
Fast and Robust 3D Feature Extraction from Sparse Point Clouds

Jacopo Serafin1, Edwin Olson2 and Giorgio Grisetti1

Abstract— Matching 3D point clouds, a critical operation in
map building and localization, is difficult with Velodyne-type
sensors due to the sparse and non-uniform point clouds that
they produce. Standard methods from dense 3D point clouds
are generally not effective. In this paper, we describe a feature-
based approach using Principal Components Analysis (PCA)
of neighborhoods of points, which results in mathematically
principled line and plane features. The key contribution in this
work is to show how this type of feature extraction can be done
efficiently and robustly even on non-uniformly sampled point
clouds. The resulting detector runs in real-time and can be
easily tuned to have a low false positive rate, simplifying data
association. We evaluate the performance of our algorithm on
an autonomous car at the MCity Test Facility using a Velodyne
HDL-32E, and we compare our results against the state-of-the-
art NARF keypoint detector.

I. INTRODUCTION

A core challenge in many autonomous vehicle applica-
tions is localization: how can a vehicle reliably estimate its
position with respect to a prior map, so that the semantic
information in that map (e.g. lane information) can be used to
support driving? A good localization system should work in
a wide range of sensing conditions, produce accurate results,
be robust to false positives, and require modest amounts of
information to describe landmarks.

GPS, RGB cameras and 2D lasers are often used to solve
a wide range of common tasks that a mobile robot needs
to face. However, for large scale outdoor scenarios like in
the case of autonomous driving vehicles, these sensors are
insufficient. For example, GPS devices have resolutions too
coarse to be used for localization. Moreover, they can lose the
signal in environments like tunnels or underground parking.
2D lasers can easily go blind due to the very thin region
of space they analyze. Indeed, there is high probability for
most of the beams to not return back. RGB cameras, instead,
suffer of common external noise like changes in the weather
conditions. Also they can be totally useless in absence
of sunlight. For all these reasons long range sensors, like
3D LIDAR lasers, are currently widely employed to solve
complex tasks as Simultaneous Localization And Mapping
(SLAM) [1][2] or obstacle avoidance.

Common LIDAR laser sensors generates large scale point
clouds acquiring data on all directions. Unfortunately, such
point clouds tend to be very sparse. Standard techniques

*This work has partly been supported by the NSF project CCF1442773.
1Department of Computer, Control, and Management Engineering “Anto-

nio Ruberti” of Sapienza University of Rome. Via Ariosto 25, I00185 Rome,
Italy. Email: {serafin,grisetti}@dis.uniroma1.it.

2Computer Science and Engineering Department, University of
Michigan. 2260 Hayward St. Ann Arbor, MI 48109, USA. Email:
ebolson@umich.edu.

Fig. 1. Example of 3D features extracted by our method from a sparse
point cloud. 3D lines and 3D planes (circles) are shown in orange. Most of
the walls and posts are correctly detected.

like point cloud registration [3][4], that are normally used
for localization and mapping, fail. For this reason, to gather
a sufficient amount of information, it is often necessary to
equip the robot with more than one LIDAR. On the other
hand, this kind of sensors are also very expensive. To make
mobile robots like autonomous cars more accessible, it is
necessary to find ways to work with a minimal set of these
sensors. Thus, methods operating on sparse data are critical.

When dealing with sparse data, it is natural to fall back
on the usage of features. Instead of relying on the full point
cloud, only few meaningful pieces of information extracted
from the data are used. A good feature extraction method
should be able to find stable and robust features. This means
that, given a set of consecutive input point clouds, the same
feature must be detected in most of the frames, even in
presence of external noise. However, due to the sparsity
of the input, this is a challenging task. Common feature
extraction methods, that are mainly designed to work with
dense point clouds, fail in this setting.

In this paper, we present a method for fast and robust
extraction of general purpose 3D features, from a single
sparse point cloud. In our case the features are 3D lines and
3D planes. Fig. 1 shows an example of the output generated
by that method. Our approach attempts to fit such feature
models on significant objects extracted from the input data.
An efficient isolation of region of interest in the point cloud,
and the adaptive surface normals computation, let our method

Fig. 2. The processing pipeline of our 3D feature extraction method.

to compute stable and robust 3D features. We validate our
algorithm by showing the results of a 3D landmark SLAM
system whose input are the output features computed by
our approach. We also compare such results against the
same SLAM system, but fed using one of the most recent
and effective state-of-the-art methods for keypoint detection.
The dataset used in the experiments has been acquired by
an autonomous car equipping a single Velodyne HDL-32E
LIDAR sensor, in the MCity Test Facility of the University
of Michigan. Additionally, we describe the techniques we
used to make the system fast enough for real-time operation.

The contributions of this paper include:
• a fast flat region removal method that operates directly

on polar representation of the data;
• a fast normal computation approach using integral im-

ages and an adaptive window size that reduces artifacts;
• the demonstration of a complete SLAM system using

plane and line features on Velodyne-32 data, which has
extremely non-uniform sampling density. The feature
extraction process runs in real time on a typical laptop.

In Section II we give an overview of the state-of-the-
art methods for feature computation; Section III describes
in details our algorithm and in Section IV we show an
experimental evaluation to validate our approach.

II. RELATED WORK
The problem of feature extraction has been addressed for

more than two decades, leading to the birth of many different
feature descriptors. Such descriptors can be divided in classes
based on the input data type: full point clouds, RGB, range
or RGB-D images.

The Scale Invariant Feature Transform (SIFT) algorithm
by Lowe [5] is considered one of the major breakthrough
for feature detection on RGB images. SIFT idea is to use
a pyramidal approach to make the features invariant to the
scale, and assigning orientations to keypoints to achieve in-
variance to image rotation. Successively, Ke and Sukthankar
in [6] extended SIFT to use Principal Component Analysis
(PCA). Rosten and Drummond in [7] developed a corner

detector algorithm called FAST (Features from Accelerated
Segment Test), an enhanced version of the original approach
proposed by Harris and Stephens in [8]. Instead of doing a
derivative of the image, they check in the neighborhood of
a picture element for a minimum set of contiguous pixels
with higher or lower intensity. At the same time, Bay et
al. [9] published a new algorithm called SURF (Speeded Up
Robust Features) that extends SIFT and relies on integral
images to perform image convolution. More recently, Rublee
et al. [10] developed ORB (Oriented FAST and Rotated
BRIEF) features, a faster and more efficient alternative to
SIFT and SURF. All these methods, however, suffer due
to noise connected to illumination and weather changing
conditions. This renders such approaches unsuitable in such
scenarios.

An other class of feature detectors are those that work
directly on point clouds. In this direction, a major contribu-
tion was given by Rusu et al. in [11][12] who developed the
Point Feature Histograms (PFH) and the Viewpoint Feature
Histogram (VFH). The first looks at the geometrical structure
of neighboring points to compute the feature. In particular, it
generalizes the mean curvature around the point by means of
a multi-dimensional histogram of values. The second, VFH,
combines the viewpoint direction and the PFH. Successively,
Rusu et al. [13] extended PHF by developing the Fast Point
Feature Histograms (FPFH). The FPFH reduces the compu-
tational complexity of FPH while maintaining similar results.
Aldoma et al. [14], instead, extended the VFH descriptor by
publishing an enhanced version called Clustered Viewpoint
Feature Histogram (CVFH). More recently, Wohlkinger and
Vincze [15] published the Ensemble of Shape Functions
(ESF) features, their idea is to integrate information from
multiple views. Li et al. [16] adapted the Kanade-Tomasi
corner detector [17] to work with 2D and 3D LIDAR data. Li
et al. [18] also published a general purpose feature detector
using structure tensors of surface normals. Steder et al. [19]
developed Normal Aligned Radial Feature (NARF). This
descriptor is computed directly on a range image. The idea

Fig. 3. Example of our flat region removal approach. The left image shows an input sparse point cloud. The right picture depicts the same point cloud
with vertical points highlighted in red. Most of the points belonging to flat regions are successfully removed.

is to look for regions whose surface is stable, but that also
exhibits substantial change in the neighborhood. At the same
time, Lazebnik et al. [20] developed the Rotation-Invariant
Feature Transform (RIFT) feature. This approach fuses ideas
from both the RGB and the Euclidean space domains. The
main drawback of all these methods is that a high density
of points in the cloud is necessary to obtain good results.
Because of this, these approaches can be hardly used on
sparse point clouds.

III. ROBUST 3D FEATURE EXTRACTION

In this section we describe in details the complete process-
ing pipeline of our algorithm. After defining the problem of
3D feature extraction in Sec. III-A, we describe the main
blocks composing the computation flow of our method (see
Fig. 2). In particular, in Sec. III-B we show how to remove
flat regions from the input point cloud (i.e. the ground);
successively, we explain in Sec. III-C how we compute the
surface normals; lastly, Sec. III-D describes our segmentation
and feature extraction procedures.

A. Problem Formulation

Generally speaking, a good feature should exhibit proper-
ties such as:

• sensitivity: there should not be cases where no feature
is detected for long periods of time;

• repeatability: the same feature is detected over a wide
range of observation conditions;

• robustness: external noise like poor illumination or
changes in weather conditions should not compromise
the detection of the feature;

• distance measure: it should be possible to define and
compute a distance between features. Such a distance
must be low or high depending if the two compared
features are respectively very similar, or very different.

When dealing with outdoor mobile robots, a significant
number of static objects in the surrounding environment can
be approximated by single geometrical elements like 3D lines
(lamp posts, trunks, signals) or 3D planes (buildings, walls).
The problem we address in this paper is the robust detection
of 3D line and plane features from sparse point clouds.

Note that, the geometrical features selected satisfy all the
fundamental properties listed before. The sensitivity and re-
peatability are assured by the fact that, besides special cases
like deserts, most of the environments are always surrounded
by objects that can be approximated by lines or planes.
Common external noise sources for outdoor mobile robots
can be rooted, for example, to changing of illumination
or weather conditions. Since the data input of our method
is a point cloud, by construction it is mostly insensitive
to these kind of noises. Also, being lines and planes well
known geometrical entities, we can find functions to compute
distance values between them.

B. Flat Region Removal

Many of the objects we want to approximate with lines and
planes share a common characteristic: they have a dominant
vertical component. Likewise, flat areas (e.g. the ground)
tend to not be good features. We exploit this characteristics to
make the feature computation more efficient both in terms of
CPU time usage, and false positive reduction. The idea is to
prune all the points in the input cloud that do not expand
along the gravity vector direction. In this way we avoid
processing points that would not generate a good feature.

In the case of Velodyne data, it is convenient to represent
each point by using the polar coordinates: a triplet composed
of azimuth θ, elevation φ and the range d. Typically, both
azimuth and elevation are subject to quantization and one
can see a 3D laser scan as a range image where (θ, φ) are
the coordinates of a pixel lying on a spherical surface. The
value d of the pixel is its range. We will refer to this kind of

image as spherical depth image. We can therefore introduce
a projection function s = Φ(p) that maps a point p from the
Cartesian to the measurement space. For a 3D laser scan the
point in measurement space s is a (θ, φ, d) triplet. Similarly,
we can define the function p = Φ−1(s) as the inverse of a
projection function, Φ−1 maps a triplet of sensor coordinates
into a point in the Cartesian space.

Due to the amount of data our method needs to use,
an efficient representation is mandatory. We describe here
a simple procedure that minimizes the memory movements
without manipulating the cloud. We assume the point clouds
are memorized in unordered arrays. To avoid moving large
amount of data we use the concept of index image. An
index image relates the Cartesian points of a cloud with the
pixels of its spherical depth image. Given a projection model
Φ(<3)→ <3, an index image I is an image where the pixel
Iuv = i contains the index of the point pi in the array such
that Φ(pi)→ (u, v, d)T .

Each time the sensor generates a new point cloud, we com-
pute its Cartesian representation P , the associated spherical
depth image DP by using the projection function Φ, and the
index image IP .

We perform the flat region pruning directly in the image
plane. Let puv be the 3D point associated to the pixel DPuv ,
and p⊥uv be its 2D projection on the ground. Given a column
u in DP , we iterate through all its rows. When we find a
valid pixel that is still not labeled as “vertical”, we count
the number of remaining points puw with w > v whose
projection p⊥uw is within a radius εr from p⊥uv . If the number
of points satisfying this condition is greater than a given
threshold εt, we label all of them as vertical. In the other
case, we remove puv from the input point cloud P , and we
set DPuv = 0 and IPuv = −1. We proceed then to analyze the
next rows until the last one is reached. The whole procedure
is repeated for each column of DP . At the end of this
operation P , DP and IP will contain only valid values for
the points labeled as vertical. The idea behind this approach
is that, if a group of points creates a vertical structure, then
their associated pixels in the spherical depth image DP must
lie on the same column. This comes from the fact that DP is
built as a quantization of polar coordinates. Note also that the
discretized nature of this method allows to detect structures
that are not perfectly vertical. Algorithm 1 describes the flat
region removal, while Fig. 3 shows its typical outcome.

C. Surface Normal Computation

A point measurement gathered by a range sensor is a
sample from a piece-wise continuous surface. We extend
the spatial information encoded in a point pi, by locally
characterizing the surrounding surface with its normal ni.
The normal ni is computed by evaluating the covariance
matrix of the Gaussian distribution N s

i (µs
i , Σs

i) of all the
points that lie in a certain neighborhood of the query point
pi. The normal is taken as the eigenvector associated with
the smallest eigenvalue and, if needed, flipped towards the
observer’s point of view.

Algorithm 1: Flat Region Removal

Input: P , DP and IP

Output: P , DP and IP pruned from flat regions

1 foreach column u in DP do
2 foreach row v in DP do
3 if DPuv 6= 0 && puv not labeled vertical then
4 n← 0;
5 p← puv;
6 foreach row w in DP greater than v do
7 if ‖p⊥uv − p⊥uw‖ < εr then
8 n← n+ 1;
9 p← p ∪ puw;

10 end
11 end
12 if n > εt then
13 label all points in p as vertical;
14 else
15 delete puv from P;
16 DPuv = 0;
17 IPuv = −1;
18 end
19 end
20 end
21 end

More formally, for each point pi we compute the mean
µs
i and the covariance Σs

i of the Gaussian distribution as
follows:

µs
i =

1

|Vi|
∑

pj∈Vi

pj , (1)

Σs
i =

1

|Vi|
∑

pj∈Vi

(pj − µi)
T (pj − µi), (2)

where Vi is the set of points composing the neighborhood
of pi, and µi is the centroid of Vi.

A key issue is determining the size of the region over
which a normal is computed. A common technique consists
in taking all the points lying within a sphere of radius r,
centered on the query point pi. Unfortunately, such heuristic
would require CPU expensive queries on a KD-Tree to
determine the points inside the sphere.

To speed up the calculation we exploit the matrix structure
of the spherical depth image DP . In particular we use an
approach based on integral images described in [21]. The
advantage of this method is that, once the integral image is
computed, we can evaluate Eq. 1 and Eq. 2 in constant time.

We begin by considering all the points within a rectangular
region around the pixel of DP associated to pi. This heuristic
can be seen as an approximation of the sphere of radius r
centered in pi. We then adaptively reduce this set to eliminate
far-away points, which improves the normal estimates. As
an example, suppose we want to compute the normal of a
point lying on a lamp post that is located near the wall of a
building. Suppose also that we wrongly choose an interval of

Fig. 4. Example of our surface normal computation process. The right image is a magnification of the one on the left. The surface normals are drawn as
dark green lines. Our adaptive neighborhood selection allows to compute accurate normals also on thin objects like posts.

pixels for the normal computation that includes part of that
wall. These outliers, that most likely will be much more than
the points on the lamp post, will affect the normal direction
generating unwanted artifacts.

We solve this problem by computing adaptive intervals
for each pixel in DP . To this end we construct a new image
RP , of the same size of DP , where each element contains
the exact rectangular boundaries to be used to compute the
normal. We will refer to RP with the term interval image.
Given a pixel in DP , the edges of the interval are calculated
by incrementally looking at its neighborhood in all four
directions: left, right, up and down. If the depth discontinuity
of the pixels on a given direction is smaller than a certain
threshold, we expand the boundaries of the region along that
line. Otherwise, we analyze the remaining directions until no
more expansion is possible.

Once we have the parameters (Σs
i , µ

s
i) of the Gaussian

N s
i , we compute its eigenvalue decomposition as follows:

Σs
i = R

λ1 0 0
0 λ2 0
0 0 λ3

RT . (3)

Here λs1:3 are the eigenvalues of Σs
i in ascending order, and

R is the matrix of eigenvectors that represent the axes of the
ellipsoid approximating the point distribution.

At the end of this procedure, each point pi in P is labeled
with its surface normal ni. Fig. 4 shows an output example
of the surface normal computation process.

D. Segmentation and 3D Feature Extraction

The last block of our processing pipeline has the goal
of segmenting the points in the cloud and, subsequently, to
extract the 3D features. The general idea is to first compute
clusters, or segments, belonging to well defined objects in
the scene (i.e. walls, traffic lights, signals, lamp posts). Then,
for each cluster, we perform 3D line/plane data fitting. We

determine if a cluster is well approximated with a line or a
plane feature by computing a measure of the quality of the
fitting.

We use a region growing based clusterization algorithm to
compute the segmentation. Again, this is performed directly
on the image plane. This kind of method incrementally
checks the neighboring region of a point seed. Based on some
similarity criteria, it determines if the point neighbors should
be added to the current cluster or not. When no more points
can be added, a new seed and a new cluster are generated.
The process is iterated until all the points are segmented.
Our criteria to discriminate when to add a neighboring point
to the current cluster is based both on the point distance, and
the angle difference of the normals.

In standard region growing approaches the initial seed
is fixed, and all the neighboring points are compared with
respect to it. Since our similarity measure is based also on the
distance, keeping the seed point fixed could generate multiple
clusters actually belonging to the same object. To avoid this,
in our algorithm the seed is not fixed. Instead, it changes as
we move away from the initial one. In addition to this, we
prune all the clusters containing a number of points smaller
than a certain threshold εc. This is necessary to remove all
segments too small to be a representation of an object of
interest in the surrounding environment.

More formally, a neighboring point pi of a point seed ps

is added to the current cluster if one of the following holds:

• the distance between pi and ps is lower than a thresh-
old:

‖ps − pi‖ < εd; (4)

• the angle between the normals ni and ns is lower than
a threshold:

ns · ni > εn. (5)

Fig. 5 shows an output example of our segmentation method.

Fig. 5. Example of our segmentation process. Each cluster is drawn with
a different color. The ground does not belong to any cluster and is shown
only for clarity purposes. Most of the objects of interest for 3D feature
extraction are correctly clusterized.

Once all the clusters are computed, we check which of
them can be approximated by a line or a plane. We perform
this by fitting the segments with a 3D line or a 3D plane
model. Given a cluster ci, we compute the covariance matrix
of the Gaussian distribution N c

i (µc
i , Σc

i) of all the points in
ci. Let λc1:3 be the eigenvalues of Σc

i in ascending order, and
let uc

1:3 be the associated eigenvectors. The fitting line Li,
and the fitting plane πi, are extracted as follows:

Line Li is the line with origin µc
i , and direction uc

3;
Plane πi is the plane with origin µc

i , and normal uc
2×uc

3.

The reader might notice that the eigenvectors uc
1:3 give an

indirect measure of the fitting quality. Indeed, in the case of a
line where the points change mainly along one direction, we
will have two eigenvalues (λc1 and λc2) substantially smaller
with respect to the third one (λc3). For a plane, instead, only
one eigenvalue (λc1) will be significantly smaller then the
others (λc2 and λc3). Consider also that, if the feature model
F (in this case a line or a plane) approximates well the
cluster, than the residual error e must be small:

e =
1

|ci|
∑
pj∈ci

d(Fi,pj), (6)

where |ci| is the number of points in the cluster ci, and
d(Fi,pj) is a function returning the Euclidean distance
between the feature model F and a point pj .

Our method checks if a fitting model represents a good
approximations for a cluster by looking both at the shape
of the eigenvectors uc

1:3, and the value of the residual error
e. More formally, we say that a line Li represents a valid
feature if the following constraints hold:

λc1 + λc2
λc1 + λc2 + λc3

< εl, e =
1

|ci|
∑
pj∈ci

d(Li,pj) < εdl. (7)

Similarly, we say that a πi plane is a valid feature if the
following relations are true:

λc1
λc1 + λc2 + λc3

< εp, e =
1

|ci|
∑
pj∈ci

d(πi,pj) < εdp. (8)

Note that, during the cluster processing we first try to fit
a line and, only in case that fitting fails, we try with a plane.
This ordering is fundamental since a plane always represents
a good fitting of a line, but not vice-versa. Fig. 1 shows an
output example of 3D features computed by our method.

IV. EXPERIMENTS

In this experimental evaluation we demonstrate the validity
of our feature extraction approach. We show that the stability
and the robustness of the computed features can be exploited
for solving more complex tasks like localization and map-
ping, in particular in the context of autonomous driving. We
present comparative results of a 3D landmark SLAM system
that we feed with the lines and planes computed by our
method, and with NARF keypoints.

The dataset used in this evaluation has been recorded using
an autonomous car mounting a single Velodyne HDL-32E
LIDAR sensor. Such a sensor is able to generate point clouds
with an horizontal and a vertical field of view of 360 and
40 degrees respectively. The main drawback of this sensor,
however, is that it features only 32 laser beams to cover
the whole vertical field of view. As a consequence the point
clouds are very sparse.

The environment where we acquired the dataset is the
MCity Test Facility of the University of Michigan. MCity is a
realistic off-road environment built for testing the capabilities
of autonomous vehicles. The evaluation has been performed
using a laptop with a i7-3630QM running at 2.4 GHz.

In the SLAM algorithm we built for these experiments,
a landmark can be either a 3D line, a 3D plane or a
3D keypoint. As soon as new 3D features are computed,
the SLAM system incrementally construct a graph. Each
incoming feature can generate either a new factor, or a
new node, depending if we can associate it to an existing
landmark or not. If a feature is “near” to a landmark L, then
we add a factor between the last odometry node and L itself,
otherwise a new landmark node is added to the graph.

Fig. 6 shows an example of optimization of two graphs
constructed by using the output features of our method, and
the NARF keypoints. In the images the robot trajectory is
depicted in black, while measured lines, planes and NARF
keypoints are colored in red, blue and green respectively. The
left image illustrates the graph before any optimization. As
the reader can see, the accumulated odometry error results
in curved and doubled walls that should be straight. The
same problem holds for the lines. However, after performing
the graph optimization, the trajectory of the car is corrected,
and the measurements are updated to globally consistent
positions. This is shown in the central image of Fig. 6. The
reader could note that, in the optimized graph, the planes can
intersect giving the impression of crossing walls. This visual
effect is due to the way we represent the planes. Within our

Fig. 6. Example of 3D landmark based graph SLAM. Left: top view of the graph with our features before the optimization. Center: top view of the
graph with our features after the optimization. Right: top view of the graph with NARF keypoints after the optimization. Black, blue, red and green points
represent in the order odometry, plane, line and NARF keypoint measurements. By using our features the robot’s trajectory and the other measurements
are successfully updated to a global consistent state.

Fig. 7. Mean CPU time usage of our method to extract the 3D features.
Removing flat regions lowers the computation time of nearly a factor of 2.

SLAM algorithm a plane measurement is defined using the
coefficients (a, b, c, d) of the general equation of a 3D
plane. When we draw the graph, each plane measurement
is positioned on the point at distance d along the normal
(a, b, c). This point rarely coincides with the one where
the plane was originally sensed. The right image of Fig. 6,
instead, depicts the optimized graph when using NARF key-
points. The robot’s trajectory results to be scattered and not
globally consistent with the movements that a nonholonomic
vehicle like a car can perform. Note also how uniform is the
distribution of the NARF keypoints. This is a clear evidence
that the algorithm is not able to detect unique and repeatable
features. As introduced before, this is mainly due to the
sparse point clouds generated by the sensor. The robustness
and the stability of our features lead to the construction of a
well-constrained graph, and to good SLAM results.

Fig. 8 shows an other example of landmark SLAM in a
part of MCity that lacks the presence of buildings. Despite
the possibility of relying almost only on lines, the optimiza-
tion using our features is again good, and the trajectory

of the robot is correctly recovered. These results highlights
again how our feature extraction algorithm is well-suited to
solve tasks like SLAM. Like in the previous case, the car’s
path obtained by optimizing the graph with NARF keypoints
results not globally consistent and scattered.

We performed additional experiments to profile our
method in terms of time complexity. We tracked the CPU
time usage for all three processing blocks depicted in Fig. 2.
The plot in Fig. 7 contains the mean computation time
needed to process all the point clouds of the dataset acquired
in MCity. Both results with and without flat region removal
are shown. Removing flat regions creates a computation time
boost of almost of a factor of 2. An implementation without
flat region removal barely runs in real-time (10 Hz), but our
full method can process point clouds at more than 20 Hz.

The time complexity of our algorithm is directly dependent
on the number of points in the cloud. To give an idea of the
impact that the cloud dimension has on the whole process,
we performed an other set of experiments. In particular, we
profiled the computation time as the number of point in the
input cloud increases. The results are shown in Fig. 9. As
expected, the CPU time increases super-linearly with the
number of points in the cloud.

V. CONCLUSIONS
In this paper we presented a fast method for extraction

of robust 3D features from a sparse point cloud. We also
discussed all the relevant steps needed for the implementation
of such a system, and we validated our method with an
extended experimental evaluation. In addition to this, we pre-
sented comparative results against the state-of-the-art NARF
keypoint detector for 3D point clouds.

We demonstrated that, due to its stability and robustness,
our algorithm is suitable to solve more complex tasks like
SLAM. All the tests have been performed on a real dataset
acquired with an autonomous car at the MCity Test Facility
using a Velodyne HDL-32E. In addition to all of this, our
method showed to be fast, enabling real-time use.

Fig. 8. Example of 3D landmark based graph SLAM. Left: top view of the graph with our features before the optimization. Center: top view of the
graph with our features after the optimization. Right: top view of the graph with NARF keypoints after the optimization. Black, blue, red and green points
represent in the order odometry, plane, line and NARF keypoint measurements. Like in the case of Fig. 6, by using our features the robot’s trajectory and
the other measurements are successfully updated to a global consistent state.

Fig. 9. Computational time needed by our method to extract the 3D features
when the number of points in the input cloud increases. The CPU time grows
super-linearly with the number of points in the cloud

REFERENCES

[1] J. E. Guivant, F. R. Masson, and E. M. Nebot, “Simultaneous localiza-
tion and map building using natural features and absolute information,”
Robotics and Autonomous Systems, vol. 40, no. 2, pp. 79–90, 2002.

[2] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” Intelligent Transportation Systems Magazine,
IEEE, vol. 2, no. 4, pp. 31–43, 2010.

[3] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
1992.

[4] J. Serafin and G. Grisetti, “Nicp: Dense normal based point cloud
registration,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS) (to appear), Hamburg, Germany, 2015.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2. IEEE, 1999, pp. 1150–1157.

[6] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation
for local image descriptors,” in Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 2. IEEE, 2004, pp. II–506.

[7] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Computer Vision–ECCV 2006. Springer, 2006, pp. 430–
443.

[8] C. Harris and M. Stephens, “A combined corner and edge detector.”
in Alvey vision conference, vol. 15. Citeseer, 1988, p. 50.

[9] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer vision–ECCV 2006. Springer, 2006, pp. 404–
417.

[10] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 2564–2571.

[11] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning
informative point classes for the acquisition of object model maps,” in
Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on. IEEE, 2008, pp. 643–650.

[12] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on.
IEEE, 2010, pp. 2155–2162.

[13] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature his-
tograms (fpfh) for 3d registration,” in Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 3212–
3217.

[14] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B. Rusu,
and G. Bradski, “Cad-model recognition and 6dof pose estimation
using 3d cues,” in Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on. IEEE, 2011, pp. 585–592.

[15] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3d
object classification,” in Robotics and Biomimetics (ROBIO), 2011
IEEE International Conference on. IEEE, 2011, pp. 2987–2992.

[16] Y. Li and E. Olson, “A general purpose feature extractor for light
detection and ranging data,” Sensors, vol. 10, no. 11, pp. 10 356–
10 375, November 2010.

[17] C. Tomasi and T. Kanade, Detection and tracking of point features.
School of Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

[18] Y. Li and E. Olson, “Structure tensors for general purpose lidar feature
extraction,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), May 2011.

[19] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3d range scans taking into account object boundaries,”
in Robotics and automation (icra), 2011 ieee international conference
on. IEEE, 2011, pp. 2601–2608.

[20] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation
using local affine regions,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 27, no. 8, pp. 1265–1278, 2005.

[21] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adaptive
neighborhood selection for real-time surface normal estimation from
organized point cloud data using integral images,” in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on.
IEEE, 2012, pp. 2684–2689.

