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Background information 

Renal corpuscle in the kidney: Mammalian kidneys are a set of two, bean-

shaped organs which normally lie on each side of the spine. Urine is produced in 

two well-defined regions of the kidneys, the renal cortex and the renal medulla. 

Within these structures lie the renal corpuscles and excretory tubules, together 

known as nephrons. By regulating blood concentration of water and salts, the 

renal corpuscle maintains blood chemistry at desirable levels. 

The renal corpuscle is actually the meeting point of two separate structures, the 

glomerulus and the Bowman's capsule. The glomerulus, a ball of capillaries, sits 

inside the Bowman's capsule. The Bowman's capsule is a cup-shaped structure 

arising from the dead end of the nephron's excretory tubule. 

The blood vessels within the glomerulus are non-selectively permeable. Any 

blood solute smaller than 60 nm is able to cross the endothelial capillary wall 

membrane therefore enabling the glomerulus to act as a filter for blood 

impurities. As pressure from the heart pumps blood into the glomerulus, solutes 

such as salts, glucose, and urea, as well as water, are pressed through the tiny 

openings present in the membrane. Larger particles, such as proteins and blood 

cells, are unable to penetrate, and so remain suspended in the blood. 

Podocytes are specialized cells located in the Bowman's capsule that wrap 

around the capillaries of the glomerulus and help with the filtration process 

trapping any large solutes missed by the capillary membrane. The Bowman's 

capsule retains the filtrate and passes it out of the renal corpuscle. Glomerular 

http://www.wisegeek.com/what-is-the-renal-cortex.htm�
http://www.wisegeek.com/what-is-the-renal-medulla.htm�
http://www.wisegeek.com/what-is-a-glomerulus.htm�
http://www.wisegeek.com/what-are-capillaries.htm�
http://www.wisegeek.com/what-is-the-nephron.htm�
http://www.wisegeek.com/what-is-glucose.htm�
http://www.wisegeek.com/what-is-urea.htm�
http://en.wikipedia.org/wiki/Bowman%27s_capsule�
http://en.wikipedia.org/wiki/Glomerulus�
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filtrate travels through a series of tubules and finally into a general collecting 

duct, which receives contributions from a number of nephrons. The Bowman's 

capsule and the collecting duct are lined with a specialized tissue known as 

transport epithelium. This tissue processes the filtrate into urine. Once 

processed, the urine is funneled by the collecting duct into the ureter, and then 

to the urinary bladder. From the roughly 1100-2000 L of blood which pass 

through the human body daily, the renal corpuscles produce just under 180 L of 

filtrate. Once processed by the tubules and collecting ducts, this amount of 

filtrate produces, on average, just under 2L of urine. The remainder of the filtrate 

is reabsorbed into the blood. This process is regulated by the endocrine system, 

and serves to keep the blood both chemically-balanced and free of waste 

products. 

Bowman’s capsule contains mesangial cells, smooth muscle-like cells,involved 

in the filtration process. Mesangial cells are located between the capillaries and 

provide support for glomerular structure.  In addition, mesangial cells have the 

ability to contract since they express myosin and actin. 
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Normal podocyte structure 

Podocyte gross structure: Podocytes are highly specialized, terminally 

differentiated epithelial cells, with a quiescent phenotype (1). Podocytes derive 

embryonically from mesenchymal cells (2). Each mature podocyte has distinct 

anatomical, and therefore functional, components (3). The cell body is at the 

center of the cell, and essentially lies in the urinary space and the nucleus is 

oriented toward the urinary space. From the cell body arise long primary 

processes, the ends of which contain foot processes. These secondary 

processes  attach to the underlying GBM (Glomerular Basement Membrane) via 

integrins (4) and dystroglycans (5). Foot processes from neighboring podocytes 

overlap (interdigitate). The 'filtration slit' formed between adjacent interdigitating 

podocyte foot processes is a highly specialized gap junction called the slit 

diaphragm, which forms the major size barrier to protein leakage. 
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Podocyte Molecular structure: Podocytes are polarized cells. They derive 

their unique shape due to a rich actin cytoskeleton, which serves as the 

podocyte's 'backbone' (6). The actin cytoskeleton also enables podocytes to 

continually and dynamically alter shape. The cytoskeleton comprises three 

distinct ultrastructural elements: (a) microfilaments (7–9 nm diameter), (b) 

intermediate filaments (10 nm), and (c) microtubules (24 nm). Microfilaments are 

the predominant cytoskeletal constituents of the foot process, and contain a 

dense network of F-actin and myosin.  

The actin cytoskeleton is linked with other proteins. Tryggvason et al. was the 

first to discover nephrin, (7) a member of the Immunoglobulin superfamily, as 

one of the now increasing number of complex slit diaphragm proteins. The 

cytoplasmic tail of nephrin binds to podocin (8-10). Nephrin also interacts with 

and localizes to CD2AP (11;12).More recently, Neph-1, another member of the 

Immunoglobulin superfamily of proteins, has been identified Neph-1 interacts 

with nephrin, podocin, and FAT1 (13;14).Other slit diaphragm proteins include 

ZO-1, Neph-2 and -3, and densin. By forming the only connection between 

adjacent podocytes, the slit diaphragm limits protein leakage by acting as a size 

barrier, analogous to a sieve. It is tempting to speculate that the slit may also 

function as a charge barrier, as some of these proteins are phosphorylated. 

The apical membrane domain of podocytes is negatively charged, due to the 

presence of the surface anionic proteins podocalyxin (16), podoplanin (17), and 

podoendin (15). This serves two functions. First, the negative charge limits the 

passage of albumin (also negatively charged). Second, adjacent podocytes 
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maintain their separation by anion charge. The basal domain is required to 

anchor podocyte to the underlying GBM. α3β1 integrin (15) and α- and β-

dystroglycans (16) serve this function, and connect the body of the podocyte to 

certain matrix proteins within the GBM. 

 

Podocyte function: The complex architecture of constitutive proteins is 

required for the highly specialized functions of podocytes, which includes a size 

barrier to protein, charge barrier to protein, maintenance of the capillary loop 

shape, counteracting the intraglomerular pressure, synthesis and maintenance 

of the GBM, production and secretion of vascular endothelial growth factor 

(VEGF). Therefore, it is not surprising that perturbations in one or more of these 

functions following podocyte injury underlies the signature clinical findings 

including marked proteinuria, and often a decrease in renal function with 

elevated creatinine. 

 

Podocyte injury: Accumulation of protein in the urine (proteinuria) is in part due 

to podocyte damage and is present in a range of kidney diseases such as 

glomerulosclerosis, membranous nephropathy, membranoproliferative 

glomerulonephritis, amyloid and diabetic nephropathy. The focus of my 

dissertation is diabetic glomerulosclerosis characterized by a significant 

podocyte injury which ultimately leads to marked proteinuria. 
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Histologic changes in podocytes following injury: Regardless of the cause 

of podocyte damage, typical podocyte abnormalities are best seen on electron 

microscopy and include vacuolization, microcystic, or pseudocystic changes, the 

presence of cytoplasmic inclusion bodies, and detachment from the GBM (17). 

In areas of reduced podocyte number, there may be focal areas of denudation of 

the underlying GBM. Although these changes are common, the characteristic 

response to podocyte damage/injury is a change in cell shape called 

effacement. It should be noted that these electron microscopy changes do not 

typically distinguish one podocyte disease from another, but rather represent a 

common final pathway of the podocyte's response to injury, proteinuria in the 

urine. 
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Podocyte effacement:  Podocyte foot process effacement consists of gradual 

simplification of the inter-digitating foot process pattern, resulting in the 

formation of a cell that looks flat and elongated (b). This is not fusion of 

neighboring cells but rather retraction, widening, and shortening of each 

podocyte process. The frequency of filtration slits is reduced (18), giving the 

appearance of a continuous cytoplasmic sheet covering the GBM (b). 

Effacement is not specific to one disease, but rather is synonymous with 

podocyte injury of many forms. Studies have shown that effacement is initiated 

by changes in the podocyte's cytoskeleton. 
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Actin cytoskeleton: the backbone of podocyte shape: Foot processes are 

highly dynamic structures rich in actin filaments (19;20). Microtubules and 

vimentin-type intermediate filaments are distributed in the cell body and primary 

processes. In the major processes, the cytoskeleton is composed mainly of 

microtubules, interwoven with intermediate filament proteins. In contrast to the 

cytoskeletal proteins in the cell body and major processes, foot processes have 

an elaborate microfilamant-based contractile apparatus composed of actin, 

myosin-II, α-actinin, talin, and vinculin.  

The actin cytoskeleton ultimately determines the podocyte's shape. Proteins 

regulating or stabilizing the actin cytoskeleton are therefore critical in the normal 

function of the podocyte, and any alterations in the actin itself, or in actin-

regulating proteins (as explained in our study) might lead to changes in 

podocyte shape, and therefore function. 
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Podocyte apoptosis: a life or death decision 

When podocytes begin to change shape, they start a process of programmed 

cell death, also called apoptosis. There is emerging experimental and clinical 

evidence showing that apoptosis is a major cause of reduced podocyte number, 

leading to proteinuria and/or glomerulosclerosis (21). 

It has been well established that diabetes is associated with reduced podocyte 

number, which correlates with the onset and magnitude of proteinuria.Previous 

publications have shown (22-24) that hyperglycemia directly induces apoptosis 

in cultured podocytes, thereby providing an additional possible explanation for 

reduced podocyte number in this disease. 
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Introduction to the study: 

The female-to-male incidence ratio of end-stage renal disease caused by 

diabetic glomerulosclerosis (GS) is higher in post-menopausal than in pre-

menopausal women compared with men of the same age (25). In addition, 

hormone replacement therapy results in decreased proteinuria and improvement 

of the creatinine clearance in post-menopausal women with diabetes mellitus 

(26-28).Taken together, these data suggest an important role for estrogen 

deficiency in progression of diabetic glomerulosclerosis. 

The glomerulus is an estrogen target tissue, and estrogen 17β-estradiol (E2) 

prevents the onset or slows the development and/or progression of GS in mouse 

models of progressive kidney disease (26-29). Estrogens are steroid hormones 

naturally produced in human and other mammals with greater abundance in 

females. There are two estrogen receptors ERα and ERβ, known to mediate 

estrogen signaling; and they function as ligand-dependent transcription factors. 

After crossing the cellular membrane, estrogens bind to the receptors in the 

nucleus; the receptors dimerize and bind to specific response elements known 

as estrogen response elements (EREs) located in the promoters of target 

genes. 

Since proteinuria is associated with podocyte injury, the objective of this project 

was therefore to study the role of estrogen in preventing loss of podocytes in 

diabetic female mice with glomeruloslerosis and to clarify the molecular 

mechanisms responsible for estrogen protection. To achieve this goal we 
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isolated, propagated and characterized podocyte cell lines from diabetic mice 

(db/db) that developed glomerulosclerosis. 

ERs, found to be localized on podocytes by histochemical studies (30), are 

regulated by the levels of E2 (26;31-33). From our previous studies we found that 

E2 mediates changes in the podocyte ERα–ERβ ratio. Neither ERα copy number 

nor protein expression was regulated by E2 in podocytes. Although we found no 

change in ERβ mRNA copy number, the ERβ protein expression increased after 

E2 treatment, suggesting that there was a post-translational regulation, such as 

protein stabilization (34-36) (Fig.3). 

In our study we show how estrogen is important as a treatment in preventing 

diabetic glomerulosclerosis by protecting actin filaments and podocyte 

dysfunction. Effacement that occurs in diabetic glomerulosclerosis is due to a 

change in actin cytoskeleton resulting in a phenotypic change of the podocytes.  

In eukaryotic cells, actin exists in two forms: the filamentous f-actin and the 

globular g-actin. The morphologic change of podocytes is associated to a 

change in percentage between filamentous actin (f-actin) and globular actin (g-

actin). Recent data suggest that Hsp25 and Rac1 expressed  in podocytes are  

involved with this process. Hsp25 a low- molecular-weight heat shock protein, is 

an actin-associated protein which regulates actin polymerization. In addition, 

Hsp25 is involved in actin capping, by binding to the growing ends of actin 

filaments and inhibiting filament extension (37). 
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Finally, Rho GTPases are molecular switches that control a wide variety of signal 

transduction pathways in all eukaryotic cells. They are known principally for their 

pivotal role in regulating the actin cytoskeleton. Rac1 stimulates actin 

polymerization and membrane protrusion. Cdc42 controls cell polarity and RhoA 

promotes assembly of actin-myosin filaments and cell contraction. In our study we 

focused our attention on podocyte Rac1 function and its relationship to Hsp to 

prevent changes in podocytes phenotype and apoptosis. 
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Purpose of the study: 

In our previous publication (Catanuto et al. KI, 2009) (38) we found that estrogen 

protects the glomerulus against diabetic glomerulosclerosis by preventing the 

diabetic associated increase in albumin excretion, glomerular volume, and 

collagen type IV deposition (Fig.1). To study the mechanisms associated with 

the estrogen-mediated protection, we isolated, characterized and immortalized 

(Fig.2) podocytes from placebo and estrogen treated diabetic mice.We found 

that estrogen protects the podocyte phenotype by changing the ERα–ERβ ratio 

(Fig.3) modulating apoptotic and anti-inflammatory signaling pathways (data not 

shown) and metalloproteinases (Fig.4). 

In the current study: “In vivo 17β-estradiol treatment contributes to 

podocyte actin stabilization in female db/db mice” we determined the 

mechanisms by which estrogen maintains and protects podocyte structure and 

function through stabilization of the actin cytoskeleton and prevention of 

podocyte apoptosis. 
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Study: 

In vivo 17β-estradiol treatment contributes to podocyte actin 

stabilization in female db/db mice 

Abstract: 

 We recently showed that 17β-estradiol (E2) treatment ameloriated type 2 

diabetic glomerulosclerosis in mice in part by protecting podocyte structure and 

function. Progressive podocyte damage is characterized by foot process 

effacement, vacuolization, detachment of podocytes from the glomerular 

basement membrane and apoptosis. In addition, podocytes are highly dependent 

on the preservation of their actin cytoskeleton to ensure proper function and 

survival.  Since E2 administration prevented podocyte damage in our study on 

diabetic db/db mice, and has been shown to regulate both actin cytoskeleton and 

apoptosis in other cells types and tissues, we investigated whether actin 

remodeling and apoptosis were prevented in podocytes isolated from E2 treated 

diabetic db/db mice as compared to placebo. We performed G-actin/F-actin 

assays, western analysis for Hsp25 expression, Rac1 activity and apoptosis 

assays on previously characterized podocytes isolated from both in vivo treated 

placebo and E2 female db/db mice.  We found that in vivo E2 protects against a 

phenotype change in the cultured podocytes with an increase in F-actin versus G-

actin, decrease in Hsp25 expression and transcriptional activation, increase of 

Rac1 activity and decrease apoptotic intermediates. Based on these results we 
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conclude that E2 treatment protects against podocyte damage and may 

prevent/reduce diabetes-induced kidney disease.  

 

 

Introduction: 

Diabetic kidney disease (DKD)  is the leading cause of end-stage renal disease 

(ESRD) and is increasing due to the epidemic of obesity and diabetes (25). Tight 

glycemic control and multiple therapeutic agents have been reported to slow, but 

not prevent the progression of DKD.  Importantly, estrogen deficiency contributes 

to the development and progression of DKD in women (25). Multiple experimental 

studies have suggested that 17β-estradiol (E2) treatment protects the glomerulus 

against injury and therefore prevents DKD (27;38-41). We recently showed that 

E2 treatment prevented type 2 diabetic glomerular disease in db/db mice in part by 

protecting podocytes against oxidant-induced injury (38). In addition isolated 

podocytes from E2 treated mice exhibited higher expression of estrogen 

receptors suggesting that a direct protective effect of E2 may occur. 

Progressive podocyte damage is characterized by foot process (FP) effacement, 

vacuolization, detachment of podocytes from the glomerular basement membrane 

and apoptosis (21;42-46). Podocytes are highly dependent on the preservation of 

their actin cytoskeleton to ensure proper function and survival.  In eukaryotic 

cells, actin exists in two forms: the filamentous F-actin and the globular G-actin. 

One of the proteins involved in actin capping,  heat shock protein (Hsp27/25), 
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binds to the growing ends of actin filaments and inhibits filament extension (37).  

Actin capping changes the F-actin: G-actin ratio in favor of G-actin, which may 

promote podocyte foot process effacement and proteinuria. In addition, the small 

Rho-GTPase, (47) Rac1, stimulates actin polymerization and membrane 

protrusion (47) and may have an important role in protecting podocytes (48).   

Because  E2 administration prevented podocyte damage in our study on 

diabetic db/db mice (38), and has been shown to regulate both actin cytoskeleton 

and apoptosis in other cells types and tissues (49;50), we hypothesized that in 

vivo E2 protects against a phenotype change in podocytes by preventing actin 

remodeling and apoptosis.  

 

Materials and Methods:  

Animal Model and Cell lines: We used C57BL/6Jdb/db mice. These mice 

developed diabetic glomerulosclerosis similar to the one seen in patients. They 

are infertile due to a difect in the axis hipotalamous-pituitary-ovaries.These mice 

also have a decrease estrogen receptor similar to menopausal women.  

We treated female db/db mice, from 7 to 24 weeks of age with either placebo or 

17β-estradiol (E2) (0.05 mg) (Innovative Research of America, Sarasota, Fl, 

USA). The dose of E2 was chosen to obtain blood levels similar to that found 

during estrous (51). All the db/db mice were obese and had stable diabetes at 

the initiation of treatment. There were no differences in body weight, kidney 

weight, or in the kidney weight–body weight ratio between any of the studied 

groups. Mice were sacrificed at 24 weeks. Uterine weight was assessed as a 



19 
 

measure of estrogen replacement efficiency. Uterine weight increased with E2. 

This is correlated with an increase in the 17β-estradiol levels. 

Their left kidney was perfused with a buffer solution containing collagenase and 

RNase inhibitors for microdissection of glomeruli. The glomerular podocytes 

were isolated, propagated and immortalized using HPV as previously described 

(38). Both immortalized and primary  cells retained characteristic podocyte 

markers found in vivo including  nephrin, WT1, and TRPC6 (38). Cells were 

grown and maintained in DMEM:F12 medium supplemented with 10% fetal 

bovine serum (FBS). In those experiments where tranfection with Hsp25 was 

performed, podocyte cell lines were placed for 24 hours in phenol red free 

medium and 10% charcoal stripped serum. 

Immunofluorescence with Rhodamine Phalloidin. Kidney sections (4µm 

thick) embedded in OCT were fixed in 2% paraformaldhyde for 10 minutes at 

room temperature, permeabilized with 1% Triton X-100 and blocked with 5% 

BSA (Bovine serum albumin).The kidney sections from three mice/group were 

incubated with rodamine phalloidin (1:1000) (Invitrogen, Carlsbad, CA, USA) 

overnight at 4°C to detect actin filaments and observed under the LSM700 

confocal microscope after washing with PBS (Phosphate Buffered Saline).  A 

percent ratio of color intensity per glomerular area was determined using image 

J software. 

Percent F-actin versus G-actin: F and G-actin were measured using the In 

Vivo Assay Kit (Cytoskeleton, Inc. Denver, CO, USA) according to 

manufacturer’s directions. Briefly, podocyte cell lines were lysed in a detergent-
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based buffer that stabilized and maintained the G- and F- forms of cellular actin. 

Only G-actin was solubilized by the buffer and following a centrifugation step F-

actin was pelleted while G-actin remained in the supernatant. The F-actin was 

depolymerizated and aliquots of supernatant and pellet were analyzed by 

sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis. Total cellular 

actin (100%) was measured as G-actin+F-actin.  After film development, the 

blots were washed with India ink (1ul/ml) for 2 hr, to visualize the protein bands 

and confirm loading equivalency (52). 

Western Blot Analysis: Podocyte cell line lysates were extracted and a protein 

concentration assay was performed using the BCA protein assay kit (Pierce 

Biotechnology, Rockford, IL). Equal amounts of protein were loaded in precast 

SDS polyacrylamide gels (invitrogen) after boiling the samples with Laemmli 

buffer and β-mercaptoethanol. Following electrophoresis, the proteins were 

transferred to nitrocellulose membrane and the blots were exposed to the 

following antibodies:  Actin (cat#.AAN01, Cytoskeleton, Denver, CO, USA), 

Hsp25 (Enzo Life Sciences International, Plymouth Meeting, PA, USA), Rac1 

(Cell Biolabs, Inc. San Diego,CA,USA), Caspase-9 (Cell Signaling Technology, 

Inc. MA, USA), or Apaf-1 (Santa Cruz Biotechnology, Santa Cruz, CA). The 

primary antibody was washed and the secondary antibodies were added for 

1hour followed by chemiluminescence solution and exposure to autoradiograph 

film. The films were scanned for densitometric analysis using Image J software 

from NIH as previously described (38). Blots were treated with β-actin antibody 
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(loading control) (Sigma-Aldrich, St.Louis, MO) after stripping to ensure equal 

loading of gels.  

Real-time Polymerase Chain Reaction (PCR): Real-time PCR was performed 

on podocyte cell lines isolated RNA as previously described to amplify Hsp25 

fragment (385pb) using a Syber Green kit (Quiagen, Valencia, CA, cat#204243) 

with specific primers (sense 5’-AGC GCC GCG TGC CCT TCT C-3’; antisense, 

5’-TGC CTT TCT TCG TGC TTG CCA GTG-3’) and RT (Reverse Transcriptase) 

mix for 40 cycles. The product of the PCR was then run on a 2% acrylamide gel 

(53). The TaqMan ribosomal RNA control reagents kit was used to detect 18S 

ribosomal RNA gene, which represented an endogenous control. Each sample 

was normalized to the 18S transcript content as previously described (54).  

Transfection using Hsp25 Promoter: Podocyte cell lines were plated in 10% 

charcoal/dextran-treated fetal bovine serum (<5 pg/ml estrogens) in 24 well 

plates. Cells were transfected at 70% confluency using TransIT-LT1 (Mirus, 

Madison, WI, USA) with Hsp25-promoter-luciferase reporter gene construct 

(kind gift of Dr. Gaestel Matthias, Germany, 0.5 μg/well) and β -galactosidase 

gene (pRSV-βgal, 0.5 μg/well) to control for transfection efficiency. After 24 

hours cells were harvested and luciferase and β-galactosidase assays were 

performed. Briefly, cells were lysed with 100ul of reporter lysis buffer (Promega) 

and lysate transferred to a microcentrifuge tube, spun for 10 minutes at 

12,000rpm 4°C and supernatant transferred to a clean tube. The  luciferase and 

β-galactosidase assays were performed as previously described (26). 
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Rac1 GTPase Activity Pull-Down Assays 

Rac1 activity was assessed by pull-down assays using the Rac/Cdc42 binding 

domain (PBD) of p21-activated kinase coupled to GST (PBD-GST) (according to 

Rosenblatt et al.) (55). Active (GTP-bound) GTPases bind to their respective 

effector proteins. Podocyte cell lysates containing 400ug total protein were 

immediately added to 100 μl glutathione sepharose beads and rotated gently for 

30 min at 4°C. Sepharose beads were pelleted by centrifugation, and complexes 

were washed four times with 1× lysis buffer not containing PBD-GST. GTP-

bound Rac1/Cdc42 was eluted with SDS sample buffer and separated by SDS-

PAGE. Proteins were transferred to nitrocellulose membranes and exposed to a 

Rac1 antibody and visualized by chemiluminescence.  In some experiments, 

podocytes were treated with either vehicle control (DMSO used to dilute EHT) or 

10 and 20uM of EHT 1864, a small molecule Rac1 inhibitor. (EHT 1864: Sigma, 

E1657)  

Immunohistochemestry: Chamber slides containing podocytes were exposed 

to an antibody against Cleaved-Caspase-9 (1:1000) (Cell Signaling Technology, 

Inc. Denvers, MA, USA) to detect apoptosis followed by application of the 

seconday antibody Alexa Fluor 488 goat anti-rabbit (1:500) (Invitrogen) for 2 

hours at room temperature. Slides were mounted with DAPI (Vector 

Laboratories, Inc. Burlingame, CA, USA) to identify the nuclei and images 

examinated under a fluorescence microscope with 630X magnification. 10 fields 

per slide were examined. 3 slides per group. 
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Statistics: Data are presented as mean ±s.e.m. Statistical differences were 

assessed using Student's t-test (Prism, GraphPad 5, San Diego, CA, USA). A P-

value of <0.05 was considered significant. 

 

Results: 

Mouse model: As previously published db/db mice receiving placebo pellets 

had increased albumin excretion which was abrogated by E2 treatment (38). E2- 

treated mice also exhibited decreased glomerular volume and type IV collagen 

deposition compared with that of the placebo-treated control. The current study 

employed previously characterized immortalized podocyte cell lines isolated and 

characterized in our laboratory (38).  

Actin expression and percent of F-actin and G-actin: We found that F-actin 

appeared in the characteristic pattern described for glomerular podocytes in the 

E2 treated sections (56) compared to F-actin in glomeruli of placebo treated 

mice (Fig.5). Glomeruli isolated from E2 treated mice had a higher % intensity of 

staining (1.3 ± 0.13, **p<0.05) compared to those glomeruli isolated from 

placebo treated mice (0.74 ± 0.08). Based on the staining of the glomeruli, we 

performed experiments to determine the expression of F and G-actin in isolated 

podocytes (Fig.6). There was a greater percentage of F-actin than G-actin 

(~76% versus 24%) in podocyte lysates isolated from db/db mice treated with E2 

compared to lysates from placebo treated mice (~50% of F versus 50% G-actin).  

Hsp25 expression, amplification and transcriptional activation. Western 

blot analysis revealed that lysates from podocytes treated in vivo with E2 
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(Fig.7A) express less Hsp25 protein compared to those isolated from placebo 

treated mice (***p<0.005). In parallel, levels of Hsp25 mRNA were decreased in 

those podocytes previously treated with E2 (Fig.37B). 18S content was equal 

between samples with an average ct of 31 for placebo and 31.5 for E2 

podocytes. Finally, we also transfected podocytes with an Hsp25-promoter-

luciferase reporter plasmid. Hsp transcriptional activation was also repressed in 

podocytes from the E2 treated mice (Fig.7C), (***p<0.005).  

Increase of Rac1 activity by E2 and treatment with EHT 1864: Since Rac1 

has been shown to participate in actin polymerization and stabilization (57), we 

investigated Rac1 activity in podocytes. We found that Rac1 activity was 

increased in podocytes isolated from in vivo E2 treated mice compared to those 

of placebo treated mice (0.7±0.3 vs 0.4±0.2,*p<0.05). The increase of Rac1 

activity was blocked in a dose dependent manner (Fig.8A) following  24 hours  

treatment with EHT 1864 (55;58). After 72 hours of EHT 1864 treatment, 

podocytes isolated from E2 treated mice exhibited: 1) a change in the baseline 

percent of F-actin (76%) and G-actin (24%) to a higher percent of G-actin (F-

actin 68% and G-actin 32%) (Fig.8B); and 2) increased Hsp25 expression 

(Fig.8C).  

Apoptotic intermediates: We found an E2-induced reduction of Apaf-1 (30% 

decrease). Since Apaf-1 activates Caspase-9, we were not surprised by the 

decrease in cleaved Caspase-9 (Fig.9A and B). In addition, Caspase-9 

expression was also  

(Fig.5C, ***p<0.005) reduced in podocytes isolated from in vivo E2 treated mice. 
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Discussion: 

We report here a phenotypic change observed in podocytes isolated from 

db/db diabetic mice, characterized by dysregulation of the percent of filamentous 

actin (F-actin) and globular actin (G-actin) that is prevented by in vivo E2 

treatment. We also confirmed a diabetic-induced increase of Hsp25, a regulator 

of actin cytoskeleton (37). E2 treatment reduced Hsp25 mRNA and protein 

expression, and repressed Hsp25 promoter activity. These data support the 

hypothesis that repression of Hsp25 prevented actin capping and allowed for 

increased ability of actin to polymerize and maintain the filamentous form 

thereby helping to stabilize the podocyte phenotype.  

These data are in agreement with other studies. Dai et al., reported that 

short term glucose treatment of podocytes in vitro induced phosphorylation Hsp25 

(59). In a streptozotocin rat model of diabetes, the phosphorylated form of Hsp25 

increased in diabetic podocytes compared with controls. A recent study showed 

that Hsp27 was upregulated in glomerular podocytes isolated from patients with 

DN (diabetic nephropathy) (60). Additional studies have also reported an increase 

in the phosphorylated form of Hsp25 in diabetic glomeruli (59;61). An E2-mediated 

repression of Hsp25 was reported in neurons (62). In addition, the presence of a 

half palindrome estrogen response element and two specificity protein-1 sites in 

the Hsp promoter (63) coupled with the increase in estrogen receptor (ER)β 

expression in our cells, suggest that our results may be ER-dependent.  This 

effect however may be tissue specific since Hsp27 (human equivalent form to 

mice Hsp25) expression is augmented in an Erβ-dependent manner in aortic 
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vessel walls (64). Our future studies will include a more in depth look at ER 

subtype dependent regulation of Hsp25/27 in diabetic podocytes. 

Rho GTPases are also known for their essential role in regulating the 

actin cytoskeleton (65;66). In particular, Rac1 stimulates actin polymerization 

and membrane protrusion. The E2 induced Rac1 activity observed in our model 

could potentially aid in the stabilization of actin. This seems likely since 

treatment with EHT 1864, the small molecule inhibitor of Rac1, reverted the 

podocytes to a phenotype more representative of the placebo treated cells 

including an increase of G-actin and Hsp25 expression. To our knowledge there 

have been no reports of a direct effect of Rac1 on Hsp25 expression.  

Increased albumin excretion, one of the hallmarks of DKD, results from 

damage to podocytes (21;42-45). The ability of the kidney to replace damaged or 

lost podocytes is limited since podocytes have a reduced potential to regenerate 

(43;46) therefore reducing apoptosis is an important mechanism for preserving 

cell number. Intermediates in the apoptotic signaling pathway were modulated 

by estrogens as shown for other cell types incuding glomerular mesangial cells 

(34;67;68). In addition Apaf-1 which binds to procaspase-9 and induces 

processing of caspase was also reduced suggesting the entire apoptosis cascade 

may be affected by estrogen treatement (69). Although it is well established that 

estrogens can inhibit apoptosis in a variety of cells and tissues, the mechanisms 

underlying this effect are not clearly understood.  

We and others have proposed that the regulation of signaling pathways 

such as PI3K/AKT and p38 by estrogens could protect against podocyte 
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apoptosis (70;71). Data generated in our laboratory showed that E2 treatment 

protects podocytes from apoptosis induced in vitro by TGF-β and TNF-α (67). 

This effect may be mediated by activation of the PI3K-AKT signaling cascade, 

since podocytes isolated from diabetic mice treated with E2 have increased 

levels of AKT phosphorylation (unpublished data). Moreover, we found that 

glomeruli of db/db mice isolated at onset of albuminuria (12 weeks-old), show 

reduced AKT phosphorylation compared to db/+ mice (71).  In addition, 

podocytes isolated from db/db mice with diabetes at the onset of albuminuria, 

even if cultured in normal-glucose medium, showed impaired insulin-dependent 

AKT phosphorylation, which is associated with enhanced susceptibility to cell 

death (71).   

Finally, we previously showed an increase in glomerular and podocyte ERβ 

expression, suggesting that the ratio of ERα to ERβ may be responsible for 

many of the E2-mediated actions discussed above. These studies are ongoing in 

our laboratory and will be the topic of future studies. In summary, we propose 

that in vivo E2 treatment prevents the deleterious events that lead to actin 

cytoskeleton rearrangement and an apoptotic cascade in podocytes in a Rac1 

dependent manner (Fig. 10).  

 

Figure Legends: 

Fig.5 In vivo17β-estradiol (E2) treatment protects against actin filament 

disruption in female diabetic db/db mice. 4µm thick frozen sections were 

stained with rhodamine phallodoidin and visualized with confocal microscopy as 
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described in methods. Representative photomicrographs show rhodamine-

phalloidin staining and phase contrast of glomeruli from placebo-treated and E2-

treated db/db mice. 630x original magnification. 10 fields per slide were 

examined. N=3 per group. Data are graphed as the percent ratio color intensity 

per area. 

Fig.6 Podocytes isolated from female diabetic db/db mice treated in vivo 

with 17β-estradiol (E2) have a higher percent of filamentous actin (F-actin) 

compared to podocytes isolated from placebo-treated mice. Cell lysates 

were collected from podocytes isolated from both placebo and E2 treated db/db 

mice. (A) Representative of 5 western blots of F-actin and G-actin. (B)  Lower 

panel is an ink stained blot for loading control. The arrow indicates the band of 

interest at the molecular weight of actin.  (C) Data are graphed as mean ± SEM 

of percent of F and G-actin White bars represent podocytes isolated from 

placebo treated female db/db mice and black bars represent podocytes isolated 

from E2 treated female db/db mice.  ***p<0.005 compared to G-actin of estrogen 

treated cell lysates. N=5 experiments. Duplicate cell lines of each treatment.   

Fig.7 Podocytes isolated from female diabetic db/db mice treated in 

vivowith 17β-estradiol (E2) have decreased expression of Hsp25, 

decreased mRNA expression, and repressed transcriptional activation 

compared to podocytes isolated from placebo treated mice. Cell lysates 

were collected from podocytes isolated from both placebo (white bars) and E2 

(black bars) treated db/db mice. Western blot analysis was performed. (A) 

Representative western blot showing podocyte expression of Hsp25 from 
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placebo or E2 -treated cells. Hsp25 expression was detected at molecular weight 

of 25 kDa. β-actin western blot is shown below as loading control. Data are 

graphed as mean ± SEM of Hsp25 and expressed as a percent of placebo cells. 

***p<0.005 compared to placebo, (B) mRNA expression of Hsp25 was 

measured and a representative of 3 gels showing podocyte amplification of 

Hsp25 from placebo or estrogen treated cells. (C) Placebo and estrogen 

podocyte cell lines were co-transfected with an Hsp25-promoter-luciferase 

reporter gene construct and the β-galactosidase gene to control for transfection 

efficacy. Cells were subsequently harvested and luciferase activity was 

assessed and normalized to galactosidase activity. Data are the mean ± SEM of 

3 experiments, ***p<0.005 compared to vehicle (white bar) and E2 treated (black 

bar) control cells. N= 3 experiments. Duplicate cell lines of each treatment were 

used. 

Fig.8 Inhibition of increased Rac1 activity in podocytes isolated from 

female diabetic db/db mice treated in vivo with 17β-estradiol (E2) increases 

the percentage of G-actin and Hsp25 protein expression. Cell lysates were 

collected from podocytes isolated from E2 treated db/db mice and pull down 

assay perfomed followed by western analysis as described in material and 

methods. (A)  Dose response of Rac1 activity inhibition by the Rac1 inhibitor 

EHT 1864 after 24 hours. Data are graphed as the mean ± SEM of the ratio 

between Rac1-GTP and total (input) protein. N=3 experiments. (B) 

Representative western blot showing F-actin and G-actin in E2 treated cells after 



30 
 

72 hours EHT 1864 treatment. Higher percent of G-actin after treatment with 

EHT 1864 at 72 hours in E2 treated cells. N=3 experiments. Ink staining is 

shown below for loading control. The arrow indicates the band of interest at the 

molecular weight of actin. (C) Representative western blot showing the protein 

expression of Hsp25 after 72 hours treatment with EHT 1864 in E2 treated cells. 

V=Vehicle treated cells (DMSO). N=5 experiments. β-actin western blot is 

shown below as loading control. Data are graphed as the mean ± SEM. *p<0.05. 

Fig.9 Immunofluorescence staining of Cleaved Caspase-9 and expression 

of Caspase-9 decreased in podocytes isolated from female diabetic db/db 

mice in vivo treated with 17β-estradiol (E2). (A, B) Immunofluorescence 

staining of Cleaved Caspase-9 was performed on podocytes according to 

methods described. Dapi staining of nuclei appeared blue, and FITC staining of 

Cleaved Caspase-9 appeared green. Original magnification 400x.  (C) 

Representative western blot showing the expression of Caspase-9 in podocytes. 

Cell lysates were collected from podocytes isolated from in vivo treated placebo 

(white bar) and E2 (black bar) db/db mice and analyzed by western blot for 

Caspase-9 protein. β-actin western blot is shown below as loading control.  Data 

are graphed as the mean ± SEM ***p<0.005, N=5 experiments of duplicate cell 

lines. 

Fig.10 Schematic design depicting possible estrogen contribution to actin 

stabilization. Estrogen action stabilizes podocyte F-actin though an increase of 

Rac1 activity and a decrease of Hsp25 protein and transcriptional activation. 

Rac1 activity promotes the decrease of Hsp25 expression. In addition, Apaf-1, 
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which activates Caspase-9, and Caspase-9 expression are decreased. These 

factors may combine to reduce podocyte apoptosis. (Dotted line =potential 

effects). 
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A.  Urine albumin excretion 
was reduced at the time of 
killing (24 weeks) in db/db 
diabetic mice treated with 
E2. Data are expressed as 
mg albumin/mg creatinine. 
***P<0.0001, compared 
with placebo-treated group, 
n=5–7 mice per group.  

B.  The glomerular volume 
of E2 treated mice is 
decreased compared with 
placebo db/db diabetic 
mice.*** P<0.0001; n=5–7 
mice per group. 

C.  Representative kidney 
sections of diabetic db/db 
mice: (a) placebo, (b) E2, at 
the time of killing. Original 
magnification 400X. N=3 
sections per group. (c) A 
representative scatter plot 
shows the number of pixels 
on stained sections as 
measured using the NIH 
Image J 

 

Estrogen (E2) decreases urinary albumin excretion (A), 
glomerular volume (B), and collagen type IV deposition 
(C) in female diabetic db/db mice compared to placebo. 
 

Fig.1 



33 
 

 

 

 

 

 

Fig.3 

Podocytes isolated from diabetic db/db mice retain 
expression of in vivo markers. 

Immunofluorescence staining of (a) ZO-1 and (b) nephrin. Cell 
lysates were collected and western blot analysis was performed for 
(c) nephrin protein expression, (d) TRPC expression, and (e) WT-1 
expression. Cells isolated from a placebo-treated non-transfected 
mouse (lane 1), and transfected (lane 2), cells isolated from E2 (lane 
3) treated mice. 
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Podocyte cell lysates were collected and western blot analysis 
was performed as described in Methods (Catanuto et al.KI, 2009). 
(a) There was no change in ERα protein expression in podocytes 
isolated from mice treated with E2 (lane 3) compared with 
placebo-treated mice (lane 2). Immortalization did not alter ERα 
protein expression (lane 1). Recombinant ERα protein (lane 4), 
n=2. Data are graphed as the mean±s.e.m % of placebo ERα 
protein expression. (b) Estrogen receptor-β was increased in 
podocytes isolated from mice treated with E2 (lane 2) compared 
with placebo-treated mice (lane 1). Data are graphed as the 
mean±SEM % of placebo ERβ protein expression. N=3, 
**P<0.005. Arrows denote specific bands. 

 

Estrogen receptor β expression is increased in 
podocytes isolated from E2 treated mice.

 

Fig.3 
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Cell lysates were collected in triplicate and normalized to cell 
number as described (Catanuto at al, KI, 2009). Lysates were 
electrophoresed on zymogram gels as described in Methods 
(Catanuto et el., KI, 2009) MMP-2 and MMP-9 were increased in 
podocytes isolated from mice treated with E2 (lanes 4–6) compared 
with placebo-treated mice (lanes 1–3). N=2, *P<0.05, **P<0.005 E2 
compared with placebo. 

 

Fig.4 

MMP-2 and MMP-9 activity is increased in podocytes 
isolated from E2 treated db/db diabetic mice. 
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In vivo 17β-estradiol (E2) treatment protects against 
actin filament disruption in female diabetic db/db 
mice. 
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Fig.6 

Podocytes isolated from female diabetic db/db mice 
treated in vivo with 17β-estradiol (E2) have a higher 
percent of filamentous actin (F-actin) compared to 
podocytes isolated from placebo-treated mice. 
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Fig.7 
Podocytes isolated from female diabetic db/db mice 
treated in vivo with 17β-estradiol (E2) have decreased 
expression of Hsp25, decreased mRNA expression, 
and repressed transcriptional activation compared to 
podocytes isolated from placebo treated mice. 
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Fig.8 

Inhibition of increased Rac1 expression in 
podocytes isolated from female diabetic db/db mice 
treated in vivo with 17β-estradiol (E2) increases the 
percentage of G-actin and Hsp25 protein 
expression. 
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Fig.9 
Immunofluorescence staining of Cleaved Caspase-9 and 
expression of Caspase-9 decreased in podocytes 
isolated from female diabetic db/db mice in vivo treated 
with 17β-estradiol (E2). 
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Fig.10 

Schematic design depicting possible estrogen 
contribution to actin stabilization. 
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Ongoing studies: 

Based on our studies in persuit of regulation of ER without hormons we have 

focused our attention on a natural compound, resveratrol (RSV). Resveratrol is a 

phytoestrogen found in grapes that is present in red wine and may have similar 

properties to endogenous estrogens. As mentionated above endogenous 

estrogens are steroid hormones synthesized by humans and other mammals; 

these hormones bind to estrogen receptors within cells. The estrogen-receptor 

complex interacts with unique sequences in DNA (estrogen response elements; 

EREs) to modulate the expression of estrogen-responsive gene. A compound 

that binds to estrogen receptors and elicits similar responses to endogenous 

estrogens is considered an estrogen agonist, while a compound that binds 

estrogen receptors but prevents or inhibits the response elicited by endogenous 

estrogens is considered an estrogen antagonist. The chemical structure of 

resveratrol is very similar to that of the synthetic estrogen agonist, 

diethylstilbestrol, suggesting that resveratrol might also function as an estrogen 

agonist. However, in cell culture experiments resveratrol acts as an estrogen 

agonist under some conditions and an estrogen antagonist under other 

conditions (72;73).  

In estrogen receptor-positive breast cancer cells, resveratrol acts as an estrogen 

agonist in the absence of the endogenous estrogen, 17β-estradiol, but acts as 

an estrogen antagonist in the presence of 17β-estradiol (74;75). 

http://lpi.oregonstate.edu/infocenter/glossary.html#endogenous�
http://lpi.oregonstate.edu/infocenter/glossary.html#steroid�
http://lpi.oregonstate.edu/infocenter/glossary.html#synthesis�
http://lpi.oregonstate.edu/infocenter/glossary.html#gene expression�
http://lpi.oregonstate.edu/infocenter/phytochemicals/resveratrol/resverarefs.html#ref18�
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At present, it appears that resveratrol has the potential to act as an estrogen 

agonist or antagonist depending on cell type, estrogen receptor isoform (ER 

alpha or ER beta), and the presence of endogenous estrogens. 

It has been shown that RSV exhibits insulin-like effects in streptozotocin (STZ)-

induced diabetic (STZ-DM) rats and that it ameliorates hyperglycemia, 

hyperlipidemia and other common diabetic symptoms (76). Further, RSV can 

alleviate diabetes mellitus (DM)-induced vasculopathy by attenuating the 

advanced glycation end products/receptor for AGE/nuclear factor kappa B 

(AGE/RAGE/NF-κB) signaling pathway (77). RSV has been shown to attenuate 

glomerulosclerosis by an antioxidative mechanism and by reducing the 

expression of Sir-2 and p38 in diabetic kidneys (78). Finally, Ding et al. 

demonstrated that Resveratrol attenuates renal hypertrophy in STZ-DM rats by 

AMPK activation (79). 

Our future studies focus on Resveratrol protection against diabetic 

glomerulosclerosis in a diabetic mice model (db/db). Through ER-mediated 

effects, we found regulation of estrogen receptor α and β after treatment with 

resveratrol, decrease in extracellular signal-regulated kinase (ERK) activation, 

and increase in matrix metalloproteinases (mmp-2) leading to decrease in 

accumulation of collagen in the glomerulous. Previous reports of research, both 

in humans and in animals, have revealed that activation of the ERK pathway in 

glomeruli may play an important role in progression during the early stages of 

diabetic nephropathy (80;81). 
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