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Introduction

A network can be defined as a set of interconnected nodes. This simple

model describes many different phenomena and it is used in a wide range of

disciplines from physics and biology to social sciences.

Over the years the size of the investigated networks has grown, leading to the

definition of the so called large-scale networks which include hundred million

or even billions of nodes. A well known and widely studied example is the

World Wide Web, whose size is steadily growing: currently the number of web

pages is tens of billions. Protein interaction networks, the human brain, the

metabolic interaction networks, transportation networks and social networks

are some other examples [48, 49, 61].

Different experimental studies, carried out in the last two decades, re-

vealed that large-scale networks tend to form complex structures. Nodes

tend to aggregate in dense clusters. Inside each cluster, several nodes, called

hubs, have a large number of links whereas the most part of the other nodes

have few [17, 34, 65, 74, 76].

From the theoretical point of view, large-scale networks can be described

by using probabilistic graph models. They are generative models that permit

to create a graph on the basis of some probabilistic rules. Through the use of

these representations it is possible to study the time evolution of the network,
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i.e., how nodes and links are added and removed from the network.

On the other hand, structural properties of networks are evaluated by

means of common graph algorithms, like the minimum spanning tree or the

Breadth First Search (BFS). Graph traversal algorithms like BFS are of fun-

damental importance in many practical applications (a traversal is a system-

atic method of exploring all vertices and edges in a graph). BFS serves as

a building block for many other algorithms and is employed to compute im-

portant metrics used to characterize the network. For instance, BFS serves

to identify community structures, that is, how vertices are connected each

other, or to compute the centrality of a vertex, that is a measure of the

importance of the vertex in the graph.

Due to the huge size, the traversal of large graphs is quite demanding in

terms of both computational and memory resources, namely, it must be per-

formed by using parallel computing architectures. Unfortunately, most graph

algorithms are memory intensive and have irregular memory access patterns

that strongly depend on the structure of the graph. These features make

them ill-suited to modern high performance platforms. Nevertheless, several

authors in the last few years have successfully implemented high performance

graph traversals on both parallel and distributed architectures. They demon-

strated that, by following appropriate strategies, graph algorithms can be

accelerated by using modern supercomputers [13, 42, 30, 79].

There is a wide variety of parallel supercomputers but they can be grouped

in two major categories: shared memory and distributed memory architec-

tures. Shared memory systems have many advantages from the programming

point of view but are limited both in the size of the memory and in the num-

ber of processors. On the other end, distributed systems are more difficult to

program but can have thousands of computing nodes. In principle, with the
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help of a distributed architecture there is no limit to the size of the network

that can be studied.

We focus our work on the development of a distributed algorithm to

perform a BFS visit on a large graph. For the implementation of the com-

putational part we resort to clusters of Graphic Processing Units (GPUs).

Generally, a distributed system is a cluster of computing nodes intercon-

nected via a wired network. Communications are typically implemented by

using the Message Passing Interface (MPI) primitives. Each node is a system

in itself that can be equipped with a single- or a multi-core CPU. For the

GPU clusters, each node hosts also one or more GPU devices. To carry out

computations, the nodes of the cluster must exchange data each other.

Graph algorithms are notoriously difficult to parallelize. They have low

arithmetic intensity: the time spent in computation is less then the time spent

performing memory access operations. In a distributed environment, data

can be in a remote memory, thus, most of the execution time, is spent sending

and receiving data over the communication network. Moreover, communica-

tion patterns are irregular, the number and the size of messages exchanged

may vary during the execution of the algorithm. As a consequence the

performance bottleneck is represented by the communication among nodes

[79, 51, 23].

To obtain a significant improvement on a single GPU and to scale by using

multiple GPUs, we developed a novel algorithm. We propose a technique for

mapping threads to data that achieves a perfect load balance by leveraging

prefix-sum and a binary search operations. To reduce the communication

overhead, we perform a pruning operation on the set of edges that needs to

be exchanged at each BFS level. The result is an algorithm that exploits at its

best the parallelism available on a single GPU and minimizes communication
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among GPUs. As far as we know this is the first attempt to implement a

graph algorithm on multi-GPUs clusters.

Our code was submitted to the Graph 500 benchmark, a new graph-

theoretical challenge. To complement the compute-intensive Top 500, Graph

500 evaluates performances of modern supercomputers on data-intensive ap-

plications. By using 128 GPUs we entered the Graph 500 list at position

number 20 (November 2011 ranking).

Communication among GPUs that are located on different nodes of the

cluster, involves the hosting CPU. Data must be transferred to the CPU

before and after any MPI call. This requirement imposes an additional over-

head to the data transfer. To overcome the issue several solutions have been

proposed both at hardware and software level. One of these solutions is

the APEnet+ interconnection technology. It allows for the transfer of data

directly from GPU to the communication link by means of the GPUdirect

feature, introduced in the latest NVIDIA cards.

We adapted our original algorithm to use the GPUdirect technology. Our

results, albeit preliminary, show a clear advantage with respect to classical

interconnection technology (Infiniband). This result is of great interest con-

sidering that, these technologies, are an essential part of research efforts, to-

wards the definition of a general mechanism for direct communication among

GPUs.

The present dissertation is organized as follows. In the first Chapter we

describe the problem of analyzing large graphs. We summarize the basic

properties of large-scale networks and introduce some probabilistic models.

Then we describe the serial BFS algorithm and the level synchronous BFS,

which is of considerable importance in the parallel implementation of the



7

BFS. In the second Chapter we illustrate the GPU features and the CUDA

programming model. The third Chapter deals with parallel BFS on shared

memory systems; multi-core CPU and (single) GPU fall within this category.

We describe two different algorithms to perform parallel BFS and give a short

review of some recent works on both multi-core CPU and GPU. In the fourth

Chapter we present our original study: the development of a distributed

BFS. We report the issues related to the problem and review related works.

We present our solution for a multi-GPUs cluster interconnected via the

standard Infiniband technology and finally we extend our work to support

the APEnet+ technology.
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Chapter 1

Large Graphs

A number of natural and artificial phenomena may be described by using

networks, i.e. sets of interconnected nodes. Over the years, the size of the

studied networks has grown. Nowadays, networks with millions of vertices

and hundred million or even billions of edges are studied after being extracted

starting from huge datasets. A well know and widely studied example is

the Internet. Internet represents also the infrastructure of the World Wide

Web, a network made of hyperlinks, and of many Social Networks, that

represent relationships among individuals (or web sites where people waste

their time). The size of the Internet is growing fast: currently the number

of web pages may be 30 billion or more 1, and the number of connected—

devices is probably more than a billion.

Social networks are very attractive for many researchers in the area of

sociology, history, epidemiology and economics. Well established social net-

works like Facebook, MSN Messenger or Twitter have hundred million links.

Protein interaction networks, the human brain and the metabolic interaction

1http://www.worldwidewebsize.com/
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networks are some examples from biology. The human brain network is one

of the most complex with its ∼ 1011 nodes[48, 49, 61].

Networks, like those mentioned above, are often described as large graphs

having millions of vertices and billions of edges. The theoretical formaliza-

tion of such large graphs falls within the theory of random graphs. Several

probabilistic/stochastic models have been proposed to mimic their structure

and evolution. New metrics have been introduced to better characterize their

properties. Those metrics are computed on the basis of common graph algo-

rithms, like single source shortest path, minimum spanning tree and Breadth

First Search (BFS).

Even the execution of a simple algorithm, like BFS, on a graph with bil-

lions of edges, requires the use of a parallel computing architecture. While

serial algorithms on graphs have been widely studied and can be efficiently

implemented, the corresponding parallel versions are still lacking behind.

Parallel graph algorithms are challenging for many reasons (as we will discuss

in the following). For instance, most algorithms are memory intensive and

have irregular memory access patterns that strongly depend on the structure

of the graph. These features make them ill-suited to modern high perfor-

mance architectures. Nevertheless, recent studies [13, 42, 30] have demon-

strated that, with appropriate strategies, graph algorithms can be accelerated

by using modern parallel supercomputers.

This chapter is devoted to an introduction to large graphs and the breadth

first search algorithm, whereas, in the next chapter, we will introduce the

main features of modern GPUs.
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1.1 Random Graphs

Random graphs are powerful mathematical models to study large networks.

They are generative models that permit to produce a graph on the basis of

some probabilistic rules. Most often the models do not impose a certain prop-

erty to the network but rather give general principles or mechanisms of edge

creation that lead to the rise of a global statistical property or distribution

in the network [46].

Many models aim at describing the structure and also the evolution of

the network over time, i.e. how nodes and edges are added and removed from

the network. In the present work, we are not interested in the evolution of

the graph but only in its structure.

In the next two sections we report few basic definitions and notions on

(random) graphs.

1.1.1 Basic graph notions

G(V,E) is a graph G whose vertices v belong to the set V and whose edges

e = (u, v);u, v ∈ V belong to the set E. N = |V | is the number of vertices

in G whereas, M = |E| is the number of edges. We will denote the number

of vertices and edges with |V | and |E| or N and M .

G can be:

• directed: if the pair (u, v) is oriented.

• weighted: if each edge e has associated a scalar value pe.

• multi-graph: there can be multiple edges between two vertices.

• simple: unweighted, undirected graph containing neither graph loops

nor multiple edges.
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Unless explicitly stated, we consider only simple graphs.

A path between two vertices u, v ∈ V is a sequence of edges from u to

v. A closed path in which some vertices are repeated is called cycle. G

is said to be connected if there exist a path between any two vertices in

V . A tree is a connected graph with no cycle. A graph can have many

connected components, i.e., subsets of nodes that are connected. If G is

simple and every pair of distinct vertices is connected by a unique edge, then

G is complete. Given any two nodes u1, u2 in G, the distance, is measured

as the shortest path that connects them. The diameter is the maximum

distance in G.

The degree of a node is defined as the number of edges incident to the

vertex. The total degree of G then is
∑

v∈V deg(v) = 2|E|. The degree of a

vertex is an important metric, many structural properties of graphs can be

deduced from the knowledge of the degree of all the nodes.

1.1.2 Erdös-Rény random graphs

The earliest probabilistic generative model for graphs was the random graph

model introduced by Erdös and Rény in 1960 [32] and Gilbert in 1959 [35].

Consider a set of vertices V = 1, ..., n and let an edge between any two

nodes, i and j, be formed with probability p, where 0 < p < 1. The formation

of edges is independent. The corresponding graph is G(n, p). This is a

binomial model of link formation, which gives rise to a manageable set of

calculations regarding the resulting structure. The average number of edges

on the graph as a whole is 1
2
n(n−1)p, whereas the average degree of a vertex

is:

z =
n(n− 1)p

n
= (n− 1)p ' np,
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where the approximation holds for large values of n.

One interesting feature, originally demonstrated by Erdös and Rény, is

that, when the value of z varies, from 0 to a positive integer, the model shows

a phase transition, exactly in z = 1. For z < 1, there are few edges in the

graph and most vertices are disconnected from each other. However, when z

is approaching the value of 1, there is one largest component that contains a

finite fraction F of the total number of vertices. The size of F scales linearly

with the size of G and it is called giant component. The size of the other

components in the graph remains constant as the graph size increases. It can

be proved that, for a large value of n, the size of the remaining components

is of order log(n).

We can calculate some statistics that describe the graph. For instance,

we can find the degree distribution fairly easily. The degree distribution of a

random graph describes the probability that a given node has degree d. The

probability that a given node i has exactly k edges is:

P (d = k) =

(
n− 1

k

)
pk(1− p)n−1−k

For large values of n and small values of p the binomial expression can

be approximated by the Poisson distribution. Both binomial and Poisson

distributions are strongly peaked about the mean d, and have a large tail

that decays rapidly as 1/k.

The degree distribution provides a number of information about the struc-

ture of the graph. For instance, a Poisson distribution implies that most

vertices have a degree close to the average value (see figure 1.1).

The main drawback of the random graph model is that it produces graphs

that fail to match real-world networks.
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1.2 Real world graph

Many studies show that the features of real world (large) networks cannot

be described with the classical random graph model.

The most important difference is that, real world networks exhibit a power

law distribution of the degree: P (d = k) = Ck−γ, k →∞.

The power law distribution has been found in various real datasets like,

for instance:

• World Wide Web: considering pages as vertices and links as edges [17].

• Internet: at the level of so-called “autonomous systems” 2 [34].

• Citation network: in which the nodes are papers and citations are links

[65].

• Protein-protein interaction networks [74].

In figure 1.1 are plotted, for comparison, the Poisson distribution and a

power law with γ = 3.

In order to mimic the power law distribution, Barabasi and Albert [17]

proposed the preferential attachment model. Instead of adding edges with

uniform probability, edges are connected to vertices with a probability pro-

portional to their popularity. Suppose to add a vertex to the graph, then

edges are added one at time. The probability that the new vertex will be

attached to vertex i is given by: πi = ki/
∑

j kj.

Erdös and Rény graphs have small diameter, but have few triangles. Real-

world graphs, like those from social networks, contain many (if A and B

are friends and A and C are friends, then it is fairly likely that B and C

2An autonomous system is a group of computers within which data flow is handled
autonomously, while data flow among groups is conveyed over the public Internet
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are also friends). To construct a network with small diameter and positive

density of triangles, Watts and Strogatz [76] started from a ring lattice with

n vertices and k edges per vertex, then rewired each edge with a probability

p, connecting one end to a vertex chosen at random. The resulting graph is

connected by definition and has short diameter, it is in fact called small-world

graph.

The power law distribution is often called scale-free distribution and,

networks that obey that distribution, are called scale-free networks.

The skewed distribution associated with real-world graphs implies that

some special vertices, called hubs, have an huge number of neighbors whereas

most of them have few (see fig 1.1). As we shall discuss below, this property

has negative side effects on the parallel implementation of graph algorithms

since it can lead to a severe imbalance of workload among the tasks (see

section 1.3.2). On the other end, the small diameter property, has positive

consequences. For instance, the number of iterations of a parallel BFS is

proportional to the diameter of the graph (see section 1.3.2).

It is worth noting that most of real-world networks can be represented by

means of a sparse graph that is, the number of edges is much smaller than

the maximum number of possible edges: |E| << |V |2.

1.2.1 Real-world graph generators

In parallel with the study of the structural properties of real-world graphs,

there has been an effort to find practical mechanisms to generate graphs that

have the desired properties. As stated in [47] to have realistic generators is

important for at least two reasons. First they allow to simulate a graph for

testing theoretical hypothesis and can be used to simulate different scenarios.

Second they give some insights on the networks properties thus helping the
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Comparison between the degree distribution of scale-free networks (○) and random graphs (□) 
having the same number of nodes and edges.  

Albert R J Cell Sci 2005;118:4947-4957 

©2005 by The Company of Biologists Ltd 

Figure 1.1. Comparison between the degree distribution of scale-free networks (◦)
and random graphs (�) having the same number of nodes and edges. For clarity the
same two distributions are plotted both on a linear (left) and logarithmic (right)
scale. The bell-shaped degree distribution of random graphs peaks at the average
degree and decreases fast for both smaller and larger degrees, indicating that
these graphs are statistically homogeneous. By contrast, the degree distribution
of the scale-free network follows the power law P (k) = Ak−3, which appears as a
straight line on a logarithmic plot. The continuously decreasing degree distribution
indicates that low-degree nodes have the highest frequencies. However, there is
a broad degree range with non-zero abundance of very highly connected nodes
(hubs) as well. Note that the nodes in a scale-free network do not fall into two
separable classes corresponding to low-degree nodes and hubs, but every degree
between these two limits appears with a frequency given by P (k).

development of theoretical models. One of the most successful generator is

the R-MAT generator [25]. It is based on a Recursive Matrix approach, in

which the adjacency matrix that represents the graph is recursively subdi-

vided and then populated, following certain probabilistic rules. The whole

matrix is divided in four partitions, each partition has associated a prob-

ability: a, b, c, d. Then, each partition is again divided in four and this
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procedure is repeated until the simple cell is reached.

This model has gained much popularity, for instance, the novel Graph

500 benchmark chose this generator to create the input graph that has to be

analyzed.

By changing the value of the four parameters, a, b, c, d the properties

of the produced graph vary accordingly. For a = b = c = d = 0.25 the

model reproduces the standard, Erdös-Rényi, random graph. On the other

end, the values a = 0.57, b = 0.19, c = 0.19, and d = 0.05, provides a steep

degree distribution power-law graph. This produces a maximum degree of

approximately 200.000 = 217.64, with 225 vertices and 228 edges [58].

Our work, and most of the studies that we will review, rely on an R-MAT

generator to produce large graphs with the desired properties.

1.3 Analysis of large graphs

Specific properties of large graphs are described by means of a set of new

metrics. For instance, the betweenness centrality measures the centrality of

a node in a network. It is equal to the number of shortest paths from all

vertices to all others that pass through that node.

As already stated, the size of the most interesting graphs requires the use

of parallel computing systems. However, graph algorithms are a typical ex-

ample of applications for which it is not simple to have a sizeable advantage

by using parallel computing architectures. To gain a better understanding

of the issues due to implementation of algorithms with irregular memory

access patterns, like those in use for studying graphs, many recent studies

focus on (apparently) simple problems. Several communities have proposed

computational challenges having as subject graphs. For instance, the 9 DI-
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MACS challenge [1] aims at finding shortest path in graphs, the Graph 500

[2] benchmark uses BFS as its core, SSCA#2 benchmark is composed of four

kernels operating on large scale directed multi-graphs [5]. Hereafter we focus

on BFS.

Breadth first search is a simple graph algorithm that is widely used as a

building block for more complex algorithms. For instance it can be used to

find the connected components in a graph or to compute the shortest path

between two vertices. It is representative of a class of algorithms for which

is hard to obtain a significant speed up from parallelization.

In the following sections, we discuss the serial BFS and the level syn-

chronous BFS algorithm. The latter is of considerable importance in the

implementation of parallel algorithms.

1.3.1 Graph representation and serial BFS

There are two common ways to represent a graph G = (V,E): with either a

set of adjacency lists or an adjacency matrix. The adjacency list represen-

tation is preferable when the graph is sparse i.e. |E| << |V |2 because is

more compact. The adjacency matrix should be preferred when the graph

is dense i.e. |E| ∼ |V |2. The adjacency list representation of a graph is

implemented via a set of |V | lists, one for each vertex of the graph. For each

u ∈ V the adjacency list of u contains all the vertices v such that there is an

edge (u, v) in E (see figure 1.2).

Given the graph G = (V,E) and a source (or root) vertex s, the breadth

first search explores each edge of G to discover all vertices that are reachable

from s. BFS is widely studied because it is part of more complex algorithms.

Here we summarize only those aspects that will be relevant for the rest of

the present work, for further information see [27].
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Figure 1.2. In panel A is represented an undirected graph G(V,E)=G(5,16). In
panel B is provided the adjacency list representation of G. Panel C is the adjacency
matrix of G.

Algorithm (1) presents an implementation of the BFS, where the graph

G is undirected and represented as an adjacency list (fig 1.3 A, B).

Algorithm 1 Serial BFS

1: d[u]← −1, ∀ u ∈ V
2: p[u]← −1,∀ u ∈ V
3: d[s] = 0
4: p[s] = s
5: enqueue(Q, s)
6: while Q 6= ∅ do
7: u← dequeue(Q)
8: for each v ∈ Adj[u] do
9: if p[u] == −1 then

10: p[v] = u
11: d[v] = d[u] + 1
12: enqueue(Q, v)
13: end if
14: end for
15: end while

The algorithm starts by visiting the source vertex s; its distance d[s] and

its predecessor p[s] (line 3-4) are set, then the vertex is enqueued in Q. At

each iteration, the first vertex of the queue is dequeued, all its neighbors are

inspected and, if the value of their distance and/or predecessor are not set

(line 9), that is they have never been seen, they are added to the queue. The
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algorithm ends when all reachable vertices have been visited and the queue

is empty.

1 2 4 5

2 1 3 4 5 6

3 2

4 1 2 8

5 1 2 6 8

6 2 5 7

7 6 8

8 4 5 7

A B

1 1 2 1 1 2 6 4

1 2 3 4 5 6 7 8

parent array

distance array 0 1 2 1 1 2 3 2

vertices labels

C

1 2

3 4 5

6 7 8

1

2

3

4 5

6

7

8

Figure 1.3. In panel A is represented an undirected graph. In panel B is provided
the adjacency list representation of the graph. Panel C shows the result of one
BFS visit started from vertex 1. On the left is depicted the BFS-tree rooted at
1. On the right, the parent and the distance arrays. The colors highlight different
levels of the BFS.

The BFS procedure “expands the frontier between discovered and undis-

covered vertices uniformly across the breadth of the frontier” 3, so that, all

vertices at distance k are discovered before any vertices at distance k + 1.

At the end of the procedure, the distance array contains the shortest path

from s to any reachable vertex in the graph [27]. The array of predecessors

or parent contains a BFS-tree rooted at s: each index of the array is a vertex

in the graph and the corresponding value is the predecessor in the BFS-tree.

It is worth noting that BFS explores only the connected component that

contains the source vertex s.

3From [27]
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Table 1.1. The table is referred to the graph in figure (1.3). The BFS is started
at vertex 1 and new vertices visited are added to next level, according to algorithm
(1).

BFS LEVEL CQ NLFS NQ
0 1 2,4,5 2,4,5
1 2,4,5 1,3,4,5,6,1,2,8,1,2,6,8 3,6,8
2 3,6,8 2,2,5,7,4,5,7 7
3 7 6,8

Figure (1.3 C) depicts the result of the algorithm (1) applied to the graph

shown in fig. (1.3). Table 1.1 shows the levels of the BFS performed on the

graph represented in figure (1.3).

The time complexity of the BFS is given by the time for the queue op-

eration that is O(V ), plus the time for scanning each adjacency list, that is

O(E). The initialization takes O(V ) and thus the total time, O(V + E), is

linear in the size of the adjacency list.
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1.3.2 Level synchronous BFS

Breadth first search, as many graph algorithms, is memory-bound and mem-

ory access patterns are fine-grained and irregular. These features cause poor

performances on shared memory systems, that are cache-based [13, 7]. On a

distributed memory system the running time of the algorithm is dominated

by the communication part [79, 23, 73] and is difficult to outperform the

sequential version. Most of the parallel implementations, on both type of

architectures, are based on the level synchronous BFS algorithm.

In the level synchronous BFS, the current queue, CQ, is seen as a current

level set of vertices. For each vertex in the current level, all its neighbors

must be visited. In parallel systems, this operation, is always carried out

in parallel. The set of all neighbors composes the Next Level Frontier Set

(NLFS). From the NLFS only new vertices are selected to build the queue

for the next level (figure 1.4).

The BFS visit is divided into levels with a distance from the root that

increases at each subsequent level. For a graph with diameter D, the num-

ber of levels visited by the algorithm will be at least D/2 and at most D,

depending on where the search is initiated.

This method is referred in literature as Level Synchronous BFS be-

cause, to ensure the correctness of the computation in a parallel implemen-

tation, a synchronization is required at the end of each level.

As shown in figure 1.4, the total number of elements in the CQ is |CQ| =
k. The total number of elements in the NLFS is

∑k
i=0 duk

, the sum of all

degrees of vertices in the queue.

Real-world graphs have skewed degree distributions (see section 1.2).

While many of the vertices have a small number of neighbors, hubs can

have thousands. The degrees of the vertices may differ from each other, by
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Vj

Vl

Vt Next Level Frontier Set

|QC|= k

|QN|= p

current level set of vertices
(Current Queue)

|NLFS|= m =  ∑i di 

drop already seen vertices
keep new vertices

v5, v7, v9, ...., vp

u1, u2, ...., uk

next level set of vertices
(next level queue)

Phase 1
expansion

Phase 2
contraction

Figure 1.4. BFS phases: In the first phase, all neighbors of each vertex in the
current queue are inserted in the NLFS. In the second phase vertices already seen
in the NLFS are removed. The remaining vertices are inserted in the next level
queue. The total number of elements in the NLFS is equal to the sum of the
degrees of all elements in the queue.

several orders of magnitude. Consequently the NLFS can be greater than the

queue by several order of magnitude. Moreover, it will expand and contract

very quickly. Thus, the number of BFS levels is always small compared to

the number of elements in the graph.

If there are k tasks, one for each element of the queue, during the expan-

sion phase, each task has to visit the neighbors of its element. The workload

among tasks is clearly unbalanced.

It is important to realize that, the size of the NLFS, is much greater

than the size of the other structures used in the algorithm. Thus, for most

implementations, the number of memory accesses during the BFS is in the

order of the NLFS size.

Now suppose that the graph is stored as an adjacency lists structure,



26 Large Graphs

and is loaded in the main memory of the system. At the beginning of each

iteration of the algorithm, each task reads a vertex from the CQ. Then it

starts to visit the neighbors of its vertex. Task 1 starts to visit the adjacency

list of vertex u1, Task 2 visits the adjacency list of u2 and so on. The

adjacency lists are not always in contiguous memory locations. The more

distant they are, the more expensive it will be to visit them, in terms of

memory accesses.

The vertices in the queue, change at each iteration, as well as the vertices

in the NLFS. Thus, memory accesses, are irregular and not predictable. It

should also be clear, by now, that they strongly depend on the structure

of the graph. For real-world graphs, the situation is exacerbated by the

enormous difference in the size of adjacency lists.

In Chapter 3 we will describe the issues in a parallel implementation on

a shared memory system. Distributed systems have different issues, related

to the communication among tasks, that will be described in Chapter 4.



Chapter 2

GPUs and CUDA overview

In the last 5 years, driven by a steadily growing request for real-time, high-

definition 3D graphics, Graphic Processor Units or GPUs have evolved be-

coming highly parallel, multi-threaded, processors with huge computing power

and very high memory bandwidth, as illustrated by Figure 2.1.

The reason behind the discrepancy in floating-point processing capability

between the CPU and the GPU is that the GPU is specialized for compute-

intensive, highly parallel computations - exactly what graphics rendering is

about - and therefore designed such that more transistors are devoted to

data processing rather than data caching and flow control, as schematically

illustrated by Figure 2.2.

In general, the GPU is especially well-suited to address problems that can

be expressed as data-parallel computations - the same program is executed

on many data elements in parallel - with high arithmetic intensity - the ratio

of arithmetic operations to memory operations. Because the same program is

executed for each data element, there is a lower requirement for sophisticated

flow control, and because it is executed on many data elements and has high
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Figure 2.1. Floating-Point operations per second for a CPU and a GPU.

arithmetic intensity, the memory access latency can be hidden with calcula-

tions instead of resorting to large data caches. Data-parallel processing maps

data elements to parallel processing threads. Many applications that process

large data sets can use a data-parallel programming model to speed up the

computations. In 3D rendering, large sets of pixels and vertices are mapped

to parallel threads. Similarly, image and media processing applications such

as post-processing of rendered images, video encoding and decoding, image

scaling, stereo vision, and pattern recognition can map image blocks and

pixels to parallel processing threads. As a matter of fact, many algorithms,

beside image rendering, may be accelerated by data-parallel processing, from

general signal processing or physics simulations to computational finance or

computational biology.
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Figure 2.2. In a GPU more transistor are devoted to data processing.

In November 2006, NVIDIA introduced CUDA, a general purpose par-

allel computing architecture (with a new parallel programming model and

instruction set architecture) that leverages the parallel compute engine in

NVIDIA GPUs to solve many complex computational problems in a more

efficient way than on a CPU. CUDA comes with a software environment that

allows developers to use C as a high-level programming language.

2.1 The CUDA programming model

The advent of multi-core CPUs and many-core GPUs means that mainstream

processor chips are now parallel systems. Furthermore, their parallelism con-

tinues to scale with Moore’s law. The challenge is to develop application

software that transparently scales its parallelism to leverage the increasing

number of processor cores, much as 3D graphics applications transparently

scale their parallelism to many-core GPUs with widely varying numbers of

cores. The CUDA parallel programming model is designed to overcome this

challenge while maintaining a low learning curve for programmers familiar

with standard programming languages such as C. At its core are three key

abstractions, a hierarchy of thread groups, shared memories, and barrier syn-
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chronization, that are simply exposed to the programmer as a minimal set

of language extensions. These abstractions provide fine-grained data paral-

lelism and thread parallelism, nested within coarse-grained data parallelism

and task parallelism. They guide the programmer to partition the problem

into coarse sub-problems that can be solved independently in parallel by

blocks of threads, and each sub-problem into finer pieces that can be solved

cooperatively in parallel by all threads within the block. This decomposition

preserves language expressivity by allowing threads to cooperate when solv-

ing each sub-problem, and at the same time enables automatic scalability.

Indeed, each block of threads can be scheduled on any of the available pro-

cessor cores, in any order, concurrently or sequentially, so that a compiled

CUDA program can execute on any number of processor cores as illustrated

by Figure 2.3, and only the runtime system needs to know the physical pro-

cessor count.

This scalable programming model allows the CUDA architecture to span

a wide market range by simply scaling the number of processors and memory

partitions.

CUDA C extends C by allowing the programmer to define C functions,

called kernels, that, when called, are executed N times in parallel by N differ-

ent CUDA threads, as opposed to single execution like regular C functions.

Each thread that executes the kernel is given a unique thread ID that is

accessible within the kernel through a built-in threadIdx variable.

For convenience, threadIdx is a 3-component vector, so that threads can

be identified using a one-dimensional, two-dimensional, or three-dimensional

thread index, forming a one-dimensional, two-dimensional, or three-dimensional

thread block. This provides a natural way to invoke computation across the

elements in a domain such as a vector, matrix, or volume. The index of a
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Figure 2.3. A multithreaded program is partitioned into blocks of threads that
execute independently from each other, so that a GPU with more cores will auto-
matically execute the program in less time than a GPU with fewer cores.

thread and its thread ID relate to each other in a straightforward way: for

a one-dimensional block, they are the same; for a two-dimensional block of

size (Dx,Dy), the thread ID of a thread of index (x, y) is (x + yDx); for a

three-dimensional block of size (Dx,Dy,Dz), the thread ID of a thread of

index (x, y, z) is (x+ yDx+ zDxDy).

There is a limit to the number of threads per block, since all threads of a

block are expected to reside on the same multiprocessor and must share the

limited memory resources available on that core. On current GPUs, a thread
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Figure 2.4. Grid of thread blocks.

block may contain up to 1536 threads. However, a kernel can be executed by

multiple equally-shaped thread blocks, so that the total number of threads is

equal to the number of threads per block times the number of blocks. Blocks

are organized into a one-dimensional, two-dimensional or tri-dimensional grid

of thread blocks as illustrated by Figure 2.4. The number of thread blocks

in a grid is usually dictated by the size of the data being processed or the

number of processors in the system, which it can greatly exceed.

The number of threads per block and the number of blocks per grid are

specified in the kernel call. Each block within the grid can be identified by

a multi-dimensional index accessible within the kernel through the built-in

blockIdx variable. The dimension of the thread block is accessible within the

kernel through the built-in blockDim variable.
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Thread blocks are required to execute independently: it must be possible

to execute them in any order, in parallel or in series. This independence

requirement allows thread blocks to be scheduled in any order across any

number of cores as illustrated by Figure 2.3, enabling programmers to write

code that scales with the number of cores. Threads within a block can co-

operate by sharing data through some shared memory and by synchronizing

their execution to coordinate memory accesses. More precisely, one can spec-

ify synchronization points in the kernel by calling a specific intrinsic function

that acts as a barrier at which all threads in the block must wait before

any is allowed to proceed. For efficient cooperation, the shared memory is

expected to be a low-latency memory near each processor core (much like an

L1 cache).

2.2 SIMT Architecture

GPU is a multiprocessor designed to execute hundreds of threads concur-

rently. To manage such a large number of threads, it employs a unique ar-

chitecture called SIMT (Single-Instruction, Multiple-Thread). The multipro-

cessor manages threads in groups of 32, called warps. Individual threads com-

posing a warp start together but have their own instruction address counter

and register state and are therefore free to branch and execute independently.

When one or more thread blocks are assigned to the multiprocessor, it di-

vides them into warps and each warp is then scheduled for execution. A

warp executes one common instruction at a time, so, to obtain the highest

concurrency and the best performances, all 32 threads should have the same

execution path. If threads diverge to follow different conditional branches,

the warp serially executes each branch. However branch divergence occurs
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only at the warp level. Different warps always execute instruction indepen-

dently.

2.3 Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their

execution as illustrated by Figure 2.5. Each thread has private local memory.

Each thread block has shared memory visible to all threads in the block and

with the same lifetime as the block. All threads have access to the same

global memory. There are also two additional read-only memory spaces ac-

cessible by all threads: the constant and texture memory spaces. The global,

constant, and texture memory spaces are optimized for different memory us-

ages (see [63]). Texture memory also offers different addressing modes, as

well as data filtering, for some specific data formats (see [63]). The global,

constant, and texture memory spaces are persistent across kernel launches

by the same application.

As illustrated by Figure 2.6, the CUDA programming model assumes that

the CUDA threads execute on a physically separate device that operates as a

coprocessor to the host running the C program. This is the case, for example,

when the kernels execute on a GPU and the rest of the C program executes on

a CPU. The CUDA programming model also assumes that both the host and

the device maintain their own separate memory spaces in DRAM, referred

to as host memory and device memory, respectively. Therefore, a program

manages the global, constant, and texture memory spaces visible to kernels

through calls to the CUDA runtime (see [63]). This includes device memory

allocation and deallocation as well as data transfer between host and device

memory.
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Figure 2.5. GPU memory hierarchy.

2.4 CUDA streams

CUDA supports concurrency within an application through streams. A

stream is a sequence of commands that are executed in order. Different

streams, on the other hand, may execute their commands out of order with

respect to each other or concurrently. The amount of execution overlap be-

tween two streams depends on the order in which the commands are issued

to each stream and whether or not the GPU supports overlap of data transfer

and kernel execution. Further information about streams can be found in

the CUDA documentation [63].
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Figure 2.6. Heterogeneous programming: serial code executes on the host
whereas parallel code executes on the device.

2.5 Clusters of GPUs

When the size of a problem is too large for the memory of a single GPU (that

currently is limited to a few GBytes) or there is the need to reduce the time
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Figure 2.7. Data exchange between GPUs before CUDA 4.0

to solution, it is possible to resort to clusters of GPUs. In general, GPUs can

not exchange data directly. In CUDA, up to version 4.0, the CPU had to

be always involved in the communication as shown in Figure 2.7. For every

data exchange between two GPUs, it was necessary to:

• upload data to the CPU (a device to host memory copy operation)

• if the GPUs were controlled by different CPUs, then exchange data

among CPUs. The Message Passing Interface (MPI) could be used for

that purpose to guarantee portability and scalability when GPUs are

plugged into systems interconnected by networks (e.g., Infiniband).

• download data to the GPU (host to device memory copy)

thus realizing an MPI+CUDA hybrid programming scheme. The need to

explicitly copy data between device and host memories, before and after any

MPI transfer call represents an issue from both efficiency and simplicity of

programming viewpoint.

Actually, CUDA 4.0 introduced the possibility to carry out memory copy

operations directly between two different GPUs. If such mechanism, named
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Figure 2.8. Direct memory copy between GPUs enabled by CUDA 4.0

in CUDA as peer-to-peer, is enabled, then the copy operation no longer needs

to be staged through the CPU (see Figure 2.8) and is therefore faster.

However, only recent NVIDIA GPUs support the peer-to-peer mechanism.

Moreover the source and the target GPU must be connected to the same PCI-

e root complex so the general issue remains unsolved.

Recently, two widely used MPI implementations, OpenMPI [4] and MVA-

PICH2 [3], started to offer the possibility to specify GPU memory pointers

in MPI functions, relieving the programmer from the management of data

transfers between GPU and CPU memories.

This feature represents an essential part of research efforts, taking place at

both hardware and software levels, aimed towards the definition of a gen-

eral mechanism for direct communication among GPUs, (at least without

explicit involvement of CPUs). On the hardware-side, research focuses on

the development of interconnection technologies able to transfer data from

GPU memory straight to the communication link. One solution supporting

this approach is the APEnet infrastructure (see section 4.4.1).



Chapter 3

Parallel BFS on shared

memory systems

3.1 Overview of shared memory systems

There is a great variety of shared memory parallel systems, very different from

each other. Generally, they have in common the ability for all processors to

access all memory, as a global address space. Changes in a memory location

due to a processor are visible to all other processors. However, each processor

has its own cache memory. A cache memory is a smaller and faster memory,

which stores copies of the data from the most recently used main memory

locations. Whenever one cache is updated with information that may be used

by other processors, the change needs to be reflected to the other processors

(cache coherence).

From the programming point of view, the global address space provides

a user-friendly perspective to memory. Data sharing among tasks is both

fast and almost uniform, due to the proximity of memory to CPUs. The
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main drawback is that synchronization, required to ensure correct access to

global memory, is a responsibility of the programmer. Moreover, to improve

performances, programmers must resort to cache optimization techniques

[13, 7].

The problem of accessing shared data can be generalized by considering

shared resources. A mechanism for ensuring that only one process accesses

a particular resource at a time is to establish sections of code involving the

resource as so-called critical sections and arrange that only one such critical

section is executed at a time. Several mechanisms, like the mutual exclusion,

can be applied to ensure that the result of the operation will be correct. This

is a classic problem covered in many textbooks [78]. In a shared memory

system, parallel operations are executed concurrently by different threads.

To ensure correctness in the critical sections of the code, programmers must

implement synchronization barriers and thread-safe functions. Thread safe

functions can be invoked from multiple threads simultaneously and always

produce correct results. Typically, these functions exploit several types of

atomic operations 1.

As discussed in chapter 2, NVIDIA GPUs have their own programming

model. At the block level, the programmer can use barriers to enforce syn-

chronizations among threads. Critical sections can be implemented via a set

of dedicated functions that in CUDA are called atomic-functions.

However, in CUDA, does not exist a cheap mechanism to synchronize

threads that belong to different blocks. The programming model encourages

the development of programs that are a a sequence of distinct kernels. The

1In concurrent programming, an operation (or set of operations) is atomic, lineariz-
able, indivisible or un-interruptible if it appears to the rest of the system to occur in-
stantaneously. Atomicity is a guarantee of isolation from concurrent processes. Addition-
ally, atomic operations commonly have a succeed-or-fail definition, they either successfully
change the state of the system, or have no apparent effect.
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kernel itself acts like a synchronization barrier among all the blocks (there

are several algorithms that benefit from this programming paradigm, as an

example the prefix-sum, see [71]).

In the next section we introduce the pseudocode for the parallel BFS al-

gorithm. Then we review recent works on both CPU and GPU architectures.

3.2 Overview of parallel algorithms for BFS

“Parallel BFS is similar to the sequential version, which starts with a source

vertex s and visits levels of the graph one after the other using a queue to

keep track of vertices that have not yet been visited. The main difference is

that each level is going to be visited in parallel” (source: Blelloch [22]).

Algorithms (2) and (3) describe two versions of parallel BFS. The main

difference between the two is that the former uses a queue whereas the latter

doesn’t. Algorithm 2 is a simple extension of the serial version where the

for loop on line 6 is carried out in parallel (the parallelization of loop 7 is

straightforward only on some architectures and, for the sake of simplicity, we

will discuss it later). As for the corresponding serial version, it performs a

linear amount of work, i.e., the time complexity is O(N +M).

The pseudo-code 2 does not show that, to ensure correctness in a shared

memory system, the parallel enqueue operation and the update of the parent

array, must be implemented in a careful way. As a matter of fact, the update

of the parent array gives rise to a benign race condition, but the enqueue

operation requires special care to ensure correctness and to achieve good

performances.

To clarify the issue, suppose to be in a shared memory system where

different parallel operations are executed by different threads. Each thread
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Algorithm 2 Level synchronous parallel BFS, with queues
CQ: Current level Queue
NQ: Next level Queue

1: p[u] = −1,∀ u ∈ V
2: CQ, NQ← ∅
3: p[s] = s
4: enqueue(CQ, s)
5: while CQ 6= ∅ do
6: for all u in CQ in parallel do
7: for all v ∈ Adj[u] (in parallel) do
8: if p[v] == −1 then
9: p[v] = u

10: enqueue(NQ, v)
11: end if
12: end for
13: end for
14: CQ← NQ
15: NQ← ∅
16: end while

Algorithm 3 Level synchronous parallel BFS, without queues
C: Current level set, C has |V | elements
N: Next level set, N has |V | elements
V is the set of all vertices of the graph G(V,E).

1: p[u]← −1, ∀ u ∈ V
2: C, N ← ∅
3: p[s] = s
4: C[s] = s
5: while C 6= ∅ do
6: for all u in C in parallel do
7: if C[u] != 0 then
8: for all v ∈ Adj[u] do
9: if p[v] == −1 then

10: p[v] = u
11: N [v] = v
12: end if
13: end for
14: end if
15: end for
16: C ← N
17: N ← ∅
18: end while
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is in charge for one vertex in the queue. In figure 3.1 is depicted the third

iteration of algorithm 2 on the graph from section 1.3.1. The iteration starts

with vertices 2, 4, 5 in the CQ. Vertex 8 is discovered simultaneously by the

two threads in charge of vertices 4 and 5. These two threads then enter the

loop on line 5. Both will write p[8] in an unpredictable order. However, this

is a benign race condition, any thread writes, the resulting BFS-tree will be

valid: the operation is idempotent. Once that the parent array is updated,

threads enter the critical section, i.e., they have to update the queue (line

10). The enqueue operation must be realized with a safe thread-parallel

function that, atomically, increases the queue counter, and then inserts the

new element.

During the same iteration, also the vertices 1 and 3 are discovered by two

distinct threads (see figure 3.1). However, the vertex 1 will not be added to

the queue, because of the if instruction on line 8. (It is noteworthy that, in

algorithm 2 and 3, the parent array is used to record the state of vertices,

i.e. if they are visited or not, most implementations use a separate array to

keep track of visited vertices).

In table 3.1 are shown the arrays used in the BFS algorithm (without copy

removal) with their corresponding elements, for each iteration of the BFS. By

comparison with table 1.1, it is apparent that the parallel version introduces

redundant work. If multiple copies are allowed in NQ, the array may expand

exponentially [22] and the resulting performances degrade. Addressing this

problem is not easy and may require to redesign the algorithm.

Algorithm 3 solves this problem at the cost of performing a greater,

asymptotically, amount of work.

In algorithm 2, at the beginning of each iteration, |V | threads are created

and each thread is in charge for one element of the array C. The algorithm
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1 2

3 4 5

6 7 8

Figure 3.1. In figure is shown the third level of the BFS started at vertex 1. In
parallel BFS the same vertex can be reached by two or more edges. As an example,
vertices 4 and 5 find vertex 8 from two different edges, whereas vertices 2 and 5
visit vertex 6. This can lead to store and process redundant information during
the run of the BFS.

Table 3.1. The table refers to the graph in figure (1.3). The BFS is started at
vertex 1 and new visited vertices are added to next level, according to algorithm
(2). The algorithm doesn’t prune the NLFS from multiple copies of the same
vertices (see text for details).

BFS LEVEL CQ NLFS NQ
0 1 2,4,5 2,4,5
1 2,4,5 1,3,4,5,6,1,2,8,1,2,6,8 1,3,6,1,8,1,6,8
2 1,3,6,1,8,1,6,8 2,4,5,2,2,5,7,2,4,5,4,5,7,2,4,5 7,7
3 7,7 6,8,6,8

starts, and each thread reads its element in the array C. Those threads, whose

elements are not zero (lines 6-7), visit the neighbors of their vertices and set

the parent when necessary (lines 8-13). Then, C and N are swapped. The

algorithm stops when the array C is empty.

In this algorithm there is no need for a queue, which means that there are
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no critical sessions. All the races among threads are benign. Moreover, the

array C has a fixed size and doesn’t have multiple copies of the same vertices.

This strategy has his own shortcomings. At the end of each BFS level it is

necessary to insert a synchronization barrier 2. Even worse, |V | threads

are created and launched at the beginning of each iteration, regardless the

number of the elements in the queue (or the number that have actually to be

inspected during the iteration). In the worst case, the algorithm performs a

O(N2 +M) amount of work.

3.3 Parallel BFS on multi-cores CPU

In the last few years, several studies of high performance computing, have

tackled the problem of traversing a large graph with real-world properties

(see Section 1.2).

Most often, the graph is generated by using special generators, like the

R-MAT generator, that we have introduced in Section 1.2.1). We will refer

to synthetic real-world graphs as R-MAT graphs. A new metric to evaluate

performances has been introduced by the Graph 500 benchmark and has

been adopted by most of recent works. This metric measures the number of

Traversed Edges Per Second (TEPS) during the BFS visit.

Different solutions have been proposed to mitigate the effect of irregular

memory access patterns, synchronization overhead and parallel insertion in

the BFS queue.

In 2006, Bader and Madduri [13] designed a parallel BFS for the Cray

2Hong et al. noticed however that synchronization have a small impact if the input
graph have real-world properties. First the number of levels is limited. Second, the
computational-intensive parts are restricted to only a small fraction of levels.
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MTA-2 architecture 3. Their implementation is based on algorithm 2. Loops

on line 5 and 9 are parallelized by suitable compiler directives. Their imple-

mentation uses optimized functions that atomically update the value of the

distance array (that is the output of their BFS) and insert elements in the

queue. They reported almost the same performance on R-MAT and random

graphs. For an R-MAT graph with 200 millions vertices and 1 billions edges

the code reached 0.5 GTEPS, by using 40 processors [7].

In 2010, Agarwal et al. [7] developed a multi-core multi-socket parallel

BFS for Intel Nehalem platforms. They implemented a level synchronous

BFS like algorithm 2. The first optimization they introduced is the use of

a global bitmask to mark visited vertices. This greatly reduces the working

size of the inspected set of vertices. They reported an improvement of the

processing rate by a factor of four (number of reads per unit time). The graph

and the bitmap were partitioned thorough the CPU-sockets so that only

local vertices were updated locally, information about non-local vertices were

exchanged. They noticed that those communications affect the performance

and developed a lightweight communication mechanism among groups of

cores residing on different sockets. With a 64 threads enabled Nehalem EX,

they reported 1 GTEPS for a R-MAT graph with 128 million vertices and 4

billion edges.

An interesting algorithm has been proposed in 2011, by Beamer et al. [20]

for the Graph 500 benchmark. They introduced a bottom-up approach in the

BFS visit. Basically, they noticed that, during each level of the BFS there

are a great number of wasted attempts to become a parent of a neighbor.

By using a bitmap to mark visited vertices reduces those attempts but there

is still redundant work, because each vertex on the frontier tries to become

3Shared memory system
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the parent of its neighbors. Instead of doing this, in their algorithm, each

unvisited vertex attempts to find any parent among its neighbors (a neighbor

is a parent if it is part of the frontier). In this approach, each child writes by

itself its parent and there is no need of atomic operations. Their results are

really remarkable, with a quad-socket 40-core Intel Xeon E7-8870 they report

5.1 GTEPS for a graph with 256 million vertices and 4B billion undirected

edges. They ranked 19 on the Graph 500 list, in November 2011.

Other solutions have been proposed in [36, 68, 38]. Optimizations are

always directed to improve bandwidth utilization and cache performances.

3.4 Parallel BFS on GPU

Many studies, in recent years, demonstrated that applications having a regu-

lar access pattern in memory and a high arithmetic intensity (ratio between

number of arithmetic and memory access operations) can be successfully

ported to GPU with a significant speed up in the execution time. Algo-

rithms with irregular memory access patterns, however, have been proved to

be more challenging and exhibit less spectacular improvements.

The main drawback, with algorithms that have an irregular “flow” is that

data structures vary at running time. During the BFS visit, at each iteration,

the size of the queue and of the NLFS vary greatly.

In the CUDA programming model 4, the number of threads and blocks

is statically assigned before the kernel starts and cannot be modified at run

time. Thus, the programmer typically implements a static mapping between

threads and data elements. With a static mapping, there is the risk of having

either too few threads, thus serializing most of the work, or too many threads,

4CUDA 5.0, that has been recently released, supports dynamic thread allocation.
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thus incurring in an unnecessary overhead for the generation and the release

of resources.

For instance, a naive way to map threads to data is to assign a thread

(defined on a 1D grid in the CUDA sense) to each vertex in the queue so

that the loop in line 6 of algorithm 2 will be executed in parallel. With this

assignment, the loop in line 7 is serialized, thus limiting the number of active

threads to the number of elements in the CQ.

Several works, having as target a single GPU, have adopted a differ-

ent strategy, based on algorithm 3. The static assignment of tasks to ver-

tices trivially maps to the data parallel GPU model. The work flow of each

thread is independent from other threads. Those implementations suffer two

main problems. First, the overhead associated with the launch of a con-

stant number of threads, even if they are not necessary. Second, the number

of threads is actually too small to visit the NLFS in parallel. In the most

computationally-intensive levels of the BFS, the work is almost serialized.

To bypass the problem of the static mapping, the resources actually re-

quired, can be computed at run time. For instance, once the CQ is built, it is

possible to calculate the total number of elements in the NLFS. This implies

that, in principle, we can run a kernel that computes the number of threads

and their offsets. Each offset corresponds to the index of the element to

which the thread will be assigned and will be used to correctly map threads

to data. Then, a second kernel, can actually performs the work (it can be the

status look-up of vertices in the NLFS). It turns out that, in some situations,

it is convenient to adopt such parallelization-strategy, instead of using the

static assignment. Unfortunately, the implementation of such strategy, is not

straightforward.

Summing up, the main issue, on a single device, is finding the right map-
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ping of data to threads so that the full power of the GPU is exploited. The

irregular flow of the algorithm, limits the number of concurrent working

threads. Compared to the CPU, another possible issue is the amount of

global memory that is limited to 6 GBytes for the latest NVIDIA FERMI

GPUs (whereas commodity CPUs can have hundreds of GBytes). This limits

the size of the graph that can be visited.

In 2007, Harish et al., [37] implemented a parallel BFS based on algo-

rithm 3, by using a CUDA enabled GPU (Nvidia GTX 280 with 1028 MByte

of memory). To mitigate the overhead of having |V | threads running at

each BFS iteration, they implemented an optimization, based on vertex-list

compaction, that reduces the number of active threads. The synchroniza-

tion between two subsequent levels of the BFS is implemented by splitting

the problem in two kernels. The first kernel uses two arrays that hold, re-

spectively, the old and the new frontier, in order to prevent read-after-write

inconsistencies. The second kernel swaps the frontiers and update the visited

array. Due to the limited size of the device memory, the size of the graph

they can visit is small, compared to the ones that can be visited with multi-

core CPUs. They reported an execution time of 0.5 sec for a R-MAT graph

with 10 million vertices and 120 million edges.

In 2009, Deng et al., [29] implemented the graph traversal by means

of the Sparse-Matrix Vector product (SMVP). They developed their own

implementation of the SMVP on CUDA. Their target are Electronic Design

Automation (EDA) applications, thus, the size and the kind of the graphs

they visited cannot be directly compared to those we have seen so far.

In 2010, Luo et al., [50] developed a new algorithm to perform a BFS

on a CUDA GPU (Nvidia GTX280). Their algorithm is queue-based, like

algorithm 2. However, to avoid the critical section of the parallel queue
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insertion, they introduced a hierarchical queue structure.

The idea is that, once the lower-level queues have been created, then

the location of each element in the higher-level queue are also known and

it is possible to copy the elements to the higher-level queue in parallel. To

completely avoid collisions in the building of the hierarchical queue, they

implemented the first queue-level at the warp level (see section 2.2). It is

important to notice that to guarantee correctness the low level insertion in the

queue is achieved via an atomic operation. They reported effective speed-up

with respect to the implementation in [37] for all the input graphs.

For instance for a scale-free graph with average degree ∼ 6 and 10M

vertices they reported a running time is 0.483s. However, for this kind of

graph, they need to pre-process the graph and convert it to a near-regular

graph, by splitting the big-degree nodes (the same idea has been previously

used in [55]).

In order to achieve better performances, in 2010, Hong et al. [41] in-

troduced a warp-centric programming model. Instead of assigning different

tasks to each thread, they allocated a chunk of tasks to each CUDA warp.

During neighbors expansion, the SIMD lanes of the warp, are used to visit

the adjacency lists of vertices assigned to the warp. They tackled directly

the mapping of data to threads, thus obtaining better results at the cost of

greater programming difficulties.

In a subsequent work [42] they proposed a hybrid CPU/GPU method that

takes advantage of the GPU only for the most computationally-expensive

levels of the BFS. They implemented algorithm 3, on the CPU and used

the optimization proposed in [7]. For the CPU (Nehalem Xeon X5550) they

reported nearly 0.8 GTEPS for an RMAT graph with 32 million vertices

and 1 billion edges. The CPU+GPU version shows some improvements with
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respect to the CPU only version but cannot be tested on graph of such size.

They reported 0.9 GTEPS for 32 million vertices and 240 millions edges on

a Fermi Tesla 2050.

In 2011, Merrill et al., [30] noticed that GPU architecture is not well

suited for problems that require dynamic and irregular data movement within

shared data structures. Their work is focused on parallelization strategies

that permit to map in an effective way threads to data, given their dynamic

allocation requirements. They suggest that, an efficient prefix sum operation

allows for a reorganization in which a sparse and uneven work becomes an

uniform and dense one. Moreover, they individuate as the basic element

of computation the CTA (Cooperative Thread Array), i.e., a block in the

CUDA programming model. Instead of assigning data to each thread, they

assigned chunks of data to the CTA.

Their work is the first that incorporates fine-grained (not global) parallel

adjacency list expansion at the CTA level. This means that large neighbors

lists are cooperatively strip-mined at the full width of the CTA. Another

important feature is the local duplicate detection which eliminates most of

the race conditions and redundant work. They reported a detailed analysis

of the expansion and contraction mechanism of the BFS over subsequent lev-

els pointing out that, the removal of duplicates, can reduce the number of

vertices in the NLFS by one order of magnitude. To achieve better perfor-

mances and also reduce the memory occupancy, they implemented a global

bitmask array to keep track of visited vertices. With a NVIDIA TESLA

2050, they report 1.8 GTEPS for an R-MAT graph wit 2 million vertices

and 32 million edges. Their GPU implementation of the BFS is the fastest

currently available (with really remarkable performances) but the size of the

supported graphs remains bounded by the GPU memory size.
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In the same paper the authors developed a multi-GPU version of the

code. The multi-GPU implementation relies on the VMA technology that

supports up to four devices, with a unified memory address space. By using

four GPUs, they report a result of 8 GTEPS, however, this result, refers to

the visit of a graph with an average degree equal to 256, a pretty high value.

For an input graph with an average degree equal to 16, the code does not

exceed 3 GTEPS. This value can be considered as a marginal improvement

with respect to the speed-up that the same authors report comparing their

results with those achievable on a single CPU (as an example with the result

in [7]). As a matter of fact, the reported strong scaling, discussed in [30] is

not spectacular: “We observe 1.5x, 2.1x, and 2.5x speedups when traversing

a R-MAT graph with 2 million vertices and 128 million edges using two,

three, and four GPUs, respectively” 5. Our distributed implementation have

a similar speed-up but using an Infiniband interconnection. In Chapter 4

(see section 4.3.5) we provide a more detailed comparison and discussion.

Authors Graph Type Num. of Vertices ef GTEPS Num Processors Arch. Type Output
Agarwal [7] R-MAT 221 16 0.6 2 sockets Nehalem EP parent
Agarwal [7] R-MAT 221 16 0.65 4 sockets Nehalem EX parent
Hong [42] R-MAT 225 8 0.4 2 sockets Nehalem X5550 distance
Hong [42] R-MAT 225 8 0.64 1 Tesla C2050 distance
Hong [42] R-MAT 225 8 0.68 1 CPU+GPU distance
Hong [42] R-MAT 221 8 0.6 1 CPU+GPU distance

Merrill [30] R-MAT 221 16 1.8 1 Tesla C2050 distance
Merrill [30] R-MAT 221 16 3.2 4 Tesla C2050 distance
Merrill [30] R-MAT 224 16 3.0 4 Tesla C2050 distance

Table 3.2. Comparison of different implementations of BFS on shared memory
systems. The column ef is the average degree so that, the number of edges is ef
times the number of vertices. While all the input graphs are R-MAT, the exact
values of the coefficients are available only for [30]. The output of the algorithm
is also important when comparing performances: the computation of the distance
array is faster with respect to the computation of the parent array. We tried to
compare similar instances of input whenever possible.

5from [54]
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Authors Graph Type Num. of Vertices ef GTEPS Num Processors Arch. Type Output
Bader [13] R-MAT 227 5 0.5 40 Cray MTA-2 distance
Agarwal [7] R-MAT 220 16 1.1 2 sockets Nehalem EP parent
Agarwal [7] R-MAT 222 64 1.3 4 sockets Nehalem EX parent
Hong [42] R-MAT 225 16 0.9 1 CPU+GPU distance
Hong [42] R-MAT 225 64 0.93 2 sockets Nehalem X5550 distance

Merrill [30] R-MAT 221 64 8.3 4 Tesla C2050 distance
Merrill [30] R-MAT 220 256 3.5 1 Tesla C2050 distance
Beamer [20] R-MAT 228 16 5.1 4 sockets/40 cores Westmer-EX parent

Table 3.3. Best performances reported by different authors for BFS on shared
memory systems.

In tables 3.2 and 3.3 we report the results of some of the works described

so far. The column ef is the average degree of the input graph. The number

of edges is ef times the number of vertices (the term ef stands for edgefactor,

see section 4.2.1). The first table is a comparison of similar results (simi-

lar size of the input graph and similar average degree) whereas the second

table shows the best performances achieved by the various implementations

discussed. Results obtained by [20] and [30] are noteworthy. Unfortunately,

both implementations relies on optimization techniques that cannot be used

in a distributed implementation. We will discuss this topic in more details

in Chapter 4, after we have introduced the basic concepts of the distributed

version of the BFS algorithm.
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Chapter 4

Parallel BFS on distributed

memory systems

Very large graphs do not fit the memory of a single system. To study them

it is necessary to resort to a distributed memory architecture. Generally, a

distributed system is a cluster of computing nodes interconnected via a wired

network. Each node is a system in itself that can be equipped with a single-

or a multi-core CPU. To carry out computations, the nodes of the cluster,

must exchange data each other. Graph algorithms have low arithmetic inten-

sity, that is, during the execution, the time spent in computation is a small

fraction of the whole. On a single processor, most of the time is spent in read

and write operations from/to memory. In a distributed environment, data

can be in a remote memory, thus, most of the execution time is spent send-

ing and receiving data over the communication network. It is noteworthy

that, latencies involved in communication are very high, compared to those

introduced by the access to data in memory. Moreover, the communication

patterns involved in graph algorithms, are irregular. Both the size of the



56 Parallel BFS on distributed memory systems

messages and the set of senders/receivers vary during the execution.

It is not surprising therefore, that, as reported by many authors, [79,

51, 23], the bottleneck of a distributed BFS, is the communications among

nodes.

The optimization of the communication among tasks is crucial for an

efficient BFS algorithm on a distributed architecture. In our case, we need

to take into account also the specific features of the computing node, that

is a GPU. Unfortunately, most of the optimizations described in section 3.3

and 3.4 are not applicable. In a distributed cluster of GPUs, it is not possible

to use an algorithm based on the pseudo-code in 3. For that parallelization-

strategy, the current and the next level frontier must be an array of exactly

|V | elements. Then, a trivial static mapping, makes use of a thread for each

vertex in the graph. However, our goal is to visit a graph whose size is such

that the number of vertices |V | is too high to store a global array of size

|V | in the memory of a single node. Vertices are scattered among nodes and

each node only holds a subset of the whole graph (it is apparent that vertices

distribution requires some care. The final number of edges assigned to each

task must be balanced.)

Harish [37] and Hong [42] used the static mapping. Hong, Agarwal, Mer-

rill and Beamer [42, 7, 30, 20] used a global bitmask array to mark visited

vertices. The bitmask highly reduces the size of the global array, however,

that solution is not scalable. The maximum size of the graph would be

limited by the maximum size of the array that fits the device memory. For

instance, the Graph 500 benchmark, provides a maximum size of 240 vertices.

Even using a bit for each element requires at least 128 GBytes of memory

that is much more than the size currently supported by a GPU.

In addition, all the shared memory optimizations speed-up the visit of
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local vertices. In the distributed problem, however, the time spent to execute

this operation is only a small fraction of the total running time which is

dominated by the part of the algorithm that copes with non-local vertices.

Algorithm 4 shows the pseudocode of a distributed BFS. The root ver-

tex is randomly selected and then, the BFS search starts locally on the task

in charge of the root and propagates to other tasks as the NLFS expands

through the graph. Tasks with vertices in the NLFS perform a local fron-

tier advancement, exchange information about other vertices with the corre-

sponding owner tasks and update parents, if needed.

With respect to the shared memory versions, the distributed version

presents a new computational part, the building of the array to send (line

22), the communication part (line 25-26) and the filtering of received vertices

(line 27-32).

To reduce the communication burden, it is possible to implement differ-

ent strategies. In the following section we review some of them from recent

studies. It is noteworthy, that, as far as we know, there are no other imple-

mentations of BFS on a distributed GPU cluster.
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Algorithm 4 distributed memory BFS

CQ is the current level queue.
NQ is the next level queue.

Require: s (starting vertex)
1: CQ← ∅
2: NQ← ∅
3: d[u]← −1,∀ u ∈ V
4: p[u]← −1,∀ u ∈ V
5: if s is local then
6: d[s] = 0
7: p[s] = s
8: enqueue(CQ, s)
9: end if

10: totlen← 1
11: while totlen > 0 do
12: u← dequeue(CQ)
13: sendarry ← []
14: recvarry ← []
15: for each v ∈ Adj[u] do
16: if v is local then
17: if p[v] == −1 then
18: p[v] = u
19: enqueue(NQ, v)
20: end if
21: else
22: sendarry.append((u, v))
23: end if
24: end for
25: SEND(sendarry)
26: RECV (recvarry)
27: for each (z, w) in recvarray do
28: if p[w] == −1 then
29: p[w] = z
30: enqueue(NQ,w)
31: end if
32: end for
33: CQ← NQ
34: NQ← ∅
35: totlen = allreduce(size(CQ))
36: end while
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4.1 Related Works

In 2006, Yoo et al. presented a distributed BFS algorithm for the IBM

BlueGene/L, a distributed system with 32,768 nodes, hosted at the Lawrence

Livermore National Laboratories [79]. Their work was focused on reducing

communication overheads by means of a two dimensional partitioning of the

graph. This partition greatly reduces the number of processors involved

in collective communications. They have also developed ad-hoc collective

communication functions for the 3D torus network of BlueGene/L. The code

was able to traverse a graph with 3 billion vertices and 30 billion edges, by

using thousands processors. They reported a minimum of 80 million edges

per second (MEPS), for graphs with low average degrees and a maximum

of 700 MEPS, with high average degrees. However, their implementation,

assumes an input graph with regular degree distribution, the scalability they

obtained may not be achievable with a graph with a skewed distribution.

In 2011 Buluç et al., [23] proposed a parallel BFS on a CPU-based clus-

ter (Hopper, AMD platform, 40000 cores). They implemented a two dimen-

sional decomposition, directly on the sparse matrix that represents the graph

in Sparse Matrix Vector Multiplication (SpMV) form. They reported 17.8

GTEPS for an undirected graph with 4.3 billion vertices and 68.7 billion

edges.

In 2012, Ueno et al., [73], developed an optimized version of the Graph 500

benchmark. By using 1366 nodes and 16,392 CPUs, they visited a graph with

236 vertices and 240 edges and obtained the impressive result of 103 GTEPS.

The base algorithm is a level synchronous BFS represented as SPMV with

a 2D decomposition. Further optimizations include the parallelization of the

send/recv operations and an improvement of cache utilization via the sorting
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of the visited bitmask array by decreasing the vertex degree. Their paper

also reviews the reference implementation and propose optimized methods for

the construction and validation phases of the benchmark. Even with those

impressive performances they reported communications as the bottleneck of

the implementation.

In 2012, Lv et al., [52], describe an MPI implementation of the Graph

500 benchmark in which the key idea is to keep events as asynchronous as

possible. They have separated communications from computation. Commu-

nication is assigned to a master thread and computation to many traversal

threads. The algorithm is implemented by using MPI + Pthreads (POSIX

threads) on a standard Linux environment. The current Nehalem platforms,

allow a maximum of ten concurrent memory requests. This feature can be

used on memory-bound algorithms, like BFS, by using a massive number of

threads, greater than the number of cores.

On a multi-core cluster of Xeon X5650, by using 2048 threads and 32 MPI

processes, they visited a graph with 230 vertices at the rate of 1.45 GTEPS.

In a later implementation, Lv et al. [51], tried to reduce communication

by working on the data structure that represents the graph. They imple-

mented the global NLFS as a bitmap array and compressed it, to reduce the

size of messages. To further improve the compression ratio they implemented

a directory to sieve the bitmap and make it even sparser for compression. By

using 512 nodes Xeon X5650, the code traversed a graph with 233 vertices,

achieving 12 GTEPS. As for the other implementations we have seen so far,

the communication among nodes remains the most time-consuming part and

accounts for ∼ 70% of the total running time.

We wish to highlight that all of these studies, with the exception of [79]

have been carried out in the last two years. Because they are contemporary
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to our study, we could not use the solutions they have introduced. On the

other end, it was clear from the beginning of our study, that, in order to

develop a scalable code, we had to address the issue of the communication.

4.2 BFS on a multi-GPUs architecture

As a first step to gain a better understanding of the problem, we developed a

straightforward implementation of the distributed BFS problem. Our work

follows the Graph 500 benchmark specifications. Hereafter, when necessary

to explain our choices, we describe some of the features and restrictions

imposed by the benchmark, but, for the full specifications, we refer to the

Graph 500 website (www.graph500.org).

The benchmark requires to generate in advance a list of edges with an

R-MAT generator. Then the actual benchmark consists of two parts: i)

Kernel1 corresponding to the generation of the data structure representing

the graph; ii) Kernel2 corresponding to the distributed BFS on the graph.

In the following sections we compare our GPU implementation to the ref-

erence CPU implementation provided by the Graph 500 benchmark 1. The

reference code is a multi-CPU implementation of a distributed BFS. The com-

munication among nodes is implemented by means of MPI. Communication

and computation are overlapped by using fixed size buffers for the messages.

The size of the buffers is tuned so that each task has enough vertices to

process locally while the next chunk of non-local vertices are exchanged.

To double check the result of our algorithm, we resort to the same val-

idation function provided with the reference code of the Graph 500. The

validation ensures that: i) the BFS is a tree and does not contain cycles;

1We used version 1.2 because more recent versions either fail to run or are too slow.
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ii) each tree edge connects vertices whose BFS levels differ by exactly one;

iii) every edge in the input list has either vertices with levels that differ by,

at most, one, or both vertices out of the BFS tree; iv) the BFS tree spans

an entire connected component’s vertices, and v) a node and its parent are

joined by an edge of the original graph.

4.2.1 Graph generation

We generate a synthetic graph according to the Graph 500 guidelines by

using the RMAT generator [25, 47]. To characterize the size of the graph,

the benchmark uses two parameters: SCALE and edgefactor. The number

of vertices in the graph is given by 2SCALE whereas the number of edges is

edgefactor × 2SCALE. The value of SCALE ranges from 26 to 42 whereas

the edgefactor is fixed to 16. To be compliant with the Graph 500 specs,

each vertex of the graph is represented by a 64-bit integer. On GPUs, where

memory is a limited resource, this requirement imposes a severe limitation.

Since the graph must be undirected, we double the number of edges (self

loops are not replicated). We generate N = 2SCALE vertices and M = 16×N
edges. Each edge joins two vertices, so the total number of elements is

32×2SCALE. On a single Nvidia GPU that currently may have up to 6 GBytes

of global (i.e., main) memory, the maximum SCALE can be 24. To carry out

a BFS, additional data structures are needed so that maximum SCALE can

not be reached. Moreover the Graph 500 specs require that, once created,

the data structure can not be modified. In the end, the maximum SCALE

of the Graph 500 benchmark that we are able to run on a single device is 21.

We resorted to the distributed generator provided by the Graph 500 group

as part of their reference code. It is a distributed CPU-MPI implementation

of an RMAT generator (here and in the following we refer to the simple
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reference MPI implementation, version 1.2 [2]).

Edges are assigned to tasks via a simple rule: edge (Ui, Vj) ∈ Pk if

Ui%#P == k, where #P is the number of tasks and % is the modulus

operator.

4.2.2 Distributed data structure

The data structure is created directly on the GPU. We use the well known

Compressed Sparse Row (CSR) data structure to represent the graph because

is simple and has reduced memory requirements. The CSR data structure

is composed by two arrays, an array of offsets (Offset Array) and an array

(Adjacency Lists) that contains the adjacency list of all the vertices in the

graph (see figure (4.1) panel B).



64 Parallel BFS on distributed memory systems

B

1

U3 V12

e1

U11 V5

e2

U6 V1

e3

U7 V12

e4

Uk Vl

ej

U(N-1) VM

em

input edge list

sorted edge list

SEND/RECV

Vj Vl Vz

U0 U1

Vi Vk VmVl Vn

U2

VmVp Vq Vt

P0 P1 P2

e1 e2 e3 e4 ej em

local edge list

Prefix-sum

Sort

m

u1 u2 u3 u4

0 3 18

un

Ml

0 . . . . .  

3

3 . . . . .  . . . . .  

7 7 7 7

7 . . . . .  . . . . . . . . l M. . . 

Vj Vk Vl Vt

local 
vertices

offset 
array

adj. list

A

Figure 4.1. Panel A depicts the data structure generation procedure. Initially,
the input edge list is sorted according to the first vertex U, partitioned among
processors and non-local data are sent to the corresponding processors. On the
receiving side, each processor collects the data in a local edge list. This list is then
sorted (as in an previous step) and a prefix-sum operation is used to build the the
CSR data structure represented in Panel B.
Panel B shows the Compressed Sparse Row data structure. To obtain the adja-
cency list of vertex i, one looks up the entry i of the Offset Array which contains
the starting index in the Adjacency List array. For convenience we store also the
last index in the Offset Array .
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The algorithm that builds the data structure from the input edge list

(generated as discussed in the previous section) is represented in figure 4.1.

The use of the prefix-sum operation, to compute offsets and to dynamically

map threads to data, permits to achieve a great level of parallelism and good

performances. Although we do not present the details of the generation of

the data structure, we report, for this part, a speed-up of about two order

of magnitude with respect to the MPI-CPU reference code provided by the

Graph 500 group (see figure 4.2).

Weak scaling plot, Kernel 1
(infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)
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number of processes

Figure 4.2. Weak scaling plot of the time required to build the CSR from the
generated edge list (Kernel 1 of the Graph 500 benchmark). Our multi-GPU
implementation outperforms dramatically the multi-CPU implementation of the
reference code provided by the Graph 500 group.
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4.2.3 Straightforward implementation

A straightforward way to implement a distributed BFS, on a multi-GPUs

cluster, is to use a queue-based method with atomic operations. In the

present work, the output of the BFS is the parent array or array of pre-

decessors. Finding the parent array is more expensive than computing the

array of distances, since information about predecessors must be stored and

exchanged at each BFS level.

The current level queue and the next level queue are maintained as two

separate arrays. Two additional arrays are required for sending and receiving

vertices. Those arrays are very large, their size 2 limits the overall size of

the graph that can be held locally. At each BFS level all vertices in the next

level set are visited in memory, without the need of extra arrays.

Each vertex in the queue is assigned to one CUDA thread. Each thread

visits the neighbors of its vertex and, first of all, verifies if they are local or

not. If neighbors are not local, they are sent to the respective owners along

with their parents. For local neighbors, the parent array is checked, to see if

they have been already visited. Vertices that have never be visited, are added

to the next level queue. To maintain consistency of the queue, the enqueue

mechanism relies on atomic operations. Each task sends and receives edges;

for each received edge, it checks and enqueues the first vertex of the edge, if

necessary (figure 4.3 A).

Despite of its simplicity, this algorithm has many issues: first the workload

is not balanced among the threads. As shown in figure (4.3) B, thread 1 visits

an adjacency list with L1 elements whereas thread 2 visits an adjacency list

with L2 elements. In “real world” graphs, the two adjacency lists L1 and L2

2We found that, for an undirected graph with M edges, each of the two arrays must
have a minimum of 5×M entries.
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Figure 4.3. Panel A): Straightforward BFS: algorithm execution flow. Each
vertex in the queue is associated with one CUDA thread. Each thread visits the
adjacency list of its vertex (see text for explanation). Panel B): Straightforward
BFS: Issues. Threads workloads are unbalanced. t1 visits L1 elements whereas t2
visits L2 elements. Panel C): The NLFS, the array of neighbors, contains multiple
copies of the same vertex

may differ by orders of magnitude. Moreover, memory access patterns are

typically irregular and threads that belong to the same warp may need to

access memory regions that are non-contiguous and/or far away each other.

Finally, the number of memory accesses depends on the number of elements

in the NLFS, which can be much greater than the number of threads.

Besides that, there is a communication issue. During phase 1 (figure (1.4))

the queue is expanded to the NLFS, a set that is built from the adjacency

lists of each vertex in queue. In the CSR data structure, like in any simple

representation of a graph, the adjacency lists contain multiple copies of the
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same vertices (see figure 4.3 C). As a consequence, the NLFS may contain

several copies of the same vertices. Those copies are sent directly to their

owners, thus producing a useless communication overhead. Another potential

issue is that the algorithm relies on atomic operations that are notoriously

expensive on GPUs.

(B
ill
io
n
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7-

Straightfwd BFS

Straightfwd BFS

(B
ill
io
n
)

0.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)
Weak scaling plot

number of processes

Figure 4.4. Straightforward multi-GPU implementation versus multi-CPUs ref-
erence implementation. Left panel: On y-axis the TEPS, on x-axis the number
of tasks. The multi GPU code (in red) shows some improvements. On the right:
single GPU implementation of the straightforward algorithm.

Results

Figure (4.4) is a weak scaling plot of the Traversed Edges per Second (TEPS)

during the BFS visit obtained with a straightforward multi-GPU implemen-

tation. As a comparison we report also the results of the reference code

provided by the Graph 500 group. The plot shows that there are some im-

provements by using GPUs but they are not spectacular. The right panel
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shows the result of a single GPU implementation of the straightforward algo-

rithm. We highlight that, to have the same performances with the distributed

version, we need 16 GPUs. This gives a measure of the amount of extra work

required by the distributed implementation. The main reason is the inabil-

ity of processing non local edges so we have first to distinguish and then

exchange them. Basically in the distributed algorithm the running time is

dominated by the part dealing with non-local-edges.

4.3 Optimized BFS on a multi-GPU platform

4.3.1 Motivation

The straightforward implementation, discussed previously, helped us to iden-

tify three main issues: the unbalanced workload among threads, the use of

atomic operations and the communication of duplicated data. The first two

refer to the parallelization on a single GPU whereas the last one has been

reported in several papers that deal with a distributed implementation of the

BFS (discussed in section 4.1).

The workload imbalance is a direct consequence of the trivial mapping

employed in the straightforward algorithm that assigns threads to vertices

in the BFS queue. The problem is exacerbated for the graphs we consider.

For such graphs the number of elements in the queue and the number of

elements that have to be visited at each BFS level (namely the elements

of the NLFS) can differ by orders of magnitude. As far as we know, there

are no general solutions to address balancing problems of this kind. In [30]

it is described a sophisticated approach that reduces the load imbalance by

mapping threads to data at the CTA level (i.e. the CUDA block level, see
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section 3.4). However, the optimization relies on the usage of a bitmap.

We tackled the problem directly with the aim of fully exploiting the GPU

parallelism. We assume that a good solution would be having as many ac-

tive threads as the number of elements in the NLFS so that each thread is in

charge of only one vertex and the whole NLFS can be processed in parallel.

As shown in figure (4.5) mapping threads to NLFS elements is not trivial. In

the following sections we will describe the details of our novel technique to

map threads to data that achieves a perfect load balancing by employing a

prefix-sum operation and a binary search function. Our mapping allows for

building, in parallel, a contiguous array that represents the NLFS. Once the

array is available, several techniques can be applied to reduce the commu-

nication overhead. As pointed out in section 4.2.3, the NLFS may contain

several copies of the same vertices. Those copies are sent directly to their

owners, thus producing a useless communication overhead. Multiple copies

can be removed by simply perform a pruning operation. We implemented it

by means of a combination of Sort and Unique operations that remove all

the duplicates from the NLFS array. This strategy has two major advan-

tages: first it reduces the number of exchanged elements and consequently

the number of processed vertices. Moreover, it reduces the number of atomic

operations required to enqueue local vertices. Actually, by performing the

pruning operation on the whole NLFS we remove also multiple copies of local

vertices and thus we reduce the number of elements that need to be processed

during the local enqueue phase.

4.3.2 Algorithm overview

The algorithm is queue-based and returns the parent array. As in the

straightforward approach, we use two arrays to store the current and the
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Figure 4.5. The entry of the NLFS are not contiguous in the Adjacency List of
the CSR data structure. The operation of mapping threads to the NLFS elements
is not trivial.

next level queue, plus two arrays to store edges that need to be sent and re-

ceived. Starting from the queue, we build an array of offsets and compute m,

the total number of elements in the NLFS. Then we start m threads. Each

thread computes the CSR index of the NLFS element that the thread will

handle. We read the NLFS in parallel and prune it from multiple copies of

the same vertices. Then we exchange vertices with other tasks, visit new ver-

tices and update the parent array. The algorithm stops when all the queues

are empty. In each iteration of the BFS the algorithm performs the following

steps:

A) Building an array of offsets and computing m the total number

of elements in the NLFS. For each element in the current level

queue, we start one thread. We build the array Qdegree, by substituting

each vertex with its degree. Then, we perform a prefix-sum operation

on Qdegree to build the NewOffset array. The last element of NewOffset
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Figure 4.6. Panel A, B, C, D represent the steps performed by the algorithm
(see text for details).

is the total number of elements, that we call m, in the NLFS. We also

build another array, Qoffset, by substituting each vertex with its starting



4.3 Optimized BFS on a multi-GPU platform 73

offset in the CSR data structure. The Qoffset array is necessary to carry

out the next step (figure 4.6 A).

B) Mapping threads to entries of NLFS: building a contiguous

array for the NLFS. In this step we use m threads. Each thread

performs a binary search on the NewOffset array and, by using the old

offset stored in Qoffset, computes the index of its entry in the Adjacency

List array of the CSR, as follows:

i = binsearch(NewOffset, thread_id, nelements);

t_off = thread_id - NewOffset[i];

index = Qoffset[i] + t_off;

Where thread id is the global thread identification index and nelements

is the number of elements in the NewOffset array. The binsearch func-

tion returns the index of the entry in the NewOffset array, whose value

is lower or equal, to threadid.

Then, each thread reads from the Adjacency List the element corre-

sponding to the index and writes it in a new array: the Next Level

Frontier array (that has m elements). In the end, we have a contigu-

ous array of all neighbors for the given queue (figure 4.6 B).

C) Pruning of the Next Level Frontier array. We use m threads to

carry out a sort of the Next Level Frontier array. When the array is

ordered it is easy to compact it to n unique elements. It is important to

realize that the ratio between the number of elements after and before

the pruning operation can be very small (see figure 4.7). This part

of the code is quite demanding in terms of memory. Since we want
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to build the parent array, we have to carry the information about the

parent of each vertex in the Next Level Frontier array, that is we have

to sort the vertices keeping the payload of the parents (figure 4.6 C).

D) Exchange of vertices with other tasks and update of the parent

array. We store all edges to be sent in the array EdgesToSend and sort

it with respect to the owner of the first vertex of each edge. Each task

i sends to each other task j the elements of its array EdgesToSend that

belong to it (that is, whose owner is task j) while keeping its own part.

Then the task waits until it receives all the edges it owns from other

tasks and collect them in EdgesRecv . This array, along with the local

part of the EdgesToSend array, obviously contains only local vertices.

In the end, local vertices that have never been visited, are added to the

next level queue. We highlight that the number of elements to be sent

and received differs from task to task and among different BFS levels.

To manage this situation, MPI collective primitives are used, at each

BFS level, to know the actual number of vertices to be received.

Simple classic models (like PRAM) can hardly provide realistic bounds

for the performances on modern parallel architectures. However, to gain

some insight on the complexity of the presented algorithm we evaluated the

complexity of the four phases described above, as if they were executed by

a single task. The most expensive operation of the first two steps is the

binary search that performs O(|M |log(|V |)) operations in the worst case. In

step C the sorting operation, implemented via a radix-sort has a worst case

complexity ' O(64 ∗M) since each element is encoded as a 64-bit integer.

The last step D has complexity ' O(M + N). Since log(|V |) is always less

than 64, the overall complexity is bounded by O(M +N).
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Figure 4.7. Unique ratio for the most expensive BFS levels. The unique ratio
is the ratio of elements after and before the pruning operation. A small value of
the ratio corresponds to a more effective pruning operation. When the number of
tasks increases, the ratio increases accordingly because the number of local copies
is lower. However, even with 64 tasks the third level has a unique ratio ∼ 0.2,
which means that 80% of the elements are removed.

4.3.3 Results

In figure (4.8) we compare the sort-unique version with the straightforward

implementation and the reference multi-CPU implementation. The sort-

unique BFS is up to 5 times faster than the straightforward algorithm. With

64 GPUs we can traverse more than 1 billion edges per second.

In panel C of figure (4.9) we report a time breakdown of the algorithm for

32 tasks. It is apparent that the sum of all CUDA kernels takes most of the
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Figure 4.8. Comparison of the different BFS algorithms. The sort-unique algo-
rithm is up to 5 times faster than the straightforward algorithm.

time. Panel B of figure (4.9) shows that computations and communications

among tasks are well balanced (we report here the results for 16 tasks because

the plot is more clear but the situation does not change for higher numbers

of tasks). Panel A of figure (4.9) shows the computation and communication

time of one task (i.e., task 0) in a run with 32 GPUs. The pruning procedure

(sort and unique) is not only the most consuming part, it actually dominates

the running time. The point to point communication is the second most

expensive part of the algorithm, whereas the binary search is not as expensive
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as one could imagine. Our data to threads mapping has been demonstrated

to be very effective and it may be used also in other situations, where there

are unbalanced workloads and irregular memory accesses.

BFS LEVEL 1 2 3 4 5 6 7
CLQ 0 386 412287 576282 6046 18 0
NLF 0 2783060 60151972 2201992 6137 18 0
LV 0 52128 364684 39888 166 18 0
RV 772 4480536 22932116 2513692 12336 28 0
NLQ 0 386438+25849 544807+31475 5963+83 18 0+0 0
QR 0 0 0.01 0.26 0.99 1.0 0
UR 0 0.6 0.19 0.58 1.00 1.0 0

CLQ = Current Level Queue
NLF = Next Level Frontier
LV = Local Vertices
RV = Received Vertices
NLQ = Next Level Queue = Enqueued Received + Enqueued Local
QR = Queue Ratio
UR = Unique Ratio

Table 4.1. Number of elements of the main arrays used in the algorithm. 64
tasks, SCALE = 227

SCALE N kernels time mpi time NLFS NLFS-after-SU

21 1 0.68 0.0 37651259 1043789
22 2 0.85 0.1 37906934 1678486
23 4 0.85 0.4 37739872 2688755
24 8 0.85 0.5 58416610 4502903
25 16 0.9 0.6 45334918 5519616
26 32 0.95 0.7 58863642 8703456
27 64 1.01 0.9 42174869 9316248

Table 4.2. The first column reports the size of the graph: |V | = 2SCALE ; the
second column is the number of GPUs; the third and the fourth columns are
respectively the sum over all BFS levels of the execution time spent in computation
(CUDA kernels) and in communication (MPI primitives); the last two columns are
the number of elements in the NLFS before and after the sort-unique operation.
The number of elements in the NLFS refers only to the third level of the BFS
(which is the most time consuming).

Table 4.1 shows the number of elements of some working arrays at each
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iteration of the BFS for a run with 64 tasks. At level 3 both computation

and communication become very expensive because the number of elements

reaches its peak value. Table 4.2 shows the timings of the computational

and communication parts of the algorithm. They refer, respectively, to the

sum over all BFS levels of the execution time of all CUDA kernels and all

MPI communications. It is apparent that the time spent in computation

is almost constant when the number of GPUs increases, whereas the time

spent in communication increases. The reason is that the size of the sub-

graph assigned to each GPU is approximately constant (|V | ' 221 where the

equal holds for the run with 1 GPU only). Then, to increase the size of the

whole graph more GPUs are added. It is clear that the computation on each

GPU remains almost constant. On the other end by increasing the number of

GPUs the number of exchanged messages increases accordingly. The small

growth in the computational time is due to an increase in the number of

element received that have to be enqueued.

Figure 4.10 shows the performance of our algorithm when the average

degree (edgefactor) of the input graph is increased. Clearly the pruning

operation is more effective when the value of the edgefactor is higher and the

performance increases accordingly. Figure 4.11 shows the weak scaling plot

of the code for a Random (Erdös and Rény) input graph. Random graphs

have a degree following a Poisson distribution and a more regular structure.

The algorithm shows good scaling properties also on this kind of graph.

4.3.4 Graph 500 benchmark

We ran our code on the “Todi” Cray XK6 cluster of the Swiss Center for

Scientific Computing (CSCS), equipped with NVIDIA Tesla X2090 connected

by Infiniband QDR and submitted our results to the Graph 500 benchmark.
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With 128 GPUs we visited a graph with SCALE = 228 and reached 3 billions

TEPS. We entered the Graph 500 ranking at position number 20 (November

2011 ranking).
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Figure 4.9. Panel A: Running time of various parts of the algorithm, task 0 of
32. The pruning procedure dominates the running time, then it comes the point
to point communication part. There are only few levels of the BFS in which the
number of elements is very large. Those are the most expensive computational
levels. Panel B: Sum of running time of all kernels and all communications over
BFS levels. Each bar is a different task. This plot shows that computation and
communication among tasks are reasonably balanced. Panel C: Sum of running
times of different parts of the algorithm. CUDA kernels execution is the most time
consuming part.
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Figure 4.10. The performance of the code is evaluated by varying the average
degree (EF) of the input graph. The SCALE of the problem on each GPU is equal
to 219 so that with 64 GPUs the total SCALE is 225. It is apparent that the code
performs better for higher value of EF. For EF=128 the maximum scale (SM)
reachable with 64 GPU is 224.
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Figure 4.11. Weak scaling plot for a Random (Erdös and Rény) input graph.
The SCALE on each GPU is 220. For comparison we show also the data of an
R-MAT graph with the same size.



4.3 Optimized BFS on a multi-GPU platform 83

4.3.5 Comparison among implementations on different

architectures

In Tables 3.2 and 3.3 of section 3.4 we reported results obtained on shared

memory systems by various authors. In Tables 4.4 and 4.5 we summarize the

results of some distributed memory implementations.

As pointed out by Bader et al. [13] and by looking at results, it is appar-

ent that shared memory systems perform better than distributed memory

systems for (relatively) small size graphs. To achieve more than 3 GTEPS

most of the distributed implementations needs hundreds of tasks. Distributed

implementations focus on huge size graphs that can be visited only by means

of distributed architectures.

As far as we know our implementation is the first on a cluster of GPUs.

For this reason we first compare it to the work of Merrill et al. [30] and then

to some of the implementations on cluster of CPUs.

The work in [30], resorts to a duplicate removal procedure but with a

completely different approach, by using a heuristic that removes a high per-

centage of duplicates at CTA level. In contrast, our algorithm eliminates

every duplicate in the Next Level Frontier Set (at a global level).

The last row in Table 3.2 shows the result obtained in [30] with four

GPUs when visiting a graph with 16 million vertices having an average de-

gree equal to 16. We recall that the multi-GPUs implementation relies on the

VMA technology that supports up to four devices, with a unified memory

address space. In comparison our code needs 8 GPUs to visit a graph with

16 million vertices and we achieve a performance of 0.3 GTEPS. However,

besides the apparent difference between the two platforms, it is also impor-

tant to observe the differences in the characteristics of the visited graphs and,
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even more important, the differences between the specifications followed by

the two implementations. First, the 4 GPUs used in [30] have a unified

memory address space with a reduced latency, compared with a standard

network interconnection like Infiniband. Moreover, Merrill et al., didn’t fol-

low the G500 specifications that impose severe limitations, first of all, the

requirement that each vertex of the input graph must be represented as a

64-bit integer. This requirement has a considerable impact when designing

an algorithm for a system, like the GPU, where the global memory is a lim-

ited resource (see section 4.2.1). As a final remark, in table 4.3 we report

the strong scaling of both codes. It is apparent that we have a scaling very

similar to that reported by [30] but using an Infiniband interconnection (and

visiting a graph with a smaller average degree).

N procs N Vertices ef GTEPS Sort-Unique Speed-up Merrill [30] Speed-up
1 221 16 0.049 1 1
2 221 16 0.078 1.6 1.5
4 221 16 0.10 2.1 2.5
8 221 16 0.126 2.6
16 221 16 0.161 3.2
32 221 16 0.376 7.6

Table 4.3. Strong scaling result of our implementation. For comparison we
report the speed up presented in [30] when traversing a R-MAT graph with 2
million vertices and 128 million edges (221 vertices and ef= 64) using two and four
GPUs.

The main difference between our work and those discussed in section 3.4

and 3.3, is that the size of the graph that can be visited on shared memory

systems is limited by the amount of global memory of the system. From [30],

it is apparent that the largest graph that can be handled by using 4 GPUs,

has 225 vertices and an average degree up to 32. In a distributed algorithm,

the number of vertices that can be visited is limited only by the number
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of available nodes. By using 128 GPUs, we can traverse a graph with 228

vertices and 32 ∗ 228 edges.

Implementations of distributed BFS on clusters of CPU have been tested

up to thousands of nodes and, not surprisingly, achieve performances higher

than those we can obtain with slightly more than one hundred GPUs. More-

over, the large amount of main memory, available on each node of a CPU

cluster and the reduced number of concurrent tasks, allows for the use of

different strategies to improve performances on graph algorithms.

In Tables 4.4 and 4.5 we summarize the results of several distributed

implementations. In the first table we compare similar results (small number

of nodes with a relatively small graph), the second table shows the best

performances achieved by various implementations.

By looking at Table 4.4, it is clear how our work can be more easily

compared with those of Lv et al., [52, 51], because both follow the Graph

500 specifications and use a relatively small number of nodes. In table 4.6 we

compare our performances with those reported in [51, 52]. With 128 GPU

we perform better than [52] and our code shows better scaling properties.

Compared with [51], our performance is lower but, in that work, Lv et al.,

used input graphs with a significantly larger size. We also perform better

than the Nehalem implementation in [23] and like 102 nodes of the Cray

XT6. It is clear that all the CPU implementations visit graphs with a larger

size that, almost always, corresponds to a higher result in terms of TEPS.

It is worth to note how, all the distributed implementations on CPU

clusters, resort to a bitmap (introduced by [7] see section 3.3) to speed-up

memory operations. Unfortunately, that approach, can be hardly used on a

GPU because of the limited size of the global memory and the cost of atomic
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Authors Graph Type Num. of Vertices ef GTEPS Num Processors (CPU/GPU) Arch. Type Output
Yoo [79] Random Peak 10 0.08 256 IBM BlueGene/L ?

Buluç (1D) [23] R-MAT 229 16 2 128 (512 cores) Cray XT4 distance
Buluç (2D) [23] R-MAT 229 16 1 128 (512 cores) Cray XT4 distance
Buluç (1D) [23] R-MAT 229 16 9 1024 (4096 cores) Cray XT4 distance
Buluç (2D) [23] R-MAT 229 16 5 1024 (4096 cores) Cray XT4 distance
Buluç (2D) [23] R-MAT 230 16 3 102 (1224 cores) Cray XT6 distance
Buluç (2D) [23] R-MAT 230 16 8 834 (10008 cores) Cray XT6 distance
Buluç (2D) [23] R-MAT 222 16 0.266 32 (128) Intel Nehalem distance
Buluç (2D) [23] R-MAT 222 16 0.35 64 (256) Intel Nehalem distance
Buluç (2D) [23] R-MAT 224 16 0.567 32 (128) Intel Nehalem distance
Buluç (2D) [23] R-MAT 224 16 0.603 64 (256) Intel Nehalem distance

Lv (Multicore)[52] R-MAT 229 16 0.9 32 (192 cores) Xeon X5650 parent
Lv (Multicore)[52] R-MAT 228 16 1.2 64 (384 cores) Xeon X5650 parent
Lv (Multicore)[52] R-MAT 230 16 1.2 64 (384 cores) Xeon X5650 parent

Lv (Compression)[51] R-MAT 229 16 2.2 64 Xeon X5650 parent
Lv (Compression)[51] R-MAT 231 16 6.2 256 Xeon X5650 parent
Lv (Compression)[51] R-MAT 232 16 12 1024 Xeon X5650 parent

Ueno (2D) [72] R-MAT 234 16 4 128 (768 cores) Xeon X5670 (Tsubame) parent
Ueno (2D) [72] R-MAT 235 16 7.2 256 (1536 cores) Xeon X5670 (Tsubame) parent

Sort-Unique R-MAT 226 16 0.74 32 Tesla 2070 parent
Sort-Unique R-MAT 227 16 1.24 64 Tesla 2070 parent
Sort-Unique R-MAT 227 16 1.8 64 Tesla 2090 parent
Sort-Unique R-MAT 228 16 3.0 128 Tesla 2090 parent

Table 4.4. Comparison of different implementations of distributed BFS. We
report results obtained with a similar number of CPU/GPU and a comparable size
of the input graph. The implementation in [23] follows many of the Graph 500
specifications, [52, 51] and our (Sort-Unique) implementation follows strictly the
Graph 500 rules. We highlight that the number of processors is the total number
of CPU/GPU so a node with 2 CPU or 2 GPU counts as 2 processors. (The results
for [79] are reported in [7]). Some of the reported values are approximations that
we have extrapolated from the plots included in the papers.

operations that would be required to maintain the bitmap coherency.

Most works also implement 2D decomposition on the sparse matrix that

represents the graph in a SpMV approach [23, 73]. This approach reduces

the number of tasks involved in the communication. As shown in [23] the 2D

approach is computationally expensive and is not always convenient. How-

ever, it becomes very effective when the scale of the problem is large enough

and the communication involves thousands of processors.

Muntes et al. [56] devised a new partitioning scheme that increases the

probability of finding neighbors in the same node. This technique seems to

be very effective even when the number of nodes is small. A major draw-

back is that the new partitioning may generate disconnected subgraphs in a
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Authors Graph Type Num. of Vertices ef GTEPS Num Processors (CPU/GPU) Arch. Type Output
Yoo [79] Random Peak 200 0.73 256 IBM BlueGene/L ?

Buluç [23] R-MAT 232 16 17.8 3300 (40000 cores) Cray XT6 distance
Lv [51] R-MAT 232 16 12.1 1024 (6144 cores) Xeon X5650 parent

Ueno [72] R-MAT 236 16 22.8 1024 (6144 cores) Xeon X5670 (Tsubame 2.0) parent
Ueno [73] R-MAT 236 16 103 1366 (16362 cores) Xeon X5670 (Tsubame 2.0) parent

Table 4.5. Comparison of different implementations of distributed BFS. Here we
show the maximum performances reached by each implementation we analyzed.

Sort-Unique Lv [52] Lv [51] Buluç [23]
N procs N Vertices GTEPS N procs N Vertices GTEPS N procs N Vertices GTEPS N procs N Vertices GTEPS

4 223 0.15 4 224 0.3 128 224 0.567
16 225 0.45 16 226 0.5 256 224 0.603
64 227 1.3 64 228 1.2 64 229 2.2 128 229 2
128 228 3.0 256 230 2.2 256 231 6.2 102 230 3

1024 232 5.6 1024 233 12 834 230 8.5

Table 4.6. Direct comparison of our results with three different distributed im-
plementations.

partition.

4.4 APEnet interconnection

In this section, we present an extension of our work by using a different

custom interconnection technology (APEnet+) that allows for direct data

exchange among GPUs (with no intervention of the hosting CPU as in the

Infiniband case, see Section 2.5). Although APEnet+ is still in a develop-

ment and testing stage, the reported adaptations of the original algorithm

required by the GPUdirect technology can be of interest since the results,

albeit preliminary, show a clear advantage with respect to Infiniband.

4.4.1 APEnet

APEnet is a 3D Torus interconnection technology proposed in its first version

[9] back in 2004 and which is now being developed in its second generation

version, called APEnet+ [10]. It has a direct network design which com-
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bines the two traditional components, the Network Interface (NI) and the

Router (RTR). The Router implements a dimension ordered static routing

algorithm and directly controls an 8 ports switch with 6 ports connecting the

external torus link blocks (X+, X−, Y +, Y −, Z+, Z−) and 2 local packet

injection/extraction ports. The APEnet+ Network Interface comprises the

PCIe X8 Gen2 link to the host system, for a maximum data transfer rate of

4+4 GB/s, the packet injection logic (TX) with a 32KB transmission buffer,

and the RX RDMA logic which converts the destination virtual memory

address in a scatter list to physical (bus) memory. The virtual-to-physical

address mapping is currently implemented in software on a microcontroller

co-located in the FPGA (Altera NIOS2) that equips the board.

APEnet+ HW architecture is designed around a simple Remote Direct Mem-

ory Access (RDMA) programming model. The model has been extended with

the ability to read and write the GPU global device memory, directly over the

PCIe bus, by exploiting the Nvidia GPUdirect Peer-to-Peer (P2P) HW pro-

tocol. The P2P HW protocol is natively supported by both current Nvidia

Fermi and new Kepler class GPUs, and is used to implement the inter-GPU

memory access features available since the release of CUDA 4.0 for GPU

plugged to the same PCI-e switch complex.

In APEnet+ the GPU related P2P features are exposed by minimally ex-

tending the APEnet+ programming model: GPU memory buffers can be

posted as APEnet+ RX buffers and remotely accessed by using their virtual

memory start address. GPU memory buffers can also be used as TX data

buffers, and in that case they are automatically mapped into the APEnet+

virtual-to-physical translation table.

When a GPU memory area is used as either a target or source buffer in a

transmission, the mapping information of that area are firstly retrieved from
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Table 4.7. Traversed Edges Per Second, Strong Scaling, |V | = 220

NP INFINIBAND APENET
1 6.25389e+07 6.24038e+07
2 7.8924e+07 1.01101e+08
4 8.20081e+07 1.26543e+08

Table 4.8. Traversed Edges Per Second, Weak Scaling, |V | = 2SCALE

NP SCALE INFINIBAND APENET
1 19 5.60594e+07 5.9808e+07
2 20 7.8924e+07 1.01101e+08
4 21 1.08637e+08 1.46482e+08

the GPU device driver and subsequently used to manipulate the GPU in

such a way that the buffer can be accessed directly on the PCIe bus.

APEnet+ is being actively improved in both HW and SW, so perfor-

mance is expected to increase in the next few months. Nonetheless, direct

GPU memory alignment access constraints, i.e. address and burst length

multiple of 32 bytes, are probably going to stay for the near feature until

more sophisticated HW blocks are introduced in APEnet+.

4.4.2 Implementation on APEnet

We recall that, usually, the communication among GPUs requires a passage

through the hosting CPU [21]. Since the APEnet hardware allows for a direct

communication between two GPUs, we modified, accordingly, all the point-

to-point communications to use the RDMA features of APEnet. However, to

that purpose, we had, as a preliminary step, to align data in order to meet

APEnet hardware requirements.
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As already stated, we use, as a performance metrics, the number of Tra-

versed Edges Per Seconds (TEPS), so that higher numbers correspond to

better performances. Our preliminary results are summarized in table 4.7

and table 4.8. Table 4.7 shows the strong scaling (the size of the graph is

fixed) obtained for a graph having 220 vertices and compares the results ob-

tained by using the same GPUs connected by either Infiniband or APEnet.

It is apparent that APEnet performs better than Infiniband with an advan-

tage that increases when more GPUs are in use (due to limited availability

of APEnet cards we could not perform tests with more than 4 nodes at the

present time, but new cards should be available in a short time). Although

all CUDA kernels and the rest of the code are identical in the MPI-Infiniband

and APEnet version of the code, we wanted to double-check that difference

in performances is actually due to the communication part. To that purpose

we carried out a detailed measure of the time required by the different part

of the code and report the resulting breakdown in Figure 4.12. It is apparent

that the communication time is significantly lower with APEnet. Moreover,

in the Infiniband version, part of the time is also spent in cudaMemcpy oper-

ations to move data back and forth between GPU and CPU. Those memory

copy operations are not present in the APEnet version since GPUs exchange

data directly. The sum of these two effects explains the difference in the BFS

execution time between Infiniband and APEnet and is consistent with the

reported number of TEPS. Finally, on table 4.8 we report the results for an

experiment with a graph size that increases with the number of GPUs (weak

scaling). In figure 4.13 are shown the size of the messages that are sent and

received during the execution of a BFS with four processes for a graph with

220 vertices. During the third and the fourth step of the BFS most of the

vertices in the graph are visited and the number of elements that have to be
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sent is maximized.

Breakdown of running times, |V|=2^20

APENET

cudaMemcpycudaMemcpy
apenet

INFINIBAND

Figure 4.12. Breakdown of the execution time on one out of four tasks for both
APEnet and Infiniband.
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1	   2	   3	   4	   5	   6	   7	  
to	  peer	  1	   64	   576	   1622336	   1073792	   41024	   128	   0	  

to	  peer	  2	   64	   576	   1628352	   1077504	   40192	   128	   0	  

to	  peer	  3	   64	   576	   1627072	   1077440	   41280	   256	   0	  

from	  peer	  1	   0	   5888	   1657664	   1072896	   41536	   128	   0	  

from	  peer	  2	   0	   256	   1643072	   1080384	   41408	   128	   0	  

from	  peer	  3	   0	   268416	   1647680	   1075328	   41728	   128	   0	  

1	  
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1000000	  
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Figure 4.13. Size of messages at each BFS iteration for processor 0 of 4. The
SCALE of the input graph is 20. At level 3 the number of visited vertices increases
dramatically and the size of messages reaches its peak value.



Chapter 5

Conclusions and future works

5.1 Summary

We studied the problem of developing an efficient BFS algorithm to explore

large graphs having billions of nodes and edges. The size of the problem re-

quires a parallel computing architecture. We proposed a new algorithm that

performs a distributed BFS and the corresponding implementation on multi-

GPUs clusters. As far as we know, this is the first attempt to implement a

distributed graph algorithm on that platform.

Our study shows how most straightforward BFS implementations present

significant computation and communication overheads. The main reason is

that, at each iteration, the number of processed edges is greater than the

number actually needed to determine the parent or the distance array (the

standard output of the BFS): there is always redundant information at each

step. Reducing as much as possible this redundancy is essential in order to

improve performances by minimizing the communication overhead.

To this purpose, our algorithm performs, at each BFS level, a pruning
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procedure on the set of nodes that will be visited (NLFS). This step reduces

both the amount of work required to enqueue new vertices and the size of

messages exchanged among different tasks.

To implement this pruning procedure efficiently is not trivial: none of

the earlier works on GPU tackled that problem directly. The main issue

being how to employ a sufficient large number of threads and balance their

workload, to fully exploit the GPU computing power. To that purpose,

we developed a new mapping of data elements to CUDA threads that uses a

binary search function at its core. This mapping permits to process the entire

Next Level Frontier Set by mapping each element of the set to one CUDA

thread (perfect load-balancing) so the available parallelism is exploited at

its best. This mapping allows for an efficient filling of a global array that,

for each BFS level, contains all the neighbors of the vertices in the queue

as required by the pruning procedure (based on sort and unique operations)

of the array. This mapping is a substantial contribution of our work: it is

quite simple and general and can be used in different contexts. We wish to

highlight that it is this operation (and not the sorting) that makes possible

to exploit at its best the computing power of the GPU.

To speed up the sort and unique operations we rely on very efficient

implementations (like the radix sort) available in the CUDA Thrust library.

We have shown that our algorithm has good scaling properties and, with

128 GPUs, it can traverse 3 billion edges per second (3 GTEPS for an input

graph with 228 vertices). By comparing our results with those obtained on

different architectures we have shown that our implementation is better or

comparable to state-of-the-art implementations.

Among the operations that are performed during the BFS, the pruning

of the NLFS is the most expensive in terms of execution time. Moreover, the
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overall computational time is greater then the time spent in communications.

Our experiments show that the ratio between the time spent in computation

and the time spent in communication reduces by increasing the number of

tasks. For instance, with 4 GPUs the ratio is 2.125 whereas by using 64

GPUs the value is 1.12. The result can be explained as follows. In order

to process the largest possible graph, the memory of each GPU is fully used

and thus the subgraph assigned to each processor has a maximum (fixed)

size. When the graph size increases we use more GPUs and the number of

messages exchanged among nodes increases accordingly. To maintain a good

scalability using thousands GPUs we need to further improve the communi-

cation mechanism that is, in the present implementation, quite simple. To

this purpose, many studies employed a 2D partitioning of the graph to re-

duce the number of processors involved in communication. Such partitioning

could be, in principle, implemented in our code and it will be the subject of

a future work.

The current version of our algorithm has been implemented as a set of

CUDA kernels and the CPUs are used as a communication co-processors of

the GPUs. This choice has been made, first of all, to gain a better under-

standing of the effectiveness of GPUs on these specific problems and secondly

to demonstrate the possibility to implement a GPU version of the Graph 500

benchmark. The benchmark is composed by two parts: the first is respon-

sible of the construction of the data structure used to represent the graph

whereas the second one performs the BFS visit. To be compliant with the

benchmark, we have also developed the data structure generation for GPU.

In order to maximize the number of concurrent operations, we applied the

same idea we have used to implement the BFS. We employed operations

like prefix-sum and sort to rearrange data and process it with the maximum
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number of available threads. On this part, we reported a speed-up of two

order of magnitude compared to the reference multi-CPUs implementation

provided by the Graph 500 committee.

Finally, we presented our results on a different custom interconnection

technology (APEnet+) that allows for direct data exchange among GPUs.

In general, GPUs that reside on different nodes in a cluster, cannot exchange

data directly. Data must be transferred through the hosting CPU before and

after any MPI call. This aspect represents an issue for both the efficiency of

the code and the simplicity of programming. Although APEnet+ is still in a

development and testing stage, the reported adaptations of the original algo-

rithm required by the GPUdirect technology are of interest since the results,

albeit preliminary, show a clear advantage with respect to a state-of-art inter-

connection technology like Infiniband QDR. The direct GPU communication

employed by the APEnet+ architecture allows for more efficient communi-

cations. This results in a TEPS increase of ∼ 35% compared to an identical

execution in which APEnet+ is substituted by the Infiniband connection.

The definition of a standard to perform direct communications among

GPUs is currently a hot topic in research and APEnet+ represents the first

real working solution.

5.2 Future work

Effective overlap of computation and communication is a well known tech-

nique for latency hiding and can yield significant performance gains for ap-

plications. In section 2.4, we described the CUDA streams, a feature that

enables the overlap of communication with computation on GPU.

In the next future we expect to exploit CUDA streams in our code. At
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present, the most time-expensive operation, the sort-unique, dominates the

running time of our implementation and cannot be overlapped with com-

munication. Actually, our algorithm uses the sort-unique to reduce the size

of messages exchanged, thus this operation must be performed before start-

ing the point-to-point communication. On the other end, the time required

by the remaining computations is small compared to the time required by

communication. For this reason, the use of streams in our code can be ad-

vantageous only if we overlap data transfers with the sort-unique operation.

The key idea is to partition the NLFS into equal sized blocks and apply

the sort-unique operation in a pipelined fashion on consecutive blocks so that,

the processing of the ith block can be overlapped with the exchange of data

pertaining to the (i− 1)th block. Two different CUDA streams can be used

to process respectively the ith and the (i− 1)th block.

Actually, the aforementioned technique should be applied to the queue

instead of the NLFS. The main reason is that, by dividing the queue, we

indirectly decrease the number of elements in the NLFS and consequently,

the size of the memory reserved to store the NLFS array can be reduced.

This strategy has two major advantages compared to the original algo-

rithm. It clearly overlaps computation and communication and, in principle,

allows for the visit of a larger graph. Actually, the maximum size of the

graph that the algorithm can visit is limited by the size of the array used to

store the NLFS, that is the largest array in our implementation.

This approach, however, is not free from drawbacks. The most important

is that by iterating the sort-unique operation on NLFS subsets built from the

queue-blocks, the resulting pruning will be only partial. It is not possible to

guarantee that all the duplicates will be removed.
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5.3 Space-time trade off

Along with the implementation of streams discussed above, we are devising

a different strategy to avoid redundant information.

The key idea is to replicate the data structure that represents the graph.

In the replicated structure, each vertex will be assigned a new label so that

the labels form a contiguous set of integers, from 0 up to the total number

of elements in the data structure, say m.

If all vertices, both those owned by the processor and those that are in the

adjacency lists, are represented by a contiguous set of integers, it is possible

to use a bitmask of size O(m) to keep track of visited vertices over all BFS

levels. By recording the state of all vertices stored on the processor we can

filter the NLFS from duplicates by a simple look-up in the bitmask, thus

removing the sort-unique operation.

This approach recalls the well known situation of space-time trade off.

However, the size of the data structure is less than the size of the array that

we use to store the NLFS in the original algorithm. Thus, we should be able

to gain both in space and in time.
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[16] Albert-László Barabási. Scale-free networks: a decade and beyond. Sci-

ence, 325(5939):412–413, 2009.
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