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Table of Notations

Description

Points in R?, with d > 3.

First d — 1 components of the point x that is ' = (21, -+ ,24-1).
Given a point z € R?, T represents the reflected point (', —14).
It denotes the half-space {x = (1, - ,74) € R? : 14 < 0}.
Boundary of the half-space R?.

It denotes the d-dimensional ball with centre « and radius r > 0.
Bounded Lipschitz domain in R%.

Area of the (d — 1)-dimensional unit sphere.

Vectors in R

Unit outer normal vector to a surface.

Inner product between vectors w and v.

Cross vector between u and v.

Tensor product between vectors w and v.

Matrices and secon-order tensors.

Identity matrix.

Transpose of the matrix A.

Symmetric part of the matrix A, that is A = L(A+AT).

Inner product between the two matrices A and B

that is A : B = Z” a;;bij.

Norm induced by the matrix inner product, that is |A| = VA : A.



Symbol

I'(x)

Sap(x)
Doy(z)
N(z,y)

Description

In Chapter 2 it represents the identity map.

Fundamental solution of the Laplace operator.

Single layer potential for the Laplace operator relative to the function .
Double layer potential for the Laplace operator relative to the function .
Neumann function of the half-space for the Laplace operator.

Constant in the definition of I" function, k4 := 1/wq(2 — d).
Fourth-order tensors.

Fourth-order elasticity tensor.

Fourth-order identity tensor such that [A = A.

Lamé parameters of the linear elasticy theory.

Poisson ratio. The identity v = A/2(\ + u) holds.

Elastostatic Lamé operator, that is Lu := pAwu + (A + p)Vdivu.
Conormal derivative, that is % := (CVu)n = A(divu)n + 2u(Vu)n.
Fundamental solution of the lamé operator (Kelvin-Somigliana matrix).
Neumann function of the half-space related to the Lamé operator.
N(z,y) = I'(x,y) + R(z,y), with R regular part.

k-th column vector of the Neumann function N.

Single layer potential related to the Lamé operator with kernel T'.
Double layer potential related to the Lamé operator with kernel I'.
Single layer potential with kernel R.

Double layer potential with kernel R.

Constant ¢, := 4(1 —v)(1 — 2v).

Constant ¢, := (1 —2v)/(8n(1 —v)).

Constant C),, := 1/(167p(1 —v)).






CHAPTER 1

Introduction: from the physical problem
to the mathematical model

This thesis is devoted to the mathematical study of a model arising from
the volcanology. More precisely we establish a mathematical approach for
surface deformation effects generated by a magma chamber embedded deep
into the earth and exerting on it a uniform hydrostatic pressure. In the first
part of this introduction, we will describe the underlying geophysical problem
in order to better understand and appreciate the mathematical model under
investigation. In the second part we will explain the tools developed for the
mathematical analysis of the model and the results obtained.

1.1 Volcano deformation

Monitoring of volcanoes activity is usually performed by combining dif-
ferent types of geophysical measurements. Ground deformations, seismic
swarms and gravity changes are the principal means used to assess the risks
of a possible imminent eruptive activity.

Ground deformations are among the most significant data being directly
available. In fact, modern techniques of space geodesy, such as the Global
Positioning System (GPS) and satellite radar interferometry (InSAR), now
provide a large number of data of high quality both from temporal and
spatial point of view [12, 14, 15, 56]. Modeling of the pattern and rate of
displacement before and during eruptions can reveal much about the physics
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of active volcanoes [27]. This is especially true when studying stratovolca-
noes or basaltic shield volcanoes, since their fast, short-term deformation is
well associated with magma accumulation and eruptions, see [12, 15] and
references therein. Specifically, the monitoring of ground deformation has
showed a cyclical volcanic activity of inflation and deflation period [56],[57].
When magma accumulates in crustal reservoirs, volcanoes inflate (see Figure
1.1(a) and Figure 1.1(b)). The observations indicate relatively long period of
volcanic uplift. After that, rapid periods of subsidence follow. These defla-
tion episodes are accompanied either by eruptions or by dike intrusion into
the flanks of the volcano (see Figure 1.1(c)).

STAGE 1 STAGE 2
INFLATION BEGINS INFLATION AT PEAK

TILTMETER GPS STATIONS

(a) Magma comes from the mantle (b) The inflation produces deforma-
into the magma reservoir tions

STAGE 3
ERUPTION - DEFLATION

E rupticn

(c) Deflation period after an eruption

Figure 1.1. Inflation-deflation cycle. Courtesy Hawaiian Volcano
Observatory website http://hvo.wr.usgs.gov/howwork/subsidence/inflate_
deflate.html


http://hvo.wr.usgs.gov/howwork/subsidence/inflate_deflate.html
http://hvo.wr.usgs.gov/howwork/subsidence/inflate_deflate.html
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Without being exaustive, we can briefly explain and simplify the physi-
cal phenomenon in this way: as magma migrates toward the earth’s surface,
it forces aside and exerts stresses on the surrounding crust causing ground
deformations and in some cases, since the crust is brittle, earthquakes. Con-
sequently, the redistribution of the mass at depth generates changes in the
material density producing as an effect small anomalies in the gravity field.
All these signals can be measured. However, since the subsurface structures
beneath active volcanoes are extremely complex, the identification of the
source of unrest is not straightforward. In fact, caldera unrest may be also
caused by aqueous fluid intrusions, or interaction between the hydrothermal
system and magma intrusions [17, 28, 59]. We highlight that the deforma-
tion measurements are sensitive only to changes in volume and pressure of
the source hence they cannot give information on the material density. Grav-
ity measurements, however, can constrain the mass of the intrusion. Given
the significant density difference between silicate melts (2500 kg/m?) and
hydrothermal fluids (1000 kg/m?), it is reasonable to use density estimates
from gravity to distinguish between these two possible sources of caldera
unrest.

In light of this, the main challenge is to interpret geodesy and gravity
measurements jointly (see [12, 16, 53]) with the following goals

1. determine the geometry of subsurface magma bodies i.e., whether the
source of deformation is a dike, a roughly equidimensional chamber, or a
hybrid source (mixture of different mantle sources);

2. to quantify parameters of the source, for example its depth, dimensions,
volume, density and internal magma pressure [56].

To achieve these objectives a simplified /conceptual model has been con-
ceived with a central magma chamber that is supplied with melt from the
mantle. The pressure increases, hence the ground is deformed producing
gravity anomalies and changes in volcano shape. After some time, the in-
creasing pressure causes the fracture of the walls and a dike propagates car-
rying magma either to the surface or into the volcano flanks [56].

From a modeling point of view, based on the elastic behaviour of the
Earth’s crust, the ground deformations are interpreted in the framework of
the linear elasticity theory, see [13, 27, 57]. The gravity anomalies using the
potential theory, see [12] and reference therein.

In this thesis we will focus the attention to the mathematical analysis of
the most common elastic model which we now turn to present.
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1.2 Towards the mathematical model

A well-established model is the one proposed by Mogi, [50], following
previous results (see description in [26, 45, 56]). Mogi’s model is based on
the assumption that ground deformation effects are primarily generated by
the presence of an underground magma chamber exerting a uniform pressure
on the surrounding medium. Precisely, the model relies on three key founding
schematisations:

1. Geometry of the model. The earth’s crust is an infinite half-space
(with free air/crust surface located on the plane x3 = 0) and the magma
chamber, buried in the half-space, is assumed to be a spherical cavity with
radius ry and depth dy such that rq « dy.

2. Geophysics of the crust. The crust is a perfectly elastic body,
isotropic and homogeneous, whose deformations are described by the lin-
earized elastostatic equations, hence are completely characterized by the
Lamé parameters p, A (or, equivalently, Poisson ratio v and shear modulus
i). The free air/crust boundary is assumed to be a traction-free surface.

3. Crust-chamber interaction. The cavity describing the magma
chamber is assumed to be filled with an ideal incompressible fluid at equilib-
rium, so that the pressure p exterted on its boundary on the external elastic
medium is hydrostatic and uniform.

In detail, assuming that the center of the sphere is located at z =
(21, 29, z3) with 23 < 0, the displacement u = (uy, us, u3) at a surface point
Y = (y1,%2,0) is given by

N 1—v)e¥p(za — Ya 1—v) &pdy

wr(y) = Lo EPC ) ) (L0 Sl gy
p |z — y| noolz—yl

in the limit € := ro/dy — 0 (see Figure 1.2), for o = 1,2, where dy = —z3.

A second-order approximation has been proposed by McTigue [47] with the
intent of providing a formal expansion able to cover the case of a spherical
body with finite (but small) positive radius.

Being based on the assumption that the ratio radius/depth ¢ := ry/dy
is small, the Mogi model corresponds to the assumption that the magma
chamber is well-approximated by a single point producing a uniform pressure
in the radial direction; as such, it is sometimes referred to as a point source
model. However, even if the source is reduced to a single point, the model still
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Figure 1.2. Normalized Mogi displacement profiles given in (1.1): horizontal compo-
nents u,, @ = 1,2, dashed line; vertical component ug, continuous line.

records the spherical form of the cavity. Different geometrical form may lead
to different deformation effects (as will be clear in the subsequent analysis).

The Mogi model has been widely applied to real deformation data of
different volcanoes to infer approximate location and strength of the magma
chamber. The main benefit of such strategy lies in the fact that it provides
a simple formula of the ground deformation expressed in terms of the basic
physical parameters depth and total work (combining pressure and volume)
and, thus, that it can be readily compared with real deformation data to
provide explicit forecasts.

The simplicity of Mogi’s formulas (1.1) makes the application model vi-
able, but it compensates only partially the intrinsic reductions of the ap-
proach. As a consequence, variations of the basic assumptions have been
proposed to provide more realistic frameworks. With no claim of complete-
ness, we list here some generalizations of the Mogi model available in the
literature.

Since real data sets often exhibit deviations from radially symmetric de-
formations, different shapes for the point source have been proposed. Guided
by the request of furnishing explicit formulas, such attempt has primarily
focused on ellipsoidal geometries and, in particular, on oblate and prolate
ellipsoids, see [25, 61]. With respect to the spherical case, these new configu-
rations are able to indicate the presence of some elongations of the chamber
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and possible tilt with respect to the surface. As a drawback, formulas for
ellipsoid cavities turn to be rather complicated, involving, in the general case,
elliptic integrals.

Different configurations, such as rectangular dislocations (see [52]) and
horizontal penny-shaped cracks (see [33]), have also been considered still
with the target of furnishing an explicit formula for ground deformation to
be compared with real data by means of appropriate inversion algorithms.
Still relative to the geometry of the model, efforts have also been directed
to the case of a non-flat crust surface, with the intent of taking into account
the specific topography, as given by the local elevation above mean sea level
of the region under observation [60, 23].

Studies have been addressed to a finer description of the geophysical prop-
erties of the crust, with special attention to the case of heterogeneous rhe-
ologies. Indeed, different parts of the crust may exhibit different mechan-
ical properties due to the presence of stiff (lava flows, welded pyroclasts,
intrusions) and soft layers (non-welded pyroclasts, sediments), see [46] and
references therein. Variations of elastic parameters may also arise as a con-
sequence of the thermic properties of the magma inside the chamber, which
determines different local behaviours in the neighborhood of the cavity, so
that the presence of an additional layer surrounding the chamber could be
appropriate. Additionally, nonuniform pressure distribution on the boundary
of the chamber may arise, as an example, from a nonuniform nature of the
material filling the cavity (see discussion in [26]). Incidentally, we stress that
the use of nonlinear elastic models in this area is still in a germinal phase
and it would require a more circumstantial analysis.

For completeness, we mention also the attempts of combining elastic prop-
erties with gravitational effects and time-dependent processes modeling of the
crust by means of elasto-dynamic equations or viscoelastic rheologies (among
others, see [12] and [22]).

In all cases, refined descriptions have the inherent drawback of requiring
a detailed knowledge of the crust elastic properties. In absence of reliable
complete data and measurements, the risk of introducing an additional degree
of freedom in the parameter choice is substantial. This observation partly
supports the approach of the Mogi model which consists in keeping as far as
possible the parameters choice limited and, consequently, the model simple.

As the above overview shows, the geological literature on the topic is
extensive. On the contrary, the mathematical contributions seem to be still
lacking. In the following section we summarize the principal aim of this
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thesis, showing the mathematical generalization of the Mogi model referred
to the shape of the cavity which will be not forced to be neither a sphere nor
an ellipsoid, but an arbitrary bounded domain of the half-space.

1.3 The mathematical model

Let us introduce in detail the boundary value problem which arises from
the previous assumptions on the geometry of the model, geophysics of the
crust and crust-chamber interaction (see previous section) in the case of a
generic shape for the magma chamber. Denoting by R? the (open) half-space
described by the condition x3 < 0, the domain occupied by the Earth’s crust
is R3\C, where C = R?, describing the magma chamber, is assumed to be
an open set with connected and bounded Lipschitz boundary 0C. Hence, the
boundary of R*\C is composed by two disconnected components: the two-
dimensional plane R? := {y = (y1,%2,%3) € R® : y3 = 0}, which constitutes
the free air/crust border, and the set 0C, corresponding to the crust/chamber
edge. R R

Given A € R*3 we denote by A its symmetric part, that is A =
$(A+AT). We introduce the elastic description of the medium filling R*\C'
Assuming that the medium is homogeneous and isotropic and subjected to
small elastic deformations, we derive the following boundary value problem
for the displacement field w, that is

(div(CVu) =0 in R3\C
CVu)n =pn on 0C

J (EVwn =p (1.2)
(CVu)e; =0 on R?

(u=0(1), Vu=oz|™) [z|->ox,

where C := AI®I + 2ull is the fourth-order isotropic elasticity tensor with I
the 3 x 3 identity matrix and I the fourth-order tensor defined by IA := A,
C is the cavity modelling the magma chamber, p is a constant representing
the pressure and Vu the strain tensor.

At this point, the model provides the displacement w of a generic finite
cavity C'. The next step is to deduce a corresponding point source model, in
the spirit of the Mogi spherical one. To this aim, we assume the cavity C' of
the form

C =dyz + rof2
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where dy, 7o > 0 are charateristic length-scales for depth and diameter of the
cavity, its center dyz belongs to R and its shape 2 is a bounded Lipschitz
domain containing the origin. The Mogi model (1.1) corresponds to {2 given
by a sphere of radius 1.

Introducing the rescaling (x,uw) — (x/do,u/r¢) and denoting the new vari-
ables again by x and u, the above problem takes the form

(div(CVu) =0 in R*\C.
CVu)n =pn on 0C.

( v Jjn=p (13
(CVu)es =0 in R?

w=o(1), Vu=ofa") |z|— o,

where € = r¢/dy, C: := z + {2 and p is a “rescaled” pressure, ratio of the
original pressure p and €. Denoting by u. the solution to the boundary
value problem (1.3), the point reduction consists in considering the limit-
ing behaviour as ¢ — 0 of u. and, precisely, in determining an asymptotic
expansion valid for y € R? of the form

u-(y) = pU(z,9) +o0(e*) ase—0" (yeR?)

for some appropriate exponent a > 0 and principal term U.
The well-posedness of (1.2) and the asymptotic analysis of (1.3) are the
main subjects of this thesis.

1.4 An overview of the mathematical literature

The derivation of asymptotic expansions, in the presence of small inclu-
sions or cavities, has been very successful in the field of the inverse problems.

A pioneering work is due to Friedman and Vogelius during the 80s, see
[36], where the authors analyse the electrostatic problem for a conductor
consisting of finitely many small inhomogeneities of extreme conductivity
(infinite or zero conductivity) represented by regular domains. They first
establish an asymptotic formula of first order for the perturbed potential.
Secondly, from that, they prove that locations and relative sizes of the inho-
mogeneities depend Lipschitz-continuously on the potential measurement on
any open subset of the boundary.
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After this work, much effort has been made to improve and generalize
the results, treating also the elasticity case [4], for its potential application
in medical diagnosis or nondestructive evaluation of materials, see for ex-
ample [5, 7]. In particular, the extensions to generic inhomogeneities, not
necessarily regular and not perfectly conducting or insulating, and the imple-
mentation of reconstruction algorithms have been addressed, see [5, 7, 19, 38]
and the reference therein for a vast bibliography. Specifically, starting from
boundary measurements given by the couple potentials/currents or deforma-
tions/tractions, in the case, respectively, of electrical impedence tomography
and linear elasticity, information about the conductivity profile and the elas-
tic parameters of the medium have been inferred. We recall that without any
a priori assumptions on the unknown inhomogeneities/cavities (for example
without the smallness assumption), the reconstruction procedures give poor
quality results. This is due to the severe ill-posedness of the inverse boundary
value problem modelling both the electrical impedance tomography [2] and
the elasticity problems [3, 51]. However, in certain situations one has some
a priori information about the structure of the medium to be reconstructed.
These additional details allow to restore the well-posedness of the problem
and, in particular, to gain uniqueness and Lipschitz continuous dependence
of inclusions or cavities from the boundary measurements. The smallness
of the inhomogeneities, embedded in a medium with a smooth background
conductivity or with smooth elastic parameters, is one of the way to obtain
the well-posedness of the inverse problem as pointed out by Friedman and
Vogelius in [36]. Therefore, by means of partial or complete asymptotic for-
mulas of solutions to the conductivity/elastic problems and some efficient
algorithms, information about the location and size of the inclusions can be
reconstructed, see [4, 7, 38].

It is essential to highlight that the approach introduced by Ammari and
Kang, see for example [4, 7], based on layer potentials techniques has been a
powerful method to obtain asymptotic expansion of any order for solutions to
the transmission problems and, as a particular case, to cavities and perfectly
conducting inclusions’ problem. For this reason, we decide to follow the same
approach in this thesis. Despite the extensive literature in this field [4, 6,
7, 8, 19, 36, 38, 40], we remark that the mathematical problem of this work
represents an intriguing novelty because we have to deal with a pressurized
cavity, that is a hole with nonzero tractions on its boundary, buried in a half-
space. These two peculiarities do not allow to reduce the boundary value
problem to a classical one based on cavities (see, for example, problems
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in [4, 7] and reference therein). In fact, we can not create a background
displacement vector field, which is both indipendent from the geometry of
the hole and satisfies the decay conditions at infinity, in order to nullify the
traction datum on the boundary of the pressurized cavity.

1.5 Organization of the thesis and main results

Guided by the historical approach summarized in Section 1.4, for which
the electrostatic problem was the first one considered in the field of the
asymptotic analysis in the presence of small inclusions, in Chapter 2 we
analyse a simplified scalar version of the elastic model presented in Section
1.3. Specifically, denoting by R? the half-space and R?~! its boundary, with
d = 3, we consider the boundary value problem

(Au=0 inRI\C

0
% =g on dC,
1 ou (1.4)
— =0 on R
0T q

(u(xz) - 0 as |z| — +o©

where C' is the analogous of the pressurized cavity in the elastic case, g €
L*(0C) and m is the unit outer normal vector. Obviously, the choice to
focus the attention on dimensions greater than two comes from the limitation
imposed by the elastic physical problem.

As far as we know, this boundary value problem does not have a real
physical meaning. On the other hand, being mathematically more manage-
able than the system of elasticity, it is useful to mark and shed light on the
path to solve the elastic problem.

To prove the well-posedness of this boundary value problem we use the
method of reflection. Let @’ = (z1, -+ ,24-1), we consider the cavity image

C = {(&,zq), (&, —24) € C} and the function G defined as

Glz) = g(x' xq) %f rg <0
g(x',—xy) ifxg>0
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Then we look at the extended problem

AU =0 ian\<Cu5'>

a—U -G onoCudC (1.5)
on

U—->0 as|z|—> 4w

where the condition U — 0 is equivalent to |U| = O(|z|?>~?). Classic theory
on the exterior problems for harmonic functions guarantees existence and
uniqueness of the solution U. Moreover, symmetry ensures the equivalence
between (1.4) and the extended problem (1.5) in the half-space. In fact, the

unique solution U(zx) of the extended problem (1.5), for € R%\ (C’ v (NZ'),

satisfies the scalar problem (1.4) when z; < 0.

To apply the integral approach, we first look for an integral representa-
tion formula of the solution. To do this, we take advantage of the explicit
expression of the Neumann function for the Laplace operator in the half-space

N(z,y)=I'(x—y) + I'(x —y),

where I' is the fundamental solution of the Laplacian, «,y € R? and Z is
the symmetric point of & with respect to the x4-plane, in order to get a rep-
resentation formula containing only integral contributions on the boundary
of C'. In detail, we find that

A

wo) = [ [N -

Ty

N(z,y)f(y)]do(y), xeRI\C,

where f is the trace of the solution u on dC. From the point of view of
the inverse problem we are interested in evaluating the solution u on the
boundary of the half-space; since I'(x — y) = ['(Z — y), for £ € R}, the
integral formula becomes

0

u(x) = 2 LC [I(@ - y)gly) — o

I(x—y)f(y)]do(y), xzeR""

Taking {2 a bounded Lipschitz domain containing the origin and z € R? we
consider C, := C = z + &2 with the assumption that dist(z, R¥1) > §, > 0.
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We also define ¢*(¢;e) = g(z + &¢), with ¢ € 2, and Sp¢ the single layer
potential
Sop(w) = f Iz —y)p(y)do(y), xR
o0
Then, denoting with u. the dependence of u from ¢ and taking g € L*(0C.)
such that ¢* is independent on €, at any € R?!, the following asymptotic
expansion holds

u(@) = 22 (e — 2) f ¢#(0)do(C)

052

+ 2V (x — 2) - J
o0

1 -1
{nc (21 + KQ> Sg*(¢) — Cgﬁ(C)} do(¢) + O(e™),
as ¢ — 0, where O(¢4™!) denotes a quantity uniformly bounded by Ced*!
with C' = C(dp) which tends to infinity when dy goes to zero. The singular
integral operator Ky, is defined by

L (y — ) ny
Kop(x) = P LQ R p(y)do(y),  xe€d,

where wy is the area of the (d — 1)-dimensional unit sphere.

Finally, with the asymptotic expansion at hand, we consider the specific
Neumann boundary datum ¢ = —p - n where p is a constant vector in
R?. This particular choice has a double purpose: to imitate the constant
boundary conditions of the elastic model and to make more explicit the
integrals in the asymptotic formula. The result gives the same polarization
tensor obtained by Friedman and Vogelius in [36] for cavities in a bounded
domain. Specifically, it holds

u(x) = 264NV (x — z) - Mp + O(e%™), xeR

where M is the symmetric positive definite tensor given by

1
192 Joo
and the auxiliary function ¥ has components ¥;, i = 1,...,d, solving
U,
v = —n; ondf?
on

U, -0 as |x| — +o0.
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In Chapter 3 we finally analyse the elastic problem (1.2) presented in
Section 1.3. For the well-posedness of (1.2) we cannot use the same ap-
proach employed in the scalar case because the extention of the problem by
symmetry in R® doesn’t work. In fact, it is impossible to build an extended
problem to the whole space such that the third component us of the dis-
placement vector field w is continuous across the boundary of the half-space.
One way to overcome this obstacle is to prove directly the invertibility of the
boundary operators that come out from the integral representation formula
of the solution . To do that, we need the Neumann function NN of the Lamé
operator, solution to

div(CVN(-,y)) = 6,1 in R?,
(CYN(,y)n=0  on R?
with the decay conditions at infinity
N = O(2| "), VN| = O(j2|).

N has an explicit expression and can be decomposed as N = I + R, where T’
is the fundamental solution of the Lamé operator and R is the regular part
(see Chapter 3 for details). Given A € R3*3 we represent the transpose as
AT. From that, we find the following representation formula for the solution
u to (1.2)

u(y) = f [PN(z, y)n(y) — (CYN(z, y)n(y))  f(y)]do(z), yeR\C
oC

where f is the trace of w on dC'. In particular, f solves the integral equation
(AI+K+D) f=p(S'n+S"n), on 0C

where D, S¥ are, respectively, the double and single layer potentials related
to R while S' is the single layer potential relative to I' (see Chapter 3). In
this framework, the well-posedness of the problem (1.2) follows showing the
invertibility of the operator %I + K + D® in L2(0C). In order to prove
the injectivity of this operator, we show the uniqueness of u following the
classical approach based on the application of the Green’s formula and the
energy method. In particular, we consider two solutions, u; and wus, of the
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problem (1.2) and their difference u = w; — us. Then, we cut the half-space
with a hemisphere of radius r containing the cavity and we represent u in
integral formulation by means of N. The uniqueness result follows using the
decay conditions at infinity of N and w as r — 400. From the injectivity, it
follows the existence of w proving the surjectivity of I+ K + D" in L?(0C)
which is obtained by the application of the index theory regarding bounded
and linear operators.

Afterwards, taking again a cavity of the form C. = z + 2, with z ¢ R3
and {2 is a bounded Lipschitz domain containing the origin, we find the
asymptotic expansion of the solution to problem (1.3) for y € R?,

u(y) = pe*|2IV.N®)(z,y) : MI + O(e"),
for k = 1,2,3, as € — 0, where u* stands for the k-th component of the
displacement vector and IN®) for the k-th column vector of the matrix N.
Here pe? represents the total work exerted by the cavity on the half-space.
M is the fourth-order moment elastic tensor defined by

1 .
M=+ '”'i CO7(¢) ®n(¢)) do(C),

for ¢g,r = 1,2, 3, where I is the symmetric identity tensor, C is the isotropic
elasticity tensor and m is the outward unit normal vector to 0f2.

Finally, the functions 87", with ¢,r = 1, 2, 3, are solutions to

07 1

- 1%
ov 3)\+2u(cn on 942,

diV((C@OqT) =0 inR* 2,

with the decay conditions at infinity

7] = O(l| ™), VO = O(lz[ %), as|z|— .






CHAPTER 2

The scalar model

The aim of this chapter is to provide a detailed mathematical study of the
simplified scalar version of the elastic problem presented in the introduction.
In particular, recalling that R? is the half-space and R~ its boundary, for
d > 3, we consider the Laplace equation

Au=0 inR*\C (2.1)
with boundary conditions
0 0
—uzg on 0C, L0 on R4 u(x) - 0 as|x| - +w©
on (?xd
(2.2)

where C'is a cavity (analogous to the pressurized one for the elastic case), g is
a function defined on dC'. After proving the well-posedness of this boundary
value problem, we will consider the case of a cavity of the form C' = z + {2,
where z € R? and (2 is a Lipschitz bounded domain containing the origin.
The aim is to establish an asymptotic expansion of the solution of the problem
as e — 0.

As far as we know, this model does not have a real physical application,
however the mathematical result has an interest on its own. In fact, as
explained in the Introduction, it belongs to the same stream of the asymptotic
analysis of the conductivity equation in bounded domains. With respect
to the vast literature in this field, see for example [5, 6, 7, 8, 36] and the
reference therein, the principal novelty of this chapter concern the asymptotic
analysis in the case of unbounded domain with unbounded boundary and
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with non-homogeneous Neumann datum on the boundary of the hole. To
tackle the issue of the well-posedness of this boundary value problem and
the corresponding asymptotic analysis, we follow the approach of Ammari
and Kang based on integral equations.

This chapter is organized as follows. In Section 2.1 we recall some well-
known results about harmonic functions and layer potentials tecnhiques for
the Laplace operator useful in the next. In Section 2.2 we examine the
well-posedness of the scalar problem and we get an integral representation
formula of the solution. In Section 2.3, we state and prove a spectral result
crucial for the derivation of our main asymptotic expansion in the case of
regular domains. In Section 2.4 we present and prove the theorem on the
asymptotic expansion and finally we illustrate the result for the particular
choice g = —p - n.

2.1 Preliminaries

The main aim here is to collect together the various concepts, basic def-
initions and key theorems useful for the next sections. In detail, we recall
some important properties about the decay rate of harmonic functions in
unbounded domains and single and double layer potentials for the Laplace
operator on Lipschitz domains. As already explained, we focus the attention
only to dimension d > 3; however we remark that most of the results we
recall are true also for d = 2.

We skip the proofs of the basic concepts while we give them for some
theorems that may be unfamiliar. Results about harmonic functions in un-
bounded domains are contained, for example, in [30, 35, 55]; those on prop-
erties of single and double layer potentials can be found in [7, 29, 43, 58].

2.1.1 Harmonic functions in exterior domains

The specific symmetry of the half-space permits to show the well-posedness
of the scalar model by extending the problem to an exterior domain, viz. the
complementary set of a bounded set. Hence, it is useful to recall the clas-
sical results on the asymptotic behaviour of harmonic functions in exterior
domains.

Theorem 2.1.1. If v is harmonic in RN\, with d = 3, the following state-
ments are equivalent



1. v is harmonic at infinity.
2. v(x) — 0 as |x| — oo.
3. Jv(x)| = O(|z|*) as x| — .

In addition, from the behaviour of the gradient of harmonic functions on
the boundary of the d — dimensional balls, that is if v is a harmonic function
in Bg(x), then

d
V|l < = 2.3
V| R anax |v] (2.3)

we can deduce the behaviour of the gradient of harmonic functions at infinity.
We summarize the results in the following theorem

Theorem 2.1.2. [fv is harmonic in R\, d = 3, and v(x) — 0 as |z| — oo,
then there exist v and a constant M, depending on r, such that if |x| = r,

we have
M M

CN

In conclusion, we recall the Green’s second identity which plays a crucial
role to convert differential problems into integral ones.

o] < (2.4)

Proposition 2.1.3. Let 2 be a Lipschitz domain in R%. Given the pair of
functions (u,v) defined in 2 it holds

[ @) - u@ai@) do - [ (S@te) - u(@) 5 (@) ) dote)

2.1.2 Single and double layer potentials

Denoting with wy the area of the (d—1)-dimensional unit sphere, we recall
the fundamental solution of the Laplace operator, that is the solution to

Al () = do(),
where dg(x) represents the delta function centered at 0. It is well known

that I is radially symmetric and has this expression

1

M) = e aaf

(2.6)



Given a bounded Lipschitz domain 2 = R? and a function o(y) € L*(012),
we introduce the integral operators

Sop(x) = L I'x —y)p(y) do(y), x € R
“ . (2.7)
Doste)i= [ TEMotyydoty),  wemhon

which are called, respectively, single and double layer potentials relative to the
set £2.
We summarize some of their properties below

i. By definition, S (x) and Dge(x) are harmonic in RN 042,
ii. Spp(x) = 0(|z|*%) as |z| — +o0.
iii. If §,, p(x) do(z) = 0 then Spp(x) = O(|z|'~9) as |x| — +o.
iv. Dop(x) = O(|z|'™9) as |z| — +o0.

Next, we introduce the boundary operator K, : L*(02) — L*(012)

Kap(@) = —_po f ) Www do(y) (2.8)

and its L?—adjoint

KjHp(x) = — .U.J —_ do 2.9
op(x) Y I P e(y) do(y) (2.9)
where p.v. denotes the Cauchy principal value. The operators K, and K7,
are singular integral operators, bounded on L?(0£2).

Given a function v defined in a neighbourhood of 02, we set

v(az)‘ = lim v(x £+ hn,), x € 012,
S (2.10)
v (a:)‘ = lim Vo(x £ hng) - ng, x € 01
ong +  ho0t

The following theorem about the jump relations of the single and double po-
tentials for Lipschitz domains is a consequence of Coifman-McIntosh-Meyer
results on the boundedness of the Cauchy integral on Lipschitz curves, see



[21], and the method of rotations of Calderén, see [18].
In the sequel, t1,--- ,t;_1 represent an orthonormal basis for the tangent

plane to df2 at a point & and 0/t = Z: 0/0ty ty, the tangential derivative
on 0f2.

Theorem 2.1.4. Let 2 < R? be a bounded Lipschitz domain. For ¢ €
L2(002) the following relations hold, a.e. in 012,

Sap(@)|, = Sap(a)|_

859@ . 85ng
ot 2, T (“:)‘, o)
22@)], = (31 + K3 ) ola)

Dog(x)| = (12[ + Kn) o(x)

Using Green’s identity it follows that Dg(1) = 1 hence, by the jump
relations for the double layer potential, we have Kq(1) = 1/2.

In the sequel, to determine the well-posedness of the scalar model, pre-
sented at the beginning of this chapter, rewritten in terms of integral equa-
tions, we will need to generalize the result about the invertibility of the
operators 1/21 + K3, and 1/2] + K when a regular compact operator is
added. Therefore we recall here what is known about the eigenvalues of K7},
and K in L?(0f2) and then the invertibility of the operators A\I — K} and
M — K, for suitable X\ € R. These results, for the case of Lipschitz domains,
are contained in [29]. We define

L2(092) := {(p e L2(09), f o do = o}
o012

Theorem 2.1.5. Let A be a real number. The operator \I — K}, is injective
on

(a) L§(002) if [N = 1/2;
(b) L*(092) if A e (—o, —%] U (%, +00).
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Proof. By contradiction, let A € (—oo, —1/2] U (1/2,4+00) and suppose there
exists p € L%(012), not identically zero, satisfying (Al — K}5)p = 0. Since
Kq(1) = 1/2, it follows by duality that ¢ has mean value zero on 02, in fact

0 =1, (M — Kg)oyrean) = A — Ka(l), 91200
= <)\ - 1/27 <P>L2(an)~

Thus, from the properties of single layer potential, Spp(x) = O(|z|'~?) and
VSop(x) = O(Jx|~%) for |x| — 0. Since ¢ is not identically zero, the two
numbers
A= J|V59g0|2da:, B = J IV Sop|? dz
) RN
cannot be zero. Applying the divergence theorem and the jump relations of
the single layer potentials in Theorem 2.1.4 to A and B, we get

1 1
A= J(—2[+K}'})g089goda(w), BZ—J(2[—|—K}'}) pSppdo(x).
082 o0

Since (M — K}5)p = 0, it follows that

1B-A
2B+ A’

hence |A| < 1/2, which is a contradiction. This implies that the operator
M — K}, is injective in L?*(082) for A € (—o0, —1/2] U (1/2,00).

Instead, in the case A = 1/2, we suppose by contradiction there exists ¢ €
L3(002), not identically zero, such that (1/2] — K%)p = 0. Then, we define
A and B as before, but in this case we find

1
A= J (- §I+K}‘2)¢Sm@da(af;) =0,
o0

hence Spp = cost in (2. By the continuity property of single layer potential
on 012 (see Theorem 2.1.4) we have that S is constant on 0f2. Moreover,
Sqip is harmonic in R%\ 02 and behaves like O(|z|'~9) as |z| — oo because
¢ € LE(002). Therefore, by the decay rate at infinity we find that Spe = 0 in
R?, hence ¢ = 0 on 0f2. This contradicts the hypothesis, hence 1/21 — K}
is injective in L3(012). O



The invertibility results of A\ — K§, and A\I — K, are not straightforward.
If the domain 2 is regular, at least C*, it can be proven that the boundary
operators K and K7, are compact, hence the invertibility of A\l — K7, and
M — K¢, can be obtained by the Fredholm theory. Instead, in the Lipschitz
domains, K and K}, lose the compactness property, see the example pro-
posed by Fabes, Jodeit and Lewis in [31], hence we cannot use the Fredholm
theory to infer the invertibility. Verchota in [58] solved this problem showing
the fundamental idea that the Rellich identities are the appropriate substi-
tutes of compactness in the case of Lipschitz domains. Here, we recall the
Rellich identity for the Laplace equation.

Proposition 2.1.6. Let 2 be a bounded Lipschitz domain in R?. Let u be a
function such that either

(i) w is Lipschitz in £ and Au = 0 in §2,
or

(ii) w is Lipschitz in RNS2 and Au = 0 in RNQ with |u| = O(|z|>~%)
Let o be a C'-vector field in R with compact support. Then

ou |2 ou|? ou ou
= n)—=] —2 il P
J(a ™)\ 7n J(a w5 MO‘ ot) on
o o o2
J2(VaVu - Vu) — diva|Vul? if w satisfies (i) (2.12)
R
J 2(VaVu - Vu) — diva|Vul®  if u satisfies (ii)
RN
As a consequence of the previous Rellich formula we have there exists a
positive constant C' depending only on the Lipschitz character of {2 such that

ou

(2.13)

CH ot L2 o0) H% L2(692) H ot lr2e0)

In the proof of the invertibility of the operators AI — K, a crucial role is
played by the following theorem.

Theorem 2.1.7. For 0 < h < 1 suppose that the family of operators Ay, :
LA(R4Y) — L3R4 satisfy

(i) | Anollr2@a-1y = Clp|2a-1), where C' is independent of h;



(7)) h — Ay is continuous in norm;
(iii) Ag : L*(R4™Y) — L2(R71) is invertible.
Then, Ay : LA (R41) — L%(R41) ids invertible.
With all the ingredients at hand we can state and prove the invertibility
theorem of the operators A/ — K}, for X in the range expressed in Proposition

2.1.5. These results are due to Verchota [58] (for A = +1/2) and Escauriaza,
Fabes and Verchota [29].

Theorem 2.1.8 ([29]). Let {2 be a Lipschitz domain. The operator \I — K,
is invertible on

(1) L§(002) if [\ = 3;
(it) L*(002) if X e (—oo, —3] U (3,0).

Proof. We first prove the invertibility of the operators £1/2I+ K}, : L3(0£2) —
L3(002). Since Ko(1) = 1/2 we have that, for all f € L*(012),

JKQf ) do(z Jf ) do(x

hence £1/21 + K}, maps L2(012) into L3(052). Let u(x) = S f(x), where
f € L3(0£2). Then u satisfies conditions (i) and (i7) in Proposition 2.1.6.
Moreover by the properties of single layer potentials on the boundary of (2,
we have that du/dt is continuous across the boundary and the jump relation

holds 5 )
u
= (5l KBS
onl+ ( 2 +Ka)f

Applying (2.13) in 2 and R\ (2 we obtain that

SGT+ K2 s H@fmfum

1 *
!\(51—Kn)fHL2(m Cl(T+ K8 s ooy

f= (;]+K5)f+<1l Kn)f

(2.14)

Since



from (2.14) we have that

1
| (37+52) Flisgey > Ol 215

Localizing the situation, we can assume that 0f2 is the graph of a Lipschitz
function in order to simplify as much as possible the proof. Therefore 02 =
{(x',2q) : wq = @(x')} where ¢ : R — R is a Lipschitz function. To
show that A = (1/2)] + K}, is invertible we consider the Lipschitz graph
corresponding to hyp that is

th = {(az’,xd) L Xg = hgo(w')}, 0<h<l1

and the corresponding operators K and A,. Then Ay = (1/2)I and A; =
A. In addition, A; are continuous in norm as a function of A. Hence, from
the inequality in (2.15) we have that |Ajf|r200,) = C|fllr200,), since the
constant C'is independent of A but depends only on the Lipschitz character of
(2. Applying the continuity method of Theorem 2.1.7 we find that 1/21 + K},
is invertible on L3(0f2). Next, we prove that 1/27+ K} is invertible on L?(012)

showing that the operator is onto on L?(0f2). By duality argument, since
Ko(1) =1/2, for all f € L*(082) we get

f (;I + K};) fdo(x) = i fdo(x)

o0
hence 1/21 + K} maps L?*(012) into L*(042). For g € L*(012) we consider

1 1
where )
== d :
= oy | 900@
o0
Defining go := g — ¢(1/2I + K3,)(1), since

1
| 1+ Kp) W dote) = o,
an
we have that gy € L3(02). Let fo € LE(052) be such that

1
(2] + Kfz) fo = go.



Then, defining f := fy + ¢ we find that
1 * 1 *

This means that 1/2I + K}, is onto in L*(052).
For the operator —1/21 + K}, we can follow the same argument both for the
case L2(002) and L*(012).

Next, suppose that |A\| > 1/2. To prove the invertibility of the operators
in the general case we use the Rellich identity. Let f € L*(0f2), co a fixed
positive number and set u(x) = S f(x). Let a be a vector field with support
in the set dist(x,002)< 2¢q, V& € 012, such that a-n > 0§, for some 6 > 0.
Therefore, from the Rellich identity (2.1.6), we have

J<a'n)zQZJ(a'n)‘ZLlQJ(a.Z);Z

o0 o0 o0 (2.16)
+ J2(VaVu - Vu) — diva |[Vul?.
19

Observe that on 0f2

ou
on

() (o

Since a = (a-m)n + Y0 (e - t)ty and VSf(x)|, = 1/2nf + Kf where

T —y
we find that 5 5
(Vu- ) = —u(a-n)Jr(a-—u)
on ot (2.17)
= _7(a n)f + Kocf7
where




We also have

J|Vu|2da: = Ju‘ do(x

o012

_ JSQfK)\—;)f—()\I—K}*})f] do().

o

By using the following integral identity obtained by multiplying (2.17) for
Ju/0n, that is

_Qi (o S 2 (o i [—2 o n)f+Kaf] o()

an‘ ‘da

092

we get from the Rellich formula (2.16) that
1 ou |2
2f<an)(9n‘ do(x) = — f ‘ ‘dU
@u 1
R B K
+ f o [ 2(a n)f + af} do(x)
o0
1
- J [(VaVu, Vu) + §diva |Vu|2] do(x).

Thus it holds

-2 [ mr i

012

<6£ e mr e Kaf | [(A- ) - O - K3) | dota)

+ C|flzzee) (ISaflrz@0) + [(A = K§) flli2e0)
+ C|Safl2eallM = K§) fllreeo) + CIOA — K§) flZ200),



where C' depends on the Lipschitz character of {2 and A. By multiplying the
integrand of the right-hand side integral we get

; (v _ D J(a ) f2do(x) < (/\ - ;) J JEof do(a)
o0 08

+ O\ fll2@0) (1Safl2@e) + (M = K§) fllr2en)
+ C|Soflrzea) (M = K§) fl2ea) + CIO — K§) 17200

Denoting with K the adjoint operator in L?(02) of K, we find

ke L (le-y) () -aw)],
K+ Ko = Raf = wdp. .(i z— | f(y) do(y).

By duality, we have

ffKafda(w) Z;JfRafda(m).
082 002

Since [A| > 1/2 and - m > 0 > 0, the norm | f||;2(s) in the left-hand side
can be hidden thus getting

| flr200) < C (M — K§) flr2ea) + [Saf] + |Raflr200) - (2.18)

Since S and R, are compact in L?(02), we conclude from the above esti-
mate that \I — K7, has a closed range.

Now, we prove the surjectivity of the operator A\ — K3, in L?(0£2). From this
result and the injectivity proved in Theorem 2.1.5 the invertibility follows.
Suppose on the contrary that for some A real, |\| > 1/2, A\ — K}, is not
invertible in L?(062). Then the intersection of the spectrum of K} and the
set {A € R: |\ > 1/2} is not empty and so there exists a real number )\, that
belongs to this intersection and it is a boundary point of the set. To reach a
contradiction it suffices to show that Ao/ — K7, is invertible. We know that
Mol — K7, is injective and by (2.18) has a closed range. Therefore there exists
a constant C' such that for all f € L?(012) the following estimate holds

[flz200) < Cl(Aol = KG) fllr200)- (2.19)

Since Ag is a boundary point of the intersection of the spectrum of K, and
the real line there exists a sequence of real numbers A, with |\ > 1/2,



A — Ao, as k — o0, and \ I — K} is invertible on L?(0£2). Therefore, given
g € L*(012) there exists a unique f;, € L*(012) such that (\I — K%)fx = g.
If {||fx|z2(60)} has a bounded subsequence then there exists another subse-
quence that converges weakly to some fy € L?(0f2) and it holds

f ol — K5) fodo(z) — lim J FeOol — Ko)hdo(a)
082

k—+00
o0

= klirf h(Xl — KF) frdo(x) = Jgh do(x).
o0 o0

Therefore (Aol — Kj5)fo = g. In the opposite case we may assume that
I fellz20) = 1 and (Aol — K§) fi, converges to zero in L*(042). However from
(2.19)

Cl (Mol — K§) frl 2200
CIX = M| + Cll(Md — K) fel 200

Since the right-hand side converges to zero as k — o0, we get a contradiction,
hence for each A real, |A| > 1/2, AI — K7}, is invertible. O

1= fulr200) <
<

Remark 2.1.9. The invertibility of the operator 1/21+ K, follows exploiting
the Banach’s closed range theorem starting from the result for 1/21 + K3,.
In particular, the result follows from the fact that 1/21 + K, has closed and
dense range in L*(012). For more details see [58].

2.2 The scalar problem

Thanks to the instruments of the preliminaries section, we are now ready
to analyse the boundary value problem

r

Au=0 inRIN\C
0
é—u =g onoC
1T (2.20)
— =0 onR%!
0xd
(u—0  as|x|]— 4o

where C' is the cavity, ¢ is a function defined on 0C and d > 3.



In particular, we establish the well-posedness of the problem and pro-
vide an integral representation formula for any bounded Lipschitz domain C'
contained in the half-space.

Only in the next section, making the smallness assumption on the cavity,
we find the asymptotic expansion.

2.2.1 Well-posedness

Proving existence and uniqueness results in the half-space and, in general,
in unbounded domain with unbounded boundary, is much more difficult with
respect to the case of bounded or exterior domains. The main obstacle is the
control of both solution decay and integrability on the boundary. Indeed, it is
typical to treat these problems by means of weighted Sobolev spaces, see for
example [9]. Here, in order to mantain a simple mathematical interpretation
of the results, we choose to use the particular symmetry of the half-space
to prove the well-posedness of the problem (2.20). Therefore, we extend the
problem to the whole space, specifically to an exterior domain, establishing
the well-posedness in a standard Sobolev setting.

Given a bounded Lipschitz domain C' = R? and the function g : 0C — R,
we define N

C:={(x zq): (x' —x4) € C},

Rd_l

G RY
C

Figure 2.1. Reflection of the geometry

see Figure 2.1, and G : 0C' U oC — R as

Jglz) ifxedl
)= {g(:z) if e o (221)



Theorem 2.2.1. The problem (2.20) has a unique solution. This solution
coincides with the restriction to the half-space R% of the solution to

AU =0 ian\<Cu5'>

v _ G onoC uoC (2.22)
on

U—-0 asl|z|— +ow.

Proof. The proof is divided into three steps: uniqueness for (2.22), existence
for (2.22), equivalence between (2.20) and (2.22).

1. For A:=C uC, let R > 0 be such that A © Bx(0) and set 25 :=
Br(0)\A. Given two solutions, U; and U, to problem (2.22), the difference
W := U; — U, solves the corresponding homogeneous problem. Multiplying
equation AW = 0 by W and integrating over the domain 2r = Br(0)\4,
we infer

0= [ W(x)AW (x)dx
J2r
i 0
:JMR W(m)a—nW( x)do(x) LR}VW \dm
i 0
:MBR(O)W(Q;)%W( x)do(x) LRWW |d:v

using integration by parts and boundary conditions. Exploiting the be-
haviour of the harmonic functions in exterior domains, as described in (2.1.2),

we get
0 C
W(x)—W(x)do(x)| < .
]LBR(O) (@)W (@) do(@)| < 75

Then, as R — oo, we find

f VW (2)[*da = 0
RI\A

which implies W = 0.
2. We represent the solution of (2.22) by means of single layer potential

Sath(a) = L Te-pelpoly).  ecR\, (22)



with function 1 to be determined. By the properties of single layer potential,
S is harmonic in RNAA, Syi(x)=0(|x|*~¢) as |z| — oo and we have

oS
o (&)

1
= §¢+KZ¢, x € 0.

+

From the injectivity result on L?(0A) of the operator 1/21 + K%, in Theorem
2.1.5, there exists a function v such that

(; I+ K;) Ulx) = Glz), xedA (2.24)

observing that G € L*(0A).
3. Let u(x,zq) := U(m',xd)‘xd<0. From the boundary value problem

(2.22) for U and the definition (2.21) of the function G, we have

Au=0 inRI\C
u =g on dC
on

u—0 as|x| > 4w

We have to verify that the normal derivative is null on the boundary of the
half-space. For this purpose we first show that U is even with respect to the
xg4-plane. We define

w(x' xg) = Uz, —xy) (2.25)

for & € R4\ (C’ V) C~’>, then w solves the following problem

Au =0 ian\<Cu5’)
ou
on

u—0 as|z|— 4w

=G ondCuaC (2.26)

since (G is even with respect to x4 and on dC' N oC we have

oi , U,
i wg) = (2, —xa).

on on



Problem (2.26) admits a unique solution u(x) as a consequence of the previ-
ous points, hence

U@, —xq) = u(x',zg) = U(x', x4).
From this last result, we obtain

ou , , ou ou

— (X, 1) = —(x',29) = —— (&', —x4),

é‘xd( d) 5%( d) 635d( d)

hence the derivative of U with respect to x4y computed at any point with
zq = 0 is zero. ]

2.2.2 Representation formula

After proving the well-posedness of the boundary value problem (2.20), in
this paragraph we derive an integral representation formula for the solution
u to problem (2.20). This makes use of the single and double layer potentials
defined in (2.7) and of contributions relative to the image cavity C , given by

Scp(x) = J (@ —y)p(y)do(y), x e R,
N oc 5 R (2.27)
Post@) = | A TE-y)ew)ny) @ R0

These operators, referred to as image layer potentials, can be read as single
and double layer potentials on C' applied to the reflection of the function ¢
with respect to x4 coordinate.

Theorem 2.2.2. The solution u to problem (2.20) is such that
u(@) = Scg(@) = Def(x) + Scg(@) - Dof(x),  weRIC,  (228)

where S¢., D¢ are defined in (2.7), S¢, D¢ in (2.27), g is the Neumann bound-
ary condition in (2.20) and f is the trace of u on 0C.

Using properties of layer potentials, from equation (2.28), we infer

f(®) = Scg(x) — (=3I + K¢) f(z) — Do f(x) + Scg(x), e dC,



where K¢ is defined in (2.8). Thus, the trace f satisfies the integral equation

1 - -
(21 + KC + Dc> f = ch + ch,

which will turn out to be useful in the sequel.

Before proving Theorem 2.2.2, we first recall the definition of the Neu-
mann function for the Laplace operator, see for example [39], that is the
solution N = N(x,y) to

AyN(z,y) = 05(y) inRL
ON

—(z,y) =0 on R4,
ayd( y)

where . (y) is the delta function with the center in a fixed point & € R? and
0N /dy4 represents the normal derivative on the boundary of the half-space
R? . The classical method of images provides the explicit expression

Kd Kd

N y == + ~ 9
@9 = gy T oy

where kg 1= 1/wy(2 — d). With the function N at hand, the representation
formula (2.28) can be equivalently written as

u(x) = N(f.9)(x)
0

= [ |¥ewsw - o Newiw|aw). eczie
oc Ty

(2.29)

which we now prove.

Proof of Theorem 2.2.2. Given R,e > 0 such that C' ¢ Bg(0) and B.(x) <
RI\C, let

Qe = (R‘f A BR(0)>\<C U Be(w)).
We also define 0B%(0) as the intersection of the hemisphere with the bound-

ary of the half-space, and with dB%(0) the spherical cap (see Figure 2.2).
Applying second Green’s identity to N(z, ) and w in g, we get



Figure 2.2. Domain 2. used to obtain the integral representation formula
(2.28).

ou 0
- LB@(O) lN( ’y>6yd(y) N ade(wa y)u(y)] do(y)

o) [N“”y)fu(y) - N(w,wu(y)] do(y)
JoBE(0) 0my ony,
[ 0 ou

i JoB:(x) [anyN(w, yjuly) = N ,y)ﬁny(y)] do(y)
[ ou

e [N(w’y)any (v) - 0 yN(w’y)“(y)] do(y)

=L+ L+ 1I3—-N(f g)(x).

The term I; is zero since both the normal derivative of the function N and
u are zero above the boundary of the half-space.

Next, taking into account the behaviour of harmonic functions in exterior
domains, formulas (2.4), we deduce

0 C C
=N d <—— do(y) = ,
| 0 g V() o) < | o) W) = R
ou C C
N < — —
| o V@V 70 ) 70| < i LB%@ A0(y) = 5+

where C' denotes a generic positive constant. As R — 400, I, tends to zero.
Finally, we decompose I3 as

0
Iy = I31—1. =J Nm,yuyday—f N(x,y
3= I31—132 o5 (w) 0Ty (z, y)u(y) do(y) _— ( )6ny



Using the expression of N and the continuity of u, we derive

which tends to u(x) as € — 0. Moreover, we infer

3] < C sup : ‘J N(z,y ’do
yedBe(z) | 0Ny ! JoB, (x)
ou 1 1
< Sup —_— lf —do J ——— do(y ] .
yedB. (z 0B, (x )5d 2 )+ 0B (x) @ — y|d-2 ®)

Observing that both the integrals tend to zero when € goes to zero because
the second one has a continuous kernel while the first one behaves as O(¢),
we infer that I3 — 0 as ¢ — 0. Putting together all the results, we obtain
(2.29). O

2.3 Spectral analysis

Following the approach of Ammari and Kang, see [7, 8], in this section,
we prove the invertibility of the operator 5 LI+ Ko+ Dc showing that, under
suitable assumptions, the following 1nclu810n holds

o(Ke + Do) = (—=1/2,1/2].

Such task is accomplished by determining the spectrum of the adjoint op-
erator K} + D in L?(0C), relying on the fact that the two spectra are
conjugate.

The explicit expression of K is in (2.9). Computing the L*adjoint of
D¢ is straightforward: indeed, given ¢ € L?(0C'), we have

~ _ L[ (y
(@) Dop(x)do(x) = | o(x) | — ~— 7 »(y)do(y) | do(x)
oC oc wa Joc 1T — Yyl

:LC¢(y) <;LC mw ) do(a )) do(y)

—X) Ny



and thus

N 1 (IB - g) * Ny
D*gpmzf ————0(y)do(y). 2.30
C’() wa Jsc |y—a:|d () () ( )

Note that the kernel of the integral operator 53 is smooth on 0C.
As recalled in Theorem 2.1.5 and Theorem 2.1.8 the eigenvalues of K}
on L?(0C) lie in (—1/2,1/2]. With the same approach, it can be shown that

the same property holds true for K& + D{.

Theorem 2.3.1. Let C' be an open bounded domain with Lipschitz boundary.
Then N
o(K¢ + DE) < (—1/2,1/2].

For completeness, we provide here a complete proof of such fact.

Firstly, we observe that the regular operator D{ on the boundary of the
cavity can be seen as the normal derivative of an appropriate single layer
potential.

Lemma 2.3.2. Given ¢ € L*(0C) we have that

0

Dip(x) = (Ss@(x)), e dC,

0ng
where G € L2(0C) is defined by 3(x) = o(&).

Proof. Using the expression (2.30) of D# and the identity

1 r—vy
va: = )
((Q—d)lw—y!“> |z —yl

Diola) = V, (L O da(y)) Mg,

o |y — x|

we find that

where kg = 1/wa(2 — d). Given ¢ € L2(0C) and & € L2(0C) as previously
defined, we have

[ 0= [ 2B

c |y —x| o |§—a:]d—2

:L S‘J(g)dg(z):L ﬂda(z),

oz~ ali? oz~ alt?

which gives the conclusion. ]



We are now ready to prove the main result of this section.

Proof of Theorem (2.3.1). Given ¢ € L*(0C), let ¢ be defined by ¢ := Sco+
Ss@. By the known properties of single layer potentials, we derive on 0C

o ~
ol = (sH1+KE+ D) ¢
and, as a consequence,

oY

i I :2(1{* f)*), @
§n++8n_ ot bBc)y on|,

o

— . 2.31
“om| ¥ (2.31)

Taking a linear combination of the two relations in (2.31), we deduce
oY oY
M = K= D) o = A ~ 4 &op g
( © ¢)¥= (6n on _) <6n N " on _)
1\ oy
< 2) on|, < - 2) on|_
If A is an eigenvalue of K¢ + ﬁé with eigenfunction ¢, then

()\—) ()\+ >6w =0, on 0C.
on|,

on
Multiplying such relation by the function ¢ and integrating over 0C', we get

(A— ;) vlw) 2 ()

Integrating by parts we have

| v i

do(x) = 0.
(2.32)

o)~ (34 5) [ v i)

+

:J w(m)Aw(a))dm—i—J V()| de
¢ © (2.33)

= Jc |Vz/1(:n)‘2 dx.

The first integral in (2.32) can be dealt with as done in the proof of Theorem
2.2.2. Precisely, given large R > 0, applying the Green’s formula in (25 :=



(R% n Br(0))\C, we get

| v
o

_ W () do(a x
—LBh(O)w )52 @) do(e) + LB%(O)M ) (@)

R

do(x)

+

do(x)

+

- | v@sv@in - | (o) i
N2r

where 0B%(0) is the intersection of the hemisphere with the half-space and
0BY%(0) is the spherical cap. The quantity dv/on is identically zero on the
boundary of the half-space since the kernel of the operator is the normal
derivative of the Neumann function which, by hypothesis, is null on R¢*,
Moreover, 9 is harmonic in {2z, so we infer

)| dow = | )

do(x J ‘Vw }dac

+ +

Recalling the asymptotic behaviour of simple layer potential,

|Scp|+|Sae| = O(|z|*?), IVSco|+|VSap| = O(lz]'™%) as |z| — .

< L o [v(@)|| 5=

C
< — d = )
R2d-3 J‘&‘B%(O) o(@) Rd—2

Passing to the limit R — +o0, we find

LCM ®) o]

Plugging (2.33) and (2.34) into (2.32), we infer the identity

(L e (101) [vorao

we obtain, for some C' > 0,

[ @ Pl
2BY,(0) n

do(x)

+

do(x) = — fRd\Cyw z)[* de. (2.34)



that is

1
(A+ B)\ = §(A—B)
with

A:—~f Vo (z)| dz  and B:—~[‘V¢(wﬂ2dm.
RI\C c

The coefficient of A is non-zero. On the contrary, if A+ B = 0 then V¢ =0
in R? which means that ¢ = 0, hence, from the second equation in (2.31),
we get ¢ = 0 in 0C.

Therefore, solving with respect to A, we finally get

1 A-B 11
=—- —, = 2.
> A+BE{QQ] (2.35)
The value A = —1/2 is not an eigenvalue for the operator K} + 55 Indeed,

in such a case, we would have
A:J Vi (a)|” dz = 0,
RI\C

and thus ¢ = 0 in R4\C. By definition of 1, we deduce that ¢» = 0 on oC
and since v is harmonic in C, we get that ¢» = 0 also in C. As before, by
(2.31), this would imply that ¢ = 0 in 0C. ]

For completeness, let us observe that the value A = 1/2 is an eigenvalue
with geometric multiplicity equal to one. Indeed, identity (2.35) implies that,
for such value of A,

B = f ]Vzﬁ(w)fda: =0,
c

hence 4 is constant in C. Normalizing ¢ = 1 in C, the function ¢ in RZ\C
is given by the restriction of the solution U to the Dirichlet problem in the
exterior domain R%\ (C v 5’) with boundary data equal to 1. Then, by the

second equation in (2.31), the function ¢ is the normal derivative of U at
oC.



2.4 Asymptotic expansion

In this section, we derive an asymptotic formula for the solution to the
problem (2.20) when the cavity C' is small compared to the distance from
the half-space R?"!. For the reader’s convenience, we recall that the cavity
C' has the structure

C..=C=2z+¢f

where (2 is a bounded Lipschitz set containing the origin. Moreover, we
assume that
dist(z, R™) = 6, > 0 (2.36)

otherwise, for the application we have in mind, the problem does not have a
real physical meaning. To emphasize the dependence of the solution to the
direct problem by the parameter € we denote it by u.. For brevity, we denote
the layer potentials relative to C. by the index e, viz.

Ss = 5057 Ds = DC}, §5 = 5057 55 = 5057 Ks = KCE

and the trace of the solution u. on dC. by f.. In this way the representation
formula (2.28) reads as

Ue = Ssg - Dsfe - befs + geg-

At & € R, taking into account that x = &, it follows that

~

Sol@) = | I@—wglw)doty) = | 1@ = laly)doly) = Sgla)

0 0C:
and
D.f.(x) = L . aﬁynw _y)f(y) do(y) = L i @iyr@ ) (y) do(y)
= bsf€<x)

Hence, we obtain the equality

us(x) = Scg(x) — D.f-(x), x e R

1
2

Associating with the relation at the boundary J0C.

(37 + K.+ D.) () = Seg(@) + Seg(@),  wedC.,  (237)



we get the identity
suc(x) = Jy(x) + Jo(x), x e R (2.38)

where
(@) = L T y)(y) do(y).

Jo(x) := — Lc %F T —y) (%I + K. + 155)_1 (Sgg + §69> (y)do(y).

Analyzing in details the dependence with respect to e of such relation, we ob-
tain an explicit expression for the first two terms in the asymptotic expansion
of u. at R*1.

In what follows, for any fixed value of ¢ > 0, given h : 0C. — R, we
introduce the function h* : 02 — R defined by

h(Cie) = h(z +eC), (e

This definition is useful to consider integrals over a set that is independent
on €.

Theorem 2.4.1. Let us assume (2.36). There exists €9 such that for all
e € (0,e0) and g € L*(0C.) such that g* is independent on ¢, at any x© € R4
the following expansion holds

u(@) = 22 (2 — 2) f RGLIS

+ 20V (x — 2) - J

012

{ne (31 + Ko) ™' Sagh(¢) = ¢o#(Q)} do(¢) + O(=""),

(2.39)
where O(e4™) denotes a quantity uniformly bounded by Ce®™' with C =
C'(do) which tends to infinity when &y goes to zero.

To prove this theorem we first show the following expansion for the op-
~ N\ -1
erator (%I + K, + D€>
Lemma 2.4.2. We have
~ \ 1 ~ _
(37+ K.+ D) (Scg+8ig) (2+2¢) = = (3 + Ko) ™ Sogb(¢) +O(=")

(2.40)
for e sufficiently small.



Proof. We analyse, separetely, the terms <%I + K. + ZN)E) and S, + §5, col-

lecting, at the very end, the corresponding expansions.
At the point z + e, where ¢ € 0f2, we obtain

(y—z—¢C)-n
|z + e —yl

1
K.p(z+¢e€) = p.v.f
oC.

Wy

Lo(y) do(y)

Lo =)y :
S | S ) dotn) — Kag(0)

and
N o A
Bep(z +2¢) = LC ST+ =L~ y)oly) do(w)

cd— v O _ d— #
ILQ&%”“C 2 — em)(m) do(n) = = Rt (Q)

where

0

0 ann

~

R Q)= | Soor (224 m) ) dolm)

is uniformly bounded in €. N
Let us evaluate the term S, + S.. We have

S.9(z+¢C) = LC I'(z+<¢—y)g(y)do(y)
e f I(¢ — 8)¢(0)do(6) = £S0g’(C)
o1

and

Saz+20 = [ 1(2+-y)sw)iot)
— gl LQ r (s —z+e(l - e)) ¢(6)do(8)
_ Pz ) f (0)do(0) + O(e%)

o2
where we have used the zero order expansion for I'. Collecting we infer

(Se9+ BLg) (= + £¢) = =Sagh(Q) + O(E")



To conclude, from (2.37) we have

. Ko) (I 4+t iy Kg ARS fH=eSad*(¢) + 0.
2 2

From the continuous property of R. and the invertibility result of the operator
1/2I + K, as explained in Remark 2.1.9, we have

H (;I n KQ)_lRE <0,

where C' > 0 is independent from . On the other hand, choosing &' =

—1
1/2C, it follows that for all & € (0, o) we have that I + 4! (%I + KQ> R.

is invertible and
a-1(1 -1 -1 d—1
<I~I—€ <§I+KQ> RE> =14+ 0().

Therefore ]

Fee(5r+ KQ>_lngﬁ<c) L O,
]

Remark 2.4.3. If the domain C. is more reqular, at least a C*-domain, we
have compactness of the operators K. and KZ. Thefore we can prove the

~\-1
asymptotic expansion of the operator (%I + K. + D€> i an alternative

way. In fact, since K. + INDE is compact and its spectrum is contained in
(—1/2,1/2], there exists 6 > 0 such that

o (K.+D.) = (-1/2+61/2)

Then, the operator

1 ~
Ac:= oI~ K.~ D.

is such that o (A:) < [0,1 = 8) and thus has spectral radius strictly smaller
than 1. As a consequence, taking the powers of the operator A, one finds

|AY| <1 Yh and |A™| <1 for some hy. (2.41)



The inverse operator of I — A, = %I + K. + 55 can be represented by the
Neumann series that is

(I—A)_l—iOAh—io L, '
) _h:O E_h:O 2 ) ) '

Taking R. of the proof of Lemma (2.4.2), we calculate A" highlighting the
term that do not contain € and the one of order d — 1, that is

h 1 " d—1
A = 5[ - K_Q — & Eh,a

€

where ,
Eha = Z As ) As Re Ae Aa
— ——
J j—th

For hqy as in (2.41) and h > hy we have
| Enell < [ Rell|AcfPro Ao [t < R Ac [P | Ao (/R0
where [ -| denotes the integer part, and thus

+00 +00
YU Enel < C )| Abo|the
h=0 h=0

giving the absolute convergence of Y, Ey .. Summarizing we conclude that
-1

(I—A) "' = (;1 + KQ) + 0. (2.42)

Proof of Theorem 2.4.1. To prove (2.39), we analyse the two integrals J; and
For x, ¢ € R? with x # 0 and ¢ sufficiently small, we have

Iz —¢eC)=I(x)—eVI(x) ¢+ 0.

Hence, for £ € R, we get
R PRACEETESPAISEES
o0
= (x — 2) J g*(¢) do(¢)
on

~eV@ =) | ) dn() + O
’ (2.43)



Next we consider the second integral in (2.38), written as

k:—ﬁ*[ I Pla—z— Q)RS do(C),
0

where the function hf is given by

-1

hi(C) = (;I + K.+ f)g) (Sgg + §ag> (z + €¢) (2.44)

For x, ¢ € R? with & # 0 and ¢ sufficiently small, it holds
Vil (x+e€) =V I'(x)+ O(e), (2.45)

therefore, taking advantage of the expansion (2.40),

0

¢b=ﬁ*L9&%mw—a@@Mdo+0&%

= ¢4 LQ aicr(“’ —2) (A + Ko) ™' Sagh(¢) do (&) + O™,

Collecting the expansions for J; and Jy, we deduce (2.39). O

We show that the term (%I + Kg)_1 Sqg(x), for x € 012, represents the
trace of the solution of the external domain related to the set {2 and with
Neumann boundary condition given by ¢g. To this aim, we consider the
problem

AU =0 in R\D
v g on 02 (2.46)
on

U—0 as|z] > +on,

where the cavity (2 is such that 0 € (2.

Proposition 2.4.4. Let us define h(x) := U(x)| then

xed’

(;I + Kg) h Sag(x) = h(z).



Figure 2.3. Domain used to get the representation formula for U.

Proof. The thesis comes from, as done in the proof of Theorem 2.2.2, by
the application of the second Green’s identity to the fundamental solution I"
and U in the domain Br(0)\f2, with R sufficiently large. We define Dp :=
Br(0)\(£2 U B.(x)), with € (Br(0)\2) (see Figure 2.3). By the second
Green’s identity, we get

0= [ Ut ) - P~y U oty)
- [ . (V) e )~ Tl =) U doty)
. L&(m) [U(y)aiyr(m —y) - I'(x— y)(;;U(y)]da(y)

= Il — _[2 —I(h,g)(:n)

Using the decay rate of harmonic functions in unbounded domains, see The-
orem 2.1.2, the integral I gives

Ch Cy C
L] < (R2d3 + des) LBR(O) do(y) = Rd—2

where C' is a positive constant. As R — +00, [ tends to zero.




Finally, we decompose I, as

-[2:]21_]22
0 J 0
= U I'(x —y)do — I'(x —
oy VO T ) o) (@)

Ty
O0Be¢(x)

Uly) do(y).

Using the expression of I" and the continuity of u, we derive

0 0
Iy = LB@) U(y)é—nyf(w —y)do(y) = U(z) LBE@) észF(m —y)do(y)

0
H| W) - U)o - ydoty)
OBe(x) Ty
which tends to U(x) as € — 0. Moreover, it holds

oU(y)| 1 B
e |23 |, 970 = 000

which goes to zero as € goes to zero.
In conclusion we have the following integral representation formula

[Is| < C" sup
YEOBe ()

U(@) = ~Z(hg)(@)
- | [re-vsw) - hw) e -] dty) a1
052 Yy

= Sqg(x) — Doh(x), x e RAR

where h is the trace of U on the boundary of the cavity (2. Therefore, on 02
from single and double layer potentials properties

h(z) = Spg(x) — <—;1 + KQ) hx), xedf,

hence 1
] _
h(x) = (21 + K_Q) Sag(x), xedf2,

that is the assertion. O



2.4.1 A specific Neumann condition

Now, we want to consider a specific case of the Neumann condition on the
boundary of the cavity C. so to get an explicit expression of the asymptotic
expansion in terms of the polarization tensor and the fundamental solution.

Corollary 2.4.5. Given p € R?, let the boundary datum given by
g=—-p-n
Then, the following expansion holds
u(x) = 2|2V (x — z) - Mp + O(s*1), xe R (2.48)

where M is the symmetric positive definite tensor given by

1
M:=I+— | (nc®¥())do(C) (2.49)
12| Jon
and the auxiliary function W has components V;, i = 1,...,d, solving

ov;
=-—n; ondf
on
U, -0 as x| — +o0.

Proof. Let us set

Ji:=VI(z—z)- f ne (;1 + K};) h Sel-p - n](¢) do(C),

012

Jo:=VI(x—2z)- me-ngda(C).

Then, expansion (2.39) with ¢ = —p - n gives

1 - +
iug(zc) ="' (x - 2) Lgp nedo(C) + Jy + Jo + O™ (2.50)

= <]1 + J2 + O(€d+1)

since divergence theorem guarantees that the first term in the expansion for
u, is null.



From the equation (2.46), with ¢ = —p - n, since the problem for U
is linear, we can decompose U as U = ) U; where the functions U;, for
1=1,---,d, solve

oV = —p;n; on 0f2
on
Ui — 0 as |x| — +oo.

From the definition of the functions ¥;, we deduce U = p - ¥. Using Propo-
sition 2.4.4, the term J; can be rewritten as

J = VI(z—z) f (W(¢) - p)nedo(C)

012

V(e z)- j (ne ® ¥(¢)) pdo(C).

o012

To deal with the term .J5, we observe that

| e8¢ dot) - jen
o0
Indeed, for n¢ = (n¢1, ..., n¢a), for any i, j € {1,...,d}, it follows
| ancsdoto) = | ne-Geydoto
o o0
= J div (Ciej) dC = J €€ dc = |Q|6l]
Q Q
where e; is the j-th unit vector of R%. Thus, we get

J=VI@-2) | €®npdo(¢)= |2V (@~ 2) p

on

Collecting the expressions for J; and Jo, we obtain formula (2.48).
Symmetry of the tensor M, defined in (2.49), follows from

L Qg dr(€) = - [ we Yi(¢)da(c)

o0 on

_ f div (W,(¢$)V¥;(C)) d¢
R\

= VU;(¢) - VI,(¢) d¢
R\ 2



where the last term is obviously symmetric. Taking 1 € R¢, we consider

1

n-Mn = n|> + i m(nc 1) (¥(C) - m) do ().

The positivity of the tensor follows from the divergence theorem, integration
by parts and the definition of the function ¥, in fact

Kl
Q@n

Ln(nc -m)(¥(C)-n)do(C) = —L (¥ (C) - m(¥(C) -n)do(C)

- J]Rd\(z div ((‘I’<C) ’ n)V(‘I/(C) ’ 77>> dU(C)
_ JR 7o )| dg,

hence - Mn > 0. O]

For specific forms of the cavity {2, the auxiliary function ¥ can be deter-
mined explicitly, providing a corresponding explicit formula for the polariza-
tion tensor M. The basic case is the one of a spherical cavity (see [36]). If
2 ={xeR®: |x| <1}, then a direct calculation shows that, for i = 1,2, 3,
it holds ¥;(x) = z;/(2|x|?), and thus

As a consequence, the polarization tensor is a multiple of the identity and,
precisely,

M = Z)](Z\I — 2l
Then, the asymptotic expansion (2.48) becomes
u.(x) = 47e’VI(x — 2) - p+ O(e?), x e R%

Explicit formulas can be provided also in the case of ellipsoidal cavities (see
5, 7, 8]).

In general, for given shapes of the cavity (2, such auxiliary function can
be numerically approximated and, thus, the first term in the expansion (2.48)
can be considered as known in practical cases.






CHAPTER 3

The Elastic model

In this chapter we establish a sound mathematical approach for surface
deformation effects generated by a magma chamber embedded into Earth’s
interior and exerting on it a uniform hydrostatic pressure. Modeling assump-
tions translate the problem into classical elasto-static system (homogeneous
and isotropic) in an half-space with an embedded pressurized cavity. The
boundary conditions are traction-free for the air/crust boundary and uni-
formly hydrostatic for the chamber boundary. These are complemented with
zero-displacement condition at infinity (with decay rate). Therefore, repre-
senting the displacement vector field with w we get, from the mathematical
point of view, the linear elasto-static boundary value problem

rdiv((C@u) =0 in R3\C
a—u =pn on 0C'

3 g’/
o _ 2
P 0 on R
(u=0(1), Vu=o(z]") [z o,

where C is the elasticity tensor, C' is the cavity, p is a constant representing
the pressure and Vu = 1(Vu + VuT) the strain tensor. With du/dv we
depict the conormal derivative on the boundary of a domain, that is the
traction vector du/ov := (CVu)n.

As done in the previous chapter for the scalar model, here we first estab-
lish the well-posedness of the problem and provide an appropriate integral
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formulation for its solution for cavities with general shape. Based on that,
assuming that the chamber is centred at some fixed point z and has di-
ameter r > 0, small with respect to the depth d, we derive rigorously the
principal term in the asymptotic expansion for the surface deformation as
e =r/d — 07. Such formula provides a rigorous proof of the Mogi point
source model in the case of spherical cavities, presented in the Introduction,
generalizing it to the case of cavities of arbitrary shape. For the application
we have in mind, we focus the attention only to the dimensional case d = 3.

The chapter is organized as follows. In Section 3.1 we recall some argu-
ments about linear elasticity and layer potentials techniques. In Section 3.2
we present the Neumann function for the Lamé operator in the half-space,
then we analyze the well-posedness of the direct problem via an integral rep-
resentation formula for the displacement field. Section 3.3 is devoted to the
proof of the main result regarding the derivation of the asymptotic formula
for the boundary diplacement field. In addition we analyse the properties of
the moment elastic tensor and, as a consequence of the asymptotic expansion
in the case of spherical cavity, we obtain the classical Mogi’s formula.

3.1 Preliminaries

Let C be a bounded Lipschitz domain in R? representing the region oc-
cupied by a homogeneous and isotropic elastic medium. Let A and p be the
Lamé constants, i.e. the compression modulus and the shear modulus, we
define the fourth-order elasticity tensor

C:=MNI+2ul
which satisfies the minor and major simmetry conditions, that is
Cijen = Crnij = Cjirn,

for all 7,7,k h = 1,2,3. If X\ and u satisfies the physical range 3\ + 2u > 0
and p > 0, the elasticity tensor C is positive definite.
It is also common to use the Poisson ratio v which is related to A and p by
the identity v = A\/2(\ + p).

In a homogeneous and isotropic elastic medium, the elastostatic Lamé
operator L is defined by

Lu = div(CVu) = pAu + (A + p)Vdiva,



where w represents the vector of the displacements. In terms of the Poisson
ratio it becomes Lu = p(Au + 1/(1 — 2v)Vdivu).
The explicit expression of the conormal derivative is given by

?Ij = (CVu)n = A(divu)n + 2u(Vu)n
or, equivalently,

u =2 &—u—k)\(d' u)n + u(n x rotu)

v Mon v H ' '

For the sequel, we recall that the positive definiteness of the tensor C
implies the strong ellipticity of the Lamé operator which corresponds to the
request g > 0 and A + 2u > 0, see [37].

We recall Betti’s formulas for the Lamé system which can be obtained
by integration by parts, see for example [4, 44]. Given a bounded Lipschitz
domain C' < R? and two vectors u,v € R3, the first Betti formula is

fu-g:da(az) zfu-ﬁvdw—i—fQ(u,v)dw, (3.1)
éc c c

where the quadratic form () associated to the Lamé system is
Q(u,v) := A(diva)(dive) + 2uVu : Vo.

From (3.1) it is straightforward to find the second Betti formula

J(u-ﬁfv—v-ﬁu)dazzJ(u-gl’lj—v-gz) do (). (3.2)

oC

Formula (3.1) will be used to prove that the solution of the elastic problem
proposed in this thesis is unique, and the equality (3.2) to get an integral
representation formula for it. To accomplish this second goal, a leading role
is played by the fundamental solution of the Lamé system: the Kelvin matriz
I' (or Kelvin-Somigliana matriz) solution to the equation

div(CVT) = &I, @ e R*{0},
where Jp is the Dirac function centred at 0. Setting C,,, := 1/{167p(1—v)},
the explicit expression of I' = (I';;) is
(B3—4v)d;;  xx;
|| j?

F”L](a”‘) = _C,LL,V{ }7 ZJ] = 172737 (33>



where 9;; is the Kronecker symbol and I';; stands for the i-th component of
the displacement when a force is applied in the j-th direction at the point
0. For reader convenience, we write also the gradient of I' to highlight its
behaviour at infinity

aZL‘k

(3 — 41/)52']'93'].3 — (Sikﬂfj — 6jk$i 3$i$j$k

:Cl/ ) .7 .7]{::17273'
®) = af E

(3.4)
Therefore from (3.3) and (3.4) it is straightforward to see that

IT(x)| = O(|z|™") and |VI(x)| = O(|x|?) as |x| > . (3.5)

3.1.1 Layer potentials for the Lamé operator

With the Kelvin matrix I' at hand, we recall the definition of single and
double layer potentials corresponding to the operator £. Given ¢ € L?*(0C')
(see [4, 7, 44])

§¢@%=wa—w¢@ﬂdw, x € R,

oc . (3.6)
D'o(x) = éwwgm—mwdew, x € R\C,

oC

where 0T'/0v denotes the conormal derivative applied to each column of the
matrix I'.
We summarize here some properties of these operators

i. By definition, STy (x) and DY ¢p(x) satisfy the Lamé system in R3\0C.
ii. SYp(z) = O(|z|™!) and DVp(x) = O(|z|7?) as |z| — +co.

Next, we introduce K and K* that is the L?-adjoint Neumann-Poincaré

boundary integral operators defined, in the sense of Cauchy principal value,
by
or

V.
v(y)
oC

. - or
K*p(x) :=p.v. f (@)
oC

Ko(z) :=p

(x —y)p(y) do(y),

(x —y)p(y) do(y).



As in the previous chapter, in the sequel the subscripts + and — indicate the
limits from outside and inside of the set C|, respectively (see (2.10) for the
definition). We recall that ¢, --- ,t4_1 represent an orthonormal basis for the
tangent plane to 052 and /0t = 3971 0/t t), is the tangential derivative on
052.

The following theorem about the jump relations of single and double
potentials for Lipschitz domains is due to Dahlberg, Kenig and Verchota
[24].

Theorem 3.1.1 ([24]). Let C' be a bounded Lipschitz domain in R3. For
p € L*(0C), the following relations hold, a.e on 0C,

D'g| (z) = (41 + K) o(@)

oSt \
E| (@) = (+31+ K p(), (3.7)
oSy _ 0STyp

| @)= L(w)

It is worth noticing that the two operators K and K* are not compact
even on smooth domains, in contrast with the analogous operators for the
Laplace equation (see [7] and the considerations in the previous chapter),
due to the presence in their kernels of the terms

ni(z; —y;)  ni(@ —ui)
|z —yl? -y’
which make the kernel not integrable. Indeed, even in the case of smooth
domains, we cannot approximate locally the terms n x (x —y) with a smooth
function, that is in terms of powers of |& — y| via Taylor expansion, in or-
der to obtain an integrable kernel on dC. Therefore, the analysis to prove
invertibility of the operators in (3.7) is complicated and usually based on a
regularization procedure (see [44]) in the case of smooth domains. For Lip-
schitz domains the analysis is much more involved and, as for the Laplace
operator, based on Rellich formulas. These results are contained in [24] and
its companion article [32]. We recall here only the main aspects for the
three-dimensional case.
Let W be the vector space of all linear solutions of the equations

div(CVw) =0, inC

é’iw =0 on 0C
ov

1 # 7, (3.8)




or, alternatively

U= {w: Vw + (Vw)" = 0}.

The space ¥ has dimension 6. Such a function w is called infinitesimal rigid
motion. We recall that w can be expressed as

w=a+ Az, (3.9)

where A is a skew-symmetric matrix and a € R3. We define

L?I,(aC):z{feLQ ff wda—OVwe\I/}

We have
Proposition 3.1.2 ([24]). The operators

—;I +K*: L3,(0C) — L3, (0C)

1

5I +K*: L*(0C) — L*(0C)

are injective.

We omit the proof since is similar to that one of the scalar case.
The range of —1/2I+K* as an operator on all L?(0C') is contained in L3, (0C)

since - .

S" _ r, ¢w _

f > +(a:)w(a:) do = JS e do(x) =0
oC oC

for all w € W. This is because w is a solution to the elastostatic systems
satisfying dw/dv = 0.
In addition, it holds

Proposition 3.1.3 ([24]). The operators
1 * 2 2
—S1+K": L}(00) — L} (@C)
1
5I +K*: L*(0C) — L*(oC)

have closed range.



The key point to show that these two boundary operators have closed
range, as in the case of the Laplace operator, is the following inequality
1
<0l(-51x)e]

(=51 Yol < 147)

L2(3C) L2(30) L2(3C)

where C' is a constant independent of ¢ € L?(0C). However, we stress that
the analysis to get the equivalence of the norms in the elastic case is very
complicated since it is based on the twine of Rellich formulas for the Lamé
operators, estimates derived from them, Korn’s inequalities and results on
the biharmonic equations.

In order to prove the invertibility of the operators, it remains to show
dense range. To do that one can make use of the result on the invertibility for
the same operators in the case of smooth domains. The minimum regularity
we request on the domain is, at least, C! but here, without loss of generality,
we consider C* domains. As stated before, even if we use smooth domains
we cannot apply the Fredholm’s theory because K and K* are not compact
operators. However, the difference K — K* yields a compact operator, see
[24] for details.

The following proposition is needed

Proposition 3.1.4. Let H be a Hilbert space. If T : H — H is a bounded
linear operator with closed range, with null space of dimension | < oo, and
such that T —T* is compact, then the range of T' has codimension [ also.

Now, we state the invertibility result for smooth domains.

Lemma 3.1.5 ([24]). Let C' be a bounded smooth domain with connected
boundary in R3. Let us consider the operators £1/21 + K* on 0C. Then

(i) =31+ K*:: L3(0C) — L3,(0C)

(i) I+ K*:L*0C) — L*(oC)
are invertible operators.
Proof. Let us prove (i) (the same argument yield for (i) also). From the
previous two propositions we know that the operator —1/2I + K* is one-to-
one and has closed range. Moreover, the dimension of the null space is less
than or equal to 6 and the codimension is greater than or equal to 6. Since

(—1/21 + K*) — (—1/2I + K) is compact, applying the Proposition 3.1.4, we
have the assertion. H



Now, we briefly explain the sequence of steps to deduce the invertibility
of the operators £1/2I + K* in the case of Lipschitz domains, giving only
the main ideas.

The starting point is to consider a sequence of C'° domains, which we call
C};, that converge to the Lipschitz domain C' (for all the details see Theorem
1.12 in [58]). In such a scheme the 0dC; can be projected homeomorphically
to 0C so that the boundaries converge uniformly and so that the Lipschitz
characters of the C; are controlled by that of C'. In fact, the unit normal
vectors to the C; will converge pointwise a.e. to those for C' and in LP(0C)
for all 1 < p < co. If K; denotes the singular operatos defined on dC; we
may project it onto dC' and prove that
lim HK;‘.‘f _K*f

j—+0

=0

L2(0825)

and a result analogous for the adjoint operator K. Then, since
dim (Ker ( & ;I +K*)) < dim(Ker( ;I +K))
— dim (Coker ( ;I +K;)) =1
< dim <Coker< + ;I + K*))

where [ < o is independent of 7, under other suitable assumptions, it can be
proven that

1 1
dim(Coker( + 51 + K*)) = dim(Ker( + §I + K*)) =/
Finally, using the invertibility Lemma 3.1.5 about smooth domains we find

Theorem 3.1.6. Let C' be a bounded Lipschitz domain with connected bound-
ary in R3. Then

(i) =31+ K* :: L3 (0C) — L3 (0C)
(ii) I+ K*:L*0C) — L*(oC)
are invertible operators.

Now, we have all the instruments to analyse the elastic boundary value
problem.



3.2 The elastic problem

In this section we analyse the bounday value problem presented at the
beginning of this chapter, that is

(div(CVu) =0 in R*\C
i’u, =pn on 0C

v (3.10)
a—u =0 on R?
ov

(= 0(1). Vu=oflzl ) |z > o,

where C' is the cavity and p the pressure.

In particular we provide an integral representation formula and establish
the well-posedness of this problem. To do that, we give the expression of the
Neumann function N of the half-space with null traction on the boundary,
found by Mindlin in [48, 49]. Then we represent the solution to (3.10) by an
integral formula through the Neumann function. Finally, all these objects
will be used to prove the well-posedness of the problem (3.10).

3.2.1 Fundamental solution of the half-space

In this subsection we show the explicit expression of the Neumann func-
tion for the half-space presented for the first time in [48] by means of Galerkin
vector and nuclei of strain of the theory of linear elasticity, and secondly in
[49] using the Papkovich-Neuber representation of the displacement vector
field and the potential theory. Here, we follow the second approach.

We consider the boundary value problem

div(CVv) = b inRR3
ov
& =0 onR? (3.11)

v=o0(1l), Vv=o(z|™') as|z|—> +w0.
The Neumann function of (3.11) is the kernel N of the integral operator

fN x,y)b(y) dy, (3.12)



giving the solution to the problem.
Given ¥ = (y1,¥2,y3), we set g := (y1,2, —¥s3).

Theorem 3.2.1. The Neumann function N of problem (3.11) can be decom-
posed as

N(z,y) =T(z —y) + R'(z — §) + y3R*(z — §) + y; R*(z — ),

where T is the Kelvin matriz, see (3.3), and R*, k = 1,2, 3, have components
Rfj given by

Ri;(n) = Cup{—(f + 8)6i — (3 = 4)min; f* + e [biam; — 8j3(1 — Sis)mi] Fa
+ ¢, (1 —043)(1 — 5j3)77i77jf§2}
R?j(”l) = QCW,{(S — 4v) [513(1 — 0j3)n; + 0;3(1 — 6i3>ni]f3
— (1 —233))8im3 f* + 3(1 — 203 mimyms f° }
RY,(m) := 20, (1 — 20;3){6;; f* — 3nm; f°}.

fori,j=1,2,3, where ¢, :==4(1 —v)(1 —2v), Cp, = m and
~ 1 1
fm)=—, gn):= :
W I
The matrix R, defined by
R(n,y3) := R'(n) + 13 R*(n) + 43 R*(n), (3.13)

gives the regular part of the Neumann function since the singular point n = 0
corresponds to y = (y1,y2, —y3) with y3 < 0, which belongs to R3.

In order to prove this theorem, we recall the basic steps to deduce (3.12)
using the potential approach in [49].

Papkovich-Neuber potentials

The starting point is the Helmholtz decomposition of the vector field v
in (3.11) as
v=Vop+V x, (3.14)

where ¢ is a scalar potential and 1 a vector potential. Since the divergence
of 1 is arbitrary, @ can be chosen in such a way that divep = 0. From



the Lamé operator with volume forces b and the Helmholtz representation
(3.14), we find that

1 b
A[v S 2V)ng] =
We define {

where the constant 47pu has been added to simplify the calculations in the
sequel, hence
1—
Ah = 47b, divh = L=V Ay (3.16)
1—-2v
By the identity A(x - h) = & - Ah + 2div h and the relation Ah = 47b, we
find that

divh = }[A(z - h) — 47z - b]. (3.17)
Combining this expression with the second one in (3.16) we get
_ -h
Alfrrd=v), xh) o
1—-2v 2
We define the scalar quantity g as
16mu(l —v)
=————¢0—x-h 3.18
P 1—-2v o-xh, (3.18)
hence
A = —4rx - b.

Using the definition (3.18) of 3, we can avoid the dependence from ¢ into
the relation (3.15), that is

v=Cu 41— h—V (3 +z-h)}, (3.19)

where h and [ are the Papkovich-Neuber potentials. Let us introduce the
functions

6@) = =  and (@) = 1—¢9£;;Z(a;) - 1_1_3,




observing that, apart from d;¢0 = —x;¢%, i = 1,2,3, the following identities
hold true for a = 1,2,

¢ —th=—w30¢,  Outp = —za0V%, Y =0,  G(¢yY) = ¢

We denote by ¢ and 5 the values ¢(x + e3) and ¢(x — e3), respectively, with
analogous notation for .

Proposition 3.2.2. Let I be the identity matriz and o the Dirac delta con-
centrated at —es. Then, the matriz-valued function N' = N(x) solution to
Lv:=div(CVv) =01 inR?, (CVv)e; =0 in R

is given by

Noa = =Cu{(3 —w)p + 22¢° + b+ [(3 — )22 — 23]¢° + 622130°
+ o () —220¢%)}
Nag = =Chuazs{d® + (3 — W)$° + 6230° — c,6 07}
Nio = =Cpua{(ms + 1)¢* + (3 — 4v)(w5 + 1)§" + 623(x5 — 1)¢° — c, 0}
Nus = =Chu taf{ (25 + 1)6° + (3 — ) (23 + 1) — 6x3(s — 1)J° + ¢, 0}
N3z = —CM,V{(?’ — )+ (x5 +1)%¢0° + (1 + Cu)ﬁg
+[(B—4v)(zs — 1)* + 2:103]553 — 6x3(z5 — 1)2~5}
(3.20)
where C,,, = 1/{16mp(1 —v)}, ¢, = 4(1 —v)(1 —2v) and a = 1, 2.

To establish (3.20), we observe that the columns N of A" are determined
by solving the equation Lv = e;0 for ¢ = 1,2,3 and using the Papkovich—
Neuber representation

Ah = 47?‘81'(5

3.21
AB = 471'(51'3(5. ( )

v=0C,{4(1-v)h—V(xz-h+3)} with {
where §;; is the Kronecker symbol. The coupling between h and 3 is deter-
mined by the boundary conditions on the plane {x3 = 0}, which are

(1 — 2v)(O3hg + Ouhs) — x - 23h — 02,8 = 0, (a=1,2),

«

for 25 = 0.
2w divh + 2(1 — 20) dshs — @ - %k — %0 = 0, ot

(3.22)



Set
Gz, y) = —d(x —y) + o(x — 7).
Denoting by {f, gy the action of the distribution f on the function g, we

determine h and [ taking advantage of the relation (which descends from
the second Green identity)

applied to different choices of F'.

Proof of Proposition 3.2.2. To determine N, we consider separately the case
of horizontal and vertical forcing. By symmetry, x; and x5 can be inter-
changed.

Horizontal force: Lv = e;d. We choose hy = 0, so that boundary
conditions become

(1 — 21/)((33h1 + &1113) - xlafghl - afgﬁ = 07
(1 - QI/)thg - {23'1633}“ — 6335 = 0, for T3 = O,
2 01hy + 2(1 — v) Oshg — 2102k — 02,8 = 0,

Differentiating the first equation with respect to x;, the second with respect
to x5 and taking the difference, we obtain

0= (1 —2v)053hy + 053hy = 2(1 —v)033hy  for a3 =0,
which suggests, after integration with respect to s, the choice F' := 0d3h;.

Applying (3.23),
dshy = —3y3G| = —03(¢ + 5), for x5 < 0,

y=—e3

and thus by = —(¢ + ¢).

Being d3hy null for 3 = 0, integration of the second boundary condition
encourages the choice F' := (1 — 2v)hs — 038 which is zero for 3 = 0. Hence,
since AF = 0, we deduce

(1 —2v)hy — 338 =0, for x3 < 0. (3.24)
Concerning the third boundary condition, for z3 = 0 we observe that
iy = 21(0° + ¢°) = 210" = —2010
21050 = 21(8° + ¢° — 3¢° — 3¢°) = 22, (¢” — 30°) = —2(016 — 0%9),



since ¢ and 5 coincide when x3 = 0. Substituting in the third boundary
condition, we obtain

Fi=2(1— 1)dshs — %8 + 2(1 — 20)018 — 20%,3 = 0 for a3 = 0.
Since AF = 0, we infer
21 — v)dshs — %8 + 2(1 — 20)016 — 2050 =0 for x5 < 0,
and thus, being 019 = —21¢° = —05(x10 V),
2(1 —v)hg — 038 = —21;1(53 +2(1 - 2y)a:1$1z for x5 < 0,
Coupling with (3.24), we deduce

hy = —22,6° + 2(1 — 2v) 219
~ ~~ for x5 < 0.
038 = —2(1 — 2w)21¢° + 2(1 — 2v)°x1 00
Recalling that ¢® = d3(¢¢)) and ¢ = 051, by integration,
B=—-2(1-2)2160 +2(1 — 20)%x1¢)  for x5 < 0.
Using the identity (z3 — 1)51; = @Z — (E, we infer
Z’3h3 + 5 = :cl{—2(1 - 2V)$— 25(7353 + C,ﬂ;}.
Substituting in (3.21), we get the expressions for NV given in (3.20).

Vertical force: Lv = e3d. Choosing hy = hy = 0, conditions (3.22)
become

for x3 = 0.

(1—20)0,hs —%8=0  (a=1,2),
2(1 — v)dshs — 058 = 0,

Integrating the first relation with respect to z,, we obtain

(1 — 21/)h3 - 835 = 0, ‘ 0
or x3 = 0.
2(1 — v)dshs — 02,8 = 0, ’
Since Ahs = Af = 0, identity (3.23) with F := (1 — 2v)hg — 030 gives
1— 20)hs — 038 = {(1 — 20)G + 0,,G}|
( ) 3 3 {( ) y. }‘y_,eg N (3.25>

= (1= 20)(=¢ + §) — (x5 + 1)¢* — (25 — 1)¢°,



for z3 < 0. Applying (3.23) to F := 2(1 — v)03hs — 02,3, we deduce

2(]_ — 1/)63/13 — 6336 = {—2(1 — V)ay3G — (3532130}‘?!:_63

= {201 —v)(¢+ ) + O3(p— @)},  for x5 <0,

Integrating with respect to x3, we infer
21— v)hy — 038 = =2(1 =) (¢ + &) — (x5 + 1)¢* + (x5 — 1)¢°,  for x5 < 0.

Coupling with (3.25), we get explicit expressions for hs and 033, namely

for 3 < 0.

hs = —¢ — (3 — 4v)¢ + 2(x5 — 1)¢°,
336 = (x5 + 1) — ¢, + (3 — 4v) (23 — 1)¢°

Differentiation of 038 with respect to z, gives

0?2)046 = _Sxa(x3 + 1)¢5 + Cuxa$3 - 3(3 - 4I/>$a($3 — 1)55
= O3{zad® + ot + (3 — 4V)£L‘a($3}

and thus
Ouf = xa{qﬁ?’ + cy&Z + (3 - 4V)(Z3}, for x5 < 0.

Recalling identity (3.21), we deduce the corresponding expressions for N3 in
(3.20). O

With the explicit expression of function A (x) at hand we can now prove
the Theorem 3.2.1.

Proof of Theorem 3.2.1. Uniqueness of the solution to (3.11) is similar to the
one for problem (3.10) which we present in the following section.

The fundamental solution N = N(z, y) in the half-space {z3 < 0} is such
that its columns vy, v, and vs solve Lv; = d,e; where 6, is the Dirac delta
concentrated at y = (y1, yo, y3) with y3 < 0. Thus, the Neumann function N

is given by
1 T — Ty — T
N(z,y) = N( L9 T y2,3>, (3.26)
lys| |ys] lys| " ysl

as a result of the homogeneity of § and the second order degree of L.




Recalling the definitions of ¢, qg, @Z and computing at (z1—y1, Ta—Y9, T3)/|ys|,
we obtain the identities

f;:_f:; f o _ 1

) f — 1~
Y3 ]m—y! Y3 ]m—y\
3 (0 1
gi=—-——= ~ )
Y3 \w—yl—:cg—yg

where § = (y1,%2, —y3). Hence, the components of C;; )N are given by

C;,ﬁNaa = —(3—4)f — (20 — Ya)? f* — f—3- ) (zo — ya)2f3 — g
+ cy(Ta — ya)QJ?f]z — 2233/ + 6(20 — Ya) T3y f°
CpiNog = ( —ya)(@s —yp){—f* — B =) f* + ¢, f§° + 6asys f°}
C;:,iN?)a { (x5 — y3) f° —( —4V)(x3—y3)f3+c,,f§
+ 623y3(73 + y3)f5}
CrvNas = (20 — ya){—(% —ys)f° = (B — ) (z5 —y3) > — e f7

— 6x3y3(23 + y3)f5}
C;,zl/N33 =—B—4v)f — (23— y3)2f3 —(1+ Cu)f — (3 —4v)(xs + y3)2f3
+ 223y f* — 6a3ys(73 + y3) .

Recollecting the expression for fundamental solution I' in the whole space and
using the relation f = g — (z3 + y3) fg, the above formulas can be rewritten

as N = T' + R where I' is computed at © — y and the component R;;, for
,7 =1,2,3, of R are given by
Roa = Cu,v{—(f: +¢,9)— (3 - 4”)7762yf:3 + Czﬂ?ing — 2x3y3 (fg - 3n§f5)}
Rﬁa = u,l/nanﬁ{_(g - 4V)f3 + Cl/fg2 + 6$3y3f5}
R3a = u,una{_(B - 41/)(773 - 2y3)f3 + Cl/fg + 633393773f5}
RaB = Ou,una{_(g - 41/) (775 - 2y3)f~3 - Cufg - 6x3y3773f5}
R33 = C,u,u{_(.f + Cué) - (3 - 4V>77?2>f3 + CVTIS.]FQ + 2x3y3(.f3 - 3TI§JF5)}7

where 1, = x4 — Yo for @« = 1,2 and 13 = x3 + y3, which can be recombined



as
R;; = Cp,u{—(];+ ¢,§)0i; — (3 — 4v)min; f
+2(3 — 4v)ys[d3:(1 — 035)m; + I35 (1 — a4)mi ]
+ ¢y [8im; — 03;(1 — 531)771']]?@ + e, (1 — 335) (1 — 03:)mim; f 52
- 2(1 - 253j)rr3y3 (5ijf3 - 37]7;7]jf5)}
for 4,7 = 1,2,3. Since x3 = 13 — y3, we obtain the decomposition R;; :=
Rj; + R}, + R} where
R} = CW{—(Jg +¢,§)0i — (3 — dv)min; f2 + ¢, [03im; — 65,;(1 — 53i)77i]f§
+ ¢, (1 —d35)(1 — 53i>77i77jf§2}
R? = 2C,,ys{(3 — ) [05:(1 — 83)m; + 035 (1 — S3:)mi ] f* — (1 — 203;)6:m5.f*
+3(1 — 253j)77i77j773f5}
R}, := 20, (1 — 203)3{6:; f* — 3nim; f°},

that is the assertion.
O]

To convert the problem (3.10) into an integral form, bounds on the decay
at infinity of the Neumann function and its derivative at infinity are needed.

Proposition 3.2.3. For any M,, M, > 0, there exists C > 0 such that
N(@,y)| < Cla|" and |[VN(z,y)|<Cla|2  (327)
for any x,y € R® with |x| > M, and |y| < M,.

Proof. If ¢ is a homogeneous function of degree v defined and continuous in
R3\{0}, then there exists a constant C' such that

p(x)] < Clz|*,  xeRI\{0}.
Thus, since R* are homogeneous of degree —k, for k = 1,2, 3, and
nl—ns = n| = |z —g| = |z| - M,
for |x| sufficiently large, the term R is bounded by

1 2 C
IR| < [R'[ + |ys]|R?| + |ys]*R?| < C ( + 7|y3|2 + |y33) S
x| x| ||

|



Coupling with (3.5), we deduce the bound for N.
The estimates on |[VN] is consequence of the homogeneity of derivatives

of homogeneous functions together with the observation that f and § are C*
in R3\{0}. m

3.2.2 Representation formula

Next, we derive an integral representation formula for w solution to the
problem (3.10). For, we make use of single and double layer potentials de-
fined in (3.6) and integral contributions relative to the regular part R of the
Neumann function N, defined by

Sp(@) i~ [ (Rle.y))"e(y) do(y). v R,
«“ R ’ (3.28)
D) i [ (sop@9) ewioly)  weR,
ac
where ¢ € L*(0C).
Theorem 3.2.4. The solution u to (3.10) is such that
u=pS'n —D'f + pSin — DI, in R3\C (3.29)

where S, DU are defined in (3.6), S, D® in (3.28), pn is the boundary
condition in (3.10) and f is the trace of u on 0C.

Before proving this theorem, we observe that f solves the integral equa-
tion

I+ K+D*) f=p(S'n+S"n), on aC, (3.30)

obtained by the application of the trace properties of the double layer poten-
tial (3.7) in formula (3.29).

Proof of Theorem 3.2.4. Given r,e > 0 such that C' < B,(0) and B.(y) <
R3\C, let
Q. = (R2 0 B,(0))\ (C v B.(y))

with r sufficiently large such that to contain the cavity C'; additionally, we
define 0B"(0) as the intersection of the hemisphere with the boundary of



T3

OB 0) R2

Figure 3.1. Domain (2, ..

the half-space, and with dB2(0) the spherical cap (see Figure 3.1). Now, we
apply Betti’s formula (3.2) to w and the k-th column vector of N, indicated
by N® for k =1,2,3, in Q, ., hence

0= f [u(z) - LN®(z, y) — N®(z, y) Lu(z)| de

Qre
(k)
- | | e ue) - N S @) dola)
0B2(0)
ON® (k) ou
- | |G e ue) - Ny S @) dote)
0B:(y)
ON® k) ou
[ F @y ww - Ny S| do
oC
= Il+]2+]3,

since, from (3.10) and the boundary condition in (3.11),

ou

J laé\;:“) (@,y) - u(w) - NV (z,y)- (M(w)] do(z) = 0.

oB}(0)

We show that the term [; goes to zero by using the behaviour at infinity of
u given in (3.10) and of the Neumann function given in (3.27). Indeed, we



have

ON®) ON )
| S @y u@ide) < | Jul - dot@)
0B (0) 0B(0)
C
<3 J |u(x)|do(x).
2Bk(0)

This last integral can be estimated by means of the spherical coordinates
x1 = rsinpcosl, x5 = rsingsinf, x3 = rcosp where ¢ € [71/2,7], since
B%(0) is a hemisphere in R3 | and 6 € [0, 2), indeed

m 2T
5| ldo@) — | [ruto o)l sinpds s

2BY(0) z0

<C sup  Ju(r,0,¢) =0
0e[0,27),pe[ 5 7]

ou
< J “aum
r f ‘61/33

8Bb

as r — +0o0o, since u = o(1). Similarly

| M@y T 2) do()

Oy
2BY(0)

Again, passing through spherical coordinates, we get

-

0B7(0)

ou

0
do(x) < C sup T)—U(T,H, 4,0)‘ — 0, (3.31)
0€[0,2m),pe[ 5 7] ov

as r — +o0, since |Vu| = o(r™1).
Integral I gives the value of the function u in y as € goes to zero. Indeed,

we have
< f N® |’
OVy

0Be(y)

< sup | J[|F("’)|+|R(’“)|] do(z) = O(e),

x€0B: (y) a’/m
9Bc(y)

do(x)




since the second integral has a continuous kernel. On the other hand

OIN ()
oV,

ON®)
- | S e w@ @) - ) |
0B:(y) 0B:(y)

(z,y)do(z)

(k)
[ ) - @) @y doe).
0Bc(y)

The latter integral tends to zero when € goes to zero because

(k)
| ) - w@)- F @y dote)
0B:(y) i
ON®
€, 0w | e

0B:(y)

and this last integral is bounded when e goes to zero. Let finally observe
that

OIN (F) o(r® L R*)
) [ D@yt =) [ T g dote)
0B:(y) 0B:(y)
or*) OR™®)
) | S e wde@) - uly): | (@) dota)
aBg(y) 6Bg(y)
(3.32)

where the latter integral tends to zero as e — 0, since R®), for k = 1,2, 3,
represents the regular part of the Neumann function. To deal with the first
integral, we preliminarly observe that direct differentiation gives

(k)
(% )h<m—y>=—c:,{nk< N et

m R —_
OV oxy | — y| oxy | — vy

3 dz— - 1
+[5hk+ z —y|da y\] 0 }

(1—-2v) Oxy oxp | on(x) |z — y|
(3.33)

where ¢, := (1 —2v)/(87(1 — v)).

We substitute this expression into the integral (3.32) and we take into account



that

nh(w):u”ch—yh 0 L me—w
lz—yl"  Owi|T -yl |l —y[*’
hence
o 1 J (xn — yn) (6 — Y)
ny(x)— do(x) = — do(x).
f wl )(%cklw—yl (=) |z -yl (=)
0B:(y) 0Bc(y)

To solve this last integral we use spherical coordinates, that is
x1 — Yy = esinpcosb, Tg — Yo = £sin psin b, T3 — Y3 = £COS Y,

where ¢ € [0, 7] and 6 € [0,27). From a simple calculation it follows

_ f (o = 9@ Z00) 4 ) = {O h (3.34)

|z —yl* A5 ifh =k
dB:(y)

Therefore, from (3.33) and (3.34), we have

J (nk@)a;'wim - nh(m)aik : ! y) do(z) =0,  (3.35)

0B (y)

for any h and k. Hence, (3.32) becomes

(k)
—uty) | AR

oV,
0Bc(y)

:c/iu(y) f bt o de=ylde—yly ¢ 100
v h hk (1—-2v) Oxp oxy, ong |z —y|

+ O(e).

Employing again the spherical coordinates and the definition of ¢, we find
that

1—2v 0 1 — =2 ifh =k

_— Onp —— do(x) = 2(1-v) 3.36

8r(1 —v) f hkﬁnmlm—yl (@) {0 ifh # k. ( )
8Bs(y)



Similarly

3 f dx—y|dx—yl\ 0 1 dor(x)
8r(l —v) oy, oz, ong |z —y|

6B5(y)
[ty ith=k
0 ith # k.

(3.37)

Putting together all the results in (3.36) and (3.37), we find that

(k)
i | ~u(): [ 5 (@ ydole) | - —uly)

e—0 Oy
6Bg(y)

Using the definition of single and double layer potentials (3.6), (3.28) and
splitting N as I' + R formula (3.29) holds. O

From the behaviour of the Neumann function given in (3.27) and the
representation formula in (3.29), we immediately get

Corollary 3.2.5. If u is a solution to (3.10), then

u(y) =0(lyl™")  as |yl — . (3.38)

3.2.3 Well-posedness

The well-posedness of the boundary value problem (3.10) reduces to show
the invertibility of

I+ K+ D": L*0C) — L*(oC). (3.39)

In particular, in order to prove the injectivity of the operator (3.39) we show
the uniqueness of u following the classical approach based on the application
of the Betti’s formula (3.1) and the energy method, see [34, 44]. From the
injectivity, it follows the existence of w proving the surjectivity of (3.39)
which is obtained by the application of the index theory regarding bounded
and linear operators.

First of all, let us recall the closed range theorem due to Banach (see
[41, 62]).



Theorem 3.2.6 ([41, 62]). Let X and Y be Banach spaces, and T a closed
linear operator defined in X intoY such that D(T) = X. Then the following
propositions are all equivalent:

a. Im(T) is closed in'Y; b. Im(T*) is closed in X*;

c. Im(T) = (Ker(T*))*; d. Im(T*) = (Ker(T))*.

Through this theorem we can prove

Lemma 3.2.7. The operator 31+ K : L*(0C) — L*(0C) is invertible with
bounded inverse.

Proof. The assertion of this lemma is based on the invertibility of the oper-
ator 31+ K* studied in [24]; it is known that

I+ K*: L*(0C) — L*(20)

is a bounded linear operator, injective and with dense and closed range.
Therefore, from Theorem 3.2.6 we have

Ker (A1 + K) = {0}, Im (A1 + K)* = {0}

and Im(1/2I + K) is closed. Then, it follows that the operator iI + K :
L?(0C) — L?(0C) is bijective and the assertion follows exploiting the bounded
inverse theorem. ]

Since D¥ has a continuous kernel we prove its compactness adapting the
arguments contained in [43].

Lemma 3.2.8. The operator DT : L?(0C) — L*(0C) is compact.

Proof. For the sake of simplicity, we call

R
H(.’B,y) = (,}T(CU,y), x,YeEe oC

and we denote by H® k= 1,2,3, the column vectors of the matrix H.
Let S be a bounded set such that S < L?(0C), that is [¢|r200) < K,
for any ¢ € S. Then, applying Cauchy-Schwarz inequality

(D" o(y))i]” < HH(k)<'ay)H%ﬁ(aC’)”QOH%?(&C) < Kl[oC| wﬂﬁgg<c|H(k)|a



with & = 1,2,3, for all y € 0C and ¢ € S. Hence |D%(p)| < K’, with
K’ > 0, which implies that D(S) is bounded. Moreover, for all ¢ > 0
there exist ¢, ¢’ € § and § > 0 such that if |p(y) — ¢'(y)|r2c) < 6 then,
applying again the Cauchy-Schwarz inequality

D (e — ¢')(y)| <.

Thus D®(S) = C(0C) where C(0C') indicates the space of continuous func-
tion on 0C'. Since each component of the matrix H is uniformly continuous
on the compact set 0C x 0C, for every € > 0 there exists d > 0 such that

3

H® —HW® <
| (Zaw) (Z,y)| \/§K|aC|1/2’

for all ¢, y,z € 0C with |x — y| < . Since
(Df)i(z) — (D p)i(y)] < J | HY) (z,@) — HY (2, y)||p(2)| do(2)
éc
< |H®(2) — HY ()| 260 lel r200)
€
< 50
V3
for k = 1,2, 3, hence

(D) (z) — (D) (y)| <&,

for all ¢,y € dC and ¢ € S, that is D®(S) is equicontinuous. The assertion
follows from Ascoli-Arzela Theorem and noticing that C(0C) is dense in
L*(oC). O

We now prove

Theorem 3.2.9 (uniqueness). The boundary valure problem (3.10) admits
a unique solution.

Proof. Let u' and u? be solutions to (3.10). Then the difference v := u' —u?
solves the homogeneous version of (3.10), that is

div(CVv) =0  inR*\C (3.40)



with homogeneous boundary conditions

w_ 0 ondC, w_ 0 onR? (3.41)
ov ov

v=0(z["") Vv=o(lz["") |x]-x,

where we make use of the decay condition at infinity comes from Corollary
3.2.5 for v.
Applying Betti’s formula (3.1) to v in , = (R* n B,(0))\C, we find

[ v ot JQM

oy

where @ is the quadratic form Q(v,v) = A(divv)? + 2u/Vo|?. From the
behaviour of v and the boundary conditions (3.41), we estimate the previous
integral defined on the surface of €2,; contributions over the surface of the
cavity and the intersection of the hemisphere with the half-space are null by
means of (3.41), whereas on the spherical cap

| o)< [ wlslaE < [ (5@

2B%(0) 2B%(0) 2B%(0)

As already done in (3.31) to obtain the representation formula, this integral
can be evaluated by spherical coordinates; in particular, it tends to zero when
r — +00. Therefore

J {)\(divv)2 + 2,u|@v|2} dx = 0.

RS\C

Since the quadratic form is positive definite for the parameters range 3\ +
21> 0 and p > 0, we have that

Vo=0 and dive=0 in R*\C, (3.42)

It follows that the rigid displacements v = a + Az, with a € R?® and A
belonging to the space of the anti-symmetric matrices (see (3.9) and, for more
details, [4, 20]), could be the only nonzero solutions which satisfy (3.40), the
boundary conditions in (3.41) and (3.42). However, in this case they are
excluded thanks to the behaviour of the function v at infinity. Hence, we
obtain that v = 0, that is u! = u? in R?\C. O



The uniqueness result for the problem (3.10) ensures the injectivity of the
operator (3.39). In order to prove the surjectivity of the operator (3.39) we
recall, for the reader convenience, the definition of the index of an operator
(see [1, 41])

Definition 3.2.1 ([1, 41]). Given a bounded operator T : X — Y between
two Banach spaces, the index of the operator T is the extended real number
defined as

i(T) = dim(Ker(T)) — dim(Y /Im(T)),

where dim(Ker(T)) is called the nullity and dim(Y /Im(T)) the defect of T'.
In particular, when the nullity and the defect are both finite the operator T
is said to be Fredholm.

We remember also an important theorem regarding the index of a bounded
linear operator perturbed with a compact operator (see [1]).

Theorem 3.2.10 ([1]). Let T : X — Y be a bounded linear operator and
K : X —-Y a compact operator from two Banach spaces. Then T + K 1is
Fredholm with index i(T + K) = i(T).

Now all the ingredients are supplied in order to prove the surjectivity of
the operator.

Theorem 3.2.11. The operator 11+ K + D* is onto in L*(0C).

Proof. From Lemma 3.2.7 we have that the operator ;I + K : L*(0C) —
L*(0C) is Fredholm with index i (3I+ K) = 0, because both the nullity
and the defect of this operator are null. Moreover, since the operator D¥ is
compact from Lemma 3.2.8, it follows by means of Theorem 3.2.10 that

i(31+K+D") =o0.
Hence
dim (Ker (I + K + D)) = dim (L*(6C)/Im (3I + K + D))

Since the operator 11+ K + D# is injective it shows that dim(Ker(31+ K +
D#)) = 0. Finally, dim(L?(0C)/Im(31 + K + D)) = 0, that is

Im (I + K + D") = L*(0C).



Summing up, it follows
Corollary 3.2.12. There exists a unique solution to (3.10).

Proof. Uniqueness follows from Theorem 3.2.9 and the existence from The-
orem 3.2.11. [

3.3 Rigorous derivation of the asymptotic expan-
sion

In this section, with the integral representation formula (3.29) at hand, we
consider the hypothesis that the cavity C' is small compared to the distance
from the boundary of the half-space. The aim is to derive an asymptotic
expansion of the solution wu.

In particular, let us take the cavity, that from now on we denote by C.
to highlight the dependence from ¢, as

C.=z+¢ef

where (2 is a bounded Lipschitz domain containing the origin. At the same
time, we write the solution of the boundary value problem (3.10) as w.. From
(3.29), recalling that N = I + R, we have

(k)
) =p [ N9@y) n@)doe) - [ T @y f@)dole)

0C. 0Ce
k k
=17y + LY(y), yeR?
(3.43)
for k = 1,2,3, where u” indicates the k-th component of the displacement
vector and f is the solution of (3.30), that is

(31+ K. + DY) f.(x) = p (SL(n)(x) + SE(n)(x)), xedC. (3.44)

where we add the dependence from ¢ to all the layer potentials to distin-
guish them, in the sequel, from the layer potential defined over a domain
independent from e. In what follows, with I we indicate the fourth-order
symmetric tensor such that IA = A and for any fixed value of € > 0, given
h : 0C. — R?, we introduce the function hf : 2 — R3 defined by

h*(¢) :=h(z+C), (edn.



Moreover, we consider the functions 87", for ¢, = 1,2, 3, solutions to

00T 1

iv(CVOT) =0 inR*\0 - -
div(CVeT) =0 inR*\(2, o 2

Cn ondf?, (3.45)
with the decay conditions at infinity
07| = O(|=|™1), IVO”| = O(|x|~2), as|x| — oo, (3.46)

where the condition 007" /0v has to be read as

A N S o
v ), 3\+2u ity

We now state our main result

Theorem 3.3.1 (asymptotic expansion). There ezists g > 0 such that for
all ¢ € (0,&9) at any y € R? the following expansion holds

uF(y) = |QpV.N® (z,y) : MI + O(e?), (3.47)

for k = 1,2,3, where O(e*) denotes a quantity bounded by Ce* for some
uniform constant C' > 0, and M is the fourth-order elastic moment tensor

defined by .
M=+ m'i CO7(¢) @ n(¢)) do(C), (3.48)

where 07", for q,r = 1,2,3, solve the problem in (3.45) and (3.46).

Before proving the theorem on the asymptotic expansion of u., we need
to present some results

Lemma 3.3.2. The integral equation (3.44), when © = z + ¢, with { € 052,
is such that

(GI+K+eAn.) F1(¢) = epS"(n)(¢) + O(<?), (3.49)

where

(n) = ‘R z z # o
Ao fi(m) l oy (2 en. 2+ 2O ) do)

ov
is uniformly bounded in €. Moreover, when € is sufficiently small, we have

FO) =ep AT+ K) ST () (C) + O3,  Ceon.



Proof. At the point z + ¢, where ¢ € 0f2, we obtain

DEf(z+20) = | stz + Q) f(8) dat)

= 82 ‘R z En, =z g f o
- 4aumﬂ +em, 2+ 20) fn) do ().

Therefore, recalling that the kernel dR/dv(n) is continuous we get

Df = 2Aq, (3.50)

e =

where |Aqp.| < C’, with C” independent from e.
For the integral

or
ov(t)

K_f(z +C) — pv. f

Ce

(t— = — ) F(£) dor(2)

we use the explicit expression of the conormal derivative of the fundamental
solution of the Lamé operator given in (3.33). In particular, since (3.33) is
a homogeneous function of degree -2, with the substitution t = z + en, we

find

(%) -0

1 {1_%5 N 3 7%—@%—@] 0 1
are? | [20—v) ™ " 20— v) [n—¢|In— <[] an(n) In— (|
1—2v M — Cp 1—2v M — Ch
za—yf“mﬂn—cwf2u—uf%mﬁn—CP}
1 /or®w
:€2< o )h(’n—C),

for h, k = 1,2,3. Therefore, we immediately obtain that

Kof(z+20 = p. | o= Of ) doln) = KFQ. 35)
092



Evaluating the other integrals in (3.44) we obtain
S (n)(z +¢C) = J I'(t—z —<¢)n(t)do(t)
oC:
hence, choosing t = z + en, with n € 012, we find

St (n)(z + ) =& f L(e(n —¢))n(n)do(n) = 8" (n)(C),  (3.52)

012

where the last equality follows noticing that the fundamental solution is
homogeneous of degree -1. In a similar way

SR (n)(z + ) — J R(t, z + <C)n(t) do(t),

0Ce

hence, taking again t = z + en, we find

SEm)(z +e¢) =& f R(z +en, z + e¢)n(n) do(n)
a0

and since R is regular it follows that
SE(m)(z +e¢) = O(%). (3.53)

Relation (3.49) follows putting together the result in (3.50), (3.51), (3.52)
and (3.53).
To conclude, from (3.49) we have

(B1+K) (T+22 (T4 K) " A) f5 = pS"(n) + O(?),  on 02,

From Lemma 3.2.7 and the continuous property of A , described before, we

have
H A+ K)™" AQH <C

where C' > 0 is independent from e. On the other hand, choosing €2 = 1/2C,
it follows that for all € € (0,g) we have

I+ (31+ K)*1 A.o



is invertible and
1

(T+2(3I+K) " An)  =T+0().

Therefore
fFi=ep(AT+K)'S"(n) +0(?),  on o0,

that is the assertion. O
For ease of reading, we define the function w : 02 — 02 as
w(¢) = - (A+K)7S'(n)(C), (e (3.54)

Taking the problem

~ 0
div (@W) —0 R\, % ——n  ond?  (3.55)
with decay conditions at infinity
v=0(z|"), Vo| = O(|x|™?) as |x| — 40, (3.56)

we show that w(x), for € 02, is the trace of v on the boundary of f2.
The well-posedness of this problem is a classical result in the theory of linear
elasticity so we remind the reader, for example, to [34, 37, 44].

Proposition 3.3.3. The function w, defined in (3.54), is such that w =

U‘ze&() where v is the solution to (3.55) and (3.56).

Proof. Applying second Betti’s formula to the fundamental solution I' and
the function v into the domain B, (0)\(£2 u B.(x)), with ¢ > 0 and r > 0
sufficiently large such that to contain the cavity (2, we obtain, as done in a
similar way in the proof of the Theorem 3.2.4,

v(x) = —S'n(x) - D'v(x), x e R\

Therefore, from the single and double layer potential properties for the elas-
tostatic equations, we find

v(z) = -S'n(z) - (-iI+K)v(z), x e i

hence
v(x)=— (%I—FK)_l SY(n)(x), x € 02

that is the assertion. O



We note that the function v, as well as its trace w on 02, can be written
in terms of the functions 87". Indeed, taking

— Q9"
v=07),,

where we use the convention to sum up the repeated indices, and using (3.45)
and (3.46), it is straightforward to see that the elastostatic equation and the
boundary condition in (3.55) are satisfied.

Proof of Theorem 3.3.1. We study separately the two integrals I 1(k), Iz(k) de-
fined in (3.43). Since y € R? and x € dC. = z +¢&¢, with ¢ € 812, we consider
the Taylor expansion for the Neumann function, that is

N(k)(z +eC,y) = N(k)(z,y) + 5VN(k)(z,y)C +0(e%), (3.57)

for K = 1,2,3. By the change of variable & = z + ¢ and substituting (3.57)
in ]1(/@, we find

I = 2pN® (2, y) - f ndo(¢) + %p f n(¢) - VN (z,y)¢ do(¢) + O(e*)
on o

=P (52[1(’f) + 531'{];)) + O(e").
Integral I flf) is null, in fact, applying the divergence theorem

| n¢yastc) -0

092

For the integral I\¥). we use the equality n - VN®¢ = VN®) . (n(¢) ®C¢),
therefore

19— ST NG (2. y) J(n(c) ®C)do(C) + O,  k=1,2,3. (3.58)
o

For the term Iék) we use the result in Lemma 3.3.2 and the Taylor expansion
of the conormal derivative of N*)(x,y), for & = 1,2,3. In particular, for
x =z +eC, when ¢ € 02 and y € R?, we consider only the first term of the
asymptotic expansion, that is

OIN *) ON (k)

ov(x) (@, y) = ov(C) (z,9) + O(e), k=1,2,3.




Therefore
e 2 ON®

92 = € m(ersC,y)-fﬁ(C)dU(C)
o0

ON®
— p (2,9) - w(¢) do(¢) + O(eY),

for any k, where w is defined in (3.54). Since IN® /o (¢) = CYN®n(C),
we have

CYN®n(¢) - w(¢) = CVYN® : (w(¢) @ n(L)).

Therefore

19 (y) = S pCIND (2, y) f (w(¢) ®n(0) do(¢) + OE").  (3.59)
of

Collecting the result in (3.58) and (3.59), equation (3.43) becomes
ut(y) = 1" (y) + 17 (y)

VN® (2, y) : J(n@{) do + C@N(k)(z,y) : f(w@n) dcr] +0(eh).

ofn of

Now, handling this expression, we higlight the moment elastic tensor. We
have

L (O ©¢) do(€) = |21, (3.60)

indeed, for any 7,7 = 1,2, 3, it follows

Gy do(C) = j n-Ge; do(C)

o012 082

= J div (Ge;) d¢€ = J e; - € d¢ = [02]0;,
0 7

where e; is the j-th unit vector of R3. Hence, by (3.60) and taking the
symmetric part of VIN® | for any k, we find

ub = 53p[6N<’f> 1|02+ CYN® . f'w ® nda(c)] +0(eh).
o1



Using the symmetries of C, we have

ub = 63|Q|p€N(k) :

1 4
I+ﬁ C(w@n)da(()] + O(e%),
an

for k = 1,2,3. Now, taking into account that I = II and using the equality
w = 07),,., we have the assertion. O

3.3.1 Properties of the moment elastic tensor

In this section we analyse the symmetry and positivity properties of the
moment elastic tensor M. Starting from the problem (3.45) and passing
through the weak formulation in Br(0)\{2, we find

CVeH" @go dx
Br(0)\2

= J (CV6*'n) - p do(x) — J(Cﬁekhn) @ do(x)

0Br(0) on
~ 1
0BR(0) RXe)
Choosing ¢ = 0™, with r, s = 1,2,3 we have
CVO™ . VO™ da
Br(0)\12
~ 1
= J (CVO* ) - 0" do(x) + e J C(n®0™)do(x)
dBR(0) on

Using the decay condition at infinity (3.46) of the functions 6, we get. as
R — 400,
(CV6*''n) - 0" do(z) — 0,
0Br(0)

hence

f CVO™" : VO™ da = T f@(n@@”) do(z) (3.61)

R3\(2 on



or in components, summing up the repeated indices,

& < rs 1 8
J Cijlm(vekh)lm(ve )ij dr = m J Cijkh m@j dU(:B).

R3\02 o

Positivity

Now, we prove the positivity of the tensor M, i.e. MA : A > 0, for all
A € R3*3. By the definition (3.48) of M and applying (3.61) we have

MkhrsAkhArs = |A|2 + (3)\ + Q,M) f C@Okh : @OrsAkhArs dx

R3\ 2

= |A]* + (3)\ + 2u) f CV (0" Ay, + (VO™ A,,) dz > 0
R3\ 2

since C is positive definite.

Symmetries

First, we notice that from w = 6*"6;;, we have w = 0"*4,;,, hence "%
satisfy the same problem (3.45) and (3.46). Again, by the definition (3.48),
the weak formulation (3.61) and the symmetries of the elastic tensor C, it
is straightforward to obtain the following symmetries for the moment elastic
tensor

Mignrs = Mpkrs = Minsr = Mysin,

where k, h,r, s =1,2,3.

3.3.2 The Mogi model
In this subsection, starting from the asymptotic expansion (3.47), that is

uk(y) = aﬂﬁ\p@zN(k)(z,y) : MIT + 0(64), k=123,

£

where M is the tensor given in (3.48), we recover the Mogi model, presented
within the Introduction (precisely in Section 1.2), related to a spherical cav-
ity. We first recall that

MI = |1+ |[12| CO" @n)do(¢) | T=T+ |I12| C(w@n)do(C),
of2 o012



where, in the last equality, we use the link between the functions w and 69"
that is w = 076,, ¢,r = 1,2,3. Therefore, to get the Mogi’s formula, we
first find the explicit expression of w when the cavity (2 is the unit sphere
and then we calculate the gradient of the Neumann function N.

We recall that w is the trace on the boundary of the cavity of the solution
to the external problem

~ 0
div(CVv) =0 in R¥ B,(0), aiy’ ——n  on B (0),
where B;(0) = {x € R? : |x| < 1} with decay at infinity
v=0(z|"), Vo] = O(Jz|?) as |x| — +o0.
We look for a solution with the form
v(x) =¢o(r)x with r := |x|,
so that
4¢’ 4¢’
Av; = {(b"%—gb}xi, dive = r¢’ + 3¢, Vdive = {¢”+¢}m.
r r
By direct substitution, since n = @ on 0B, we get
3 & // 4¢/
div(CVw) = (A +2u) | ¢" + )
ov ,
5, = {N+2u)rd’ + (3N + 2p)o}a

Thus, we need to find a function ¢ : [1, +90) — R such that

4¢'
¢+ = =0, (A +2urd' +BA+20)¢]_ =1, ¢_,, =0

Condition at infinity implies that B = 0 and A = 1/4u. Therefore, the
solution is v(x) = x/4p|x|?, which implies that

w(x) = v(x)

el=1 4
With the function w at hand, we have that

|Bll(0)| fC(W(C)@)n(C))da(g):IeriM f C(t®¢)

2B, (0)

I+

B1(0)



Through the use of spherical coordinates and ortogonality relations for the
circular functions, it holds

C®¢ d4r
J |C|3 dU(C) - 3 I>

0B1(0)
hence the second-order tensor MI is given by

3(A\ + 2p)

MI =
4p

I.

It implies

k (A + 2p)

ur(y) = 53pTr(@zN(k)(z,y)) +0(g"), E=1,2,3. (3.62)
For the Neumann’s function N (see the proof of the Theorem 3.2.1 for the
explicit expression of the singular components of the matrix N), we are in-
terested only to the trace of V_IN(z,y) computed at y3 = 0.

Evaluating N = N(z,y) at y3 = 0, we get

K;lNaa = _f - ( - ya>2f3 - (1 - 2”)9 + (1 - 2”)(204 - ya>2f92

HQINBaZ( Yo) (256 = yp){—f° + (1 — 2v) fg}
K, Nag = Yo ){—2sf* + (1 —=2v) fg}
K7 Nag = ){ ~zft = (1 20) g}
K, Nag = ( —v)f — 2 f?
where a, 8 = 1,2 and &, = 1/(drp), with
f=1]z-yl, and 9=1/(lz—y|l - 2).

Let p? := (21 — y1)® + (22 — y2)?. Using the identities
Pff=1-2f  (A-zflg=/f

and the differentiation formulas

Oz f = —(2a — Ya) * Oz f = —23f°
0z.9 = —(2a )fg, 029 = [9,
02, (f9) = —( Zo —Ya)(F+9) P9, 0x(f9) = f7,



we deduce the following formulas for some of the derivatives of 5;1N1~

/ﬁzljlazan = (24 — ya){—f?’ +3(20 — Ya)2f?
+(1=20)[3f = (2 — ¥a)* f*(f +29)]9°}
li;lﬁzﬁNga = (24 — ya){—f3 +3(z5 — y5)2f5
+ (1 =20)[f = (25 — ys)* (f + 29)]4°}
/ﬂjlangSa = (2 — ya){—ny3 + 32§f5}
Ky 0z Noz = —23f° + 3(20 — Ya) 23 f°

+(1=20)[~1+ (20 — ¥a)*(f + 9)f]fg
5;18Z3N33 = 2wz f? + 325 f°.

As a consequence, we obtain

Tr(@N(a)) =2r,(1 = 20) (20 — Ya) f°, fora =1,2

Tr(@N(E‘)) = 2%, (1 — 20) 23 f°. (3.63)

Combining (3.62), (3.63) and using the explicit expression for f, we find

N 1—ve’p(za — Ya)
ul(y) = . PwE +0(g"), fora = 1,2
1-v pzs

po|z—yl3

that are the components given in (1.1).

We highlight that, in general, for other shapes of the cavity {2, the trace
on 02 of the auxiliary functions 87", with ¢,r = 1,2,3, can be numerically
approximated (if it can not be calculated explicitly) and, thus, the first term
in the asymptotic expansion (3.47) can be considered as known in practical
cases.
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