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Abstract

Recent advances in DNA sequencing have changed the field of genomics
as well as that of proteomics making it possible to generate gigabases
of genome and transcriptome sequence data at substantially lower cost
than it was possible just ten years ago. In recent years, many high-
throughput technologies have been developed to interrogate various
aspects of cellular processes, including sequence and structural vari-
ation and the transcriptome, epigenome, proteome and interactome.
These Next Generation Sequencing (NGS) experimental technologies
are more mature and accessible than the computational tools available
for individual researchers to move, store, analyse and present data in
a user-friendly and reproducible fashion. My research work is placed
in this scenario and focuses on the analysis of data produced by NGS
technologies as well as on the development of new tools aimed at solv-
ing the different problems that arise during NGS data analysis. In
order to achieve this aim, my group and I have dealt with several open
biomedical problems in collaboration with different research groups of
the Sapienza University. Some of these experiments have already given
interesting results but mostly have represented the occasion and start-
ing point for the development of new tools able to improve some crucial
steps of the analyses, solve problems derived by the system complexity
and make the results easier to understand for the researchers. Some ex-
amples are IsomirT, a tool for the small RNA-Seq analysis and isomiR
identification, Phagotto, a tool for analysing deep sequencing data de-
rived from phage-displayed libraries and FIDEA, a web server for the



functional interpretation of differential expression analysis. Recent re-
ports have demonstrated that individual microRNAs can be heteroge-
neous in length and/or sequence producing multiple mature variants
that have been dubbed isomiRs. IsomirT is a useful tool to improve and
simplify the search for isomiRs starting directly from the results of a
miRNA-sequencing experiment. By using it, we observed the behaviour
of isomiRs in different cell types and in different biological replicates.
Our results indicate that the distribution of the microRNA variants is
similar among replicates and different among cells/tissues suggesting
that the isomiRs have a functional role in the cell. The use of the
NGS technologies for the analysis of antibody selected sequences both
using phage display libraries and in vitro selection processes is becom-
ing increasingly popular. By using these technologies, the experimen-
tal group headed by prof. Felici has introduced a new experimental
pipeline, named PROFILER, aimed at significantly empowering the
analysis of antigen-specific libraries. A key step to exploit this idea
has been to develop a new tool, Phagotto, for processing and analysing
the data derived by sequencing. PROFILER, in combination with
Phagotto, seems ideally suited to streamline and guide rational anti-
gen design, adjuvant selection, and quality control of newly produced
vaccines. The publicly available web server FIDEA allows experimen-
talists to obtain a functional interpretation of the results derived from
differential expression analysis and to test their hypothesis quickly and
easily. The tool performs an enrichment analysis i.e. an analysis of
specific properties that are distributed in a non random fashion in the
up-regulated and down-regulated genes, taken both together and sep-
arately. It has been shown to be very useful and is being heavily used
from scientists all over the world, more than 1500 requests for anal-
ysis have been submitted to the server in six months. Furthermore,
during the course of the PhD I implemented pipelines for the speeding
up and optimization of protocols for NGS data analysis and applied
them to biomedical projects. Of course not all the proteins have a com-
plete functional annotation and consequently the issue of predicting the
function of proteins with a partial or no functional annotation arises.



This can be done both by exploiting the 3D structure of the protein
or by inferring the function directly from the sequence. A real chal-
lenge, however, is the assessment of the accuracy of existing methods.
In this context the help that critical assessment experiments can give
is essential. We have had the possibility to be involved, as assessors,
in the world wide experiment CASP (Critical Assessment of protein
Structure Prediction). In particular, we are involved in the assessment
of the residue-residue contacts in which the participant groups provide
a list of predicted contacts between residues that hopefully can be used
as constraints to fold the protein. We proposed and implemented new
methodologies to understand which method works better and where
future efforts should be focused.
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1

Introduction

1.1 The next generation sequencing technologies

Since the Human Genome Project ended, biomedical research has witnessed a re-
markable explosion in sequencing technologies that permit to ask a large number
of questions about the genome. Some questions have been already been answered
at an unprecedented speed and resolution (1) with the aid of multiple technologies
which have contributed to the transition (2) from Sanger sequencing (first gener-
ation) to a much higher throughput “next generation” sequencing (NGS) (3; 4).
These systems use different chemistry and offer unique benefits, which have been
summarized elsewhere (5; 6). The common idea of these technologies is that fol-
lowing nucleic acid fragmentation and a series of ligation reactions and amplifica-
tion steps, sequencing by synthesis is performed and millions of 35-400 bp (base
pair) sequences, named reads, are created. Even though the reads are shorter
than the sequences generated by Sanger system, these technologies have the ad-
vantages to generate gigabases of genomic data in a single experiment (5) and
at substantially lower cost and time than was possible just ten years ago (7).
These high-throughput technologies have been applied to investigate various as-
pects of cellular processes, including the transcriptome, epigenome, proteome and
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1. INTRODUCTION

interactome (8), and therefore they have changed the field of genomics as well as
that of proteomics (7). Whole transcriptome sequencing (RNA-Seq), used to deci-
pher gene expression patterns, has become the most popular application and many
articles (9; 10; 11; 12; 13) have asserted their advantages over the microarray plat-
forms. Moreover, RNA-Seq can identify transcripts arising from gene fusion events
(which are typical in cancer (14)) and can detect novel classes of non-coding RNAs
(ncRNAs) such as large intergenic non-coding RNAs (lincRNAs) (15). Further-
more small RNA transcriptomes can be sequenced by using this system that can
identify expression patterns as well as unveil novel microRNAs and other short
RNAs (16). Chromatin immunoprecipitation coupled with deep sequencing (or
ChIP-Seq) has also been used to isolate genomic regions that are bound by tran-
scription factors or other DNA binding proteins (17) or to identify regions marked
by histone modifications. In addition, high-throughput methods are being used to
look at DNA looping or methylation patterns (i.e. MeDIP-Seq) (18), to provide
a snapshot of long-range interactions among regions of DNA (chromosome con-
firmation capture) (19) or to define genetic and signalling pathways (i.e, through
large-scale RNAi screens) (20; 21; 22; 23; 24).
Nowadays NGS technologies are more mature and accessible than the computa-
tional tools available to individual researchers to move, store, analyse and present
data in a user-friendly and reproducible fashion (25).
My research work is placed in this scenario and focuses on the analysis of the
data produced by NGS technologies, as well as on the development of tools able
to improve some critical steps of the analyses, solve problems derived by system
complexity and provide user friendly results.

1.2 Functional interpretation of differentially ex-

pressed genes

Analysis of high-throughput data typically provides scientists with a list of hun-
dreds to thousands of differentially expressed genes or proteins. Although this
list is extremely useful for the identification of genes that may be involved in a
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1.2 Functional interpretation of differentially expressed genes

given phenomenon or phenotype, it often fails to provide a functional interpreta-
tion of the underlying biology of the condition being studied (26). The advent of
high-throughput technologies permits to face a relevant issue, i.e. to extract the
biological meaning and interconnections in a long list of differentially expressed
genes. The standard approach consists in identifying groups of genes that oper-
ate in the same biological processes or pathways or have the same components or
structures. This allows the identification, among the listed genes, of the functional
categories to which they belong to. This approach is very useful for two reasons.
First, it reduces the complexity of the analysis considering only a hundreds of
functional categories for the experiment. Second, identifying active functional cat-
egories that differ between two conditions can have more explanatory power than
a simple list of different genes or proteins (27). The first step of the functional
analysis is often an enrichment analysis that is usually performed by statistically
assessing whether a pathway or process is enriched in a given list of genes (26). In
general an enrichment analysis on differentially expressed genes uses one or more
variations of the following strategy (28; 29; 30; 31; 32; 33; 34). For each functional
category, the genes that are involved in the specific category are counted. This
process is repeated for an appropriate background (e.g., all expressed genes in a
RNA-Seq experiment). Finally, all functional categories are tested for over- or
under-representation by using a hyper-geometric, chi-square, or binomial distribu-
tion (35; 36). An enrichment analysis can be performed using different annotations
of the genes such as KEGG pathways (37), Interpro (38), Gene Ontology Molecular
Function, Biological Process and Cellular Component categories (39). Surely, the
correct interpretation of the results is much more effective if associated to a deep
knowledge of the biological system at hand and should, therefore, be preferentially
done by the experimentalists. However, the experimentalists are not always suf-
ficiently expert in exploiting different tools and databases and comparing results
obtained from different experiments, although numerous public servers (such as
DAVID (35; 40), g:Profiler (41; 42), Gorilla (43), High-Throughput GoMiner (44),
Babelomics (45) and GeneCodis 3 (46)) allow functional enrichment analysis given
a list of genes. For this reason I decided to provide a more user-friendly tool for
the analysis of data from a functional view point. The system is called FIDEA
and will be described in detail in Chapter 3.
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1. INTRODUCTION

Another issue regarding the functional characterization is that, despite the
large number of annotations available, a surprisingly amount of genes is still not
annotated and many of the existing annotations are incomplete or inaccurate. For
instance, for Homo Sapiens, ∼50% of the GO annotations in the October 2013
release are not curated manually (since they are characterised by an evidence
code inferred from electronic annotations) and have a lower quality than those
annotations derived by direct experimental evidence (47).

Despite many efforts, a manual annotation of the entire genome is expected
to take a very long time (∼13-25 years) (48). Therefore the issue of predicting
the function of proteins with a partial or no functional annotation arises and
consequently improving the coverage and accuracy of functional annotation has
now become the real challenge. In general this can be done by inferring the function
directly from the sequence or by exploiting the knowledge or a computational
prediction of the 3D structure of the protein.

1.3 Protein function prediction

The definition of biological function is ambiguous and the exact meaning of the
term varies on the bases of the context in which it is used (49; 50; 51). Generally,
it describes biochemical, cellular and phenotypic aspects of the molecular events
which involve the protein and how the protein interacts with the environment (52).
However, due to the difficulties and the costs of the experimental characterization
of protein function, it is not possible to perform a functional assay for every un-
characterised gene in every genome (53) and to keep up with the influx of data by
manually curated annotation.

Given this state of affairs, the computational annotation of protein function
has emerged as a problem at the forefront of computational and molecular bi-
ology and scientists have been turning to sophisticated computational methods
for assistance in annotating the huge volume of sequence and structure data
being produced (54). Although many solutions have been proposed in the last
decades (55; 56; 57; 58; 59; 60), in many circumstances the computational func-
tional inference still relies on traditional approaches such as those based on iden-
tifying basic local alignment hits among proteins with experimentally determined
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1.4 Aim of the work

functions (52) (i.e. by using BLAST (61)). In this approach, also known as
homology-based transfer, the researcher aims at finding a significant sequence sim-
ilarity to another protein that is already in a public database and whose function
has been experimentally characterized. The rationale is that if a sequence with
high degree of similarity exists, then the sequences have evolved from a common
ancestor and they might have similar functions if they can be identified as or-
thologous (i.e. derived from speciation events not involving duplications). As
databases grow in the number of sequences they hold, homology-based transfer
begins to break-down in several aspects (such as the observation that even with
a high sequence similarity annotation transfer may be erroneous) as described by
Friedberg (54). On the other hand the structure of a protein is more informative
and is better preserved than the amino acid sequence allowing us to detect a struc-
tural similarity even when a high degree of sequence similarity is not present (62).
If two proteins share similar 3D structures then a similarity in their functions is
more likely (63; 64). Therefore the issue is whether, by using a good structure
prediction method, we are able to identify structural features in a given protein
and integrate that information into a functional prediction (65). Clearly it is cru-
cial that the accuracy with which these methods predict the protein structure be
high and in this context the help that critical assessment experiments can give is
essential. In this thesis I am going to briefly discuss my involvement in the world
wide experiments CASP, the Critical Assessment of protein Structure Prediction.

1.4 Aim of the work

My research work started with the study, application and analysis of the new
techniques of sequencing. Therefore in the first part of my PhD I focused on the
analysis of data produced by NGS technologies as well as on the development of
new tools aimed at solving the several problems that arise from NGS data analysis.
In order to carry out this work, I had the possibility to deal with very interest-
ing problems regarding open biomedical issues. These problems were handled in
collaboration with the groups of professor I. Bozzoni, and professor M. Levrero of
the Sapienza University of Rome and in collaboration with the group of profes-
sor F. Felici of the University of Molise. The project in collaboration with Prof.
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1. INTRODUCTION

Bozzoni group aims at evaluating the contribution of lncRNAs in the molecular
circuitries controlling myogenesis. In particular, cellular biology and advanced
high-throughput RNA sequencing techniques are used to get a more comprehen-
sive catalogue of muscle specific lncRNAs and to decipher how these molecules
regulate gene expression/chromatin dynamics. For this purpose C2C12 undiffer-
entiated murine myoblasts were compared with C2C12 murine myoblasts at three
differentiation times: one day, three days and five days.
The project in collaboration with Prof. Levrero group focuses on HBV X pro-
tein (hepatitis B virus X protein (HBx)). HBx is an essential factor for viral
replication, indeed it has been considered to be one of the most important causes
of HBV-induced hepatocarcinogenesis. For this reason HBx might affect viral
functions, as well as host cell functions, by modulating a wide variety of cellular
processes, including transcription, cell cycle progression, DNA damage repair, and
apoptosis (66). The specific aims of the project are to identify cellular target genes
of HBx and to validate and refine existing hepatocellular carcinoma molecular sig-
natures. High-throughput sequencing of anti-HBx ChIP-enriched DNA fragments
(ChIP-Seq) was performed on wild type, mock and HBx-mt monomeric linear full
length HBV DNA HepG2 transfected cells.
Finally, in collaboration with Prof. Felici group, sequencing of phage-displayed
antigen-specific libraries using a high-throughput platform was performed. The
principal aim is to identify and rank (according to their immunoreactivity) the epi-
topes of a model antigen, the meningococcal NadA virulence factor, using serum
samples from vaccinated individuals.
For all these projects, in order to validate and to compare different approaches
I implemented particular work-flows which have the possibility of modifying the
parameters and to automatically compare the results with those of previous anal-
ysis performed with different parameters and/or different versions of the tools.
Moreover I developed new tools in order to personalize or improve some crucial
steps of the analyses, solve problems derived by the system complexity and make
the results easier to understand for the researchers. Some examples are IsomirT,
a tool for the small RNA-Seq analysis and isomiRs identification, FIDEA (67),
a web server for the functional interpretation of differential expression analysis
and Phagotto, a tool for the analysis of phage-displayed libraries of peptides built
using deep sequencing. Moreover I have had the possibility to be involved, as
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assessor, in the 10 th round of the Critical Assessment of protein Structure Predic-
tion (CASP). In this world wide experiment I participated in the assessment of the
residue-residue contacts in which the participant groups provide a list of contacts
between residues that hopefully can be used as constraints to fold the protein. I
proposed and implemented new methodologies to understand which method works
better and which method works worse (68).
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2

NGS technologies: applications
and challenges

The recent development of next-generation sequencing technology has brought new
opportunities and challenges to the field of bioinformatics. As tens of millions of
short sequences, namely the reads, can be generated in a very short amount of
time, efficient processing and analysis of sequencing data has become critical. Fur-
thermore, combining sequencing with other experimental techniques, a number
of approaches have been developed and several of these, although not yet com-
pletely satisfactory, have already proven their power in the vast amount of data
they provided. One of the primary reasons for developing high-throughput tech-
nologies was the sequencing and resequencing of whole genomes with the aim of
identifying variations and mutations that can be associated with a phenotype.
Now, one of the most popular applications of these technologies is the study of
the transcriptome through sequencing of RNAs (RNA-Seq). Compared to other
RNA measuring technologies, such as qPCR and microarrays, RNA-Seq has higher
throughput and lower noise and it can measure the expressions of tens of thou-
sands of genes simultaneously in a single experiment in only a few days. Small
RNA transcriptomes can also be sequenced in this way and can identify expression
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patterns as well as unveil novel microRNAs and other short RNAs (16). Genome-
wide mapping of protein-DNA interactions and epigenetic marks is also essential
for a full understanding of transcriptional regulation (69). Therefore the chromatin
immunoprecipitation followed by sequencing (ChIP-Seq) used to isolate genomic
regions that are bound by transcription factors or other proteins, or to identify the
regions marked by histonic modifications are also exploded. They have broadened
our understanding for deciphering the gene regulatory networks that underlie var-
ious biological processes (70). However, many problems associated with RNA-Seq
or ChIP-Seq are still open and a variety of tools to serve for different purposes in
NGS data analysis are yet to be developed. An example is given by RNA-Seq that
is a complex multi-step process in which a nucleic acid is repeatedly transformed
and modified: from RNA to cDNA followed by multiplexed PCR amplification. In
this case, the available bioinformatics pipelines still introduce errors due to these
transformations affecting the transcriptome assembly, normalization or differential
expression analysis.

In this chapter I will describe some of the pipelines for analysing NGS data
that I have implemented and automatized with the possibility of modifying the pa-
rameters and to automatically compare the results with those of previous analysis
performed with different parameters and/or different versions of the tools. More-
over I will introduce some new tools and work-flows in order to personalize some
crucial steps of the analyses, solve problems derived by the system complexity and
make the results easier to understand for the researchers. Finally I will show some
applications of these pipelines to open biological issues or to interesting biomedical
problems in which my group and I have been involved.

2.1 RNA-Sequencing

2.1.1 Background

In a typical RNA-Seq experiment a sample of RNA is converted to a library of
complementary DNA (cDNA) fragments and then sequenced on a high-throughput
sequencing platform, such as Illumina Genome Analyzer, SOLiD or Roche 454 (71).
Tens of millions of reads are obtained from this sequencing and then mapped to a
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2.1 RNA-Sequencing

reference genome or transcriptome. For each sample the mapped reads are assem-
bled into gene-level, exon-level or transcript-level, depending on the aims of the
experiment, whereas the unmapped reads are usually discarded. The quantity of
mapped reads to a given gene/exon/transcript measures the expression level for
this region of the genome or transcriptome. Compared with microarrays, which
have been the dominant approach for studying gene expression in the last two
decades, RNA-Seq technology has a wider measurable range of expression lev-
els, less noise, higher throughput and more information to detect allele-specific
expression, novel promoters, and isoforms (72). For these reasons, RNA-Seq is
gradually replacing the array-based approach as the major method for the gene
expression studies. Meanwhile, after around 5 years there is not yet a standard
pipeline to analyse RNA-Seq data and it seems that the technology is faster then
the computational methods used to analyse it.

2.1.2 Methods

In order to perform a RNA-Seq experiment, full length mRNA transcripts of differ-
ent genes are extracted from the sample, retrotranscribed, fragmented into small
pieces, filtered for suitable lengths, and finally sequenced on the machine. In this
context I will not show the experimental details that are not relevant to our com-
putational problems and that are explained in several works (6; 9; 73; 74; 75).
The RNA-Seq analysis is performed in three principal steps (as showed in Fig. 2.1):
the alignment, the transcriptome assembly and the differential expression analysis.
Depending on whether a reference genome assembly is available, current transcrip-
tome assembly strategies generally fall into one of three categories: a reference-
based strategy, a de novo strategy or a combined strategy that merges the two. In
our cases, where a reference genome for the target transcriptome is available, the
transcriptome assembly can be built upon it. Therefore, for each sample, the reads
are first mapped to the reference genome using an aligner. After the alignment,
overlapping reads from each locus are clustered to build a graph that then will be
traversed to join compatible reads together into isoforms. Finally the differential
expression analysis is performed comparing the assembled transcriptomes. Al-
though there are several packages that may be used for the different phases of the
RNA-Seq analysis (see (76; 77; 78) for the alternative read-alignment programs,
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(79; 80) for transcriptome reconstruction and (81; 82; 83) for quantification and
(84; 85; 86) for differential expression) I decided to use the pipeline proposed by
Trapnell et al. (87; 88) in which the used tools are gaining wide acceptance and
have been used in a number of recent high-resolution transcriptome studies such
as the ENCODE project (89). In this protocol TopHat (90) aligns the reads to the
genome and discovers sites of splicing. Cufflinks (91) uses this alignment against
the genome to assemble the reads into transcripts and Cuffmerge merges all the
assembled transcriptomes derived by different samples. The aligned reads and the
assembled transcriptomes were finally used as input for Cuffdiff, a part of the Cuf-
flinks package, to obtain the expression levels in FPKM (Fragments Per Kilobase
per Million mapped reads) and to determine the genes and transcripts that are
differentially expressed.
Replication, randomization and blocking are essential components of any well
planned and properly analysed design (92), particularly in RNA-Seq experiments
where the biological replicates are fundamental to estimate the mean and vari-
ance of the transcript expression. Consequently in one of the experiments that
I have analyzed and that was designed without replicates (Experiment 1 in Ap-
pendix 6.1), the differentially expressed genes were only sorted according to their
expression and Fold Change (the expression ratio between two samples). In par-
ticular, in each pairwise comparison between samples, I calculated the fold change
for transcripts expressed in both samples and selected those with a fold change
greater than 1. The resulting list was used to compute a threshold value corre-
sponding to the third quartile of the data. Transcripts with fold change above the
threshold were ordered according to the corresponding fold change. Transcripts
not expressed (or with a value of FPKM lower than 0.1) in one of the samples and
with a FPKM > 1 in the other were ordered according to the FPKM in the latter
sample. The same procedure was used to select the genes used for the functional
classification.
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Figure 2.1: Overview of the RNA-Seq analysis pipeline - A typical pipeline
for two theoretical biological samples is shown with the colours that indicate the
principal steps of the analysis. The input/output files are shown in yellow rectan-
gles; software tools or methods for each step are shown in blue rounded rectangles.
First, the reads are mapped to the reference genome or transcriptome by using
TopHat; mapped reads are assembled into the transcriptome by using Cufflinks.
The two independent transcriptomes are then merged in order to create a combined
transcriptome which is used as reference to perform a differential expression analy-
sis. These last two steps are performed by using two methods of Cufflinks package,
CuffCompare and CuffDiff. The pipeline produces a list of genes and isoforms with
associated expressions, P-values and fold changes.
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2.1.3 Application: long non coding RNAs and muscle dif-
ferentiation

Although many studies have helped unveiling the function of many small non-
coding RNAs, very little is known about the long non-coding (lncRNA) counterpart
of the transcriptome. Thanks to the availability of sensitive detection techniques,
in spite of their very low levels of expression in particular body compartments,
specific patterns of lncRNA expression in different cell types, tissues and develop-
mental conditions (93; 94) have been defined. Muscle differentiation is a powerful
system for these investigations, because it can be both recapitulated in vitro and
because the networks of transcription factors coordinating the expression of genes
involved in muscle growth, morphogenesis, and differentiation are well known and
evolutionarily conserved (95).
Myogenesis is an orderly and continuous process involving self-renewal, cell fate
choice, proliferation and differentiation. The expression of the molecules that are
responsible for coordinating this process must be tightly regulated in time and
space to prevent myopathies.
In the last years several miRNAs with a specific role in both normal muscle dif-
ferentiation and degenerative processes were identified (96; 97; 98). Recently, Ce-
sana et al. discovered a long non-coding RNA, named linc-MD1, cross-regulating
specific mRNAs by competing for miRNA binding via their miRNA recognition
motifs. These findings opened the intriguing possibility that lncRNA-based mech-
anisms might influence different sets of transcripts during the execution of crucial
metabolic pathways, as cellular differentiation programs.
The study, in which we are interested, aims at evaluating the contribution of
lncRNAs in the molecular circuitries controlling myogenesis. In particular, cellu-
lar biology and advanced high-throughput RNA sequencing techniques are used
to get a more comprehensive catalogue of muscle specific lncRNAs and to deci-
pher how these molecules regulate gene expression/chromatin dynamics. For this
purpose C2C12 undifferentiated murine myoblasts (D0) were compared with C2C12

murine myoblasts at three differentiation times: one day (D1), three days (3D)
and five days (5D).
The assembled transcriptome of these cells consisted of 72,326 expressed tran-
scripts (with a FPKM > 0.1) corresponding to 22,115 unique gene loci. About 69%
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of these transcripts (known transcripts) were annotated in the Ensembl (99; 100)
reference transcriptome (Release 74), 23% corresponded to possible new isoforms
of known transcripts (novel isoforms) and 1% matched with antisense transcripts
or exhibited a partial overlap to known genes (others). The remaining 7% of
the analysed transcriptome did not correspond to any of the Ensembl reference
transcripts (Fig. 2.2).

68.7%
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7% 1%

Transcripts
Known
Putative new isoforms
Unknown
Other

Transcriptome

60%

1%

16%

1%

13%

2%5%2%
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Protein coding
LincRNA
Retained intron
Antisense
Processed transcript
Pseudogene
NMD
Other

Known transcript classification

Figure 2.2: Classification of the assembled transcripts - The assembled
transcriptome annotated using Release 74 of Ensembl (left) and classification of
the known transcripts (right).

The ordered progression of proliferating myoblasts into differentiation stages
was monitored by the expression of myogenic markers such as myogenin, MHC,
Mef2c, MCK and Myod1. The observed profile reflects the expected modulation of
myogenic markers, with the expression of Myod1 and myogenin at the early stages
of miogenesis and the appearance of MHC, Mef2c, MCK occurring later during
differentiation (Fig. 2.3).
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Figure 2.3: Expression of myogenic markers in the progression of prolifer-
ating myoblasts into differentiation stages - Heat-map shows the expression
(in FPKM) of MHC, MEF2c, myogenin (MYOG), MCK and MyoD1 transcripts in
C2C12 myoblasts grown in proliferative (D0) or differentiative (D1, D3, D5) condi-
tions.
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A more complete and comprehensive view of the biological processes can be
obtained by moving the interest from the examined markers to all differentially
expressed protein-coding genes and by investigating on their functional charac-
terization. This can be done by using FIDEA (67), a web server for the func-
tional interpretation of the results derived from differential expression analysis.
The figures 2.4 and 2.5 show the results of the functional analysis on the biologi-
cal processes annotated in Gene Ontology considering the differentially expressed
genes between D0 and D5. The heatmap (Fig. 2.4) was made by considering up
and down-regulated genes separately. It shows that biological processes related
to muscle functionalities (i.e. muscle system process or muscle contraction) are
enriched by the up regulated genes in differentiated cells. Also considering the
up and down-regulated genes together we can see that biological processes related
to muscle physiology are enriched. In the wordcloud (Fig. 2.5) it is possible to
see that genes involved in these processes are mostly up-regulated in D5 cells (red
colour). If we compare the results of functional analyses obtained considering the
differentially expressed genes in D1, D3, D5 against D0 (Fig. 2.6) we can see that
some processes such as muscle system process or muscle contraction are enriched
by up-regulated genes in all the differentiation times; on other hand, some pro-
cesses, such as muscle cell differentiation or muscle cell development, are more
enriched by up-regulated genes in differentiation times D5 and D3 than D1.
According to the aim of the study we have focused our attention on differentially
expressed lncRNAs in muscle differentiation. Among them, in collaboration with
experimentalists, we have selected a subclass of 24 lncRNAs that are currently in
the validation phase.
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Figure 2.4: Functional analysis on Gene Ontology Biological Process
(heat map) - The result of the functional analysis considering the differentially
expressed genes between D0 and D5 is shown as a heat map showing the absolute
log10 of the corrected P-value (colour of the cells). The functional analysis was
made considering up and down-regulated genes separately.
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Figure 2.5: Functional analysis on Gene Ontology Biological Process
(word cloud) - The result of the functional analysis considering the differentially
expressed genes between D0 and D5 is shown as a word cloud where the functional
categories are shown with a character size related to their enrichment (according to
the corrected P-value) and in different colours according to the extent by which the
pathways or categories are enriched by up- or down-regulated genes (red to blue,
respectively). The functional analysis was made considering up and down-regulated
genes together.
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Figure 2.6: Functional analysis on Gene Ontology Biological Process
(bubble heat map) - Results of the functional classification of the differentially
expressed genes in D1, D3, D5 with respect to D0. Enriched functional categories
are shown with a circle the size of which is proportional to the extent of enrichment
(according to the corrected P-value). The different colours show the extent by which
the pathways or categories are enriched by up- or down-regulated genes (red to blue,
respectively).
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2.2 small RNA-Sequencing

2.2.1 Background

In the last decade, one of the most significant advance in genomics has been the
discovery of small (∼20-30 nucleotide [nt]) noncoding RNAs that regulate genes
and genomes (101). These molecules, called MicroRNAs (miRNAs), seem to play
an important gene-regulatory roles in animals and plants by guiding Argonaute
(Ago) proteins to specific protein-coding sequences in transcripts (102) to direct
their post transcriptional repression (103). This repression may occur at some
of the most important levels of genome function, including chromatin structure,
chromosome segregation, transcription, RNA processing, RNA stability, and trans-
lation (104; 105). Indeed functional studies indicate that miRNAs participate in
the regulation of almost every investigated cellular process so far and that changes
in their expression are associated with many human pathologies (104).

Since miRNAs only need as few as 7 nucleotides of complementarity to bind
to their target, computational and experimental approaches indicate that more
than 60% of human protein coding genes are predicted to contain miRNA binding
sites (106; 107). Consequently, thousands of different genes may be subject to
regulation by a single miRNA or miRNA family (106; 108). The most common
motif is a perfect pairing between nucleotides 2 and 7 at the 5’ end of the miRNA,
which is called the “seed” region, and the 3’ untranslated regions (UTRs) of the
target site (103). Despite this, imperfect pairing of the 5’ end to a target or
other type of pairing have been seen (109). For example centred sites have been
described, at which the middle region of the miRNA makes contiguous base pairs
with a target sequence (110) or in C. elegans the imperfect pairing of the 5’ end of
the miRNA to a target is compensated by extensive 3’ end interactions (111; 112;
113). The small size of mature miRNAs makes them ideal for characterization
using RNA-seq technologies (73; 114). Unlike hybridization approaches such as
microarray, massive-scale sequencing provides a way to profile miRNAs without a
priori knowledge of expression (115; 116). Therefore deep sequencing of the small
RNA fraction within cells yields an incredibly rich amount of data from which we
can determine not only the expression levels of known miRNAs but also detect
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novel miRNAs or other small RNA species, such as piRNAs (Piwi interacting
RNA) or snoRNAs (Small nucleolar RNA) (117).

2.2.1.1 IsomiRs

Typically, miRNAs are annotated as a single defined sequence, despite the fact
that, for many of them, several variants with different length and/or sequence for
the same miRNA have been observed (118). These variants, named isomiRs (119),
were originally discarded as sequencing (120; 121) or alignment artefacts (122),
poor quality or degraded RNA (123), sloppy Drosha/Dicer excision (124; 125), or
simply as “trivial variants” (126), although some studies argued that measurement
noise cannot account for the high frequency of these variants (127; 128). Indeed,
in recent years, massively parallel sequencing and sophisticated computational
algorithms have confidently confirmed the existence of isomiRs and identified a vast
array of them in various species (116). Moreover, comparison of isomiR profiles
across different cell lines or tissue types revealed that isomiRs are non-randomly
distributed (129), suggesting that their biogenesis can be cell type specific (130;
131) and therefore they can be true physiological miRNA variants. However,
despite their consistent appearance in several datasets, the biological relevance of
isomiRs remains controversial and, above all, it is unclear to what extent isomiRs
are functionally significant. A small but growing number of reports suggest that, in
certain cases, alternative isomeric forms may have different properties, but because
there are limited tools available for modulating cellular levels of specific isomeric
forms and measuring their effects, many reports at this stage are suggestive rather
than conclusive (132).

2.2.2 IsomirT: a tool for the small RNA-Seq analysis and
identification of miRNA variants

By using deep sequencing it seems clear that the sequences of many miRNAs vary
from the standard sequences (also named canonical) that are reported in public
databases like miRBase (133; 134). These variants can encompass substitutions,
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insertions or deletions, 5’ and/or 3’ end templated or non-templated additions,
and 5’ and/or 3’ cleavage variations (Fig. 2.7).
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Figure 2.7: Schematic representation of miRNA variants - Example of a
canonical miRNA (green) and each mutually exclusive isomiR category (gray). The
non-templated forms are shown as a zig-zag line and the mutations as stars.

To understand if these variants are functional and how they are biologically
relevant, my colleagues and I decided to survey multiple biological states from
multiple samples. In order to improve and automate the search for isomiRs in
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small RNA sequenced libraries we developed a simplified tool, named isomirT,
although there are some public tools that do this (in particular (135; 136; 137;
138)). The reason is that, since these tools identify the variants by aligning the
reads to annotated miRNA precursors (pre-miRNA), their results refer to the pre-
miRNAs. We instead need that all occurrences refer to the mature miRNAs which
are the real biological players present into the cell. Furthermore an identification
of mature miRNAs from pre-miRNAs is not always straightforward. In fact it may
affect biases in the expression estimation, especially in the case of mature miRNAs
derived by different pre-miRNAs. Considering as practical example miR-92a-3p
that can be derived by two precursors, the mir-92a-1 located on chromosome 13
and mir-92a-2 on chromosome X. A read, occurring 1000 times, has a base more
respect the miR-92a-3p as in Fig. 2.8. Aligning on pre-miRNAs we will have
as result that the read aligns on both pre-miRNAs with 1000 occurrences. On
the other hand by directly referring to mature miRNA the result will be that for
miR-92a-3p a longer variant with 1000 occurrences is present.

  

. . . GUGUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUUGAGUU
                          UAUUGCACUUGUCCCGGCCUGU

. . . UGUUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUGGAAGA
                                 UAUUGCACUUGUCCCGGCCUGU

pre-mir-92a-2 

pre-mir-92a-1 

miR-92a-3p

UAUUGCACUUGUCCCGGCCUGUARead

Figure 2.8: Example of alignment on pre-miRNA - The blue bases represent
the mature miRNA. The underlined bases represent the differences between the pre-
mir-92a-1 and pre-mir-92a-2. In this example the read has an A base (red) more
respect the mature miRNA and this base does not match any pre-miRNAs.

IsomirT allows the identification of templated or nontemplated 5’ and/or 3’ end
variations and polymorphic isomiRs considering the canonical miRNA sequence as
well as other regions on the same miRNA precursor.
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This framework is very useful to identify and compare isomiR abundance in differ-
ent sequencing libraries, providing an initial view for biologically relevant isomiRs.
The tool is a stand-alone software that rapidly processes the reads (in fastq or
fasta format) derived from sequencing; it gives as result all the variants for each
miRNA, reporting the occurrences and the sequences with the relative variations.
Furthermore graphs about general statistics are produced, such as the distribu-
tions of variants, the mutations in seeds or the type of mutations. In order to
understand whether the isomiRs are functional or random modifications we inves-
tigated how they behave during differentiation or in different cell type by using
several public datasets derived by recent articles (139; 140; 141).

2.2.2.1 Methods

After sequencing, the raw reads are filtered according the quality. As the average
length of the reads in a small RNA-Seq experiment (∼36 nt) is greater than the
average size of a miRNA (∼17-25 nt), we expect to find part of the 3’-adaptor at
the 3’-end of the sequence. Therefore the reads are passed through an adaptor
filter that searches for reads whose 3’-ends align to at least 6 nt of the 3’-adaptor.
Finally potential contaminations are detected and filtered out. The remaining
reads are formatted into a non-redundant FASTA file containing for each unique
sequence the copy number and the amino acid sequence.
In order to associate each read to a specific miRNA variant we designed and im-
plemented the work-flow showed in Fig. 2.9. For each read we verify if a canonical
or subsequently a “canonical with mutation” (named mutated) form exists. For
mutated forms, we allow up to one mismatch which permits us to identify miRNAs
that carry mutations or that may have undergone RNA editing. Progressively we
look for mutually exclusive shorter, longer and overlapping variants that exactly
align on miRNA precursor. The variants that align on miRNA precursor and
don’t fall in previous classes are labelled as new putative variants. The reads do
not align on any miRNA precursor but include a canonical form or overlap with
one of these are identified and labelled as longer modified and overlap modified
respectively (in other words they are variants with additional nucleotides that do
not match any precursor miRNA sequence). The second part of the pipeline looks
for the mutated variants. We consider only the mutated variants for which at least
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a “canonical with mutation” form was detected. We verify if the read is contained
in one or more mutated canonical miRNA (named shorter mutated variant) or if
the read contains one or more mutated canonical miRNA. In the latter case we
distinguish the mutated longer and the mutated longer modified variants according
to the miRNA precursor contains or not the read. Finally we detect the mutated
overlap variants if the reads overlap with one or more mutated canonical miRNA.

In this disseration I will consider the “main variant” the variant with the most
frequent occurrences in a specific miRNA. For the reference miRNAs and precur-
sors I refer to the latest version of miRBase (release 20 at now). In order to give
the relative abundance of each isomiR, the counts of the reads that have multiple
alignment are equally apportioned to each variant to which they align and then
they are normalized to the number of variants. We decided to discard, as potential
sequence errors or artefacts, all the variants with an occurrence lower than the 5%
of the occurrence of the main variant.
All the variants are reported in an output file with their sequence and a full de-
scription of the alignment on canonical miRNA, as well as possible addition or
cleavage variations or mismatches with related position on canonical miRNA.
We introduced also a new standard nomenclature for isomiRs. This nomenclature
is based on canonical miRNA sequence and describes the variant type, the side, the
added or absent sequence, the position and the substitution for a mutated variant
(Fig. 2.10). As an example: the notation miR-124-3p Lg-5p-A refers to the variant
longer (Lg) at 5’ (5p) respect to the canonical sequence of miR-124-3p. In this
case the addiction is the only A base. The miR-124-3p Mt-C-20-A refers to an
isomiR of miR-124-3p that contains a mutation (Mt) from C to A at position 20
in the canonical miRNA.
In Fig. 2.11 a typical output of isomirT is also shown.
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Figure 2.9: IsomirT pipeline - Schematic representation of isomirT work-flow.
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mmu-miR-124-3p_Lg-3p-A  
mmu-miR-124-3p_Sh-3p-C 
mmu-miR-124-3p_Lg-5p-T_3p-A 
mmu-miR-124-3p_Sh-5p-T_3p-C 
mmu-miR-124-3p_Ov 

mmu-miR-124-3p_Lg-3p-AT

miRNA name Class Side Addiction/deletion 

mmu-miR-124-3p_Mt-C-20-A 
mmu-miR-124-3p_MtSh-3p-C_C-19-A 
mmu-miR-124-3p_MtLg-3p-A_C-20-A 
mmu-miR-124-3p_MtOv-C-19-A

Lg: longer variant 
Sh: shorter variant
Ov: overlap variant

mmu-miR-124-3p_Mt-C-20-A

miRNA name Class C-->A at 20thnt

Mt:   mutated variant 
MtLg: mutated longer 
MtSh: mutated shorter
MtOv: mutated overlap

Figure 2.10: New standard nomenclature for isomiRs - This nomenclature is
based on canonical miRNA sequence and describes the variant type (first part after
the miRNA name), the side (first part after the variant type), the added or absent
sequence (second part after the variant type), the position and the substitution for
a mutated variant (first, second and third parts after variant type Mt).
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MIRNA VARIANT   COUNTS MAIN TYPE SIDE SEQUENCE
mmu-miR-124-3p Longer_3'_A 361127 YES Longer 3    TAAGGCACGCGGTGAATGCC[A]
mmu-miR-124-3p Canonical 73003 NO Canonical   - TAAGGCACGCGGTGAATGCC
mmu-miR-124-3p Longer_5'_T_3'_A 33732 NO Longer both   [T]TAAGGCACGCGGTGAATGCC[A]
mmu-miR-124-3p Longer_3'_AA 26593 NO Longer 3 TAAGGCACGCGGTGAATGCC[AA]
mmu-miR-124-3p Shorter_3'_C 23408 NO Shorter 3 TAAGGCACGCGGTGAATGC.
mmu-miR-124-3p Longer_5'_T 11057 NO Longer 5   [T]TAAGGCACGCGGTGAATGCC
mmu-miR-124-3p Longer_mod_3'_AT 8923 NO Longer_mod 3 TAAGGCACGCGGTGAATGCC[at]

mmu-miR-29b-3p Canonical 148278 YES Canonical - TAGCACCATTTGAAATCAGTGTT
mmu-miR-29b-3p Shorter_3'_T 86286 NO Shorter 3 TAGCACCATTTGAAATCAGTGT.
mmu-miR-29b-3p Shorter_3'_GTT 13114 NO Shorter 3 TAGCACCATTTGAAATCAGT...
mmu-miR-29b-3p Longer_mod_3'_A 5092 NO Longer_mod 3    TAGCACCATTTGAAATCAGTGTT[a]

mmu-miR-9-5p Canonical 85979 YES Canonical - TCTTTGGTTATCTAGCTGTATGA
mmu-miR-9-5p Shorter_3'_A 59710 NO Shorter 3 TCTTTGGTTATCTAGCTGTATG.
mmu-miR-9-5p Shorter_3'_GA 50410 NO Shorter 3 TCTTTGGTTATCTAGCTGTAT..
mmu-miR-9-5p Mutated_A_23_T 7459 NO Mutated - TCTTTGGTTATCTAGCTGTATGt
mmu-miR-9-5p Longer_mod_3'_A 4306 NO Longer_mod 3 TCTTTGGTTATCTAGCTGTATGA[a]

mmu-miR-26a-5p Canonical 51396 YES Canonical - TTCAAGTAATCCAGGATAGGCT
mmu-miR-26a-5p Shorter_3'_CT 6160 NO Shorter 3 TTCAAGTAATCCAGGATAGG..
mmu-miR-26a-5p Longer_mod_3'_T 5870 NO Longer_mod 3 TTCAAGTAATCCAGGATAGGCT[t]
mmu-miR-26a-5p Shorter_3'_GCT 5658 NO Shorter 3 TTCAAGTAATCCAGGATAG...
mmu-miR-26a-5p Mutated_T_22_A 4413 NO Mutated - TTCAAGTAATCCAGGATAGGCa

Figure 2.11: Example of isomirT output - A typical output of isomirT.
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2.2.2.2 Application: tissue/cell specific isomiRs in brain development

In order to understand whether the isomiRs are functional we investigated how
they behave during differentiation or in different cell type by using several public
datasets derived by recent articles (139; 140; 141) (Experiments 9, 10, 11 in Ap-
pendix 6.1). All the datasets give similar results therefore I chose to show only
these relating to the study of He et al. in which there is a cell-type based analysis
of miRNA profiles in the mouse neocortex and cerebellum (in particular there are
5 different embryonic stem (ES) cell lines in triplicate). The researhers introduced
a novel miRNA tagging and affinity-purification method (miRAP). This method is
based on the fact that mature miRNAs are incorporated into RNA-induced silenc-
ing complex (RISC), in which the Argonaute protein AGO2 directly binds miRNAs
and their mRNA targets. Therefore by using AGO2 antibody, miRNAs in all cells
of the tissue are coprecipitated with AGO2 or tAGO2 (a GFP-MYC-AGO2 fu-
sion protein). Finally the RNAs prepared from immunoprecipitation product is
subjected to deep sequencing (139). The study has the principal aim to systemati-
cally analyse miRNA expression in neurons. Furthermore it reveals the expression
of a large fraction of known miRNAs with distinct profiles in glutamatergic and
GABAergic neurons and subtypes of GABAergic neurons.

Observing the isomiR profiles (Fig. 2.12), the first interesting result is that the
canonical miRNAs do not necessarily constitute the most expressed class of miRNA
variants. Their occurrence varies among different cells/tissues and reaches at most
the half of the expressed miRNAs in a given sample. Moreover the comparison of
isomiR profiles among the different cell types reveals a great consistency among
the biological replicates of a given sample and, at the same time, clear differences
among different samples (result confirmed also by NMF method (142) (Fig. 2.13)).
For example in Fig. 2.12 in Camk2a cells the canonical variants occur the 50% of
the times and the 3’ modifications the most of the other times. But this is different
in Cerebellum cells where the most frequent variants are in 3’ modification. These
observations suggest that the phenomenon of isomiRNAs is cell/tissue specific
and, at the same time, it exhibits strong repeatability. We calculated the Shannon
Entropy and the tissue specificity (Fig. 2.14) of each miRNA variant in order to
compare canonical miRNAs to other variants. From this comparison, it emerges
that canonical miRNAs and other variants have similar tissue specificity.
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Figure 2.12: IsomiR profiles in the different cell types - Comparison of
isomiR profiles among the different cell types.
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Figure 2.13: Non-negative matrix factorization - NMF computation and
model selection were performed according to Brunet et al. (142). According to
cophenetic correlation coefficients for NMF-clustered matrices, the NMF class as-
signment for K = 5 was the most robust. Samples are hierarchically clustered
by using distances derived from consensus clustering matrix entries, colored from 0
(deep blue, samples are never in the same cluster) to 1 (dark red, samples are always
in the same cluster).
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Figure 2.14: Shannon entropy of tissue specificity - Histogram of the per-
centage of the Shannon entropy of the tissue specificity for the canonical miRNAs
(red) and all the other variants (blue).
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Most categories of isomiRs (such as the 3’ shorter or longer) were detected with
a number of occurrences comparable to those of canonical miRNA. Moreover their
presence in specific miRNAs and in several tissues argues that these molecules
should not be artifacts of sequencing. As we expected, the most frequently ob-
served variants, in terms of both the number of miRNAs displaying them and their
overall abundance, are at the 3’ end. These variants may play a role in miRNA
degradation and be associated in miRNA stability and efficiency (132; 135).
Although generally rare, 5’ and polymorphic variants represent a significant pro-
portion of the population of some miRNAs. These findings indicate and confirm
that most isomiRs do not possess different targeting specificities but few isomiRs
(with an addition or deletion of 5’ nucleotides) may instead have dramatic effects
on target selection (78; 129; 140; 143). Some categories of isomiRs seem to be less
relevant than others and it is possible to argue that may more likely be artefacts of
the library preparation and/or sequencing. Even though this consideration cannot
be ruled out, the step of filtering introduced to remove the less abundant variants
strengthens our thought that these variants can be real isomiRs.

Most miRNAs do not exhibit a high frequency of mutations and therefore
the relevance of these variants is likely to be limited to a small miRNA subset.
Comparing the distributions of the mutations across the different cell types we
also observe a consistency among the biological replicates of a given sample and an
evident differences across the samples (Fig. 2.15). I also observed the mutations
that fall within the seed regions and therefore may affect the target selection
(Fig. 2.16). Further investigations will be needed to identify which targets are
affected by these mutations.
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the seed region for each cell type.
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I also studied in detail the behaviour of the individual miRNAs and their rel-
ative main variants (Fig. 2.17). Many main variants are expressed according to
the cell type. For example, in the Purkinje cells (class of neurons located in the
cerebellar cortex) the main variant for mmu-miR124-5p is canonical while for the
other cells the main variant is shorter than the canonical ones. A similar situ-
ation is observed for mmu-miR-9-5p. Again, these findings show that in some
cases the canonical sequence does not represent the most expressed variant for a
given miRNA. It is noteworthy that most isomiRs are not subject to dramatic
tissue-dependent variations, suggesting that, although the existence of isomiRs
is a widespread feature of miRNA biology, the differential regulation of activity
through selective isomiR production is likely to be limited.
Further experimental work is required to demonstrate these supposed function-
alities, because most work to date has largely been limited to the bioinformatics
identification of these variants. Although further studies are required, we believe
that this approach may be a starting point to indicate relations between the length
and/or sequence variation of miRNAs and their stability and functionality, which
may result in biologically significant outcomes.
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Figure 2.17: Occurrences of the main variants - In this plot the miRNAs with
the related main variants (colour) and their related occurrences (size of the circles)
are shown. Only the more expressed (up the median) miRNAs are plotted.
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2.3 ChIP-Sequencing

2.3.1 Background

The article of Venter et al. published in 2001 (144) starts with the assertion that
“the decoding of the DNA that constitutes the human genome has been widely an-
ticipated for the contribution it will make toward understanding human evolution,
the causation of disease, and the interplay between the environment and hered-
ity in defining the human condition”. However, it has become increasingly clear
that the control of the genome itself is managed through much more complex in-
teractions, involving modifications to the DNA and its associated proteins, and
that protein-DNA interactions have huge impacts on the phenotype of an indi-
vidual (145; 146; 147; 148). These modifications, joined with the activity of the
transcription factors (TF) that selectively interact with specific promoters, re-
pressors and enhancers, have the ability to regulate the gene expression turning
genes on and off in ways that would be impossible to predict from the genome
sequence alone (149). Measurements of protein-DNA interactions by chromatin
immunoprecipitation (ChIP) that first used microarrays, are now being studied
by deep DNA sequencing versions (ChIP-Seq) that offer distinct advantages in in-
creased specificity, sensitivity and genome-wide comprehensiveness (150). Indeed,
the ability to directly map genome-wide protein-DNA interactions in vivo offers an
essential complement for a deeper understanding of the cell dynamics (151). Such
genome-wide measurements have, for example, allowed to generate new models of
nucleosome positioning (152; 153), unveil potential functions for histone modifica-
tions (154; 155; 156), quantify the evolution and variability of transcription-factor
binding sites (157; 158) and reveal unexpected regulatory relations (159; 160).

2.3.2 Methods

Chromatin immunoprecipitation is a process with the ability to collect fragments
of DNA known to be bound to a specific protein of interest from living cells (161).
For ChIP-Seq, these fragments are selected according to length for sequencing
and for specific problem under study, usually between 100 and 600 nt. After an
amplification step (either before or after size selection) the fragments are then
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directly sequenced without the need for cloning steps. Experimental details about
the chromatin immunoprecipitation followed by deep sequencing can be found in
several works (17; 150; 154; 162).

Once the reads have been obtained, they are aligned to the reference genome by
using the aligner Bowtie (163). Zero or one mismatch are allowed due to possible
single nucleotide polymorphisms or sequencing errors and the uniquely mapping
reads are retained for further analysis. The aligned reads are then used to find
regions that are enriched in the ChIP sample respect the input DNA to identify
‘peaks’ of the specific protein-DNA binding. There are many different, open source
algorithms that can be used for peak calling (69; 148) and due to the specific prob-
lem under study I decided to use MACS (164; 165; 166) and PeakSeq (167). The
general idea for a peak calling program (see an overview in (69) or (168)) is to
use the location and directionality of the reads to identify the enriched regions.
By using the reads, the entire fragments of DNA can be computationally inferred,
possibly considering the average size of the DNA fragments that were isolated
during the library construction. At each nucleotide in the genome, the number
of overlapping fragments is counted to obtain a peak height (169). To capture
local biases in the genome MACS and PeakSeq use a dynamic Poisson distribu-
tion to model a local background. Furthermore PeakSeq takes into account also
the variability in genomic mappability. Candidate peaks with p-values below a
user-defined threshold are then identified and also FDR is estimated dividing the
number of control peaks over the ChIP sample by the number of ChIP peaks over
the control sample (170). For our purposes, I used the strategies and pipelines that
subsequently were used, among others, as guidelines in ENCODE project (171).
As for the RNA-Seq, I have implemented and automated these pipelines as work-
flows in order to analyse different data with the possibility of modifying the pa-
rameters and to automatically compare the results with those of previous analysis
performed with different parameters and/or different versions of the tools.
A first impression about the quality of a ChIP-Seq experiment can be obtained by
local inspection of the mapped reads using a genome browser such as UCSC (172).
Although not quantitative, this approach is very useful both for bioinformatics and
experimentalists because the shape of the peak and the strength of the signal rela-
tive to the control sample can provide a sense of ChIP quality (171). A true signal
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is expected to show a clear asymmetrical distribution of reads mapping to the for-
ward and reverse strands around the midpoint (peak) of accumulated reads (168).
In our analysis, the peak finding was integrated with several downstream analy-
ses that, associating the peaks with functionally relevant genomic regions (such
as gene promoters, transcription start sites or intergenic regions), aimed at anno-
tating and characterizing the extracted enriched regions. Usually the correlation
of the peaks to the genes in their neighbourhoods includes the identification of
the closest gene to each peak and its relative position: upstream of transcription
start site (TSS), in the intron, exon, 5’/3’-UTR, or downstream of transcription
termination site (TTS). Consequently when there are multiple nearby genes for a
peak, the peak is associated with the gene whose TSS is the closest (173; 174; 175).
By using this solution it is possible to lose some genes therefore I implemented a
new method, named NED, with which a researcher, choosing the size of the re-
gions before and after the TSS of the genes, identifies all the peaks that fall in the
specified regions (Fig. 2.18). By using one or more annotations, the researcher can
also detect all the peaks that fall in a particular genomic regions such as of opened
chromatin, or on which other ChIP experiments were performed. In this way the
peaks were classified according to both their genomic background and chromatin
state. For the first analysis the annotation was obtained from public databases like
UCSC (172), GenCode (176), RefSeq (177) and MirBase (133; 134); for the second
analysis the chromatin state segmentation results from the ENCODE project in
which a common set of states were learned by integrating ChIP-Seq data for nine
factors using a Hidden Markov Model (178).
A useful way of checking whether a ChIP-Seq experiment was successful is to
compare the peak list with those obtained by other scientists in same cell types:
even though the overlap will not be perfect, a very poor overlap will suggest that
the experiment might not have worked. Therefore, integrating NED with the ex-
perimental available data, I compared the list of peaks with which obtained by
ChIP-Seq experiments on same cell lines derived from the ENCODE repository.

Considering different parameters or tool versions, the analysed experiments
have generated a large number of ChIP-Seq datasets that have produced a num-
ber of hundreds of thousands significant peaks. It can be a challenging and time-
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Figure 2.18: Underlying idea of NED - By choosing the size of the regions
before and after the TSS of the genes, a researcher can identify all the peaks that
fall in specified regions
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consuming task to examine all peaks and to develop meaningful biological inter-
pretations of their functional relevance. Motivated by this challenge, I developed
a database to store all the results and take trace of the specific analysis with
which I obtained them (Fig, 2.19). In this way I can perform complex queries
to extract information for a specific experiment or to compare results derived by
analyses performed with different parameters. In order to facilitate data com-
parison, interpretation and hypothesis generation for the experimentalists I also
created personalized web-pages in which, for each experiment, the researcher can,
for example, visualize on a genome browser a specific peak.
Motif analysis is useful for much more than just identifying the causal DNA-
binding motif in ChIP-Seq peaks. For example, when the motif of the ChIPed
protein is already known, motif analysis provides validation of the success of the
experiment (179). For the motif analysis I assembled a set of genomic sequences
corresponding to the significant ChIP-Seq peaks and then performed the motif
discovery using MEME-tools (180; 181; 182) and RSATpeak-motifs (183; 184). I
compared the discovered motifs with known DNA motifs using motif comparison
software (185; 186). This analysis is useful to confirm the presence of the ChIPed
TF motif if its (or its TF-family) binding motif is known.
Finally a functional interpretation of the genes associated with the peaks was ini-
tially done by using DAVID (40) and GREAT (175) and then the home-made tool
FIDEA.
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Figure 2.19: Scheme of the database used to store ChIP-Seq data - Scheme
of the database used to store all the results about ChIP-Seq experiments and take
trace of the specific analysis with which a researcher obtained them.
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2.3.3 Application: identification of target genes for the
Hepatitis B Viruses X protein

The project in collaboration with Prof. Levrero group focuses on HBV X protein
(hepatitis B virus X protein (HBx)). HBx is an essential factor for transcrip-
tion/viral replication and it has been considered to be one of the most important
causes of HBV-induced hepatocarcinogenesis (187; 188; 189). For this reason HBx
might affect viral functions, as well as host cell functions, by modulating a wide
variety of cellular processes, including transcription, cell cycle progression, DNA
damage repair, and apoptosis (66). Aim of this study is to use a broad chromatin
immunoprecipitation approach (ChIP and ChIP-Seq) to identify target genes of
HBx and to validate and to refine existing hepatocellular carcinoma molecular sig-
natures. High-throughput sequencing of anti-HBx ChIP-enriched DNA fragments
(ChIP-Seq) was performed on wild type, mock and HBx-mt monomeric linear full
length HBV DNA HepG2 transfected cells. The ChIP-Seq experiments were per-
formed on an Illumina GAIIx.
The data analysis on the ChIP-Seq experiments performed on HBx protein is a
very complex problem: HBx is a small protein (154 aminoacids) and a protein
complex is required for its interaction with the DNA. Therefore this situation is
not an optimal system for the identification of binding sites due to the fragility of
the protein complex and the multiple interactions that the protein might have.
The study was based on 2 different experiments of ChIP-Seq, each one composed
by 2 samples. One experiment was performed at laboratory of Life-Nanoscience of
the Sapienza University of Rome (defined below SAP, (Experiment 4 in Appendix
6.1)) and the other was performed at Istituti Fisioterapici Ospitalieri (IFO) (de-
fined below IFO, (Experiment 5 in Appendix 6.1)).
ChIPSeq analysis of HBx chromatin recruitment revealed a specific binding to a
large number of new and known target sequences. In the 4 independent ChIP-Seq
samples ∼16000 potential HBx binding sites were identified, 12.8% located within
10 kb upstream of a transcription start site (defined Promoter in Fig. 2.20). Sev-
eral of these peaks were validated by quantitative PCR (qPCR) by the experimen-
tal group. Moreover, by observing the chromatin states, 3.3% of the peaks falls
in the regions classified as Promoter and 8.1% in regions classified as Enhancer
(Fig. 2.21).
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Despite the high complexity of the system we detected 6212 distinct genes
(considering a range of 10000 nt up and 1000 nt down the TSS), 20% of which
are in common between the two experiments. Integrative analysis of these genes
(which are potentially regulated by HBx) shows an enrichment in genes involved
in cell metabolism, chromatin dynamics and cancer as well as in categories in-
volved in HBV replication (for example Ras family 1, calcium transport, endocy-
tosis, mitogen-activated protein kinases and Wntβ − catenin signaling pathways
(MAPK\WNT), proto-oncogene tyrosine-protein kinase Src, hepatocyte growth
factor (HGF) and epidermal growth factor (EGF) families). Moreover, 173 miR-
NAs are placed in proximity of an enriched regions. For 75 of these miRNAs
(Fig. 2.22), the peaks represent putative promoters since fall in a maximum dis-
tance of 5000 nt up the miRNA. Among these miRNAs there are some of particular
interest, such as mir224 or mir21, that are shown to be involved in hepatocellular
carcinoma (191; 192; 193; 194; 195) and, so far, 16 miRNAs have already been
experimentally validated by real-time RT-PCR. The other miRNAs are poten-
tially mirtrons since they are located in the introns of the mRNA encoding host
genes (196).

1Discoveries made in the late 1970s and the early 1980s revealed that the transforming
activities of the rat-derived Harvey and Kirsten murine sarcoma retroviruses contribute to cancer
pathogenesis through a common set of genes, termed ras (for rat sarcoma virus) (190)
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Figure 2.20: Classification of the peaks considering genomic features of
interest - Distribution of peaks on genomic features of interest according to UCSC
annotation. All the called peaks are considered together (top) as well as separately
in line with the experiment and the replicate (bottom).
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are considered together (top) as well as separately in line with the experiment and
the replicate (bottom).
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Figure 2.22: MicroRNAs possibly associated to the HBx protein - MiRNAs
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5000 nt up the miRNA. The microRNAs that have been validated by experimental
group are highlighted in green.
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These results drive to some conclusions that need to be tested and validated
by experimentalists. The principal idea is that HBx can support as well as repress
the expression of miRNAs that affect HBV replication defining new regulatory
loops (for example in association with miR224, miR552 or miR3648) or regulat-
ing cellular functions (for example in association with miR21, miR26b, miR-502).
Multiple transcription factors are involved in these circuits since they may mediate
HBx binding to its target sequences (for example NFkB, E2F1, β − catenin).

2.4 Deep sequencing of phage display libraries

to support antibody discovery

2.4.1 Background

Measuring the total concentration of antigen-specific serum antibodies is a funda-
mental step in the diagnosis of infectious and autoimmune diseases since it is used
to monitor the efficacy of vaccination, which is the most powerful tool to preserve
human health and to reduce the costs of medical care. However, a purely quan-
titative analysis of serum antibodies is a poor indicator of the complexity of the
antibody response, which involves the activation of thousands of different B cell
clones and the secretion of a wide variety of antibodies, each one directed against
a different region of the immunizing antigen(s) (197). For reasons that are only
partially understood, the antibodies induced by any immunizing antigen are not
equally directed against the various portions of the antigen molecule (198). Of-
ten, within an antigen, there are regions that are strongly reactive with antibodies
(i.e. immunodominant regions) flanked by domains that seem to be partially or
completely ignored by the immune system. Anti-microbial vaccination induces
the production of a great variety of antigen-specific antibodies, only a minority
of which possesses the ability to protect against target infections (198; 199). In
other words, only certain antibodies (those directed against specific “hot spots”
of the antigen molecule) have immunoprotective activities. Therefore, pathogens
adopt sometimes the strategy of incorporating, in the context of their virulence
factors, immunodominant regions that work properly as “decoys” by preventing
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the immune system from targeting the “hot spots” (199). In such a scenario,
selective removal of the immunodominant regions can boost the immunoprotec-
tive properties of the antigen (200). In view of these considerations it would be
helpful, particularly in the course of preclinical studies and clinical trials involving
vaccines, to establish whether the immune response is optimally targeted against
the antigenic residues, critical for immune-mediated protection. To this end, a
method capable of providing a detailed analysis of the fine specificity of vaccine-
induced antibody repertoires would be useful to guide rational antigen design
and selection of appropriate adjuvants. Indeed, the ability of certain adjuvants
to broaden the antibody repertoire and to provide extended coverage is becom-
ing increasingly clear (201; 202). Moreover, because the spectrum of antibody
specificities varies with age and physiology, repertoire profiles may be useful to
specifically tailor vaccine formulations for different age groups and for high-risk
populations (203; 204; 205).
The recent development of high-throughput methods for repertoire data collection
(from single cell mass spectroscopy and multicolor flow cytometry to massively
parallel sequencing of immunoglobulin transcripts) offers today an opportunity to
analyse large samples of lymphocyte repertoires (206; 207; 208). Although these
methods provide extensive information regarding the diversity of clonotypes and
immunoglobulin gene usage, they have limited usefulness, by their nature, in sam-
pling the antibody repertoire in terms of epitope specificity. Libraries consisting
of phage particles or cells expressing on their surface peptides of various lengths
have also been used in epitope mapping (209; 210; 211; 212). These techniques are,
however, labor-intensive, time consuming and can identify only a limited number
of epitopes. The group of prof. Teti of the University of Messina in collabora-
tion with the group of prof. Felici of the University of Molise introduced a novel
approach, based on the combined use of phage-displayed antigen-specific libraries
and massive parallel sequencing of the entire population of affinity-selected phages.
This approach (named PROFILER, standing for Phage-based Representation OF
Immuno Ligand Epitope Repertoire) generates in a short time a high-resolution
profile of antigen-specific antibody repertoires.
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2.4.2 Phagotto: a tool for analysing deep sequencing data
of phage-displayed libraries of peptides

The experimental groups chose NadA (213), one of the 4 components of the
4CMenB anti-meningococcal vaccine (Bexsero), as the model antigen. They gener-
ated a lambda phage displayed library in which individual phage particles display
on their surface NadA fragments of various lengths. Finally, after a selection with
sera from Bexsero-immunized volunteers, they performed a deep sequencing by
using the Illumina MiSeq platform (Experiment 8 in Appendix 6.1). In this con-
text I am not going to describe the experimental details which are not part of my
PhD work. I am focusing on the home-made tool (named Phagotto), designed and
implemented in order to analyse the data derived by sequencing (Fig. 2.23).

Sequence data from the insert amplicons were processed with an ad hoc pipeline
made of Perl scripts. It gives as result a list of all univocally definable (or “unique”)
sequences, classified into one of the following three categories: a) empty i.e. se-
quences lacking fragments of the antigen-encoding gene (nadA sequences in this
study); b) natural frame, i.e. sequences bearing fragments of the antigen-encoding
gene, the products of which are predicted (because in the correct orientation and
reading frame with respect to the recombinant insert sequence) to display authen-
tic peptide fragments of the antigen on the phage surface; c) not natural frame, i.e.
sequences bearing fragments of the antigen-encoding gene that are not expressed
on the phage surface, or that express peptides corresponding to a non-authentic
reading frame because of frame shifts. The paired-end reads are expected to con-
tain in the following order: vector, adapter and insert. The pipeline checks whether
these elements are present in each read in the correct order (forward in the left
reads and reverse in the right ones)(see top of Fig. 2.23). Subsequently for each
pair of reads, short regions, named anchors, are extracted from the insert in prox-
imity of the adapter. The complete insert is then defined as the region of the
reference gene included between the two anchors. The nucleotide sequence of the
insert is translated into amino acids starting from the first ATG codon. Peptides
that do not continue in frame with the phage protein sequence cannot be expressed
on the phage surface. We label these as not in downstream frame and filter them
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Figure 2.23: Phagotto pipeline - Pipeline of Phagotto, a tool for analysing deep
sequencing data of phage-displayed libraries of peptides. The analysis is performed in
6 principal steps: (I) search for reads with insertions; (II) alignment on the reference
gene in order to extract the entire insert; (III) translation of the inserts; (IV) search
for phage signal in order to filter out the not in downstream frame inserts; (V)
identification of the natural frame inserts; (VI) plotting.
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out. The remaining sequences that can be aligned to the reference amino acid se-
quence of the target are classified as natural frame. For each of these fragments the
scripts report the following attributes: a) copy number; b) amino acid sequence
and length; c) start and end position of the corresponding amino acid sequence in
the nadA protein. Anyway, after each step, the tool saves intermediate text files
which can be opened and inspected to extract further informations. The results
of the analysis are also given as plots in order to get an overall view of the enrich-
ment.
In order to follow the enrichment of natural frame inserts during the selection pro-
cess we normalized the counts of each natural frame insert by dividing them by
the total number of sequenced reads in a given experiment and multiplying them
for the mean value of sequenced reads in all the experiments. We calculated the
occurrence of each amino acid of the NadA sequence by summing the counts of
all inserts in the corresponding position. The “enrichment factor” for each amino
acid residue of the natural frame sequences was calculated as the ratio between
the occurrence of the residue in the affinity-selected phage population and its oc-
currence in the unselected library, after adding a pseudocount of 1 to the counts
for each position.

2.4.3 Results

By sequencing a few hundred clones by the Sanger method, only some of the prop-
erties of a library can be inferred. Using next generation sequencing, instead, we
were able to sequence thousands of clones of the nadA-specific library and thereby
assess its quality and diversity in depth. First, we found that 4.8% percent of all
sequences containing nadA fragments was in natural frame (i.e. they fulfill the
requirements to be expressed on the phage surface as authentic NadA peptides).
This percentage is close to the expected 1/18 (5.6%) value, calculated as the prob-
ability that a gene fragment is randomly cloned as an insert in the natural frame
at the N-terminus of the lambda phage capsid protein D encoding sequence.

Natural frame fragments were evenly distributed along the entire sequence of
the protein, with no major over- or under-representations of specific regions (as
shown in Fig. 2.25 (first box)). Minor under-representation of short amino acid
stretches at either end of the protein was expected based on library construction,
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which involved fragmentation of the nadA gene by DNase I digestion. To follow
the process of antibody-mediated selection, two rounds of phage selection were
performed on the nadA library using a pool of sera obtained from adults immunized
with the 4C MenB Bexsero vaccine, which contains recombinant NadA as one of
the antigens. For each selection, over 104 sequences were obtained and analyzed.
During the selection, there was a progressive increase in the frequency of Natural
frame sequences, as it can be appreciated from the black areas in Fig. 2.25.
This indicated that phage particles displaying authentic NadA fragments had been
selectively enriched by the NadA-specific antibodies present in the immune sera,
while those carrying not natural frame or no inserts rapidly decreased in numbers.
As expected in a typical phage display experiment, the copy numbers of specific
polypeptides dramatically increased during subsequent rounds of selection (Fig.
2.24). To more precisely quantitate this feature, we calculated for each Natural
frame sequence the “enrichment factor”, as the ratio between the occurrence of
that sequence in the affinity-selected phage population and its occurrence in the
unselected library (Fig. 2.26). By displaying cumulative enrichment factor values
as a function of single amino acid positions along the NadA sequence (Fig. 2.27),
it was possible to unambiguously identify NadA regions that were enriched by the
antibody-mediated selection process.
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Figure 2.24: Abundance of natural frame NadA fragments - Distribution
of natural frame nadA fragments in the unselected library and after one and two
rounds of selection. Each point represents the number of unique fragments (vertical
axis) for the number of copies (horizontal axis).
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Figure 2.25: Amino acid frequencies of the natural frame NadA fragments
- Cumulative occurrences, per single amino acid position, of sequences predicted to
express authentic NadA fragments (vertical axis) in the uselected library and after
one and two rounds of selection. The horizontal axis reports the amino acid positions
of the translated NadA sequence.
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Figure 2.26: Enrichment factor of the NadA fragments - Enrichment factor
of NadA fragments after one and two round of selection. Each fragment is shown as
a line connecting its start and end positions. For clarity, only the enriched fragments
laying in the upper quartile of enrichment factor values are shown.
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Figure 2.27: Amino acid enrichment of the natural frame NadA fragments
- Cumulative enrichment factors for each amino acid position derived from NadA
fragments obtained after one (red line) and two (blue line) rounds of selection.

59

2_ngs/figures/aminoFreq_961cl_IS8_IIS8enrichment_NORM.eps


2. NGS TECHNOLOGIES: APPLICATIONS AND CHALLENGES

60



3

FIDEA: server for the Functional
Interpretation of Differential
Expression Analysis

3.1 Background

Differential expression analyses typically end up with results made by hundred or
thousand differentially expressed (DE) genes. Although this type of result is ex-
haustive and provides an essentially complete view of the analyzed transcriptomes,
it is not easily readable and their functional interpretation is not always straight-
forward. This situation is even more evident upon the advent of high-throughput
sequencing technology, that made easier the possibility of characterizing a whole
transcriptome in a single experiment.
Once the differentially expressed genes have been identified and their statistical
significance correctly assessed, it is essential to interpret the data in light of the
biology of the specific system under study and to select the most biologically sig-
nificant transcripts for further validation.
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3. FIDEA: SERVER FOR THE FUNCTIONAL INTERPRETATION
OF DIFFERENTIAL EXPRESSION ANALYSIS

A way to make more explicative the results of a differential expression analysis
is given by moving from DE genes to the process or the specific mechanism they
belong (that is perform a functional analysis). The first step of the functional anal-
ysis is almost invariably an enrichment analysis (27) aimed at verifying whether
a significant number of the identified genes belong to one or more specific path-
ways or functional categories. This is usually carried out by statistically assessing
whether a pathway or process is enriched in a specific list of genes (26) and can be
performed by using different classifications of the genes, for example KEGG path-
ways (37), Interpro (38), Gene Ontology Molecular Function, Biological Process,
and Cellular Component categories (39).
The correct interpretation of the results and, especially, the identification of par-
ticularly interesting genes or functions among the differentially expressed ones,
should be performed by scientists who are well acquainted with the biological
problem under study since they have a wealth of knowledge about the system
and can, more easily than a bioinformatician, discover less obvious and therefore
more interesting relationships. However often they are not sufficiently expert to
be able to effectively exploit the power of different tools and databases or to per-
form the comparison of the results of more than one experiment (which usually
requires some scripting). This remains true even though there are a number of
publicly available servers that allow functional enrichment analysis given a list
of genes, the most used of which are DAVID (35; 40); g:Profiler (41; 42); Go-
rilla (43); High-Throughput GoMiner (44); Babelomics (45) and GeneCodis3 (46).
All these tools require the user to provide lists of genes, which implies that the
identification of genes the transcripts of which are up-and down-regulated needs
to be performed separately and in advance. Furthermore, should the user wish
to see how the results change when a different p-value or fold-change threshold is
applied to identify differentially expressed transcripts. In this case the list has to
be rebuilt, resubmitted to the server and the results compared. Two of the above-
mentioned servers, Babelomics and GeneCodis3 give the possibility of performing
the analysis in parallel on two different lists of genes, for example up-regulated
and down-regulated ones or deregulated in different experiments, but the burden
of comparing the results is still left to the user.
The above considerations prompted us to provide experimentalists with a more
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user-friendly tool for analyzing their data from a functional point of view. There-
fore we designed FIDEA (67) a web server for the Functional Interpretation of
Differential Expression Analysis. FIDEA was developed through a number of iter-
ations with the experimental groups with which we collaborate and the resulting
system is sufficiently easy to use and at the same time complete and flexible to be
useful in the functional analysis of differential expression experiments.
The server is located at http://www.biocomputing.it/fidea, it is free and open
to all users and there is no login requirement. Since FIDEA has been published
(seven months ago), it has been broadly used for more than 2000 analyses, and
two studies cited it (214; 215).

3.2 Description

The FIDEA server allows the user to directly input the results of a differential
expression analysis, by uploading the output of Cufflinks (87; 88) or, alternatively,
a formatted list of up- and down-regulated genes that can be easily obtained
through other tools such as EdgeR (85) or DESeq (86). The input format in the
latter case is simple and consists of the experiment ID, the gene ID, its fold change
and a (corrected) P-value. The most commonly used gene IDs (Gene symbol,
Entrez gene ID, Ensembl gene ID, UCSC gene ID, Refseq ID) are accepted as
input. They can refer to one of the following species: Homo sapiens, Mus musculus,
Drosophila melanogaster, Danio rerio and Saccharomyces cerevisiae.
Upon loading the input data, the system immediately shows the distribution of the
fold changes in the dataset (as absolute log2 values), thereby permitting to quickly
verify whether the distributions of up- and down-regulated genes are well balanced.
The threshold for the minimum fold change to be considered significant can be
interactively modified, leading to the direct display of the updated distributions
(Fig. 3.1).
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Figure 3.1: FIDEA: statistics of Differentially Expressed Genes - The
figure shows the first page of FIDEA where, upon uploading the data, the user has
an overview of the distribution of fold changes for up- and down-regulated genes
and can interactively modify the p-value and fold-change thresholds.
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3.2 Description

Once a fold change threshold is selected, the enrichment analysis is performed
considering the up-regulated and down-regulated genes both together and sepa-
rately. The statistical significance of the enrichment is computed using the hy-
pergeometric test, the resulting P-values are corrected using the Benjamini and
Yekutieli FDR method (216). The background distribution is, by default, the dis-
tribution of all the genes for the selected organism, but the user can also provide
his/her own list of genes.
FIDEA analyzes both the up-regulated and down-regulated genes separately or
taken together. The results of each analysis are given as:

� interactive and dynamic heat maps showing the absolute log10 of the cor-
rected p-value;

� interactive table reporting the category name, the P-value and the corrected
P-value, the fold enrichment and the number of differentially expressed genes;

� a static publication-ready heat map (Fig. 3.2) or word cloud (Fig. 3.3)
reporting the enriched categories;

� a text table (csv format and downloadable).

If more than one experiment is uploaded, the user can obtain a list of genes that are
in common among the experiments. These can include genes that are up-regulated
in all the experiments, up-regulated in one and down-regulated in another, etc.
(Fig. 3.4). The results are shown as a Venn diagram and as a list of genes that
can be directly submitted to the functional enrichment analysis or downloaded.
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Figure 3.2: Functional analysis by using GoSlim (heat map) - The figure
shows, as a heat map, the results of the GOSlim analysis considering up and down
regulated genes separately. The color of the cells represents the absolute log10 of
the corrected P-value.
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3.2 Description
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Figure 3.3: Functional analysis by using GoSlim (word cloud) - The figure
shows, as a word clouds, the results of the GOSlim analysis considering up and
down regulated genes taken together. The functional categories are shown with a
character size related to their enrichment (according to the corrected P-value) and
in different colors according to the extent by which the pathways or categories are
enriched by up- or down regulated genes (red to blue, respectively).
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Figure 3.4: FIDEA: intersection among lists of genes - The figure shows an
example of how data from different experiments can be combined and subsequently
analyzed.
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3.3 Implementation

3.3 Implementation

The associations between functional annotations and gene ID are stored in a local
MySQL database (see Fig. 3.5 for a detailed scheme).
Due to the large number of independent databases, the identifiers are, in most
cases, redundant. FIDEA maps all functional annotations to the ENSEMBL gene
IDs (99) and converts all the supported gene IDs (Entrez, UCSC, Gene Sym-
bol, Refseq) in ENSEMBL gene IDs. Specific organism IDs can also be used,
namely Flybase ID, Gene and Annotation Symbol for Drosophila melanogaster,
Gene Name, Zfin Gene ID for Danio rerio, and SGD Systematic Name, Primary
SGD and Gene Name for Saccharomyces cerevisiae. Regardless of this internal
conversion, the final results are given using the original gene ID provided by the
user.
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Figure 3.5: Database schema - A detailed schema of the local database inte-
grated in FIDEA and implemented in MySQL. It stores the associations between
functional annotations and gene IDs.
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4

Evaluation of residue-residue
contact prediction in CASP10

4.1 Background

High-throughput experiments are providing us with complete genetic blueprints
for hundreds of organisms. We are now faced with assigning and understanding
the functions of proteins encoded by these genomes. This task is generally facili-
tated by protein three-dimensional (3D) structure which, in effect, is much more
informative than the amino acid sequence alone (54) and allows us to explain the
biochemical mechanism by which the protein implements its functionality. More-
over if the function is unknown, a 3D structure-based similarity to other structures
can reveal more about its function (62; 65). By and large, most biological functions
are mediated by proteins through their 3D structures that, in turn, are mainly dic-
tated by their respective sequences.
The protein 3D structures can be experimentally determined by X ray crystal-
lography and NMR spectroscopy but, unfortunately, the experimental solution of
all known proteins remains a challenge: existing techniques are time and resource
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consuming and not always successful. De facto, experimental structures are cur-
rently available for less than 1/1000 th of the proteins for which sequence is known
and computational methods are the only viable alternative to the experimental
exploration of the protein structure space. Even though hundreds of servers and
tools are widely available for producing a structural model of a protein of interest
by using several heuristic strategies, the protein structure prediction problem is
far from being solved in general terms. For example, it is possible to derive infor-
mation about a protein structure on the basis of the structure of an evolutionary
related protein (comparative modeling) (217) or, when no sequence similarity be-
tween two proteins can be detected, it is possible to recognize the compatibility of
the sequence of the target protein with a known fold (fold recognition) (218; 219).
Alternatively, it is possible to try and assemble fragments of proteins of a known
structure to reconstruct the complete structure of a target protein (220; 221).
The prediction of intra-molecular contacts in proteins can also serve as an inter-
mediate step toward accurate prediction of the three-dimensional structure, and
triggered extensive research to connect protein sequence and structure with a “two-
span bridge”: from sequence to contacts and from contacts to structure (68). To
build such a bridge, the researchers focused on predicting contacts with accuracy
sufficiently high to be useful for structure modelling on one side, and on building
a structure from incomplete/inaccurate contact data, on the other.
Even though these methods for protein structure prediction have become widely
available to both experimentalists and computational biologists a question remains:
how good are they? How can we know which method is better suited for a specific
task? In order to answer to these questions and to assess the reliability of structure
prediction methods a comparison of computational models with the corresponding
experimental structures is required. Effective tests and comparisons have to be per-
formed on proteins whose structures are not yet publicly available, to avoid overes-
timating the reliability of protocols based on statistical observations derived from
the PDB. For this purpose, since 1994 the large scale test CASP (Critical Assess-
ment of Protein Structure Prediction) (222; 223; 224; 225; 226; 227; 228; 229; 230)
has been run every two years. It aims at establishing the current state of the art
in the field of protein structure prediction, measuring the progresses made and
highlighting areas requiring improvements. Experimental biologists and structural
genomics centres are invited to release the sequences (the CASP targets) of soon
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to be determined protein structures. To make all predictions blind, participating
groups deposit their models before the actual target structures are made publicly
available.
CASP is also testing publicly accessible servers on the same target dataset. This
allows to estimate the extent to which autonomous servers can be outperformed by
human predictors and meta-servers. The latter usually send the target sequence
to independent servers, collect the results and compare them with each other. To
make their prediction, they either select the most representative structure or as-
semble a hybrid model from the most frequently represented structural fragments.
After model deposition ends, a huge amount of numerical data is derived from the
comparison of all predictions with their actual target structures. Target domains
are classified into separate categories according to their similarity to known struc-
tures and hence prediction difficulty. Independent assessors evaluate the results
within each category in a critical and blind way, because predictor names are hid-
den until the very end. Other categories have also been established over the time
for the prediction of function, domain boundaries, disordered regions and model
quality.
At the end of experiment, assessors and predictors convene to discuss the results.
These are also made available to the scientific community via internet and in a
special issue of the journal Proteins: Structure, Function and Bioinformatics.
Besides showing improvements and bottlenecks in the structure prediction field,
CASP has other relevant merits too. It raised the issue of objective evaluation of
structure prediction methods and fostered the establishment of similar blind tests
in other areas (52; 231; 232; 233).

I have had the possibility to be involved in the evaluation of residue-residue
contact prediction in CASP10. In this case the participating groups were asked
to submit a list of pairs of residues predicted to be in contact that hopefully can
be used as restraints in constructing three dimensional models. In addiction to
the measures used in previous CASPs (i.e., prediction accuracy), we decided to
introduce new measures such as the rank of the first correctly and incorrectly
predicted contacts and the ability to detect inter-domain contacts.
In this context I’m going to show only the methods and results related to my PhD
work. The complete results can be found in the paper (68).
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4.2 Methods

A pair of residues is defined to be in contact when the distance between their
Cβ atoms (Cα in case of GLY) is less than 8.0Å. Each reported contact had to
be annotated with a probability score in the [0;1] range, reflecting the predictor
confidence in assigning the contact. The evaluation was performed for all types of
contacts with emphasis placed on long-range contacts, i.e. those involving residues
separated by at least 24 residues along the sequence.
The evaluation of predictions was carried out on a per-domain basis. The domains
with detectable homology to proteins of known structures were not included in
the evaluation as in these cases contacts could easily be derived from the template
structures. Thus, we used only the domains for which structural templates did
not exist or were very difficult to identify. Therefore we assessed the performance
of contact prediction methods on two sets of domains:“FM”, for these domains
templates did not exist or could not be reliably identified based on the target
sequence; “FM + TBM hard”, an extension of the previous set obtained by adding
the domains for which templates exist but are hard to identify or to properly align
with the target.

Not all methods are conceptually different as often-times they rely on similar
prediction techniques using similar mathematical apparatus and predictive fea-
tures. To illustrate this, I clustered the methods participating in CASP10 based
on the pair-wise Jaccard distance (234). In particular, the dissimilarity between
two groups for each target is defined as:

Jij =
(M01 +M10)

(M11 +M01 +M10)

where M11 is the number of common contacts predicted by groups i and j , M01

and M10 are the contacts only predicted by group i or j , respectively. The J-score
has values in the range of [0;1], with the value of 0 corresponding to identical
predictors and 1 - to completely dissimilar ones.

I introduced also the position of the first correct prediction as well as the po-
sition of the first error for each target and each group. If the prediction contains
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several contacts with the same probability value, the position of the first cor-
rect/incorrect prediction is assigned regardless of whether there are incorrect/correct
predictions with the same probability. In other words, if the correct prediction with
the highest probability has the same probability, and therefore the same rank R,
as one or more incorrect predictions, the correct prediction is assigned rank R.
Analogously, the position of the first incorrect prediction is assigned regardless of
whether there are correct predictions with the same probability, i.e. if the first
incorrect prediction has the same rank R as a correct prediction, the first incorrect
prediction is assigned rank R.

4.3 Results

In CASP10 26 groups submitted predictions of intra-molecular contacts, including
22 automated servers and four expert groups. Three groups used new methods,
while others used modified techniques developed earlier and tested in previous
rounds of CASP.
Here I concentrate on the results for long-range contacts on FM targets.
Fig. 4.1 shows the results of the clustering on the similarity among the groups.
As one can notice, four lowest level clusters encompass two prediction groups each
from the same research centres, i.e. two Proc-S, Distill, Multicom, and confuzz
methods. It is apparent that the clustered groups use similar methodologies with
slight modifications in the implementation of the method.

The results of the performances for each group for long-range contacts are
presented in Table 4.1. The results of the PR-analysis (AUC PR scores) and
the Matthews correlation coefficient (MCC) clearly identifies the top performing
group, G489 (Multicom), which reaches an AUC PR score of 9.5%. The two other
groups that stand out in the PR-curve analysis are G087 and G072, both from
the Distill family of methods.
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Figure 4.1: Similarity among the groups - Dendrogram illustrating the simi-
larity among different methods as judged by the number of common predictions for
all targets.
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4.3 Results

Group No dom MCC precision,% recall,% AUC PR
G489 15 0.131 6.9 31.4 0.095
G087 16 0.127 5 43.8 0.065
G222 16 0.12 5.7 33.7 0.043
G072 16 0.112 5.6 30.3 0.049
G396 16 0.109 4.5 37.5 0.038
G257 16 0.092 3 49.6 0.038
G113 13 0.091 4.8 23.8 0.025
G314 16 0.085 2.8 46.7 0.032
G125 16 0.083 4.6 22.2 0.034
G413 12 0.082 2.4 53.1 0.038
G424 16 0.081 4.8 20.1 0.035
G081 16 0.078 6.8 11.6 0.018
G112 13 0.076 1.7 85.1 0.027
G184 16 0.065 3.5 21.2 0.021
G139 10 0.063 1.5 67.4 0.015
G332 16 0.063 2.8 27.5 0.026
G381 13 0.061 3.3 19.1 0.019
G305 16 0.058 1.6 72.7 0.038
G358 16 0.057 7.3 5.7 0.026
G180 12 0.035 1.6 31 0.012
G434 12 0.019 6.9 0.8 0.015
G475 12 0.009 2.2 0.9 0.009
G098 12 -0.005 1.3 1 0.018
G462 12 -0.007 1.1 0.8 0.018

Table 4.1: Results of the analysis of the group performance for long-range contacts
- Descriptive Statistics scores calculated for the predictions treated in the context
of the complete contact maps for long-range contacts for FM domains. The results
are sorted according to the MCC score.
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The prediction of contacts in protein structures can be used as input for com-
putational methods aimed at structure prediction and, in this case, the correct
ranking of the contacts in terms of their probability might not be necessarily
relevant. On the other hand, prediction of specific contacts in a protein might
shed light on its functional or structural properties and in this case, their correct-
ness should be experimentally tested before drawing conclusions. This is usually
done by designing appropriate mutations of the residues predicted to be in con-
tact, expressing the mutated protein(s) and testing their function (see for example
Refs.(235; 236; 237; 238)). Clearly, one would like to perform as few experiments
as possible.
Since contact predictions are provided together with estimates of their reliability,
it is reasonable to expect that the contacts would be tested in the order they ap-
pear in the list of predictions. This raises the question of how much down the
ordered list of contacts is the first correct prediction for a given method.
I computed the position of the first correct prediction as well as the position of the
first error for each target and each group. Fig. 4.2(A) shows, for each group, the
percentage of times in which the first correct prediction is found in a given posi-
tion; Fig. 4.2(B) shows the rank of the first incorrectly predicted contact. Group
G489 that performs better than the other groups has a correct prediction in the
first position on the L/5 contact lists 56% of the times and in 13% of the cases
the first correct prediction is in position 2. Other groups also often have the first
correct prediction ranking high in the list.
It is instructive to compare the two parts of the figure. For example, group G184
has a correct prediction in one of the top positions about 40% of the time, but
also often it has an incorrect prediction in the first positions. This is due to the
fact that this group often assigns the same probability values to a set of contacts,
some correct and some incorrect.

The prediction of contacts between different domains can be extremely useful
in cases where multi-domain proteins are modelled using different templates for
the different domains, since the step of packing together the partial models can,
and often does, introduce errors. I analysed the number of cases in which different
participating groups correctly predicted contacts between residues belonging to
two different domains. The results for inter-domain long-range contacts in FM
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Figure 4.2: Position of the first correct and incorrect contact - Percent of
cases where the first correct (A) and first incorrect (B) prediction is in the reported
position for each group. Rows are ordered according to the percentage in the first
column of A. The data are shown for the long-range contacts in FM domains.
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targets are summarized in Table 4.2 and the example for target T0658 is shown
in Fig. 4.3. Table 4.2 shows that in this analysis the best results are achieved
by group G489, followed by groups G112 and G072. Also in this case, one can
ask the question of how often the contacts predicted with the highest probabilities
are correct. The results, shown in Fig. 4.4 again highlight that group G489 is
particularly effective in ranking the predicted contacts.
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GROUP FP TP Precision (%)
G489 265 18 0.064
G087 259 7 0.026
G072 261 7 0.026
G475 84 2 0.023
G112 246 5 0.02
G381 213 3 0.014
G334 74 1 0.013
G081 217 2 0.009
G332 261 2 0.008
G139 182 1 0.005
G180 217 1 0.005
G424 231 1 0.004
G077 35 0 0
G098 221 0 0
G113 231 0 0
G125 259 0 0
G184 232 0 0
G222 249 0 0
G257 305 0 0
G305 305 0 0
G314 305 0 0
G358 212 0 0
G396 305 0 0
G413 218 0 0
G462 215 0 0

Table 4.2: Results of inter-domain predictions - Results of the Prediction of Long-
Range Contacts in Which the Contacting Residues Belong to Two Different Domains
.
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Figure 4.3: Prediction of inter-domain contacts for target T0658 - [The
caption is on the next page 2]

82

4_CASP/figures/FIG_7_final_Red.eps


4.3 Results

0This is a two domain protein with the first domain (residues 20185) being an FM target
and the second (residues 186540)a template based target.The top panel shows L/5 contacts
correctly predicted by at least one group as arcs connecting the corresponding residues indicated
by circles.We show all the residues involved in correctly predicted contacts in the first (FM)
domain, both intra- and inter-domain, and only the residues involved in correctly predicted
inter-domain contacts for the second (TBM) domain. The size of the circle is proportional to the
number of contacts the residue makes in the experimental structure. Blue and yellow circles are
residues belonging to the first and second domain, respectively. The colour of the connecting arcs
indicates the frequency with which the corresponding contact was predicted by the groups. Red,
green, and grey lines indicate contacts predicted with a frequency below the median, between
the median and the third quartile and above the third quartile, respectively. The bottom figure
shows the three-dimensional structure of the protein with the first domain in blue and the second
in yellow. The correctly predicted contacts are indicated by sticks with the same colour scheme
as the corresponding arcs in the top panel.
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Figure 4.4: Inter-domain: position of the first correct and incorrect pre-
diction - Percent of cases where the first correct (A) and first incorrect (B) predic-
tion for inter-domain contacts is in the reported position for each group. Rows are
ordered according to the percentage in the first column of A. The data are shown
for the long-range contacts in FM domains.

84

4_CASP/figures/FIG_3S_M.eps


5

Conclusions

Biology is undergoing technological revolutions at an unprecedented speed and
often the experimental advances are not immediately amenable for existing com-
putational tools. In this race between obtaining the data and interpreting them
correctly, thereby adding value to the experimental results, it is essential to have
two complementary computational approaches. On one side, the various existing
methods have to be integrated and made easy to use, on the other, new method-
ologies need to be developed and tested. It follows that it is important to build
flexible systems that also have the property to be designed in such a way to sim-
plify the comparisons of results obtained using different parameters or by replacing
tools with more recent ones.
This thesis falls in this context. During my PhD I have developed new needed tools
(FIDEA, IsomirT, Phagotto), implemented pipelines endowed with the properties
described above, and applied them to a number of experimental configurations.
As it is well known, the computational analysis of high throughput data is meant
to provide a prioritisation list for further experiments, most of which are under-
going in the experiments analysed here. Nevertheless, the various collaborations
have allowed me to understand what is needed and to make the selection of the
future validation experiments more robust.
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6.1 Table of all analysed experiments

ID Type Sequencing Aim Samples
1 RNA-Seq

(Prof. Bozzoni)
86 cycles
in paired
end

Evaluate the contribution of long
non-coding RNAs in the molecular
circuitries controlling myogenesis.

C 2C 12 undifferentiated myoblasts, C 2C 12 myoblasts
at three differentiation times: one day, three days and
five days.

2 RNA-Seq
(Prof. Bozzoni)

74 cycles
in paired
end

To study how long non-coding
RNAs affect on circuitries control-
ling proper muscle differentiation.

Proliferant cells;Cells in a early state of muscle differen-
tiation.

3 RNA-Seq
(Prof. Bozzoni)

74 cycles
in paired
end

Identification of differentially ex-
pressed genes and isoforms associ-
ated with familial forms of Amy-
otrophic Lateral Sclerosis (ALS).

Undifferentiated fibroblast Wild Type; Fibroblast Wild
Type in a early state of differentiation; Differentiated
fibroblast Wild Type; Differentiated fibroblast ALS pa-
tient II; Differentiated fibroblast ALS patient III.

4 ChIP-Seq
(Prof. Levrero)

36 cycles
in single
end

Identification of target genes and
microRNAs of HBV oncoprotein
HBx andvalidation and refinement
of existing hepatocellular carcinoma
molecular signatures.

1 replicate of the DNA sample removed prior to im-
munoprecipitation; 2 replicates of DNA obtained from
infected cells and then immunoprecipitated with anti-
Hbx antibody; 2 replicates of DNA obtained from not in-
fected cells and then immunoprecipitated with anti-Hbx
antibody; DNA obtained from infected cells and then
immunoprecipitated with anti-PolII antibody; DNA ob-
tained from not infected cells and then immunoprecipi-
tated with anti-PolII antibody.

5 ChIP-Seq
(Prof. Levrero)

36 cycles
in single
end

Identification of target genes and
microRNAs of HBV oncoprotein
HBx andvalidation and refinement
of existing hepatocellular carcinoma
molecular signatures.

1 replicate of DNA sample removed prior to immunopre-
cipitation; 2 replicates of DNA obtained from infected
cells and immunoprecipitated with anti-Hbx antibody;
1 replicate of DNA obtained from not infected cells and
immunoprecipitated with anti-Hbx antibody.

6 ChIP-Seq
(Prof. Levrero)

36 cycles
in single
end

Identification of target genes and
microRNAs of HBV oncoprotein
HBx andvalidation and refinement
of existing hepatocellular carcinoma
molecular signatures.

1 replicate of DNA sample removed prior to immunopre-
cipitation; 1 replicate of DNA obtained from infected
cells and immunoprecipitated with anti-Hbx antibody;
1 replicate of DNA obtained from infected cells and im-
munoprecipitated without anti-Hbx antibody.

7 RNA-Seq
(Prof. Levrero)

70 cycles
in paired
end

Identification of target genes and
microRNAs of HBV oncoprotein
HBx andvalidation and refinement
of existing hepatocellular carcinoma
molecular signatures.

Wild type and mock cells for three different system of
infection.

8 DNA-Seq
(Prof. Felici)

78 cycles
in paired
end

Introduction of a method capable of
providing a detailed analysis of the
fine specificity of vaccine-induced
antibody repertoires in order to
guide rational antigen design and se-
lection of appropriate adjuvants.

5 no-selected libraries, 15 first selection libraries and 8
second selection libraries. These includes different adult,
adolescent and infant sera pools from healthy volunteers
vaccinated with the 4CMenB vaccine (Bexsero) in the
course of a phase I clinical trial.

9 smallRNA-Seq
(Public data (He et

al., 2012))

36 cycles
in single
end

Analysing miRNA expression in neu-
rons and revealing the expression of
a large fraction of known miRNAs
with distinct profiles in glutamater-
gic and GABAergic neurons.

5 different embryonic stem (ES) cell lines in triplicate:
Neocortex, Gad2, Camk2a, Purkinje, Cerebellum.

10 smallRNA-Seq
(Public data (Chi-
ang et al., 2010))

36 cycles
in single
end

Experimental evaluation of novel
and previously annotated mam-
malian microRNAs

Mouse brain, ovary, testes, embryonic stem cells, three
embryonic stages, and whole newborns. All in dupli-
cates.

11 smallRNA-Seq
(Public data
(Kuchen et al.,
2010))

36 cycles
in single
end

Regulation of microRNA Expres-
sion and Abundance during Lym-
phopoiesis

27 well defined cell types from the mouse immune sys-
tem, hematopoietic progenitor cells, embryonic stem
cells, as well as 12 tissues.

Table 6.1: All the analysed experiments during my Ph.D.. The experiments were
performed on Illumina GAIIx except exp. 8 that was performed on Illumina MiSeq.
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ABSTRACT

The results of differential expression analyses

provide scientists with hundreds to thousands of

differentially expressed genes that need to be inter-

preted in light of the biology of the specific system

under study. This requires mapping the genes to

functional classifications that can be, for example,

the KEGG pathways or InterPro families they belong

to, their GO Molecular Function, Biological Process

or Cellular Component. A statistically significant

overrepresentation of one or more category terms

in the set of differentially expressed genes is an es-

sential step for the interpretation of the biological

significance of the results. Ideally, the analysis

should be performed by scientists who are well ac-

quainted with the biological problem, as they have a

wealth of knowledge about the system and can,

more easily than a bioinformatician, discover less

obvious and, therefore, more interesting relation-

ships. To allow experimentalists to explore their

data in an easy and at the same time exhaustive

fashion within a single tool and to test their hypoth-

esis quickly and effortlessly, we developed FIDEA.

The FIDEA server is located at http://www.biocom

puting.it/fidea; it is free and open to all users, and

there is no login requirement.

INTRODUCTION

Differential expression analysis typically results in a long
list of differentially expressed genes derived from the com-
parison of one or more samples. Although the results
provide an essentially complete view of the analyzed tran-
scriptomes, their functional interpretation is not always
straightforward.
Once the differentially expressed genes have been

identified and their statistical significance correctly
assessed, it is essential to interpret the data to formulate
hypotheses about the specific mechanisms involved and to

select the most biologically significant transcripts for
further validation.

The first step of the functional analysis is almost invari-
ably an enrichment analysis (1) aimed at verifying whether
a significant number of the identified genes belong to one
or more specific pathways or functional categories. This is
usually performed by statistically assessing whether a
pathway or process is enriched in differentially expressed
genes (2).

The enrichment analysis should be performed using dif-
ferent classifications of the genes, for example, KEGG
pathways (3), Interpro (4), Gene Ontology Molecular
Function, Biological Process and Cellular Component
categories (5). Furthermore, one should explore the
effect of selecting different thresholds for the P-value
threshold as well as for the ratio of the gene expression
values between the experimental system under study and
the respective control to define the subset of differentially
expressed genes. The matter becomes even more complex
if more than two comparisons are required to interpret the
experiment.

The correct interpretation of the results and, especially,
the identification of particularly interestingly genes or
functions among the differentially expressed ones are
much more effective if associated to a deep knowledge
of the biological system at hand and should, therefore,
be done by the experimentalists. However, often they are
not sufficiently expert to be able to effectively exploit the
power of different tools and databases or to perform the
comparison of the results of more than one experiment
(which usually requires some scripting). This remains
true even though there are a number of publicly available
servers that allow functional enrichment analysis given a
list of genes, the most used of which are DAVID (6,7),
g:Profiler (8,9), Gorilla (10), High-Throughput GoMiner
(11), Babelomics (12) and GeneCodis 3 (13). All these
tools require the user to provide lists of genes, which
implies that the identification of genes the transcripts of
which are up- and downregulated needs to be performed
separately and in advance. Furthermore, should the user
wish to see how the results change when a different
P-value or fold-change threshold is applied to identify
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differentially expressed transcripts, the list has to be
rebuilt, resubmitted to the server and the results
compared. Two of the aforementioned servers,
Babelomics and GeneCodis 3, give the possibility of per-
forming the analysis in parallel on two different lists of
genes, for example, upregulated and downregulated ones
or deregulated in different experiments, but the burden of
comparing the results is still left to the user.

The aforementioned considerations prompted us to
provide experimentalists with a more user-friendly tool for
analyzing their data from a functional point of view. The
FIDEA tool was developed through a number of iterations
with our collaborating experimental groups, and we believe
that the resulting system is sufficiently easy to use and at the
same time complete and flexible to be useful in the func-
tional analysis of differential expression experiments.

DESCRIPTION

The FIDEA server allows the user to directly input the
results of a differential expression analysis, for example,
by uploading the output of cufflinks (14,15) (one of the
most used tools for RNA-Seq analysis) or, alternatively, a
formatted result file that can be easily obtained through
other tools such as EdgeR (16) or DESeq (17). The input
format in the latter case is simple and can be defined by
the user (these tools do not have a single output format;
therefore, the columns of the file where the different fields
are stored needs to be specified).

The most commonly used gene IDs (Gene symbol,
Entrez gene ID, Ensembl gene ID, UCSC gene ID and
Refseq ID) are accepted as input. They can refer to one
of the following species: Homo sapiens, Mus musculus,
Drosophila melanogaster, Danio rerio and Saccharomyces
cerevisiae.

On loading the input data, the system immediately
shows the distribution of genes with P-value below a
selected threshold (values >0.1 are not allowed) thereby
permitting to quickly appreciate the fraction of up- and
downregulated genes in the specific experiment. The fold
change and P-value thresholds can be interactively
modified to further filter the data, and this leads to the
direct display of the updated distributions (Figure 1A).

If more than one entry for the same gene is present in
the input, the user is warned, and information about their
annotations is displayed. The entry with the lowest
P-value is used in all subsequent analyses.

Once a P-value and a fold change thresholds are
selected, the enrichment analysis is performed considering
the upregulated and downregulated genes both together
and separately. This is relevant, as the detection of a
statistically significant enrichment depends on the
number of deregulated genes in a functional category
compared with what is expected by chance and thereby,
in specific cases, the results might differ if the upregulated
and downregulated genes are considered together or sep-
arately. If a pathway, for example, has a significant
number of upregulated genes and a few downregulated
genes, the total number of differentially expressed genes
in the pathway might turn out not to be statistically

significant, whereas computing the enrichment of the
upregulated genes separately might highlight an implica-
tion of the pathway in the system under study.
The categories that are considered for the analysis

are KEGG, Interpro (Families, domains, sites and
repeats), Gene Ontology Molecular Function (all
evidence codes), Gene Ontology Biological Process
(all evidence codes), Gene Ontology Cellular Component
(all evidence codes) and GoSlim.
The statistical significance of the enrichment is computed

using the hypergeometric test, the resulting P-values are
corrected using the Benjamini and Yekutieli FDR method
(18). The background distribution is, by default, the distri-
bution of all the genes for the selected organism, but the
user can also provide his/her own list of genes.
The significantly enriched functional categories (accord-

ing to the corrected P-value and fold change thresholds
selected by the user) can be displayed in different ways.
For the analysis performed on the upregulated and

downregulated genes taken separately, the user obtains:

(i) an interactive dynamic heat map showing the
absolute log10 of the corrected P-value. The rows
of the heat map can be interactively ordered accord-
ing to the P-value, the number of differentially
expressed genes belonging to the category or alpha-
betically by category name. The list of the genes
contributing to the category can be obtained by
clicking on the corresponding cell;

(ii) an interactive table reporting the category name, the
P-value and the corrected P-value, the fold enrich-
ment and the number of differentially expressed
genes. On clicking the latter, the system shows the
list of the genes;

(iii) a static publication-ready heat map (Figure 1B) re-
porting the 60 categories with the lowest corrected
P-values;

(iv) a text table (csv format and downloadable).

For the analysis that considers up- and downregulated
genes together, the system provides:

(i) a dynamic interactive barplot listing the various
enriched categories in ascending order of corrected
P-value and the percentage of down-regulated and
up-regulated genes in each of them in different
colors. The list of the genes contributing to the
category can be obtained by clicking on the corres-
ponding bar;

(ii) a ‘word cloud’ where the functional categories are
shown with a character size related to their enrich-
ment (according to the corrected P-value) and in
different colors according to the extent by which
the pathways or categories are enriched by up- or
downregulated genes (red to blue, respectively)
(Figure 1C);

(iii) an interactive table reporting the category name, the
P-value and the corrected P-value, the fold enrich-
ment and the number of differentially expressed
genes. On clicking the latter, the system shows the
list of the genes;

(iv) a text table (csv format and downloadable).
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When more than one experiment is uploaded, the user
can obtain a list of genes that are in common among ex-
periments. These can include genes that are upregulated in
all the experiments, upregulated in one and downregulated
in another and so forth (Figure 1D). The results are shown
as a Venn diagram and as a list of genes that can be
directly submitted to the functional enrichment analysis
or downloaded.
The server is regularly updated in parallel with new

releases of Ensembl and of the functional classification
annotations.
As an example, Figure 1 and Supplementary Figures

2–6 show some of the results obtained using the server
for the data described previously (19), the authors of
which performed an RNA-seq experiment of Id2a-defi-
cient retinae obtained from zebrafish embryos in which
Id2a expression was blocked by morpholino-mediated

knockdown. As described by the authors, the data show
an enrichment of downregulated genes belonging to the
‘‘cell adhesion’’ GO biological process and an enrichment
of upregulated genes in the ‘RNA processing’ and ‘nitro-
gen compound biosynthesis’ processes.

The different results that can be obtained from the
system according to the different functional categories
are shown in the Supplementary Figures. These were
obtained using the data from RNA sequencing experi-
ments aimed at identifying transcripts expressed in
human islets of Langerhans under control conditions or
following exposure to pro-inflammatory cytokines (20).

IMPLEMENTATION

The FIDEA core consists in a Perl code and a set of Perl
modules. The Perl modules are used to process the input,

A B

C D

Figure 1. The figure shows an example of the results of FIDEA. Panel (A) is the first page where, on uploading the data, the user has an overview of
the distributions of fold changes and P-values for up- and downregulated genes and can interactively modify the P-value and fold-change thresholds.
The results of the GOSlim analysis are shown as both a heat map (B) and a word cloud (C). Panel (D) shows an example of how data from different
experiments can be combined and subsequently analyzed.
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convert the gene IDs, perform the functional annotation
and create the textual output files. The Benjamini and
Yekutieli FDR is performed by the Statistics::Multtest
Perl package. The R language and the ggplot2 package
are used to create publication-quality PDF output
images. The server front-end is implemented in standard
HTML markup language using the Javascript
programming language and AJAX technologies using
the jQuery library. CanvasXpress is used for displaying
the interactive images. The server runs under the Linux
(Debian) operating system on a machine with 4# Intel
Xeon E7-4820 2.00GHz processors and 80 GB random
access memory.

The associations between functional annotations and
gene ID are stored in a local MySQL database (see
Supplementary Figure S1 for a detailed scheme of the
DB). Because of the large number of independent data-
bases, the identifiers are, in most cases, redundant.
FIDEA maps all functional annotations to the
ENSEMBL gene IDs (21) and converts all supported
gene IDs (Entrez, UCSC, gene symbol and Refseq) to
ENSEMBL gene IDs. Organism-specific IDs can also be
used, namely, Flybase ID, Gene and Annotation Symbol
for D. melanogaster, Gene Name, Zfin Gene ID for
D. rerio and SGD Systematic Name, Primary SGD and
Gene Name for S. cerevisiae.

Regardless of this internal conversion, the final results
are given using the original gene ID provided by the user.

For all three ontologies included in Gene Ontology
(Biological Process, Molecular Function and Cellular
Component) FIDEA applies the ‘true path rule’ (22):
any gene associated with a given GO term is always
associated with the ancestors of that term leading back
to one step before the ontology root. This ensures an ex-
haustive annotation, even though it may produce some
redundancy. Because of this, FIDEA also includes an en-
richment analysis using the GO Slim annotations (23,24)
that contain a smaller subset of GO terms.

Functional and structural annotations for protein
families, domains and functional sites are retrieved from
INTERPRO. The functional annotations for metabolic
pathways are derived from the KEGG pathway database.

DISCUSSION

We describe here a publicly available and regularly
updated server devoted to the functional analysis of dif-
ferentially expressed genes.

The main features of the tool that make it different from
what is already available are the possibility of directly
processing the results of the differential expression
analysis, of interactively modifying the P-value and
fold change thresholds used for selecting the genes, of
analyzing up- and downregulated genes separately
or together and to directly analyze and compare lists of
genes obtained from more than one comparisons. This,
together with an easy to use interface and with the possi-
bility of displaying the data in different ways (tables, heat
maps and word clouds), makes the tool especially appro-
priate to be used in the functional interpretation of data

derived from microarrays or RNA-seq experiments by the
investigators themselves.
In the future, we plan to include the possibility for the

user to upload newly sequenced and annotated genomes
and to link to information from public data such as, for
example, expression levels of the genes of interest in
different tissues or disease states.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–12.
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ABSTRACT

We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups

participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did

not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114

CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs

(i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of resi-

dues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the

precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to

detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and

the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural

homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium,

and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues

along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the

same level, and comparably to those participating in CASP9.

Proteins 2013; 00:000–000.
VC 2013 Wiley Periodicals, Inc.

Key words: CASP; residue-residue contact prediction; RR.

INTRODUCTION

Inter-residue contacts have been shown instrumental in

reconstructing protein backbones by means of distance

geometry or restrained molecular dynamics.1–3 This find-
ing suggested that the prediction of intramolecular contacts

in proteins can serve as an intermediate step toward accu-

rate prediction of the three-dimensional structure, and
triggered extensive research to connect protein sequence

and structure with a “two-span bridge”: from sequence to

contacts and from contacts to structure. To build such a
bridge, the researchers focused on predicting contacts with

accuracy sufficiently high to be useful for structure model-

ing on one side, and on building a structure from incom-
plete/inaccurate contact data, on the other.

As far as the area of structure rebuilding is concerned,

a series of papers published in the 1990s demonstrated
that protein contact maps can indeed serve as scaffolds

for building protein structures even when the maps are

sparse or contain just a fraction of correct contacts.4–8

A few features related to the tolerance of these methods

to data uncertainty and incompleteness were discovered.

In particular, in a pioneering work,1 Havel et al. specu-
lated that it is better to know many distances imprecisely

rather than a few distances accurately. Saitoh et al.5

noticed that the only factor largely influencing the

Additional Supporting Information may be found in the online version of this

article.

Abbreviations: FM, free modeling; MCC, the Matthews correlation coefficient;

RR, residue-residue (contacts); TBM, template-based modeling.

Grant sponsor: US National Institute of General Medical Sciences (NIGMS/NIH);

Grant number: R01GM100482 (to K.F.); Grant sponsor: KAUST Award; Grant

number: KUK-I1–012-43 (to A.T.); Grant sponsor: EMBO.

Bohdan Monastyrskyy and Daniel D’Andrea contributed equally to this work

*Correspondence to: Andriy Kryshtafovych, Genome Center, University of Califor-

nia, Davis, 415 Health Sciences Dr., Davis, CA 95616. E-mail: akryshtafovych@

ucdavis.edu

Received 18 April 2013; Revised 14 May 2013; Accepted 21 May 2013

Published online 12 June 2013 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/prot.24340

VVC 2013 WILEY PERIODICALS, INC. PROTEINS 1

96

7_backmatter/figures/prot1.eps


6.2 Pubblications

quality of the reconstructed structures is the long-range

geometrical constraint. Skolnick et al. suggested7 that

knowing contacts for one in every seven residues would
be sufficient to recover the structure of short proteins.

Later, Vassura et al.9 claimed that knowing one in four

actual contacts might be enough to facilitate rebuilding
tertiary structure with 5 Å accuracy. Although in general

it is still unclear what accuracy, coverage, and distribu-

tion of contacts along the sequence are needed to be use-
ful in practice, it has become common knowledge that

information on just a few correct contacts can be valua-

ble for improving structure prediction. This is especially
true for the long-range contacts, which impose strong

constraints on the three-dimensional structure and effec-

tively narrow the search space of possible conformations.
The usefulness of the contact approach was illustrated in

the current edition of CASP, where predictors in the

newly introduced contact-assisted structure prediction
category (see the contact-assisted assessment article, this

issue) were able to build substantially better models

using information provided by the organizers on some
of the long-range contacts in the target structures. Other

studies also report that incorporating contact informa-

tion into protein folding programs such as Rosetta and
I-TASSER leads to improvement of the 3D models.10,11

Returning to the first bridge span in the “two-span

bridge” analogy, substantial attention was dedicated to
the prediction of intramolecular contacts. Much of the

research in this area stemmed from the hypothesis of

correlated mutations, suggesting that pairs of residues
that mutate in a coordinated fashion during evolution

are likely to be in contact. In the 1990s, the first articles

demonstrating the applicability of this idea to contact
prediction were published.12–14 After these promising

results, a series of contact prediction methods developing

this concept further appeared in the literature.15 Quite
recently, the 20-year-old idea received a new twist as sev-

eral articles claimed improved accuracy of contact pre-

diction through disentangling the direct pairwise
couplings from the background network of coordinately

mutating positions.15–22 Besides the coordinated muta-

tions approaches, many other contact prediction methods
were developed based on different or hybrid methodo-

logical concepts. In general, they are based on machine-

learning techniques incorporating sequence-related features
such as the sequence evolutionary profile of the target,

secondary structure, and solvent accessibility—to name

just a few. These methods use neural networks,23–29 sup-
port vector machines,30–32 hidden Markov models,33–35

genetic algorithms,36 random forest models,37 and learn-

ing classifier systems.38 Many of the methods mentioned
above were tested in CASP experiments achieving different

levels of success.

The prediction of residue-residue contacts has been a
part of the CASP experiment since CASP239 (1996),

however, the prediction format and the assessment

procedures have been standardized only in CASP6–

CASP9.40–43 For CASP10, we developed an infrastruc-

ture for an automatic evaluation of the RR predictions
and visual analysis of the results.44 Here we analyze the

results obtained by groups participating in CASP10 and

quantify progress in the area compared with the previous
CASPs.

MATERIALS AND METHODS

RR prediction format and definition of a

contact

The RR prediction format and definition of intramo-
lecular contacts in CASP10 have not changed since previ-

ous rounds of CASP. A pair of residues is defined to be

in contact when the distance between their Cb atoms
(Ca in case of GLY) is less than 8.0 Å. Depending on the

separation along the sequence, short-, medium- and

long-range contacts are between residues separated by 6
to 11, 12 to 23, and at least 24 residues, respectively. The

contacts with a separation of less than six residues are

not considered as they typically correspond to contacts
within secondary structure elements. The participating

groups were asked to submit a list of pairs of residues

predicted to be in contact. Each reported contact had to
be annotated with a probability score in the [0;1] range,

reflecting the predictor confidence in assigning the con-
tact. Unlike the previous rounds of CASP, only one set of

contact predictions per target was allowed in CASP10 for

each participating group.

Sets of domains evaluated

The evaluation of predictions was carried out on a per-

domain basis. The domains with detectable homology to
proteins of known structures were not included in the

evaluation as in these cases contacts could easily be

derived from the template structures. Thus, we used only
the domains for which structural templates did not exist

or were very difficult to identify, that is, the domains clas-

sified in the FM, TBM/FM, or TBM_hard categories.45

The complete list of CASP10 domains with their classifica-

tions is available at http:/predictioncenter.org/casp10/

domains_summary.cgi.
We assessed the performance of contact prediction

methods on two sets of domains.

Set 1 (denoted as “FM”) comprises 15 FM and 1 FM/
TBM domains. For these domains templates did not exist

or could not be reliably identified based on the target

sequence. Set 1 is our main evaluation set and is consist-
ent with the sets used in previous rounds of CASP.

Set 2 (hereinafter referred to as “FM1TBM_

hard”) is an extension of the previous set obtained by
adding the domains from the TBM_hard category (13

entries). These are the hardest TBM targets, for which
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templates exist but are hard to identify or to properly

align with the target. As a consequence, the scores of all

submitted three-dimensional models for these targets
were rather poor, not exceeding 50 GDT_TS units.45

We also performed the assessment on two sets of tar-

gets generated from the original two sets by eliminating
non-globular proteins consisting of repeated structural

blocks: Set 1R5 Set 1 – {T0653-D1, T0695-D1}, and

Set 2R5 Set 2 – {T0653-D1, T0671-D2, T0690-D1,
T0695-D1}.

The first three targets removed from Set 2 are the well-

known leucine-rich repeats,46 while the last one is a
three-helical spectrin bundle repeated five times.62 All

four structures are built with repeated structural blocks

for which good templates exist. Since the majority of con-
tacts for these domains could be derived from the tem-

plates, their inclusion could introduce a bias in the

evaluation. In practice, differences in the results on the
original and the reduced sets were minor for the majority

of analyses, and therefore we present here the results only

for the original datasets, except for the domain-length
dependence analysis, where using the reduced sets is more

appropriate.

An estimate of the difficulty of individual domains for
contact prediction is shown in Supporting Information

Figure S1.

Sets of evaluated contacts

To compare the performance of contact prediction

methods we used two different approaches. In the first

approach, we trimmed the predicted lists of contacts to
the same number of contacts per target (see the Reduced

contact lists subsection below); in the second, we

“padded” the lists by assigning a probability value of 0
to all non-listed contacts. The both procedures ensure

that the participating groups are compared on the same

number of contacts.

Preprocessing of predictions

For multidomain targets, we extracted the lists of inter-

residue contacts for each individual domain. This step was

necessary as predictions were submitted for the entire tar-
gets, but evaluated on a per-domain basis (see above). We

also considered contacts between residues from different

domains as their correct prediction can be useful in pre-
dicting the orientation of the interacting domains.

For each prediction, we separated short-, medium-,

and long-range contacts and assessed them independ-
ently. The medium and long-range contacts were also

assessed together.

Reduced contact lists

For every domain, the lists described above were

trimmed to the L/5 and L/10 contacts predicted with

higher probability (L is the length of the domain). The

number L/5 (or L/10) is rounded to the closest integer,

and if there are multiple entries corresponding to the same
probability they are considered in the order provided by

the predictor. To be included in the evaluation, the filtered

list of contacts had to comprise at least L/5 or L/10 con-
tacts. In order to assess also the groups that submitted

only very small numbers of contacts, we also evaluated

predictions on the five contacts with the highest assigned
probability values, regardless of the domain length.

Thus, for every group we generated 12 reduced lists of

contacts per predicted domain, whenever possible. The
results for all lists of contacts and all contact range cate-

gories are available at http:/predictioncenter.org/casp10/

rr_results.cgi. In this paper we focus on the results for
the L/5 lists of long-range contacts. The numbers of

domains predicted on these datasets for each of the par-

ticipating groups are summarized in Figure 1. Two
groups (G334 and G077) submitted just a few predic-

tions for the evaluated domains and one (G246) did

none, so we excluded them from the analysis and present
the results on the reduced lists for the remaining 23

groups. For every group, the final scores on the reduced

datasets are averages of the per-domain scores.

Figure 1

Number of domains per group for which the L/5 list of long-range con-
tacts were evaluated. Two groups RBO-CON (G334) and FLOUDAS
(G077) submitted too few predictions and are not included in the sub-
sequent analyses.
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Padded contact maps

As contact probability maps generated from submitted
predictions are sparse, they are usually unsuitable for

many analyses that require complete predictions (i.e. we

need each pair of residues to be predicted either in con-
tact or not). We remediate the “sparseness” problem here

by setting the values of the empty cells of contact proba-

bility maps to zero (“padded” lists). In other words,
pairs of residues that are missing in predictions are con-

sidered as non-contacts. Under such assumption, each

prediction list classifies every pair of residues within the
selected range to one of the four cases: TP, correctly pre-

dicted contact; FP, non-contact predicted as contact; TN,

correctly “predicted” non-contact (i.e., the non-contact
not included in the predicted contact list); and FN, con-

tact “predicted” as non-contact (i.e., the contact missing

in the submitted list).
We only assessed the groups that submitted predic-

tions for at least 10 domains on the “padded” datasets—

these are the same 23 groups as above, plus group G334.
As in the case of the reduced contact lists, in this article

we concentrate on the analysis of the performance of the

participating groups for the long-range contacts only.
Differently from the assessment on the reduced contact

lists, the final group scores on the padded datasets are

calculated from the data on all domains pooled together.

Evaluation procedure

In CASP10 we have substantially expanded the set of

evaluation tools to assess residue-residue contact predic-

tions. Besides the methods used in the previous CASPs,
we introduced several new evaluations providing an

alternative point of view on methods’ performance.

While in previous CASPs the assessors analyzed the
results exclusively on the “reduced” datasets, implicitly

concentrating on two aspects of contact prediction: (1)

how good are methods in identifying the most reliable
predicted contacts and (2) how accurate are the methods

in predicting contacts with the highest reliability, in this
CASP we complemented the assessment with analyses on

the full sets of contacts addressing the issue of how accu-

rate are all submitted contact predictions, including
those predicted with lower reliability. Below, we briefly

outline all evaluation procedures, focusing in more detail

on the new evaluation measures.

Basic scoring functions and group

performance on the reduced datasets

Since CASP6, predictions in the RR category have been
evaluated on the reduced contact lists using two main

scores: precision5TP/(TP1 FP), and Xd. The detailed

description of these scores can be found in the previous
CASP contact assessment articles.40–43 Note, that in those

papers the measure defined by the formula TP/(TP1 FP)

was called “accuracy” (Acc); here we have changed its

name to “precision” to be consistent with the classic

descriptive statistics definition. The precision-based results
are discussed in the main text of this article, while the Xd-

based results are shown in the Supporting Information.

Based on these two scores, the performance of groups
was further compared with two strategies: cumulative z-

score ranking (sum of precision-based and Xd-based z-

scores) and “head-to-head” comparisons.43

Evaluation measures for the padded

datasets

Matthews’ correlation coefficient and other binary

descriptive statistics measures

For the assessment of the effectiveness of the predictive
methods as binary classifiers we used four evaluation

measures.

The first two are precision and recall, a.k.a. sensitivity:

precision5
TP

TP1FP
; recall5sensistivity5

TP

TP1FN
:

They were already used in previous CASPs, but were shown

to be equivalent on the reduced prediction sets.41 On the
complete datasets, precision and recall are not inter-dependent

any more as the number of predicted contacts is different for

different predictions. Based on the formulae, one can notice
that each of these measures takes into account only two out

of the four parameters of prediction quality (TP, FP, TN, and

FN) and therefore focuses on the specific aspects of predicting
contacts only (ignoring non-contacts).

The F-score is a more comprehensive measure as it

combines precision and recall

F152
precision � recall

precision1recall

and inherits useful features typical to both measures.

However, the F-measure still does not take the true nega-
tive rate into account.

Even though employing measures that take all parame-

ters of contact prediction into account may seem beneficial,
it should be approached with caution, as in our case two

binary classes of prediction (contacts and non-contacts) are

disproportionally distributed in the structure (contacts con-
stitute just a small fraction of all pairs of residues). As it

was discussed in the CASP9 disorder assessment article,47

the Matthews correlation coefficient (MCC)

MCC5
TP � TN2FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP1FPð Þ TP1FNð Þ TN1FPð Þ TN1FNð Þ
p

is a well-suited measure for handling cases with imbal-

anced class frequencies. The MCC was shown to provide
a more appropriate account of the skewed data than

many other methods, and not to favor over-prediction of
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any classes. Therefore, in this article we consider this
measure as the main estimator of binary classifiers on

the expanded datasets.

Precision-recall curve analysis

In previous rounds of CASP, the probability score

assigned to every predicted contact was used in assess-

ment only to select the most reliable contacts (according
to the predictors’ estimates) for the reduced evaluation

datasets. However one can argue that the probability

score holds valuable information that can be used both
in modeling of the structure and in assessment. For

example, it can be used to test the ability of predictors

to correctly rank the predicted contacts and select the
proper cut-off separating contacts (positive cases) from

non-contacts (negative cases).

To address these issues we carried out the analysis based
on the precision-recall (PR) curves, which are widely used in

statistical evaluations of disproportional datasets.48–51 The

PR-curve analysis is conceptually similar to the well-known
ROC-curve analysis,52 but differs in that the parametric

curves are plotted in the (recall, precision) coordinates. Davis
and Goadrich53 proved that the dominant curve in ROC

space corresponds to the dominant curve in PR space and

vice versa, and showed that the curves in PR space may be
more informative for skewed data, as ROC curves tend to

provide overly optimistic results in such cases.

In essence, a PR-curve illustrates the relationship between
the precision and recall of a predictor for a set of probability

thresholds. For each threshold, a record (pair of residues in

our case) is considered as a positive example (contact) if its
predicted probability is equal to or greater than the threshold

value. The area under the PR-curve, AUC_PR, is indicative

of the classifier’s accuracy, with a value of 1 corresponding
to a perfect predictor. The AUC_PR values were calculated

using the software developed by Davis and Goadrich53 and

freely available from their website.54

The Jaccard distance for clustering

methods

The dissimilarity between two groups for each target is

defined in terms of the Jaccard distance:55

Jij5 M011M10ð Þ= M111M011M10ð Þ;

where M11 is the number of common contacts predicted

by groups i and j, M10 and M01 are the contacts only
predicted by group i and j, respectively. The J-score has

values in the range of [0;1], with the value of 0 corre-

sponding to identical predictors and 1 - to completely
dissimilar ones.

The tie-breaking procedure for defining the

first correct/incorrect contact

If prediction contains several contacts with the same

probability value, the position of the first correct/incor-

rect prediction is assigned regardless of whether there are
incorrect/correct predictions with the same probability.

In other words, if the correct prediction with the highest

probability has the same probability, and therefore the
same rank R, as one or more incorrect predictions, the

correct prediction is assigned rank R. Analogously, the

position of the first incorrect prediction is assigned
regardless of whether there are correct predictions with

the same probability, i.e. if the first incorrect prediction

Table I
The Publicly Available Contact Prediction Servers Participating in CASP10

Server name and URL address CASP10 group Brief description of the method

CMAPproa. Available at:

http:/scratch.proteomics.ics.uci.edu/

G305 Deep neural networks architecture allowing progressive refine-

ment of contact prediction.
Distill, Distill-roll. Available at:

http://distill.ucd.ie/distill/

G072 and G087 Two-dimensional-recursive neutral networks.

ICOS. Available at:

http:/icos.cs.nott.ac.uk/servers/psp.html

G184 Inhouse machine-learning technique taking into account nine-

residue window profiles, secondary structure, and other

features.
MULTICOM-CLUSTER. Available at:

http:/casp.rnet.missouri.edu/svmcon.html

G081 An SVM tool. The input data include secondary structure, solvent

accessibility, and sequence profile.
MULTICOM-CONSTRUCTa. Available at:

http:/iris.rnet.missouri.edu/dncon/

G222 Ensembles of deep networks.

MULTICOM-NOVEL,MULTICOM-REFINE. Available

at: http:/casp.rnet.missouri.edu/nncon.html

G424 and G125 Recursive neural networks. MULTICOM-REFINE has a separate

module to predict contacts in beta-sheets.

PROC_S3. Available at:
http:/www.abl.ku.edu/proc/proc_s3.html

G257 Random Forest models incorporating more than 1000 sequence-
related features.

SAM-T06, SAM-T08. Available at:
http:/compbio.soe.ucsc.edu/SAM06/ and

http:/compbio.soe.ucsc.edu/SAM08/

G381 and G113 Recursive neural networks using the correlated mutations in
MSA.

Samcha-servera. Available at:

http:/binfolab12.kaist.ac.kr/conti/

G112 SVM incorporating more than 800 sequential features.

aNew methods according to the CASP10 Abstract Book.

Contact Prediction in CASP10

PROTEINS 5

100

7_backmatter/figures/prot5.eps


6.2 Pubblications

has the same rank R as a correct prediction, the first
incorrect prediction is assigned rank R.

RESULTS

Participating methods: Brief description and

similarity

In CASP10 26 groups submitted predictions of

intra-molecular contacts, including 22 automated

servers and four expert groups. Three groups used new
methods, while others used modified techniques devel-
oped earlier and tested in previous rounds of CASP.
Table I presents a short description of the participating
publicly available contact prediction servers. A more
detailed overview of all the methods participating in
CASP10 can be found in the CASP10 Abstract
Book.56

Not all methods are conceptually different as often-
times they rely on similar prediction techniques using

similar mathematical apparatus and predictive features.

Figure 2
Dendrogram illustrating the similarity among different methods as judged by the number of common predictions for all targets.
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To illustrate this, we clustered the methods participating

in CASP10 based on the pair-wise Jaccard distance (see

Materials). Figure 2 shows the results of the method
clustering. As one can notice, four lowest level clusters

encompass two prediction groups each from the same

research centers, i.e. two Proc-S, Distill, Multicom, and
confuzz methods. It is apparent that the clustered groups

use similar methodologies with slight modifications in
the implementation of the method.

Group performance on the reduced

datasets: Precision and Xd

The results of the analysis of the group performance
for long-range contacts in the L/5 contact lists are pre-

sented in Figure 3. For each group we show the values of

precision and cumulative z-score (sum of precision-based
and Xd-based z-scores) averaged over all predicted

domains from the “FM” and “FM1TBM_hard” datasets

(see Materials for a detailed description of the datasets

and evaluation measures).

Panel A of Figure 3 demonstrates that the precision
of the current prediction methods on FM targets does

not exceed 20%. The three best performing groups on

the FM targets (G125, G222, and G424) attain precision
of 19% and belong to the same family of methods

(Multicom, group leader J. Cheng, University of Mis-
souri). Multicom-construct method (G222) was also

shown to reach the highest score according to the Xd

measure (see Fig. S2 in Supporting Information), and is
ranked first according to the cumulative z-score (Fig. 3,

panel B). It should be mentioned, though, that the dif-

ference in performance of this method and the others
is marginal, as Student’s t-tests did not reveal statisti-

cally significant difference in the performance of the

top ten methods (see Table II for precision and Table
S1 in Supporting Information for Xd). This statement

is supported by the results of the “head-to-head”

Figure 3

Precision (A) and cumulative z-score (B) for the participating groups on the two sets of the evaluated domains (FM and FM1TBM_hard). The
data are shown for the top L/5 long-range contacts. Groups in both panels are ordered according to their cumulative z-score on FM targets.
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Table II
Results of the Paired Student’s t-Test on the Precision Score for (A) FM and (B) FM, TBM-Hard Domains for Top 10 Groups According to the
Cumulative z-Score Ranking

A G222 G358 G305 G413 G424 G125 G113 G087 G489 G314

G222 x 9 15 11 14 14 12 15 14 15
G358 0.49 x 9 6 8 8 9 9 8 9

G305 0.18 0.3 x 12 15 15 12 16 15 15
G413 0.11 0.19 0.19 x 11 11 8 12 11 11

G424 0.07 0.09 0.44 0.13 X 15 11 15 14 14

G125 0.16 0.1 0.39 0.13 0.26 x 11 15 14 14
G113 0.5 0.34 0.39 0.24 0.08 0.08 x 12 11 12

G087 0.26 0.46 0.4 0.46 0.36 0.32 0.44 x 15 15
G489 0.33 0.1 0.37 0.4 0.34 0.32 0.31 0.49 x 14

G314 0.19 0.21 0.41 0.09 0.21 0.34 0.37 0.48 0.48 x

B G489 G087 G222 G413 G358 G072 G305 G113 G424 G125

G489 x 27 26 18 16 27 27 21 25 26

G087 0.03 x 28 20 18 29 29 23 27 28
G222 0.02 0.34 x 19 18 28 28 23 26 27

G413 0.05 0.34 0.08 x 10 20 20 14 18 19

G358 <0.01 0.03 0.26 0.12 x 18 18 18 17 17
G072 <0.01 0.08 0.36 0.43 0.11 x 29 23 27 28

G305 0.01 0.07 0.01 0.18 0.25 0.21 x 23 27 28
G113 <0.01 0.12 0.18 0.38 0.47 0.24 0.14 x 21 22

G424 0.01 0.03 <0.01 0.36 <0.01 0.11 0.17 0 x 27
G125 0.01 0.03 <0.01 0.33 <0.01 0.11 0.19 0 0.39 x

The tables show the P values (cells below the diagonal) of the Student’s t-tests performed for each pair of the groups on the common set of domains (the numbers

above the diagonal). Shaded cells indicate statistically indistinguishable results at the significance level of 0.05.

Table III
The “Head-to-Head” Comparison of the Performance of the Groups Based on the precision Score for (A) FM and (B) FM, TBM-Hard Domains
for the Top 10 Groups According to the Cumulative z-Score Ranking

A

Group 2

G222 G358 G305 G413 G424 G125 G113 G087 G489 G314

Group 1 G222 X 44.4% 46.7% 63.6% 50.0% 50.0% 41.7% 66.7% 64.3% 46.7%

G358 44.4% x 44.4% 16.7% 75.0% 75.0% 33.3% 33.3% 37.5% 55.6%

G305 33.3% 33.3% x 58.3% 40.0% 40.0% 33.3% 50.0% 60.0% 40.0%
G413 27.3% 66.7% 25.0% x 36.4% 36.4% 25.0% 58.3% 45.5% 27.3%

G424 21.4% 12.5% 53.3% 45.5% x 13.3% 18.2% 46.7% 35.7% 28.6%
G125 28.6% 12.5% 46.7% 45.5% 13.3% x 18.2% 53.3% 35.7% 21.4%

G113 33.3% 44.4% 50.0% 50.0% 63.6% 63.6% x 66.7% 45.5% 50.0%
G087 26.7% 55.6% 37.5% 41.7% 33.3% 26.7% 33.3% x 26.7% 40.0%

G489 28.6% 50.0% 40.0% 45.5% 50.0% 50.0% 45.5% 60.0% x 35.7%

G314 33.3% 33.3% 46.7% 54.5% 64.3% 57.1% 33.3% 60.0% 57.1% x

B Group 2

G489 G087 G222 G413 G358 G072 G305 G113 G424 G125

Group 1 G489 x 63.0% 53.8% 55.6% 75.0% 77.8% 66.7% 71.4% 72.0% 73.1%

G087 25.9% x 35.7% 45.0% 61.1% 55.2% 51.7% 43.5% 55.6% 50.0%
G222 42.3% 60.7% x 63.2% 55.6% 57.1% 60.7% 56.5% 69.2% 74.1%

G413 38.9% 55.0% 31.6% x 70.0% 50.0% 50.0% 35.7% 61.1% 63.2%
G358 18.8% 27.8% 38.9% 20.0% x 50.0% 50.0% 33.3% 76.5% 70.6%

G072 14.8% 24.1% 35.7% 45.0% 44.4% x 44.8% 39.1% 59.3% 57.1%

G305 33.3% 31.0% 25.0% 40.0% 33.3% 41.4% x 30.4% 51.9% 50.0%
G113 23.8% 47.8% 26.1% 35.7% 44.4% 52.2% 47.8% x 71.4% 72.7%

G424 20.0% 29.6% 15.4% 27.8% 17.6% 33.3% 40.7% 14.3% x 29.6%
G125 19.2% 35.7% 14.8% 26.3% 17.6% 35.7% 39.3% 13.6% 14.8% x

The rows show the fraction of common domains for which the precision score of the group in the row is higher than that of the group in the column. Cases of equal

scores are not counted.
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comparison (Table III and Table S2 in Supporting

Information) where no method was shown to consis-
tently over-score any other method on more than half

of the domains.

For the set of FM and TBM_hard domains, there is a
group clearly outperforming the others, Multicom

(G489), the results of which (Fig. 3) definitely look

better than those of other groups (precision over 35%
with the next best value of 24% for the Distill_roll

group). The Multicom group is shown to be statisti-
cally better than all other predictors on the

FM1TBM_hard set of targets (see Table II in the

main text and Table S1 in Supporting Information)
and consistently better than other methods in head-to-

head comparisons (Table III and Table S2 in Support-

ing Information). However, it should be mentioned
that the method used by group G489 is not conceptu-

ally an ab initio contact prediction method, as it relies

on the three-dimensional models submitted by CASP10
servers. The better performance of this group on the

FM1TBM_hard dataset can be explained by the

method’s consensus strategy, which works well on the

TBM targets that constitute a substantial fraction of
the FM1TBM_hard dataset.

Dependence of group performance on the

domain length and the depth of alignment

Figure S1 (Supporting Information) shows that the

contacts are harder to predict for some domains. The

predictive difficulty of a domain is not always directly
connected with the availability of templates, and from

Figure S1 it can be seen that in CASP10 the third easiest

target (T0739-D2) is in fact an FM domain, while the
second hardest (T0668-D1) is a template-based target.

This raises the question of which other features, besides

template availability, may influence the accuracy of con-
tact prediction. In particular, we investigated the influ-

ence of domain length and depth of alignment.

Figure 4(A) shows the precision of the best 10 per-
forming groups as a function of domain length. The

CASP10 FM dataset covers a wide range of domain

Figure 4

Precision of the prediction methods as a function of domain length (A) and depth of the alignment (B). The data are shown for the top L/5 long-
range contacts.
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length spanning from 58 to 535 residues. Two domains

are short (under 60 residues), two rather long (over 390

residues) and the remaining 12 are of medium length (80–

220 residues). On four of the domains (the shortest two

and one from each of the medium and long sub-ranges),

the best groups reach a very high precision (over 50%). It

should be noticed, though, that the two longest domains

in this graph (T0653-D1 and T0695-D1) represent non-

globular targets with a repeated topology (see the descrip-

tion of Set 2R in Materials), and this may introduce bias

in the analysis. Therefore, we analyzed per-group trends in

the results excluding these two domains. Inspection of the

graph reveals that the vast majority of groups reach better

precision on shorter targets.

To analyze the dependence of group performance on the

depth of the target alignments, we searched for sequence

homologs for each target with PSI-BLAST57 running five
iterations against the non-redundant database with param-

eters “-h 0.05 -v 1000 -b 1000.” The number of hits cover-

ing at least 75% of target’s sequence was used as a
measure of the alignment depth. The depth of the

alignment for CASP10 FM targets varied from just a few

hits (for T0726-D3, T0741-D1, T0740-D1) to more than a

thousand for two repeat-topology domains (T0653-D1 and
T0695-D1). Figure 4(B) shows that CASP10 methods are

in general insensitive to the alignment depth, as no trend

in the data can be detected. As precision of group per-
formance depends on target length, we also tested a

hypothesis that length can be a contributing factor in how

precision depends on depth of alignment. Our additional
analysis showed that this is not the case.

Group performance on the untrimmed

contact lists: PR-curve and MCC analyses

Figure 5 and Table IV present a different perspective

on the methods’ performance based on the PR-curve
analysis, MCC and other descriptive statistics measures

(see Materials).

The PR-curve analysis clearly identifies the top per-
forming group, G489 (Multicom), which reaches an

AUC_PR score of 9.5%. Again, we remind here that this

Figure 5

PR-curves for all predicted long-range contacts on FM domains.
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group does not predict contacts directly from the
sequence but relies on the submitted three-dimensional

models. The two other groups that stand out in the PR-

curve analysis are G087 and G072, both from the Distill

family of methods (group leader G. Pollastri, University
College Dublin).

The results of the PR-analysis (AUC_PR scores) are

shown to be well correlated with the MCC and F1 scores

Table IV
Descriptive Statistics Scores Calculated for the Predictions Treated in the Context of the Complete Contact Maps for Long-Range Contacts for FM
Domains

Group No dom TP FP TN FN MCC Precision (%) Recall (%) F1 AUC_PR

G489 15 841 11,331 27,5798 1838 0.131 6.9 31.4 0.113 0.095
G087 16 1175 22,200 266,876 1510 0.127 5.0 43.8 0.090 0.065

G222 16 905 15,025 274,051 1780 0.120 5.7 33.7 0.097 0.043
G072 16 814 13,674 275,402 1871 0.112 5.6 30.3 0.095 0.049

G396 16 1006 21,195 267,881 1679 0.109 4.5 37.5 0.081 0.038

G257 16 1331 43,378 245,698 1354 0.092 3.0 49.6 0.056 0.038
G113 13 559 11,025 266,176 1785 0.091 4.8 23.8 0.080 0.025

G314 16 1255 42,987 246,089 1430 0.085 2.8 46.7 0.053 0.032
G125 16 597 12,454 276,622 2088 0.083 4.6 22.2 0.076 0.034

G413 12 841 34,071 152,543 742 0.082 2.4 53.1 0.046 0.038
G424 16 540 10,788 278,288 2145 0.081 4.8 20.1 0.077 0.035

G081 16 312 4287 284,789 2373 0.078 6.8 11.6 0.086 0.018

G112 13 1542 89,198 107,628 269 0.076 1.7 85.1 0.033 0.027
G184 16 570 15,934 273,142 2115 0.065 3.5 21.2 0.059 0.021

G139 10 1294 82,600 167,456 625 0.063 1.5 67.4 0.030 0.015
G332 16 738 25,302 263,774 1947 0.063 2.8 27.5 0.051 0.026

G381 13 448 13,232 263,969 1896 0.061 3.3 19.1 0.056 0.019
G305 16 1952 123,658 165,418 733 0.058 1.6 72.7 0.030 0.038

G358 16 154 1969 287,107 2531 0.057 7.3 5.7 0.064 0.026

G180 12 490 30,968 155,646 1093 0.035 1.6 31.0 0.030 0.012
G334 12 18 241 154,081 2166 0.019 6.9 0.8 0.014 0.015

G475 12 19 857 261,349 2169 0.009 2.2 0.9 0.012 0.009
G098 12 13 982 70,457 1345 20.005 1.3 1.0 0.011 0.018

G462 12 11 981 70,458 1347 20.007 1.1 0.8 0.009 0.018

The results are sorted according to the MCC score.

Figure 6

Percent of cases where the first correct (A) and first incorrect (B) prediction is in the reported position for each group. Rows are ordered according
to the percentage in the first column of A. The data are shown for the top L/5 long-range contacts in FM domains.
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presented in Table IV. The Pearson correlation coeffi-
cients for these two pairs of scores are 0.76 and 0.71,

respectively. Also there is a high correlation (0.90)

between the MCC and F1 scores. At the same time, the
correlation between other measures presented in Table IV

is substantially lower (except for the F1 – precision corre-

lation) confirming that these (low-correlated) measures
highlight different aspects of contact prediction.

Position of the first correct and incorrect

contact

The prediction of contacts in protein structures can be

used as input for computational methods aimed at struc-

ture prediction and, in this case, the correct ranking of
the contacts in terms of their probability might not be

necessarily relevant. On the other hand, prediction of
specific contacts in a protein might shed light on its

functional or structural properties and in this case, their

correctness should be experimentally tested before draw-
ing conclusions. This is usually done by designing appro-

priate mutations of the residues predicted to be in

contact, expressing the mutated protein(s) and testing
their function (see for example Refs. 58–61). Clearly, one

would like to perform as few experiments as possible.

Since contact predictions are provided together with esti-
mates of their reliability, it is reasonable to expect that

the contacts would be tested in the order they appear in

the list of predictions. This raises the question of how

much down the ordered list of contacts is the first cor-

rect prediction for a given method.
We computed the position of the first correct predic-

tion as well as the position of the first error for each tar-

get and each group considering short, medium, and

long-range contacts. The results of this analysis are avail-

able from the CASP10 web site (http://predictioncenter.

org/casp10/rr_additional.cgi). As in other sections, here

we concentrate on the results for long-range contacts on

FM targets.

Figure 6(A) shows, for each group, the percentage of

times in which the first correct prediction is found in a

given position; Figure 6(B) shows the percentage of times
in which the first incorrect prediction is found in a given

position. Group G489 that performs better than the other

groups has a correct prediction in the first position on the
L/5 contact lists 56% of the times and in 13% of the cases

the first correct prediction is in position 2. Other groups

also often have the first correct prediction ranking high in
the list. It is instructive to compare the two parts of the

figure. For example, group G184 has a correct prediction

in one of the top positions about 40% of the time, but
also often it has an incorrect prediction in the first posi-

tions. This is due to the fact that this group often assigns

the same probability values to a set of contacts, some cor-
rect and some incorrect.

Interdomain contact predictions

The prediction of contacts between different domains

can be extremely useful in cases where multidomain pro-
teins are modeled using different templates for the differ-

ent domains, since the step of packing together the

partial models can, and often does, introduce errors.
We analyzed the number of cases in which different

participating groups correctly predicted contacts between

residues belonging to two different domains. The results
for interdomain long-range contacts in FM targets are

summarized in Table V, and the example for target

T0658 is shown in Figure 7 Table V shows that in this
analysis the best results are achieved by group G489, fol-

lowed by groups G112 and G072

Also in this case, one can ask the question of how
often the contacts predicted with the highest probabilities

are correct. The results, shown in Figure S3 (Supporting

Information) again highlight that group G489 is particu-
larly effective in ranking the predicted contacts.

Comparison of CASP10 with previous

experiments

Establishing progress in contact prediction is not a trivial

task as targets, methods, and databases change in time.
Unfortunately, no methods are available to adequately take

all these relevant factors into account. We report here a

Table V
Results of the Prediction of Long-Range Contacts in Which the Con-
tacting Residues Belong to Two Different Domains

Group FP TP Precision (%)

G489 265 18 6.4
G087 259 7 2.6

G072 261 7 2.6
G475 84 2 2.3

G112 246 5 2.0

G381 213 3 1.4
G334 74 1 1.3

G081 217 2 0.9
G332 261 2 0.8

G139 182 1 0.5
G180 217 1 0.5

G424 231 1 0.4

G077 35 0 0.0
G098 221 0 0.0

G113 231 0 0.0
G125 259 0 0.0

G184 232 0 0.0
G222 249 0 0.0

G257 305 0 0.0

G305 305 0 0.0
G314 305 0 0.0

G358 212 0 0.0
G396 305 0 0.0

G413 218 0 0.0
G462 215 0 0.0

The data are for the L/5 contacts with higher predicted probability.
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comparison of the results without attempting to make any

claim about the presence of real and measurable progress.
Figure 8 shows the results of the top 10 groups in the

latest three CASPs on FM domains for the L/5 lists of

long-range contacts (CASP10 results for the FM1TBM

_hard domains are also included for comparison). On
average, the CASP8 predictions (12 domains) have the

highest precision—24.6%, followed by CASP9 (29

Figure 7

Example of the prediction of inter-domain contacts for target T0658. This is a two domain protein with the first domain (residues 20–185) being an FM target and
the second (residues 186–540)—a template based target. The top panel shows L/5 contacts correctly predicted by at least one group as arcs connecting the corre-
sponding residues indicated by circles. We show all the residues involved in correctly predicted contacts in the first (FM) domain, both intra- and inter-domain,
and only the residues involved in correctly predicted inter-domain contacts for the second (TBM) domain. The size of the circle is proportional to the number of
contacts the residue makes in the experimental structure. Blue and yellow circles are residues belonging to the first and second domain, respectively. The color of
the connecting arcs indicates the frequency with which the corresponding contact was predicted by the groups. Red, green, and gray lines indicate contacts predicted
with a frequency below the median, between the median and the third quartile and above the third quartile, respectively. The bottom figure shows the three-
dimensional structure of the protein with the first domain in blue and the second in yellow. The correctly predicted contacts are indicated by sticks with the same
color scheme as the corresponding arcs in the top panel.
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domains)—21.4%, CASP10 (FM1TBM_hard, 28
domains)—21.4%, and CASP10: (FM, 16 domains)—

17.4%. These results may indicate lack of substantial pro-

gress or, alternatively, be a consequence of the growing
difficulty of targets in subsequent CASPs.63

CONCLUSIONS

The assessment of the state-of-the-art in contact pre-
diction shows that the current precision of the best con-

tact prediction methods on long-range contacts averages

around 20%—the same limit observed in several previ-
ous CASPs. We look forward to seeing the results of the

new methods that have recently appeared. Their pub-

lished results in tests other than CASP have certainly
stirred a lot of attention and it is therefore likely that we

will see a renewed interest in the development of novel

methods in contact prediction that will lead to improved
results. We believe that progress in the field is objectively

offset by the increased difficulty of the targets in CASP10

and that the depth of the alignments available for these

targets made them less attractive for these new methods.

At the same time, it should be mentioned that the list of
CASP targets does mirror the proteins that the biological

community considers interesting and worth an effort.

The predictions submitted by the best performing
groups are statistically indistinguishable on the set of

free-modeling domains. When hard template-based tar-

gets are added to the dataset, the results of the Multicom
group, which uses consensus strategy to extract the con-

tacts from predicted three-dimensional structures, are

better than the others. Among the remaining groups,
two implementations of the Distill method and ab initio

predictors from the Multicom series of methods quite

consistently perform better.
Based on the CASP10 data, we show that shorter

domains are in general easier targets for contact predic-

tion, and that the difficulty of predicting contacts in
domains is not correlated with the depth of target

sequence alignment.
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