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Chapter 1

Introduction

Free electron lasers (FELs) are linac based sources of coherent synchrotron

radiation. This chapter briefly describes FELs features.

A FEL is made up of two main system: the undulator, an array of dipoles,

which produces synchrotron radiation and the photo-injector that is the elec-

tron source.

The Sparc project is a self-amplified-spontaneous emission FEL, that is

the synchrotron radiation is induced by the current modulation of the elec-

tron beam itself rather than by an external field.

The FEL characteristics strongly depend on the beam quality, achieved

in the photo-injector. A high quality beam characterize the 4th generation of

synchrotron radiation source; in this case the quality of a beam is described

by its emittance, εn, and its current or in a more compact way by its bright-

ness B⊥. This chapter describes the physical origin (liouville’s theorem) and

meaning of these important parameters.

As mentioned the high quality beam is achieved in the photo-injector; the

main causes of emittance and brightness degradation along the photo-injector

and how to compensate them are described here.

Finally the main features of this work are presented in the last section:

emittance degradation causes, such as transverse space charge and transverse

wake fields, are deeply studied. Such effects have been included in the code
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Homdyn which is a very fast semi-analytical code. This tool has been used

to improve the beam characteristic of the SPARC project.

1.1 Free-Electron Lasers

1.1.1 Physics of Free Electron Lasers

Synchrotron radiation, the photons produced by charged particles moving in

a curved trajectory, is playing an increasingly important role in many areas

of basic and applied science.

Synchrotron radiation [1] was first discovered in storage rings: the elec-

trons, after being generated in an electron gun, are bunched, pre-accelerated

and then transported into the storage rings. In a storage ring, magnets bend

the trajectory of the electrons thus producing synchrotron radiation. An

array of strong bending magnets, with alternating field direction, called wig-

glers, can be used. The radiation produced in all wiggler dipoles adds up

incoherently but still provides a much larger amount of radiation than in a

single bending magnets. By reducing the magnetic field amplitude, and, as

a consequence, the curvature radius of the electron trajectories, the intensity

of the radiation can be further increased: the device is called undulator.

Free Electron Lasers (FELs), driven by linacs, constitute the fourth gen-

eration of synchrotron light source.

Fig. 1.1 describes the evolution of the radiation in terms of brilliance that

is the number of photons per second, frequency interval, area and divergences,

versus years.

The first FEL, [2] was built in the middle of 1970 by John Madey and

colleagues. Nowadays it is considered a unique tool for scientific applications

providing tunable coherent radiation in the far infrared or VUV ranges. Sig-

nificant effort of scientists and engineers are directed towards the construction

of an X-ray laser.
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Figure 1.1: Development of X-ray source brilliance since 1895.
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Figure 1.2: Magnetic undulator in which magnets are arranged to provide a

magnetic field that periodically reverses direction.

As in a storage ring for synchrotron radiation production, a FEL requires

an electron beam to be injected into an undulator as in fig. 1.2.

The magnets in the undulator are arranged to provide a magnetic field

that periodically reverses direction; the electrons experience the Lorentz

force, produced by the magnetic field, and oscillate. At the same time an

external field, eventually produced by a laser source, propagates in the same

direction as the beam.

The electron beam interacts with the external electric field; some electrons

see the external force generated by the electric field opposed to the motion

of the electrons: the electrons lose energy which is gained by the external

electric field, see fig. 1.3a). On the contrary electrons shifted in phase with

respect to the electrons described above, see a force in the same direction as

its motion: the electron therefore gains energy from the external field, see

fig. 1.3b).

This energy exchange results in the modulation of the longitudinal ve-

locity of the electrons. Therefore electrons that gain energy speed up whilst

electrons that lose energy slow down, producing a bunching at the resonant

wavelength λ scale
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Figure 1.3: Energy exchange between the electrons (curved line) and the elec-

tric field (straight lines). (a) represents electrons loosing energy, (b) the

electrons gaining energy.

λ =
λu

2γ
(1 + K2) (1.1)

where λu is the undulator wavelength, γ the electrons energy and K =

eBuλu/2πmc the undulator strength, being Bu the on axis magnetic field,

c the speed of light, e and m the electron charge and rest mass respectively.

Finally electrons bunched within a wavelength emit radiation in phase

thus producing a coherent intensity. The coherent intensity leads to more

energy modulation and more bunching, leading to exponential growth of the

radiation. The process ends when the energy lost drives the beam out of

resonance.

The production of a coherent radiation in the short wavelength is lim-

ited by the external field wavelength. The problem is avoided not using

any seeding, that is any external field, to generate the coherent radiation.

Self-Amplifying Spontaneous Emission (SASE) FEL uses fluctuations of the

electron beam current density as input signal; therefore the radiation can be

extended to the X-ray regime.

The main advantage of a FEL over quantum laser is the tunability of the

radiation. In the quantum laser, the lasing wavelength is defined by discrete

energy transitions between the quantum levels of atoms or molecules of an

active medium. As concern the FEL their operating frequency is defined by

13



Figure 1.4: Schematic layout of the SPARC photo-injector including the un-

dulator and by pass line.

their design, as eq. 1.1 emphasizes, that is by the electron beam energy, the

characteristic of the magnetic fields in the interaction region. For these rea-

sons, the FEL can be tuned, in principle,to any desired operating frequency.

Good performances of a FEL depends on the characteristics of the beam

at the entrance of the undulator. To achieve short radiation wavelength

λr and short gain length Lg, which determines the increase of the radiation

power along the undulator, we need a high brightness beam, B⊥ (see sec. 1.3),

since:

λr ∝
∆γ

γ

√

1 + k2/2

γB⊥K2
(1.2)

 Lg ∝ γ3/2

K
√

B⊥(1 + K2/2)
(1.3)

1.1.2 The Sparc Photo-injector

The SPARC (Sorgente Pulsata e Amplificata di Radiazione Coerente) project,

[3] is the result of a collaboration of different Italian research institutes, such

as INFN, ENEA, CNR.

The Italian Government launched in 2001 a long term initiative devoted

to the realization in Italy of a coherent X-ray source, driven by the large

interest the 4th generation light sources, as X-ray SASE FELs, have raised

world wide in the synchrotron light scientific community, as well as in the

particle accelerator community.
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The SASE FEL experiment, in the Sparc project, is conducted using

a permanent magnet undulator made of 6 sections, each 2.1 5m long; the

radiation produced will be 500 nm and the power reached after 12 m will be

around 108 W .

The device preceding the undulator section, called photo-injector, is de-

voted to the production of a high quality electron beam that is with a low

emittance and high current beam (see sec. 1.3).

A photo-injector consists of an electron source and accelerator sections.

The electrons source for Sparc consists of a 1.6 cell RF gun operating

in the S-band (2.856 GHz) with a high peak field (120 MV/m). The RF

gun includes a metallic photo-cathode which is illuminated by a temporally

flat, pico-second laser source. Therefore the laser system driving the photo-

cathode employs high bandwidth Ti:Sa technologies with the oscillator pulse

train locked to the RF.

The system generates a 5.6 MeV electron beam whose time duration and

radius is 10 ps and 1.13 mm respectively. The bunch is then focused by a

solenoid whose field peak strength is 0.27 T .

The accelerator device, following the solenoid, is made up of three ac-

celerating traveling wave sections, 3 m long, generating a peak electric field

of 25 MV/m, 12.5 MV/m and 12.5 MV/m respectively. The first section

is embedded in thirteen solenoid coils, which guarantee the focusing of the

beam.

In order to meet the FEL requirements, at the exit of the linac, we obtain

a high energy beam, 155 MeV , whose normalized emittance is εn < 2µm,

the relative energy spread is ∆γ/γ < 0.1% and the peak current is I ∼ 100A.

It’s worth noting the Sparc project includes also a second beam line, par-

allel to the one described and represented in fig. 1.4, for bunch compression

via magnetic fields. Such study will be very important for the generation

of a ultra high brightness, high peak current beam suitable for future X-ray

sources.
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Bunch charge 1.1nC

Bunch radius 1.13mm

Bunch lenght 10ps

Bunch energy @ gun exit 5.6MeV

Bunch energy @ linac exit 155MeV

Repetition rate 1-10Hz

Cathode peak field 120MV/m

Peak solenoid field @ 0.19m 0,273T

Table 1.1: Relevant parameters in Sparc project.

The scientific case shows a large interest, [4] in the community of syn-

chrotron light users. X-rays from synchrotron light sources are today widely

used in atomic physics, plasma and warm dense matter, femtosecond chem-

istry, life science, single biological molecules, imaging, holography, micro and

nano lithography. The high peak brilliance expected with the SASE FEL

sources will open new frontiers of research. New techniques in X-imaging

can be applied in the field of material science, biology, non linear optics.

Of particular relevance are the diffractive techniques with coherent radia-

tion on biologic tissues that allow the single-pulse crystallography of macro

molecules.

As already mentioned the performances of a SASE FEL are critically

dependent on the quality of the electron beam, thus the main purpose of the

Sparc photo-injector is the production of a low emittance high current beam

that is a high brightness electron beam before the undulator structure.

1.2 Liouville’s Theorem

A beam is made up of a great number of particles so global beam properties

are studied instead of analyzing each particle evolution.

16



Let’s consider N particles. In the six-dimension phase space, qi the canon-

ical space and pi the momentum coordinates, each particle is represented by

a point whilst a beam of particles occupies a volume. The number of particles

dN in an elementary volume dV of phase space is given by

dN = n(q1, q2, q3, p1, p2, p3)dV (1.4)

where n(q1, q2, q3, p1, p2, p3) is the particle density in the phase space.

The motion of the beam is associated with an equivalent motion of the

representative points in the phase space, thus the occupied volume in the

phase space changes its shape.

Introducing a velocity vector v = {q̇i, ṗi} in phase space for each particle

and the Hamiltoninan of the system we can obtain, [5]

dn

dt
= 0 (1.5)

Eq. 1.5 is called Liouville’s theorem and it states that, if the number of

particles is constant, the density of points in phase space remains constant

as well.

It’s worth noting the Liouville’s theorem is valid when the particles don’t

interact with each other. In our purpose the interaction of neighbor particles

is negligible compared to the average collective fields produced by further

(Debey length) particles in the beam.

It’s easy to demonstrate the Liouville’s theorem also states the volume in

the phase space occupied by given particles remains invariant

∫ ∫

d3qid
3pi = const (1.6)

This is also true in the trace space, x − x′, y − y′, z − z′, being x′, y′, z′

the divergence of the beam; besides if there isn’t any coupling between the x

motion and the other direction the area in the trace space remains constant

Ax =

∫ ∫

dxdx′ (1.7)
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Figure 1.5: Particle orbits in a laminar beam: ideal parallel beam, converging

laminar beam and diverging laminar beam converted to a parallel beam by

linear lens.

This important property led to the introduction of the emittance of a

beam.

1.3 Brightness and Emittance

The emittance, [6], [5], [7], is a measure of the quality of a beam. Beam with

good parallelism and order are easier to transport and to focus. The ideal

charged particle beam has laminar particle orbits, that is orbits in a laminar

beam flow in layers that never intersect.

A laminar beam satisfies two conditions: first, all particles at the same

transverse position have identical transverse velocities; second, the magni-

tude of the transverse velocity is linearly proportional to the displacement

from the axis of the beam symmetry. If these conditions are not satisfied,

the orbits of two particles cross.

Fig. 1.5 shows some examples of particles’ trajectory in a laminar beam

whilst fig. 1.6 describes some particles’ orbit in a non laminar beam.
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Figure 1.6: 3

Crossing orbits for particles at the same position showing a velocity spread

(upper graphics) and for particles whose transverse velocity is not linearly

proportional to the displacement from the axis.
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The three particles distributions, ideal parallel beam, converging and di-

verging beam, of fig. 1.5 are depicted in the transverse trace space in fig. 1.7.

It’s worth noting that for the two conditions mentioned above, the trace

space representation of a laminar beam is always a zero thickness straight

line.

On the contrary particles in a non laminar beam have a random distri-

bution of transverse velocities at a transverse position: this means a trace

space representation wouldn’t be a zero thickness straight line but a filled

area as in fig. 1.8.

Thus a measure of the parallelism of a beam should be proportional to

the area of eq. 1.7.

Such filled area in the x − x′, y − y′, z − z′ trace space, for Liouville’s

theorem, remains constant if the number of particles remains constant and

the coordinates are uncoupled.

Nonetheless, non linear fields, fringing fields and so on in accelerators can

modify the shape of the volume stretching and distorting the distribution.

Fig. 1.9 represents the progressive distortion of the trace space ellipse during

beam propagation when non linear forces acts. The enclosed area remains

constant whilst the beam quality get worst.

For this reason the above definition doesn’t distinguish between a well-

behaved beam, for example in a linear focusing system, and a beam with the

same trace space area but a distorted shape due to nonlinear forces.

A definition of the emittance that measure the beam quality rather than

the trace-space area is preferred; thus the emittance is defined as a statistical

mean area as in [8]

εx =
√

(

< x2 >< x′2 > − < xx′ >2
)

(1.8)

A particle distribution along a curved line in the trace space as in fig. 1.10,

gives a null area but an emittance which is different from zero.

It’s worth noting if there’s an energy change, that is βγ 6= const, the

20



Figure 1.7: Laminar beam representation in the transverse trace space, for a

parallel beam, converging and diverging.
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Figure 1.8: Trace space view of a non laminar beam.

Figure 1.9: Distortion of the trace space ellipse during beam propagation when

non linear forces acts.
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Figure 1.10: Particles distribution in the trace space along a curved line.

emittance εx does not remain constant. For this reason, one introduces the

normalized rms emittance

εnx = βγεx (1.9)

An increase of the normalized emittance is usually an indication that non

linear effects, causing a deterioration of beam quality, are present.

As a conclusion, a more complete definition of the normalized emittance

includes the case the area is not centered in the origin of the x − x′ trace

space

εnx =
(

< (x− < x >)2 >< (βγx′− < βγx′ >)2 > +

− < (x− < x >)(βγx′− < βγx′ >) >2
)

1

2 (1.10)

The emittance is an incomplete parameter describing the quality of a

beam; infact if we use an aperture to filter out the worst part of a beam,

we can focus it to a smaller area but only at expense of the total current I.

The current I of a beam is then an important parameter introduced in the

so-called transverse brightness of the beam [9]

B⊥ =
d4I

dxdx′dydy′ (1.11)
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In eq. 1.11 we restricted our attention to the transverse properties of the

beam.

The normalized transverse brightness includes in its definition the nor-

malized emittance thus for a uniform beam distribution,we obtain

Bn⊥ =
2I

εnxεny
(1.12)

The meaning of brightness can also be understood by expressing the peak

current by the transverse current density I = Jσ2 and the emittance at a

waist as εn = γσσ′, being σ and σ′ the rms radius and the rms divergence of

the beam respectively. Taking εnx = εny we obtain:

Bn⊥ =
2J

(γσ′)2
(1.13)

Thus a high transverse brightness represents a beam propagating with

low divergence and high current density.

1.3.1 Emittance degradation

The propagation of a beam trough the device of a photo-injector induces

emittance growth. We can distinguish two different causes of emittance

degradation: respectively due to transverse non linear fields acting on the

bunch and due to longitudinal correlation along the bunch, induced by elec-

tromagnetic fields.

The former includes space charge non linearities, as well as RF fields non

linearities. As mentioned in the preceding section non linearities generates

distortion of the area filled by the beam in the trace space thus increasing

the statistical emittance.

The latter includes transverse space charge fields, wake fields and RF

fields. Fig. 1.11 represents the bunch in the trace space, when the longitudinal

correlation is induced along the bunch. The bunch has been divided into

slices; each one is subject to a different transverse force, due to the RF field,
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Figure 1.11: Fan shape of the emittance due to transverse fields induced

correlation along the bunch.

the space charge and the wake fields, so each slice fills a different oriented

area in the trace space assuming as a whole a fan shape. The consequence is

that even if the emittance of each slice is preserved (if only linear forces are

acting), it is not preserved the emittance over the whole bunch.

Emittance growth can be partially compensated as illustrated in the fol-

lowing section. Anyway the theoretical limit of the emittance is represented

by the so called thermal emittance; it’s the intrinsic emittance existing when

the bunch is generated.

Infact conduction electrons in a metal have an energy distribution that

obey the Fermi-Dirac statistics. Electrons extracted from the metal cathode

belong to the tail of the Fermi-Dirac distribution and have the Maxwell

velocity distribution given by

f(vx, vy, vz) = f0 exp−
m(v2

x + v2
y + v2

z)

2kbT
(1.14)

where kb is Boltzmann constant and T the cathode temperature.

The result is that the particles emerging from the cathode have an in-

trinsic velocity spread thus an intrinsic emittance. Infact if x and y are the

cartesian coordinates perpendicular to the direction of the beam, the rms
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velocity spread of the electrons in the bunch emerging from the cathode are

< vx >=< vy >=

(

kbT

m

)1/2

(1.15)

Moreover if the emitting surface is a circle with radius rs and with uniform

current density, the rms width of the beam is

< x >=< y >=
rs

2
(1.16)

At the waist for a non relativistic beam the normalized emittance is simply

given by

εth
nx =< x ><

vx

c
> (1.17)

Substituting eq. 1.15 and eq. 1.16 into eq. 1.17 we obtain the thermal

emittance

εth
nx =

rs

2

(

kbT

mc2

)(1/2)

(1.18)

1.3.2 Emittance’s Compensation

As previously announced, emittance growth along the photo-injector can be

partially compensated.

The laser generating the bunch in the photo-cathode is a temporally flat

impulse instead of an easier to generate gaussian impulse, because the bunch’s

energy is still very low at the exit of the photo-cathode and the bunch un-

dergoes strong space charge forces; transverse space charge forces generated

by a uniform bunch affect the emittance less than the space charge forces

produced by a guassian bunch; the reason is that the transverse linearity

of the space charge fields of a uniform bunch is greater with respect to the

gaussian one.

The RF cavity located inside the photo-cathode accelerates the emit-

ted electrons to relativistic energies thus reducing the space charge forces.
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Anyway the RF fields themselves give rise to an emittance growth due to

the different focusing forces experienced by the slices which have different

phase. This emittance degradation is controlled reducing the bunch’s dimen-

sion which result, anyway, in an increase of the space charge forces.

The correlated emittance growth, due to Both the RF field and the space

charge, is compensated by the field of a solenoid placed at the exit of the RF

gun: the fan like distribution in the trace space closes itself. It’s worth noting

the compensation doesn’t include the non linearities of the above fields.

To reduce emittance degradation due to space charge, the beam is driven

to an accelerating structure which must be properly matched. Infact when

the beam is in the space charge regime, mismatches between the space charge

forces and the external focusing field produce emittance oscillations. Beams

experiences two distinct regimes along the accelerator, depending on the ratio

ρ between the space charge force term and the emittance pressure term in

the transverse plane (see sec. 4.1)

ρ =
Iσ2

2γIAε2
th

(1.19)

When ρ � 1 the transverse beam dynamics are dominated by space

charge effects and the beam propagated in the quasi-laminar regime in which

particle trajectories do not cross each other. By accelerating the beam, a

transition occurs to the so-called emittance dominated regime, when ρ � 1;

in this case the transverse beam dynamics are dominated by the emittance

and trajectories are not parallel anymore.

It has been shown in [10] when the beam is in the space charge regime

the emittance oscillations can be damped when the beam propagates in the

subsequent accelerator structure so that the invariant envelope condition

σINV =
1

γ′

√

2I

IA(1 + 4Ω2)γ
(1.20)

is satisfied, where γ = 1 + T/mc2 is the normalized beam kinetic energy
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Figure 1.12: Emittance double minimum behavior, envelope evolution and

emittance behavior when accelerating structures are properly matched .

while the normalized accelerating gradient is defined by γ′ ∼ 2Eacc, Eacc is

the accelerating field, I is the beam peak current in the bunch and IA = 17kA

is the Alven current, [5]. Finally the normalized focusing gradient is defined

as

Ω2 =

(

eBsol

mcγ′

)

+







∼ 1/8 Standing Wave

∼ 0 Traveling Wave

The σINV is an exact solution of the rms beam envelope equation (see

cap.) for a laminar beam, with

σ′′ + σ′γ
′

γ
+ σ

Ω2γ
′2

γ2
− I

2IAσγ3
=

εth2

σ3γ2
∼ 0 (1.21)

Following such theory, that is injecting the beam at a laminar waist, a

new working point was found in [11]. By increasing the solenoid magnetic

field, the emittance shows a double minimum behavior along the horizontal

axis as in fig. 1.12
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If the accelerating structure is placed where the emittance exhibits its

maximum then the second emittance minimum can be frozen and translated

at the exit of the accelerating section.

It is interesting to note that the double minimum in the emittance is due

to a chromatic effect inside the solenoid device [11]. Infact each slice has a

different energy γ and the different position along the bunch experience a

different focusing solenoidal field. As a consequence only one slice has the

right γ to satisfy the invariant envelope condition whilst all the other slices

oscillate around the equilibrium envelope equation. The different oscillation

of the slices generates a beating term which give rise to the emittance double

minimum as explained in [12].

Finally transverse wake fields in the accelerating structures generates

correlated emittance degradation as explained in the previous section. A

technique, called beam based alignment, compensates emittance degradation

caused by wake fields; it consists in the use of steering magnets to realign

the bunch on the axis of each structure thus canceling the transverse wake

fields.

1.4 Purpose of the study

Space charge and wake fields are also called collective effects: both are the

result of the Coulomb forces in a multi-particle system.The space charge is

the electromagnetic field produced by a bunch moving in free space; the

wake field is the electromagnetic field produced in an enclosed space, with a

non uniform shape and/or a finite resistive wall, by a charge traveling with

speed of light. They are called wake fields because they can neither act on

the charge itself nor on any charges in front of it but only on charges lying

behind it.

The aim of this work is the study of such phenomena in the Sparc project,

the improvement of the Homdyn code including off axis beam dynamics and
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finally the study of emittance degradation. The code Homdyn [11] is a semi-

analytical code which is very fast with respect well-known multi-particles

code such as Parmela. Such code has been improved including off axis beam

dynamics in which space charge on the centroid of the bunch and transverse

wake fields are considered.

The improved version of the Homdyn code, [13], [14]allow to study emit-

tance degradation due to misalignments along the photo-injector, to develop

a correction scheme for the SPARC project to control the bunch’s trajectory

and angle and to study the emittance and energy spread degradation in the

emittance measurements experiment.

Cap. 2 describes the electric field produced by a bunch moving in free

space for different bunch’s charge distribution. In particular we analyze the

case of a cylindrical finite length bunch with circular and elliptical section.

Significant effort is given to the elliptical section case, [15], infact the focusing

properties of some accelerator devices, as quadrupoles and bending magnets,

can change the charge distribution of a bunch from round to elliptical. A

general rule allows to associate the electric field on the axis of a round infinite

bunch to the electric field of an infinite elliptical one: the numerical solution

demonstrates this is not always true for a finite bunch length. Anyway the

Sparc project’s first phase deal with a bunch whose eccentricity remains low

enough: thus the general rule can still be used.

Cap. 3 briefly summarize the general definition of the longitudinal and

transverse wake fields, [16]. The geometric dimensions of the linac cavities

and the short bunch length involved in the Sparc project allow the use of

the diffraction model, [17], for the analytical solution of the wake fields in a

single cavity. The case of a periodic collection of cavities is also solved.

Cap. 4 describes the beam dynamics in the Homdyn code and the im-

provements achieved. The main approximation in the code lies in the as-

sumption the bunch is a uniformly charged cylinder; the cylinder is divided

in slices and the code follows the evolution of each slice, using the envelope
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equation. When the bunch is generated off-axis, transverse time dependent

fields can misalign neighbor slices. Thus an equation of motion for each slice’

centroid motion, transverse and longitudinal, is also inserted in the Homdyn

code. In this case wake fields and space charge are included. A bunch trav-

eling in a solenoid field is also considered. The envelope equation and the

emittance computation is described.

In cap. 5 the Homdyn code is finally used to study the misalignments

in the Sparc project. First of all the off axis beam dynamics is applied to

the study of the emittance meter experiment, [18]. The movable emittance

meter experiment’s aim is to measure the emittance just outside the gun

along the z axis. A bellow moves the emittance meter; such bellow, made up

of triangular cavities, generates longitudinal wake fields and transverse wake

fields when the bunch is misaligned with respect the bellow axis. Emittance

degradation is then studied. Finally we analyze a correction scheme using

steering magnets to correct the centroid orbit and minimize the emittance,

[13]. Different techniques are used, among these the beam based alignment

technique [19].
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Chapter 2

Space Charge

The net effect of the Coulomb interactions in a multi-particle system can be

classified into two regimes: collisional regime and space charge regime. The

former is dominated by binary collisions caused by close particle encounters:

these are called single particle effects. The latter is dominated by self fields

produced by the particle distribution, which varies appreciably only over

large distances compare to the average separation of the particles: these are

called collective effects.

A measure for the relative importance of collisional versus collective ef-

fects is the Debye length λD which represents the effective interaction range:

smooth functions for the charge and field distributions can be used as long

as the Debye length remains small compared to the particle bunch size.

We study in this chapter the collective effect known as space charge, that

is the electric field produced by a bunch moving in free space; we will consider

the case of a bunch moving in enclosed space in Cap. 3.

We study different bunch’s charge distribution; effort is given to the case

of a cylindrical space charge distribution whose section is elliptical. Infact

the focusing properties of different accelerators devices, as quadrupoles and

bending magnets, can change the charge distribution of a bunch from round

to elliptical one. Depending on the intensity of this effect, the dynamics

properties of the bunch could be affected. The consequent increase of the
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design emittance, reduces the performances of the machine.

We describe how to obtain the electric field of a uniformly charged infinite

cylinder, with circular and elliptical cross section.

We derive the on axis longitudinal and radial electric field of a uniformly

charged cylinder with circular cross section and finite length. The cylinder

is moving along the z axis at velocity v. For the longitudinal electric field

an exact solution can be obtained, whilst for the radial electric field only an

approximate solution is derived limited to a radial linear dependence.

Then we obtain an integral expression of the on axis longitudinal and

radial electric field of a bunch moving along the zaxis at velocity v and shaped

like a uniformly charged finite cylinder having an elliptical cross section.

Furthermore we derive an approximate solution of the longitudinal electric

field by a series expansion of the integral expression.

Finally we solve numerically the above equations and compare the nu-

meric solutions of the integrals with approximate formulas. Moreover it is

well known that for an infinite bunch with elliptical cross section, the ra-

dial electric field calculated on the two semi axis a and b, is equal to the

radial electric field of an infinite bunch with circular cross section of radius

r = (a + b)/2.We show that this general rule cannot be applied for finite

distributions.

We relate the electric fields behavior of a finite length bunch with the so

called aspect ratio defined as A = R/γL, where R is the bunch radius, L its

length and γ the relativistic parameter.

2.1 Infinite Cylinder with Circular and Ellip-

tical distribution

The electric field of a circular cross section charged cylinder with infinite

length can be easily derived form Gauss’s law:

33



∫

S

ε0E · dS =

∫

V

ρdV (2.1)

which gives inside the cylinder

Er =
ρ

2ε0
r (2.2)

being ρ the bunch’s charge density in the laboratory frame. The electric

field of an elliptical cross section cylinder with infinite length can be derived

following [11]. Starting from the potential of an ellipsoid of semi axis a, b,

c and charge density ρ with c → ∞, we obtain the potential of an infinite

cylinder with elliptical cross section moving at velocity v. From the potential

we get the radial electric field inside the cylinder [20],[6], [21], [22], [7], [23].

Ex =
ρ

ε0

bx

a + b
(2.3)

Ey =
ρ

ε0

ay

a + b
(2.4)

Only the radial electric field exists since the longitudinal electric field is

zero for an infinite distribution. It is important to note that the electric

fields component on the cylinder axes, in a and b, are the same, that is

Ex=a = Ey=b, and they are equal to the electric field generated by an infinite

cylinder with circular cross section, eq. 2.2, calculated in r = (a + b)/2

In sec. we will demonstrates the same method cannot always be used in

the case of a finite distribution.

2.2 Finite Cylinder with Circular Cross Sec-

tion

The longitudinal and radial electric field for a circular cross section finite

cylinder are, [11]:
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Figure 2.1: Uniformly charged bunch of finite length L, with elliptical (semi

axis a and b) and circular cross section ( radius r = (a + b)/2)

Ez(z, r = 0) =
ρ

2ε0γ
[
√

R2 + γ2(L − z)2−
√

R2 + γ2z2+γ|z|−γ|z−L|] (2.5)

and

Er(r, z) =
ργ

4ε0
r[

L − z
√

r2 + γ2(L − z)2
+

z
√

r2 + γ2z2
] (2.6)

where r is the radial coordinate, L the bunch’s length,R and ρ its radius

and charge density respectively. The longitudinal electric field is calculated

on the bunch’s axis z, whilst the radial electric field is obtained from the on

axis longitudinal electric field by a linear expansion, considering linear terms

in r, [15]. As a consequence eq. 2.6 is an approximation and its accuracy

increases with longer bunch.

The longitudinal and radial electric field, generated by the estimated

bunch of the SPARC project, is shown in fig. 2.2. The longitudinal electric

field grows inside the bunch and its absolute value is at its maximum on the

bunchs head and tail, whilst the radial one is at his maximum in the center

of the bunch.
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Figure 2.2: Longitudinal (dashed line) and radial (continuous line) electric

field of a bunch of length L = 3.4mm, circular cross section of radius r =

1mm, charge Q = 1nC and relativistic factor γ = 1.

36



2.3 Finite Cylinder with elliptical cross sec-

tion

The procedure used to calculate the longitudinal and radial electric field of a

bunch with elliptical cross section is similar to that explained in the previous

section. To this purpose we can use eq. 2.7 to calculate the longitudinal

electric field:

Ez(z, r = 0) =
ρ

4πε0γ

∫ 2π

0

[

√

R2 + γ2(L − z)2 −
√

R2 + γ2z2+

+γ|z| − γ|z − L|] dφ (2.7)

The radius r′, in the elliptic case, is not constant but depends on the

angle φ as:

r′
2

=
b2

1 − e2cos2φ
(2.8)

where the eccentricity of the ellipse is e =
√

1 − b2/a2 the eccentricity of

the ellipse is e =
√

1 − b2/a2 . It can be easily verified that as L approaches

infinite the longitudinal electric field goes to zero. To simplify the integral

eq. 2.7 we expand eq. 2.8 in e, up to the fourth order:

r′
2

=
b2

1 − e2cos2φ
≈ b2(1 + e2cos2φ + e4cos4φ + ...) (2.9)

The second order approximation can be easily derived; that is we neglect

the fourth order term in the expansion eq. 2.9 and solve the corresponding

integral of eq. 2.7 obtaining

Ez =
ρ

πε0γ

{

αE[Γ2] − βE[Λ2] − ρ

2ε0
[|L − z| − |z|]

}

(2.10)

with
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α =
√

b2(1 + e2) + γ2(L − z)2 (2.11)

β =
√

b2(1 + e2) + γ2z2

Γ2 =
b2e2

b2(1 + e2) + γ2(L − z)2

Λ2 =
b2e2

b2(1 + e2) + γ2z2

and

E[x2] =

∫ π/2

0

√

1 − x2sin2φdφ

Moreover if we keep the fourth order term in eq. 2.9, the square roots of

eq. 2.7 become

√
b2 + k2

√

1 +
b2

b2 + k2
(e2cos2φ + e4cos4φ) (2.12)

√

b2 + k′2

√

1 +
b2

b2 + k′2 (e2cos2φ + e4cos4φ) (2.13)

where

k2 = γ2(L − z)2 (2.14)

k′2 = γ2z2

We can expand the square root eq. 2.12 as

√
b2 + k2

[

1 +
1

2

(

b2

b2 + k2

)

(

e2cos2φ + e4cos4φ
)

+ .

]

− 1

8

(

b2

b2 + k2

)2
(

e2cos2φ + e4cos4φ
)2

+

− .

[

3

48

(

b2

b2 + k2

)3
(

e2cos2φ + e4cos4φ
)3

]

(2.15)
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Expanding the square and the cube in the above expression and keeping

the term up to the fourth order we have:

√
b2 + k2

[

1 +
1

2

(

b2

b2 + k2

)

e2cos2φ +

(

b2(3b2 + 4k2)

8(b2 + k2)2

)

e4cos4φ

]

(2.16)

The same can be done for eq. 2.13 getting eq. 2.16 with k replaced by k′

√

b2 + k′2
[

1 +
1

2

(

b2

b2 + k′2

)

e2cos2φ +

(

b2(3b2 + 4k′2)

8(b2 + k′2)2

)

e4cos4φ

]

(2.17)

Eq. 2.16 and eq. 2.17 can be inserted in the integral eq. 2.7 and solved

easily with respect to the variable φ thus obtaining the fourth order approx-

imation for the longitudinal electric field

Ez(z, 0) =
ρ

4πε0γ

{√
b2 + k2

[

2π +
b2π

2(b2 + k2)
e2 +

3b2π(3b2 + 4k2)

32(b2 + k2)
e4

]

−
√

b2 + k′2
[

2π +
b2π

2(b2 + k′2)
e2 +

3b2π(3b2 + 4k′2)

32(b2 + k′2)
e4

]}

(2.18)

The radial electric field on the contrary can’t be obtained from the longi-

tudinal one as in the previous case. For an elliptical cross section, in fact, it

does not exist any φ angle symmetry. For this reason we calculate the radial

electric field referring to fig. 2.3:

E =
q(1 − β2)

4πε0r2(1 − β2sin2θ)3/2r̂
(2.19)

With some mathematics we get

Er =

∫∫∫

ργ

4πε0

¯SP ′cosα
(

γ2(z − l)2 + ¯SP ′2
)σdσdφdl (2.20)

with

0 < l < L
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Figure 2.3: 3D-coordinate system used to calculate the radial electric field of

a uniformly charged cylinder with elliptical cross section.

0 < σ <

√

b2

1 − e2cos2φ

0 < φ < 2π

and

¯SP ′ =
√

σ2 + R2 − 2σRcos(ξ − φ) (2.21)

R is the observer’s distance from the bunch center and ξ the angle between

the observer and the x axis.

Eq. 2.20 can be solved with respect to the coordinate l, thus obtaining:

dEr =
ργ

4πε0

1
¯SP ′

[

z
√

γ2z2 + ¯SP ′
− z − L
√

γ2(z − L)2 + ¯SP ′

]

cos ασdσdφ

Using

¯SP ′ =
√

σ2 + R2 − 2σR cos (ξ − σ) (2.22)

and
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cos α =
−σ2 + ¯SP ′2 + R2

2 ¯SP ′R
=

R − σ cos(ξ − φ)
√

R2 + σ2 − 2Rσ cos(ξ − φ)

eq. 2.20 becomes:

Er(R, ξ, z) =
ργ

4πε0
[zI1 − (z − L)I2] (2.23)

with

I1 =

∫ ∫

σ(R − σ cos(ξ − φ))

(R2 + σ2 − 2Rσ cos(ξ − φ))
√

γ2z2 + R2 + σ2 − 2Rσ cos(ξ − φ)
dσdφ

I2 =

∫ ∫

σ(R − σ cos(ξ − φ))

(R2 + σ2 − 2Rσ cos(ξ − φ))
√

γ2(z − L)2 + R2 + σ2 − 2Rσ cos(ξ − φ)
dσdφ

and

0 < σ <

√

b2

1 − e2 cos φ

0 < φ < 2π

Eq. 2.23 represents the radial electric field an observer sees if he is placed

at a distance R from the bunch center with an angle ξ respect to the x axis

coordinate and at a distance z from the bunchs tail. It has been verified

numerically that as L approaches infinite eq. 2.23 approaches the electric

fields of an infinite elliptical cylinder (eq. 2.3 and eq. 2.4)

2.4 Comparison Between Numerical and An-

alytical Field

The two approximations of eq. 2.10 and eq. 2.18 for the longitudinal electric

field can be compared with the numerical solution of eq. 2.7 and with the
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Figure 2.4: Comparison between the longitudinal electric field obtained nu-

merically (dashed line), the longitudinal electric field of the circular cross

section case with r = (a+ b)/2 (continuous line) and the longitudinal electric

field approximated by the 2nd and the 4th order terms (dotted line). The

length, the charge and the relativistic factor are the same of fig. 2.2; the ec-

centricity is (a) e = 0.999671 (b/a = 0.026) , (b) e = 0.979055 (b/a = 0.2),

(c) e = 0.830901(b/a = 0.556) , (d) e = 0.56296 (b/a = 0.826).
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longitudinal electric field of the circular cross section cylinder with r = (a +

b)/2. Fig. 2.4 shows the comparison for different values of the eccentricity:

When the eccentricity is zero, that is the bunch has a circular cross sec-

tion, all the graphs coincide; more the eccentricity approaches to unity, more

the graphs draw away. For all the different eccentricitys values, the circu-

lar cross section bunch electric field (continuous line) is the closest to the

numerical solution, as can be seen form fig. 2.4. Fig. 2.5 shows a compar-

ison between the radial electric field obtained numerically from the above

eq. 2.23, on the semi axis a (ξ = 0) and b (ξ = π/2), and eq. 2.6, that is the

radial electric field for a circular cross section finite bunch whose radius is

r = (a + b)/2 .

In the case of an elliptical cross section finite bunch, as can be seen from

the figures, the radial electric field calculated on the major semi axis, x = a,

is different from the one calculated on the minor semi axis, y = b. The

radial electric field in x = a is close to the circular cross section one even for

high eccentricity; meanwhile the one calculated in y = b is still far from the

approximation for lower eccentricity. Of course as the eccentricity approaches

to zero all the plots become closer; when the eccentricity is zero the fields,

calculated on the two semi axis, are of course the same. It is important to

note that, since the radial electric field of eq. 2.6 is an approximation, the

fields of fig. 2.5e do not coincide perfectly.

2.5 Role of the Aspect Ratio Parameter in

the Field Form Factor

We can explain the radial fields different behavior on the two semi-axis, with

respect to the infinite length case, observing that in this case the length of

the bunch plays an important role. When the eccentricity is close to unity

then b << L and as a consequence the fields behavior is similar to that of an
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Figure 2.5: Comparisons between the radial electric field obtained numerically

on the semi axis a and b (ξ = 0 and ξ = π/2 respectively) (dashed lines) ,

the radial electric field of the circular cross section case with r = (a + b)/2

(continuous line). The length, the charge and the relativistic factor are the

same of fig. 2.2; the eccentricity is (a) e = 0.999671 (b/a = 0.026) , (b)

e = 0.979055 (b/a = 0.2), (c) e = 0.830901(b/a = 0.556) , (d) e = 0.56296

(b/a = 0.826), (e) e = 0 (b/a = 1) .
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Figure 2.6: Radial (a) and longitudinal (b) electric field for a circular cross

section bunch. The length and the charge of the bunch are the same of fig. 2.2.

infinite bunch, that is it is constant with the longitudinal coordinate z and

shows a discontinuity as it reaches the edges of the bunch. On the contrary

since a is comparable to the bunch length L its behavior is different from

an infinite bunch. As L approaches zero we obtain the radial electric field

of an elliptical disk uniformly charged. Using eq. 2.23 we can numerically

verify that the radial electric field in x = a and y = b are still different.

Besides the bunch is moving with a velocity v along the z axis, so when its

velocity increases, or the relativistic parameter γ increases, the radial electric

field becomes more and more squared. Of course the same behavior can be

obtained for a circular cross section bunch as well, just increasing its length

or increasing its relativistic parameter γ as shown in fig.7. Note that the

longitudinal electric field approaches zero as for an infinite bunch.

It follows from the above explanation that the field’s behavior in x = a

and y = b depends on the size of the ellipse’s semi axis with respect to the
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bunchs length or its relativistic parameter γ, that is on the so called aspect

ratio, [24]:

A =
R

γL
(2.24)

where R is the major semi axis a or the minor semi axis b. We deduce

that as the aspect ratio decreases the electric field becomes more and more

squared.

The longitudinal and radial electric field, for a circular cross section

bunch, as a function of the aspect ratio, can be easily obtained. For an

elliptical cross section cylinder the fields can be written as a function of the

aspect ratio as well:

Er(A, ξ, z) =
ργL

4πε0
[
z

L
I1 −

( z

L
− 1
)

I2] (2.25)

Ez(z, 0) =
ρL

4πε0

∫

02π

[

√

u2 +
(

1 − z

L

)2

− |1 − z

L
|1 − z

L
|
]

dφ (2.26)

where

I ′
1 =

∫ ∫

s[A − s cos(ξ − φ)]

[A2 + s2 − 2As cos(ξ − φ)]
√

(

z
L

)2
+ A2 + s2 − 2As cos(ξ − φ)

dsdφ

I ′
2 ==

∫ ∫

s[A − s cos(ξ − φ)]

[A2 + s2 − 2As cos(ξ − φ)]
√

(

z
L
− 1
)2

+ A2 + s2 − 2As cos(ξ − φ)
dsdφ

and

u2 =

(

b
γL

)2

1 − e2 cos2 φ

s =
σ

γL
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0 < s <

√

√

√

√

(

b
γL

)2

1 − e2 cos2 φ

0 < φ < 2π

From the previous considerations we deduce that the longitudinal electric

field of a finite length bunch with elliptical cross section is well approximated

by the longitudinal electric field of a finite length bunch with circular cross

section and radius r = (a + b)/2. On the contrary the radial electric fields

on the envelope x = a and y = b become more and more different as the

aspect ratio A increases and the circular approximation cant be used any-

more. Fig. 2.7 shows the ratio between the two radial fields when the aspect

ratio grows for different eccentricity’s value. The aspect ratio in fig. 2.7 is

A = a/(γL).

Note that when the eccentricity decreases the ratio between the two fields

becomes closer to unity even for a higher aspect ratio.

2.6 Conclusions and Applications to the Sparc

project

We reviewed the analytical formulas for the electric field generated by a

cylindrical bunch either of infinite length with elliptical cross section and of

finite length with circular cross section. Moreover, we obtained the electric

field of a finite length bunch with elliptical cross section and compared its

numerical solution with the electric field of a circular cross section bunch of

finite length whose radius is r = (a + b)/2. Even if this rule fits the infinite

cylinder case, it is not appropriate for the finite cylinder case, unless the

eccentricity is lower than 0.8 for γ = 1.

The different behavior of these two cases can be explained by the aspect

ratio A = R/γL. In particular the radial electric field of a finite bunch
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Figure 2.7: Ratio between the radial electric field in x = a and y = b in

z = L/2 as a function of the aspect ratio A for different eccentricity e =

0.999671 (b/a = 0.026), e = 0.95 (b/a = 0.31), e = 0.9 (b/a = 0.43),

e = 0.8(b/a = 0.6) and e = 0.5 (b/a = 0.866).
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becomes that of an infinite bunch when A becomes small, that is when the

length or γ increases. For example, for a very high eccentricity (e = 0.99)

but small aspect ratio (A = 0.01) the circular cross section approximation

can still be used.

The Sparc project’s first phase deal with small eccentricity bunch and

high aspect ratio. This means the general rule that uses the circular cross

section transverse electric field can still be applied.

This won’t be true in the Sparc project’s second phase; in this case a

high eccentricity bunch is produced and the general rule can’t be applied

anymore.
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Chapter 3

Wake Fields in the SPARC

Photo-injector and Linac

Let’s consider a point charge Q (the leading charge) moving in free space ; if

the charge Q is moving at a velocity close to the speed of light, a test charge

q (the trailing charge) situated in front of or behind the particle, doesn’t

experience any electromagnetic force because the electric field lines lie in a

transverse plane with an opening angle of the order of 1/γ as in fig. 3.1

The same happens if the leading charge in fig. 3.2 is traveling along a

perfectly conducting wall at a velocity close to the speed of light: the image

charge, on the conducting wall, will travel at the same velocity of the leading

Figure 3.1: Electric field lines for a relativistic charge.
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Figure 3.2: Charge traveling inside a perfectly conducting pipe of arbitrary

cross section. Shown are the image charges on the wall generated by the

leading charge.

charge without affecting it nor affecting any trailing charge traveling in front

of or behind the leading one.

On the contrary if the conducting wall has a non-vanishing resistivity the

situation is different because the image charge moving on the surface of the

wall now lag slightly behind the charge :thus both longitudinal and transverse

field components are now present.

Considering the more general case of wall discontinuities, that is linac

accelerating structures, bellows or complicated vacuum chambers, the charge

Q traveling with a velocity close to the speed of light gives rise to a scattered

electromagnetic field. These electromagnetic fields , generated in an enclosed

space, are called wake fields since, from causality, the leading charge cannot

affect itself nor any charge in front of it but only charges lying behind it. We

can estimate the distance( catch up distance) at which the electromagnetic

field generated by the leading charge reaches the trailing charge, traveling at

a distance s, as follow (see fig. 3.3)

ct =
√

(z − s)2 + b2

z2 = (z − s)2 + b2
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Figure 3.3: A wall discontinuity located at z = 0 scatters the magnetic field

generated by an ultra relativistic charge. When the charge is in z the scattered

magnetic field reaches z − s.

and if s � b

zcatchup =
b2

2s
(3.1)

In this chapter we briefly recall the general definition of the longitudinal

and transverse wake fields. We then apply it to the case of the Spark project,

where the cavities geometries and the short bunch length, allow the use of

the diffraction model for a single cavity. The diffraction model suppose the

electromagnetic field, scattered at the edge of the cavity, is just that of a

plane wave; thus it is possible to use the classical diffraction theory of optics

to calculate the fields. An asymptotic solution for a periodic collection of

cavity is also given.

3.1 Wake Fields and Impedances

When a charge Q travels along the axis of an accelerator structure, the trail-

ing charge q changes its energy under the effect of the longitudinal Lorentz

force F||(s, z) produced by the leading charge, [16]

U(s) = −
∫ ∞

−∞
F ||(s, z)dz (3.2)
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Figure 3.4: Leading, Q, and trailing, q, charges on the axis z of a symmetric

cavity.

where z is the longitudinal coordinate along the structure, see fig. 3.4.

Using eq. 3.2 the impulsive longitudinal wake potential is defined as

W||0(s) =
U(s)

qQ
(3.3)

The impulsive longitudinal wake potential is measured in V/C and it

represents the time response of a system to a unit impulse, that is it’s a

Green function; as a consequence we can calculate the longitudinal wake field

of an arbitrary charge distribution Q by applying the superposition principle

that is by making the convolution of the bunch distribution with the Green

function

W||(s) =
1

Q

∫ ∞

−∞
λ(s − s′)W||0(s

′)ds′

where λ(s) = Q/L is the longitudinal density of a bunch of length L. For

all practical purpose, the impulsive wake potential of relativistic bunches is

zero for all negative s

W||(s) =
1

Q

∫ ∞

0

λ(s − s′)W||0(s
′)ds′ (3.4)

Analogously let’s consider a leading charge Q traveling transversally dis-

placed with respect to the axis as shown in fig. 3.5.

In this case the leading charge excites electromagnetic fields which give

53



Figure 3.5: Leading, Q, and trailing, q, charges in a symmetric cavity. The

leading charge is transversally displaced.

rise to a transverse electromagnetic force F⊥(s, z).The trailing charge, expe-

riencing it, gains a transverse momentum

M(s) =

∫ ∞

−∞
F⊥(s, z)dz (3.5)

Using eq. 3.5 the impulsive transverse wake potential is defined as

W⊥0(s) =
M(s)

qQx
(3.6)

where x is transverse displacement of the leading charge from the axis of

the chamber.

It represents, as in the previous case, the time response of a system to a

unit impulse; it’s units are V/Cm.

We can use the transverse Green function to obtain the transverse wake

field of an arbitrary distribution charge Q of particles

W⊥(s) =
1

Q

∫ ∞

−∞
λ(s − s′)W⊥0(s′)ds′ (3.7)

Both the transverse and longitudinal wake field have been obtained in the

time domain. Fourier transforming them in the frequency domain we get the

spectrum response of the point charge wake function

Z||(ω) =
1

c

∫ ∞

−∞
W||0(s)ejw s

c ds (3.8)
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Figure 3.6: Geometric parameters for a pill box with attached tubes .

Z⊥(ω) = −j

c

∫ ∞

−∞
W⊥0(s)ejw s

c ds (3.9)

3.2 Wake Fields for the SPARC Photo-injector

A bunch traveling off axis across structures whose shape is not uniform, such

RF cavity or bellows, generates longitudinal and transverse wake fields as

reported in sec. 3.1. The bunch produced in the SPARC photo-injector,

see cap. 1, is short enough as respect with the beam pipes connecting RF

cavities or bellows; thus the use of a diffraction model, [17] for the wake fields

calculation is allowed.

3.2.1 Single cavity: wake fields diffraction model

The wake fields diffraction model suppose each structure as a pill box cavity,

whose geometric dimensions are: a the beam pipe radius, b the cavity radius

and g its length, see fig. 3.6

When the bunch length σ is much smaller than the beam pipe radius a

σ � a (3.10)
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methods of diffraction theory are used to calculate the impedance at high

frequencies

ω � c

a
(3.11)

where ω is the angular frequency and c is the speed of light.

When a bunch reaches the edge of the cavity, the electromagnetic field

produced is just the one that would occur when a plane wave passes trough a

hole; with this hypothesis it is possible to use the classical diffraction theory

of optics to calculate the impedance. According to it, the resistive part R||(ω)

of the longitudinal cavity impedance and of the transverse cavity impedance

are respectively

R||(ω) =
Z0

2π3/2

√

cg

a2
ω (3.12)

R⊥(ω) =
Z0

√
g

π3/2a3

( c

ω

)3/2

(3.13)

where Z0 = 377Ω is the impedance of free space. The wake function is

derived from the impedance by inverting the Fourier integral for the longi-

tudinal wake

W||(s) =
1

2π

∫ ∞

−∞
Z||(ω)ejωsdω (3.14)

and for the transverse wake

W⊥(s) =
j

2π

∫ ∞

−∞
Z⊥(ω)ejωsdω (3.15)

From eq. 3.12 and eq. 3.13, using the properties of the impedances, we

obtain the impulsive longitudinal and transverse wake function respectively

W||0(s) =
Z0c√
2π2a

√

g

s
(3.16)

W⊥0(s) =
23/2Z0c

π2a3

√
gs (3.17)
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The above expressions are given for the ultra-relativistic case β → 1; the

case of low energy regime was studied in [25] and [7] where It was shown

a dependence of the energy loss and of the wake fields from the relativistic

factor γ. However It was shown in [26] that the high energy regime represents

an over estimation of the low energy one.

It’s worth noting that both the longitudinal and transverse wakes do not

depend on the cavity radius b. The reason is that the diffraction model

considers only fields generated at the cavity edge, that is where the beam

pipe meets the cavity; part of the diffracted field, generated when the leading

edge of the bunch enters the cavity, will propagate in the cavity and if the

bunch’s rms length σ is shorter than the cavity radius b, then the geometrical

condition

g <
(b − a)2

2σ
(3.18)

is fulfilled and the scattered field coming from the upper wall of the cavity

will never reach the tail of the bunch itself: this is called “cavity regime”,

[16], [27]. Using eq. 3.16, eq. 3.17 as a green function, eq. 3.4 and eq. 3.7 we

can calculate the longitudinal and transverse wake field, inside and outside

the bunch, for a bunch of length L whose charge Q is uniformly distributed,

we obtain inside the bunch

W||(s) =
1

Q

∫ s

0

W||0(s
′)ds′ (3.19)

and outside the bunch

W||(s) =
1

Q

∫ s

s−L

W||0(s
′)ds′ (3.20)

Solving eq. 3.19 and eq. 3.20 we obtain

W||(s) =



















0 s < 0

2√
2

Z0c
π2aL

√
gs 0 < s < L

2√
2

Z0c
π2aL

√
g
(√

s −
√

s − L
)

s > L
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Analogously for the transverse wake fields:

W⊥(s) =
1

Q

∫ s

0

W⊥0(s′)ds′ (3.21)

W⊥(s) =
1

Q

∫ s

s−L

W⊥0(s
′)ds′ (3.22)

Solving eq. 3.21 and eq. 3.22 we obtain

W⊥(s) =



















0 s < 0

25/2

3
Z0c

π2a3L

√
gs3/2 0 < s < L

25/2

3
Z0c

π2a3L

√
g
(

s3/2 − (s − L)3/2
)

s > L

3.2.2 Periodic structure: asymptotic wake fields

For a periodic collection of cavity of period p, the asymptotic, longitudinal

impedance, at high frequency, is given by [28]

Z(k) ≈ jZ0

πka2

[

1 + (1 + j)
α(g/p)p

a

(

π

kg

)1/2
]−1

(3.23)

with α(x) ≈ 1−0.465
√

x−0.070x. Note that for a periodic structure the

real part of the impedance <(Z) ∼ k(−3/2).

Inverse Fourier transforming the above equation we can obtain the asymp-

totic longitudinal wake field per cell of for very short range wake field. Any-

way using a modal summation technique, it is possible to obtain the wake

field numerically, which can be easily fitted to a simple function. The ob-

tained impulsive wake field is valid over a larger range of s and it can be used

as a Green function for arbitrary distributions bunch [29]:

W0||(s) =
Z0c

πa2
e−

√
s/s1 (3.24)

with

s1 = 0.41
a1.8g1.6

p2.4
(3.25)

58



A similar derivation exists for the transverse wake field, which is found

to be

W0⊥(s) =
4Z0cs2

πa4

[

1 −
(

1 +

√

s

s2

)

e−
√

s/s2

]

(3.26)

with

s2 = 0.17a1.79g0.38/p1.17 (3.27)

It’s worth noting that in this case the longitudinal and transverse impulsive

wake field are given in V/Cm and V/Cm2 respectively, that is their definition

is given per cell.

These results are asymptotic, that is they are valid only after the beam

has passed a critical number of cells Ncrit. A qualitative estimation of the

number of cell needed for the wake to approach the asymptotic results is

given in [30] that is

Ncrit =
a2

2g
(

σz + 2a
γ

) (3.28)

where σz is the rms length of the bunch, which is quite similar to the

numerical estimation given for a Gaussian bunch in [29] when γ → ∞

Ncrit =
αa2

gσz
(3.29)

where α approaches unity. We uses eq. 3.28 because it was obtained in a

more general way.

We can now calculate, as for a single cavity, the longitudinal and trans-

verse wake field for a uniformly charged bunch, of charge Q, and length L.

Solving the convolution integrals, eq. 3.19 and eq. 3.20, we obtain for the

longitudinal wake field

W||(s) =























0 s < 0

2Z0cs1

πa2L

[

1 − e−
√

s/s1

(

1 +
√

s
s1

)]

0 < s < L

2Z0cs1

πa2L

[

e
−

q

s−L
s1

(

1 +
√

s−L
s1

)

− e
√

s
s1

(

1 +
√

s
s1

)

]

s > L
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and using the convolution integrals, eq. 3.21 and eq. 3.22, for the trans-

verse wake field we obtain

W⊥(s) =



































0 s < 0

4Z0cs2
2

πa4L

[

−6 + s
s2

+ 2e
−
√

s
s2

(

3 + 3
√

s
s2

+ s
s2

)]

0 < s < L

4Z0cs2
2

πa4L

{

L
s2

+ 2
[

e
−
√

s
s2

(

3 + 3
√

s
s2

+ s
s2

)

+

+e
−

q

s−L
s2

(

−3 − 3
√

s−L
s2

− s−L
s2

)

]}

s > L
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Chapter 4

Beam Dynamics in Homdyn

Homdyn is a semi-analytical code, developed to describe the dynamics of

charged particles beams moving along accelerators devices.

The simulation of a bunch moving, for example, from the photo-injector

of a FEL project trough the linac to the entrance of an undulator, involves

non linear forces; thus multi-particle codes, such as Parmela, requires several

hours of CPU time to run. On the contrary Homdyn, being a semi-analytical

code, is very fast.

The main approximation of the Homdyn code lie in the assumption a

uniformly charged cylinder represents the bunch. The cylinder is divided

in an array of cylinders; the dynamics of each slice is described by differ-

ential equations for the envelope and for the centroids. Each slice cannot

change its charge, anyway, for it is subject to the local field, the cylinders

can change their lengths, radius and angle with respect to the axis; using

such information the energy spread and the emittance degradation can be

calculated.

The basic optical equation, which describes the motion of particles, is

known as the paraxial ray equation. The paraxial ray equation is a second

order differential equation in which the angle between the particle trajectories

and the axis is assumed small: this means the paraxial ray equation specifies

the trajectory in the neighborhood of the axis and also that the fields, actually
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Figure 4.1: The Multi-slice approximation of the Homdyn bunch.

experienced by the particles, are expressed as first order expansions of the

fields on the axis. As a consequence the axial field components are essentially

independent of r and radial components are proportional to r, being r the

radial distance from the axis. A paraxial ray equation calculated on the

radius R of the bunch is known as envelope equation.

In this chapter we introduce the envelope equation used in the Homdyn

code to describe the dynamics of a bunch traveling on axis: the emittance

force and the space charge force for a finite length bunch uniformly charged

are included in the envelope equation.

The bunch is supposed to travel off axis; in this case to describe the

displacement of the bunch from the nominal axis it is necessary to introduce

in the code the differential equations for the centroid motion of each slice.

A bunch traveling off axis across structures whose shape is not uniform

experiences transverse wake fields; thus the longitudinal and transverse wake

fields are introduced in the differential equation.

The equations contain the space charge on the slice centroids generated

by the neighbor slices.

Besides the beam can move in a solenoid field; the solenoid coils misalign-

ment with respect to the nominal axis is included. To validate the models

adopted in Homdyn for the space charge on centroids we compared Homdyn’s

results with the well known code Parmela. Finally we show the emittance
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analytical computation used in the Homdyn code.

4.1 On-axis beam Dynamics in Homdyn

The motion of a particle due to the Lorentz force

F = e(E + v × B) (4.1)

is determined by Newton’s equation

dP

dt
= F = e(E + v × B) (4.2)

The paraxial ray equation can be deduced from eq. 4.2. As mentioned

above the assumption is that the particle’s trajectories remains near the axis.

We obtain [5], [6]

r′′ +
γ′

γβ2
r′ +

(

eBz

2mcβγ

)2

r = 0 (4.3)

The second term on the left hand side contributes to the decrease of the

angle the particle form with the axis, as the particle accelerates. The fourth

term represents a magnetic focusing effect, being Bz the on axis magnetic

field.

4.1.1 Space charge and emittance pressure

Let’s consider an infinite cylindrical bunch. From eq. 4.3 we can deduce the

envelope equation for an on-axis beam: we substitute the envelope R to r

and we add two other effects: the space charge force, which includes both

the electric and the magnetic field, and the emittance force.

Concerning the space charge force, we can use again eq. 4.2 for the trans-

verse motion

d(γmdR/dt)

dt
= e(Er + (v × B)r) = e(1 − β2)Er =

eEr

γ2
(4.4)
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The space charge electric field for an infinite uniformly charged cylinder

was obtained in sec. 2.1, thus substituting eq. 2.2 to Er we obtain, for the

only space charge force,

d2(γmR)

dt2
=

eI0

2πε0βcγ2

1

R
(4.5)

where I0 = 4πε0mc3/e ≈ 17kA is the Alven current.

A beam with a non zero emittance expands; in order to obtain an ex-

pression for the emittance, we can view nonzero emittance in terms of an

outward force that balances the focusing force to maintain a constant radius

beam. In the hypothesis the beam is cylindrical and paraxial, we write the

linear focusing force as

Fr(r) = −F0(r/R) (4.6)

thus

r̈ +
F0

γmR
r = 0 (4.7)

The orbit vector points of individual particles follow ellipses in trace space

as the particles perform radial oscillations. The oscillation frequency for all

particles is

ωr =
√

F0/γmR (4.8)

The radial emittance is at the waste, by definition (see cap. 1)

εr = RR′ = ωrR
2/βc (4.9)

Solving for the oscillation frequency, we obtain

ωr = εrβc/R2 (4.10)

Equating eq. 4.8 and eq. 4.10 we obtain the focusing force needed to

balance emittance on the envelope. This can be included in eq. 4.5
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d2(γmR)

dt2
=

ε2
rγm(βc)2

R3
+

eI0

2πε0βcγ2

1

R
(4.11)

It’s worth noting that unlike the first three terms inserted in the paraxial

equation, the space charge force and the emittance force are defocusing forces

induced by the self field of the bunch, see fig. 4.2

Using the rule

Ṙ =
dR

dt
= R′βc (4.12)

we can now write the complete envelope equation, where ′ is the space deriva-

tive d/dz as

R′′ +
γ′

γβ2
R′ + (

eBz

2mcβγ
)2R =

K

R
+

ε2

R3
(4.13)

where

K =
eI0

2πε0m(βγc)3
(4.14)

The ratio ρ, see sec. ??, of the space charge force upon the emittance

force

σ =
ε2

KR2
(4.15)

describes a thermal or a laminar beam: when ρ is greater than one the

beam is called laminar otherwise it is thermal.

The envelope equation used in Homdyn is written in terms of the enve-

lope time derivative and it describes the dynamics of a finite length bunch

shaped as a uniformly charged cylinder; the electric field used in the envelope

equation is the one obtained in sec. 2.2 for a bunch of length L and charge

Q:

R̈ + βγ2β̇Ṙ =
e

mγ3
Er(ξs) +

(

4εthnc

γ

)2
1

R3
(4.16)
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Figure 4.2: Schematic view of the envelope equation.

that is [11]

R̈ + βγ2β̇Ṙ =
e

mγ3

Qγ

4πεLR

[

L − ξs
√

γ2(L − ξs)2 + R2
+

ξs
√

γ2ξ2
s + R2

]

+

+

(

4εthnc

γ

)2
1

R3
(4.17)

where ξs = zs − zt , zt is the considered slice’s tail and zs represents any

position along the slice. Fig. 4.2 shows a schematic view of the envelope

equation.

From the Newton’s equation, eq. 4.2, we write the bunch’s longitudinal

motion

z̈c = β̇c

β̇s =
e

mcγ3
(Ez(ξs) + ERF

z )
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that is

z̈c =
e

mγ3

{

Q

2πεR2Lγ
[

γ(|ξs| − |L − ξs|) +
√

γ2(L − ξs)2 + R2 −
√

γ2ξ2
s + R2

]

+ ERF
z

}

(4.18)

where zc is the slice centroid longitudinal position, ERF
z is the accelerat-

ing field, induced by RF cavities and Ez(ξs) the longitudinal space charge

generated by a finite cylinder uniformly charged. The Homdyn code uses the

differential equation showed above, eq. 4.17 and eq. 4.18, to describe each

slice evolution along the accelerator structures.

4.2 Off-axis Beam Dynamics in Homdyn

4.2.1 Longitudinal and Transverse Wake Field

Let’s consider now a bunch traveling across structures whose shape is not

uniform. As seen in Cap. 3, the bunch induces electromagnetic fields which

act back on the bunch itself: these fields, acting behind the bunch’s head,

are called wake fields. When the bunch travels on the structures’ axis, it

generates only longitudinal wake fields; we can introduce the longitudinal

wake fields in eq. 4.18, obtaining

z̈c =
e

mγ3
(Ez(ξs) + ERF

z ) +
e

γm
E||(ξs) (4.19)

where E|| is longitudinal wake field obtained in sec. 3.2 for cavity or a

periodic array of cavities.

Of course, if the bunch is traveling on axis the slice centroids xc don’t

experience any transverse motion. Anyway, due to lasers jitters pointing in-

stability or misalignments, a bunch can be travel slightly off axis and when

a bunch’s travels along an accelerating structures, transverse time depen-
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xcxc

Figure 4.3: Off axis bunch.

dent fields, such as transverse RF components, may induce correlated slice

centroids displacement as in fig. 4.3.

In these cases, in order to describe the displacement of each slice centroid

xc and yc from the nominal axis of the bunch, it is necessary to include in

the code the differential equation describing the centroid motion [13], [14].

Such equations contain the transverse wake fields. It considers the wake

fields as produced by the sum of the wake fields generated by each slice; the

displacement is related to the displacement of each slice. The former includes

only the displacement of the first slice thus it’s an approximation, on the

contrary the latter doesn’t contain any approximation but the Homdyn code

is a little bit slower to run because it obtains the wake fields as the sum of

the wake fields produced by the single slices.

The Homdyn differential equation describing each slice’s centroid trans-

verse motion, including only the wake fields, is

ẍc + βγ2β̇ẋc =
e

γm

S
∑

s=1

E⊥(xcs, ξs) (4.20)

where s is index over the S slices.

The same equations holds for yc.
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Figure 4.4: Longitudinal, (a) and (b), and transverse, (c) and (d), space

charge electric field, generated by the whole bunch, (a) and (c), and as su-

perposition of the single slice electric field, (b) and (d).

4.2.2 Space Charge

When each slice’s centroid is transversally displaced from the nominal axis,

it also experiences a transverse deflection due to the space charge force pro-

duced by the neighbor slices [13], [14]. As for the wake fields, we can use two

different approaches to obtain the space charge field: in the first approach

the whole bunch generates the space charge, see fig. 4.4 (a) and (c), whilst

in the second the single slices generates the space charge, see fig. 4.4 (b) and

(d).

The first approach supposes the space charge on centroids varies linearly

with the distance dxc of the considered slice’s centroid from a straight line r.

The straight line r is obtained interpolating the centroids along the bunch

with the least square method, see fig. 4.5, and the longitudinal and transverse
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Figure 4.5: Interpolating straight line for bunch centroids displacement.
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Figure 4.6: Space charge electric field projections along and perpendicular to

the longitudinal axis z.

space charge electric field are obtained as the projection of the longitudinal

and radial electric field with respect the new bunch’s axis r as shown in

fig. 4.6.

Following the first approach the centroid transverse motion due to space

charge is

ẍc + βγ2β̇ẋc =
e

mγ3
[Ez(ξs)sinθ − Er(ξs, dxc)cosθ] (4.21)

and the longitudinal motion is described by

z̈c =
e

mγ3
[Ez(ξs)cosθ − Er(ξs, dxc)sinθ] (4.22)
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The longitudinal electric field remains unchanged (see eq. 2.6)

Ez(ξs) =
Q

2πεR2Lγ

[

γ(|ξs| − |L − ξs|) +
√

γ2(L − ξs)2 + R2 −
√

γ2ξ2
s + R2

]

(4.23)

whilst the transverse electric field contains the linear dependence on dxc

Er(ξs, dxc) =
Qγdxc

4πεLR2

[

L − ξs
√

γ2(L − ξs)2 + R2
+

ξs
√

γ2ξ2
s + R2

]

(4.24)

In the second approach the space charge is obtained as the sum of the

fields of the single slices

ẍc + βγ2β̇ẋc =
e

mγ3

S
∑

s=1

Er(ξs, xc − xcs) (4.25)

being

Er(ξs, xc−xcs) =
Qγ(xc − xcs

4πεLR2

[

L − ξs
√

γ2(L − ξs)2 + R2
+

ξs
√

γ2ξ2
s + R2

]

(4.26)

where Er simply varies linearly with the distance xc−xcs of the generating

slice, xcs, from the considered slice, xc.

The longitudinal equation of motion is:

z̈c =
e

mγ3

S
∑

s=1

Ez(ξs) (4.27)

where Ez remains unchanged.

As for the wake fields, the main difference concerning the two approaches

consists in the CPU run time of the Homdyn code, which remains anyway

very low.

4.2.3 Solenoid Magnetic Field

Finally the Homdyn code contains the beam motion in a solenoid field, which

was mention previously among the focusing effects. The solenoid magnetic

field, obtained as the sum of each coil field, is shown in fig. 4.7.
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Figure 4.7: Solenoid field Bz, generated as the sum of the single solenoid coil

The code includes the case the solenoids coils are misaligned: the follow-

ing differential equations describes the centroid’s transverse and longitudinal

motion when solenoid coils are present

ẍc =
e

γm
(ẏcBz − żcBy) =

e

γm

[

ẏc +
1

2
żc

(

ycB
′
z −

∑

i

yi,offB
′
z,i

)]

ÿc =
e

γm
(żcBz − ẋcBy) = − e

γm

[

ẋc +
1

2
żc

(

xcB
′
z −

∑

i

xi,offB
′
z,i

)]

z̈c =
e

γm
(ẋcBz − ẏcBy) = − e

2γm

[

ẋc

(

ycB
′
z −

∑

i

yi,offB
′
z,i

)

+

− ẏc

(

xcB
′
z −

∑

i

xi,offB
′
z,i

)]

where

Bx,i = −1

2

dBz,i

dz
(xc − xi,off ) (4.28)
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Figure 4.8: Bunch centroid motion, as computed by Homdyn, in a solenoid

field.

By,i = −1

2

dBz,i

dz
(yc − yi,off) (4.29)

being xi,off and yi,off the displacement of the coil i from the nominal

axis.

It’s worth noting the equation describing the xc, yc and zc motion are cou-

pled. Fig. 4.8 describes the centroid motion in a solenoid field, as computed

by Homdyn.

4.2.4 Validation

We test the models adopted in Homdyn to describe the space charge on

centroids, using the Parmela code. In particular we generate a bunch whose
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Figure 4.9: Slices’ centroids lying on a bent axis.

slices lies on a bent axis as in fig. 4.9; in this case space charge on centroids

is stronger.

Fig. 4.10 show the centroids’ evolution along the z axis, as computed by

Parmela and Homdyn, when the only space charge force is acting.

The cross represents the first approach whilst the square represents the

second one; Parmela is the full circle. It’s worth noting there’s a good agree-

ment between the two models, anyway in the first case the space charge

depends on the distance dxc of each centroid from the interpolating straight

line r so as long as the only space charge is affecting the bunch, dxc = 0 and

we only observe a lengthening effect due to the longitudinal space charge. On

the contrary, in the second approach, the distance xc − xcs of the considered

slice from the neighbor slices generating the space charge is not zero; thus

the radial space charge is not zero, even if quite small being the chosen tilt

angle small. The radial space charge depends on the sign of the distance dxc

and it has the effect of transforming the straight line r into a bent line. In
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Figure 4.10: Centroids’ evolution along the z axis (from left to right z = 0cm,

z = 100cm, z = 200cm and z = 250cm) for Parmela (full circle), first (cross)

and second (square) approach for Homdyn .
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Parmela the bending effect is stronger, this is caused by space charge non

linearities.

4.3 Emittance Computation

The total rms normalized emittance is calculated in the code following the

definition given in sec. ??

ε2
xn =

(

< (x− < x >)2 >< (βγx′− < βγx′ >)2 > +

− < (x− < x >)(βγx′− < βγx′ >) >2
)

(4.30)

The bunch is divided in S cylindrical slices, uniformly charged and each

slice contains M particles. The whole bunch contains N = S · M particles;

thus the media <> can be expanded in the following way:

<>=
1

N

N
∑

n=1

=
1

S · M

S
∑

s=1

M
∑

m=1

=
1

S

S
∑

s=1

<>s (4.31)

Besides for a uniform cylindrical charge distribution, the following relation

holds:

< x2 >s=
X2

s

4
(4.32)

The total rms emittance is calculated in the code as follow

ε2
ntot =

(

εth
n

)2
+ (εcorr

n )2 (4.33)

where εth
n is the thermal emittance. When all the slices lies on the same

axis, the correlated emittance εcorr
n is only given by the ’envelope’ emittance

(εe
n)2 =<

X2

4
><

p2
X

4
> − <

XpX

4
>2 (4.34)

where X is the slice envelope and pX = βγX ′ is the transverse momentum.

On the contrary if the slices do not lie on the same axis then the correlated
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emittance is not simply given by the envelope emittance but it is given by the

quadratic sum of three terms: the envelope emittance, eq. 4.34, the centroids

(

εcent
n

)2
=< (xc− < xc >)2 >< (pxc− < pxc >)2 > +

− < (xc− < xc >)(pxc− < pxc >) >2

and the cross emittance, respectively

(εcross
n )2 =<

X2

4
>< (xc− < xc >)2 > + <

p2
X

4
>< (pxc− < pxc >)2 > +

− 2 <
XpX

4
>< (xc− < xc >)(pxc− < pxc >) >

The emittance complete expression of an off axis bunch has been inserted

in the Homdyn code. We used the Parmela code to validate the emittance

computation described above. We run Parmela for simple cases, for example

a bunch generated on a photo-cathode with and without laser jitter and space

charge. The obtained results for the envelope, centroids positions, envelope

and centroids momentum are inserted in the above equations the envelope,

the cross and the centroid emittance: then we compare the analytical results

with the emittance as computed by Parmela.

Fig. 4.11 compares the total emittance to the Parmela emittance. In

fig. 4.11 (a) and (b) the space charge is off whilst it is on in fig. 4.11 (c) and

(d). Fig. 4.11 (a) shows the emittance computation when the bunch is trav-

eling on axis: in this case the centroid and cross emittance are equals to zero

and Homdyn simply uses the envelope emittance. It’s worth noting fig. 4.11

(a) shows the calculation is right. Fig. 4.11 (b) shows the emittance compu-

tation when the bunch is traveling off axis. In this case, all the emittances

are different from zero. Again fig. 4.11 (b) demonstrates the agreement is

excellent thus validating the emittance computation used in Homdyn.

Finally fig. 4.11 (c) and (d) compare the emittance when the space charge

is on and when both the bunch is on axis or off axis. The agreement is still
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Figure 4.11: Total (full circle), Parmela (rhombus), cross (dashed line), cen-

troid (times), envelope (cross) emittance when the space charge is off (a and

b) and the space charge is on (c and d) with (b and d) without (a and c)

offset.
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good: they don’t coincide perfectly because the Homdyn emittance calcula-

tion assume the bunch’s charge distribution uniform. Anyway the good result

demonstrates the non linearities of the space charge force can be neglected.
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Chapter 5

Emittance Degradation Study

in the SPARC photoinjector

The Homdyn code, including its improvement on off axis beam dynamics,

has been used in the SPARC project, together with other codes, to study the

bunch quality along the photo-injector until the entrance of the undulator

device.

In this chapter we analyze emittance degradation due to misalignments

along the photo-injector. Infact when a bunch travels off axis, because the

bunch is generated off axis or the structure is misaligned, transverse wake

fields exist as well and influence the bunch itself.

As a first application of the Homdyn code to the SPARC photo injector we

study the emittance and energy spread degradation in the emittance meter

experiment. The emittance meter experiment’s aim is to measure, with a

pepper pot, the emittance just outside the gun to guarantee the bunch enters

the linac with the required features. Anyway the bunch’s emittance can be

degraded by the bellows preceding the pepper pot giving a false measure.

Analysis of the bunch quality before the pepper pot has been done with

Homdyn including off axis beam dynamics. The Homdyn results for different

emittance meter geometries led to the choice of a certain geometries and show

the bunch’s emittance degradation is negligible.
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Moreover we study a correction scheme for the SPARC project to con-

trol the bunch’s trajectory and angle at the entrance of the undulator. The

correction scheme consists of a number of steering magnets and beam po-

sition monitors placed along the photo-injector; we tested its validity by

the study of a configuration which causes the bunch’s centroid going fur-

ther from the nominal axis thus generating stronger transverse wake fields.

Two different steering approaches are analyzed and the emittance degrada-

tion is studied. The code demonstrates the steerings positions and number

do correct the bunch’s orbit and angle and give good results concerning the

emittance degradation.

5.1 The Emittance meter experiment: emit-

tance and energy spread degradation

Preliminary studies of the the SPARC RF-Gun are planned to obtain an

accurate analysis and optimization of the emittance compensation scheme,

measuring the beam emittance evolution downstream the RF-Gun with an

appropriate diagnostic system. Since the beam before the accelerating struc-

tures is still space charge dominated, the pepper-pot method is used [18]. A

pepper-pot consists in a multi-slit mask intercepting the beam; it selects one

or several beamlets reducing the dominated space charge incoming beam into

some emittance-dominated beamlets that drift up to an intercepting screen

as illustrated in fig. 5.1.

The use of a double slit, horizontal and vertical, allows the measure of

the emittance and Twiss parameters in both plane. The pepper pot is pre-

ceded by a bellow structure , as in fig. 5.2, which allows the pepper pot to

move along the nominal axis z and thus it gives the possibility to perform

measurements from about z = 83cm to z = 233cm.

An array of cavities constitute the bellow’s corrugation. Even if each
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Figure 5.1: The Multi-slits mask intercepting a space charge dominated beam.

Figure 5.2: Emittance-meter design.
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corrugation’s shape is triangular, we suppose them as squared cavities. This

assumption (cap. 3)and the geometric dimensions of the pill-box cavity with

respect to the bunch length (see eq. 3.10) allows the use of the diffraction

theory model for the calculation of the wake fields in Homdyn.

Tab. 5.1 shows the two bellows configurations for the emittance-meter

experiment, where a is the beam pipe radius, b the cavity depth and g its

length. The second choice, being its geometric dimensions bigger than the

first choice, generates lower wake fields. Anyway, as it will be shown later

on, the first choice was adopted for the emittance meter experiment being

the resulting emittance degradation negligible.

Bellow a mm b mm g mm

first 26.0 47.5 3.40

second 51.25 75.0 4.00

Table 5.1: The two bellows geometries for the emittance meter experiment.

The plots in fig. 5.3 and fig. 5.4 represents the transverse and longitudinal

loss factors as a function of the corrugations’ number for a triangular and

squared corrugation for the first and second choice respectively. The results

calculated with the code ABCI demonstrate the assumption of a pill box

cavity for the bellows corrugations give a worst result in terms of wake fields,

that is the choice is conservative.

The graph in fig. 5.5 shows the variation in percent of the beam emittance

at position z = 150cm from the cathode, due to a bellow misalignment for

different values of the beam transverse position with respect to the bellow

axis. In the worst case of 1mm misalignment the contribution of the wakes

to the emittance degradation is lower than 2% thus negligible.

The increasing of the energy spread of the bunch due to longitudinal wake

fields trough the long bellows is analyzed in the plot of fig. 5.6. As for the

emittance, the degradation of the beam has not practical relevance.
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Figure 5.3: Longitudinal (left hand side) and transverse loss factor for a

triangular (full circles) and squared cavity as computed by the ABCI code for

the first bellow choice.
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Figure 5.4: Longitudinal (left hand side) and transverse loss factor for a

triangular (full circles) and squared cavity as computed by the ABCI code for

the second bellow choice.
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Figure 5.5: Degradation of the horizontal (full circle) and vertical emittance

due to a possible bellow misalignment.

Figure 5.6: Energy spread vs z with (full circle) and without bellow.
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Figure 5.7: Emittance double minimum behavior.

It’s worth noting the z = 150cm position represents the emittance maxi-

mum along the photo-injector and it is the position at which the linac struc-

ture should be positioned to get the minimum of the emittance outside the

entire linac (see sec. 1.3.2. The emittance value is infact frozen outside the

linac structure to the emittance second minimum.

5.2 Misalignment Correction Scheme Study

in the SPARC Photo-injector

A bunch can travel off axis for different reasons: for example a laser pointing

instability can directly generate the bunch off-axis or the structures can be

misaligned. In this case transverse wake fields, RF transverse components

and space charge can further push off axis the bunch. Thus the bunch has to

be driven to the nominal trajectory with the help of steering magnets, placed

along the accelerator structure.

Fig. 5.8 is a conceptual drawing of the steering magnets and the beam

position monitors positions along the photo-injector.

A steering is positioned just outside the gun, whilst we place two steering

in each traveling wave structure. One more steer is placed at the end of the
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Figure 5.8: Steering magnets and beam position monitors position in the

Sparc photo-injector.

Figure 5.9: Traveling waves and solenoid coils misalignments in the Sparc

photo-injector.

linac, after the focusing quadrupoles and finally we can find the last steer just

before the undulator. Outside the linac beam position monitors are placed

after every steering whilst they are placed after every two steerings inside

the linac structure.

As a preliminary study of the emittance degradation, we analyze a case

for which the bunch’s centroid is driven further and further from the nominal

axis as shown in fig. 5.9.

The bunch is generated on axis whilst the traveling waves can be transver-

sally displaced with respect the nominal axis; besides the thirteen coils form-
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ing the solenoid of the first traveling wave can be independently displaced as

well: a study of different misaligned combination for the solenoid coils shows

which is the configuration that drives the centroid further from the nominal

axis.

Tab. 5.2 shows the solenoid coils and traveling waves misaligned config-

uration. It’s worth noting the mechanical design guarantee 0.05mm offset,

anyway the standard misalignment chosen in the analysis is 0.1mm.

Device ∆xmm ∆ymm

Solenoid coil 0.0 0.1

1

Solenoid coils 0.1 0.0

2-3-4-5-6

Solenoid coils 0.0 -0.1

7-8-9-10-11-12-13

TW1 0.1 0.1

TW2 -0.1 -0.1

TW3 -0.1 -0.1

Table 5.2: Solenoid coils and traveling wave misalignment.

To calculate the right angle in the vertical and horizontal plane that cor-

rect the trajectory, we use a transfer matrix between two points, for example

the steering and the following BPMs or two adjacent steerings
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The matrix calculation is made up of two steps: the first step consists in

the calculation of the matrix elements.
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Let’s turn off the steering magnets, x′ = y′ = 0, we obtain the nominal

position on the following steering or BPM, x2n and y2n







x2n = ax1 + ey1

y2n = iy1 + ox1

Turning on the horizontal steer we get the new positions x2k and y2k







x2k = x2n + bx′

y2k = y2n + px′
(5.1)

From eq. 5.1 we can obtain the matrix element b and p. The same rea-

soning apply to the determination of the matrix element f and l, turning on

the vertical steer:







x2k = x2n + fy′

y2k = y2n + ly′

The second step determines the horizontal and vertical angle of the steer-

ing, being known the matrix element and the position wished on the following

steer or BPM:







bx′ + fy′ = x2

px′ + ly′ = y2

It’s worth noting such matrix determines the horizontal and vertical angle

for one steering. The general case of more than one steering is solved using the

superposition principle thus adding the contribution of each steering coming

before the ending point.

The above treatment includes the case the horizontal and vertical plane

are coupled, as in a solenoid magnetic field.
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Figure 5.10: Steering positions and BPMs used in the virtual experiment.

Figure 5.11: Bunch’s centroid position along the structure with and without

steering correction.

5.2.1 Bunch trajectory correction: a virtual experi-

ment

Let’s first correct the misaligned configuration trying to drive the centroid

trajectory back on the nominal axis. We use the Homdyn code as if we were

simulating a virtual experiment; this means we try to align the bunch on the

BPMs after each steering and we read the centroid position on the BPMs.

Therefore only one steering before each BPMs will be used. The positions of

the steerings and BPMs used are sketched in fig. 5.10.

The plots in fig. 5.11 represents the centroid position along the SPARC

photo-injector until the linac exit, with and without steering magnets.

Note that the centroid position is successfully driven back to the nominal

axis, anyway tab. 5.3 show an emittance which is around 1mmmrad but still

90



Figure 5.12: Centroid’s trajectory drawing along the linac with the bump

technique.

gives rise to an emittance variation of 30%.

Offset εnx εnx εny εny

steeroff steeron steeroff steeron

0.1mm 3.47µrad 1.08µrad 1.22µrad 1.06µrad

Table 5.3: Horizontal and transverse emittance with and without steering

correction.

The reason is that even if the centroid travels back on the nominal axis,

the traveling wave structures are misaligned. Thus the transverse wake fields

exists and causes an emittance’s increase. Therefore the emittance should be

minimized.

5.2.2 Beam Based Alignment: emittance minimization

The beam based alignment technique consists in minimizing a certain param-

eter, for example the emittance, by forcing the bunch to undergoes bumps

and pass along the traveling wave axis as shown in fig. 5.12.

Such technique uses all the steerings placed inside the linac, [19] instead

of one per linac as in the previous case. We use again a transfer matrix to
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Figure 5.13: Centroid’s trajectory along the linac with the bump technique

with and without steering.

determine the steerings angles; the plots in fig. 5.13 represents the centroid

trajectory with and without steerings and demonstrates the centroid travels

on the axis of each traveling wave structure as depicted in fig. 5.12.

Tab. 5.4 shows the emittance at the entrance of the undulator after the

steering is brought back to the nominal value. Fig. 5.14 shows the emittance

evolution until the undulator entrance with and without correction and in

the nominal case.

ε εnx εnx εny εny

nominal steer off steer on steer off steer on

0.79µmm 1.81µmm 0.92µmm 0.79µmm 0.92µmm

Table 5.4: Horizontal and transverse emittance with and without steering

correction with the beam based alignment technique.

As a conclusion, it’s interesting to analyze what happens when, with a

given misaligned configuration and fixed steering angles, the bunch is gen-

erated off axis; that is a laser pointing instability is present. The plots in

fig. 5.15 shows the system is stable and the position and angle at the entrance

of the undulator still remains in the range allowed.
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Figure 5.14: Normalized rms horizontal and vertical emittance, nominal,with

and without steering magnets. The correct emittance coincide with the nom-

inal emittance.
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Figure 5.15: Centroid position and centroid angle at the entrance of the un-

dulator versus the bunch offset at the gun.
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Figure 5.16: Normalized rms emittance, horizontal end vertical, versus the

bunch offset at the gun.

Finally fig. 5.16 represents the emittance as a function of the laser point

instability.
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Chapter 6

Conclusions

A high quality beam, that is a low emittance and high current beam, is

needed to fulfill FELs’ requirements.

The main causes of emittance degradation along the photo-injector, pre-

ceding the undulator of the Sparc project, are the so called collective effects.

Collective effects includes space charge and wake fields that have been

deeply studied in this work.

Infact by inserting them in a fast semi-analytical code, Homdyn, we could

study the emittance degradation and finally compensate the degradation

along the photo-injector.The code has been one of the main tool used to

study the beam dynamics of the Sparc project.

The space charge is the electromagnetic field produced by a charged

bunch. In this work the case of a finite cylindrical bunch with circular

cross section, moving at relativistic speed, has been considered. Anyway

a more complicate analysis of an elliptical cross section bunch has been stud-

ied as well. Infact the focusing properties of some accelerator devices, as

quadrupoles and bending magnets, can change the charge distribution of a

bunch from round to elliptical.

An approximate analytical solution for the longitudinal electromagnetic

field has been obtained, whilst for the transverse electromagnetic field we

got numeric solutions. Anyway the study demonstrates a low eccentricity
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of the bunch’s cross section allows the use of a general rule to obtain the

electromagnetic field of an elliptical cross section bunch also for finite length

bunch. The general rule give the possibility to associate the transverse elec-

tric field on the axis of a round infinite bunch to the electric field of an infinite

elliptical one.

The eccentricity involved in the Sparc photo-injector are such that we

could apply the general rule in the Homdyn code thus simplifying the com-

putation. Anyway the more complicate equations for the elliptic case should

be used in the future second phase of the Sparc project for bunches traveling

across magnetic compressors.

The wake fields are the electromagnetic field produced by a charged bunch

traveling across devices whose shape is not uniform and/or its resistivity is

finite. A wake field can only affect charges following the generating charge.

The geometric dimensions of the cavities involved in the Sparc project com-

pared with the bunch’s dimension allow the use of the diffraction model to

obtain an analytical solution for the longitudinal and transverse wake fields.

Such result was inserted in Homdyn code as well.

Transverse wake fields exists when the bunch travels off axis. Thus we

introduced in the code the possibility to study the off axis beam dynamics as

well. In this case each slice can be transversally displaced from the nominal

axis with respect the neighbor slices; besides it also experiences a transverse

deflection due to the space charge forces produced by the neighbor slices.

The improved version of the Homdyn code was successfully compared

with the results given by a well known but much slower code as Parmela; thus

we used the improved version of the Homdyn code to evaluate the emittance

degradation when the bunch travels off axis along the Sparc photo-injector.

In particular a very accurate measure of the emittance evolution down-

stream the RF gun is required. The movable emittance meter device is used

in the Sparc project to measure the emittance along the z axis; it can be

moved thank to a bellow structure, whose triangular shape, generates wake
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fields. Homdyn allowed the analysis of the emittance degradation and gave

the possibility to choose one of the two bellow geometries proposed by the

Sparc team.

Moreover, to drive a bunch traveling off axis back to the nominal axis we

need an array of steering magnets and beam position monitors. We stud-

ied and verified a configuration of steering magnets with the Homdyn code

by investigating two types of correction: one correct the bunch’s trajectory

driving the bunch back to the nominal axis, the other, called beam based

alignment technique, looks for the bunch’s trajectory giving the minimum

for the emittance. We could compensate the emittance with such techniques

thus demonstrating the steerings positions chosen are correct.

The whole study was allowed by the Homdyn code, in particular the

off-axis version and th wake fields (not included in other code as Parmela)

as well as the space charge on centroid has been very useful. Thus beam

dynamics is successfully described by the Homdyn code and it was applied

to the Sparc project giving an important contribute to the development of

the project itself.
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