£ SAPIENZA

UNIVERSITA DI ROMA

O OOVAL RN AN DN OV

NUMERICAL SIMULATIONS
OoF AcousTiC RESONANCE
OF SoLiD RockeT MOTOR

CANDIDATE
ViviaNA FERRETTI

TuTORS

Pror. Maurizio D1 GiaciNTO

Pror. BERNARDO FAVINI

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING
SAPIENZA, UNIVERSITY OF ROME

XXIII Cicro

7

DOTTORATO DI RICERCA IN “TECNOLOGIA AERONAUTICA E SPAZIALE’
DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

SAPIENZA, UNIVERSITY OF ROME






L'uomo attraversa il presente con
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indovinare cio che sta vivendo.
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fazzoletto dagli occhi e lui,
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accorge di che cosa ha realmente
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ABSTRACT

The operative life of many large solid rocket motors (e.g. US Space Shuttle SRM, Ariane
5 P230 SRM, Titan SRM, P80 SRM, the five-segment test motor ETM-3) is characterized
by the presence of sustained longitudinal pressure (PO, pressure oscillations) and thrust
oscillations. Their frequency is close to the first, but sometimes also second or third,
acoustic mode frequency of the combustion chamber. Although they do not compromise
the motor life, such oscillations represent a point of interest. In case of coupling with the
launcher structural modes, they can involve structural failures, interferences and payload
damages. Further, thrust oscillations can result in guidance and thrust vector control
complications and they can affect the motor performance.

The combustion chamber of an SRM can exhibit a vorticity generation in correspon-
dence of propellant corner, obstacle or boundary layer at propellant surface. Once de-
tached, this vorticity is convected by the flow and it impacts with downstream obstacles.
This interaction generates acoustic signal that perturbs the vortex shedding process. The
resonant coupling occurs if a combustion chamber acoustic mode is synchronized with the
vortex shedding frequency. This condition corresponds to the generation of self-sustained
pressure, then thrust, oscillations. These oscillations result from the complex feedback
mechanism fed by vortex shedding and acoustic waves, and they are due to the coupling
between fluid-dynamics instabilities and acoustic resonant modes.

Other forms of instabilities can occur in a solid rocket motor, such as combustion
instabilities. An aspect that can affect the acoustic coupling is represented by two phase
flow effects. In this context, purely acoustic coupling is considered, and these phenomena
are neglected.

The acoustic coupling simulation requires models capable to describe both the acoustic
and the vortical waves, including their interactions. To achieve a complete characteriza-
tion of motor instability risk, it is important to obtain an accurate reconstruction of both
oscillation amplitude and frequency. A complete description can be obtained by full
numerical simulations, but CFD analysis require high computational costs and times,
and present difficulties concerning the model definition. Usable for particular cases and
documented situations, the obtained results are not so accurate. The fundamental char-

I



v

acteristics that make a reduced-order model a useful tool, are the reduced computational
requirement and the possible improvement of relevant process understanding.

Rossiter [90, 91] developed a model that describes the aeroacoustic coupling as a
feedback loop. Current calculations of SRM stability are based on a simple first-order
perturbation solution. The classical approaches used in this context are the acoustic
balance method, given in practical form by Culick [27], and the most complete Flandro’s
method [45]. Such methods, capable to predict the motor tendency to become unstable,
do not provide informations on the instability level and on the system triggering. Other
simplified models have been proposed by Howe [55], Hirshberg and Hulshoff [53] that
analyzed the vortex sound production.

A particular attention has to be turned to the one-dimensional reduced order models
derived by Matveev [78] and Jou & Menon [63, 81]. Matveev’s model is based on a
ODE system and it describes the acoustic modes excitation, accounting for the acoustic
feedback on the vortex shedding. Jou and Menon developed a model for the evaluation
of the coupled-mode oscillation frequency.

The main idea followed in this research is proposed by prof. B. Favini and F. Serraglia;
their idea is the use a quasi-one dimensional model, for the flow field evolution in a solid
rocket motor, where the vorticity dynamics is also described by a Q-1-D model. As far as
we know, this is the first time this kind of modeling has been adopted in order to simulate
aero-acoustical phenomenon. Several exploratory studies have been performed in the
last few years on their approach, but the model reached a complete definition only in this
doctoral thesis.

In the present work, the quasi-1D reduced order model AGAR (Aerodynamically
Generated Acoustic Resonance) is developed in the aim of simulating SRM internal flows,
and consequently pressure and thrust oscillations.

A model opted of simulating internal ballistics requires to be constituted of several
sub-models as: a) grain burn back model for the propellant grain surface evolution with
time (GREG, Grain REGression model) b) flow field evolution model (SPINBALL, Solid
Propellant rocket motor INternal BALListics model) c) aero-acoustic simulation model
(POX, it’s not an acronym).

In order to validate the AGAR model and to verify its capability and its main charac-
teristics, a first test case considered in this work is a cold flow in an axisymmetric ramjet
combustor. This simple case allows a detailed analysis of the interaction between vortex
dynamics and acoustic waves.

Then the model has been applied to a real case, represented by the P80 SRM, the first
stage of the new European small launcher Vega. During its qualification and demonstra-
tion static firing tests, the motor has exhibited four different phases of pressure oscillations
during the whole operative life.



The present Ph.D. dissertation is organized as follows.

Cuarrer 1 An overview of pressure oscillation phenomenology in a solid rocket motor
is highlighted. To understand the origin of pressure oscillations, a presentation of the
basic phenomena characterizing the aeroacoustic coupling is provided. The aeroacoustic
resonance characterization is completed with the description of Rossiter’s feedback loop
model and its possible interpretation. Some notes about flute mode behavior, lock-in
phenomenon and combustion instabilities are given. The vortical structure definition and
identification criteria are also presented.

Cuarter2  The state of the art of the most important methods for aeroacoustic modeling
are presented. After a general historical summary, the methods are described in terms of
their fundamental features. Generalities are given about the full numerical simulations.
Then Matveev’s and Jou and Menon’s reduced order models are introduced and analyzed.

Cuarrer 3  An overview of SRM aeroacoustic mathematical model is provided, with
special care in the derivation and analysis of the vorticity equation. A description of
AGAR quasi-one dimensional model is presented.

Cuarrer 4 The validation test case here presented is the simulation of cold flow in an
axisymmetric combustor. A comparison with Jou and Menon’s results is provided. The
behavior and main characteristics of AGAR model are described, and an analysis of the
interaction between vortex dynamics and acoustic waves is obtained.

Cuarter 5 The simulation of the aeroacoustic phenomena of P80 solid rocket motor,
first stage of Vega launcher, by AGAR model is considered. The experimental data and
the numerical results are described, analyzed and compared.
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SoLiD ROCKET MOTOR AEROACOUSTICS

oME solid rocket motors exhibit pressure oscillations during their operative life. After
S a general overview about the pressure oscillation issue, a description of the basic phe-
nomena characterizing the aeroacoustic coupling is here provided, and the aeroacoustic
resonance characterization is completed by the description of Rossiter’s feedback loop
model and its possible interpretation. Some notes about flute mode behavior, lock-in
phenomenon and combustion instabilities are given. The vortical structure definition and
identification criteria are also presented.

1.1 SOLID ROCKET MOTORS

A simple scheme of a generic solid rocket motor (SRM) and its fundamental components
is presented in fig. 1.1.

The external motor structure is called case, it contains the propellant charge and serves
as highly loaded pressure vessel. It’s either made of metal or composite materials; the
surfaces directly exposed to hot gases are protected by thermal protections or insulation
layers.

The grain is the solid propellant charge that contains all the chemical species necessary
for combustion; the central cavity is the port cavity, and the grain configuration deter-
mines the combustion chamber geometry. The main parameter characterizing the motor
combustion chamber is the length (L) to diameter (D) ratio. The presence of slots, grooves,
holes, or other geometric features determines different burning surface configuration; the
propellant mass flow rate and the combustion chamber pressure depend, other on the
burning rate, on the grain burning surface, so that by modifying the grain shape it is
possible to obtain the desired pressure and thrust behavior. For this reason, very complex
grain shapes are designed, and often three-dimensional regions are used. The most com-
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Figure 1.1: Generic SRM scheme (figure from: Rocket Propulsion Elements, G. P. Sutton and O.
Biblarz).

mon three-dimensional regions are star-shaped or finocyl, where finocyl stands for fins on
cylinder. The three-dimensional regions are generally placed at the forward end, head
end, or at the aft end of the combustion chamber.

The igniter is a pyrogen charge, electrically activated, that provides the necessary
energy for the combustion start. The grain ignition starts on the exposed inner surface,
where the igniter hot gases impinge on the propellant surface. As the propellant burns
out, the grain surface regresses along the normal direction to the surface itself, causing
the grain port area increase.

The propellant combustion produces hot gases (~ 3500 K) that flow toward the aft
end of the motor; they are then accelerated and ejected by the nozzle. To resist high
temperatures and erosion, the nozzle is made out of high temperature materials, such as
graphite or ablative materials. A nozzle partially included in the combustion chamber
determines the presence of the submergence region, a volume delimited by the grain and
the nozzle convergent part.

A seal, typically placed in the nozzle throat section, protects the combustion chamber
from the external environment; the diaphragm is removed when a prescribed differential
pressure is reached.

The whole operative life of a solid rocket motor (overall combustion time) can be
divided in three different phases: Ignition Transient, Quasi Steady State and Tail Off (fig.
1.2).

1.2 SOLID ROCKET MOTOR PRESSURE OSCILLATIONS

Solid rocket motors having large length (L) to diameter (D) ratio (i.e. L/D > 9 —10,as US
Space Shuttle SRM [47], Ariane 5 P230 SRM [93], Titan SRM [16, 34] and the five-segment
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Figure 1.2: Head-end pressure time history

test motor ETM-3) exhibit sustained pressure and thrust oscillations along the whole
operative life.

Even if each motor shows different timing and duration of the oscillating phase, the
pressure oscillations are described by some common features. The pressure fluctuations
are generally not threatening for motor life but, in spite of this, the oscillations represent
a point of interest. Their frequency is close to the first, but possibly also second or third,
acoustic mode of the combustion chamber. They can involve interferences and payload
damages as well as launcher and motor structural failures. Further, they can affect the
motor performance and can imply guidance and thrust vector control complications. In
the last part of its flight, the launcher is almost completely unloaded and the oscillations
generate high levels of acceleration. The pressure oscillations are of the order of about 0.5
% of the mean value; due to the transfer function between pressure and thrust, the order
of the thrust oscillations is about 5 % of the mean value. Indeed, the transfer function is
variable with time and it increases with the time evolution.

The pressure oscillations result from the complex feedback mechanism fed by vor-
tex shedding and acoustic waves, and are due to the coupling between fluid-dynamics
instabilities and acoustic resonant modes.

1.3 FLUID-DYNAMICS INSTABILITIES AND VORTEX SHEDDING

The solid rocket motors that typically show pressure oscillations are characterized by
segmented grain, propellant corners and inhibitor rings. Each corner or protruding
object (i.e: inhibitor rings) can be a point for fluid-dynamics instabilities origin and a
vorticity production can occur if the generated shear layer becomes unstable. Therefore,
the presence of an obstacle or of propellant surface discontinuities can involve vorticity
generation [107, 106].
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Figure 1.3: Pressure oscillations of a solid rocket motor.

Culick underlines the presence of a shear flow region adjacent to a surface with radial
mass injection [27]; in a solid rocket motor such addition is related to the grain regression.
In the shear region, the mass velocity vector is turned from radial to axial direction, as
shown in fig. 1.4. This shear flow can generate vortical structures close to the surface: the
profile is unstable and any perturbation will result in a breakdown into coherent vortical
structures [104, 34, 18].

Head end _ : =1 : : =, AWt

TR T T i o B

Figure 1.4: Sketch of a cylinder with radial mass addition.

In conclusion, three different kinds of vortex shedding phenomena can be identified in
a solid propellant rocket motor: parietal, obstacle and corner vortex shedding. A sketch
can be seen in fig. 1.5. The vortex shedding process is strongly affected by the presence
of an external acoustic field, so that the acoustic waves provide a control signal for the
hydrodynamic instability.

ParieTaL vORTEX SHEDDING (PVS)  The parietal vortex shedding is due to purely hy-
drodynamical instability of the velocity profile. Vortical structures are generated near a
boundary through which a flow enters a volume [29, 105, 64]; the boundary does not
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Figure 1.5: Vortex shedding phenomena.

present any particular geometrical feature. The transversal velocity component plays a
major role in the instability mechanism [64].

This mechanism is related to Taylor/Culick’s flow instability; these flows become
unstable for sufficiently long distance along the combustion chamber (L/D > 5, a value
almost independent from Reynolds number), so that it can be typically observed in large
SRM. PVS is represented by the generation, along a wall, of vortical structures that grow
spatially and interact with acoustic modes.

Corner vorTEX sHEDDING (CVS)  This kind of vortical structure is produced by a very
unstable profile generated by the presence of a propellant sharp edge. The propellant
corners determine the existence of highly sheared regions, and the shedding process is
related to the Kelvin-Helmholtz instability.

OsstacLE VORTEX SHEDDING (OVS)  In this mechanism the vortices are generated by a
jutting obstacle (inhibitor rings, annular restrictors, ...) that can generate highly sheared
flows, and consequently periodic vortex shedding. As the CVS, the obstacle vortex
shedding is also related to the Kelvin-Helmholtz instability.

Once generated by one of the three mechanisms previously mentioned, the vortical
structure is convected by the flow. Traveling downstream, the vortex is stretched and
looses its energy of rotation [107, 82, 6].

During their movement, adjacent vortices tend to combine in a single vortex (vortex
pairing phenomenon) [82, 99, 107, 74, 76]. This phenomenon is reduced by high values of
dynamic viscosity, that also determine a more regular vortex shedding mechanism [65].

14 VORTEX-OBSTACLE INTERACTION

Moving downstream in the combustion chamber, a vortex interacts with each obstacle
and geometrical variation, such as inhibitor rings or annular restrictors. At the end, once
reached the aft end of the combustion chamber, the vortex impacts on the nozzle nose.
Each time a vortex interacts with an obstacle, it generates an acoustic radiation; this
sound production is a potential source for the observed pressure oscillations [35, 104, 34].
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The velocity field can be considered composed by a potential (irrotational) and a
solenoidal field (par. 3.2). The unsteady part of the potential flow component defines
the acoustic field [52]. As indicated by Howe’s vortex sound theory [55], the generated
sound is proportional to the vortex convection velocity (u), to the acoustic velocity (u/),
to the angle between u and u’, to the vortex intensity and to the vorticity (w) distribution
close to the obstacle [6, 59]. At low Mach numbers, the average acoustic power g can be
expressed as:

p=—p <Jv(w x u) -udV) (1.1)

where p is the density. A description of vortex-sound theory is presented in par. 2.3.

Wxu Wxu

Figure 1.6: Vortex interaction with an obstacle (adapted from: [60]).

The amplitude of the sound production increases with the vortex circulation and the
flow Mach number, while it decreases with the vortex height with respect to the obstacle
[60]. The precise form of the sound signal is determined by the vorticity distribution and
by the nozzle geometrical configuration [60]. Although different nozzle designs generate
different amplitudes, the excitation of the same acoustic mode is obtained [4]. In particular,
the submergence region increases the level of the generated sound, and acts as a pressure
fluctuation amplifier. The nozzle cavity induces large velocity fluctuations at the cavity
inlet, and this causes vortex oscillations. The pressure oscillation level increases almost
linearly with the nozzle cavity volume [2, 5].

While a monopole source radiates sound equally in all directions, a dipole source, two
monopole sources of equal strength but opposite phase, radiates sound along two prefer-
ential directions. The dipole source corresponds to the stronger kind of radiator. When a
vortex interacts with an obstacle, there is an energy transfer from the vortex to the acoustic
field, and it is described by a dipole source.

Two opposite dipoles correspond to a quadrupole source; the sound is radiated along
four directions, but it is null at points equidistant from adjacent opposite monopoles. A
quadrupole is a weak radiator, and it represents the sound generation due to the mere
presence of a vortex.

A pseudo-sound production, that does not propagate and that is described by a quadrupole
source, is associated to the vorticity [88]. The acoustic waves generated by the pseudo-
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sound only weakly interact with the motion of the vortical structures [45]. The pseudo-
sound is the dominant component close to the vortex, but it rapidly decays and it becomes
negligible if compared to the sound generation due to vortex interaction with an obstacle.

15 AEROACOUSTIC COUPLING

The acoustic resonance of a solid rocket motor results from a complex feedback mechanism
that involves the interaction of fluid-dynamics instabilities and acoustic resonant modes. A
scheme of the resonant coupling is shown in fig. 1.7. The hydrodynamic instability of
the shear flow generates vortical structures that, once detached, are convected by the
flow and interact with each obstacle in the combustion chamber (inhibitor rings, annular
restrictors, nozzle,...). Each interaction determines an acoustic field excitation and a
possible acoustical triggering of shear flow instability.

The vortex shedding is characterized by the vortex shedding frequency f,s. The
distance between the vortex generation point and the impingement point is defined
stand-off distance 1;. The vortices are an independent source of acoustic waves and their
occurrence merely excites the acoustic disturbance. The oscillation frequency corresponds
to a free mode frequency'; it strongly depends on the speed of sound, and only weakly
on the convective speed.

The acoustics of the combustion chamber is characterized by the acoustic frequency
fa:

fo = (2n— 1)% (12)

where n is the acoustic mode number, a is the speed of sound and L is the chamber length
L2. Each cavity in the combustion chamber is described by a proper acoustic frequency,

that is defined as:
a

21;

When a vortical disturbance couples at the boundary with the acoustic disturbance, the
vortex shedding frequency is synchronized with the chamber acoustic modes (f,s = fq)
and the resonant coupling occurs, leading to self-sustained coupled-mode oscillations. In
this case, the duct acts like a resonator through its natural eigenmodes and the pressure
fluctuation amplitude attains a maximum value. The coupled-mode frequency strongly
depends on the vortical disturbance velocity, and consequently on the flow Mach number.

The aeroacoustic coupling is possible if the acoustic frequency lies in the range of the
shear layer unstable frequencies. This aspect identifies the shear layer as a broad band
amplifier that naturally tunes to available frequencies; the shear layer contraction, the

1:a,cav = (zn - 1) (13)

IFor this kind of oscillations the sonic throat acts like a nodal point.
a

a while for

2The acoustic frequency of a tube with a single closed end can be expressed as fq = (2n—1)
a

a tube with both ends closed or open itis fq = (2n—1) ik
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time variation of shear-layer thickness, acts both as an amplifier and a frequency selector.
In case of coupling, the acoustic field perturbs the shear layer, that modifies its thickness
and tunes its frequency to the acoustic modes. In this case, an amplification of the velocity
fluctuations in the shear layer occurs, and large-scale vortical structures are generated.

Corner vortex Obstacle vortex Parietal vortex
(Cvs) (OVS) (PVS)

|
1 ©s 19 f%f@r q
2 /I /

Propellant £ Acoustic ~ Submergence
grain Inhibitor o dback cavity

Figure 1.7: Aeroacoustics of a solid rocket motor (modified by [6]).

The resonant coupling could not be sustained without the presence of an obstacle
downstream of the vortex generation point [30]. The presence of the obstacle is necessary
for the energy transfer, described by a dipole source production, from the impinging
vortex to the acoustic mode [92, 47], attained by the production of a dipole source.

As a vortex exchanges energy with the acoustic wave at the impingement point, the
acoustic mode feeds back this energy to the vortical wave (shear flow instability) at the
receptivity point, corresponding to the vorticity generation point [101, 50]. The receptivity
of the shear flow to external modulation closes the loop with a new vortex generation.

The vortex generation process can be aided by the relative displacement between
the vortex shedding point and the acoustic nodes. The vortex shedding triggering by
the acoustic mode is more effective if the detachment point corresponds to an acoustic
pressure node [16, 35]. It is possible to describe a node as a point where a constant
value is maintained; each point where the maximum or minimum values are alternated
corresponds to an antinode, respectively positive and negative. In fig. 1.8 the first three
acoustic modes of a closed tube are shown. As it can be noted, an acoustic pressure node
corresponds to an acoustic velocity antinode. A solid rocket motor can be only partially
assimilated to a closed tube. Indeed, because of the sonic throat section, the combustion
chamber end section is only characterized by a partial reflection.
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Figure 1.8: Acoustic modes for a closed tube.

1.6 ROSSITER’S MODEL

The first description of the resonant oscillation has been developed by Rossiter [90, 91]. He
describes the aeroacoustic coupling as a feedback loop (fig. 1.9) whose fundamental steps
are:

o hydrodynamic instability of the shear flow: vortical structures are generated by an unsta-
ble shear layer or surface instability; once detached, they are convected downstream
by the flow

e vortex interaction with an obstacle (inhibitor rings, annular restrictors, nozzle,...)
e acoustic source: the vortex impingement on an obstacle generates an acoustic signal

e acoustical response of the combustion chamber and acoustical triggering of shear flow
instability: the acoustic signal, reaching the shear layer initiation point, perturbs it
and generates a new vortex

e new vortex generation: the new vortex rolls up, growths and travels downstream
closing the loop

The feedback loop is described by two loops, the first (Loop1) related to the vortex
shedding and the second (Loop2) to the acoustics. As previously seen, the resonant
coupling occurs when the two loops are coupled (f,s = fq).

It is possible to distinguish between deep cavities and shallow cavities. A cavity of length
l; and diameter d is described by its aspect ratio 1;/d; if 1;/d < 2 a cavity is defined deep,
while for 1;/d = 4 + 10 it is a shallow cavity.

Rossiter proposes a semi-empirical formula for the prediction of the frequency peaks
in high subsonic compressible flows, over deep cavities and for a flow characterized by
Re ox 10°. He states that the type of flow pattern occurring in a cavity depends on its 1;/d
ratio, while it is only weakly dependent on the Reynolds number.
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Figure 1.9: Aeroacoustic coupling.

The stage number (m) is defined as the number of vortices in a cavity of length 1;. Each
vortex is convected with a velocity (u,s) corresponding to a fraction of the freestream
velocity (u).

The impingement of a vortex on the trailing edge of the cavity generates an acoustic
pulse. The vortex shedding period (T, s) corresponds to the sum of the vortex convection
time, the pressure pulse propagation time and the time delay between the vortex collision
and the acoustic pulse generation, all divided by the number of vortices.

Mathematically the feedback loop can be expressed as:

L n [

mlvs = kru (a —u)

+ At (1.4)

where:

e kg is a dimensionless empirical constant representing the ratio between the vortex
convection velocity and freestream velocity:

Uys = kru (1.5)

e 1;/(kgru) is the vortex convection time, the time between vortex release and vortex
impingement

e 1;/(a—u) is the propagation time of the pressure pulse, the time for the acoustic
signal, generated by vortex impingement, to reach the shear layer initiation point

e At is the time delay between vortex impingement and acoustic signal generation.
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Introducing a phase delay factor «, a dimensionless empirical constant, the time delay At
can be expressed as:
At = aTys (1.6)

The vortex shedding frequency, which is the inverse of vortex shedding period, can be
obtained from eq. 1.4:

u m — & u m—«x 2
fus = — <M1> = = <]> +0(M?) (1.7)
li W—FVR li M+kip

where the Mach number M = u/a is introduced.

Rossiter obtains a set of values that provides a good estimate, with respect to the
experimental data, for a large range of deep cavities: kg = 0.61 —0.66 and « = 0.25 [90].
If a shallow cavity is considered (L/D = 4), the values are: kg = 0.57 and « = 0.25. For a
shallow cavity (L/D = 10), the phase delay factor is & = 0.58.

Rossiter’s model underlines the coupling between the fundamental acoustic mode and
the vortex shedding. A mean flow velocity decrease corresponds to a vortex shedding
frequency decrease, until it is decoupled from the acoustic mode. At this point, the
coupling condition is achieved with an increase of the number of vortices over the length
l; (m), corresponding to a shedding frequency increase.

Rossiter’s equation, a quite simple model, is rather successful in predicting resonant
frequency values, while it does not give any information about the oscillation amplitude.
Although it is not fully predictive, it is quite useful to analyze firing test experimental
data.

1.7 FLUTE MODE BEHAVIOR AND LOCK-IN

The acoustic resonance condition corresponds to a synchronization of the vortex shedding
and the acoustic modes frequency (fys = fq). While the acoustic frequency is a motor
characteristic, the shedding frequency depends on the internal flow evolution.

Solid propellant motors are in general characterized by a decrease of the mean flow
velocity with time evolution. Several theoretical and experimental studies point out the
typical behavior shown in fig. 1.10. Once attained a resonance configuration, the resonant
frequency decreases with the grain burn back, because of the reduction of the mean flow
velocity. When moved away from resonant conditions, a frequency jump occurs and the
system brings back itself to a different resonant configuration, characterized by a different
number of vortices [44, 68, 107, 87, 100]. As visible in fig. 1.10, the oscillations appear
grouped in tracks, that exhibit decreasing frequencies and sudden jumps around the
acoustic frequency.

The frequency decrease with the burn time is an indication of a phenomenon depend-
ing on the axial flow velocity. The frequency jumps represent a system adjustment to the
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Figure 1.10: Flute mode behavior.

changing conditions in the combustion chamber. When the vortex shedding frequency fy
falls too far away from the acoustic frequency f,., an increase in the number of vortices
occurs to bring back the driving frequency in the acoustic range. This is a typical flute-
mode behavior [103, 48] and it is considered as an evidence of the hydrodynamic origin of
the oscillations. A measure of the frequency shift associated with variations of the mean
flow velocity, established that the ratio f, s /u remains constant [16].

The attraction of the vortex shedding frequency to the acoustic frequency and the
shift of the shedding frequency, due to the change of the mean flow velocity, describe the
lock-in phenomenon. The lock-in represents the adjustment, in order to remain in a resonant
configuration, of the Loop 1 to the frequencies of the Loop 2.

1.8 A ROSSITER’S MODEL INTERPRETATION

Delprat [31] proposes an a posteriori analysis of Rossiter’s equation, eq. 1.7, based on a
signal processing interpretation. This analysis combines a nonlinear distortion and an
amplitude modulation.

The spectral analysis of the unsteady pressure signal measured inside a cavity, of
length 1; and diameter d, reveals the presence of a sequence of peaks. Such peaks do not
correspond to the cavity acoustic mode frequencies, defined as:

a

fo = (2n—1)4l.
1

(1.8)

The spectrum of the signal appears non harmonic, and consecutive peaks are separated
by interval of constant frequency value (fig 1.11).
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Figure 1.11: Delprat spectrum interpretation (from: [31]).

The interval between two consecutive frequency peaks corresponds to the fundamental
aeroacoustic loop frequency:

1 u 1
far:f\r}s_._]_f\?s:-r _L<M+1> (1.9)
Vs i X

Rossiter introduces a phase delay factor (x) to express the time delay between vortex
impingement and acoustic signal emission as a function of vortex shedding period T,
(par. 1.6). If « is defined as a frequency ratio instead of a phase lag, it is possible to define
a frequency fy, function of the fundamental aeroacoustic loop frequency fq+, as:

fo = &far (1.10)
The vortex shedding frequency is then expressed as:
s = (Mm—a)far = mfar —fp (1.11)

This expression suggests that the spectrum predominant peaks modeled by Rossiter,
represent the difference between the fundamental frequency of the physical phenomenon
(far) and a lower frequency (fy,). The generation of such components is related to the
existence of a nonlinear process. The signal appears to be modeled by a two-step process:
first a nonlinear distortion of a wave with a frequency f 4, then an amplitude modulation
of the resulting signal by a wave with a frequency fy,. The spectral content corresponds
to a mixing of the aeroacoustic frequency loop (fqr) and a sequence of Rossiter modes.

It has to be noted that the fundamental frequency f4 is not a dominant peak and it is
generally not visible, as indicated by eq. 1.11 and showed in fig. 1.11.

As seen in par. 1.6, the vortex convection velocity is a fraction, represented by the
parameter kg, of the mean flow velocity (u,s = kru). Different kg values can produce
the same spectral content despite a significant frequency shift on some modes (eq. 1.11).
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1.9 VORTEX DEFINITION AND IDENTIFICATION

Coherent vortical structures are generally defined as bounded regions of flow with some
common properties. These common features are not always the same and they do not
appear with regularity in space and time. Because of this variability, different vortex
definitions and identification criteria have been developed.

Rossiter used the term vortex to indicate a “region of intense vorticity resulting from
the local rolling up of the shear layer separating the cavity from the external stream” [90].

Several definitions are related to vortices in terms of the streamlines that characterize
these structures. Lugt presented a definition of vortical as “the rotating motion of a
multitude of material particles around a common center [72]. Robinson followed an
analogous idea declaring that a vortex “exists when instantaneous streamlines mapped
onto a plane normal to the vortex core exhibit a roughly circular or spiral pattern” [89].
The same definition was adopted by Anthoine, that described the vortex as “a region
where the instantaneous flow is rotating around its center and which can be advected
with a certain velocity” [6]

Vorticity appears a natural choice for a vortex definition or identification, even if the
identification is complicated because of the impossible distinction between pure shearing
and swirling motion. Using Hussain definition, “a coherent structure is a connected tur-
bulent fluid mass with instantaneously phase-correlated vorticity over its spatial extent”
[62].

A vortex can be described and identified by different parameters, all defined on a

plane perpendicular to the vortex core. The fundamental characteristics are: vortex
center position, transport velocity, vortex diameter, vorticity peak, vorticity distribution®,

circulation and enstrophy <En = J w2d5> . It has to be noted that the center of a vortex
S

corresponds to a local pressure minimum and a vorticity peak.

A first identification criterion is represented by the localization of the pressure min-
imum corresponding to the vortex center, but an experimental pressure map is a quite
difficult task to obtain.

A second criterion is the detection of the vorticity peak, also related to the vortex
center; while a vortex center always corresponds to a vorticity peak, a vorticity peak does
not necessarily corresponds to a vortex center, and this represent a limiting aspect.

Several other methods are used for the vortex identification, but the most widely
used is the analysis of the gradient of the velocity field, although it does not discriminate
between small and large vorticity.

3The vorticity is a Galilean invariant of the velocity and it is not affected by an additional transport velocity.
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1.10 COMBUSTION INSTABILITIES AND STRUCTURAL DYNAMICS

Several theoretical and experimental studies on combustion show that the reaction velocity
depends on pressure and temperature values. At the same time, the combustion dynamics
is strongly affected by the oscillation frequency of such values, and in some case the
combustion becomes an amplification factor for the pressure instabilities.

In a solid rocket motor the combustion process is supposed to be concentrated in a thin
layer close to the propellant surface. When combustion takes place in a confined volume
(i.e: adjacent to the propellant surface) it may cause the development of pressure oscilla-
tions. If these oscillations are related to unsteady heat release, they are called combustion
instabilities. Several studies concerning vortex shedding phenomena demonstrate that the
combustion instability is related to the coupling between acoustic field and combustion
energy release. The acoustic-thermal instability is enhanced if the heat release and the
pressure perturbation fluctuation are in phase.

The effects related to real combustion, as the presence of solid particles, are referred
to as distributed combustion.

Aluminum particles are commonly added in solid propellants, such as HTPB/AP/Al,
in a proportion that can reach 20%. This addition provides an higher temperature of
the combustion products and, correspondingly, higher performance. The aluminum
agglomerates are ejected from the propellant surface and burn in the gas phase.

A dispersed inert phase damps the pressure oscillations thanks to the velocity and
thermal lag between gas and particles [97, 29]. However, linear stability analysis of a two-
phase flow with parietal injection showed that inert particles can also drive the instabilities
[40]. Furthermore, studies on the combustion instability experienced by a motor subjected
to parietal vortex shedding, show that inert particles enhance the combustion instability
and generate higher oscillation amplitude [36, 10]. The damping or driving effect is also
a function of particle diameter, mass fraction and particle distribution [36]. Despite the
influence on the oscillation amplitude, two phase flow effects do not modify the oscillation
frequency content.

The particles are concentrated between consecutive vortices and this agglomeration
leads to bundles of particles that pass through the nozzle. These bundles determine larger
perturbation without any frequency modulation; the amplitude increase is proportional
to the volume of the bundle [11].

Other phenomena of secondary importance can be observed in a solid rocket motor:
a damping effect is related to the accumulation and melting of aluminum particles at
the propellant surface [95, 86], while a driving effect is represented by the distributed
combustion of the aluminum particles [36, 14].

Other aspects that affect this kind of instabilities are the combustion temperature, the
motor geometrical features, the interaction with the hydrodynamic instabilities and the
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flow conditions. This makes the combustion instability a complex phenomenon requiring
specific studies and analysis.

The effects related to the dynamic coupling with both the propellant and the launcher
structural dynamics are not taken into account; the propellant and the structures are
considered as rigid body.

In the present work, the attention is focused on the purely aeroacoustic coupling and
the only considered instability is generated by vortex shedding. Other instabilities that
can occur in a solid rocket motor, such as combustion instability and structural dynamics,
are neglected.



AEROACOUSTIC MODELING

The simulation of the pressure oscillation instabilities requires to consider both the acoustic
and the vortical waves, including their interactions.

In this chapter, the state of the art of the aeroacoustic modeling is presented, and the
fundamental features of the most important methods are described: acoustic balance
method, vortex sound theory and acoustic analogy, hydrodynamic stability analysis,
Flandro’s and Anthoine’s models, Hulshoft’s theory.

Two reduced order models are then analyzed in details, the first derived by Matveev
and the second developed by Jou and Menon.

2.1 STATE OF THE ART OF THE AEROACOUSTIC MODELING

Lighthill’s analogy (1952, [69, 70]) is a first attempt to describe the acoustic field and the
sound production due to vortex pairing. The inhomogeneous wave equation, obtained
for a medium at rest, is based on the analogy of how the flow-induced/generated noise
can be described; the acoustic sources are represented by acoustically equivalent source
terms. Lighthill’s approach only provides an estimate of the sound production.

The first description of the acoustic resonance mechanism is represented by Rossiter’s
model (1964, [91]), already presented in par. 1.6.

Powell (1964, [85]) developed a model for the vortex sound production, the incom-
pressible vortex-sound theory.

The acoustic balance technique, an asymptotic expansion method, was proposed by
Hart & McClure (1965, [51]), for the linear analysis of the chamber acoustic modes stability.
This method was developed and completed by Culick (1966-1973, [26, 28]) and it is
presented in par. 2.2.

17
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Culick’s studies (1966, [27]) demonstrated that the mass injection from the propellant
surface, that generates a shear flow, represents one of the vorticity generation processes
observed in a solid rocket motor. The vortex pairing phenomenon and the tendency of
adjacent vortices to combine was described by Michalke (1972, [82]).

Flandro and Jacobs (1973, [46]) first mentioned the idea that the vortex shedding is a
source of acoustic energy.

They showed the instability risk due to hydrodynamic instability of the flow sheared
regions, and associated the presence of pressure oscillations both to this aspect and to the
coupled response of the motor.

A generalization of Powell’s theory is represented by Howe’s vortex-sound theory (1975,
[55]). This acoustic analogy expresses the perturbations due to the interaction of vortical
disturbance with an obstacle. A description of this theory is presented in par. 2.3.

A model for the excitation of the cavity acoustic modes by vortex shedding was
developed by Blevins (1977, [13]).

Culick (1979, [30]) demonstrated that in order to sustain the resonant coupling and to
have acoustic feedback, the presence of an obstacle, downstream of the shedding point,
is required. The evidence of the sound production related to the interaction between
vortex and obstacles was showed by Howe (1980, [56, 58]). He underlined that this sound
generation is associated to the deviation of the transport velocity vector from the acoustic
streamlines, as also confirmed by Dunlap’s studies (1981, [35]). The energy transfer from
the vortical field to the acoustic modes, corresponding to the vortex-obstacle interaction,
was pointed out by Schachemann (1980, [92]). The vortex shedding excitation of the
acoustic field was confirmed by the experimental data analysis of the Titan 34D SRM
developed by Brown (1981, [16]).

Brown and Dunlap (1981, [16, 35]) pointed out that vortex shedding triggering by
the acoustic modes is related to their relative position, so that it is more effective if the
shedding occurs where the acoustic pressure features a node. Brown also described the
flute mode behavior of a solid rocket motor.

With their experimental tests, Culick & Magiawala (1979, [30]), Mason (1979, [77]),
Dunlap & Brown (1981, [35]) and Nomoto & Culick (1982, [84]) demonstrated the coupling
between the periodic vortex shedding frequency and the acoustic modes of the combustion
chamber.

Flandro (1986, [45]) developed the most important method used for the stability anal-
ysis of solid rocket motors. The linear theory of Flandro’s model, presented in par. 2.5.1,
describes the vortex-acoustic interaction. The model is based on the hydrodynamic stability
analysis developed by Lin (1955, [71]), presented in par. 2.5. The flute mode behavior was
also studied by Flandro (1986, [44]).

The vortex-acoustics coupling with a mean flow was analyzed, basing on Howe's
sound theory, by Bruggeman et al. (1989, [17]) and Hourigan et al. (1990, [54]).
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Flatau and Van Moorhem (1990, [47]) analyzed the US Space Shuttle SRM experimental
data showing, also for this motor, the vortex shedding excitation of the acoustic field. Their
studies also involved CFD simulations of the motor internal flowfield, and pointed out
the acoustic excitation by vortex-obstacle interaction.

Kuentzmann (1991, [68]) and Vuillot (1993, [107]) proposed studies about the flute-
mode behavior.

In order to extract acoustic informations from the results obtained by numerical sim-
ulations, Jou and Menon [81, 63] developed a reduced one-dimensional model, suitable for
the evaluation of the coupled-mode oscillation frequency. A detailed description of this
model is provided in par. 2.10.

A theoretical model, based on the vortex-sound theory, was developed by Anthoine
(2001, [4, 5]) to study the effect of the nozzle cavity volume on the resonance level; it is
presented in par. 2.6.

Another reduced one-dimensional model was proposed by Matveev (2003, [80, 78]); it
describes the excitation of the acoustic modes accounting for the acoustic feedback on the
vortex shedding process. A detailed description of this model is presented in par. 2.11.

The computational fluid dynamics (CFD) and the full Navier-Stokes equations have
been used in order to obtain a complete description and understanding of the aeroacous-
tic process in a solid rocket motor. CFD numerical simulations have been presented by
Lupoglazoff (1992, [74]) and Vuillot (1993, [107, 104]). Full numerical simulations were
used by Vuillot et. al (1993, [107, 106]) and Kourta (1997, [66]) to simulate the internal
flowfield of the Titan IV SRMU, while Nesman (1995, [83]) used them for the analysis of
the Space Shuttle SRM. A fundamental result of Vuillot’s analysis is the characterization
of the vorticity production due to obstacle, surface discontinuity and natural instability
of the main profile. The role of the vortex-nozzle interaction as a potential source for the
generation of pressure oscillations was also analyzed. The stretching of the vortical struc-
ture with the motion toward the impingement point was also pointed out. Full numerical
simulations were proposed by Anthoine (2000, [3]) and Hulshoff (2001, [60]) for the anal-
ysis of vortex-nozzle interaction; Anthoine et al. (2000, [3]) demonstrated the effect of the
submergence region as a sound amplifier. Numerical simulations have been also used by
Dotson (1997, [34]) for studies on the Titan IV SRMU. Casali’s numerical simulations also
dealt with the instabilities due to parietal vortex shedding (1998, [18]). Kourta (1996, [65])
showed that the dynamic viscosity value can affect the resonant coupling mechanism, for
example limiting the vortex pairing phenomenon.

Several experimental tests have been performed in order to characterize the different
phenomena involved into the acoustic resonance. As shown by the static firing tests
analysis developed by Scippa, the Ariane 5 P320 SRM is characterized by the presence of
pressure oscillations (1994, [93]). Couton (1999, [25]) experimental analysis! showed that

IThe test case was featured by a rectangular two-dimensional channel with wall injection, obstacles and
submerged nozzle; a cold flow was considered.
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the wall injection of mass flow rate modifies the acoustic amplification level. The exper-
imental set up VECLA has been developed by ONERA to investigate the characteristics
of injection-driven flow and of parietal vortex shedding (1999, [9]). The experimental set
up employed at VKI and TUE, part of the ASSM program related to Ariane 5 solid rocket
motor aeroacoustics, is oriented to the sound generation analysis (2000, [2]). Experimental
tests presented by Anthoine et al. (2001, [4]) demonstrated that a duct, with a diaphragm
that generates vorticity, acts as a resonator through its natural eigenmodes. Experimental
tests are often carried out with cold flows, thus describing pure aeroacoustic coupling
without any combustion effects.

2.2 ACOUSTIC BALANCE METHOD

First proposed by Hart & McClure [51], then developed by Culick [26, 28], the acoustic
balance technique is an asymptotic expansion method. Its main feature is a linear analysis
of the chamber acoustic mode stability.

Each variable can be considered divided into a mean (G) and a fluctuating (G') com-
ponent:

G(xt) = G(x) + G (x,t) (2.1)
related by the € parameter so defined:
G’ (x)|
== <1 2.2
TGl 22

Two perturbation parameters are considered for the linearization process, ¢, defined
in eq. 2.2, and the mean Mach number M. The equations are divided into successive
power of ¢, that characterizes the instability and is used for the oscillation amplitude.
M is instead used to simplify the equations. The following particular problems can be
described by different ¢ and M combinations:

e ¢ =(0; M: steady and incompressible flow

e ¢; M = 0: acoustics without mean flow

e ¢; M: linear coupling of the mean flow and the acoustics

¢M is the lower order that permits the instability description.
The fluctuating component G', once introduced an amplification coefficient 3, is defined
as:
G xebPt (2.3)
Being the acoustic balance method a linear analysis, the total amplification can be ex-
pressed as the sum of particular amplification coefficients (3;:

p=D) B (24)
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A specific coefficient 3; is introduced for each considered phenomenon: two-phase flow
(BTp), combustion (fcc), nozzle interaction (Bnc, Bnr), flow turning (Br1), acoustic
boundary layer (fgr), etc. Detailed analysis of the terms related to combustion, nozzle
interaction and two-phase flow effects can be found in the literature [105].

The acoustic modes are initially approximated with the hypothesis of rigid walls,
uniform speed of sound and propagation through a medium at rest. The acoustic problem
can be reduced to the Helmhotz equation:

w?
Ap + Tz,n P=0 inthecavity (2.5)
05
@ _ 0 on the surface (2.6)
on

where a is the speed of sound, n is the normal direction, w¢ , is the angular frequency of
the n-th mode and 7 is related to the acoustic pressure p’ by the following relation:

!

p = petort (2.7)

The effects related to the incompressible mean flow, to the burning surfaces and to the
nozzle, modify the eq. 2.5 into:

2
w -
AP + % P =hap in the cavity (2.8)
op -
% =—fab on the surface (2.9)

and the acoustic pressure p’ is adjusted to:

!/

p = peliwrthit (2.10)

where the angular frequency is ws = 2ntf +if3. The hab and fqp source terms can be
expressed as:

Rao = (i53) @ VP — pV-(a Vi + @ Va) 2.11)
+

2
a
foo =n-[iwep i + p(i- Vi + @ Vil (2.12)

Taking a volume average, it is possible to obtain a direct expression of wy as:
wf — w%,no 2 1 Wweno - . n 2

where the subscript 0 is referred to a reference state, Min; is the surface injection Mach
number and E,, is defined as:

E2 = JV p2dv (2.14)
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n .
The term <f)aﬁ . ~> represents the surface admittance.

The eq. 2.13 is obtained with the hypothesis of alighment between the velocity field
and the acoustic pressure gradient:
f~fin = —— U (2.15)
" 5 wf,n Pn .

corresponding to the assumption of an irrotational field for the unsteady velocity. This
condition causes several limitations to the method, that is not suitable in case of vortex
shedding or propellant side injection?.

The use of the acoustic balance method requires the determination of the reference
acoustic mode, the evaluation of the stability integrals and the knowledge of propellant
response function, nozzle admittance and size of the particulate phase.

If the linearized equations of motion are considered, the method provides a solution
in terms of reference acoustic mode perturbation®. This condition establishes a strong
dependence on the acoustic field.

A strong restriction to the application of this method is the absence of some sources
of instabilities, such as vortex shedding. Further, although useful in order to understand
and to isolate each phenomenon, it does not provide a reliable evaluation of the oscillation
amplitude, which causes limitations to the model predictive capability.

221 VORTEX SHEDDING SOURCE TERM FOR THE ACOUSTIC BALANCE METHOD

As mentioned previously, the acoustic balance method does not take into account some
sources of instability, such as vortex shedding. A first attempt to introduce the vortical
structures into this method was proposed by Brown [15], but any development has been
given.

Vuillot [104, 105] proposed the introduction of the following additional source terms
with the main purpose to model the vortex shedding effects and to introduce the acoustic
coupling in the acoustic balance method.

The unsteady velocity field, not aligned with the acoustic pressure gradient, is as-
sumed composed by the acoustic component and the vortical fluctuation. The vortex
shedding source term, derived from the linearization of the term u - Vu, is expressed as:

p {Jv kAol - (8 — ﬁno)]f?nodVJrJ

(Do X ﬁ)Vf)nodV—i—J
\%

((I)o X ﬁ) : Vﬁnod\/} (216)
\%

with the notation adopted in the paragraph and the wave number k,,.

2Such cases are related to highly rotational velocity fields.
3The reference acoustic modes are obtained from the solutions of the homogeneous equations, obtained
in absence of forcing function, two-phase flow and combustion effects.
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The integrals in eq. 2.16 are difficult to evaluate and require the knowledge of the flow
organization in the combustion chamber. The last integrand in eq. 2.16 is strictly related to
the vortex shedding phenomenon; it presents significant contributions in correspondence
of large values of it and wy. It also shows the phase relation between the impacting vortex
and the acoustic field.

2.3 VORTEX-SOUND THEORY AND ACOUSTIC ANALOGY

The sound production in a solid rocket motor is related to the interaction between the
vortices and the nozzle nose [45, 34], and to the deviation of the transport velocity vector
from the acoustic streamlines [56]. The level of sound production is increased by the
presence of cavities (i.e: submergence cavity) and the resonance level is higher for larger
cavity volume [2, 5].

A first attempt to obtain an estimate of the pressure fluctuation order of magnitude is
represented by Lighthill’s analogy [69, 70]. The analogy is derived without any approxima-
tion from the Navier-Stokes equation. An inhomogeneous wave equation is obtained and
the acoustic sources are represented by acoustically equivalent source terms. The vortices
are considered as an independent source of acoustic waves, and their presence merely
excites the acoustic disturbance. Lighthill’s model is not useful when the presence of an
external acoustic field has to be considered, and in general for high Mach number flows.

When the feedback from the acoustic field is not negligible, and in general for ho-
mentropic low Mach number flows, the incompressible vortex-sound theory developed by
Powell [85] is more appropriate. The generalization to compressible theory was proposed
by Howe [55]. While Powell derived the analogy for subsonic flow in free field condition,
implying the hypothesis of a compact source (par. 3.2), Howe generalized it to internal
flows and to arbitrary Mach number M. The vortex-sound theory assumes the knowl-
edge of the vortical distribution, and deduces the aeroacoustic sound production from
this knowledge [53].

Howe [55] derives an acoustic analogy to express the perturbations, in an internal flow,
due to the convection of entropic and vortical dishomogeneities that interact with cross
area variations. Two sections of a channel (height r1 and r,) are separated by a nozzle,
as illustrated in fig. 2.1. The channel has an infinite length, so that it can be considered
anechoic. A low Mach number is considered and, as for a solid rocket motor, a negative
vortex circulation is assumed.

+

/{/ n " /\p/

_u, VVST A

Figure 2.1: Sound production of vortex-nozzle interaction (figure from: [60]).
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When the vortex interacts with an obstacle, an acoustic wave p~, driving instability,
is radiated upstream. The acoustic wave p', radiated downstream, can be neglected.
For a Mach number M < 1, it is possible to consider the region of sound production,
close to the obstacle, as a compact region. This assumption permits to derive an analytic
expression for the p~ wave.

The mass conservation equation (eq. 3.1) can be combined with Crocco’s equation*
and, in case of low Mach numbers (M < 0.3), the far-field total enthalpy perturbation can
be expressed as [55]:

— T2 ’
H™ = oy PO (1_M2)-JV[(wxu—TVs)-u]dV (2.17)
where the entropy s is introduced and u' is the acoustic velocity vector, the irrotational
part of the velocity field. The quantities in the square brackets are evaluated at a retarded
time, proportional to the distance between the source and the far-field point at which the
perturbation is measured. Such retard has negligible effects at low Mach numbers. The
term (1 — M;) can be viewed as a Doppler factor.
For small enthalpy changes, the enthalpy perturbation can be indicated as:

H- = pp (1—=M;) + o(M2) (2.18)

For a homoentropic flow (DS/Dt = 0), with the eq. 2.18, the eq. 2.17 can be rewritten in
terms of upstream pressure perturbation:

— T2 — '

P e TN TNy P eI e e
The eq. 2.19 represents the Powell-Howe analogy. For low M numbers, then for compact
source regions, the acoustic perturbation is directly proportional to the Lamb vector w x u.
A dependence from the mean flow Mach number can also be noted. The pressure oscilla-
tion amplitude increases with the vortex circulation level and with the cavity volume; it
is also affected by the vortex initial height with respect to the obstacle.

The eq. 2.19 is a generalization of Powell analogy [85] to confined uniform-flow
conditions, derived for stagnant free-field conditions. It is obtained by combining the
vortex-sound analogy for compact sources, developed by Howe, with the simulation of
incompressible vorticity dynamics, introduced by Powell.

Atlow Mach numbers, the time average acoustic power p, moved from the the vorticity
field to the acoustic field, can be expressed as [57]:

o = —p <Jv (w x u)-u'dV) (2.20)

40u

Py 4+ VH = —wxu + TVs
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where p is the density, w is the vorticity, V is the source volume (where w # 0), u is the
vortex transport velocity and u’ is the acoustic velocity component®. The acoustic power
p is stronger for higher acoustic fluctuations (u’); the most important factors that affect
the sound production, in terms of magnitude and phase, are the vortex circulation and
its initial position. The exact signal shape is also determined by the nozzle geometrical
configuration and the vorticity distribution.

The sound production is due to the vortex cross of the acoustic streamlines (u” direc-
tion): for parallel transport velocity vector u and acoustic streamline, no energy produc-
tion occurs.

The Powell-Howe analogy can not be used for high Mach numbers. In this case, the
main flow is altered by the compressibility effects alter the main flow and the source
regions can not be considered compact.

24 HULSHOFF'S MODEL

Hulshoff [60] developed an approximate model to evaluate the compressibility influence
on the acoustic coupling. Two different approaches were proposed, both for low (M < 0.2)
and high (M > 0.2) Mach number flows.

Hulshoff’s studies confirmed that the Powell-Howe analogy is a suitable tool for the
evaluation of the sound production at low M numbers. In such cases, the amplitude and
the phase of the produced sound are determined by the vortex circulation and position,
by the vorticity distribution and by the nozzle geometry.

The non-compactness effects strongly affect the sound production at high Mach num-
bers, determining an increase of the pressure oscillation amplitude. Hulshoff also showed
that in case of large vortex circulation, the vortex may be repelled from the nozzle.

Low Macu NuMBER FLows (M < 0.2)  To analyze low Mach number flows, Hulshoff [61]
considered the purely inviscid sound-production effect; he used a vortex-blob potential-
flow solution [67] and Howe’s acoustic analogy [55].

The vortex-blob method is based on the solution of plane potential flows with a
singularity distribution approach, that allows the computation of the vorticity dynamics.
The discretization of the boundaries is realized with piecewise constant distributions of
vorticity and sources; the source strength is determined by the locally specified normal
velocity.

Each vortex in the domain is represented by a point vortex; its position is advanced in
time using a fourth-order Runge Kutta technique in which the flow velocity is continually
updated.

Hulshoff noted that a vortex approaching an obstacle deviates from the irrotational
streamlines. This deviation produces a rotation (w x u) opposed to the local irrotational

5() denotes the time average over one period of oscillation.
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velocity. His results also demonstrated that the perturbation amplitude is proportional
to the vortex circulation and that it is influenced by the vortex height with respect to the
obstacle.

Hica Macu NuMBER FLow (M > 0.2)  Because of both the non-compact source effects
and the mean-flow compressibility, the Powell-Howe analogy can not be used for the
analysis of the high M number flows. For such cases, Hulshoff proposed a time-accurate
numerical procedure for the Euler equations. It is based on a two-dimensional, second
order-accurate finite volume method with scalar nonlinear artificial dissipation [60].

25 HYDRODYNAMIC STABILITY ANALYSIS

The hydrodynamic stability analysis, developed by Lin [71], relies on the linearization of the
incompressible equations of motion around a known mean flow.

The Orr-Sommerfeld equation is obtained [12] with the assumption of parallel flow; if
the viscosity is neglected, the Rayleigh equation is derived. As stated by Varapaev [102], the
flow stability is strongly affected by radial mass injection, and this makes the hypothesis
of parallel flow not realistic near the propellant surface.

For simplicity, a one-dimensional propagation along the x-axis is considered.

The velocity field is assumed divided into an acoustic (1) and a mean flow (if) com-
ponent:

ut) =u'(t)+u (2.21)

with [u'| < [t]. For amean velocity profile given by ti(y), the fluctuation can be expressed
as:

u = Br(y)ellPx—wrt) (2.22)
v = Bg(y)ellpx—wrt) (2.23)
p = Bm(y) et(Bx — wrt) (2.24)

where wy is the angular frequency, B is an integration constant, T(y), ¢(y), and nt(y) are

the vortical fluctuation profiles across the shear layer and 3 is an amplification factor.
For any given angular frequency wy, with the spatial growth rate theory, the hydro-

dynamic stability analysis yields the following expression of the amplification factor:

B =p" +ip (2.25)

Once that { is obtained, t(y), ¢(y), and 7t(y) can be derived.

The hydrodynamic stability analysis has been used in different applications. At
ONERA it is a tool for validation of internal aerodynamic codes [75], while at ON-
ERA/CERT/DERAT it is used for the study of the shear layer, with the solution of the
incompressible Orr-Sommerfeld equation [7].
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251 FLANDRO’S METHOD

Flandro’s method [45] is a linear theory based on the hydrodynamic stability analysis, used
in order to obtain the vortex properties (wave length, convection speed, ...) at the shedding
point.

Vortex-shedding additional terms are added to the acoustic balance method [45, 74,
104]. The vortex impact mechanism is modeled through a localized volumetric force.
From the derivation of linearized equations, two vortical flow effects are identified: a
negligible volume integral and a body force concentrated at the vortex location (dipole
effect).

The flow is considered divided in three parts: the mean component, the acoustic
component (u’, compressible and irrotational) and the hydrodynamic component (u”,
incompressible and rotational).

The method is composed by four fundamental steps:

e determination of the shear layer velocity profile, responsible for the hydrodynamic
instability

e with the use of the spatial growth rate theory, determination of the hydrodynamic
stability of the velocity profile

e for an acoustic mode of given frequency, coupling of the vortical field with the
acoustic field

e choice of an impact surface where the sound field, associated with the vortical flow,
interacts with the acoustic field

The coupling procedure between the hydrodynamic solution and the acoustic field,
third step, is based on the following first-order coupled equations for the non dimensional
vorticity:

{ = gelwit (2.26)

oc 1 r_

T MVx(u X W) (2.27)
where ( is the non dimensional hydrodynamic vorticity, & is the spatial variation of non
dimensional hydrodynamic solution and u’ is adimensionalized by the speed of sound.
The obtained solution is indicated with &, and it is added to the hydrodynamic field to
express the &, as follows:

&tot = &p + BE (2.28)

the integration constant B can be found imposing &:,+ = 0 at the origin of the shear layer.
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The fourth step corresponds to the inclusion of the vortex-shedding effects into the
acoustic balance method. The dipole effect at the vortex impact is modeled with a linear
growth rate:

pa’

Bvszﬁ

J p u -nads (2.29)
Si

where E,, is the energy related to the n-th mode, which is a function of the acoustic
pressure p/, and defined as:

E2 = J p 2av (2.30)
\%

The acoustic growth rate is defined as the product of two functions. The first is a scalar
function defined by the shear-layer origin and the impingement point. The second is
defined by the shear layer momentum thickness o, the stand-off distance 1; and the
Strouhal number St, referred to the shear layer momentum thickness 5+°.

Flandro’s method is useful to understand the mechanisms that originate the vortex
shedding driven oscillations. However, it is extremely sensitive to unknown details, such
as the exact vortex origin. Any realistic value is obtained with this analysis, and its
application is limited to qualitative analysis, based on the phase difference between the
vortex impact and the acoustic field. Vuillot [107, 105] used this linearized model to study
the Ariane 5 MPS P230 aeroacoustics, obtaining qualitatively correct results.

2.6 ANTHOINE'S MODEL FOR SUBMERGENCE INTERACTION

As noted, the vortex sound production is affected by the presence of a cavity and the
induced pressure oscillation level depends on the cavity volume (par. 1.4). The major
sound production in a solid rocket motor derives from the impingement of a vortex on
the nozzle inlet.

Anthoine [4, 5] developed a theoretical model, based on the vortex-sound theory, for
the effect of the nozzle cavity volume on the resonance level (par. 2.3).

The model is derived for a nozzle cavity characterized by a volume V; and an entrance
of cross-section Ss. The cavity length is assumed small if compared to the acoustic wave
length L, and the section S is considered parallel to the chamber axis. The acoustic field
is supposed to be harmonically oscillating, so that it can be expressed as:

u =u|et?fat (2.31)

function of the acoustic frequency fq.

fL
6The Strouhal number is defined as: St = o
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In such configuration, the compressibility dp’/dt of the gas in the cavity induces an
acoustic fluctuation u’ in the section S,. For the mass conservation equation:

v, ap

= o (2.32)

pou Ss ~
where p is the reference state density. With the perfect gas law for the reference state” and
for an harmonically oscillating acoustic field, the acoustic fluctuation becomes:

, 2 '
| = 27 faVs P (2.33)

Y Ss 1Y
The acoustic power expression presented in eq. 2.20, allows to express the maximum
acoustic power production as:

Pmax ~ Bl i) J | AV ~ P luys| [u'| 7DT (2.34)
\Y%

function of the vortex convection velocity, the acoustic fluctuation u’ and the circulation
8. The transport velocity u,s can be approximated as a fraction of the mean flow velocity

u:

Uy = (2.35)

2
The maximum pulsation level is obtained when the vortex passes in front of the cavity at
the time corresponding to the maximum power generation. The time fraction in which the
vortex travels in front of the cavity entrance Ts, compared to the vortex shedding period
Tys, is introduced into the eq. 2.34 by the following coefficient:

TS hcfa

= 2.36
T — (2.36)
where h is the cavity entrance width. Assuming a time fraction Ts /T, s < 1, the generated
acoustic power is:

w2mfa Vs Ipl s f

~ DI —= 2.37
® Py " = (2.37)
In the limit of the used hypotheses, the circulation can be expressed as:
=2
u

u
I ~ bl
bs3 ™,

where 1,5 is the distance where the vortex accumulates vorticity. 1,5 is assumed to be
equal to the distance between two successive vortices,so that is can be approximated as:

(2.38)

u
l'VS ~ E (239)

pa’ =vp

8 = [g(w-n) dS
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With the eq. 2.38, 2.39 the eq. 2.37 can be rewritten as:

p'? nD? M (y—1)
2 4 2pa

T —2 ’
pNZM favs|p|N

(2.40)

where the fundamental dependences are on the mean flow Mach number M, on the
acoustic fluctuation p’ and on the cavity volume V;. The eq. 2.40 leads to:

Pl oy Vs
PIOTY M 22 241
po vy—1 V. 241)

where n represents the mode number.

The model shows that the sound production is a continuous process. As expected
from the vortex-sound theory, the cavity volume plays an important role for the pressure
fluctuations magnitude; the evolution of the maximum sound pressure level is approx-
imately linear with the nozzle cavity volume and depends on the nozzle design. The
fluctuation level is amplified each time the excited frequency is close to an acoustic mode
frequency. When resonance occurs, the sound pressure level is a linear function of the
Mach number, the excited mode number and the nozzle cavity volume.

The effect of different nozzle geometries is also analyzed by Anthoine [3]. In the same
Mach number range, for each analyzed nozzle configuration the same acoustic mode is
excited, and the only difference is the obtained pressure oscillation level.

The amplitude prediction obtained by this model is too large by almost two orders of
magnitude, so that it provides a qualitative prediction.

2.7 ANTHOINE’S MODEL FOR THE M NUMBER AT MAXIMUM SOUND GENERATION

Anthoine [2] presented an analytical model for the mean flow Mach number M related
to the maximum sound production. This model is based on Rossiter’s approach, and it
is obtained considering the vortex shedding generated by the presence of an inhibitor
(obstacle vortex shedding).

The model provides a relation that links the Mach number M, at which the acoustic
coupling is predicted to occur, to the excited mode number n, to the stage number m,
to the relative position of the inhibitor x,s, compared to the total length L, and to the
inhibitor diameter D, s compared to the chamber diameter D:

— Cye n Xvs Dys
M = — 242
2k, (m—O.ZS)( L )( D ) (242)
C,c is the vena contracta coefficient of the jet generated by the inhibitors and k,, is the

ratio of the vortex transport velocity to the jet velocity (from experimental data C,. = 0.68
and k, = 0.47).
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2.8 NUMERICAL METHOD

The description of the instabilities until now considered, requires models capable to char-
acterize both the acoustic and the vortical waves, including their non-linear interactions.
Different phenomena have to be considered: acoustic field and propagation of the acoustic
waves, internal and nozzle flow, acoustically forced vorticity waves and vortex-shedding,
flow instabilities and their non-linear growth, two-phase flow effects and the coupling
with propellant combustion and structural elements.

The full numerical solution of the compressible Navier-Stokes equations provides the
needed framework. The numerical simulations developed in the last years drew further
informations about the aeroacoustic process in a solid rocket motor [2] (i.e: classification
of the flow regimes that led to motor instabilities, Taylor’s flow instability origin, ...).

Lupoglazoff[73, 74, 76] and Vuillot first established the feasibility of the full numerical
approach; they also underlined that such approach is able to reproduce the frequency
cascade phenomenon. These studies demonstrated that a stabilization can be obtained by
decreasing the shear layer critical frequency below the first acoustic mode. Also Tissier
and Kourta [65, 66] used computational fluid dynamics for numerical simulation of the
unsteady internal flow.

In a such complex context, a meaningful numerical solution remains a difficult task
within acceptable limits. CFD numerical simulations are quite expensive, require high
computational times, and the obtained results are usually usable only for particular
geometries. This aspect limits the use of full numerical approach to documented situations
and makes the a priori prediction not feasible in every situation.

A usable predictive tool has to provide the frequency and the amplitude of the pressure
oscillation. The choice of the proper model has its limit in the physics included in each used
model and in the required input. Currently, these models are capable to predict frequency
values in good agreement with the available experimental data; notwithstanding this, the
obtained amplitude prediction is generally an overestimation.

All these aspects make the full numerical simulation not suitable as predictive tool,
but mainly for the physical mechanisms analysis.

29 REDUCED ORDER MODELS

Although very powerful, the full numerical approaches provide global results that require
some form of analysis. The presence of non-linear interactions between different phenom-
ena is one of the obstacle when specific results are analyzed, understood, validated and
accepted. In this case the CFD analysis can be combined with reduced order models.

The fundamental characteristics that make a reduced-order model a useful tool, are
the reduced computational costs and times, the possible improvement of relevant pro-
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cess understanding and their applicability to design optimization and control theories
applications.

Rossiter’s model (par. 1.6) [91] is the first reduced order model that has been realized;
based on simple considerations, it is a correlation, with empirical parameters, for the
amplified frequency. A limit of this model is represented by its limited usefulness in case
of transient processes.

Blevins [13] developed a model for the excitation of cavity acoustic modes by vortex
shedding from a cylinder. Anacoustic source isintroduced at the vortex detachment point,
but the model does not take into account the acoustic feedback on the vortex shedding
process.

Also the complex theory proposed by Flandro (par. 2.5.1) [45] is a reduced order
model for vortex-acoustic interaction, but it only describes the stability of a solid rocket
motor.

Bruggeman et al. [17] proposed a model for the vortex-acoustics coupling in ducts
with a mean flow. They used an energy approach based on Howe’s sound theory.

Howe’s theory is also used in the model developed by Hourigan et al. [54].

All these models allow the analysis of some aspects or phenomena characterizing the
vortex-acoustic interaction, but they still require significant computational costs [17, 54].
Frequently, they are only able to describe the steady-state processes [34, 91].

In order to analyze the results obtained by numerical simulations and to extract
information on the physical processes that lead to pressure oscillation, Jou and Menon
[81, 63] developed a one-dimensional model.

Another simple one-dimensional model was also proposed by Matveev [80, 78] for the
description of vortex induced acoustic instability.

Matveev’s and Jou and Menon’s models present quite different approaches, but their
common feature is to be a one-dimensional model.

210 Jou AND MENON’S MODEL

The reduced order model presented by Jou and Menon [81, 63] is a one-dimensional model
developed for the analysis of the results obtained by full numerical simulations, and
for the extraction of informations on the physical processes that lead to the presence
of pressure fluctuations. The model describes and explains the interaction between the
acoustic wave and the vortical disturbance, and provides a method for the approximative
evaluation of the coupled mode frequencies. It has been derived for an axisymmetric
combustor.

Lighthill’s analogy [69, 70] is a wave equation where the acoustic sources are repre-
sented by acoustically equivalent source terms (the acoustic sources are represented by
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a distribution of quadrupole sources). It is possible to express this analogy by using the
velocity potential ¢ and the source term contribution to the dilatation field A:
1 D?¢ )
Vip——S5—=5 =A 243
a? Dt? (2.43)
The source term contribution Ay in the source region is greater than the propagation
term, that is consequently neglected. The method requires the acoustic source behavior
extracted from the numerical simulation, and assumes that the small-scale sources can be
considered compact.
Instead of the acoustic potential ¢, the acoustic pressure p’ is chosen as acoustic
variable. The eq. 2.43 can be rewritten as:

!’ !/

13%p° a%p oA

FearTe il e (2:44)

It has to be noted that, in case of low subsonic flows, the convection of the acoustic
disturbances by the mean flow is neglected.

The vortices are assumed small, compared to the acoustic wavelength. Assuming a
sampling volume corresponding to the entire nozzle region, the dilatation field at the
vortex impact is written as:

/ 0
A =—aw(xn) —d(x—xN) (2.45)
ox
with the transfer coefficient «, the nozzle location xn and the vorticity w. The minus
sign in eq. 2.45 suggests that the generated dipole and the vorticity fluctuation are out of
phase of 7 rad.

The following convective equation is assumed for the vortical disturbance:

%—L: + Uy %—(: =ow (2.46)
where o represents a growth rate model for the spatial growth of vortical disturbance. The
convective velocity u, s consists of two parts: the phase speed of the vortical disturbance
(it is the dominant part, almost 0.6 of the mean flow velocity) and the convection of
vorticity by acoustically induced velocity, a contribution that, assumed small, is neglected
in the model.

In this one dimensional model, the detailed vorticity dynamics is lost.

The eq. 2.44 is applied separately to the dump combustor region and to the inlet duct;
the solution is matched by the continuity condition:

Pa =Pin atx =20 (2.47)

0pa opi
DfiW =D?, a;“ atx =0 (2.48)
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where the dump plane is located at x = 0, D4 and Dj,, are the diameters of the dump
plane and of the inlet duct, p4 and pin are the corresponding pressure.

A boundary condition of constant stagnation pressure pin, is applied at the inlet; this
condition is expressed in term of homogeneous boundary condition by linearization of
the steady-state isentropic relation:

!

+VM% —0 (2.49)

Pin

The boundary condition does not add energy to the acoustic oscillations in the domain;
such condition has a damping effect on the acoustic waves and does not generate spurious
acoustic waves.

The nozzle and the supersonic regions are replaced by a dipole source in the acoustic
equation.

At the trailing edge x¢, the following condition is applied:

Wy, = —Pu =0 (2.50)

where f is a transfer function. The acoustic velocity ' is related to the acoustic pressure
gradient:
ou’ ap;1
P =—° 2.51
Pt T o @51)
where p’d is the acoustic pressure.
The vorticity dynamics and the acoustic oscillation are coupled through the dipole
source and the boundary conditions. The system of equations is homogeneous and the

eigensolution can be expressed by:

HE P ire
w A(x)

Considering the non dimensional variables, but maintaining the same nomenclature,
the eq. 2.46 can be integrated to obtain:

@® = ase MR (2.52)

where o'is the already introduced vortical disturbance growth rate, and as is an integration
constant.

The Green’s function for the acoustic equation is given by a retarded potential; the
particular solution of eq. 2.44 is given by:

Pp = iocwﬁ(t— X —xnl) X<Xn, X>Xn (2.53)

where ' represents the derivative with respect to the argument; only the region x < x, is
of interest.
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With the particular solution of eq. 2.53, the general solution of the forced acoustic
equation in the dump region is expressed as:

) A .
Pa=aze™ —age ™ +as EFe_lﬂ"_X“‘] (2.54)

where a3 and a4 are integration constants and:

ifxn

F=flenm (2.55)

A is a non dimensional interaction parameter that describes the overall interactions be-
tween acoustic oscillation and vorticity dynamics. A is defined as:

A = xBer*N (2.56)

and it is here assumed of constant value’.

The obtained expression for the acoustic pressure in the inlet duct is:

Pin = ajel™ 4 aye 1> (2.57)
where a7 and a, are integration parameters.

Because of the homogeneous boundary conditions, the eigenvalue f can be obtained
imposing a null determinant. The eigenvalue problem contains four different physical
parameters: the convective Mach number, the inlet duct length, a geometrical parameter
and the overall interaction parameter A defined in eq. 2.56.

The characteristic condition can be simplified as:

R+1 1T4M sipe (2R T+M i)
(R_1 e @+ 1) = (g7 ) 1T (14 757 —0 (258)

where:
M = FAe (2.59)

The frequency f is a complex number, and absolute instability is possible when Im(f) <

Some of the approximations introduced in the model can affect the obtained solution.
The most important are the assumption u,s = (0.5 — 0.6)u and the absence of acoustic
waves convected by the mean flow.

The model provides a method for an approximate evaluation of the coupled modes
frequency. It represents a tool to understand the acoustic/vortex interaction, but it does
not clearly demonstrate the physical mechanism of this interaction.

%It is not independent from the acoustic frequency f; the assumption of a constant A does not significantly
affect the real part of the eigenvalue f.
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211 MATVEEV’'S MODEL

The reduced order model derived by Matveev [80, 78], based on a system of ordinary
differential equations, describes the acoustic mode excitation accounting for the acous-
tic feedback on the vortex shedding process. The developed formulation deals with
isothermal flows only.

Matveev’s model was developed for a circular duct with a pair of ring baffles, even if
it can be applied to geometrical configuration where the vortex generation point and the
impingement region can be clearly identified.

In order to maintain a reduced order approach, some assumptions are considered.
The most important one is the use of a one-dimensional acoustic theory, justified because
the longitudinal mode is the fundamental one.

Both the mean flow and the oscillating component Mach number is assumed to be
small. The only considered acoustic disturbance is the vortex impingement on the obstacle,
and the vortex properties are supposed to be unchanged until its impingement.

The vortex sound generation is modeled through a volumetric source Q, per unit of
volume, and a body force F, per unit of mass; they can be respectively considered as a
monopole and as a dipole.

The one-dimensional wave equation for the pressure fluctuation p/, in absence of
losses and with the introduction of the source Q and the force F, becomes:

0%p’ ,0%p0 o <aQ OF

5 ax> (2.60)

oz ¢ 2

. / / . . . . /
The perturbations p and u , with an expansion through eigen-acoustic modes p,, and
/
u,,, are expressed as:

pl=D Palot) = Y ma(t)bnlx) (2.61)
! ! 'n(t) dlpn( )
u = ; u,(x,t) = A ?/k%l dxx (2.62)

where p is the mean pressure, k, is the wave number, 1, (t) is the time-varying amplitude
of the n-mode and \{, (x) is the n-mode shape.

A small nonorthogonality is assumed for the eigenmodes and a linear mode damping
&n isintroduced. The eq. 2.61, multiplied by 1, (x) and integrated over the entire volume,

provides a dynamic equation for each mode:
0Q OoF
Jon (50 50)

w3 ex

d*n dn 2
Tzn + ZénwfnT; + W Mn =Y

(2.63)
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with the linear mode damping &,, and the angular frequency w,.

As seen, larger vortex circulations determine a greater energy transfer to the acoustic
field; the forcing terms of the wave equation are then assumed proportional to the vor-
tex circulation I', which is representative of the vortex intensity. If the vortex collision
instantaneously occurs and it is localized in space and time, the forcing terms, with delta
functions in space and time, are expressed as:

Q = cq ) Tdlxob —xj)8(t—1) (2.64)
j

F = Cer)'@(Xob—Xj)@(t—tj) (2.65)
j

where the summation is over the shed vortices, x o, is the obstacle position, x; is the vortex
position and t; is the vortex impingement moment. ¢4 and cr are two forcing coefficients
whose values are obtained from experimental data fitting.

In the time interval (tj_1;tj41), with the eq. 2.64, the dynamics equation for the nth
mode, eq. 2.63, becomes:

.. . dd d
Nn + Zanwnnn + winn = anll)n(xob)r' 7(t - t]’) + Cfn%(xob)rj‘s(t - t]') (266)

) dt
with:
Cqn = chlz (2.67)
n
Cfn = CfETZl (268)

The obtained system describes an harmonic oscillator until the impact at t;, when 11,
and 1y present a jump. While a delta function source term determines a jump of the
velocity, a jump in both velocity and displacement is generated by a force proportional to
a delta function derivative. At the vortex time impingement t;, both the mode amplitude
and velocity present a discontinuous change, describing a typical kicked oscillator behavior.

The model is completed by a dynamic model for the vortex generation in unsteady
flows. A quasi-steady hypothesis is considered for the vortex shedding in a flow with
an oscillatory component [80]. At the obstacle position, the velocity at the outer edge of
the boundary layer is composed by a mean flow velocity! and an acoustic component
(u(t) = W+ u (t)). The vortex circulation growth can be expressed as:

ar u?
Frimie (2.69)

In analogy with the steady case, the vortex separation is assumed to occur when

the circulation reaches a critical value, defined by the momentary flow velocity. The

19The mean flow velocity is the velocity averaged over the duct cross section at the shedding point.
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circulation critical value T¢p, is defined as a function of the characteristic dimension D
and of the steady-flow Strouhal number St:

D

— 2.7
2S5t (2.70)

I—‘sep (tj) = U—(tj)

The dependence on both the mean flow velocity and on the oscillating component
at the vortex generation point, underlines the acoustic oscillation feedback on the vor-
tex shedding phenomenon. The feedback is then described by both the vortex growth
model (eq. 2.69) and the critical circulation criterion (eq. 2.70). Obviously, this velocity
dependence determines a vortex shedding oscillating behavior.

The model is capable of predicting the fundamental phenomena here considered, such
as the lock-in phenomenon. The shed vorticity is neglected, and this makes the model not
useful when such phenomenon is quite important (for example in case of anti-symmetric
vortex shedding,...).

The determination of the introduced forcing coefficients strongly affects the model
prediction of the acoustic instability.

The model has been completed to consider an unsteady heat release (common in liquid
propellant motors with premixed combustor) [79]; in this case, the sudden heat addition
is treated as an acoustic disturbance.

The fluctuating pressure time evolution is also provided. A signal spectral analysis
provides the pressure oscillation frequency content.

The model appears able to qualitatively demonstrate aeroacoustic phenomena, such as
the lock-in of the dominant sound frequency in a certain range of the mean flow velocity.



MATHEMATICAL MODELS AND THEIR NUMERICAL
IMPLEMENTATION

N overview of SRM aeroacoustic mathematical model is provided in this chapter.
AA quasi-one dimensional aeroacoustic model is here presented (POX model); in addi-
tion to the description of each submodel that is part of the model, a particular attention is
directed to the derivation of the adopted one-dimensional vorticity equation.

The structure of AGAR (Aerodynamically Generated Acoustic Resonance) model, a
quasi-one dimensional model developed for the simulation of the flow time evolution in
solid rocket motors, is then presented.

3.1 CONSERVATION LAWS AND CONSTITUTIVE EQUATIONS

The mass, momentum and energy conservation laws can be expressed as! [1, 52]:

ap

3 TV (pu) =0 (3.1)
0(pu) 4V (puu)=V-T (3.2)

ot
a(gP—i—V~(puE):—V-q—V-(T'u) (3:3)

where E is the total energy per unit of mass. The momentum equations for a viscous flow
are called the Navier-Stokes equations.

IThe only surface forces are considered, while the volumetric body forces are neglected.

39
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T is the fluid stress tensor, that can be decomposed into the pressure term and the
viscous stress tensor T:
T=—pl+7 (3.4)

For a Newtonian fluid, the viscous stress tensor is expressed as:
T=AV-u)l+pu [Vu +(vu)" (3.5)

that represents a relationship between T and the deformation rate of the fluid element
(rate-of-strain tensor (Vu + VuT)).
The momentum equation for an inviscid flow (T = 0) becomes the Euler’s equation:

opu

TR V- (puu) = —Vp (3.6)
The heat flux, using the Fourier’s law, can be related to the temperature gradient as:
q=-—KVT (3.7)

A thermically perfect gas is a gas that verifies the following equation of state:
p = pRT (3.8)

for a perfect gas, both the specific internal energy and the specific enthalpy are function
of temperature onlyz. A perfect gas where the specific heats, ¢, and c,, are constant is
defined a calorically perfect gas.

If an adiabatic and frictionless flow is considered (k = 0 and p = 0), the flow is defined
isentropic and the energy conservation equation becomes:

E
a(apt) £V (puH) =0 3.9)
where H is the total enthalpy. The eq. 3.9 can be also expressed as:
0s
b Vs = 1
ot +u-Vs=0 (3.10)

where s is the entropy per unit of mass.
DILATATION RATE AND INCOMPRESSIBLE FLOW

The mass conservation law can be expressed in terms of the material derivative® as:

1Dp
Y _Y.u= 3.11
5Dt V-u=A (3.11)
where the dilatation rate A = —V - u is defined as the rate of relative volume change. A
null dilatation rate (A = —V - u = 0) characterizes an incompressible flow.
2e = ¢(T)
D = 2 +u-V

Dt ot
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SPEED OF SOUND

The speed of sound is defined as:

_ [(9r
a= <ap>s (3.12)

For a calorically perfect gas, the speed of sound is a function of temperature only:

a= /RT = \/72 (3.13)

If the eq. 3.12 is used, the expression of the equation of state (eq. 3.8), in differential
form, becomes:

d
dp = a2dp + <ap> ds (3.14)
§ P

For an isentropic flow, the eq. 3.14 reduces to:

Dp _ ,Dp
Dt = % Dt (3.15)

where a? is not necessarily constant.

The Mach number is defined as the ratio of the flow velocity to the speed of sound:

u
M= — 3.16
- (316)

3.2 ACOUSTIC FIELD

The vector velocity field u = u(x, t) can be considered divided into an irrotational and a
solenoidal field:
u=Vop+VxV¥ (3.17)

where ¢ is a scalar velocity potential and ¥ is a vector stream function. That components
verify the following conditions:

Vx(Ve) = 0 (3.18)
V¥ = 0 (3.19)

It is possible to define a potential line as a line described by a constant value of the velocity
potential; a vortex line is a line tangent everywhere to the (V x u).
The velocity field of a potential flow is described by the only scalar velocity potential:

u=Vo (3.20)
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From eq. 3.18 it is possible to obtain:
Vx(Vp)=Vxu=0 (3.21)

and this implies that a potential flow is also an irrotational flow. For an incompressible
potential flow, the velocity potential ¢ satisfies the Laplace equation:

V-u=V-Vd=V2*p=0 (3.22)

The acoustic field is defined as the unsteady component of the irrotational flow field:

!/ !

u=Vo (3.23)

A region that can be considered small if compared to acoustic wavelength is defined
acoustically compact region* °. In an acoustically compact region the flow can be treated as
an incompressible flow.

3.3 VORTICITY AND CIRCULATION

As seen in the previous paragraph (par. 3.2), the velocity field is considered composed
by an irrotational and a solenoidal field, as indicated in eq. 3.17, 3.18, 3.19. While the
acoustic field is related to the only velocity potential, it is possible to define a quantity
described by the only vector stream function V.
The vorticity w is defined as the curl of the velocity field and, if the eq. 3.18 is used, it
can be expressed as®:
w=Vxu=Vx(VxV¥)=—V2VY¥ (3.24)

w is directed along the axis of fluid rotation. The vorticity is a Galilean invariant
quantity, independent from the convection velocity.
An irrotational flow in each point verifies the following condition:

w=0 (3.25)

A line tangent everywhere to the local vorticity is defined a vortex line. The surface
composed by all the vortex lines passing through a closed curve is defined a vortex flux
(tube). The strength of a vortex flux corresponds to the integral of the vorticity across a
cross-section of the tube.

The circulation T is defined as:

M= ﬁ; u-dl (3.26)
oS

“With a similar definition it is possible to define a compact source.

5Such condition is verified, for example, in regions near singularities characterized by large spatial
gradients.

0V x (VxA)=V(V-A)—V2A
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where S is a closed curve in the flow field. The circulation can be expressed as a function
of the vorticity w as follows:

Fz% u-dl:J(qu)-dS:J(w-n)dS (3.27)
0S S S
and the vorticity can be viewed as a circulation per unit area.

34 VORTICITY EQUATION

The vorticity dynamics is described by the vorticity equation, obtained from the curl of the
momentum conservation equation.
The momentum conservation equation (eq. 3.2) for a newtonian fluid (eq. 3.5, 3.4)
becomes:
d(pu)

ot

For a flow characterized by a constant dynamic viscosity (1 = const), it is possible to
consider the Helmholtz decomposition”:

+V:(puu) =V -T=V-(—pl+1) (3.28)

2V-t=V(V-u)+V?u=2V(V-u)—V x w (3.29)
that can be used in eq. 3.28 to obtain:

d(pu)
ot

+V:(puu) = 2u+A)V(V-u)—puV x w —Vp (3.30)

With the mass conservation equation, eq. 3.1, and the Stokes hypothesis®, the eq. 3.30 can

be rewritten as: 1 A
Du
- — .u) — 31
Dt+pr SVV(V u) — vV X w (3.31)

where v represents the cinematic viscosity.
For each term of eq. 3.31, the following relations are obtained:

Du ow Dw
V><<Dt>—at—i—Vx(wxu)_Dt—w-Vu—i—wV-u (3.32)
vx P _VexVp (3.33)
P P
V x [V(V-u)] =0 (3.34)
Vx[Vxw =V(V w)—Viw=-Vw (3.35)

"VZA=V(V-A)—V x(VxA)

2
A=—3uv=14
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The vorticity equation can be at last expressed as:
Dw ow Vp x Vp

B = 5 T Vw=w -Vu-wV-u- 52 +vV2w (3.36)
that can be rewritten in divergence form as:

d(pw)
ot

Different contributions can be distinguished in eq. 3.36.

nv2w (3.37)

+V-(pwu):pw-Vu—pwV-u—Wpr+

VORTEX STRETCHING OR TILTING (w - Vu) This term represents the vorticity stretching
or tilting due to the velocity gradient. Its projection along the x-axis of a cylindrical
coordinates system, then for plane or axisymmetric cases:

d d
L;X 4 L0 Ot (3.38)

ouy
+Wr T 00

(w-Vu) ny = wy i 3

permits to distinguish between:

e a first term that represents the vortex stretching due to a velocity gradient parallel
to the vorticity direction. For the momentum conservation, if a vortex is stretched,
its vorticity has to increase, with an auto-amplification that does not need of any
external source.

e a second and a third term, related to transversal velocity gradients, that rotate the
vorticity. These terms represent the vortex tilting.

Fruip compressiBiLiTy (w(V -u)) This term corresponds to the stretching of vorticity
due to the volume dilatation; the vorticity is concentrated or dispersed by the presence of
a local compression or expansion.

Vp x Vp
2

BAROCLINIC TERM The baroclinic term is a source of vorticity only in case

of not parallel gradients of pressure and density. For barotropic fluid or in case of constant
density the term does not exist.

Viscous TErM (vV2w)  This term accounts for the vorticity diffusion due to the viscous
effects; for inviscid fluids the term does not exist. The generation or dissipation of vortical
structures is a function of fluid motion.

If the viscous term and the baroclinic contribution are neglected, the vorticity equation
can be simplified as:

d(pw)
ot

+V-(pwu) =pw- -Vu—pwV - u (3.39)
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3.5 AEROACOUSTIC MODEL

In the previous chapter, different reduced order models for the description of the acoustic
resonance have been presented. The most important are Rossiter’s model (par. 1.6) and
the one-dimensional models developed by Jou and Menon(par. 2.10) and by Matveev
(par. 2.11). The last two models can be compared to the aeroacoustic POX model here
presented.

Due to the geometrical configuration of the combustion chamber of a SRM, the most
important modes are longitudinal. This justifies the idea to use a one-dimensional model,
thus neglecting the transverse modes.

The main idea to derive a quasi-one dimensional model for the flow field evolutionina
solid rocket motor has been proposed by B. Favini and F. Serraglia. The vorticity dynamics
is described by a Q-1-D model. Several exploratory studies have been performed in the
last few years on their approach, on the quasi-one dimensional modeling of pressure
oscillations and dealing with the analysis of the aeroacoustics of solid rocket motors.

As shown by the linearized analysis of Chu and Kovasznay [23], the propagation of
small disturbances in a compressible fluid can be decomposed in three components: the
acoustic, the entropy and the vorticity waves. In a recent research activity, a model for the
analysis of the acoustic, entropy and vorticity modes has been presented [49]. A formal
analysis and derivation of a quasi-one dimensional model has been also proposed [98].

An analytical model for the aeroacoustic coupling description is here presented and
a quasi-one dimensional expression for the vorticity equation is derived. POX model
has been already presented in some articles [43, 42], and a detailed description of each
submodel can be found in the Internal Report for ESA-ESRIN [41]. POX model application
to different test cases has been also provided in these papers.

The aeroacoustic model has to describe both the acoustic and the vortical waves,
including their interactions. It has to consider the vortex generation, growth, convection
and detachment, the excitation of the acoustic field by vortex impact/interaction with an
obstacle and vortex shedding excitation by the acoustic field.

The POX model is composed by the following submodels:

e a model to determine the vortex dynamics (creation, growth, convection and de-
struction)

e amodel to evaluate the acoustic field excitation by the vortex shedding phenomenon
e a model to estimate the acoustically forced vortex generation

The vorticity convection by the flow is described by a quasi-one dimensional equation.
The acoustic mode excitation by the vortex impingement is modeled with the introduction
of source terms in the gasdynamic model.
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3.5.1 VORTICITY EQUATION

The expression of the vorticity equation for a newtonian fluid without viscous terms has
been provided in eq. 3.39:

0
(g?) + V- (pwu) =pw- -Vu—pwV-u (3.40)
where (w - Vu) represents the stretching or tilting term and (wV - u) describes the com-

pressibility effect.

For the POX model, the vorticity equation has to be expressed in a quasi-one-dimensional
form, obtained with the expression of the eq. 3.40 in cylindrical coordinates and with the
integration on a control volume.

VORTICITY EQUATION IN CYLINDRICAL COORDINATES
The first step to obtain the vorticity equation in a quasi-one-dimensional form, is the

expression of eq. 3.40 in cylindrical coordinates.
Each term of the vorticity equation can be expressed in cylindrical coordinates as:

V. (pwu) _ _a(puxwx) + a(purwx) 16(pu9wx) P Wy et
| Ox or r 00
_a(puxwr) 4 o(purwry) 1a(puewr) PUr Wy _+puewe ot
L ox or T 00 T
[d(puxwe) = d(purwe)  T3(pugwe) = purwe oUo Wy
T - —+ €9
0x or T 00 T .
— i dux Ouy PWe Oy
pew-Vu = _prTX+pr or + T ae]ex—i—
our our  pwg 0u, pPugWe
_pwx ox TP T e T er +
Oug Jug pwe dug PurWg
_pwx ox + pwy 3 + — =5 e -
_ 3 5 )
pwV u = pwxﬁ + pwy U + PWx dUg + PUyr Wy e, +
i 0x or r 00

ou,  pw; dug purwr]
— er_i_

-wa&—i—w +
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The ey, e, and eg are the axial, radial and azimuthal versor respectively.
For an axisymmetric flow?, it is possible to obtain a scalar equation in conservative

form:
d(pwe)  O(pweuy) . d(pwony) Uy Ouy Ouy
ot + ox - or Pe T Pe or Pe ox

The terms on the right hand side of eq. 3.41 depend on u,, r and on the radial derivative.

(3.41)

u
The (pweu, ), term represents a radial addition while (pwe—r> is the deformation
T

contribution. The term (pwgiy x — pweu, ) is related to the compressibility effect.
QUASI-ONE DIMENSIONAL FORM OF THE VORTICITY EQUATION

The vorticity equation has been expressed in cylindrical coordinates (eq. 3.41).

A cell of thickness Ax and with a mean value of the port area A, is considered. The
variables can be considered uniform on each cell.

With an integration on the port area, the following expression is obtained from eq.
3.41:

d(pwe) J d(pwouLy)
dA ————=dA, = 3.42
JA ot P + Ap 0x P ( )
0 0 0
—J (p“’eu’”)d/\p—J pwe -~ dAp—J pwe dAp—J pwe =X dA,
Ap or Ap T Ap or Ap 0x
For the terms on the left side, the following expressions are considered:
d(pwg) _ 0(pweAyp)
JA m dA, = m (3.43)
P
J d(pwouy) dA, = a(pweuxAp) (3.44)
Ap 0x 0x

From eq. 3.42, the vorticity equation can be written as:

Uy
m o 3 dA, —J pwo—- dA, (3.45)

P Ap

a(prAp) i a(p(UGuxAp) _ _J d(pweur)
A
0 0
—J pWwg tr dA, —J pwgﬂ dA, =
Ap or Ap 0x

Sw1 +Sw2+Sw3+Swa

that can be put in a compact form as:

a(prA‘p) + a(pruXAp)

- - =S (3.46)

9For an axisymmetric case:ug = 0, % =0
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where the S, source term remains to be properly modeled!?. The source terms represent
the radial addition (S 1), the deformation contribution (S.,2) and the compressibility
effect (Sy3 and S,4).

POX MODEL VORTICITY EQUATION

The deformation and the compressibility effects are not considered in the POX model, and
the source terms S,2, Sw3 and S,4, defined in eq. 3.45, are then neglected.

The only source term that has to be modeled is the radial addition term (Sy1). Its
effect is here related to the corner contribution; obstacle and parietal vortex shedding
phenomena are not described. S, is then expressed as:

o dar
1= P3¢
and it exists only in correspondence of the corner where the vortex generation occurs.

With these assumptions, the vorticity equation becomes:

Sew (3.47)

ot ox Pat

For a Q-1-D model, the notation can be simplified. The velocity component u, can
be indicated as u and the vorticity component wg as w. In order to further simplify the
adopted notation, the () variable, that describes the vortex intensity, is defined as:

ApwoAy)  dpwouxAp) _ dr (3.48)

Q = pwA, (3.49)
The vorticity equation (eq. 3.48) can then be rewritten as:

20 2(Qu) .
S G 3.50
T ox P (3.50)

3.5.2 VORTEX CREATION AND GROWTH

In order to simulate the aeroacoustic coupling, the influence of the acoustic field on
the vortex shedding phenomenon (vortex creation, growth and detachment) has to be
described. This task is here obtained with a definition of the vortex properties as a
function of time varying flow conditions; the vortex intensity is then dependent on the
acoustic wave.

Clements [24] developed a study for the vortical structures behind a step. He showed
that the vortex circulation growth can be defined as the shed vorticity, per unit of time,
integrated over the boundary layer thickness.

01n a quasi-one dimensional model, the integral terms that exhibit u,, r and radial derivative have to be
modeled.
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The velocity at the outer edge of the boundary layer is assumed composed by the
mean flow velocity T and acoustic component u'; the rate of circulation production can

be approximated by:
dar 2
=—=u"(t 3.51
=W (351)
A vortex is here described by its circulation and dimension. With the previous as-
sumptions, the rates of variation, ur for the circulation and uy _ for the dimension, can be
expressed as:

r

uy,, = u(t) (3.52)
ur = kp u?(t) (3.53)

where kr is a calibration parameter and ur is a fraction of the rate of circulation production
introduced in eq. 3.51.

The dimension and the circulation of a vortex are defined in terms of the flow ve-
locity u(t), underlining the acoustic influence on vortex shedding. Each time a vortex
detachment occurs, both the vortex dimension and the circulation return to zero.

3.5.3 VORTEX DETACHMENT CRITERION

As the vortex creation and growth, the vortex shedding is also influenced by the external
acoustic field. The detachment criterion is then also developed as a function of time
varying flow conditions, underlining the role of the acoustic feedback on the vortex
shedding dynamics.

The detachment criterion is defined from the local pressure evolution p(t) at the
shedding point!'!. The vortex separation is imposed each time the pressure at the shedding
point satisfies the following conditions:

d?p
— =0 3.54
iTe) (3.54)
dp .
I = local minimum (3.55)

In order to understand these conditions, both velocity and pressure evolutions are sup-
posed to present a periodic sinusoidal behavior. In this case, a vortex detachment is
imposed each time the p(t), evaluated at the vortex generation point, presents a descend-
ing node (fig. 3.1). This assumption is in agreement with experimental and theoretical
studies presented in literature [16, 35, 8], that state the occurrence of vortex detachment
in correspondence of a positive velocity antinode (velocity relative maximum that corre-
sponds to a pressure descending node).

This detachment criterion requires an initiation; the separation of the first two vortices
is a forced separation to an imposed frequency.

1 Any kind of control is imposed on the velocity behavior.
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E POSITIVE ANTINODE E

Time Time
(a) Signal node and antinode. (b) Pressure node and velocity antinode.

Figure 3.1: Vortex detachment condition.

354 AcCOUSTIC EXCITATION

Each time a vortex interacts/impinges with an obstacle, it excites the acoustic field. This
excitement is described by the introduction of source terms in the Euler equations (eq.
3.59). Three source terms 1, §vs, €vs, respectively for the mass, momentum and energy
equation, need to be modeled.

The mh, s is assumed to be zero, and the vortex impingement only generates momentum
and energy source terms.

As shown by Howe’s vortex sound theory [55], the sound production is due to the
vortex crossing of the acoustic streamlines, and it is larger for larger angle between the
two directions. These observations, combined with a dimensional analysis, determine
the following expression for the source terms:

fusi = 0 (3.56)
. _ u (dA, 2
qvs = Q A, < dx > (3.57)
L pQ [ dAp\?
€vs = PU(qys = Ap <udX (3.58)

The influence of the vortex intensity is represented by the O dependence, while the effect
. . dA
of the angle between the vectors is described by the dixp term.
As shown in eq. 3.56, the sound generation is active each time a vortex interacts with
. . . dA,
a geometrical variation, characterized by a . # 0.
The vortices, convected by the mean flow, are expelled through the nozzle.
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3.6 STRUCTURE OF THE AGAR MODEL

AGAR (Aerodynamically Generated Acoustic Resonance) model [43, 42] is a quasi-one-
dimensional reduced order model for the simulation of the flow time evolution in solid
rocket motors. The analysis of the obtained pressure and thrust oscillations permits to
characterize these oscillations, both for the amplitude and the frequency content.

Two-phase flow effects are neglected. In order to consider vortex shedding phe-
nomenon due to purely acoustic phenomenon, the combustion heat release is assumed
to have a negligible effect if compared to the acoustic phenomenon, that corresponds to
neglect the effect of the combustion instability.

In order to simulate the fundamental phenomena that describe the functioning of a
SRM, AGAR model requires the following submodels:

e a gasdynamic model to describe the flow evolution inside the combustion chamber
(propagation of acoustic waves)

e a model to evaluate the combustion rate of ignited propellant grain to evaluate the
mass addition from burning surface

e a model to determine the evolution of chamber geometry caused by the burning
surface regression

e an aeroacoustic model able to consider both the influence of the acoustic field on
vortex creation, growth and detachment and the excitation of the acoustic field by
vortex shedding phenomenon

The two already developed models, SPINBALL [19, 37, 22, 20, 21, 94, 39, 38, 33, 32] and
GREG [19, 37, 22, 20, 21], are respectively used as the gasdynamic and the grain burn back
model. They are described in par. 3.7 and 3.8. The adopted aeroacoustic model is the
POX model, already described in par. 3.5.

3.7 SPINBALL moDEL

The gasdynamic model adopted in the AGAR code is the SPINBALL (Solid Propellant
rocket motor INternal BALListics) model, created for the analysis of solid rocket motor
internal ballistics.

It is already completely developed and a complete and detailed description of SPIN-
BALL and SPIT can be found in [19, 37, 22, 20, 21, 94, 39, 38, 33, 32]. A brief description
of SPINBALL main features is here provided.

SPINBALL derives from an improvement of SPIT (Solid Propellant rocket motor Ig-
nition Transient) model, created for the analysis of the ignition transient of SRM. The
fundamental upgrade of SPINBALL, compared to SPIT, is the numerical simulation of all
the combustion time, quasi-steady state and tail-off phase included.
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SPINBALL is a quasi-1D unsteady gasdynamic model that assumes the flow as a non-
reacting mixture of perfect gases, with thermophysical properties variable in space and
time. The governing equations are discretized by a Godunov-type scheme, accurate at
first or second order in space and time.

Several sub-models complete the main model and permits the description of all the
driving phenomena occurring in a solid rocket motor:

e an ignition model

an heat transfer model for convection and radiation

a propellant ignition criterion

e a cavity model (for submergence region and slots)

a grain combustion model

3.71 GASDYNAMIC MODEL

Each different phenomenon that characterize each phase of the SRM functioning has to
be considered in a gasdynamic model for the description of the whole combustion time.

Different gases have to be considered during the ignition transient: the igniter gas,
the pressurizing gas and the grain combustion products. The presence of such gases in
the combustion chamber affects the waves propagation, the contact discontinuity velocity
and the energy content. The variation of the thermophysical properties can be neglected
during the quasi-steady state and the tail off phase. During these phases, the most
important effect is related to the combustion process non-ideality. The evolution of the
burning surface, both in space and time, has to be accurately evaluated during each phase.

SPINBALL uses an unsteady quasi-one-dimensional Eulerian model with mass, mo-
mentum and energy addition and a geometrical evolution both in space and time. The
thermophysical properties of the mixture of ideal gases are variable in space and time;
they are evaluated using a thermodynamic standard model for mixtures. Two phase flow
effects are neglected and a mixture of non reacting perfect gases is considered.

The mass produced by the propellant combustion is supposed to be added without
any axial momentum, while a proper model is considered for the igniter mass. Moreover,
the reactions due to the grain combustion are supposed to occur in an ideal thin layer on
the grain propellant surface.

While SPIT is developed considering a mass conservation equation for each specie
of the mixture, SPINBALL uses an infinite-gases formulation [19]. It allows the analysis
of thermophysical properties variable in space and time, and it is not interested in the
spatial time evolution of the single mixture gas (igniter, pressurizing gas or propellant
combustion products). The mixture properties of each cell, space and time variable, are
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evaluated considering the mass fluxes of the mixture, coming from adjacent cells, at the
left and at the right, and from the source terms of the grain combustion reactions, the
igniter and the cavity model. Six mass conservation equations are considered: for the j-th
cell, the (j+1)-th cell, the (j-1)-th cell, the propellant combustion product gases, the igniter
combustion product gases, the cavity mixture gases exchanged by cavity; a sketch can be
found in fig. 3.2. The properties are obtained by a weight average with coefficients defined
by the concentrations of each mixture at the considered time marching step. For each cell,
the source terms and the mixture composition are updated at every time step, without
taking into account the previous configuration that bring to the actual configuration.

combugtion

Figure 3.2: SPINBALL infinite gases formulation (figure from: [19]).

With the previous assumptions, the governing equations for a quasi-1D flow can be
written as:

0 (piAp) i 0 (piuAp)

ot ox

v v + Ty fori=1,...,6

=TpPurpp +

d(puAp)  d[(pul+p)Ap]  BA,  TigApVing 1 ,
ot ox TPx T v TPt

0(peAp) | dllpe+p)uAy]

migApHig n msApHs
ot ox

Vi Vv +évs

= TpPuvpp Hf +

(3.59)
where A, represents the combustion chamber port area, Ty, the propellant burning rate,
Py the combustion perimeter, p,, the propellant density, nis the cavity mass flow rate
addition, mjg4 is the igniter mass flow rate addition, vi,; the igniter jet velocity, c¢ the
friction coefficient!'?, Hy is the grain combustion product enthalpy per unit mass, Hig is

12The friction term is different from zero only at the nozzle and where the grain is not ignited.
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the igniter product enthalpy per unit mass and H; is the cavity gas enthalpy per unit
mass.

The source terms 1,5, 4vs and é,s describe the acoustic field excitation by the vortex
shedding. They have been described in par. 3.5.4 and their expressions can be seen in eq.
3.56. For the mass conservation equation, the source term is assumed 1h,s = 0.

The chemical reactions occurring in a solid rocket motor can not reach the ideal equilib-
rium point; this chance is considered by the introduction of a combustion efficiency. Once
the grain combustion thermophysical properties are evaluated from the local pressure
value, the combustion efficiency is extracted from a chemical equilibrium table.

The evolution of the cross-sectional port area evolution A, does not include slots and
submergence regions; their presence is treated by the mass and energy equation source
terms.

3.7.2 INITIAL AND BOUNDARY CONDITIONS

The initial conditions correspond to the physical and geometrical conditions of the motor
start-up. The geometrical configuration is determined by the grain, the nozzle and the
igniter geometrical data. Other initial conditions are related to the initial state of the
pressurizing gas.

The boundary conditions have to be distinguished before and after the seal breaking.
The combustion chamber head section is always described by rigid wall conditions. Dif-
ferent boundary conditions characterize the aft end. A seal, located in the nozzle throat,
protects the combustion chamber from the external contaminations and facilitates the
motor pressurization. Once a certain differential pressure!® is reached, the seal breaking
occurs; from this point, the flow starts to exit from the combustion chamber through the
nozzle. Therefore, the nozzle exit is described by wall conditions up to the seal breaking
and by sonic conditions after the nozzle seal rupture.

3.7.3 CAVITY MODEL

The evaluation of the state inside both slots and submergence regions is obtained by
means of a cavity model'.

AGAR model treats the presence of a cavity with a 0-dimensional model. Two ordinary
differential equations (ODEs), mass and energy conservation equations, are obtained by a
volume average over the cavity volume. The model, derived from a SPIT upgrade, allows
to treat variable thermophysical properties.

13The differential pressure is related to the difference between the internal and the external pressure value.
14 A cavity is characterized by the presence of low speed flows and of recirculating zones.
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At the n-th time step, it is possible to assume that the cavity properties, the grain
propellant mass addition and the main flow field properties are known. The coupling
between the flow field and the cavity state is ensured by evaluating the mass and energy
exchange as a function of their pressure unbalance. The conservation equations are
averaged on the cavity volume and the mass exchange is calibrated in order to obtain a
delay corresponding to a finite mass transfer velocity. The adopted calibration parameter
is indicated as o qv-

3.74 BURNING RATE MODEL

Due to the propellant grain combustion, the burning surface recedes along a direction
perpendicular to the surface itself. The burning rate is defined as the burning surface rate
of regression.

The combustion processes are assumed very fast and occurring in an ideal thin layer
close to the propellant surface. It’s then possible to consider a non reacting mixture
of perfect gases in the combustion chamber. The propellant combustion products are
considered at chemical equilibrium.

The used burning rate model derives from semi-empirical expressions, where some
parameters have to be imposed. They are generally obtained from experimental investi-
gations.

The burning rate is composed by three different contributions: the quasi-steady term,
related to the combustion chamber pressurization, the non-linear unsteady term, due
to the pressurization rate, and the erosive term, caused by crosswise flowfield and by
turbulence effects.

The non-linear unsteady contribution is not considered in the model; the total burning
rate 1y, is then expressed as:

Ty = Tp, T Tb, (3.60)

where 1y is the quasi-steady term and 1y, represents the erosive contribution.
The quasi-steady burning rate 1, is evaluated by the semi-empirical APN model,
expressed by the Veille’s - de Saint Robert’s law [96] as:

n
ro, = a < L ) (3.61)

Pref

where two semi-empirical parameters, a and n, are introduced and p,.+ is a reference
pressure. The values of !> and 1'® are obtained from experimental tests, and they depend
on propellant composition and on its initial temperature.

Ba=alp,Ti)
n=n(p)
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The erosive burning rate v, is described by Lenoir - Robilland’s model, LR model, as
modified by Lawrence!” [96]:

0.8

pr
- (362)
h
1T T—T
—  0.0288C,u0-2pr—2/3 s 3.63
ph ppCpr Ts*Ti ( )
4
D, — ];\p (3.64)
w

where Dy, is the hydraulic diameter, Pr the Prandtl number, p the dynamic viscosity,
P,, the wet perimeter, T¢ the final temperature, T; the initial temperature and T; is the
propellant surface temperature. « and 3 are empirical parameters.

3.75 HEATING AND IGNITION OF THE PROPELLANT SURFACE

Only brief notes are here presented about the model adopted for the propellant surface
heating and ignition. A detailed description and analysis can be found in [94, 39, 38, 33, 32].

IGNITION CRITERION

The propellant surface is considered ignited when the surface temperature attains an
assigned value, the ignition temperature. A simple empirical dependence of the ignition
temperature on the local pressure level has been considered.

CONDUCTION HEAT TRANSFER MODEL
An accurate evaluation of the grain pre-heating is required to obtain a precise ignition
transient reconstruction.

The impingement of the igniter jets on the propellant surface defines the impingement
region. This impingement is the main driving mechanism of the motor start-up. Because
of the particular flow condition, a specific heat transfer model has to be considered. The
impingement region is supposed to be circular, and its diameter is considered proportional
to the igniter jet diameter. The heat exchange of this region is described by Martin’s
formulation.

The convective heat transfer that characterizes the standard region is evaluated by
Gnielinsky’s semi-empirical model.

RADIATIVE HEAT TRANSFER MODEL
In each region characterized by very low flow velocity, the convective heat transfer is
negligible and the propellant ignition is mainly influenced by radiative heat transfer. A

17T awrence’s modification is useful for large solid rocket motor.
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specific Gas Radiative Coefficient GRC is defined, and its expression combines the effects
related to gas emissivity, trasmissivity and surface absorptivity. Further, the GRC is a
function of the radiative gas pressure and temperature.

PROPELLANT HEATING EVALUATION

The determination of the propellant surface heating requires a specific model for the
evaluation of the conduction heat transfer into the propellant grain. The classical unsteady
1D Fourier equation is coupled with the heat convection equation. An ordinary differential
equation is obtained for the time history of the propellant surface temperature.

3.7.6 NUMERICAL INTEGRATION TECHNIQUE

A finite volume Godunov’s scheme is used for the numerical discretization of the system
ineq. 3.59. The first or second order accurate (ENO, Essentially Non Oscillatory) scheme is
coupled with an exact Riemann solver, modified to take into account a mixture of different
gases. The main characteristics of this method are the robustness and the capability to
treat flowfield with propagation phenomena, strong discontinuities and source terms.

Godunov’s scheme discretizes the conservation equations from the mathematical prop-
erties of the integrated PDEs. It can be considered a generalization of the characteristic
method for problems with discontinuities; the weak solution that satisfies the entropy
condition is naturally selected, even for problems with strong discontinuities.

The Euler’s conservation equations can be written as:

F
t x (3.65)
U(0,x) = Uo(x)
where the variables U and the fluxes F are respectively expressed as:
[P
u = pu (3.66)
| pE
pu
F = | pu’+p (3.67)
[ puH

The PDEs system, eq. 3.65, is non-linear, unsteady and hyperbolicls. It is closed by
appropriate boundary conditions.
1/ i+%} )

18The all eigenvalues of the Jacobian matrix [A(U) = %} are real.

A uniform grid is considered ( {xj
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With an integration of the the system in a generic space and time domain [x. X1 } X
J—27")+>

[0; At], the following expression is obtained:
Xi+1/2 Xj+1/2 t+At
J U(X,t+At)dX— J U(X,t)dX+ J [F (Xi+]/2,t) —F(Xi_]/z,t)] dt=20 (368)

Xi-1/2 Xj—1/2 t

With the average of the conservative variable U, evaluated in the generic domain {xj Sy
the variable U at the time step n is expressed as:
Xj+1/2
Ut = Uj (t) = i J U (x,t) dx (3.69)
Xj—1/2

The variable U at the time step n + 1 is obtained by a discretized time marching solution:

urt =up - % Ft/2=Fa o) (3.70)

In order to ensure the algorithm stability, the time step At must be related to the
spatial discretization Ax. The evaluation of the time step At has to guarantee that the
three waves, generated at one interface for each Riemann’s problem, do not reach the
contiguous interfaces. This condition generates constant interface fluxes during the time
interval At. Indicated with A, o« the fastest wave speed originated by Riemann’s problem,
the Courant Friedrichs Lewy (CFL) condition corresponds to impose the following condition:

Ax
)\n

max

At™ < (3.71)

The space support x is discretized by N finite volumes of width Ax 19" The approxi-
mation U(x, t) is obtained with a projection of the exact solution U(x, t) on the discretized
grid:

N
Ut,x) =) Ut L (x) (3.72)
j=1
where Uj(t) is the average of the exact solution at the time t over the j-th cell and I;(x) is
the projector of the exact solution over the j-th cell.

VARIABLES RECONSTRUCTION AT THE CELL INTERFACES

For a given time step, a certain variables distribution in the cell has to be provided. It
is used, in a second step, for the evaluation at the interfaces of the solution discontinue
values.

19 Ax can be non uniform.
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The solution obtained by Godunov’s scheme is a piecewise constant function, with
constant cell values (projection of the solution on the cell points by the I; operator). If
a constant reconstruction is adopted, it is the U;* approximation. If a linear piecewise is
required, a second order accuracy in space in used (the slope of the linear cell is determined
with respect to the average value U;, U;_7 and U;j, 7). The use of linear reconstruction
can generate spurious non physical oscillations, Gibbs’s phenomenon, involving an unstable
computed solution. A slope limiter, Total Variation Decreasing (TVD), has to be used to
guarantee the numerical scheme stability.

LOCAL EVOLUTION OF THE SOLUTION AT THE CELL INTERFACES TO FIND INTERFACES FLUXES
For the local evolution evaluation, the flux vector has to be evaluated at the interfaces. The

reconstruction provides two values of the solution at the same interface x; 1 /> (U(Lj 1412

and U]R "+1,2)- These values generate a Riemann’s problem and its solution determines the
flux value Fj 1,2 (t) at the interface.

TIME INTEGRATION OF THE CELL AVERAGE VARIABLES
A constant solution of the Riemann’s problem determines constant fluxes in the time
interval [t";t™ 4 At]. The eq. 3.70 provides a time marching expression for the solution
computing.

The eq. 3.73 shows the obtained discretization for the system eq. 3.59, where S
indicates the source terms.

+1
PiAp " PiAp "
PuUA, =4 PUA, +
PEA, ; PEA, ;
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AtT
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(puHAp);:L% — (puHAp)?_%
N
+4q ST
n
3

(3.73)

3.8 GREG MmoDEL

The grain burn back analysis is the study of the burning surface evolution with time. It
makes available all the geometrical parameters required for the solution of the internal
ballistics.
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In AGAR code, the used grain burn back model is the 3D numerical model GREG
(Grain REGression); a complete description of the model can be found in [19, 37, 22, 20, 21].

The use of a 3D model allows the analysis of complex 3D grain shapes (i.e: finocyl
grains), also for 0-D or 1-D flow models. GREG provides to AGAR all the required Q-1D
geometrical parameters, the space and time evolution of port area, cavities, burn and wet
perimeter.

GREG model has to be coupled with the unsteady flowfield model. When the re-
duction of the computational costs is a priority, a decoupling between the grain burn
back model and the flowfield model can be considered. An example is represented by
the off-line coupling realized between SPINBALL and GREG. Before the execution of the
numerical simulation, GREG model evaluates the grain burning surface, obtained with
the assumption of a constant burning rate. This operation is made only once, and the
model generates tables containing all the geometrical properties. During the simulation,
SPINBALL uses the data contained in these tables with an interpolation procedure; the
considered local burning rate is obtained from the APN and LR models (par. 3.7.4). The
axial variation of the burning rate is considered during the flowfield solution. This ap-
proach introduces relevant approximations if the burning rate is strongly variable along
the motor axis; these approximations can be high during the transient and the tail off
phase, but they are negligible during the quasi-steady state.

39 COMMENTS

The quasi-one-dimensional vorticity equation adopted in the AGAR model is derived
through a formal analytical process; the only assumption that has been introduced con-
cerns the circulation definition of eq. 3.51.

The source terms of eq. 3.56, 3.57, 3.58 describe the coupling between the acoustics
and the vorticity field. Their expression is obtained by using a phenomenological analysis
and dimensional considerations.

These aspects show that the encountered difficulties are not related to the derivation
of the one-dimensional model but to the nature of the vorticity field.

As noted, only the corner vortex shedding has been considered. Besides parietal and
obstacle vortex shedding, other aspects are neglected, such as radial mass addition effect,
tilting effects, combustion instabilities,...



NUMERICAL SIMULATION OF OSCILLATORY COLD
FLOWS

IN this chapter a validation test case for AGAR model is presented: the simulation of a
cold flow in an axisymmetric ramjet combustor. The same test case proposed by Jou
and Menon is performed and a direct comparison with their results is presented.

This cold flow simulation represents a simplified case, if compared to the simulation
of the flow in a solid rocket motor. In this case any radial mass addition and combustion
effect is considered. As for the several tests and simulations that have been performed
employing cold flows, the aim is the description of the pure aeroacoustic coupling mech-
anism.

41 Jou AND MENON’S TEST CASE

Jou and Menon [81, 63] proposed a one-dimensional model for the analysis of the results
obtained by full numerical simulations. The model also permits the extraction of infor-
mations on the physical processes that lead to the presence of pressure fluctuations. It
describes the coupled modes and the interaction between the vortex dynamics and acous-
tic waves, providing an estimation of the pressure oscillation frequency. The model has
been already described in par. 2.10, and it has been tested with the simulation of cold
flows in an axisymmetric ramjet combustor.

The use of cold flow makes it possible to describe the pure aeroacoustic coupling
neglecting the effects due to combustion instabilities. Any radial mass addition is present
and the only corner vortex shedding is considered. The analysis of a such simple case
allows the description of the simple coupling of vortex dynamics and acoustic waves; it

61
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represents a suitable tool in order to verify AGAR model behavior, characteristics and
features, as well as to analyze its description of the aeroacoustic coupling.

A study on the effect of different inlet flow Mach numbers completes the analysis;
Mach changes are achieved with variations of the nozzle throat area.

The data reported by Jou and Menon in their works [81, 63] do not permit a com-
plete reconstruction of the performed test case. Some assumptions have to be made to
complete the data set; obviously, the introduction of such hypotheses can influence the
obtained results, especially for the quantitative aspects. The qualitative description of the
considered phenomena is instead not affected.

The analyzed geometrical configuration is presented in fig. 4.1. A uniform grid of 400
cells is used for AGAR simulation (dx = 0.0014 m). With respect to the non dimensional
axis, the step is located at 0.358 while the throat section is at 0.885. The step is discretized
by 20 cells, and it is characterized by a height/length ratio of h/1 = 2.268. Any information
is provided about the nozzle profile, except the area values in the throat and in the exit
section. The convergent and the divergent profile is then arbitrarily reconstructed.

dump region

inlet section exit section

rh=2*r,,=0.0635 m /
fh=0.03175 m

throat section r

re

0.2m 0.2956 m 0.0644 m

143 cell 211 cells 46 cells

base of the step L step throat
pressure test section 0 test section pressure and Q test section

Figure 4.1: Test case geometry.

The used initial conditions are that of a quiescent flow at stagnation conditions.

Subsonic inflow conditions are imposed at the inlet entrance. As done by Jou and
Menon, the flow at the inlet is assumed at an imposed total pressure and temperature, but
the cited articles do not mention the adopted total condition at the inlet. It is impossible to
deduce the pressure value and the choice is fully arbitrary. The total temperature value is
instead determined by using the system acoustic frequency obtained by Jou and Menon.
The half of the acoustic wavelength is defined by the distance between two pressure nodes,
so that it is not related to the distance between the inlet and the throat section. While the
nozzle throat correspond to a nodal point, another node is located in the dump region
[81, 63].
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The imposed value of total pressure and temperature are Top = 290K and Py = 10 bar.
It is obviously expected that the pressure value can somehow determines quantitative
differences with respect to Jou and Menon’s results.

The start up of the simulation presented by Jou and Menon is obtained with an
impulsive lowering of the exit pressure. Once the flow is established, the exit pressure
is further lowered, and downstream of the throat the supersonic flow is reached. Then,
if required, the inlet flow Mach number value can be changed by modifying the nozzle
throat area. A different start-up method is used for AGAR simulation. The system is
considered isolated from the external ambient by a seal, located in the throat section. At
the initial configuration, the internal pressure is considered equal to the inlet total pressure,
while the outside is assumed at the atmospheric pressure. After the seal breaking, the
throat section impulsively reaches the sonic condition. Only when the system attains the
stationary conditions, the vortex shedding is activated.

The fundamental aspect characterizing the pressure oscillation is the frequency content.
The frequency content of a signal can be obtained by using the Fourier transform (a
description of the Fourier transform can be found in appendix A).

Jouand Menon’s [81, 63] reported results describe the frequency content of the pressure
oscillation, evaluated at the base of the step, and of the vorticity fluctuation, considered
at the nozzle entrance. In addition to these test sections, AGAR simulation results are
also analyzed in terms of pressure oscillation at the nozzle throat section, and of vorticity
fluctuation at the vortex detachment point.

In the POX model, the vorticity field is described by the O variable, as defined in eq.
3.49; the vorticity frequency content is then obtained by the Q fluctuation analysis.

A comparison of both vorticity and pressure oscillations, evaluated in different sections
of the system, provides additional informations about the considered phenomena and
their dynamics.

The frequency of a resonant oscillation primarily depends on the speed of sound,
and only weakly on the flow Mach number, while the frequency of a coupled mode is
substantially function of the Mach number. The analysis of different inlet flow Mach
numbers allows the identification of the nature of each frequency peak. Jou and Menon
considered two different values: M;, = 0.32 and M;,, = 0.44; the same values are
analyzed with AGAR model simulations. A further step has been performed in order to
determine the inlet Mach number involving the resonance condition.

In the following paragraph, a direct comparison of AGAR simulations with Jou and
Menon’s results is presented.
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42 AGAR SIMULATION: INLET MACH NUMBER M, = 0.32

The first test case analyzed by Jou and Menon is characterized by an inlet flow Mach
number of Mi,; = 0.32. This value is obtained with a nozzle throat section of Ay =
0.001649 m?; the corresponding geometrical configuration can be seen in fig. 4.2.
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Figure 4.2: Geometrical characteristics in AGAR discretization.

The dA/dx distribution is directly related to the source terms that describe the acoustic
field excitation (par. 3.5.4); each interaction with a dA/dx # 0 represents an acoustic
source. As shown in fig. 4.2, two regions have to be considered in this sense, the nozzle
inlet and the step.

421 VORTEX DETACHMENT CRITERION

The vortex detachment criterion adopted in AGAR model has been presented in par. 3.5.3.
The shedding conditions of this simulation are shown in fig. 4.3. The red lines corre-
spond to the separation of a vortex, occurring in correspondence of a zero pressure second
derivative and of a minimum of the first one. The pressure and velocity time evolutions
do not exhibit sinusoidal behavior, and the imposed conditions determine a separation
corresponding to a pressure negative antinode and a positive velocity antinode’ .

42.2 SOURCE TERMS FOR ACOUSTICS EXCITATION AND VORTICITY EQUATION

The vorticity equation source term only exists at the vortex detachment point, the step
position, as shown in fig. 4.4.

IFrom literature, the condition of positive velocity antinode is a forcing condition for vortex detachment.
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Figure 4.3: Vortex detachment condition at vortex detachment cell.

The source terms related to the acoustics excitation have a contribution in that regions
characterized by a dA/dx # 0. In fig. 4.4 it can be seen that the acoustics is excited by
vortex/obstacle interaction at the step and at the nozzle inlet.

4.2.3 VorTticiTy (Q) DISTRIBUTION

The presence of a vortex corresponds to a vorticity (Q) distribution local maximum, and
the maximum number corresponds to the number of vortices in the system. In fig. 4.5,
the vorticity (Q) distribution obtained for this simulation is shown; the presence of six
vortices can be noted.

The “nonregular” envelopment of the vorticity distribution, characterized by different
amplitudes and frequencies, underlines the non resonant configuration of this test case.
A careful analysis shows the existence of different vortex detachment frequencies, with
corresponding different intensities and dimensions of the separated vortices, as shown in
tig. 4.5.

424 PRESSURE AND VELOCITY DISTRIBUTION

The pressure, velocity, speed of sound and Mach number distributions can be seen in
fig. 4.6. The pressure distribution shows the presence of a node? at ~ 0.575 of the non
dimensional axis; this node corresponds to an antinode in the velocity and Mach number
distribution. The presence or these nodes/antinodes is clearly visible in the pressure and
velocity time derivative distributions?, fig. 4.7.

2 A node corresponds to a point that exhibits a constant pressure value.
3The time derivative exhibits a node where a point presents a constant zero value.
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The relative position of acoustic node (~ 0.575) and vortex shedding point (~ 0.35) is
a factor affecting the acoustic resonance; it is more effective if the detachment point is in
correspondence of a pressure node.

425 PRESSURE AND VORTICITY (()) FLUCTUATIONS

The main and most important result is represented by the oscillation frequency content.
In order to perform a direct comparison with the results presented by Jou and Menon, the
pressure oscillation is evaluated at the base of the step, while the vorticity is analyzed at the
nozzle throat section. A description of the dynamics of these phenomena is obtained also
considering the pressure in the throat section and the vorticity at the vortex detachment
point. In AGAR model the vorticity is represented by the () variable.

AGARTresults, of both pressure and vorticity fluctuations, are shown in fig. 4.8; the red
data are the same analyzed in Jou and Menon’s study. Both the pressure and the vorticity
exhibit a damping effect with the flow motion towards the nozzle. Different sections of
the system are not characterized by the same frequencies.

The time variable amplitude, of both Q) and pressure fluctuation, describes a typical
non resonant configuration.

The frequency content of each signal is shown in fig. 4.9. The frequency peaks obtained
by Jou and Menon’s simulation are indicated with the black vertical line.

The pressure at the base of the step exhibits two acoustic peaks. The first acoustic
mode frequency is at ~ 650 Hz, and it is the most important contribution; the second
acoustic mode presents a minor peak at ~ 1300 Hz. Two other peaks, ~ 330 and ~
980 Hz, are related to the vortex shedding. The acoustic peaks are the fundamental
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components for the pressure spectrum both at the base of the step and at the nozzle throat.
A comparison between the two sections shows a damping effect, higher for the vortex
shedding frequencies than for the acoustic ones; while the pressure fluctuation at the base
of the step is characterized by an amplitude of ~ 1 bar, it decreases to ~ 0.5 bar at the
nozzle (this value is almost constant).

The same frequencies seen in the pressure spectra are visible in the vorticity (Q)
spectrum. Also for the vorticity at the detachment point the first acoustic mode is the
most important contribution also for the vorticity at the detachment point, while it is
almost completely damped at the nozzle throat section. In this section, the fundamental
frequency is the vortex shedding peak at ~ 330 Hz. This behavior underlines an energy
passage, with the vortex convection towards the nozzle, from the acoustics to the vortical
field.

The analyzed configuration does not exhibit a resonant condition. Indeed, the spectra
in fig. 4.9 present both the frequencies related to the acoustics and to the vortex shedding
(a resonant case is characterized by a single frequency peak).

The obtained phenomenological description and results are in agreement with Jou
and Menon analysis. Some quantitative difference can be related to the assumption that
has been used in order to complete the data set (e.g.: the inlet pressure value).

426 COMMENTS

AGAR simulation results show a correct description of the main phenomena character-
izing the acoustic resonance; the obtained results are in good agreement with Jou and
Menon’s study. The assumptions used to perform this simulation, and related to the lack
of some data, determine some quantitative difference (e.g.: the relative amplitude of the
frequency peaks).

The results analysis shows a non resonant condition for the system in this configuration.
Indeed, the spectra in fig. 4.9 exhibit both the frequencies related to the acoustics and to
the vortex shedding.

43 INLET MACH NUMBER EFFECT

In addition to the test case characterized by an inlet Mach number of M, = 0.32, Jou and
Menon proposed another configuration with Mi,, = 0.44. AGAR simulation of this test
case is here presented, and it is compared to their results.

Further, in order to develop a complete description of the Mach number effect, AGAR
simulations are also developed for an inlet Mach number of: 0.25, 0.38, 0.55 and 0.7. This
analysis allows to describe the shift towards, and from, the resonant condition. It also
makes it possible to study the coupling mechanism between the acoustics and vortex
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shedding. Moreover, it makes it possible to distinguish between acoustic and vortex
shedding nature of the peaks, that are respectively almost fixed and moving.

The inlet total pressure and temperature are maintained at the same values considered
already considered for M, = 0.32.

The change of the inlet Mach number is obtained with a variation of the nozzle
throat area. The assumed geometrical configuration is unchanged until the nozzle nose;
obviously the variation of the throat area involves variations of the nozzle geometry (port
area and the relative dA/dx). The energy and momentum source terms, eq. 3.56, are
proportional to dA/dx; different oscillation amplitudes are then expected for each test
case. The geometrical configuration of each considered test case can be seen in fig. 4.10.
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Figure 4.10: Test cases geometrical configuration.

431 VORTEX DETACHMENT CRITERION

The time evolution, of both pressure and velocity, at vortex detachment point is far from
a sinusoidal behavior. As shown in fig. 4.11, the imposed detachment conditions do
not necessarily identify a pressure descending node. The vortex separation occurs for
a pressure local minimum and for a velocity local maximum; a separation occurring at
velocity local maximum is in agreement with literature observations. Also in fig. 4.11,
the resonant (M,,=0.38, 0.44, 0.55) and non resonant (M;,,=0.25, 0.7) conditions can be
distinguished, because of the complex frequency content of the non resonant cases.

The analysis of the detached vortex dimension simplifies the distinction between
resonant and non resonant conditions. In fig. 4.12, the M;,,=0.38, 0.44, 0.55 cases are
described by the separation of vortices characterized by the same dimension, while the
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Min=0.25, 0.7 cases present different dimensions (related to the existence of more than a
shedding frequency).

4.3.2 VorticiTY (QQ) DISTRIBUTION

The analysis of the vorticity (Q) distribution, fig. 4.13, completes the description of the
obtained solutions.

For M;,,=0.25, 0.7, the vorticity ()) non regular envelopment is related to the detach-
ment of vortices of variable intensity, and this corresponds to a non resonant condition.
The other cases present a vorticity (Q) distribution typical of resonant conditions.

The number of relative maxima corresponds to the number of detached vortices. This
number is reduced by the increase of the M i,, number. The resonance frequency has a
slight shift from one case to another; the increase of the flow velocity, that corresponds to
an increase of the vortex convection velocity, requires a lower number of vortices in order
to obtain the same frequency value.

From the six vortices of the M ;,,=0.25 and M ;,,=0.38 cases, this number decrease to
five for M ,=0.44 and M ,,=0.7 and to four for M ,,=0.55.

43.3 PRESSURE, VELOCITY AND SPEED OF SOUND DISTRIBUTIONS

Each test case that has been analyzed is characterized by a different geometrical config-
uration, then by different flow conditions. The pressure, velocity and speed of sound
distributions are respectively shown in fig. 4.14, 4.15, 4.16.

The analysis of the pressure and velocity node position is aided by their time derivative
distributions, presented in fig. 4.17 and 4.18.

With the increase of the My, the pressure distribution shows a moving back of the
node position. The resonant cases exhibit mean pressure values higher than the non
resonant ones. The same observations can be done for the speed of sound distribution.

The mean value of the flow velocity increases with the My, ; in correspondence of the
pressure node, the velocity field presents an antinode that moves back for higher Mj,,.

While the node/antinode identification is quite simple for resonant coupling, it is quite
difficult for non resonant cases.

434 PRESSURE AND VORTICITY ({)) FLUCTUATIONS

The frequency content of both the pressure and the vorticity (Q) fluctuation is in fig. 4.19,
4.20.

The main frequency peaks represent the first (~ 590-660 Hz) and the second (~ 1180-
1330 Hz) acoustic mode. These components can be seen both at the base of the step
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Figure 4.11: Vortex detachment condition.
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Figure 4.12: Detached vortices dimension.
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Figure 4.13: Q distribution.
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Figure 4.14: Pressure combustion chamber distribution.
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Figure 4.15: Velocity combustion chamber distribution.
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Figure 4.16: Speed of sound combustion chamber distribution.
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Figure 4.17: Pressure time derivative combustion chamber distribution.
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82 NUMERICAL SIMULATION OF OSCILLATORY COLD FLOWS

and at the throat section, but their relative importance is not the same. The dominant
contribution is represented by the first acoustic mode both at the step and at the nozzle
for M;,=0.25, 0.38, 0.44, 0.55. Also for M;,,=0.55 a dominant first acoustic mode is
shown, but at the nozzle the second mode increases its relative importance. This effect
is amplified for M, =0.7, where an energy passage from the first to the second mode,
makes the last one the nozzle dominant contribution.

The test cases M, =0.32, 0.25 show different frequency components related to the
acoustics and to the vortex shedding. The vortex shedding is characterized by two peaks
at ~ 330 and ~ 980 Hz. The existence of this peaks shows that the system is not in resonant
condition.

The simulations for M,,=0.38, 0.44, 0.55 exhibit the resonant coupling condition, so
that the only visible peaks are that related to the resonant behavior.

The M;,,=0.7 case appears to be described by a typical resonance condition, but a
detailed analysis of the vorticity (Q) field frequency content shows an increasing impor-
tance of the frequencies at ~ 130 and ~ 1050 Hz, because of the system shift from resonant
configuration.

The resonant frequency decreases with the M, increase, with a greater effect for the
second than for the first acoustic mode.
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Figure 4.19: Pressure spectrum.

435 COMMENTS

The analysis here performed shows that a My, increase determines a system shift from
a non-resonant condition (Mi,;=0.25, 0.32) to a resonant one (M;,=0.38, 0.44, 0.55), and
then to a non-resonant again (M;,,=0.7).
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The resonant frequency decreases with Mj;,, and each test case is characterized by
different configurations in terms of flow conditions and number of vortices.

The fundamental acoustic frequency is represented by the first mode for M;,,=0.25,
0.32, 0.38, 0.44; from M;,=0.55, with the vortex convection there is an energy passage
from the first to the second mode, that becomes the dominant throat section contribution.

The pressure oscillation spectrum, at the base of the step, and the vorticity spectrum,
at the nozzle inlet, for Mi;,=0.32 and M;,;=0.4, are the results directly comparable with
Jou and Menon’s analysis. They showed that for M,,=0.44 the system is moving towards
resonant condition, notwithstanding it is not fully reached. AGAR simulation, on the
contrary, presents a resonance configuration already from M;,, = 0.38. The origin of this
difference is quite difficult to identify, because of the assumptions introduced in the test
case simulation (e.g.: the nozzle geometry, the total pressure value).

44 CONCLUSIONS

Jou and Menon’s test case simulation shows AGAR model capability to describe the main
phenomena characterizing the aeroacoustic coupling. Moreover, the model describes the
system adjustment to resonant condition and then its return to non resonant one.

The results obtained for M, =0.32 are in agreement with Jou and Menon’s analysis, as
for the qualitative than for the quantitative description. For M, =0.44, AGAR correctly
describes the systems moving towards resonant configuration.
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PRESSURE OSCILLATIONS IN P80 SRM

The simulation of the aeroacoustic coupling of a solid rocket motor is here proposed.
The P80 SRM, first stage of the European Vega launcher, is the solid rocket motor here
considered. Four pressure oscillation phases characterize the motor operative life.

The P80 SRM represents a complete test case, because of the existence of all the
phenomena that characterize the aeroacoustic phenomenon: grain regression due to the
propellant combustion, radial mass addition, corner vortex shedding, ...

The results obtained by AGAR simulation are compared with the experimental static
firing tests, realized during the motor development process. Moreover, a description of
the obtained results is provided and AGAR capabilities are verified.

51 P80 Sorip Rocker MoTOR

The P80 SRM is the first solid stage of the new European VEGA launcher. It also represents
both a technology demonstrator and a new generation of Ariane-5 solid boosters.

P80 SRM development is managed by ESA, and involves staffs from ESA, ASI (Ital-
ian Space Agency) and CNES (French space agency), that covers a primary role. The
responsible for the motor development program is the French-Italian joint venture Euro-
propulsion (Avio S.p.a. and Snecma Propulsion Solide), delegated by Avio S.p.a. that
formally represents the P80 SRM prime contractor. The P80 SRM also represents a tech-
nology demonstrator and a new generation of Ariane-5 solid boosters. The propellant
casting is realized in the Guyana Propellant Plant in Kourou, the same used for Ariane
5’s solid boosters.

A simple scheme of the P80 SRM configuration and some notes, main characteristics
and performance, can be seen in fig. 5.1. The combustion chamber has a length of about
10.5 m and a diameter of 3 m. The propellant grain, HTPB propellant, is a single finocyl
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grain, cylindrical in the head region and with star grain in the aft end, and it has a weight
of 88 tons. The motor achieves a Maximum Expected Operating Pressure (MEOP) of 95
bar and it delivers a mean thrust of 3040 kN, with a burn time of 107 s and a specific
impulse of 280 s.

Height: 10.5 m

Diameter: 3 m

Propellant mass: 90 ton

Thrust in vacuum: 3040 kN
Maximum pressure: 95 bar
Nozzle expansion ratio: 16
Vacuum specific impulse: 280 s
Combustion time: 107 s

Figure 5.1: P80 fundamental characteristics and performances.

During the motor development process, two static firing tests have been performed.
The demonstration test, indicated as P80 DM, was realized employing helium as pres-
surizing gas, in order to reduce and to control the pressure oscillations that characterize
the ignition transient. On the contrary, for the qualification test, indicated as P80 QM,
nitrogen has been used as pressurizing gas. Except for this difference, both PS80 DM and
P80 QM present the same motor configuration.

Despite their similarities, the two firing tests exhibit different experimental results.
The P80 QM shows three pressure oscillation phases, called blows, in the first 50 s of the
motor combustion time. For the P80 DM this number increases to four, as shown in fig.
5.2.

Because of the quality of the experimental data, the P80 DM has been taken into
account as test case for AGAR simulation.

5.2 P’80 DM STATIC FIRING TEST EXPERIMENTAL DATA

The static firing tests provide two head pressure signals, obtained by a static and a dynamic
pressure sensor.

In fig. 5.3, the P80 DM head pressure data, for both the static and the dynamic sensor,
are shown. The dynamic sensor exhibits four pressure oscillation phases in the first 50 s
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Figure 5.2: P80 DM pressure oscillation.

of the combustion time. Their timing, amplitude and frequency are enumerated in tab.
5.1.
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Figure 5.3: P80 DM experimental data (10 KHz) - non dimensional head pressure.

5.2.1 ANALYSIS OF THE EXPERIMENTAL HEAD PRESSURE OSCILLATIONS

The pressure oscillation amplitude represents only a few percent of the mean pressure
value. A better visualization can be obtained by separating the fluctuating component
from the pressure signal. This decomposition is here achieved with a sliding average filter,
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blow | Time (s) | Frequency (Hz) | Amplitude (bar)
I 1.6-5.9 50 0.217
I 12.6 -24.4 51 0.209
I | 34.5-39.5 54 0.112
v 44 - 485 55 0.061

Table 5.1: P80 experimental pressure oscillation blows (10 KHz).

with a smoothing up to 12.5 Hz!. The filtered signal and the fluctuating component are
shown in fig. 5.4. The dynamic sensor presents a lower noise level than the static sensor,
and this makes the four oscillating phases more evident.

The spectra of the oscillating component, of both dynamic and static sensor, is shown
in fig. 5.5. Except for the peaks amplitude, both sensors present a similar frequency
content. The first and the second acoustic mode can be respectively seen at ~ 50-55 Hz
and ~ 110-115 Hz. Other frequency components can be seen at ~ 40, 61, 103 Hz. The static
sensor fluctuation exhibits two peaks at ~ 77, 87 Hz, not visible in the dynamic sensor
signal.

The first acoustic mode is around ~ 50-55 Hz, and this value corresponds to the
resonant frequency. An easier visualization of the resonant coupling oscillation can be
obtained by filtering the fluctuating component between ~ 45-65 Hz; the result is visible
in fig. 5.6. The two experimental data exhibit analogous results, although an higher
noise level of the dynamic sensor. While the first and the second blows show a frequency
content in the range ~ 45-65 Hz, the third blow has a major component at ~ 45-55 Hz while
the fourth is at ~ 55-65 Hz (the frequency component of ~ 55-65 Hz for the third blow and
of ~ 45-55 Hz for the fourth are negligible).

522 HHT ANALYSIS OF THE EXPERIMENTAL HEAD PRESSURE OSCILLATIONS

The head pressure time evolution of a solid rocket motor is a non periodic, non linear and
non stationary datum. In this case the Fourier Transform is not the proper tool for the
analysis of the signal frequency content.

The Hilbert-Huang transform (HHT), described in the appendix B, represents the
suitable tool that is used for the analysis of the pressure oscillation. The HHT analysis
provides a signal description in term of time evolution of both amplitude and frequency.
In correspondence of a pressure oscillation blow, an higher or increasing amplitude of the
fluctuation is expected, with a frequency close to the acoustic one.

IThe signal has a sampling of 10 kHz and an average over 200 samples is used.
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Figure 5.4: P80 DM experimental data - filtered and oscillating component of the non dimensional
head pressure.
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The HHT is then applied to the head pressure fluctuating component of fig. 5.4. The
results, split into three time interval 0-11 s, 10-30 s and 30-50 s, are shown in fig. 5.7, 5.8,
5.9.

The HHT shows a frequency of the first acoustic mode slightly increasing, from 50 Hz
to 55 Hz, with the combustion time.

For the first blow, its identification is more ambiguous than the others; it appears
visible between 2-3.5 s and it is characterized by a resonance frequency of almost 50 Hz
(second IMF, green line), as in fig. 5.7. The second blow is clearly visible between 12-24 s
and it has a frequency, slightly increasing with time, around 50 Hz, as shown by the first
IMF high amplitude (red line) in fig. 5.8. The third and fourth blow are between 35-39.5
and 45.5-47.5 s, and their frequency is increasing towards 55 Hz, first IMF (red line) of fig.
5.9.
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Figure 5.7: PS80 DM experimental data - pressure oscillations HHT analysis (0-11 s).

5.3 ROSSITER’S MODEL ANALYSIS OF P80 DM SRM

Rossiter’s model, described in par. 1.6, is here applied to the analysis of the P80 DM.
This model allows the determination, for a resonance condition, of the number of vortices
in the combustion chamber. This analysis has to be repeated for each oscillating phase
exhibited by the motor. Indeed, each blow is characterized by different flow conditions
and stand off distance 1;2.

2The flow conditions are related to different ~ convection velocity, while 1; changes because of the step
position regression.
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The acoustic resonance frequency of P80 SRM is already known from the experimental
data, and its value is ~ 50 Hz. From literature, the parameter that describes the vortex
convection velocity is assumed kg = 0.58.

The obtained results are listed in tab. 5.2. With the increase of the combustion time,
the number of detached vortices, characterizing the resonance condition, passes from 7
to 11. These too high numbers clearly show that Rossiter’s model does not identify any
possible resonance solution for this motor.

I o |IIs | IV
26 [285| 29 | 29
0.58 | 0.58 | 0.58 | 0.58
40 30 30 28
7 10 10 11

B o~

Table 5.2: P80 analysis using Rossiter’s model.

Also with the assumption of a kg = 1, the model shows a physically reasonable
resonance configuration only for the first blow. The model is unable to obtain reasonable
results for the analyzed case.

It has to be remembered that Rossiter’s model does not take into account both two
phase flow and combustion instabilities.

54 AGAR NUMERICAL SIMULATION

The four pressure oscillation phases of the P80 SRM are located in the first 50 s of the
combustion time; also for AGAR simulation a time interval of 50 s is then considered.

The kr value, required by the POX submodel, is determined by the comparison
between the numerical oscillation amplitude and the experimental one.

The geometrical evolution of the combustion chamber, due to the grain regression,
is evaluated in AGAR model by using the GREG model. The combustion chamber,
considered from the head to the nozzle throat section, is discretized by a uniformly spaced
grid of 400 cells. In fig. 5.10, the port area time evolution is shown in correspondence of
each experimental blow.

The P80 SRM is characterized by a finocyl grain, with a cylindrical head region and
a star in the aft region. The vortex detachment point is assumed located at the grain
corner, the connection point between the two grain shape, 0.75 of the non dimensional
axis. Due to the propellant surface regression, this point recedes form 0.758 to 0.718 of
the non dimensional axis, as visible in fig. 5.10.

The aft region of the motor presents a submergence region of volume Vs; in AGAR
simulation, this region is distributed in the last 8 cells of the combustion chamber (0.955-1
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Figure 5.10: Evolution of P80 geometrical configuration.

of non dimensional axis). The volume ratio V/V,, where V. is the combustion chamber
volume without submergence volume, increases with the grain combustion and passes
from 11.7 % to 13.4 % of the total combustion chamber volume. The volume characteristics
of the combustion chamber are summarized in tab. 5.3.

The submergence volume represents a considerable part of the total combustion cham-
ber volume and this makes the Helmholtz resonator effect not negligible.

initial configuration | final configuration
Vs/Ve 0.133 0.154
Vs/(Vs +Ve) 0.117 0.134
Vsin/Ve 0.469 0.390
Vs/Vsin 0.283 0.396

Table 5.3: Volume characteristics of P80 combustion chamber (submergence region volume Vs,
combustion chamber volume without submergence volume V¢, finocyl region volume Vsin).

In the following paragraphs, the only resonant phases are described and analyzed.
A description of the results characterizing a non resonant configuration is provided in
appendix C.
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54.1 HEAD PRESSURE

The head pressure time evolution provided by AGAR simulation can be seen in fig. 5.11.
A zoom of the head pressure in each time interval of interest, corresponding to each
experimental blow, is provided in fig. 5.12.

Pressure and frequency jumps can be noted at ~ 2, 38, 44 and 48.5 s, related to the
resonance condition beginning or end. The characterization of each oscillation phase,
amplitude and frequency content, is presented in the following paragraphs.
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Figure 5.11: P80 DM AGAR simulation - head pressure.

5.4.2 ANALYSIS OF THE HEAD PRESSURE OSCILLATIONS

As for the experimental data, the pressure fluctuation component is separated from the
pressure signal by using a sliding average filter, with a smoothing up to 12.5 Hz. The
numerical pressure oscillation characteristics, frequency and amplitude, are summarized
in tab. 5.4.

A comparison between the numerical fluctuating component and the experimental
one, for the static sensor, can be seen in fig. 5.13. As the experimental data, also the
numerical simulation exhibits four phases of resonant coupling, in spite of differences on
timing and amplitudes. While the amplitude is correctly estimated for the first and the
fourth blow, it is underestimated for the second and the third blow. It has to be noted that
in fig. 5.13 the data still contain high frequency components, not related to the acoustic
coupling (i.e: noise).
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Figure 5.12: P80 DM AGAR simulation - head pressure oscillation phases.

blow | time (s) | frequency (Hz) | Amplitude (bar)
I 0.5-2.5 60 0.21
II 20-24 50 0.04
11 33-38 70 0.019
IV | 48.5-50 70 0.025

Table 5.4: P80 DM AGAR simulation - pressure oscillations blows characteristics.
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In fig. 5.14, the frequency content of the numerical and experimental head pressure
oscillating component is compared. AGAR simulation exhibits the first acoustic mode
at ~ 61 Hz; the difference from the experimental value, ~ 50 Hz, is related to the Q-1-D

nature of the adopted model.

Other significant frequency peaks are found around ~ 37, 103, 81-84 Hz. The frequency
component at ~ 81-84 Hz is related to the acoustic frequency of the grain cylindrical part;
its amplitude is reduced if compared with the other frequency components. Because of
the grain regression, there is a decrease of the cylinder length with a slight increase of its
acoustic frequency, as described by the double peak configuration.
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Figure 5.14: P80 DM AGAR simulation and experimental data (static sensor) - pressure oscillations

spectrum.
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A more detailed analysis of the pressure oscillation and of its frequency content can
be obtained by filtering the signal around specific frequencies. These results, obtained for
different frequency intervals, are shown in fig. 5.15. This kind of visualization permits
a description of the frequency content as a function of the time evolution. While the
first blow is characterized by a resonance frequency of ~ 60 Hz, the second is at ~ 50
Hz and both the third and fourth are at ~ 70 Hz. As already noted for the experimental
data, the resonance frequency increases with the time. This increase corresponds to the
presence of an higher number of slower vortices in the combustion chamber. This trend
is in agreement with the flute-mode behavior.

The numerical oscillation also shows an important frequency contribution at ~ 40 Hz,
between 2.5-20 s, and ~ 80 Hz, between 38-48 s; these contributions characterize the non
resonant phases.
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Figure 5.15: P80 DM AGAR simulation - filtered pressure oscillations.
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54.3 HHT ANALYSIS OF THE HEAD PRESSURE OSCILLATIONS

The head pressure time evolution is not a periodic, linear and stationary signal. As done
for the experimental data, the analysis of its frequency content is performed by using the
Huang-Hilbert transform method. The HHT analysis provides both the amplitude and
frequency time evolution.

The analysis is performed for four different time intervals (0-12 s, 10-30 s, 30-45 s and
40-50 s) covering the whole burning time (50 s).

Also the HHT method exhibits the presence of four different pressure oscillation blows,
which properties, in term of amplitude and frequency, are summarized in tab. 5.5. Each
blow is described by a constant frequency value; the first blow is characterized by an
increasing amplitude, while a constant amplitude is obtained for the other blows.

blow | Time (s) | Frequency (Hz) | Amplitude (bar)
I 0.5-2.5 60 0.2-0.28
I 20-24 50-52 0.01
I 33-38 70 0.005
1A% 49-50 70 0.016

Table 5.5: PS80 DM AGAR simulation - head pressure HHT analysis.

The results of the HHT analysis for the first time interval (0-12 s) are shown in fig. 5.16.
The first blow is described by the first IMF, red line, between 0.5-2.5 s. The amplitude
reaches a maximum value of ~ 0.2-0.28 bar at ~ 1.75 s, while the frequency, ~ 60 Hz, slightly
decreases. At 2.5 s, a sudden jump of both amplitude and frequency occurs (the second
IMF, green line, < 0.02 bar and < 50 Hz), corresponding to the exit from the resonance
condition.

The analysis of the second time interval (10-30 s) is visible in fig. 5.17. The second
blow is between 20-24 s and it corresponds to the second IMF (green line). Both its
amplitude and frequency present a constant value, ~ 0.01 bar and ~ 50 Hz. While the
resonance condition is gradually attained, as shown by the slow increase of the second
IMF frequency, the exit from this condition is characterized by a sudden jump of the
frequency value.

The third time interval 30-45 s, fig. 5.18, shows the third blow between 33-38 s (second
IMF, green line). Also in this case, the frequency and the amplitude are characterized by
a constant vale, ~ 0.005 bar and ~ 70 Hz.

The HHT analysis of the fourth time interval 40-50 s is shown in fig. 5.19. The fourth
blow is shown by the first IMF (red line) between 49-50 s. The frequency and the amplitude
are respectively of ~ 70 Hz and ~ 0.016 bar. In this case, the oscillation frequency does not
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present a change in correspondence of the resonant coupling, but the amplitude shows a
sudden increase.
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Figure 5.16: PS0 DM AGAR simulation - head pressure HHT analysis, first blow.
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Figure 5.17: P80 DM AGAR simulation - head pressure HHT analysis, second blow.

54.4 THROAT PRESSURE AND VORTICITY ({)) OSCILLATIONS

The head pressure oscillations exhibit frequency contributions at 37, 61, 81-84, 103 Hz.
The origin of these contributions can be obtained by the analysis of the pressure signal,
evaluated in the throat section, and of the vorticity (Q)) signal, evaluated at the vortex
generation corner.



AGAR NUMERICAL SIMULATION 101

—0.06 150
125
0.04 —100
T
o
3 z :
= Q 2
= (= 3
g g ;
< g H
0.02 w
‘1
W

40

" =
30 32 34 36 38
Time (s)

36 38
Time (s)

(a) Amplitude (b) Frequency

Figure 5.18: P80 DM AGAR simulation - head pressure HHT analysis, third blow.

aaswN-—

Amplitude
Frequency /Hz)

44 46
Time (s)

40 42 e Ed

(a) Amplitude (b) Frequency

Figure 5.19: P80 DM AGAR simulation - head pressure HHT analysis, fourth blow.
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THROAT PRESSURE OSCILLATIONS

In fig. 5.20 the pressure oscillations, computed at the head and the throat section, are
compared. A first note can be done about the considerable damping effect, occurring
mainly in the first 20 s, on the oscillation amplitude. Both the pressure oscillations, at the
head and at the throat section, exhibit the same blow timing and frequency content.

Also in the throat section the first blow is at ~ 60 Hz, the second and the third are at ~ 50
Hz and the forth is at ~ 70 Hz; the first and the fourth oscillation phase are characterized
by comparable amplitude, while the third is almost negligible.
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Figure 5.20: P80 DM AGAR simulation - head and throat pressure oscillations.

The spectra of the pressure oscillations here considered can be seen in fig. 5.21. The ~
103 Hz frequency contribution, visible at the head section, is absent in the throat section.
The other components are anyway visible, although they appear damped in the throat
section; the peak at ~ 37 Hz remains the most important contribution while, due to the
damping, the ~ 61 Hz and the ~ 81-84 Hz amplitudes become comparable.
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The ~ 81-84 Hz component is the acoustic frequency of the cylindrical grain, while the
~ 103 Hz peaks is related to the vortex shedding phenomenon.
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Figure 5.21: P80 DM AGAR simulation - head and throat pressure oscillation spectrum.

VorriciTy (()) OSCILLATIONS

The vorticity (Q) oscillations, evaluated at the corner and at the throat section, are shown
in fig. 5.22. In both these points, four resonant oscillation phases can be distinguished,
their timing is the same up to now noted.

At the corner, the amplitude of the first and the fourth blow, that is comparable, is
greater than that of the second and the third blow.

The throat section is characterized by a considerable damping effect, and the first and
the forth phases remain visible.

The first and the fourth phase of resonant coupling are respectively characterized by
a frequency of ~ 60 Hz and ~ 70 Hz; the same frequency values have been noted for
the pressure oscillation. On the contrary, the second and the third phase are described
respectively by ~ 70 and ~ 60 Hz. This difference describes a possible energy passage from
some frequencies to others, because of the acoustic mode excitation by vortex shedding.

The vorticity (QQ) spectra are shown in fig. 5.23. Both the frequency component at ~ 37
Hz and the acoustic frequency of the cylindrical grain (~ 81-84 Hz), visible at the corner
position, are absent at the throat section. Two frequencies characterize the vorticity (Q)
both at the corner and at the throat section, the acoustic (~ 61 Hz) and the vortex shedding
frequency (~ 103 Hz).
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545 VORTEX SEPARATION CRITERION

The vortex shedding point is always assumed at the corner connecting the cylinder and
the star grain. The adopted separation criterion has been discussed in par. 3.5.3.

In fig. 5.24, 5.25, 5.26, 5.27 the separation conditions for each resonance phase are
shown.

The vortex detachment frequency depends on the flow conditions, so that it changes
during the combustion time. AGAR simulation shows that the shedding frequency de-
creases with the grain combustion and regression: from 128 Hz for the first blow, to 120
Hz for the second, 113 Hz for the third and 80 Hz for the fourth.

The pressure and velocity time evolutions show that a pressure descending node al-
ways corresponds to a velocity antinode. For the first three blows the vortices detached
in correspondence of a relative velocity maximum (velocity positive antinode); this condi-
tion is confirmed by literature results. On the contrary, for the fourth blow the separation
occurs in correspondence of a velocity relative minimum (velocity negative antinode).

The time evolution of the pressure second time derivative of the fourth blow exhibits
a strong distortion from purely sinusoidal behavior (fig. 5.27); this deformation is higher
than that shown by the other three blows (fig. 5.24, 5.25, 5.26).

The dimension of the detached vortices, fig. 5.28, shows that in resonance condition
the released vortices are characterized by the same dimension.
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Figure 5.24: P80 DM AGAR simulation - detachment conditions at vortex separation point, first
blow.
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Figure 5.25: P80 DM AGAR simulation - detachment conditions at vortex separation point, second
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Figure 5.26: P80 DM AGAR simulation - detachment conditions at vortex separation point, third
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54.6 POX MODEL SOURCE TERMS ANALYSIS

The vorticity convection equation of the POX model, eq. 3.50, has a source term, modeled
as in eq. 3.51, that is defined only at the vortex detachment point.

In fig. 5.29, the distribution of the vorticity equation source term along the combustion
chamber is shown; it is clearly visible that it exists only in correspondence of the step
position (0.75 of non dimensional axis).

The momentum and energy equations source terms, eq. 3.56, are defined in all that

points characterized by TXP # 0. As noticeable in fig. 5.29, the acoustic field excitation,

related to the vortex interaction with geometrical variations, is active from the corner to
the nozzle throat; the most important contribution is due to the nozzle nose and to the
submergence region.
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Figure 5.29: P80 DM AGAR simulation - POX model source terms.
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5.4.7 VorticITY (QQ) DISTRIBUTION

The presence of a vortex in the combustion chamber corresponds to a relative maximum
of the vorticity (Q)) distribution.

The vorticity (Q) distribution that characterizes each resonant phase is shown in fig.
5.30. The number of vortices in the combustion chamber increases with time, from four
of the first blow to five-six of the fourth. With the grain regression, the core flow velocity
decreases, and the combustion chamber presents an higher number of slower vortices.

With the convection towards the nozzle, the vorticity (Q)) is gradually damped. As
shown in fig. 5.30, the resonance condition is characterized by a regular vorticity (Q)
envelope, due to the detachment of vortices, with the same dimension and intensity, at
the same frequency.

5.4.8 PRESSURE AND VELOCITY DISTRIBUTION

The pressure and the velocity distribution in the combustion chamber, for each considered
time interval, are shown in fig. 5.31, 5.32, 5.33, 5.34. Their time derivative is also displayed
to facilitate the description of the field structure and the identification of the position of
nodes and antinodes.

The velocity and pressure distribution underlines a decrease, from the first to the
fourth blow, of the oscillation amplitude.

The head section always corresponds to a velocity node, always characterized by a
zero velocity value. Each analyzed time interval, with the only exception of the fourth, is
described by a similar configuration in the combustion chamber: two pressure nodes and
a velocity antinode, corresponding to the step position.

In the following, the node and the antinode position is indicated with respect to the
non dimensional axis.

The first blow, fig. 5.31, exhibits two pressure nodes at 0.293 and 0.815, each one
corresponding to a velocity antinode. A velocity node, in addition to the head section, is
at 0.545.

The second blow, fig. 5.32, presents a pressure node position variable with the time.
The first pressure node is slightly moving between 0.295-0.3, and the second between
0.8-0.825. The velocity node is almost fixed at 0.57. If compared with the first blow
configuration, each node seems shifted towards the throat section.

In fig. 5.33, the third blow presents a first pressure node around 0.308-0.318, while the
second has a not precise position. The velocity node is at 0.593.

As shown in fig. 5.34, the fourth blow exhibits two velocity nodes, corresponding to
the head and to the throat section. Any other feature is difficult to be determined, and the
field structure is quite different if compared to the other resonant cases.
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Figure 5.30: P80 DM AGAR simulation - vorticity (Q) distribution.
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Figure 5.31: PS0 DM AGAR simulation - pressure and velocity distribution, first blow.
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Figure 5.32: P80 DM AGAR simulation - pressure and velocity distribution, second blow.
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Figure 5.33: PS0 DM AGAR simulation - pressure and velocity distribution, third blow.
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5.5 CAVITY EFFECT

The P80 DM geometrical configuration is characterized by a significant submergence

region volume; during the combustion time, the volume ratio increases from

S
Ve + Vs
0.117 to 0.134. Because of this cavity volume, the Helmholtz resonator effect can not be
neglected.

AGAR model has been used to study the cavity response of the P80 DM solid rocket
motor.

Three different cases are here considered for the analysis of the cavity effect. The
first case is represented by the P80 DM combustion chamber without any submergence
region. In addition, the P80 geometrical configuration is analyzed with two different
cavity response. The cavity model has been described in par. 3.7.3; the cavity response
is calibrated by the o\ parameter. A reference value of x.q, = 0.02 is typically used,
derived from earlier studies on the model. In this case, an higher response of the cavity
has been obtained with an &4, = 0.04, while a lower response with an «¢q, = 0.005. The
absence of the cavity is described by using an «¢q = 0.

The head pressure time evolution, obtained for each case, is shown in fig. 5.35.

The ocqv = 0.04 clearly indicates that there is a stability limit to the increase of
the cavity response. This instability corresponds to the burst visible at ~ 30 s, the low
frequency explosion in fig. 5.36. Obviously, this unstable behavior makes the obtained
solution useless.

The absence of cavity is characterized by a lower head pressure value, because of the
large cavity mass addition (fig. 5.35).

When the submergence grain is completely burned, the head pressures obtained for
each case collapse on the same value.

Despite the cavity presence or response, the vortex shedding phenomenon is anyway
present, and it is described by similar fundamental characteristics. The analysis of the
frequency content of the pressure oscillations can be seen in fig. 5.36, 5.37.

The first and more pronounced effect of the cavity presence, and then of its response, is
the oscillation amplitude modulation; the obtained results are in agreement with literature
results.

Two frequency components, almost not visible if the cavity is not considered, are
strongly amplified, ~ 60 and ~ 103 Hz; the peaks at ~ 37 and ~ 81-84 Hz are anyway
present. The frequencies that describe the motor aeroacoustic coupling do not exhibit any
variation.

The cavity model here considered has been developed focusing on the submergence
effects during the ignition transient. Although its correct description, the development of
a suitable model, accounting for the stationary phase phenomena, represents a useful task.
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This improvement does not affect the physical description of the aeroacoustic coupling,
but it can provide a better quantitative accuracy on the amplitude evaluation.
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Figure 5.35: P80 DM AGAR simulation - cavity effects on the head pressure evolution.

5.6 CONCLUSIONS

In this chapter, the AGAR numerical simulation of the P80 DM solid rocket motor has
been presented. The geometrical evolution of the combustion chamber is evaluated, with
the assumption that the only corner vortex shedding occurs and neglecting the two phase
flow and combustion instability effects. AGAR model only describes the vortex shedding
term related to the radial addition, here modeled as the addition due to the presence of a
corner. Both compressibility and deformation effects are not accounted.

For the P80 SRM, AGAR model describes a vorticity formation in correspondence of
the grain corner, at the connection between the cylindrical and the star grain. The first
loop is related to the distance between the corner and the nozzle throat, the second loop is
a function of the chamber length. AGAR simulation shows the existence of four resonant
phases for the P80 SRM. Their characteristics, compared with the experimental data, are
summarized in tab. 5.6.

Coherently with the static firing test results, four different resonant phases can be
identified in the first 50 s of the combustion time.

Except for the last, that presents a slight time shift, the numerical blows are included
in the experimental time intervals, and this indicates a good agreement with the experi-
mental blow timing.

AGAR simulation shows a good amplitude estimation for the first and the fourth blow
amplitude; an underestimation of one order degree is instead exhibited for the second
and the third resonant phase.
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Experimental data | AGAR results
I - timing 1.6-5.9 05-25
I - frequency 50 60
I - amplitude 0.217 0.2-0.28
II - timing 12.6 -24.4 20-24
II - frequency 51 50-52
IT - amplitude 0.209 0.01-0.04
III - timing 34.5-39.5 33-38
III- frequency 54 70
III - amplitude 0.112 0.005 -0.019
IV - timing 44 - 48.5 48.5 - 50
IV - frequency 55 70
IV - amplitude 0.061 0.016 - 0.025

Table 5.6: P80 DM experimental data and AGAR simulation results.

AGAR correctly describes the general trend of the increasing oscillation frequency.
The Q-1-D nature of the adopted model determines a difference on the acoustic frequency
evaluation, related to a difference on the frequency value of each resonant phase.

Despite some quantitative difference, AGAR model appears capable of providing
a good phenomenological description of the aeroacoustic coupling mechanism, as con-
firmed by the experimental data. In particular the model describes the system adjustment
to resonance condition and the following exit.

In addition to the experimental data, also the Rossiter’s model is used for a comparison
with AGAR results. While Rossiter’s analysis shows that any resonance solution can be
found for the P80 DM configuration, AGAR simulation correctly determines the presence
of four resonant phases.

The qualitative differences on the obtained results seems to suggest that the neglected
phenomena, such as two phase flow and combustion instabilities, can influence the aeroa-
coustic coupling mechanism.

The development of a proper cavity model for the stationary phase represents a useful
task to improve the oscillation amplitude evaluation,.
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CONCLUSIONS

N the present work a new model, named AGAR, for the simulation of acoustic resonance
I of solid rocket motor has been presented. The system of governing equations is written
in quasi-one dimensional form. The model provides a description of the pressure, and
thrust, resonant oscillations that can affect the quasi steady state of a SRM. The analysis
of the obtained pressure signal, makes it possible to obtain a complete characterization of
the oscillations in terms of frequency and amplitude.

An unsteady Eulerian model with mass, momentum and energy addition and a ge-
ometrical evolution, both in space and time, is considered. Two phase flow effects are
neglected and a mixture of non reacting perfect gases is considered. The thermophysical
properties of the mixture of ideal gases are variable in space and time; they are evaluated
using a thermodynamic standard model for mixtures. Moreover, the grain combustion
reactions are supposed to occur in an ideal thin layer on the grain propellant surface. The
effects related to combustion instability are not considered.

The governing equations that have to be considered are the mass, momentum and
energy conservation equations, plus a vorticity equation. The three dimensional form,
expressed in cylindrical coordinates for an axisymmetric flow and averaged on the normal
sections, allows to obtain a quasi-one dimensional model. As far as the vorticity equa-
tion is concerned, neglecting the compressibility effect and the deformation contribution,
the radial addition due to a propellant corner is the only considered vortex shedding
phenomenon.

A proper model describes the vortex creation and growth, accounting for the acousti-
cally forced vortex generation. The vortex dynamics description is completed by a vortex
detachment criterion, and a quasi-one dimensional equation that describes the vorticity
convection by the flow. The acoustic mode excitation by vortex impingement is modeled
with the introduction of source terms in the Euler’s equations.

AGAR model is made of: a gasdynamic model, a model to evaluate the combustion
rate of ignited propellant grain (evaluation of the mass addition from burning surface),
a model to determine the evolution of chamber geometry and an aeroacoustic model.
SPINBALL (Solid Propellant rocket motor INternal BALListics) is the adopted quasi-1D
unsteady gasdynamic model, while the used 3D grain burn back model is GREG (Grain
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REGression). The developed aeroacoustic model, here presented, is the POX model (it’s
not an acronym); it is composed by: a model to determine the vortex dynamics (creation,
growth, convection and destruction), a model to evaluate the acoustic field excitation
by vortex shedding, a model to estimate the acoustically forced vortex generation. A
quasi-1D equation describes the vorticity convection by the flow. The acoustic mode
excitation by vortex impingement is modeled with the introduction of source terms in the
gasdynamic model.

A first test case, proposed for AGAR validation, is the simulation of cold flow in an ax-
isymmetric ramjet combustor, a simple case that allows a description of pure aeroacoustic
coupling; the same test case performed by Jou and Menon has been considered. AGAR
simulation exhibits main flowfield features in accordance with Jou and Menon’s results,
as shown by the system non resonant conditions and by the pressure node position. The
system fundamental frequencies, for both acoustics and vortex shedding, are correctly
evaluated, and the pressure and vorticity spectrum show that their interaction is correctly
described. A low frequency peak, visible in Jou and Menon’s simulation can not be seen
in AGAR results.

In order to describe and to analyze the possible coupling between the acoustics and
the vortex shedding, different initial flowfield conditions are considered. Each analyzed
case presents a correct phenomenological description of the interaction between acous-
tics and vortex shedding; the frequency content of the pressure oscillations is properly
reconstructed and the nature of each frequency peak is identified. AGAR model describes
resonant and non resonant conditions, and the system adjustment towards the acoustic
coupling. One of these cases is directly comparable with Jou and Menon’s results. Both
the simulations show a system moving towards resonant condition, but while they obtain
only a movement towards this condition, AGAR shows the attainment of a complete
resonant case.

AGAR is then used for the simulation of the acoustics of a solid rocket motor. The P80
DM SRM,, first stage of the new European small launcher Vega, has been considered as
test case.

In agreement with the experimental static firing tests, the P80 DM numerical simula-
tion exhibits four phases of resonant pressure oscillations in the first 50 s of the combustion
time. With the exception of the last phase, presenting a slight time shift, the simulation
shows a good agreement with the experimental oscillation timing. AGAR simulation
shows a good estimation of the first and the fourth phase amplitude, while the second
and third resonant phase present an underestimation of one order degree.

The Q-1-D nature of the adopted model determines a difference on the acoustic fre-
quency evaluation, corresponding to a difference on the resonant frequency of each phase.
Anyway, AGAR correctly describes the general trend of the increasing oscillation fre-
quency.
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Despite some quantitative difference, AGAR appears capable of a good phenomeno-
logical description of the aeroacoustic coupling mechanism, as confirmed by the experi-
mental data. The model describes the system adjustment to resonance condition and the
following exit.

The aeroacoustics of a solid rocket motor is a quite complex subject, that involves
several different phenomena.

The model here presented shows a good description of the main aspects related to the
aeroacoustic coupling, but it can be considered a first step. A deepening of the model
analysis appears necessary, combined with the improvement of the adopted model, and
the possible introduction of some phenomena until now neglected (i.e: two phase flow
effects,...). These activities have to be obviously combined with the model application to
other solid rocket motors that exhibit pressure oscillations.
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THE END

E quindi uscimmo a riveder le
stelle.

Dante Alighieri,La Divina
Commedia, Inferno XXXIV
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FOURIER TRANSFORM

The Fourier Transform (FT) is the common approach in spectrum analysis.

The Fourier Transform is based on a globally defined orthogonal basis and requires
a periodic and linear function; it reduces the analyzed signal into harmonic components
and provides an amplitude vs. frequency description of the analyzed data.

Al TuE FOURIER TRANSFORM

The FT can be applied to a function f(x) characterized by a finite number of discontinuities
and with integrable [f(x)| and [f(x) |2. The function have to be periodic, of period T
[f(x+T) =f(x)]. X

The Fourier transform f(w) is defined as the complex function:
]
L

while the inverse Fourier transform F(x) corresponds to the following expression:

f(k) = 3¢ (k) Jm f(x)e TR ax (A1)

Fx)=3."(x) = Jm f(k)e/**dk (A.2)

If f(k)is the Fourier transform of f(x), under sufficiently general conditions, the following
expression is verified:
F(x) = f(x) (A.3)

A.2 THE FOURIER SERIES

For the periodic and integrable1 function f(x), the Fourier series is defined as:

Fo= Y fel¥ (A4)

k=—0o0

I This condition is required for the definition of the Fourier coefficient.
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where the fy coefficients are expressed as:

N ] T 7'k277'[
fk:J f(x)e /kTx (A.5)
TJo

The Fourier serie is equivalent to the Fourier transform of periodic generalized func-
tion.

A.3 THE FAsT FOURIER TRANSFORM

The Fast Fourier Transform algorithm is the standard numerical implementation for the
calculation of a Fourier transform. It represent an efficient tool to evaluate the Discrete
Fourier Transform, especially if N is a power of 2.

A data set of N + 1 uniformly spaced points is considered:

fi = f(xi) (A.6)
xig = (1i—-1)Ax (A7)

wherei=1,..,Nand N = 2",
The Fourier coefficient can be expressed as:

N

~ 1 : Ll

fio= g 2 fie 10 (A8)
i=1

that allows to write the Discrete Fourier transform (DFT) as:
N/2-1
fx)~ Y firelkFx (A9)
k=—N/2
where the approximation is due to the truncation of the serie and to the approximation
of the Fourier coefficient. If this expression is evaluated in the x; points, it is possible to

obtain:
N/2-1

fi ~ Z erjszﬂl (AlO)
k=—N/2
that reproduce exactly the f value in the x; nodes.
If x; represents the time domain data, fy is the representation in frequency domain.
The frequency data can be expressed as an amplitude spectrum:

= — A1l
Ax N ficl ( )
orasa power SpeCtrum:
Iy 2|
P, = A.12
K N (A12)

wherek =0, .., N/2.



HiLBERT-HUANG TRANSFORM

The Hilbert-Huang transform HHT allows the spectrum analysis of nonlinear and non
stationary data.

The HHT provides a data description in terms of both amplitude and frequency time
evolution.

B.1 THE HILBERT-HUANG TRANSFORM

The most important aspect of the HHT analysis is the capability to treat nonlinear and
non-stationary data.
The Hilbert-Huang transform (HHT) is composed by two steps:

1. the empirical mode decomposition (EMD) process, that decomposes the signal into
a set of intrinsic mode functions (IMFs)

2. the Hilbert spectral analysis (HSA), that extracts the frequency vs. time information
from each IMF

This method is based on an adaptive basis, and the frequency is defined through the
Hilbert transform.

B.1.1 THE EMPIRICAL MODE DECOMPOSITION PROCESS

The empirical mode decomposition assumes that a signal is composed by the superimposition
of different coexisting modes. These intrinsic mode functions (IMFs), in general not strictly
orthogonal, represents a simple oscillation. Each IMF oscillatory mode is variable with
time in both amplitude and frequency; the following properties characterize an IMF:

e the number of extrema and the number of zero crossings differ at most by one
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e the mean value of the envelopes defined by the local maxima and the local minima
is zero

The first extracted IMF contains the highest frequencies of the signal; each subsequent
IMEF is described by lower frequency components.

The signal is decomposed into IMFs with a sifting process.

A discretely sampled signal x(t) is considered. The cubic spline connection of the all
local maxima defines the local extrema xmqx(t) (upper envelope); the same process is
used for the local minima xmin (t) (lower envelope). These envelopes include the all data.
The mean value of the spline is expressed as:

) _ Xmax(t) — Xmin(t)

m(t) = 5 (B.1)

Once defined the m(t), it is possible to evaluate the h(t) component as:
h(t) = x(t) —m(t) (B.2)

If the obtained h(t) does not correspond to the criteria that defines an IMEF, the sifting
has to be repeated; for the next step, h(t) is treated as original data. If it does, the IMF is
defined as:

IMFn(t) = hni(t) = hne1) (1) — mni(t) (B.3)

One of the sifting stop criterion is based on the choice of a pre-selected S-number; the
sifting process is stopped after S consecutive times. The selection of S number is ad hoc; a
typical number of iterations is S =4 — 8.
Once that the IMF,, is obtained, it is separated by the signal and the first residual is
evaluated:
T = x(t) — IMF, (B.4)

T is treated as the new data subjected to the sifting process. This procedure is repeated
until the residual rn contains useful frequency informations; the last rn is a monotonic
function from which no more IMF can be extracted.

The original signal can be then expressed as a function of the N IMF and of the final

residual r:
N

xX(t) =) IMFn(t) +7n(t) (B.5)
n=1

B.1.2 TuEeE HILBERT TRANSFORM

The second step of the HHT analysis is the extraction from each IMF of the frequency and
the amplitude.
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The computation of the Hilbert transform is a convolution of 1/t with an IMF, x(t). This
operation emphasizes the local properties of x(t), preserving the signal time structure of
both amplitude and frequency:.

For any real valued function x(t), the complex conjugate y(t) can be determined by:

1 * x(7)
—H —_P B.
y(t) [x(t)] - VJOO - Td’t (B.6)
where the PV is the principal value of the singular integral.
So the analytical signal can be expressed as:
2(t) = x(t) +iy(t) = A(t)e! O (B.7)

where A(t) is the instantaneous amplitude and 0 is the phase function. The instantaneous
frequency is expressed as:

do
f=— B.8
B.1.3 THE HILBERT SPECTRAL ANALYSIS
The Hilbert transform is applied to each IMF.
The original data can be expressed as:
n .
x(t) =% | Y Aj(t) el Ifittdt (B.9)

j=1

that for each component gives both the amplitude and the frequency as a function of the
time. The frequency-time distribution of the amplitude is designed as the Hilbert spectrum
H(f, t).

The IMF represents a generalized Fourier expansion. The amplitude and the instan-
taneous frequency allows to consider nonlinear and non stationary data; further, the
amplitude and frequency modulations are clearly separated.
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NUMERICAL SIMULATION RESULTS FOR NON
RESONANT CONDITION

The results presented in the 5 chapter only describe the resonant conditions obtained by
AGAR simulation of the P80 SRM.

In this appendix, the results that describe a non resonant configuration are presented.
The non-resonant phase occurring at ~ 5 s is here considered and it can be seen in fig. C.1.

The frequency of vortex detachment does not reach a constant value, as shown in fig.
C.2, where each vortex separation is underlined by a red line. Moreover, the detached
vortices are characterized by different dimensions, as visible in fig. C.3.

Pressure, velocity, sound velocity and Mach number combustion chamber distribu-
tions do not show any sensible difference with respect to the resonant case (fig. C.4).
Some irregular behavior can instead be seen in pressure and velocity time derivative
distributions (fig. C.5).

The vorticity (Q) distribution clearly underlines a non resonance configuration, fig.
C.6; it loses the regular envelopment seen for the resonant cases.
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Figure C.1: Nondimensional head pressure.

133



134 NUMERICAL SIMULATION RESULTS FOR NON RESONANT CONDITION

sep — 58P
——— derp P
derzp v
80 50000 69.45 - 51
g0 25000 505
[ /\ 1 69.4 -
40 1o & —_ [
—_ n ) o
= « a 3
[ o] ~
< -250000q Seoasf % 2
8 1 5 a N\ 8
g ] g 8 v 1% 8
° ] Q. = ] >
B L A VAVAVAY va\ bt
69.3 AR \V/ / 10
7 175000 1a
L_L L L - | M - L ]
065 5.075 5,1 100000 8928 68 5.075 Gt
Time (s) Time (s)
(a) Pressure time derivatives. (b) Pressure and velocity.

Figure C.2: Vortex detachment conditions.

iy

—
—
—

0.6

e
IS
T

Nondimensional vortex dimension
S
T

L 1 L "
0 5.08
Time (s)

Figure C.3: Non dimensional vortex dimension.



135

71 60
705 sof A
= 7F . «of
& L ] I k
a L time E I / time
€ eos - 5.08 2 508
2 I = 5.06 g f 506
g I 5.04 % I 5.04
= 5.02 5.02
r g T
& e 20
e85 of
SN SRR REREN SN ST PN PR SR A R PR RN NN PR R PR
150 200 250 300 350 400 1 750 200 250 300 350 400
| ]
(a) Pressure. (b) Velocity.
1082 0.06
0.05 |
1081.5 [
g 0.04
E -an'; I
‘E L tme [S I time
S 1081 508 2003 5.08
[ 5.06 rS I / 5.06
- 5.04 S I 5.04
< 5.02 s I 5.02
2
3 0.02
8 I
10805 [
[ 001
Wosoiwwnwlnwwn\w\:l\nw\lw\n\lw\\www\nl\nwl O\l\\l\\l\l\\l\|\\||\|\\|\\\\|\\|\|\\||
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 _ 400
] ]

(c) Sound velocity.

(d) Mach number.

Figure C.4: Combustion chamber distributions.



136

NUMERICAL SIMULATION RESULTS FOR NON RESONANT CONDITION

dp/dt (bar/s)

-20

40

-60

60

40

!

200
|

250 300 350

400

time

5.08
5.06

5.02

du/dt (m/sr2)

1200 -

©
=1
S

)
>
S

©
=3
S

%)
=3
S

&
3
3

©
3
3

1200

o

time

5.08
5.06

5.02

\
)
- N
:uuluuluuHuuuluulummu
150 200 250 300 350 0

]

(a) Pressure derivative.

(b) Velocity derivative.

Figure C.5: Pressure and velocity time derivative distributions.

800

700

600

500

400

Omega

300

200

100

time
5.08

5.06
5.04
5.02

300

3!

350

375 400

Figure C.6: Vorticity (Q) distribution.




BIBLIOGRAPHY

[1] Anderson. Fundamentals of Aerodynamics. McGraw-Hill, 2001.

[2] Anthoine, J. Experimental and numerical study of aeroacoustic phenomena in large solid
propellant boosters. PhD thesis, Universite libre de Bruxelles-von Karman institute,
2000.

[3] Anthoine, J., Buchlin, J. M., and Guery, J. F. Experimental and numerical investiga-
tions of nozzle geometry effect on the instabilities in solid propellant booster. AIAA
Paper 2000-3560, 2001.

[4] Anthoine, J., Buchlin, J. M., and Hirschberg, A. Theoretical modelling of the effect of
the nozzle cavity volume on the resonance level in large solid rocket motors. AIAA
Paper 2001-2102, 2001.

[5] Anthoine, ]J., Buchlin, J. M., and Hirschberg, A. Effect of nozzle cavity on resonance
in large SRM: theoretical modeling. Journal of propulsion and power, 18, 2002.

[6] Anthoine, ]J., Mettenleiter, M., Repellin, O., Buchlin, ]J.-M., and Candel, S. Influ-
ence of adaptive control on vortex-driven instabilities in a scaled model of solid
propellant motors. Journal of sound and vibration, 262, 2003.

[7] Arnald, D., Habiballah, M., and Coustols, E. Théorie de I'instabilité laminaire et
criteres de transition en écoulement bi et tri dimensionnel. La Recherche Aérospatiale,
1984-2, 1984.

[8] Auregan, Y., Maurel, A., and Pagneux, V. Sound-flow interactions. Springer, 2002.

[9] Avalon, G. Etudes expérimental des instabilités naturelles d’'un écoulement avec
injection a la paroi. campagne d”essais vecla assm7. March 1999. Rapport Technique
no. 4/6163 DSNA/Y/DEFA.

[10] Ballereau, S., Godfroy, F.,, Guery, J. F,, and Ribereau, D. Assessment on analysis and
prediciton method applied on thrust oscillations of Ariane 5 Solid Rocket Motor.
AIAA Paper 2003-4675, 2003.

[11] Ballereau, S., Godfroy, E, Orlandi, O, and Ballion, D. Numerical Simulations and
Searching Methods of Thrust Oscillations for Solid Rocket Boosters. AIAA Paper
2006-4425, 2006.

137



138 BIBLIOGRAPHY

[12] Betchov, R. and Criminal, W. O. Stability of parallel flow. Academic, New York,
1967.

[13] Blevins, R. D. Flow-induced vibrations. Van Nostrand, New York, 1977.

[14] Brooks, K. P. and Beckstead, M. W. Dynamics of aluminum combustion. Journal of
Propulsion and Power, 11(4), 1995.

[15] Brown, R. S., Blackner, A. M., Willoughby, P., and Dunlap, R. Vortex-generated
sound in cavities. AIAA Paper 86-0531, 1986.

[16] Brown, R. S., Dunlap, R., Young, S. W., and Waugh, R. C. Vortex shedding as a
source of acoustic energy in segmented solid rockets. Journal of Spacecraft, 18(4),
1981.

[17] Bruggeman, J. C., Hirschberg, M. E. H., van Dongen, A. P. J., and Gorter, ]. Flow
induced pulsations in gas transport systems: analysis of the influence of closed side
branches. Journal Fluids Engeeniring, 111, 1986.

[18] Casalis, G., Avalon, G., and Pineau, J. Spatial instability of planar channel flow with
fluid injection through porous wall. Physics of Fluids, 10:2558, 1998.

[19] Cavallini, E. Modeling and numerical simulation of solid rocket motor internal ballistic.
PhD thesis, Dipartimento di Ingegneria Aerospaziale e Astronautica, Sapienza,
Universita di Roma, 2009.

[20] Cavallini, E., Favini, B., Di Giacinto, M., and Serraglia, F. Srm internal ballistic
numerical simulation by spinball model. AIAA Paper 2009-5512, aug 2009. 45"
ATAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2-5 August 2009,
Denver, Colorado.

[21] Cavallini, E., Favini, B., Di Giacinto, M., and Serraglia, F. Internal ballistics simula-
tion of nawc tactical motors with spinball model. AIAA 2010-7136, July 2010. 46'™
ATAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 25-28 July 2010,
Nashville, TN.

[22] Cavallini, E., Favini, B., Di Giacinto, M., and Serraglia, F. Srm qld unsteady internal
ballistics simulation using 3d grain burnback. Space Propulsion 2010, 2010. 3-6 May,
San Sebastian, Spain.

[23] Chu, B.-T. and Kovasznay, L. S. G. Nonlinear interactions in a viscous heat-
conducting compressible gas. Journal of fluid mechanics, 3, 1958.

[24] Clements, R. R. An inviscid model of two dimensional vortex shedding. Journal of
Fluid Mechanics, 57, 1973.



BIBLIOGRAPHY 139

[25] Couton, D., Plourde, F.,, and Doan, S. Analysis of energy transfers of a sheared flow
generated by wall injection. Experiments in Fluids, 26(3), 1999.

[26] Culick, E. E. C. Acoustic oscillations in solid propellant rocket chambers. Astronau-
tica Acta, 12(2), 1966.

[27] Culick, E E. C. Rotational axissymmetric mean flow and damping of acoustic waves
in a solid propellant rocket. AIAA Journal, 4, 1966.

[28] Culick, F. E. C. The stability of one dimensional motions in a rocket motor. Combus-
tion Science and technology, 7, 1973.

[29] Culick, E. E. C. Combustion instabilities in propulsion system. proceedings of the
NATO Advanced Study Instituteon unsteady cmbustion, 1993.

[30] Culick, F. E. C. and Magiawala, K. Exitation of acoustic modes in chamber by vortex
shedding. Journal of Sound and Vibration, 64(3), 1979.

[31] Delprat, N. Rossiter’s formula: A simple spectral model for a complex amplitude
modulation process? Physics of fluids, 2006.

[32] Di Giacinto, M. and Serraglia, F. Modeling of solid motor start-up. AIAA Paper
2001-3448, 2001. 37'" AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt
Lake City, UT.

[33] Di Giacinto, M. and Serraglia, F. Modeling of srm ignition transient: Role of the
main phenomena. AIDAA, 2001. XVI Congresso Nazionale AIDAA, Palermo, Italy.

[34] Dotson, K. W., Koshigoe, S., and Pace, K. K. Vortex shedding in a large solid rocket
motor without inhibitors at the segment interfaces. Journal of propulsion and power,
13(2), 1997.

[35] Dunlap, R. and Brown, R. S. Exploratory experiments on acoustic oscilaltions driven
by periodic vortex shedding. AIAA Journal, 19(3), 1981.

[36] Dupays, J., Godfroy, E,, Orlandi, O., Prevot, P, Prévost, M., Gallier, S., Ballereau, S.,
and Fabignon, Y. Inert condensed phase driving effect of combustion instabilities
in solid rocket motor. AAAF, 2008.

[37] Favini, B., Cavallini, E., Di Giacinto, M., and Serraglia, F. An Ignition-to-Burn Out
Analysis of SRM Internal Ballistic and Performances. 44th AIAA/ASME/SAE/SEE
Joint Propulsion Conference & Exhibit, 21-23 July 2008, Hartford, Connecticut.

[38] Favini, B., Di Giacinto, M., and Serraglia, F. Solid rocket motor ignition transient
revisited. Proc. of the 8™ Int. Workshop on Combustion and Propulsion, 2002. Pozzuol,
Italy.



140 BIBLIOGRAPHY

[39] Favini, B., Serraglia, F., and Di Giacinto, M. Modeling of flowfield features dur-
ing ignition of solid rocket motors. AIAA Paper 2002-3753, 2002. 38th ATAA/AS-
ME/SAE/ASEE Joint Propulsion Conference, Indianapolis, Indiana.

[40] Feraille, T. Instabilitiés de I’écoulement interne des moteurs a propergol solide.
Thesis, ENSAE, 2004.

[41] Ferretti, V. and Favini, B. Pox g-1-d modeling of srm aeroacoustic. Technical report,
Internal Report for ESA-ESRIN, Frascati, Italy, 2009.

[42] Ferretti, V., Favini, B., Cavallini, E., Serraglia, F.,, and Di Giacinto, M. Quasi 1-D
modeling of SRM aeroacoustics. Space Propulsion Conference, 2010, San Sebastian,
Spain.

[43] Ferretti, V., Favini, B., Cavallini, E., Serraglia, F., and Di Giacinto, M. Numerical
simulations of acoustic resonance of Solid Rocket Motor. AIAA-2010-6996, 2010.
46th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, Nashville,
TN, July 25-28, 2010.

[44] Flandro, G. A. AGARD consulting mission to ONERA, 1986.

[45] Flandro, G. A. Vortex driving mechanism in oscillatory rocket flows. Journal of
Propulsion and Power, 2(3), 1986.

[46] Flandro, G. A. and Jacobs, H. R. Vortex-generated sound in cavities. AIAA Paper
73-1014, 1973.

[47] Flatau, A. and Van Moorhem, W. Prediction of vortex shedding responses in seg-
mented solid rocket motors. AIAA Paper 90-2073, 1990.

[48] Flechter, N. H. and Rossing, T. The physics of musical instruments. Springer-Verlag,
1998.

[49] E.Gizzi. Il fenomeno aeroacustico negli endoreattori a propellente solido. Master’s
thesis, Universita di Roma La Sapienza, 2009.

[50] J. Griffond. Instabilité pariétale et accrochage aéroacoustique dan les conduits a
parois débitantes simulant les moteurs a propergol solide d’ariane 5. Master’s
thesis, ENSAE, 2001.

[51] Hart, R. W. and McClure, E. T. Theory of acoustic instability in solid propellant
rocket combustion. 10th International symposiumon combustion, The combustion Inst.,
1965.

[52] Hirschberg, A.and Rienstra, S. W. An Introduction to Acoustic. Eindhoven University
of Technology, 2004.



BIBLIOGRAPHY 141

[63] Hirshberg, A., Hulshoff, S., van Hassel, R. R., and Anthoine, J. Vortex-acoustic
interaction in internal flow: the whistler-nozzle, human whistling and the solid
propellant rocket motor. In Proceedings of the 3th colloque ReT CNES-ONERA, Ecoule-
ment internes en propulsion solide, 1998.

[54] Hourigan, K., Welsh, M. C., and Thompson, M. C. Aerodynamic sources of acoustic
resonance in a duct with baffles. Journal of Fluids and Structure, 4, 1990.

[65] Howe, M. S. Contributions to the theory of aerodynamic sound, with application to
excess jet noice and the theory of the flute. Journal of Sound and Vibration, 71, 1975.

[56] Howe, M. S. The dissipation of sound at an edge. Journal of Sound and Vibration, 70,
1980.

[57] Howe, M. S. On the absorption of sound by turbulence and other hydrodynamic
flows. Journal of Applied Mathematics, 32, 1985.

[58] Howe, M. S. Acoustics of fluid-structure interactions. Cambridge University Press,
1998.

[59] Huang, X. Y. and Weaver, D. S. On the active control of shear layer oscillations
across a cavity in the presence of pipeline acoustic resonance. Journal of Fluids and
Structures, 5, 1991.

[60] Hulshoff, S. J., Hirschberg, A., and Hofmans, G. C. Sound production of vortex-
nozzle interactions. Journal of Fluids Mechanics, 439, 2001.

[61] Hulshoff, S. J., Hoeijmakers, H. W. M, and Mulder, J. A. Prediction of aircraft
longitudinal response using time-accurate Euler computation. AIAA paper 1996-
2485,1996.

[62] Hussain, F. A. K. M. Coherent structures and turbulence. Journal of Fluids Mechanics,
173, 1997.

[63] Jou, W. H. and Menon, S. Modes of oscillation in a nonreacting ramjet combustor
flow. Journal of Propulsion and Power, 6(5), 1990.

[64] Kourta, A. Instability of Channel Flow with Fluid Injection and Parietal Vortex
Shedding.

[65] Kourta, A. Vortex shedding in segmented solid rocket motors. Journal of Propulsion
and Power, 12(2), 1996.

[66] Kourta, A. Shear layer instability and acoustic interaction in solid propellant rocket
motors. Interational Journal of Numerical Fluid Mechanics, 25, 1997.



142 BIBLIOGRAPHY

[67] Krasny, R. Computation of vortex sheet roll-up in the Treffetz plane. Journal of Fluid
Mechanics, 184, 1987.

[68] Kuentzmann, P. Combustion instabilities. AGARD LS 180, 1991.

[69] Lighthill. On Sound Generated Aerodynamically, I. Proc. Roy. Soc. A, Vol. 211, 1952,
pp 564-587, 1952.

[70] Lighthill. On Sound Generated Aerodynamically, II. Proc. Roy. Soc. A, Vol. 222, 1954,
pp 1-32, 1954.

[71] Lin, C. C. The theory of hydrodynamic stability. Cambridge Univ. Press., Cam-
bridge, England, 1955.

[72] Lugt, H.J. Vortex Flow in Nature and Technology. Wiley, 1983.

[73] Lupoglazoff, N. and Vuillot, F.  Analyse du vortex shedding par simulation
numérique 2D dans un propulseur solide et calculus de pousée instationnaire. Col-
loque CNES-ONERA,Chatillon, 1992.

[74] Lupoglazoff, N. and Vuillot, F. Numerical simulation of vortex shedding phe-
nomenon in 2D test case solid rocket motors. AIAA Paper 92-0776, 1992.

[75] Lupoglazoff, N. and Vuillot, F. Simulation numerique bidimensionelle des ecoule-
ments instationnaires dans les propulseurs a propergol solide. La Recherche Aerospa-
tiale, 1992-2, 1992.

[76] Lupoglazoff, N. and Vuillot, . Comparison between firing tests and numerical
simulation of vortex shedding in 2D test solid rocket motor. AIAA Paper 93-3066,
1993.

[77] Mason, D. R., Folkman, S. L., and Behring, M. Thrust oscillations of the Space
Shuttle solid rocket booster motor durinf static test. AIAA Paper 79-1138, 1979.

[78] Matveev, K.I. Reduced-oder modeling of vortex-driven excitation of acoustic modes.
Acoustic research letters online, 2004.

[79] Matveev, K. I. Vortex -acoustic instability in chambers with mean flow and heat
release. Technical acoustics, 2004.

[80] Matveev, K. I. and Culick, E. E. C. A model for combustion instability involving
vortex shedding. Combust. Sci. and Tech., 175, 2003.

[81] Menon, S. and Jou, W.-H. Numerical simulations of oscillatory cold flows in an
axisymmetric ramjet combustor. Journal of Propulsion, 6, 1990.



BIBLIOGRAPHY 143

[82] Michalke, A. The instability of free shear layers: a survey on the state of art. Progress
in aerospace Sciences, 12, 1972.

[83] Nesman, T. RSRM - Chamber pressure oscillations: full scale ground and flight
test summary and air flow test results. In Proceedings of the AIAA/SAE/ASME/ASEE
Solid rocket motor combustion instability workshop, 31st Joint Propulsion Confence. AIAA
Solid rocket technical committee, AIAA, 1995.

[84] Nomoto, H. and Culick, F. E. C. An experimental investigation of pure tone gener-
ation by vortex shedding in a duct. Journal of Sound and Vibration, 84(2), 1982.

[85] Powell, A. Theory of vortex sound. Journal of Acoustical Society of America, 36(1),
1964.

[86] Price, E. W. Comments on the role of aluminum in suppressing instability in solid
propellant rocket motors. AIAA Journal, 9(5), 1971.

[87] Prévost, M., Vuillot, E, and Traineau, J. C. Vortex shedding driven scilations in a
subscale motor for the Ariane 5 MPS solid rocket motors. AIAA 96-3247, 1996.

[88] Rienstra, S. W. and Hirschberg, A. An Introduction to Acoustic. Eindhoven University
of Technology, 2006.

[89] S. K. Robinson. A review of vortex structures and associated coherent motions in
turbolent boundary layer. Proceedings of the second IUTAM symposium on structural
turbulence and drag reduction, Zurich, 1989.

[90] Rossiter, J. E. The effect of cavities on the buffeting of aircraft. Royal Arircraft
Establishment, Technical memo, 1962.

[91] Rossiter, J. E. Wind tunnel experiments on the flow over a rectangular cavities at
subsonic and transonic speeds. Aeronautical research council, Ministry of Aviation,
Reports and memoranda 3438, 1964.

[92] Schachemann, A. and Rockwell, D. Self-sustained oscillations of turbulent pipe
flow terminated by an axisymmetric cavity. Journal of Sound and Vibration, 73(1),
1980.

[93] Scippa, S., Pascal, P., and Zanier, F. Ariane 5 - MPS - Chamber pressure oscillations
full scale firing results analysis and further studies. AIAA Paper 94-3068, 1994.

[94] Serraglia, F. Modeling and numerical simulation of ignition transient of large solid rocket
motors. PhD thesis, Scuola di Ingegneria Aerospaziale, La Sapienza, Universita di
Roma, 2003.



144 BIBLIOGRAPHY

[95] Summerfield, M. and Krier, H. Role of aluminum in suppressing instability in solid
propellant rocket motors. Problems of hydrodynamics and continuum mechanics, 1969.
Sixtieth anniversary volume, Society for indipendent and applied mathematics.

[96] Sutton, G. P. and Ross, D. M. Rocket Propulsion Element. Wiley and Sons, 1976.

[97] Temkin, S. and Dobbins, R. A. Attenuation and sispersion of sound particle-
relaxation processes. Journal of the acoustical society of america, 40(2), 1966.

[98] M. Tennenini. Oscillazioni di pressione nei motori a propellente solido. Master’s
thesis, Iniversita di Roma, La Sapienza, 2010.

[99] Tissier, P. Y., Godfroy, F.,, and Jaquemin, P. Simulation of three dimensional flows
inside solid rocket motors using a second order finite volume method - Application
to the study of unstable phenomena. AIAA Paper 92-3275,1992.

[100] Traineau, J. C., Prevost, M., Vuillot, E, Le Breton, P., Cuny, J., Preioni, N., and Bec,
R. A subscale test program to assess the vortex shedidng driven instabilities in
segmented solid rocket motors. AIAA Paper 97-3247,1997.

[101] B. Ugurtas. Etudes numérique et espérimentale des instabilités hydrodynamiques
et du couplage aéro-acoustique dans un écoulement de taylor. Thesis dissertation,
Paris, 2000.

[102] Varapaev, V. N. and Yagodkin, V. 1. Flow stability analysis in a channel with porous
wall. Izvetiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 4(5), 1969.

[103] Verge, M. P, Causé, R., Fabre, B., Hirschberg, A., Wijnands, A. P. ]., and Steenbergen,
A. Jet oscillations and jet drive in recorder-like instruments. Acta Acustica, 2, 1994.

[104] Vuillot, F. Vortex-shedding phenomena in solid rocket motors. Journal of Propulsion
and Power, 11(4), 1995.

[105] Vuillot, F. and Casalis, G. Internal aerodynamics in solid rocket propulsion, Motor
flow instabilities - Part 1. RTO AVT/VKI Special Course, 2002.

[106] Vuillot, F, Lupoglazoff, N., Prevost, M., and Traineau, J. Improved modelisation
for numerical simulation of oscillatory solid rocket motors. In Proceedings of the
AIAA/SAE/ASME/ASEE Solid rocket motor combustion instability workshop, 31st Joint
Propulsion Conference. AIAA Solid rocket technical committee, AIAA, 1995.

[107] Vuillot, F., Traineau, J., Prevost, M., and Lupoglazoff, N. Experimental validation of
stability assessment methods for segmented solid propellant motors. AIAA Paper
93-1883, 1993.



