
Università degli Studi di Roma “La Sapienza”
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Introduzione

Lo studio dello spettro elettromagnetico ha consentito di estendere enormemente la
conoscenza dell’universo. Nel visibile le informazioni riguardanti gli oggetti astrofisici
osservabili ci hanno permesso di valutare le dimensioni della nostra galassia e dell’u-
niverso circostante. Lo sviluppo di ulteriori tecnologie ha dato luogo all’indagine del
cosmo a lunghezze d’onda diverse dal visibile: si è cos̀ı scoperta la radiazione cosmica
di fondo nella banda delle microonde e più recentemente le forti emissioni impulsive
nello spettro dei raggi γ che hanno portato alla luce l’esistenza di fenomeni molto
energetici. Infine, grazie alle osservazioni nella banda radio, si sono potute penetrare
le nubi di polveri delle galassie distanti e vederne il centro, spesso costituito da buchi
neri particolarmente massivi.

Tuttavia esistono ancora oggetti astrofisici la cui osservazione è possibile solo
quando si trovano nelle vicinanze della Terra, a causa della loro bassa luminosità e
delle loro ridotte dimensioni. Questi corpi celesti, che si possono formare nelle fasi
finali dell’evoluzione stellare, sono buchi neri, stelle di neutroni e nane bianche; sono
tra gli oggetti celesti più interessanti perchè permettono la comprensione dei processi
di astrofisica delle alte energie e di fisica della materia condensata.

Per avere informazioni su questa classe di sorgenti si potrebbe utilizzare la ra-
diazione gravitazionale. Le onde gravitazionali, previste dalla Teoria della Relatività
Generale, sono emesse da tutti i corpi aventi una distribuzione di massa asimmetrica e
variabile nel tempo; ma a causa della loro bassa intensità dovrebbero essere rilevabili
solo nel caso in cui le masse in gioco sono dell’ordine di quelle stellari.

Nel corso degli anni si sono sviluppati diversi strumenti per la misura del segnale
gravitazionale: dalle prime barre risonanti costruite nel 1960, fino agli interferometri,
si continua a migliorare la sensibilità degli apparati al fine di arrivare alla rivelazione
delle onde gravitazionali.

Gli interferometri attualmente in funzione sono cinque: GEO600, nato dalla col-
laborazione anglo-tedesca, i tre LIGO, posti in due diverse località degli Stati Uniti
e infine Virgo, il rivelatore italo-francese, situato a Cascina (PI). Per come sono co-
struiti e per la sensibilità raggiunta, gli interferometri riuscirebbero a misurare solo i
segnali gravitazionali di determinati tipi di sorgenti compresi all’interno del Gruppo
Locale. Per poter aumentare il numero di sorgenti rilevabili è necessario incremen-
tare il raggio di rivelazione degli strumenti fino all’ammasso della Vergine. Questo
implica un aumento della sensibilità degli interferometri pari ad almeno un ordine di
grandezza su tutta la banda di rivelazione, da qualche Hz a qualche kHz. I rivelatori
in configurazione avanzata saranno in grado di rivelare alcuni eventi all’anno.

A tale scopo, sono stati progettati dei miglioramenti per Virgo, da attuare in
quattro anni: la prima fase di potenziamento, appena conclusasi, prende nome di
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Virgo+ e prevedeva un guadagno in sensibilità nella regione di frequenze tra 10Hz
e 300Hz, particolarmente interessante per la presenza di sorgenti pulsar note, come
la pulsar della Crab e la pulsar della Vela. La seconda fase, attualmente in costru-
zione, prende nome di Advanced Virgo e partirà nella metà del 2015, completando il
potenziamento della sensibilità anche alle alte frequenze (tra 300Hz e 10kHz).

Al di sotto dei 10Hz la sensibilità di Virgo è limitata dl rumore sismico, che è
invece trascurabile a frequenze più alte, grazie all’utilizzo di un complesso sistema
di filtri meccanici di isolamento, chiamato superattenuatore, che sospende ogni otti-
ca dell’interferometro. L’ultimo stadio di sospensione, che sorregge direttamente lo
specchio, è chiamato payload ed è necessario per orientare lo specchio e smorzare i
suoi modi interni residui.

Alle medie frequenze, tra 10Hz e 300Hz, è dominante il rumore termico prodotto
dal movimento microscopico casuale delle particelle che compongono un sistema in
equilibrio termodinamico, movimento che si ripercuote a livello macroscopico come
un’incertezza sulla posizione o sulle dimensioni del sistema stesso.

Affinchè un interferometro lavori con un basso livello di rumore termico, si richiede
che le sospensioni delle masse di test abbiano un fattore di merito estremamente alto
per tutti i loro modi di vibrazione nella banda di frequenze di rivelazione. In Virgo+,
questa richiesta è garantita dalla presenza di una nuova sospensione realizzata con
fibre di silice fusa. In essa fili, attacchi e specchi sono integralmente costituiti dallo
stesso materiale in modo da formare un blocco monolitico e ridurre cos̀ı il contributo
dovuto alle dissipazioni interne. Inoltre, anche le prestazioni del coating degli specchi
è migliorato, grazie all’uso di nuovi materiali.

Nonostante questo, dopo il montaggio delle nuove sospensioni monolitiche, si è
osservato un miglioramento della curva di sensibilità più piccolo rispetto a quello
previsto. In fig. 1 è riportato il confronto tra la migliore curva di sensibilità misurata
in Virgo+ (in rosso) e quella di progetto (in grigio); è riportata anche la migliore
curva di sensibilità misurata in Virgo (in nero) come riferimento.

La discrepanza tra la curva di sensibilità di progetto e quella misurata in Virgo+
può essere dovuta a diverse sorgenti di rumore, tra cui il rumore termico o la luce
diffusa. Al fine di escludere il rumore termico come responsabile del mancato rag-
giungimento della sensibilità di progetto, sono state eseguite delle apposite misure sui
fattori di merito delle risonanze meccaniche presenti nelle sospensioni monolitiche.

La conoscenza dei fattori di merito di un sistema ci permette di dedurre una stima
del rumore termico in esso presente, definendo di un modello, sia esso analitico o nu-
merico. Inoltre, ci permette di capire se sono presenti delle dissipazioni dovute ad un
particolare componente del sistema o se ci sono degli accoppiamenti tra i diversi modi
di vibrazione delle sospensioni. È fondamentale individuare tali fonti di dissipazione
al fine di correggerle per la prossima fase di sviluppo di Advanced Virgo.

In questo lavoro mi sono occupata delle misure e delle analisi sui fattori di merito
delle risonanze meccaniche presenti nelle sospensioni monolitiche montate in Virgo+.

Nel primo capitolo discuto brevemente la teoria della Relatività Generale deri-
vando le equazioni che descrivono le onde gravitazionali. Sono quindi analizzate le
loro proprietà, la loro interazione con la materia e la loro intensità. Successivamente
sono riportate le principali sorgenti di onde gravitazionali rilevabili con l’interferome-
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Figura 1: confronto tra la migliore curva di sensibilità misurata in Virgo+ (in rosso)
e quella di progetto (in grigio); è riportata anche la migliore curva di sensibilità
misurata in Virgo.

tro Virgo, ponendo particolare attenzione alle pulsar e ai sistemi binari coalescenti,
rilevabili nella regione di frequenze tra 10Hz e 300Hz.

Nel secondo capitolo è descritto come misurare le onde gravitazionali tramite uno
strumento interferometrico, la configurazione base di questo rivelatore e i rumori in
esso presenti. Sono discussi in dettaglio i diversi sistemi che formano l’interferometro
Virgo, concludendo con la curva di sensibilità teorica e quella misurata. Successiva-
mente sono prese in considerazione le modifiche più importanti che si ha intenzione
di attuare per Advanced Virgo.

Il terzo capitolo verte sul rumore termico. Dopo aver affrontato la generalizzazione
di questo fenomeno grazie al Teorema Fluttuazione-Dissipazione, è discusso un esem-
pio di calcolo del rumore termico nel caso di un oscillatore semplice. Diversi modelli
di dissipazione sono riportati, focalizzando la trattazione al caso della sospensione
monolitica di Virgo+.

Nel quarto capitolo si descrive la produzione e la caratterizzazione delle fibre di
silice fusa, fino all’assemblaggio di una sospensione monolitica. È trattato in dettaglio
il metodo di misura dei fattori di merito e il problema dell’identificazione dei modi
con un metodo basato sulla dipendenza delle frequenze dei modi dalla temperatura.

Nel quinto capitolo sono riportate le analisi compiute sui modi di violino delle so-
spensioni monolitiche. Discuto dell’anarmonicità presente e dell’andamento dei fatto-
ri di merito con la frequenza. Infine sono riportate le misure compiute appositamente
su dei campioni di fibre di silice fusa al fine di individuare le sorgenti di dissipazioni
presenti nel sistema di ancoraggio delle fibre all’ultimo stadio di sospensione degli
specchi.

Nel sesto capitolo discuto come i fattori di merito misurati siano stati usati per
stimare la curva di rumore termico, facendo uso di un modello analitico (per le so-
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spensioni) e di un modello numerico (per le masse di test). In questo modo sarà
possibile comprendere se è davvero il rumore termico il responsabile dell’alta curva
di sensibilità trovata per Virgo+.



Introduction

The study of the electromagnetic spectrum allows us to greatly extend the knowledge
of the universe. In the visible band, thanks to observations of astrophysical objects,
we deduce dimensions of our galaxy and the nearby universe. We observe the universe
also in other electromagnetic bands, as the cosmic microwave background and, more
recently, thanks to gamma-ray burst detection, the most energetic events. Finally,
gas and dust clouds surrounding galaxy bulges, where very massive black holes are
presumably located, have been mapped thanks to radio band surveys.

Nevertheless, there are very interesting astrophysical objects which are hardly
observable through electromagnetic waves, due to their low luminosity and small di-
mensions. Those bodies, as black holes, neutron stars and white dwarves, could arise
during the last phase of massive star evolution: studying them, we can understand
high energy astrophysics and highly condensed matter physics.

Gravitational radiation may help us to get informations about those classes of
astrophysical sources. Gravitational waves are predicted by Einstein’s general rela-
tivity theory and are emitted by every asymmetric time-variable mass-distribution.
Due their very low intensity, it is possible to detect them only when the mass of the
emitting body is of order of magnitude of astrophysical objects.

Many gravitational wave detectors have been developed since 1960, when the first
resonant bar was tested by J. Weber. Nowadays, the most common gravitational wave
detectors are interferometric antennas, which are sensitive in a large frequency band.
There are five interferometers currently in use: the German-English GEO600, the
three LIGO placed in two different locations in the United States, and finally Virgo,
the French-Italian interferometer, placed in Cascina (Pisa). Given their sensitivity,
those interferometers would detect only gravitational signals from sources, placed
inside the Local Group. To increase the number of detectable sources it is necessary
to expand the detection range to the Virgo cluster: that means a sensitivity increase
of one order of magnitude over the whole frequency band, from few Hz to few kHz.
Advanced detectors are supposed to detect few events per year.

The Virgo collaboration planned some improvements of the detector to be imple-
mented in four years. The first upgrade phase has just ended (Virgo+) aiming to
reach the final requested sensitivity in the low frequency band, between 10Hz and
300Hz where signals from known pulsars, as Crab and Vela ones are expected. The
second upgrade phase, at the moment under construction, is called Advanced Virgo
and it will be completed in the middle of 2015 with a sensitivity gain in the high
frequency region (between 300Hz and 10kHz).

Below 10Hz, the bandwidth of Virgo is limited by the seismic noise, which is
negligible at higher frequencies, thanks to a complex isolation mechanical filter system
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called superattenuator which suspend each optics of the interferometer. The last
stage of the suspension, which directly supports the mirror, is called payload and it
is suitable equipped to orientate and control mirrors.

In the low frequency region between 10Hz and 300Hz, the dominant noise source
is thermal noise due to microscopic fluctuations of particles forming a physical system
in thermodynamical equilibrium: they produce a macroscopic mechanical fluctuation
of the interferometer mirror test mass.

In order to reduce thermal noise in an gravitational wave interferometer, we should
increase quality factors of all mechanical resonances in the detection band. In Virgo+
the thermal noise reduction was achieved by means of new monolithic suspensions:
the mirrors, the wires and their clamp are monolithic, made of fused silica. In such a
way, the dissipation occurring the mechanical stress is concentrated and minimized.
Moreover, the quality factors of the mirror coatings have been improved by using new
materials.

However, after monolithic suspension mountings in Virgo+, we found an improve-
ment smaller than the expected one. In fig. 2 the comparison between the best mea-
sured Virgo+ sensitivity curve (in red) and its design curve (in grey) is reported; it
is also reported the best measured Virgo sensitivity curve (in black) as reference.

Figure 2: comparison between the best measured Virgo+ sensitivity curve (in red)
and its design curve (in grey); it is also reported the best measured Virgo sensitivity
curve (in black) as reference.

The observed discrepancy between the design curve and the measured one can
be due to several noise sources, including thermal noise or scattered light noise. To
completely exclude thermal noise as the relevant noise source causing the sensitivity
gain lack, quality factor measurement campaigns were performed on every mechanical
resonance of monolithic suspensions.

From quality factor measurements, it is possible to obtain a thermal noise estima-
tion, by defining an analytical or numerical model of the physical system. Moreover,
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quality factors allow us to be aware if there is any dissipation process acting on a
monolithic suspension component or if there is any energy leak due to couplings be-
tween different internal modes. This study is mandatory to completely understand
loss mechanisms, to improve the future suspension design and to better project Ad-
vanced Virgo suspensions.

In this work I performed measurements and analysis of mechanical resonance
quality factors of Virgo+ monolithic suspensions.

In the first chapter I expose Einstein’s general relativity theory, deriving gravita-
tional wave equations and interaction properties. Then, I report the most common
gravitational wave sources, detectable by Virgo interferometer, giving prominence to
pulsars and coalescing compact binary systems, since their gravitational signal lies
between 10Hz and 300Hz.

In the second chapter I describe how it is possible to detect gravitational waves
through an interferometer, focusing on its configuration and noises affecting it. I
discuss with more details Virgo subsystems, including the description of the design
and the measured sensitivity curves. Finally I report the most significant Advanced
Virgo upgrades.

In the third chapter I talk about thermal noise. Starting from the fluctuation-
dissipation theorem, I discuss, as an example, the thermal noise of a simple oscillator.
I report also several loss mechanisms, focusing on Virgo+ monolithic suspension
damping processes.

In the fourth chapter the monolithic suspension implementation, from the fused
silica fiber production and characterization, to their clamping system and monolithic
payload assembling, is reported. I describe the measurements of mechanical resonance
quality factors and how it was possible to identify every resonance, thanks to their
different temperature dependence.

In the fifth chapter the analysis on fused silica fiber violin modes is reported,
enlightening their anharmonicity behavior and quality factor frequency dependence.
Finally I report further measurements I performed on a single fiber suspension with
a dedicated set-up, to identify possible dissipation mechanisms acting on monolithic
clamping system.

The sixth chapter is dedicated to the estimation of Virgo+ thermal noise and the
related models, analytical for suspensions and a numerical for mirror bulk. In that
way we are able to predict a thermal noise curve and to understand if thermal noise
is really accountable for Virgo+ sensitivity gain lack.
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Chapter 1

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity is the
existence of the gravitational waves. The idea that a perturbation of the gravitational
field should propagate as a wave is intuitive. As for electromagnetic waves, which
are generated when an electric charge distribution oscillates, when a mass-energy
distribution changes in time, the information about this change propagates in the
form of waves.

In this chapter I introduce the basic concepts of the theory; then I show how to
obtain the linearized solution of the Einstein’s equations in the weak-field approxi-
mation. Finally I present the possible astronomical sources of gravitational wave.

1.1 Derivation from Einstein’s Equations

General relativity is the physical theory formulated by Einstein in 1916, that gener-
alises special relativity and Newton’s law of universal gravitation, providing a unified
description of gravity as a geometric property of space and time. The new idea of
this theory is that space and time are merged together in a 4−dimensional manifold.
The presence of masses on this manifold causes its distortion and, on the other hand,
the distortion of the 4−dimensional space governs the dynamics of the masses on it.
So, the curvature of spacetime is directly related to the energy and momentum of
whatever matter and radiation are present.

The relation is specified by Einstein field equations, a system of partial differential
equations [1]:

Rµν −
1

2
gµνR = −8πG

c4
Tµν (1.1)

where Rµν is the Riemann tensor, connected to the covariant derivative of the metric
tensor gµν , R is the Ricci scalar, Tµν is the stress-energy tensor, connected to the
system mass-energy distribution.

Equation 1.1 is not linear; moreover any solution carries energy and momentum
that modify the second member of the equation itself. So, it is difficult to find
a general solution except for simple cases where there are symmetries, like in the
Schwarzschild’s solution.

One possible approach is to study the weak-field radiative solution, which de-
scribes waves carrying not enough energy and momentum to affect their own prop-

1
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agation. That seems reasonable because any observable gravitational radiation is
likely to be of very low intensity. In this case we can perform a linear approximation,
starting from the Minkowsky metric tensor:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and using the perturbative method.

We write the metric solution gµν of Einstein’s equations as a sum of two contri-
butions:

gµν = ηµν + hµν (1.2)

where ηµν is the Minkowsky metric tensor and hµν is a small perturbation, which
must satisfy the condition:

|hµν | � 1 (1.3)

Also the stress-energy tensor should be divided in two contributes, the unper-
turbed term T 0

µν and the perturbation Tµν :

T totµν = T 0
µν + Tµν (1.4)

Substituting eq. 1.2 and eq. 1.4 in Einstein’s equations 1.1 and considering only
the first order elements, we obtain:

2hµν −

[
∂2hλν
∂xλ∂xµ

+
∂2hλµ
∂xλ∂xν

− ∂2hλλ
∂xµ∂xν

]
= −16πG

c4
(Tµν −

1

2
gµνT

λ
λ ) (1.5)

where xµ is the spacetime coordinate .
It is important to consider that each Einstein’s equations solution is not uniquely

determined: if we make a coordinate transformation, the transformed metric tensor
is still a solution. That happens because it describes the same physical situation seen
from a different reference frame. But, since we are working in the weak-field limit,
we are entitled to make only transformations preserving the condition of eq. 1.3. So,
in order to simplify eq. 1.5, it appears convenient to choose a coordinate system in
which the harmonic gauge condition is satisfied:

gµνΓγµν = 0

where Γγµν is the Christoffel symbol, connected to the derivative of the spacetime
coordinates.

So we obtain: {
2hµν = −16πG

c4
(Tµν − 1

2
gµνT

λ
λ )

∂hµλ
∂xµ

= 1
2

∂hγγ
∂xλ

Introducing the tensor:

hµν ≡ hµν −
1

2
gµνh

ρ
ρ
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we have: {
2hµν = −16πG

c4
Tµν

∂h
µ
λ

∂xµ
= 0

(1.6)

As in electrodynamics, the solution of eq. 1.6 can be written in terms of a retarded
potential:

hµν(t, ~x) =
4G

c4

∫
Tµν(t− |~x− ~x′|, ~x′)

|~x− ~x′|
d3x′ (1.7)

which represents the gravitational wave, calculated in the position ~x, generated by a
source described by Tµν in the spacetime ~x′.

Since we are in the weak-field approximation, very far from the source, Tµν = 0
holds: {

2hµν = 0
∂h

µ
λ

∂xµ
= 0

(1.8)

That is the wave equation: we show that a perturbation of a flat spacetime prop-
agates as a wave. Thanks to the double nature of the metric tensor gµν , which indi-
cates the spacetime shape and the gravitational potential, metric perturbations are
also gravitational perturbations. The simplest solution of eq. 1.8 is a monochromatic
plane wave:

hµν = Re
{
Aµνe

ikγxγ
}

(1.9)

where Aµν is the polarization tensor, connected to the wave amplitude, and kγ is the
wave vector; we are interested only in the real part of the equation.

1.2 Properties

Let us summarize the properties of gravitational waves:

• they move at the speed of light c: it is easy to see, substituting eq. 1.9 in
the first equation of 1.8, that the wave vector kγ is a null vector or a light-like
vector;

• they are transversal: subtituting eq. 1.9 in the second equation of 1.8, the
harmonic gauge condition, we obtain

Aλαkµ = 0

i.e. the wave vector and the polarization tensor are orthogonal;

• there are only two polarization states, since the polarization tensor Aµν is sym-
metric in the transverse-traceless gauge; for a gravitational wave propagating
along the z-axis, its polarization vector is:

Aµν =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


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The two polarizations are usually known as:

Axx = A+ Axy = A×

the plus polarization and the cross polarization.

1.2.1 Interaction with matter

Let us study how a system of free-falling particles interact with gravitational waves.
The passage of gravitational waves causes a metric perturbation, but it does not
change the position of a test mass in a fixed frame. To prove that, we use the
geodesic equation:

d2xα

dτ 2
+ Γαµν

[
dxµ

dτ

dxν

dτ

]
= 0 (1.10)

where x are the spacetime coordinates, τ the proper time and Γαµν the Christoffel
symbol.

If we consider a particle at rest in the coordinate frame of the harmonic gauge,
using the geodesic equation 1.10, it comes out that the particle is not affected by any
acceleration.

To see the effect of the gravitational wave passage we need at least two test masses
and consider their relative motion [2]. For example, we consider two particles A ad
B, initially at rest, located along the x-axis of a frame: the A test mass is in the
origin of the frame and the B test mass at the relative displacement x = lAB. The
distance ∆lAB is obtained by computing:

∆lAB =

∫
|ds2|1/2

=

∫
|gµνdxµdxν |1/2

=

∫ ε

0

|gxx|1/2dx

≈ |gxx(x = 0)|1/2 ε ≈ [1 +
1

2
hxx(x = 0)] lAB (1.11)

where in the last equation we used the expression of the metric tensor in function of
the gravitational wave amplitude. Thus, the relative displacement ∆lAB of the two
masses oscillates periodically with the same frequency of the overpassing gravitational
wave. The effect is directly proportional to the initial distance of the particles and
to the wave amplitude.

We note that the effect of the gravitational wave on the spacetime metric has an
intrinsic differential nature. This means that a circular-shape mass distribution is
modulated at the wave frequency with opposite sign in x and in the y direction, as
it is well shown in fig. 1.1.

1.2.2 Intensity

To compute the intensity of a gravitational wave we use the solution derived from
the retarded potential 1.7. Using a spherical multipole expansion for the spatial
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Figure 1.1: effect on a ring of particles posed on the x-y plane due to the passage of a
gravitational wave coming along z axis with a plus polarization or a cross polarization.
It is shown that the effect on two chosen orthogonal directions is strongly depending
on the polarization of the wave.

coordinates [4] the lowest order term of this field is:

h̄jk =
2G

c4r
Q̈jk(t− r/c) +

4G

3c5r
[εpqjS̈kp(t− r/c) + εpqkS̈jp(t− r/c)]nq (1.12)

where Sjk is the current quadrupole moment of the source, εijk is the antisymmetric
tensor and nq is the unit vector pointing in the propagation direction. Consider that
repeated down indices are summed as though a Minkowski metric ηjk is present.

Most gravitational wave estimates are based on this equation. When bulk mass
motions dominate the dynamics, the first term describes the radiation. For example,
this term gives the well-known “chirp” associated with binary inspiral (see sec. 1.3.2).
It can be used to model f-mode and secular instabilities (see sec. 1.3.1). In practice,
ringing waves are computed by finding solutions to the wave equation for gravitational
radiation with appropriate boundary conditions. The second term in eq. 1.12 gives
radiation from mass currents and it is used to calculate gravitational wave emission
due to the r-mode instability (see sec. 1.3.1).

A more simplified expression of gravitational wave intensity can be found in the
far field and slow motion approximation [3]:

hµν(t, ~x) ≈ G

c4r
Q̈µν (1.13)

where r is the distance between the source and the observer (|~x| ≈ r � |~x′|) and
Q̈µν is the second derivative of the quadrupole momentum associated to the energy

density ρ(~x′) of the source:

Qµν =

∫
(3x′µx

′
ν − r2δµν)ρ(~x′)d3x′

The conservation of the stress-energy tensor T µν;ν = 0 is equivalent to the conser-
vation of mass and linear and angular momentum; that implies the first contribution
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to the emission of gravitational waves comes from the quadrupole term1. So, every
spherically or axially symmetric system does not emit any gravitational radiation.

To estimate the order of magnitude of the intensity, we approximate the quadrupole
momentum as:

Q ∼ εMR2 −→ Q̈ ∼ εMR2

T 2

where the M is the total mass of the source, R is its typical dimension, T the typical
variation time of the system and ε is the factor measuring the asymmetry of the mass
distribution.

Since the speed of the masses inside the system is v = R/T , we can rewrite the
expression 1.13 as:

h ∼ 1

r

GM

c2

(v
c

)2

(1.14)

Let’s consider the constant factor in front of the amplitude G/c2 ∼ 10−29m3/s4kg:
it is so small that only for astronomical sources (with mass of the order of 1030kg
and/or relativistic speed v ∼ c) we can hope to detect gravitational waves.

1.3 Sources

There are several kinds of astronomical sources of gravitational waves. We classify
them on the base of frequency band:

• extremely low frequency (10−18 − 10−13Hz):

– stochastic sources (primordial gravitational fluctuations amplified by the
inflation era of the universe);

• very low frequency (10−9 − 10−7Hz):

– stochastic sources (gravitational fluctuations due to fundamental force
symmetry breaking);

• low frequency (10−5 − 1Hz):

– compact binary systems (white dwarves, neutron stars, black holes);

– double massive black holes compact binary coalescences;

– stochastic background (astrophysical and cosmological sources);

• high frequency (1− 104Hz):

– compact binary coalescences;

– spinning neutron stars;

– transient sources as stellar collapse, gamma-ray burst and supernovae;

1If we decompose a mass distribution in its multipole components, we have the first term propor-
tional to M and the dipole proportional to MR. In a closed isolated system, the total mass and the
linear momentum are conserved. So the terms dM/dt and d(MR)/dt are null and the quadrupole
term is the first non-null term.
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– stochastic background, expected from string theory or inflation model.

For each kind of source it is possible to evaluate the detection rate Ṅ , i.e. the
number of gravitational signals which are expected to come from the source in the
time unit. This rate depends either on the emitted gravitational signal and on the
horizon visible from the detector [18]:

Ṅ = R ·NG (1.15)

where NG is the number of galaxies accessible from the detector and R is the rate of
formation for a fixed kind of source.

The number NG is a function of the horizon detection distance Dhor, dependent
from the detector sensitivity:

NG =
4

3
π

(
Dhor

1Mpc

)3

(2.26)−3(0.0116) (1.16)

where the correction factor 2.26 includes the average over all sky locations and ori-
entations and the factor 0.0116 is the extrapolation density of MWEG (Milky Way
Equivalent Galaxy) in space.

Formulae 1.15 and 1.16 are used in this work for reporting the calculated detection
rates for the Virgo+ and Advanced Virgo gravitational wave interferometer, described
in Chapter 2.

1.3.1 Neutron Stars

When a spinning neutron star is not axisymmetric, it emits continuos and monochro-
matic gravitational waves at twice its rotational frequency.

There are different causes which can determine the asymmetry:

1. the high spinning rate of a neutron star (up to 500Hz) induces some equatorial
bulge and flattened poles; furthermore the magnetic field could cause the star
not to spin around its symmetry axis, leading to a time variation of the star
quadrupole momentum;

2. the star may have some inhomogeneities in its core or crust, set up during its
formation or after some convectively unstable motion;

3. the presence of an accretion disc with an angular momentum not aligned with
the one of the neutron star;

4. classical and relativistic instabilities (as glitches and r-modes) in the neutron
star fluid, which could cause the star to radiate energy in the form of gravita-
tional waves.

At present there are almost 2000 neutron stars known as pulsar from their radio
or x-ray emissions. However in our galaxy we expect to have at least 108 spinning
neutron stars (most of them in binary system) that rise roughly at a rate of one every
30 years.
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It is possible to evaluate the gravitational signal coming from a known pulsar [5].
The gravitational signal amplitude is given:

h0 =
16π2G

c4

εIzzf
2

r
(1.17)

where Izz is the moment of inertia with respect to the rotation axis z, f is the sum of
the star rotation frequency and the precession frequency, r is the distance from the
star and ε is the equatorial ellipticity, defined in terms of the principal axis of inertia:

ε =
Ixx − Iyy
Izz

Replacing the physical constants in the eq. 1.17, we obtain:

h0 = 4.23 · 10−25

(
f

100Hz

)2 ( ε

10−5

)( Izz
1038kg m2

)(
1kpc

r

)
The ellipticity is not known in principle, but sometimes estimated by attributing

all the observed spin-down of pulsars Ṗ to the gravitational radiation; if the change in
the rotational energy Erot = IzzΩ

2/2 of a neutron star rotating with angular velocity
Ω is equal to gravitational waveluminosity, the ellipticity can be written as:

ε = 5.7 · 10−6

(
P

10−2s

)3/2
(

Ṗ

10−15

)1/2

From the observation of the Crab pulsar we have ε ≤ 7·10−4; instead the maximum
value allowed by standard equations of state for neutron star matter is ε ∼ 5 · 10−6.
So, it is evident that the ellipticity estimation through gravitational wave is just an
upper limit.

Thus, we can evaluate the maximum expected gravitational signal. Potentially
interesting sources are within our galaxy, thus at a distance of d ∼ 10kpc. The
standard value of the moment of inertia is I ∼ 1038kg m2. The maximum signal
frequency is below 2kHz. With this value, the expected gravitational signal is h0 ∼
5 · 10−23.

The weakness of the signal and the need to integrate it over long periods (more
than one year), lead to data analysis complications: in particular for the Doppler
shift, due to the source-detector relative motion.

In fig. 1.2 the known pulsar spin-down limits are reported, calculated from the
VSR4 data taking of Virgo+. A detection threshold based on a false alarm rate of
1% and a false dismissal rate of 10% is assumed.

For what concerns unknown pulsars, the aim is to find neutron stars that are elec-
tromagnetically invisible, either because their radio pulses are not beamend towards
us or because they have a very low magnetic field.

Such search requires a large parameter space study, i.e. sky location, frequency
and frequency derivatives; for that reason, it is computationally limited because of
the large number of templates, which grow up faster than the observational time. In
particular there can be limitations, as the increase of false alarm rate or the lost of
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Figure 1.2: upper limits and spin-down limits for known pulsar; Virgo+ detector
sensitivity curve plots the minimum detectable amplitude of the gravitational wave
averaged over sky positions and pulsar orientations.

SNR by searching for a gravitational signal with a template which does not match
exactly the real signal.

To partially solve that computational cost, semi-coherent methods are used. They
rely on breaking up the full data sample into shorter segments of duration Tcoh,
analyzing them coherently and combining incoherently the power from the different
segments. There are a number of different techniques available for performing the
incoherent combination.

Typically the output of this wide-area search is a set of candidates, i.e. points in
the source parameter space with values of a given statistic above a threshold. These
candidates are then analyzed in a deeper way by making coincidences with another
set of candidates coming from a different dataset, followed by a full coherent analysis
on the surviving candidates, in order to confirm or reject them.

Glitches

Many radio pulsar exhibit glitches, events in which the source is seen to increase sud-
denly in the angular velocity Ω and in the spin-down rate Ω̇, followed by a relaxation
period towards stable secular spin-down.

Glitches have been observed for the Crab, the Vela and some other pulsars. The
typical intervals between these events vary from several months to years. The mag-
nitude of the jumps in the rotation and spin-down rate are of the order ∆Ω/Ω ∼
10−8 − 10−6 and ∆Ω̇/Ω̇ ∼ 10−4 − 10−2.

Despite the large number of observational data, glitches remain an enigma from
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the theoretical point of view. Some models have been developed in order to explain
the nature and the characteristics of glitches [6]:

• they could be related to the existence of superfluids in the interior of neutron
stars, which cause a transfer of angular momentum from a superfluid component
to the rest of star (including the crust and the charged matter in the core) [7];

• the observed persistent increase in the spin-down rate, called offset, suggests
that there is an increase in the spin-down torque acting on the star. This can
be a consequence of variations in direction or in magnitude of the star magnetic
moment. Such variations could be driven by starquakes occurring when the
crust becomes less oblate, as a consequence of spin-down. Repeated starquakes
(or core-quakes) can increase the angle between the rotation and magnetic axes
to large values [8].

Anyway, it is possible to evaluate the available energy that may be radiated at
a glitch event. For example, the Vela pulsar shows regular large glitches with a fre-
quency change of the order of 10−6. They may release an amount of energy of the
order of 1035J . That energy may not be associated completely with the gravita-
tional emission, since it depends on the detailed glitches mechanism and the source
asymmestry.

Secular instabilities and r-modes

From the classical theory of Newtonian MacLaurin spheroids one finds that rotating
axisymmetric fluid bodies become unstable towards non axisymmetric deformations
due to a dynamical instability. The parameter which manages that instability is:

β =
Erot
Ugrav

where Erot is the rotational energy and Ugrav is the star gravitational potential energy.
For β ≥ βdyn ≡ 0.27, the spheroid goes unstable.

A secular nonaxisymmetric instabilities may set in at lower β value, i.e.
β ≥ βsec ≡ 0.1375, though, due to its secular nature, has longer growth times than
the dynamical instability.

Secular instabilities can be driven by two kinds of mechanism:

1. the Chandrasekhar-Friedman-Schutz instability (CFS) driven by gravitational
radiation reaction [9] [10];

2. the viscosity-driven instability [11].

Chandrasekhar [12] studied the evolution of rotating incompressible newtonian
stars without viscosity.

A newborn rapidly rotating highly condensed star, formed as a result of a collapse,
may have a rotating configuration similar to a Jacobian ellipsoid at its dynamical
stability limit: the amplitude of the emitted gravitational waves is small, because
the star is nearly axisymmetric. After a cool-off phase, thanks to the emission of
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gravitational waves, it is possible that the final value of β is still greater than βsec,
so that the development of a secular instability follows.

The evolution of a Jacobi ellipsoid as it radiates gravitationally can be determined
in the standard linearized theory of gravitational wave. The rate of radiation of the
angular momentum L by a mass is:

dL

dt
= −32G

5c5
(Ixx − Iyy)2Ω5 (1.18)

where Ixx and Iyy are the momentum of inertia tensor in the equatorial plane and Ω
is the angular velocity. Integrating eq. 1.18, we find that during a gravitational wave
emission, the angular velocity Ω of the compact star will increase (as shown in fig.
1.3) and the object will approach a point of bifurcation2 where it becomes spheroidal
and nonradiating (for istance, a MacLaurin spheroid).

But once the point of bifurcation is achieved, gravitational radiation reaction will
make the configuration secularly unstable and it may proceed towards fragmentation.

Figure 1.3: the evolution of the Jacobi ellipsoid by gravitational radiation; the an-
gular velocity of rotation Ω in the unit πGρ with respect to the time τ in the unit
(25/18)(ā/RS)3(ā/c), where ā is the geometric mean of the ellipsoid axes and RS is
the Schwarzschild radius.

In this phase the angular velocity Ω decreases and the final configuration is a
Dedekind ellipsoid (i.e. a triaxial ellipsoid) with zero angular velocity which, ob-
viously, does not emit gravitational radiation. As a result, the amplitude of the
gravitational wave increases very rapidly at first, reaches a maximum during the
fragmentation, then slowly decreases to zero again when Dedekind ellipsoid configu-
ration is achieved (fig. 1.4).

Approximating the neutron star with a spinning bar, it is easy to estimate the
amplitude of the emitted gravitational wave; it emits gravitational wave at twice
its rotational frequency (due to its π-symmetry) with amplitudes hbar ∝ MR2Ω2/D

2A bifurcation is a place or point of branching or forking into “qualitatively” or topological
new types of behavior. It occurs when a small smooth change made to the parameter values
(the bifurcation parameters) of a system causes a sudden change, rather than a slow and gradual
evolution. Furthermore, it is a transition of a non-linear system into a realm where new laws dictate
what will occur to the system.
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Figure 1.4: amplitude of the gravitational wave signal, as a function of the frequency,
emitted by a secularly unstable neutron star, evolving from a MacLaurin spheroid
toward a Dedekind ellipsoid; the upper curve corresponds to β = 0.24 and the lower
one to β = 0.20, both for a star described by a polytropic equation of state with
n = 0.5.

where M is the bar’s mass, 2R its length, Ω its angular velocity and D the source-
detector distance. Using the Newtonian quadrupole approximation, one can derive:

hbar ≈ 4.5 · 10−21
( ε

0.1

)( f

500Hz

)2(
10kpc

D

)(
M

0.7M�

)(
R

12km

)2

where ε is the ellipticity of the bar.
For what concerns the viscosity driven instability, general relativistic effects sup-

press it, on the contrary to what happens for the Chandrasekhar instability; so the
viscosity instability can take place only for cold neutron stars described by very stiff
equation of state or, for instance, during matter accretion from a companion star.

The r-modes are axial fluid oscillations, governed by the Coriolis force and whose
coupling takes place through the current multipoles, instead of the mass multipoles
(see eq. 1.12). Gravitational radiation makes a r-modes unstable if the gravitational
radiation time scale is smaller, in absolute value, with respect to the viscous time
scale. This condition is verified if the angular velocity of the star is greater than a
critical value ΩC depending on the star temperature (see fig. 1.5) [13].

The r-modes are described as large scale oscillating currents that approximatively
move along the equipotential surfaces of the rotating star (see fig. 1.6); for this reason
they are also called convective modes [14].

We can describe the MacLaurin shaped neutron star, which is a azimuthal non-
axisymmetric structure, in terms of modes m with spatial structure proportional to
eimφ, where φ is the azimuthal angle. At the lowest order in the angular velocity of
the star Ω, the frequency of a mode of harmonic index m is:

σm(Ω) = −(m− 1)(m+ 2)

(m+ 1)
Ω
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Figure 1.5: critical angular velocity ΩC for different realistic equations of state and for
a neutron star of 1.4M� as a function of temperature; the discontinuity at T ∼ 109K
corresponds to the superfluid transition Ω =

√
πGρ.

Figure 1.6: an r-mode of a rotating star, as seen by a nonrotating observer in three
different sequential moments. The dots are buoys floating on the surface and moved
around by the r-mode, in addition to the counterclockwise rotation of the star. The
lines indicate where chains of buoys would float. The red buoys would have a fixed
latitude on an unperturbed star, so the star is rotating faster than the r-mode pattern
speed.
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and the frequency of the emitted gravitational waves is:

ν(Ω) = −σm(Ω)

2π

The amplitude of the mode is small at the beginning but then it increases, until
hydrodinamic effects become important and a non-linear evolution regime is reached.
The emitted gravitational wave reaches a maximum value given by:

h0 ≈ 4.4 · 10−24

(
Ω0

Ω̄

)3(
20Mpc

r

)
(1.19)

where Ω0 is the initial angular velocity of the star, Ω̄ =
√
πGρ̄ and r is the distance

between the source and the detector.
When the non-linear phase is reached, probably a saturation effect occurs and the

mode no longer grows. At that point the excess angular momentum of the star is
radiated away through gravitational radiation and the star spins down until angular
velocity and temperature are suffciently small so that the crust solidifies and r-modes
are completely damped. In this phase the amplitude of the emitted gravitational
wave is exactly equal to eq. 1.19.

1.3.2 Compact Binary Coalescences

Inspiraling compact binaries, containing neutron stars and/or black holes, are promis-
ing sources of gravitational waves for interferometer detectors. The two compact ob-
jects steadily lose their orbital binding energy by emission of gravitational radiation;
as a result, the orbital separation between them decreases, and the orbital frequency
increases. Thus, the frequency of the gravitational wave signal, which equals twice
the orbital frequency for the dominant harmonics, “chirps” in time (i.e. the signal
becomes higher and higher pitched) until the two objects collide and merge.

The dynamics of the coalescence of the compact binary can be described in three
phases (see fig. 1.7):

1. the inspiral phase, in which the star orbits contract adiabatically in hundreds
of millions of years; the angular velocity increases and the separation between
star decreases;

2. the merger, in which the two stars are moving at a third of the speed of light,
until the collision;

3. the ring-down, when the two stars have just merged to form a super-massive
object, settling down to a quiescent state.

During the inspiral phase, the system loses energy through gravitational wave
emission. The luminosity of emitted gravitational radiation is low and the emission
period is longer than orbital one: so, we can consider the process as adiabatic. The
dynamics can be solved using approximation methods, as the Newtonian mechanics
or, for a more detailed solution, the post-Newtonian expansion [15].

Using the Newtonian approach, the system can be described as two structureless
point-particles, characterized solely by their masses m1 and m2, their separation a,
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Figure 1.7: gravitational signal emitted from a compact binary system during the
coalescence; the three phases are described in the text.

their orbital period P and possibly their spins; the two stars are moving on a quasi-
circular orbit.

For this kind of bound system, it is easy to estimate the amplitude of gravitational
signal using eq. 1.14 and the Keplerian third law [16]:

G(m1 +m2) = 4π
a3

P 2
(1.20)

Re-writing in eq. 1.20 the period with its expression in function of velocity, we
obtain: (v

c

)2

≈ G(m1 +m2)

c2a
(1.21)

Substituting eq. 1.21 in eq. 1.14, and after an accurate calculation for a binary
star in a circular orbit (consisting in an average over the orbital period and orientation
of the orbital plane) we have the gravitational signal amplitude:

h =

(
32

5

)1/2
1

r

G5/3

c4

m1m2

(m1 +m2)1/3
(πf)2/3 (1.22)

where r is the detector-source distance. The emitted gravitational wave frequency is:

f =
1

π

(
G(m1 +m2)

a3

)1/2

Note that the amplitude h depends on a particular combination of masses, called
chirp mass :

M =
(m1m2)3/5

(m1 +m2)1/5

so that eq. 1.22 can be written as:

h ∼ 1

r
M5/3f 2/3
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The energy spectrum is:

dE

df
=

(πG)2/3

3
M5/3f−1/3

It is evident that when the two stars approach, the separation a decreases and
the emitted gravitational wave frequency and amplitude increase: the final signal is
called chirp (fig. 1.8).

Figure 1.8: gravitational wave signal emitted from a coalescing binary system during
the inspiral phase; in this case we do not take into account the spin of the stars.

If we use the post-Newtonian description to obtain the inspiral signal, the spin-
orbit coupling must be taken into account. In fact, when the binary companions are
spinning, the signal is modulated due to spin-orbit and spin-spin couplings. These
modulations encode the parameters of sources (their masses, spins, inclination of the
orbit, etc.) most of which can be extracted very accurately by matching the observed
signals onto general relativistic predictions. In fig. 1.9 it is evident the deforming
effects of the spin.

The inspiral phase ends when the two stars come into contact:

• if the two stars are compact objects, the contact happens when the separation
is equal or less the radius of the innermost stable circular orbit (aISCO ∼ 9 ·
103M/M�m); the gravitational signal frequency of the transition point will be:

ft ≈ 4kHz

(
M

M�

)−1

• if one of the two stars is not a compact object, it happens when the separation
is of the order of magnitude of the star dimension (adim ∼ 107m); the inspiral
phase ends at frequency:

ft ≈ 0.1Hz

(
M

M�

)(
l

adim

)−3/2

which is lower than in the previous case.
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Figure 1.9: wave forms from two compact binary systems, considering spin-orbit
interaction. Left panels show the time-domain waveforms, right panels show the
frequency spectrum. The upper two panels show a binary composed of two equal
masses; the waveform’s modulation is due to interaction between the spins of the
bodies and the orbital angular momentum. The lower panels show a binary composed
of a neutron star and a black hole. In this case, the signal amplitude is smaller, the
duration is longer due to the larger mass ratio, and the signal modulation is stronger
as the spin-orbit precession of the orbital plane is greater.

Then merger phase begins; in this phase the orbital evolution is so rapid that
adiabatic approximation previously used is not so good. The two masses go through a
violent dynamical fusion that leads to a black hole on a dynamical timescale, releasing
a fraction of their rest-mass energy in gravitational waves. However, a significant
fraction of the stellar material could retain too much angular momentum to cross
the black hole horizon promptly. This creates a temporary accretion disk around the
black hole, whose formation over timescale longer than the dynamic time, can power
a gamma-ray burst jet, as we can see in section 1.3.4.

The post-Newtonian approximation is not accurate when the two compact objects
get close to each other. To predict the dynamics of the bodies during this phase the
full non-linear structure of Einstein’s equations is required, as the problem involves
strong relativistic gravity and tidal deformation and disruption. The only way to
solve the problem is to use numerical simulations of mergers.

Recently simulations on black hole systems have been highly successful, and an-
alytical and phenomenological models of the merger dynamics have been developed
[17]. Such progress allows to increase the accuracy and physical fidelity on gravita-
tional signal waveform, to include a larger numbers of gravitational emission cycles
before merger and to better understand the full parameter space of binary system of
arbitrary spins and mass ratios.

On the contrary for neutron star binaries, the merger phase is not well understood,
as it is complicated by a number of unknown physical effects, such as the equation
of state and the magnetic field.



18 CHAPTER 1. GRAVITATIONAL WAVES

The merger signal lasts for a very short time: milliseconds, in the case of stellar
mass black holes, to seconds, in the case of the heaviest systems.

During the ring-down phase the emitted radiation can be computed using per-
turbation theory and it consists of a superposition of quasi-normal modes of the
compact object that forms after merger.

In the case of black holes, these modes carry a unique signature that depends only
on the mass and spin angular momentum; in the case of neutron stars, it depends
also on the equation of state of the supra-nuclear matter.

As in the merger phase, the signal lasts for a very short time interval: the gravi-
tational waves are emitted in two or three cycles and they survive from milliseconds
to seconds, depending on the mass of the final object. However, the superposition
of different modes means that the signal can have an interesting and characteristic
structure.

For what concerns detection rates, there are significant uncertainties in the as-
trophysical predictions for compact binary coalescences. These arise from the small
sample size of observed galactic binary pulsars, from the poor constraints for predic-
tions based on population synthesis models and from lack of confidence in a number
of astrophysical parameters.

Anyway, the simplest assumption is that the coalescence rates can be assumed
proportional to the stellar birth rate in the nearby galaxies: the blue luminosity traces
well the star formation rate for the spiral galaxies, but ignores the contribution of
older populations in elliptic galaxies.

To derive the coalescence rate R in eq. 1.15 for a double neutron star system, it
is possible to use two methods:

1. extrapolation from the observed systems detected via pulsar measurements.

This method has few free parameters, but it does suffer from a small sample
of observed systems in our galaxy and the implicit assumption that these are
a good representation of the total neutron star population. The difficulties on
neutron star binary population reconstruction consist in the lack of knowledge
about the pulsar luminosity distribution. Such distribution is described by two
variables: the minimum pulsar luminosity and the negative slope of the pulsar
luminosity power law. Different choice of these variables, even if still consistent
with observations, could change the merger rates by an order of magnitude.

2. extrapolation from population synthesis codes.

This method contains a number of free parameters as kick velocities, common-
envelope efficiency and the companion mass distribution. Some studies choose
not to use the empirical data taken from observation: in this case, flat priors
are used but a small part of parameter space is explored. Other studies apply
observational constrains, but in this way they are not completely independent
from the estimates obtained via the first method, since the same data are used.

Even if the second method is often not complete or accurate (it gives coalescence
rates which differ from the first method of two orders of magnitude), it is the only
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one available for estimating coalescence rates for neutron-star/black-hole systems or
double black hole systems, since they have not been observed electromagnetically.

For the double black hole binaries two different coalescence scenarios are possible:

• the isolated binary evolution scenario, which is expected to be the dominant
from the double neutron star systems;

• the dynamical formation scenario, in which dynamical interaction in a dense
stellar environments could play a significant role in forming the binary system.

The detection rates Ṅ , calculated as in eq. 1.15, are reported in table 1.1 [18].
These values are determined assuming that all neutron stars have a mass equal to
MNS = 1.4M� and all black holes have mass equal to MBH = 10M�. Even if the
neutron stars and back holes mass distribution cover a wide range of values, the un-
certainties in the coalescence rates dominate errors from this simplifying assumption
about component masses.

Interferometer Source Ṅreyr
−1

NS-NS 0.02
Initial NS-BH 0.004

BH-BH 0.007
NS-NS 40

Advanced NS-BH 10
BH-BH 20

Table 1.1: detection rates for compact binary coalescence sources.

In table 1.1 there are the detection rates obtained for compact binary systems. I
report only the realistic detection rate Ṅre, but there are other rates which can be
calculated considering different probability distributions (see [18] for more details).

The PSR1913+16 binary system

The existence of double neutron star binary system is reported by lots of observations;
the most famous for gravitational wave physics is the PSR1913+16, studied by Hulse
and Taylor [19]. This system represents the only indirect prove of the emission of
gravitational waves.

If we consider the gravitational potential of a system, it is possible to determine
the decrease of a binary system orbital period due to gravitational wave emission.

The emitted gravitational wave luminosity can be written as [3]:

Lgw =
G

5c5

3∑
k,n=1

(
∂3Qkn(t− r/c)

∂t3
∂3Qkn(t− r/c)

∂t3

)
where Qkn is the quadrupole momentum tensor and r is the detector-source distance.

Writing the quadrupole momentum for a two neutron stars binary system, we can
derive the gravitational energy for time unit:

Lgw =
dEgw
dt

=
32G4

5c5

µ2M3

a5
(1.23)
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where µ = (m1m2)/(m1 +m2) is the reduced mass, M is the total mass of the system
and a is the separation.

In the adiabatic approximation, the system evolves slowly and the emitted gravi-
tational energy is equal to the variation of orbital energy:

dEorb
dt

+ Lgw = 0 (1.24)

The orbital energy can be evaluated considering a Keplerian orbit:

Eorb = −1

2

GµM

a
(1.25)

So, substituting eq. 1.23 and eq. 1.25 in eq. 1.24:

−2

3

Eorb
P

dP

dt
+

32G4

5c5

µ2M3

a5
= 0

we can find the orbital period variation:

dP

dt
=

3

2

P

Eorb
Lgw

where P is the orbit period.
After 30 years of observations the measured value is dP/dt = (−2.4184±0.0009) ·

10−12 (fig. 1.10).

Figure 1.10: orbital decay of PSR B1913+16. The data points indicate the observed
change in the epoch of periastron with date while the parabola illustrates the the-
oretically expected change in epoch for a system emitting gravitational radiation,
according to general relativity.



1.3. SOURCES 21

1.3.3 Supernovae

During a stellar collapse with an explosion mechanism, there are the emission of
gravitational waves and the formation of a neutron star or a black hole.

These stellar systems are produced by many different scenarios, but they can be
loosely grouped into two categories:

• the collapse of oxygen-magnesium-neon and carbon oxygen white dwarfs pushed
beyond the Chandrasekhar limit (Type I supernovae);

• the collapse of iron or oxygen-magnesium-neon stellar cores of massive stars
that become too large to support themselves (Type II supernovae).

The Type II supernovae have been long studied and there are different scenarios
for what concerns gravitational wave emission. In this chapter I treat in particular
this kind of supernovae.

The core of massive stars (8− 10M� ≤ M ≤ 100M� at zero-age main sequence)
is supported by a combination of thermal and degeneracy pressures. It it composed
primarily of electron-degenerate iron-group nuclei in the final stages of their exoergic
nuclear burning. When the mass is too large for these pressures to support the star
core, it begins to compress and heat up. The compression leads to electron capture,
neutrino emission, and ultimately, dissociation of the elements. Electron capture
reduces the support from degeneracy pressure while dissociation of elements remove
thermal support [20]. Let us see in detail what happens:

Collapse Once such an iron core exceeds its effective Chandrasekhar mass, it grows
gravitationally unstable: collapse follows, leading to dynamical compression of
the inner core material to nuclear densities.

Core bounce The nuclear equation of state stiffens, resulting in the rebound of the
inner core (“core bounce”).

Shock wave A hydrodynamic shock wave is launched at the outer edge of the inner
core and propagates outward, colliding with the still infalling outer core. This
process is one of the most energetic of the universe, releasing an energy of:

E ∼ 3 · 1046

(
M

M�

)2(
10km

R

)
J

where M is the mass of the progenitor and R its dimension. About 99% of this
energy goes in neutrinos in a timescale of ∼ 100s. About 1% is tansferred in
kinetic energy of ejecta and only a 10−4 fraction is emitted as electromagnetic
waves.

Here a problem stands: it is not clear at all why Type II supernovae explode.
In fact the shock wave quickly loses energy and stalls, because of the dissociation

of heavy nuclei and the energy losses due to neutrinos that stream away from the
postshock region. So, without a shock revival, it is impossible to have a supernova
explosion and a compact object “quiescent” formation is inevitable.
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The shock wave must be revived to plow through the stellar envelope, blow up
the star, and produce a supernova explosion, leaving behind a neutron star (or even a
black hole, forming via fall-back accretion). Such transfer of gravitational energy to
revive the shock wave must occur sooner than 1− 1.5s after the bounce (depending
on progenitor star structure setting the rate of mass accretion) to produce a compact
remnant as a pulsar.

The supernova explosion mechanism may involve a combination of heating of the
postshock region by neutrinos, multi-dimensional hydrodynamic instabilities, proto-
neutron star pulsations, magnetic fields and nuclear burning.

In literature three mechanisms are presently discussed:

1. the neutrino mechanism is based on postbounce neutrino energy deposition
behind the stalled shock and appears to require convection and the standing-
accretion-shock instability (SASI instability) to function (except for the very
lowest-mass massive stars which may explode even in spherical symmetry).
However, it is not yet clear how the neutrino mechanism’s efficiency varies with
progenitor mass and structure and what its detailed dependence on the high-
density nuclear equation of state may be;

2. the magneto-hydrodyamic (or MHD) mechanism, probably operating only in the
context of rapid progenitor rotation, depends on magnetic-field amplification
during collapse and at postbounce times. It leads to explosions that develop
in jet-like fashion along the axis of rotation and may also be relevant in the
context of long-soft gamma-ray bursts and could be a precursor, setting the
stage for a later GRB (see sec. 1.3.4);

3. the acoustic mechanism for core-collapse requires the excitation of large-amplitude
proto-neutron star pulsations (primarily g-modes) by turbulence and SASI in-
stability modulated accretion downstreams. These pulsations are damped by
the emission of strong sound waves that steepen to shocks and deposit energy
in the postshock region, eventually leading to late explosions after 1s from
bounce. This mechanism appears to be sufficiently robust to blow up even the
most massive and extended progenitors.

It is very difficult to understand what kind of mechanism leads to supernova
explosion only via astronomical observations. Theoretical models and simulations
can be tested using secondary observables, as ejecta morphology, compact remnant
mass and proper motion or pulsar spin and magnetic field. The only messengers that
could bring information about the inner core physical processes are the gravitational
waves and neutrinos: both of them are produced deep inside the supernova and can
travel through the universe without interactions.

Simulating gravitational collapse is a very active area of numerical astrophysics.
Modeling stellar core collapse and the postbounce evolution of the supernova core
is a multi-scale multi-physics problem that involves lengthscales from the extended
pre-supernova stellar core (thousands of kilometers) down to small-scale turbulences
in the postbounce flow (on the order of meters) and timescales from ≤ 10−6s (the
typical computational timestep) to up to 1 − 2s (the time for the development of a
full explosion or for black hole formation to occur).
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Furthermore an ideal and complete model should fully include three-dimensional
hydrodynamics, general relativity, neutrino transport, realistic nuclear physics, MHD,
magnetic fields and rotation. In general, some approximations can be used, as solv-
ing the hydrodynamics and radiation transports in Newtonian fashion, taking general
relativity into account replacing the spherical component of the multipole decompon-
sition with Oppenheimer-Volkoff potential. In any case, gravitational signal can be
derived using the approximation of the slow-motion weak field formalism.

We expect gravitational waves from supernovae explosion in three different phases
[21]:

Bounce At core bounce, when the infalling material reaches nuclear densities and
the collapse halts, the matter reaches its peak acceleration. If the collapse phase
or the neutrino emission are asymmetric, either by asymmetries in the stellar
structure or through rotation, this phase can lead to the strongest gravitational
wave emission.

Post-bounce and Convection The convection above the proto-neutron star can
also develop strong asymmetries as the convective cells merge into low-mode
convection. This can lead to rapidly varying quadrupole moments in both
matter and core.

Neutron Star Convection in the cooling neutron star could produce strong grav-
itational wave emission. Pulsations in the newly formed proto-neutron star
may also produce a strong gravitational signal. But the most-studied gravita-
tional wave source arises from bar-mode instabilities, in part because, if they
develop, they may produce a gravitational signal that rivals both the bounce
and convective gravitational wave signals (see sec. 1.3.1).

During the bounce phase, three different gravitational signal are identified which
can be associated with distinct types of collapse or bounce dynamics (fig. 1.11):

• type I models undergo core bounce governed by the stiffening of the nuclear
equation of state at nuclear density and “ring down” quickly into postbounce
equilibrium. Their waveforms exhibit one pronounced large spike at bounce
and then show a gradually damped ring down;

• type II models are affected significantly by rotation and undergo core bounce
dominated by centrifugal forces at densities below nuclear. Their dynamics
exhibits “multiple bounces”, i.e. slow harmonic-oscillator-like damped bounce
and re-expansion collapse cycles; this behaviour is reflected in the waveform by
distinct signal peaks associated with every bounce;

• type III models are characterized by fast collapse (owing to a very soft sub-
nuclear equation of state or very efficient electron capture), extremely small
masses of the homologously collapsing inner core and low-amplitude gravita-
tional waves and a subdominant negative spike in the waveform associated
with bounce.
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Figure 1.11: axisymmetric gravitational burst signal (h+D in units of cm, where D
is the distance of the source) as a function of time after core bounce for the three
explained types.

In a typical supernova, simulations suggest that gravitational waves could extract
between 10−11 − 10−7 of the total of available mass-energy; the frequency range of
the signal would be around 100− 1000Hz, while the amplitude would be [22]:

h ∼ 1.5 · 10−21

(
E

10−7M�c2

)1/2(
1ms

T

)1/2(
1kHz

f

)(
10kpc

D

)
where E is the emitted energy, T the time of emission, f the observed frequency and
D the source-detector distance.

In particular for type I model supernova where the bounce is governed by a stiffen-
ing equation of state, it is possible to calculate the gravitational signal characteristics
for three different iron core angular velocities [23]: the results are reported in table
1.2.

Ωcore(rad/s) hmax · 10−21 EGW · 10−8(M�c
2) fpeak(Hz)

≤ 1− 1.5 ≤ 0.5 ≤ 0.1 700− 800
1− 2 to 6− 13 0.5− 10 0.1− 5 400− 800
≥ 6− 13 3.5− 7.5 0.07− 0.5 70− 200

Table 1.2: gravitational signal characteristics of rotating iron core collapse and core
bounce based on the type I dynamics; the three distinct groups are based primarily
on their precollapse central angular velocity Ωcore, hmax is the maximum gravitational
wave strain amplitude (scaled to 10 kpc) at bounce, EGW is the energy radiated away
in gravitational waves, fpeak is the frequency at which the gravitational wave energy
spectrum dE/df peaks.

For what concerns gravitational emission during postbounce and convective phase,
these phenomena are intrinsically multi-dimensional and lead generically to time-
varying mass quadrupole moments.
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In postbounce evolution, convective instability is a central feature of core-collapse
supernova. According to the Schwarzschild-Ledoux criterion, convective overturn
develops in the presence of negative radial entropy or lepton composition gradients.
These can be driven by:

• prompt convection which may occur immediately after bounce.

As the stalling bounce shock passes through outer core material, it leaves be-
hind a negative entropy gradient. Furthermore, following neutrino shock break-
out and the associated burst of electron neutrinos, a negative lepton gradient
arises at the outer edge of the proto-neutron star immediately below the neu-
trinosphere. The two negative gradients lead to a convectively unstable region
according to the Schwarzschild-Ledoux criterion.

Neutrino losses and neutrino energy deposition behind the stalling shock smooth
out the large negative entropy gradient in the immediate postshock region,
but prompt convection can still develop rapidly and last for ∼ 10 − 20ms if
significant, but not well known, seed perturbations are present in the immediate
postbounce flow.

• proto-neutron star (PNS) convection.

Owing to a negative radial lepton gradient, proto-neutron stars are unstable
to convective overturn in a radial interval from ∼ 10km to ∼ 30km. Convec-
tion sets in ∼ 20 − 50ms after bounce and may last for several seconds as the
proto-neutron star slowly contracts and deleptonizes after a successful super-
nova explosion. If the explosion is not successful (or weak) and a black hole
is formed, proto-neutron star convection and the associated gravitational wave
emission stop abruptly. Moreover, if present, large-amplitude proto-neutron
star core g-modes can distort convection and themselves lead to gravitational
wave emission much stronger than that due to the convective motions.

• neutrino convection in the postshock heating region.

Neutrino heating below the stalled shock peaks in the inner part of the gain re-
gion and decreases outward. This establishes a negative radial entropy gradient
and makes the gain region unstable to convective overturn. Convection devel-
ops within 30 − 50ms after bounce in the gain region which extends at these
times typically from 50 − 80km out to almost the radius of the stalled shock
at 150− 250km. Furthermore the SASI instability is believed to be caused by
either an advective-acoustic or a purely acoustic feedback cycle, leading to the
growth of perturbations in the stalled shock.

Table 1.3 provides an overview of the gravitational wave emission from prompt,
proto-neutron star and neutrino-driven convection. We provide rough values for typ-
ical h, emitted energies, typical emission frequencies and emission durations.

Finally for what concerns the second-generation interferometric gravitational wave
detectors, the even optimistic estimate for detection rate is not more than ∼ 1 − 2
events per century in the Milky Way (D ∼ 10 − 15kpc) and the Magellanic Clouds
(D ∼ 50− 70kpc).
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Process htyp · 10−21 EGW · 10−10(M�c
2) fpeak(Hz) duration ∆t(ms)

Prompt 0.01− 1 ≤ 0.01− 10 50− 1000 0− 30
PNS 0.02− 0.05 ≤ 1.3(∆t

1s
) 300− 1500 500− 1000

Neutrino 0.01− 0.1 ≥ 0.01( ∆t
100ms

) 100− 800 100− 1000

Table 1.3: estimates for the typical gravitational wave strain at 10kpc, the typical
emission frequency f , the duration of the emission ∆t, and the emitted energy EGW .

This number roughly doubles if one includes the entire local group (D ∼ 1Mpc).
In the region from 3 − 5Mpc a number of starburst galaxies increase the predicted
and observed integrated supernova rate to 0.5 yr−1. At a distance D ∼ 10Mpc it is
≥ 1 yr−1.

1.3.4 Gamma-Ray Bursts

Gamma-ray bursts (GRB) are the most luminous explosions in the universe: they
are short and intense bursts of about 100keV − 1MeV which last for 10ms− 1000s.
They were accidentally discovered in 1973 and at first they have thought originated
by galactic neutron stars. Then, through follow-up observations of the X-ray, optical
and radio emission of GRB and thanks to determination of their sky location, redshift
and host galaxy, their extra-galactic origin at cosmological distances became evident.
Their principal characteristics are [24]:

• the isotropy on the sky;

• the lack of bright persistent counterparts;

• their non-thermal spectrum.

The cosmological origin of GRB immediately implies that they are much more
luminous than previously thought. They release 1044−1046J or more in a few seconds.
Furthermore they present sub-second luminosity fluctuations, implying a huge photon
density in a small volume; the inner engine that produce the jet must be compact.

For these reasons, such events are rare in the Universe. In fact the dedicated detec-
tors, like BATSE or SWIFT, observe on average one burst per day, that corresponds,
with the simplest model, assuming a rate which does not change with redshift, to one
burst per million years per galaxy. Of course the rate could be higher if there is a
significant beaming of the gamma-ray emission.

Even if there are a lot of data and observations about GRB, their origin and
counterparts is almost uncertain.

A generic scheme, called “fireball model”, has been developed in the last years,
then confirmed by observations. This model presumes that a ultra-relativistic flow,
a jet pointed in our direction, is converted to radiation in a optically thin region.
The radiation from the jet is greatly amplified by the Doppler boost, since the flow
Lorentz factor is of several tens to several hundreds.

But not all the energy of the relativistic matter can be converted to radiation by
this process; the remaining kinetic energy will most be dissipated via external shocks
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that will produce an “afterglow” in different wavelength. The typical luminosity
curve is shown in fig. 1.12 [25].

Thus, the prompt emission is produced within the jet, while an afterglow is due
to the interaction of the jet with the matter surrounding the source.

Figure 1.12: Time evolution of the luminosity of GRB080319B, GRB050904 and
GRB990123 at visible wavelengths. The transition between the prompt phase and
the early afterglow of GRB080319B is clearly seen at time ∼ 1min. For comparison,
the figure shows the luminosities of quasars (QSOs) and of the very bright supernova
SN2006gy.

The mechanisms leading to energy dissipation within the jet and the dominant
radiation processes are still debated: relativistic shocks or magnetic reconnection
are frequently advocated to dissipate the internal energy of the jet, which is then
radiated as synchrotron and/or blackbody radiation. The detection of the prompt
gamma-rays implies that they are emitted after the jet has become transparent to its
own radiation. When the jet becomes transparent, most of its thermal energy should
be radiated away as photospheric emission. This thermal emission is not commonly
observed, implying that the energy is temporarily stored in non-thermal components
(kinetic energy, magnetic fields) and released after the jet has become transparent.

Through observations made by satellite-based gamma-ray observatories, GRB are
classified for their duration and spectra [26]:

short-hard GRB they are observed at low redshifts and are associated with a va-
riety of galaxy types without active star forming regions including early-type
elliptical and lenticular galaxies. Currently, it is widely thought that merger
of binary neutron star or neutron star-black hole systems are the progenitors
of most short-hard GRB. Some small fraction of short GRB (less than 15% of
known short GRB) may be caused by soft-gamma-repeater flares.
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So, for such systems, the gravitational wave signal will be a chirp during the
inspiral, followed by a burst-type signal associated with the merger, and sub-
sequently a signal from the ring-down phase of the newly formed black hole
[27].

long-soft GRB they are always associated with late-type star-forming host galaxies.
It is therefore thought that core-collapse stars (collapsars) are the progenitor of
long GRB. This kind of sources differs from supernovae explosions, even if it is
not yet clear why some massive stars die as supernovae and others as relativistic
GRB.

In this scenario, the high rotation required to form the centrifugally supported
disk that powers the GRB, should produce gravitational wave emission via bar
or fragmentation instabilities that might develop in the collapsing core and/or
in the disk. Moreover, asymmetrically infalling matter is expected to perturb
the final black hole geometry, leading to a ring-down phase [28].

The models of gravitational wave emission by GRB are difficult to do, in par-
ticular for what concerns the extreme stellar collapse. We can use an ad-hoc model
for describing the gravitational wave emission by a rigidly rotating quadrupolar mass
moment with a Gaussian time evolution of its magnitude. For such a source with a
rotation axis inclined by an angle i with respect to the observer the received gravita-
tional signal is a sine-Gaussian [30]:(

h+(t)
h×(t)

)
=

1

r

√
5G

4π3/2c3

Eiso
gw

f0Q

(
(1 + cos2 i) cos(2πf0t)

2 cos i sin(2πf0t)

)
e
− (2πf0t)

2

2Q2 (1.26)

where the signal frequency f0 is equal to twice the rotation frequency, t is the time
relative to the signal peak time, Q characterizes the number of cycles for which the
quadrupolar mass moment is large, r is the distance between the observer and the
source andEiso

gw is the total isotropic radiated energy.
It is evident from eq. 1.26 that the polarization of the gravitational waves pro-

vides evidence about the emission geometry of the GRB sources, because the relative
strengths of the + and × polarizations is a function of the inclination angle.

GRB-triggered gravitational wave searches have adopted two kinds of time win-
dows [29]:

• on-source time window of few minutes (long GRB) or few seconds (short GRB)
around the GRB trigger time. In fact, for long GRB, the time delay between
the gravitational wave signal and gamma-ray trigger is thought to be dominated
by the time necessary for the fireball to push through the stellar envelop of the
progenitor (10−100s). On the other hand, for short GRB, the merger is believed
to occur quickly, and be over within a few seconds (naturally accounting for the
short nature of these bursts).

• off-source window of three hours surrounding the on-source data. In this way,
processing them identically to the on-source data, it is possible to evaluate the
background noise. The same noise properties of the GRB time are taken into
account: in particular the same data-quality cuts, sky position relative to the
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Earth are applied. For each sample of off-source segments, the loudest event
is determined, to give an empirical measure of the significance of the loudest
event in the on-source data.

With this triggered analysis method, it is estimated a factor of ∼ 2 improvement
in sensitivity with respect to untriggered ones.

For what concerns the detection rate, calculated by eq. 1.15, we distinguish short
from long GRB:

Ṅlong ≈ 1 · 10−6 Rlong

0.5Gpc−3yr−1

(
Eiso
gw

0.01M�c2

)3/2

(1.27)

Ṅshort ≈ 2 · 10−5 Rshort

10Gpc−3yr−1

(
Eiso
gw

0.01M�c2

)3/2

(1.28)

where R are the observed GRB rates; for these expressions we have used the typical
detector horizon limits, which depend on event energy, D ∼ 15MPc (Eiso

gw/0.01M�c
2),

evaluated for a signal at frequencies around 150Hz.
Actually, recent studies report that there exists a local population of under-

luminous long GRB with an observed rate density 103 times the one of the high
luminosity population:

Ṅlocal ≈ 1 · 10−3 Rlocal

500Gpc−3yr−1

(
Eiso
gw

0.01M�c2

)3/2

All these detection rate could be multiplied by a factor 5 for advanced detectors.

1.3.5 Stochastic sources

The superposition of large number of unresolved sources of gravitational waves pro-
duces a stochastic background. The reason for which detectors can not distinguish
between this kind of sources is simple and depends on the angular resolution and on
the field of view.

To better understand, we can draw a comparison with the electromagnetic detec-
tors. If we study an optical source, somewhere in the sky, using a telescope with a
certain angular resolution, then details of the source can be resolved if the angular
resolution of the telescope is smaller than the angular size of the features or objects
being studied. In the case of the interferometer detectors, the angular size of the
antenna pattern is of order π/2. Hence, almost any source is “unresolved” in the
sense that it makes a significant contribution to the detector output for almost any
orientation of the detector and the source. When many sources are present, even if
they are pointlike, the resulting signal has a stochastic nature.

There are two types of contribution:

1. a cosmological background, i.e. a memory of the early stage of the universe;

2. an astrophysical background, due to the galaxies evolution, star formation and
all overlapped emitting celestial bodies.
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The most important feature in studying this kind of source is the possibility of
detecting radiation produced at very early epoch, t ∼ 10−22s after the Big Bang.
In fact, similar to what happens for electromagnetic field, a gravitational wave of
a certain frequency is produced when the characteristic time for the matter and
energy in the universe to change is comparable to the period of the wave. So, at
time t ∼ 10−22s after the Big Bang, the universe is extremely small and dense,
with a mean temperature of 107GeV . For this reason, detecting a background of
cosmological origin would give us a glimpse of the universe at much earlier times
than we can obtain in other ways.

In general, for stochastic background it is preferable to use the fractional energy
density Ω, as in cosmology.

We can define [31]:

Ωgw(f) =
1

ρcr

dρgw
d ln f

(1.29)

where ρgw is gravitational wave energy density and ρcr is the critical energy density
of the universe:

ρcr =
3c2H2

0

8πG
≈ 9 · 10−10 J/m3

The variability of this quantity depends on the uncertainty of the Hubble constant
H0; in this work I will take the value H0 = 72 km/sMpc.

It is not clear the frequency dependence of Ωgw: in some cosmological models,
Ωgw is considered frequency-independent, but this is not true for other models. The
important thing is that any spectrum of gravitational radiation can be described by
an appropriate function H(f). With the correct dependence on frequency, it can
describe a flat spectrum or a black-body spectrum or any other specific distribution
of energy with frequency.

We calculate the expected value of the strain due to stochastic background. We
can start from the expression of a plane wave of a gravitational perturbation:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂hA(f, Ω̂)e2πif(t−Ω̂·~x/c)eAab(Ω̂) (1.30)

where A indicate the two gravitational wave polarizations + and ×, hA is the wave
amplitude, eAab are the polarization tensors, which depend only upon the direction
of the wave vector; the integration is over Ω̂, the unit vector on the two-dimension
sphere S2.

From eq. 1.29 we need to know how to express the energy density ρgw. We can use
the relation between the stress-energy tensor and the gravitational wave amplitude
[3]:

Tµν =
c2

32πG2
< hab,µh

ab
,ν >

The time coordinate T00 is equal to the energy density ρ, so we can write:

ρgw =
c2

32πG2
< ḣabḣ

ab >

So, assuming that the stochastic noise is stationary and Gaussian, we can express
the average of the gravitational wave amplitude in general:

< h∗A(f, Ω̂)hA′(f
′, Ω̂′) >= δ(f − f ′) δ2(Ω̂, Ω̂′) δAA′ H(f)
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where H(f) is real non-negative function related to the spectrum of Ωgw(f).
Substituting the plane wave expression 1.30 into this formula we obtain:

< ḣabḣ
ab > =

∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂ 4π2f 2H(f) eAab(Ω̂)eabA (Ω̂) =

= 64π3

∫ ∞
−∞

dff 2H(f) =

= 128π3

∫ ∞
0

dff 2H(f)

where we have considered
∑

A e
A
abe

ab
A = 4 and

∫
dΩ̂ = 4π

Thus, the energy density fraction Ωgw is:

Ωgw =
f

ρcr

dρcr
df

=
32π3

3H2
0

f 3H(f) (1.31)

where we have left the spectrum behaviour H(f) explicitly expressed.

In the following we examine in detail three different cosmological physical processes
which might have taken place in the early universe, which give rise to different spectra
of Ωgw.

Inflationary models In this model, as the universe cooled, it passed through a
phase in which the energy density of the universe was dominated by vacuum
energy Λ and the scale factor increased as rapidly as a power law or an exponen-
tial function. In its simplest version, this scenario is tightly constrained by the
cosmic microwave background radiation (CMB) observational data. When this
constraint is taken into account, the stochastic gravitational wave background
predicted by the simplest inflationary cosmological models are far too weak to
be observable by either the initial or advanced interferometer detectors. This
weakness is due to the long period of inflation that damps out any classical or
macroscopic perturbations, leaving behind only the minimum allowed level of
fluctuation, required by the uncertainty principle.

In this case, the energy density fraction is [32]:

Ωgw =
16c7

9h̄G2

ρΛ

1 + zeq
(1.32)

where ρΛ is the energy density in the vacuum-dominated era and zeq is the
redshift of the universe when the matter and the radiation energy density were
equal.

The frequency dependence in eq. 1.32 is not obvious and it is given in fig. 1.13.

The inflationary spectrum rises rapidly at low frequencies (waves which re-
entered the Hubble sphere after the universe became matter-dominated) and
falls off above the (appropriately redshifted) frequency scale fmax associated
with the fastest characteristic time of the phase transition at the end of inflation.
The amplitude of the flat region depends only on the energy density during the
inflationary stage; we have chosen the largest amplitude consistent with the
COBE constraint Ωgw < 7 · 10−11 at 10−18Hz.
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Figure 1.13: the spectrum of stochastic gravitational waves in inflationary models is
flat over a wide range of frequencies and is shown as the solid curve. The horizontal
axis is log10 of frequency, inHz. The vertical axis is log10 Ωgw. The spectrum of a 0.9K
blackbody is shown for comparison; at LIGO and LISA frequencies, Ωgw < 8 · 10−14.

Cosmic strings In this model, as the universe cooled, long string-like defects were
formed at a phase transition. These “cosmic strings” form a network which
self-intersects and chops off small loops of string. These small loops oscillate
relativistically and, as they do so, they emit a characteristic spectrum of grav-
itational waves. In contrast with the previous example, for reasonable values
of the parameters, the cosmic string scenario predicts a stochastic background
which is large enough to be observable with the advanced interferometer detec-
tor. In common with the previous example, the string network is described by
a “scaling” solution, with the consequence that the spectrum of Ωgw is flat over
a wide range of frequencies (fig. 1.14).

The expression of Ωgw is quite complicated to obtain [31]:

Ωgw =
16πAγ

9α

(
Gµ

c2

)2
β3/2 − 1

1 + zeq

where:

− α is a dimensionless constant indicating the size Lloop of the string loop at
the time of formation fform

Lloop = αctform

− A is the number of long strings which pass through the Hubble volume
(A = 52, value obtained from simulations);
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Figure 1.14: the spectrum of gravitational radiation background produced by a cosmic
string network; around the Virgo sensitivity frequency band f ∼ 100Hz, the spectrum
is fairly flat.

− γ is a dimensionless constant linked to the energy-loss rate P of the loops,
which does not depends on their size but shape and mass density µ

P = γGµ2c

− β is the ratio between the death-time and the birth-time of a string

β = 1 +
αc2

γGµ
> 1

Phase transition We consider the case in which the phase transition is strongly
first-order and creates vacuum bubbles, which are bubbles of the new (low
energy density) phase expanding in the old (high energy density) phase. Within
a short time, these bubble walls are moving relativistically and much of the
latent energy released by the phase transition is transformed into kinetic energy
of the bubble walls. The highly-relativistic and non-symmetric collisions of
these bubble walls are a copious source of gravitational radiation, strong enough
to be observable in some cases with the initial generation of interferometer
detectors. Unlike the previous two examples, this phase transition/gravitational
radiation production process is a “one-time” event, characterized by a particular
cosmological time and a particular frequency today; so, there is no scaling law
in this case. Hence, in contrast with the previous two examples, the spectrum
Ωgw(f) is strongly peaked at a frequency characteristic of this time (fig. 1.15).
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Figure 1.15: typical spectra Ωgw(f) produced from the collision of bubbles which
result from a first-order phase transition. The horizontal axis is log10(2πf/β) and
the vertical axis is log10 Ωgwβ

2(1 + α)2H−2α−2k−2. The spectrum peaks at a char-
acteristic frequency fmax, depending of the expansion rate and the time at which
the bubble collisions occurred. The spectra are shown for bubble wall velocities of
v = 0.2, 0.4, 0.6, 1.0.

In this case, the amplitude of the energy density fraction is [33]:

Ωgw(fmax)h
2
100 ≈ 1.1 · 10−6k2

(
β

H∗

)−2(
α

1 + α

)2(
v3

0.24 + v3

)(
g∗

100

)−1/3

where:

− fmax is the spectrum peak frequency fmax ≈ 4.1 · 10−3Hz;

− k is the fraction of vacuum energy that goes into kinetic energy of the
fluid;

− β is the measure of the bubble nucleation rate and H∗ the Hubble expan-
sion rate at the phase transition time;

− α is the ratio α = ρΛ

ρth
between the energy density if the vacuum and the

thermal energy density;

− g∗ is the number of relativistic degrees of freedom of the universe at a fixed
temperature;

− v is the bubbles velocity.

For what concerns gravitational stochastic background given by the astrophysical
sources, we can say that its detection could put very strong constraints on the physical
properties of compact objects, the initial mass function and the star formation history.
Let us examine different contributions.
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Binary neutron stars Binary neutron star coalescences, which may radiate at fre-
quencies up to 1.4 − 1.6kHz, may be the most important contribution in the
interferometer detector frequency range [34]. In the quadrupolar approxima-
tion, the gravitational wave energy spectrum H(f) (see eq. 1.31) emitted by a
binary system which inspirals in a quasi-circular orbit is given by:

H(f) =
dEgw
df

=
(Gπ)2/3

3

m1m2

(m1 +m2)1/3
f−1/3

where m1 and m2 are the neutron star masses.

Core collapses Popolation III and Popolation II stellar collapses can produce a
background signal. Considering how it is difficult exactly predict the collapse
waveform, as seen in sec. 1.3.3, this can be done with 2D numerical simulation,
taking into account the effects of general relativity and neutrino transport.

The background is out of reach for Popolation III stellar collapse, but could be
detected for Popolation II progenitors. The energy density reaches a maximum
of Ωgw ∼ 10−9 at 1000Hz for the collapse to neutron star and of Ωgw ∼ (4− 7) ·
10−10 at 500Hz for the collapse to black hole.

The estimated gravitational wave signal created by all core collapse supernovae,
to neutron stars and black holes, using a Gaussian spectrum, is a good approx-
imation to the models [35]:

H(f) = Ae−
(f−f0)

2σ2

where, considering different models and simulated spectra, we have σ ∼ 500
and f0 = 200− 800Hz.

Spinning neutron stars: r-modes The stochastic background from r-modes was
first investigated without taking into account dissipation mechanisms such as
the effect of the solid crust or the magnetic field, which may significantly reduce
the gravitational instability. The spectral energy density of a single source is
given by [36]:

H(f) =
2E0

f 2
sup

f

where fsup is 4/3 of the initial rotational frequency and E0 is the rotational
energy lost within the instability window. Some example for different fsup are
reported in fig. 1.16.

Spinning neutron stars: tri-axial emission Rotating neutron stars with a tri-
axial shape may have a time varying quadrupole moment and hence radiate
gravitational waves at twice the rotational frequency. The total spectral grav-
itational energy emitted by a neutron star born with a rotational period P
and which decelerates through magnetic dipole torques and gravitational wave
emission is:

H(f) =
Kf 3

1 + Kf2

π2Izz
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Figure 1.16: the energy density fraction Ωgw as a function of frequencies for r-modes
instabilities during initial phase of a spinning neutron star; different maximum fre-
quency values are reported.

where f ∈ [0 − 2/P ], Izz is the principal moment of inertia around axis z and
K is:

K =
192π4GI3

zzε

5c5R6B2 sin2 α

with ε the ellipticity factor, R the radius of the star, B its magnetic field and
α the angle between the rotation and the dipole axis.

For what concerns the detection of stochastic background, the detectors could
not distinguish between different parts and the resulting signal can be perceive as
incoherent noise. In principle this noise could be higher than the instrumental noise,
preventing the detection of useful but low signals. For example, astrophysical back-
ground may mask the cosmological in certain frequency regions.

To distinguish this kind of sources, there are two ways:

• using al least two detectors, searching for a coherent signal with cross-correlation
methods; in such methods, the output from a detector works as a template for
the signal from the second detector. They can match well if the wavelength of
gravitational waves is longer than the separation between detectors, otherwise
there are time delay problems.

• having long observation times; if the random field is generated by a sample
of sources distributed anisotropically, as galactic sources, then over a year the
noise background would be modulated, as the detector change its orientation.

Let us analyze in more detail the first way. We consider two independent detectors
in the same location and identically oriented; then we discuss on a more complicate
configuration.
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In the simplified case, the outputs of the two detectors are:

s1(t) = h1(t) + n1(t)

s2(t) = h2(t) + n2(t)

We compute a correlation signal S by multiplying together the outputs of the two
detectors and integrating:

S =< s1s2 >=

∫ T/2

−T/2
s1(t)s2(t)dt

where T is the integration time.
If the detector noise ni is greater than the signal si, it is possible to write explicitly:

S = < h1, h2 > + < h1, n2 > + < h2, n1 > + < n1, n2 >≈
≈ < h1, h2 > + < n1, n2 >

where, we have dropped terms like < hi, nj > because they are smaller than <
n1, n2 >. Note that n1 and n2 can be statistically uncorrelated, while the signals h1

and h2 are always correlated, since the source is the same for all detectors.
It is possible to compute these two contributions:

< h1, h2 > ∝ |h̃(f)|2∆fT ∝ Ω(f)∆fT

< n1, n2 > ∝ |ñ(f)|2
√

∆fT

where f is the central frequency at which the detector is sensitive, ∆f is the effective
bandwidth and with the symbol x̃ we indicate the Fourier transform of the quantity
x. The < n1, n2 > term, thanks to its random-walk behaviour, grows on the average
like
√
T , while the signal < h1, h2 > grows like T .

Computing the S/N ratio from these equations and putting it equal to 1, we can
find the minimum detectable signal Ωmin

gw :

Ωmin
gw =

|ñ(f)|2√
∆fT

With a long observation time one can in principle detect a gravitational wave
stochastic background buried in any level of detector noise.

Now we can face to a more rigorous treatment of the signal analysis, taking into
account the reduction in sensitivity that results from two effects:

1. the non-parallel alignment of the arms;

2. the time delay between the two detectors.

These two effects reduce the sensitivity of a stochastic background search; they mean
that h1 and h2 are no longer equal; the overlap between the gravitational wave strains
in the two detectors is only partial. To quantify these effects we introduce the overlap
reduction function γ(f), which depends on the relative positions, the orientations of a
pair of detectors and their response to the + and × gravitational wave polarizations.
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So, we write the most general possible form of the correlation signal S between
two detectors:

S =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′s1(t)s2(t′)Q(t− t′) (1.33)

where Q(t− t′) is a real filter function; it depends upon the locations and orientations
of the detectors, as well as on the spectrum of the stochastic background and the noise
characteristics of the detectors. So, it depends also to the overlap reduction function
γ(f).

We can re-write eq. 1.33 in frequency domain:

S =

∫ ∞
−∞

df

∫ ∞
−∞

df ′δ(f − f ′)s̃∗1(f)s̃2(f ′)Q̃(f ′)

If we assume that the stochastic background is isotropic, unpolarized and Gaus-
sian, we can easily calculate the Fourier amplitudes of the strain signal and the strain
noise [31]:

< h̃∗1(f), h̃2(f ′) > = δ(f − f ′) 3H2
0

20π2

Ωgw(f)γ(f)

f 3

< ñ∗i (f), ñj(f
′) > =

1

2
δ(f − f ′)δijPi(f)

where the indices i, j label the two different detectors and Pi(f) is the power spectral
noise density function, defined for each detector.

In order to find the optimal choice of filter function Q, we need to choose the
quantity to maximize. The natural choice here is to maximize the ratio of signal-to-
noise S/N . Since the noise in each detector is uncorrelated with the other detector
and is uncorrelated with the gravity-wave strain h, after some calculations, we obtain
an expression for Q̃:

Q̃ =
γ(f)Ωgw(f)

f 3P1(f)P2(f)

Effectively, the filter includes into the signal only those frequencies at which the
detector is most sensitive, weighting each frequency by a positive or negative fac-
tor which reflects the relative phasing (at that frequency) of the signals at the two
detectors.

One of the interesting peculiarity of this formula for the signal-to-noise ratio is
that it depends upon the spectrum of gravitational waves Ωgw, an unknown function.
In practice it implies that rather than having a single optimal filter one needs to have
a set of such filters.

The idea, then, is to use and to state with some desired reliability that the observed
positive mean value of S could not have resulted from detector noise but instead must
have resulted from a stochastic background. One way of doing that is to compute
the probability that a random variable with a Gaussian normal distribution will lie
within a given range.

For example, if S belongs to the range [< S > −2
√
< N2 >,< S > +2

√
< N2 >],

we can detect a stochastic background with ≥ 95% of confidence.
Recently [37], using this analysis method, it is found an upper limit on gravita-

tional wave energy density fraction Ωgw ≤ 6.9 · 10−6. This value is smaller than other
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values set by the Big Bang nucleosynthesis (ΩBBN ≤ 1.1 · 10−5) and from the cosmic
microwave background measurements (ΩCMB ≤ 9.5 · 10−6).

This is one of the most important result reached by gravitational waves searches.

1.4 Multimessanger astronomy

The search of gravitational waves is a challenge even if, up to now, without results:
it is fundamental not only to confirm Einstein’s general relativity, but also to keep
unique information about a given category of sources or astrophysical event as the
inspiraling and merger of neutron stars and black holes or as core collapse in massive
stars.

Large gravitational wave detectors using exquisitely laser interferometry, as we
describe in the next chapter, have been successfully operating in recent years and
are currently being upgraded to greatly improve their sensitivities. Many signals are
expected to be detected in the coming decade.

Simultaneous observing through the network of gravitational wave detectors en-
ables us to identify and localize event candidates on the sky with moderate precision,
opening up the possibility of capturing optical transients or other electromagnetic
counterparts to confirm an event and obtain complementary information about it.

In fact at present we observe the sky in different bands: in addition to the electro-
magnetic spectrum, many astrophysical sources will have neutrino and gravitational
wave counterparts. These observables will add unique information because the data
coming from neutrino observatories and from gravitational wave interferometers are
unperturbed, since either neutrinos and gravitational waves do not interact with
matter.

For these reasons we push toward a “multimessanger astronomy”.
Gravitational radiation can give us information about source sky position, its host

galaxy type, its distance, its emission characteristics and the occurring astrophysical
processes.

Figure 1.17: main steps in processing data from the gravitational wave detector
network; alerts are rapidly generated for follow-up observations.

Furthermore, it is convenient to connect different kinds of observation of the same
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astrophysical event or system to trigger the data (see fig. 1.17).
For example, additional “coincidence” tests can enable confident detection of

weaker gravitational wave signals: electromagnetic or particle signals may provide
complementary information about the gravitational wave source, as for supernova ex-
plosions. Even in the worst case in which there are electromagnetically quiet gravita-
tional wave emissions, reconstructed gravitational wave waveforms can be “inverted”
to provide precise estimations of source parameters, as for black hole / neutron star
coalescences. In the case of transient signals, as those coming from GRB, data from
gravitational wave interferometers can be used as reference to point telescopes at the
source.

Inside the Virgo-LIGO collaboration a complete low-latency gravitational wave
data analysis and alert system have been developed and implemented in 2009 -2010
and used to send alerts to several observing partners [38].

Currently, LIGO and Virgo have formal or informal relationships with:

• the Jodrell Bank Observatory, which is a radio telescope: it provides timing
information for known pulsar searches;

• interplanetary Network (IPN) of gamma ray satellites for Soft Gamma Re-
peaters and GRB searches;

But other collaborations have been planned:

• ANTARES, IceCube, for high energy neutrinos, and Super-K, for low energy
neutrinos;

• Swift X-ray telescope, for studying core collapses and for off-line analyses of
possible gravitational wave events;

• ROTSE and Tarot, which are wide field optical telescopes, for rapid follow-
ing up of high threshold gravitational wave events to optical counterparts, to
supernovae and GRB afterglows.

Until now no astronomical research groups have approached LIGO or Virgo asking
to look at gravitational data, except for those belonging to LIGO/Virgo community:
this is because gravitational wave astronomy is not yet an “established” observational
field.

To enter properly the multimessanger astronomy, gravitational wave research
should wait for the first detection.



Chapter 2

Interferometric detectors for
gravitational wave

In this chapter we see how it is possible to measure the effect of gravitational wave
with an interferometric detector.

Since the gravitational waves modify the space-time metric, their passage modifies
the distance between two fixed objects. To monitor this distance it is possible to use
a Michelson-Morley interferometer; in fact this device measures with high precision
distance differences along two chosen directions on the base of the time travel of
photons produced by a monochromatic laser source.

There are currently four experiments based on that idea: LIGO [39] (USA, with
two 4km-long interferometers), Virgo [40] (Italian and French collaboration, 3km),
GEO600 [41] (English and German collaboration, 600m), CLIO, upgrated in the
future to KAGRA [42] (Japan, 100m).

In this chapter I talk about the principle of detection. After reporting the most
important noise sources, I give an example of an interferometer detector: Virgo in its
first configuration and in the advanced project.

2.1 Principle of detection

The classic optical scheme for a gravitational wave detector is a Michelson interfer-
ometer. The passage of a gravitational wave induces a change in the relative distance
of the mirrors. A consequent variation occurs in the power transmitted at the output
port, detected by a photodetector.

A simple Michelson interferometer is shown in fig. 2.1: a laser beam of wavelength
λL impinges on a half reflecting beam splitter; the two emerging beams are sent
toward orthogonal directions, reflected back by two mirrors, at distance l1 and l2
from the beam splitter. Finally, they recombine at the beam splitter and go to the
photodetector, in a direction symmetrically with respect to the laser source.

If the input power impinging on the beam splitter is Pin, the power detected at
the output port Pout is [43]:

Pout = Pin r
2
BS t

2
BS (r2

1 + r2
2)[1 + Ccos(2kL∆l)] (2.1)

where rx is the reflectivity of the mirror x, tx is its trasmessivity, kL is the wave vector

41
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Figure 2.1: scheme of a simple Michelson interferometer.

of the laser beam of wavelength λL, ∆l = l2 − l1 is the two arms length asymmetry
and C is the contrast:

C =
2r1r2

r2
1 + r2

2

which depends on the amplitude reflectivity of the two arm mirrors.
For an ideal interferometer, the beam splitter has rBS = tBS =

√
2/2 and the two

mirrors have r1 ∼ r2 ∼ 1, so that:

Pout =
Pin
2

[1 + C cos(∆φL)] (2.2)

where:
∆φL = 2kL∆l (2.3)

which is the differential phase shift induced in the light returning to the beam splitter.

When a gravitational wave passes through the interferometer, the arm asymmetry
∆l changes of a quantity ∆lgw depending on the gravitational signal amplitude:

h = hAe
iωt

where hA is the wave amplitude, ω is the gravitational wave pulsation and t is the
time.

Using eq. 1.11, we calculate the gravitational wave contribution to the arm asym-
metry:

∆lgw(t) =
1

2

hAc

iω
eiωt(eiω

2l1
c + eiω

2l2
c − 2) (2.4)
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∆lgw being a time function, because of the wave passage.
We can approximate this equation in a more simple form, considering the two

arm of the same length l0. Thus, after re-writing the complex exponential with its
corrisponding trigonometric function, we obtain:

∆lgw(t) = hAl0e
iω(t− l0

c
) sin(ωl0

c
)

ωl0
c

This equation shows that the effect of a gravitational wave passage on the arm asym-
metry is proportional to the initial arm length and to the amplitude of the gravita-
tional wave ∆lgw ∝ hAl0.

The differential phase shift due to gravitational wave passage becomes:

∆φgwL (t) =
4π

λL
hAl0e

iω(t− l0
c

) sin(ωl0
c

)
ωl0
c

In that case, the output power detected can be re-written using the eq. 2.2 and
substituting the cosine argument with the sum ∆φL + ∆φgwL ; considering the first
term approximation of the gravitational perturbation we obtain:

Pout(t) =
Pin
2

[1 + C cos(∆φL) + C sin(∆φL)∆φgwL (t)] (2.5)

Thus, we have linked the detector output power with the gravitational signal.
To have an idea of the order of magnitude of the detectable frequency at which

the interferometer could be sensitive, we can use the simple expression which link the
frequency with the interferometer arm length l0:

fgw ∼
c

l0

So, if we want to detect a 100Hz gravitational wave, as the signal produced by a
pulsar, we need a 3000km-long instrument, which is clearly not technically possible
to be built on Earth.

For an ideal interferometer, with no sources of noise limiting the detection of
power fluctuations, the best choice for the tuning of the output would be the one
maximizing the sine in eq. 2.5, that corresponds to having half of the maximum
power in the output port. This condition is usually called gray fringe, while the
tuning that gives minimum and maximum powers are called respectively dark fringe
and bright fringe.

Actually, as we will see in sec. 2.2.1, there is a fundamental limitation to the
power sensitivity measurement, due to shot noise. That changes the best tuning
condition for a real interferometer.

2.2 Noise sources in an interferometer

There are several noise sources affecting the interferometer, which can be classified
as:
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• instrumental noise:

– intrinsic:

∗ shot noise;

∗ radiation pressure;

∗ thermal noise;

– technic:

∗ scattered light;

∗ control noises;

• environmental noise:

– newtonian noise;

– seismic noise;

– electromagnetic noise.

2.2.1 Quantum noises

Two fundamental sources of quantum-mechanical noise determine the behavior of the
interferometer sensitivity:

1. shot noise: fluctuations in the number of photons impinging on the photode-
tector;

2. radiation pressure: fluctuations in the number of photons impinging on test
masses and transferring them impulse.

Shot noise originates from the discrete nature of the photons impinging on an
optical device. It may be dominant when the finite number of particles that carry
energy is sufficiently small so that uncertainties due to the photon distribution are
significant.

Each source emits a number of photons N following a Poisson distribution, which
describes the occurrence of independent random events, with standard deviation:

σN =
√
N (2.6)

So, the output power measured by the photodiode depends on the mean energy
Ē arriving in the time unit ∆t:

Pout =
Ē

∆t
η = N̄

h̄ωL
∆t

η (2.7)

where η is the quantum efficiency, N̄ is the photon number and ωL is the laser
pulsation. Using eq. 2.6 and eq. 2.7, we can extract the fluctuation ∆Nshot of the
mean number of photons:

∆Nshot =

√
Pout∆t

h̄ωLη
(2.8)
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Differentiating eq. 2.7 with respect to N and substituting eq. 2.8, we find the
power fluctuation given by shot noise:

∆Pshot =

√
Poutη

h̄ωL
∆t

(2.9)

Therefore, the best tuning for a Michelson interferometer affected by shot noise
and in stationary condition can be found maximizing the signal to noise ratio S/N :

S

N
=

PGW
out

∆Pshot
=

√
Pin
2

∆t

ηh̄ωL

C sin(∆φL)√
1 + C cos(∆φL)

∆φgwL

where C is the contrast, Pin is the laser input power and ∆φgwL is the differential
phase shift due to gravitational wave passage; the gravitational signal is given by eq.
2.5.

The maximum S/N with respect to the static tuning ∆φL is:

cos(∆φL) =
−1 +

√
1− C2

C

Since the contrast C is very close to 1, the best tuning for a real Michelson
interferometer is very close to the dark fringe condition.

It is possible to perform more accurate calculations taking into account the real
optical configuration of an interferometer, with Fabry-Perot cavities in the arm (see
sec. 2.3.1) and the phase modulation of the laser beam (see sec. 2.3.3). In this
case the strain sensitivity contribution due to the shot noise ∆h̃shot as a function of
gravitational wave frequency is [44]:

∆h̃shot(f) =

√
2χ

2
fFP

√
4π2h̄

ωLηGPRPin

√
1 +

(
f

fFP

)2

(2.10)

where ωL is the laser pulsation, χ is the corrective factor for the modulation (for
Virgo χ =

√
3/2), GPR is the recycling gain factor due to the presence of the power

recycling mirror (see sec. 2.3.2 and fig. 2.3) between the laser source and the beam
splitter, and fFP is the cavity frequency:

fFP =
c

4l0F

with l0 the interferometer arm length and F the Fabry-Perot cavity finesse. For
Virgo, we have fFP = 500Hz.

From eq. 2.10 it is evident that this noise is dominant at high frequencies: high fi-
nesse, high power laser on the beam splitter (high GPRPin factor) or large arm length
l0 limit this contribution. Since it is not easy to maintain stable cavity with very
high finesse and to increase the power circulating in the interferometer, the power
recycling mirror is inserted. In the same way, it is not easy to build interferometer
arms longer than some km, so the arms are substituted with Fabry-Perot cavities.
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Increasing the power circulating in the interferometer increases the radiation
pressure noise [45]. It is related to the statistical fluctuation of the photon num-
ber impinging on mirrors causing an uncertainty on a macroscopic scale, since the
radiation pressure transfers momentum from the electromagnetic field to the mirrors.

This fluctuation sets a limit to the sensitivity [46]:

∆h̃rad(f) =
F

ml0π2f 2

√
h̄GPRPin
πcλL

1√
1 + (f/fFP )2

(2.11)

where λL is the laser wavelength and m is the mirror mass.
To reduce this noise contribution it is necessary to increase the mirror mass and

to decrease the input power GPRPin and the finesse F : this conditions contrast to
what find for the shot noise reduction.

So, shot noise and radiation pressure are strongly correlated and it is possible
to find a common optimal condition, called Standard Quantum Limit, for which
∆h̃shot = ∆h̃rad:

∆h̃SQL(f) =
1

πfl0

√
2h̄

m
√
η

The Standard Quantum Limit represents an intrinsic limit for the sensitivity of
the interferometer and can be overpassed in a restricted frequency band, losing in-
formation in the other bands, using techniques as the signal recycling mirror [47] or
light squeezing [48]. In Advanced Virgo both these solutions are considered.

2.2.2 Environmental noises

The seismic noise is the main source of noise at low frequency, below f < 100Hz. In
this band it is due to human or geological activity. Typically the spectral displacement
amplitude generated by the seismic noise is:

x̃seism(f) ∼ 10−7 1

f 2
[m/
√
Hz], f > 0.01Hz

In Virgo, this amplitude corresponds to a strain sensitivity:

h̃seism(f) =
2
√

2

l0
x̃seism(f) ∼ 10−9

f 2
[1/
√
Hz]

where we have considered the arm length l0 ∼ 3km.
The attenuation of the seismic noise in Virgo is obtained by using mainly a passive

technique based on a series of mechanical oscillators, called superattenuator (see sec.
2.3.5). For displacements at frequency above the resonance frequency, an oscillator
acts as a low-pass filter with cut-frequency equal to its resonance frequency. So, it is
crucial to design the mechanical system with very low resonance frequencies.

The Newtonian noise is the noise due to the change in the gravitational at-
traction felt by mirrors of the interferometer. Variations in the position of masses
in the proximity of the mirrors or in the ground and atmosphere density around the
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mirrors generate a differential gravitational force which acts directly on the mirrors,
bypassing the isolation system.

Tipically interferometers are built in areas far from human activity and the con-
tributions from atmosphere movements are estimated well below the sensitivity of
this generation of interferometers. The most significant contribution comes from the
seismic activity.

There are different models to estimate gravity gradient noise, depending on the
used seismic model. According to [49]:

∆h̃newt = β
2GρE
πl0

x̃seism(f)

f 2

where β is an order-of-unity parameter that takes into account the seismic noise
level in the particular moment under evaluation, ρE is the Earth density around the
interferometer and l0 is the arm length.

For Virgo, it has been evaluated a Newtonian contribution of [50]:

∆h̃newt ∼
3 · 10−11

f 2
x̃seism(f)

2.2.3 Thermal noise

Thermal noise is produced by microscopic fluctuations of particles forming every
physical system in thermodynamical equilibrium. These movements, connected to
dissipation processes in the system, give rise at macroscopic scales to an uncertainty of
the position and displacement of the system itself. In particular, in an interferometer,
that means uncertainty in the position and displacement of mirrors.

The model and the experimental study of thermal noise in Virgo are the main
topic of this thesis. I present its theoretical treatment in Chapter 3.

2.2.4 Scattered light

It can happen that photons of the beam are scattered by the mirror imperfections
or by the residual gas molecules; those scattered photons could bounce on the pipe
walls getting different phases and recombining with the laser beam (see fig. 2.2).
This effect introduces a phase noise which limits the sensitivity of the interferometer
at low frequencies [51].

The same effect in Virgo is due to the parasite light beam which are back-scattered
on the optics and optical benches [52].

The optical coupling of this phase noise to the sensitivity can be estimated from
the interferometer optical parameters and from the characteristics of the beam and
the optics. If the optics/pipe displacement is δxopt(t), the strain sensitivity coupled
with gravitational wave signal is:

∆hsc(t) = K
√
fsc sin

(
4π
δxopt(t)

λL

)
(2.12)

where λL is the laser wavelength, K is a coupling factor which may be derived for
each port and fsc is the fraction of the incident beam scattered by the optics and
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Figure 2.2: recombination of noisy stray light, scattered by a mirror and reflected on
a vibrating pipe.

coupled to the main beam:

fsc =
Pscatt
Pin

= BRDF
λ2
L

πw2
0

where we have considered the fraction of scattered power over the total input power;
this quantity is evaluated using the Bidirectional Reflectance Distribution Function
(BRDF), which is the diffusion coefficient per unit of solid angle, multiplied for the
beam solid angle (w0 is the beam waist).

Note that eq. 2.12 is in the time domain: the related formula in the frequency do-
main is not immediately evident. Considering the simple case δxopt(t) ∼ A0 sin(ωrest),
where ωres is the internal resonance of the vibrating pipe/optics; in the frequency do-
main we have a bump, where the lower frequency is exactly ωres and the higher
frequency depends on the factor A0ωres/λL, i.e. the number of the laser wave fronts
overpassed by the oscillator displacement.

In general the quantity K
√
fsc is directly measured with noise injections (using a

shaker at a certain frequency) and episensors [53].
Typically, to avoid the scattered light, a set of mechanical filters made by absorb-

ing steel, called baffles, are usually placed along the pipes and around the optics and
the benches.

2.2.5 Control Noises

Control noises are those noises reintroduced in the system or amplified by the control
loops used to maintain the correct operating point of the interferometer. They can
rise, for example, because of not optimal control filters or noisy error signals or
actuators.

We report the principal control noise sources [55]:

• longitudinal control, which manages the distance of the mirrors; it is limiting
at low frequencies, below ∼ 50Hz; the steep roll-off of the control filters above
this frequency value ensures that these loops do not affect the sensitivity above
50Hz;

• angular control, which adjusts the alignment and the angular position of the
mirrors; it is prevalent between 30− 40Hz;
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• noise due to the actuation system (see sec. 2.3.6), formed by permanent magnets
and coils; the main source of noise comes from the digital-to-analog converter
and from the eddy currents; it is relevant between 50− 100Hz;

• frequency noise, due to fluctuation of the laser frequency and to its stabilization
loop system; it is dominant in a narrow band around 6kHz;

2.3 Virgo antenna

The present interferometers for gravitational wave measurement, like Virgo, are more
complex than the one presented in sec. 2.1. In particular, the real layout of an
interferometer is implemented to reduce the contributions of noise sources. In this
work I focus on the Virgo project and its following improvements; I describe its
characteristics and the method to minimize noises.

Virgo is a power-recycling Michelson interferometer with Fabry-Perot cavities in
the arm and suspended mirrors (fig. 2.3). Above the frequency of the pendulum
resonance, suspended mirrors behave as free masses, therefore forming a free falling
reference system. Furthermore, thanks to the suspensions, the effect of seismic noise
is present only at low frequency (ref. sec. 2.3.5). Instead the reasons for adding
the Fabry-Perot cavities and a power recycling mirrors are briefly summarized in the
next sections.

The Virgo construction was ended in 2003; from 2003 to 2009, when it has been
upgraded in Virgo+ configuration, there has been two long science runs:

• VSR1: from 18th May 2007 at 23:00 LT (21:00 UTC) to 1st October 2007 at
07:00 LT (05:00 UTC);

• VSR2: from 7th July 2009 at 23:00 LT (21:00 UTC) to 8th January 2010 at
23:00 LT (22:00 UTC).

The present work has been carried out with the enhanced configuration of Virgo,
called Virgo+: so I will describe in particular this detector layout, which has only
small changes respect to the standard configuration of Virgo.

The data samples presented in this work are taken during Virgo+ two long science
runs:

• VSR3: from 10th August 2010 at 23:00 LT (21:00 UTC) to 20th October 2010
at 07:00 LT (05:00 UTC)

• VSR4: from 3rd June 2011 at 23:00 LT (21:00 UTC) to 3rd September 2011 at
07:00 LT (05:00 UTC).

2.3.1 Fabry-Perot cavities

Each of the two interferometer arms is constituted by a Fabry-Perot cavity, in order
to amplify the optical path of the light inside the interferometer, without modifying
the arm length l0 and in order to reduce the shot noise (see fig. 2.3).
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Figure 2.3: schematic optical lay-out of the Virgo detector; the optical surfaces and
detected signals are shown. The two arms are directed toward North and West, so
the names of the mirrors are abbreviated as NI (North Input), NE (North End), WI
(West Input) and WE (West End). NE and WE mirrors high reflection surfaces have
a mean radius of curvature of about 3500m. NI and WI mirrors have all flat surfaces.
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When the cavity between input and end mirrors is on resonance, its length is tuned
to have constructive interference between the transmitted field by the input mirror
and the one which has done a round trip inside the cavity; in this way we obtain the
maximum power stored in the cavity and the maximum transmitted power.

It is possible to have different resonances for a same cavity; in fact if we consider
a Fabry-Perot cavity where its length is fixed and the laser frequency is variable, for
a given length L we have n resonant frequencies:

fres =

(
n+

1

2

)
c

2L

The spacing between two successive resonances is called Free Spectral Range
(FSR):

∆fFSR =
c

2L

and each resonance has full-width-half-maximum value δfFWHM (fig. 2.4).

Figure 2.4: power transmitted by a Fabry-Perot cavity for different fringe order: free
spectral range and FWHM are reported.

The parameter which describes the cavity is the finesse F , defined in two different
way, using the geometrical information of the cavity or the photometric informations
of the mirrors [54]:

F =
∆fFSR
δfFWHM

≈
π
√
rinrout

1− rinrout
where rin and rout are the reflectivity of input and output cavity mirrors.

Thus, the optical path of the light Lopt inside the cavity is increased of a gain
factor G which depends on the finesse cavity F [55]:

Lopt = LG = L
2F
π

In the case of Virgo, the two Fabry-Perot cavities have length equal to L1 = L2 =
3km and the distance between the input mirrors and the beam splitter is l = 6m.
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We evaluate the output power Pout with a gravitational wave passage, in a similar
way of what obtained for eq. 2.5 and we have:

Pout =
Pin
2
{1 + C cos[(∆φFP ) + 2kL∆l]}

where ∆φFP is given by:

∆φFP = 2kL
2F
π

∆LGW = 2kL
2F
π

1

2
h(L2 − L1)

It is evident that, in this configuration, the phase shift induced by the gravitational
wave passage is increased1 with respect to the single mirror case, of the same quantity
G.

However, when we take into account the time delay induced by the cavity res-
onance, we conclude that, in the case of a real interferometer, this amplification
depends on gravitational wave frequency. Since the speed of light has a finite value,
the detector acts as a low-pass filter with cut-off frequency fcut off :

fcut off =
c

4FL

where L is the cavity length. Note that the quantity FL/c is proportional at the
storage time of the cavity and effect on interferometer response becomes relevant
when the period of the gravitational wave is comparable to the storage time. For
Virgo the cut-off frequency is ∼ 500Hz.

In fig. 2.5 we show the transfer function of the end mirror motion to the trans-
mitted signal, approximated at first order with a simple-pole function.

2.3.2 Power recycling mirror

We have seen that for a real interferometer the optimal tuning is the dark fringe: that
means all the incoming power is reflected back to the laser. Therefore introducing the
power recycling mirror, between the laser and the beam splitter, the power circulating
inside the interferometer is enhanced and the shot noise reduced.

The effect of such a mirror can be computed describing the Michelson Fabry-Perot
interferometer as an equivalent mirror of reflectivity rMICH (close to one in absolute
value if the interferometer is tuned at dark fringe). Therefore the full power recycled
interferometer is equivalent to a Fabry-Perot cavity composed by this equivalent mir-
ror and the power recycling mirror (with reflectivity rPR and trasmessivity tPR)[56].
The recycling gain is defined as the ratio between the input power and the power
circulating inside the central part of the interferometer:

GPR =

(
tPR

1− rPRrMICH

)2

which is inverse proportional to the total losses of the interferometer mirrors. So
the gain factor GPR can be increased by reducing, as much as possible, the losses,

1The amplification given by the cavity is valid only if the period of the gravitational wave is
longer than the storage time of the light inside the cavity.
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Figure 2.5: transfer function from longitudinal motion of the cavity end mirror to the
transmitted demodulated signals, for a Fabry-Perot cavity with parameters L = 3km,
F = 50; the red curve is the exact expression, while the blue one is the usual one-pole
approximation.

due to the light diffusion and absorption. In Virgo the mirror coatings should fulfill
the constraint the wavefront surface deformation to be less than λ/100 and the total
losses are of the order of tens of ppm. It follows that the nominal recycling gain is
GPR ≈ 50.

In conclusion the limit detectable gravitational wave amplitude for a Michelson
interferometer with the Fabry-Perot cavities and the power recycling mirror, sed by
shot noise [57]:

h̃shot =
1

4(L1 + L2)F

√√√√4πh̄
λLc

ηGPRPin

[
1 +

(
f

fcut off

)2
]

which is 10−231/
√
Hz for Virgo.

2.3.3 Injection system

The interferometer light source is a couple of lasers, emitting at a wavelength of
1064 nm; they are hosted in the laser bench, joint at ground and in air. The beam
injected in Virgo is produced by a high power laser, the Nd :TV O4 slave laser, locked
to a high stability solid state Nd :Y AG master laser. In this way the higher power
and frequency stability of the master laser is transferred to the slave. The two lasers
are connected with a series of diodes in order to obtain a resulting power of 20W
stable at the emitted frequency.

The light beam generated by the slave laser is modulated in phase by two Electro-
Optical Modulators (EOM in fig. 2.3), at three different modulation radio-frequencies:
6MHz, 8MHz and 22MHz.
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We define the laser electromagnetic field:

E = E0 e
iωLt

and the phase modulation signal:

V = V0 e
iΩt (2.13)

Thus, the resulting field is:

E ′ = E0 e
i[ωLt+m sin(Ωt)]

where m is the modulation depth.
The resulting field can be expressed as a series of the Bessel functions Jn(m):

E ′ = E0

∞∑
n=−∞

Jn(m)ei(ωL+nΩ)t

that for m� 1, we approximate by considering just the first three terms:

E ′ ≈ E0[J0(m)eiωLt + J1(m)e(ωL+Ω)t − J−1(m)e(ωL−Ω)t]

The field is described by three frequency component, i.e. two sidebands around
the main carrier frequency, spaced by multiples of the modulation frequency Ω (see
fig. 2.6).

Figure 2.6: laser light modulation; it is possible to distinguish between the carrier
(CA) and the sideband (SB).

The advantages of shifting at a AC detection method, respect to the DC scheme,
consist in reducing the contribution of the power and frequency noise of the laser.
Moreover, the control of the interferometer gets simpler.

In fact the Michelson interferometer is slightly modified introducing a macroscopic
asymmetry in the arm lengths (in realty L1 6= L2), called the Snupp asymmetry. In
this way it is possible to have different resonance conditions for the carrier and the
sidebands: in particular the carrier is tuned to have destructive interference while
the sidebands are still present in the output port. The photodiode output signal is
then extracted by mixing it with a reference sine or cosine oscillating at the same
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frequency Ω; after applying a low-pass filter with a corner frequency much lower than
Ω, the demodulated signal contains contributions coming from the beating of the
carrier with the first two order sidebands.

The effect of the passage of gravitational waves is to introduce an additional
dephasing to the two beams recombined at the dark port: in this way, the carrier
beam is not more in destructive interference condition and it is detected in the output
port. Therefore the response of the demodulated signal is linear.

After the two EOMs, the beam is sent to the Beam Monitoring System (BSM)
which control the pointing of the beam thanks to two mirrors mounted on piezo-
electric actuators. Then, the laser beam is sent to the Internal Injection Bench (SIB
in fig. 2.3), a suspended bench in vacuum. Here, there are the output mirrors of
the Input Mode Cleaner (IMC), a triangular cavity 144−m long and with finesse of
F = 1000. As in all cavities, the IMC is a first order low-pass filter for power and
frequency fluctations of the laser, with a cut-off frequency equal to its cavity pole
(f0 = c

4LF ∼ 500Hz). In particular the role of the IMC is to filter the laser beam
suppressing all transverse modes different from the fundamental Gaussian2 one and
to reduce the beam jitter [55].

Figure 2.7: the first nine Transversal Electromagnetic Modes.

A small part of the IMC transmitted beam is sent to the Reference Frequency Cav-
ity (RFC) a 30cm-long rigid cavity used as part of the laser frequency pre-stabilization
system.

2.3.4 Detection system

There are several relevant beams coming out from the interferometer and taken as
reference for control the cavities. The laser power impinges on photodetectors, which

2In the para-axial approximation, the light beam is not propagated in a radially symmetric way,
but there are contributes from other directions, forming different beam shapes [58]. Those shapes
are described by the Hermite-Gauss functions, as known as Transverse Electromagnetic Modes,
TEMmn (see fig. 2.7).
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can be either quadrant-split photodiodes (useful to angular control, see sec. 2.3.6),
as simple photodiodes (useful to longitudinal control); the typical power hitting a
photodetector can range from some µW to 100mW .

In fig. 2.3 they are reported photodiodes (indicated with the letter B) and quad-
rant photodiodes (Q) of Virgo:

B1 and Q1 are the most important photodiodes, which bring the gravitational sig-
nal: they are at the antisymmetric port, the recombination of the differential
mode signal coming form the two interferometer arms;

B2 and Q2 are the interferometer reflection signals, coming from the power recy-
cling mirror and bringing information about the common mode of the two arms;

B5 and Q5 are the pick-off beams from the secondary face of the beam splitter;
they are used as an indicator of the field inside the recycling cavity and they
are sensible to the phase shift between the carrier and the sidebands;

B7/B8 and Q7/Q8 are the transmission beams of the two arm Fabry-Perot cav-
ities, the North and the West arm; they are sensible to variation of the arm
lengths and control the input mirror positions.

The detection system is divided in two parts: the suspended detection bench
placed in vacuum, called Output Mode Cleaner (OMC), and the external detection
bench not suspended and in air where there are B1, B5, Q1, Q5 photodiodes.

The Output Mode Cleaner is a rigid 2.5 − cm long optical cavity with finesse
F = 50, kept in resonance by controlling its temperature. This cavity increases
the contrast C of the output interference signal: it transmits only the fundamental
Gaussian mode, while it reflects all the higher Gaussian modes, produced by mis-
matching or mis-alignment of the interferometer.

The dark fringe signal, coming from the Output Mode Cleaner is sent to the
external detection bench. Here the photodetector outputs are converted in digital
signals by ADC boards, after passing into the compression and the anti-aliasing filters.

2.3.5 Suspension system

The Virgo main optics are suspended in vacuum (high tower residual pressure =
10−6mbar; low tower residual pressure = 10−9mbar) to multi-stages pendulums,
called superattenuators.

The superattenuator (see fig. 2.8) has two roles:

• it reduces the seismic noise (see sec. 2.2.2) of a factor ∼ 1012 at frequency
10Hz; it attenuates the effects due to vertical, horizontal and torsional motions;
moreover, at frequencies higher than its resonance frequency ∼ 0.5Hz, it keeps
the test masses in the free-falling status:

• it permits to apply the actuation forces through a coils and magnets system
(see sec. 2.3.6); in this way it is possible to align correctly the optical surfaces
of the interferometer.

The superattenuator is formed by [59]:



2.3. VIRGO ANTENNA 57

Figure 2.8: mechanical scheme of the superattenuator; they are reported several parts
which form it, included the last stage suspension, the payload.
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inverted pendulum it is a three-legs structure, 6m high, suspended with three
elastic joints at ground and supporting a metallic ring on its top, the so-called
top-stage; this system acts as a second-order low-pass filter, forming a pre-
isolator for the seismic noise. It assures a very low resonance frequency f IP0 ,
since the effect of the gravitational force is subtracted to the elasticity of the
joint:

f IP0 =
1

2π

√
k

m

g

l

where k is the joint elastic constant, m is the suspended mass and l is the
pendulum length. Inserting the Virgo value, one obtains f IP0 ∼ 30mHz. To
obtain the same low resonance frequency with a standard pendulum, it would
be necessary a ∼ 280m-long structure!

mechanical filters a 9m-long chain of six filters is connected to the top stage. Each
filter is a rigid steel cylinder suspended from its barycenter with steel wires,
with a total mass of about 100kg; the horizontal resonance frequency is of
∼ 0.45Hz. To obtain an attenuation also in the vertical direction, each filter
has got a series of triangular blades (see fig. 2.9(a)) with resonance frequency
at ∼ 1.5Hz. This low frequency value is acquired with two sets of magnets in
repelling configurations, the magnetic anti-springs (see fig. 2.9(b)) [60]. For the
torsional isolation, each filter has a high momentum of inertia with a resonance
frequency of ∼ 1Hz

The overall seismic attenuation is reported in fig. 2.10: they are shown the
measured horizontal and vertical transfer functions from seismic motion of the
ground to mirror displacement. The vertical transfer function is rescaled by a
factor 10−2, assuming a estimated coupling of vertical to horizontal motion of
one hundredth.

payload that is the name of the last stage suspension, formed by the marionette, the
reaction mass and the mirror (see fig. 2.12). For a more detailed description
see the next paragraphs.

The last stage mirror suspension

The last stage mirror suspension permits:

1. to damp the external residual disturbances coming from the superattenuator,
especially for the torsional degree of freedom θy (see fig. 2.11 to know the
reference frame), where there is a residual motion of some µrad, and for the
longitudinal d.o.f. z, where there is a residual motion of some µm; for a correct
interferometer working point condition, these residual motions must be lower
than 1µrad and 1µm;

2. to adjust the initial mirror position with a dedicated control system (see also
sec. 2.3.6); in this way the interferometer can use this pre-alignment system to
reach its working point.
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(a) full filter view from the bottom and from the top

(b) schematic drawing of the isolation filter

Figure 2.9: schemes of vertical isolation filter.
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Figure 2.10: the measured horizontal and vertical transfer functions; note that the
vertical transfer function is rescaled by a factor 10−2.

Figure 2.11: payload reference frame: the z axis is parallel to the laser beam; the
angular movements are emphasized.

The technical design of the payload has been carefully studied [61] to fit several
constraints:

• the mechanical resonance frequencies of the last stage elements must be as high
as possible to avoid spurious thermal noise contributions to the interferometer
output;

• the payload limits the dust contamination of the optical elements during the
assembly phase and in operation (class 1 clean-room compatibility);

• then, it limits the cross-talk effects among the various degrees of freedom to be
controlled; this implies an accurate design of the electromagnetic actuators and
a careful design of the suspension point of the mechanical elements.
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Displacement of the mirrors along the beam directions are controlled through four
coils placed on the reaction mass, acting on magnets glued to the back of the mirror.
By controlling the current flowing through these coils we apply longitudinal and
torsional forces to the mirror, using the reaction mass as reference suspended point.
In that way the control is free from any contamination with the ground micro-seismic
motion in the detection bandwidth.

Both the mirror and the reaction mass are separately suspended to the marionette
by four wires. In addition we steer the marionette along three different degrees of
freedom: θx, the torsion around x axis, θy, the torsion around y axis and z, the
longitudinal displacement along z axis.

To this purpose there are further four magnets attached to the marionette itself
and four coils attached to four legs coming down from the last vertical isolation filter
(filter 7). Any current applied to these coils results in a force on the marionette,
which is then transmitted by the last pendulum stage to the mirror and the reference
mass.

The marionette (see fig. 2.12) has a steel parallelepiped body with four lateral
support for the magnets of the actuation system. An electric motor is set into the
marionette central body: it is used to adjust the marionette alignment. The mari-
onette is suspended through a single steel wire of maraging at the last superattenuator
filter; then it supports two unconnected concentric series of four wires which surround
the reaction mass and the mirror.

The reaction mass supports the four actuation coils and protects the mirror from
falling in case of wire breaks or impacts. Furthermore it damps the most large
elongation of the mirror through four peek stops. On the edge of the reaction mass
four markers are positioned: their function is to allow the coarse alignment of the
mirror and the damping of the larger oscillations.

The mirror is a suprasil cylinder (the substrate or bulk) where several reflective
coating layers, low refractive index and high refractive index alternating, are deposited
[62]. The input mirrors of the Fabry-Perot cavity are flat, while the end mirrors have
a concave shape with radius of curvature (RoC) equal to ∼ 3400/3500m: in this way
it is easier to maintain the beam stable in the cavity. On the back face of the mirror
there are four small magnets, overlooked at the reaction mass coils, for the actuation
and control of the mirror position.

In Virgo and in Virgo+ the mirror mass is of about 20kg: in Advanced Virgo the
mass is doubled to reduce radiation pressure contribute.

In the Virgo initial configuration all the mirrors are suspended with steel wires.
Instead in the Virgo+ configuration, to limit the contribution of the suspension ther-
mal noise the steel wires have been substituting with fused silica fibers, made up and
assembled in the Virgo laboratories [63]. These fibers are attached to the mirrors
through silica ears silicate bonding on lateral flattened sides of the mirrors. For more
details see sec 4.1.

2.3.6 Damping and control systems

Suspension and apparatus controls are crucial for the correct functioning of the in-
terferometer. Two control level are present:
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Figure 2.12: Virgo+ payload: they are shown the marionette, the reaction mass, the
mirror and the magnet positions.
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• local control and inertial damping: they deal with the correct positioning of the
optics respect to the ground; they are based on the error signals provided by the
various systems of optical levers, accelerators and position sensors, monitoring
each suspension.

• global control: it is based on the error signals derived from the interferometer;
it deals with the correct linear and angular positioning of the optics, one respect
each other;

Local control and Inertial damping

The goal of the inertial damping and local control is to control the position of the
mirror respect to the ground and to damp the internal modes of the suspensions.

The inertial damping deals with the superattenuator movements, controlling them
from the top stage of the inverted pendulum. Here, there is a set of accelerometers
and position sensors, as shown in fig. 2.13. The position sensors are Linear Voltage
differential transformers, LVDT, and measure the absolute position of the top stage
respect to the ground. The accelerometers and the LVDT signals are combined to-
gether, using the LVDT at low frequencies (f < 50− 100mHz) and acceleraometers
at higher frequencies, where they are less noisy. In that way it is possible to control
the horizontal, vertical and rotational motion and to modify the top stage position,
correcting the position of all the superattenuator. Thanks to its very low stiffness,
the superattenuator can be moved by applying very small forces through coil-magnet
actuators.

Figure 2.13: scheme of the top stage of the superattenuator, hosting the sensors and
actuators used for the inertial damping system. For simplicity only one LVDT is
shown.
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The local control monitors the payload position. It is designed to damp the inter-
nal angular and longitudinal modes involving the mirror, that the inertial damping
is not able to control. In that way, it is possible to recover the reference position of
each mirror separately and to approach the interferometer working point.

Longitudinal and angular mirror positions are reconstructed by means of two
optical levers based on two low-power red laser diodes: one laser beam points directly
the mirror, while the second one is reflected by an auxiliary mirror installed below
the marionette. The reflected beams are detected by the position sensing devices,
PSD (see fig. 2.14).

Figure 2.14: scheme of the local control sensing system, including the marionette and
mirror optical levers.

When the oscillation amplitude is larger than the dynamical range of the PSD
sensors, the coarse position is reconstructed using a camera CCD which monitors the
relative position of the diffusive markers attached to the mirror itself.

The local control system also receives the global interferometric signals for the
longitudinal and angular sensing and control, transmitted to the central and terminal
buildings by digital optical links (DOL).

In order to reduce as much as possible the required dynamics of the actuators,
part of the control force is re-allocated from the mirror-reaction mass actuators to
higher stages: the very low frequency component is sent to the inertial damping con-
trol system (in particular to the filter 0); the intermediate frequency component is
actuated on the marionette and only the high frequency part of the signal is sent to
the reaction mass coils.

The local control of the mirror position has an accuracy of ∼ 1µrad and it is
not sufficient to fulfill the interferometer requirements for keeping the detector on
the resonance condition. Furthermore, this control system is referred to the ground,
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then limited by the seismic motion, and it is also affected by the temperature drift.
So it is not stable for long time period. It is for these reasons that global control is
necessary.

Global control

The global control uses optical signals of all the interferometer photodetectors to
compute the forces to be applied to the mirrors which keep the resonance conditions
[66]. The global control is split in two parts:

• the locking system (error signals coming from the photodiodes B, shown in fig.
2.3) reconstructs and controls the longitudinal position of the six mirrors to
maintain the correct resonance conditions of the light inside the detector;

• the automatic alignment (error signals coming from the quadrant photodiodes
Q) reconstructs and controls the angular position of the mirrors, one respect
each other and respect the incoming beam.

The locking system control the lengths of the cavities. If the length of given cavity
is not controlled, the resonance condition changes and the reflected and transmitted
powers are not stable.

To keep a cavity on resonance it is necessary to find an optical signal which is
sensitive to the length variation with respect to the resonant length. The signal
transmitted by the cavity would be maximum at resonance, but it decreases both if
the cavity gets longer or shorter. Therefore it does not contain enough information
for control purposes.

A possible solution is the detuned locking: the cavity is kept slightly away from
resonance and therefore the transmitted power signal has a non-zero slope against
length changes. This method is used also in Virgo, thanks to the frontal phase
modulation: it is called Pound-Drever-Hall technique [64, 65]

The resonance conditions to satisfy are:

1. the carrier field must be resonant inside the long arm Fabry-Perot cavities, to
enhance as much as possible the optical response to a gravitational signal;

2. the carrier field must also be resonant in the central part of the interferometer,
namely in the compound cavity composed of the power recycling and the two
input mirrors, to take advantage of the increase of internally circulating power;

3. the carrier field must finally undergo destructive interference at the output port,
to have the highest signal-to-noise ratio configuration (dark fringe);

4. the two sideband fields must be totally reflected from the long arm cavities and
used as reference for the carrier dephasing;

5. the two sideband fields must also be resonant in the central cavity, to take
advantage of the circulating power increase. In general they are not interfering
destructively at the dark port.
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In principle, we will have six degree of freedom to satisfy these resonance condi-
tions, corresponding to the six longitudinal displacement of the mirrors. Actually,
only four of these are fundamental [67] (for the lengths, refer to fig. 2.15):

1. the common mode motion of the long cavities (CARM) → seen in the B2 and
B5 photodiodes (the carrier beam is greatly sensitive to CARM changes):

LCARM =
LNE + LWE

2

2. the differential mode motion of the long cavities (DARM) which contains the
gravitational signal → seen in the B7 and B8 photodiodes:

LDARM =
LNE − LWE

2

3. the differential motion of the central Michelson interferometer (MICH) → seen
in the B2 and B5 photodiodes (the sideband beams are greatly sensitive to
MICH changes):

LMICH = LNI − LWI

4. the length change of the power recycling cavity (PRCL) → seen in the B2
photodiode:

LPRCL = LPR +
LNI + LWI

2

Figure 2.15: definition of lengths in a power-recycled Fabry-Perot interferometer as
Virgo.

These four physical degrees of freedom give us the error signals and must be
converted to the actual corrections to be sent to every single mirror.
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Since the motion of a mirror changes also other cavity length, the correction
signals are combined together:

CNE = CCARM + CDARM

CWE = CCARM − CDARM
CBS =

1√
2
CMICH

CPR = CPRCL +
1

2
CMICH

Actually, the coefficients of the driving matrix are different from what reported
here, because they must take into account the coils-magnets actuator gain differences
for each mirror.

Angular misalignments of the mirrors spoils the stability of the longitudinal con-
trol; for this reason the automatic alignment has been developed to control two de-
grees of freedom θx and θy for each of the six main mirrors. Furthermore a control of
the input beam pointing must be implemented to avoid slow drifts that might move
the beams out of the mirror centers, leading to worse performances of the detector.

To build a system capable of controlling the alignment of a resonant cavity it
is necessary to extract error signals that measure the position of the mirrors with
respect to the beam axis. The most common technique is called wave-front sensing
[68]. It uses quadrant-split photo-detectors (shown in fig. 2.3 with Q symbols) where
the sensitive area of these photo-diodes is divided into four sectors. Each quadrant
produces several output signals: the power impinging on each one of the four sectors
and the demodulated difference between opposite sectors. The normalized difference
of the powers detected by opposite sectors can be computed to obtain signals sensitive
to the beam position on the quadrant.

These sensors are able to detect the superposition of different TEM modes: in
fact, when there is a misalignment respect to optical beam reference system inside the
cavity, the higher order modes are produced. In general only the first mode TEM00

of the carrier beam is resonant inside the cavity, while all the other components are
reflected.

In Virgo it is used the Anderson technique with the light transmitted from the
cavity to extract complete information on the misalignment of the cavity [69].

When a cavity is locked, we have:

• for the carrier:

– TEM00 mode is resonant;

– TEM10 and TEM01 modes are not resonant;

• for the sidebands:

– TEM00 modes is anti-resonant and almost completely reflected by the
cavity;



68 CHAPTER 2. INTERFEROMETRIC DETECTORS

– TEM10 and TEM01 modes of one of the two sidebands, the upper for ex-
ample, is made resonant inside the cavity, choosing an appropriate modula-
tion frequency (in particular an integer multiple of the frequency difference
between the first and the second of TEM mode).

Any misalignment generates one of high order mode that, being resonant, is
present in the transmission port. Here a wave-front sensor detects the beating of
any TEM00 and TEM10 modes: the only possible combination is the carrier for the
first and the upper sideband for the second. This component can be extracted using
a demodulation technique on the difference signals of the quadrant sensor and this is
used as an error signal for the alignment system.

The bandwidth of the control in this configuration is of the order of few Hz.
The angular correction is normally applied at the level of the marionette. In this
configuration the local control system is completely switched off [70].

2.3.7 Thermal Compensation System

The Thermal Compensation System (TCS) is designed to sense and correct for a wide
range of thermal effects in the core optics [71].

In fact, the optical power impinging on the mirrors of the Fabry-Perot cavity3 is
predominantly absorbed by the mirror high reflective coating (∼ 50mW ) producing
a gradient of temperature inside the substrate.

Two different effects originate from the heating of the test mass:

• nonuniform optical path length distortions (thermo-optic effect, also termed
thermal lensing, mirror figure errors, inhomogeneity of the substrate refraction
index) mainly due to the temperature dependency of the index of refraction;

• change of the profile of the high reflective surface, due to thermal expansion
(thermo-elastic deformation) and, so, the consequent change of the profile of
the beam circulating into the interferometer.

TCS must reduce thermal effects to a level that allows the interferometer to ac-
quire the lock and such that the sensitivity of the detector is not spoiled. Furthermore
TCS could help when some optics should not meet the specifications (mirror radius
errors, higher or non-uniform absorptions).

In the case of Virgo/Virgo+ the main thermal effect is the thermal lensing, af-
fecting the Power Recycling Cavity: in presence of thermal lensing, which changes
the cavity mode, the input laser no longer matches the power recycling cavity, the
coupling coefficient between the laser mode TEM00 and the cavity mode TEM00 is
less than one.

3While the input power is equal to Pin = 20W , the circulating power in the interferometer is:

Pitf =
Pin

2
FPR · FFP =

20

2
50 · 50 = 25kW

where FPR is the finesse of the power recycling cavity, FFP the finesse of the Fabry-Perot cavity.
The factor 2 depends on the two interferometer arms.
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Thermal expansion changes the profile of the high reßective surface. A bump
raises in the center of the test mass faces, making their surface profile non-spherical.
Given uniform absorption at the 0.5ppm level expected in advanced detectors, this
departure from sphericity does not make the arm cavity resonant modes significantly
non-Gaussian. The cavity becomes less concentric and the spot sizes at the mirrors
will shrink. The resulting increase of thermal noise has been estimated to be of the
order of 15%. To maintain the arm cavity mode structure, it is necessary to control
the radii of curvature of all test masses.

For Virgo+ the basic idea of TCS is to impinge on the mirrors with an additional
and independent CO2 laser, with a single axicon heat pattern (fig. 2.16): in this way
the mirrors are uniformly heated and the deformations are reduced.

Figure 2.16: laser TCS heating pattern on the test mass in the IR bandwidth.

Presently, in Virgo+, the correction of mirror RoC is assigned to a different de-
vice, the Central Heating RoC Correction (CHRoCC) [72]. In fact, after the Virgo+
mirrors installations, it was noted that the end mirrors have different RoC (the dif-
ference is around 130m) and a large astigmatism; these asymmetries cause problems
in interferometer lock acquisition and sensitivity.

In fact the dark fringe power is dominated by high order TEM modes (in partic-
ular the fifth) and the total output power before the OMC was equal to ∼ 3.4W .

The idea of the CHRoCC is to increase the radius of curvature of the high re-
flectivity surface of the end mirrors by sending a shaped beam heating pattern to
the mirror (see fig. 2.17). This change in radius of curvature is obtained due to the
thermal expansion of the Fused Silica mirror substrate.

In addition we need to correct for higher order aberrations such as astigmatism.
In that way it would be possible to “match” the shape of the West end and North
end mirror minimizing the residual light power reflected by the interferometer which
arrives at the dark port (∼ 540mW before the OMC after CHRoCC installation). The
CHRoCC sources are blackbody emitters made of bare heating resistors or Alumina
with an embedded heating resistor.

The CHRoCC were installed in the end towers before the fourth Virgo scientific
run VSR4.
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Figure 2.17: CHRoCC heating pattern on the test mass: on the left it is shown the
mirror in the optic bandwidth; on the right the IR bandwidth.

2.3.8 Sensitivity curve

The sensitivity curve indicates the minimum detectable intensity of a gravitational
wave from the interferometer with respect to frequency.

We estimate the design sensitivity curve from the expected contribution of the
different noise spectral densities: we report the Virgo sensitivity in fig. 2.18 [57].
We show the Virgo+ case in fig. 2.19 [73]. The design curves are computed using
a Matlab code (GWINC) developed inside the LIGO community and modified for
Virgo [74].

The general features of the sensitivity curve are the following:

• for frequencies less than ∼ 10Hz the residual seismic noise is dominant;

• for frequencies between ∼ 10Hz and ∼ 300Hz it is prevalent the suspension and
bulk thermal noise;

• for frequencies more than ∼ 300Hz the shot noise is dominant.

We compare this curve with the measured one, during the different scientific run
of Virgo and Virgo+ in fig. 2.20. It is evident a discrepancy between what expected
for Virgo+ and what measured in the 10 − 300Hz frequency band. In that region
the expected noise contributions are the suspension and bulk thermal noise. Then,
it is crucial to verify this prediction with a dedicated thermal noise measurement
campaign. This is the key point of this thesis: I will present and discuss the results
obtained measuring the quality factor resonances in the next chapter. It should
permit to infer the real thermal noise contribution in the Virgo+ configuration.

2.4 Advanced Virgo

Advanced Virgo is the project to upgrade the Virgo detector to a second generation
instrument. The aim of Advanced Virgo is to improve the original Virgo by one order
of magnitude in sensitivity, which corresponds to an increase of the detection rate by
three orders of magnitude and a universe volume explored about 1000 times larger
than Virgo.

Advanced Virgo will be a dual recycled interferometer (see its optical layout in
fig. 2.22). Beside the standard power recycling, a signal recycling cavity will be
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Figure 2.21: comparison of Advanced Virgo sensitivity with the design sensitivity
of Virgo and Virgo+; the “BNS optimized” is representative of a range of possible
sensitivity tunings.

present. The tuning of the signal recycling parameter allows to change the shape of
the sensitivity curve and to optimize the detector for a given astrophysical source by
scientific or commissioning motivations.

This sensitivity shaping is possible because of the connection between quantum
noises, shot noise and radiation pressure. In fact the effect of the signal recycling
mirror is to correlate these two noise sources through the mixing of the quadratures
at the output of the interferometer.

The Advanced Virgo reference sensitivity [75] as well as the main noise contribu-
tions are shown in fig. 2.21. The curve corresponds to a dectector configuration with
125W at the interferometer input and signal recycling parameters chosen in order
to maximize the sight distance for binary neutron stars. The corresponding inspiral
ranges are ∼ 135Mpc for binary neutron stars system and ∼ 1Gpc for 30M� binary
black holes system.

Instead in fig. 2.24 are shown different sensitivity curve shapes, depending of the
signal recycling tuning.

2.4.1 Advanced Virgo subsystem improvements

To reach the new design sensitivity, most of the detector subsystems have to deliver
a largely improved performance [76].

As said in the sec. 2.2.1, the Virgo design sensitivity is limited at high frequencies
by the shot noise. To reduce this contribution it is necessary to increase the laser
power (see eq. 2.10) from a value of 20W to 125W ; but that causes two different
effects:
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Figure 2.22: Advanced Virgo optical layout: note the two recycling mirrors, the power
recycling (PRM) and the signal recycling (SRM), the compensation plate (CP) and
the pick-off plate (POP).

Figure 2.23: reference Advanced Virgo sensitivity and expected noise contributions;
the chosen signal recycling tuning optimizes the inspiral range for coalescing binary
neutron stars.
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Figure 2.24: tuning the Advanced Virgo sensitivity by changing the signal recycling
parameters; the red curve corresponds to the reference sensitivity and maximizes the
inspiral range for binary neutron star system. The green curve is optimized for binary
black holes system detection and is obtained with a low input power (9W ). The cyan
curve shows a narrow band tuning, useful to target a monochromatic source, while
the blue “wide-band” tuning allows to improve the high frequency sensitivity.

1. there will be more radiation pressure (see eq. 2.11) which will give rise to larger
mirror fluctuations: to limit this effect the mirror masses must be larger;

2. there will be a larger circulating power in the cavities and so bigger mirror
deformations: to limit this effect the TCS will be essential.

Furthermore to reduce the impact of the coating thermal noise in the mid-frequency
range the spot size on the test masses has been enlarged. Therefore, unlike Virgo,
the beam waist will be placed close to the center of the 3km Fabry-Perot cavities,
resulting in beam radii of 48.7mm and 58mm for the input and end mirrors, respec-
tively. The cavity finesse will be higher with respect to Virgo: a reference value of
F = 443 has been chosen.

Here I will report the main subsystem changes:

Laser The required input laser power (after the input mode cleaner) is equal to
125W . Therefore, considering the losses of the injection system, the laser must
provide a power of at least 175W . A 100W prototype is undergoing the final
tests. The 200W ultimate power will be achieved by coherent summation of
two 100W amplifiers.

Injection system The input optics for Advanced Virgo must be compliant with the
10 times increased optical power. Proper electro-optic modulators and Faraday
isolators able to withstand high power have been developed. By using better
optics the throughput of the IMC will be significantly improved to guarantee
the required power at the interferometer input.
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Mirrors Given the much larger optical power in the cavities, radiation pressure
noise becomes a limit in the low frequency range and heavier test masses are
needed to reduce it. The Advanced Virgo test masses have the same diameter
as the Virgo ones (35cm) but are twice as thick (20cm) and heavy (42kg).
Deviations from required flatness is the main source of scattering losses. Stricter
flatness requirements (< 0.5nmrms) call for a better polishing. The flatness of
the mirrors will be improved by using the corrective coating technique after a
standard polishing phase. The baseline for the Advanced Virgo coating is the
use of optimized multilayer and Titanium doped Tantala for the high-refractive
index layers.

Thermal Compensation System In the case of Advanced Virgo, the thermal ef-
fect will also be relevant due to the much higher circulating power in the Fabry-
Perot cavities: the input power is Pin = 125W , with the chosen finesse, gives
a Fabry-Perot cavity power of ∼ 800kW . The power absorbed by the mirrors
will be ∼ 0.5W . Then, the system will be more complex: because of the more
massive mirrors it is more convenient heating an additional plate, instead the
mirror itself, with a double-axicon pattern laser. This additional plate, called
compensation plate, is a transmissive optic placed in front of each mirror. To
control the radii of curvature of the test masses, a shielded ring heater, placed
around each mirror, will be used.

Detection Advanced Virgo will use a DC detection scheme, which improves the
quantum noise and reduces the impact of some technical noises (such as Radio-
Frequency phase noise) which would be (close to) limiting the detector sen-
sitivity in case of heterodyne readout. The main photodiodes will be placed
on the suspended optical bench (in vacuum) to improve the rejection of seis-
mic and acoustic noise. A new output mode cleaner compliant with the new
requirements on sidebands filtering will be installed.

Stray light control Out of the 125W power entering into the interferometer, about
100W will be lost mainly by scattering around the mirrors and towards the
pipes. In order to limit the phase noise due to part of this light being back-
scattered into the interferometer, new diaphragm baffles will be installed either
suspended around the mirrors, or ground connected inside the vacuum links.

Payloads The payloads will be modified to be compliant with the thicker and heavier
mirrors and to suspend the new components. A new payload layout has been
developed, getting rid of the recoil mass and offering the possibility to suspend
baffles around the mirrors, compensation plates on the input payloads and ring
heaters. The test masses will be suspended by fused silica fibres, as in Virgo+.

Superattenuators The Virgo superattenuators provide a seismic isolation compli-
ant with the Advanced Virgo requirements. However, some upgrades are nec-
essary to improve the robustness in bad weather conditions:

• new monolithic inverted pendulum legs will be mounted: it will have res-
onance frequency higher than the present inverted pendulum. This will
allow to increase the bandwidth of the inertial damping servos;
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• piezo actuators will be installed in the inverted pendulum feet, allowing
to perform a control of the tilt;

• the steering filter (or filter 7) must be modified to match the new design
of the payloads.



Chapter 3

Thermal Noise

Consider a system left free to evolve in thermodynamical equilibrium at a temperature
T with a heat bath: the variables describing it are subject to spontaneous fluctuations.
Those fluctuations limit the interferometer sensitivity in the frequency band between
20Hz and 500Hz.

To give an idea of the order of magnitude of the thermal fluctuation rms amplitude
of a simple physical system, we use the principle of equipartition: in fact most of the
energy of the thermal fluctuation is concentrated near the mechanical resonances of
the system. The result is: √

x2 =

√
kBT

mω2
0

where
√
x2 is the rms of the displacement of the oscillator, T is the temperature, and

m and ω0 are the mass and the resonant angular frequency of the mechanical oscil-
lator, respectively. Considering, as an example, an internal mode of the payload of

Virgo at ∼ 10Hz, we obtain a rms amplitude fluctuation of
√
x2 ∼ 2 · 10−13m: if the

mirror moves with this amplitude, it will be impossible to detect a gravitational wave.

In this chapter I introduce the fluctuation-dissipation theorem, which allows the
thermal noise estimation. After presenting the simple case of a harmonic oscillator,
with structural and viscous losses, I show the main dissipation models, focusing the
description on the suspension and the bulk thermal noise.

3.1 Fluctuation-dissipation theorem

Callen, Welton and Greene developed the so called fluctuation-dissipation theorem,
a fundamental theorem of non-equilibrium statistical mechanics is commonly used to
predict thermal noise in all physical systems.

The fluctuation-dissipation theorem links irreversible processes and fluctuations
acting in a physical system: knowing the nature of the irreversibility, it is possible to
quantify the power spectrum of the thermal noise [77, 78, 79, 80].

For a linear dissipative system1, we define the impedence Z, which is simply
related to the proportionality constant between the power and the square of the

1A physical system may be said dissipative when it absorbs energy if subjected to a time-periodic

79
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perturbation. The information of the dissipation of the system is embedded in the
impedence Z.

3.1.1 One-dimensional system

Consider a linear dissipative one-dimensional system in thermodynamical equilibrium.
Let F (t) be an external perturbation in the time domain and X(t) the response of
the system derived from the equation of motion. Since the system is one-dimensional,
X will be the unique generalized coordinate.

The Hamiltonian which describes the system will have a new term Hint depending
on the generalized force:

Hint = −F (t)X(t)

The physical system can be described using the impedence Z in the frequency domain:

Z(ω) =
F̃ (ω)
˜̇X(ω)

=
F̃ (ω)

iωX̃(ω)

where the symbol ∼ stands for the Fourier transform.
It is also useful to define the transfer function of the system H(ω) connected to

the impedence as follows:

H(ω) =
X̃(ω)

F̃ (ω)
=

1

iωZ(ω)

The fluctuation-dissipation theorem states that the power spectrum of the thermal
noise for the quantity X is:

SX(ω) = −4kBT

ω
Im[H(ω)] (3.1)

where T is the temperature of the system thermal bath.
For what concerns the power spectrum of the generalized force, we have:

SF (ω) = 4kBTRe[Z(ω)]

where the resistance R has the role of the impedence of the system.
Considering eq. 3.1, the fluctuation-dissipation theorem connects the dissipation

of a system (embedded in the transfer function) to the fluctuations of the physical
variable X. If we want to reduce the thermal fluctuation, for example in a gravita-
tional wave detector, we could proceed in two different ways:

• decreasing the temperature T of the heat bath: that is the method commonly
used for the cryogenic gravitational wave resonant bars;

• decreasing the dissipation sources in the physical system: that gives a severe
constraints in designing several mechanical components of the detector.

external perturbation F . Furthermore, a system may be said linear if the power dissipation is
quadratic in the magnitude of the perturbation.
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3.1.2 n-dimensional system

The previous introduction can be extended to a general physical system with n coor-
dinates Xi [81]. In that case we have also n generalized forces Fi and the Hamiltonian
of the system is:

Hint = −Fi(t)Xi(t) (3.2)

The impedence of the system is described by a n×n matrix Zij(ω); hence the
transfer function is defined by the matrix Hij(ω).

Since the energy can be exchanged between different degrees of freedom, the
relationship between the generalized coordinates and the forces is expressed as:

F̃i(ω) = Zij
˜̇Xj(ω)

The fluctuation-dissipation theorem is:

SXiXj(ω) = −4kBT

ω
Im[Hij(ω)] (3.3)

where SXiXj is the cross spectrum density, i.e. the Fourier transform of the cross
correlation function between Xi and Xj; the cross spectrum for i = j is identical to
the power spectrum density of Xi.

3.1.3 Linear combination of coordinates

In many practical cases a read-out system is coupled to the mechanical system and
probes its behavior by gathering into the same signal the contribution of a weighted
selection of internal modes.

In the interferometer, the read-out interaction is provided by the laser beam profile
which maps the mirror shape deformed by internal modes.

The new coordinate Xnew of the n-dimensional system is defined as a superposition
of the old coordinates Xi, weighted with a real function Pi:

Xnew =
n∑
i=1

PiXi (3.4)

The fluctuation-dissipation theorem is applicable also in that case. We rewrite
the new term in the interaction Hamiltonian, considering the generalized force Fnew
which drives only the momentum conjugate to Xnew:

Hint = −Fnew(t)Xnew(t) =
n∑
i=1

Fnew(PiXi) =
n∑
i=1

(FnewPi)Xi (3.5)

Comparing eq. 3.5 with eq. 3.2, it is evident that the Hamiltonian described by
Xnew can be reinterpreted as a Hamiltonian of a n-dimensional system where PiFnew
plays the role of Fi:

X̃i =
n∑
j=1

HijPjF̃new
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So, the new transfer function Hnew is:

Hnew =
X̃new

F̃new
=

n∑
i=1

PiX̃i

F̃new
=

n∑
i=1

n∑
j=1

PiHijPjF̃new

F̃new
=

n∑
i=1

n∑
j=1

PiPjHij

From eq. 3.3 and eq. 3.4 we evaluate the power spectrum density SXnew :

SXnew(ω) = PiPjSXiXj(ω) = −4kBT

ω
Im

[
n∑
i=1

n∑
j=1

PiPjHij(ω)

]
=

= −4kBT

ω
Im [Hnew(ω)] (3.6)

to be compared to the one-dimensional case expressed in eq. 3.1.
If X is a function of a continuos parameter ~r (instead of eq. 3.4), we have:

Xnew =

∫
P (~r)X(~r)d3r

and all the previous calculations are still valid, with the Hamiltonian as:

Hint = −
∫
FnewP (~r)X(~r)d3r

Since FnewP (~r) plays the role of F (~r) we can write:

X̃(~r′) =

∫
H(~r, ~r′)F̃ (~r)d3r =

∫
H(~r, ~r′)P (~r)F̃new(~r)d3r

and re-define the new transfer function:

Hnew(ω) =
X̃new

F̃new
=

∫
P (~r′)X̃(~r′)d3r′

F̃new
=

∫
P (~r′)P (~r′′)H(~r′, ~r′′)d3r′d3r′′ (3.7)

Therefore the spectrum of the thermal noise is still eq. 3.6 with the transfer
function given by eq. 3.7.

3.2 The simple case of the harmonic oscillator with

losses

Consider a very simple one-dimensional physical system as a harmonic oscillator of
mass m and resonance frequency ω0.

If we take an ideal oscillator without losses, the equation of motion is:

mẍ+mω2
0x = F (t)

where F (t) is the generalized force acting on the mass.
Going in the frequency domain:

−mω2x̃+mω2
0x̃ = F̃ (ω)
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The transfer function is immediately deduced:

H(ω) =
1

m(ω2
0 − ω2)

When no dissipation is involved, the response of the system diverges for ω → ω0;
furthermore, the transfer function is real, so the fluctuation-dissipation theorem (eq.
3.1) gives a null result. This means that there is no thermal noise acting on the
system.

But in the real system, the resonance peak is finite in value; that means there are
some dissipation processes acting on the oscillator.

Now, consider two kinds of idealized dissipation: the viscous damping and the
structural damping [43, 82].

3.2.1 Viscous losses

The viscous loss is represented as a resistance force proportional to velocity. The
equation of motion for a viscous damped harmonic oscillator is:

mẍ+ βẋ+mω2
0x = F (t)

where β is the viscous friction coefficient. In the frequency domain we have:

−mω2x̃+ iβωx̃+mω2
0x̃ = F̃ (ω)

that leads to the transfer function:

H(ω) =
1

m
[
(ω2

0 − ω2) + iβω
m

]
The imaginary part of the transfer function is:

Im[H(ω)] =
−βω

m
[
(ω2

0 − ω2)2 + β2ω2

m

] (3.8)

Defining at the resonance the quality factor Qvisc due to viscous losses:

Qvisc =
ω0m

β
(3.9)

the application of the fluctuation-dissipation theorem drives to the thermal noise
spectrum:

SX(ω) =
4kBT

mQvisc

ω0[
(ω2 − ω2

0)2 +
ω2

0ω
2

Q2
visc

] (3.10)

The typical behavior of the spectrum of the thermal noise due to viscous losses is
shown in fig. 3.1:

• below the resonant frequency ω � ω0 the power spectrum is described as:

SX(ω) =
4kBT

mω3
0Qvisc

= const

• above the resonant frequency ω � ω0 the thermal noise could be approximated
as:

SX(ω) =
4kBTω0

mQvisc

1

ω4
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Figure 3.1: examples of the power spectrum density of the thermal noise of a harmonic
oscillator, in the case of viscous damping (solid line) and structural damping (dotted
line); the oscillator has the mass equal to 1kg, the resonant frequency, ω0/2π = 1Hz,
and quality factor Q = 5 · 105.

3.2.2 Structural losses

The internal friction explains what happens at the microscopic level in the material
forming a real system. In fact, the elastic response to the external force F (t) is not
immediate: even in a small sample, where the finiteness of the speed of sound could
be neglected, a finite time is required for the microscopic degrees of freedom forming
the solid physical system to achieve a new thermal equilibrium when the macroscopic
parameters vary.

Thus, the elongation x is shifted in time, causing a deviation from the Hooke’s law
called anelasticity. The effect of anelasticity is that a dissipation process is present
and there is a damping, which make the resonance peak finite. The easiest way
to make a connection between anelasticity and damping is to represent it in the
frequency domain.

Consider an elastic, homogeneous and isotropic body [83]; if we apply a force F
to the system, it can react with a length deformation ∆l. We define:

• the stress σ which is the force F applied to the system per unit area σ = F/S;

• the strain ε which indicates the relative displacement over the initial body
length l0, i.e. ∆l/l0.

Hooke’s law connects these two quantities with the Young’s modulus E:

σ(ω) = E(ω)ε(ω) (3.11)
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The structural loss is described with an imaginary term of the Young’s modulus:

E(ω) = Er(ω) + iEi(ω) = |E|eiφ(ω)

where the phase angle φ is called loss angle.
We write the strain as:

ε(ω) = ε0e
iωt

and the stress as:

σ(ω) = |E|ε0eiωt+φ(ω) ≈ |E|(1 + iφ(ω))ε(ω) (3.12)

The loss angle represents the phase lag between the excitation (the stress) and
the system response (the strain).

At macroscopic level, we generalize the elastic constant k with an imaginary part:

k = mω2
0 → mω2

0(1 + iφ(ω)) (3.13)

Suppose the loss angle frequency independent (for a complete treatment see sec.
3.3.1): in that case the equation of motion is:

mẍ+mω2
0(1 + iφ)x = F (t)

Going in the frequency domain:

−mω2x̃+mω2
0(1 + iφ)x̃ = F̃ (ω)

that leads to the transfer function:

H(ω) =
1

m[(ω2
0 − ω2) + iω2

0φ]
(3.14)

The imaginary part of the transfer function is:

Im[H(ω)] =
−ω2

0φ

m[(ω2
0 − ω2)2 + ω4

0φ
2]

The application of the fluctuation-dissipation theorem drives to the thermal noise
spectrum:

SX(ω) =
4kBT

mω

ω2
0φ

[(ω2 − ω2
0)2 + ω4

0φ
2]

The typical behavior of the spectrum of the thermal noise due to viscous losses is
shown in fig. 3.1:

• below the resonant frequency ω � ω0 the power spectrum is described as:

SX(ω) =
4kBTφ

mω2
0

1

ω
(3.15)

• above the resonant frequency ω � ω0 the thermal noise could be approximated
as:

SX(ω) =
4kBTω

2
0φ

m

1

ω5
(3.16)
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3.2.3 Quality factor and loss angle

In the previous sections we have introduced two new quantities, the quality factor Q
and the loss angle φ. In this section we show how they connect each other.

Consider a system excited by a time periodic strain ε = ε0e
iωt: the loss angle is

strictly related to the amount of the energy lost in a cycle of the periodic motion over
the total amount of the stored energy. In fact, the energy density of the oscillator is
[83]:

E =
1

2
Re[σ]Re[ε]

In the limit of low dissipation, with the imaginary term of the energy density
lower than the real term (Ei � Er), and using the eq. 3.11, the maximum energy
density stored in the oscillation is2:

Emax =
1

2
Re[σ]Re[ε]max =

1

2
ε20Er(ω) (3.17)

while the mean energy density dissipated in a cycle is the integral of the dissipated
power per unit volume dWdiss/dV :

Ediss =

∫
cycle

dWdiss

dV
dt =

∫
cycle

Re[σ]Re[ε̇]dt = πε20Ei(ω) (3.18)

Taking the ratio between the eq. 3.18 and the eq. 3.17, we obtain:

Ediss
Emax

= 2π
Ei(ω)

Er(ω)
= 2πφ(ω) (3.19)

Even if the strain pattern in the body has a very general form, this definition of
loss angle maintains its validity. Since energy losses add linearly, the superposition
of different loss sources, with different loss angles φi(ω) is correctly described by this
sum:

φtot(ω) =
∑
i

φi(ω)

where the frequency dependence is still present.
The quality factor Q is also associated with the loss mechanisms present in the

system: it is a dimensionless measure of how small the dissipation is at the resonant
frequency ω0. In particular it depends on the φ value as:

Q =
1

φ(ω0)
(3.20)

As fluctuation-dissipation theorem says, in order to estimate the thermal noise
spectrum, we need to know the loss angle φ(ω) at every frequency. Since the mea-
surement of the loss angle far from the resonance and over arbitrarily wide frequency

2To obtain the following relations, we write the real part of a complex quantity z as:

Re[z] =
z + z∗

2

where z∗ is the complex conjugate of z.
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range is difficult, the value of loss angle is often derived from eq. 3.20, only at the
resonance frequency. That is reductive, because the off-resonance slope can be very
different (see fig. 3.1): the overall thermal noise must be predicted and carefully taken
into account in the detector design. Some assumptions are required to extrapolate
the frequency dependence of the loss angle far from the resonance region: I show
some examples in appendix. A and in sec 3.3.

There are two methods to evaluate the quality factor Q (see fig. 3.2):

1. the most common method is the measurement of the decay time of the resonant
motion after an excitation.

Take a harmonic oscillator with resonance frequency equal to ω0. We can excite
this resonance by sending a white noise to the system or using a force at the
same resonant frequency.

The response of the system in the time domain will be:

A(t) = A0 sin(ω0t)e
− t
τ0 (3.21)

where A0 is the initial elongation and τ0 is the characteristic decay time. The
quality factor is the number of radians of oscillation it takes for the amplitude
of the free oscillation to fall by 1/e [43]:

Q = πτ0

(ω0

2π

)
(3.22)

This method is used when the decay time is very high τ0 � 1.

2. the second most common method is the measurement of the half width of the
resonance peak in the transfer function; in particular the half width ∆ω0 is
given by: ∣∣∣∣H (ω0 ±

∆ω0

2

)∣∣∣∣2 =
|H(ω0)|2

2

The Q-value is:

Q =
ω0

∆ω0

This method is used when the associated decay time is very low τ0 � 1.

If we want to minimize thermal noise in a physical system, as a gravitational wave
detector, we need to reduce mechanical dissipation losses.

Practically, the idea is to design a detector with very high Q-values mechanical
resonances for the test masses and their suspension system. In that way the energy
of a dissipation process is concentrated in very narrow frequency bands centered on
the payload resonant frequency modes. These narrow frequency bands can be then
filtered out of the sensitivity spectrum with negligible reduction of the observation
bandwidth.
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(a) Exponential decay

(b) Lorentzian

Figure 3.2: Two different manifestations of the quality factor of an oscillator.
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3.3 Dissipation models

There are several kinds of dissipation: the level and the frequency dependence of ther-
mal noise depends strongly on the frequency dependence of the dissipation processes
acting on. In general we divide them in two categories:

1. internal processes:

• structural damping;

• thermoelastic damping;

• superficial losses;

2. external processes:

• air damping;

• recoil losses.

3.3.1 Structural damping

Structural losses are related to the orientation or the displacement of atoms and
molecules, or the presence of defects and non-homogeneities in the lattice forming
the body. For example, if an imperfect lattice is vibrationally excited, it can change
its geometry toward a more stable configuration: local vibrations of the impurities
could be energetically preferred.

All these structural processes are thought to be “thermally activated”, when a
certain energy ∆U is reached. The population of particles with the needed energy ∆U
is set by the Boltzmann’s distribution, so that the time constant of these anelastic
processes depends on temperature T and on activation energy ∆U , following an
Arrehnius’ exponential law:

τr = τr0e
∆U
kBT (3.23)

This relaxation time is used in eq. A.2 to derive the frequency dependence of the
loss angle φ(ω), known as Debye’s peak :

φ(ω) = ∆
ωτr

1 + ω2τ 2
r

(3.24)

where ∆ is a constant depending on the physical parameter of the material (see eq.
A.3).

Experimental data do not agree with the Debye’s peak dependence. For unloaded
metallic wire sample, the loss angle is almost frequency indipendent in the frequency
range between 500− 10000Hz [86, 87].

Anyway, this flat model shows mathematical difficulties. In fact, it is not possible
that the loss angle is constant in the whole frequency range.

The loss angle must go to zero in low and high frequency limits. If the loss
angle was constant in these limits, the displacement would be divergent when a
step-function force is applied [88]. Therefore, the structural damping model should
be considered valid only for those dissipations which have weak dependence on the
frequency.



90 CHAPTER 3. THERMAL NOISE

To describe this behavior we image a unique relaxation time τr, but activation en-
ergies distributed with a density f(∆U) almost constant over a great interval [U1, U2]:

f(∆U)dU =
dU

U2 − U1

The total loss angle is the sum of the single contributions given by eq. 3.24;
substituting eq. 3.23 at different energies:

φtot(ω) = ∆

∫ U2

U1

ωτr
1 + ω2τ 2

r

dU

U2 − U1

≈ ∆

U2 − U1

∫ U2

U1

ωτr
1 + ω2τ 2

r

dU

≈ ∆

U2 − U1

∫ U2

U1

ωτr0e
∆U
kBT

1 + ω2τ 2
r0
e

2∆U
kBT

dU

≈ ∆

U2 − U1

kBT [arctan(ωτ1)− arctan(ωτ2)]

where:

τ1,2 = τr0e
U1,2
kBT

The total loss angle φtot(ω) is poorly dependent in frequency and the flatness of
the behavior increases with the widening of the interval [U1, U2].

There are many study on internal dissipation processes. In amorphous objects,
the dissipation is well described by the thermal activation discussed here. On the
contrary, in the crystals and in the metals we distinguish between those dissipation
processes which act even in a perfect crystal, and those due to the presence of defects
in the microscopical structure [89].

By the way, one must keep in mind that the history of each individual sample
affects the measured structural loss angle: purity, grain size, thermal treatments
(such as annealing) and irradiation damages have a relevance in the internal friction
processes.

3.3.2 Thermoelastic damping

The thermoelastic damping is caused by the coupling between the inhomogeneous
strain and the temperature field inside a vibrating body; this coupling happens be-
cause there is a non-zero thermal linear expansion coefficient:

α =
1

L

∂L

∂T

i.e. length changes are connected with temperature changes.
When an elastic solid is set in motion, the mechanical vibration creates peri-

odic contractions and stretching in the bending region. The body is driven out of
equilibrium, since it has an excess of kinetic and potential energy.

On the other hand in a thermoelastic solid, the contractions and the stretching
generate temperature changes: as the body flexes, the compressed parts heat up
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and the stretched ones cool down. So a heat flux is originated between the two
regions at different temperatures, attempting to restore equilibrium. The elastic
energy is dissipated owing this irreversible heat flux in time-varying inhomogeneous
deformations. The reaching of the equilibrium requires a characteristic time that has
been calculated by Zener in 1937 [90, 91]. He started from the equation of the heat
diffusion, which links temperature T to the divergence of the strain ε:

∂T

∂t
=
D

cV
∇2T − EαT0

cV (1− 2σ)

∂(∇ · ~ε)
∂t

where E is the (unrelaxed) Young’s modulus of the materials, σ is the Poisson ratio,
α is the linear coefficient of the thermal expansion, cV is the specific heat per unit
volume and D is the thermal diffusion coefficient.

Solving this equation, Zener showed that this mechanism is well described by the
Standard Anelastic Model as a single relaxation process with a single peak. The
parameters of the Debye’s peak (eq. 3.24) are [92, 93]:

∆ =
Eα2T

cV

τ̄ =
cV d

2

2.16 · 2πDst

where d is the typical distance the heat flow must cross. This relaxation mechanism
depends only on material properties and not on details of its structure or composition.

The thermoelastic loss angle φtherm is:

φtherm(ω) = ∆
ωτ̄

1 + ω2τ̄ 2
(3.25)

The characteristic time τ̄ corresponds to a frequency ωT where the loss angle has
a maximum (see. fig. A.2). One can understand qualitatively why there is a peak in
that way:

• when ω � ωT the system is mechanically vibrating at frequency smaller than
the effective relaxation rate ωT : the system remains substantially in equilib-
rium and the process is isothermal, because the thermalization between the
compressed and the expanded regions occurs almost instantaneously;

• when ω � ωT the system is mechanically vibrating at frequency greater than
the effective relaxation rate ωT : the system has no time to relax and the process
is adiabatic, because the temperature has not enough time to reach equilibrium
between expansion and contraction.

Thermoelastic damping is dominant in vibrating objects with a small section,
like wires, fibers and strings: it is particularly relevant for the wire first resonant
transversal mode.

In general, a good model for describing the total internal loss angle of wires in
the frequency range 1− 103Hz is given by the sum of the thermoelastic contribution
(eq. 3.25) and structural losses φs [92] (see fig. 3.3):

φw(ω) = φs + ∆
ωτ̄

1 + ω2τ̄ 2
(3.26)
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(a) C85 (b) Fused Silica

Figure 3.3: experimental results of internal loss angle φw (structural and thermoe-
lastic) versus frequency in thin wires: note that for C85 the Debye’s peak is clearly
visible, contrarily to what happens for Fused Silica.

3.3.3 Superficial losses

In the previous section we have not considered the loss spatial distribution. But
the region near the surface of the body is continually exposed to damages (due to
chemical or mechanical contacts) causing the most of the dissipation.

In particular geometric configurations, materials with very low value of bulk loss
angle appear to have greater losses because of superficial effects.

Surface contribution can be included in the total loss angle, starting from eq. 3.19:

φtot =
1

2π

∆Ebulk + ∆Esurf
Etot

(3.27)

where Etot is the total energy density stored in an oscillation, ∆Ebulk and ∆Esurf the
amount of energy density dissipated in the volume and on the surface respectively.

It is rather reasonable to assume that ∆Ebulk is proportional to the volume V and
∆Esurf to the surface S [94]:

∆Esurf
∆Ebulk

= µdS
S

V

where the dimensionless constant µ depends on the sample geometry and on the
class of resonances excited, taking into account the relative amount of the elastic
deformation occurring at the surface:

µ =
V

S

∫
S
ε2(~r)d2r∫

V
ε2(~r)d3r

(3.28)

While, dS is called dissipation depth and provides a direct measure of the total
dissipation induced by a surface layer, normalized to the dissipation in the bulk:

dS =
1

φbulkEbulk

∫ h

0

φ(n)E(n)dn

where n is a coordinate measuring the distance inward from the surface and h is the
thickness of the superficial region of dissipation. In uncoated samples, the dissipation
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depth quantifies physical and chemical damages suffered by the surface of the sample.
In the case of Virgo+ fused silica fibers dS ∼ 200µm.

We re-write eq. 3.27, considering that Etot ≈ Ebulk and defining φbulk = ∆Ebulk/Ebulk:

φtot =
1

2π

(
∆Ebulk
Etot

+
∆Esurf
Etot

)
= φbulk

(
1 + µdS

S

V

)
For cylindrical fibers of diameter d, oscillating transversally to the axis of the

fiber, we have from eq. 3.28 µ = 2; since V/S = d/4, the superficial loss angle:

φsurf = φbulk

(
8dS
d

)
(3.29)

The superficial effects become relevant when dS < d. If the Young’s modulus and
the loss angle are constant over the entire body, it follows:

φsurf '
dS
h
φbulk

3.3.4 Air damping

Air damping is an external dissipation source present when a body vibrates in a fluid;
thus, it is well modeled with a viscous friction proportional to velocity, in particular
when the oscillating body is kept under vacuum.

From a comparison between eq. 3.8 and eq. 3.14 we determine the expression of
loss angle due to gas friction:

φgas(ω) =
βω

mω2
0

(3.30)

While in dense fluids the friction includes the effect of shear forces, in a rarefied gas
the dissipation is mainly caused by the momentum transfer between the body and the
gas molecules which are moving with a mean thermal velocity equal to v̄ =

√
kBT/m.

In that case the mean free path of molecules of mass mgas is larger than the typical
dimensions of the oscillator and the viscosity coefficient can be written as [43]:

β =
1

4
ρgasAv̄

where ρgas is the gas density, determined by the residual pressure Pres and temper-
ature T via the usual thermodynamical equation of state ρgas = Presmgas/kBT ; A is
the cross sectional area of the body in which collisions with gas molecules occur.

Thus, eq. 3.30 is written:

φgas(ω) =
ρgasAv̄

4mω2
0

ω

For vibrating cylindrical wires, the gas damping loss angle will be [94, 95]:

φgas(ω) =
ρgasv̄

2ρdω2
0

ω

where ρ is the wire density and d its diameter.
Using eq. 3.9 we derive the expression of the lower limit on the Q-value Qgas

limited by air damping:
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• for a cylindrical wire

Qgas = d
ρω0

n
√
mgaskBT

where d is the diameter of the wires, ρ its density, n is the numeric density of
the gas, mgas its mass and ω0 the angular resonant frequency of the oscillator;

• for a cylindrical test mass, as the one used in Virgo [96]

Qgas =
4mω0

πr2Pres

√
πkBT

8mgas

(3.31)

where m is the mass of the mirror and r its radius.

3.3.5 Recoil losses

If a low-loss vibrating body is suspended to a structure with high-loss resonances,
then the loss at the resonance frequency can be substantially degraded.

In the ideal case, the frame is infinitely massive and rigid; but in reality the
structure is flexible and its mass is finite: so part of the vibration energy can be
transmitted to the supporting frame and dissipated.

The system can be approximated by considering two coupled oscillators, as shown
in fig. 3.4; M is the mass of the frame, while m is the mass of the oscillating body.
The two bodies are connected with a spring of elastic constant km and dissipation loss
angle φm, while we suppose the frame joined rigidly with a spring of elastic constant
kM and loss angle φM .

Figure 3.4: model of coupled oscillator system to schematize the recoil losses.

The two elastic constants are complex number, as described in eq. 3.13:

kM = Mω2
M(1 + iφM) km = mω2

m(1 + iφm)

where ωM and ωm are the proper vibration frequencies of the frame and of the body.
The equations of motion are:{

M ẍM = −kMxM + km(xm − xM)
mẍm = −km(xm − xM)
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As it is well known, the solution of these equations are two oscillators with two
coupled vibration modes, whose frequencies ω+ and ω− are related to the frequencies
of uncoupled oscillators ωm and ωM as [97]:

ω± =

√
1

2

{
[ω2
m(1 + µ) + ω2

M ]±
√

[ω2
m(1 + µ) + ω2

M ]2 − 4ω2
mω

2
M

}
(3.32)

where µ = M/m.
If the two uncoupled oscillators have the same resonant frequency ωm = ωM = ω0,

eq. 3.32 can be simplified as:

ω± = ω0

√
2 + µ±

√
µ2 + 4µ

2

We write the displacement xM and xm of two masses when an impulsive force F
is applied to M at time t = 0:

xM = A[sin(ω+t) + sin(ω−t)] = A sin(ω0t) cos(ωbt) (3.33)

xm = A[sin(ω+t)− sin(ω−t)] =
A

µ
cos(ω0t) sin(ωbt) (3.34)

where the amplitude of the oscillation A can be found from the initial conditions,
and the beat frequency of the system ωb is defined as:

ωb =
ω+ − ω−

2

Eq. 3.33 and eq. 3.34 show that the two masses move in phase opposition and that
the energy of the system is transferred continuously and totally from one oscillator
to the other at frequency ωb. Only if ωm 6= ωM not all the energy of the first mass is
transferred to the second one.

It is possible to derive the total dissipation of such a system, described by a
coupled loss angle φcoup, when the structure frame mass is much greater than the
oscillator mass and when φM � φm:

φcoup = φm + φM
ω2
mω

2
M

µ(ω2
M − ω2

m)

It is evident that this kind of loss has a small effect if µ � 1; on the contrary, if
the two uncoupled oscillators have close resonance frequencies, recoil losses are not
negligible.

3.4 Thermal noise calculation methods

As already seen, the thermal noise estimation is obtained from the application of the
fluctuation-dissipation theorem: it suffices to know the imaginary part of the transfer
function (see eq. 3.1). The problem is that this kind of measurement is very difficult,
since the imaginary part of H(ω) is much smaller than the real one [98, 99, 100].

So, different methods have been developed to calculate Im[H(ω)] or to measure
directly thermal noise:
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• the normal-mode expansion, [82, 101] where each resonance is considered or-
thogonal to the others and the loss distribution homogeneous;

• the advanced-mode expansion, elaborated by Yamamoto [100], in which losses
are considered inhomogeneously distributed;

• the direct approach, proposed by Levin [102], where there is no mode decom-
position, but a direct application of the fluctuation-dissipation theorem.

3.4.1 Normal mode expansion

This method allows to evaluate the imaginary part of transfer function Im[H(ω)]
decomposing the transfer function in a sum of independent harmonic oscillators.
Thermal noise power spectrum density will be derived from eq. 3.6. Let’s see how to
proceed.

Consider an observable physical quantity X of a system:

X(t) =

∫
~u(~r, t) · ~P (~r)dV (3.35)

where ~u(~r, t) is the displacement vector of the system at the position ~r and time t,

while ~P (~r) is a weighting function vector.
For example, in Virgo interferometer, the observable quantity is the laser beam

arriving at the dark port, ~r is on the mirror underformed surface, ~u is the mirror
surface displacement due to its internal modes and the weighting vector ~P (~r) is the
gaussian laser beam profile:

~P (~r) =
1

πr2
0

e−r
2/r2

0 r̂ (3.36)

where r0 is the radius of the laser beam.
Now, consider to apply a generalized force F (t)~P (~r) to the system. Neglecting

the dissipation, the equation of motion will be:

ρ
∂2~u

∂t2
+ L(~u) = F (t)~P (~r) (3.37)

where ρ is the density and L is a linear operator representing the elastic response of
the system.

In order to find the solution of this equation we decompose the displacement ~u in
a superposition of basis functions ~wn(~r):

~u(~r, t) =
∑
n

~wn(~r)qn(t) (3.38)

where the functions qn represent the time evolution.
The basis functions are the solution of the eigenvalues problem:

L(~wn(~r)) = ρ ~wn(~r)ω2
n (3.39)

where ωn is the angular resonant frequency of the n-mode.
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Furthermore the basis functions are orthogonal:∫
ρ(~r) ~wi(~r) · ~wj(~r)dV = miδij (3.40)

and they are normalized: ∫
~wn(~r) · ~P (~r)dV = 1 (3.41)

The parameter mi is called effective mass of the i-th mode. Now, we substitute
eq. 3.38 in eq. 3.37:

ρ
∂2

∂t2

[∑
n

~wnqn

]
+ L

(∑
n

~wnqn

)
= F (t)~P (~r)

multiplying by ~wm:

ρ
∂2

∂t2

[∑
n

~wn · ~wmqn

]
+ L

(∑
n

~wn · ~wmqn

)
= F (t)~P (~r) · ~wm

integrating on volume:

∂2

∂t2

[∑
n

(∫
dV ρ ~wn · ~wm

)
qn

]
+
∑
n

(∫
dV ρ~wn · ~wm

)
ω2
nqn = F (t)

(∫
dV ~P (~r) · ~wm

)
where we use eq. 3.39 to determine the expression of the linear operator L.

Using the condition given by eq. 3.40 and eq. 3.41:

∂2

∂t2

(∑
n

δmnmnqn

)
+
∑
n

(
ω2
nqnδmnmn

)
= F (t)

i.e.
mnq̈n(t) +mnω

2
nqn(t) = F (t) (3.42)

In that way we obtain the time evolution of the n-th mode: it is like a harmonic
oscillator of mass mn and resonant frequency ωn with an external force F (t) acting
on it.

Putting eq. 3.38 in eq. 3.35 we have:

X(t) =
∑
n

qn(t)

i.e. the observable quantity can be simply described as a superposition of the motion
of the harmonic oscillators qn. Thanks to this equation, it is possible to find the
transfer function for the coordinate X, by writing eq. 3.42 in frequency domain:

−mnω
2q̃n +mnω

2
n[1 + iφn(ω)]q̃n = F̃ (ω) (3.43)

So, the transfer function is:

HX(ω) =
X̃

F̃
=

∑
n q̃n

F̃
=
∑
n

1

−mnω2 +mnω2
n[1 + iφn(ω)]
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The thermal noise fluctuation power spectrum is:

SX(ω) =
∑
n

4kBT

ω

ω2
nφn(ω)

mn[(ω2 − ω2
n)2 + ω4

nφ
2
n(ω)]

(3.44)

Thus, we verify that the thermal motion of the system is the sum of the harmonic
oscillators of the normal-mode expansion. The eq. 3.44 allows to estimate the thermal
noise knowing for each mode:

• the loss angle

φn(ωn) =
1

Qn(ωn)

directly measured at resonant frequency from experiment;

• the effective mass

mn =

∫
ρ(~r) |~wn(~r)|2dV∣∣∣∫ ~wn(~r) · ~P (~r)dV

∣∣∣2
estimated, as instance, from finite element analysis.

3.4.2 Advanced mode expansion

The normal-mode expansion has been commonly used to estimate thermal noise in
the interferometer. But it becomes inadequate when, for example, a system has
inhomogeneously distributed losses [100, 102, 103, 104].

In that case, the mode expansion result is not correct since the inhomogeneity
of the losses causes correlations and couplings between different degrees of freedom,
which are not included in the standard expansion.

The physical reason of this coupling becomes clear considering the decay of a
single resonant mode. When the loss is homogeneous, the phase of its decay does not
depend on the position and so the displacement shape does not change with respect
to the time. On the contrary, if the loss is concentrated in a region, a phase lag
appears in this place: as a consequence, the shape of the displacement changes when
the other modes are excited.

Majorana and Ogawa gave a simple example [104]: they estimated the thermal
noise of a double-coupled oscillators with inhomogeneous losses (see fig. 3.4) using
the normal-mode expansion and then applying directly the fluctuation-dissipation
theorem. While the normal-mode expansion is a pure sum over all the resonance
contributions, neglecting the possible off-resonance couplings:

Sexpii (ω) = −4kBT

ω

n∑
i=1

Im[Huncoupl
i (ω)]i

the fluctuation-dissipation theorem for n degrees of freedom is given by eq. 3.3:

SFDTii (ω) = −4kBT

ω
Im[Hii(ω)]

where Im[Hii(ω)] can be simply computed knowing the physical parameters of the
system.
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Figure 3.5: thermal noise predictions for a simplified-to-double-mode structure:
normal-mode expansion (dotted line) and fluctuation-dissipation theorem calculation
(solid line). In the plot mechanical parameters are reported.

Figure 3.6: high frequency tail for the thermal noise when the modes of the double
coupled oscillators are not orthogonal with a quality factor lesser than other: normal-
mode expansion (dotted line) and fluctuation-dissipation theorem calculation (solid
line). In the plot mechanical parameters are reported.
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They found some differences between the two estimation methods, in particular
in the off-resonance regions and in the high-frequency tail (see figs. 3.5 and 3.6).

Yamamoto developed a more accurate mode expansion, called advanced mode
expansion, to compute the thermal noise contribution [100].

The difference between this expansion and the traditional one relies on the intro-
duction of the dissipation term in the equation of motion from the very beginning
and not after the mode decomposition (see eq. 3.43).

For the viscous damping, the eq. 3.37 becomes:

ρ
∂2~u

∂t2
+ ρΓ(~r)

∂~r

∂t
+ L(~u) = F (t)~P (~r) (3.45)

where Γ(~r) is the coefficient function of the friction forces.
Now, we follow the same procedure as in the previous section, decomposing the

displacement vector ~u with the basis functions (see eq. 3.38). Since the losses are
small, we consider the dissipation term as a perturbation. Then, we can repeat the
same passages to find the equation of motion for the time functions qn.

In the frequency domain, we have:

−mnω
2q̃n +mnω

2
n[1 + iφn(ω)]q̃n +

∑
k 6=n

iαnkq̃k = F̃ (ω) (3.46)

where αkn is the cross correlation term:

αnk = ω

∫
ρ(~r)Γ(~r)~wn(~r) · ~wk(~r)dV (3.47)

and the loss angle φn is defined as:

φn(ω) =
αnn(ω)

mnω2
n

As it is easy to see, eq. 3.46 differs from eq. 3.43 for the cross correlation term
given by αnk: this term contains the contributions to one mode due to couplings of
all the others. The two different expansion methods match when all the couplings
terms αnk vanish, i.e. when the friction coefficient Γ is independent from position
Γ(~r) ≡ Γ and the losses are distributed homogeneously.

For the structural losses, the equation of motion for an elastic isotropic body is:

ρ
∂2ui
∂t2

+
∂σij
∂xj

= F (t)Pi(~r)

where ui and Pi are the i-th component of the displacement ~u vector and of the
weighting function ~P ; while σij is the stress tensor:

σij =
E0[1 + iφ(ω,~r)]

1 + σ

(
εij +

σ

1− 2σ
εkkδij

)
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where E0 is the Young’s modulus, σ the Poisson ratio, εij the strain tensor and φ(ω,~r)
is the structural loss angle.

Following the same procedure as in the case of the viscous damping, we arrive at
an expression similar to eq. 3.46, where αnk is defined:

αnk =

∫
E0φ(ω,~r)

1 + σ

(
εn,ijεk,ij +

σ

1− 2σ
εn,llεk,ll

)
dV (3.48)

Note that εn,ii corresponds to the trace of the strain tensor.
The advanced mode expansion works when the dissipation can be treated as a

perturbation, i.e. the following condition on the distance between the resonant peaks
is verified:

|αnk|2 �
mnmk

4

∣∣ω2
n − ω2

k

∣∣2
From eq. 3.47 and eq. 3.48, considering the Cauchy-Schwarz’s inequality, it is

possible to derive the maximum value of the coupling coefficient modulus αnk [100]:

|αnk|max =
√
mnω2

nφn(ω)mkω2
kφk(ω)

where mn is the effective mass, ωn is the resonant frequency and φn is the loss angle.
The maximum of the absolute value of the coupling coefficient is reached when the
typical size of the region where the losses are localized is smaller than the wavelength
of the n-th and k-th modes.

The sign of the coupling coefficient depends on the observation area and on losses
distribution. Measurements of the transfer function in a wide frequency band at
various points of the system should give information about the sign of the couplings;
in particular off-resonance measurements are fundamental, since measurements near
the resonant peak are difficult and not so much accurate.

3.4.3 Direct approach

Nowadays the most used technique to calculate thermal noise is the direct approach
in which there is no modal decomposition.

As for the normal mode expansion, consider an observable physical quantity X of
a system (eq. 3.35):

X(t) =

∫
~u(~r, t) · ~P (~r)d2r

where ~u(~r, t) is the displacement vector of the system at the position ~r and time t;

while ~P (~r) is a weighting function vector, for example a Gaussian function (see eq.
3.36).

Thermal noise for a system described with a linear combination of coordinates is
given by eq. 3.6, where the transfer function associated with the new coordinate is
defined as in eq. 3.7.

In Levin’s method [102], to work out thermal noise at a particular frequency ω,
one should apply an oscillating pressure at that frequency on the observed surface of
the test mass and then compute the system response Im[H(ω)].
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The oscillatory continuous force F (~r, t) is defined:

F (~r, t) = F0 cos(ωt)P (~r)

which corresponds to a generalized force Fnew(t) = F0 cos(ωt).

It is possible to evaluate the mean dissipated power 〈Wdiss〉:

〈Wdiss〉 = 〈Re[F̃new
˜̇Xnew]〉 =

= 〈Re[F̃newiωX̃new]〉 =

= −〈ω Im[F̃newX̃new]〉 =

= −〈ω Im[F̃ 2
newHnew]〉 =

= −〈ω F 2
0 Im[cos2(ωt)Hnew]〉 =

= −1

2
ωF 2

0 Im[Hnew]

So, we rewrite the eq. 3.6 in the form:

SX(ω) =
8kBT

ω2

〈Wdiss〉
F 2

0

(3.49)

For a cylindrical fused silica test mass with homogeneously distributed losses
monitored by a circular Gaussian laser beam whose radius is much smaller than the
test mass radius, the dissipated power can be evaluated analytically, starting from
eq. 3.19:

Wdiss =

∫
V

ω φ(ω) Emax dV = ωφ(ω)Umax

where Emax is the maximum stored energy density and Umax is the energy of the
maximum elastic deformation due to the oscillatory pressure.

This analytical approach is not always possible, in particular when there are in-
homogeneously distributed losses. To avoid all the problems connected to it, Numata
[105] performed a finite element analysis of the system. In that way the equations of
motion are solved numerically and then the dissipated power is achieved to be used
in eq. 3.49.

This method is particularly useful to model the interferometer mirrors: in fact it
is possible to include separately the thermal noise contribution of bulk, coating, ears
and magnets attached on the back of Virgo mirrors. Eq. 3.49 becomes a sum over
all the single contributions:

SX(ω) =
8kBT

ωF 2
0

Utot

(∑
i

φi(ω)
Ui
Utot

)
(3.50)

where Ui is the maximum energy stored in the i-th part of the mirror, φi is the
corresponding loss angle and Utot is the maximum energy stored in all the system.
The fraction Ui/Utot is given by the finite element analysis, while the loss angles φi
can be estimated from direct measurements.
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3.5 Thermal noise in Virgo

Thermal noise of interferometric gravitational wave detectors is composed by two
contributions:

1. suspension thermal noise, generated by the fluctuations of the mirror centers of
mass due to thermal vibrations of the suspension system;

2. mirror thermal noise, corresponding to surface deformations of the mirrors
caused by thermally-excited elastic-vibrations of the mirrors themselves.

Each contribution is a sum over the four test masses, the two input mirrors and
the two end ones: we consider only the Fabry-Perot mirrors because of the high
number of light reflections, which make their thermal noise contribution larger than
the one of the other interferometer optics.

3.5.1 Suspension contribution

The suspension system allows to damp the seismic excited motions, as already seen
in sec. 2.3.5, through a chain of filters, pendula and blades. In Virgo the last
suspension stage of the test masses is constituted by a marionette that suspends the
mirror through four fused silica fibers (see fig. 2.12). All these filters introduce noise
in each degree of freedom, according to the fluctuation dissipation theorem [106, 107].

This problem can be divided into four separate contributions:

• pendulum mode thermal noise of the mirror suspension fibers: at that frequency,
the mirror and the reaction mass moves concordantly, while the marionette is
at rest; the mirror is uncoupled with the payload;

• vertical modes thermal noise of the mode of the mirror and the reaction mass
concordantly with the marionette at the rest and of the mode of the mirror and
the reaction mass oppositely to the marionette;

• violin modes thermal noise of the mirror suspension fibers;

• tilt/rotational modes thermal noise, that are in general negligible because cou-
pling on horizontal degree of freedom is quite small due to the mechanical
configuration of the payload.

Pendulum mode

The choice of a pendulum as the final suspension stage in gravitational wave inter-
ferometer is based on the determination to minimize thermal noise. In fact, in a
pendulum, the primary “spring” for horizontal motion comes from the gravitational
field, which is lossless; while the vertical displacement comes from the flexural elas-
ticity of the wire, which is dissipative.

The two forces acting on a pendulum of mass m and length l have different
constants:

• gravitational constant kg = mg/l;
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• elastic constant kel(1 + iφstruct), where kel is defined from eq. B.4 and φstruct is
the loss angle of the wire material.

Considering the equation of motion:

mẍ = kgx− kel(1 + iφstruct)x

which is equivalent to:

mẍ = −(kg + kel)

(
1 + i

kel
kg + kel

φstruct

)
x

therefore it is possible to define an effective loss angle φeff equal to:

φeff =
kel

kg + kel
φstruct ≈

kel
kg
φstruct

since usually kel � kg. The factor kel/kg is called pendulum dilution factor Dp [108]
and it is equal to:

Dp =
kel
kg

=
1

2

√
EI

T L2

where E is the Young’s modulus, I is the moment of the cross section, T is the tension
applied to the wire and L is its length.

Thanks to this factor, the effective measured loss angle for the pendulum mode
is much lower than the internal φstruct, depending from the wire material.

If the pendulum is suspended by n wires, the dilution factor is multiplied by
√
n.

The thermal noise estimation for the pendulum mode is:

SpendX (ω) =
4kBT

mω

φeffω
2
p

(ω2 − ω2
p)

2 + φ2
effω

4
0

(3.51)

where ωp =
√
g/l is the simple pendulum resonant frequency.

In the case of Virgo, the computation of the effective loss angle takes into account
the thermoelastic contribution φtherm (eq. 3.25) and the superficial one φsurf (eq.
3.29). Furthermore, there are also recoil losses, quantifiable with the loss angle φrecoil.
So, the effective pendulum loss angle is [92]:

φeff = Dp(φstruct + φtherm + φsurf ) + φrecoil

Thus, pendulum quality factor measurements are limited by recoil damping of the
support structure (see sec. 3.3.5). The limiting quality factor due to the recoil losses
[96]:

Qlim =
kSl

mgΦ

where kS is the spring constant of the supporting structure at the pendulum frequency,
Φ is the phase angle between the force applied to the structure and its displacement
(i.e. the loss angle), m is the mass of the pendulum and l its length.

To avoid these problems, it is useful to measure the violin mode quality factors,
instead of the pendulum one. In fact, the violin modes can be protected from recoil
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losses using a double pendulum configuration, as in Virgo. Moreover, the violin
modes are determined by the same theory as the one of the pendulum mode and
should be affected by most of the same excess loss mechanisms. The fact that many
quality factors can be measured over a wide range of frequencies gives an important
diagnostic tool.

Anyway, it is possible to estimate pendulum thermal noise taking into account
all the payload and so the possible recoil losses. The effect of the other masses
like the marionette and the reaction mass is negligible in the bandwidth of interest
only if the marionette mass is higher than those ones of the mirror and the reaction
mass, because its recoil is negligible under these hypotheses. This assumption is no
more valid for Advanced Virgo, because marionette and mirror masses will be likely
comparable [109].

In LIGO the difference between the single pendulum and the triple pendulum sus-
pension test mass is calculated in [110, 111]. The resulting thermal noise estimations
are shown in fig. 3.7. The triple pendulum is constituted by three identical stages,
with the same masses and elastic constants, but different loss angles. All the loss
angles are taken independent of frequency, as in the case of structural damping: in
particular the first stage loss angle is greater than the others. The single stage is
identical to the last stage of the triple pendulum.

The triple pendulum thermal noise is much greater than the one of the single
pendulum thermal noise in the low frequency region. If we compute the thermal
noise of a triple pendulum with just the contribution of its last stage, we largely
underestimate it.

Vertical mode

Since the Earth gravitational field is not uniform, local vertical directions at both
ends of the arms are not parallel to each other (see fig. 3.8). That implies that a
fraction of the vertical motion can be seen in the horizontal one: then, it causes a
change in the cavity length that can be confused with a gravitational wave signal.

The coupling between the vertical motion and the horizontal one is exactly equal
to the angle θ0 under which an arc of length Larm/2 is seen from the center of the
Earth. The expected value for the coupling is θ0 ∼ 0.24µrad.

For that reason a part of the thermal noise associated with vertical oscillations is
seen on the horizontal direction; its contribution is:

SvertX (ω) = θ0
4kBT

mω

φeffω
2
v

(ω2 − ω2
v)

2 + φ2
effω

4
v

(3.52)

where φeff is the effective loss angle, sum of different contributions as the structural,
thermoelastic and superficial loss angles, and ωv is the vertical resonance frequency
of the system:

ω2
v =

kvert
m

=
ES

l

1

m

being m the mass of the mirror, kvert the vertical elastic constant, E the Young’s
modulus, S the wire section and l its length.
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Figure 3.7: comparison between thermal noise in a three-stage system with identical
masses and spring constants but different loss angles, showed in the plot, and thermal
noise spectrum of a single stage isolation; the single stage is identical to the last stage
of the triple pendulum.

Figure 3.8: the vertical directions at the ends of the arm are not parallel and give
origin to a coupling between the vertical and the horizontal displacements of the
mirrors.
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Violin modes

Consider a wire as a distributed system and not as a massless spring: it exhibits
transversal oscillations called violin modes (see fig. 3.9), when its extremities are
fixed.

Figure 3.9: standing waves in a string: the fundamental and the first three overtones
which form a harmonic series.

In the case of Virgo the N wires suspending the mirror have the upper extremities
clamped to the marionette, while the downer ends are attached to the mirror, under
a tension T = mg/N due to the mirror mass m.

Violin modes are weakly coupled to the interferometer output, since there is a
large mechanical impedence mismatch between the wires and the test mass. Anyway,
their resonant frequencies lie in an important region of the interferometer bandwidth,
around several hundred Hz.

The resonance angular frequency of the n-mode is [82]:

ωn =
nπ

L

√
T
ρlin

(3.53)

where n is the violin order, ρlin is the linear density of the wire, L its length.
This expression does not consider the anharmonicity effect of the violin modes:

wires bend more with increasing the mode number [112] (see fig. 3.10):

ωn =
nπ

L

√
T
ρlin

[
1 +

2

keL
+

1

2

(
nπ

keL

)2
]

(3.54)

where ke is the elastic flexural stiffness of fibers, depending on the frequency ω, on
the wire Young’s modulus E and on its moment of cross section I:

ke(ω) =

√
T +

√
T 2 + 4EIρlinω2

2EI
(3.55)
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Figure 3.10: the anharmonicity of the violin mode frequencies: the plot shows the
normalized frequency of the n-mode with respect to the mode number.

This elastic stiffness can be approximated at low frequency (see also eq. B.3 and
sec. 4.3.1 for more details):

ke ≈
√
T
EI

For what concerns the loss angle, we expect that the n-th mode loss angle φn
depends on the ratio between the elastic energy Eel and the gravitational one Egrav,
in a similar way of what happens for the pendulum mode with the dilution factor Dp:

φn =
φ

Dn
v

= φ
2

keL

(
1 +

n2π2

2keL

)
(3.56)

where φ is the sum of the structural and the thermoelastic loss angles φ(ω) = φstruct+
φtherm(ω) and Dn

v = Eel/Egrav is the violin dilution factor.

For a two-wire suspension configuration, the elastic energy of the lowest violin
modes is about twice the one of the pendulum mode, since in the violin mode the
wire bends as much at the bottom as at the top, while the pendulum mode loss is
produced only at the top [113]. For higher violin modes, the contribution due to the
wire bending along its length should be considered.

In the four-wires suspension configuration, the elastic energy of the lowest violin
modes and of the pendulum mode is approximately the same [85].

On the other hand, the gravitational energy of the pendulum mode is by a factor
2 larger than the one of violin mode. For violin modes of each wire, the gravitational
energy is:

Ev
grav =

1

4
NT Lθ2

m =
1

4
mgLθ2

m

where θm is the maximum angle of swinging during the motion.
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This expression is exactly one half of the gravitational energy of the pendulum
mode:

Ep
grav =

1

2
mω2

pL
2θ2
m =

1

2
mgLθ2

m

That explains the difference between the loss angle of the pendulum mode and
the violin mode for the two-wires configuration (Dv ∼ 4Dp) or for the four-wires
configuration (Dv ∼ 2Dp).

The violin modes thermal noise contribution can be evaluated using the normal
mode expansion [82], since their off-resonance contribution is small:

SviolX (ω) = N
4kBT

ω

∑
n

φnω
2
n

mn [(ω2 − ω2
n)2 + φ2

nω
4
n]

(3.57)

where N is the number of suspending wires, mn is the effective mass of the n-th order
violin, φn is the loss angle given by eq. 3.56, and ωn is the violin resonance frequency,
given by eq. 3.54.

The effective mass of the n-th violin is [114]:

mn =
1

2
Nm

(
ωn
ωp

)2

≈ π2m2n2

2ρlinL
(3.58)

where m is the mass of the suspended body, ωp is the pendulum resonant frequency,
n is the violin order, ρlin is the wire linear density and L its length.

Another important feature of the violin modes is that they have two polarizations
per wire, causing two slightly different frequencies. In the Virgo reference frame (see
fig. 2.11) these two polarizations are along the z-axis and the x-axis, due to the fact
that the wire clamping system fastens differently in these two directions.

3.5.2 Mirror contribution

Mirror thermal noise contribution depends on thermally excited internal mode vibra-
tions of the test-mass bulk and coating.

Either for the bulk, either for the mirror coating, it is worthwhile to consider the
structural and the thermoelastic loss angle (for a complete treatment see [115] ♥).

In fig. 3.11 some internal modes of the mirror bulk are reported as an example:
they are computed with a finite element analysis. The displacement amplitude is
indicated with different colors.

Note the difference between “butterfly” modes, which are characterized by two or
more nodal lines, and “drum” modes, which are characterized by one or more nodal
circumferences. In general an internal mode is identified with a couple of numbers
(l,m) where l is the number of nodal circumferences and m is the number of nodal
lines.

For the bulk, thermal noise can be estimated using the normal mode expansion,
the advanced mode expansion or the direct approach.
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Figure 3.11: examples of internal mirror bulk modes: the “butterfly” modes and the
“drum” modes are reported. Different colors stand for the displacement amplitude.

Normal mode expansion

Applying the first method for the mirror thermal noise, the eq. 3.44 can be approx-
imated since the frequency band of interest is well below the resonant frequency of
the lowest vibrational mode of the mirror (see eq. 3.15):

SmiX (ω) =
∑
i

4kBT

miω2
i

φi(ω)

ω
(3.59)

where mi is the effective mass of the i-th internal mode of the mirror at frequency ωi
and φi(ω) is its relative loss angle.

Supposing the same loss angle for all internal modes3 φ1(ω) = φ(ω), the main
problem is the estimation of the effective mass for each mode.

To solve this problem, we approximate the mirror to a traction-free-surfaces
isotropic cylinder. For such a body it is possible to use the theory of elasticity
in continuous media which is mainly analytic and partially numerical. Thanks to
this method, the vibrational eigenmodes and eigenfrequencies are computed [116].
Then, from these results, the displacement amplitude of the mirror surface at each
point (weighted with the gaussian profile intensity beam), the time dependence mode
shapes and the effective masses can be calculated [101, 117].

The amplitude of the displacement of the mirror surface at each point in cylindrical
coordinates for the n-th mode is ~un(r, θ), normalized to a fixed energy U .

The optical modes of the interferometer is described by the Hermite-Gauss func-
tions TEMmn; as seen in sec. 2.3.3, the interferometer typically operates with the

3This assumption is valid if the losses are internal and there is no contribution due to the friction
between the mirror and the wires supporting it.
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fundamental mode TEM00 ≡ ψ00 on resonance. This optical mode is subjected to a
phase shift upon reflection from a mirror excited in a particular vibrational mode:

ψ00(r, θ, z)→ φ00(r, θ, z)ei2
~k·~un ≈ ψ00[1 + i2~k · ~un − 2(~k · ~un)2] (3.60)

where ~k is the wave vector and |~k · ~un| � 1 for all the points on the mirror surface.
This perturbed mode can be expressed in terms of unperturbed modes:

ψ =
∑
i

∑
j

cijψij

where the coefficient cij are integrated in the mirror surface S:

cij =

∫
S

ψ∗ijψ00 e
i2~k·~undS

So, the perturbed mode ψ can be written as:

ψ ' ψ00

[
1 + i2

∫
S

ψ∗00ψ00
~k · ~undS − 2

∫
S

ψ∗00ψ00 (~k · ~un)2dS

]
(3.61)

The imaginary term of eq. 3.61 contains the phase shift form which the apparent
length change ∆ln can be determined:

∆ln =
1

|~k|

∫
S

ψ∗00ψ00
~k · ~undS

while the second integral in the eq. 3.61 describes the light which is scattered out of
the TEM00 mode.

From these definitions, it is possible to derive the effective mass mn of the n-th
mode [101]:

mn =
U

1
2
ω2
n∆l2n

The effective mass can be directly measured with a Michelson interferometer,
like Virgo, exciting the internal mode of the mirror with a coil-magnet system (see
sec. 2.3.5). The apparent motion of the mirror surface at the resonance is the rms
displacement x̄:

x̄ =
Qn

mnω2
n

F̄

where F̄ is the rms force applied to the mirror through the coils, Qn is the mechanical
quality factor of the resonance and ωn is the resonance frequency.

The main question that raises in using the formula 3.59 is how many modes must
be counted in the sum to achieve an accurate estimation of the thermal noise of a
gravitational wave interferometer. In the past, thermal noise estimation included only
the lowest few mirror vibrational modes, generally considering the coupling between
the longitudinal motion of the mirror vibration and the optical path length.

Gillespie and Raab [101] found that more modes must be considered to estimate
accurately thermal noise, since there are many modes strongly coupled to the inter-
ferometer laser probe.
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The point is that the thermal noise contribution of each individual mode decreases
with the resonant frequency due to the ω2

n term in the denominator of eq. 3.59, but
the mode density increases linearly with frequency; at the same time, there is a
general decrease of the value of the effective mass mn. The result is a cumulative
contribution which increases almost linearly with the maximum resonance frequency
included.

But, the sum of all these contributions do not diverge: it converges depending
upon the beam spot size. In fact, the contributions increase linearly until the laser
beam spot diameter dspot becomes comparable to half an acoustic wavelength of the
vibrational internal mode of the mirror λmode (see fig. 3.12):

dspot ∼
λmode

2
(3.62)

We rewrite the wavelength with respect to the frequency of the mode fmode and
the propagation velocity in the mirror vmi. Then, we compute the velocity knowing
the Young’s modulus Emi and the density ρmi of the mirror:

λmode =
vmi
fmode

=

√
Emi
ρmi

1

fmode

For Virgo, the beam spot sizes are of order of cm for input mirrors and of order of
10cm for end mirrors. So, the maximum resonance frequencies included in the sum
will be of order of 300kHz for the input and 30kHz for the end test masses.

Figure 3.12: cumulative contribution to thermal noise of a 10cm mirror (dotted line)
and 25cm LIGO mirror (solid line), with a 2.2cm beam spot; the vertical dot-dashed
lines indicate the frequencies at which an acoustic wavelength is of order the beam
spot size for both transverse (left line) and longitudinal (right line) waves.
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Advanced mode expansion

From the discussion in sec. 3.4.2, we have shown that the normal mode expansion,
used frequently to estimate thermal noise, is not correct when the dissipation is
inhomogeneous [118, 119]. For example, in the case of mirror bulk thermal noise, we
have to consider that our test probe is a laser beam spot, impinging on the mirror
surface. If there is a concentrated loss far from the beam spot, the loss has a smaller
effect on the thermal noise in the observation band than on measured quality factors.
On the contrary, if the concentrated loss is near the beam spot, it generates a thermal
noise larger than what estimated with the traditional mode expansion.

We can divide loss processes acting on a mirror bulk in three categories:

• homogeneous losses, corresponding to the intrinsic dissipation of the material of
the mirror: its contribution is consistent with the one obtained from the normal
mode expansion;

• surface loss models, corresponding to the surface damage caused by the inad-
equate polish or the loss of the dielectric reflective coating or simply surface
accumulation of substrate stress;

• point-like loss models, corresponding to dissipation localizing at points, as small
components glued to the mirror (magnets for actuation system or stand-off’s
for suspension system).

Unfortunately there are no calculations done on mirrors using this method and
Yamamoto himself, in his work on it [100], says that the analysis is not performed
with this method because it would be necessary to take into account too many modes
for having a good convergence of the series.

Direct approach

As seen in sec. 3.4.3, it is possible to evaluate the mechanical transfer function of a
physical system using a static deformation on the mirror under a Gaussian pressure.

For the mirror bulk thermal noise, we can firstly treat the simplified case when the
mirror has an infinite radius, i.e. the optical spot size is small compared to its size.
In that assumption, no radial boundary conditions are applied to the equilibrium
equations [120] and the energy of the elastic deformation Umax of the mirror at the
moment of maximal strain configuration is:

Umax =
1− σ2

2
√
πEr0

where σ is the Poisson ratio, E the Young’s modulus and r0 is the beam spot size.
Thus, the mirror bulk thermal noise is:

SX(ω) =
8kBT

ω
φ(ω)

1− σ2

2
√
πEr0

where φ(ω) is the loss angle of the mirror.
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The calculation of bulk thermal noise considering the finite size of the mirrorwas
also made by Bondu, Hello and Vinet [120] and reviewed by Liu and Thorne [121] in
the case of a finite size mirror. Their result is:

SX(ω) =
8kBT

ω
φ(ω)(U0 + ∆U)

where U0 and ∆U are infinite series of Bessel function with coefficients depending on
the material properties and on mirror and beam-spot size dimensions. If compared
with the result in the approximation of infinite mirror mass, this calculation gives
a correction that, e.g. in the case of the Advanced detector mirrors, starts to be
greater than 10% for beam spot sizes greater than 2.5cm. Considering that there
is the project to use flat beams, this correction becomes crucial in estimating the
Brownian thermal noise correctly.



Chapter 4

Quality factor measurements in
Virgo+ monolithic suspensions

In this chapter I present my work on quality factor measurements on Virgo+ mono-
lithic suspensions. A measurement campaign on quality factors of mechanical res-
onances is performed to understand the noise level in the sensitivity band between
10Hz and 300Hz.

At first I describe in detail the monolithic suspension layout and the experimental
apparatus used for the measurements. Then I show how I analyzed data describing
the line identification method through the temperature dependence of the resonance
frequency. At the end I present quality factor behavior with respect to frequency for
different kind of modes.

4.1 Virgo+ monolithic suspensions

In Virgo the mirror is suspended by two loops of C85 steel wires with an intrinsic loss
angle φC85 ≈ 2 · 10−4 at 100Hz and a tensile strength of about 2.9GPa; unfortunately
they cause an additional friction with the mirror.

To prevent this friction and to reduce thermal noise contribution in the middle
frequency band between few Hz up to few kHz, the last stage of the Virgo+ mirror
suspension is monolithic, i.e. the mirror, its clamps and suspension wires are made
as a monobloc of fused silica.

Moreover it is shown [92, 94, 122] that fused silica has an internal loss angle
smaller than steel (φFS ≈ 10−9) and it has a low thermal expansion coefficient αFS ≈
0.5·10−61/K, which reduces the thermoelastic dissipation. On the contrary, its tensile
strength is high 4GPa, leading to a larger dilution factor.

Despite these positive characteristics, fused silica presents some disadvantages:
tensile strength is strongly dependent on cracks and defects present on the fiber
surface and there is evidence of ageing due to environment pollution [123]. Therefore,
it is crucial to avoid contaminants and impurities during their production; also after
production, fused silica fibers must be kept in a clean room under vacuum, avoiding
any contact, not to spoil tensile strength performances.

115
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Properties value
Specific heat c 670J/(kg K)

Thermal conductivity k 1.4W/(mK)
Linear thermal expansion coefficient α 5.5 · 10−71/K

density ρ 2.2 · 103kg/m3

Young’s modulus E 72.9GPa
Young’s modulus’ temperature dependence β 1.86 · 10−41/K

Poisson ratio σ 0.17
Tensile strength Tmax 4GPa

Structural loss angle φstr 3.3 · 10−8

Table 4.1: mechanical and thermodynamical properties of fused silica.

4.1.1 Fused silica fibers

Fused silica is a silicon compound (SiO2) with a glass structure having a glass transi-
tion temperature which depends on specific material history and vitrification velocity:
it usually lies around 2000K. The main mechanical and thermodynamical properties
of fused silica are shown in tab. 4.1.

For Virgo+, fibers are produced starting from high purity fused silica cylindrical
bars commercially available (suitable materials are Herasil or Suprasil), 10cm-long
and 1.5mm-thick. The central region of the bar is melted and subsequently the
two ends are pulled apart. In fact, once melted, the fused silica material becomes
highly viscous and it can be plastically deformed. For melting the rod, a 100W CO2

commercial laser with 10.6µm wavelength is used.
This method has been implemented at the University of Glasgow for GEO and a

duplicate of the CO2 pulling machine has been assembled in a dedicated laser room
at Virgo site. A schematic view of the functional parts of the machine is shown in
fig. 4.1, while some pictures are shown in fig. 4.2.

The fiber production procedure is the following:

1. the fused silica rod is cleaned with isopropylic alcohol. It is welded to two silica
parts, one used for suspending it to the marionette (cone) and the other for
attaching it to the mirror (anchor), as shown in fig. 4.5 (see sec. 4.1.2 for more
details). After the welding procedure the lower end is blocked to a fixed clamp
and the upper one is connected at the top of the moving arm of the CO2 laser
pulling machine.

2. the silica bar is heated by moving the laser spot along the bar axis without
pulling, to melt all the imperfections and micro-cracks, whose presence would
lower the breaking load of the fiber: this process is called annealing. Structural
defects produce internal reflections, clearly visible as a diffuse luminosity. An-
nealing is repeated until no more diffuse light or spots are present inside the
fiber, which therefore appears perfectly transparent.

3. the laser beam is directed on a rotating mirror which allows, together with two
other conic mirrors, to heat the silica bar all around its axis (see fig. 4.2(b)).
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Figure 4.1: schematic drawing of the CO2 laser pulling machine: the laser beam is
delivered onto the fused silica rod by a series of gold coated mirrors.

The upper conic mirror can be moved along the vertical axis, using a PC con-
trolled precision motor. In that way it is possible to move the laser spot along
the silica bar. Another identical motor is used to control the moving clamp
position [63].

4. once the rod is melted by the laser, the moving arm pulls it upward following
a given velocity to produce a thin fiber with the designed profile. In fact,
the geometry of the fiber depends critically on the chosen velocity. Since the
melting involves a small volume of the rod from which the material is driven
away during the pulling, new material must be melt in order to feed the fiber.
Therefore, the melting point is shifted downward during the pulling, moving
down the conical focusing mirror.

Note that the welded rod ends are not melted during the process, so the fiber
maintains thick heads near the cone and the anchor. These small bobs are necessary
for allowing a good clamping in all the subsequent operations during the mounting
and dismounting. Furthermore it is proved [124, 125] that for minimizing the thermal
noise contribution, the best profile choice is a “dumbbell-shaped” fiber, as shown in
fig. 4.3.

With this method, thin fibers with a diameter of (285 ± 10)µm and 0.70m-long
are produced, capable of supporting loads as high as 10 kg or more. The laser pulling
machine allows a very good reproducibility of the fiber shape, since the numerical
control of the motor speed assures to obtain a constant selected diameter fiber (within



118 CHAPTER 4. VIRGO+ MONOLITHIC SUSPENSIONS

(a) ensemble

(b) gold mirror detail

Figure 4.2: CO2 laser pulling machine.
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Figure 4.3: dumbbell profile of fused silica fiber: it is reported the picture and the
finite-element model.

Figure 4.4: profiles of six different fibers measured by a profiling tool with 10µm
precision.

10µm) and to shape the region where the diameter varies from the bar to the fiber
value (neck). This result is shown in fig. 4.4, where the profiles of six fused silica
fibers are measured with a profiling tool and then compared.

4.1.2 The clamping system

Virgo+ clamping system has been designed to minimize and distribute in the best
way the stresses due to the suspensions (see fig. 4.5).

The upper part of the fused silica rod is welded to a fused silica cone (see fig.
4.6), while the lower part is welded to a 1.5mm fused silica bar, called “anchor” (see
fig. 4.7).

The upper clamp is formed by two steel parts, fastened one inside the other: the
inner one hosts the fused silica cone and can slide in the second external one allowing
us to adjust the vertical position of the fiber on the marionette. This adjustment is
useful to set up the silica wire tensions and to position the fiber bending point on the
horizontal plane passing through the centre of mass of the marionette. With this tool
is possible to choose the vertical position of the upper clamp within a range of 5mm
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Figure 4.5: schematic design of the fused silica fiber with the upper (cone) and lower
(anchor) clamp: their technical designs are reported.

Figure 4.6: a fused silica cone and its steel box used for the fiber clamping on the
marionette.
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Figure 4.7: a fused silica anchor compared with a dummy steel one, used in the test
facility.

and to control also the mirror tilt position. Once the position is set up, the clamp is
blocked tightly on the marionette. The two steel boxes are shown in fig. 4.8, where
the setting screws are clearly visible.

Figure 4.8: the two parts of the upper clamp fastened one inside the other: the
regulation screws are well visible.

The anchors are necessary to attach the fiber to the mirror through elements
called ears (see fig. 4.9): those are glued to a λ/10-polished lateral flat surfaces of
the mirror through the silicate bonding technique [127, 128].

The silicate bonding is a chemical gluing referred to as hydroxide-catalyzed hydration-
dehydration process; it is typically used for joining oxide materials. The bonding is
realized with a strong, rigid, very thin layer of oxide settled among two surfaces with
high flatness (that is, flat within λ/10 where λ = 633nm). A drop of aqueous hy-
droxide solution such as KOH or NaOH is deposited among the surfaces; a silicate
gel is formed, that solidifies over time.

Mechanical characteristics of silicate bonding have been measured in many ex-
periments. The silica bonding layer obtained with the described method is usually
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(a) ear technical project (b) ear attached to the mirror

Figure 4.9: fused silica ear design and realization: in the right it is clearly visible the
ear attached at the lateral flat of the mirror.

about 100nm thick [129, 130].

Quality factors of mirrors and fused silica masses with silicate bonded silica ears
have been evaluated, showing that the bonding should not spoil the overall perfor-
mances [131, 132]. Nonetheless, estimations of intrinsic loss angle of the bonding
materials give values around 10−1 [129]; this high level of dissipation suggests that
the bonding material is substantially different with respect to well-formed glass or
silica. The silicate bonding layer can be thought as forming a very imperfect glass
with many vacancies, dislocations and incomplete bonds.

The anchors are fixed to the ears with a particular silicate bonding technique
called water glass. In this method the used chemical mixture is enriched with silicate
compounds (Na2Si3O7) to speed up the drying time. With this technique the average
bond thickness and the average breaking stress are similar to those yielded by silicate
bonding, but there are peculiar features:

• the possibility to joint surfaces with λ/4 polishing;

• the possibility to joint surfaces of different materials (for example silica and
alumina);

• a lower tensile strength to the junction, so that a recover procedure, in case of
fiber failure, is possible.

The lower clamping system of the mirror is reported in fig. 4.10.

4.1.3 The monolithic payload

The monolithic payload is composed by the marionette, the reaction mass and the
mirror (see also sec. 2.3.5).

The monolithic suspension marionette is designed (see figs. 4.11 and 4.12):
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Figure 4.10: design of the lower clamping system on the lateral flat of the mirror: the
mirror is in red, fibers with anchors in blue and the ear is in green.

Figure 4.11: technical design of the marionette for the monolithic suspensions.

• to minimize the contact risk for the fused silica fibers with other mechanical
parts, making four lateral cuts used to insert the silica fibers to position them
at the required distance in suspending the mirror;

• to place correctly the fused silica fibers, so that the bending point of the fibers
correspond to the centre of mass plane of the marionette; that is assured using
the upper clamps.

Furthermore, the marionette houses a stepper motor: it is necessary for the correct
balancing of the payload during the mounting procedure. In fact, the stepper motor
is constituted by a large mass which can be moved longitudinally to correct possible
payload misalignment.

As described in sec. 2.3.5, the reaction mass is necessary to protect the mirror
from falling of fibers break and it is fundamental in the mounting procedure: it works
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Figure 4.12: monolithic suspension marionette: note the upper clamping system.

as an inner safety structure for the mirror. Since Virgo sensitivity was affected by
the eddy currents noise, for the reaction mass a new dielectric material (Tecapeek) is
used. Because of that, any conductive material in proximity of the mirror magnets
is avoided.

To ensure a feasible resistance of the whole structure the inner part of the reaction
mass is made up of steel. In addition the reaction mass houses the actuation coils
(see fig. 4.13).

In fig. 4.14 it is shown the monolithic payload mounted in the North-Input tower.

4.2 Quality factor measurement procedure

To excite and study the mechanical resonances of the payloads, I used the global con-
trol and the local control systems, depending on the frequency band I was interested
in. I performed three measurement campaigns in different frequency intervals (see
also tab. 4.2):

0− 20Hz: lower frequency suspension resonances M

In this band there are the pendulum mode (0.6Hz), the vertical modes of the
mirror and the reaction mass (∼ 6Hz and ∼ 15Hz) and the roll modes (∼ 8Hz
and ∼20Hz). To excite these modes I used two methods:

• for the pendulum mode it was sufficient to send white noise to the reaction
mass coils of each payload for few minutes. The interferometer was not
locked and the excitation was well visible in the local control optical levers,
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(a) reaction mass front (b) reaction mass back

Figure 4.13: reaction mass for monolithic paylod: note the four coils of the actuation
system.

where the longitudinal z-degree of freedom signal is monitored with a
dedicated photodiode;

• for the vertical and roll modes I used the balancing stepper motor present
inside the marionette; moving the inner mass of the motor by one step,
the marionette balance does not change, but it produces a small kick,
sufficient to excite those resonance modes. The excitation was well visible
in the dark fringe signal Pr B1 ACp1, since the interferometer did not lose
the locked status.

20Hz− 10kHz: fiber and lower frequency mirror bulk resonances M

In this band there are the violin modes of the fused silica fibers (multiples of
∼ 450Hz) and the first internal modes of the mirror bulk (from ∼ 4kHz).

Each fiber has two splitted polarized vibrational violin frequencies, along z and
x directions, caused by a small ellipticity of the fiber, due to an asymmetry
of the wire clamping system. So, in a monolithic payload there are four fused
silica fibers, that means eight violin resonances for each violin order multiple.

In total, I expect 32 violin resonances in a given order, even if the two split-
ted frequencies are not always distinguishable, in particular for the high order
modes.

To excite the violin modes and the bulk modes, I applied the same technique
used for the vertical modes, moving the balancing motor by one step. The
interferometer remained locked and the result was visible in the dark fringe
signal.

1This channel is the interferometer in-phase output. Since the power coming from the interfer-
ometer is too high for a unique photodiode, the output signal is splitted in two parts, to be read
by two different photodiodes, whose channels are called Pr B1 d2 ACp and Pr B1 d3 ACp. These
channels are sampled at 20kHz and 80kHz, while their addition Pr B1 ACp is sampled at 20kHz.
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Figure 4.14: North-Input monolithic payload, the first mounted for Virgo+: the
mirror, the reaction mass, the marionette, the actuation system colis and the safety
structure are visible.
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modes excitation method channel sample rate

pendulum white noise to the Gx NI z 50Hz
reaction mass coils Gx NI x 50Hz

vertical kick with the balancing stepper Pr B1 ACp 20kHz
motor of the marionette

violin kick with the balancing stepper Pr B1 ACp 20kHz
motor of the marionette

low frequency kick with the balancing stepper Pr B1 ACp 20kHz
bulk motor of the marionette

high frequency white noise to the Pr B1 d2 ACp 80kHz
bulk reaction mass coils

Table 4.2: summary of the measurement methods for the different campaigns: note
that for the pendulum mode I write only the North-Input channel, for simplicity, but
for each tower I took the corresponding channels.

10− 25kHz: higher frequency mirror bulk modes M

In this band the violin modes are no more recognizable (they have too small
amplitudes to be measured), while the higher frequency mirror bulk modes are
still present.

To excite these modes, I injected a band-limited white noise between 5kHz and
25kHz to the reaction mass coils of each payload. In order to do a preliminary
resonance identification, I gave two excitations using different coil configurations
(at first I used the Up-Down coils and then the Left-Right ones). The excitations
were visible in the dark fringe, measured with a special photodiode channel
(Pr B1 d2 ACp) sampled at 80kHz.

In tab. 4.3 I report the GPS start time and the good-data duration for each
tower. In fact, after noise injections, the interferometer often unlocked or the noise
level became too high, so I had to select only the good data.

The mechanical resonances were identified by looking at the risen lines of the
signal spectrum before and after the excitation, as shown in figs. 4.15 and 4.16.

4.3 The line identification problem

In order to quantify correctly the thermal noise contributions (see sec. 3.5), it is
mandatory to associate the collected resonance frequencies of each payload with their
correlated mechanical modes.

In particular, we have to distinguish between the violin modes and the bulk modes,
which often fall into the same frequency regions, causing a certain confusion.

In fig. 4.17 the West-Input spectra in the frequency region where the drum mode
is foreseen to be: the quiet spectrum (in red) is compared to the spectrum after
excitation (in black). In that region there are at least seven excited peaks given by
the XIII order of the violin modes which falls in the same frequency region.
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modes tower GPS start duration (s)

pendulum NI 973036815 36 · 3600
pendulum WI 973036815 33 · 3600
pendulum NE 973036815 36 · 3600
pendulum WE 973036815 36 · 3600

vertical/violin/low bulk NI 972756817 1200
NI 972840335 1200
NI 974229150 10800

vertical/violin/low bulk WI 972758150 600
WI 972841665 750
WI 975190045 7200

vertical/violin/low bulk NE 972758775 620
NE 972844295 1380
NE 975434895 4500

vertical/violin/low bulk WE 972760265 400
WE 972846515 1500
WE 974147065 4500

high bulk NI 992868647 3900
high bulk WI 992945535 3400
high bulk NE 994674222 7800
high bulk WE 994080371 3900

Table 4.3: GPS start time and good-data duration after the excitation of the payload
resonances: note that for the vertical/violin/low bulk modes I had three different
measurements.
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Figure 4.15: comparison between the quiet spectrum (in purple) and the spectrum
after the excitation (in black) of the West-Input payload; I report the violin modes
frequency regions (in green) and the bulk modes frequency regions (in red).

(a) NI VI order violin region (b) NI drum bulk region

Figure 4.16: measurements of the violin modes and drum bulk mode of the North-
Input payload: spectrum before excitation (in purple) and after excitation (in black).
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Figure 4.17: spectra of the West-Input payload in the drum frequency region: the
quiet spectrum is in red, while the spectrum after excitation is in black.

The main difficulty in distinguishing the violin lines from the bulk modes is that
violin frequencies lose their regularity at higher order, due to anharmonicity effects.

Violin mode frequency is expressed by eq. 3.54:

fn =
n

2L

√
T
ρlin

[
1 +

2

keL
+

1

2

(
nπ

keL

)2
]

(4.1)

where n is the violin order, ρlin is the linear mass density of the wire, L its length,
ke is the elastic stiffness and T the applied tension.

Each suspended fiber has its own length and applied tension: so, there are slightly
different fundamental frequency, even in the same payload. These differences are
enhanced in higher order modes, thanks to anharmonicity effects. Moreover, after
the first bulk mode (the butterfly “×” at ∼ 3950Hz) the mirror starts to quiver at
its own internal resonances, causing a change in the coupling between the fused silica
fibers and the mirror: the boundary conditions used for violin mode calculation are
no more valid and some peaks in the high frequency harmonics could disappear.

In fig. 4.18(a) and fig. 4.18(b) I show the West-End violins for the II and the IV
order, respectively: the harmonic shape is clearly recognizable. On the contrary, in
fig. 4.18(c), there are only three visible peaks.

For these reasons, the method I used to distinguish the violin peaks from the bulk
modes was their temperature dependence of the frequency.
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(a) WE II order violin region

(b) WE IV order violin region

(c) WE X order violin region

Figure 4.18: West-End spectra of three violin-frequency regions: in purple the spec-
trum before excitation, in black the spectrum after and indicated with red arrows the
violin resonances.
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coefficient mode (0,2) mode (1,0) mode (0,3)

α · 10−9(Hz/
√
N) 1.37 1.88 3.05

A 0.886 0.241 0.841
B 0.0415 0.806 0.0345

Table 4.4: coefficients Alm, Blm and αlm for the Virgo mirrors first three internal
modes (the two-nodal-line butterflies, the first drum and the three-nodal-line butter-
flies).

4.3.1 Temperature-dependence method definition

For what concerns the bulk modes, their frequency can be found from the elasticity
theory in the cases of the circular shell and the cylindric bars [134, 135] and then
estimated with a finite element analysis:

fbulk =
αlm
√
E√

Almσ + 1
√
Blmσ + 1

(4.2)

where the suffix lm indicates the different bulk modes (l specifies the number of nodal
diameter, m the number of the nodal circumferences), E is the Young’s modulus, σ
is the Poisson ratio, Alm and Blm are form factors depending on the mode type and
αlm depends on the mode type and on the mirror thickness.

To have an idea of the order of magnitude of the form factors Alm and Blm, and
of the coefficient αlm, see the tab. 4.4 [138].

Eq. 4.2 depends on temperature through the Young’s modulus E and the Poisson
ratio σ. Their dependence with respect to temperature can be approximated as:

E = E0 e
βT (4.3)

σ = σ0 e
γT (4.4)

where β and γ are the temperature coefficients and T is the temperature .
After substituting eq. 4.3 and eq. 4.4 in eq. 4.2, I approximate it at the first

order in temperature changes; it is convenient to write it in terms of the ratio R =
[f(T )− f(T0)]/f(T0):

R =
f(T )− f(T0)

f(T0)
=
f ′(T0)

f(T0)
∆T (4.5)

where ∆T = T − T0.
After a bit of algebra, computing f ′(T0), the ratio R for the bulk modes becomes:

Rbulk =

[
β

2
− Alm +Blm + 2AlmBlmσ0

2(Almσ0 + 1)(Blmσ0 + 1)
γσ0

]
(T − T0) ≡ λbulk(T − T0) (4.6)

where σ0 is the Poisson ratio at the reference temperature T0 and λbulk is here defined.
The first term is correlated with the Young’s modulus temperature dependence:

if we consider only its temperature dependence, we will find only that term. Instead,
the second term depends on the mode form and on the temperature dependence γ of
the Poisson ratio, which is comparable to β and of the same sign [139].
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mode λbulk · 10−4(1/K)
butterfly (0,2) 0.866

drum (1,0) 0.844
butterfly (0,3) 0.873

Table 4.5: values of the λbulk coefficients defined in eq. 4.6.

The λbulk values of the first three internal modes of the mirror are presented in
the tab. 4.5.

For what concerns the violin modes, considering also the anharmonicity terms,
their frequency expression is [136, 137]:

fviolin =
n

2L

√
T
ρlin

[
1 +

2

keL
+

(nπ)2

2

1

(keL)2

]
(4.7)

where ke is the flexural stiffness, equal to (see eq. 3.55):

ke =

√
T +

√
T 2 + 4EIρlinω2

2EI
(4.8)

with I the wire cross section moment.
Note that eq. B.3 is an approximation of eq. 4.8: this approximation holds if

4EIρlinω
2 � T 2. This is the case of the monolithic suspension: values of this term

are reported in fig. 4.19 for the first ten harmonic violin orders. Since the applied
tension for each wire is of order of T ∼ 50N , the square tension is T 2 ∼ 2500N2: so
we can drop the second term of the inner square root of eq. 4.8 ad use eq. B.3. In
the next computations, I always use the expression B.3.

Eq. 4.7 depends on temperature through the Young’s modulus E and the Poisson
ratio σ, as the bulk modes; but, in addition, there is a dependence also through the
wire length L and wire radius r:

L(T ) = L0

(
1 + αT +

T
AE(T )

)
r(T ) = r0

(
1 + αT + σ(T )

T
AE(T )

)
where α is the linear expansion thermal coefficient, T is temperature, T is the applied
tension and A is the wire cross section.

I repeat the same passages as done for the bulk modes to find the ratio R for the
violin modes:

Rviolin =

[
−1

2

(
α− T β

AE0

)
+

1

Dn
v

(
α +

T β
AE0

+
β

2

)]
(T−T0) ≡ λviolin(T−T0) (4.9)

where λviolin is here defined and Dn
v , called violin dilution factor, is:

1

Dn
v

=
2

keL

[
1 +

(nπ)2

2

1

keL

]
(4.10)
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Figure 4.19: values of the second term of the inner square root of eq. 4.8
(term 2 = 4EIρlinω

2) with respect to the harmonic number. For the monolithic
suspension the applied tension for each wire is of order of T ∼ 50N , so T 2 ∼ 2500N2.

The dilution factor is closely related to the anharmonicity of the mode frequencies:
in fact the dissipation in the fiber is almost entirely due to the bending and not due
to the work done against tension (see also sec. 3.5.1).

The values of the first ten violin mode coefficients λviolin of the fused silica fibers
are presented in tab. 4.6. The temperature dependence is proportional to the square
of the harmonic order number: the frequency change with temperature is more evident
for the higher order violins.

A different estimation of the violin modes temperature dependence can be done
considering the exact profile of the fused silica fibers. In that case, a finite element
analysis is mandatory. That estimation is presented in fig. 4.20 [140], where the tem-
perature derivative of the violin frequency f ′(T ) is shown, instead of λ = f ′(T )/f(T ),
calculated in tab. 4.6.

To compare these two results, I take each value of the red curve on the plot in
fig. 4.20 and divide it for its corresponding violin frequency: I obtain a coefficient
λviol = f ′n(T )/fn(T ) which is more than a factor 2 bigger than the coefficients in
tab. 4.6. That implies the cylindrical-fiber approximation is too rough for a correct
estimation of the violin behavior: it is better to consider the exact fiber neck profile.

Anyway, the coefficients λviolin, independently from the method calculation, are
two order of magnitude lower than the coefficients λbulk showed in tab. 4.5. That is
enough for a correct distinction between violin and bulk modes.

The different behavior of the bulk modes from the violin modes, in terms of
temperature is clearer computing the ratio:

Rmode(T )

Rbutterfly(T )
=

λmode
λbutterfly

(4.11)
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mode λviolin · 10−5(1/K)
I violin 0.1040
II violin 0.1043
III violin 0.1047
IV violin 0.1054
V violin 0.1062
VI violin 0.1073
VII violin 0.1085
VIII violin 0.1099
IX violin 0.1115
X violin 0.1133

Table 4.6: values of the λviolin coefficients defined in eq. 4.9.

Figure 4.20: temperature dependence of the violin frequencies with respect to the
violin harmonic mode n: in red the finite element estimation values, in black the
values obtained with eq. 4.1.
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where the subscript “mode” indicates a generic unidentified mode, while “butterfly”
indicates the first butterfly mode of a fixed payload. I use the first butterfly mode
for each payload as reference, since it is always well recognizable.

If the generic mode is:

• a violin mode:
Rmode(T )

Rbutterfly(T )
< 1

• a bulk mode:
Rmode(T )

Rbutterfly(T )
∼ 1

Since the coefficients λbulk and λviolin do not depend on temperature T , those
relation are valid for each temperature value.

4.3.2 Temperature-dependence method application

The practical application of the theory exposed in the previous section is to follow
how a peak frequency changes on a long time scale to compute the temperature
correlation, as expressed in eq. 4.6 and eq. 4.9.

To follow the line frequency changes with respect to time (and then temperature),
I used a tool developed for the noise analysis and the continuous gravitational waves
analysis, called NoEMI [141, 142].

This Python script analyzes the Virgo data to find all persistent lines:

• the Virgo data are divided in chunks, on which the Fourier transforms are
computed;

• for each frequency bin, NoEMI computes the critical ratio CR, a parameter used
to identify a peak; this parameter is defined as the ratio between the FFT value
in that bin and the FFT value in the near bins (so, it is possible to evaluate
the background);

• if a FFT bin has a CR value larger than a certain fixed CRmin, it is recognized
as a peak;

• if the recognized peak is persistent, i.e. it is present in more than a fixed
percentage of the total number of computed FFT in a time period, then the
peak is identified as a line and it is written in a database.

I consulted the NoEMI database to find the lines I was interested in. The method
procedure, performed on the VSR3 data, is the following:

• for each payload I selected all its resonance peaks present in NoEMI database,
considering if there was any frequency variation with respect to time.

• I distinguished between:

1. lines which did not change, as for example the first order violins (see fig.
4.21);
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2. lines which presented a slow variation, as the high order violins (see fig.
4.22);

3. lines which presented a big variation, as the bulk modes (see fig. 4.23);

(a) WI I order violin mode (b) WI II order violin mode

Figure 4.21: NoEMI plots of two West-Input low order violin lines: the line frequency
with respect to time (days of the VSR3). Different colors points to different line
energy, i.e. the integral of the line. Note the lack of data from day 30, due to a long
period of not-science configuration of the interferometer.

• I took into consideration only those lines which showed a frequency variation
and computed the ratio Rmode for each of them:

Rmode =
fmode(t)− fmode(t0)

fmode(t0)
(4.12)

where f(t) is the value of the resonance frequency at time t and I took the
first day of Virgo Scientific Run 3 as t0 value. Since temperature is a univocal
function of time, eq. 4.12 and eq. 4.5 are equivalent.

• for each payload data set and for each peak resonance, I plotted the ratio Rmode

(see eq. 4.12) with respect to the ratio Rbutterfly, taken as reference.

The expected slopes mR of those lines are reported in tab. 4.7: those values
have been found from considerations presented in sec. 4.3.1. In the same table
I report also the order of magnitude of the measured slopes, found from linear
fits of the data.

In fig. 4.24 I show the results for the North-End payload: in green a violin
mode is reported, in purple a butterfly mode and in red a drum mode. The
different modes are well recognizable, since the angular coefficient gets different
values, as reported in tab. 4.7.

In fig. 4.25 I show the plots of the ratio Rviolin with respect to the Rbutterfly,
for three violin harmonics (the XII, the XIII and the XIV orders). The angular
coefficient mR does not significantly change for different violin orders.
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(a) WI XII order violin mode (b) WI XIV order violin mode

Figure 4.22: NoEMI plots of two West-Input high order violin lines: the line frequency
with respect to time (days of the VSR3). Different colors points to different line
energy, i.e. the integral of the line.

(a) WI butterfly “×” bulk mode (b) WI butterfly “+” bulk mode

Figure 4.23: NoEMI plots of two West-Input bulk lines: the line frequency with
respect to time (days of the VSR3). Different colors points to different line energy,
i.e. the integral of the line.

mode mexpected
R mmeasured

R

violin < 1 ∼ 0.20
butterfly ∼ 1 ∼ 1

drum > 1 ∼ 1.50

Table 4.7: slope mR of the linear relation between the ratio Rmode for three different
modes (violins, butterflies and drums) and the ratio Rbutterfly of the reference butterfly

mode; in the table I report the expected values mexpected
R and the order of magnitude

of the measured slope mmeasured
R . Those values are the same for all the four payloads

and they have been used to distinguish the different temperature dependence.
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Figure 4.24: plot of the ratio Rmode with respect to Rbutterfly for the North-End internal
modes: the violin mode (4070Hz) is in green, the first butterfly mode (3980Hz) in
purple and the first drum mode (5706Hz) in red.

Figure 4.25: plot of the ratio Rmode with respect to Rbutterfly for the West-Input violin
modes.



140 CHAPTER 4. VIRGO+ MONOLITHIC SUSPENSIONS

4.4 Temperature dependence of frequency

Finally, after the mode identification, I compared the frequency changes with the
temperature data; each tower has temperature sensor in various positions:

• inside the lower part of the vacuum chamber, near the payload;

• inside the upper part of the vacuum chamber, along the superattenuator chain;

• just outside the vacuum chamber, in the tower bottom, where the local control
systems are positioned.

In fig. 4.26 I show four different temperature channels of the West-Input tower during
the VSR3.

Observing these temperature channels one can understand which is the most ef-
ficient heat transfer to the mirror:

• if the conductive process is dominant, the temperature channel to monitor
should be the one connected to the superattenuator;

• if the irradiation/convection processes are dominant, the temperature channel
to monitor should be the one connected to the bottom part of the tower.

Comparing fig. 4.26 with fig. 4.23, it is easy to understand that the most signifi-
cant contribution on mirror temperature changes comes from irradiation processes.

It is important to evaluate if there is a time lag between temperature variation and
frequency variations, to know how long it is the thermalization time of the payload.
For that reason I compute the cross correlation Rcc(t):

Rcc(t
′) =

∫ ∞
−∞

f(t)T (t+ t′)dt

where f(t) is the frequency value at time t, T (t+ t′) is the temperature value at time
t+ t′ and t′ is the time lag2.

In fig. 4.27 I report the comparison between the North-End drum mode (1,0) fre-
quency trend and the temperature data with respect to time during VSR3. The data
are sampled with a period of Tstep = 7200s, which corresponds to NoEMI sampling
period. I subtracted mean values from the two data samples so that they are of the
same order of magnitude: moreover this subtraction allows to see clearly the good
data coincidence.

In fig. 4.28 I report the cross correlation between the drum mode frequency and
the North-End temperature with respect to time lag. The maximum of the cross
correlation is at timelag = 0. That implies there is a lag between the external
temperature change and the mirror temperature change lower than the sampling
period: the towers thermalize in less than about two hours.

So I can use the approximated expression of eq. 4.2, without any time translation:

f(T ) = mTT + qT

2Since I use all physical quantities, which are real variables, I do not specify the complex conjugate
transform f∗(t) of the function f(t).
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Figure 4.26: four West-Input temperature channels with respect to time during the
VSR3: in the top-left corner there are the TCS laser power (this channel is necessary
to check there wasn’t a big change of laser irradiation on the mirror); in the top-right
corner there are temperature data from the sensor inside the vacuum chamber, which
is the nearest sensor to the mirror; in the bottom-left corner there are the data from
the sensor on the superattenuator system; in the bottom-right corner there are the
data from the outside sensor in the bottom part of the tower, where there is the
local control system. The green lines on the plots represent the unlock periods of the
interferometer.

Figure 4.27: comparison between the North-End mirror drum mode frequency and
temperature with respect to time during the VSR3: I subtract mean values from each
of the two data samples.
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Figure 4.28: cross correlation between the North-End mirror drum mode frequency
and temperature with respect to time lag: the maximum of the function is at
timelag = 0.

where f is the mode frequency, T is temperature, mT is the frequency slope and qT
is the intercept.

The expected values of the temperature slope mT are reported in tab. 4.8; they
are computed through a finite element simulation of the mirrors [143].

mode
temperature slope

mT (1/K)
butterfly (0,2) × 0.37
butterfly (0,2) + 0.37

drum (1,0) 0.52
butterfly (0,3) | 0.70
butterfly (0,3) – 0.71

Table 4.8: expected temperature dependence of the main bulk modes: these values
are found through a finite element simulation.

I plotted the violin and bulk frequency, taken from NoEMI database, with respect
to temperature data. As example, I report the plots of the fit frequency versus
temperature for the West-Input payload in fig. 4.29 (the butterfly × mode), in fig.
4.30 (the drum mode) and in fig. 4.31 (a XIII order violin mode).

Then, I computed the frequency slope mT for the first two butterflies (0,2), the
first drum (1,0) and the second two butterflies (0,3). The results are reported in tab.
4.9; in those tables I report also the mode frequencies during VSR3 and the measured
ratio slope mR, used for the identification (see tab. 4.7)
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Figure 4.29: temperature dependence for the WI mirror butterfly × mode: the blue
points are the experimental data, the green curve is the best fit: the values of the fit
parameters are reported at the top of the figure.

Figure 4.30: temperature dependence for the WI mirror drum mode: the blue points
are the experimental data, the green curve is the best fit: the values of the fit param-
eters are reported at the top of the figure.
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(a) North-Input mirror

mode
frequency ratio slope temperature slope

f (Hz) mR mT (Hz/K)
butterfly × (0,2) 3964 1 0.2969
butterfly + (0,2) 3996 0.995 0.2991

coupled drum (1,0) 5671 0.566 0.2416
coupled drum (1,0) 5675 0.793 0.3354

butterfly | (0,3) 7710 1.005 0.6021
butterfly – (0,3) 7992 0.967 0.6078

(b) West-Input mirror

mode
frequency ratio slope temperature slope

f (Hz) mR mT (Hz/K)
butterfly × (0,2) 3939 1 0.2997
butterfly + (0,2) 3971 1.005 0.3027

drum (1,0) 5642 1.502 0.5954
butterfly | (0,3) 7606 0.952 0.5535
butterfly – (0,3) 7674 1.014 0.5951

(c) North-End mirror

mode
frequency ratio slope temperature slope

f (Hz) mR mT (Hz/K)
butterfly + (0,2) 3980 1 0.4015
butterfly × (0,2) 4025 0.952 0.3834

drum (1,0) 5706 1.427 0.8327
butterfly – (0,3) 7667 1.002 0.7736
butterfly | (0,3) 7761 1.015 0.7932

(d) West-End mirror

mode
frequency ratio slope temperature slope

f (Hz) mR mT (Hz/K)
butterfly + (0,2) 3969 1 0.3795
butterfly × (0,2) 4014 0.998 0.3999

drum (1,0) 5693 1.386 0.7673
butterfly – (0,3) 7653 0.952 0.8166
butterfly | (0,3) 7745 0.973 0.8315

Table 4.9: measured temperature dependence of the main bulk modes. Note that
for NI payload the drum mode is coupled with a violin mode, implying a mixing of
temperature correlation coefficients (see sec. 4.6.3).



4.5. QUALITY FACTOR ANALYSIS PROCEDURE 145

Figure 4.31: temperature dependence for one of the NE X harmonic violin mode: the
blue points are the experimental data, the green curve is the best fit: the values of
the fit parameters are reported at the top of the figure.

4.5 Quality factor analysis procedure

After the identification of the internal modes with the temperature dependence study,
I proceeded to measure the quality factors in the following way:

1. for each payload and for each given resonance frequency f0 I computed the
spectrum immediately after the excitation (time = 0, the blue curve in fig.
4.32) to determine its peak amplitude. There are two parameters of the spec-
trum that must be chosen: the integration time tint, which determines the data
time interval to perform the Fast Fourier Transform (FFT) on and the average
number nave, i.e the number of data samples3 to take for each FFT (for more
detail see sec. 4.7). The frequency resolution of the spectrum depends on these
two parameters: so they are crucial to resolve correctly the resonance peak, not
to confuse it with another near peak.

2. I measured the peak amplitude at the frequency f0 with a rate depending on
a time interval ∆tmeas, determined by the final decay time, in a recursive way
(see the red, the green and the light blue curves in fig. 4.32).

3. I evaluated the peak amplitudes until the peak was recognizable, that means
until the signal/noise ratio is equal to 1; in that way I set a time interval Ttot
in which the measurement made sense (see fig. 4.33).

3In general it is preferable to choose data samples with a superposition of 50% of the time window
tint: in that way we do not lose any datum at the window edges. In that case I chose the Hanning
window.
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Figure 4.32: spectra of the North-End mirror butterfly + bulk mode resonance at
different time, indicated in distinct colours.

Figure 4.33: North-End mirror butterfly + bulk mode peak amplitudes at different
times: it is evident the decaying trend until about 100s after the excitation; beyond
that value, the peak is not more recognizable and it is confused with the noise level
of the spectra.
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Figure 4.34: North-End mirror butterfly + bulk mode resonance decay: linear fit of
the first 60s-data shown in fig. 4.33.

4. I performed an exponential4 fit of the data from time = 0 to time = Ttot, with
as much points as Ttot/∆tmeas (see fig. 4.34). The fitting function is:

A(t) = A0e
− t
τ

⇓

logA(t) = −1

τ
t+ logA0 (4.13)

where t is the independent variable time, A(t) is the peak amplitude at time t,
A0 is the peak amplitude at t = 0 and τ is the decay time, connected to the
quality factor through (see eq. 3.22):

Q = πf0τ

where f0 is the resonance frequency.

4.6 Experimental results

In next sections results for pendulum modes, violin modes and bulk modes measure-
ments are reported. For violin modes and bulk modes, since their high number of
points, I show plots of quality factors with respect to frequency.

The values of the quality factors for the monolithic suspensions are completely
reported in appendix C: in those tables the name of the resonance, its frequency, its

4For sake of simplicity I fitted the logarithm of the data with a linear function.
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τP (s) ωP (Hz) φP

NI
z 2.55 E+05 2.43 E-04 +0.42
x 2.35 E+05 2.43 E-04 π + 0.42

WI
z 5.74 E+05 2.50 E-04 +0.40
x 6.81 E+05 2.50 E-04 π + 0.40

NE
z 1.05 E+05 3.80 E-04 +0.42
x 1.69 E+05 3.80 E-04 π + 0.42

WE
z 7.17 E+05 2.60 E-04 +0.60
x 3.77 E+05 2.60 E-04 π + 0.60

Table 4.10: pendulum quality factors, beat frequency and phase lag of the beating
between z and x degrees of freedom.

decay time τ , the decay time error στ , the quality factor Q, the quality factor error σQ
and the relative error εrel are reported. Few modes are labeled with a “?”, since they
have not been identified, even if they are well visible in dark fringe spectrum and in
NoEMI database: probably some of them are internal resonances of the marionette
or of the reaction mass.

The error on quality factors have been estimated as described in sec. 4.7.

4.6.1 Pendulum mode results

From the local control optical levers, a coupling between z and x degrees of freedom
is visible. In fact the pendulum resonance at 0.59Hz belongs to both these degrees
of freedom and it is well recognizable on two photodiode signals.

That implies the exponential decay of the pendulum peak amplitude is superim-
posed to a oscillating behavior: the two degrees of freedom continuously pass the
energy each other.

I performed an exponential fit on the amplitude data A(t) and then I superimposed
also a sinusoidal function, to quantify the beat frequency ωP and the phase lag φP
between x and z degree of freedom:

A(t) = A0 cos(ωP t+ φP )e
− t
τP (4.14)

where A0 is the peak amplitude at time t0 and τP is the decay time, linked to the
pendulum mode quality factor. The fit results for the pendulum mode are reported
in tab. 4.10.

In fig. 4.35 I show the fit for the z pendulum mode of the North-Input payload,
while in fig. 4.36 the West-End x pendulum mode is reported.

For all measured x pendulum modes, I noticed an asymmetry behavior of the
peak amplitude, due to the saturation of local control photodiodes. So, experimental
data and fitting curves do not have a complete correspondence, in particular for what
concerns the amplitude A0 of eq. 4.14. Anyway, that effect influences neither the Q
measures, neither beat frequencies or phase lags.
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Figure 4.35: exponential-sinusoidal fit for the quality factor estimation of the North-
Input z pendulum mode.

Figure 4.36: exponential-sinusoidal fit for the quality factor estimation of the West-
End x pendulum mode.
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Figure 4.37: quality factors of the North-Input violin modes.

4.6.2 Violin mode results

The results for the violin modes are shown for the four payloads in figs. 4.37, 4.38, 4.39
and 4.40. I plot the quality factor of each fiber with respect to the harmonic frequency,
until the violin resonances are recognizable: different colors refer to different fibers.

Looking at the figures, a decreasing trend of quality factors with respect to fre-
quency is evident. Apart that trend, each tower shows a different spread: for exam-
ple, the data of the North-Input have a low dispersion, while the West-End data are
greatly scattered.

Motivations of the different behaviors can be found in the mechanical assembly
of the payload: I carried out dedicated measurements on fused silica fibers and their
clamping systems, whose results are shown in chapter 5.

4.6.3 Bulk mode results

As for violin modes, the bulk mode quality factors show a decreasing trend. The
results for bulk modes of the four payloads (from 3.9kHz to 25kHz) are shown in figs.
4.41, 4.42, 4.43 and 4.44. In the plots I report also the correlation coefficients, which
have similar values for different payloads. Moreover, a scattered behavior is evident.

The quality factors of the first order butterflies (0,2), the first order drum mode
(1,0), the second order butterflies (0,3) and the drum mode (2,0), with their frequency,
are reported in tab. 4.11. The North-Input case, which presents two values of coupled
drum modes, is treated in detail in the next section.

Note the swap between the butterflies of the same order for the Input mirrors and
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Figure 4.38: quality factors of the West-Input violin modes.

Figure 4.39: quality factors of the North-End violin modes.
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Figure 4.40: quality factors of the West-End violin modes.

Figure 4.41: quality factors of the North-Input bulk modes.
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Figure 4.42: quality factors of the West-Input bulk modes.

Figure 4.43: quality factors of the North-End bulk modes.
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Figure 4.44: quality factors of the West-End bulk modes.

the End mirrors. This exchange depends on different geometric characteristics of the
mirrors and, in particular, on the flat dimensions. In fact, each mirror has lateral
flats to allow the silicate bonding of the ears (see sec. 4.1.2). While in the Input
mirrors the flats are 50mm high, in the End mirrors, the flats are 100mm high.

I supposed the swap between the butterfly modes from the Q-values: since the
butterfly × and butterfly | cause a bigger strain of the ears and the silicate-bonded
area than the butterfly + and butterfly – do, their quality factors are lower than the
others. These swaps is also confirmed by finite element simulations.

North-Input case

For the North-Input payload, I found a coupling between the (1,0) drum mode and a
XIII order violin mode. In fig. 4.45 I show the North-Input spectra, before excitation
(in purple) and after excitation (in black). It is possible to clearly distinguish four
excited peaks: from the temperature analysis (see sec. 4.3.2) I found that two of
them are XIII harmonic violin modes. On the contrary, other two peaks, which
have similar amplitude in the spectrum, showed intermediate characteristics between
a violin mode and a drum bulk mode: those results are reported in tab. 4.9 as
“coupled drum”.

So, it is reasonable to deduce a coupling between the drum mode and a violin
mode. The expressions which manage this effect are the same reported in sec. 3.3.5
for two coupled oscillators, with very close resonance frequencies.

If two uncoupled harmonic oscillators have massesM andm, resonance frequencies
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tower mode f(Hz) Q

NI

butterfly × (0,1) 3964 5.71 E+05
butterfly + (0,1) 3996 12.0 E+06

coupled drum (1,0) 5671 3.42 E+05
coupled drum (1,0) 5675 3.04 E+05

butterfly | (0,2) 7641 9.44 E+05
butterfly – (0,2) 7710 5.12 E+06

drum (2,0) 15673 2.04 E+05

WI

butterfly × (0,1) 3939 15.2 E+06
butterfly + (0,1) 3971 24.3 E+06

drum (1,0) 5642 3.07 E+04
butterfly | (0,2) 7605 1.71 E+06
butterfly – (0,2) 7673 10.8 E+06

drum (2,0) 15659 1.92 E+05

NE

butterfly + (0,1) 3980 8.33 E+06
butterfly × (0,1) 4025 2.07 E+06

drum (1,0) 5706 3.02 E+06
butterfly – (0,2) 7667 6.45 E+06
butterfly | (0,2) 7761 2.34 E+06

drum (2,0) 15773 8.48 E+04

WE

butterfly + (0,1) 3969 13.6 E+06
butterfly × (0,1) 4014 3.60 E+06

drum (1,0) 5693 1.76 E+06
butterfly – (0,2) 7653 4.67 E+04
butterfly | (0,2) 7745 –

drum (2,0) 15763 1.49 E+06

Table 4.11: measured quality factors of the most interesting internal bulk modes for
all the towers.
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Figure 4.45: North-Input mirror spectra in the drum frequency region: in black the
spectrum after excitation, in purple the quiet spectrum. Note the two “horns” in
place of the drum mode single-peak.

fM and fm and quality factors QM and Qm, the coupled frequencies are [97]:

f± =

√
1

2

{
[f 2
m(1 + µ) + f 2

M ]±
√

[f 2
m(1 + µ) + f 2

M ]2 − 4f 2
mf

2
M

}
(4.15)

where µ = m/M is the mass ratio.
For two tuned oscillators (fM = fm = f0) the frequency difference between the

two peaks depends on the mass ratio as:

∆f± = f+ − f− = f0

√
µ

1 + µ

Considering uncoupled decay times τM = QM
πfM

and τm = Qm
πfm

, coupled decay times
is:

1

τ±
=

1

2

[
1

τM

(
1±

√
µ

√
4 + µ

)
+

1

τm

(
1 + µ±

√
µ

√
4 + µ

)]
For the North-Input payload, the two harmonic coupled oscillators are the mirror

drum mode and a fused silica fiber XIII-order violin mode. The mirror drum mode
effective mass mmi is larger than the fiber violin effective mass mf . So, it is possible
to use approximations µ� 1 and τM � τm; in that case coupled decay times are:

1

τ±
≈ 1

2

(
1

τM
+

1

τm

)
≈ 1

2

1

τM
(4.16)

the coupled decay time is dominated by the most dissipative damping process.
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Figure 4.46: theoretical coupled decay times with respect to mirror drum mode fre-
quency: the drum mode quality factor is QM = 1.6 · 105, the violin mode quality
factor is Qm = 1.6 · 107 and the violin frequency is fm = 5673Hz.

mirror mode violin mode
frequency f(Hz) 5673.65 5673.65

effective mass m(kg) 7.7 1.3 · 107

loss angle φ 6 · 10−8 6.25 · 10−6

temperature dependence α(Hz/K) 0.6 0.1

Table 4.12: simulated parameters of uncoupled oscillators for the mirror drum mode
and the fiber XIII violin mode of the North-Input payload.

The theoretical behavior of τ± expressed in eq. 4.16 is plotted with respect to the
mirror drum mode frequency fM in fig. 4.46: in that case the drum mode quality
factor is supposed to be QM = 1.6 · 105, violin mode quality factor is Qm = 1.6 · 107

and violin frequency is fm = 5673Hz. When the two oscillators are perfectly tuned in
frequency, the decay times τ± have the same value, very close to the lowest uncoupled
decay time (the crossing point of the blue and red curves in fig. 4.46).

Despite the quality factor at resonance can be reduced, the off-resonance region
is not affected, neither the thermal noise.

It is possible to estimate the physical parameters of uncoupled oscillators: effective
masses, temperature dependences and the drum mode loss angle are evaluated with
a finite element analysis; while the violin loss angle can be determined using the loss
angle of the nearby XIII violin modes. The results are shown in tab. 4.12. From
these values we can estimate the parameters of the coupled oscillators and compare
them with experimental measurements.

Supposing thermal noise is the dominant noise source at the mechanical resonance
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peaks in the sensitivity spectrum5, it is possible to perform a Lorentzian fit of the
spectrum peaks to find parameters of coupled oscillators. It is necessary to use the
gravitational wave hrec signal, instead of dark fringe channel, since the latter one is
not calibrated.

So, near the resonance, thermal noise spectrum, considering viscous losses, is (see
eq. 3.10):

Sh(f) =
1

l20

kBT

2π3meff
n Qn

fn[
(f 2 − f 2

n)2 + f2
nf

2

Q2
n

]
where l0 is the interferometer arm length, T is temperature, meff

n is the effective mass
of the internal mode n at frequency fn and Qn is its quality factor.

At resonance:

SX(f) =
kBTQn

2π3meff
n f 3

n

(4.17)

It is possible to fit peak data with a Lorentzian function:

Slor(f) =
A

(f 2 − f 2
n)2 +B2f 2

where A is the amplitude, B is a parameter connected to peak width and fn is the
peak frequency. From the fit the coefficients A and B are determined and so the
effective mass meff

n and the quality factor Qn are derived.
The Lorentzian fit is shown in fig. 4.47: experimental points are in black, their

error in red and the Lorentzian fit is in dashed blue line. For each “horn” the fit
parameters are reported.

In fig. 4.47 errors are determined considering that the spectrum is the results of
nave = 9 averaged periodograms. Each point in the spectrum follows a χ2 distribution,
with 2nave degrees of freedom: the expected value is µχ2 = nave and the variance is
σ2
χ2 = 2nave. Because the spectrum is not normalized, we introduce a constant C: so

the expected value is µχ2 = Cnave and the variance σ2
χ2 = 2C2nave. From these two

condition it is possible to determine the spectrum variance:

σχ2(f) =

√
2

Nave

Sh(f)

In tab. 4.13 I report the expected values (found from a finite element analysis)
and the measured values, from the Lorentzian fit results [144].

4.7 Error estimation

For what concern the error estimation of quality factor measurements, I can not use
the same consideration as for the North-Input coupled modes, since the ring-down
measurements are not stationary phenomena.

5This estimation has been done during a quiet period, without any excitation; in fact the drum
mode peak is stationary and always present in the interferometer output, the dark fringe, since it is
the best coupled mode with the laser interferometer probe.
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Figure 4.47: North-Input mirror drum mode “horns” with the Lorentzian fit: exper-
imental points are in black, their error in red and the Lorentzian fit is in dashed blue
line.

expected measured

frequency
f−(Hz) 5671.47 5671.48
f+(Hz) 5675.83 5675.85

amplitude
A−(1/

√
Hz) 9.1 · 10−19 (8.31± 0.77) · 10−19

A+(1/
√
Hz) 9.1 · 10−19 (8.65± 0.64) · 10−19

quality factor
Q− 3.2 · 105 (3.61± 0.35) · 105

Q+ 3.2 · 105 (3.05± 0.24) · 105

effective mass
m−(kg) 15 21.3± 6.0
m+(kg) 15 16.5± 3.8

temperature dependence
α−(Hz/K) 0.35 0.24
α+(Hz/K) 0.35 0.33

Table 4.13: expected and measured parameters of coupled oscillators for the mirror
drum mode and the fiber XIII violin mode of the North-Input payload.
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Figure 4.48: exponential function (in blue) splitting in n bins of width tint (in black);
taking the n-th sample (in green), the peak amplitude in that time interval will be
approximated as yexp (in red).

Quality factor measurement results are related to the specific apparatus mounting.
Since there can be recoil losses and couplings between mechanical parts of the payload,
it could happen to find different quality factor values for different mountings of the
same experimental physical system.

Since we did not dismount and re-mount Virgo payloads, I performed all mea-
surements with the same setting. As shown in tab. 4.3, I have three measurements
for the vertical, violin and low frequency bulk modes: for these modes, I evaluated
quality factors taking the maximum measured value. Errors are taken from standard
deviations.

For those modes of which I did not have several measurements, I attributed them
a 10% relative error.

4.7.1 Consideration on FFT parameters

Thanks to the nature of the exponential function, which does not change shape after
integration, the decay time of ring-down experiment is not affected by the choice of
the FFT parameters, as the integration time or the average number.

In fact, in the FFT integration, we are dividing an exponential function in n bins
of width tint (see fig. 4.48); for each n-th bin, we approximate the exponential values
with the amplitude ynexp:

ynexp =
1

tint

∫ n tint

(n−1)tint

A0e
− t
τ dt

=
A0τ

tint
e−

n tint
τ

(
e
tint
τ − 1

)
Since t = ntint, it is immediate to see the exponential function does not change its
decay time τ . But, if we choose a large average number nave or too long integration
time tint, respect to decay time τ , we divide the exponential function in few points.
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In that case, the last points are affected by noise, since the resonance peak could not
be recognizable: the decay time evaluation is altered.

To understand which are the best integration time and average number values,
I study how a peak amplitude changes. The results for the North-Input bulk mode
at frequency f = 7992.64Hz are reported in figs. 4.49 and 4.50. For that mode the
decay time is τ = 40.1s.

To find as the amplitude peak changes with respect to average number nave,
consider that the data for FFT are taken for a total time Ttot = (nave+ 1)tint/2, since
the FFT are 50% overlapped:

A(Ttot) =
A0

Ttot

∫ Ttot

0

e−
t
τ dt

=
A0

Ttot

(
1− e−

Ttot
τ

)
substituting Ttot:

A(nave) =
2A0τe

− tint
2τ

(nave + 1)tint
e−

navetint
2τ +

2A0τ

(nave + 1)tint

re-defing quantities:
A(nave) = An1e

−nave
η + An2 (4.18)

where An1 is the exponential amplitude, η is the average number decay constant and
An2 is a DC value. In fact, increasing the average number, I integrate the resonance
peak in a longer time: since the peak energy is decreasing exponentially with its
decay time, the data fit an exponential function. This is true until the noise level
is reached: after that value, the peak is no more recognizable and the amplitude is
constant.

In fig. 4.49 I show the peak amplitude with respect to average number: I fix the
integration time to tint = 20s. The decay constant η of the fit is η = 9.5: since the
FFT are 50% overlapped, this decay constant is linked to the decay time τ as:

τ =
ηtint

2
≈ 95s

longer of a factor 2 than the expected one.
On the contrary, I expect the amplitude peak with respect to integration time tint

is a product between a line and a exponential function:

A(tint) = A0e
− tint

τ (mtint + q) + AN (4.19)

where A0 is the exponential amplitude, τ is the decay time, m is the line slope, q is
the y-axis intercept and AN is a DC value, due to the noise level.

That trend is due to the fact that:

• for tint � τ the peak in the FFT spectrum is not well resolved: for very low tint
value, the resolution is so large that the peak energy is spread in a large bin;
going to longer integration time, the resolution decreases and the peak energy
linearly increases;
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Figure 4.49: peak amplitude of the North-Input mirror resonance mode at frequency
f = 7992.64Hz with respect to different average number nave: in blue the experimen-
tal data and in red line the best exponential fit (see eq. 4.18); the integration time is
fixed to tint = 20s.

Figure 4.50: peak amplitude of the North-Input resonance mode at frequency f =
7992.64Hz with respect to different integration time tint: in blue the experimental
data and in red line the best fit (see eq. 4.19); the average number is fixed to nave = 3.

• for tint � τ the peak amplitude in the FFT spectrum is exponentially decaying
with the same decay time τ , since the peak energy is exponentially decaying.

Varying the integration time, the maximum of the peak amplitude is reached
around tint ∼ τ . In fig. 4.50 I show the peak amplitude with respect to integration
time: I fix average number to nave = 3. The decay time coming from the fit is
τ = 49.5s.

So, I chose to have the average number equal to nave = 3, which is a reasonable
compromise between a good resolution and no large decay time modification. Simi-
larly, I chose the integration time tint for each resonance peak so that it is lower than
the exponential decay time τ , tint � τ .



Chapter 5

Study on fused silica fibers and
their clamping system

In this chapter I present my studies on fused silica fibers and their clamping system
in Virgo+ monolithic suspensions.

From the quality factor measurements reported in the previous chapter, it is
possible to get informations about the suspension method: in particular violin modes
are good probes, even better than the pendulum mode, since they cover a large
frequency region allowing us a frequency dependence study. Moreover, violin modes
are determined by the same theory as the one of the pendulum mode and should be
affected by most of the same excess loss mechanisms.

At first I show anharmonicity studies on fused silica violin frequencies; then I
discuss the quality factor dependence with respect to violin frequency.

Finally I report my measurements on fused silica fibers, made with a specific setup
at the University of Perugia. These measurements are fundamental for a correct
comprehension of Virgo+ results.

5.1 Anharmonicity effect on violin modes

A harmonic oscillator obeys Hooke’s law: this idealized expression assumes that a
system displaced from equilibrium responds with a restoring force whose magnitude
is proportional to the displacement. In nature, idealized situations break down and
linear equations of motion fail to describe physical systems.

Anharmonic oscillatiors are characterized by a restoring force no longer propor-
tional to the displacement: they can be approximated with a harmonic oscillator plus
an anharmonicity term calculated by the perturbation theory.

For violin modes, the frequency expression is (see sec. 3.5.1 and sec. 4.3.1):

fviolin =
n

2L

√
T
ρlin

[
1 +

2

keL
+

(nπ)2

2

1

(keL)2

]
(5.1)

where n is the harmonic order number, L is the fiber length, T the applied tension,

163
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Figure 5.1: anharmonic correction with respect to order number: the absolute cor-
rection (in blue) is computed with the expression reported in brackets of eq. 5.1; the
relative anharmonic correction (in green) is computed with respect to violin frequen-
cies.

ρlin its linear density and ke is the flexural stiffness, equal to (see eq. 3.55):

ke =

√
T +

√
T 2 + 4EIρlinω2

2EI
(5.2)

with I the fiber cross section moment and E the material Young’s modulus.
The first term of eq. 5.1 is just the violin mode frequency of a perfect string with

all the restoring force due to tension. The additional factors in brackets involve the
elastic constant ke and quantify the additional restoring force due to the stiffness EI
of the fiber: the first and second order correction in 1

keL
are reported. There is also a

third order correction that is due to the recoil of the (nearly) free masses at the ends
of the fibers. However, for our suspension this correction can easily be estimated to
be only ∼ 0.001% for the first mode and to fall as n2 with mode number, so it can
be safely ignored.

The order of magnitude of anharmonic corrections is reported in fig. 5.1 for the
first 25 violin modes: corrections increase for higher order modes. The absolute cor-
rection computed with the expression reported in brackets of eq. 5.1 is in blue, while
in green the relative correction (of order of 10−3) with respect to violin frequencies.

For Virgo, the steel-wire anharmonicity has been computed [145]: in fig. 5.2 peaks
of the first five harmonics of a given wire have been overlapped, dividing by n the
frequency range of the nth-harmonic.

Some anharmonicity is present in the flexural stiffness of the suspension wires and
this is well evident in figure, where the increase of frequency of the higher modes is
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Figure 5.2: Virgo steel wire violin mode: spectrum amplitudes of the first five har-
monics peak for a given wire, divided for the mode number. Different harmonics are
reported in different colors, following the legend.

clear. Anyway, only few identified peaks could respect a similar law; many others
show a more complex behavior, probably due to Virgo suspension asymmetries in
clamps and spacers or mode couplings.

I repeated these computation for Virgo+ monolithic suspensions, finding a differ-
ent anharmonicity behavior (see fig. 5.3). In fact, I observed a decreasing trend with
respect to frequency. This effect is due to the dumbbell fiber profile, which implies
thicker neck regions.

For the presence of a variable cross section the dynamical behavior of these fibers
is different from the one of the perfectly cylindrical ones, even if cylindrical symmetry
is preserved. In that case, eq. B.1 is not more applicable. The flexural equation is:

E
d2

dx2

(
d2I(x)y

dx2

)
− T d

2y

dx2
= −ω2ρS(x)y(x) (5.3)

where S is the wire section, y is the coordinate along the fiber axis, x is the coordinate
orthogonal to the fiber axis and ω is the frequency.

For such an equation, no analytical solution can be found, but it is possible to
approximate fused silica fibers with a three-segment constant-section model. A fiber
schematization, with bending point positions, is given in fig. 5.4.

We consider the fiber as the sum of three parts: for each part, whose length is
reported in fig. 5.4, we can apply eq. 5.2 to compute the flexural stiffness. Its inverse
gives the bending point position.
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Figure 5.3: Virgo+ fused silica fiber violin mode: spectrum amplitudes of a fixed
fused silica fiber for the first five harmonics divided for the mode number. Different
harmonics are reported in different colors, following the legend.

Figure 5.4: schematization of fused silica fiber with thicker neck regions: bending
points position, λupe and λdowne , and effective fiber length Leff are indicated.
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Figure 5.5: comparison between the fiber profile and the bending energy with respect
to fiber length: it is evident an energy accumulation around the neck region.

So, going to higher frequencies (ω ↑), the flexural stiffness increases (ke ↑) and
the bending point position decreases (λe ↓). The effective length of the fiber Leff
increases (Leff ↑), causing a decreasing of the quantity fviolin/n (see eq. 5.1).

Furthermore, since the bending points lie in the neck region, we have a further
increase of the flexural stiffness ke due to the fact that the cross section moment
I ∝ r4 is larger than in the fiber. So, for a dumbbell-profiled fiber we expect a
decreasing of the quantity fviolin/n going to higher order harmonics.

To test the validity of the 3-segment model, a finite element simulation of the
fiber is realized and the results are compared [146, 147].

The finite element simulation allows us to understand how the energy distribution
is. The bending energy for a real suspension fiber is concentrated in the thicker region
around the bending points, close to the fiber necks, as shown in fig. 5.5. For that
reason, surface and thermoelastic thermal noise contribution to the dissipation can
be dropped.

Moreover, the finite element analysis allows to compute the expected values of
violin frequencies. We compare frequencies coming from simulations with frequencies
coming from the analytical formula for cylindrical fibers (see eq. 5.1). Simulations
give a more correct result, comparable with the frequencies measured in Virgo+
payloads [140]: in fig. 5.6 I report the percentage difference between measured fre-
quencies and frequencies simulated with a finite element analysis, compared with the
percentage difference between measured frequencies and frequencies computed with
eq. 5.1. It is evident that simulated frequencies are closer to measured ones than the
frequencies computed through the analytical formula.
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Figure 5.6: comparison between violin frequencies measured for North-Input pay-
load and simulated/computed violin frequencies: we compare finite element analysis
results with values obtained from analytical formula for cylindrical fibers (see eq.
5.1).

5.2 Violin quality factor dependence on frequency

I studied the quality factor behavior with respect to violin frequencies.

I expect loss angles for violin modes to depend on the ratio between the elastic
energy Eel and the gravitational one Egrav, in a similar way to what happens for the
pendulum mode. The violin dilution factor is defined as Dv

n = Eel/Egrav and it enters
the loss angle as:

φn = φintD
v
n = φint

2

keL

(
1 +

n2π2

2keL

)
(5.4)

where ke is the flexural stiffness (given by eq. 5.2 or the approximated expression eq.
B.3), n is the violin harmonic order and L is the fiber length.

The anharmonicity of the mode frequencies is closely related to the dilution factor.
That is not surprising when one considers that the dissipation in the fiber is almost
entirely due to the bending and not due to the work done against tension. Careful
measurements of mode frequencies would provide some confidence that the suspension
dynamics, and thereby the dilution factor, have been understood.

The internal overall loss angle φint is frequency dependent and is equal to:

φint(f) = φstruct + φtherm(f) + φsurf

i.e. the sum of structural φstruct, thermoelastic φtherm and surface φsurf loss angles.
Structural loss angle φstruct is a constant: for fused silica we have φstruct = 3.3 · 10−8.
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On the contrary, thermoelastic loss angle is computed as (see eq. 3.25):

φtherm(f) = ∆
f/f̄

1 + f 2/f̄ 2
(5.5)

where, taking into account non-linear effects on thermoelastic damping given by tem-
perature dependence of the Young’s modulus, ∆ and f̄ are equal to [136]:

∆ =
ET

cV

(
α− βT

ES

)2

τ̄ =
2.16Dst

cV d2

where cV is the specific heat, Dst is the thermal conductivity of the wire material, α
is the material linear expansion coefficient, β is the temperature dependence of the
Young’s modulus, T is the tension applied to the fiber, T is temperature, d is the
typical distance the heat flow must cross and S is the fiber section. For the fused
silica fibers used in Virgo+ the Debye’s peak frequency is f̄ ∼ 39Hz.

The surface loss angle φsurf is frequency independent (see sec. 3.3.3):

φsurf = 8φstruct
ds
dw

where dw is the fiber diameter and ds is the dissipation depth, which parametrizes
the fiber size at which surface loss becomes important. It is possible to measure
directly the dissipation depth from quality factors [148]: a reliable dissipation depth
value is ds = 200µm. So, for Virgo+ monolithic suspension, the surface loss is
φsurf = 1.9 · 10−7.

Theoretical behavior of violin loss angles with respect to frequency are reported
in fig. 5.7 taking into account the dilution factor Dv

n. In that figure I computed
violin loss angles, considering only structural losses (the blue line), considering only
thermoelastic losses (the green line), considering only surface losses (the red line) and
considering the overall sum φn(f) = φstruct + φthermo(f) + φsurf (the pale blue
line).

Expected violin loss angles are one order of magnitude lower than the measured
ones: the best measured loss angle has been found in the West-Input payload and it
is equal to φWI = 1.63 · 10−8.

Measured violin loss angles with respect to frequency are reported in fig. 5.8:
for each payload, the four loss angle values belonging to different fibers have been
averaged.

Comparing expected behavior in fig. 5.7 with the measured one in fig. 5.8 it
is evident the discrepancy in order of magnitude and slope: there is an unknown
damping mechanism probably connected to recoil losses. Furthermore loss angle
values are greatly scattered, even for the same payload (see figs. 4.37, 4.38, 4.39
and 4.40). So, it is probably some loss mechanism linked to the monolithic clamping
system. To verify this hypothesis, I performed a measurement campaign exclusively
on fused silica fibers.



170 CHAPTER 5. FUSED SILICA FIBERS

Figure 5.7: theoretical behavior of violin loss angle with respect to violin frequency
considering the dilution factorDv

n: in blue, the loss angle is computed considering only
structural losses; in green considering only thermoelastic losses; in red considering
only surface losses. The pale blue line is the overall sum.

Figure 5.8: measured behavior of violin loss angle with respect to violin frequency:
different payload are indicated in different colors and symbols; for each harmonic, the
four loss angles values corresponding to different fibers have been averaged.
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5.3 Fused silica fibers measurements

To understand what is the loss mechanism going on in Virgo+ fused silica fibers, I
measured violin mode quality factors in different configurations. The experimental
apparatus is set up at the University of Perugia and has already been employed for
former measurement campaign [87, 92, 96].

This apparatus consists of a fixed steel frame that allows to suspend a fused silica
fiber. The structure is placed in a vacuum chamber, which reaches a residual gas
pressure of Pres ∼ 6 · 10−5mbar. So, the residual gas Q limit for a fused silica fiber is
Qgas ∼ 3.5 · 109 (see eq. 3.31).

5.3.1 Experimental setup

The steel frame is shown in fig. 5.9. The fiber is suspended with a Virgo+ clamp
in the upper part of the steel structure (see fig. 5.10); a 5kg-mass steel cylinder is
attached to the fiber with another clamp of the same kind (see fig. 5.11) to apply a
tension equal to the one used for Virgo+ fibers. The clamps have two lateral screws
and four upper screws for fiber position regulations.

The wire violin modes are excited by an electrostatic actuator made of a pair of
copper tips placed a few millimeters from the wire.

To find the resonant frequencies the wire was first excited with white noise, coming
from a function generator and amplified by a high voltage amplifier. Voltage of one
kilovolt is typically used. When a resonance was identified, I excited it with a sine
function at its fixed frequency.

Fiber motion is detected with two orthogonal shadow-sensors. In fig. 5.12 the two
shadow-sensors, LEDs and photodiodes, are well visible. Two sensors are necessary
to monitor at the same time the two degrees of freedom orthogonal to the fiber axis
(x and z degrees of freedom, for more detail see sec. 3.5.1).

The acquisition scheme is reported in fig. 5.13: the actuation system is in orange,
while the read-out system is in purple. In blue it is reported the fused silica fiber and
in green the reference frame. Once the resonance frequency is excited, the driving
signal is switched off and the oscillation amplitude of the free decay is recorded on
a personal computer, using a LabView script. In this script it is possible to set up
the sampling frequency and the resolution; moreover it is possible to follow the time
dependence of the signal and to fit the data with an exponential function.

The screenshot of the LabView command window during the fiber first violin
mode measurement is reported in fig. 5.14. In the upper left panel there is the plot
of the shadow-sensor signal amplitude with respect to time; in the upper right corner,
there is the plot of the signal power spectrum, where the resonance peak is well visible
at 458Hz; in the lower panel there is the amplitude of the analytical signal (in white),
with the exponential fit (in red).

The analytical signal z(t), associated to a physical signal y(t), is defined as:

z(t) = y(t) + y̆(t)

where y̆(t) is the Hilbert transform:

y̆(t) =
1

π

∫ ∞
−∞

y(t′)

t− t′
dt′
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Figure 5.9: fixed steel frame for fused silica fiber measurements.
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Figure 5.10: upper clamp to suspend the fused silica fiber: the regulation screws and
the monitoring system, which is composed by two shadow-meters, are also visible.

Figure 5.11: lower clamp attached to a 5kg-mass steel cylinder.
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Figure 5.12: shadow-sensors to monitor the fiber position: LEDs and photodiodes
are well visible.

Figure 5.13: schematization of the acquisition procedure and experimental setup for
fused silica fiber quality factor measurements: in black the steel structure, in blue
fused silica fiber and clamps, in orange the actuation system (with the copper tip
pairs) and in purple the read-out system (with LED and photodiode). In green it is
reported the reference frame.
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Figure 5.15: example of a real signal amplitude (in blue) and its analytical signal (in
red) with respect to time.

The analytical signal amplitude |z(t)| is:

|z(t)| =
√
y(t) + y̆(t)

and it is the envelope of the real signal y(t) (see fig. 5.15).
In a ring-down measurement, the analytical signal of the read-out physical quan-

tity should be just an exponential function. In fig. 5.14, the analytical signal presents
an oscillating behavior itself, because there is a coupling between the two violin x
and z degrees of freedom; in fact, when I excited one of them, the other got often
excited, depending on the harmonic.

5.3.2 Experimental results

The fused silica fiber is suspended from its ends with two clamps, identical to the
Virgo+ upper clamp. In that way I did not test anchors, but only cones and their
steel boxes (see sec. 4.1.2).

Since the steel boxes have several screws, it is possible to fasten or loose them,
causing a change in the clamping configuration. Moreover, it is possible to vary the
applied tension, changing the cylinder mass attached to the fiber.

I used two different fibers: the first was pulled in May 2012, the second produced
in 2008, to check aging effects.

So, I measured violin mode quality factors in different configurations (“standard
configuration” means that screws are fastened, but not too tightly, as done in Virgo+;
“loose” and “tight” are to be considered with respect to standard configuration):

1. new fiber:

• suspended mass m = 5kg:
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– standard configuration

– tight upper screws.

2. aged fiber:

• suspended mass m = 2kg:

– standard configuration;

• suspended mass m = 5kg:

– standard configuration

– tight lateral screws;

– tight upper screws;

– loose upper screws;

New fiber results

I performed loss angle measurements of a recently pulled fiber, suspended with a
mass of m = 5kg, to avoid aging effects.

Loss angle results, with a standard screw regulation, are shown in fig. 5.16; while
results with a tight upper-screw regulation are shown in fig. 5.17. For both cases,
the x-direction data are in blue and the z-direction data in red. Note that the x
and z-direction measured loss angles have the same order of magnitude, implying a
similar loss mechanism for the two degrees of freedom. Consider that the z-direction
is the same of the fiber pendulum mode: so, in general, the loss angle measured in
that direction is higher than the one measured along x-axis.

In fig. 5.18 I compare the two different screw regulation results on loss angles.
I choose to show, for each regulation, the best measured loss angle between x and
z-directions, since in Virgo+ measurements, I was not able to distinguish between
the two degrees of freedom. In that figure, it is evident the tight-screw-regulation
measured loss angles have greater and more regular, with respect to frequency, val-
ues than the standard-screw-regulation ones, at least from the second violin order.
Probably with a tight screw regulation the clamping system stiffens, but loss angle
performances worse.

Measurements performed on the new fiber have loss angles values comparable with
Virgo+ ones: that is true for all four monolithic payloads. In fig. 5.19 I show Virgo+
North-Input quality factor results (in blue) with new-single-fiber results: in magenta
there are standard-screw-regulation data and in green the tight-screw-regulation ones.
In that plot, for single-fiber data, I used the best measured quality factors between
the two degrees of freedom. In fig. 5.20 I superposed the West-End data with the
new-single-fiber measurements.

Aged fiber results

To see aging effects on fused silica fibers I performed loss angle measurements on an
aged single fiber.

I compared the x-direction violin mode quality factor results obtained attaching
to the fiber a mass m = 2kg and a mass m = 5kg. Since the violin dilution factor Dv

n



178 CHAPTER 5. FUSED SILICA FIBERS

Figure 5.16: new fiber loss angle measurements, with a standard screw regulation: in
blue the x-direction data, in red the z-direction ones.

Figure 5.17: new fiber loss angle measurements, with a tight upper screw regulation:
in blue the x-direction data, in red the z-direction ones.
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Figure 5.18: comparison between the two different upper screw regulations: in blue
the Virgo+ standard regulation, in red the tight one. Note that in this comparison
I report the best measured loss angles, not doing any distinction among x and z
degrees of freedom.

Figure 5.19: comparison between Virgo+ North-Input quality factor results (in blue)
with new-single-fiber results: in magenta there are standard-screw-regulation data
and in green the tight-screw-regulation ones.
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Figure 5.20: comparison between Virgo+ West-End quality factor results (in blue)
with new-single-fiber results (in red): single-fiber measurements are performed with
a standard screw regulation.

depends on the applied tension (see eq. 5.4), I expect that loss angles φ2 measured
with the mass of m2 = 2kg is greater than loss angles φ5 measured with a fiber tension
of m5 = 5kg:

φ2

φ5

=

√
m5g

m2g
=

√
5

2
∼ 1.6

Actually this is a very low difference to be measured: in fact, from my exper-
imental results, this is not visible (see fig. 5.21); on the contrary, it appears that
loss angles φ2 are lower than φ5. Probably, during the tension change, I changed
also the screw configuration of the lower fiber clamp steel box modifying loss angle
performances.

So, I tried to change the screw regulation of the upper clamp to see how loss
angles are influenced by. Results are reported in figs. 5.22 and 5.23.

It is evident that, changing a bit the screw regulation, loss angles change a lot, not
only in absolute value, but also in frequency behavior. Moreover, it is not clea what
is the screw configuration which minimize the loss angle values in both directions.

That is a crucial point: the scattered violin quality factors measured in Virgo+
monolithic suspensions depend on the upper-clamp-screw regulation.

I superposed the Virgo+ quality factor results and the single fiber results obtained
with the standard screw regulation: in fig. 5.24 I show the North-End data. Even if
the two data samples have the same trend, values of the single fiber quality factors are
lower than North-End quality factors; the same happens for all the four monolithic
payloads.
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Figure 5.21: comparison between loss angles measured with a suspended mass of
m5 = 5kg (in blue) and loss angles measured with a suspended mass of m2 = 2kg (in
red).

Figure 5.22: comparison between different upper-clamp-screw regulations: measure-
ments of x-direction violin mode: “standard” means a screw regulation similar to
Virgo+ one, “tight” means a screw regulation tighter than Virgo+ one and “loose”
means a screw regulation looser than Virgo+ one.
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Figure 5.23: comparison between different upper-clamp-screw regulations: measure-
ments of z-direction violin mode.

Figure 5.24: comparison between North-End monolithic suspension quality factors
(blue circles) and aged single fiber suspension (red triangles).
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Figure 5.25: comparison between new fiber loss angles (in blue) and aged fiber ones
(in red): x degree of freedom data are reported with circles, while the z ones are
reported with squares.

That can be explained as an aging of the fiber used for the tests in Perugia: that
fiber was pulled in 2008 and then kept in a clean room, under vacuum. Although the
fiber was not in a polluted environment, the aging has a relevant effect on loss angle
performances.

5.3.3 Single fiber conclusions

Measurements performed on the new fiber have better loss angle values with respect
to the aged fiber ones: at least one order of magnitude is gained. This is evident in
fig. 5.25, where I show the comparison between new fiber loss angles (in blue) and
aged fiber ones (in red), both with a standard screw regulation.

Furthermore, note that the two fibers has slightly different violin resonance fre-
quencies, even if I have used the same suspended mass of m = 5kg, since their length
is a bit different. The aged fiber first violin is at a frequency faged = 438.36Hz,
which corresponds to a fiber length of Laged = 0.68m; while the new fiber first
violin is at a frequency fnew = 458.50Hz, which corresponds to a fiber length of
Lnew = 0.65m. Consider that, for Virgo+, North-Input first violin mode is at a fre-
quency fNI = 443.34Hz, which is consistent with a fiber length of LNI = 0.67m: in
fact, nominally each Virgo+ fiber has a total length of L = 0.70m, including also the
two bending lengths.

With this measurement campaign I proved that Virgo+ violin mode quality factors
are due to an additional loss mechanism in the upper clamp system. Simply fastening



184 CHAPTER 5. FUSED SILICA FIBERS

or loosening a screw of the steel box which contains the fused silica cone welded to
the fiber, it is possible to change loss angle values and their frequency dependence.

That implies a changing of fused silica clamping system for Advanced Virgo
project; the idea is to use an upper clamp similar to lower clamps, the anchors,
to avoid any screw regulation. The design of the new clamping system is currently
under evaluation, using both numerical simulation and measurements.

A table with all the single fiber quality factor results is reported in appendix D.
In that table errors are estimated with the standard deviation, since I have at least
three different measurements for each mode.
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Thermal noise curve estimation

To evaluate thermal noise in Virgo+ we have to take into account the suspension
contribution, which includes pendulum, vertical and violins modes, and the mirror
bulk one.

A theoretical model is necessary to understand which kinds of loss mechanisms
are going on in the physical system. For suspension thermal noise an analytical model
has been developed, while for bulk thermal noise a finite element model is required.

In this chapter I present the way to compute Virgo+ thermal noise for each com-
ponent. At first, I report the analytical model used to describe the mirror pendulum
mode [109]. Then, for the bulk analysis, the finite element model of Virgo+ mirror
is reported [149]. Finally I show the thermal noise upper limit estimation for Virgo+
interferometer.

6.1 Analysis procedure

The knowledge of mechanical resonance quality factors is not sufficient to evaluate
thermal noise affecting a physical system. In fact, a measured quality factor Qmeas is
the sum of several contributes as:

1

Qmeas

=
∑
i

1

Qi

where each Qi is the quality factor coming from the i-th mechanism loss. As, said in
chapter 3, there are many mechanism losses which have different frequency depen-
dence (consider just the difference between structural and viscous losses, see sec. 3.2).
Taking into account each mechanism damping is fundamental to a correct evaluation
of thermal noise.

A theoretical model could help the loss mechanism understanding: through a
comparison between experimental results and predicted values it is possible to have
hints on what is going on in the physical system.

The following steps are necessary to correctly estimate thermal noise of a generic
physical system:

1. measuring mechanical quality factors: it is much better to have an independent
estimation of quality factors for each part composing the physical system; in
that way couplings between parts are reduced;

185
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2. defining a theoretical model of the physical system, whether analytical or nu-
merical: it is important to fix as much physical and geometrical uncoupled
parameters as possible, to reduce variables in further analysis;

3. optimizing uncoupled parameters to fit measured frequencies and quality factors
(see fig. 6.1): this step is the most difficult, since it implies an “inverse problem”
solution to evaluate the coupled quality factors;

4. putting uncoupled quality factors in the equations of motion to solve them and
to find the impedence Z or the transfer function of the system to apply the
fluctuation-dissipation theorem (see sec. 3.1).

Figure 6.1: analysis procedure flowchart to optimize model parameters and fit exper-
imental results: starting from nominal parameter values, a numerical or analytical
model gives some output variables to be compared to measured ones; if the output
quantities differ from experimental results, new input parameters are taken.
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6.2 Suspension contribution

Pendulum and vertical thermal noise contributions are evaluated using a simple an-
alytical model, as explained in sec. 3.5.1 [109].

The last stage suspension system can be schematized as a branched combination
of three harmonic oscillators, as shown in fig. 6.2. Indices 1, 2, 3 are respectively
used for the marionette, the mirror and the reaction mass; x is the body position, M
is its mass, K is the wire elastic constant and β is its viscous coefficient.

Figure 6.2: schematization of Virgo+ branched system payload: indices 1, 2 and 3 are
respectively used for the marionette, the mirror and the reaction mass; x is the body
position, M is its mass, K is the wire elastic constant and β is its viscous coefficient.

For the pendulum mode, the equation of motion are:
ẍ1 + ω1

Q1
ẋ1 + µ12

ω2

Q2
(ẋ1 − ẋ2) + ω2

1x1 + µ21ω
2
2(x1 − x2)+

+µ31
ω3

Q3
(ẋ1 − ẋ3) + µ31ω

2
3(x1 − x3) = f1−f2−f3

M1

ẍ2 + ω2

Q2
(ẋ1 − ẋ2) + ω2

2(x1 − x2) = f2

M2

ẍ3 + ω3

Q3
(ẋ1 − ẋ3) + ω2

3(x1 − x3) = f3

M3

(6.1)

where µ12 = M2/M1 and µ13 = M3/M1 are the mass ratios, ωi is the i-th body
uncoupled resonance frequency, Qi is the i-th body uncoupled quality factor of the
mechanical resonance and fi is the stochastic uncoupled generalized force.

Taking the Fourier transform of this system, we can write:

D̂

 X̂1

X̂2

X̂3

 =

 (F̂1 − F̂2 − F̂3)/M1

F̂2/M2

F̂3/M3


where X̂i is the i-th body position Fourier transform, F̂i is the i-th body generalized
force Fourier transform and D̂ is the matrix:

D̂ =

 −ω2 +ω2
1 + µ12ω2

2 + µ13ω2
3 + iω

(
ω1
Q1

+ µ12
ω2
Q2

+ µ13
ω3
Q3

)
−µ12ω2

2 − iωµ12
ω2
Q2

µ13ω2
3 − iωµ13

ω3
Q3

−ω2
2 − iω

ω2
Q2

−ω + ω2
2 + iω ω2

Q2
0

−ω2
3 − iω

ω3
Q3

0 −ω + ω2
3 + iω ω3

Q3


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Diagonalizing the matrix D̂, i.e. decoupling degrees of freedom in equations of
motions eq. 6.1, it is possible to find the coupled quality factors, linked to normal
resonance modes of the system, which are measured quantities. The measured pen-
dulum quality factor is the combination of the three uncoupled quality factors of the
marionette, the reaction mass and the mirror, as [109]:

Qpendmeas = ω0M0

[
ω1M1

Q1

(
1−

ω2
0

ω2
3

)2

+
ω3M3

Q3

ω4
0

ω4
3

−
ω2M2

Q2

(
ω2

1ω
2
3 + ω4

0 − ω2
0(ω2

1 + ω2
3 + µ13ω2

3)

µ12ω2
2ω

2
3

)]−1

where ω0 is the coupled resonance frequency linked to the mirror pendulum mode
(in Virgo+ suspension ω0 = 2π 0.59Hz) and M0 is the pendulum effective mass. Note
that each Qi is the sum of structural and viscous contribution of the i-th uncoupled
body suspension wires.

To evaluate thermal noise, the D̂ matrix can be expressed in terms of the impe-
dence matrix Ẑ:

Ẑ

 X̂1

X̂2

X̂3

 =

 F̂1 − F̂2 − F̂3

F̂2

F̂3


where:

Ẑ =
1

iω

 M1D11 M1D12 M1D13

M2D21 M2D22 M2D23

M3D31 M3D32 M3D33


Once that matrix is found, the pendulum thermal noise is:

Spendx (ω) =
4kBT

ω2
Re
[
Ẑ−1

22 (ω)
]

(6.2)

where we consider only the inverse of the term Ẑ22 since the mirror is the main con-
tribution.

Vertical modes can be computed in a similar way, substituting conveniently
resonance frequencies and elastic constants in equations of motion. There are two
resonance frequencies for vertical modes, at ∼ 5.9Hz and at ∼ 14.8Hz. Their quality
factors are linked to uncoupled quality factors as:

Qvertmeas,0 = ω0M0

[
ω1M1

Q1

(
1−

ω2
0

ω2
3

)2

+
ω3M3

Q3

ω4
0

ω4
3

−
ω2M2

Q2

(
ω2

1ω
2
3 + ω4

0 − ω2
0(ω2

1 + ω2
3 + µ13ω2

3)

µ12ω2
2ω

2
3

)]−1

Qvertmeas,+ = ω+M+

ω1M1

Q1
+
ω2M2

Q2

(
ω2

+

ω2
+ − ω2

2

)2

+
ω3M3

Q3

(
ω2

+

ω2
+ − ω2

3

)2
−1

where ω0 = 2π 5.9Hz, ω+ = 2π14.8Hz and M0 and M+ are vertical mode effective
masses.

The steps described for pendulum mode, are still valid for vertical ones. So,
thermal noise vertical contribution is (see eq. 3.52):

SvertX (ω) = θ0
4kBT

ω2
Re
[
Ẑ−1

22 (ω)
]

(6.3)
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where θ0 ∼ 0.24µrad (see sec. 3.5.1).

Violin mode thermal noise contribution is computed through the normal mode
expansion:

SviolX (ω) = N
4kBT

ω

∑
n

φnω
2
n

mn [(ω2 − ω2
n)2 + φ2

nω
4
n]

(6.4)

where N is the number of suspending wires, mn is the effective mass of the n-th order
violin (see eq. 3.58), φn is the loss angle (eq. 3.56), and ωn is the violin resonance
frequency (eq. 3.54).

The overall suspension thermal noise is the sum of the three contributions ex-
pressed in eq. 6.2, 6.3 and 6.4; expressing thermal noise in terms of the strain
amplitude of gravitational waves h(ω), we have to divide for the interferometer arm
length Larm = 3km:

hTN(ω) =
2

Larm

√
SpendX + SvertX + SviolX (6.5)

In fig. 6.3 I report the strain amplitude due to thermal noise contribution, esti-
mated with eq. 6.5, with respect to frequency [150].

Figure 6.3: Virgo+ suspension thermal noise estimation in terms of strain gravita-
tional wave signal amplitude with respect to frequency: pendulum mode, vertical
modes and violin modes are considered.
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6.3 Mirror bulk contribution

Bulk thermal noise contribution is evaluated using a finite element model, computed
with an Ansys script [149]. In Ansys simulation each mirror is composed by different
parts:

• the bulk the main part of the mirror, composed by a fused silica cylinder;

• the coating, which is composed by a two-material multilayer: Ta5O2 with a
high refractive index, and SiO2 with a low refractive index; the two-material
alternation allows us to achieve the total reflectivity necessary for Virgo+ in-
terferometer;

• the ears, which are fused silica components, attached through silicate bonding
to the bulk (see sec. 4.1.2);

• the anchors, which are of the same material of bulk and fibers, glued through
water glass to the ears (see sec. 4.1.2).

Since input and end mirrors have different geometrical sizes, we developed two
models (see fig. 6.4); mirror nominal parameters are reported in tab. 6.1.

(a) Input mirror model (b) End mirror model

Figure 6.4: finite element models of input and end mirrors: the meshing used for
numerical computation is well visible; in grey the mirror coating layers are shown.

To compute mirror thermal noise given by structural losses, we use the Levin’s
approach (eq. 3.50), supposing frequency independent loss angles:

SstructX (ω) =
8kBT

ωF 2
0

Utotφ
struct
tot =

8kBT

ωF 2
0

Utot

(∑
i

φi
Ui
Utot

)
struct

(6.6)

where F0 is the oscillating force amplitude, Utot is the maximum strain energy stored
in all the system, Ui is the maximum strain energy stored in the i-th part of the
mirror and φi is the corresponding loss angle.

The finite element model allows us to compute easily the total structural loss
angle, i.e. the term in the brackets of eq. 6.6; in particular we can evaluate the strain



6.3. MIRROR BULK CONTRIBUTION 191

INPUT END

Bulk
thickness (m) 0.100 0.100
diameter (m) 0.350 0.350

flat height (m) 0.050 0.100
density (kg/m3) 2200

Young’s modulus (GPa) 72.3
Poisson ratio 0.17

Coating
diameter (m) 0.200 0.330

Ta5S2 thickness (µm) 0.956 2.393
SiO2 thickness (µm) 2.388 4.1086
Ta5S2 loss angle 5 · 10−5

SiO2 loss angle 2 · 10−4

Ta5S2 density (kg/m3) 8200
SiO2 density (kg/m3) 2200

Ta5S2 Young’s modulus (GPa) 140
SiO2 Young’s modulus (GPa) 72.7

Ta5S2 Poisson ratio 0.26
SiO2 Poisson ratio 0.167

Silicate bonding
thickness (nm) 60

area (cm2) 2 · 18
density (kg/m3) 2200

Young’s modulus (GPa) 72.9
Poisson ratio 0.17

loss angle 0.1

Water glass
area (cm2) 4 · 3

density (kg/m3) 2200
Young’s modulus (GPa) 72.9

Poisson ratio 0.17
loss angle · thickness (µm) 0.5

Table 6.1: Input and End mirrors nominal geometrical and physical parameters used
in finite element simulation: I distinguish between bulk, coating, silicate bonding and
water glass material.
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energy per part and per layer dUi/ds, so that the total loss angle can be re-written
as:

φstructi =
si
Utot

dUi
ds

φi (6.7)

where si is the layer thickness. So, knowing the layer thickness and loss angle from
measurements and computing the strain energy from the finite element model, we
can apply that expression to evaluate total loss angles φstructi for the Virgo+ coatings,
silicate bonding and water glass.

In tab. 6.1, I report the typical coating layer thickness [151], and the typical
silicate bonding thickness [152]. On the contrary, there is no evidence about the
water glass typical thickness: so, we decide to vary the product φWG · sWG, until the
measured quality factors are fitted. We find that the value φWG · sWG = 0.5µm well
fits the experimental results (see fig. 6.5).

Figure 6.5: West-Input measured quality factors of the first five internal modes (in
red) compared with upper limits set by different loss mechanisms: water glass (in
blue), mirror coating (in green) and silicate bonding (in orange).

In fig. 6.5 I report the comparison between West-Input measured quality factors
and upper limit quality factor computed for different loss mechanisms (coatings,
silicate bonding and water glass with φWG · sWG = 0.5µm). For the butterfly modes
there is a good agreement between measured and simulated data, while it is not true
for the drum mode. The same behavior it is found for all monolithic payloads.

Probably, drum modes are affected by further loss mechanisms that lower quality
factors. In fact:

• for the North-Input, there is a coupling between the drum mode and the XIII
order violin mode (see sec. 4.6.3): that coupling lowers drum mode quality
factor, but not affects the off-resonance thermal noise;
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• for the West-Input, the drum mode has the lowest quality factor among bulk
modes (Qdrum

WI ≈ 40000): we consider that value is given by a viscous damping,
even if its nature is not sure. In fact, considering the same viscous process
acting on overall drum modes of the West-Input payload, we can derive the
viscous coefficient β from eq. 3.9:

QD1
visc =

ωD1mD1

β
(6.8)

where ωD1 is the first drum resonance frequency and mD1 is its effective mass.
Then, we compute the limit quality factor QD2

visc of the second drum mode using
the same viscous coefficient, finding a quality factor smaller than the measured
one (QD2

visc = 42000 � 192000 = QD2
meas). So, even if there is no clue of its

viscous nature, we take the worst possible case, considering the first drum
mode as viscous;

• for the End mirrors, drum modes have low quality factor, but not so low to be
explained in term of viscous loss mechanism.

To take into account possible viscous effects on drum modes in thermal noise
estimation, we sum to the Levin formula (eq. 6.6) a term given by the normal
expansion contribution of the West-Input payload, which is the dominant one:

SviscX (ω) =
4kBT

ω

φvisc
mD1ω2

D1

(6.9)

where mD1 is the first drum effective mass, ωD1 is its frequency and φvisc is the drum
loss angle, depending on the measure quality factor as:

φvisc(ω) =
ω

ωD1

1

Qmeas
D1

(6.10)

Finally, the mirror thermal noise estimation is the sum of two contribution, struc-
tural (eq. 6.6) and viscous (eq. 6.9):

SbulkX (ω) = SstructX (φstruct) + SviscX (φvisc(ω))

The result of that computation is shown in fig. 6.6 with all thermal noise contri-
butions: the red solid line corresponds to suspension thermal noise, the black solid
line is the bulk contribution, while the green solid line is the quadratic sum of overall
terms, considering suspensions, structural and viscous mirror bulk modes.

6.4 Virgo+ thermal noise

The Virgo+ thermal noise estimation includes suspensions and bulk contributions,
considering both structural and viscous losses. Actually, it is not sure that the lower
measured quality factors are due to viscous losses: maybe there could be some mode
couplings which cause an energy leak at resonance without spoiling thermal noise in
off-resonance region. Anyway, we consider the worst possible case, that is done by
the viscous mechanism, to estimate thermal noise upper limit.
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Figure 6.6: Virgo+ thermal noise curve estimated from analytical and numerical
models: suspension contribution is the red solid line, the black solid line is the bulk
contribution, while the green solid line is the quadratic sum of overall terms, consid-
ering suspensions, structural and viscous losses of mirror bulk mode.

In fig. 6.7 I compare Virgo+ measured sensitivity curve (in black), with thermal
noise design curve (in red) and with thermal noise curve estimated from measurements
and models (in green). The design and the estimated thermal noise curves are very
close in the low frequency region; on the contrary they have different slope in the high
frequency region, due to the viscous contribution to the estimated curve. Anyway,
even in the worst possible case, the estimated curve is at least one order of magnitude
lower than the measured sensitivity curve.

In order to better compare estimated thermal noise curve to the measured sensitiv-
ity curve, we sum estimated thermal noise contribution to the Virgo+ noise budget
curve that is the quadratic sum of all noise sources (in that case, except thermal
noise) affecting the interferometer: there are both fundamental noises (as shot noise,
radiation pressure, seismic noise) and technical noises (as stray light, electronic noise,
control noise, frequency noise). In fig. 6.8 it is evident that thermal noise does not
explain the high noise level in Virgo+ sensitivity curve: in fact the noise budget is
lower of a factor 2 than the measured sensitivity curve in the low frequency region.
On the contrary at high frequency region the dominant noise source is the shot noise
and the noise budget justifies the measured sensitivity curve.
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Figure 6.7: comparison between Virgo+ sensitivity curve (in black), thermal noise
curve estimated by measurements and models (in green) and the design thermal noise
curve (in red).

Figure 6.8: comparison between Virgo+ sensitivity curve (in black), estimated ther-
mal noise (in red), noise budget without thermal noise (in blue) and noise budget
with estimated thermal noise curve (in pale blue).





Conclusion

Virgo+, the first upgrade of the gravitational wave interferometer Virgo, aimed to
improve the sensitivity curve of one order of magnitude in the frequency band between
10Hz and 300Hz, by reducing the thermal noise contribution.

That reduction is possible by replacing the last suspension stages of the test masses
(called payloads) with new monolithic suspensions. In the new system, fibers, clamps
and mirrors are made of a same material, which has a low intrinsic dissipation: fused
silica. Using that material to build the payload, energy losses due to internal friction
and damping processes are reduced.

However, as Virgo+ was operated, the sensitivity improvement turned out to
be smaller than the expected one (see fig. 2). Hence, an expensive campaign of
mechanical quality factor measurements, using the overall interferometer, started in
order to check if the sensitivity was limited by mechanical dissipations or by other
noise sources as, for example, the diffused light.

From quality factor measurements we can estimate thermal noise using an analyt-
ical or numerical model of the physical system and dissipative processes. Moreover,
for some resonances, we know the loss mechanisms and the regions where there is
the larger deformation during the vibrational motion. In that case, the knowledge
of quality factors allows us to identify further damping processes acting on a sys-
tem component and improve next payload designs, a mandatory target for Advanced
Virgo.

To study mechanical resonance quality factors, at first, it is necessary to identify
the fused silica fiber internal modes (as pendulum mode, vertical modes and violin
modes) and mirror bulk modes. In particular, in order to distinguish mirror bulk
modes from the violin ones that lie in the same frequency region, I studied the modal
frequency dependence with respect to temperature during the 3-months-long data-set
of VSR3, the third Virgo Scientific Run.

After the line identification, I performed mechanical quality factor measurements,
exciting payload resonances and then following their amplitude oscillation ring-down.
The quality factor results are reported in appendix C. From these measurements,
it is evident that the Q-values are one order of magnitude lower than expected.
Furthermore, there is a great dispersion between values of the same cathegory of
mode, which can vary as much as two orders of magnitude. As an example, for
mirror bulk modes, the highest (Qmax = 24 · 106) and the lowest (Qmin = 4 · 105)
values have been found in the same payload, West-Input Fabry-Perot mirror.

Since violin modes present the same behavior, further analysis was performed. In
fact studying violin and pendulum modes is useful to evaluate the intrinsic losses of
fused silica fibers; but violin mode study has the advantage to be extended over a
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large frequency band, allowing us to perform quality factor studies with respect to
frequency.

In order to point out the excess loss source, an experimental apparatus to measure
quality factors of a single-fiber suspension has been set up. In that configuration it
was possible to modify the applied tension and to change the regulation of the upper
clamp system, which is identical to the Virgo+ one. From the measurements it is
evident that changing even a bit the stress on the upper clamp, the quality factor
values and frequency dependence of violin modes significantly vary. That explains
the low values and the high dispersion of Virgo+ data. Moreover, the overall quality
factor of violin modes turns out to be worse than the nominal value for fused silica.
Thus, for Advanced Virgo, it was decided to modify the upper clamp system of the
new monolithic suspensions. The new upper clamp will not have any regulation screw
and probably it will be similar to the present lower clamp.

Finally, through quality factor data, a thermal noise estimation has been done.
The experimental results have been used to optimize simulation parameters and so
to understand the dissipative processes going on. From that computation, it follows
that, even if thermal noise is higher than expected, its contribution is not sufficient
to explain the measured sensitivity curve of Virgo+, which is at least a factor 3 above
estimates.

This result is evident in fig. 6.9, where the Virgo+ measured sensitivity curve
(in black) with the thermal noise curve estimated from measurements (in red) are
shown. In the same plot the noise budget curve (i.e. the sum of the projections of
the interferometer fundamental and technical noise sources) without thermal noise
(in blue) and with the thermal noise estimated from measurements (in pale blue) is
reported as reference.

Figure 6.9: comparison between the Virgo+ measured sensitivity curve (in black),
the estimated thermal noise curve (in red), the noise budget without thermal noise
contribution (in blue) and the noise budget with the estimated thermal noise curve
(in pale blue).



Conclusioni

Con Virgo+, il potenziamento dell’interferometro per onde gravitazionali Virgo, era
previsto un miglioramento della curva di sensibilità di un ordine di grandezza nella
banda di frequenze compresa tra 10Hz e 300Hz, grazie all’abbassamento del livello di
rumore termico. Questa riduzione è possibile sostituendo gli ultimi stadi di sospen-
sione delle masse di test (chiamati payload) con le nuove sospensioni monolitiche, in
cui i fili che sostengono lo specchio, gli attacchi e lo specchio stesso sono costituiti
di un unico materiale, intrinsicamente poco dissipativo: la silice fusa. Utilizzando
questo materiale per costruire il payload si riducono le perdite di energia dovute alle
frizioni interne e ai processi dissipativi.

Dopo aver montato le sospensioni monolitiche in Virgo+, è stato osservato un
miglioramento della curva di sensibilità minore di quello aspettato (fig. 1). Quindi
è iniziata una serie di misure sui fattori di merito delle risonanze interne delle so-
spensioni monolitiche, al fine di verificare se la sensibilità è limitata dalle dissipazioni
meccaniche o da altre forme di rumore, come ad esempio la luce diffusa.

Dalle misure dei fattori di merito è possibile stimare il rumore termico tramite
un modello teorico (sia esso analitico o numerico) del sistema fisico e dei processi
dissipativi in atto. Inoltre esistono alcuni modi di risonanza per cui sono ben noti
i meccanismi dissipativi presenti e le regioni dove si ha la maggiore deformazione
durante il modo di vibrazione. In questi casi, la conoscenza dei fattori di merito
permette di comprendere se un particolare componente del sistema è soggetto ad ul-
teriori fenomeni dissipativi, consentendo quindi di modificarne il disegno tecnico e la
sua realizzazione al fine di migliorarne le prestazioni. Quest’ultima fase è fondamen-
tale per evitare che le stesse problematiche siano presenti anche nelle sospensioni di
Advanced Virgo.

Per eseguire al meglio lo studio dei fattori di merito delle risonanze meccaniche,
per prima cosa è stato necessario riconoscere i modi propri delle fibre di silice fusa
(come il modo di pendolo, i modi verticali e i modi di violino) dai modi propri dello
specchio. In particolare, per distinguere i modi interni dello specchio dai modi di
violino che cadono nella stessa regione di frequenze, è stato necessario studiare come
variano le loro frequenze con la temperatura su un arco di tempo pari ai tre mesi
della terza presa dati scientifica di Virgo, VSR3.

Una volta identificate le risonanze interne, è stato possibile eseguire le misure dei
fattori di merito eccitando le singole risonanze e seguendo il decadimento esponenziale
della loro ampiezza nel tempo. Da queste misure è apparso evidente che i fattori di
merito misurati sono più bassi di almeno un ordine di grandezza rispetto a quelli
aspettati. Inoltre, è presente una dispersione dei valori dei fattori di merito per modi
dello stesso tipo, fino a due ordini di grandezza: ad esempio per i modi interni dello
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specchio il valore più alto (Qmax = 24 · 106) e quello più basso (Qmin = 4 · 105) sono
stati trovati nello stesso payload monolitico, il West-Input.

Lo stesso comportamento si osserva per i modi di violino, su cui ho portato avanti
delle ulteriori analisi. Lo studio dei violini, come del modo di pendolo, è utile per
comprendere le perdite a cui sono soggette le fibre di silice fusa; inoltre permette
di compiere analisi sulla dipendenza dei fattori di merito dalla frequenza, essendo
posizionati in una larga banda di frequenze.

Al fine di individuare la fonte delle perdite in eccesso, ho messo a punto un appa-
rato per misurare i fattori di merito di una sola fibra di silice fusa sospesa. In questa
configurazione è stato possibile variare la regolazione del sistema di ancoraggio su-
periore della fibra, identico al sistema montato in Virgo+, e modificare la tensione a
cui la fibra è sottoposta. Da queste misure è risultato che variando di poco la rego-
lazione delle viti del sistema di ancoraggio superiore della fibra, è possibile cambiare
significativamente il valore e l’andamento in frequenza dei fattori di merito dei modi
di violino. Questo spiega sia il basso valore, sia l’alta dispersione dei fattori di merito
misurati in Virgo+. In conseguenza di ciò, è stato decisa una modifica del sistema di
ancoraggio in vista della nuova sospensione monolitica di Advanced Virgo, al fine di
non abbassare le prestazioni delle fibre di silice fusa. Il nuovo sistema di ancoraggio
superiore sarà privo di viti di regolazione.

Infine tramite le misure dei fattori di merito effettuate, è stato possibile stimare la
curva di rumore termico in Virgo+, definendo un modello analitico (per le sospensioni)
ed uno numerico (per lo specchio) del payload monolitico. I dati sperimentali sono
stati utilizzati per ottimizzare i parametri inseriti nelle simulazioni e cos̀ı risalire ai
meccanismi di dissipazione presenti nel sistema. Ne è risultato che il rumore termico
stimato, seppure più elevato di quello previsto nel progetto di Virgo+, non è in grado
di giustificare l’alto livello della curva di sensibilità misurata, almeno un fattore 3
sopra le stime. Questo è evidente in fig. 6.9 dove confronto la curva di sensibilità
misurata in Virgo+ (in nero) con la curva di rumore termico stimata tramite le misure
effettuate sui fattori di merito (in rosso). Nel grafico sono riportate anche le curve
del noise budget (ovvero la somma quadratica delle proiezioni dei rumori presenti
in Virgo+, sia quelli fondamentali, sia quelli di natura tecnica) senza contributo del
rumore termico (in blu) e con il contributo di rumore termico stimato dalle misure
(in azzurro).



Appendix A

Anelasticity models

We examine three models of anelasticity in solids. None of them gives a full description of
a real material behavior, but neverthless they are a useful approximation [84, 85]:

(a) Kelvin Voigt (b) Maxwell (c) Standard Anelastic Solid

Figure A.1: schemes of the solid models describing the different dissipation behaviors.

In the following descriptions, we link macroscopic variables to their microscopic coun-
terparts: the spring constant k is linked to the Young’s modulus E, the displacement x to
the strain ε and the applied force F to the stress σ.

Kelvin-Voigt solid Suppose to take a lossless spring, done of a material with Young’s
modulus E and to apply a sudden constant stress σ. If there is no dissipation, the
strain reaches “immediately” the Hooke law value ε0 = σ/E. But, if there is a viscous
dissipation within the body, it could be described with a dashpot in parallel to the
spring (see fig. A.1(a)): the dashpot causes a lag in the strain ε, which exhibits an
exponential approach to the Hooke law value with a decay time τε. This relaxation
is strictly correlated to the dissipation process.

If the dashpot is described by a viscous constant β:

β = τεE

we can write the constitutive equation for such a material as the sum of two stress
contributions σS and σD, coming from the spring and the dashpot respectively:

σ = σS + σD = Eε+ τεEε̇ (A.1)

This is a good description for materials like cork, but it is not suitable for metals.
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It is important not to confuse the relaxation time τε with the characteristic decay
time τ0 defined for a harmonic damped oscillator with equation of motion mẍ+ m

τ0
ẋ+

mω2
0x = f . To find the relation between τε and τ0 we compare this equation with eq.

A.1; in particular we are interested in the term in ẋ, which is the counterpart of the
term in ε̇:

m

τ0
ẋ→ τεEε̇

Considering that ε = x/l0, we have ε̇ = ẋ/l0; then, remembering that the stress is a
force per unit area, we obtain:

m

τ0
=
S

l0
Eτε = mω2

0τε ⇒ τ0 =
1

ω2
0τε

The time τε comes out from the relaxation processes acting in a real solid. Since a
potential barrier should be exceeded to reach the new equilibrium condition, these
processes are not instantaneous.

Maxwell solid Consider a lossless spring and modify suddenly its length, through a con-
stant strain: that means we are applying an instantaneous force. In that case, the
corresponding mechanical model is a spring arranged in series with a dashpot (see
fig. A.1(b)). The equation for such a material is the sum of two strain contributions
ε̇S for the spring and ε̇D for the dashpot:

ε̇ = ε̇S + ε̇D =
σ̇

E
+

σ

τσE

where we used the relation σD = τσEε̇ for the dashpot, with the relaxation time τσ
appearing in the stress.

This equation shows that, for a constant strain, stress decays exponentially. On the
other hand, for a constant stress, it predicts a linear increasing of the strain, which
is a very wrong description for crystalline solids.

Standard Anelastic Solid A large number of materials show both a relaxation time τσ
for the stress and a relaxation time τε for the strain. The mechanical model is a
lossless spring with Young’s modulus E in parallel with a Maxwell solid: the dashpot
is described with its viscous coefficient β and the in-series spring with a Young’s
modulus ∆E (see fig. A.1(c)). Then, the stress and the strain are related as:

∆E

β
σ + σ̇ =

E∆E

β
ε+ (E + ∆E)ε̇

For a constant strain ε0, stress decays exponentially from its initial value σ0 to the
equilibrium Hooke value Eε0:

σ(t) = Eε0 + (σ0 − Eε0)e−t/τσ

where τσ = β
∆E . Analogously, for a constant stress σ0, strain decays exponentially

from its initial value ε0 to the Hooke value σ0/E:

ε(t) =
σ0

E
+ (ε0 −

σ0

E
)e−t/τε

where τε = E+∆E
E∆E β.
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It can be shown with a bit of algebra that the constitutive law is:

σ + τσσ̇ = Er(ε+ τεε̇)

where Er ≡ E is called relaxed Young’s modulus, while the unrelaxed Young’s mod-
ulus is Eu = E + ∆E. In the frequency domain we obtain:

σ(ω)(1 + iωτσ) = Er(1 + iωτε)ε(ω)

From this equation it is possible to derive the associated loss angle, using the expres-
sion of the complex Young’s modulus (eq. 3.11):

E(ω) = Er
1 + iωτε
1 + iωτσ

Since the loss angle is the phase of the complex Young’s modulus φ(ω) = Im[E]/Re[E]:

φ(ω) = ∆
ωτ̄

1 + ω2τ̄2
(A.2)

where:

τ̄ =
√
τστε

∆ =
τε − τσ√
τστε

(A.3)

It is easy to see that φ ∝ ω for ωτ̄ � 1 and φ ∝ ω−1 for ωτ̄ � 1. The loss angle
has its maximum φmax = ∆/2 at ω = τ̄−1. This is called Debye’s peak (see fig.
A.2). This model fits with those dissipative processes which are characterized by
two parameters, as two time constants: it gives a correct description for most of the
practical cases. Anyway, it can be generalized with more Maxwell units, involving
three or more parameters.

Figure A.2: loss angle Debye’s peak with respect to frequency.





Appendix B

The flexural equation of a thin
beam

Consider a thin beam of length L, as shown in fig. B.1. The x-axis is the vertical
dirction, while the y-axis is the horizontal. When we transversally apply a force F ,
the beam deflects of a quantity δ.

The equation of motion describing the horizontal wire displacement y from the
vertical position along the x-axis is [83]:

EI
d4y

dx4
− T d

2y

dx2
= ρL

d2y

dt2
(B.1)

where E is the Young’s modulus, I is the cross section moment, T is the tension in
the beam and ρL is the linear mass density of the beam.

Figure B.1: scheme of the deformation of a fibre once it is pulled apart by a force F (t);
the pendulum mass is supposed pointlike. The pendulum swings with an effective
length smaller than the real length L by the amount λ.

The general solution is:

y(x) = Ae−kex +Be−ke(L−x) + Cx+D (B.2)
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where A, B, C and D are four constant to be determined from the boundary con-
ditions; ke is the flexural stiffness which is the inverse of the bending point, i.e. the
characteristic elastic distance over which the wire bends:

ke =
1

λ
=

√
T
EI

(B.3)

In the static case, as boundary conditions, we can impose that the upper extremity
is clamped and that the torque is zero at the free end:

y(0) = 0

y′(0) = 0

y(L) = δ

y′′(L) = 0

obtaining:

A+Be−keL +D = 0

−Ake +Bkee
−keL + C = 0

Ae−keL +B + CL+D = δ

Ak2
ee
−keL +Bk2

e = 0

Since keL� 1 we can approximate:

A+D = 0

−Ake + C = 0

B + CL+D = δ

B = 0

so, eq. B.2 can be written as:

y(x) =
δe−kex

keL− 1
+

δkex

keL− 1
− δ

keL− 1

The stored elastic energy is [83]:

Vel =
1

2
EI

∫ L

0

(
d2y(x)

dx2

)2

dx

In that case we obtain:

Vel = −1

4
EI

δ2k3
e

(keL− 1)2

(
e−2keL−1

)
Since we can write the elastic energy in the form:

Vel =
1

2
kelδ

2

in the approximation keL� 1 the elastic constant kel is:

kel =
EIke
2L2

=

√
T EI
2L2

(B.4)



Appendix C

Virgo+ mechanical quality factors

I report the Quality factor measurements: in the tables there are the name of each
resonance, its frequency f , its decay time τ , the decay time error στ , the quality
factor Q, the quality factor error σQ and the relative error εrel.

NI
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

pendulum z 0.59 255000 25500 4.73 E+05 4.7 E+04 0.10
pendulum x 0.59 235000 23500 4.36 E+05 4.4 E+04 0.10

vertical y 5.972 8300 2000 1.56 E+05 3.7 E+04 0.24
roll tz 8.31 7500 790 1.96 E+05 2.1 E+04 0.11

vertical y 14.86 103.0 1.2 4.808 E+03 5.4 E+01 0.01
roll tz 20.07 85.2 1.2 5.372 E+03 7.6 E+01 0.01
I viol 443.34 17300 2000 2.41 E+07 2.9 E+06 0.12
I viol 452.6 10240 360 1.456 E+07 5.2 E+05 0.04
I viol 462.74 18200 300 2.640 E+07 4.3 E+05 0.02
I viol 463.89 14200 2500 2.07 E+07 3.7 E+06 0.18
II viol 884.84 9700 1000 2.69 E+07 2.8 E+06 0.11
II viol 904.54 4770 570 1.36 E+07 1.6 E+06 0.12
II viol 925.47 16730 490 4.86 E+07 1.4 E+06 0.03
II viol 927.61 6800 1400 1.97 E+07 4.2 E+06 0.21
III viol 1325.93 3100 370 1.29 E+07 1.5 E+06 0.12
III viol 1355.38 2570 47 1.094 E+07 2.0 E+05 0.02
III viol 1387.41 8630 380 3.76 E+07 1.7 E+06 0.04
III viol 1389.02 3880 690 1.69 E+07 3.0 E+06 0.18
IV viol 1766.29 3650 910 2.03 E+07 5.1 E+06 0.25
IV viol 1802.2 1530 96 8.66 E+06 5.5 E+05 0.06
IV viol 1845.97 2480 620 1.44 E+07 3.6 E+06 0.25
IV viol 1847.25 4200 970 2.44 E+07 5.6 E+06 0.23
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NI
mode f(Hz) τ̄(s) ετ (s) Q εQ εrel
V viol 2205.6 1470 55 1.019 E+07 3.8 E+05 0.04
V viol 2249.63 322 19 2.28 E+06 1.4 E+05 0.06
V viol 2305.85 1500 87 1.087 E+07 6.3 E+05 0.06
V viol 2309.07 633.0 9.5 4.592 E+06 6.9 E+04 0.02
VI viol 2644.3 1160 37 9.64 E+06 3.1 E+05 0.03
VI viol 2698.67 373.0 3.0 3.162 E+06 2.5 E+04 0.01
VI viol 2761.31 730 81 6.33 E+06 7.0 E+05 0.11
VI viol 2768.28 453.0 4.6 3.940 E+06 4.0 E+04 0.01
VII viol 3075.08 288 58 2.78 E+06 5.6 E+05 0.20
VII viol 3145.5 104.0 9.0 1.028 E+06 8.9 E+04 0.09
VII viol 3210 286.0 4.6 2.884 E+06 4.6 E+04 0.02
VII viol 3223.5 117.0 4.0 1.185 E+06 4.1 E+04 0.03
VIII viol 3510.57 41.0 1.7 4.52 E+05 1.9 E+04 0.04
VIII viol 3653.12 87.0 2.5 9.98 E+05 2.9 E+04 0.03
VIII viol 3670.41 103.0 5.5 1.188 E+06 6.3 E+04 0.05
IX viol 3930.72 16.0 0.6 1.976 E+05 7.5 E+03 0.04

butterfly × (0,2) bulk 3964.3 46.60 0.87 5.80 E+05 1.1 E+04 0.02
butterfly + (0,2) bulk 3996.67 1011 47 1.269 E+07 5.9 E+05 0.05

IX viol 4091.65 44.60 0.87 5.73 E+05 1.1 E+04 0.02
IX viol 4113.22 43.6 1.0 5.63 E+05 1.3 E+04 0.02
X viol 4350.64 12.00 0.31 1.640 E+05 4.2 E+03 0.03
X viol 4390.33 21.40 0.81 2.95 E+05 1.1 E+04 0.04
X viol 4433.46 11.400 0.058 1.5878 E+05 8.0 E+02 0.01
X viol 4545.41 63.30 0.12 9.039 E+05 1.6 E+03 0.00
XI viol 4751.29 6.9 0 1.03 E+05 0.0 E+00 0.00
XI viol 4954.41 24.0 1.5 3.74 E+05 2.4 E+04 0.06
XI viol 4955.5 24.0 1.5 3.74 E+05 2.4 E+04 0.06
XII viol 5253.57 7.60 0.35 1.254 E+05 5.8 E+03 0.05
XII viol 5321.75 11.60 0.29 1.939 E+05 4.8 E+03 0.02
XIII viol 5602.81 7.00 0.23 1.232 E+05 4.1 E+03 0.03

? 5666.04 616 12 1.097 E+07 2.1 E+05 0.02
XIII viol/drum (1,0) 5671.54 19.10 0.46 3.403 E+05 8.2 E+03 0.02

XIII viol 5674.3 8.40 0.26 1.497 E+05 4.7 E+03 0.03
XIII viol/drum (1,0) 5675.92 19.5 1.7 3.48 E+05 3.0 E+04 0.09

? 6623.24 11.80 0.31 2.455 E+05 6.4 E+03 0.03
? 7192.82 22.80 0.51 5.15 E+05 1.2 E+04 0.02

butterfly – (0,3) bulk 7641.47 23.0 3.9 5.52 E+05 9.3 E+04 0.17
butterfly | (0,3) bulk 7710.49 222 11 5.38 E+06 2.8 E+05 0.05

egg × bulk 7992.64 49.4 9.1 1.24 E+06 2.3 E+05 0.18
egg + bulk 8022 306 31 7.71 E+06 7.7 E+05 0.10
ears – bulk 8926.14 58.5 5.9 1.64 E+06 1.6 E+05 0.10
ears | bulk 8984.7 91.1 9.1 2.57 E+06 2.6 E+05 0.10
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NI
mode f(Hz) τ̄(s) ετ (s) Q εQ εrel

drum (1,1) bulk 10191 24.9 2.5 7.98 E+05 8.0 E+04 0.10
drum (1,1) bulk 10323 18.3 1.8 5.93 E+05 5.9 E+04 0.10

butterfly (4,0) bulk 11367 13.2 1.3 4.72 E+05 4.7 E+04 0.10
drum (2,1) bulk 14524 < 0.5 < 2 E+04
drum (2,1) bulk 14684 < 0.5 < 2 E+04

butterfly (5,0) bulk 15066 < 0.5 < 2 E+04
butterfly (5,0) bulk 15223 4.88 0.49 2.34 E+05 2.3 E+04 0.10

drum (0,2) bulk 15673 4.14 4.1 2.04 E+05 2.0 E+04 0.10
cloverleaf 15791 1.65 0.17 8.21 E+04 8.2 E+03 0.10
cloverleaf 15898 < 0.5 < 2 E+04

? 18189 2.76 0.28 1.57 E+05 1.6 E+04 0.10
? 18250 0.700 0.070 4.03 E+04 4.0 E+03 0.10
? 18551 7.95 0.80 4.63 E+05 4.6 E+04 0.10
? 18741 1.82 0.18 1.07 E+05 1.1 E+04 0.10
? 18793 4.75 0.48 2.80 E+05 2.8 E+04 0.10
? 18905 6.08 0.61 3.61 E+05 3.6 E+04 0.10
? 20564 0.640 0.064 4.13 E+04 4.1 E+03 0.10
? 20598 0.620 0.062 3.98 E+04 4.0 E+03 0.10
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WI
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

pendulum z 0.59 574000 57000 1.06 E+06 1.1 E+05 0.10
pendulum x 0.59 681000 68000 1.26 E+06 1.3 E+05 0.10

vertical y 5.91 1570 160 2.91 E+04 2.9 E+03 0.10
roll tz 8.21 16300 1600 4.20 E+05 4.2 E+04 0.10

vertical y 14.78 104.9 2.6 4.87 E+03 1.2 E+02 0.02
roll tz 20.04 103 11 6.47 E+03 7.0 E+02 0.11
I viol 452.01 26100 3400 3.71 E+07 4.8 E+06 0.13
I viol 458.71 11900 1500 1.71 E+07 2.1 E+06 0.12
I viol 459.73 8380 57 1.2103 E+07 8.2 E+04 0.01
I viol 460.92 47500 4500 6.88 E+07 6.6 E+06 0.10
II viol 904.64 8740 110 2.48 E+07 3.2 E+05 0.01
II viol 917.4 3820 140 1.101 E+07 4.0 E+05 0.04
II viol 919.79 3720 21 1.0749 E+07 6.0 E+04 0.01
II viol 921.57 17900 770 5.18 E+07 2.2 E+06 0.04
III viol 1352.57 5100 70 2.17 E+07 3.0 E+05 0.01
III viol 1374.13 2650 160 1.144 E+07 6.9 E+05 0.06
III viol 1377.29 2210 130 9.56 E+06 5.5 E+05 0.06
III viol 1379.93 10600 1400 4.58 E+07 6.1 E+06 0.13
IV viol 1801.36 2070 30 1.171 E+07 1.7 E+05 0.01
IV viol 1826.42 705 48 4.05 E+06 2.7 E+05 0.07
IV viol 1836.15 823.0 8.5 4.747 E+06 4.9 E+04 0.01
IV viol 1838.18 4000 2100 2.3 E+07 1.2 E+07 0.52
V viol 2250.93 790 20 5.59 E+06 1.4 E+05 0.03
V viol 2285.28 460 190 3.3 E+06 1.4 E+06 0.41
V viol 2290.93 340 17 2.45 E+06 1.2 E+05 0.05
V viol 2294.1 590 10 4.252 E+06 7.2 E+04 0.02
VI viol 2703.63 211.0 6.4 1.792 E+06 5.4 E+04 0.03
VI viol 2737.05 294 17 2.53 E+06 1.5 E+05 0.06
VI viol 2741.01 70.50 0.74 6.071 E+05 6.3 E+03 0.01
VI viol 2749.94 306.0 8.1 2.644 E+06 7.0 E+04 0.03
VII viol 3146.58 280 86 2.77 E+06 8.5 E+05 0.31
VII viol 3187 42.5 1.2 4.26 E+05 1.2 E+04 0.03
VII viol 3193.3 87.6 1.9 8.79 E+05 1.9 E+04 0.02
VII viol 3200.59 92.0 1.3 9.25 E+05 1.3 E+04 0.01
VIII viol 3585.2 100.0 9.0 1.13 E+06 1.0 E+05 0.09
VIII viol 3634.08 13.90 0.26 1.587 E+05 3.0 E+03 0.02
VIII viol 3642.51 12.90 0.93 1.48 E+05 1.1 E+04 0.07
VIII viol 3647.71 36.80 0.60 4.217 E+05 6.9 E+03 0.02

butterfly × (0,2) bulk 3939.45 1290 31 1.597 E+07 3.8 E+05 0.02
butterfly + (0,2) bulk 3971.54 1960 32 2.445 E+07 4.0 E+05 0.02
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WI
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

IX viol 4018.17 6.90 0.70 8.71 E+04 8.7 E+03 0.10
IX viol 4077.31 11.30 0.47 1.447 E+05 6.1 E+03 0.04
IX viol 4083.6 81 41 1.04 E+06 5.2 E+05 0.51
IX viol 4088.33 82.5 1.8 1.060 E+06 2.3 E+04 0.02
X viol 4502.28 17.30 0.67 2.447 E+05 9.4 E+03 0.04
X viol 4503.05 95 49 1.35 E+06 7.0 E+05 0.52
X viol 4513.19 95 44 1.35 E+06 6.3 E+05 0.47
X viol 4519.18 96.2 4.5 1.366 E+06 6.4 E+04 0.05
XI viol 4868.26 14.40 0.32 2.202 E+05 4.9 E+03 0.02
XI viol 4927.66 121 58 1.87 E+06 8.9 E+05 0.48
XI viol 4929.88 138.0 9.9 2.14 E+06 1.5 E+05 0.07
XI viol 4930.39 138 10 2.14 E+06 1.6 E+05 0.07
XII viol 5295.92 9.30 0.39 1.547 E+05 6.5 E+03 0.04
XII viol 5307.64 32.0 5.5 5.34 E+05 9.1 E+04 0.17
XII viol 5315.45 23.7 4.3 3.96 E+05 7.1 E+04 0.18
XIII viol 5612.7 15.50 0.95 2.73 E+05 1.7 E+04 0.06

? 5630.22 878.0 4.2 1.5530 E+07 7.5 E+04 0.00
? 5631.69 1120 160 1.98 E+07 2.8 E+06 0.14
? 5638.65 352.0 3.6 6.235 E+06 6.4 E+04 0.01

drum (1,0) bulk 5642.5 1.73 0.17 3.07 E+04 3.1 E+03 0.10
XIII viol 5651.6 32 15 5.6 E+05 2.6 E+05 0.47
XIII viol 5659.7 33.8 1.8 6.01 E+05 3.3 E+04 0.05
XIII viol 5679.78 175 97 3.1 E+06 1.7 E+06 0.55
XIV viol 5955.5 4.330 0.035 8.101 E+04 6.6 E+02 0.01
XIV viol 6001.78 28.1 1.5 5.30 E+05 2.7 E+04 0.05
XV viol 6307.68 4.10 0.41 8.12 E+04 8.1 E+03 0.10
XV viol 6349.11 9.71 0.44 1.94 E+05 8.8 E+03 0.05
XV viol 6379.98 28.40 0.40 5.69 E+05 8.1 E+03 0.01
XVI viol 6751.91 7.97 0.62 1.69 E+05 1.3 E+04 0.08

butterfly – (3,0) bulk 7605.68 80.7 5.2 1.93 E+06 1.2 E+05 0.06
? 7613.4 16.90 0.64 4.04 E+05 1.5 E+04 0.04

butterfly | (3,0) bulk 7673.81 1020 400 2.46 E+07 9.7 E+06 0.40
egg × bulk 7999.55 155 48 3.9 E+06 1.2 E+06 0.31
egg + bulk 8028.91 4500 2400 1.15 E+08 6.2 E+07 0.54

? 8492.6 45.4 8.4 1.21 E+06 2.2 E+05 0.19
? 8934.07 98 11 2.75 E+06 3.0 E+05 0.11

ears – bulk 8944.52 24.8 1.1 6.97 E+05 3.2 E+04 0.05
ears | bulk 8992.26 250.0 3.5 7.06 E+06 1.0 E+05 0.01

? 9231.75 39 12 1.12 E+06 3.6 E+05 0.32
? 9385.19 48.9 7.2 1.44 E+06 2.1 E+05 0.15
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WI
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

drum (1,1) bulk 10165 49.0 4.9 1.57 E+06 1.6 E+05 0.10
drum (1,1) bulk 10335 55.2 5.5 1.79 E+06 1.8 E+05 0.10

butterfly (4,0) bulk 11328 49.3 4.9 1.76 E+06 1.8 E+05 0.10
butterfly (4,0) bulk 11442 114 11 4.12 E+06 4.1 E+05 0.10

drum (2,1) bulk 14362 < 0.5 < 2 E+04
drum (2,1) bulk 14511 4.68 0.47 2.13 E+05 2.1 E+04 0.10

? 15007 30.9 3.1 1.46 E+06 1.5 E+05 0.10
butterfly (5,0) bulk 15056 < 0.5 < 2 E+04
butterfly (5,0) bulk 15178 3.08 0.31 1.47 E+05 1.5 E+04 0.10

drum (0,2) bulk 15659 3.90 0.39 1.92 E+05 1.9 E+04 0.10
? 18084 3.42 0.34 1.94 E+05 1.9 E+04 0.10
? 18093 1.27 0.13 7.20 E+04 7.2 E+03 0.10
? 18418 15.8 1.6 9.13 E+05 9.1 E+04 0.10
? 18617 4.53 0.45 2.65 E+05 2.7 E+04 0.10
? 18825 6.30 0.63 3.73 E+05 3.7 E+04 0.10
? 18908 12.70 0.13 7.56 E+05 7.6 E+04 0.10
? 19006 23.1 2.3 1.38 E+06 1.4 E+05 0.10
? 19075 3.33 0.33 2.00 E+05 2.0 E+04 0.10
? 20743 8.66 0.87 5.64 E+05 5.6 E+04 0.10
? 21849 3.43 0.34 2.35 E+05 2.4 E+04 0.10
? 21857 18.9 0.19 1.30 E+06 1.3 E+05 0.10
? 22042 1.32 0.13 9.15 E+04 9.2 E+03 0.10
? 21849 3.43 0.34 2.35 E+05 2.4 E+04 0.10
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NE
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

pendulum z 0.59 105000 11000 1.95 E+05 2.0 E+04 0.10
pendulum x 0.59 169000 17000 3.13 E+05 3.1 E+04 0.10

vertical y 5.97 560.0 8.5 1.051 E+04 1.6 E+02 0.02
roll tz 80.9 610 130 1.55 E+05 3.3 E+04 0.21

vertical y 14.88 109 25 5.1 E+03 1.2 E+03 0.23
roll tz 20.03 101 14 6.36 E+03 8.7 E+02 0.14
I viol 447.82 42000 6900 5.91 E+07 9.7 E+06 0.16
I viol 458.25 35700 1800 5.14 E+07 2.5 E+06 0.05
I viol 460.78 28500 150 4.126 E+07 2.2 E+05 0.01
I viol 469.14 30600 2100 4.51 E+07 3.1 E+06 0.07
II viol 893.32 13400 420 3.76 E+07 1.2 E+06 0.03
II viol 913.62 14000 5400 4.0 E+07 1.6 E+07 0.39
II viol 918.95 11400 200 3.291 E+07 5.8 E+05 0.02
II viol 934.35 13800 380 4.05 E+07 1.1 E+06 0.03
III viol 1338.74 6510 150 2.738 E+07 6.4 E+05 0.02
III viol 1369.01 4820 150 2.073 E+07 6.6 E+05 0.03
III viol 1377.04 3920 65 1.696 E+07 2.8 E+05 0.02
III viol 1400.56 9370 750 4.12 E+07 3.3 E+06 0.08
IV viol 1783.49 2930 480 1.64 E+07 2.7 E+06 0.16
IV viol 1825.33 2290 53 1.313 E+07 3.0 E+05 0.02
IV viol 1834.43 1340 15 7.722 E+06 8.8 E+04 0.01
IV viol 1865.06 768 29 4.50 E+06 1.7 E+05 0.04
V viol 2225.58 1850 35 1.293 E+07 2.2 E+05 0.02
V viol 2272.39 888 40 6.34 E+06 2.8 E+05 0.04
V viol 2288.49 2360 61 1.697 E+07 4.4 E+05 0.03
V viol 2328.71 2890 120 2.114 E+07 8.7 E+05 0.04
VI viol 2669.23 768 35 6.44 E+06 3.0 E+05 0.05
VI viol 2723.44 38.5 7.2 3.29 E+05 6.2 E+04 0.19
VI viol 2744.27 319 64 2.75 E+06 5.5 E+05 0.20
VI viol 2788.03 316 70 2.77 E+06 6.1 E+05 0.22
VII viol 3104.35 282.0 9.5 2.750 E+06 9.2 E+04 0.03
VII viol 3168.7 107 17 1.07 E+06 1.7 E+05 0.16
VII viol 3192.62 120.0 6.4 1.204 E+06 6.4 E+04 0.05
VII viol 3236.73 185 66 1.88 E+06 6.7 E+05 0.36
VIII viol 3532.93 51.9 3.6 5.76 E+05 4.1 E+04 0.07
VIII viol 3556.83 193 19 2.16 E+06 2.2 E+05 0.10
VIII viol 3565.2 198 20 2.22 E+06 2.2 E+05 0.10
VIII viol 3567.72 220 22 2.47 E+06 2.5 E+05 0.10
VIII viol 3578.16 181 18 2.03 E+06 2.0 E+05 0.10

butterfly + (0,2) bulk 3980.03 710 25 8.87 E+06 3.1 E+05 0.04
butterfly × (0,2) bulk 4025.97 163 23 2.06 E+06 2.8 E+05 0.14

IX viol 4070.93 92 24 1.17 E+06 3.0 E+05 0.26
IX viol 4126.58 13.80 0.28 1.789 E+05 3.7 E+03 0.02
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NE
mode f(Hz) τ̄(s) στ (s) Q σQ εrel
X viol 4473.8 185.0 8.1 2.60 E+06 1.1 E+05 0.04
X viol 4484.23 188 19 2.65 E+06 2.7 E+05 0.10
X viol 4486.75 200 20 2.82 E+06 2.8 E+05 0.10
X viol 4495.11 206 21 2.91 E+06 2.9 E+05 0.10
X viol 4501.22 44.6 1.7 6.31 E+05 2.4 E+04 0.04
X viol 4551.46 18.90 0.49 2.702 E+05 7.1 E+03 0.03
XI viol 4779.48 132 13 1.98 E+06 2.0 E+05 0.10
XI viol 4789.91 166 17 2.50 E+06 2.5 E+05 0.10
XI viol 4800.8 211 21 3.18 E+06 3.2 E+05 0.10
XI viol 4813.55 274 27 4.14 E+06 4.1 E+05 0.10
XII viol 5237.73 166 17 2.73 E+06 2.7 E+05 0.10
XII viol 5246.09 168 17 2.77 E+06 2.8 E+05 0.10
XII viol 5248.62 180 18 2.97 E+06 3.0 E+05 0.10
XII viol 5255.05 191 19 3.15 E+06 3.1 E+05 0.10

drum (1,0) bulk 5706.87 172.0 2.5 3.084 E+06 4.5 E+04 0.01
XIII viol 6154.69 179 18 3.46 E+06 3.5 E+05 0.10
XIII viol 6165.12 162 16 3.14 E+06 3.1 E+05 0.10
XIII viol 6167.65 169 17 3.27 E+06 3.3 E+05 0.10
XIII viol 6176.01 168 17 3.26 E+06 3.3 E+05 0.10

butterfly | (3,0) bulk 7667.45 275 16 6.62 E+06 3.9 E+05 0.06
butterfly – (3,0) bulk 7761.16 96.80 0.64 2.360 E+06 1.6 E+04 0.01

egg + bulk 8031.89 456 16 1.151 E+07 4.1 E+05 0.04
egg × bulk 9077.96 188 16 5.36 E+06 4.4 E+05 0.08
ears | bulk 9746.66 420.0 6.4 1.286 E+07 1.9 E+05 0.02
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NE
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

drum (1,1) bulk 10274 348 35 1.12 E+07 1.1 E+06 0.10
drum (1,1) bulk 10331 26.4 2.6 8.58 E+05 8.6 E+04 0.10

radial bulk ? 10387 22.8 2.3 7.44 E+05 7.4 E+04 0.10
butterfly (4,0) bulk 11443 81.1 8.1 2.91 E+06 2.9 E+05 0.10
butterfly (4,0) bulk 11547 17.3 1.7 6.27 E+05 6.3 E+04 0.10

drum (2,1) bulk 14541 2.86 0.29 1.31 E+05 1.3 E+04 0.10
drum (2,1) bulk 14677 2.23 0.22 1.03 E+05 1.0 E+04 0.10

butterfly (5,0) bulk 15200 30.8 0.31 1.47 E+06 1.5 E+05 0.10
butterfly (5,0) bulk 15250 4.75 0.48 2.28 E+05 2.3 E+04 0.10

drum (0,2) bulk 15773 1.71 0.17 8.48 E+04 8.5 E+03 0.10
cloverleaf bulk 15888 5.87 0.59 2.93 E+05 2.9 E+04 0.10
cloverleaf bulk 15949 1.01 0.10 5.07 E+04 5.1 E+03 0.10

? 18460 1.52 0.15 8.79 E+04 8.8 E+03 0.10
? 18589 15.8 1.6 9.13 E+05 9.1 E+04 0.10
? 18608 2.36 0.24 1.38 E+05 1.4 E+04 0.10
? 18690 1.76 0.18 1.03 E+05 1.0 E+04 0.10
? 18787 3.05 0.31 1.80 E+05 1.8 E+04 0.10
? 18842 37.5 0.38 2.22 E+06 2.2 E+05 0.10
? 18883 0.76 0.08 4.53 E+04 4.5 E+03 0.10
? 20616 3.52 0.35 2.28 E+05 2.3 E+04 0.10
? 21818 35.1 3.5 2.41 E+06 2.4 E+05 0.10
? 21920 0.67 0.07 4.63 E+04 4.6 E+03 0.10
? 22280 116 12 8.15 E+06 8.2 E+05 0.10
? 22558 3.41 0.34 2.42 E+05 2,4 E+04 0.10
? 22692 2.18 0.21 1.56 E+05 1.6 E+04 0.10
? 22774 0.70 0.07 5.04 E+04 5.0 E+03 0.10
? 23051 3.13 0.31 2.27 E+05 2.3 E+04 0.10
? 23066 0.63 0.06 4.59 E+04 4.6 E+03 0.10
? 23312 1.42 0.14 1.04 E+05 1.0 E+04 0.10
? 23598 2.66 0.27 1.97 E+05 2.0 E+04 0.10
? 24965 0.77 0.08 6.06 E+04 6.1 E+03 0.10



216 APPENDIX C. VIRGO+ MECHANICAL QUALITY FACTORS

WE
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

pendulum z 0.59 717000 72000 1.33 E+06 1.3 E+05 0.10
pendulum x 0.59 377000 38000 6.99 E+05 7.0 E+04 0.10

vertical y 5.92 134 13 2.49 E+03 2.5 E+02 0.10
roll tz 8.01 810 180 2.04 E+04 4.4 E+03 0.22

vertical y 14.78 63.1 6.3 2.93 E+03 2.9 E+02 0.10
roll tz 20.06 80.1 8.0 5.05 E+03 5.1 E+02 0.10
I viol 457.94 10100 2800 1.45 E+07 4.0 E+06 0.28
I viol 461 17900 6000 2.59 E+07 8.7 E+06 0.33
I viol 463.65 1800 62 2.622 E+06 9.1 E+04 0.03
I viol 463.71 1940 60 2.826 E+06 8.7 E+04 0.03
II viol 913.26 8100 990 2.32 E+07 2.8 E+06 0.12
II viol 919.53 12200 2200 3.52 E+07 6.3 E+06 0.18
II viol 924.58 4630 390 1.34 E+07 1.1 E+06 0.09
II viol 925.2 2790 140 8.11 E+06 4.1 E+05 0.05
III viol 1365.96 549 39 2.36 E+06 1.7 E+05 0.07
III viol 1372.62 1850 93 7.98 E+06 4.0 E+05 0.05
III viol 1385.92 1860 110 8.08 E+06 4.7 E+05 0.06
III viol 1386.17 1370 110 5.97 E+06 4.9 E+05 0.08
IV viol 1821.28 1890 100 1.081 E+07 5.7 E+05 0.05
IV viol 1830.73 3650 350 2.10 E+07 2.0 E+06 0.10
IV viol 1844.12 867 87 5.02 E+06 5.0 E+05 0.10
IV viol 1844.17 332 33 1.92 E+06 1.9 E+05 0.10
V viol 2272.57 423 160 3.0 E+06 1.1 E+06 0.38
V viol 2288.87 469 19 3.37 E+06 1.4 E+05 0.04
V viol 2303.74 21.1 2.1 1.53 E+05 1.5 E+04 0.10
V viol 2304.49 187.0 2.1 1.354 E+06 1.5 E+04 0.01
VI viol 2722.87 424 21 3.63 E+06 1.8 E+05 0.05
VI viol 2739.71 642 29 5.53 E+06 2.5 E+05 0.05
VI viol 2759.97 32.9 3.3 2.85 E+05 2.9 E+04 0.10
VI viol 2761.95 64.2 6.4 5.57 E+05 5.6 E+04 0.10
VII viol 3168.1 133 13 1.32 E+06 1.3 E+05 0.10
VII viol 3188.98 32.1 3.2 3.22 E+05 3.2 E+04 0.10
VIII viol 3608.98 46.2 4.6 5.24 E+05 5.2 E+04 0.10
VIII viol 3630.68 38.0 3.8 4.33 E+05 4.3 E+04 0.10
VIII viol 3661.48 12.9 1.3 1.48 E+05 1.5 E+04 0.10

butterfly + (0,2) bulk 3969.13 1090 78 1.359 E+07 9.7 E+05 0.07
butterfly × (0,2) bulk 4014.61 318 18 4.01 E+06 2.3 E+05 0.06

IX viol 4065.13 60.6 6.1 7.74 E+05 7.7 E+04 0.10
X viol 4460.22 68.2 6.8 9.56 E+05 9.6 E+04 0.10
X viol 4488.66 29.2 2.9 4.12 E+05 4.1 E+04 0.10
X viol 4489.14 29.2 2.9 4.12 E+05 4.1 E+04 0.10
X viol 4537.17 21.3 2.1 3.04 E+05 3.0 E+04 0.10
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WE
mode f(Hz) τ̄(s) στ (s) Q σQ εrel

XI viol 4858.09 27.0 2.7 4.12 E+05 4.1 E+04 0.10
XII viol 5209.8 25.6 2.6 4.19 E+05 4.2 E+04 0.10

? 5693.43 96.3 9.6 1.72 E+06 1.7 E+05 0.10
drum (1,0) bulk 5701.33 893 49 1.599 E+07 8.7 E+05 0.05

? 7561 – – – – –
butterfly | (3,0) bulk 7653 1.94 0.19 4.66 E+04 4.7 E+03 0.10
butterfly – (3,0) bulk 7745 – – – – –

egg + bulk 8058.59 37.3 3.7 9.44 E+05 9.4 E+04 0.10
egg × bulk 8895.5 120 12 3.35 E+06 3.4 E+05 0.10
ears | bulk 9081.69 127 13 3.62 E+06 3.6 E+05 0.10
ears – bulk 9699.22 80.2 8.0 2.44 E+06 2.4 E+05 0.10

drum (1,1) bulk 10245 2.35 0.24 7.58 E+04 7.6 E+03 0.10
drum (1,1) bulk 10313 50.6 5.1 1.64 E+06 1.6 E+05 0.10

XXV violin ? 11394 82.1 8.2 2.94 E+06 2.9 E+05 0.10
XXV violin ? 11402 116 12 4.16 E+06 4.2 E+05 0.10
XXV violin ? 11410 102 10 3.66 E+06 3.7 E+05 0.10
XXV violin ? 11422 68.4 6.8 2.46 E+06 2.5 E+05 0.10

butterfly (4,0) bulk 11525 35.0 3.5 1.27 E+06 1.3 E+05 0.10
egg bulk ? 12288 93.1 9.3 3.59 E+06 3.6 E+05 0.10
ears bulk ? 13639 101 10 4.37 E+06 4.4 E+05 0.10

violin ? 13990 35.5 3.6 1.57 E+06 1.6 E+05 0.10
drum (2,1) bulk 14524 152 15 6.94 E+06 6.9 E+05 0.10
drum (2,1) bulk 14585

butterfly (5,0) bulk 15183 4.56 0.46 2.17 E+06 2.2 E+05 0.10
butterfly (5,0) bulk 15226

15624 8.68 0.87 4.26 E+05 4.3 E+04 0.10
drum (0,2) bulk 15763 30.0 3.0 1.49 E+06 1.5 E+05 0.10

cloverleaf 15889
cloverleaf 15898

? 18425 0.81 0.08 4.70 E+04 4.7 E+03 0.10
? 18603 2.24 0.22 1.31 E+05 1.3 E+04 0.10
? 18669 8.70 0.87 5.10 E+05 5.1 E+04 0.10
? 18730 16.3 1.6 9.59 E+05 9.6 E+04 0.10
? 18790 3.24 0.32 1.91 E+05 1.9 E+04 0.10
? 18874 10.8 1.1 6.41 E+05 6.4 E+04 0.10
? 19060 5.17 0.52 3.10 E+05 3.1 E+04 0.10
? 19302 3.79 0.38 2.30 E+05 2.3 E+04 0.10
? 20692 1.36 0.14 8.81 E+04 8.8 E+03 0.10
? 21848 12.6 1.3 8.63 E+05 8.6 E+04 0.10
? 23078 5.38 0.54 3.90 E+05 3.9 E+04 0.10
? 23083 4.28 0.43 3.10 E+05 3.1 E+04 0.10
? 23373 3.20 0.32 2.35 E+05 2.4 E+04 0.10





Appendix D

Single fiber violin mode quality
factors

I report the Quality factor measurements: in the tables there are the name of each
resonance, its frequency f , the quality factor Q, the quality factor error σQ and the
relative error εrel.

Aged fiber: m = 2kg, standard screw regulation
order f(Hz) Qx σx εrel

I 274.65 3.46 E+06 3.5 E+05 0.10
II 547.88 4.00 E+06 4.0 E+05 0.10
III 823.57 2.15 E+06 2.1 E+05 0.10
IV 1095.86 1.39 E+06 5.8 E+04 0.04
V 1369.93 5.85 E+05 3.2 E+04 0.05
VI 1641.49 2.02 E+05 1.5 E+04 0.08
VII 1913.74 1.57 E+06 1.6 E+05 0.10
VIII 2188.21 2.49 E+06 3.0 E+05 0.12
IX 2461.22 1.25 E+06 5.0 E+04 0.04
X 2733.19 9.43 E+05 3.8 E+04 0.04
XI 3002.17 6.67 E+05 3.7 E+04 0.06
XII 3273.18 5.52 E+05 1.1 E+04 0.02
XIII 3543.1 4.74 E+05 2.4 E+04 0.05
XIV 3809.15 2.68 E+05 9.8 E+03 0.04

Table D.1: aged fiber quality factor data: direction x, suspended mass m = 2kg,
standard screw regulation.
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Aged fiber: m = 5kg, standard screw regulation
order f(Hz) Qx σx εxrel Qz σz εzrel

I 438.36 1.62 E+06 5.6 E+03 0.00 8.77 E+05 8.7 E+04 0.1
II 874.30 1.62 E+06 3.1 E+05 0.19 7.25 E+05 4.5 E+04 0.06
III 1313.75 1.16 E+05 7.1 E+03 0.06 3.42 E+05 2.5 E+03 0.01
IV 1747.66 8.93 E+05 4.8 E+04 0.05 2.99 E+05 2.2 E+04 0.07
V 2183.13 1.06 E+06 9.6 E+03 0.01 3.00 E+05 1.1 E+04 0.04
VI 2613.81 2.10 E+05 1.4 E+04 0.07 1.81 E+05 3.1 E+04 0.17
VII 3044.89 6.29 E+05 1.4 E+04 0.02 1.34 E+05 1.9 E+04 0.14
VIII 3477.80 1.97 E+05 4.8 E+03 0.02 – – –
IX 3904.02 9.43 E+04 4.7 E+03 0.05 – – –
X 4322.09 8.85 E+04 6.4 E+03 0.07 – – –
XI 4730.24 4.31 E+04 1.0 E+04 0.24 – – –

Table D.2: aged fiber quality factor data: direction x and z, suspended mass m = 5kg,
standard screw regulation.

Aged fiber: m = 5kg, tight lateral screws
order f(Hz) Qx σx εxrel Qz σz εzrel

I 438.36 1.28 E+06 1.9 E+04 0.01 1.32 E+06 1.3 E+05 0.1
II 874.30 1.09 E+06 8.4 E+03 0.01 1.09 E+06 2.2 E+04 0.02
III 1313.75 9.09 E+05 5.8 E+04 0.06 8.93 E+05 2.3 E+05 0.26
IV 1747.66 3.76 E+05 4.5 E+04 0.12 3.47 E+05 5.5 E+04 0.16
V 2183.13 4.27 E+05 7.7 E+04 0.18 2.92 E+05 1.3 E+04 0.04
VI 2613.81 8.13 E+05 8.1 E+04 0.10 6.25 E+04 8.3 E+02 0.01
VII 3044.89 – – – 3.32 E+05 1.4 E+04 0.04
VIII 3477.80 9.90 E+04 1.7 E+04 0.18 2.39 E+05 1.6 E+05 0.69
IX 3904.02 5.32 E+04 8.0 E+02 0.02 2.16 E+05 1.6 E+03 0.01

Table D.3: aged fiber quality factor data: direction x and z, suspended mass m = 5kg,
tight lateral screws.

Aged fiber: m = 5kg, tight upper screws
order f(Hz) Qx σx εxrel Qz σz εzrel

I 438.36 1.39 E+06 5.6 E+04 0.04 1.25 E+06 1.7 E+04 0.01
II 874.30 1.01 E+06 1.1 E+05 0.11 9.09 E+05 8.8 E+04 0.1
III 1313.75 6.99 E+05 7.0 E+04 0.10 5.95 E+05 1.8 E+04 0.03
IV 1747.66 3.02 E+05 3.0 E+04 0.10 2.71 E+05 2.7 E+04 0.1

Table D.4: aged fiber quality factor data: direction x and z, suspended mass m = 5kg,
tight upper screws.
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Aged fiber: m = 5kg, loose upper screws
order f(Hz) Qx σx εxrel Qz σz εzrel

I 438.36 6.41 E+05 1.5 E+05 0.23 3.24 E+05 6.7 E+03 0.02
II 874.3 5.78 E+05 2.7 E+04 0.05 3.44 E+05 3.4 E+04 0.1
III 1313.75 5.75 E+05 9.9 E+04 0.17 5.56 E+05 5.6 E+04 0.1
IV 1747.66 6.62 E+04 1.2 E+03 0.02 9.09 E+04 9.1 E+03 0.1

Table D.5: aged fiber quality factor data: direction x and z, suspended mass m = 5kg,
loose upper screws.

New fiber: m = 5kg, standard screw regulation
order f(Hz) Qx σx εxrel Qz σz εzrel

I 458.5 1.62 E+07 4.1 E+05 0.03 7.04 E+06 1.2 E+05 0.02
II 917.3 1.21 E+07 4.1 E+04 0.00 3.58 E+06 1.5 E+05 0.04
III 1373.63 9.26 E+06 1.8 E+05 0.02 3.28 E+06 3.8 E+04 0.01
IV 1829.95 6.45 E+06 1.2 E+05 0.02 3.19 E+06 2.9 E+04 0.01
V 2285.02 6.49 E+06 6.4 E+05 0.10 2.16 E+06 1.3 E+04 0.01
VI 2736.65 6.80 E+06 5.3 E+04 0.01 1.42 E+06 8.6 E+03 0.01
VII 3189.92 1.37 E+06 1.3 E+04 0.01 6.94 E+05 1.4 E+04 0.02
VIII 3641.43 2.56 E+06 1.7 E+04 0.01 1.54 E+05 1.1 E+03 0.01
IX 4081.28 4.39 E+06 3.2 E+05 0.07 – – –
X 4528.74 4.72 E+05 3.5 E+04 0.07 – – –
XI 4951.95 5.95 E+05 5.5 E+04 0.09 – – –

Table D.6: new fiber quality factor data: direction x and z, suspended mass m = 5kg,
standard screw regulation.

New fiber: m = 5kg, standard screw regulation
order f(Hz) Qx σx εxrel Qz σz εzrel

I 458.5 2.45 E+07 1.9 E+06 0.08 4.10 E+06 5.7 E+05 0.14
II 917.3 1.57 E+07 5.2 E+04 0.00 3.64 E+06 4.1 E+05 0.11
III 1373.63 4.98 E+06 8.8 E+04 0.02 2.58 E+06 3.3 E+04 0.01
IV 1829.95 4.76 E+06 1.0 E+05 0.02 8.55 E+06 2.6 E+06 0.31
V 2285.02 2.72 E+06 1.1 E+05 0.04 1.93 E+06 1.3 E+05 0.07
VI 2736.65 1.04 E+06 1.5 E+05 0.14 2.23 E+06 5.3 E+04 0.02
VII 3189.92 8.85 E+05 1.2 E+05 0.14 – – –
VIII 3641.43 6.02 E+05 7.5 E+04 0.12 – – –
IX 4081.28 1.96 E+05 1.6 E+03 0.01 – – –

Table D.7: new fiber quality factor data: direction x and z, suspended mass m = 5kg,
tight upper screws.
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