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ABSTRACT 

The studies presented in this Thesis have been developed in the frame of the forensic 

investigation into the causes of the collapse of the I-35West Bridge (I-35W) in Minneapolis, 

Minnesota, USA that occurred on August 1st, 2007. The failure of the I-35W represents a 

major case-study for the evaluation of stability and integrity of a steel truss bridge. 

The Thesis has been developed at Columbia University and at the engineering firm 

Thornton Tomasetti (TT) which was hired by a national law firm, Robins, Kaplan, Miller & 

Ciresi, to perform a forensic investigation into the cause of the catastrophic collapse. 

According to the findings of the forensic investigation, the collapse was triggered by the 

buckling of an element of the main truss bottom chord in the main span close to the pier.  

The Thesis focused on technical aspects and did not attempt to assign responsibility among the 

involved parties. In the first part of the thesis, the background and motivation for the 

forensic investigation are presented together with a description of the I-35W Bridge. The 

definition of bridge safety and related classifications are given. The concept of structural 

stability and integrity of steel structures are discussed. The nature of structures and their 

complexity are considered as well as the methodologies used to study them. An extensive 

description of the structural decomposition method is presented and detailed for the case 

study.  

In this work, using the framework of a multilevel approach, the structural system has been 

broken down in order to perform a detailed analysis and evaluate the system performances 

at macro (global) and micro (local) levels. The effect of boundary conditions, thermal loads 

on the global system and post buckling capacity of the main truss bottom chord built up 

member on a local level have been studied.  

First, a 3D finite element model has been developed in SAP2000 using frame elements. This 

global-level model reproduces the entire bridge based on original drawings, design and 

construction specifications. The model has been verified by comparing results with the 

available original design calculations. Member forces and reactions based on the as-

designed conditions with the specified design loads have been confirmed. The model served 

to investigate the elastic behavior of the bridge and its overall response to various loading 

and boundary conditions. In particular, from the global model it has been possible to 

evaluate the static stress condition on the bridge showing how some of the temperature 

changes and the possible deterioration of the designed supports could affect the demand on 

the load carrying members. A specific lower chord member was identified as a critical 

member for temperature loading in particular. 
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Second, a 3D solid element model of the recognized critical load bearing member 

comprised of a welded built up section with perforated cover plates was built in Abaqus. 

This local-level model provided information on the post buckling behavior and capacity of 

the load bearing member.  The effects of the perforations and boundary conditions have 

been outlined. Furthermore, the results have been compared against hand calculations 

following the provisions of the Code of Standard Practice for Structural Steel Buildings and 

Bridges (AISC, 2005) for built up members and the Timoshenko plate theory for columns 

with perforated cover plates.  

Keywords: forensic investigation, steel truss bridge, stability, integrity, post-buckling 

capacity, welded built up sections.  
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AIM OF THE THESIS 

The aim of the work has been to investigate the untested fragility of the bridge: its capacity 

to carry temperature loads and the post buckling behavior of the bottom chord member. 

The I-35W was a state of the art structure when it was built in the early 1960s. The bridge 

was opened in 1967 and it consisted of a continuous truss bridge spanning 1000 ft. (305 m.) 

over four piers. Figure 1 shows a schematic overview of the I-35W Bridge. On August 

1st, 2007 at 6:04 pm the bridge collapsed killing 13 people and injuring many more.  

 

 

 

Figure 1 - Bridge schematic overview (NTSB, 2008b) 

In the first part of the Thesis the forensic engineering practice and steps for a forensic 

investigation are defined. 

In the second part, the systematic nature of a structure and its complexity are considered as 

well as the methodologies used to study it. The definition of structural safety requirements 

and bridge safety classifications are given. The concept of structural stability and integrity 

of steel structures are discussed.  

In the third part, the structural decomposition method is presented and an extensive 

description of the I-35W Bridge is given. New technologies were employed in the 

construction of the I-35W Bridge such as: high strength steel provided designers with the 

possibility of creating more slender and weight efficient structure; a different type of 

manufacture (welds instead of rivets) for the steel sections construction was employed as 

L9 
L11 
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well as an intricate system of roller bearings and thin gusset plate connections; welded built 

up box section with perforated cover plates.  

Following a multilevel perspective, the bridge structural system has been decomposed in 

order to evaluate the system performances at macro and micro levels in particular. See 

Figure 2. 

 

 

 

Figure 2 - Structural part identification used in the present study 

The analyses here presented are divided into the following tasks: 

• Development of a three dimensional (3D) global finite element model (FEM) of the 

entire bridge based on original drawings, design and construction specifications; 

• Conduct analysis of the global structure; 

Macro level 

Micro level 

Meso level 
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• Development of a 3D FEM of a subsystem’s component. In particular this study 

focus on the rectangular built up member with and without perforated cover plates 

located on the bottom chord of the main lateral trusses. 

• Conduct subsystem component analysis.  

First, a three dimensional finite element model has been developed in SAP2000 using frame 

elements. This global-level model reproduces the entire bridge based on original drawings, 

design and construction specifications. The model was verified by comparing results with 

the available original design calculations. Member forces and reactions based on the           

as-designed conditions with the specified design loads were confirmed. The model served to 

investigate the elastic behavior of the bridge and its overall response to various loading 

conditions. In particular, from the global model it has been possible to evaluate the static 

stress condition on the bridge showing how some of the temperature changes and the 

possible deterioration of the designed supports could affect the demands on the load 

carrying members. A specific lower chord member was identified as a critical member for 

temperature loading in particular. 

Second, a three dimensional solid element model of the recognized critical load bearing 

member comprised of a welded built up section with perforated cover plates was built in 

Abaqus. This local-level model provided information on the post buckling behavior and 

capacity of the load bearing member using nonlinear Riks analysis (ABAQUS, 2010). 

Springs were applied to the member ends to simulate the effective boundary conditions 

between the individual element and adjacent members. The study focuses on the effect of 

perforations and boundary conditions on the behavior of the built up member. Furthermore, 

the numerical results of a buckling analysis obtained by detailed FEM analysis were 

compared with results obtained from the hand calculation. The hand calculation follows 

provisions of the 2005 AISC 360 Specification for Structural Steel Buildings (AISC, 2005) 

with the modified slenderness ratio (KL/r)m, and the Timoshenko theory for built up 

columns and plates, considering columns with perforated cover plates  (Timoshenko, 1961). 

The separate local analysis helped to determine the effect of local design choices on the 

integrity of the I-35W steel truss bridge and therefore the role of buckling failure of one 

main truss’s element with respect to the structural stability and sequential failures of other 

components and subsystem. 
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1 INTRODUCTION 

The aim of building regulations and provisions is to build safe and sustainable structures. 

Nevertheless the design progress and developments are also the results of the lesson learned 

from failures occurred in the past. Many effects on structural behaviors were unknown 

before tragic events occurred. Each failure initiates an intense investigation process in order 

to understand the causes of the collapse and prevent any similar catastrophes in the future.  

When catastrophic collapses occur, discovering the cause or causes is the first step to 

assuring the public and preventing future harm.  Traditionally, the victims, the owners of the 

structure, and the professionals involved with design and maintenance of similar structures 

engage structural engineers as technical experts to collect evidence, filter the important data, 

analyze, and then communicate the results to society-at-large. 

Forensic engineers have always been tasked with dual goals: primarily and most importantly 

to use their technical expertise and skills to mathematically determine the collapse 

mechanisms, but also to subsequently synthesize their results in order to suggest appropriate 

reactionary measures. In most of the cases the collapse results as combination of various 

reasons. In order to recognize and investigate the causes of a collapse, it is fundamental to 

know structural failures types and understand the different levels where they can occur.  

Failures can occur at material point, element section, structural element and structural 

system. It is essential to understand the system and to be able to decompose it in a structured 

and focused way (Bontempi, 2006). Therefore the knowledge of the system complexity, 

system relations and decomposition techniques are necessary to approach a forensic 

investigation. 

Structural codes and provisions define principles, rules and methods to design structures and 

bridges complying with safety standards, with proper level of reliability and durability being 

aware of the different levels of complexity. To pursue the design aims fulfilling the safety 

requirements, different approaches can be used. The Limit State Design (LSD) is the most 

used nowadays as well as the Load and Resistance Factor Design (LRFD) used by the 

American Association of State Highway and Transportation Officials (AASHTO) for the 

design of bridges. The LSD method considers three principal limit states for which the 

capacity or strength is estimated under different conditions according to the required level 

of performance. The limit states considered are ultimate limit state, serviceability limit state 

and integrity limit state (ISO2394, 1998). The baseline of the LSD method is setting a limit 

beyond which the structure is considered unsafe. In general for steel members the most 

important types of structural failure are: large local plasticity, instability, fatigue cracking 
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related to cycling loading, ductile or brittle fracture, given fatigue cracking or preexisting 

defects, excessive deformation. The basic failure types do not occur simultaneously but 

more than one phenomenon may in principle be involved until the structure reaches the 

ultimate limit state (Paik, 2003). 

One class of structures that often incorporates elements whose localized failure would 

trigger a progressive collapse is functionally non redundant bridges. Their intrinsic non-

redundancy can make them susceptible to progressive collapse due to the loss of a series of 

adjacent members in a single loading event. Truss bridges without primary redundancy are 

particularly sensitive to progressive collapse. They rely exclusively on the redundancy in 

the secondary structural resistance to provide some measure of robustness. The term 

structural robustness in this work is intended as property of the structural system and it 

refers to the insensitivity to local failure (Starossek, 2006). 

Redundancy plays a dominant role in providing robustness and preventing progressive 

collapse. While it is a strongly desirable feature in structural systems, there is no accepted 

measure of the degree or distribution of redundancy in a structure and it may be defined in 

various ways. One definition states that redundancy is “the absence of critical components 

whose failure would cause collapse of the structure” (Frangopol, 1987). Bridge redundancy 

is also defined in the (Gosh, 1998) as “the capability of a bridge to continue to carry loads 

after incurring damage or the failure of one or more of its members”. This capability is 

mainly due to redistribution of the applied loads in transverse and/or longitudinal directions.  

In general, redundancy can be seen as a property of the undamaged structure and it has a 

major impact on the risk of collapse. The absence of redundancy in a structure (i.e. statically 

determinate structure) may more likely lead to progressive collapse in the event of local 

damage and clearly represents a non-robust structure. On the other hand the presence of 

redundant (i.e. statically indeterminate structure) may or may not prevent progressive 

collapse depending on the robustness of the design and possibly on the existence of 

preexisting or hidden damage. Furthermore, even if in the primary action of the structure 

there is no redundancy, secondary action may introduce redundancy that can hinder 

progressive collapse and thus provide some measure of robustness. 

In general, the main failure modes for a steel truss are listed below:  

• Failure of truss members: compression members of a truss bridge can fail in overall 

buckling or in a local buckling mode and members in tension can fail in yielding of 

the gross area or fracture of the net area, leading to the truss global instability failure. 

• Failure of truss connections such as the gusset plates, member splices and supports. 
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Each bridge has a unique design and intrinsic complexity related to the geometry and design 

choices and it is subjected to continuous (environmental or anthropic actions) and discrete 

(human error, accidental or deliberate actions) events which may affect its integrity and lead 

to collapse.  

There are examples of truss bridges that have experienced connection failure without 

collapsing. One notable example is the Grand River Bridge in Ohio, USA (Figure 1-1). On 

May 24, 1996 the truss connection at joint L8’ at the east end of the eastbound structure 

failed in the north and south trusses. The gusset plate supporting the verticals and the 

compression diagonals buckled and allowed the member ends to drop about 3 in (7,5 cm) 

and moved laterally about 3 in (7,5 cm). The damaged members were in the truss cantilever 

supporting the center suspended span (NTSB, 2008a). The cause originally was attributed to 

an overloaded semi-trailer truck. The bridge was closed nearly six months for repairs and 

lastly demolished and replaced in 2007. 

 

   

Figure 1-1- Damaged gusset plates, Grand River Bridge, Ohio, USA (NTSB, 2008a) 
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On the other hand, there are cases of truss bridges that, with the same design and geometry, 

collapsed tragically. On August 1st, 2007 at 6:04 pm the I-35W Bridge in Minneapolis, 

Minnesota collapsed killing 13 people and injuring many more (Figure 1-2). According to 

the findings of the forensic investigation performed at Thornton Tomasetti the combination 

of the seized bearings, thermal loads and minimal post buckling capacity triggered the local 

inelastic buckling of the west bottom chord member that spanned from panel point L9 to 

panel point L11 (L9-L11), hence initiating the collapse of the I-35W.  

In this Thesis, a set of analysis results using finite element models and hand calculations are 

presented. In the framework of a multilevel approach, global and local models have been 

used to understand the effect of boundary conditions and thermal loads on the global system 

and the post buckling capacity of the main truss bottom chord built up member L9-L11 on a 

local level.  

 

 

Figure 1-2 - I-35W Collapse - August 1, 2007 
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The I-35W was one of the first bridges to use welded built up box section with perforations, 

which are comprised of thin plates. Studies in literature show that for columns with welded 

box sections the reduction of buckling strength due to the presence of residual stresses is 

similar to that found for buckling of plates with residual stresses. Moreover the residual 

stresses present in a column cross section influence the local buckling strength even in the 

elastic range. The effect on the elastic-plastic buckling depends greatly on the width to 

thickness ratio of plates (Nishino, 1969). In the years before the Second World War a 

tendency developed, in the United States, to replace the lacing system or the batten-plates of 

built-up columns by perforated cover-plates. Lacing was ordinarily used on one flange only 

of a compression member. It was not counted as resisting compression and unbalanced the 

section. On the other hand, the perforated cover-plate metal could largely be counted in 

member area and tended to balance the section. It was soon realized that he perforated 

cover-plates increased the over-all stiffness of the members compared to laced built up 

columns and hence improved their behavior (White, 1956a,b).  
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2 FORENSIC ENGINEERING 

Forensics engineering is essentially a branch of the engineering field focused on the study of 

failures, accidents, and other incidents involving engineered products. The purpose of 

forensic investigation is to locate the cause or causes of a failure performing a number of 

tests and analyses to reconstruct the chain of events which led to the failure.  

Failures and accidents involving injury, loss of life, or property damage nearly always 

generate controversy. Hence, the investigation of such events is usually associated with 

litigation or the threat of litigation. Accident investigation and reconstruction, however, 

need not always be directly related to litigation. Sometimes the principal purpose of 

accident reconstruction is to determine causation so that the accident will not be repeated 

(Carper, 2001).  

Forensic engineers can work for consulting firms, local governments, and legal firms, and 

they do a wide variety of work in the field and in the lab. The work can include analysis in 

the lab to determine which materials has been used, along with on-site inspection, 

interviews of people involved, and research into similar failures which may have happened 

in the past. When catastrophic collapses occur, discovering the cause is the first step to 

assuring the public and preventing future harm.  Traditionally, the victims, the owners of the 

structure, and the professionals involved with design and maintenance of similar structures 

engage structural engineers as technical experts to collect evidence, filter the important data, 

analyze, and then communicate the results to society-at-large. See Figure 2-1.  

Forensic engineers have always been tasked with dual goals: primarily and most importantly 

to use their technical expertise and skills to mathematically determine the collapse 

mechanisms, but also to subsequently synthesize their results in order to suggest appropriate 

reactionary measures and to communicate their findings. The inherent challenges to forensic 

investigation are multiple and quite varied and do not always play to the strengths of 

engineering skill and judgment. Over the course of any investigation, the engineer is 

challenged to continually translate between contradictory or incompatible languages in 

order to communicate to their multiple and quite varied audiences. Oftentimes the data that 

is collected from a variety of sources so vast and complex that it requires a great deal of 

filtration by the engineer in order to properly bound their analysis.   

This requires engineering skill, but also a time-consuming document review process in 

order to achieve due diligence. This can be further complicated in modern investigations by 

outside factors such as legal or governmental processes that impose their own timeline and 

constraints on the analysis process. 
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Figure 2-1- Forensic investigation flow chart (Brando, 2012) 

Structural failures vary in size and complexity and similarly the subsequent investigations; 

however the basic steps are often the same and can be modulated to the specific condition a 

hand. The investigative plan is continuously revised to account or new information and 

evolving theories (Ratay, 2010).  

2.1 DATA COLLECTION AND FILTRATION 

Forensic engineers typically rely on site observations, document reviews and structural 

analyses to develop their expert opinions in the course of their investigations into 

catastrophic events.  For some projects, the amount of documentation and the complex 

analytical behavior of the structure can make pinpointing the key factors in the forensic 

investigation quite difficult.  The data collected to perform a structural forensic 

investigation include usually design and shop drawings of the structure, specifications from 

repair products, a lengthy inspection and maintenance history of the structure, photos and 

videos before and after collapse, written reports and analyses by consulting engineers tasked 

with studying and maintaining the structure prior to its collapse, witness testimonials of the 

collapse event itself and material evidence from the collapse site, among other items.  The 

spectrum of these items presented what may seem to be a daunting task to the investigative 

team of filtering through the vast amount of documents in order to begin and effectively 



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

FORENSIC ENGINEERING  24 

analyze the structure.  As is common in forensic investigations, the engineers work closely 

and in parallel to the consortium lawyers in order to facilitate the data collection process, as 

well as to advice on technical engineering matters.  From a very early point, the first 

understandable difficulty is expressing both 3-D spatial geometry and mechanical concepts to 

the clients.  In order to surmount these early obstacles, it is useful to create a 3-D model of the 

structure which instantly allowed the client to better understand the structure spatially as it was 

designed and built.  Moreover, the use of forensic database for all collected data pertaining to 

the project is a handy filtration tool for the engineer throughout their analytical modeling 

process (Brando et al. 2012). 

2.2 ITERATIVE ANALYSIS AND RESULTS 

Most failure analysis requires accurate modeling of structural behavior than design analysis. 

Nonlinear effects and post-damage capacities need to be accurately evaluated. However 

caution is needed since the analysis carried out using computer can lead to wrong answers if 

they are not monitored and defined properly. It is critical to understand the default 

assumptions and underlying analysis techniques used in each finite element program to 

gauge their effect on the results. It is critically important that all models, hand or computer, 

accurately reflect the observed behavior of the structure (Ratay, 2010). 

For these reasons, forensic database can be an instrumental tool in guiding the numerical 

modeling process and enabling the investigation team to focus the analyses on specific 

components of the structure with the aim of discovering patterns in the inspection 

information revealing possible trends which could lead and help to narrow down the 

possible causes of a collapse. A combination of priori and posteriori knowledge is the key to 

trace the collapse progression.  

The analysis results and the complexity of the mechanical sequence of the catastrophic 

collapse still ultimately need to be translated into a universal language that conveys to a 

non-technical audience, the community-at-large.  

Frequently in the course of a forensic investigation, product or procedural deficiencies are 

uncovered that extend beyond the specific case. One of the more rewarding aspects of 

forensic engineering practice is the opportunity to make recommendations on the basis of 

such an investigation. Forensic engineers have a role in disseminating information to design 

professionals to improve procedures and products so that failures or accidents are not 

repeated (Carper, 2001). 
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3 THE I-35W BRIDGE FORENSIC INVESTIGATION 

The catastrophic collapse of the I-35W Bridge was one such event that deeply affected the 

entire nation by its gravity and required immediate action by federal, state and local 

governmental agencies in order to determine the causes, evaluate the extent of damage of 

remaining elements, and, if necessary, prescribe prompt preventative measures to other 

bridges across the country. 

Immediately after the collapse of the I-35W rescue operations started and the US National 

Transportation Safety Board’s (NTSB) took ownership of the site. They coordinated the 

recovery efforts and headed the official investigations. The salvaged members and sections 

of the Bridge were stored and organized by the US NTSB and the State of Minnesota.  

Calculations performed subsequent to the collapse showed that the gusset plates at U10 and 

the corroded gusset plate at L11 in particular were under-designed by half. Investigations 

into the cause of the collapse performed by the US NTSB and others have focused primarily 

on the under-design of the U10 gusset plate and the effect of the dead and live loading on 

that connection on August 1st.  The compressive load at the connection to U10 gusset plate 

of the L9-U10 member in particular was the focus of the NTSB investigation which 

concluded in their final report: 

“The initiating event in the collapse of the I-35W Bridge was a lateral shifting instability of 

the upper end of the L9/U10W diagonal member and the subsequent failure of the U10 node 

gusset plates on the center portion of the deck truss”. 

At the same time, Thornton Tomasetti (TT) was engaged to independently investigate the 

cause of the I-35W collapse by Robins, Kaplan, Miller & Ciresi, L.L.P., a national law firm 

with offices in Minneapolis, MN, recruited and oversaw a consortium of 17 law firms that 

agreed to provide pro bono legal services to the survivors of the collapse. Since the limited 

physical access to the bridge’s failed structural components, TT had to rely heavily on 

disclosed materials in order to begin the structural analysis process The data collected and 

reviewed in this investigation ultimately exceeded 50,000 documents, which included 

design and shop drawings of the structure, specifications from repair products, a lengthy 

inspection and maintenance history of the bridge, photos and videos before and after 

collapse, written reports and analyses by consulting engineers tasked with studying and 

maintaining the bridge prior to its collapse, witness testimonials of the collapse event itself 

and material evidence from the collapse site, among other items. Using a comprehensive 

new method of organizing and presenting findings, the Forensic Information Modeling (FIM), 

TT discovered patterns in the inspection information revealing a relationship between 



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

FORENSIC ENGINEERING  26 

expansion joints and notes on corrosion. FIM was an instrumental tool in guiding the 

numerical modeling process and enabling the team to focus the analyses on a specific 

component of the bridge, ultimately allowing TT to identify the origin of the bridge failure. 

In particular the attention focused on the roller bearings and the effect of their behavior on 

the structural system. More data from the FIM model, including design drawings, inspection 

reports and pre- and post-collapse photos, were used to calculate the in-situ capacity of the 

bearings by hand and verify that they were seized at the time of collapse. The frozen 

bearings informed the subsequent buckling capacity analysis of a bottom chord member in 

the bridge.   

The focus of this latter investigation became the untested fragility of the bridge: its capacity 

to carry temperature loads. Over the years, bridge inspectors had catalogued the 

deterioration of the roller bearings. However, no analysis had been performed during past 

retrofits design to ascertain if the bridge could withstand the large temperature swings 

common in Minneapolis. The combination of the increased weight of the bridge due to the 

retrofits, the construction vehicles and material stationed on the bridge and the temperature 

load effect proved to be catastrophic for the lower chord member that spanned from L9-

L11. Buckling of the bottom chord was the fuse that triggered the instability of the global 

system and initiated the collapse. A nonlinear bridge model was developed in LS-DYNA 

created by TT and enriched with the local element analyses presented in this Thesis. A 

combination of priori and posteriori knowledge was acting as a powerful tool to drive the 

analysis past the bifurcation points in the dynamic collapse simulation. The simulation 

confirms that the evidence does not support the NTSB conclusion that a lateral instability at 

the under-designed U10 gusset was the fuse that resulted in the collapse. Instead, the model 

confirms that collapse initiated by the buckling of the bottom chord best matches the bridge 

collapse video and local failure behaviors. The FIM was ultimately indispensable in order to 

achieve and communicate such a comprehensive understanding of the physical phenomena 

to the court and the society at large.  

3.1 SAFETY RECOMMENDATIONS RESULTS OF I-35W 
ACCIDENT INVESTIGATION 

On January 11, 2008, as results of this accident investigation, the FHWA provided an 

interim report on the adequacy of the gusset plates. Based on the findings in that interim 

report and the Safety Board’s examination of the failed structure - and in the interest of 

possibly preventing similar catastrophic failures even while the investigation of this 

accident was underway—the Safety Board, on January 15, 2008, issued the following safety 

recommendation (H-08-01) to the FHWA: 
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“For all non-load-path redundant steel truss bridges within the National Bridge Inventory, 

require that bridge owners conduct load capacity calculations to verify that the stress levels 

in all structural elements, including gusset plates, remain within applicable requirements 

whenever planned modifications or operational changes may significantly increase 

stresses”.  

In coordination with the issuance of Safety Recommendation H-08-1, the FHWA issued: 

• Technical Advisory T 5140.29, “Load-carrying Capacity Considerations of Gusset 

Plates in Non-load-path-redundant Steel Truss Bridges”, on January 15, 2008. 

• The FHWA Gusset Plate Evaluation Guidance – Part A and Part B with Illustrated 

Examples “Load Rating Guidance and Example for Bolted and Riveted Gusset plates 

in truss bridges” published on February, 2009 to provide guidelines to bridge owners 

in meeting the requirements of the FHWA Technical Advisory T 5140.29. 

The technical advisory referenced Safety Recommendation H-08-1 and recommended that 

bridge owners take the following actions to supplement the guidance in the AASHTO 

Manual for Condition Evaluation of Bridges (NTSB, 2008b): 

• New or replaced non-load-path-redundant steel truss bridges. Bridge owners are 

strongly encouraged to check the capacity of gusset plates as part of the initial load 

ratings. 

• Future recalculations of load capacity on existing non-load-path redundant 

steel truss bridges. Bridge owners are strongly encouraged to check the capacity of 

gusset plates as part of the load rating calculations conducted to reflect changes in 

condition or dead load, to make permit or posting decisions, or to account for 

structural modifications or other alterations that result in significant changes in stress 

levels. 

• Previous load ratings for non-load-path-redundant steel truss bridges. Bridge 

owners are recommended to review past load rating calculations of bridges which 

have been subjected to significant changes in stress levels, either temporary or 

permanent, to ensure that the capacities of gusset plates were adequately considered. 
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4 STRUCTURAL SYSTEM COMPLEXITY 

4.1 DEFINITION OF STRUCTURAL SYSTEM 

In Structural Engineering the idea of a system is represented by a structure. Adopting a 

broad definition, a structure can be defined as a physical entity treated as a unit, consisting 

of a comprehensive set of distinct elements positioned in space such that the character of the 

whole prevails on the interrelationships between the parties. The main purpose of a structure 

is to carry and transfer a certain set of load to the ground. 

A simple example of structure is shown in Figure 4-1. Two separated elements, a circular 

plate and a tube, become a structure when they are connected in at least one point and their 

new state, as a unit, is able to channel weight to the ground and bear a defined set of loads.  

 

 

 

 

 

Figure 4-1 - Structure Composition 

The structure has only one way of being interpreted due to the specific position and 

connection between its components. The global result of the structure is not possible if the 

comprising elements are not connected or positioned in a certain way so that the 

configuration functions as a whole unit and only secondarily as an array of discrete 

elements. All the elements in the configuration are necessary to “build up” that particular 

structure - concept of Synergy (Mella, 2007).  

In general a structure has its own characteristic and state depending on its constitutive 

elements, characteristics and state notwithstanding that it does not identify with any of its 

elements. The state of each element is dependent on the state of at least another element and 

conditional on the state of the structure in its entirety. If the structure assumes or changes its 

state, then some elements must assume or change their state in response. The basic elements 

in the structure have a different role depending on their position in the structure and its own 

characteristics are stressed in a different way according to the overall structure aim. In 

general, there are different criteria to identify different functional levels and components of 

a structure. These criteria are: 

• Functional, according to what the System Elements “do”. 
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• Geographic/Architectural, according to where the System Elements “are”. 

It is possible to use either or both the criteria (i.e. Functional within the Geographic, or vice 

versa).  

4.2  ASPECTS OF COMPLEXITY 

A structure is essentially made up of only a small number of different types of elements. 

With basic structural elements it is possible to construct structural systems that can be very 

complex.  

When studying a structure, it is important to consider and define the environment it built in. 

In general, the environment is the set of elements that, although not taking part in the 

system, they can lead to changes in the system’s state. Moreover, it is important to 

understand what kind of relation exists among them and how they are defined. We can 

consider three types of relations (Bontempi et Al., 2010): 

• System interactions:  between the structure and the environment. These types of 

interactions refer to the behaviors and meaning that the system can have with and 

into the environment without losing its entirety. 

• Organizational relations:  between the structure and its components. These types of 

interactions define: 

o Function: the meaning of the reactions between the elements and the unity. 

o Functionality: the meaning of the interactions between the elements 

o Typology: the classification according to the time and space position of the 

elements in the structure. 

• Structural relations: between the structure’s components. These types of interactions 

define: 

o Specificity: shape, quantity and quality of the objects that compose the 

structure, its order and admissible deflection. 

o Connection: links, mechanisms and forces between the elements that are 

necessary to combine execute the structure. 

In order to single out a system, one may proceed by: 

• Decomposition or analysis: observing the whole object, identifying the elements that 

it is comprised of, the structural connections and the organization that gives the 

elements a function, functionality and topology in the structure (Top Down) (Figure 

4-2). 
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• Composition or synthesis: observing the distinct elements, identify the interactions 

and the structural connections comprising the structure to study its entirety (Bottom 

Up) (Figure 4-2). 

 

 

 
 

 

 

 

Figure 4-2 - Top-down and Bottom-up scheme 

In particular: 

• A top-down approach. Essentially breaking down a structure to gain insight into its 

compositional sub-systems. In a top-down approach an overview of the structure is 

first formulated, specifying, but not detailing any first-level subsystems. Each 

subsystem is then refined in yet greater detail, sometimes in many additional 

subsystem levels, until the entire specification is reduced to base elements. A top-

down model is often specified with the assistance of "black boxes" that make it easier 

to manipulate. However, black boxes may fail to clarify elementary mechanisms or 

be detailed enough to realistically validate the model. 

• A bottom-up approach. Piecing together structures to give rise to grander structures, 

thus making the original system’s sub-systems of the emergent system. In a bottom-

up approach the individual base elements of the structure are first specified in great 

detail. These elements are then linked together to form larger substructure, which 

then in turn are linked, sometimes in many levels, until a complete top-level system 

is formed. This strategy often resembles a "seed" model, whereby the beginnings are 

small but eventually grow in complexity and completeness. However, "organic 

strategies" may result in a tangle of elements and subsystems, developed in isolation 

and subject to local optimization as opposed to meeting a global purpose. The 

bottom-up approach is used when a system design has been decided already. Each 

component in the system on the lowest level is studied one-by one. Evaluates risks 

that the component incorrectly implements its functional specification. 

From a general point of view the structural complexity increases with the number of 

elements, multiplicity of interactions and states that the structure can assume. It can be 

bottom 

top 
ANALYSIS
S 

SYNTHESIS 

  down  up 
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described as an ideal space with the following dimensions as shown in Figure 4-3 

(Bontempi, 2006): 

• Behavior (Linear/Nonlinear); 

• Ambiguity in the data or Uncertainty of the knowledge (Low/High); 

• Coupling, Interactions and Connections among different parts of the problem 

(Tight/Loose). 

 

Figure 4-3 - Dimensions of complexity for a structural problem (Bontempi, 2006) 

4.3 STRUCTURAL DECOMPOSITION METHOD 

Most of the complex structures can be partitioned with a hierarchal configuration. This 

feature allows the choice of the particular level that is more relevant for analysis in any 

particular case.  

In order to analyze a complex structure, it is useful to perform a structural decomposition. 

Using this technique a complex structure is deconstructed, in a targeted way, into 

independently basic substructures. This procedure, which is framed in the sub structuring 

methods, can be used for model updating and damage detection. In general, structural 

partitioning corresponds to the division of the complete structure into a number of 

substructures, identifying any variables and boundaries (Figure 4-4). 

 

 

 

 

Figure 4-4 - Problem Decomposition Procedure 

The structural parts can be categorized into three levels (Bontempi, 2006): 

DECOMPOSITION 

of the global system 
to perform a detailed 
study of the parties 

Single out the 

COMPONENTS 
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in each components 

Identify the 

 VARIABLES  

for each element 
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• Macro-Level: related to geometric dimensions comparable with the whole 

construction or with general role in the structural behavior. For instance, referring to 

a bridge there are essentially three systems:  

o principal, connected with the main resistant mechanism; 

o secondary, connected with the structural part loaded directly by highway and 

railway traffic; 

o auxiliary, related to specific operations that the bridge can normally or 

exceptionally face during its design life: serviceability, maintainability and 

emergency;  

• Meso-Level: related to geometric dimensions still relevant if compared to the whole 

construction, but identifiable by their specialized roles in the structural system; the 

parts identified in this way are known as structures or substructures; 

• Micro-Level: related to smaller geometric dimensions and specialized structural 

roles; these are components or elements. 

The subdivision has the following manifold meaning: 

• the organization of the structure is first of all connected with the load paths that must 

be developed by the structure itself;  

• parts belonging to different levels of this organization require different reliability 

properties.  With regards to structural failure conditions, this decomposition allows 

single critical mechanisms to be ranked in order of risk and consequences of the 

failure mechanism (so-called crisis canalization); 

• there are strong relationships between life cycle and maintenance of the different 

parts.  Referring to structural function, required safety levels and their reparability, 

structures and sub-structures are distinguished in primary components (critical, non-

repairable or which require the bridge to be placed out of service for a consistent 

period in order to allow for repairs), and secondary components (repairable with 

minor restrictions on the operation of the bridge). 

Figure 4-5 visualizes the system breaking down concept and Figure 4-6 shows an example. 

In general, the system is a composite of subsystems whose functions are integrated to 

achieve a mission / function (includes materials, tools, personnel, facilities, software, 

equipment); a subsystem is a composite of assemblies whose functions are integrated to 

achieve a specific activity necessary for achieving a mission; an assembly is a composite of 

subassemblies; a subassembly is a composite of components; a component is a composite of 

piece parts which is the least fabricated item, not further reducible. The system doesn’t exist 

without interfaces: the interaction point(s) necessary to produce the desired /essential effects 
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between system elements (interfaces transfer energy / information, maintain mechanical 

integrity). 

 

Figure 4-5 - System breakdown concept (Mohr, 1994) 

 

 

Figure 4-6 - System breakdown example (Mohr, 1994) 
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4.4 PROBLEM DECOMPOSITION EXAMPLES 

The multilevel approach has already been used to perform structural analysis in order to 

assess steel structure robustness and progressive collapse potential. It is suitable to mention 

the WTC tower investigation performed by the NIST.  

After the terroristic attack on the World Trade Center on September 11, 2001, the Federal 

Emergency Management Agency (FEMA) and the American Society of Civil Engineers 

began planning a building performance study of the disaster. The goals of the investigation 

of the WTC disaster where to investigate the building construction, the material used, and 

the technical conditions that contributed to the outcome of the WTC disaster; to serve as 

basis for: 

• Improvements in the way buildings are designed, constructed, maintained, and used; 

• Improve tools and guidance for industry and safety officials; 

• Recommends revision to current codes, standards, and practices; 

• Improvements to public safety. 

The unprecedented complexity and sophistication of these analyses required the use of 

various strategies for managing the computational demands while adequately capturing the 

essential physics. The overall approach combined mathematical modeling, statistical and 

probability-based analysis, laboratory testing, and analysis of photographic and video 

records.  

The interdependence of the analysis of significant events is illustrated in Figure 4-7. 

 

Figure 4-7 - Critical Analysis inter-dependencies (NIST NCSTAR 1-6 Draft, Executive summary) 
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The analysis approach used was a variant of the well-established sub structuring approach, 

adapted for the analysis of structure with highly non-linear behavior that progressed from 

individual components to major subsystems to global systems as shown in Figure 4-8. 

 
 

Figure 4-8- Structural Analysis Sequence (NIST NCSTAR 1-6 Draft, Executive summary) 

The component analyses were conducted to identify critical behavior and failure 

mechanisms that contributed to the global structural response of each tower. The subsystem 

analyses incorporated the behavior and failure mechanisms identified in the component 

studies, with modifications to reduce the model size and complexity, thereby enhancing 

computational performance, without adversely affecting the quality of the results. Whenever 

modeling modifications were used, they were validated against the detailed component 

model results. The global analyses incorporated critical behavior and failure mechanisms, 

determined from subsystem analyses, while making necessary modifications in the level of 

modeling detail.  (NIST NCSTAR 1-6 Draft, Executive summary) 

Reference structural models were first developed and used to determine the baseline 

performance of each tower prior September 11, 2001. The results provided initial conditions 

for the related models. In Figure 4-9 a) the exterior wall subsystem and floor subsystem 

models (Figure 4-9) are shown. 
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a) 

  

 

 

 

 

b) 

Figure 4-9 - a) Exterior wall subsystem b) Floor Subsystem (NIST NCSTAR 1-6 Draft, Executive summary) 
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5 STRUCTURAL SAFETY  

5.1 DEFINITION OF SAFETY 

Every engineered system is the expression of the society needs and it should perform and 

have adequate margins of safety according to basic and essential requirements defined by 

Structural Codes and Standards in order to be used by the whole community. 

Any typology of structure is designed for a specific and predefined set and magnitude of 

loads according to its destination. At the same time it deals with intrinsic levels of risk and 

uncertainties which could undermine its safety, the “critical event” mentioned in SIA260; 

according to the Swiss building code “a structure can be declared safe if during a critical 

event, such as impact, fire, downfall, safety of people is assured”. 

Boundaries need to be drawn in order to ensure safety. The “limits states”, are specific 

circumstances which trace the safe versus unsafe conditions for the structural system and 

they can be depicted from the definition of safety given by the International Standard (ISO 

2394) which deems safety looking at the structural system itself:  

“Structures and structural elements should be designed, built and maintained in 

such a way as to serve properly and economically their intended use during their 

design life. Particularly they should satisfy, with proper levels of reliability: 

Serviceability state requirements, Ultimate load state requirements, and Structural 

integrity requirements”.  

“Limit states” beyond which the structure is considered unsafe take into account as 

accurately as possible the indeterminate nature of the hazards, ensuring an appropriate level 

of reliability for each limit state, always considering attributes and variability in the quality 

of construction as well as the consistency of the construction materials which all together 

contribute and enforce the designed life of the structure hence its durability. 

The aim of Structural Codes and Standards is to define principles, methods and rules to 

design structures complying with safety, reliability and durability being aware of the 

different level of complexity. The complexity of the design is at different levels: the load 

description and definition, the choice of the limit states applicable, the structural system 

complexity. The latter is discussed more extensively in Chapter 4. 

5.1.1 Limit State Design 

In order to pursue the design aims fulfilling the safety requirements, different approaches 

can be used. The Limit State Design (LSD) is the most used in nowadays Structural Codes 

and Standards. The LSD method uses the applicable capacity or strength of a structure 
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calculated under various conditions (“limit states” or “requirement” as defined in ISO2394) 

under which the structure may cease to fulfill its designed function and it uses the so 

calculated strength as limit for the design. The capacity or strength is estimated using 

simplified design formulations or using refined computations such as non liner elasto-plastic 

large deformation finite element analysis (Paik, 2003). Table 5.1-1 summarizes briefly the 

different Limit States which can be considered: 

Table 5.1-1 - Limit states object and description 

The aim of the limit state design methods is to determine the level of imposed loads which 

causes structural failure of individual members and overall structure.  

The limit states can be checked at any level therefore is essential to understand the system 

and to be able to decompose it in a structured and focused way (Bontempi, 2006).  

In Figure 5-1 the different level of failures are shown for a steel truss bridge: 

Limit State Object Description 
Ultimate (ULS) 
 
• Stability 
• Strength 
 

Safety of 
people and 
the 
structure. 

States beyond which 
there is loss of 
capacity and strength 
of the element or the 
structure expected to 
result from 
foreseeable actions, 
threatening safety of 
human life in and 
around the structure. 

Loss of capacity and strength related to: 
• Loss of equilibrium of a part or the whole 

structure considered as a rigid body (e.g. 
overturning, uplift, sliding); 

• Loss of load bearing capacity of members 
due to exceeding the material strength 
(yielding, rupture, fracture, fatigue); 

• Very large deformation transformation into 
a mechanism overall instability (e.g. wind 
flutter ponding instability) [Ellingwood – 
A58]. 

Serviceability 
(SLS) 
 
• Stiffness 
• Maintainability 
• Availability 

Structure 
under 
normal use, 
the comfort 
of people, 
and the 
appearance 
of the 
construction 
works. 

States beyond which 
the function of the 
structure no longer 
fulfills their normal 
operation purposes 
under expected 
responses to 
foreseeable actions. 

Loss of stiffness related to: 
• Excessive deflection or rotation affecting 

the appearance functional use or drainage 
of the building or causing damage to non-
structural components and their 
attachment; 

• Excessive local damage (cracking or 
splitting, spalling, local yielding or slip) 
affecting appearance use or durability of 
the structure; 

• Excessive vibration affecting the scope of 
use of the structure. 

Integrity (ILS) 
 
• Robustness 

Structure 
under 
normal use 
and 
accidental 
event. 

States beyond which 
the structure suffers 
of critical event. 

• Collision, Impact; 
• Explosion, Fire; 
• Human error; 
• Structural damage or failure; 
• Spread of initial local failure into 

widespread collapse (progressive collapse 
or lack of structural robustness). 
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1st level: Material point 

2nd level: Element section          Limit State Verification format 

3rd level: Structural element 

4th level: Structural system  � Structural Robustness Assessment 

 

Figure 5-1 - Levels of verification (Bontempi, 2006) 

It is extremely important to understand what types of structural failure could occur. For steel 

members the most important are: 

• Large local plasticity; 

• Instability; 

• Fatigue crackling related to cycling loading; 

• Ductile or brittle fracture, given fatigue cracking or preexisting defects; 

• Excessive deformation. 

The basic failure types do not occur simultaneously but more than one phenomenon may in 

principle be involved until the structure reached the ultimate limit state.  

As the external loads increase, the most highly stressed region inside the structural member 

will yield resulting in local plastic deformation, and this decreases the member stiffness. 

With further increase in the loads, local plastic deformation will grow larger and/or occur at 

several different regions. The stiffness of the member with large local plastic region 

becomes quite small and the displacements increase rapidly, eventually becoming so large 

that the member is considered to have failed. Instability can occur in any structural member 
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which is predominantly subjected to loads that results in compressive effects in the structure 

(Paik, 2003). 

5.1.2 U.S. Design codes methods 

In the U.S. design codes and standards are issued by diverse organizations, some of which 

have adopted Limit States Design. The American Concrete Institute (ACI) Building Code 

Requirements for Structural Concrete (ACI 318) uses Limit State Design. The ANSI/AISC 

360 Specification for Structural Steel Buildings, the ANSI/AISI S-100 North American 

Specification for the Design of Cold Formed Steel Structural Members, and The Aluminum 

Association's Aluminum Design Manual contain two methods of design side by side: 

• Load and Resistance Factor Design (LRFD), a Limit States Design implementation; 

• Allowable Strength Design (ASD), a method where the nominal strength is divided 

by a safety factor to determine the allowable strength. The design allowable strength 

is required to equal or exceed the effects of the factored loads for a set of ASD load 

combinations. ASD is calibrated to give the same structural reliability and 

component size as the LRFD method with a live to dead load ratio of 3 . 

Consequently, when structures have a live to dead load ratio that differs from 3, ASD 

produces designs that are either less reliable or less efficient as compared to designs 

resulting from the more rational LSD method. 

5.2 U.S. BRIDGE SAFETY CLASSIFICATIONS 

Safety and maintenance regulations applicable to all bridges over 20-feet (6 m) in length, 

located on publicly-owned highways and roads everywhere in the United States are 

formulated and enforced by the Federal Highway Administration (FHWA), through its 

Office of Bridge Technology. The bridge sufficiency rating is calculated per a formula 

defined in FHWA’s Recording and Coding Guide for the Structure Inventory and Appraisal 

of the Nation’s Bridges. This rating is indicative of a bridge’s sufficiency to remain in 

service. A bridge sufficiency rating includes a multitude of factors: inspection results of the 

structural condition of the bridge, traffic volumes, number of lanes, road widths, clearances, 

and importance for national security and public use, to name just a few.  

The FHWA defines structurally deficient bridges as those that "have been restricted to light 

vehicles, require immediate rehabilitation to remain open, or are closed." This classification 

should not be confused with "functionally obsolete," which are bridges whose capacities no 

longer support the roads they serve due to factors like inadequate lane width or load height 

clearance. Structurally deficient bridges are those considered the most likely to suffer 



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

STRUCTURAL SAFETY  42 

structural failure. Most structurally deficient bridges are left open to traffic while they 

undergo maintenance and repair.  

Bridges are considered structurally deficient if significant load carrying elements are found 

to be in poor condition due to deterioration or the adequacy of the waterway opening 

provided by the bridge is determined to be extremely insufficient to point of causing 

intolerable traffic interruptions.  

According to the American Association of State Highway and Transportation 

Officials (AASHTO) definition, a fracture critical bridge is a steel structure that is designed 

with little or no load path redundancy. Load path redundancy is a characteristic of the 

design that allows the bridge to redistribute load to other structural members on the bridge if 

any one member loses capacity. This designation is a function of the design of the bridge 

and not the condition. In fact, a brand new bridge can be fracture critical. If any of the 

fracture critical members, (steel tension member per AASHTO definition) fail, the bridge 

could be in danger of partial or total collapse. This does not mean the bridge is inherently 

unsafe, only that there is a lack of redundancy in its design.  

The National Bridge Inspection Standards (NBIS) require that a fracture critical inspection 

be performed at least once every 24 months on bridge members identified as fracture 

critical. The Silver Bridge collapse in 1967, which spawned the NBIS, was due to the failure 

if a fracture critical member.  The Mianus River Bridge collapse in Connecticut in 1983, 

which influenced the 1988 revisions to the NBIS, was also due to the failure of a fracture 

critical member.  The consequences of these major bridge failures have been severe.  They 

have included: loss of life; financial loss due to litigation; loss of capital investment in the 

bridge itself; economic loss to nearby businesses or industries that rely on the bridge for 

public transportation; loss of public confidence in bridge inspection programs and their 

ability to foresee or forestall such catastrophes (WSDOT, 2006). 

The criteria for performing a refined analysis to demonstrate that part of the structure is not 

fracture critical have not been yet fully codified. Therefore, the loading cases to be studied, 

location of potential damage, degree to which the dynamic effects associated with fracture 

are included in the analysis, and finesses of models and choice of element type should be all 

agreed on by the owner and the engineer. Relief from the full factored loads associated with 

the conventional design-load combinations should be considered, as should the number of 

loaded design lanes versus the number of striped traffic lanes. While difficult to quantify, 

the use of high-performance steel and the associated welding techniques can add further 

robustness to truss bridges.  

Fracture critical members can be found in steel truss systems. In general, most truss bridges 

employ only two trusses and are thus considered fracture critical. For inspectors, all truss 
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members in tension should be regarded as fracture critical members. The exception is, when 

a detailed analysis by an experienced structural engineer, verifies loss of a member would 

not result in collapse of the bridge or major component. The following elements within any 

truss bridge should also warrant special attention (WSDOT, 2006): 

(1) Pin-connections: Any pin connections on a truss bridge should be considered 

fracture critical. 

(2) Category D and E Welds: On a truss bridge, any tension member containing a 

Category D or E weld. 

5.3 STEEL BRIDGES 

Steel bridges are classified according to (ISDGA, 2012):  

• the type of traffic carried: 

o Highway or road bridges; 

o Railway or rail bridges; 

o Road and rail bridges. 

• the type of main structural system: 

o Girder bridges: Flexure or bending between vertical supports is the main 

structural action in this type. Girder bridges may be either: 

� plate girder (less than 50 m); 

� box girder (continuous span up to 250 m); 

� truss bridges (span range of 30 m to 375 m); 

o Rigid frame bridges (span range of 25 m to 200 m); 

o Arch bridges (span range of 200 m to 500 m); 

o Cable stayed bridges (span range of 150 m to 700 m); 

o Suspension bridges (long span bridges). 

• the position of the carriage way relative to the main structural system: 

o Deck Type: The carriageway rests on the top of the main load carrying 

members. In the deck type plate girder bridge, the roadway or railway is 

placed on the top flanges. In the deck type truss girder bridge, the roadway or 

railway is placed at the top chord level. 
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o Through Type Bridge - The carriageway rests at the bottom level of the main 

load carrying members. In the through type plate girder bridge, the roadway or 

railway is placed at the level of bottom flanges. In the through type truss 

girder bridge, the roadway or railway is placed at the bottom chord level. 

o Semi Through Type Bridge - The deck lies in between the top and the bottom 

of the main load carrying members. The bracing of the top flange or top chord 

under compression is not done and part of the load carrying system project 

above the floor level. The lateral restraint in the system is obtained usually by 

the U-frame action of the verticals and cross beam acting together. 

5.3.1 Steel Truss Bridges 

Truss bridges are one of the oldest types of modern bridges. They are used for their simple 

design and for the several others advantageous features. These kinds of bridges are still 

common in the United States.  

A truss is composed by triangles which are the strongest and most rigid geometric figure.  

The typology of trusses depends on the arrangement of the framework of triangles which 

creates different patterns. The arrangement of the members determines the specific truss 

type. By arranging the framework of triangles in patterns the structure acquired different 

appearances and served different purposes. The bearing members are able to resist forces 

primarily in tension and compression. Large gusset plates and numerous rivets are used to 

connect the truss members. Figure 5-2 shows the truss structural members 

   

Figure 5-2 - Truss structural members (Jones, 1976) 

There are also many “hybrid” trusses that do not fall into easily-defined categories. In such 

cases identification should be made as closely as possible in the terms of the standard 
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designs. Additionally, trusses often are inverted, creating outlines quite different from the 

original – tension members becoming compression members and vice versa.  

Most bridges trusses are of three basic types. If the deck and/or rails are at the same level 

with the bottom chords, it is a through truss. A pony truss is a through truss with no lateral 

bracing between top chords. A deck truss carried the load level with the top chords. See 

Figure 5-3.  

  

Figure 5-3 - Truss Bridges Identification: Nomenclature (Jones, 1976) 

The pony truss, the smallest type and ordinarily confined to lengths under 140 feet (42.5 m), 

most of which under 100 feet (30 m), is distinguished by its low profile and absence of 

bracing above the roadway.  The through truss by comparison is greater in length and height 

and consists of a tunnel, like structure that carries traffic through a system of overhead 

bracing which ties together the upper chords of the bridge. The choice of deck or through 

construction normally is dictated by the economics of approach construction. Designs 

created by English engineers Pratt and Warren, after demonstrating their strength and 

versatility on the railroads, became the preferred choice for building highway bridges.  After 

1890 almost exclusively fabricated of steel, connected at their joints with either pins or 

rivets, and became common sights on roads across the country and the epitome of 

America’s dependence on the steel truss bridge.  In the Pratt, vertical posts inserted between 

parallel chords carried compression while diagonal members sustained the stresses produced 

by loads moving across the bridge.  The Warren, whose popularity peaked in the twentieth 

century, employed a series of triangles in the web to support both compressive and tensile 

forces, generally but not always constructed with verticals to reduce panel size. When rigid 

joints are used, such trusses are favored because they provide an efficient web system. Most 

modern bridges are of some type of warren configuration. The design of truss bridges 

usually follows the specifications of the America Association of State Highway and 
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Transportation Officials (AASHTO) or the Manual of the American Railway Engineering 

and Maintenance of Way Association (AREMA) (King, 1993). 

Truss bridges are considered fractural critical structures. This means that there is a lack of 

redundancy in its design. The main failure modes for a steel truss are listed below (Crosti, 

2011):  

o Failure of truss connections such as the gusset plates and splices and supports; 

o Failure of the truss members: compression members of a truss bridge can fail in 

overall buckling or in a local buckling mode and members in tension can fail in 

yielding of the gross area or fracture of the net area; 

o Global instability failure of the truss: the compression chord can buckle and even the 

tension chord can move out of plane when the lateral braces are not stiff enough to 

provide the instability of the nodes. 
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6 STRUCTURAL INTEGRITY 

6.1 DEFINITION OF STRUCTURAL INTEGRITY 

Broadly, the term “integrity” recalls the concepts of wholeness and completeness which 

ideally are the requirements necessary to achieve the full functionality of any system. 

Indeed, in real life any structure may be subject to local abnormal loads in addition to 

conventional design loads, which are not considered to occur in its design life, causing 

adverse effect at a local level which could compromise the integrity of the whole system 

and therefore its designed/required functionality leading to a progressive collapse.  

In engineering terms structural integrity can be defined as the ability of a structure not to be 

damaged to an extent disproportionate to the original cause, such as local failure producing 

a fatal effect on the entire structural system. In recent guidelines this requirement is also 

referred to as Structural Robustness: the property of the structure to be insensitive to local 

failure to endure an outstanding action without being damaged in a disproportionate way 

respect to the triggering cause. Structural integrity can be enhanced substantially improving 

redundancy and ductility of structures the overall integrity to withstand abnormal or 

unforeseen loads. This can be done introducing alternate load paths or redundancy within 

reasonable ranges of cost and time or by enhancing member capacities and ductility. The 

structural system integrity is sensitive to: 

Continuous occurrence: 

• Environmental actions (Corrosion, Material deterioration, Age) 

• Anthropic actions (Fatigue, Additional retrofits loading, Increasing Traffic loading) 

 Discrete events: 

• Human error 

• Accidental (unintentional) events 

• Deliberate (intentional) attacks 

In Figure 6-1 the effect of the continuous and discrete events on the structural life path of a 

structure are represented. 

6.1 ROBUSTNESS AND REDUNDANCY 

Structural robustness and collapse resistance are research topics particularly relevant both in 

the design of new structures, and also for the safety assessment of existing structures. The 
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latter are prone not only to local failure due to accidental or malevolent attacks, but also due 

to long term material degradation (e.g. corrosion), bad design or construction.  

 

Figure 6-1 - Structural Integrity vs. Discrete event and Continuous occurrence (Crosti, 2011) 

Behind this attention, there is the interest from a society that cannot tolerate death and losses 

as in the past. This is more evident after: 

• recent terrorist attacks (a series of terror attacks in America and beyond, the deadliest 

being the September 11, 2001 attacks in New York at the World Trade Centre); 

• recent bridge collapses due to deterioration or bad design or bad construction (for 

example, the De la Concorde overpass collapse in Montreal, 2006); 

• difficult to foresee multiple hazard events from natural sources (wind, earthquake, 

flooding, wildfire, etc.) and from human sources (terrorism, fire, etc.) that lead to 

dramatic consequences, the most significant of which is the 2011 earthquake, off the 

Pacific coast of Tōhoku, that triggered powerful tsunami waves.  

Among all other steel structures, many steel truss bridges in their various forms, very 

common worldwide, are now aged, not often optimally maintained, and need to be checked 

equally for safety and for serviceability. In this sense, also the optimal cost effective 

allocation of resources and the prioritization in the retrofitting phase is a very important 

issue. 

Even though a variety of terms have been used in literature, robustness is commonly defined 

as the “insensitivity of a structure to initial damage” and collapse resistance as the 

“insensitivity of a structure to abnormal events” (Starossek and Haberland 2010).  
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Similarly, ASCE 7-05 (2005), defines “progressive collapse as the spread of an initial local 

failure from element to element, eventually resulting in collapse of an entire structure or a 

disproportionately large part of it”. Starossek and Haberland (2010) focus on the 

differences of progressive and disproportionate collapse, concluding that the terms of 

disproportionate collapse and progressive collapse are often used interchangeably because 

disproportionate collapse often occurs in a progressive manner and progressive collapse can 

be disproportionate. 

From a historical perspective, progressive collapse came up as the first structural 

engineering concern, just after the collapse of the Ronan Point Tower, a residential 

apartment building in Canning Town, London, UK, in May 1968, two months following 

initial occupancy of the building. Ronan Point was a 22-story building, with precast 

concrete panel bearing wall construction. An explosion of natural gas from the kitchen of a 

flat on the 18th floor failed an exterior bearing wall panel, which led to loss of support of 

floors above and subsequent collapse of floors below due to impact of debris (Ellingwood 

2002). 

Concerning the above mentioned topics, there has been a lot of research in the recent years. 

Starossek and Haberland (2010), provide a terminology. A review of international research 

on structural robustness and disproportionate collapse is provided in Arup (2011). 

Regarding the quantification of robustness related issues, Canisius et al. (2007) provide an 

overview of methods. Starossek (2009) covers issues related to progressive collapse. 

Bontempi et al. (2007), Arangio et al. (2011) and Sgambi et al. (2012) provide a 

dependability framework, adapted from the electronic engineering field, where 

dependability attributes are either related to structural safety or serviceability. Focusing on 

structural safety, the attributes of structural integrity, collapse resistance, damage tolerance 

and structural robustness are investigated. Strategies and methods for the robustness 

achievement are discussed in Bontempi and Giuliani (2008), together with the robustness 

assessment of a very long span suspension bridge.  

Even though many robustness research topics focus on explosions and terrorist attacks, as 

Table 1 suggests, there is a variety of reasons or events that could endanger a structure, 

eventually leading to a progressive collapse (Starossek and Haberland 2012). Potential 

failure scenarios specific for bridges are also provided in FHWA (2011), within a 

framework aiming at the resilience improvement. 

The collapse likelihood of a structure is typically characterized in probabilistic terms. When 

an unexpected or critical event occurs, Ellingwood and Dusenberry (2005) describe, in 

probabilistic terms, the probability of a collapse in a structure as the product of the 

probabilities of three sub events: 
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• The extreme action associated with the event hits the structure; 

• The structure is damaged in the area directly affected by the action; 

• The local damage causes failures of other structural elements and leads to the 

collapse of a significant part of the structure. 

Faults  Errors 

External Intrinsic   
Man-made (accidental or 
intentional) 

 Environmental 
(natural) 

    

Impact (car, train, ship, aircraft, 
and missile) 
Explosion (gas, explosives) 
Fire 
Excessive loading (live load) 

 

 

 

 

 

Earthquake 
Extreme wind 
Heavy snowfall (excessive 
roof loads) 
Scour 
Impact (avalanche, 
landslide, rock fall, 
floating debris) 
Volcano eruption 

 Lack of 
strength 
Cracks 
Deterioration 

 

 

 

Design errors 
Construction errors 
Usage errors 
Lack of maintenance 

Table 6.1-1 Abnormal events that could threaten a structure (from Starossek and Haberland 2012) 

The assessment of the risk associated with the event (commonly defined as the product of a 

probability of occurrence and of the corresponding consequence) can be performed using 

standard risk techniques. Several authors have focused on aspects of risk analysis and 

assessment in the civil engineering field - see for example Faber and Stewart (2003). Risk 

related special issues include the risk aversion for low-probability, high-consequence events 

(Cha and Ellingwood 2012) and the risk consistency in multihazard design for frame 

structures (Crosti et al. 2011). 

Focusing on disproportionate collapse in probabilistic terms, Ellingwood et al. (2007) 

decompose the probability of disproportionate collapse P[C] as a result of an abnormal 

event, into three constituents: abnormal event, initial damage, disproportionate failure 

spreading. This is represented as the product of partial probabilities: 

P[C] = P[C|D] P[D|E] P[E] 1 

 

where, P[E] is the probability of occurrence of the abnormal event E that affects the 

structure; P[D|E] is the conditional probability of the initial damage D, as a consequence of 

the abnormal event, and P[C|D] is the conditional probability of the disproportionate 

spreading of structural failure, C, due to the initial damage D. The safety of structures with 

regards to the single elements contained in the equation, each characterizing the single    

sub-event mentioned above, is pursued in modern structural codes by the introduction of 

partial safety factors.   
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According to this approach, Giuliani (2012) identifies three design strategies for obtaining 

robustness: 

• Prevention or mitigation of the effects of the event (increase collapse safety); 

• Prevention or mitigation of the effects of the action (increase structural integrity); 

• Prevention or mitigation of the effects of the damage (increase structural robustness). 

These strategies are schematically depicted in Figure 6-2. 

The assessment of structural robustness is also strongly related to the degradation state of 

the structures, caused by environmental agents: concrete carbonation, steel reinforcement 

corrosion, alkali aggregate reaction, freeze-thaw cycles can lead, over time, to an 

assessment of structural strength that is very different from that provided in the design phase 

(Biondini and Frangopol 2009). The effect of the above factors could compromise the 

structural response under a localized event.  

Furthermore, different structural systems exhibit different degrees of robustness (Wolff and 

Starossek 2010), something neglected even in modern design procedures that use partial 

safety factors. Another issue very important in determining structural robustness for bridges 

is redundancy. Bridge redundancy, is defined by Ghosn and Moses (1998) as the capability 

of a bridge to continue to carry loads after incurring damage or the failure of one or more of 

its members. This capability is due to redistribution of the applied loads in transverse and/or 

longitudinal directions. 

 

Figure 6-2 - Strategies for safety against extreme events and corresponding requirements (Giuliani, 2012) 

Moreover, the inherent uncertainty associated with actions and mechanical, geometric and 

environmental parameters cannot be ignored since they affect the structural response 

(Biondini et al. 2004, Ciampoli et al. 2011, Garavaglia et al. 2012, Petrini and Ciampoli 

2012).  
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Steel truss structures and bridges have been the subject of recent research on what concerns 

their ultimate strength and progressive collapse susceptibility. Choi and Chang (2009), 

focus on the vertical load bearing capacity of truss structures, using a sensitivity index that 

accounts for the influence of a lost element to the load bearing capacity. Miyachi et al. 

(2012) focus on how the live load intensity and distribution affect the ultimate strength and 

ductility of different steel truss bridges, similar to the one considered in this study. Malla et 

al. (2011) conduct nonlinear dynamic analysis for the progressive failure assessment of 

bridge truss members, considering their inelastic post-buckling cyclic behavior. Saydam and 

Frangopol (2011) use FE skills to investigate the vulnerability, redundancy and robustness 

of truss bridges, taking into account the stochastic time-dependent deterioration of the 

structure. 

Progressive collapse literature indicates extensive research has been performed for the past 

few years on steel moment frames possibly owed to the fact that different design guidelines 

are issued in the US by the General Service Administration (GSA 2003) and the Department 

of Defense (DoD 2009). Kim and Kim (2009) conduct nonlinear dynamic analysis on 

benchmark buildings (3, 6 and 15-story) and compare the results with more straightforward 

linear static step-by-step analysis. Using nonlinear dynamic finite element simulations, 

Kwasniewski (2010) investigates the collapse resistance of an 8-story steel framed structure, 

and inquire on the uncertainties affecting the problem. Izzuddin et al. (2008a), provide a 

framework for progressive collapse assessment of multi-story buildings, considering as a 

design scenario the sudden loss of a column. Using this framework, the same authors 

(Izzuddin et al. 2008b) investigate possible scenarios, in the form of the removal of either a 

peripheral or a corner column, in a typical steel-framed composite building. Yuan and Tan 

(2011) investigate the progressive collapse of a 9-story building, at a global level, using a 

numerical spring-mass-damper model. Hoffman and Fahnestock (2011) investigate different 

column loss scenarios on 3 and 4-story steel buildings, focusing on different aspects of the 

problem, among else, the load redistribution and the column lost location. Galal and          

El-Sawy (2010) compare retrofitting strategies for 18-story buildings with different spans 

using 3D nonlinear dynamic analyses. 

An important issue is the model complexity in the progressive collapse assessment. 

Alashker. et al (2011) deal with approximations in the numerical modeling, using a 10-story 

steel building as a case study, and compares four models of different levels of complexities 

(planar and 3D). Their conclusion is that, under restricted conditions, planar models can 

lead to reasonable results regarding the progressive collapse characterization, however, a 

full 3D analysis, in spite of its computational cost, may be the only sure way to rigorously 

investigate this aspect. Rezvani and Asgarian (2012), conduct different non-linear static and 
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dynamic analyses, among else, on an 8-story building, aiming at the progressive collapse 

assessment, and compare the results from the different analysis methods. 

A relevant issue related to the structural robustness evaluation, is the choice of proper 

synthetic parameters describing the sensitivity of a damaged structure in suffering a 

disproportionate collapse. Recently Nafday (2011) discusses the usefulness of consequence 

event design (as opposed to using a probabilistic approach), for extremely rare, unforeseen, 

and difficult to characterize statistically events (black swans). In this view, the author, with 

reference to truss structures, proposes an additional design phase that focuses on the 

robustness, the damage tolerance and the redundancy of the structure. This proposed metric 

is based on the evaluation of the determinants of the normalized stiffness matrixes for the 

undamaged and damaged structure. 

Concerning extreme loads on structures, a scientific debate takes place nowadays on the 

appropriate design methodology to adopt (see for example COST 2011). To this point, the 

member-based design is not efficient for contrasting extreme loads on structures that in 

general are unpredictable and not probabilistically characterized (Nafday 2011). Following 

the approach of HSE (2001) in the case of high uncertainties regarding the extreme loading 

likelihood, it is necessary to put emphasis on the consequences of the event.  

One class of structures that often incorporates elements whose localized failure would 

precipitate progressive collapse is functionally non redundant bridges. Their intrinsic       

non-redundancy can make them susceptible to progressive collapse due to the loss of a 

series of adjacent members in a single loading event. Truss bridges without primary 

redundancy are particularly sensitive to progressive collapse. They rely exclusively on the 

redundancy in the secondary structural resistance to provide some measure of robustness. 

The term structural robustness in this work is intended as the property of the structural 

system and it refers to the insensitivity to local failure (Starossek, 2006). 

Redundancy plays a dominant role in providing robustness and preventing progressive 

collapse. While it is a strongly desirable feature in structural systems, there is no accepted 

measure of the degree or distribution of redundancy in a structure. It may be defined in 

various ways besides the structural mechanics view of the number of resistances 

indeterminate by statics alone. One definition states that redundancy is “the absence of 

critical components whose failure would cause collapse of the structure” (Frangopol, 1987). 

Bridge redundancy is also defined in Gosh, 1998 as “the capability of a bridge to continue 

to carry loads after incurring damage or the failure of one or more of its members”. This 

capability is mainly due to redistribution of the applied loads in transverse and/or 

longitudinal directions.  
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In general, redundancy can be seen as a property of the undamaged structure and it has a 

major impact on the risk of collapse. The absence of redundancy in a structure (i.e. statically 

determinate structure) may more likely lead to progressive collapse in the event of local 

damage and clearly represents a non robust structure. On the other hand the presence of 

redundants (i.e. statically indeterminate structure) may or may not prevent progressive 

collapse depending on the robustness of the design and possibly on the existence of 

preexisting or hidden damage. Furthermore, even if in the primary action of the structure 

there is no redundancy, secondary action may introduce redundancy that can hinder 

progressive collapse and thus provide some measure of robustness. 
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7 STRUCTURAL STABILITY 

7.1 DEFINITION OF STRUCTURAL STABILITY 

Stable and unstable are words commonly used by everyone and in every field. Intuitively 

the term stable pictures something that is positive and rigid whereas unstable is connected to 

the possibility of a sudden loss of something. They are central concepts when studying the 

behavior of mechanical systems. In the civil and structural engineering field, these two 

words are the base of principles and theory for the structural design. 

Stability is an important constituent of the ultimate strength limits. Therefore it is extremely 

important to know under which conditions a structural system can be considered stable or 

not.  Establishing the limits for the stability of a structure allows the engineer to design a 

structural system that will have adequate margin of safety. A structural failure occurs when 

the stable limit state has been crossed and thus the system “falls” under an unstable 

condition.  

A structure or a member of it, in an equilibrium state (stable), may become unstable under a 

given set of load when a small change in load causes a large change in displacement. The 

structure is not able to acquire a new stable equilibrium state after being disturbed showing 

therefore “instability”. This instability can occur a different level: a local level (localized in 

a specific portion of a structure’s member), at a member level, when the whole member 

become instable and it may precipitate to global system instability.  

The load at which the structure ceases to be stable is usually referred to as “critical load”. At 

the critical load there are infinite numbers of possible deformed position. Once the load is 

above the critical point the deformed shape of the structure will tend to the next 

configuration of stability for the system with the lowest energy state. See Figure 7-1. 

 

Figure 7-1 - Schematic description of the bifurcation of equilibrium 
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For initially straight columns the point where instability occurs is called “bifurcation point”. 

Meaning the point at which the column suddenly goes from unstable to stable position. It 

only exist for perfect straight column, the strength of such perfect straight column with 

perfect central loading ad well defined restraints and linear elastic material properties is the 

Euler load Pe or “buckling” load. The term “buckling” is nowadays used to define 

instability in the broad sense but it actually refers to a specific case of instability.  

When the load applied reached the critical value (Pcr), or so called “buckling load”, the 

system enters the state of instability, or “buckling”. In general there are two types of 

buckling: bifurcation (initially straight columns) and limit load (any real structure which 

suffers of intrinsic imperfection by definition). 

In order to predict the load at which the instability occurs, the load-deflection curve must be 

investigated.  The curve can provide the critical load and also describe the equilibrium path. 

All structures deflect under loading and their behavior can be calculated using different 

methods as discussed by many authors (Galambos, 1968). The governing equilibrium 

equations of a structure can be written using different approaches which in turn reflect high 

order effect as shown in Figure 7-2.  

 

 

 

 

 

 

 

 

 

 

Figure 7-2 - Load-deflection curve 

This method of analysis can capture geometrical and material non linearities of the 

structure. The calculation of forces and deformations in the structure after yielding requires 

iterative trial and error process because of the non linearity of the load deformation 

response, and the change in the effective stiffness of the cross section at inelastic region 

associated with the increase in the applied load and the change in structural geometry. The 
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post buckling behavior of such column shows how the lateral displacement occurs only if 

the load increases. The increase in load is due to the elastic unloading of some fiber in the 

cross section, which results in an increase in stiffness. But at the same time increasing the 

load results in further yielding, stiffness continues to be reduced and the load deflection 

curve achieves a peak beyond which it falls off. 

Buckling loads for several simple configurations are readily available from tabulated 

solutions. Analysis software can also develop buckling loads. In real life, however, 

structural imperfections and nonlinearities prevent most structures from reaching their 

eigenvalue buckling strength predictions. 

Instability depends on a variety of factors ranging from geometric properties to material 

properties and boundary conditions. 

To discuss the effect of the initial imperfections on the column behavior under compressive 

axial load it is useful to look at the diagram in Figure 7-3 (Chen, 1987). Here there are a set 

of curves that describe the column behavior for different cases of imperfections. Curve (i) 

represent the Euler curve. Columns with initial crookedness or eccentric loads will laterally 

deflect at the instant a load is applied and show a load-deflection curve as (iia).  The load 

deflection is smooth and it tends asymptotically to the Euler curve. Curve (iib) and (iic) show 

a large drop because of the inelastic assumption. 

                             

Figure 7-3 - Load-deflection curves (Chen,1987) 

Beyond structural system stability and member stability there is a small but crucial further 

consideration: local stability. Member buckling strength cannot be developed if cross-

section elements are so thin that local buckling occurs first. If the full section is needed for 

(i) perfectly straight column 

(iia) column with small initial deflection  

(iib) column with large initial deflection  

(iii) column with eccentrically applied load  
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strength, premature local buckling would mean member failure. Because I and H shaped 

cross section with thin flanges are susceptible to this phenomenon, width/thickness ratio 

limits for elements are used to distinguish between compact sections capable of developing 

full member strength and noncom pact sections for which capacity is reduced by the 

reduction factor Qs  defined in the  (AISC, 2005) Specification Section E. Limiting values 

of width-thickness ratios are also given in (AISC, 2005) Specification Section B4 - 

“Classification of sections for local buckling”. 

7.2 BUCKLING OF A BUILT UP SECTION 

Three common types of built-up columns are illustrated in Figure 7-4. They are used when 

the loads to be carried are large or when a least-weight member or a member with similar 

radii of gyration in orthogonal directions is desired. Laced or latticed columns (Figure 7-4a) 

are frequently used in guyed antenna towers, in derrick booms, and in space exploration 

vehicles. In modern bridge construction perforated cover-plated columns (Figure 7-4b) are 

likely to be used rather than laced columns. Of the three, battened columns (Figure 7-4c) are 

the least resistant to shear and they are not generally used for bridge or building 

construction. Box columns with perforated cover plates designed to specification rules 

require no special considerations for shear effects (Ziemian, 2010). 

 

Figure 7-4 - Common types of built-up columns: (a) laced; (b) perforated cover plated; (c) battened 

(Ziemian, 2010) 

Perforated cover plates effect  

In the years before the Second World War a tendency developed, in the United States, to 

replace the lacing system or the batten-plates of built-up columns by perforated cover-
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plates. Lacing was ordinarily used on one flange only of a compression member. It was not 

counted as resisting compression and unbalanced the section. On the other hand, the 

perforated cover-plate metal could largely be counted in member area and tended to balance 

the section. Additional advantages of an economical nature resulted in a reduction of 

fabrication and maintenance costs of such members. Furthermore, it was soon realized that 

he perforated cover-plates increased the over-all stiffness of the members compared to laced 

built up columns and hence improved their behavior (White, 1956a,b). 

Tests were made to determine the mechanical properties of perforated plates. The results of 

the maximum compressive load test show that the net area of perforated plate columns may 

safely be used for estimating the strength of columns with perforated cover plates (Stang, 

1948). 

The studies performed by (White, 1956a,b) and (Stang,1948) refer to riveted built up 

columns with perforated cover plates. When perforated cover plates are used, the following 

provisions govern their design (Ziemian, 2010): 

o The ratio of length, in the direction of stress, to width of perforation should not 

exceed 2. 

o The clear distance between perforations in the direction of stress should not be less 

than the distance between points of support [i.e., (c − a) ≥ d in Figure 7-5a]. 

o The clear distance between the end perforation and the end of the cover plate should 

not be less than 1.25 times the distance between points of support. 

o The point of support should be taken as the inner line of fasteners or fillet welds 

connecting the perforated plate to the flanges. For plates butt welded to the flange 

edge of rolled segments, the point of support may be taken as the weld whenever the 

ratio of the outstanding flange width to the flange thickness of the rolled segment is 

less than 7. Otherwise, the point of support should be taken as the root of the flange 

of the rolled segment. 

o The periphery of the perforation at all points should have a minimum radius of 1½ in 

(38 mm). 

o The transverse distance from the edge of a perforation to the nearest line of 

longitudinal fasteners, divided by the plate thickness, that is, the b/t ratio of the plate 

adjacent to a perforation (see Figure 7-5), should conform to minimum specification 

requirements for plates in main compression members. 
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Figure 7.5a - Column with perforated web plates (Ziemian, 2010) 

In order to derive the carrying capacity of steel built-up columns, the following must be 

studied: 

• the elastic buckling load and the global behavior; 

• the local behavior of the chords; 

• the internal forces in the connecting members. 

 

Figure 7-5b - Column with perforated web plates (Ziemian, 2010) 

Timoshenko provides a methodology for calculating the critical load for a column with 

perforated cover plates. The properties of the net area can be used with sufficient accuracy. 

The element in Figure 7-6 (b) is considered to calculate the lateral displacement due to 

shearing force Q. 
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Figure 7-6 - Typical column with perforated cover plates (Timoshenko and Gere, 1961) 

The horizontal cross member in the final idealized element shown in Figure 7-6(c) can be 

considered infinitely rigid. The length of the vertical projections, treated as cantilever 

beams, will be somewhere between c/2 and a/2, where c is the length of a perforation. The 

value 3c/4 is reasonable and gives results that agree with experiments (Timoshenko and 

Gere, 1961).  

The equations used for columns with batten plates can be modified for this case. Since the 

cross member is infinitely rigid, the lateral displacement δ1 produced by the bending can be 

considered equal to zero. The displacement produced δ2 by the cantilever stubs can be 

obtained as follows: 

�� = �� ���� 	� 
��� =	 ����
��	��                                                           (2) 

Where If represents the moment of inertia of the flange of the columns, that is, the entire 

effective area of the column on the side of the z axis taken about the centroid of the flange 

(axis 1-1 Figure 7-6 (a)). The angular displacement due to Q is  

� = �1+�212� = 9��364����	                                                                         (3) 

and therefore 
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 ! = ���"�#��	                                                                                   (4) 

from which it is obtained 

$�% = &'��(' 


)*'+,-' . /0�123+,	4

                                                                    (5) 

as the critical load for a column with perforated cover plates (Timoshenko and Gere, 1961). 

Residual stresses effect 

Residual stresses in welded structures are unavoidable. High tensile stress exists in the weld 

areas. It changes to compression in the areas away from the weld.  

Fabrication by welding of built up sections introduces initial imperfections in the form of 

initial distortions and residual stresses and these may develop and affect the structural 

capacity.  

There is a large number of investigations which have been carried out theoretically and 

experimentally in order to evaluate buckling and ultimate strengths of rectangular plates and 

welded box sections with perforated cover plates with welding stresses and/or deformation 

under compression. In general it was found that welding residual stresses and deformation 

reduce the buckling and ultimate strength and their affects become greater for thicker plates 

(Ueda, 1978). 

Modeling and determining residual stresses induced by welding in the design phase of 

construction work may be a difficult issue.  

Simplified distribution of the stress state after welding maybe estimated by using the 

suggested distribution according to the used design code or literature review. When local 

heating is input to structural steels, the heated part will expand, but because of adjacent cold 

parts it will be subjected to compressive stress and distortion. When the heated part is 

cooled down, it will be locally shrunk rather than revert to its initial shape and thus now be 

subjected to tensile stress. Idealized pattern of residual stress distribution is shown in Figure 

7-7. The middle region of the plate is in compression before external loading is applied. The 

residual stresses are treated like any other load acting on the structure and super positioning 

these applied loads and stresses may give beneficial or detrimental effects for the structure.  

Investigations and researches had been developed in the past to investigate the effects of 

residual stresses on steel plate buckling capacity. These initial imperfections affect the plate 

behavior before, as well as after, the bifurcation point as shown in Figure 7-8 and Figure 

7-9. 
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Figure 7-7 - Schematic distribution of residual stresses in an edge welded plate (Nishino, 1966)  

 

Figure 7-8 - The influence of initial imperfection in relation to a perfect plate (Farshad, 1994) 

The elastic method used to calculate the critical stress level in a structural element subjected 

to compression can be straight forward but it leads to an upper bound solution. To capture 

the effects of initial geometric imperfections and residual stresses nonlinear models must be 

developed. 

For plates, the reduction in the elastic buckling strength depends largely on the patterns of 

the distribution of residual stresses and its magnitude. For columns with welded box 

sections it should be mentioned that the reduction of buckling strength due to the presence 

of residual stresses is similar to that found for buckling of plates with residual stresses. 

Moreover the residual stresses present in a column cross section influence the local buckling 

strength even in the elastic range. The effect on the elastic-plastic buckling depends greatly 

on the width to thickness ratio of plates (Nishino, 1969).  
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The behavior under these large deformations or simply called “post buckling” behavior is a 

complicated area to describe. Nowadays, the finite element methods is the most powerful 

and common tool to study the post buckling behavior and capacity of a plate. 

Under such initial conditions the post buckling equilibrium path becomes intricate. When 

the plate starts to buckle, the stresses are re-distributed in the plate showing how the 

ultimate load can significantly surpass the critical load level calculated according to elastic 

methods. Figure 7-9 shows schematically the influence on the behavior of a plate with or 

without residual stresses. 

   

Figure 7-9 - Schematic influence on the behavior of a plate with (curve S) and without (curve A) residual 
stresses 
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8 I-35 W BRIDGE COLLAPSE 

8.1 GENERAL DESCRIPTION 

The I-35 West Highway Bridge (I-35W) spanned across the Mississippi River, Minneapolis. 

The bridge consisted of a three span continuous Warren deck truss with a cantilever 

overhang at each end, and 11 multi-girder and voided concrete slab approach span. A view 

of the deck truss from the north side of the I-35W Bridge is shown in Figure 8-1.  

 

Figure 8-1 - View from the North side of the I-35W Bridge (NTSB, 2008b) 

The bridge was oriented north to south and it carried three 12-ft (3,65 m) wide traffic lanes 

and one 12-ft (3,65 m) acceleration/deceleration lane in each direction. The total length of 

the bridge including the approach and deck truss was 1,907 feet (581 m). The piers and 

spans were numbered from south to north. Spans 1 through 4 and a portion of Span 5 were 

referred to as south approach spans and were steel multi-beam spans with a length of 416 

feet (126,7 m) and a slight horizontal curvature. The deck truss made up a portion of Span 5, 

Spans 6 to 8, and a portion of Span 9 and the length of the truss portion was approximately 

1064 feet (324,3 m) with a 456 feet (139 m) long river span and two 380 feet (115 m) long 

side spans that included two cantilever overhangs approximately 38 feet long (11,5 m). A 

portion of Span 9 and Spans 10 through 14 were referred to as north approach spans and 

consisted of a 3-span continuous welded steel multi-beam module and a 3-span continuous 

voided concrete slab module having a length of 427 feet (130 m). The north end of the south 
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approach spans and the south end of the north approach spans were cantilevered over their 

respective piers and were supported on the ends of the center deck truss portion of the 

bridge. (NTSB, 2008b) 

The bridge was supported on reinforced concrete piers. The north and south abutments were 

stem wall-type abutments founded on piles. An elevation drawing of the entire bridge is 

shown in Figure 8-2 and a typical cross section through the deck truss at Pier 7 is shown on 

Figure 8-3. 

 

 

Figure 8-2 - Elevation of the I-35W Bridge (NTSB, 2008b) 

                          

Figure 8-3 - Typical cross section trough the deck truss at pier 7 (NTSB, 2008b) 

The bridge had been in continuous service since it was opened to traffic in 1967. The design 

was based on the 1961 AASHO Standard Specifications for Highway Bridges and 1961, 
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1962 Interim Specifications, and Minnesota Highway Department Standard Specifications 

for Highway Construction, 1964. 

The “As Designed” condition refers to the geometry of the design plans for the bridge as 

described in the previous paragraph.  

8.1.1 Materials  

The steel deck truss member and approach framing were fabricated using M.H.D materials 

as specified in Table 7.2-1. The concrete deck strength was specified at 4,000 psi (27 MPa). 

  MHD    ASTM 
FS (ASD) 

(psi) [MPa] 

FY 

(ksi) [MPa] 

FU 

(ksi) [MPa] 

Typical Steel  thickn. < 4” (10 cm) 3306 A 36 20,000 [138] 36 [250] 60 [410] to 80 [550] 

HSLA Steel Plates  thickn.< 3/4"(2 cm) 3310 A 441 27,000 [186 ] 50 [345] 70 [480] 

HSLA Steel Plates  thickn. >=3/4"(2 cm) 3309 A 242 27,000 [186 ] 46 [317] 67 [460] 

High Str. Alloy Steel  Marked QT 3318 A 514 45,000 [310] 70 [483] 90 [620] 

Rivets  7/8" diam. (2.2 cm) 3316, Type I A 195 20,000 [138 ] 38 [262] 68 [468] to 82 [565] 

Rivets  1" diam. (2.5 cm) 3316, Type IV A 406 20,000 [138 ] 50 [345] 68 [468] to 82 [565] 

High Strength Bolts  7/8” diam. (2.2 cm) 3391B, Style II A 325 20,000 [138 ] 37.4 [258] 53.15 [366] 

High Strength Bolts  1” diam. (2.5 cm) 3391B, Style II A 325 20,000 [138 ] 49.1 [338] 69.7 [480] 

Table 7.2-1 - Material Properties 

8.1.2 Design Loads 

The truss members were designed to resist a combination of Dead Load (DL), Live Load 

(LL), Impact (I), transverse Wind Load (W), Wind load on Live load (WL) and Centrifugal 

Forces (CF). The forces were combined as follows (Sverdrup, 1960): 

Group I  = DL + LL + I 

Group II = DL + 75 pounds W  

Group III = Group I + 30% W + WL + CF 

 

An H20-S16-44 was used for the live load design. A 26,000 pound (12 Ton) concentrate 

load was also used in combination with lane live load. Code prescribed loading reductions 

was used. 

The impact factors were applied to the live load as a function of the length of the loaded 

span and expressed as a percentage of the live load. The percentages varied from 13%  for 

the back spans to 9 %  for the mail span truss members. The cantilever overhangs at U0 and 

U0’ had impact forces of 21% and 17%, respectively. Floor trusses, verticals (except U8-

L8), and stringers received an impact of 30%. 
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The design was based on a maximum wind velocity of 100 miles per hour (161 Km/h) in 

accordance with the specifications. A temperature range from -30°F (-34°C) to 120°F 

(48°C) was considered with the design temperature equal to 45°F (7°C). In Table 7.2-2 are 

summarized the dead load description and values. 

Table 7.2-2 - Dead Load Description and values 

8.1.3 Composition of the Deck Truss 

The deck truss structural framing is shown in Figure 8-4. The same identifying nomenclature 

provided in (MnDOT, 2009) design drawings and inspection reports had been used. 

8.1.3.1 Main Trusses 

The three span continuous deck truss was composed of two main trusses, designated East 

and West (E and W), that made up the primary load carrying members of this structure. The 

east and west trusses were spaced 72ft-4in. (22 m) apart and were connected by 27 

transverse floor trusses spaced on 38-foot (11,5 m) centers along the truss and by two floor 

beams at the north and south ends. See also Figure 8-4. From south to north, the node 

locations of these trusses were designated 0 through 14 (mid-span) and 13′ through 0′. A U 

or L distinguished the upper and lower nodes at each of these locations respectively and 

these locations were referred to as Panel Points (e.g. Panel Point U8). 

DESCRIPTION LOAD REFERENCE 

Steel bridge structure Self-weight Sverdrup:1965, pp. 20-22 

6 ½” (16.5cm) concrete deck  81.2 psf* 3,88 kPa Sverdrup:1965, pg. 59 

Safety curb 558 plf* 830 Kg/m  

Median curb 500 plf* 744 Kg/m  

Median rail and guardrail 20.4 plf** 30.4 Kg/m  

South approach span  (72’-4”) (22 m)    

Deck 2,940 plf 4,37 Ton/m Sverdrup:1965, pp. 55 & 59 

Edge curb and rail 20.9 kip 9,5 Ton Sverdrup:1965, pp. 55 & 59 

Median curb and rail 18.8 kip 8,5 Ton Sverdrup:1965, pp. 55 & 59 

Girder steel 4.61 kip 2,0 Ton  

North approach span (129’-4¼”) (39.5 m)    

Deck 5,250 plf 8,6 Ton/m Sverdrup:1965, pp. 58 & 59 

Edge curb and rail 37.4 kip 17,0 Ton Sverdrup:1965, pp. 58 & 59 

Median curb and rail 33.6 kip 15,3 Ton Sverdrup:1965, pp. 58 & 59 

Girder steel 19.8 kip   8,9 Ton  

* 150 pcf (2403 Kg/m3) Normal Weight Concrete 

** 2’-3” Tall at 12’-6” o.c. spacing 5 WF 16 posts and two (2) 10 Ga. 12” deep Guardrails satisfying AASHTO M180 (ASHTOM:1961, pg. 

393). The design weight of guard rails and fastenings is 200 plf (AASHTO:1961, § 1.2.2, pg. 8). 
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Figure 8-4 - Deck Truss Structural Framing 

There were four types of members in the trusses: the upper chord members that extended 

the entire length of the truss, the lower chord members that extended between Nodes 1 and 

1′, vertical members that vertically connected like-numbered nodes on the upper and lower 
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chords, and diagonals that connected adjacent nodes of the upper and lower chords. See in 

Figure 8-5 the East truss elevation and the different type of members. 

 

 

 

 

 

 

Figure 8-5 - East truss elevation and types of members 

The members of the main trusses were composed of either box sections or H sections, 

connected using riveted joints at the nodes with gusset plates. The east and west sides of the 

box sections were referred to as side plates and the other two sides as cover plates. In many 

of the box members, one or both of the cover plates had access holes that are oval shaped 

and provided access for fabrication and inspection. The H sections have flanges that were 

welded to the web plate. The flanges and side plates were riveted into the gusset plates at 

the truss nodes. 

8.1.3.2 Deck and Stringers 

The deck of the bridge consisted of two reinforced concrete deck slabs separated by 

approximately 6 inches (15,24 cm). According to the design drawings, the cast-in-place* 

concrete deck slab had a minimum thickness of 6 ½ inches (16,51 cm) spanning one way 

east to west from stringer to stringer. Each deck slab carried four 12-ft-wide (3,65 m) traffic 

lanes and two 2-ft (60 cm) shoulders with interior and exterior barriers on both edges of the 

deck. The total width of the slabs was approximately 113 ft 4 in (34,5 m) as shown in Figure 

8-6. The stringers supported the deck directly and were placed on top of the floor truss top 

chords. The elements were continuous longitudinally except at Panel Points U4, U8, U14, 

U8’ and U4’, due to the presence of expansion joints in the deck. In these particular points 

Upper chord 

Lower chord 

Vertical  

Diagonal 
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there were also stringer expansions joints with one stringer end fixed to the floor truss top 

chord (the fixed side) and the other stringer end sitting on an expansion bearing support (the 

expansion side). The model had, in total, fourteen lines of stringers across the width of the 

deck truss all of which were W 27 x 94 sections.  

 

 

 

 

Figure 8-6 - Deck and Stringer Particular View 

At each floor truss (panel location) and between two adjacent floor trusses (mid-panel point) 

there were stringer diaphragms to maintain the structural rigidity and position. The general 

section for stringers diaphragms were C 15x33.9 while at deck expansion joint locations 

there were W 16x36 wide flange sections. 

 

113′ 4″ 

Stringers 

Expansion joint 

Stringer Diaphragm 

End Floor Beam 



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

I-35 WEST BRIDGE COLLAPSE  73 

8.1.3.3 Floor Trusses  

The floor trusses were designated FT and framed into the upper nodes of the east and west 

main trusses. The floor trusses were primarily made from hot rolled wide flange (WF) 

sections and cantilevers approximately 16 feet (4,9 m) past the east and west main truss 

upper chords. The upper chord of each floor truss was supported on and connected to the 

upper chords of the main trusses at the like-numbered nodes. The lower chord of each floor 

truss connected to the main truss vertical member approximately 12-feet (3,65 m) below the 

floor truss upper chord. The lower chord of the floor trusses were longitudinally braced with 

diagonal members (kicker braces) at floor truss nodes L4 and L9. The braces extended 

upward from the floor truss lower chord to deck stringers on the south side of the floor 

trusses from Nodes 1 through 14 and on the north side of the floor trusses from Nodes 13′ to 

1′. See Figure 8-7 for a floor truss general elevation. 

 

 

 

 

Figure 8-7 - General Floor Truss Elevation 

8.1.3.4 Portal and Sway Frames 

The trusses were braced by portal frames with K configurations at Panel Points L1, L1’, L8, 

L8’. At intermediate panel points and not at bearings, the main trusses were braced by sway 

frames. The K-type sway frames consisted of box shaped members that were oriented 

transversely to the main truss in the plane of the same-numbered truss nodes. The deeper 

sections of the variable depth deck truss, Panel Point 6 through 10 and 10′ through 6′, had a 

double layer of sway frames. The K configuration had a bottom strut connecting the lower 

nodes and in the presence of a double layer, an intermediate strut connecting vertical 

members of the main span at the point of mid-depth (between the lower node and the lower 

floor truss connection) providing lateral stability. Diagonals (the legs of the K shape) then 

spanned from the center of the struts to the vertical members on the main truss. The portal 

and sway bracing members were welded box sections without hand holes. In Figure 8-8 the 

Portal, Sway Frame and Floor Truss between Panel Point L0–L8 are shown. 

Main Truss  

Vertical  

Main Truss  

Vertical  
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8.1.3.5 Lower Lateral, Upper Lateral and Cantilever Bracing Members 

There were three types of bracing in the structure:  the upper lateral bracing for the upper 

chord of the main trusses, the lower lateral bracing for the lower chord of the main trusses, 

and the cantilever bracing for the cantilever portions of the floor beams outside the main 

trusses as shown in Figure 8-9. The lower lateral system was made up of diagonal members 

connecting lower chord nodes in the main truss and the center node of the bottom strut of 

the sway frame member at the next node immediately north of Nodes 1 through 13, and the 

lower chord nodes in the main truss and the center node of the bottom strut of the sway 

frame member at the next node immediately south of Nodes 13′ through 1′. 

 

 

Figure 8-8 - Portal, Sway Frame and Floor Truss between Panel Point L0–L8 

The upper lateral system was made up of diagonal members between upper chord nodes in 

the main truss and a connection at the center of the upper chord of the floor truss at the next 

node immediately north of Nodes 0 through 13, and between the upper chord nodes in the 

main truss and a connection at the center of the upper chord of the floor truss at the nodes 

immediately south of Nodes 13′ through 0′. An extension of the upper lateral bracing system 

existed for the cantilevered portion of the floor trusses, with diagonal members that 

connected east main truss Upper Nodes 2, 6, 11, 11′, 6′ and 2′ to the immediate north and 

south floor truss Upper-Chord Node 0, and diagonal members that connected west main 

truss Upper Nodes 2, 6, 11, 11′, 6′ and 2′ to the immediate north and south floor truss Upper 

-Chord Node 14. 

8.1.4 Piers and Bearings 

The main truss spans were supported on bearing assemblies at Piers 5, 6, 7, and 8 and are 

shown in Figure 8-10. A fixed bearing was provided for each of the main trusses at Pier 7, 

and expansion roller bearings were used at Piers 5, 6 and 8. The two expansion roller 

bearings at Pier 6 contain a lower bearing plate, four large diameter rollers, an upper bearing 

casting, a bronze domed casting, and a flange casting, which is bolted to the bottom of the 

node above. The bronze domed casting rests between the upper bearing casting and the 

flange casting, and these two members are held together with a hold-down stud. The 

L1 
L2 L3 

L4 
L5 L6 L7 L8 
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expansion roller bearings at Piers 5 and 8 are similar but contain three large diameter rollers. 

The spherical dome casting allows multi-directional rotation that provides concentric 

loading through the bearing. Overall height of the bearing assemblies (top of the concrete 

pier to the bottom of the truss) is 4 feet-11 ½ inches (1,5 m) for Pier 6 and 4 feet-1 inch (1,3 

m) for Piers 5 and 8. 

 

Figure 8-9 - Plan View of Lower Lateral and Upper Lateral System 

The fixed bearing assemblies at pier 7 do not allow any displacement of the truss relative to 

the top of the pier and has an overall height of 3 feet-6 inches (1 m). The individual bearing 

locations are designated by the pier number and as either East or West. Expansion rocker 

bearings are used at nodes U0 and U0′. These bearings support the connecting approach 

spans on the deck truss cantilevered ends. The rocker bearings consist of 1 foot-6 inch 

(45cm) tall rocker castings. 

 

A)                                        B)                                       C)  

Figure 8-10 - Bearings assemblies for each pier. A) Pier 5 and 8; B) Pier 7; C) Pier 6 
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8.1.5 Connections 

Many of the member’s connection were riveted. Welding was employed to build box 

members. The welded box, shaped members, except the top chord of the main trusses, had 

welded diaphragms near each end connections; the top chord members had bolted 

diaphragms. Additional intermediate diaphragms spaced at not more than 15 feet (4,6 m) 

were used for all box members. The wide-flange shapes in the floor truss were welded to 

gusset plate. High strength bolts were used primarily on the floor trusses. Shear connection 

between the deck and the stringers was accomplished with welded studs. The main truss 

was not design to be composite with the deck system.  

8.2  COLLAPSE DESCRIPTION 

8.2.1 Conditions at Collapse 

The gravity loading on the bridge at the time of the collapse consisted of: 

• Weight of structural steel and weight of concrete deck and concrete features 

including overlay material and other items that had been added to the bridge 

following the original construction.(“As Built” Condition). 

• Construction materials and equipment in the four lanes that were closed to traffic as 

part of an ongoing construction project. 

• Vehicle traffic in the four open lanes. 
 

“As Built” Condition 

The “As Built” conditions reflect all changes made during the service life of the bridge and 

increased the dead load on the structure. The bridge had been modified from its original 

construction in 1977 by the addition of a 2-inch-thick concrete overlay that was added to the 

deck on the main trusses and approach spans. In 1998 a new concrete face was added to the 

inside of the original rails along the exterior edges of the deck and new median barriers 

replaced the rail on the inside edges of the deck on both the truss spans and approach spans. 

Figure 8-11 a) shows the original exterior and interior barrier at the time of the design and 

Figure 8-11 b) shows the exterior and interior barrier added in the 1998 retrofit. Table 7.2-3 

summarizes the changes due to the Retrofit in 1977 and 1998 (NTSB, 2007). 

a)                                b)                                 

Figure 8-11  a) exterior and interior barrier as Designed in 1965, b) barriers at the time of the collapse 
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Construction Loading and Traffic at time of the Collapse 

At the time of the collapse roadway work was underway. The work involved removing and 

replace 2 inches thick (5 cm) concrete overlay. At the time of the collapse, four of eight 

lanes were closed to traffic. The preexisting wearing surface was still in place on the two 

inside lanes northbound, where the average deck thickness was 8.7 inches (22 cm). The new 

overlay was already in place on the two outside northbound lanes and the two outside 

southbound lanes. The surface of the two inside southbound lanes had been milled for the 

entire length of the bridge, removing about two inches of material. Based on interviews, 

photos, and weight tickets, the NTSB compiled the best estimate of construction loads and 

their respective position on the bridge at the time of the collapse. 

DESCRIPTION 
INITIAL DEAD 

LOAD 

CHANGES DUE TO 

1977 RETROFIT 

CHANGES DUE TO 1998 

RETROFIT 

Steel bridge structure Self-weight   

6 ½” concrete deck  81.2 psf 3,88 kPa  Add 21.1 psf  (1 kPa)  

Safety curb 558 plf 830 Kg/m  Add 333 plf (495  Kg/m) 

Median curb 500 plf 744 Kg/m  Add 1,060 plf (1,577 Kg/m) 

Median rail and guardrail 20.4 plf 30.4 Kg/m  Remove 20.4 plf (30,35 Kg/m) 

South approach span  (72’-4”)     

Deck 2,940 plf 4,82 Ton/m  Add 763 plf (1,25 Ton/m)  

Edge curb and rail 20.9 kip 9,5 Ton  Add 12.0 kip (6 Ton) 

Median curb and rail 18.8 kip 8,5 Ton  Add 37.6 kip (18.8 Ton) 

Girder steel 4.61 kip 2,0 Ton   

North approach span(129’-4¼”)     

Deck 5,250 plf 8,6 Ton/m  Add 1,360 plf  (2 Ton/m)  

Edge curb and rail 37.4 kip 17,0 Ton  Add 21.5 kip (10.75 Ton) 

Median curb and rail 33.6 kip 15,3 Ton  Add 67.2 kip (33.6 Ton)  

Girder steel 19.8 kip 8,9 Ton   

Table 7.2-3 - Load values due to the retrofit in 1977 and 1998 

Figure 8-12 shows the position of equipment and materials stages between Node 8 and 

Node 14. An estimate 578.5 kips (289 Ton) of construction loads were present in this 

region, including a total weight of 383,200 pounds of aggregate. Thanks to post accident 

vehicle positions, photographs, and witness statement, it was possible to determine the types 

and general position of the 111 vehicles on the bridge at the time of the collapse (NTSB, 

2007). 

Weather Conditions 

Weather at the time of the bridge collapse was clear and hot. Records from the University of 

Minnesota for the 24-hour period of August 1, 2008 show an air temperature at the 6:05 pm 

time of the collapse of 92.1 °F after a peak temperature reading of 92.9 °F at 4:30 pm. 
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Figure 8-13 is a temperature plot for August 1, 2007. Weather records at the nearby Lower 

St. Anthony Falls weather station indicated a peak of temperature of 93 °F. Weather records 

for this time of period also indicated light to moderate winds out of the southwest between 

10 to 18 mph.  

Figure 8-14 shows the wind and gust data for August 1, 2007.  No precipitation was 

recorder within 24 hours of the collapse. 

 

Figure 8-12 -  NTSB best estimate of construction loads and their respective positions on the bridge at the 
time of the collapse (NTSB, 2007) 

 

Figure 8-13 - Temperature plot for August 1, 2007 (NTSB, 2007) 
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Figure 8-14 - Wind and gust data for August 1, 2007 (NTSB, 2007) 

Bearings 

The truss span was supported by a fixed bearing at Pier 7 and three roller bearings at Pier 5, 

6 and 8 respectively. From the Mn/DOT’s June 2004 inspection report the bridge bearing 

were noted to being poor condition. All the roller bearing did not appear to be functioning 

uniformly as designed with section loss, flacking and surface rust with moderate corrosion. 

Figure 8-15 shows the URS photo of Pier 6W bearing Ù8. 

   a)              b) 

Figure 8-15 - a) 2003 URS photo of Pier 6W bearing U8 (WJE); b) Re-assembled Pier 6 bearing
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9 I-35W BRIDGE STRUCTURAL DECOMPOSITION 

Following the structural problem decomposition technique discussed in Chapter 3, the         

I-35W Bridge in this study has been partitioned as follows:  

Macro level: 

• Principal structural system with deck truss system and piers; 

Meso level:  Main substructures characterized by their specific roles: 

• Stringers and Deck. Resist and transfer applied vertical loads; 

• Main trusses. Resist and transfer to the piers the loads transferred by the stringer and 

deck system, the steel self-weight and the horizontal load transmitted by the portal 

system;  

• Portal. Provide lateral stability and transfer/adsorb lateral loads; 

• Piers. Transfer loads to the foundation system. 

Micro level: Single elements characterized respect to their smallest geometric dimension 

and specialized roles: 

• Vertical, diagonal, top and bottom chords members pertaining to the main truss 

substructure; 

• Floor truss and sway frame members in the portal substructure;  

• Concrete deck, stringers and diaphragm in the stringer and deck substructure. 

The partitioning for Macro (global) to Meso (substructure) to Micro (local) levels as shown 

in Figure 9-1 may be employed. More specifically, if attention focuses in a segment of the 

bottom chord of one truss, the decomposition in Figure 9-2 may be considered. 

In this multilevel approach the global response to any loading can be found from a coarse 

model at the Macro level after which, at the Meso level, a more refined model can give 

interaction of the Meso level structure with the selected focal elements.  

Finally, a very detailed model can be used to study the behavior of the selected bottom 

chord element at the Micro level. By this process all sensitivity elements or substructures at 

the Micro level can be analyzed in detail in order to assess potential failure and role in the 

robustness of the system. 
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Figure 9-2 - Structural parts identification used in the present study 
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10 MODELS AND ANALYSES 

The study is divided into the following tasks: 

• Develop a three dimensional (3D) global finite element model (FEM) of the whole 

bridge based on original drawings, design and construction specifications; 

• Conduct analysis of the global structure; 

• Develop a 3D FEM of a subsystem’s component. In particular this study focus on the 

rectangular built up member with and without perforated cover plates located on the 

bottom chord of the main lateral trusses; 

• Conduct subsystem’s component analysis.  

10.1 GLOBAL FINITE ELEMENT MODEL 

A global study of the whole bridge in the light of seasonal and daily temperature changes 

has been performed building a 3D FEM of the entire bridge. 

The effect of the seasonal and daily temperature changes, applied at different portion of the 

bridge, has been investigated for different bridge bearings conditions in order to evaluate the 

demand changes in the main truss members and in particular at the bottom chord member 

on both trusses. 

10.1.1 Model Description 

The 3D FEM of the deck truss portion of the bridge was realized using SAP2000 software 

(CSI, 2004). The SAP model is made up using frame element and it includes the main 

trusses, deck and stringers, floor trusses, portal and sway frames upper and lower lateral 

elements. Longitudinal restraint at all main pier bearings have been applied. Figure 10-1 is 

an overview of the 3D FEM. Figure 10-2 and Figure 10-3 are closer views of the side span 

and center span of the model, respectively.  

 

Figure 10-1 - Overview of the I-35W 3D Computer Model Solid view 
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Figure 10-2 - Side Span of the I-35W 3D Computer Model Solid view 

 

Figure 10-3 - Center Span of the I-35W 3D Computer Model solid view 

The truss was modeled using the geometries and member sizes outlined in the design plan 

using the following assumptions: 

• The vertical slope and the small horizontal curvature of the structure at both the north 

and south ends were neglected. 

• The two trusses were assumed to be identical. 

• The cross slope of the structure was neglected and thus both trusses have the same 

elevation. 

• All steel members were modeled with “space frame” members that have six degrees 

of freedom at each joint. 

• The beam members were placed along the centerlines of the actual members they 

represent between joints. 
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• The members are rigidly connected to the joints except where it is necessary to 

release certain forces per end support conditions. 

• The reinforced concrete deck was modeled with quadrilateral linear shell elements 

and each joint has six degree of freedom. The transverse and longitudinal deck joints 

were properly included in the model. 

• The Approach spans were integrated into the main truss model as point loads applied 

at each end of the main truss. 

• The material properties used are the same specified in the original design documents. 

• All main truss members were modeled with two elements along their length to ensure 

any effects that might occur during the buckling analysis. 

The material used for steel members and deck is listed in Table 10.1-1. 

Material 

Unit 

Weight 
Unit Mass E1 G12 U12 Fy Fu EffFy EffFu 

lb/in3 
[Kg/m3] 

Kip-s2/in4 

[Kg/m3] 
Kip/in2 
[GPa] 

Kip/in2 

[GPa] 
 

Kip/in2 

[MPa] 
Kip/in2 

[MPa] 
Kip/in2 

[MPa] 
Kip/in2 

[MPa] 

Steel A36 
0.28 

[7´800] 
8.9933E-07 

[0.79] 
29000 
[200] 

11500 
[79,3] 

0.3 
36 

[250] 
58 

[400] 
54 

[372] 
63.8 
[440] 

Concrete 
0.0868 
[2´400] 

2.248E-07 
[0.2] 

3605 
[24,855]  

1502 
[10,35] 

0.2 - - - - 

Table 10.1-1 - Material Properties 3D SAP Model 

10.1.1  Linear Static Analyses 

The accuracy of the SAP model was checked in a number of ways. Using structural loads 

and bearing conditions consistent with those assumed in the original design, member forces 

of interest and support reactions were compared to values listed in the original design 

drawings as reported in Table 10.1-2 and 

Table 10.1-3. 

This exercise indicated that the model was performing well, as the member forces obtained 

from the model were typically very close to the original design values.  

Member 

Dead Load 

As Designed  

Dead Load 

SAP Model 
Error 

Design 

Service Load 

Original Dwg. 

kips kN kip kN  kip kN 

L8-L9    2,543 c 11´311 2,566 c 11´414 1 % 3,420 c 15´212 

L9-L11 559 c 2´486 628 c 2´794 12 % 919 c 4´087 

L11-L13 1,311 t 5´831 1,116 t 4´964 14 % 2,011 t 8´495 

L13-L13’ 2,036 t 9´056 1,782 t 7´926 14 % 2,975 t 13´233 
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Table 10.1-2 - Truss Member Group I Design Forces 

 
 
 
 
 
 
 

 

 

 

Table 10.1-3 - Group I Reactions 

In order to estimate the effects of thermally–induced restraint forces in key structural 

elements the model has been subjected to a variety of temperature scenarios, consistent with 

the weather conditions at the time of the collapse and the maximum and minimum 

temperature values for the month leading up to collapse, and various bearing restraint 

conditions. All the analyses were performed in a linear elastic hypothesis. The variables 

used in the analysis are: 

• Uniform applied temperature 
Three different temperatures, listed in Table 10.1- 4, are chosen. 
 

 T ∆T 

Min temperature month leading up to collapse 59 °F 15 °C 12 °F 8°C 

Max temperature month leading up to collapse 102 °F 38.8 °C 57 °F 31.8°C 

Max temperature day of collapse 92.9 °F 33.8 °C 47.9 °F 26.8°C 

Table 10.1- 4 – Temperature applied to SAP model (∆T=T - 45 °F) 

• Bridge portion subjected to temperature 

The uniform temperature has been applied on the following bridge portions: 

• Main East Truss 
• Main West Truss 
• Bridge centerline to East truss 
• Centerline to West truss 
• All steel elements 
• All steel elements and deck 
 

• Bridge boundary conditions 

PIER 
SAP MODEL 

ORIGINAL 

PROJECT 
Error 

Kip  kN Kip kN % 
PIER 5_E 1,000 4´448 

1,098 4´884 8.8 
PIER 5_W 1,001 4´ 452 

PIER 6_E 3,698 16´449 
3,660 16´280 1.0 

PIER 6_W 3,699 16´543 

PIER 7_E 3,691 16´418 
3,589 15´964 2.8 

PIER 7_W 3,691 16´418 

PIER 8_E 1,058 4´706 
1,446 6´432 26.8 

PIER 8_W 1,058 4´706 
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The initial bearing conditions in the “As Design” conditions of the bridge described 

in Chapter 9 are represented in Figure 10-4. Two different boundary condition 

modeling approaches (BC CASE1, BC CASE2) have been used and are discussed in 

the next section. 

 

 

                                                                                                                                                       

Roller (R)  

Pin (P)  

Fix (F)  

Figure 10-4 - Bearing position and “As designed” restraints 

BC CASE 1: The first set of analyses has been carried out using roller, pin and fix 

restraints to model the bridge bearing conditions. The boundary conditions of the 

SAP model were changed alternatively to simulate the different stages of 

deterioration for a total of 27 possible combinations. Table 10.1-5 shows all the 

combinations used in the analysis. All the symmetric configurations have been 

deleted. The results obtained considering the supports restrained in such ways give 

an upper and lower bound estimate of the demand on the bridge load bearing 

members.  
 

Combo  PIER 5 PIER 6 PIER 7 PIER 8  Combo  PIER 5 PIER 6 PIER 7 PIER 8 

1 R R F R  12 F P F F 

2 P R F R  13 F F F F 

3 R R F P  14 F R F R 

4 P P F R  15 R R F F 

5 R P F P  16 R F F F 

6 P R F P  17 F R F F 

7 P P F P  18 P F F R 

8 F P F P  19 R F F P 

9 P F F P  20 F P F R 

10 P P F F  21 F R F P 

11 P F F F  22 P R F F 
      23 R P F F 
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Table 10.1-5 – Bearing Combinations 

BC CASE 2: To better understand the actual stress condition of the bridge on 

the day of the collapse, springs can be used to model the presence of concrete 

piers. Therefore, the stiffness of the piers has been estimated using the 

approximation shown in Figure 10-5 and Table 10.1-6. In particular, from 

inspection reports performed during the life of the bridge, Pier 6 showed 

accumulation of debris and corrosion. It is plausible to consider that the roller 

was not able to move as designed. The calculated Pier 6 stiffness has been 

implemented in the sap model adding a lateral spring element at Pier 6 supports 

and this model has been used for a second set of analysis (BC CASE2). 

 

 

                                 

 Figure 10-5 – Piers stiffness calculation 

• Load Combinations 
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The load combinations used are summarized in Table 10.1-7 and they represent 

combination of dead and live load existing on the bridge at the time of the collapse as 

well as the different temperature change scenarios.  

ELASTIC CRACKED 

K 1 column    K 1 column    

 [kip/in] [kN/m] [kip/in] [kN/m] 

Pier 5 4,28 74´934 2,99 52´349 

Pier 6 2,384 417´391 1,729 302´713 

Pier7  E  1,875 328´275 1,313 229´880 

Pier7 W 1,550 271´374 1,085 189´962 

Pier 8 104 18´208 73 12´781 

Table 10.1-6 – Piers  stiffness 

A =  D L + R E T + 1 2 ° F DL= bridge dead load; 
RET=additional load applied as 

results of retrofits;  
AUG= traffic and construction 
loads the day of the collapse 

(NTSB,2008b) 

B =   DL+RET+AUG+47°F 

C =  D L + R E T + 5 7 ° F 

D =  DL+RET+AUG+12°F 

E =  DL+RET+AUG+57°F 

Table 10.1-7 - Load Combinations 

10.1.2  Analyses Results  

10.1.2.1 BC CASE 1 

Among all the load combinations, the combination B (DL+RET+AUG+47°F) has been 

chosen for the purposes of this study since it is the one that considers the loads and 

temperature on the day of the collapse. Set the load combination, we can proceed discussing 

in detail the influence of the bearing conditions. Considering the restraints combinations 

listed in Table 10.1-5 has been found that the compression load increases when bearing 

combinations 5, 7 to 13, 19 and 23 are used, independently by the portion of bridge 

irradiated. The mentioned combinations are the most disadvantageous because they show an 

increase in demand in the bottom chord member L9-L11 West and East. Table 10.1-8 shows 

the maximum compression values of the member L9-L11 West and East. 

BEARING  

COMBINATION  

(Table 10.1-5) 

Axial force 

kip kN 

5 2,121 9´434 

7-13 2,165 9´633 
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19 2,268 10´090 

23 2,268 10´088 

Table 10.1-8 - Maximum compression force in L9-L11 member - Disadvantageous bearings combinations             
(BC CASE 1) 

Besides, the combinations 3, 6, 15, 17 and 21 give a positive contribute, relieving the 

compression in the member L9-L11. Listed in Table 10.1-9 are the maxim compression 

values of the L9-L11member between the west and east truss. 

BEARING  

COMBINATION  

(Table 10.1-5) 

Axial force 

kip kN 

5 1,190 5´294 

7-13 1,587 7´063 

19 1,190 5´293 

23 1,588 7´063 

Table 10.1-9 - Maximum compression force in L9-L11 member - Advantageous bearing conditions                                 
(BC CASE 1) 

10.1.2.1 BC CASE 2 

For the same load combination B (DL+RET+AUG+47°F), using the springs to model the 

stiffness of piers 6 the resulting maximum compression force in L9-L11 is shown in Table 

10.1-10. 

 Axial force  

 kip kN 

Dead Load 560 2´491 

Retrofit 130 578 

Aug1 80 355 

Temp. 1,090 4´848 
   

Total 1,860 8´273 

Table 10.1-10 - Maximum Compression force in L9-L11 (BC CASE 2) 

In the light of the forensic investigation the load combination which considers the actual 

loading condition on the bridge on the day of the collapse has been taken into account.  

The two boundary condition modeling approaches used show the sensitivity of the main 

members demand to the bearings support conditions. As the roller bearings gathered 

corrosion and debris ever larger forces were required to cause the bearing to move.  As a 

result, seized bearings turned a functionally non-redundant truss into an indeterminate 

structure.  This led to a significant increase of forces in the bottom chord as the temperature 

increased which were not accounted for in the original design (Cao, 2012).  
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Form the analyses set (BC CASE1) the upper bound results show a compression force in the 

member of about 2,300 kips (10´230 kN), the lower bound a compression force of about 

1,200 kips (5´337 kN). The model BC CASE2 where the spring at pier 6 has been used 

indicates a maximum compression force of 1,860 kips (8´274 kN) in the L9-L11 member. 

It becomes fundamental, in order to assess the bridge integrity and for the purposes of the 

forensic investigation, to investigate the buckling and post buckling capacity of the main 

truss bottom chord member L9-L11.   

10.2 LOCAL FINITE ELEMENT MODEL 

The study focuses on the effect of perforations and boundary conditions on the behavior of 

the built up member. This local-level model provided information on the post buckling 

behavior and capacity of the load bearing member using nonlinear buckling analysis. 

Different models have been used in order to understand the effect of perforation and 

boundary conditions. A three dimensional solid element model of the recognized critical 

load bearing member L9-L11 comprised of a welded built up section with perforated cover 

plates was constructed in Abaqus based on the original drawings Figure 10-6 and springs 

were applied to the member ends to simulate the effective boundary conditions between the 

individual element and adjacent members. 
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Figure 10-6 - Member L9-L11 shop drawings (MnDoT, 2012) 

10.2.1 Model Description 

All the models analyzed are built using continuum (solid) element C3D8R assembled to 

form a rectangular built up section. Some of the models included the opening on the top and 

bottom plates. A view of a typical 3D model is shown in Figure 10-7. The gusset plates are 

modeled only partially just to account of the extra steel thickness that they provide at the 

ends.  
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Figure 10-7 - Rectangular built up section with perforations – Overview 

 

Figure 10-8 – Built up section geometry 

Built up Section See (Figure 10-8)   

Top /Bottom plate Thickness = 0.5 in (1,27cm) Lateral plate Thickness = 0.94 in (2,38 cm) 

 Length = 20 in (50,8 cm)  Length = 28 in (71,12 cm) 

Total Area =72.64 in2 (468,6 cm2)   
 

Built up Member:    

Total Length = 922 in (23,41 m)  Total Volume = 63046.22 in3 (1,03 m3) 

Gusset plate and Perforated cover plate (Figure 10-9) 

Holes      Spaced  3’-6’’ (106 cm) center to center. 

GP   L9:   plate thickness = 1in (2,54 cm)       L11:   plate thickness = 0.5in (1,27 cm) 
            Offset from box section cut plane = 2in     Offset from box section cut plane = 2’’ 

 
 

GP 

Built up member 

    20 ’’  
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Figure 10-9 – Perforation spacing    

Material 
 
Two different types of steel materials, 50 ksi (345 MPa) and 36 ksi (250 MPa) steel, were 

used for the components in the 3D model. The steel was represented as an isotropic elasto-

platic material with the material properties shown in Table1 and the true stress-plastic strain 

curve shown in Figure 10-10. The stiffness, Poisson’s ratio, coefficient of thermal 

expansion and elasto-plastic properties of the steel were provided by NTSB and FHWA 

(NTSB, 2008c) and shown in Table 10.2-1.  A higher stiffness value was used for the 50 ksi 

(345 MPa) steel to take into account the real geometrical configuration of the whole gusset 

plate system at the panel point L9 and L10. In the Abaqus model the 36 ksi (250 MPa) steel 

has been used for the L9-L11 main truss lower chord member and the 50ksi (345 MPa) steel 

has been used for the gusset plate. Beyond the maximum input plastic strain, the material 

behavior would be assumed to be perfectly plastic. 

Material 
Elastic 

Modulus 

(ksi) 

[GPa] 

Poisson’s

ratio 

Density 

(lbm/in
3
) 

[Kg/m
3
] 

[Kg/m
3
] 

Yield 

strength 

(ksi) 

[MPa] 

CTE 

(in/(in-°F)) 

[mm/m/°C] 

Specific heat 

(Btu/lbm °F) 

[kcal/kg] 

Conductivity 

(Btu/(hr-in-°F) 

[kcal/m °C] 

36 ksi 
29,000 
[200] 

0.26 
0.28 

[7´850] 
36.0 
[250] 

6.5 x 106 
[0,0123] 

0.11 
[0,12] 

2.4 
[68] 

50 ksi 
31,900 
[220] 

0.3 
0.28 

[7´850] 
50.0 
[345] 

6.5 x 106 

[0,0123] 
0.11 

[0,12] 
2.4 
[68] 

Table 10.2-1 - Steel properties 

 

9.22’’ 10.78’’ 

    53.75’’  43’’  

10’’ 
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Figure 10-10 - Steel Stress-Strain Curves 

Boundary Conditions 

One important aspect to take care of, studying the structure following a decomposition 

approach, is the modeling of the exact boundaries conditions for the elements that has been 

extrapolated. The isolated subsystem model, in fact, lacks in the restraint offered by the 

subsystem. To consider the effective boundaries conditions for the local model springs 

elements SPRING1 were applied to model the connection with the global model. See Figure 

10-11. SPRING1 is a linear connectors; a spring between node and ground, acting in a fixed 

direction. 

The stiffness has been estimated using a formula for equivalent stiffness combination of 

springs as shown in Figure 10-12 and the values used in the model are shown in Table 

10.2-2.  

 

Figure 10-11 - Spring system - Revit Model Rendering (TT) 
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Figure 10-12 - Stiffness formula for spring system at panel point 

 
PP L11 PP L10 PP L9 

kx Fix Fix Fix 

ky 
7770 kip/in 

13607 kN/cm 
Fix 

7770 kip/in 

13607 kN/cm 

kz 
1470 kip/in 

2574 kN/cm 
Free 

1470 kip/in 

2574 kN/cm 

krx Fix Free Fix 

kry 
3E+8 in-lb/rad 

33900 kN m/rad 
Free 

4E+8 in-lb/rad 

45200 kN m/rad 

krz Fix Fix Fix 

Table 10.2-2 - Spring stiffness at panel point (PP) L9, L10, L11 (Pilkey,1994) 

10.2.2 Linear Buckling and Post Buckling Analyses 

A linear eigenvalue buckling analysis is generally used to estimate the critical buckling 

loads of stiff structures and may be sufficient for design evaluation. This type of analysis is 

a linear perturbation procedure, and buckling loads are calculated relative to the base state 

of the structure; but if there is concern about material nonlinearity, geometric nonlinearity 

prior to buckling, or unstable post-buckling response, a load-deflection analysis must be 

performed to investigate the problem further (Simulia, 2009). 

Geometrically nonlinear static problems sometimes involve buckling or collapse behavior, 

where the load-displacement response shows a negative stiffness, and the structure must 

release strain energy to remain in equilibrium. In a typical geometrically nonlinear static 

analysis, it is common for the analysis to diverge at the stability limit of the structure. To 

investigate the post buckling capacity other analysis method can be employed, such as a 

dynamic analysis procedure or a modified Riks method. 

The modified Riks method allows material non linearity, geometric non linearity and could 

predict complex unstable responses; often follows an eigenvalue buckling analysis to 

provide complete information about a structure’s collapse and can be used to speed 

convergence of ill conditioned or snap through problems that do not exhibit instability. This 

method is used for cases where the loading is proportional; that are where the load 
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magnitude is governed by a single scalar parameter. The load magnitude and the 

displacement are unknown variables and are solved together. The load could increase or 

decrease, depending on the structure’s stiffness. The Riks method uses the load magnitude 

as an additional unknown; it solves simultaneously for loads and displacements. Therefore, 

another quantity must be used to measure the progress of the solution; Abaqus/Standard 

uses the arc length along the static equilibrium path in load-displacement space. This 

approach provides solutions regardless of whether the response is stable or unstable. 

In Abaqus/Standard the Riks method can be used to solve post buckling problems, both with 

stable and unstable post buckling behavior. However, the exact post buckling problem often 

cannot be analyzed directly due to the discontinuous response (bifurcation) at the point of 

buckling. To analyze a post buckling problem, you must turn it into a problem with 

continuous response instead of bifurcation, which can be accomplished by introducing a 

geometric imperfection pattern in the “perfect” geometry so that there is some response in 

the buckling mode before the critical load is reached. Imperfections are usually introduced 

by perturbations in the geometry. Abaqus offers three ways to define an imperfection: as a 

linear superposition of buckling eigenmodes, from the displacements of a static analysis, or 

by specifying the node number and imperfection values directly. Only the translational 

degrees of freedom are modified. Abaqus will then calculate the normals using the usual 

algorithm based on the perturbed coordinates. Unless the precise shape of an imperfection is 

known, an imperfection consisting of multiple superimposed buckling modes can be 

introduced. The usual approach involves two analysis runs with the same model definition, 

using Abaqus/Standard to establish the probable collapse modes and either Abaqus/Standard 

or Abaqus/Explicit to perform the post buckling analysis. The Riks procedure can also 

analyze post buckling and collapse due to thermal straining. The loads generated by the 

thermal strain contribute to the “reference” load specified for the Riks analysis and are 

ramped up with the load proportionality factor. In Abaqus, nodal temperatures can be 

specified as “Predefined fields”. Any difference between the applied and initial 

temperatures will cause thermal strain if a thermal expansion coefficient is given for the 

material. 

The models used and the results of the analyses performed are discussed in the next section. 

10.2.3 Models and Analyses Results 

Different models have been used in order to understand the effect of perforation and 

boundary conditions.  

First, the eigenvalue analysis is used to obtain estimates of the buckling loads and modes. 

The numerical results of the buckling analyses obtained by detailed FEM models were 
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compared with results obtained from the hand calculation. For the  L9-L11 member, the 

hand calculation follows provisions of the AISC 360-05 Specification for Structural Steel 

Buildings (AISC, 2005), with the modified slenderness ratio (KL/r)m, and the Timoshenko 

theory for built up columns and plates, considering columns with perforated cover plates 

(Timoshenko,1961) as shown in details in Appendix A. 

The second phase of the study is the performance of load-displacement analyses using the 

Riks method, where imperfections consisting of the critical buckling modes obtained in the 

previous analyses are introduced as well as temperature loading and different boundary 

conditions.  

The following list summarizes the models used: 

• CASE 1 – Box – Without Perforated Cover Plates - Two supports;  

• CASE 2 – Box – With Perforated Cover Plates - Two supports; 

• CASE 3 – Box – Without Perforated Cover Plates – Three supports; 

• CASE 4 – Box – With Perforated Cover Plates – Three supports; 

At last, in order to investigate the behavior of the I-35W bridge bottom chord member, 

springs have been applied as well as temperature gradient in order to simulate as closely as 

possible the actual condition of the member the day of the collapse. 

• CASE 5 – L9-L11 member. 
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CASE 1 – Box – Without Perforated Cover Plates - Two supports  

In Case 1 a 3D solid element model comprised of a rectangular built up element without 

perforations has been analyzed. Three different support conditions have been considered. 

Figure 10-13 shows the deformed shape of the members into the elastic buckling and post 

buckling response and the related critical value.  

Simply supported member:  
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Figure 10-13 - Case 1 - Deformed shape into elastic and post buckling response 
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CASE 2 – Box – With Perforated Cover Plates - Two supports  

Case 2 analyzes 3D solid element models comprised of a rectangular built up element with 

perforations. Three different support conditions have been considered.  Figure 10-14 shows 

the deformed shape of the members into the elastic buckling and post buckling response and 

the related critical value.  

Simply supported member: 
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Figure 10-14 - Case 2 - Deformed shape into elastic and post buckling response 
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Figure 10-15 shows the applied load against the axial displacement of the reference node at 

the end of the member. 

 

Figure 10-15 - Force-Displacement curves comparison for CASE 1 and CASE 2 

Figure 10-15 shows that all the curves for the different models have a similar trend. It can 

be noted that the peak load is sensitive to the boundary conditions. In particular softening 

the supports reduce the critical load by 16% when the cover plates are perforated and by      

26 % when the cover plates are not perforated. 

It should also be noted that the critical load calculated using the AISC 360-05  K - values 

are reasonably close to the post buckling peak values whereas the eigenvalue obtained from 

the linear buckling analysis largely overestimate the capacity of the member. See Table 

10.2-3. 
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CASE 3 – Box – Without Perforated Cover Plates – Three supports 

Case 3 analyzes a 3D solid element models comprised of a rectangular built up member 

without perforations. Two different support conditions have been analyzed. Figure 10-16 

shows the deformed shape of the members into the elastic buckling and post buckling 

response and the related critical value.  

Fix-Roller-Roller member: 
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Figure 10-16 - Case 3 - Deformed shape into elastic and post buckling response 
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CASE 4 - Box – With Perforated Cover Plates – Three supports 

Case 4 considers 3D solid element models comprised of a rectangular built up member with 

perforations. Two different support conditions have been analyzed. Figure 10-17 shows the 

deformed shape of the members into the elastic buckling and post buckling response and the 

related critical value.  
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Figure 10-17 - Case 4 - Deformed shape into elastic and post buckling response 
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Figure 10-18 - Force-Displacement curves comparison for CASE 3 and CASE 4 

Figure 10-18 shows that all the curves for the different models have a similar trend. It can 
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imperfection. It can be seen in Figure 10-19 that the member without any temperature or 

initial imperfection has a quite large post buckling capacity. The critical load decreases and 

the curve sudden drops showing a poor post buckling capacity when imperfections and 

temperature are introduced in the model. 

 

Figure 10-19 – North West member - Load-Displacement curves 

The locations of the plastic hinges found in the Abaqus deformed shape shown in Figure 

10-21 match the visible deformation on to the recovered member after the collapse. Figure 

10-20 shows the location of the bottom chord member located on the bridge schematic 

overview as well as the deformed member recovered after the collapse.  

 

Figure 10-20 - View of the North West Side member L9’W -L11’W 

 

Figure 10-21 – Deformed shape into post buckling response  
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South West Side 

Secondary moments obtained from the global SAP model have been applied at L9, L10, 

L11 panel points. The post buckling deformation and force – displacement plot in  

Figure 10-22 shows a large drop which results in a sudden loss of capacity for the member 

and the formation of a plastic hinge, similar to the behavior of the North side L9-L11 

member. Once the capacity of the deformed member is overcome by the actual load the 

collapse is triggered.  

 
Figure 10-22 – South West member - Load-Displacement curves 

The post buckled deformed shape obtained has also been compared to the recovered 

deformed member and it is shown in  Figure 10-23 and Figure 10-24 the matching plastic 

hinge and deformations. 

 

Figure 10-23 –Deformed shape into post buckling response 

 

 

 

 

 

 Figure 10-24 - View of the South West Side member L9W-L11W 
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11 CONCLUSIONS 

The thesis has been developed in the frame of the forensic investigations into the causes of 

the collapse of the I-35W Bridge. The structural failure brought the bridge to 

catastrophically plunge into the Mississippi river on August 1st, 2007, in Minneapolis, MN, 

USA.  

The I-35W Bridge was a state of the art structure when designed and built in 1960s. It was a 

continuous truss bridge spanning 1000 ft. (305 m.) over four piers. Over the years, bridge 

inspectors had catalogued the roller bearing’s deterioration. However, no analysis had been 

performed during past retrofits design to ascertain if the bridge could withstand the large 

temperature swings common in Minneapolis. The combination of the increased weight of 

the bridge due to retrofits, construction vehicles, material stationed on the bridge and 

temperature load effect proved to be catastrophic for the lower chord member that spanned 

from L9-L11. Buckling of the bottom chord was the fuse that triggered the instability of the 

global system and initiated the collapse. 

The failure of the I-35W represents a major case-study for the evaluation of stability and 

integrity of a steel truss bridge. The aim of the work has been to investigate the bridge’s 

untested fragility using the multilevel analysis approach: globally its capacity to carry 

temperature loads and locally the post buckling behavior of the bottom chord member. In 

general, if a compression member has enough post buckled capacity, it can absorb some 

overstress and release it by deforming while still being able to carry the loads thus 

indicating a local source of robustness. For this functionally non-redundant bridge the 

initiating buckle and local plastic hinges resulted in a global instability and total collapse. 

The global-level model reproduced the entire bridge based on original drawings, design and 

construction specifications. The model has been verified by comparing results with the 

available original design calculations. Member forces and reactions based on as-designed 

conditions with the specified design loads were confirmed. The model served to investigate 

the bridge’s elastic behavior and its overall response to various loading conditions. In 

particular, from the global model it has been possible to evaluate the static stress condition 

on the bridge showing how some of temperature changes and possible deterioration of the 

designed supports could affect the load carrying members’ demand.  In the case of the         

I-35W Bridge the bearings were designed to accommodate both the static loads imposed by 

the superstructure’s self-weight and the dynamic forces generated by vehicle traffic, wind, 

temperature variations. The analyses performed highlighted how the non-functioning roller 

bearings would likely result in an increase in compression forces in the lower chords from 
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thermal expansion. This is particularly true in places like Minnesota where there are 

significant temperature extremes during the course of a year. 

As results of the global model analysis, two boundary condition approaches used showed 

the sensitivity of the main members demand to the bearings support conditions. Seized 

bearings turned a functionally non-redundant truss into an indeterminate structure. This led 

to a significant increase of forces in the bottom chord as the temperature increased which 

were not accounted for in the original design. In particular for the L9-L11 member, the 

upper bound results show a compression force in the member of about 2,300 kips (10´230 

kN), the lower bound a compression force of about 1,200 kips (5´337 kN). The model where 

springs at pier 6 have been used indicates a maximum compression force of 1,860 kips 

(8´272 kN) in the bottom chord member, L9-L11. 

In the light of the results obtained from the global analyses and in order to investigate their 

effect on the structural integrity and stability of this non-redundant bridge, it became 

fundamental to investigate the buckling and post buckling capacity of the member L9-L11.  

At a local level, different models have been used in order to understand the effect of 

perforations and boundary conditions on the L9-L11 member. The rectangular built up 

member has been modeled in Abaqus with and without perforated cover plates and 

nonlinear buckling analyses have been carried out.  

First, linear eigenvalue analyses have been used to obtain estimates of the buckling loads 

and modes. In the last part of the study load-displacement analyses using the Riks method 

have been performed, where imperfections consisting of the critical buckling modes 

obtained in the previous analyses were introduced as well as different boundary conditions. 

In order to represent as closely as possible the I-35W bridge bottom chord member, springs 

have been applied as well as temperature gradient in order to simulate as closely as possible 

the actual condition of the member the day of the collapse. Secondary moments from the 

global have also been applied to the element. 

The numerical results of the buckling analyses obtained by detailed FEM models were 

compared with results of hand calculated elastic buckling loads. In general, it has been 

found that the post buckling analyses using Riks method depict a critical compression load 

closer to the hand calculated critical value then the elastic buckling analysis. The  hand 

calculation follows provisions of the 2005 AISC 360 Steel Design Guide-Specification for 

Structural Steel Buildings with the modified slenderness ratio (KL/r)m, and the Timoshenko 

theory for built up columns and plates, considering columns with perforated cover plates 

(Timoshenko,1961) for the specific case of the member L9-L11 is shown in Appendix A.  
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The load-displacement curves obtained using the Riks procedure showed how the boundary 

conditions affect the maximum load as well as the perforations of the cover plates. The 

different cases analyzed where stiffer supports were used showed a higher critical load of 

about 16% than the critical load calculated using a rotation free support where the member 

doesn’t have perforated cover plates or 26% where the cover plates are perforated.  

In particular for the model that contains springs, temperature load and secondary moments, 

the critical load decreases and the load-displacement curve sudden drops showing a poor 

post buckling capacity when imperfections and temperature are introduced. The post 

buckling force – displacement plot shows a peak at about 2,000 kips (8´896 kN) which is 

comparable with the hand calculated buckling load in Appendix A. Once the maximum 

compression load is reached the load starts decreasing until there is a large drop at about 

1,700 kips (7´561 kN) which results in the formation of a plastic hinge and a sudden loss of 

capacity for the member. The demand on the member according to the global model is about 

1,800 kips (8´006 kN). Once the capacity of the deformed member is overcome by the 

applied load, the collapse of this non redundant structure is triggered. The post buckled 

deformed shapes obtained have also been compared to the recovered deformed members 

and it is shown in Figure 10-20 and Figure 10-24 the matching plastic hinges and 

deformations.  

The thesis focused on technical aspects and did not attempt to assign responsibility among the 

involved parties. Nevertheless, the results of the analyses carried out in this work have been 

used by Thornton Tomasetti (TT) to enrich a nonlinear bridge model that was developed by the 

firm in LS-DYNA during the forensic investigation. The simulation performed by TT 

confirmed that the evidence did not support the US National Transportation Safety Board 

conclusion that a lateral instability at the under-designed U10 gusset was the fuse that resulted 

in the collapse. Instead, the model confirms that collapse initiated by the buckling of the 

bottom chord best matches the bridge collapse video and local failure behaviors. The results of 

the forensic investigation performed by TT were used in the litigation trial and resulted in a 

settlement in the legal case between the survivors and those who lost loved ones in the bridge 

collapse against the firm who was hired by the State of Minnesota to evaluate the bridge 

structural integrity.  

The tragedy of the I-35 West Bridge collapse can serve as a cautionary tale for new taller, 

longer and lighter structures. As proven by history, at any time during the past, innovations 

and new technologies are developed and used in the design and construction bringing 

advantages but also carrying uncertainties related to the absence of solid experience or miss 

observations and care of the original intent of the design during the years. The effect of new 

technologies lasts beyond the design process. When all the steel is the same grade changes in 
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material strengths are not a critical focus of drawing revision and shop drawing review. 

However, as new stronger materials are introduced to the design their variety and potential 

impact on changes become important. In addition, the intent of the design innovations must be 

remembered in the inspection process as well. If a structure is lighter because it can move 

under a given loading condition, such as the temperature load effect, then the bearings and 

expansion joints must be maintained. In addition the structure needs to be thoroughly reviewed 

when retrofits take place. 

  



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

APPENDICES  112 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. CAPACITY CALCULATION OF L9-L11 

B. RIKS ANALYSIS 



Evaluation of stability and integrity of a steel truss bridge in a forensic investigation 

APPENDIX A  113 

APPENDIX A – CAPACITY CALCULATION OF L9-L11  

In the following paragraphs, the capacity of the member L9-L11, comprised of welded 

plates with perforations to form a built up box section, is calculated. The capacity is 

estimated using the AISC 360-05 Steel Guide as well as methodologies from the theory of 

plates (Timoshenko and Gere, 1961).  Figure A1-1 shows the net and gross cross sections of 

L9-L11, the built up box member with perforations herein studied. 

 

Figure A1-1 – Gross and Net Area of built up section with perforated cover plates 

A1. COMPRESSIVE CAPACITY CALCULATION USING AISC 360-05 

Using the dimensions shown in Figure A1-2 and according to Chapter B – Section B4  

Table B4.1 in AISC 360-05, the built up section is classified as non compact for local 

buckling. See Table A1-1. 

 

      
 

Figure A1-2 – Bottom chord L9-L11 cross section at perforation  

 

 

 
 

Table A1-1– Section classification according to Table B4.1 AISC 360-05 

TOP PLATES      
btp 20.00 in 50,8 cm  

thickness 0.50 in 1,2 cm  
hw 10.00 in 25,4 cm  

SIDE PLATES      

bsp 28.00 in 71,2 cm  

thickness 0.94 in 2,4 cm  

Λ_r  = 42.29  
 b/t = 40 top plates 
 b/t = 29.9 side plates 

b/t <λr NON-COMPACT 
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Following the provisions of Chapter E – Section E.3 (AISC 360-05), the compressive 

strength for flexural buckling of a member without slender elements is calculated. 

Section E.3 applies to compression members with compact and non-compact section as 

defined in Section B4, for uniformly compressed elements. The nominal compressive 

strength Pn, shall be determined based on the limit state of flexural buckling.  

                   $5 = 6�%78                 (6)      F: = ;'<=>?@' (7) 

The flexural stress buckling Fcr, is determined as follows: 

ABC ≤ 4.71G�6H or     6I ≥ 0.446H     6�% = L0.658OPOQR 6H (8) 

ABC > 4.71G�6H or     6I < 0.446H     6�% = 0.8776I  (9) 

Data: 

K = 1 E = 29,000 ksi Fy = 36 ksi L = 38.4 ft 
    200´000 MPa  250 MPa  1´167,5 m 
            

Top-sides Ag = 72.5 in2 
 

467,75 cm2 
    

r = 10.17 in 
 

25,80 cm  (KL/r) 45.3  

  
  

      

Fe = 139.29 ksi  960 MPa     
Fe >= 0.44*Fy Fcr = 32.31 ksi  222 MPa     
 Pn = Fcr Ag = 2342 kip  10´417 kN     

Net section Ag_n = 62.5 in2 403,23 cm2 
 (KL/r)eff  49.3  

r_n = 9.35 in 23,74 cm     
        

 
Fe_n = 117.8 ksi  812 MPa     

Fe >= 0.44*Fy Fcr_n = 31.68 ksi  218 MPa     
 Pn = Fcr An = 1980 kip  8´807 kN     

Sides only Ag_sides =  52.5 in2 338,71 cm2 
 (KL/r)side 57.0  

 
r_sides= 8.08 in 

 
20,5 cm     

 
  

  
      

Fe_sides = 88.07 ksi    607 MPa     

Fe >= 0.44*Fy Fcr_sides = 30.34 ksi  209 MPa     
 Pn = Fcr Agsides = 1593 kip  7´086 kN     

 

In particular it can be noted that using the critical buckling stress Fe for columns with 

perforated cover plates provided by the Eq. (5) shown again below the same capacity           

Pn = 1980 kip (8´807 kN) is obtained. 
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F: = π�EI=L@� 1
1 + π�EI=L@� Y 9c�64aEI\]

			 (5) 

where 

c = 20 in  71,12 cm Length of perforation 
a=  42 in  106,70 cm Distance between perforations 

 

Also, the compressive strength for torsional and flexural-torsional buckling of members 

without slender elements has been calculated for the L9-L11 member according to Chapter 

E – Section E.4 (AISC 360-05).  

Section E.4 applies to singly symmetric and unsymmetric members, and certain doubly 

symmetric members, such as cruciform or built-up columns with compact and non compact 

sections, as defined in Section B4, for uniformly compressed elements. 

The flexural stress buckling Fcr shall be determinate according to Equation (8) and (9), using 

the torsional or flexural-torsional elastic buckling stress, Fe, determined as follows: 

a) For doubly symmetric members 

           6I = ^&'�_`=abc@' + def 
�g)�P  (10) 

The following quantities are calculated as shown in Figure A1-3 (Seaburg and Carter, 1997) 

 

Figure A1-3 – Torsional constant from Seaburg and Carter, 1997 

Therefore: 

 
Fe_torsion = 7723.3 ksi  53´520 MPa   E4-4 

Fe >= 0.44*Fy Fcr_torsion = 35.9 ksi  247 MPa   E3-2 
 Pn = Fcr Ag = 2605 kip  11´587 kN  

 

 

J = 9271 in4  385,9 cm4 

Ix = 5953 in4  247,8 cm4 
Iy = 7492 in4  311,8 cm4 
G =  11,200 ksi  7´722 MPa 

Cw = 0  0  
Ag = 72.5 in2  467,7 cm2 
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Chapter E – Section E6 (AISC 360-05) addresses the calculation of the nominal 

compressive strength Pn of built up members composed of two or more shapes or plates 

with at least one open side interconnected by perforated cover plates or lacing with tie 

plates. Pn shall be determined in accordance with Section E3, E4, or E7 (AISC 360-05) 

subjected to the modification given in Section E6.1 (a) (AISC 360-05).  

(ii) For intermediate connectors that are welded or pre-tensioned bolted: 

�ac% 	h = i�ac% 	j� + 0.82 k'=
)k'@ � #%lm	�                (11) 

 

�ac% 	j =  Column slenderness of built up member acting as unit in the buckling 
direction being considered 

a = Distance between connectors 
ri = Minimum radius of gyration of individual component 

r ib = 
radius of gyration of individual component relative to its centroidal axis 
parallel to member axis of buckling 

h = 
Distance between centroids of individual components perpendicular to the 
member axis of buckling 

α = Separation ratio = h/2rib 
 

Therefore considering: 

Only Sides plates  

�ac% 	j = 45.33  
  YABC ]h = 147.6  

a = 42 in 106,70 cm Fe_m= 13.14 ksi 90,6 MPa 
ri = 0.27 in 0,68 cm Fe < 0.44*Fy   

r ib = 0.27 in 0,68 cm Fcr_m= 11.52 ksi 79,4 MPa 
h = 20.06 in 52,30 cm      

α = 37.07    Pn=FcrAg side= 605 kip 2´691 kN 
Ag_sides = 52.50 in 2 338,71 cm 2      

 

Sides plates + Cover Plate  

�ac% 	j = 45.33    YABC ]h = 55.03  

a = 42 in 106,70 cm Fe_mt= 94.50 ksi 651,6 MPa 
ri = 1.21 in 3,07 cm Fe>= 0.44*Fy  

r ib = 1.21 in 3,07 cm Fcr_mt= 30.69 ksi 211,6 MPa 
h = 20.06 in 52,30 cm      

α = 8.29    Pn=FcrAg eff= 1,918 kip 8´531 kN 
Ag_eff = 62.50 in 2 403,23 cm2      
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A2 BUCKLING CAPACITY CALCULATION USING PLATE THEORY 

In order to calculate the nominal compressive strength Pn  for local buckling of the built up 

section with perforated cover plates the elastic buckling stress Fe has been calculated using 

the theory of plates, and in particular using methodologies proposed in the buckling of thin 

plates (Timoshenko & Gere 1961). Figure A2-1 shows the perforated cover plate.  

   

Figure A2-1– Perforated cover plate 

The critical stress buckling Fcr has been determinated according to Equation (8) and (9) 

applying the adequate elastic buckling stress Fe calculated according to the different cases 

discussed in the following paragraphs.  

In order to study the local buckling of a simply supported plate uniformly compressed in 

one direction, the critical value of the compressive stress Fe is calculated using Equations 

(12) where the coefficient k is calculated using Table 9-1 from Timoshenko and Gere, 1961. 

Figure A2-Figure A2-2 shows the geometry of the rectangular plate assumed for the 

calculation. 

     

Figure A2-2 Rectangular plate assumed for the calculation  

F: = ko	π�E12=1 − ν�@ hb� (12) 

Data: 

h = 0.94 in  2,38 cm  Plate Thickness 
b = 28 in  71,12 cm  Plate Width 

a  42 in  106,70 cm Length of plate which is considered unsupported 
a/b = 1.5 

 
    

 
v = 0.3 

 
    Poisson’s ratio 

b 

a 
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Kp =  4.53 
 

Value from Timoshenko and Gere, 1961 –Table 9-1  

 

The local buckling of one unsupported edge local plate buckling is calculated assuming the 

length of the plate as the size of the opening in the cover plate, see Figure A2-3. 

 

Figure A2-3 – Rectangular plate assumed for the calculation – Size of opening in cover plate  

The elastic critical buckling flexural Fe is calculated using Equation (13) (Timoshenko and 

Gere, 1961). 

 

 

In which k is a numerical factor depending on the magnitude of the ratio a/b and is equal to: 

 

and D is the flexural rigidity of the plate calculated as follow 

D = 2188 kip-in 
 

247 kN-m D = Eh�12=1 − ν�@  
 

therefore 

 

  

 
Fe = 133 ksi    917 MPa (9-7) 

Fe >= 0.44*Qs Fy Fcr = 32.15 ksi 
 

222 MPa (E3-2) 
 Pn = Fcr Aside= 1688 kip  7´508 kN  

F: = k	π�Db�h  (13) 

k_p u=  3.15 
 

Value from Table 9-2 from Timoshenko and Gere, 1961	

Fe = 92.9 ksi    640 MPa (9-7) 
Fe >= 0.44*Qs Fy Fcr = 30.61 ksi 211 MPa (E3-2) 
 Pn = Fcr Aside= 1607 kip  7’148 kN  

b 

a 
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Appendix B – RIKS METHOD 

B1 STATIC POST BUCKLING USING THE MODIFIED RIKS METHOD  

This research made use of the ABAQUS finite element analysis package for the stability 

analysis of a built up member. Two different methodologies exist for the buckling and post 

buckling problems (ABAQUS Theory Manual, 2007): 

1) Eigenvalue buckling prediction   

ABAQUS/Standard contains a capability for estimating elastic buckling by eigenvalue 

extraction. This estimation is typically useful for stiff structures, where the pre-buckling 

response is almost linear. The buckling load estimate is obtained as a multiplier of the 

pattern of perturbation loads, which are added to a set of base state loads. The base state of 

the structure may have resulted from any type of response history, including nonlinear 

effects. It represents the initial state to which the perturbation loads are added. The response 

to the perturbation loads must be linear up to the estimated buckling load values for the 

eigenvalue estimates to be reasonable.  

2) Modified Riks algorithm  

It is often necessary to obtain nonlinear static equilibrium solutions for unstable problems, 

where the load-displacement response can exhibit the type of behavior as shown in Figure 

B-1 that is, during periods of the response, the load and/or the displacement may decrease as 

the solution evolves. The modified Riks method is an algorithm that allows effective 

solution of such cases. 

 

Figure B-1: Typical unstable static response 

In this algorithm, it is assumed that the loading is proportional that is, that all load 

magnitudes vary with a single scalar parameter. In addition, the response is assumed to be 

reasonably smooth, meaning that sudden bifurcations do not occur. The essence of the 
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method is that the solution is viewed as the discovery of a single equilibrium path in a space 

defined by the nodal variables and the loading parameter. Development of the solution 

requires this path be traversed as far as required. 

The modified Riks method in Abaqus finds static equilibrium at the end of each increment. 

However, unlike regular nonlinear static analyses, the load magnitude is also a solution 

variable. It can increase or decrease to satisfy static equilibrium, allowing the response to 

vary no monotonically.  

Since both loads and displacements are unknowns, the concept of arc length is introduced. It 

is the distance along the equilibrium solution path in load displacement space. This measure 

is used to control the automatic time increment algorithm.  

The results of interest are the current displacements which are available in the normal 

manner, and the current value s of the loads, which are given by referring to a load 

proportionality factor, identified by output variable LPF.  

The concept of proportional loading is important in Riks method analysis, especially when 

using a multiple analysis steps. The current magnitude of the load in the structure is given 

by   Ptotal  = P0  + LPF (Pref – P0) where Pref  is the load pattern defined in the current RISK 

step. P0 is the “dead load” (that is, any load or boundary condition applied in the previous 

step), and LPF is the load proportionality factor. Again, the LPF, may increase or decrease 

as the solution proceeds and is printed in the status file. It is worth noting the generality of 

the loading possibilities: that the “live” load, which is scaled up or down by the Riks 

algorithm, is added to any set of “dead” loads on the structure. The “live” load may be 

mechanical or thermal (or a combination of both). 

The following Figures B-2 and B-3 show a close out of the model and the deformed shape 

using the two different methodologies. 

 

Figure B-2 – Abaqus Local Model –Elastic Buckling 
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Figure B-3 –Abaqus Local Model – Post buckling behavior – RIKS method  
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