to HCV therapy. Nevertheless, in a recent study, it 
has been reported that CXCL10 in the serum of HCV patients 
may not be biologically active, representing a truncated form 
that can bind to CXCR3 without signaling. In the presence of 
higher levels of this CXCL10 antagonist, NK cells might fail 
to migrate to the infected liver and accumulate instead in the 
peripheral circulation (81).

Chemokines play an important role in destruction of the 
biliary tract (82) by recruiting cells of the immune system, 
including NK cells. As such, liver NK cells have been reported 
to express the chemokine receptors CX3CR1 and CXCR3 (83). 
Among the principal chemokines involved in hepatic immune 
cell migration, CXCL9 and CXCL10 are both increased in serum 
of patients with primary biliary cirrhosis (PBC) compared with 
normal individuals and are preferentially expressed in the portal 
areas, corresponding to CD56lowCD16+ NK cell liver infiltration 
increased numbers of CD56+ cells located around the destroyed 
small bile ducts (84, 85).

Several reports documented that CD56high NK cells also infil-
trate inflamed skin in a CXCL10-dependent fashion. Ottaviani 
et al. have shown that psoriatic keratinocytes display an enhanced 
capacity to produce CXCL10, and CD56highCD16− NK cells showed 
an upregulation of CXCR3, in comparison to CD56lowCD16+ NK 
cells (86). CD56highCXCR3+CCR5+ cells produced IFNγ after IL2 
stimulation that in turn potentiates activation of keratinocytes 
and upregulates HLA class-I. These findings would suggest that 
CD56+ NK cells are recruited in psoriatic skin through a mecha-
nism involving the CXCL10/CXCR3 axes and that, once in the 
skin, they may contribute to the disease progression by inducing 
local inflammation and amplifying T cell autoimmune reactivity.

Similar to psoriatic skin-infiltrating NK cells, NK cells in the 
synovial tissue of osteoarthritis patients are CCR5+CXCR3+. 
High levels of CXCR3 and CCR5 ligands present in synovial 
fluids after revision surgery, as well as evidence of particle-
induced chemokine production by macrophages (87), suggest a 
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mechanism for recruitment of a subset functionally correspond-
ing to CD56highCD16− NK cells during periprosthetic osteolysis. 
The majority of synovial tissue-infiltrating NK cells express a 
combination of surface receptors consistent with a non-cytotoxic 
phenotype similar to blood.

COnCLUSiOn

The correct localization of NK cells into tissues has a fundamental 
role in several aspects of NK cell-mediated immune responses 
in vivo. Thus, identification of the key mediators regulating NK 
cell tissue recruitment is a critical step in the optimization of 
current cancer immunotherapy protocols or in the treatment of 
inflammatory diseases.

When NK cell tissue accumulation is important, the thera-
peutic enhancement of expression of selected chemokines that 
attract NK cells specifically is a valuable approach to increase 
the penetration and/or local activation and differentiation of 
NK cells at the tumor site. Ectopic expression of chemokines/
chemoattractants known to preferentially attract effector 
lymphocytes, including CXCR3 ligands as well as CX3CL1 and 
chemerin, was shown to positively affect the antitumor nature 
of tumor-infiltrating lymphocytes with a large proportion of NK 
cells (88–91). Nevertheless, high concentrations of attracting 
chemokines do not always imply increased NK cell migration, 
as shown by Halama and coworkers in colorectal cancer tissue 
where NKp46+ NK cells are poorly infiltrated, despite high local 
chemokine levels (92).

An alternative and highly novel strategy to improve NK 
cell migration to target tissues is to promote or optimize the 
expression of chemoattractant receptors on NK cells to be used 

for adoptive immunotherapy. The expression of chemokine 
receptors and the corresponding NK cell chemotactic response 
can be modulated upon cytokine-mediated activation thus sug-
gesting that they may better home to tumor sites where their 
corresponding ligands are expressed (93–96). In addition, NK 
cells ex vivo engineered to express chemokine receptors by gene 
transfer or by trogocytosis are under investigation for their better 
tissue homing and function (97–101). Conversely, a number of 
new clinical trials for immune-mediated diseases based on the 
use of chemokine receptor antagonists are ongoing and will help 
to understand the therapeutic potential of these important targets 
for NK cell-promoted pathologies (102). Finally, the emerging 
role of chemoattractant receptor interplay in the regulation of 
immune cell response may also lead to the discovery of molecules 
able to block chemokine receptor cross-inhibition thus allowing 
to unleash the full chemotactic potential of important NK cell 
receptors, such as CXCR4.

AUTHOR COnTRiBUTiOnS

GB, FA, VB, and AS contributed equally to writing and critically 
revised the paper.

FUnDing

The authors’ research activities are supported by grants from the 
Italian Association for Cancer Research (AIRC: project #16014 
and AIRC 5xmille: project #9962), Istituto Pasteur-Fondazione 
Cenci Bolognetti, and Ministero dell’Istruzione, dell’Università 
e della Ricerca (PRIN: project #PRIN20103 FMJEN and PRIN 
2010 C2LKKJ-003).

ReFeRenCeS

1. Yokoyama WM, Kim S, French AR. The dynamic life of natural killer 
cells. Annu Rev Immunol (2004) 22:405–29. doi:10.1146/annurev.
immunol.22.012703.104711 

2. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling 
to identify relevant immune resistance mechanisms in the tumor micro-
environment. Curr Opin Immunol (2011) 23(2):286–92. doi:10.1016/ 
j.coi.2010.11.013 

3. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity (2012) 
36(5):705–16. doi:10.1016/j.immuni.2012.05.008 

4. Sojka DK, Tian Z, Yokoyama WM. Tissue-resident natural killer cells and 
their potential diversity. Semin Immunol (2014) 26(2):127–31. doi:10.1016/ 
j.smim.2014.01.010 

5. Bernardini G, Sciume G, Santoni A. Differential chemotactic receptor 
requirements for NK cell subset trafficking into bone marrow. Front Immunol 
(2013) 4:12. doi:10.3389/fimmu.2013.00012 

6. Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, et al. 
The trafficking of natural killer cells. Immunol Rev (2007) 220:169–82. 
doi:10.1111/j.1600-065X.2007.00563.x 

7. Mantovani A. The chemokine system: redundancy for robust outputs. 
Immunol Today (1999) 20(6):254–7. doi:10.1016/S0167-5699(99)01469-3 

8. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural 
killer-cell subsets. Trends Immunol (2001) 22(11):633–40. doi:10.1016/
S1471-4906(01)02060-9 

9. Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, et al. 
CD56bright human NK cells differentiate into CD56dim cells: role of contact 
with peripheral fibroblasts. J Immunol (2007) 179(1):89–94. doi:10.4049/
jimmunol.179.1.89 

10. Ouyang Q, Baerlocher G, Vulto I, Lansdorp PM. Telomere length in human 
natural killer cell subsets. Ann N Y Acad Sci (2007) 1106:240–52. doi:10.1196/
annals.1392.001 

11. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, et al. 
CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres 
and acquire features of CD56dim NK cells upon activation. J Immunol (2007) 
178(8):4947–55. doi:10.4049/jimmunol.178.8.4947 

12. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL-15 
trans-presentation promotes human NK cell development and differentiation 
in vivo. J Exp Med (2009) 206(1):25–34. doi:10.1084/jem.20082013 

13. Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ. Evidence for NK 
cell subsets based on chemokine receptor expression. J Immunol (2006) 
177(11):7833–40. doi:10.4049/jimmunol.177.11.7833 

14. Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, et  al. 
Unique subpopulations of CD56+ NK and NK-T peripheral blood lym-
phocytes identified by chemokine receptor expression repertoire. J Immunol 
(2001) 166(11):6477–82. doi:10.4049/jimmunol.166.11.6477 

15. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, 
et  al. CD56bright natural killer cells are present in human lymph nodes 
and are activated by T cell-derived IL-2: a potential new link between 
adaptive and innate immunity. Blood (2003) 101(8):3052–7. doi:10.1182/
blood-2002-09-2876 

16. Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, 
et  al. The role of chemerin in the colocalization of NK and dendritic cell 
subsets into inflamed tissues. Blood (2007) 109(9):3625–32. doi:10.1182/
blood-2006-08-038844 

17. Stabile H, Nisti P, Morrone S, Pagliara D, Bertaina A, Locatelli F, et  al. 
Multifunctional human CD56 low CD16 low natural killer cells are the 
prominent subset in bone marrow of both healthy pediatric donors and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1146/annurev.immunol.22.012703.104711
http://dx.doi.org/10.1146/annurev.immunol.22.012703.104711
http://dx.doi.org/10.1016/j.coi.2010.11.013
http://dx.doi.org/10.1016/j.coi.2010.11.013
http://dx.doi.org/10.1016/j.immuni.2012.05.008
http://dx.doi.org/10.1016/j.smim.2014.01.010
http://dx.doi.org/10.1016/j.smim.2014.01.010
http://dx.doi.org/10.3389/fimmu.2013.00012
http://dx.doi.org/10.1111/j.1600-065X.2007.00563.x
http://dx.doi.org/10.1016/S0167-5699(99)01469-3
http://dx.doi.org/10.1016/S1471-4906(01)02060-9
http://dx.doi.org/10.1016/S1471-4906(01)02060-9
http://dx.doi.org/10.4049/jimmunol.179.1.89
http://dx.doi.org/10.4049/jimmunol.179.1.89
http://dx.doi.org/10.1196/annals.1392.001
http://dx.doi.org/10.1196/annals.1392.001
http://dx.doi.org/10.4049/jimmunol.178.8.4947
http://dx.doi.org/10.1084/jem.20082013
http://dx.doi.org/10.4049/jimmunol.177.11.7833
http://dx.doi.org/10.4049/jimmunol.166.11.6477
http://dx.doi.org/10.1182/blood-2002-09-2876
http://dx.doi.org/10.1182/blood-2002-09-2876
http://dx.doi.org/10.1182/blood-2006-08-038844
http://dx.doi.org/10.1182/blood-2006-08-038844


7

Bernardini et al. Chemokines and NK Cell Trafficking

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 402

leukemic patients. Haematologica (2015) 100(4):489–98. doi:10.3324/
haematol.2014.116053 

18. Vitale M, Della Chiesa M, Carlomagno S, Romagnani C, Thiel A, Moretta L, 
et al. The small subset of CD56brightCD16- natural killer cells is selectively 
responsible for both cell proliferation and interferon-gamma production 
upon interaction with dendritic cells. Eur J Immunol (2004) 34(6):1715–22. 
doi:10.1002/eji.200425100 

19. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF. Subpopulations of 
human natural killer cells defined by expression of the Leu-7 (HNK-1) and 
Leu-11 (NK-15) antigens. J Immunol (1983) 131(4):1789–96. 

20. Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, et al. 
CD62L expression identifies a unique subset of polyfunctional CD56dim NK 
cells. Blood (2010) 116(8):1299–307. doi:10.1182/blood-2009-11-253286 

21. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, 
et al. CD57 defines a functionally distinct population of mature NK cells in 
the human CD56dimCD16+ NK-cell subset. Blood (2010) 116(19):3865–74. 
doi:10.1182/blood-2010-04-282301 

22. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation 
of mouse NK cells is a 4-stage developmental program. Blood (2009) 
113(22):5488–96. doi:10.1182/blood-2008-10-187179 

23. Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ. Functional sub-
sets of mouse natural killer cells. Immunol Rev (2006) 214:47–55. 
doi:10.1111/j.1600-065X.2006.00454.x 

24. Huntington ND, Tabarias H, Fairfax K, Brady J, Hayakawa Y, Degli-Esposti 
MA, et  al. NK cell maturation and peripheral homeostasis is associated 
with KLRG1 up-regulation. J Immunol (2007) 178(8):4764–70. doi:10.4049/
jimmunol.178.8.4764 

25. Sciume G, De Angelis G, Benigni G, Ponzetta A, Morrone S, Santoni A, et al. 
CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct 
functional properties and positioning in the bone marrow. Blood (2011) 
117(17):4467–75. doi:10.1182/blood-2010-07-297101 

26. Marquardt N, Wilk E, Pokoyski C, Schmidt RE, Jacobs R. Murine 
CXCR3+CD27bright NK cells resemble the human CD56bright NK-cell 
population. Eur J Immunol (2010) 40(5):1428–39. doi:10.1002/eji.200940056 

27. Eisenhardt M, Glassner A, Kramer B, Korner C, Sibbing B, Kokordelis P, et al. 
The CXCR3(+)CD56Bright phenotype characterizes a distinct NK cell subset 
with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. 
PLoS One (2012) 7(7):e38846. doi:10.1371/journal.pone.0038846 

28. Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, et al. Critical 
role for the chemokine receptor CXCR6 in NK cell-mediated  antigen-specific 
memory of haptens and viruses. Nat Immunol (2010) 11(12):1127–35. 
doi:10.1038/ni.1953 

29. Stegmann KA, Robertson F, Hansi N, Gill U, Pallant C, Christophides T, 
et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells 
residing in human liver. Sci Rep (2016) 6:26157. doi:10.1038/srep26157 

30. Broxmeyer HE, Kim CH. Regulation of hematopoiesis in a sea of chemokine 
family members with a plethora of redundant activities. Exp Hematol (1999) 
27(7):1113–23. doi:10.1016/S0301-472X(99)00045-4 

31. Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in 
human disease pathogenesis. Annu Rev Pathol (2015) 10:51–81. doi:10.1146/
annurev-pathol-012513-104640 

32. Campbell JJ, Foxman EF, Butcher EC. Chemoattractant receptor cross talk as 
a regulatory mechanism in leukocyte adhesion and migration. Eur J Immunol 
(1997) 27(10):2571–8. doi:10.1002/eji.1830271016 

33. Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic 
signals. The role of memory in leukocyte navigation. J Cell Biol (1999) 
147(3):577–88. doi:10.1083/jcb.147.3.577 

34. Ali H, Richardson RM, Haribabu B, Snyderman R. Chemoattractant receptor 
cross-desensitization. J Biol Chem (1999) 274(10):6027–30. doi:10.1074/
jbc.274.10.6027 

35. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, 
Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release 
of neutrophils from the bone marrow and their return following senescence. 
Immunity (2003) 19(4):583–93. doi:10.1016/S1074-7613(03)00263-2 

36. Bernardini G, Sciume G, Bosisio D, Morrone S, Sozzani S, Santoni A. CCL3 
and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. 
Blood (2008) 111(7):3626–34. doi:10.1182/blood-2007-08-106203 

37. Ponzetta A, Sciume G, Benigni G, Antonangeli F, Morrone S, Santoni A, 
et  al. CX3CR1 regulates the maintenance of KLRG1+ NK cells into the 
bone marrow by promoting their entry into circulation. J Immunol (2013) 
191(11):5684–94. doi:10.4049/jimmunol.1300090 

38. Mayol K, Biajoux V, Marvel J, Balabanian K, Walzer T. Sequential desensitiza-
tion of CXCR4 and S1P5 controls natural killer cell trafficking. Blood (2011) 
118(18):4863–71. doi:10.1182/blood-2011-06-362574 

39. Ponzetta A, Benigni G, Antonangeli F, Sciume G, Sanseviero E, Zingoni A, 
et al. Multiple myeloma impairs bone marrow localization of effector natural 
killer cells by altering the chemokine microenvironment. Cancer Res (2015) 
75(22):4766–77. doi:10.1158/0008-5472.CAN-15-1320 

40. Vischer HF, Watts AO, Nijmeijer S, Leurs R. G protein-coupled receptors: 
walking hand-in-hand, talking hand-in-hand? Br J Pharmacol (2011) 
163(2):246–60. doi:10.1111/j.1476-5381.2011.01229.x 

41. Kramp BK, Sarabi A, Koenen RR, Weber C. Heterophilic chemokine recep-
tor interactions in chemokine signaling and biology. Exp Cell Res (2011) 
317(5):655–63. doi:10.1016/j.yexcr.2010.11.014 

42. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, et  al. 
CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci U S A 
(2008) 105(29):10101–6. doi:10.1073/pnas.0804286105 

43. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, et  al.  
Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects 
of “selective” antagonists. J Biol Chem (2009) 284(45):31270–9. doi:10.1074/
jbc.M109.054809 

44. Watts AO, van Lipzig MM, Jaeger WC, Seeber RM, van Zwam M, Vinet J, 
et  al. Identification and profiling of CXCR3-CXCR4 chemokine receptor 
heteromer complexes. Br J Pharmacol (2013) 168(7):1662–74. doi:10.1111/
bph.12064 

45. Bradfield PF, Amft N, Vernon-Wilson E, Exley AE, Parsonage G, Rainger GE, 
et  al. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine 
stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and 
rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis 
Rheum (2003) 48(9):2472–82. doi:10.1002/art.11219 

46. O’Boyle G, Fox CR, Walden HR, Willet JD, Mavin ER, Hine DW, et  al. 
Chemokine receptor CXCR3 agonist prevents human T-cell migration in a 
humanized model of arthritic inflammation. Proc Natl Acad Sci U S A (2012) 
109(12):4598–603. doi:10.1073/pnas.1118104109 

47. Vanbervliet B, Bendriss-Vermare N, Massacrier C, Homey B, de Bouteiller O, 
Briere F, et al. The inducible CXCR3 ligands control plasmacytoid dendritic 
cell responsiveness to the constitutive chemokine stromal cell-derived 
factor 1 (SDF-1)/CXCL12. J Exp Med (2003) 198(5):823–30. doi:10.1084/
jem.20020437 

48. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, et  al. 
CXCL12 expression by invasive trophoblasts induces the specific migration of 
CD16- human natural killer cells. Blood (2003) 102(5):1569–77. doi:10.1182/
blood-2003-02-0517 

49. Krug A, Uppaluri R, Facchetti F, Dorner BG, Sheehan KC, Schreiber RD, et al. 
IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 
and secrete inflammatory chemokines upon activation. J Immunol (2002) 
169(11):6079–83. doi:10.4049/jimmunol.169.11.6079 

50. Nagasawa T. CXCL12/SDF-1 and CXCR4. Front Immunol (2015) 6:301. 
doi:10.3389/fimmu.2015.00301 

51. Pablos JL, Amara A, Bouloc A, Santiago B, Caruz A, Galindo M, et  al. 
Stromal-cell derived factor is expressed by dendritic cells and endothe-
lium in human skin. Am J Pathol (1999) 155(5):1577–86. doi:10.1016/
S0002-9440(10)65474-0 

52. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF 
induces stem cell mobilization by decreasing bone marrow SDF-1 and 
up-regulating CXCR4. Nat Immunol (2002) 3(7):687–94. doi:10.1038/ni813 

53. Stumm R, Culmsee C, Schafer MK, Krieglstein J, Weihe E. Adaptive plasticity 
in tachykinin and tachykinin receptor expression after focal cerebral isch-
emia is differentially linked to gabaergic and glutamatergic cerebrocortical 
circuits and cerebrovenular endothelium. J Neurosci (2001) 21(3):798–811. 

54. Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq 
M. Developmental pattern of expression of the alpha chemokine stromal 
cell-derived factor 1 in the rat central nervous system. Eur J Neurosci (2001) 
13(5):845–56. doi:10.1046/j.0953-816x.2000.01451.x 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.3324/haematol.2014.116053
http://dx.doi.org/10.3324/haematol.2014.116053
http://dx.doi.org/10.1002/eji.200425100
http://dx.doi.org/10.1182/blood-2009-11-253286
http://dx.doi.org/10.1182/blood-2010-04-282301
http://dx.doi.org/10.1182/blood-2008-10-187179
http://dx.doi.org/10.1111/j.1600-065X.2006.00454.x
http://dx.doi.org/10.4049/jimmunol.178.8.4764
http://dx.doi.org/10.4049/jimmunol.178.8.4764
http://dx.doi.org/10.1182/blood-2010-07-297101
http://dx.doi.org/10.1002/eji.200940056
http://dx.doi.org/10.1371/journal.pone.0038846
http://dx.doi.org/10.1038/ni.1953
http://dx.doi.org/10.1038/srep26157
http://dx.doi.org/10.1016/S0301-472X(99)00045-4
http://dx.doi.org/10.1146/annurev-pathol-012513-104640
http://dx.doi.org/10.1146/annurev-pathol-012513-104640
http://dx.doi.org/10.1002/eji.1830271016
http://dx.doi.org/10.1083/jcb.147.3.577
http://dx.doi.org/10.1074/jbc.274.10.6027
http://dx.doi.org/10.1074/jbc.274.10.6027
http://dx.doi.org/10.1016/S1074-7613(03)00263-2
http://dx.doi.org/10.1182/blood-2007-08-106203
http://dx.doi.org/10.4049/jimmunol.1300090
http://dx.doi.org/10.1182/blood-2011-06-362574
http://dx.doi.org/10.1158/0008-5472.CAN-15-1320
http://dx.doi.org/10.1111/j.1476-5381.2011.01229.x
http://dx.doi.org/10.1016/j.yexcr.2010.11.014
http://dx.doi.org/10.1073/pnas.0804286105
http://dx.doi.org/10.1074/jbc.M109.054809
http://dx.doi.org/10.1074/jbc.M109.054809
http://dx.doi.org/10.1111/bph.12064
http://dx.doi.org/10.1111/bph.12064
http://dx.doi.org/10.1002/art.11219
http://dx.doi.org/10.1073/pnas.1118104109
http://dx.doi.org/10.1084/jem.20020437
http://dx.doi.org/10.1084/jem.20020437
http://dx.doi.org/10.1182/blood-2003-02-0517
http://dx.doi.org/10.1182/blood-2003-02-0517
http://dx.doi.org/10.4049/jimmunol.169.11.6079
http://dx.doi.org/10.3389/fimmu.2015.00301
http://dx.doi.org/10.1016/S0002-9440(10)65474-0
http://dx.doi.org/10.1016/S0002-9440(10)65474-0
http://dx.doi.org/10.1038/ni813
http://dx.doi.org/10.1046/j.0953-816x.2000.01451.x


8

Bernardini et al. Chemokines and NK Cell Trafficking

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 402

55. Castriconi R, Dondero A, Bellora F, Moretta L, Castellano A, Locatelli F, 
et al. Neuroblastoma-derived TGF-beta1 modulates the chemokine receptor 
repertoire of human resting NK cells. J Immunol (2013) 190(10):5321–8. 
doi:10.4049/jimmunol.1202693 

56. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, et  al. 
Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched 
in CD56 bright CD16(-) cells and display an impaired capability to kill tumor 
cells. Cancer (2008) 112(4):863–75. doi:10.1002/cncr.23239 

57. Carrega P, Bonaccorsi I, Di Carlo E, Morandi B, Paul P, Rizzello V, et  al. 
CD56(bright)perforin(low) noncytotoxic human NK cells are abundant 
in both healthy and neoplastic solid tissues and recirculate to secondary 
lymphoid organs via afferent lymph. J Immunol (2014) 192(8):3805–15. 
doi:10.4049/jimmunol.1301889 

58. El-Sherbiny YM, Kelly RJ, Hill A, Doody GM, Hillmen P, Cook GP. Altered 
natural killer cell subset homeostasis and defective chemotactic responses 
in paroxysmal nocturnal hemoglobinuria. Blood (2013) 122(11):1887–90. 
doi:10.1182/blood-2013-06-507574 

59. Szpurka H, Schade AE, Jankowska AM, Maciejewski JP. Altered lipid raft 
composition and defective cell death signal transduction in glycosylphos-
phatidylinositol anchor-deficient PIG-A mutant cells. Br J Haematol (2008) 
142(3):413–22. doi:10.1111/j.1365-2141.2008.07203.x 

60. Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, 
et al. Mutations in GATA2 cause human NK cell deficiency with specific loss 
of the CD56(bright) subset. Blood (2013) 121(14):2669–77. doi:10.1182/
blood-2012-09-453969 

61. Clift IC, Bamidele AO, Rodriguez-Ramirez C, Kremer KN, Hedin KE. 
beta-Arrestin1 and distinct CXCR4 structures are required for stromal 
derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblas-
toma. Mol Pharmacol (2014) 85(4):542–52. doi:10.1124/mol.113.089714 

62. Gomez-Mouton C, Fischer T, Peregil RM, Jimenez-Baranda S, Stossel TP, 
Nakamura F, et al. Filamin A interaction with the CXCR4 third intracellular 
loop regulates endocytosis and signaling of WT and WHIM-like receptors. 
Blood (2015) 125(7):1116–25. doi:10.1182/blood-2014-09-601807 

63. Maciejewski-Duval A, Meuris F, Bignon A, Aknin ML, Balabanian K, 
Faivre L, et al. Altered chemotactic response to CXCL12 in patients carry-
ing GATA2 mutations. J Leukoc Biol (2016) 99(6):1065–76. doi:10.1189/
jlb.5MA0815-388R 

64. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, et  al. 
Altered leukocyte response to CXCL12 in patients with warts hypogamma-
globulinemia, infections, myelokathexis (WHIM) syndrome. Blood (2004) 
104(2):444–52. doi:10.1182/blood-2003-10-3532 

65. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. 
WHIM syndromes with different genetic anomalies are accounted for by 
impaired CXCR4 desensitization to CXCL12. Blood (2005) 105(6):2449–57. 
doi:10.1182/blood-2004-06-2289 

66. Doncker AV, Balabanian K, Bellanne-Chantelot C, de Guibert S, 
Revest  M, Bachelerie F, et  al. Two cases of disseminated Mycobacterium 
avium infection associated with a new immunodeficiency syndrome 
related to CXCR4 dysfunctions. Clin Microbiol Infect (2011) 17(2):135–9. 
doi:10.1111/j.1469-0691.2010.03187.x 

67. Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, 
et  al. A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple 
sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin 
basic protein. J Neuroimmunol (2006) 177(1–2):27–39. doi:10.1016/ 
j.jneuroim.2006.05.003 

68. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff 
RM, et  al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up- 
regulation is differentially linked to CNS immune cell recruitment. Brain 
(2006) 129(Pt 1):200–11. doi:10.1093/brain/awh680 

69. Serrano-Pertierra E, Blanco-Gelaz MA, Oliva-Nacarino P, Martinez-
Camblor P, Villafani J, Lopez-Larrea C, et  al. Increased natural killer cell 
chemotaxis to CXCL12 in patients with multiple sclerosis. J Neuroimmunol 
(2015) 282:39–44. doi:10.1016/j.jneuroim.2015.03.007 

70. Lunemann JD, Munz C. Do natural killer cells accelerate or prevent autoim-
munity in multiple sclerosis? Brain (2008) 131(Pt 7):1681–3. doi:10.1093/
brain/awn132 

71. Kastrukoff LF, Lau A, Wee R, Zecchini D, White R, Paty DW. Clinical relapses 
of multiple sclerosis are associated with ‘novel’ valleys in natural killer cell 

functional activity. J Neuroimmunol (2003) 145(1–2):103–14. doi:10.1016/ 
j.jneuroim.2003.10.001 

72. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, 
Waldmann TA, et al. Regulatory CD56(bright) natural killer cells mediate 
immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) 
in multiple sclerosis. Proc Natl Acad Sci U S A (2006) 103(15):5941–6. 
doi:10.1073/pnas.0601335103 

73. Rodriguez-Martin E, Picon C, Costa-Frossard L, Alenda R, Sainz de la Maza 
S, Roldan E, et al. Natural killer cell subsets in cerebrospinal fluid of patients 
with multiple sclerosis. Clin Exp Immunol (2015) 180(2):243–9. doi:10.1111/
cei.12580 

74. Vandenbark AA, Huan J, Agotsch M, La Tocha D, Goelz S, Offner H, et al. 
Interferon-beta-1a treatment increases CD56bright natural killer cells 
and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. 
J Neuroimmunol (2009) 215(1–2):125–8. doi:10.1016/j.jneuroim.2009.08.007 

75. Martinez-Rodriguez JE, Lopez-Botet M, Munteis E, Rio J, Roquer J, 
Montalban X, et  al. Natural killer cell phenotype and clinical response 
to interferon-beta therapy in multiple sclerosis. Clin Immunol (2011) 
141(3):348–56. doi:10.1016/j.clim.2011.09.006 

76. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, 
et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma 
for T(H)1 priming. Nat Immunol (2004) 5(12):1260–5. doi:10.1038/ni1138 

77. Pak-Wittel MA, Yang L, Sojka DK, Rivenbark JG, Yokoyama WM. Interferon-
gamma mediates chemokine-dependent recruitment of natural killer cells 
during viral infection. Proc Natl Acad Sci U S A (2013) 110(1):E50–9. 
doi:10.1073/pnas.1220456110 

78. Watt SV, Andrews DM, Takeda K, Smyth MJ, Hayakawa Y. IFN-gamma-
dependent recruitment of mature CD27(high) NK cells to lymph nodes 
primed by dendritic cells. J Immunol (2008) 181(8):5323–30. doi:10.4049/
jimmunol.181.8.5323 

79. Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumu-
lation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer 
Res (2008) 68(20):8437–45. doi:10.1158/0008-5472.CAN-08-1440 

80. Bolomsky A, Schreder M, Hubl W, Zojer N, Hilbe W, Ludwig H. Monokine 
induced by interferon gamma (MIG/CXCL9) is an independent prognostic 
factor in newly diagnosed myeloma. Leuk Lymphoma (2016) 21:1–10.  
doi:10.3109/10428194.2016.1151511 

81. Riva A, Laird M, Casrouge A, Ambrozaitis A, Williams R, Naoumov NV, 
et al. Truncated CXCL10 is associated with failure to achieve spontaneous 
clearance of acute hepatitis C infection. Hepatology (2014) 60(2):487–96. 
doi:10.1002/hep.27139 

82. Ishibashi H, Shimoda S. [Pathogenesis of biliary tract injury in primary 
biliary cirrhosis]. Nihon Rinsho Meneki Gakkai Kaishi (2012) 35(6):455–62. 
doi:10.2177/jsci.35.455 

83. Chuang YH, Lian ZX, Cheng CM, Lan RY, Yang GX, Moritoki Y, et  al. 
Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and 
MIG in patients with primary biliary cirrhosis and their first degree relatives. 
J Autoimmun (2005) 25(2):126–32. doi:10.1016/j.jaut.2005.08.009 

84. Gao B, Bertola A. Natural killer cells take two tolls to destruct bile ducts. 
Hepatology (2011) 53(4):1076–9. doi:10.1002/hep.24275 

85. Shimoda S, Selmi C, Gershwin ME. Fractalkine and other chemokines in 
primary biliary cirrhosis. Int J Hepatol (2012) 2012:102839. doi:10.1155/ 
2012/102839 

86. Ottaviani C, Nasorri F, Bedini C, de Pita O, Girolomoni G, Cavani A. 
CD56brightCD16(-) NK cells accumulate in psoriatic skin in response to 
CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol (2006) 
36(1):118–28. doi:10.1002/eji.200535243 

87. Nakashima Y, Sun DH, Trindade MC, Chun LE, Song Y, Goodman SB, 
et  al. Induction of macrophage C-C chemokine expression by titanium 
alloy and bone cement particles. J Bone Joint Surg Br (1999) 81(1):155–62. 
doi:10.1302/0301-620X.81B1.8884 

88. Ju DW, Tao Q, Cheng DS, Zhang W, Zhang M, Hamada H, et al. Adenovirus-
mediated lymphotactin gene transfer improves therapeutic efficacy of cyto-
sine deaminase suicide gene therapy in established murine colon carcinoma. 
Gene Ther (2000) 7(4):329–38. doi:10.1038/sj.gt.3301082 

89. Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA. Natural killer 
cell-mediated eradication of neuroblastoma metastases to bone marrow by 
targeted interleukin-2 therapy. Blood (1998) 91(5):1706–15. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.4049/jimmunol.1202693
http://dx.doi.org/10.1002/cncr.23239
http://dx.doi.org/10.4049/jimmunol.1301889
http://dx.doi.org/10.1182/blood-2013-06-507574
http://dx.doi.org/10.1111/j.1365-2141.2008.07203.x
http://dx.doi.org/10.1182/blood-2012-09-453969
http://dx.doi.org/10.1182/blood-2012-09-453969
http://dx.doi.org/10.1124/mol.113.089714
http://dx.doi.org/10.1182/blood-2014-09-601807
http://dx.doi.org/10.1189/jlb.5MA0815-388R
http://dx.doi.org/10.1189/jlb.5MA0815-388R
http://dx.doi.org/10.1182/blood-2003-10-3532
http://dx.doi.org/10.1182/blood-2004-06-2289
http://dx.doi.org/10.1111/j.1469-0691.2010.03187.x
http://dx.doi.org/10.1016/j.jneuroim.2006.05.003
http://dx.doi.org/10.1016/j.jneuroim.2006.05.003
http://dx.doi.org/10.1093/brain/awh680
http://dx.doi.org/10.1016/j.jneuroim.2015.03.007
http://dx.doi.org/10.1093/brain/awn132
http://dx.doi.org/10.1093/brain/awn132
http://dx.doi.org/10.1016/j.jneuroim.2003.10.001
http://dx.doi.org/10.1016/j.jneuroim.2003.10.001
http://dx.doi.org/10.1073/pnas.0601335103
http://dx.doi.org/10.1111/cei.12580
http://dx.doi.org/10.1111/cei.12580
http://dx.doi.org/10.1016/j.jneuroim.2009.08.007
http://dx.doi.org/10.1016/j.clim.2011.09.006
http://dx.doi.org/10.1038/ni1138
http://dx.doi.org/10.1073/pnas.1220456110
http://dx.doi.org/10.4049/jimmunol.181.8.5323
http://dx.doi.org/10.4049/jimmunol.181.8.5323
http://dx.doi.org/10.1158/0008-5472.CAN-08-1440
http://dx.doi.org/10.3109/10428194.2016.1151511
http://dx.doi.org/10.1002/hep.27139
http://dx.doi.org/10.2177/jsci.35.455
http://dx.doi.org/10.1016/j.jaut.2005.08.009
http://dx.doi.org/10.1002/hep.24275
http://dx.doi.org/10.1155/2012/102839
http://dx.doi.org/10.1155/2012/102839
http://dx.doi.org/10.1002/eji.200535243
http://dx.doi.org/10.1302/0301-620X.81B1.8884
http://dx.doi.org/10.1038/sj.gt.3301082


9

Bernardini et al. Chemokines and NK Cell Trafficking

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 402

90. Nokihara H, Yanagawa H, Nishioka Y, Yano S, Mukaida N, Matsushima K, 
et al. Natural killer cell-dependent suppression of systemic spread of human 
lung adenocarcinoma cells by monocyte chemoattractant protein-1 gene 
transfection in severe combined immunodeficient mice. Cancer Res (2000) 
60(24):7002–7. 

91. Pachynski RK, Zabel BA, Kohrt HE, Tejeda NM, Monnier J, Swanson CD, 
et  al. The chemoattractant chemerin suppresses melanoma by recruiting 
natural killer cell antitumor defenses. J Exp Med (2012) 209(8):1427–35. 
doi:10.1084/jem.20112124 

92. Halama N, Braun M, Kahlert C, Spille A, Quack C, Rahbari N, et  al. 
Natural killer cells are scarce in colorectal carcinoma tissue despite high 
levels of chemokines and cytokines. Clin Cancer Res (2011) 17(4):678–89. 
doi:10.1158/1078-0432.CCR-10-2173 

93. Inngjerdingen M, Damaj B, Maghazachi AA. Expression and regulation of 
chemokine receptors in human natural killer cells. Blood (2001) 97(2):367–75. 
doi:10.1182/blood.V97.2.367 

94. Mailliard RB, Alber SM, Shen H, Watkins SC, Kirkwood JM, Herberman 
RB, et al. IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med (2005) 
202(7):941–53. doi:10.1084/jem.20050128 

95. Moustaki A, Argyropoulos KV, Baxevanis CN, Papamichail M, Perez SA. 
Effect of the simultaneous administration of glucocorticoids and IL-15 on 
human NK cell phenotype, proliferation and function. Cancer Immunol 
Immunother (2011) 60(12):1683–95. doi:10.1007/s00262-011-1067-6 

96. Sechler JM, Barlic J, Grivel JC, Murphy PM. IL-15 alters expression and func-
tion of the chemokine receptor CX3CR1 in human NK cells. Cell Immunol 
(2004) 230(2):99–108. doi:10.1016/j.cellimm.2004.10.001 

97. Burga RA, Nguyen T, Zulovich J, Madonna S, Ylisastigui L, Fernandes R, 
et al. Improving efficacy of cancer immunotherapy by genetic modification of 
natural killer cells. Cytotherapy (2016). doi:10.1016/j.jcyt.2016.05.018 

98. Carlsten M, Levy E, Karambelkar A, Li L, Reger R, Berg M, et al. Efficient 
mRNA-based genetic engineering of human NK cells with high-affinity 

CD16 and CCR7 augments rituximab-induced ADCC against lymphoma 
and targets NK cell migration toward the lymph node-associated chemokine 
CCL19. Front Immunol (2016) 7:105. doi:10.3389/fimmu.2016.00105 

99. Marcenaro E, Cantoni C, Pesce S, Prato C, Pende D, Agaugue S, et al. Uptake 
of CCR7 and acquisition of migratory properties by human KIR+ NK cells 
interacting with monocyte-derived DC or EBV cell lines: regulation by 
KIR/HLA-class I interaction. Blood (2009) 114(19):4108–16. doi:10.1182/
blood-2009-05-222265 

100. Muller N, Michen S, Tietze S, Topfer K, Schulte A, Lamszus K, et  al. 
Engineering NK cells modified with an EGFRvIII-specific chimeric antigen 
receptor to overexpress CXCR4 improves immunotherapy of CXCL12/
SDF-1alpha-secreting glioblastoma. J Immunother (2015) 38(5):197–210. 
doi:10.1097/CJI.0000000000000082 

101. Somanchi SS, Somanchi A, Cooper LJ, Lee DA. Engineering lymph node 
homing of ex vivo-expanded human natural killer cells via trogocytosis of 
the chemokine receptor CCR7. Blood (2012) 119(22):5164–72. doi:10.1182/
blood-2011-11-389924 

102. Allegretti M, Cesta MC, Locati M. Allosteric modulation of chemoattractant 
receptors. Front Immunol (2016) 7:170. doi:10.3389/fimmu.2016.00170 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Bernardini, Antonangeli, Bonanni and Santoni. This is 
an  open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1084/jem.20112124
http://dx.doi.org/10.1158/1078-0432.CCR-10-2173
http://dx.doi.org/10.1182/blood.V97.2.367
http://dx.doi.org/10.1084/jem.20050128
http://dx.doi.org/10.1007/s00262-011-1067-6
http://dx.doi.org/10.1016/j.cellimm.2004.10.001
http://dx.doi.org/10.1016/j.jcyt.2016.05.018
http://dx.doi.org/10.3389/fimmu.2016.00105
http://dx.doi.org/10.1182/blood-2009-05-222265
http://dx.doi.org/10.1182/blood-2009-05-222265
http://dx.doi.org/10.1097/CJI.0000000000000082
http://dx.doi.org/10.1182/blood-2011-11-389924
http://dx.doi.org/10.1182/blood-2011-11-389924
http://dx.doi.org/10.3389/fimmu.2016.00170
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases
	Introduction
	Chemokine Receptor Expression on NK Cell Subsets
	Chemokine Receptor Interplay for Efficient Migration in Complex Chemotactic Environment
	CXCR4 Receptor/Ligand Axis
	CXCR3 Receptor/Ligand Axes
	Conclusion
	Author Contributions
	Funding
	References


