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Abstract  

This study aims at clarifying the mechanisms underlying the formation and maintenance of 

stable social units in bats (Chiroptera), a characteristic shared by most species of this group of 

mammals, by investigating the effects of the early social environment, i.e. pursuing the 

hypothesis that imprinting-like influences on the development of social behaviour exist and 

may have a profound impact on the social lives of bats.  

First I present an overview on bats' social behaviour and systems: these mammals comprise a 

high number of species and thus constitute an excellent group for testing general hypotheses 

about evolution and development of social behaviour. Bat social systems in fact range from 

solitary species to others aggregating in conspicuous groups of up to millions individuals. 

Such complexity leads to a variety of social behaviours rarely found in other taxonomic 

groups: there is increasing evidence that bats are able of cooperative social behaviours such as 

allogrooming, communal nursing, group hunting and social learning, all interactions that 

require high-level cognitive skills.  

Investigating such a complex system needs a multi-disciplinary approach, fundamental for 

disentangling the mechanisms through which bat sociality develops. I performed a series of 

experiments and used classical ethological and statistical methods (ethogram composition, 

general linear models) together with social network analysis (SNA), developing the analyses 

of social interactions on an individual-based approach.  

Experiment 1 deals with the ability of bats to modulate their behaviour (e.g. aggressiveness) 

according to intrinsic (e.g. age, sex) and extrinsic (familiarity) factors during a social 

interaction.  I performed dyadic arena-encounters where two bats per test were allowed to 

freely interact. I recorded aggressive and affiliative behaviours and measured the degree of 

affiliation towards familiar and unfamiliar individuals of captive European free-tailed bats 
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(Tadarida teniotis). By testing individuals from different captive colonies and of different 

age, I measured the effects of familiarity, sex and age on the aggressive behaviour of this 

species, using aggressiveness as a proxy for xenophobia. I found significant effects of all the 

selected factors upon the degree of affiliation among individuals: familiar bats were more 

prone to perform affiliative behaviours, behaving xenophobically towards non-group 

members. This xenophobic attitude was lower in females and almost null towards juveniles. 

These results indicate that adult bats' behaviour is influenced by previous social experiences, 

also suggesting that social bonds formed inside colonies are long lasting regardless of genetic 

relatedness existing between individuals.  

With experiment 2 I investigate the mechanisms leading to the formation of social subunits in 

groups bats, using Pipistrellus kuhlii as a model species. By manipulating the early social 

environment of young bats and describing their pattern of association inside artificial roost as 

well as measuring their rates of interaction, I demonstrate that spatial proximity inside roosts 

promotes social cohesion. These associations are maintained by bats throughout adulthood by 

means of cooperative behaviours such as allogrooming and social thermoregulation. Both 

classical approach and social network analysis of interacting bats indicate that physical 

contacts and cooperative behaviours among bats inside a colony are non-random and are more 

frequently performed between individuals that already had contacts at a very young age.  

Following the same approach and techniques of Experiment 2, with Experiment 3 I test the 

hypothesis that the same mechanisms that produce group cohesion inside roosts can lead to 

the formation of multi-specific associations of bats. Such multi-specific groups are 

widespread among mammals, and in bats they are assumed to form due to eco-physiological 

reasons (i.e. species sharing micro-climatic requirements). I manipulated the early social 

environment of two species that naturally occur inside the same roosts; very young Kuhl's (P. 

kuhlii) and Savi's (Hypsugo savii) bats were exposed to artificial multi-specific social contacts 
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in captivity. I demonstrate that early social experience does influence social bonding also 

beyond the species' boundaries. Independent young bats in fact selected previous group-

members for social thermoregulation and reciprocal grooming, regardless of species 

membership. 

Results from all experiment clearly indicate a strong effect of early social environment on the 

interaction and association patterns in bats, both at short (Experiments 2-3) and long 

(Experiment 1) time scales, suggesting the existence of imprinting-like mechanisms. Such 

mechanisms lead to the formation of cryptic social subunits within bat colonies and probably 

enhance the cohesion of the entire social structure, with obvious and strong consequences on 

behavioural and ecological (e.g. demographic and epidemiological) scales.  
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Riassunto 
 

Scopo di questa ricerca è chiarire alcuni aspetti alla base della formazione di gruppi sociali 

stabili e coesi, e del loro mantenimento, in un ordine di Mammiferi altamente sociale, i 

chirotteri, con particolare riferimento agli effetti dell’esperienza individuale e dell’ambiente 

sociale durante le prime fasi dello sviluppo.  

La prima parte della presente tesi introduce il tema dello sviluppo comportamentale nei 

pipistrelli e dei loro sistemi sociali. I chirotteri costituiscono il secondo ordine di mammiferi 

per numerosità, con oltre 1230 specie attualmente classificate, la maggior parte delle quali 

vive in gruppi sociali almeno durante parte del proprio ciclo biologico; data la loro grande 

variabilità ecologica e comportamentale, i chirotteri costituiscono un eccellente gruppo per 

testare ipotesi generali sull’evoluzione e sullo sviluppo del comportamento sociale nei 

mammiferi.  

Le strutture sociali dei pipistrelli, infatti, variano da sistemi molto semplici (specie solitarie) a 

complessi raggruppamenti composti da milioni d’individui. Tale complessità comporta una 

varietà molto ampia di differenti comportamenti sociali difficilmente rilevabili in altri gruppi 

tassonomici: l’avanzamento delle tecniche d’indagine comportamentale dirette e indirette ha 

consentito in tempi recenti di rilevare comportamenti quali grooming reciproco, condivisione 

delle cure parentali, foraggiamento di gruppo e apprendimento sociale, tutte interazioni che 

necessitano di capacità cognitive di alto livello.  

Lo studio di un sistema così complesso richiede necessariamente un approccio 

multidisciplinare per isolare i singoli meccanismi attraverso cui si sviluppa il comportamento 

sociale in questi animali. Pertanto per questa ricerca ho condotto una serie di esperimenti, 

usando sia metodologie classiche di analisi comportamentale (composizione di etogrammi, 
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modelli lineari) sia un approccio di tipo network (social network analysis), seguendo sempre 

un’impostazione “individual-based”.  

L’Esperimento 1 è stato sviluppato per verificare l’effetto di fattori intrinseci (età e sesso) ed 

estrinseci (familiarità/esperienza) durante le interazioni sociali di chirotteri adulti. Ho pertanto 

promosso degli incontri diadici tra individui adulti di chirotteri in arene neutre, registrando 

comportamenti agonistici ed affiliativi e calcolando in seguito un indice di affiliazione per 

ciascun individuo in ciascun incontro, in modo da testare ogni soggetto in tutte le condizioni 

di fattori possibili. Utilizzando come soggetti sperimentali individui di molosso di Cestoni 

(Tadarida teniotis) provenienti da differenti colonie in cattività e con diverse età, ho potuto 

testare gli effetti di familiarità, sesso ed età sul comportamento sociale di questa specie, 

usando l’aggressività come indice di xenofobia. Tutti i fattori considerati si sono rivelati 

significativi: durante gli incontri con individui provenienti da colonie differenti, i pipistrelli si 

rivelano significativamente più aggressivi rispetto ad incontri tra membri dello stesso gruppo 

sociale. Questa tendenza xenofobica è meno evidente per le femmine rispetto ai maschi, e 

viene quasi del tutto soppressa durante incontri tra adulti ed individui giovani. Questi risultati 

indicano una plasticità comportamentale nei chirotteri, che sono in grado di modulare il 

proprio comportamento durante l’interazione con altri individui anche in seguito 

all’esperienza individuale precedente.  

L’Esperimento 2 è stato costruito per evidenziare i meccanismi che portano alla formazione 

dei legami sociali nei chirotteri, in particolare utilizzando individui di pipistrello albolimbato 

(Pipistrellus kuhlii). Manipolando l’ambiente sociale durante le prime fasi di sviluppo dei 

giovani soggetti sperimentali e descrivendone in seguito i pattern di associazione tra individui 

all’interno di rifugi artificiali, dimostro che il contatto fisico durante le prime fasi di sviluppo 

di un pipistrello promuove la formazione di legami sociali durevoli. I legami sociali tra 

individui vengono inoltre mantenuti e rinsaldati dai chirotteri in età adulta tramite interazioni 
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affiliative e cooperative non casuali, che vengono effettuate selettivamente tra individui tra 

loro familiari. Questo risultato dimostra un forte effetto dell’esperienza precoce sul 

comportamento di questi mammiferi, indicando la presenza di meccanismi d’imprinting 

sociale.  

Seguendo lo stesso approccio e le stesse tecniche dell’Esperimento 2, con l’Esperimento 3 

testo l’ipotesi che gli stessi meccanismi di imprinting sociale che producono la formazione di 

gruppi coesi all’interno delle colonie siano alla base dei fenomeni di aggregazioni 

multispecifiche tra chirotteri, spesso rilevate nei rifugi in natura. Gruppi multispecifici sono 

diffusi tra i mammiferi, e nel caso dei chirotteri la loro rilevanza adattativa viene 

generalmente indicata nel risparmio energetico dovuto alla termoregolazione facilitata. La 

registrazione di associazioni multispecifiche preferenziali tra alcune specie di chirotteri in 

natura e l’ampia disponibilità di spazio in molti rifugi dove queste associazioni si ritrovano 

lasciano però supporre la presenza di meccanismi più complessi all’origine della socialità 

interspecifica nei pipistrelli. Pertanto, ho manipolato l’ambiente sociale precoce in due specie 

di chirotteri che naturalmente formano colonie multispecifiche (P. kuhlii e Hypsugo savii), 

esponendo giovani individui a contatti multispecifici controllati, in cattività. L’analisi 

comportamentale (come per l’Esperimento 2) ha rivelato che l’esperienza sociale precoce 

influenza la formazione di legami tra individui indipendentemente dalla loro specie di 

appartenenza: individui di specie diverse ma cresciuti negli stessi gruppi sperimentali 

tendono, infatti, a rimanere associati e ad interagire selettivamente anche se viene offerta loro 

l’opportunità di associarsi a conspecifici (non familiari).  

Analizzati nel loro insieme, i risultati di questi tre esperimenti indicano un significativo 

effetto dell’ambiente precoce e dell’esperienza individuale nello sviluppo del comportamento 

sociale nei chirotteri, in particolare suggerendo la presenza di meccanismi di imprinting 

sociale, con effetti sia sul breve che sul lungo termine sulla vita sociale dei singoli individui. 
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La scoperta di questi meccanismi e dei loro effetti contribuisce alla comprensione delle 

dinamiche sociali ed ecologiche dei chirotteri sia a livello individuale sia di comunità, con 

importanti conseguenze dal punto di vista etologico, ecologico, evolutivo ed epidemiologico.  
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Introduction  

Bats’ social systems  

Bats are a numerous and diverse mammal order numbering about 1230 different species 

(IUCN 2013), characterized by high sociality, with hundreds of species featuring a wide range 

of body sizes, ecological preferences and trophic niches and showing very different social 

systems (McCracken & Wilkinson 2000). While very few species of bat are solitary (e.g. 

Lasiurus spp.), most temperate and tropical bats live in groups at least during part of their 

biological cycle, forming colonies that number from a few to several hundred individuals, 

sometimes showing complex social structures (Wilkinson 1984, 1985; Kerth 2008a).  

Different hypotheses have been developed in order to explain the strong tendency of bats to 

engage in social groups, all concerning key-aspects of their ecology and biology. First, bats 

are generally long-lived mammals, clearly falling out of the linear relationship between size 

and longevity found for other mammals (Prothero & Jürgens 1987). The cause of their 

longevity is being the focus of considerable research effort with implications for the 

development of human medical applications (Brunet-Rossinni & Austad 2004). One of the 

main factors deemed important for the unusual longevity of bats is that these heterothermic 

mammals make a large use of torpor during winter (at least in temperate areas). However, 

heterothermy cannot be the only factor affecting bats’ longevity, as also species which do not 

undergo torpor (e.g. those living at tropical latitudes) are unusually long living (Prothero & 

Jürgens 1987). Longevity, paired by the mammalian tendency to philopatry - mostly for 

females (Wolff 1994; Burland et al. 2001), - allow different generations of bats to overlap 

both in time and space, and thus to form unevenly-aged, long-lived groups of familiar 

individuals (Kerth 2008a). The consequent stability of these groups is considered among the 

main drivers of the evolution of complex social behaviours (Emlen 1994).   
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Being maily small mammals, bats are characterized by a very high physiological energy 

demand (Kurta et al. 1989; Willis & Brigham 2007). Active flight is a very expensive 

locomotion modality in terms of energy, thus most bat species, particularly the echolocators 

(Hutson & Mickleburgh 2001), are characterized by facultative heterothermy, i.e. they can 

regulate body temperature (and consequently energy expenditure) during the 24h cycle (e.g. 

daily torpor) and during the year (i.e. hibernating). During breeding (e.g. pregnancy and 

nursing of the offspring) bats though have to balance the need of saving energy with the ease 

of breeding, i.e. foetus development and milk production (Kurta et al. 1989) are both 

processes that need higher body temperatures. Bats can accomplish this by aggregating, and 

thus engaging in social thermoregulation (Willis & Brigham 2007).  

Bats are also usually constrained by their particular ecological needs, such as roost 

availability. Only a few species of bats, so called “tent-making” bats from the family 

Phyllostomidae (Sagot & Stevens 2011), are able to “build” autonomously their own roost; 

otherwise, most species are dependent on discretely distributed existing habitat elements 

(Kunz & Fenton 2006). A limited resource item such as an optimal roost (e.g. a cave or a 

senescent tree) can exert a strong attraction on a number of individuals, forcing bats to 

aggregate and thus leading to the evolution of mechanisms for physical tolerance and 

eventually of social behaviours (Kerth 2008a).  

However, limited roost availability alone cannot explain sociality in bats, as many species use 

very common and largely available structures (Kunz & Fenton 2006), e.g. buildings, foliage 

and rock crevices. Such roosts can be so widespread that many species typically use a 

network of available roosts (i.e. changing roost frequently), a behaviour known as “roost-

switching” (Willis & Brigham 2004; Russo et al. 2005). Moreover, the same species can use 

different types of roosts according to sex (Angell et al. 2013; Levin et al. 2013), while species 
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that use the same roosts can have significantly different social systems (McCracken & 

Wilkinson 2000).  

The state of the art of the knowledge of bat sociality is clearly far from being exhaustive, and 

much is still to be investigated, particularly on the evolutionary origin and the ecological 

correlates of aggregation and colony stability, as well as the mechanisms underlying the 

establishment of group cohesion.  

There is increasing evidence from studies on wild and captive colonies that bats form long-

lasting relationships with their colony mates (Kerth et al. 2011), and that these associations 

increase individual fitness by means of cooperating activities such as social thermoregulation 

(Willis & Brigham 2007), communal nursing (Bohn et al. 2009), food sharing (Paolucci et al. 

2006; Carter & Wilkinson 2013) and cooperative hunting (Dechmann et al. 2010). A well-

known example of a complex cooperation system among bats is found in vampire bats 

(Wilkinson 1984, 1986): reciprocal food-sharing and social allogrooming are frequent in the 

common vampire Desmodus rotundus, and seem to be directed both towards kin and non-kin 

familiar mates (Wilkinson 1984, 1985), relying on individual recognition mechanisms 

mediated by odour (Carter & Wilkinson 2013) and hearing of social calls (as for Diaemus 

youngi: Carter et al. 2012).  

 

Recognition mechanisms in bats 

Group cohesion among bats relies on the occurrence of group and individual recognition 

mechanisms mediated by a range of sensorial cues such as olfactory (De Fanis & Jones 

1995a; Safi & Kerth 2003; Englert & Greene 2009) and acoustic signals, including both 

echolocation and social calls (Balcombe 1990; Balcombe & McCracken 1992; Siemers & 

Kerth 2006; Carter et al. 2008; Voigt-Heucke et al. 2010; Mann et al. 2011).  
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Female bats are known to perform relatively prolonged parental care towards their offspring 

(Raghuram & Marimuthu 2007; Bohn et al. 2009; Geipel et al. 2013), thus the evolution of 

recognition mechanisms for maintaining social cohesion (e.g. between mother and pup) 

probably had a main role in shaping bat social evolution. Recognition between mother and 

pup has been deeply investigated, as it is a fundamental ability for bats, e.g. inside large 

aggregations at nursery sites (Balcombe 1990). Particularly, in T. brasiliensis, a largely 

studied species in USA, there is evidence of reciprocal recognition between mother and pup 

by means of olfactory (Gustin & McCracken 1987) and acoustic communication (Balcombe 

1990).  

As most bats leave their offspring alone inside the roost as newborns while going out to 

forage (Dietz et al. 2009), it is highly probable that acoustic and olfactory imprinting between 

mother and pup occur in the first hours (or days) of a bat’s life. Imprinting is a widespread 

process of memorization of other individuals’ identity, which has great importance upon a 

variety of aspects in different species, ranging from social to sexual individual preferences 

(Bateson 1979; Slagsvold et al. 2002; Verzijden & Ten Cate 2007). This memorization 

process is usually limited in time during the early stages of an individual’s life, generally 

called “sensitive period”, but it is to persistent to affect individual’s behaviour throughout its 

life (Bateson 1979; Slagsvold et al. 2002; Verzijden & Ten Cate 2007).  

 

Aims of the study and thesis outline 

The main aim of this study is to clarify the mechanisms underlying the formation and 

maintenance of cohesive groups among bats. Particularly, I will try to answer the following 

questions:  

 

1. Do bats change social relationships according to previous experience? I.e. can group 
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membership be determined by experience rather than mere genetic relatedness 

between individuals? 

2. Do early experiences influence social behaviour of bats? I.e. do bats form social bonds 

through spatial proximity between individuals at an early age? 

3. Do mechanisms investigated under point 2) also have a role in the formation of mixed-

species colonies of bats?  

 

As working hypothesis, I suggest that social imprinting-like mechanisms might play a major 

role in shaping the development of social relationship in bats, highlighting the role of 

experience and early social environment in structuring the social lives of these animals.  

To test this hypothesis, between years 2009 and 2012 I conducted a series of experiments in 

order to disentangle the development of social bonding and its behavioural consequences in 

captive bats. The use of captive colonies is fundamental to investigate intimate aspects of bat 

behaviour, as most social interactions among colony-mates occur inside roosts, a condition 

which strongly limits the chances to record or observe direct behaviours and thus conduct in-

field studies (Siemers & Page 2009).  

 

The first experiment (Experiment 1) deals with the ability of bats to modulate their behaviour 

(e.g. aggressiveness) according to intrinsic (e.g. age, sex) and extrinsic (previous social 

experience) factors during a social interaction. I recorded aggressive and affiliative 

behaviours and measured the degree of affiliation towards familiar and unfamiliar bats during 

dyadic arena-encounters where two bats per test were allowed to freely interact. Aggression, 

i.e. the set of behaviours used with the intent to cause direct physical harm (Hinde 1974) or 

indirect detrimental effects (Wingfield et al. 1987) to an opponent, is an important 

determinant in the characterization of mating and social systems of animals (Trivers 1971). 
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Most social species evolved ritualized displays and non-physical communication (e.g. 

posturing and acoustic signals) to channel aggression during conflictual situations (Lorenz 

1963). For social species, i.e. those living in groups with high frequencies of interactions 

among individuals, aggressive behaviours and tolerance between group-members are two 

diverging forces which play a major role in shaping the social structure of the group, as well 

as of their mating system (Trivers 1971; McCracken & Wilkinson 2000). Such forces are also 

shaped by a species’ ecological and biological traits, as demonstrated by comparative studies 

on rodents (Patris et al. 2002). The degree of aggressiveness exhibited or elicited by an 

individual is, in general, also influenced by intrinsic factors such as individual's age and sex. 

Juvenile animals in fact are known to elicit and perform fewer aggressive interactions, thus 

being more tolerated (e.g. Scott et al. 2004 and Hirsch 2007). Females of many species also 

tend to be less aggressive than conspecific males, particularly towards same-sex individuals 

(but see von Engelhard et al. 2000), who report female intrasexual high aggressiveness). It has 

been suggested that this difference in the levels of aggressiveness between sexes is due to 

physiology, but the links among hormone levels, social status and aggressiveness in females 

of social species are still unclear (Christiansen 2001; Goymann et al. 2001). 

In group-forming species, the aversion towards non-group members - named xenophobia 

(from Greek: xènos, stranger and phobos, fear) - is common (Wilson 1975) and generally 

expressed by more frequent aggressive interactions and/or less frequent amicable ones 

directed towards non-group members. Such selective aggressiveness relies on mechanisms of 

individual or group-membership recognition which are widespread in social animals and are 

considered as a basis for the development of complex behaviours in a wide range of species, 

including invertebrates (lobsters: Karavanich & Atema 1998; octopuses: Tricarico et al. 

2011), amphibians (Morais et al. 2012), reptiles (LaDage & Ferkin 2006), birds (D’Eath & 

Stone 1999; Berg et al. 2011) and mammals (Safi & Kerth 2003; Proops et al. 2009; 
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Townsend et al. 2012).  

Conducting this experiment, I formulated the following hypotheses: 

1) The degree of aggressiveness exhibited in interactions between group members will differ 

from that shown between non-group members as a consequence of group membership 

recognition, i.e. bats will exhibit xenophobia. Specifically, I predict that fewer aggressive 

events and more amicable ones will be recorded in interactions between colony mates than in 

those involving strangers.  

2) Because female bats are often more sociable (Ortega & Maldonado 2006; Ortega et al. 

2008) and tend to be more gregarious (Kerth 2008a) than males, I predict that interactions 

between females will involve lower rates of aggressive events and higher rates of amicable 

ones than those between males.  

3) Because parental care in bats is usually prolonged even after weaning (Wilkinson 1984; 

Raghuram & Marimuthu 2007; Geipel et al. 2013) and thus juveniles tend to remain in their 

natal roost for some time also after becoming volant, I finally hypothesize that juveniles will 

be more tolerated by adults and predict that lower aggressiveness and higher rates of amicable 

behaviour will occur in juvenile vs. adult interactions than in those between adults.  

 

With the second experiment (Experiment 2) I investigate the mechanisms leading to the 

formation of the above-mentioned social subunits inside bat colonies. Adult bats may 

recognise colony mates and maintain stable social relationships influencing group activities 

such as roost choice, roost switching or communal foraging (Wilkinson & J 1998; Kerth & 

Konig 1999; Kerth et al. 2001, 2011; Garroway & Broders 2007).  

Although the existence of social subunits and cryptic social structures in bat colonies is 

known (Patriquin et al. 2010; Kerth et al. 2011), the potential influence of early social 

experiences on the establishment of such preferences has not yet been explored.  
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In most echolocating bats, the young are left in the roost when their mothers leave to forage 

(Altringham 1996; McCracken & Wilkinson 2000). Because young bats show poor 

thermoregulation, to reduce the cost of homeothermy they form clusters, sometimes 

numbering thousand individuals, preserving body heat by establishing a warm and thermally 

stable microclimate (Kurta et al. 1989; Kunz & Fenton 2006; Kerth 2008a). In several 

species, females roost separate from their young except when suckling it (Altringham 1996). 

Being altricial (Baptista et al. 2000), young bats remain in such clusters for long, a situation 

that may offer important opportunities to interact with neighbouring subjects and establish 

early social relationships. However, no study has so far addressed the effects of such spatial 

proximity on the development of preferential associations among individuals.  

Developing and retaining inter-individual bonds among social animals is known to have 

important consequences for survival and individual fitness (Cameron et al. 2009; Silk et al. 

2010). In most species living in groups, mothers and siblings are the first conspecifics 

newborns may encounter and interact with, and thus constitute their earliest social context 

(Spencer-Booth 1971).  

The social environment experienced during early development may largely influence adult 

social behaviour (Laviola & Terranova 1998). The effects on the individual of this close 

social environment have been widely investigated in vertebrates (Bekoff 1972; Bateson 1979; 

Margulis et al. 2005; Arnold & Taborsky 2010).  

Sexual choice and aggregation in several social species are mediated by kin recognition 

achieved through comparison of known versus unknown stimuli experienced in the first 

stages of the individuals’ lives (Mateo 2009). Such recognition mechanisms may result 

fundamental for group cohesion, influencing group choice (Van Horn et al. 2007) or 

communal movement patterns in bats (Kerth 2008b).  
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Following the same approach and techniques of the second experiment, with Experiment 3 I 

test the hypothesis that the same mechanisms that produce group cohesion among individuals 

inside a roost can lead to the formation of multi-specific associations of bats. Advantages of 

group living are obvious for those species that form stable monospecific groups, in which an 

increase of inclusive fitness is evident, e.g. by cooperating with kin (Grafen 1990) or by 

reciprocal altruism (Seyfarth & Cheney 1984). Some adaptive consequences of social 

grouping may be shared by mono- and multi-specific animal aggregations, e.g. increased 

foraging efficiency, dilution of predation risk and more efficient thermoregulation, however 

mixed species groups (MSGs) lack all the advantages derived from cooperation with kin and 

thus different explanations are needed for their formation and maintenance (Farine et al. 

2012). 

Living in MSG offers advantages such as increased foraging efficiency and dilution of 

predation risk (Stensland et al. 2003; Sridhar et al. 2009), as well as improved information 

transfer (Goodale et al. 2010) and thermoregulation (Bogdanowicz 1983). Associating with 

heterospecifics may provide more benefits than those offered by intraspecific associations if 

the latter result in strong competition among subjects sharing an identical ecological niche 

(Goodale et al. 2010). For the same reason, MSGs are expected to be more frequent between 

species having distinct ecological niches but sharing signalling mechanisms and/or the need to 

counter common potential predators to minimize interspecific competition and optimize anti-

predatory information transfer.  

A number of social species are involved in the formation of MSGs including insects (Menzel 

et al. 2008), fishes (Ward et al. 2002), birds (Sridhar et al. 2009) and mammals (Stensland et 

al. 2003). Among the latter, multi-specific associations mostly occur in primates (Heymann & 

Buchanan-Smith 2000; Chapman et al. 2002), cetaceans (Frantzis & Herzing 2002) and 

ungulates (Fitzgibbons 1990). Besides, associations may also occur between different 
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mammalian orders (Whitesides 1989; Desbiez et al. 2010; Koda 2012) or between mammals 

and birds (Ruggiero 1996; Ruggiero & Eves 1998; Coetzee & Province 2010).  

In all cases, interspecific associations require increased heterospecific spatial tolerance. An 

aspect of how such groups form and maintain cohesion so far overlooked is whether 

experience, especially that acquired early in individual life, may play a role in facilitating the 

development of interspecific associations. Bats often associate in colonies consisting of two 

or more species (Dietz et al. 2009). The existence of such interspecific colonies is mostly 

explained in terms of thermoregulatory benefits acquired by clustering together 

(Bogdanowicz 1983; Rodriguez-Duran 1998); yet the occurrence of preferred associations 

between particular pairs of species may not be simply driven by common thermal 

requirements, and hypotheses about the existence of more complex factors influencing such 

associations may be formulated.  

In colonies made of multiple species this proximity may also involve heterospecific newborns 

clustering together or roosting close to each other. Thus, I hypothesize that the formation of 

MSGs in bats may be favoured by close proximity of heterospecific in early development 

through the onset of imprinting-like mechanisms similar to those that occur between 

conspecifics (see Experiment 2). Thus, I manipulated the early social environment of two 

species that naturally occur inside the same roosts and exposed individuals to artificial multi-

specific social contacts. 

 

Given the different methodologies both in the study-design and data analyses adopted through 

these three experiments, as well as the different questions addressed, the following chapters 

are organized maintaining these different aspects of the study separated, in order to make it 

easier to scroll and track different themes and experiments.  

Overall, I adopted two fundamental approaches to explore all these hypotheses.  
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I used an individual-based approach, e.g. using classical observation protocols and linear 

models for data analyses, to establish whether and how individuals' attributes determine 

patterns of association and interaction among bats (all experiments). This allowed me to 

determine which factors influence and shape rates of social interactions within a given social 

group, i.e. whether attributes of interacting individuals, including growing up in the same 

social group or not, will lead to behavioural biases.  

To examine the differences in extent and intensity of social connections between subjects, as 

well as their positions in the social structure, I also adopted a network-based approach 

(Experiment 2 and 3), testing whether individuals from the same group selectively established 

social bonds, i.e. showed homophily towards former group-mates (McPherson et al. 2001). 

Network analysis also makes it possible to test whether bats differing in species and sex 

occupy different positions and play different roles within the social group.  

Social network analysis (SNA) is a powerful set of data analyses and measures than takes into 

account the role and relative position of individuals (considered “nodes”) inside a network of 

individual relationships (i.e. the “links” or “ties” between different nodes), being also able to 

“weigh” different kinds (or intensities) of ties (Hanneman & Riddle 1998; Whitehead 2008).  

SNA is recently receiving wide attention for its use in ecological and behavioural studies 

(Krause et al. 2007; Makagon et al. 2012; Vanderwaal et al. 2013), and analyses to increase 

the robustness of these techniques have been developed in order to make it suitable for 

addressing questions more complex than simple structuring of the network (Wey et al. 2008; 

Lusseau et al. 2008; James et al. 2009; Makagon et al. 2012).  

When using linear models (glms, glm anova, glmm) for testing data, I used a frequentist 

approach (instead of other methods, e.g. information-theoretic approach), considering 

significant all results with p < 0.05, as this is the most commonly used approach in 

behavioural studies, thus making my results comparable to those from other studies (see 
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References list).  
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Materials and methods  

Study species 

I focused on three species of house-dwelling bats (Kunz & Fenton 2006), i.e. species that 

frequently use artificial human-made structures (e.g. roofs, coverings, drain pipes, bridges) as 

roost, for three main reasons.  

First, the social structure of such species is often poorly understood, as well as their 

behaviour, apart from their spatial and temporal use of roosts (Dietz et al. 2009). Most house-

dwelling species apparently seem to share very similar social systems, i.e. groups mainly 

composed by females and juveniles, with occasional males. This situation is common to many 

other bat species so social processes occurring in house-dwelling bats may confidently be 

generalized to much of the order Chiroptera.  

Second, these species are also of utmost importance due to their proximity with humans. 

Understanding the social dynamics of species strongly linked to human settlements is 

fundamental for predicting (and managing) patterns of disease spreading (Langwig et al. 

2012), particularly in the case of house-dwelling species, as these may be or become vectors 

of pathogens of medical or veterinary concern (e.g. Kite 1966).  

Third, house-dwelling species are those more often admitted at wildlife rescue centres in 

peninsular Italy (Ancillotto et al. 2013), so that access to a high number of healthy captive 

individuals as experimental subjects is a relatively easy task and does not imply to disturbance 

of wild colonies nor to the capture of wild individuals.  

 

For this study I selected three species often recorded at the LIPU’s wildlife rescue centre of 

Rome (http://www.crfslipuroma.it), which provided experimental subjects and logistic for the 

experiments.  

http://www.crfslipuroma.it/
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Despite they belong to different families (Molossidae and Vespertilionidae) and occupying 

slightly different ecological niches, these species all roost in human-made structures, which 

are used year-round and host both sexes and appeared suitable for testing my general 

hypothesis.  

All such species are abundant in the Mediterranean region and are sympatric in much of south 

and southwest Europe, including the Balkans and the Mediterranean islands. Kuhl’s pipistrelle 

(Pipistrellus kuhlii) and Savi’s bat (Hypsugo savii) are also both currently expanding their 

range in northeastern Europe (Spitzenberger 1997; Sachanowicz et al. 2006), and have been 

recently found to share the same roosting sites in certain cases and form mixed-species 

reproductive colonies (Ancillotto et al. 2013).  

 
 

European free-tailed bat (Tadarida teniotis) 

For Experiment 1 I selected the European free-tailed bat Tadarida teniotis (Rafinesque, 1814). 

This is a large molossid (forearm length = 56-64 mm) forming numerous (> hundreds of 

individuals; Dietz et al. 2009) aggregations; non-reproductive colonies usually include both 

sexes (Balmori 2003), while during the nursery period males usually roost separately (Dietz et 

al. 2009). T. teniotis (Figure 1) frequently roosts in cliff crevices or human-made structures 

such as buildings whose narrow, vertically oriented spaces are used (Dietz et al. 2009). 

During the mating season, i.e. in late spring and early autumn (Dietz et al. 2009), harems of 

up to nine females are formed and actively defended by males (Balmori 2003). Balmori 

(2003) also reports that subadult individuals of T. teniotis form large and noisy aggregations at 

the end of the breeding season, but nothing is known about the duration or nature of such 

aggregation.  
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Figure 1. Adult female of European free-tailed bat (Tadarida teniotis). Photo by L. Ancillotto.  

 

Molossid bats are known to form the largest colonies among bats (Davis et al. 1962) and 

should thus be expected to lack complex social structures; instead, bats from this family show 

a variety of social systems, from large aggregations (e.g. in T. brasiliensis: Davis et al. 1962) 

to small groups characterized by strong fission-fusion dynamics (e.g. in T. australis: Rhodes 

2007), and different species proved to be able to discriminate between familiar and unfamiliar 

individuals (Bouchard 2001; Englert & Greene 2009).  



 30 

 

Kuhl’s pipistrelle (Pipistrellus kuhlii) 

I selected individuals of Kuhl’s (P. kuhlii; experiments 2 and 3) pipistrelles, a small 

vespertilionid (body mass: 5–10 g; forearm length: 30–37 mm (Dietz et al. 2009).  

This bat frequently roosts in human-made structures, particularly behind drain-pipes and 

under roof tiles and coverings (Dietz et al. 2009). Kuhl’s pipistrelle (Figure 2) is a very 

adaptable species, able to persist in deeply modified habitats and to quickly respond to large-

scale environmental changes, e.g. urbanization (Tomassini et al. 2013).  

 

 

Figure 2. Adult captive male of Kuhl’s pipistrelle (Pipistrellus kuhlii). Photo by L. Ancillotto. 

 

P. kuhlii is a sedentary species that forms reproductive colonies numbering 10–50 females and 

that generally use the same roost year-round (Bogdanowicz 2004). Such colonies may also 

include adult males. It is a sociable species, sometimes forming mixed-species colonies with 

the congeneric P. pipistrellus, P. nathusii and also with Nyctalus noctula (Dietz et al. 2009) 
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and Hypsugo savii (Ancillotto et al. 2013).  

 

Savi’s bat (Hypsugo savii) 

Savi’s bat (Figure 3) is another small (body mass: 7–12 g; forearm length: 31–38 mm (Dietz 

et al. 2009) house-dwelling bat, with roosting habits and ecology similar to P. kuhlii. Unlike 

the latter, H. savii usually forms somewhat smaller colonies (pers. obs.) and seems to be more 

closely linked to warmer and xeric areas (Dietz et al. 2009), yet it  also occurs frequently in 

mountainous woodlands such as beech formations in the Appennines.  

 

 

Figure 3. Adult captive female of Savi’s bat (Hypsugo savii). Photo by L. Ancillotto. 
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This bat is usually considered a very common and widespread species in urban areas (Dietz et 

al. 2009) as also confirmed by data from wildlife rescue centres (Ancillotto et al. 2013). Little 

is known about the social behaviour and system of this highly variable (Arlettaz et al. 1993) 

species, but nursery roosts and roosting habits probably resemble those of P. kuhlii, except 

that colonies generally host smaller numbers of individuals (pers. obs.). H. savii seems to not 

form mixed-species colonies, except with P. kuhlii (Ancillotto et al. 2013). 
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Study design and data analysis 

Factors affecting social behaviour of bats 

In this experiment free-tailed bats belonging to the same captive colony are defined as 

"colony members". For the experiment, the colonies of adult bats were made of individuals 

that had joined the group at least two years before the experiments took place. I recognised 

each bat individually by examining its particular colour shade and/or pattern (e.g. light spots 

that sometimes occur in this species: Dietz et al. 2009) and by the occurrence of natural 

markings (scars, missing tip of the tail etc.). I selected 18 adults (>1 year old) of T. teniotis 

from two captive colonies, one (4 males and 4 females) held at the LIPU wildlife rescue 

centre of Rome and the other (3 males and 7 females) at the Bioparco Foundation (formerly 

Rome Zoo); I also included in the experiment 15 subadult bats temporarily kept at the LIPU 

centre. Only bats with no behavioural/motor disabilities were included in the experiments.  

All individuals came from the same natural colony, numbering about 600 adults (pers. obs.), 

so that any potential influence determined by a different origin of the study subjects was 

controlled for and the observed effects could be safely attributed to social experience. Bats 

were rescued as young juveniles (about 2 weeks old) in different years so the chance that they 

had already developed social bonds in the wild was negligible. 

On the days preceding each trial, the experimental subjects were allowed to explore alone the 

trial set for 30 minutes to minimize the potential effect of testing them in an unfamiliar 

environment. Each bat was allowed to explore the arena twice during one week preceding the 

tests. I performed the experiments in the early evening, i.e. when bats were naturally active. 

Those involving adults took place in April and May 2012, while those between adult and 

subadult bats were performed in September 2012. The reproductive activity of T. teniotis 
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occurs both in spring and early autumn (Dietz et al. 2009), thus adult bats in both testing 

seasons were in the same physiological condition.  

Bats were allowed to interact in dyadic encounters in an 80x45x40h cm customized arena 

(Ligout et al. 2011) made of transparent Perspex. The latter featured two adjoining small 

rooms (15 x 10 cm) where subjects were introduced (at the same time) to initiate the 

experiment (see Figure S1 in Appendices for a scheme of the experimental setting). The 

arena’s floor was covered with paper towels. After each encounter, I replaced the towels with 

clean ones and the tray was cleaned with 90% alcohol in order to eliminate odour cues 

otherwise potentially affecting the next encounter. I allowed two bats at a time to enter the 

experimental arena from opposite sides and freely interact for 15 minutes, after which 

subjects were removed from the arena and housed in travelling fauna-boxes. 

I assigned bats to experimental pairs at random, in order to cover all “sex x group of origin” 

pairings. Each bat was tested two or three times in encounters involving different individuals, 

thus each dyad was unique. I recorded all encounters with a Sony Handycam SR501 

camcorder using the nightshot mode. The video camera was positioned one meter above the 

experimental setup with a 90° angle. The use of artificial lighting during the experiment was 

avoided. The experimenter remained quiet in the room during the tests, ca. two meters from 

the testing arena. To check that the device would not produce ultrasound potentially 

interfering with natural bat behaviour and record social calls emitted by the experimental 

subjects, I sampled sound continuously in the real-time mode (sampling rate 384000 Hz) with 

a D1000X bat detector (Pettersson Elektronik AB, Uppsala, Sweden). Recordings were saved 

as wav files onto 4 Gb flashcards. 

I employed preliminary dyadic encounters involving subjects not used for subsequent 

experiments to compile an ethogram of all behaviours exhibited. I classified observed 

behaviours into 18 different categories (Table 1). Only social (categories 1-8) behaviours 
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were included in the analyses. Social interactions were classified as aggressive (categories 1-

6) or amicable (categories 7-8). Video-recordings were analysed through focal-animal 

sampling for both experimental subjects involved in each encounter (Martin & Bateson 1993): 

I recorded all occurrences of selected behaviours (Table 1) during such encounters (see Figure 

S5 in Appendices).  
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Table 1. Behavioural categories for captive European free-tailed bats T. teniotis recorded during 

dyadic arena tests and their description. 

Behaviour Description Category 

1 Bite Actor bat bites the receiver or pushes its open mouth 

onto the receiver's body 

Social - Aggressive 

2 Punch Actor bat hits the receiver with its wrist and thumb Social - Aggressive 

3 Chase Actor bat insistently follows receiver through the 

arena, trying to reach it 

Social - Aggressive 

4 Push Actor bat hits the receiver with its head, walking 

towards it 

Social - Aggressive 

5 Aggressive Call (spectrogram in Figure 4b) Social - Aggressive 

6 Social Mount Actor bat mounts receiver, pushing it to the ground 

and keeping it still 

Social - Aggressive 

7 Contact Call (spectrogram in Figure 4a) Social - Amicable 

8 Huddling Actor bat comes in physical contact next to receiver, 

vibrating its body softly 

Social - Amicable 

9 Mating Actor bat mounts the receiver and tries to copulate 

(pelvic movements visible) 

Sexual 

10 Inspection Actor bat actively smelling the receiver, getting in 

close proximity 

Neutral 

11 Touch Casual physical contact between bats involving any 

part of their bodies 

Neutral 

12 Crawling Bat moving on the floor Non-social 

13 Stretching Bat extending one or both wings for a few seconds Non-social 

14 Yawn Self-explanatory Non-social 

15 Self Grooming A bat chews, licks or scratches its own hair, wings, 

feet 

Non-social 

16 Resting Bat resting motionless Non-social 

17 Alert Bat resting with ears in movement Non-social 

18 Jump A bat jumps on legs, sometimes briefly opening 

wings 

Non-social 
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I followed Freitas et al. (2008) to distinguish between aggressive and amicable behaviours as 

follows. I classified as aggressive behaviour those that (a) increased distance between 

subjects, or (b) could inflict physical injuries to, or avoid physical injuries by, the opponent. 

Amicable behaviour either increased or maintained proximity between subjects without 

leading to the infliction of physical injuries to the opponent. When social calls were produced, 

I distinguished between “aggression” calls (category 5) and “contact” calls (category 7), 

whose spectrograms were markedly different between each other (Figure 4).  

 

 

Figure 4. Spectrograms of T. teniotis social calls (a= contact call; b= aggressive call). Contact call 

emitted by subadult female; aggressive call emitted by adult male.  

 

Social calls are species-specific sound emissions produced by bats for communication (Yovel 

et al. 2009; Carter & Wilkinson 2013) during social contexts such as aggressions, mate 

attraction or individual recognition (Pfalzer & Kusch 2003). Social calls in my experiments 

were audible to the unaided ear and the two types easily distinguished during all tests, thus I 

considered them as additional behavioural categories.  

I evaluated an affiliation index (AI) for each individual during each encounter, calculated as 

the ratio of the total number of amicable (categories 7-8) behavioural events performed by an 

individual during an encounter and the total number of “aggressive + amicable” (categories 1-

8) ones performed by the same bat during the whole encounter (Freitas et al. 2008). AI ranges 
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between 0 (only aggressive behaviour performed) and 1 (only amicable behaviour 

performed). 

As each individual was tested two or three times, each time forming a new unique dyad, I 

performed a General Linear Mixed Model (GLMM) using AI values as response variable, 

measuring the effects of colony membership (i.e. familiarity between interacting bats), 

individual sex (male or female), sex condition (same-sex and different-sex dyads), individual 

age (adult or subadult) and age condition (two adults or one adult and one subadult) as 

independent variables. The lack of independence across tests due to the usage of the same bats 

in some of the trials was controlled for by entering individual identity as a random factor in 

the model, in order to take into account potential individual ‘tendencies’ (Pinheiro & Bates 

2000). When GLMMs provided significant results I tested the occurrence of differences 

between categories by contrasts (Boik 1979). 

No subadult bats sharing the same colony of the adults used for the experiments were 

available so I could not test the “age x colony membership” interaction. Although newborn 

bats may quickly develop preferential social relationships in the early stages of their life, I 

refrained from testing dyads made of juveniles because all those used for the experiments had 

to be released into the wild at latest by  early autumn; consequently, the short time available 

did not allow juveniles to be split into separate captive groups for a time long enough to test 

the effect of familiarity. All tested juveniles had been kept in the same group. My specific aim 

was to test adults vs. juveniles to explore whether the latter’s young age could mitigate any 

xenophobic reaction by adults.  
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Effects of early experience on social bonding 

Behavioural analysis 

 

Twenty newborn P. kuhlii were admitted at the wildlife rescue centre of Rome and used for 

my experiment. Bats were aged according to centre staff’s experience and published 

information (Barnard 2009), e.g. by the observation of remains of the umbilical cord, and 

sexed by observing external genitalia, which are clearly visible in bats since the first day from 

birth. To minimize the effect of social experience acquired in the original colonies before bats 

were rescued, for this experiment I only considered newborn bats of 1-3 days of age (Figure 

S3 in Appendices). Care was also taken in selecting newborns each from a different natural 

colony, in order to prevent potential effects of kin. Bats were initially housed in 25x18x30cm 

cardboard boxes. The box walls were holed to allow sufficient airflow. The boxes were also 

fitted with strings and fabric strips on which bats could hang. A section of the box was 

warmed by placing it on a Zoo Med heat cable for reptile terrariums (15 Watt voltage, 

supplied by Zoo Med Europa, Ekeren Antwerpen, Belgium).  

Bats were first fed on First Age-Royal Canine powdered milk replacement for puppies until 

they were three to four weeks old (Kelly et al. 2008) using a syringe with a plastic cannula 

(Catheter Radiopaque Jelco®). After this period bats were weaned with mealworms (Barnard 

2009). By the end of the weaning period, juveniles had learned to feed independently. Water 

was available ad libitum in small steel bowls. 

Bats were kept in boxes for about six weeks in four separate groups, three made of subjects 

from different roosts, one including colony mates. That time was somewhat longer than that 

taken in the wild for weaning (e.g.Altringham 1996): the rearing protocols allowed sufficient 

time to compensate for the slower growth rate observed in captive P. kuhlii and achieve full 

development of young. In this phase, no contact was allowed between bats from different 

groups; to avoid indirect olfactory contact, different keepers took care of each group. 
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Bats were banded with two coloured plastic split rings (Ecotone, Gdynia, Poland) purposely 

modified for bats (Mitchel-Jones & McLeish 2004), one on each forearm, identifying each 

individual and its group membership.  

In the second phase of the experiments all bats – now able to fly – were released in an 8x5x3 

m flight room (see Figure S4 in Appendices). Feeding and drinking stations were made 

available, and two windows exposed bats to the natural photoperiod. Mosquito nets and four 

bat boxes were placed on walls for roosting bats and labelled with a code for data collection. 

Bats did not use nets for roosting during the experiment so all data collection refers to bat 

boxes. To determine the composition of roosting groups and record individual position, bat 

boxes were modified to be quickly and easily inspected.  

The observations in the flight room were carried out for ten consecutive days between 10
th

 

and 20
th

 August. Further observations were not allowed because bats then had to be released 

according to rehabilitation and animal welfare protocols.  

To analyse association patterns, I only considered the physical contact occurring during day 

roosting between neighbouring bats, which was recorded twice a day (at 10 am and 7 pm). In 

this case directionality of behaviour (i.e. the identification of the individual bat initiating the 

interaction) was not assessed because I determined contacts from photographs. To reduce the 

observer’s permanence in the flight room and minimise disturbance, I photographed roosting 

groups and subsequently examined photos for individual identification (see Figure S6 in 

Appendices).  

To record social interactions, I also filmed bats with a Sony Handycam SR501 camcorder 

with nightshot function. Bats were filmed during two 90-min recording sessions respectively 

in the morning post-flight phase (since 1100 am) – during daytime roosting – and in the 

evening pre-flight phase (since 0800 pm, i.e. 48.1±4.6 min before sunset) – during pre/post-
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flight activity (Winchell & Kunz 1993). At such times bats are especially active inside roosts 

and more likely to show mutual interaction (Winchell & Kunz 1996).  

The video camera was mounted on a tripod and directed towards a cluster of roosting 

individuals or placed beneath a bat box hosting roosting bats (see Figure S2 in Appendices). 

On each session the group to be filmed was chosen at random. To minimize disturbance, the 

video camera was left unattended during recording.  

To analyse contacts between roosting bats, I organized the association data into a symmetric 

sociometric matrix. To examine the patterning of physical contacts among individuals in a 

way that is independent from marginal effects, i.e. that assumes each bat has exactly the same 

number of potential contacts as others, I normalised the data by the fitting of homogeneous 

margins to the association matrix (Bishop et al. 2007). 

I also developed a binary matrix (group index) that indicates for each pair of bats whether 

they belong to the same rearing group (indexed by “1”) or to different ones (indexed by “0”). 

A Mantel test was used to test whether rearing group membership influenced the frequency of 

inter-individual contact. Pearson's product-moment's r resulting from the test gives a measure 

of the correlation between two different matrices and ranges from -1 (complete negative 

correlation) to +1 (complete positive correlation), with the value 0 indicating absence of any 

correlation (Conover 1980). 

Video recordings were examined in the laboratory and watched several times, each selecting a 

different focal subject (Martin & Bateson 1993) from which I recorded the number of 

occurrences of the behavioural categories selected (Altmann 1974). The observed behaviours 

were classified according to an ethogram of captive P. kuhlii (Table 2) compiled during 

preliminary observations (Martin & Bateson 1993; Munoz-Romo 2006; Ortega & Maldonado 

2006) as follows: 1) resting; 2) alert; 3) self-grooming; 4) crawling; 5) huddling; 6) 
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allogrooming; and 7) aggressive interaction (Table 2). For analyses, I only used social 

interactions, i.e. behavioural categories 5 – 7.  
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Table 2. Categories used to record behavioural data from captive Kuhl’s pipistrelle P. kuhlii and their 

meaning. 

Behaviour Description 

Resting Bat resting motionless, with eyes closed 

Alert 

 

Bat hanging, but eyes opened and head raised; comfort activities (yawning, 

urinating, defecating, stretching) may be shown 

Self-grooming The bat chews, licks or scratches hair, wings, feet  

Crawling Bat moves on roost floor or other surfaces 

Huddling Two bats in close contact, their bodies softly vibrate 

Allogrooming Bat grooms mate’s body (generally muzzle and/or ears) 

Aggression Bat shows teeth to an opponent, emits audible vocalizations or pushes the 

opponent with its muzzle and wrists 

  

 

For each interaction I distinguished a performer (the bat which initiated the action) and a 

receiver. I calculated frequencies of occurrence of such behaviours for all bats and classified 

interactions. For all interactions the sexes of bats involved were recorded; interactions were 

thus classified as either “same-sex” or “different-sex” according to the sex of individuals 

involved (hereafter indicated respectively as ss/ds interactions). Different-sex interactions 

were further classified as “male” or “female” based on the sex of the instigating individual. I 

classified interactions recorded as “within-group” if they involved bats reared in the same 

group, “between-group” if bats were from different rearing groups. 

A General Linear Model 2-way ANOVA followed by Tukey’s post-hoc tests was employed 

to detect the influence of sex, group and “sex x group” interaction on these frequencies. Non-

significant terms were removed from models. The analysis was carried out with Minitab 13.1. 

For bats in the group 4, all originating from the same colony, I hypothesized that their 

behaviour might be influenced by possible kinship or previous contacts occurred in the 

original roost before being rescued and admitted to the centre. Therefore, I ran all statistical 
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analyses both on the entire dataset and after removing group 4 data. No difference was found, 

so I used all groups for final analyses. For all tests, significance was set at p <0.05. 

 

Social network analysis 

 

Based on the association in the bat-boxes, I also developed a network of bats' social links 

(Krause et al. 2009). Network construction and statistics were obtained with UCINet software 

package (Borgatti et al. 2002). I calculated descriptive statistics to quantify classical measures 

of social networks analysis as follows: 1) the node degree is a measure of the number of ties 

each bat had with others and represents the likelihood of an individual bat interacting with 

others (Krause et al. 2007); 2) betweenness represents the number of shortest paths between 

two individuals that pass through a particular one, so it may indicate the importance of a 

single individual to connect different parts of the network and 3) the clustering coefficient 

expresses the degree to which  the individual's immediate neighbours are close to being a 

clique, that is an exclusive group (Croft et al. 2004). Network modularity, i.e. the fraction of 

the edges that fall within given groups minus the expected such fraction if edges were 

distributed at random (Newman 2006) was also calculated as a measure of strength division 

into subunits. 

A hierarchical cluster analysis was successively adopted in order to detect spontaneous 

substructures of the network using average-linkage algorithm, as it is often considered 

optimal (Milligan & Cooper 1987), and calculating the relative cophenetic correlation 

coefficient as a measure of distance between sections of the clustering tree.  
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Mechanisms of interspecific social cohesion 

Behavioural analysis 

 

I selected 23 newborn bats (P. kuhlii n=12; H. savii n=11) admitted to LIPU's wildlife rescue 

centre in Rome for the experiment. Ageing and selection of experimental subjects followed 

the same protocols adopted in Experiment 2.  

Following methods from Experiment 2, I raised bats in 4 different groups, each composed by 

six individuals, evenly distributed between species (only one of the groups comprised two 

rather than three H. savii). Each group was raised in a different container in order to avoid 

acoustic, tactile or olfactory contacts between bats from different groups. Further details on 

rearing and weaning methods are given in materials and methods of Experiment 2.  

After weaning, I banded the study subjects with two coloured plastic split-rings each 

(Ecotone, Gdynia, Poland), purposely modified for bats (Mitchel-Jones & McLeish 2004), in 

order to identify each individual and its group membership. For each bat after weaning I 

recorded sex, species, group membership, forearm length and scaled mass index (as indicator 

of body conditions; (Peig & Green 2009). Scaled mass index is derived from the simple body 

condition index (BCI), i.e. the ratio between body mass (g) and forearm length (mm), a 

commonly used parameter in the study of bats, but it is a better indicator of body fat reserves 

in small animals (Peig & Green 2009). All bats were then released together in the same flight 

room used for Experiment 2.   

I carried out observations every day between 23
th

 August and 6
th

 September; at the end of the 

experiments, all bats were released according to wildlife rehabilitation and animal welfare 

protocols (Serangeli et al. 2012). I recorded individuals' positions inside the room and actual 

physical contacts (see Figure S4 in Appendices) between bats twice a day (at 11 am and 7 

pm). I thus recorded a total of 30 positions and relative combinations of physical contacts for 

each individual bat. In order to minimize disturbance and to determine the exact position of 
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each bat inside the bat boxes, one operator briefly opened the bat box and rapidly took 

photographs of roosting bats. Individual positions and mutual contacts were determined by 

examining photographs.  

To record social interactions, I also filmed bats with two Sony Handycam SR501 camcorders 

with nightshot function. Bats were filmed during two 90-min recording sessions in the 

morning (since 1100 am) and in the evening (since 0800 pm, i.e. 42.3± 5.1 min before sunset) 

respectively. At such times bats are especially active inside roosts and more likely to show 

mutual interactions (Winchell & Kunz 1996). I mounted cameras on tripods beneath occupied 

bat boxes and directed towards clusters of roosting individuals. On each session, the groups to 

be filmed were chosen at random. To minimize disturbance, I left the video cameras 

unattended during recording (see Figure S2 in Appendices). Video recordings were examined 

in the laboratory and watched several times, each time selecting a different focal subject 

(Martin & Bateson 1993), from which I recorded the number of occurrences of the 

behavioural categories selected (Altmann 1974). I classified the observed behaviours 

according to the ethogram of captive P. kuhlii from Experiment 2 (Table 2), as preliminary 

observations carried out on H. savii showed the occurrence of the same behavioural modules.  

For analyses, I only used social interactions, i.e. huddling, allogrooming and aggressive 

interactions. For each behavioural occurrence, I distinguished a performer (the bat that 

initiated the action) and a receiver. I calculated frequencies of occurrence of such behaviours 

for all bats and classified interactions.  

To analyse contacts between roosting bats, I organized the association data into a symmetric 

socio-metric matrix. To examine the patterning of physical contacts among individuals in a 

way that is independent from marginal effects, i.e. that assumes each bat has exactly the same 

number of potential contacts as others, I normalized the data by the fitting of homogeneous 

margins to the association matrix (Bishop et al. 2007). I developed two binary matrices that 
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indicate for each pair of bats whether they belong to the same rearing group (indexed by ‘1’) 

or to different ones (indexed by ‘0’) and whether they belong to the same species (1) or 

different ones (0), respectively. Mantel tests were used to determine whether rearing group 

membership and species influenced the frequency of inter-individual physical contacts. 

Each video-recorded behavioural occurrence was characterized according to the sex of 

interacting bats (Sex Condition: same-sex versus different-sex), species (Species Condition: 

same-species versus different-species) and rearing group (Group Condition: same-group 

versus different-group). I used Generalized Linear Mixed Models (GLMMs) to test the 

influence of actors’ attributes (sex, species and body condition index), the conditions 

associated with the behavioural event (Sex Condition, Species Condition, Group Condition) 

and their interactions on the observed frequencies of behaviours, using individual identity as a 

random factor. I adopted a backward step-wise approach in selecting significant variables 

from a first full model, until only significant explaining variables were present in the final one 

(minimal adequate model). All models and tests were run in R 2.13.2 (R Core Team 2005).  

 

Social network analysis 

 

I used Ucinet software package (Borgatti et al. 2002) to build four different networks based 

on the occurrence of physical contacts and on the three types of social interactions. For each 

network I calculated the value of Q-modularity (Newman 2006), i.e. a measure of network 

division in subgroups, calculated as the difference between fraction of nodes that fall into a 

given group and the expected such fraction if nodes were distributed at random. I tested 

homophily, i.e. the tendency of individuals to form network ties with other ones sharing the 

same characteristic or attribute (McPherson et al. 2001), using the UciNet function for 

ANOVA density models of variable homophily, i.e. testing a block model in which within-

group ties differ from between-group ones.  
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For each individual, in each of the four networks I separately calculated the following 

metrics: weighted in- and out-degree centrality, i.e. the number of interactions initiated and 

received by a bat, respectively (pooled together in the case of non-directional behaviour such 

as physical contact); clustering coefficient, i.e. the degree to which the individual's immediate 

neighbours in the network are close to be a closed group (Croft et al. 2004); normalized 

betweenness, i.e. the number of shortest paths between two individuals that pass through the 

focal one, indicating the importance of a single bat in connecting different parts of the 

network. I tested the effects of individual attributes (sex, species, SMI) on these metrics of 

each individual for each network by running generalized linear models (GLMs). Network 

metrics were first tested for independence by running Pearson correlation tests; as no strong 

correlation was detected (r < 0.5), all metrics were used in the GLMs.  
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Results  
 

Factors affecting social interactions of bats 

I recorded 901 social interactions in 65 encounters (45 between adult bats, 20 between adults 

and subadults). AI values were significantly influenced by individual sex, age and familiarity 

with the interacting bat (Figure 2). 

 

 

Figure 5. Means±standard deviations of Affiliation Index for captive T. teniotis during dyadic different 

and same sex encounters. AI score= Affiliation index scores; Black bars: male in familiar encounters; 

dark-grey bars: males in unfamiliar encounters; light-grey: females in familiar encounters; white: 

females in unfamiliar encounters. Significant differences among conditions as well as their 

interactions are indicated: **= p < 0.001; * = p < 0.05.   

 

Bats involved in encounters within the same social group (i.e. between familiar subjects) had 

significantly higher AI values than those in unfamiliar encounters (0.26 and 0.09, 

respectively; F1,101= 18.56, p < 0.001; contrast test: t = 3.47, p < 0.01). The effect of sex on 

the number of aggressive and amicable behaviours was more complex: females showed 

higher mean AI values (0.60) than males (0.46), and this difference (F1,101= 10.48, p < 0.001, 
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contrast test: t = 2.47, p < 0.05) was more evident during same sex encounters, with male 

showing lowest and females highest AI values (Sex*Sex Condition: F1,101= 17.78, p < 0.001). 

Familiarity also influenced the effect of sex (Figure 5): females were more amicable towards 

familiar females and males more xenophobic towards unfamiliar males (Sex*Familiarity: 

F1,101= 4.03, p < 0.05). Adult bats involved in encounters with subadults also showed 

significantly higher AI values (F1,101= 8.54, p < 0.01; contrast test: t = 2.81, p < 0.05). 

 

 

Effects of early experience on social bonding 

Behavioural analysis  

 

Day-roosting bats reared in the same group established mutual physical contact (individual 

association) significantly more often than did those from different groups. The row-wise 

matrix correlation analysis between physical contacts made during day-roosting (recorded by 

photographs) and rearing groups resulted in a Mantel's r = 0.548, p < 0.0001 (based on 10,000 

permutations).  

Overall, I analysed 301 social interactions from categories 5-7. Huddling was the most 

frequent behaviour performed (N= 205), followed by allogrooming (N=51) and aggression 

(N= 45) (Figure 3).  
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Figure 6. Mean individual frequencies of same-sex and different-sex interactions for huddling 

(N=205), allogrooming (N=51) and aggression (N=45). For all interactions sexes of bats involved 

were recorded; interactions were classified as either “same-sex” or “different-sex” according to the sex 

of individuals involved. Different-sex interactions were further classified as “male” or “female” based 

on the sex of the instigating individual. Black = male; grey = female. Between-group ANOVA levels 

of significance are shown in central labels; within-group sexual differences are shown near columns. * 

<0.05; ** < 0.01  

 

Unlike all amicable interaction categories considered, aggression rates were not influenced by 

rearing group membership (F1,34 = 0.14 and 0.16, n.s., respectively for SS and DS 

interactions) but only by sex: females engaged more often in SS (F1,34=6.74  p<0.05) 

aggressive events, males in DS ones (F1,34= 7.11  p<0.05; Figure 3). Both SS (F1,34= 6.15,  

p<0.02) and DS (F1,34= 12.23,  p<0.005) huddling involved more frequently members of the 

same rearing group than bats reared in different groups (Figure 3); sex influenced 

significantly SS huddling (F1,34= 8.88,  p<0.01), which was more frequent between females, 

but not DS huddling (F1,34= 1.3,  n.s.).   

Finally, both SS (F1,34= 7.06, p<0.05) and DS (F1,36= 21.66, p<0.001) allogrooming occurred 

more frequently within groups (Figure 3). Sex influenced SS (F1,34= 8.34, p<0.01) – but not 
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DS (F1,34= 1.07, n.s.) – allogrooming: female – female allogrooming was more frequent than 

male – male allogrooming. A significant “group x sex” interaction emerged for SS 

allogrooming (F1,34= 4.61,  p<0.05), reflecting the fact that the difference between sexes was 

mainly observed for within-group allogrooming (females, n = 11, 2.54±1.75 interactions; 

males, n = 8, 0.37±0.52 interactions);  between-group allogrooming was either very rare or 

absent.  

 

Social network analysis 

 

Both a visual assessment of the network (Figure 7) and the values of corresponding statistical 

descriptors suggest a preferential association between former members of the same rearing 

group. Individual and mean values of node degree, clustering coefficient and betweenness are 

presented in Table 3.  
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Figure 7. Sociogram associating juvenile P. kuhlii roosting in mutual contact; symbols used to indicate 

nodes show different rearing-group membership; black nodes= males, white nodes= females; the 

thickness of linking segments is proportional to tie strength.  

 



 54 

Table 3. Network descriptors calculated from association data (contact between bats in bat boxes) 

recorded from captive juveniles Pipistrellus kuhlii; in the ‘bat code’ column, bats from the same 

rearing group are labelled with the same letter. 

Bat code Node degree Clustering coefficient Node betweenness 

R01 13 0.58 6.28 

R02 9 0.67 2.12 

R03 13 0.62 5.56 

R04 12 0.67 3.76 

R05 9 0.65 1.60 

Y01 13 0.61 6.12 

Y02 8 0.71 1.60 

Y03 12 0.61 4.46 

Y04 9 0.78 1.18 

Y05 13 0.71 3.28 

W01 10 0.73 1.80 

W02 13 0.71 3.25 

W03 9 0.78 0.99 

W04 10 0.76 1.47 

P01 11 0.66 3.00 

P02 13 0.62 5.75 

P03 10 0.62 3.60 

P04 7 0.76 0.65 

Mean (SD) 10.8 (2.0) 0.68 (0.1) 3.11 (1.88) 
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Although the high values of node degree indicate a moderately structured network (mean 

value: 10.8, i.e. bats interacted on average with 60% of available individuals), clustering 

coefficients do show a relatively high 'cliquishness' suggesting the existence of cohesive 

subgroups in the network.  

The clustering tree obtained from associations also permits to recognize cohesive subgroups, 

with at least two main clusters of close individuals, with a cophenetic correlation coefficient 

of 0.760 indicating a good representation of the actual distances between individuals (Bridge 

1993). As shown in Figure 8, bats from the same group tend to cluster together, with only one 

outlier (the individual labelled as “P02”) that clusters anyway in the main subgroup of bats 

from the same rearing-group.  

 

 

Figure 8. Clustering-dendrogram made from association data of captive juvenile P. kuhlii roosting in 

mutual contact; first two letters of individuals' names indicate group membership. Cophenetic 

correlation coefficient for the dendrogram= 0.760. Individuals’ symbols as in Figure 7.  
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The Q-modularity test resulted in a value of Q = 0.26 indicating that number of edges within 

groups exceeds that expected by chance (Clauset et al. 2004). 

 

 

Mechanisms of interspecific social cohesion 

Behavioural analyses 

 

Bats day-roosted in mutual physical contact significantly more often with individuals from the 

same rearing group (r = 0.51, p < 0.0001, based on 10000 permutations) while no effect of 

species was found (r = -0.05, p = 0.25, based on 10000 permutations), i.e. mutual contact was 

not more frequent between conspecifics. I recorded 295 social interactions  (allogrooming = 

107, huddling = 168, aggression = 20). Group condition (i.e. the membership to the same 

rearing group) was the most important variable explaining the patterns of social behaviours 

within MSGs (huddling: F1,174= 8.11, p < 0.0001; allogrooming: F1,174= 6.13, p < 0.0001; 

aggression: F1,174 = 7.35, p < 0.0001, Table 4;). Group membership showed significant 

interactions with body conditions (F1,174= 5.45, p < 0.05) and sex (F1,174= 2.36, p < 0.01) of 

the bat initiating the interaction: in same-group huddling (i.e. huddling between individuals 

raised in the same group), most interactions were initiated by males and by bats with lower 

body conditions.  
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Table 4. Factors influencing the frequency of three behaviours by a mixed-species group of captive 

bats (P. kuhlii and H. savii) explained by Generalized Linear Models (minimal adequate models). 

Behaviour Factor P  

Huddling Group condition < 0.0001 

 Group condition * SMI 0.015 

 Group condition * Sex 0.005 

 SMI * Sex 0.014 

 Sex * Species < 0.001 

 Sex * Species condition < 0.0001 

 Species condition * Sex condition 0.025 

Allogrooming  Group condition < 0.001 

 Sex condition 0.003 

 Sex * Species condition 0.007 

Aggressive Group condition < 0.0001 

 Species condition 0.0005 

 

Body conditions did not feature in the final models for allogrooming and aggression, as its 

influence was not significant. Sex of the initiating bat did not directly influence the 

occurrence of social behaviours, but significant interactions were recorded for both huddling 

and allogrooming, with females being more often engaged in allogrooming and males in 

huddling, in both cases with individuals from the same rearing group. Sex condition, i.e. 

same-sex or different-sex interactions, only influenced allogrooming (F1,173 = 9.98, p = 0.003), 

with same-sex interactions being significantly more frequent than different-sex ones (Table 

4).  

 

Social network analysis 

 

The values of different network metrics differed greatly among bats forming the artificial 

MSG (Table 5).  



 

Table 5. Individual attributes (sex, species and body condition index) and network descriptive metrics of a captive mixed-species group of bats. Network 

metrics are presented separately for each network derived from different social behaviours. Sex: m = male, f = female; Sp = species: Hs = H. savii, Pk = P. 

kuhlii. The letter in individuals' ID indicates group membership. CC = clustering coefficient; BT = betweenness; DG = degree; IDG = indegree; ODG = 

outdegree. 

ID Sex  Sp BCI Physical contact Huddling Allogrooming  Aggression  

CC BT DG CC BT IDG ODG CC BT IDG ODG CC BT IDG ODG 

B01 f Hs 0.20 0.72 1.5 19 0.26 19.5 16 11 0.67 0.3 6 5 0.00 3.5 2 5 

B02 m Hs 0.18 0.67 0.1 7 0.25 11.3 17 17 - 0.0 7 5 0.00 0.0 0 2 

B03 m Hs 0.18 0.60 0.3 7 1.00 0.0 18 11 0.00 4.1 7 8 0.00 0.4 2 1 

B04 f Pk 0.15 0.70 2.0 14 0.48 4.0 13 7 0.50 10.7 5 6 0.00 0.9 1 2 

B05 f Pk 0.18 0.52 5.5 10 0.67 0.2 2 7 0.33 11.9 1 7 0.00 0.4 1 1 

B06 f Pk 0.20 0.56 8.6 17 0.25 25.1 11 11 0.33 7.4 6 4 - 0.0 0 0 

A01 f Hs 0.19 0.68 2.9 17 0.34 15.6 11 18 0.42 10.8 5 5 - 0.0 3 0 

A02 m Hs 0.19 0.69 1.4 8 0.83 0.1 8 6 0.75 0.0 2 5 - 0.0 1 0 

A03 f Pk 0.19 0.79 1.0 19 0.70 1.0 7 3 0.42 20.6 4 7 0.00 1.1 3 0 

A04 m Pk 0.17 0.68 3.0 15 0.48 5.3 13 7 0.45 0.9 13 5 0.00 2.3 3 3 

A05 m Pk 0.18 0.76 1.3 15 0.50 0.9 10 8 0.23 24.9 13 10 0.00 2.2 1 3 

V01 f Hs 0.18 0.67 1.0 7 - 0.0 0 2 0.83 0.0 2 4 - 0.0 0 0 



 

V02 m Hs 0.19 0.42 3.7 4 0.10 7.8 6 3 - 0.0 0 0 - 0.4 1 2 

V03 f Hs 0.18 0.57 1.1 5 0.00 0.0 0 4 0.50 0.0 0 3 - 0.0 0 0 

V04 f Pk 0.18 0.62 1.5 8 0.33 0.0 9 0 0.50 0.9 5 7 - 0.0 0 0 

V05 m Pk 0.20 0.62 3.9 11 0.15 3.5 1 6 0.30 9.7 5 3 - 0.0 0 0 

V06 f Pk 0.17 0.44 5.3 10 0.33 0.0 1 7 0.50 0.2 6 3 - 0.0 1 0 

G01 m Hs 0.24 0.39 3.3 5 0.20 3.9 4 3 0.00 4.1 4 1 - 0.0 0.0 0.0 

G02 f Hs 0.25 0.78 1.2 18 0.45 11.6 13 5 0.17 18.7 8 4 - 0.0 0.0 0.0 

G03 m Hs 0.14 0.70 1.1 6 0.58 0.9 4 1 0.50 0.0 3 0 - 0.0 1.5 0.0 

G04 f Pk 0.15 0.60 3.7 13 0.20 5.6 1 8 0.25 9.6 2 7 - 0.0 3.0 0.0 

G05 m Pk 0.16 0.50 0.3 2 0.50 0.0 2 2 - 0.0 1 2 - 0.0 1.5 0.0 

G06 f Pk 0.16 0.70 2.3 16 0.38 8.7 5 15 0.25 2.4 2 6 - 0.0 1.5 0.0 

Mean 

± SD 

   0.63 ± 

0.11 

11.3 ± 

9.2 

11.2 ± 

5 

0.39 ± 

0.25 

5.4 ± 

6.8 

7.3 ± 

5.4 

7.3 ± 

5.0 

0.39 ± 

0.22 

5.9 ± 

7.3 

4.6 ± 

3.4 

4.6 ± 

2.4 

0.00 ± 

0.00 

0.5 ± 

0.9 

1.4 ± 

1.4 

1.4 ± 

2.0 
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The network of physical contacts was poorly structured (Q-modularity: -0.01, Figure 9a): bats 

established contacts on average with ca. 50% of the individuals in the group (mean ± s.d.; 

degree centrality: 11.2 ± 5.0); females generally established more contacts than males (F1,7= 

11.632, p = 0.01). Clustering coefficients (0.63 ± 0.11) indicate a tendency to form closed 

subgroups, but this index was influenced neither by individuals' species nor sex.  

Huddling network was only moderately structured (Q-modularity: 0.40, Figure 9b), but 

individuals occupied similar relative positions inside the network as no metric differed 

between sexes or species (Table 4). Aggression network was similarly structured (Q-

modularity: 0.44, Figure 9d) and no particular trend was detected.  



 

 

 

 

Figure 9. Social networks of a mixed-species group of captive bats, based on four different social behaviours; a: physical contacts inside roost; b: huddling; c: 

allogrooming; d: aggressive behaviour. Node shape indicates individual's group of origin. Black nodes = males, white nodes = females. Large nodes = H. 

savii, small nodes = P. kuhlii. Tie strength between nodes is proportional to line thickness. A spring-embedding algorithm derives distances between nodes. 
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The allogrooming network showed different trends, e.g. it was highly structured (Q-

modularity = 0.64, Figure 9c): bats groomed in relatively closed subgroups (clustering 

coefficient: 0.34 ± 0.24), with females showing a stronger tendency to form closed cliques 

(F1,7= 4.631, p = 0.05). In this network, P. kuhlii had higher betweenness values (F1,7= 6.207, 

p = 0.04), i.e. bats of this species were more important in connecting different parts of the 

group. P. kuhlii also initiated more often an allogrooming event (F1,7= 7.50, p = 0.02), 

particularly in the case of individuals in lower health conditions (SMI*species: F1,7= 6.01, p = 

0.04). No difference was evident in the numbers of received allogrooming events among bats 

of different species or sex, but both in- and out-degree indicate that bats interacted with a 

reduced number of individuals, i.e. ca. 25%, among those available in the group (indegree 

centrality: 4.6 ± 3.4; outdegree centrality: 4.6 ± 2.4).  

Tests for homophily towards former group-members proved significant for all considered 

behaviours (Table 6), i.e. bats engaged in behavioural interactions selectively with familiar 

individuals (see Figure S7 in Appendices). Interestingly, this trend was more evident for 

cooperative behaviours (i.e. huddling and allogrooming) than for simple physical contacts, for 

which it was also not significant for all experimental groups. 



 

 

 

Table 6. ANOVA density models for variable homophily of networks derived from physical contacts, huddling and allogrooming interactions of a captive 

mixed-species group of bats, based on 5000 permutations. 

Physical contact   Huddling   Allogrooming   

R-square P-value 

 

 R-square P-value  R-square P-value  

0.07 0.012  0.21 < 0.001  0.29 < 0.001  

 Coefficient  Significance   Coefficient  Significance   Coefficient  Significance  

Intercept 5.56 < 0.001  0.09 0.999  0.02 0.999 

Group B -2.89 0.049  1.67 < 0.001  1.04 < 0.001 

Group A -5.56 < 0.001  1.60 0.001  1.48 < 0.001 

Group V -2.22 0.111  0.47 0.071  0.58 0.005 

Group G -1.56 0.188  0.70 0.031  0.58  0.005 

 

 



 

 64 

Discussion 
 

Factors affecting social interactions of bats 

This experiment shows that in T. teniotis familiarity plays a key role in determining the degree 

of aggressiveness during social interactions, but also that intrinsic factors characterizing 

individual status such as sex and age play a role in influencing the rates at which aggressive 

or amicable behaviours are expressed. 

Amicable behaviour is known to be of prime importance to reinforce existing social bonds 

and individual ranks (De Villiers et al. 2003) and the higher levels of affiliation recorded 

between colony members in my experiment support my first hypothesis and confirm what is 

largely known for a wide range of other group-forming species (e.g. crustaceans: Tòth & 

Duffy 2005; birds: D’Eath & Stone 1999;rodents: Szenczi et al. 2012). Familiarity is built on 

the experiences made since the early stages of a bat’s life, leading to the formation of bonds, 

which will persist during adulthood (Willis & Brigham 2004). The two remaining hypotheses, 

i.e. that sex and age too influence the levels of affiliation, were also supported. The values of 

AI recorded during encounters were clearly influenced by the sex and age of interacting bats, 

variables of prime importance to most bat species from temperate areas, which congregate in 

summer roosts forming nursery colonies (Dietz et al. 2009). In roosting bats, the advantages 

of actively engaging in physical contact between individuals, exhibiting social tolerance and 

performing amicable interactions are primarily energetic: huddling helps females and 

juveniles to reduce the energetic cost of homoeothermy, needed during pregnancy and 

lactation to reproduce successfully (Chruszcz & Barclay 2002; Speakman 2008). In bat 

species other than that I studied, social tolerance and physical contacts also allow females to 

perform cooperative behaviour such as allogrooming (Kerth et al. 2003) – which besides 

reducing parasite load in the colony also pacifies the grooming partner –, food sharing 
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(Wilkinson 1984; Elizalde-Arellano et al. 2000; Paolucci et al. 2006; Carter & Wilkinson 

2013) and non-parental nursing (McCracken 1984a; Eales et al. 1988; Wilkinson 1992; Bohn 

et al. 2009). On the other hand, the solitary tendency of adult males observed in many bats, as 

well as the competitive role of males in social and mating systems (McCracken & Wilkinson 

2000) may explain both the low rate of amicable interactions and the very high frequencies of 

aggressive behaviour in encounters where only males were present; bat social and mating 

systems in fact often comprise the expression of agonistic behaviour as well as the formation 

of harems guarded and defended by single males (Safi 2008). Noticeably, although T. teniotis 

is known to form mixed colonies at least during part of the year (Balmori 2003; Dietz et al. 

2009), males still proved less tolerant, especially towards other males, suggesting that the 

persistence of aggressiveness must have a prime adaptive value in shaping male’s agonistic 

behaviour even in species where sexes do not constantly segregate and males are not solitary. 

It is unknown whether behavioural processes such as spatial segregation within colonies or 

clustering of individuals (and thus the formation of cryptic sub-units like in (Garroway & 

Broders 2007) may play a role in mitigating aggressive behaviour.   

As predicted, subadult individuals were less frequently targeted by adult aggressions. Juvenile 

bats usually associate with their mothers for long periods after weaning, thus remaining in the 

same roost for long (Burland et al. 2001; Rossiter et al. 2002; Kerth et al. 2002), and this may 

explain the higher levels of tolerance adults expressed towards juveniles in my experiment, as 

also found by (Ortega et al. 2008) in Artibeus jamaicensis. In some species the prolonged 

presence of juveniles in colonies may favour active information transfer from adults, e.g. 

regarding the development of foraging skills (Brigham & Brigham 1989; Geipel et al. 2013), 

or mother-to-offspring transmission of echolocation call features (Jones & Ransome 1993), 

and even direct food provisioning after weaning, i.e. females bring partially consumed prey 

items to juveniles (Delpietro & Russo 2002; Raghuram & Marimuthu 2007; Geipel et al. 
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2013). This high tolerance also explains, for instance, why naive juveniles of P. kuhlii 

released ex situ were quickly accepted in stranger colonies (Serangeli et al. 2012). In most 

mammals, juveniles are the dispersing individuals (Wolff 1994), and this also holds true for 

several bat species (McCracken 1984b; Dechmann et al. 2007; Nagy et al. 2013). The 

tolerance towards juveniles is probably so hard-wired into a bat’s behavioural repertoire that it 

also extends to juveniles from colonies other than their own, i.e. the “juvenile status” cues 

may override those signalling colony membership. However, infanticide by adult female bats 

is also known and has a xenophobic basis, being perpetrated towards pups from a different 

social group (Bohn et al. 2009), albeit very rare. Although I did not deal with the cues used by 

T. teniotis to recognize individual status, as in other bats these are likely to include personal 

odour, which may also differ according to age and thus be useful to distinguish between adults 

and juveniles (Nielsen et al. 2006). In T. brasiliensis, personal odour represents a crucial cue 

for individual recognition (Englert & Greene 2009).  

In conclusion, although my study shows the existence of xenophobia in bats it also illustrates 

how factors characterizing individual status such as sex and age may influence it, revealing 

the multifaceted nature of this behaviour.   

Although I only focused on T. teniotis, these results are likely to offer a general picture valid 

for many other bat species exhibiting similar roosting ecology and social behaviour. Of course 

my experiment was also constrained by the typical limitations of captive studies on behaviour 

(Siemers & Page 2009), so observational studies in nature confirming my findings are 

desirable. On the other hand, captivity offers an effective way to control social variables 

which would be otherwise extremely difficult to deal with in a natural environment (Siemers 

& Page 2009).  
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Effects of early experience on social bonding 

Despite the well-known sociality of bats, limited attention has been paid to the quantity and 

quality of social interactions among colony mates, aspects potentially of great significance for 

a better understanding of the evolution of social behaviour and the value of group formation 

(Kerth et al. 2003). Within this general context, the ontogeny of social ties has been even 

more neglected. 

By experimentally manipulating a bat’s early social context, this study showed for the first 

time that frequent mutual interactions between newborns, such as those likely to occur in 

colony clusters, lead to preferred associations between emancipated subjects, as suggested by 

the observed rates of amicable interactions shown once they are able to fly and feed 

autonomously and by the high 'cliquishness' (Croft et al. 2004), the effective representation of 

the resulting clustering dendrogram (Bridge 1993) and the Q-modularity value of the network 

(Newman 2006). Since I could only test the resulting social preferences on a short term, 

whether they are persistent is unknown, albeit likely. In fact, the frequent occurrence of 

amicable interactions may help cement social bonds (Kerth et al. 2003) originally acquired 

during early association in rearing groups. Preferred association of bats in fission-fusion 

societies have been found to persist across years despite movements between summer roosts 

and hibernacula (Patriquin et al. 2010; Kerth et al. 2011) Given the very early age of bats 

associated in rearing groups, the resulting social preferences might also be at least partly 

influenced by an imprinting-like process (Bateson 1979).    

The approach I followed to measure the strength of affiliative social ties established through 

earlier group membership, i.e. recording patterns of amicable behaviour, has been largely 

used for the study of other highly social species besides bats (Kerth et al. 2003), such as e.g. 

primates (Di Bitetti 1996; Barrett & Henzi 2001), rodents (Manno 2008), carnivores 

(Murdoch et al. 2008), and cetaceans (Gibson & Mann 2008). Noticeably, rearing group 
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membership influenced amicable interactions, whereas aggressive behaviour was only 

influenced by sex.  

Although in several bat species the role of mother-newborn association has been thoroughly 

analysed (Balcombe 1990; Balcombe & McCracken 1992; De Fanis & Jones 1995a, 1995b; 

Bohn et al. 2009), to my best knowledge this study is the first to determine the possible 

influence of neighbours on a bat’s social development and adds a further dimension to 

sociality in bats. These results suggest that for the establishment of social dynamics not only 

is the general association of bats at roost important (Whitehead & Dufault 1999; Kerth et al. 

2011), but also the individual positions they occupy within clusters (Kerth et al. 2003).   

I acknowledge that the situation found in roosting newborns forming different clusters (or 

occupying different cluster sectors) may somewhat differ from that I created experimentally. 

Hence, some caution is advisable in extrapolating my results to natural conditions. However, I 

clearly highlighted a phenomenon potentially leading to the development of cohesive 

subgroups within colonies, determining cryptic associative patterns and likely to play a major, 

so far ignored role in bat sociality, leading to preferential social ties.  

One of the consequences of common group membership was that, once able to fly, former 

group mates actively searched for mutual contact, a fact that may have consequences for the 

foundation of new colonies, roost switching patterns and information transfer. In general, 

same-sex amicable interactions were more frequent in females. For same-sex allogrooming, 

this bias only occurred between bats reared in the same group, whereas it was apparent in 

both within-group and between-groups homosexual huddling. Allogrooming is also more 

frequent between females of the common vampire bat Desmodus rotundus (Wilkinson 1986). 

This suggests that the affiliative patterns arising from early experience may be influenced by 

the more pronounced female sociality, needed to establish nursery colonies, whose 

aggregation is of great benefit to communal breeding. The advantages of female sociality 
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include minimizing torpor during lactation by social thermoregulation, which would 

otherwise affect milk production and offspring survival (Racey 1973; Swift & Racey 1983; 

Willis & Brigham 2007; Speakman 2008; Patriquin et al. 2010) as well as performing 

alloparental care of young (McCracken 1984a; Eales et al. 1988; Wilkinson 1992; Bohn et al. 

2009). The lower tendency in male bats to perform affiliative behaviour and in general the 

less gregarious habits might also explain the higher rate of aggressions performed by males 

over females I recorded.  

Huddling – the most frequent interaction recorded – is a form of physical contact which may 

facilitate thermoregulation (Kotze et al. 2008); however, like other social vertebrates, bats too 

may adopt it for reconciliation (McGowan et al. 2006; Willis & Brigham 2007; Kotze et al. 

2008). As in other mammals (e.g. Hart & Hart 1992; Borries et al. 1994), in bats too 

allogrooming plays a dual role, i.e. hygienic as well as social, reinforcing social bonds and 

increasing confidence with other individuals’ odours and skin secretions (McCracken & 

Bradbury 1980; Wilkinson 1986; Kerth et al. 2003; Safi & Kerth 2003).   

One of my experimental groups originated from the same colony, where, however, given the 

very young age of rescued bats (≤ 3 days of age), the time spent together before rescue had 

probably been too short to elicit the association phenomenon I observed in captivity. In fact, 

the common origin of those bats did not influence the association patterning I observed after 

rescue. On the other hand, factors such as possible kinship or cues such as “colony odour” 

(Safi & Kerth 2003) must have had negligible influence, or may have been overcome by the 

effect of the prolonged social experience gained in captivity.  

A limit of this study is given by the fact that I only focused on P. kuhlii. However, I argue that 

this phenomenon is linked with the particular gregarious roosting behaviour of many bat 

species, so it is unlikely to occur only in the one I studied. One of the most dynamic social 

structures known for bats is observed in forest species, whose small groups are spread over 
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different roosting areas, switch roosts frequently and are subject to fission-fusion patterns 

(Kerth & Konig 1999; Willis & Brigham 2004; Russo et al. 2005; Popa-Lisseanu et al. 2008). 

In such species, non-random, preferred associations of individuals – i.e. cohesive subgroups 

within a meta-colonial system – have been noticed (Willis & Brigham 2004; Garroway & 

Broders 2007; Patriquin et al. 2010). Affiliation mechanisms such as the one I describe might 

have a role in influencing these association patterns, albeit testing this in nature is most 

challenging. Besides, they might induce the development of cryptic social subunits also 

within large colonies of bats faithful to their roost, such as cave-dwelling or house-dwelling 

species (Lewis 1996).    

This study may also have some consequences for the improvement of protocols for the release 

of rescued bats in nature. Specifically, I recommend planning the selection of bats to be 

released in the wild so that once emancipated those reared together will be released at the 

same site, a practice increasing the likelihood of cohesion following release and the onset of 

e.g. communal roosting which might increase survival likelihood by favouring social 

thermoregulation and increasing antipredatory vigilance. 
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Mechanisms of interspecific social cohesion 

My results indicate a strong effect of early social environment on the patterns of association 

and interaction among bats of different species, highlighting that imprinting-like mechanisms 

may lead to interspecific social aggregation and cooperation and overcome species 

behavioural barriers. Interspecific associations of bats, commonly reported in field studies, are 

generally explained in terms of social thermoregulation or as a consequence of limited roost 

availability (McFarlane 1989; Arita & Vargas 1995; Rodriguez-Duran 1998). The species I 

tested usually roost in buildings so their roosts are unlikely to be limiting (Dietz et al. 2009): 

their MSGs formed in natural conditions (Ancillotto et al. 2013) must then be explained 

otherwise.  

Associations between different bat species are frequent and may be recorded year round 

(Dietz et al. 2009). So far, direct amicable social interactions between species involved in 

MSGs have not been recorded in natural conditions (Swift & Racey 1983; Wohlgenant 1994), 

but clustering of individuals from different species is not rare (Serra-Cobo et al. 2002; 

Boratyñski & Kokurewicz 2012). I found that such associations are not restricted to relatively 

passive behaviours such as physical contact, but can also lead to cooperative behaviours (e.g. 

reciprocal grooming). Noticeably, such cooperative behaviours appear at a very early age in 

bats (e.g. Figure S8 in Appendices).  

Among the advantages of interspecific social relationships, familiarity with heterospecifics 

may enhance the chances of social learning (Clarin et al. 2014) between individuals sharing 

the same roost, thus increasing information transfer and its quality (Goodale et al. 2010).  

Surprisingly, for all affiliative behaviours I found strong effects of individual's previous social 

experience (bats selectively established social interactions with familiar individuals) but no 

effect of species. For most aspects, bats of the two species showed a similar tendency to 

heterospecific interactions, occupied equivalent positions and played similar roles within the 
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social structure. When grooming mutually, bats from one species (P. kuhlii) were more often 

the initiator of a behavioural event – perhaps this reflect the tendency of P. kuhlii to live in 

large colonies (pers. obs.) and thus be more social –, particularly when body condition was 

low. Bats showing lower body condition were also more prone to initiate huddling with other 

individuals. Perhaps these bats had more urgent thermoregulation needs or their tendency to 

establish body contact may have a social explanation.  

The degree of clustering changed according to the behaviour recorded: it was loose for 

general physical contacts and huddling, much tighter for allogrooming. Because allogrooming 

implies spatial tolerance as well as coordinated movements between interacting individuals 

(Grueter et al. 2013) bats strictly selected members from the same original raising group to 

perform it. There is evidence from primates that social grooming is a social- rather than 

hygiene- related interaction (Dunbar 1991), thus the occurrence of this behaviour between 

different species confirms my prediction that true social bonding may occur in MSGs of bats.  

Obvious advantages of reciprocal social imprinting between two (or more) different bat 

species may be improved thermoregulation and higher anti-predatory vigilance, as well as 

effective information transfer, e.g. when searching for new suitable roosts. Interspecific 

eavesdropping on echolocation, social (Dorado-Correa et al. 2013) and distress calls (Russ et 

al. 2004) may occur to obtain information about the location of potential roosts, foraging 

areas or predators (Dorado-Correa et al. 2013). Although in some cases passive information 

transfer may have undesired consequences for the emitter so that private communication 

bandwidth may have evolved to minimize unintended heterospecific communication (Russo 

et al. 2007), in MSG formation this may convey mutual benefits to both the emitter and the 

receiver. The ability to recognize heterospecific calls may be an early-acquired skill learnt by 

bats born in mixed species colonies.  
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Social imprinting may also be among the possible mechanisms favouring hybridization 

between bat species (e.g. between Pipistrellus ssp.: Sztencel-Jablonka & Bogdanowicz 2012; 

Myotis ssp.: Berthier et al. 2006). Familiarity with a different species during a bat’s early life 

may influence individual sexual preferences, as demonstrated for birds (Kruijt & Meeuwissen 

1991; Slagsvold et al. 2002), fishes (Verzijden & Ten Cate 2007) and spiders (Hebets 2003).  

This work represents a step forward in unravelling the mechanisms underlying the 

phenomenon of interspecific sociality in bats. This is fundamental for understanding their 

behavioural and ecological interactions at the community scale, as mixed-species colonies are 

important priorities for the simultaneous conservation of different bat species (Rainho & 

Palmeirim 2013). Moreover, patterns of social behaviours and association among bats can 

have relevant consequences in the spread of diseases (Serra-Cobo et al. 2002; Langwig et al. 

2012), thus potentially having strong impact on different population- and community- scale 

processes.  
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Final remarks 

Integrating individual-based mechanisms in the study of bat social systems  

Results from this work confirm that social behaviour in bats is a complex issue (Kerth 2008a), 

influenced both by species natural history (i.e. intrinsic factors that innately influence 

individuals’ behaviour) and individual experience. This strong plasticity of bat sociality 

makes it important to adopt a multidisciplinary approach for the study of bat behaviour and 

social systems, as both individual- and ecological/evolutionary-based approaches may provide 

important insights to this complex biological issue.  

The present work provides insights onto different aspects of bats’ behavioural patterns, 

indicating that 1) ontogenetic factors (i.e. experience) are among the first acting forces upon 

individuals’ social lives, including the preference for familiar individuals (e.g. independently 

from kinship), that 2) these preferences developed at a young age in bats are persistent and 

can be modulated, according to intrinsic factors (e.g. sex and age) and that 3) such 

experiential mechanisms of association can act across the species boundaries.  

Such results add clear evidences to the debate upon the relative importance of kin and group 

cohesion in the evolution of cooperation among animals (Clutton-Brock 2002), indicating that 

albeit kin selection may have a significant role in shaping social dynamics among animals 

(Foster et al. 2006), the social behaviour of animal societies is also strongly shaped by 

experience (Beach & Jaynes 1954) and thus both individual ontogeny and kinship act at the 

same time on animal groups.  

The importance of ontogenetic factors in determining cohesion and cooperation in bats is 

suggested by the different genetic structures found in bat colonies, which can be composed by 

individuals not-strictly related to each other, e.g. as a consequence of fission-fusion dynamics, 

male-biased dispersal and breeding at swarming sites (Burland et al. 2001; Willis & Brigham 
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2004; Senior et al. 2005), all mechanisms that converge towards decreasing relatedness and 

increase genetic diversity of colonies and populations (Burland et al. 2001; Kerth et al. 2002, 

2011; Carter & Wilkinson 2013).  

The ability to form cohesive groups and interact cooperatively with heterospecifics, driven by 

early experience, also indicates a major role of social environment in shaping bat societies 

and communities, also highlighting that mixed-species associations found in natural colonies 

are the product of more complex mechanisms than simple aggregations for thermoregulatory 

benefits (Bogdanowicz 1983; Stensland et al. 2003).  

My findings offer a new and innovative insight into the investigation of bat sociality, with 

important ethological and sociobiological consequences. The forces that affect individuals 

engaging in social interactions may in fact influence rate and quality of information transfer 

within and between colonies, as well as modify patterns of disease spreading, having a 

fundamental role upon individuals’ and populations’ health and fitness, thus being relevant 

not only at behavioural and ecological levels, but also for the conservation of these species 

(Langwig et al. 2012; Rainho & Palmeirim 2013); the social dimension of behaviour is in fact 

a key aspect for animal ecology, potentially influencing species and communities 

conservation planning (Caro 1999).  

Studies on a fast-spreading lethal disease in North American bat population, the White Nose 

Syndrome (WNS: Blehert et al. 2009) indicates a strong correlation between pathogen 

transmission probability and the frequency of social contacts, with solitary species being far 

less impacted by this syndrome respect highly social species (Langwig et al. 2012). The use 

of social network analysis is fundamental in highlighting the potential role of single 

individuals and their relative positions inside the social structure in spreading diseases within 

and across social species. Studies on rodents (Perkins et al. 2009) and large herbivores 

(Vanderwaal et al. 2013) indicate a strong relevance of an individual-based approach in 
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predicting disease spreading; particularly, interactions and social associations networks better 

overlap with pathogen spreading networks when compared to larger-scale methods, e.g. 

home-range overlap among individuals (Perkins et al. 2009; Vanderwaal et al. 2013).  

Within this perspective, my results indicate that bats inside a colony do not all have the same 

probability of contact or of interacting in the same way, e.g. aggressively or cooperatively, 

with strong differences between sexes and age classes. Females in particular seem to be more 

prone to actively interact with each other, particularly inside familiar subgroups inside 

colonies. Thus, health monitoring of wild bat populations should start right from nurseries in 

order to more efficiently detect possible pathogens. As additional result, the identification of 

true social interactions besides physical contacts inside mixed-species groups of bats 

highlights the role of this kind of associations as disease spreading centres across different 

species, at least potentially; consequently, monitoring effort should concentrate on such type 

of colonies.   

Consequently, studies on the social behaviour of common and widespread bat species such as 

those I studied may help design future research on endangered species, contributing to the 

conservation of these still relatively poorly known mammals.  
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Appendices 
 

Supplementary figures  

 

 

Figure S 1. Schematic representation of the arena used in Experiment 1. A= side view; b= top view. 

Drawing by L. Ancillotto. 
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Figure S 2. Video camera mounted on tripod beneath an experimental bat box. Photo by L. Ancillotto. 
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Figure S 3. Newborn (age: 1-3 days) Kuhl’s pipistrelle (P. kuhlii) on hand. Photo by L. Ancillotto. 
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Figure S 4. Flight-room used for Experiment 2 and Experiment 3. Experimental bat boxes and net-

roosts are visible on the walls. Photo by L. Ancillotto. 
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Figure S 5. Two adult T. teniotis engaging in an aggressive display: the bat on the left is emitting an 

aggressive social call; the bat on the right is going to perform a chase towards the other individual. 

Photo by L. Ancillotto. 
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Figure S 6. Modified experimental bat box during inspection for data collection (Experiment 3). 

Coloured plastic split-rings are visible on bats’ forearms for individual identification. Photo by L. 

Ancillotto. 
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Figure S 7. Examples of intra-group (i.e. bats raised in the same experimental group: see colour of 

plastic split-ring on individuals’ right forearm) heterospecific physical contacts among young captive 

H. savii (individual on the right, in all pictures) and P. kuhlii (individuals on the top and left, in all 

pictures) raised in mixed-species groups. Photo by L. Ancillotto.  
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Figure S 8. Social interactions among young bats during captive rearing. a) Interspecific huddling 

between young P. kuhlii (down) and H. savii (up and left), b) intraspecific reciprocal grooming 

between young captive P. kuhlii; c) interspecific reciprocal grooming between young captive P. kuhlii 

(left) and H. savii (right). Photos by L. Ancillotto.  
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