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INTRODUCTION 

 

1.1 Dendritic cells  

 

Since their discovery by Steinman and Cohn in 1973, dendritic cells (DC) have 

become increasingly recognized for their crucial role as special type of leukocytes able to 

alert the immune system for the presence of infections and responsible for the activation 

and control of both innate and adaptive immune responses (Zitvogel, 2002). DC are 

especially distributed in tissues that interface the external environment, such as the skin, 

the gut and the lungs (Nestle et al., 1993), where they can perform a sentinel function for 

incoming pathogens (Fernandez et al., 1999).  DC do not constitute a unique cell 

population, rather  they comprise a large collection of subpopulations, located in both 

lymphoid and non-lymphoid tissues, that can be distinguished by the expression of specific 

cell surface markers and functional properties, reflecting a selective specialization in their 

response to infection (Shortman & Liu, 2002; Ardavi, 2005). 

Two main DC subsets have been identified: conventional (‘‘myeloid’’) CD11c
+
  DC 

(mDC) and CD11c
-
 CD123

+
 plasmacytoid DC (pDC). mDC include Langerhans cells, 

dermal DC and interstitial DC, they are made up of at least two subsets: 

the more common mDC-1, which is a major stimulator of T cells 

and the extremely rare mDC-2, which may have a function in fighting wound infection. 

Furthermore, mDC are able to produce high levels of the immunomodulatory cytokines IL-

12p70 and IL-10. pDC play a crucial role in antiviral immunity, they selectively express 

toll-like receptors (TLRs) 7 and 9, which enable them to sense single stranded RNA and 

DNA viruses, respectively, producing vast amounts of type I interferons (IFNs) (Liu, 2005; 

Asselin-Paturel & Trinchieri, 2005).  

As the most potent antigen-presenting cells (APCs), DC are specialized for the 

uptake, processing, transport and presentation of antigens to T cells and are capable of 

priming naïve T cells (Mellman & Steinmen, 2001). Although the development of DC 

from early hemopoietic precursors is not fully understood (Ardavin et al, 2000), terminal 

stages of DC development and their life cycle during an immune response are well 

defined. Immature DC reside in peripheral tissues and constantly capture antigens from the 

local environment, process and then present them in association with surface major 

histocompatibility complex (MHC) molecules. In presence of microbial products or tissue 
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damage in the environment, DC initiates their migration to peripheral lymphoid organs and 

their transition from antigen-capturing cells into APCs. The migration and functional 

transition of DC correlate with decreased antigen uptake and increased half-life of surface 

MHC-peptide complexes. As a result, antigens captured by DC are, in the cell bound form, 

transported to and concentrated in the peripheral lymphoid organs for presentation to 

antigen-specific T cells. Up regulation of co-stimulatory molecules, altered expression of 

chemokine receptors and production of cytokines are crucial for effector T cell (helper or 

cytotoxic) differentiation (Banchereau et al., 2000).  

 

1.1.1 Linking innate to adaptive immunity through dendritic cells 

 

The organism bears two arms to fight pathogens: innate and adaptive immunity. 

Pathogen recognition by the immune system has two major effects. First, it triggers the 

innate response mediated by the effector cells of inflammation, including macrophages and 

polymorphonuclear neutrophils, which represent an immediate defence at the sites of 

pathogen entry. Second, the innate immune system induces adaptive immunity. In this 

regard, DC play a pivotal role. DC respond to two types of signals: direct recognition of 

pathogens through pathogen recognition receptors (PRRs) and indirect sensing of infection 

through inflammatory cytokines, internal cellular compounds, and ongoing specific 

immune response. In response to these signals, dendritic cells are activated to enter an 

integrated developmental program called maturation, which transforms dendritic cells into 

efficient T cell stimulators (Guermonprez et al., 2003). The following paragraphs briefly 

describe the receptors involved in the induction of dendritic cell maturation and the cell 

biological modifications resulting in dendritic cell migration toward secondary lymphoid 

organs and polarization of T helper lymphocytes. 

 

1.1.2 Regulation of dendritic cell functions by toll like receptors  
 

The inflammatory stimuli sensed by DC may be exogenous, such as microbial 

structures, collectively named PAMPs (pathogen-associated molecular patterns), or 

endogenous, such as heat shock proteins, hyaluronate and heparan sulphate, fibronectin, 

high mobility group box 1 protein, and modified low-density lipoproteins (Miyake, 2007). 

DC perceive these stimuli through germ line-encoded PRRs (Janeway & Medzhitov, 
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2002), which constitute a large superfamily of receptors located at the cell surface and in 

the endosomal compartment. 

TLRs are the best characterized PRRs. They are type I membrane proteins 

characterized by an ectodomain composed of leucine rich repeats (LRR) that are 

responsible for recognition of PAMPs and a cytoplasmic domain homologous to the 

cytoplasmic region of the IL-1 receptor, known as the TIR domain, which is required for 

downstream signalling. To date, 13 different TLRs have been identified. TLRs 1-9 are 

conserved in humans and mice, TLR10 is expressed by B cells and pDC only in humans 

and TLR11-13 are functional in mice (West et al., 2006).  

Although a lot of information is available concerning the functional activities of 

TLRs 1-9 and 11, basic knowledge on the physiology of TLRs 10, 12, and 13, is still 

lacking. TLRs 1-6 and 11 are expressed at the cell surface and can be activated by 

molecules generally located at the surface of bacteria, fungi, or protozoa. TLR 3, 7, 8, and 

9 are located within the endosomes and recognize microbial nucleic acids (Kawai & Akira, 

2007). TLR12 participates in innate immune responses to microbial agents and is thought 

to play a role in preventing infections within the urogenital system. TLR13 is a novel and 

uncharacterized member of the mammalian and is predominantly expressed in the spleen, 

particularly in dendritic cells and macrophages. Remarkably, cells expressing tlr13 fail to 

respond to known TLR ligands but instead respond specifically to vesicular stomatitis 

virus (Shi et al., 2011).   

TLRs can sense various bacterial molecules, including cell wall components such as 

lipopolysaccharide (LPS) (recognized by TLR4), peptidoglycan (recognized by TLR2), 

lipoarabinomannan (LAM) (recognized by TLR2), diacyl or triacyl lipopeptides 

(recognized by TLR2/1 or TLR2/6, respectively), flagellin (recognized by TLR5), and 

genomic DNA rich in unmethylated CpG sequences (recognized by TLR9). It has recently 

been shown that group B streptococcus, which resides in the phagosome, induces TLR7-

dependent type I interferon, suggesting that the bacterial RNA produced in the lysosomal 

compartment may be recognized by TLR7 (Kumar et al., 2009). 

Following interaction with their agonists, TLRs initiate different signalling pathways 

that lead to the activation of specific transcription factors such as nuclear factor-κB (NF-

κB) and activator protein-1 (AP-1) (Fig.1). This is independent of the nature of the 

microbial stimulus. All TLR family members, except from TLR3, induce the activation of 

NF-κB and AP-1 by recruiting the adaptor myeloid differentiation primary response gene 

88 (MyD88). 
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Fig.1: TLR signalling in conventional dendritic cells, macrophages and plasmacytoid dendritic cells. 

TLR2 (TLR2 in association with TLR1 or TLR6), TLR4, TLR5 are localized on the cell surface for ligand 

recognition. TLR3, TLR7, and TLR9 are localized in the endosome. All TLRs, except TLR3, recruit MyD88, 

TLR1, TLR2, TLR4 and TLR6 recruit the additional adaptor TIRAP, which links the TIR domain with 

MyD88. TLR3 and TLR4 recruit TRIF (Kumar et al., 2009). 

 

 

Diversely, TLR3 transduces the signal via the adaptor TIR-domain containing 

adaptor-inducing IFN-beta (TRIF) (Kaisho & Akira, 2006). Whereas the activation of NF-

κB and AP-1 is a common feature of the signalling induced by all TLRs, only a subset of 

them is additionally able to trigger the activation of the transcription factors interferon 

regulatory factor 3 (IRF3) and IRF7 which largely regulate the expression of type I IFNs 

(Takeda & Akira, 2004).  Type I IFN induction is TRIF-dependent for TLR3, whereas it is 

MyD88-dependent for TLR7, TLR8, and TLR9. A notable exception is represented by 
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TLR4, which recruits both MyD88 and TRIF to induce the activation of NF-κB and AP-1 

and, similarly to TLR3, TRIF to stimulate the production of type I IFNs though in response 

to non-nucleic acid ligands. While the MyD88 pathway can start both from the membrane 

and the endosome, the TRIF pathway always starts from the endosome as well as the 

MyD88-dependent signalling pathway that leads to type I IFN production (Barton & 

Kagan, 2009).  

TLR-mediated regulation of DC leads to a coordinated transcriptional response that 

modulates various activities, such as endocytosis, cytoskeleton rearrangements, migration 

and antigen  processing and presentation. This process is generally called DC maturation. 

 

1.1.3 Dendritic cell maturation 

 

DC process microbial antigens into peptides which are loaded onto MHC-I and II 

molecules and transported to the cell surface for recognition by antigen-specific T cells. 

Endogenous protein antigens, which are processed onto MHC-I, are first ubiquitinated and 

degraded into peptides by the proteasome in the cytosol. These are transported for antigen 

presentation by TAP molecules into the endoplasmic reticulum, where they are loaded 

onto MHC-I. The peptide-MHC-I complexes (pMHC-I) are then transported to the cell 

surface for presentation to CD8
+
 T cells. Exogenously acquired protein antigens, on the 

other hand, are engulfed and processed in endosomes. Endosomes containing ingested 

proteins mature and fuse with lysosomes, where proteases degrade the proteins into 

peptides that are loaded onto MHC-II molecules. Peptide-MHC-II complexes (pMHC-II) 

are then transported to the cell surface within specialized tubules for presentation to CD4
+
 

T cells (Guermonprez et al., 2002).  

Exogenous antigens may also be processed by DC onto MHC-I. This phenomenon, 

called “cross-presentation” or “cross-priming,” permits DC to elicit CD8
+
 as well as CD4

+
 

T-cell responses to exogenously acquired antigens (Guermonprez et al., 2003). 

Antigen capturing DC become professional APCs that migrate to the draining 

lymphoid tissue and mature phenotypically, up regulating the expression of co-stimulatory 

molecules involved in the formation of the immunological synapse such as CD40, CD80, 

CD86 and MHC-II (Fig. 2). The dominant mediator in the mobilization of DC to lymph 

nodes via lymphatics is the CC-chemokine receptor 7 (CCR7). The trafficking events that 

lead DC to their optimal positioning in lymphoid tissue are a key process in the regulation 

and induction of immune responses. 
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Fig.2: Development of dendritic cell maturation. Haematopoietic stem cells differentiate into immature 

dendritic cells (iDC) that are recruited to peripheral tissues, where they continuously internalize antigens that 

can be processed by a MHC class-II-restricted endosomal pathway. After antigen capture, DC migrate to the 

draining lymphoid tissue and mature phenotypically, In this area, they present peptide-MHC-II complexes on 

the cell surface, interact with antigen-specific lymphocytes and mature functionally, activating T cells and 

producing pro-inflammatory or regulatory cytokines, such as interleukin-12 (IL-12p70) and tumour-necrosis 

factor (TNF), or IL-10 (Hackstein &  Thomson,  2004). 

 

 

CCR7 ligands, CC-chemokine ligand 19 (CCL19) and CCL21 are expressed by 

lymphatic endothelium and/or within lymph nodes by stromal cells, endothelial cells, and 

DC themselves, and they each participate in the migration of DC from peripheral tissues to 

the lymph node (Martin-Fontecha et al., 2003). However, the expression of CCR7 is not 

sufficient for migration of DC into lymphatics. Instead, CCR7 responsiveness requires 

coordinated signals to induce a response to its ligands. These triggers include lipids 

mediators, cysteinyl leukotrienes, and prostaglandin E2 (Randolph et al., 2005). It has been 

shown that the ecto-enzyme CD38 expressed by mature DC plays a pivotal role in 

lymphatic migration acting as a receptor delivering into the cell the signals required for the 

process to take place (Frasca et al., 2006). It is not yet clear how all of these different 

extracellular triggers work in concert to promote migration via CCR7. 
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In the lymphoid organs, mature DC act as professional APCs by providing signal 1 (T cell 

receptor cross-linking) and signal 2 (co-stimulation) to pathogen-specific naive T cells, 

thus inducing their activation and clonal expansion. In addition, mature DC secrete 

multiple cytokines and express membrane-bound molecules that drive the development of 

CD4
+
 T cells into specific T helper cell types which determine the character of the ensuing 

immune response (Lanzavecchia & Sallusto, 2001).  

 

1.2 T helper polarization  

 

Effector CD4
+
 T helper (Th) cells are the key players in steering the immune 

responses. Th cell differentiation is characterized by the acquisition of cytokine production 

(Fig. 3).  

 

 

 

Fig.3: T cell lineage specification Differentiation into different effector CD4
+
 T cell lineages, Th1, Th2, 

Th17, and regulatory T (Treg) cells is initiated through the interaction of dendritic cells with uncommitted 

(naïve) CD4
+
 Th cells (Jetten, 2009). 

 

Since the establishment of the Th1-Th2 paradigm, the function and regulation of 

effector T cells has been a subject of intense investigation. Owing to years of collective 
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efforts, vast knowledge has been gained in identifying new classes of effector T cells and 

in understanding their function and regulation. 

 

1.2.1 Th1 response 

 

The most important function of Th1 cells is to promote cell-mediated immunity, 

characterized by cellular cytolytic activity. Th1 cells are important in protection of the host 

from the obligate intracellular pathogens. Furthermore, they drive the pathway to fight 

viruses and other intracellular pathogens, eliminate cancerous cells, and stimulate delayed-

type hypersensitivity (DTH) in the skin (Kidd, 2003). It is well appreciated that Th1 

differentiation can be promoted by DC that are stimulated by particular microbial stimuli 

and by CD40 ligand (CD40L) to release large amounts of IL-12p70. IL-12p70 comprises 

two disulphide-linked proteins: the p35 chain and the p40 chain. The activation of human 

myeloid DC by TLR4 ligands leads to the expression of IL-12p70. IL-12p70 synthesis is 

also induced in human mDC by ligands for TLR3 and TLR8 (Goriely et al., 2008). 

Th1 cells produce interferon-γ (IFN-γ), a dimerized soluble cytokine that is the only 

member of the type II class of interferons, to stimulate innate and T-cell immune 

responses. Besides being a Th1 signature cytokine, IFN-γ has been suggested, although 

debatably, to be important for the differentiation of Th1 cells. The ultimate outcomes of 

IFN-γ and IL-12p70 signalling are to solidify their Th1 function through promoting the 

expression of Th1-specific transcription factors. T-bet, belonging to the T-box family of 

transcription factors and recognized as a master regulator of Th1 differentiation, is rapidly 

and specifically induced in developing Th1 cells and is critical for initiating Th1 

development (Szabo et al., 2000). 

 

1.2.2 Th2 response 

 

T helper type 2 cells were identified at the same time as Th1 cells in the early 1990s. 

The Th2 response is often associated with the humoral response and is important in 

resistance against extracellular forms of pathogens. Th2 cells are also important for 

mucosal immunity in the lung. Aberrant elevation of the Th2 response often leads to 

chronic inflammatory airway diseases, such as atopic asthma and allergy. In presence of 

IL-4, DC drive T lymphocytes polarization towards a Th2 differentiation (Swain et al., 

1990). Furthermore, DC secretion of IL-10 can act in autocrine and paracrine routes and 

http://en.wikipedia.org/wiki/Protein_dimer
http://en.wikipedia.org/wiki/Cytokine
http://en.wikipedia.org/wiki/Interferon
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has been associated with Th2 T cell phenotypes.  The strength of T cell signalling and the 

cytokine milieu are two crucial determinants for Th2 cell differentiation. Freshly isolated 

DC expressing low levels of MHC-II and CD80 molecules preferentially induce Th2 cell 

differentiation. Omega-1, a T2 ribonuclease glycoprotein derived from S. Mansoni eggs 

(SEA), has recently been reported to be a potent Th2 cell-inducing factor.  Indeed, DC 

treated with omega-1 do not produce IL-12p70 and display a resting phenotype (Paul & 

Zhu, 2010). 

Th2 lymphocytes are defined as producers of IL-4, IL-5, IL-9, IL-10 and IL-13. 

GATA binding protein 3 (GATA-3) is a member of the GATA family of transcription 

factors. Expression of GATA-3 is sufficient and required for Th2 differentiation (Zhu et 

al., 2004). Therefore, GATA-3 is regarded as the master regulator for Th2 differentiation. 

Signal transducer and activator of transcription 6 (STAT-6) activated by IL-4 stimulation 

is the major signal transducer in IL-4-mediated Th2 differentiation in vitro. One of the 

mechanisms for STAT-6 to promote Th2 differentiation is through inducing high levels of 

the transcription factor GATA-3 (Kurata et al., 1999). 

 

1.2.3 Th17 response 

 

T helper type 17 is a newly identified class of effector T cells that produce IL-17A 

and IL-17F. They are found at the interfaces between the external and the internal 

environment and protect against extracellular bacteria. Th17 cells have been implicated in 

the induction and propagation of autoimmunity. Indeed, IL-17 expression has been 

associated with autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, 

psoriasis and inflammatory bowel disease as well as allergic responses (Yen et al., 2006). 

 Retinoic acid-related orphan receptors (ROR) are the key transcription factors in Th17 

differentiation. Both ROR-α and ROR-γt are critical and somewhat redundant in 

promoting Th17 differentiation (Ivanov et al., 2006). 

  Understanding the mechanisms driving the differentiation of human Th 17 cells is of 

relevance to both immunopathology and vaccination. In mice, DC production of 

transforming growth factor-β (TGF-β) and IL-6, an interleukin that acts as both a pro-

inflammatory and anti-inflammatory cytokine, co-operate to promote Th17 commitment 

(Mangan et al., 2006).  The differentiation of human naive CD4
+
 T cells into Th17 cells is 

promoted by IL-1β and IL-6. In particular, IL-1β is sufficient to induce the expression of 

ROR-t and production of both IL-17 and IFN-γ. IL-6, when added to IL-1β, sustains the 

http://en.wikipedia.org/wiki/Interleukin
http://en.wikipedia.org/wiki/Cytokine
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expression of ROR-γt and promotes the differentiation of T cells producing IL-17 but not 

IFN-γ.  The addition of TGF-β, which in the mouse has been identified as a cytokine 

essential for the development of Th17 cells, does not induce and actually suppresses the 

Th17 differentiation of human CD4
+
 T cells (Veldhoen et al., 2006; Acosta-Rodriguez et 

al., 2007). IL-23, a heterodimeric cytokine consisting of two subunits, p40, which is shared 

with IL-12p70, and p19, seems to modulate the differentiation of human Th17 

(Leibundgut-Landmann et al., 2007). Indeed, the differentiation of Th17 cells was 

inhibited by large doses of IL-2 and was enhanced by IL-23. However, it was subsequently 

shown that IL-23 is required for IL-17-mediated effector function and the survival but not 

differentiation of Th17 cells (Veldhoen et al., 2006; Acosta-Rodriguez et al., 2007). 

 

1.2.4 Regulatory T response 

 

Regulatory T cells (Tregs) form a subset of CD4
+
 T cells that either develop in the 

thymus (naturally occurring Tregs) or are differentiated from naive T cells following T-

cell receptor stimulation (induced Tregs). Unlike other Th cells, which promote an 

immune response, Tregs are immunosuppressive. Indeed, the most prominent function of 

Tregs is maintaining self-tolerance and immune homeostasis. Disruption of Tregs function 

contributes to an excess of autoimmune and inflammatory pathologies. It is also noted that 

Tregs are important for tempering immune responses against infectious agents and in re-

establishing immune homeostasis following pathogen clearance (Belkaid et al., 2008).  

  The most widely used markers for Tregs are CD25 (also known as IL-2 receptor), 

cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), glucorticoid-induced tumour 

necrosis factor receptor family-related gene (GITR), CD27 and lymphocyte activation 

gene-3 (LAG-3). Moreover, Tregs classically express Foxp3, a transcription factor 

recognized as the master regulator for Tregs function controlling the expression of a wide 

array of genes including cytokines and surface molecules (Zeng et al., 2007). 

 

1.3 Basic mechanisms of Tregs function 

 

Defining the mechanisms of Tregs function is clearly of crucial importance. Not only 

would this provide insight into the control processes of peripheral tolerance but it would 

probably also indicate several potentially important therapeutic targets. Although this quest 

has been ongoing since interest in Tregs was reignited in 1995 (Sakaguchi et al., 1995), 

http://en.wikipedia.org/wiki/Heterodimer
http://en.wikipedia.org/wiki/Cytokine
http://en.wikipedia.org/wiki/Interleukin_12
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there has been significant progress in the past few years. From a functional perspective, the 

various potential suppression mechanisms used by Tregs can be grouped into four basic 

“modes of action”: suppression by inhibitory cytokines, suppression by cytolysis, 

suppression by metabolic disruption and suppression by modulation of DC maturation or 

function (Fig. 4) (Vignali et al., 2008). 

 

 

 

 

 

 

Fig.4: Basic mechanisms of suppression used by Treg cells.  A) Inhibitory cytokines include IL-10, IL-35 

and TGFβ. B) Cytolysis includes granzymeA- and granzymeB-dependent and perforin-dependent killing  

mechanisms. C) Metabolic disruption includes high-affinity CD25-dependent cytokine deprivation-mediated 

apoptosis. D) Targeting dendritic cells (DC) includes mechanisms that modulate DC maturation and/or 

function (Vignali et al., 2008). 

 

1.3.1 Suppression by inhibitory cytokines 

 

Inhibitory cytokines, such as interleukin-10 (IL-10) and TGF-β, have been the focus 

of considerable attention as mediators of Tregs-induced suppression (Fig. 4A). There has 

also been significant interest in their ability to stimulate the development of induced Tregs-

cell populations, either in vivo or experimentally as a potential therapeutic modality. 

Although the general importance of IL-10 and TGF-β as suppressive mediators is 
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undisputed, their contribution to the function of thymus-derived, naturally occurring Tregs 

cells is still a matter of debate. This is partly due to the general perception that Tregs cells 

function in a contact-dependent manner rather than through soluble factors (Jonuleit et al., 

2001). Indeed, in vitro studies using neutralizing antibodies or T cells that are unable to 

produce or respond to IL-10 and TGF-β suggested that these cytokines may not be 

essential for Tregs-cell function (Dieckmann et al., 2001). However, this is in contrast with 

data from in vivo studies, showing the potential of allergen specific IL-10-secreting 

regulatory T cells to provide local allergen-triggered inhibitory mechanisms that allow the 

safe and long-lasting control of allergic disease (Hawrylowicz  & O’Garra., 2005). 

Recently in mouse models, a new inhibitory cytokine, IL-35, has been described that 

is preferentially expressed by Tregs cells and is required for their maximal suppressive 

activity. IL-35 is a new member of the IL-12 heterodimeric cytokine family and is formed 

by the pairing of Epstein-Barr virus-induced gene 3 (Ebi3; which normally pairs with p28 

to form IL-27), and p35 (also known as Il12a; which normally pairs with p40 to form IL-

12p70). Both Ebi3 and Il12a are preferentially expressed by mouse Foxp3
+
 Treg cells but 

not by resting or activated effector T cells, and are significantly up regulated in Tregs cells 

that are actively suppressing (Collison et al., 2007). 

 

1.3.2 Suppression by cytolysis 

 

Another potential mechanism for Tregs-mediated suppression of responder T cells 

would be cytolysis of target cells. Human CD4
+
CD25

+
Foxp3

+
 Tregs can be activated 

experimentally by a combination of antibodies to CD3 and CD46 to express granzyme A 

and kill activated CD4
+
 and CD8

+
 T cells and other cell types in a perforin-dependent, Fas-

FasL-indipendent manner (Grossman et al., 2004) (Fig.4B). Noelle and co-workers were 

the first to report that Tregs from granzyme B-deficient mouse had reduced suppressive 

activity in vitro, and that this granzyme-B-dependent suppression appeared to be a 

perforin-independent result of Tregs-cell-induced apoptosis of effector T cells (Gondek et 

al., 2005). The notion that Tregs cells might possess cytolytic activity was supported by 

studies showing that Tregs cells can kill B cells in a granzyme B dependent and partially 

perforin-dependent manner that results in the suppression of B cell function (Zhao et al., 

2006). 
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1.3.3 Suppression by metabolic disruption 

 

A long-standing debate in the Tregs-cell field is whether the high expression level of 

CD25 empowers Tregs cells to “consume” local IL-2 and therefore starve actively dividing 

effector T cells by depleting the IL-2 they need to survive (de la Rosa et al., 2004). A 

recent study has reignited interest in this question by suggesting that Tregs cells induce 

apoptosis mediated through cytokines deprivation (specifically IL-2) (Pandiyan et al., 

2007). However, given that a recent report using human Tregs cells suggested that IL-2 

depletion alone is not required for Tregs cells to suppress effector T cells (Oberle et al., 

2007), more work is clearly necessary to resolve this aspect. Two new Tregs-cell 

mechanisms have recently been proposed that induce the intracellular or extracellular 

release of adenosine nucleosides (Fig.4C). Concordant expression of the ectoenzymes 

CD39 and CD73 was shown to generate pericellular adenosine, which suppressed effector 

T cell function through activation of the adenosine receptor 2A (A2AR) (Deaglio et al., 

2007). Interestingly, binding of adenosine to A2AR appears to not only inhibit effector T 

cell functions, but also to enhance the generation of induced Tregs cells by inhibiting IL-6 

expression while promoting TGF-β secretion (Zarek et al., 2008). 

Tregs cells were also shown to suppress effector T cell function directly by 

transferring the potent inhibitory second messenger cyclic AMP (cAMP) into effector T 

cells through membrane gap junctions (Bopp et al., 2007). Although these mechanisms 

represent interesting additions to the list of potential mechanisms used by Tregs cells to 

mediate suppression, further studies will be required to corroborate these exciting findings 

and assess the relative use of these mechanisms by Tregs cells. 

 

1.3.4 Suppression by targeting dendritic cells 

 

Another mechanism for Tregs to affect effector T cell activation can be established 

by modulating DC function. Ligation of CD80/CD86 on DC by CTLA-4 on suppressor 

cells results in expression and activation of indoleamine 2,3-dioxygenase (IDO), a 

catabolic enzyme involved in tryptophan degradation. Reduced tryptophan concentration 

in culture medium has been reported to be associated with decreased activation of T cells 

and T cell deletion (Mellor & Munn, 2004). Also, in several in vivo models for disease 

disorders, it was demonstrated that CTLA-4 blockade abrogates the suppressive function 

of murine (Read et al., 2000) and human Tregs (Blansfield et al., 2005). Recent studies 
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have also suggested that LAG-3 (also known as CD223) may block DC maturation. LAG-

3 is a CD4 homologue that binds MHC class II molecules with very high affinity, has a 

negative regulatory T‑cell intrinsic function and is required for maximal Tregs-cell 

suppression (Workman & Vignali, 2004).  

 

1.4 Non classical regulatory T cells 

 

 Although naturally occurring Tregs cells originate in the thymus and are controlled 

by the activity of the transcription factor Foxp3, CD4
+
 T cells with regulatory activities 

can also be generated from conventional naive T cells after antigen encounter in the 

periphery. Antigen induced, IL-10-producing CD4
+
 T cells arising from 

CD4
+
CD25

−
Foxp3

−
 cells have been found to regulate colitis induced by Helicobacter 

hepaticus infections and to suppress protective Th1 responses to Bordetella pertussis in 

mice (Kullberg et al., 2002; McGuirk et al., 2002).  

 While the role of transient Foxp3 expression in T effector cells is poorly understood, 

it is becoming clear that it does not correlate with suppressor function (Roncarolo & 

Gregori, 2008). Furthermore, recent evidence suggests that Foxp3-independent 

mechanisms, mediated by IL-10, contribute to the induction and suppressor functions of 

Tr1 cells (Roncarolo & Gregori, 2008; Conrad et al, 2012). 

 Much less attention has been given to the potential contribution of regulatory 

sublineages of CD8
+
 cells. CD8

+
 Tregs were first observed by Gershon and colleagues in 

the early 1970’s. The ability to characterize T cell subsets using the CD8 surface molecule 

suggested that suppressive activity by a subpopulation of CD8
+
 cells specifically inhibited 

T helper responses by CD8
-
CD5

+
 T cells. Suppressive activity of CD8

+
 T cells in 

autoimmune disease was first demonstrated in experimental autoimmune 

encephalomyelitis, a murine model of multiple sclerosis. The regulatory role of CD8
+
 T 

cells was also observed in other autoimmune disease models, including autoimmune 

Herpes Stromal Keratitis and myocarditis (Lu and Cantor, 2008). 

 Recently, a novel subset of CD4
-
CD8

- 
(double negative) T cells has been described to 

specifically supress T cell response in human, by cell contact-dependent mechanisms 

(Voelkl  et al, 2011) 
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1.5 Human monocytes-derived dendritic cells  

 

The ability of monocytes to differentiate into DC was originally demonstrated by 

Sallusto and Lanzavecchia, who reported the generation of DC from human peripheral 

monocytes (also called monocyte-derived dendritic cells, MDDC) after in vitro culture 

with GM-CSF and IL-4 (Sallusto & Lanzavecchia, 1994). In both murine and human 

systems, monocytes differentiate into immature DC, characterized by their low expression 

of MHC class II and co-stimulatory molecules. DC differentiation from mouse bone 

marrow monocytes has been reported to occur after 24-48 h (Leon et al., 2004). Under 

equivalent experimental conditions, human blood monocytes appear to take longer (5-6 

days) to generate DC, as described by different research groups, 

  Generally, peripheral blood mononuclear cells (PBMCs) are collected by aphaeresis, 

and monocytes obtained by either elutriation, CD14 antibody selection, or selection of 

adherent cells after overnight culture on plates. Protocols to generate immature DC from 

circulating monocytes most frequently use granulocyte macrophage colony-stimulating 

factor (GM-CSF) and interleukin-4 (IL-4), although the concentrations of these factors and 

time in culture varied among studies.  

Several strategies have been used to produce mature DC, which are characterized by 

high immune cell activation potential. Factors used to mature immature DC included 

lipopolysaccharide (LPS), CD40 ligand (CD40L), tumour necrosis factor-α (TNF-α), IFN-

α, and IFN-γ. Cocktails combining several factors to better recreate the inflammatory 

environment have also been used. Factors used in maturation cocktails include 

prostaglandin E2, IL-1β, IL-6, and polyinosinic:polycytidylic acid (poly I:C) (Castiello et 

al., 2011). 

Over the last 10 years, this method has prompted numerous studies on human DC 

that were previously hampered by the difficulties in working with ex vivo-isolated human 

DC. It has proven to be an extremely powerful tool for the study of human DC 

differentiation and maturation processes, especially to understand how DC regulate crucial 

aspects of host response to microbial infections. Moreover, in vitro DC differentiation 

from monocytes constitutes the current methodological basis for obtaining DC for their use 

in DC-mediated cancer immunotherapeutic treatments (Banchereau & Palucka, 2005). 
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1.6 Bordetella pertussis 

 

Bordetella pertussis is a Gram-negative bacterial pathogen that infects the human 

respiratory tract and causes the disease called pertussis or whooping cough. While nine 

species of Bordetella have been identified to date, only three additional members, B. 

bronchiseptica, B. parapertussis, and B. holmesii, have been associated with respiratory 

infections in humans and other mammals (Mattoo et al., 2001). B. bronchiseptica infects a 

wide range of hosts and occasionally causes cough illnesses in humans; in particular, 

severe infections have been noted in persons who are immunocompromised such as 

patients with AIDS. Human-adapted B. parapertussis causes a milder pertussis-like 

disease and, like B. pertussis, lacks an environmental reservoir (Cherry & Heininger, 

2004). B. holmesii, the most recent of the Bordetella species associated with human 

respiratory tract infection, has been found in the blood of young adults and occasionally in 

the sputum. Little is known about the biology, virulence mechanisms, and pathogenic 

significance of B. holmesii (Mattoo & Cherry, 2005). 

Although broad immunization campaigns have significantly reduced pertussis-caused 

child mortality, infections with B. pertussis still pose a significant health burden. Even in 

highly vaccinated populations, annual infection rates can reach 1-7% in the general 

population (Ward et al., 2006). Thus, pertussis remains one of the least well-controlled 

vaccine-preventable diseases in the world, with as many as 300.000 deaths each year, 

worldwide. The majority of these deaths occur in non- or insufficiently vaccinated children 

(WHO, 2006). Interestingly, pertussis has not only persisted in vaccinated populations, but 

has even resurged in recent years and, although it is traditionally considered a childhood 

disease, the observed increase in pertussis incidence is seen mainly in adolescents and 

adults (Mooi, 2010). This shift of pertussis infections towards older age categories raises 

major health concerns, as these individuals provide a reservoir of B. pertussis for 

transmission to infants, who are at the highest risk of developing severe pertussis (de 

Greeff et al., 2010). 

 

1.7 Regulation of Bordetella pertussis virulence 

 

 Infection of the host by B. pertussis is initiated through contact with respiratory 

secretions from an infected individual. Following the inhalation of these particles, bacteria 
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enter the upper respiratory tract and adhere to ciliated epithelial cells in the nasopharynx 

and trachea. Once attached to the mucosal surface, B. pertussis produces a large array of 

virulence factors, including adhesins and toxins both exerting also immunomodulatory 

effects. The concerted expression of these factors prevents rapid clearance of the bacteria 

and enables replication and dissemination to the lower areas of the respiratory tract, 

causing pneumonia.  

Since the recognition of B. pertussis as the causative agent of whooping cough in 

humans (Bordet & Gengou, 1906), research has focused on understanding its pathogenic 

lifestyle. In particular, the identification of bacterial factors that contribute to the 

development of disease has been comprehensively investigated. 

One of the initial, intriguing observations was that B. pertussis displayed variation in 

the expression of surface antigens (designated antigenic modulation at that time) in 

response to environmental signals (Lacey, 1960). It is now known that these phenomena 

can be explained by the existence of a master regulator that controls transcription of nearly 

all known virulence genes: the Bordetella master virulence regulatory system (bvgASR) 

locus. 

 

1.7.1 The bvgASR virulence regulon 

 

The transcription of many of the B. pertussis genes known to be involved in virulence 

is controlled by the activity of BvgS and BvgA (Stibitz et al., 2007). These two proteins 

form a typical two-component system (TCS) that allows dynamic variation of gene 

expression in response to changes in extracellular signals from the surrounding 

environment. BvgA is a 23-kDa DNA-binding response regulator and BvgS is a 135-kDa 

transmembrane sensor kinase that contains a periplasmic domain, a linker region, a 

transmitter, a receiver, and a histidine phosphotransfer domain. The BvgAS system is 

responsive to several known environmental signals that can modulate its expression, at 

least under laboratory conditions. For instance, growing B. pertussis at 37 °C induces the 

expression of BvgAS, while the presence of millimolar amounts of sulphate or nicotinic 

acid, or growth at or below 25 °C, suppresses BvgAS production (de Gouw et al., 2011). B. 

pertussis strains cultured under so-called ‘nonmodulating’, virulent conditions are referred 

to as Bvg
+
 phase bacteria. 

During the virulent Bvg
+
 phase, the periplasmic domain of BvgS relays 

environmental signals through the membrane to the transmitter domain, which then 
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autophosphorylates. Phosphorylated BvgS subsequently transfers its phosphate group to 

BvgA (BvgA-P), which then becomes activated and binds to specific cis-acting promoter 

sequences, thus inducing the transcription of Bvg
+
 phase-specific genes, commonly 

designated vags (for ‘vir-activated genes’). Simultaneously, the transcription of vrgs (‘vir-

repressed genes’) is repressed by a third protein that is expressed from the bvgASR locus, 

the 32-kDa cytoplasmic repressor protein BvgR. Based on in vitro growth experiments, 

vags have been classified into three different temporal classes: early, intermediate and late 

genes (Cummings et al., 2006). Early genes, encoding the adhesins filamentous 

hemagglutinin (FHA) and fimbriae (Fim) respond rapidly to activation and require a lower 

concentration of BvgA-P for induction. Late genes, which include those encoding 

adenylate cyclase toxin (ACT) and pertussis toxin (PT), show relatively slow induction 

kinetics and require higher concentrations of BvgA-P for expression. The gene encoding 

pertactin (PRN) has been suggested to belong to the class of intermediate genes (de Gouw 

et al., 2011). 

 

1.7.2 Adhesion factors  

 

The major B. pertussis adhesin is filamentous hemagglutinin (FHA), a 220 kDa 

protein expressing at least three different binding activities, including carbohydrate 

binding, heparan sulphate binding and integrin binding via an RGD site, which comprises 

the amino acid sequence Arg-Gly-Asp. These activities allow B. pertussis to bind to a 

variety of cells and extracellular structures in the respiratory epithelium, including 

epithelial cells and macrophages. FHA is initially produced as a large 367 kDa precursor, 

which undergoes both amino-terminal and carboxy-terminal maturation. The biosynthesis 

of FHA depends on an outer-membrane-associated accessory protein named FhaC. This 

protein is able to form channels through which FHA is believed to cross the outer 

membrane, most likely in an extended conformation (Jacob-Dubuisson et al., 1999) (Fig. 

5).  

In addition to FHA, B. pertussis produces fimbriae that are composed of the major 

subunits Fim2 or Fim3, depending on the B. pertussis serotype (2 or 3) and of the minor 

subunit FimD located at the tip. FimD binds to the VLA-5 integrin of macrophages and to 

sulphated sugars which are ubiquitously present in the respiratory tract. Binding of FimD 

to VLA-5 activates CR3, the receptor for FHA, which thereby assures cooperativity 

between fimbrial and FHA binding. This tight coordination is also reflected in the 
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biogenesis of these two structures. Fimbrial biogenesis depends on at least two accessory 

proteins encoded by genes that are located within the same operon as fhaC. These 

accessory proteins include a periplasmic chaperone, named FimB, and an outer membrane 

usher protein, named FimC, as a minimal requirement for biogenesis (Fig. 5).  

 

 

 

 

 

Fig.5: The B. pertussis virulence factors: B. pertussis is depicted as a Gram-negative organism with inner 

and outer membranes, periplasm and a capsule. The adhesins Fim, FhaB, PRN, Tcf, BrkA, Vag8 and Bats 

are shown in blue; the toxins, PT, ACT (CyaA), TCT and DNT are in red; the accessory proteins FhaC, 

FimB, FimC, Type III, Type IV and Type I are in grey  (Locht et al., 2001). 

 

 

In addition to fimB and fimC, the fhaC operon also contains fimD. Studies using 

epithelial cell lines derived from the human respiratory tract have indicated that the 

fimbriae play a role in infection of the laryngeal mucosa, whereas FHA is important for 

colonization of the entire respiratory tract (Van den Berg et al., 1999). 

  Pertactin (PRN) is the first member of the autotrasporter family to be identified and 

characterized in Bordetella. Mature PRN is a 68-kDa protein in B. bronchiseptica, a 69-
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kDa protein in B. pertussis, and a 70-kDa protein in B. parapertussis (Fig. 5). It has been 

proposed to play a role in attachment since all three PRN proteins contain an RGD 

tripeptide motif as well as several proline-rich regions and leucine-rich repeats, motifs 

commonly present in molecules that form protein-protein interactions involved in 

eukaryotic cell binding (Henderson &  Nataro, 2001). 

 

1.8 Bordetella pertussis toxins 

 

In addition to adhesins, B. pertussis also produces a number of toxins (Fig. 5). Most 

of them are proteins, except for lipooligosacharide and the tracheal cytotoxin (TCT), 

which is a fragment of the bacterial peptidoglycan. These factors jointly facilitate the 

adhesion of B. pertussis to the human respiratory tract. 

 

1.8.1 Pertussis toxin (PT) 

 

Among the protein toxins, pertussis toxin (PT) is the most complex one. It is 

composed of five different subunits, named S1 through S5 according to their decreasing 

molecular weights, and arranged in an A-B structure. The B moiety, responsible for 

binding of the toxin to the target cells is composed of subunits S2 to S5, and the A moiety, 

an ADP-ribosyltransferase, corresponds to S1. After binding to the target cell receptors, 

the toxin most likely follows the retrograde transport to the endoplasmic reticulum, where 

S1 probably translocates into the cytosol. In the cytosol, S1 expresses its ADP-

ribosyltransferase activity using NAD as the ADP-ribose donor and trimeric signal-

transducing G-proteins as acceptors, disrupting signalling pathways with a wide range of 

downstream effects (Locht et al., 2001).  

PT has long been known to cause systemic symptoms associated with pertussis 

disease, such as lymphocytosis, insulinemia/hypoglycemia and histamine sensitivity, but it 

was unclear from previous studies whether PT contributed to local events of respiratory 

infection and disease. However, recent studies using the mouse intranasal infection model 

indicate that PT is important in the very early stages after inoculation of bacteria. PT-

deficient mutant strains showed reduced levels of airway infection 24 h post inoculation 

and, whereas co-administration of purified PT enhanced infection by the mutant strain, PT 

administration 24 h after inoculation had no enhancing effect. One possible mechanism of 

action for PT is the delay of neutrophil recruitment and influx to the airways, and this 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Henderson%20IR%22%5BAuthor%5D
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response occurs earlier after infection with a PT-deficient strain than with a wild type 

strain (Carbonetti et al., 2003).  

Recently, it has found that depletion of airway macrophages by intranasal 

administration of clodronate liposomes (Van Rooijen & Sanders, 1994) not only enhances 

infection by wild-type B. pertussis, but also by the PT-deficient strain (up to the level of 

infection seen with wild-type) (Carbonetti et al., 2007), suggesting that resident airway 

macrophages may be the primary target cells for PT in its ability to promote infection. 

Interestingly, ADP ribosylation of airway macrophage G proteins after intranasal treatment 

of mice with PT lasted longer than two weeks (correlating with the longevity of its 

infection-promoting activity) (Carbonetti et al., 2003), suggesting that the effects of PT on 

host cells in the airways may be particularly long-lived.  

Furthermore, PT exerts multiple suppressive effects on the immune system beyond 

those observed on innate immune cells; for example, other studies have shown PT-

mediated suppression of serum antibody responses to B. pertussis antigens after infection 

(Carbonetti et al., 2004; Kirimanjeswara et al., 2005), and reduction of MHC-II molecules 

on the surface of human monocytes (Shumilla et al., 2004). In our laboratory, it was 

demonstrated that DC cultured in presence of PT generate high levels of IL-12p70, 

promoting T helper type 1 responses (Ausiello et al, 2002). Furthermore, it was shown that 

PT acts through TLR4/TLR2 engagement and through a crucial role played by MAPK and 

IL-10 favours the expansion of a mixed Th1/Th17 immunity (Nasso et al., 2009). 

 

1.8.2 Adenylate cyclase (AC) toxin 

 

Another secreted toxin with a key role in B. pertussis pathogenesis is adenylate 

cyclase toxin (ACT), a 200-kDa polypeptide that is secreted by a type I secretion system. It 

contains two major domains: a catalytic domain that includes the active site as well as a 

calmodulin binding site and a haemolytic binding domain that is composed of a 

hydrophobic channel domain and calcium binding RTX repeats (Vojtova et al., 2006). This 

domain also mediates binding and internalization of the toxin into target cells. ACT does 

not involve a cleavable signal peptide and a periplasmic intermediate, but requires the 

accessory proteins CyaB, CyaD and CyaE. The toxin is synthesized as an inactive 

precursor and then converted to its active form by CyaC-mediated palmitoylation of 

Lys983. This palmitoylation is required for binding to the target cells and for the formation 

of a pore through which the catalytic subunit can penetrate into the cell. Additionally, post-
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translational acylation is important for the apoptotic and cytotoxic effect of ACT (Boyd et 

al., 2005).  

The majority of ACT remains associated with the bacterium in an inactive form; 

however a small amount of active toxin is secreted into the environment (Gray et al., 

2004). Although an ACT deletion mutant was also attenuated in colonization, the 

phenotype was significantly different from the PT mutant. The ACT mutant was able to 

colonize as efficiently as the wild-type parental strain during the early phase of infection, 

but was unable to persist beyond the first 4 days post infection. In contrast to PT, 

providing soluble ACT together with the deletion mutant did not have any significant 

effect (Carbonetti et al., 2005). However, because ACT is an integral membrane protein 

that is functional only upon direct contact with its target cell (Basler et al., 2007), it cannot 

be excluded that the protein production and purification procedure may have rendered 

ACT inactive. Thus, while PT already contributes during the initial phases of infection, the 

effects of ACT do not become apparent until later during infection. This suggests that 

these two toxins serve complementary functions in the pathogenesis of infection, by 

contributing firstly to the initial establishment of infection and secondly to persistence in 

the respiratory tract. 

In our laboratory it was demonstrated that, ACT expressed by B. pertussis strongly 

interferes with MDDC functions, by reducing the expression of phenotypic markers and 

immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated 

MDDC promoted a mixed Th1/Th17 polarization, and the activity of ACT altered the 

Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion (Spensieri et al., 2006). 

We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the 

absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38MAPK is 

essential for MDDC-driven Th17 expansion (Fedele et al., 2010). 

 

1.8.3 Dermonecrotic toxin 

 

A third protein toxin produced by B. pertussis is the dermonecrotic toxin (DNT). 

Unlike the other toxins, DNT is not secreted by the organism, and its role in the 

pathogenesis of pertussis is not clear. In its purified form, however, it is highly lethal when 

injected intravenously into mice (Locht et al., 2001). Bordetella DNT is a typical A-B 

toxin, composed of a 54-aminoacid N-terminal receptor-binding domain and a 300-amino-

acid C-terminal enzymatic domain. While the receptor for DNT has not yet been identified, 
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in vitro assays using fibroblast and osteoblast-like cell lines determined that on receptor 

binding, DNT is internalized via a dynamin-dependent endocytosis. Translocation is 

independent of acidification of endosomes and retrograde vesicular transport and requires 

the N-terminal region of the DNT enzymatic domain, which includes a putative 

transmembrane domain. On endocytosis, DNT undergoes proteolytic nicking by 

mammalian proteases such as furin, which is necessary for the cellular activity of DNT 

(Matsuzawa et al., 2004). 

 

 1.8.4 Tracheal cytotoxin  

 

Tracheal cytotoxin (TCT) corresponds to a disaccharide-tetrapeptide monomer of 

peptidoglycan that is produced by all Gram-negative bacteria as they break down and 

rebuild their cell wall during growth. Its structure is N-acetylglucosaminyl-1,6-anhydro-N-

acetylmuramyl-(L)-alanyl-(D)-glutamyl-esodiaminopimelyl-(D)-alanine. While the vast 

majority of bacteria recycle this peptidoglycan fragment by transporting it back into the 

cytoplasm via an integral cytoplasmic membrane protein called AmpG, Bordetella releases 

it into the environment due to the lack of a functional AmpG (Parkhill et al., 2003). As 

such, TCT is constitutively expressed and is independent of BvgAS control.  

It is hypothesized that, in vivo, TCT stimulates IL-1α production in nonciliated 

mucus-secreting cells, which positively controls the expression of inducible nitric oxide 

synthase, leading to high levels of nitric oxide (NO) production. NO then diffuses to 

neighboring ciliated cells, which are much more susceptible to its damaging effects; TCT 

also functions synergistically with Bordetella endotoxin to induce the production of NO 

within the airway epithelium (Flak & Goldman., 1999).  

Recent studies have shown that TCT stimulates responses in immune cells through 

microbial pattern-recognition molecules that interact with peptidoglycan and its 

derivatives. In mice, these responses were dependent upon the intracellular receptor Nod1; 

however, human Nod1 detected TCT poorly (Magalhaes et al., 2005). Instead, TCT binds 

human and Drosophila peptidoglycan recognition proteins, which (at least in Drosophila 

cells) potently activates an immune response pathway (Chang et al., 2006; Kaneko et al., 

2006). Therefore, TCT might also contribute to overall immunomodulation during B. 

pertussis infection.  
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1.9 Modulation of the host immune response by Bordetella 

pertussis 

 

Infection with B. pertussis leads to the induction of an innate response and the 

subsequent development of specific immunity. The respiratory epithelium, together with 

resident antigen-presenting cells (APCs) such as alveolar macrophages (AMs) and DC are 

the primary host innate immune cells that sense and shape initial local immune responses 

towards B. pertussis. As the infection progresses, B. pertussis is challenged by an 

additional host defence mechanism: the adaptive immune system where the main effectors 

are the T and B lymphocytes, which eventually mediate clearance through the 

development of protective immunity against the pathogen (Mills, 2001). However, B. 

pertussis has evolved a number of strategies to prevent or modulate specific aspects of this 

response, thus delaying clearance and improving survival chances and transmission to the 

next host (Fig. 6). 

 In contrast to most Gram-negative bacteria, B. pertussis produces a 

lipooligosaccharide (LOS) that has a branched core structure with a nonrepetitive 

trisaccharide, rather than a long repeating O-side chain (Caroff et al., 2000). The lipid A 

moiety of the B. pertussis LOS activates TLR4 signalling pathways in MDDC, albeit 

significantly less efficiently than the typical lipid A domain present on the 

lipopolysaccharide structure of enteric Gram-negative pathogens (Fedele et al., 2007; 

Fedele et al., 2008). The lipid A and the oligosaccharide core domain of 

lipopolysaccharide, can also be recognized by the surfactant proteins A and D (SP-A and 

SP-D, respectively), hydrophilic lipid-binding lectins that are ubiquitously expressed in the 

lower respiratory tract of humans (Chaby et al., 2005). 
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Fig.6: Bordetella pertussis virulence factors modulating the host immune response. The most relevant 

aspects of host immune manipulation in the respiratory tract are schematically illustrated. Detailed 

information are described in the text (de Gouw et al., 2010). 

 

 

Binding of SP-A to lipopolysaccharide induces agglutination, destabilizes the 

bacterial membrane, and facilitates phagocytosis (McCormack & Whitsett, 2002). 

Interestingly, the terminal trisaccharide of B. pertussis LOS prevents access of SP-A and 

SP-D to the lipid A domain through steric hindrance, and thereby protects the bacteria 

from surfactant-mediated clearance (Schaeffer et al., 2004a) (Fig.6 A). 

Furthermore, B. pertussis inhibits complement-induced phagocytosis through 

Bordetella resistance to killing A (BrkA), a virulence factor that interferes specifically 

with the classical pathway of complement activation (Fernandez & Weiss, 1994). More 
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recently, two BrkA-independent mechanisms of complement resistance have been 

identified. Bordetella pertussis has been found to bind and recruit the C4b-binding protein 

(C4BP) as well as the human C1 esterase inhibitor (C1INH), both major inhibitors of the 

classical complement pathway (Berggard et al., 1997; Marr et al., 2007) (Fig.6 B). 

Colonization of the mucosal surfaces of the respiratory tract by B. pertussis initiates a 

local chemokine response, resulting in the recruitment of immune cells to the site of 

infection. Usually, neutrophils are the first immune cells to arrive, followed by a second 

wave of natural killer (NK) cells, macrophages, DC, and lymphocytes.  

PT has been shown to affect chemotaxis indirectly by suppressing the release of 

chemokines from resident airway cells. It was demonstrated that inactivation of G proteins 

by PT strongly impairs lymphocyte migration in vitro and causes defective homing to 

spleen, lymph nodes, and Peyer’s patches in vivo (Wettschureck & Offermanns, 2011). 

Indeed, using a mouse model of infection, it was shown that a mutant B. pertussis strain 

lacking PT induced significantly higher levels of keratinocyte-derived chemokine and 

macrophage inflammatory protein 2, i.e. the murine functional equivalents of human IL-8, 

as compared with the wild-type strain. Further, lipopolysaccharide-induced CXC 

chemokine, the murine homolog to human CXCL5/ENA-78, was also inhibited by PT 

(Andreasen & Carbonetti, 2008) (Fig.6 D). Furthermore PT is able to intoxicate alveolar 

macrophages (AMs) by ADP ribosylation of its G-proteins (Fig.6 C) and also it is able to 

enter the circulation and suppress antibody responses to B. pertussis antigens (Fig.6 H). 

Phagocytic uptake of bacteria is generally followed by fusion of the phagosome with 

the lysosome, generating a new compartment called the phagolysosome. Bacteria present 

in this compartment are then exposed to an acidified environment as well as a number of 

antibacterial molecules, including ROS and proteolytic enzymes that break down the 

bacterium. Besides survival through entering the endosomal compartment, B. pertussis 

uses several other strategies to suppress phagocytic activity. B. pertussis also evades 

phagocytosis by suppressing the bactericidal activity of phagocytes (Weingart et al., 2000). 

ACT rapidly induces cellular cAMP levels in CR3
+
 phagocytes, including PMNs 

(Guermonprez et al., 2001). The rapid elevation of cAMP signals causes a transient and 

selective inactivation of RhoA, a member of the Rho family GTPases, which are key 

regulators of actin cytoskeletal dynamics. This inactivation of RhoA causes massive actin 

cytoskeletal rearrangements that coincide with phagocytic ruffling and the loss of 

macropinocytic fluid-phase uptake (Kamanova et al., 2008).  
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To summarize, ACT is able to subvert cAMP signalling in phagocytes and thereby 

affects their bactericidal activity by inhibiting chemotaxis, the production of superoxides 

(and hence the respiratory burst), and killing (Fig. 6 G). Furthermore, ACT induces the 

activity of the effector caspases 3 and 7 in macrophages, which are the key factors 

triggering apoptosis (Cheung et al., 2009) (Fig.6 E).  

Another B. pertussis virulence factor that affects apoptosis is FHA. It has been shown 

that purified FHA induced dose-dependent apoptosis in human phagocytic and epithelial 

cells (Abramson et al. 2001) (Fig.6 E). 

Cellular immunity is suppressed by the concomitant action on dendritic cells of LOS 

and PT on TLR4 and TLR2, FHA, and ACT on CR3, and the type III secretion system 

(T3SS) secreted protein BopN, which mediate the suppression of IL-12p70 and the 

induction of IL-10 (Fig. 6 F). 

 

1.10 Development of improved vaccines against whooping cough 

 

Before childhood vaccination pertussis was a major cause of infant death throughout 

the world. The high rate of illness and death caused by bacterium stimulated the early 

development of whole-cell pertussis vaccines (Pw). All Pw vaccines contain whole B. 

pertussis bacteria that have been killed and detoxified by various methods, like treatment 

with glutaraldehyde or formaldehyde. These vaccines were introduced in many countries 

in the 1950s and 1960s and although are effective at preventing whooping cough in 

infants, they can induce local and systemic reactions in a high proportion of immunized 

infants. More significantly, convulsions and encephalopathy have been reported to be 

temporally associated with Pw administration (Cherry et al., 1988; Edwards et al., 1999). 

The desire to avoid the side effects of whole-cell vaccines has stimulated the 

development of less reactogenic acellular pertussis vaccines (Pa) (Halperin et al., 1999). 

Acellular vaccines consist of up to five specific B. pertussis antigens, including inactivated 

PT, FHA, PRN and two fimbrial antigens FIM2 and FIM3. These new vaccines, which 

have considerably reduced side effects, have been introduced into routine paediatric 

vaccination programs in many Western countries.  

The success of pertussis vaccines has led to the opinion that the disease is essentially 

under control, however, worldwide 200.000 to 400.000 pertussis-linked deaths are still 

recorded annually, and the disease still ranks third among the causes of childhood 

mortality due to infectious agents (WHO, 2006). Although mostly prevalent in developing 
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countries, the disease is also re-emerging in the developed world, including the United 

States, where the incidence has increased nearly 10-fold over the last 20 years (Berbers et 

al., 2009). 

Among the proposed reason for pertussis resurgence, attention was focused on 

changes in the epidemiology of the disease which were unexpectedly recorded in countries 

with high vaccine coverage, where cases of adolescent and adult pertussis are increasingly 

frequent (Wirsing von Konig et al., 2002). As a consequence, infected adults constitute an 

important reservoir for transmission of the disease to very young children, too young to be 

fully vaccinated, and therefore at risk to develop severe disease associated with high 

mortality rates. Furthermore, atypical (and therefore difficult to diagnose) pertussis is 

generally not life-threatening in adults and in many cases remains unnoticed.  

Changing in pertussis epidemiology has been proposed to be linked to massive 

vaccination campaigns. In the pre-vaccination era, the disease occurred most often in pre-

school children, infant pertussis was less frequent and adulthood pertussis very rare. Anti-

pertussis immunity was naturally boosted due to repeated exposure to B. pertussis and 

immunity induced by disease was long-lasting. Since widespread vaccination of infants, 

whooping cough almost disappeared in the classical age group but increased in adolescents 

and adults. This could be probably due to faster waning of immunity after vaccination than 

after disease and reduced boosting exposure to B. pertussis. In fact, some studies suggest 

that duration of immunity after Pw vaccines or Pa immunization is not significantly 

different and lasts 4-12 years in children (Wendelboe et al., 2005). However, other study 

report that immunity induced by efficacious Pw vaccines persists longer than Pa vaccines 

(Gustafsson et al., 2006).  

The re-emergence of pertussis has been attributed to other various factors, including 

increased awareness, improved diagnostics, suboptimal vaccines, waning immunity and 

pathogen adaptation (Mooi et al., 2007). Waning immunity in combination with pathogen 

adaptation are probably the main factors which contribute to the continued circulation of 

B. pertussis strains but the relative contribution of these factors may differ between 

countries and is the subject of ongoing debate. 

Pertussis vaccination usually begins at 2 month of age, and optimal protection 

requires at least three immunizations. Generally, the three doses are given at 1- to 2-month 

intervals, implying that optimal protection is only achieved at the age of 6 months. To 

reduce the incidence of pertussis in the very young and most vulnerable age groups, early 

immunization, possibly at birth, would thus be highly desirable. However, numerous 
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studies in humans and in animal models have suggested that the neonatal immune system 

is too immature to effectively induce vaccine-mediated protective immunity (Lewis et al., 

1991; Siegrist, 2001). IFN-γ production especially, which is indicative of a Th1 response 

that is essential to the development of protective immunity to pertussis (Mills, 2001), 

appears to be significantly reduced in human newborns, compared to older children or 

adults (Lewis et al., 1986). This notion is confirmed by the fact that significant amounts of 

antigen-specific IFN-γ are only produced after several months (at least 6) in children 

vaccinated with pertussis vaccines, especially with Pa vaccines (Ausiello et al., 1997). 

Natural infection with Bordetella pertussis has long been considered to induce strong 

and long-lasting immunity that wanes later than vaccine-induced immunity (Wirsing von 

Konig et al., 2002). Furthermore, infection with B. pertussis induces measurable antigen 

specific Th1-type immune responses even in very young children (as young as 1 month of 

age) (Mascart et al., 2003). These observations suggest that live vaccines applicable by the 

nasal route, in order to mimic as closely as possible natural infection, may be attractive 

alternatives over the currently available vaccines. 

In 2006, the group of Dr. Camille Locht at the Institut Pasteur in Lille (France) 

described the development of a live candidate vaccine through genetic attenuation of B. 

pertussis to diminish pathogenicity while maintaining the ability to colonize and induce 

protective immunity.  

 

1.10.1 Construction of a novel live attenuated pertussis vaccine: BPZE1  

 

Recent advances in the understanding of B.pertussis virulence have allowed 

developing a highly attenuated strain, named BPZE1, where three virulence factors were 

genetically targeted: TCT, PT and DNT.  

As already mentioned, TCT is a breakdown product of peptidoglycan in the cell wall 

of Gram-negative bacteria, which generally internalize it into the cytosol by the AmpG 

transporter protein in order to be re-utilized during cell wall biosynthesis. B. pertussis 

AmpG is inefficient in the internalization of peptidoglycan breakdown products. 

Therefore, B. pertussis ampG gene was replaced by E.coli ampG. The resulting strain 

expressed less than 1% residual TCT activity (Fig.7).  

PT is a major virulence factor responsible for the systemic effects of B. pertussis 

infections and is composed of an enzymatically active moiety, called S1, and a moiety 

responsible for binding to target cell receptors. Allelic exchange was used to first delete the 
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ptx operon, and then to insert the mutated version replacing Arg-9 by Lys, and Glu-129 by 

Gly in S1 (Fig. 7), two key residues involved in substrate binding and catalysis, 

respectively.  

Finally, allelic exchange was used to remove the dnt gene (Fig. 7). Although the role 

of DNT in the virulence of B. pertussis is not certain, it has been identified as an important 

toxin in the closely related species Bordetella bronchiseptica and displays lethal activity 

upon injection of minute quantities (Mielcarek et al., 2006). 

 

 

 

 

Fig.7: Cartoon of construction of BPZE1 strain. Three major B. pertussis toxins were genetically 

mutated: tracheal cytotoxin (TCT), pertussis toxin (PT) and dermonecrotic toxin (DNT) Details are 

mentioned in the text (adapted from description in Mielcarek et al., 2006). 

 

 

 

1.10.2 Protection to B. pertussis challenge after vaccination with BPZE1 

 

In mice, it has been shown that BPZE1 although is highly attenuated, yet able to 

colonize the respiratory tract and to induce strong protective immunity after a single 

intranasal administration. Protection against B. pertussis was comparable to that induced 

by two injections of Pa vaccine in adult mice, but was significantly better than two 

administrations of Pa vaccine in infant mice. Moreover, BPZE1 protected against 
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Bordetella parapertussis infection, whereas Pa did not (Mielcarek et al., 2006). BPZE1 is 

thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-

free administration early in life, possibly at birth. 

Furthermore, the long-term immunogenicity and protective efficacy induced by a 

single intranasal dose of BPZE1 was also evaluated in mice. Up to 1 year after 

immunization, BPZE1 showed significantly higher efficacy to protect adult and infant 

mice against B. pertussis infection than two administrations of an acellular pertussis 

vaccine (Pa).  

These data highlighted the potential of the live attenuated BPZE1 candidate vaccine 

as part of a strategy to solve the problem of waning protective immunity against B. 

pertussis observed with the current Pa vaccines. 

 

1.10.3 Immune response induced by BPZE1 vaccination 

 

Analysis of B. pertussis antigen-specific cytokine patterns induced by BPZE1 or Pa 

vaccination of 8-week old mice confirmed that BPZE1 administration favours a stronger 

Th1-type response than Pa vaccination. This was revealed by the fact that the ratios of 

IFN-γ over IL-5 produced by splenocytes stimulated with FHA or PT were significantly 

higher in BPZE1 vaccinated mice than in Pa vaccinated mice (Mielcarek et al., 2006). 

  A recent study showed that, one year after immunization with BPZE1, a pertussis-

specific persistent response, with high levels of IFN-γ, could be detected from spleen cells 

restimulated with inactivated Bordetella pertussis. BPZE1 induced low levels IL-17 and 

no IL-10 or IL-5. B. pertussis-specific antibodies were induced by live BPZE1 with 

increasing amounts during the first 6 months post-immunization before a progressive 

decline (Feunou et al., 2010). BPZE1 immunization induced long-lasting, efficacious 

memory B-cell and specific antibody responses dominated by IgG2a, which were boosted 

by subsequent challenge (Skerry & Mahon, 2011). 

 

 

 

 

 



32 

 

AIM OF THE STUDY 

 

Resurgence of whooping cough is observed worldwide both in infants and adults, 

despite high pertussis vaccine coverage, and has been attributed to changes in the 

epidemiology of the disease at least partly due to the waning of vaccine induced protective 

immunity over the time (Wendelboe et al., 2005). Increasing the longevity of vaccine-

induced immunity against B. pertussis might therefore have a profound public health 

impact. Moreover, early immunization, possibly at birth, would be highly desirable to 

reduce the incidence of pertussis in the very young and most vulnerable age groups.  

Recently, a live highly attenuated pertussis candidate vaccine, named BPZE1, has 

been developed by eliminating or detoxifying three crucial bacterial virulence factors: 

pertussis toxin, dermonecrotic toxin, and tracheal cytotoxin. Preliminary studies in mice 

were promising, since showed that BPZE1 is able to induce a long-term protection in 

infant mice, superior to that provided by the current acellular pertussis vaccines (Mielcarek 

et al., 2006).  

BPZE1 is at the centre of a project named ChildINNOVAC that represents the 

common effort of seven different European laboratories in order to pave the way for the 

development of a novel live attenuated nasal vaccine to protect infants and young children 

against whooping cough by nasal, needle-free administration early in life, possibly at birth.  

In this framework, my specific aim was to perform pre-clinical studies to evaluate the 

features of BPZE1 induced immunity in a human ex-vivo system. This approach was 

mandatory, since B. pertussis is an exclusively human pathogen and rodent models of 

infection are inherently flawed and may not provide sufficient information. To achieve this 

goal, I used a human monocyte-derived dendritic cells model, a powerful tool that allows 

studying several critical aspects of host response against pathogens, from recognition of 

the infectious agent to the modulation of innate and adaptive immunity.  
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MATERIALS AND METHODS 

 

 

2.1 Ethics statement 

 

This study was conducted according to the principles expressed in the Declaration of 

Helsinki. All blood donors provided written informed consent for the collection of samples 

and subsequent analysis, and the blood samples were processed anonymously. 

 

2.2 Reagents 

 

Polymyxin B, brefeldin A, phorbol 12-myristate 13-acetate (PMA), ionomycin and 2-β-

mercaptoethanol were purchased from Sigma Chemicals (St. Louis, MO). Purified E. coli 

LPS was from Cayla-InvivoGen Europe (Toulouse, France). Human rGM-CSF, rCCL21,  

rIL-4, monoclonal anti- human IL-10 antibody and monoclonal anti-TGF-β antibody were 

from R&D Systems (Minneapolis, MN). rIL-2 was obtained from Roche (Basel, 

Switzerland). RPMI 1640 medium was from Life Technologies Invitrogen (Paisley, UK).  

Sodium pyruvates, nonessential amino acids, L-glutamine, HEPES, penicillin, 

streptomycin, were all from Hyclone Laboratories (South Logan, UT) (Sigma). D-PBS 

Dulbecco’s Phosphate buffered Saline (Euroclone, Milan, Italy), Lympholyte-H 

(Cedarlane, Burlington, Ontario, Canada). CD14 mAb-conjugated magnetic microbeads 

(Miltenyi Biotec), Bromodeoxyuridine (BrdU) and anti-BrdU mAb (BD Biosciences).  

 

2.3 Bacterial strains and growth conditions  

 

The strains used in this study are all derived from B. pertussis Tohama I. BPSM (Menozzi 

et al., 1994), BPZE1 and BPQJ20, deficient in TCT release (Mielcarek et al., 2006), have 

been described previously. BPRA (PT
-
) has a deletion of the PT gene (Antoine &  Locht, 

1990). BPSA175 (dPT) produces genetically inactivated PT and was constructed by 

inserting pPT-RE (Alonso et al., 2001) into the ptx locus of B. pertussis BPRA by 

homologous recombination. B. pertussis BPSMDN was constructed by deleting the DNT 

gene in B. pertussis BPSM using the pJQmp200rpsL18 derivative described in (Mielcarek 
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et al., 2006). All Bordetella strains were grown on charcoal agar plates supplemented with 

10% sheep blood (Oxoid, Basingstoke, UK) at 37°C for 48 h. Bacteria were then collected 

and resuspended in 2 ml PBS, and the concentration was estimated by measuring the 

optical density at 600 nm. The bacterial suspensions were adjusted to a final concentration 

of 10
9
 CFU/ml. For an accurate measurement of the multiplicity of infection (MOI), the B. 

pertussis suspensions were serially diluted onto charcoal agar plates and CFU were 

counted up to days of culture. 

 

2.4 Purification and culture of MDDC 

 

 Human monocytes were purified from peripheral blood of healthy blood donors (courtesy 

of Dr. Girelli, “Centro Trasfusionale Policlinico Umberto I,” University “Sapienza” Rome, 

Italy) after Lympholyte-H gradient. CD14
+
 cells were further purified by positive sorting 

through CD14 mAb-conjugated magnetic microbeads (Miltenyi) and cultured in flasks 

(75cm
2
,
 

Costar, Corning Life Sciences, Lowell, MA) RPMI 1640 medium (Life 

Technologies Invitrogen, Paisley, U.K.), supplemented with heat-inactivated 10% LPS-

screened FCS, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 2 mM L-

glutamine, 25 mM HEPES, 100 U/ml penicillin, 100 mg/ml streptomycin, all from 

Hyclone Laboratories (South Logan, UT), and 0.05 mM 2-βmercaptoethanol (Sigma) 

(hereafter defined as complete medium) in the presence of GM-CSF (25 ng/ml) and IL-4 

(25 ng/ml). After 6 days, immature MDDC were washed with RPMI 1640 medium and 

analyzed by cytofluorimetry (FACScan, BD Biosciences) for the expression of surface 

markers CD1a, a human dendritic cell marker related to class MHC molecules, CD14 a 

typical monocytes marker, CD83 and CD38 two maturation markers of dendritic cells. 

MDDC were used in the experiments whether  >80% CD1a and <10% CD14. 

 

2.5 MDDC infection and maturation 

 

MDDC (10
6
 cell/ml) were resuspended in complete medium without penicillin and 

streptomycin and treated with B. pertussis cells at bacterium-to cell rations of 20:1, 100:1 

and 500:1. After 2 h, cells were extensively washed in the presence of polymyxin B (5 

mg/ml) to kill adherent extracellular but not internalized bacteria and incubated at 37°C, 

5% CO2 for 48 h in complete medium to induce MDDC maturation. After 48 h, the treated 
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MDDC were harvested for immunophenotypic analysis, and the supernatants were 

collected for cytokine measurement by ELISA. 

 

2.6 Immunophenotypic analysis 

 

Cells were washed and resuspended in PBS containing 3% FBS and 0.09% NaN3, then 

incubated with a panel of fluorochrome-conjugated mAbs (obtained from BD Biosciences, 

San Jose, CA) specific for MDDC (anti-CD14, CD1a, CD80, CD83, and CD38) or specific 

for T cells (anti-CD3, anti-CD45RA, anti-CD25, and anti-Foxp3). Isotype-matched Abs 

were used as negative controls. Cells were analyzed with a FACScan or FACSCanto (BD 

Biosciences). Fluorescence data were reported as percentage of positive cells when the 

treatment induced the expression of the marker in cells that were negative; median 

fluorescence intensity (MFI) was used when the treatment increased the expression of the 

marker in cells that were already positive. 

 

2.7 Detection of apoptosis 

 

MDDC apoptosis was detected by using APOPTEST-FITC (Dako Cytomation, Glostrup, 

Denmark). Briefly, iMDDC were treated with stimuli at different ratios for either 24 or 48 

h, harvested, and double-stained with FITC-conjugated annexin V and iodide propidium 

(PI) for 20 minutes. Cells were washed in binding buffer and analyzed by flow cytometry 

in a FACScan using CellQuest software. 

 

2.8 Chemokine-driven chemotaxis 

 

Chemotaxis experiments were performed as described elsewhere (Frasca et al., 2006). 

Briefly, 600 µl complete medium containing 10 ng/ml CCL21 was added to the lower 

chamber of polycarbonate filters of 5-mm-pore size, 24-Transwell chambers (Costar, 

Corning Life Sciences, Lowell, MA). Then, 1.25x10
5
 MDDC (cell input) challenged with 

B. pertussis for 48 h were added to the upper chamber in 100 µl complete medium and 

incubated for 3 h. Migrated cells were counted by flow cytometry in a FACScan, acquiring 

events for 60 s using CellQuest software (BD Biosciences). 
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2.9 Isolation of T lymphocytes and MDDC–T cell allogeneic MLR 

 

To measure allogeneic proliferation, CD3 T cells were purified from PBMCs by negative 

sorting with magnetic beads (Pan T-cell Kit, Miltenyi Biotec, Auburn, CA). Purity of cell 

preparations was assessed by cytofluorimetric staining. MDDC were cultured with B. 

pertussis strains for 48 h, washed extensively, and cultured in an MLR with T cells (5x10
5
) 

at different MDDC/T cell ratios in 48-well cell culture plates for 6 days. Cell proliferation 

in MLR was measured by BrdU incorporation evaluated by direct immunofluorescence 

with an FITC-conjugated anti-BrdU mAb (BD Biosciences). Briefly, BrdU (BD 

Biosciences) was added to MDDC and T cell MLR at 3 mg/ml final concentration on day 

3 and on day 5 of culture. Cells, collected on day 6, were fixed in 0.5% paraformaldehyde, 

permeabilized and stained for intracellular BrdU by direct immunofluorescence with an 

FITC-conjugated anti-BrdU mAb (BD Biosciences). Cells were examined by flow 

cytometry, and T cell proliferation was evaluated. Data were expressed as percentage of 

positive cells. 

 

2.10 Polarization of T lymphocytes 

 

To evaluate T-lymphocyte polarization, experiments were performed using CD45RA
+
 

naive T cells purified from T cells by negative sorting with anti-CD45RO-conjugated 

magnetic beads (Miltenyi Biotec). MDDC (0.5x10
5
) were treated with B. pertussis for 48 h 

and then co-cultured with CD3
+
 or CD3

+
/CD45RA

+
 T cells (0.5x10

6
) in 24-well plates 

(Costar, Corning Life Sciences). On day 6, rIL-2 (50 U/ml) was added to the cultures. On 

days 12, supernatants were harvested for cytokine measurement. On day 12, cells were 

activated with PMA (40 ng/ml) and ionomycin (1 mg/ml) for 5 h in the presence of 

brefeldin A, a compound that blocks proteins in the endoplasmic reticulum, thus inhibiting 

cellular secretion. Cytokine production in T cells was measured by intracellular staining. 

 

2.11 Analysis of T suppressor function 

 

Purified naive T cells were exposed to allogeneic MDDC treated with B. pertussis 

(MDDC/T cell ratio 1:10) (primary MLR) to generate T suppressor (Ts) cells. Six days 

later, T cells were recovered and cultured at different numbers with syngeneic T cells 

(5x10
5
) in the presence of allogeneic LPS-matured MDDC (mDC) (0.5x10

5
) in 48-well 
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cell culture plates (secondary MLR). In some experiments to determine TGF-β production, 

MDDC and T cells were co-cultured in serum-free medium using a substitute of bovine 

serum (BIT 9500; Stemcell Technologies, Vancouver, BC, Canada). In some experiments, 

the cultures were performed in the presence of blocking anti IL-10 (10 mg/ml) and anti-

TGF-β (10 mg/ml) Abs. Results were reported as proliferation index calculated as the 

percentage of BrdU incorporated by the MLR in the presence of Ts with respect to control 

MLR set as 100%. 

To determine the cell-contact dependence of the regulatory response, syngeneic T cells 

(5x10
5
) and allogeneic mDC (0.5x10

5
) were cultured in the bottom well of polycarbonate 

filters of 0.4-mm-pore size, 24-Transwell chambers (Costar, Corning Life Sciences), 

which does not allow cell passage in the lower chamber. The T cells (5x10
5
) recovered 

from the primary MLR with allogeneic mDC were added in the upper Transwell chamber. 

After 6 days, the proliferative response of the T cells in the lower chamber was measured 

by means of BrdU incorporation. 

 

2.12 Determination of cytokine levels by ELISA 

 

To measure cytokine production, MDDC were cultured in the presence of the indicated 

stimuli in 14-ml round-bottom tubes (Falcon; Becton Dickinson, Lincoln Park, NJ) at 37°C 

and 5% CO2. Supernatants were collected after 48 h, and IL-10, IL-12p70, IL-1β, IL-6 

(Quantikine; R&D Systems), and IL-23 (Bender MedSystem, Burlingame, CA) production 

was assessed by ELISA with a sensitivity of 1.0 pg/ml for IL-1β, 0.7 pg/ml for IL-6, 3.9 

pg/ml for IL-10, 5.0 pg/ml for IL-12p70, and 20.0 pg/ml for IL-23. OD obtained was 

measured with a 3550-ultraviolet Microplate Reader (Bio-Rad, Philadelphia, PA) at 450 

nm. Cytokines in the supernatants from polarized T cells were assayed by ELISA specific 

for IFN-γ, IL-5 and IL-17, IL-10 and TGF-β (Quantikine; R&D Systems). The lower 

detection limits were 8.0 pg/ml for IFN-γ, 3.0 pg/ml for IL-5, 15.0 pg/ml for IL-17, and 4.6 

pg/ml for TGF-β. 

 

2.13 Intracellular cytokine staining 

 

Intracellular staining was performed using cells activated with PMA and ionomycin for 5 h 

in the presence in presence of brefeldin A (5µg/ml), a compound that blocks proteins in the 

endoplasmic reticulum thus inhibiting cellular secretion and preventing binding of secreted 
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cytokines to the cell surface. Cells were then fixed in paraformaldehyde (PFA) 2%, 

permeabilized using a solution containing saponine 0.5% and stained with a predetermined 

optimal concentration of fluorochrome-conjugated anticytokine Abs (CD3,IFN-γ, IL-4, IL-

17, Foxp3, CD25) or appropriate isotype controls.  After a 20-min incubation RT, cells 

were washed and analyzed by flow cytometry in a FACScan or FACSCanto flow 

cytometer. 

 

2.14 Statistical analysis 

 

Statistical descriptive analyses were carried out using the SPSS statistical package (SPSS, 

Chicago, IL). Differences between mean values were assessed by two-tailed Student t test 

and were statistically significant for p values 0.05. 
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RESULTS 

 

 

3.1 Phenotypic maturation, viability, and cytokine production in MDDC 

challenged with different doses of BPZE1 

 

 The transition from an immature to a mature stage is well known to endow DC with 

the capacity to couple innate to adaptive immune responses. Resting immature DC (iDC) 

reside in the periphery, where they sense pathogens through PRRs. Upon pathogen 

recognition, a signalling cascade initiates the DC maturation process, characterized by the 

up regulation of MHC class II and co-stimulatory molecules. In our laboratory an 

experimental protocol for MDDC challenge with B. pertussis has been developed (Fedele 

et al., 2005). Those studies showed that bacteria were scarcely phagocytosed and rapidly 

killed intracellularly, and that bacterial contact rather than internalization induced the onset 

of the maturation program (Fedele et al., 2005).  

The optimal BPZE1 dose to challenge MDDC (i.e., the ratio that allows 

maximization of MDDC activation without affecting MDDC viability) was determined in 

dose-response experiments ranging from 20 to 500 bacteria per MDDC, and the induction 

of phenotypic maturation, cell viability, and cytokine production were assessed. 

Phenotypic maturation was evaluated 48 h after treatment with bacteria by monitoring the 

surface expression of the co-stimulatory molecule CD80 and the typical dendritic cells 

maturation markers CD83 and CD38. At all bacteria-to-cell ratios tested, both the vaccine 

strain, BPZE1 and the virulent parental strain BPSM, induced a significant up regulation of 

the maturation markers as compared to untreated MDDC (Fig. 8). 

MDDC viability was assessed by annexin V and propidium iodide (PI) staining. 

Annexin V is used as a probe to detect cells that have expressed phosphatidylserine on the 

cell surface, a feature found in apoptosis as well as other forms of cell death.
 
PI is a 

fluorescent dye that stains DNA. The plasma membrane of cells that are viable or in the 

early stages of apoptosis are not permeable to PI, while cells in the late stages of apoptosis 

or already dead are permeable to PI, having lost membrane integrity. 

 

 

 

http://en.wikipedia.org/wiki/Apoptosis
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Fig.8: Induction of human MDDC maturation. Fluorescence data are reported as median fluorescence 

intensity (mfi) when treatment increased the expression of the marker in cells that were already positive 

(CD80, CD38); otherwise, percentage of positive cells is used (CD83). Mean expression ± SE of 11 

independent experiments performed with MDDC obtained from different donors is indicated. *p<0.05 vs. 

none. 

 

 

 

In preliminary experiments, a time-course analysis of apoptosis induction in MDDC 

was performed, showing that both BPZE1 and BPSM did not protected cells from 

spontaneous apoptosis at 8 h, while inducing protection at  24 h and 48 h  time-points (Fig. 

9). Therefore, the following experiments were performed after 24 h MDDC stimulation. 
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Fig.9 Resistance of MDDC to spontaneous apoptosis: time-course. MDDC were either untreated (none) 

or challenged with BPZE1 or BPSM at 20:1, 100:1 and 500:1 ratio for 8, 24 and 48 h. Percentage of 

apoptotic cells is shown. Mean expression ± SE of three independent experiments performed with MDDC 

obtained from different donors is shown.  *p<0.05 vs. none; °p<0.05 vs. 500/1 ratio. 

 

 

An increase in the percentage of apoptotic and necrotic cells was induced by both 

BPZE1 and BPSM bacterial strains when the 500:1 dose was used (Fig. 10). 

                                                   

                            



 

 

 

 

Fig.10: Resistance of MDDC to spontaneous apoptosis. Cells were stained with FITC-conjugated annexin 

V to assess apoptosis (A) and propidium iodide to assess necrosis (B) and analyzed by flow cytometry. 

Percentage of apoptotic or necrotic cells is shown. Mean expression ± SE of eight independent experiments 

performed with MDDC obtained from different donors is indicated. *p<0.05 vs. none, °p<0.05 vs 500/1 ratio. 
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 In contrast, incubation at 20:1 and 100:1 ratios significantly promoted the resistance 

of MDDC to apoptosis, spontaneously occurring when the cells were not stimulated (Fig. 

10A). Moreover, treatment with either 20:1 or 100:1 ratio did not enhance necrosis (Fig. 

10B). 

To determine the impact of BPZE1 on the host response, we studied the induction of 

relevant cytokines produced by MDDC. In preliminary experiments, MDDC were 

challenged with two different ratios, 20:1 and 100:1, and the levels of IL-12p70, and IL-10 

were measured by ELISA assay (Table I). 

 

 

 

 

 

 

 

 

 

 

 

Table I: IL-10 and IL-12p70 secretion by MDDC challenged with different doses of BPZE1 and 

BPSM. Values are expressed as mean ± SE from four independent experiments performed with MDDC 

obtained from different donors and expressed as pg/ml of cytokine released. *
 
p < 0.05 vs. none. 

 

 

 IL-10 was produced in a dose-dependent fashion, without statistically significant 

differences between BPZE1 and BPSM. For IL-12p70, we only recorded a very modest 

production by BPSM-treated MDDC challenged with 100 bacteria per cell. These data 

confirmed that optimal MDDC stimulation was achieved when 100 bacteria per cell were 

used, in accordance with previously published data (Fedele et al., 2005), and showed no 

differences between BPZE1 and BPSM. Thus, to maximize the challenge of B. pertussis 

on MDDC, the 100:1 ratio was chosen. 

 

 

 

Stimuli IL-10 (pg/ml) IL-12p70 (pg/ml) 

none 34.6  20.3 0.0  0.0 

BPZE1 20:1 3027.6  711.9
*
 0.0  0.0 

BPZE1 100:1 5479.7  367.9
*
 0.0  0.0 

BPSM 20:1 4279.2  154.7
*
 3.0  2.7 

BPSM 100:1 5806.0  225.5
*
 13.3  11.9 
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3.2 Migratory ability of MDDC treated with BPZE1 

 

 In order to initiate the adaptive immune response, DC travel through the lymphatics 

to the draining lymph node, where they arrive as fully mature DC, able to promote the 

activation of naive T cells through antigen presentation. Migration of DC from the 

periphery to the lymph node is regulated by the expression of the lymphatic chemokines 

CCL19 and CCL21 in the secondary lymphoid organs and by expression of their receptor, 

CCR7, by mDC. In vitro chemotaxis experiments were undertaken to verify whether 

BPZE1-challenged MDDC were able to perform lymphatic migration. MDDC were either 

untreated or challenged with BPZE1 or BPSM at a 100:1 ratio for 48 h. Cells were then 

added to the upper chamber of a Transwell system, and CCL21-containing medium was 

placed in the lower chamber. Cells migrated in the lower chamber were counted after 3 h  

BPZE1-treated MDDC efficiently sensed CCL21 gradients. In contrast, BPSM-

treated MDDC, although expressing the same cell-surface levels of CCR7 as those of 

BPZE1-treated MDDC (data not shown), were completely blocked in their ability to 

migrate in response to CCL21 (Fig. 11A).  

 

 

 

 

 

 

Fig.11: Lymphoid organ-derived CCL21-driven chemotaxis of MDDC. A) Percentage of migrated 

MDDC challenged with BPZE1or BPSM with respect to the cell input (1.25x10
5
 cells). Results are the mean 

values ± SE of five independent experiments performed with MDDC obtained from different donors. B) 

Percentage of migrated MDDC challenged with BPZE1, BPSM, BPSA175 (dPT), BPRA (PT
-
), BPQJ20 

(deficient in TCT release), or BPSMDN (DNT
-
). Results are the mean values ± SE of three independent 

experiments performed with MDDC obtained from different donors. *p< 0.05 vs. none, °p < 0.05 vs. BPSM. 
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It is well known that the enzymatic activity of PT specifically inhibits G proteins and 

blocks cell migration induced by chemokines (Gierschik, 1992). Furthermore, a recent 

study has been shown that the B oligomer (binding domain) of PT might inhibit 

chemokine receptor signalling (Schneider et al., 2009). We have hypothesized that PT 

expressed by the virulent BPSM strain may impair chemotaxis of MDDC and that BPZE1-

treated MDDC were allowed to migrate due to the PT detoxification. To test this 

hypothesis and rule out the possible involvement of PT B-oligomer or other virulence 

factors not expressed by BPZE1, chemotaxis experiments were performed with MDDC 

challenged with B. pertussis mutants either lacking PT (BPRA) or producing genetically 

detoxified PT (BPSA175), deficient in TCT production (BPJQ20) or lacking DNT 

(BPSMDN). As expected, MDDC incubated with either BPSA175 or BPRA migrated in 

response to the CCL21 gradient, whereas neither BPJQ20-treated nor BPSMDN treated 

cells were able to respond (Fig. 11B), showing that inhibition of MDDC lymphatic 

chemotaxis was due to the enzymatic activity of PT. 

 

3.3 Cytokine profile elicited in MDDC challenged with BPZE1 

 

Cytokine production is a key step in the regulation of the immune response exerted 

by DC, we therefore assessed the production by B pertussis treated MDDC of Th1-

polarizing IL-12p70, IL-10, involved in Th2 and Tregs/Ts induction, and IL-23, IL-1β, and 

IL-6, all involved in Th17 polarization. Previous studies performed in our laboratory have 

shown that B. pertussis promotes the production by MDDC of IL-23, IL-1β, and IL-10, 

whereas IL-12p70 is barely detectable (Fedele et al., 2005; Spensieri et al., 2006; Fedele et 

al., 2010). The cytokine profile elicited in MDDC by BPZE1 or BPSM was similar and 

characterized by high levels of IL-10, IL-1β, and IL-6. IL-23 was also produced by MDDC 

treated with either strain, without any statistically significant difference (Fig. 12).  

Concerning the production of IL-12p70, the mean values measured were at best 

modest and appeared to be influenced by a very high variation between the different 

MDDC donors. As shown in Fig. 12, BPZE1 induced IL-12p70 only in 4 and BPSM only 

in 5 of 15 independent experiments performed with different donors. Statistically 

significant differences for IL-12p70 production with respect to untreated MDDC were 

reached by BPZE1-challenged but not by BPSM-challenged MDDC. IL-10, IL-12p70, IL-

23, IL-1β, and IL-6 release in culture media was assessed by ELISA 48 h post treatment 

with bacteria.  
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Fig. 12: Analysis of cytokine secretion by MDDC. MDDC were either untreated (none) or challenged with 

BPZE1 or BPSM at a 100:1 ratio. Values are expressed as mean ± SE from 15 (for IL-12p70), 13 (for IL-6), 

11 (for IL-10 and IL-23), and 8 (for IL-1) independent experiments performed with MDDC and expressed 

as pg/ml of cytokine released. *p <0.05 vs. none 

 

 

3.4 Ag presentation and polarization of T helper lymphocytes by BPZE1-

challenged MDDC 

 

We next investigated key functions of mature DC, such as antigen presentation to T 

lymphocytes and polarization of the immune response. MDDC either untreated or 

challenged with BPZE1 or BPSM at a 100:1 ratio for 48 h were co-cultured with 

allogeneic purified T cells (5x10
5
) in different numbers ranging from 50x10

3
 (10:1) to 

1.56x10
3
 (1:320) for 6 days. Proliferation was assessed by BrdU incorporation. BrdU is a 
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synthetic analogue of thymidine that can be incorporated into the newly synthesized DNA 

of replicating cells during the S phase of the cell cycle. Intracellular staining with an 

appropriate mAb directed towards BrdU allows detecting proliferating cells. 

MDDC stimulated with BPZE1 efficiently induced allogeneic T cell proliferation, 

with a maximum proliferation induced at 10:1 T cell/MDDC ratio.  Similar results were 

obtained with BPSM-treated MDDC (Fig. 13).  

 

 

 

 

 

Fig.13: MDDC either untreated (none) or challenged with bacterial strains were co-cultured with 

allogeneic purified T cells in different numbers and the BrdU incorporation was evaluated. Results are 

reported as percentage of positive cells (mean ± SE) of four independent experiments performed with 

MDDC obtained from different donors. *p< 0.05 vs. none. 

 

 

Given the cytokine profile induced by BPZE1 in MDDC, we analyzed their capacity 

to polarize purified T lymphocytes and, in particular, the possibility of Th1/Th17 

induction, already described in human (Fedele et al., 2010) and mouse models (Feunou et 

al., 2010; Andreasen et al., 2009) and considered to contribute to protection induced by 

whole-cell pertussis vaccination (Higgins et al., 2006). We assessed the capacity to induce 

polarization both in naive CD45RA
+
 T cells and in already primed CD3

+
 T cells. 

MDDC either untreated or challenged with BPZE1 or BPSM for 48 h were co-

cultured with purified allogeneic CD3
+
 T cells or CD45RA

+
 naive T cells. On day 12, 

supernatants were collected, and secreted cytokines were measured by ELISA. 

http://en.wikipedia.org/wiki/Analog_%28chemistry%29
http://en.wikipedia.org/wiki/Thymidine
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/S_phase
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 Fig. 14 shows that both BPZE1-treated and BPSM-treated MDDC drove the 

expansion of IFN-γ-and IL-17-producing effector T cells, both in total CD3
+
 T cells (Fig. 

14A) or in naive CD45RA
+
 T cells (Fig. 14B). 

 

 

 

 

 

Fig.14: T lymphocyte polarization. MDDC either untreated or challenged with BPZE1 or BPSM for 

48 h were co-cultured with purified allogeneic CD3
+
 T cells (A) or CD45RA

+
 naive T cells (B). Results are 

expressed as mean ± SE of five independent experiments performed with MDDC obtained from different 

donors. C) MDDC either untreated or treated as in A were co-cultured with purified allogeneic CD3
+
 T cells. 

Numbers in each quadrant indicate the percentage of positive cells. A representative experiment out of three 

performed with MDDC obtained from different donors is shown. *p < 0.05 vs. none 
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A trend toward higher IL-17 production by BPSM-treated MDDC-driven T cell 

polarization was found, but the differences were not statistically different between the two 

bacterial strains. In contrast, the production of IL-5, typical of Th2 polarization, was 

decreased compared with that of T cells cultured in the presence of untreated MDDC. 

 These results were further confirmed by intracellular cytokine staining. To this end, 

MDDC either untreated or treated as in Fig. 14A were co-cultured with purified allogeneic 

CD3
+
 T cells.  

On day 12, cells were stimulated for 5 h with PMA/ionomycin in the presence of 

brefeldin A. Ionomycin is an ionophore produced by the bacterium Streptomyces 

conglobatus is used in research to raise the intracellular level of calcium (Ca
2+

). It is also 

used to stimulate the intracellular production of the cytokines, interferon, perforin and 

usually in conjunction with PMA. PMA (Phorbol 12-myristate 13-acetate) is the most 

commonly used phorbol ester, it binds to protein kinase C and leads to a strong activation 

of T cells proliferation.  

Intracellular staining showed a dramatic reduction of IL-4
+
 cells accompanied by an 

increase of IFN-γ
+
 and IL-17

+
 cells when CD3

+
 T cells were co-cultured with MDDC 

treated with either BPZE1 or BPSM (Fig. 14C). Remarkably, Th1/Th17 double positive 

cells accounted for the great majority of IL-17 effectors expanded. Similar results were 

obtained when CD45RA
+
 naive T cells were used, although lower percentages of cytokine-

producing cells were detected when intracellular staining of naive T cells was performed 

(data not shown). Overall, BPZE1 and its virulent parent strain BPSM behave similarly as 

far as the capacity to strongly induce allogeneic T cell stimulation and polarization of Th 

cells are concerned, retaining the same properties already shown in our previous study 

using B. pertussis strain 18323 (Fedele et al., 2010). 

 

3.5 Induction of functional suppressor T cells in vitro by BPZE1-

challenged MDDC 

 

Previous studies in mice have shown that IL-10 produced in response to B. pertussis 

infection may in turn promote IL-10-producing Ts (Higgins et al., 2003). Moreover, a 

reciprocal relationship between Th17 and Ts has been demonstrated (Beriou et al, 2009; 

Koenen et al., 2008). We therefore decided to investigate the possibility that BPZE1- or 

BPSM-challenged MDDC drive the induction of regulatory/Ts activity. To determine 

whether naive T cells exposed to B. pertussis treated MDDC become functional 

http://en.wikipedia.org/wiki/Ionophore
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/w/index.php?title=Streptomyces_conglobatus&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Streptomyces_conglobatus&action=edit&redlink=1
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Cytokines
http://en.wikipedia.org/wiki/Interferon
http://en.wikipedia.org/wiki/Perforin
http://en.wikipedia.org/wiki/12-O-Tetradecanoylphorbol-13-acetate
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regulatory/suppressors, MDDC either untreated or challenged with BPZE1 or BPSM at a 

100:1 ratio for 48 h were co-cultured with purified allogeneic CD45RA
+
 naive T cells at a 

10:1 ratio. On day 6, Ts were collected and co-cultured at different numbers, as indicated 

in the x-axis, with syngeneic T cells (5x10
5
) in the presence of allogeneic mDC (5x10

4
). T 

cell proliferation was assessed by BrdU incorporation. Both BPZE1-Ts and BPSM-Ts 

inhibited proliferation in the secondary MLR in a dose-dependent manner with statistical 

significance compared with that of T cells primed with immature MDDC (Fig. 15A). 

To rule out an inhibitory role of TGF-β present in the FCS added to the culture 

medium, we performed the same experiments with a serum-free medium. Also in this case, 

a marked reduction of T cell proliferation was induced by BPZE1-Ts and BPSM-Ts (data 

not shown), consistent with the opinion that suppression of proliferation was mediated 

directly by T cells. 

Classical regulatory T cells (Tregs) are CD4
+
/CD25

+
/Foxp3

+
 (Zhu et al., 2010; 

Sakaguchi et al., 2009). After 6 days of co-culture, MDDC and naive T cells were 

collected and stained for intracellular Foxp3 and CD4 and CD25 cell surface expression in 

a flow cytometry analysis. We have found that classical Tregs were not induced either in 

BPZE1-Ts or in BPSM-Ts (Fig. 15B).  

The inhibitory effect on T cell proliferation might be mediated through soluble 

factors produced by Ts or cell contact (Zhu et al., 2010). To correlate the 

regulatory/suppressor activity of the Ts with cytokine secretion, we further characterized 

BPZE1-Ts and BPSM-Ts. MDDC and naive T cells were co-cultured as described before. 

 On day 6, supernatants were collected and cytokine production measured by ELISA. 

High levels of IFN-γ, IL-17, and IL-10 were induced by BPZE1-Ts and BPSM-Ts. IL-5 

was barely detectable, whereas the levels of TGF-β were similar to those produced by T 

cells co-cultured with untreated MDDC (Fig. 15C).  

IL-10 and TGF-β play a crucial role among the soluble factors produced by Ts. Thus, 

to evaluate the  role of these cytokines, BPZE1-Ts or BPSM-Ts, syngeneic T cells (5x10
5
) 

were co-cultured with allogeneic mDC (5x10
4
) (control MLR) and added with Ts (5x10

5
) 

to a secondary MLR (control MLR+Ts) in the presence of both anti-IL-10 and anti-TGF-β 

neutralizing mAbs. As shown in Fig. 15D, the proliferation was still inhibited when 

neutralizing Abs were added, suggesting a minor role of these soluble factors in the Ts 

activity.  
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Fig.15: Characterization of Ts activity. A) MDDC either untreated or challenged with BPZE1 or 

BPSM at a 100:1 ratio for 48 h were co-cultured with purified allogeneic CD45RA
+
 naive T cells at a 10:1 

ratio to generate Ts. Results are reported as proliferation index (mean ± SE) of six independent experiments 

performed with MDDC and T cells obtained from different donors. B) MDDC and naive T cells were co-

cultured as in A. Results are reported as percentage of positive cells (mean  ± SE) of three independent 

experiments performed with MDDC and T cells obtained from different donors. C) MDDC and naive T cells 

were co-cultured as in A. Results are reported as pg/ml (mean ± SE) of three independent experiments 

performed with MDDC and T cells obtained from different donors. D) Syngeneic T cells were co-cultured 

with allogeneic mDC and added with Ts in the presence of blocking anti-IL-10 and blocking anti-TGF-ß 

mAbs or separated from Ts with a transwell membrane Results are reported as proliferation index (mean ± 

SE) of three independent experiments. * p <0.05 vs.Ts.   

 

 

To demonstrate that the inhibitory effect on T cell proliferation was mediated by cell-

to-cell contact and not through soluble factors, suppression experiments were performed in 

a Transwell system separating BPZE1-Ts or BPSM-Ts from syngeneic T cells by a 

polycarbonate membrane that allows exchange of soluble factors but excludes direct cell 
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contact. The elimination of cell contact almost entirely restored the proliferation index, 

indicating that the inhibitory effect was mainly mediated by direct cell contacts (Fig. 15D). 
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DISCUSSION 

 

Although extensive immunization campaigns have significantly reduced pertussis-

caused child mortality worldwide, infections with B. pertussis still pose a significant health 

burden. Even in highly vaccinated populations, annual infection rates can reach 1-7% in 

the general population. Thus, pertussis remains one of the least well-controlled vaccine-

preventable diseases in the world, with as many as 300,000 deaths each year, worldwide. 

The majority of these deaths occur in non- or insufficiently vaccinated children. 

Interestingly, pertussis has not only persisted in vaccinated populations, but has even 

resurged in recent years.  

The persistence and resurgence of pertussis in countries with highly vaccinated 

populations has been attributed to various factors including increased awareness, improved 

diagnostics, suboptimal vaccines, waning of vaccine-induced immunity, and pathogen 

adaptation. Although pertussis is traditionally considered a childhood disease, the observed 

increase in pertussis incidence is seen mainly in adolescents and adults. The shift of 

pertussis infections towards older age categories poses significant health concerns, as these 

individuals provide a reservoir of B. pertussis for transmission to infants, who are at the 

highest risk of developing severe pertussis. 

Knowledge about the molecular mechanisms by which B. pertussis infects the host 

and evades clearance by the immune system will provide insight into its survival strategies 

and may facilitate the rational design of novel therapeutic and/or preventive strategies that 

target the ‘weak’ spots of this versatile pathogen. 

Immunity to B. pertussis is complex. While single correlates of protection have been 

proposed (Taranger et al., 2000), protective immunity requires both a strong cellular and 

antibody response. The whole-cell (Pw) and acellular (Pa) pertussis vaccine appear to 

protect through slightly different mechanisms, with Pw or natural infection inducing Th1 

type response, whereas Pa typically induce more Th2-like immunity in humans (Ausiello 

et al, 1997) Follow-up studies from clinical trials evaluating Pa-induced immune responses 

in children have indicated that 15-33 months after a complete course of vaccination, 

specific antibodies were almost undetectable, suggesting that booster vaccinations are 

needed to prolong the duration of immunity (Gustafsson et al., 2006).  In mice, the pattern 

of cytokines production indicated that Th1 and Th17 cells are activated by vaccination 

with Pw, and Th1 and Th2 cells are involved in the immune response upon vaccination 
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with Pa (Higgins et al., 2006; Mills et al., 1998).  Studies in murine models designed to 

probe the longevity of vaccination showed that vaccine-mediated protection persist for 

more than 44 weeks following immunization with Pa or Pw (Mahon et al., 2000). 

In contrast, naturally acquired immunity to B. pertussis has been proposed to be long-

lasting (at least 30 years). Several parameters might explain these differences in the 

duration of immunity induced by bacterial infection and vaccination. While Pa consist of 

two to five B. pertussis antigens, natural infection induces immune responses against a 

much wide range of antigens, some of which may contribute to the induction of long-

lasting protective immunity. In addition, since B. pertussis is a strictly respiratory 

pathogen, it is likely that mucosal or local immunity in the respiratory tract plays an 

important role in the long-term protective immunity. None of the current pertussis vaccines 

target the mucosal immune compartment. These observations led to hypothesize that a 

pertussis vaccine delivered by the nasal route and mimicking as closely as possible natural 

infection may perhaps induce long-lasting protective immunity. Furthermore, the use of an 

intranasal, needle-free vaccine could have an important impact on the administration of 

vaccination in very young children. 

 To this end, the group of Dr. C. Locht developed the construction of a live candidate 

vaccine named BPZE1, a genetically engineered B. pertussis strain obtained by removing 

or altering genes involved in the production of three major bacterial toxins, pertussis toxin 

(PT), dermonecrotic toxin (DNT) and tracheal cytotoxin (TCT). A murine infection model 

was used to compare protective efficacy of BPZE1 to that of Pa over a period of 1 year. 

During this entire period, BPZE1 conferred high levels of protection against B. pertussis 

infection, both in mice vaccinated during adulthood or during infancy. At early time-points 

(3 months after vaccination), protective efficacy was similar to that induced by Pa. 

However later on, in particular 9 and 12 months after vaccination, BPZE1-induced 

protection was still strong, whereas Pa-induced immunity waned (Fenou et al., 2010). 

Furthermore, other studies showed that the longevity of the BPZE1-induced protection was 

similar to that induced by infection with virulent B. pertussis strain (Skerry & Mahon, 

2011). 

Taken as foundation the studies in mice showing that the live attenuated B. pertussis 

strain BPZE1 is a promising candidate vaccine, the evaluation of this strain in a human 

experimental setting is mandatory. 

We used a well-established model of MDDC challenged with B. pertussis to analyze 

several aspects of BPZE1-driven immune responses in humans. We show that BPZE1, 
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despite being strongly attenuated, maintains the capacity to promote DC maturation and, 

similar to BPSM, is able to protect cells from apoptosis. This is a crucial step in DC 

activation, since the enhancement of the circulating DC longevity ensures a prolonged life 

span necessary to perform their functions.  

A unique feature of mature DC is the ability to migrate toward the secondary lymph 

nodes, where naive T helper cells are encountered and activated. In this study, we add an 

important piece of information on the influence of B. pertussis on the modulation of the 

host’s immune response and on its immune subversion capacity. Attenuated BPZE1 lacks 

the inhibitory effect that virulent B. pertussis exerts on the lymphatic migration of DC.  

PT has been known to prevent chemokine receptor signalling through the enzymatic 

activity of the A subunit. More recent studies revealed a novel mechanism by which PT 

may affect migration of T lymphocytes via the B subunit, which is mediated by interaction 

with the TCR (Schneider et al., 2009). This process leads to desensitization of CXCR4; it 

occurs within a few minutes and it is reversible.  

Our data show that DC challenged with B. pertussis mutants producing genetically 

detoxified PT (BPSA175) or lacking PT (BPRA) migrated in response to a CCL21 

gradient. These results confirm that a crucial role in inhibiting cell migration is played by 

the enzymatically active A subunit, whereas the active B subunit, present in BPSA175, has 

a marginal role, if any, at least in DC lymphatic migration. B. pertussis mutants deficient 

for DNT or TCT inhibited DC migration to the same extent as BPSM, suggesting that 

these two toxins do not influence migration in our settings. These results imply that PT, in 

addition to its role in bacterial colonization and inhibition of an early inflammatory 

response, mediates an immune evasion mechanism that strongly interferes with DC 

functions. More importantly, these findings highlight a crucial difference between BPZE1 

and BPSM and suggest that one of the main advantages that the vaccine strain may have in 

vivo is the capacity to rapidly and efficiently activate the acquired immune response by 

allowing the migration of DC to lymph nodes.  

In our laboratory previous studies have shown that B. pertussis promotes in DC the 

production of Th17-driving IL-23 and IL-1 and regulatory IL-10, whereas IL-12p70 is 

barely detectable (Spensieri et al., 2006; Fedele et al., 2010). BPZE1 and BPSM elicited a 

similar profile, with the exception of detectable levels of IL-12p70 produced by roughly 

one third of DC donors. This discrepancy could be ascribed to the different genetic 

background of the B. pertussis strains used in this study compared with that of the previous 

studies. BPSM and BPZE1 are both derivatives of the Tohama I strain, whereas in our 
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previous studies we used the BP18323 strain, which differs from typical B. pertussis 

strains in many aspects (Gerlach  et al., 2001).  

Attenuation of the bacterium did not preclude the ability of BPZE1-challenged DC to 

perform Ag-presenting activity and induce the expansion of polarized Th1 and Th17 

effectors, in keeping with the results of our previous studies. Remarkably, IFN-γ was 

produced by T cells at high levels, independently of the amounts of IL-12p70 produced by 

polarizing MDDC, confirming our previous finding that B. pertussis-driven Th1 immune 

responses may occur in the absence of IL-12p70. 

Several studies have focused on the role of PT in modulating the host immune 

response, and evidence is accumulating on the role of PT in T cell polarization. Recently, 

in our laboratory it was shown that MDDC stimulated with genetically detoxified PT 

induced a mixed Th1/Th17 response (Nasso et al., 2009), and in another study PT-

deficient B. pertussis was described as a poor inducer of both IFN- and IL-17 in mice 

(Andreasen et al., 2009). The findings presented here demonstrate that detoxification of PT 

in BPZE1 results in two interesting properties: it abrogates toxicity and the inhibitory 

effects on chemotaxis while the immunomodulatory properties are retained.  

Notably, the induction of both IFN- and IL-17 by B. pertussis in T cells has been 

shown in mice (Feunou et al., 2010; Andreasen et al., 2009; Higgins et al., 2006) and 

humans (Fedele et al., 2010), and these cytokines appear necessary to achieve protection in 

mice vaccinated with Pw vaccines (Higgins et al., 2006). In our study, intracellular 

staining of polarized T cells highlights the presence of a double positive Th1/Th17 

population. Of note, Th1/Th17 cells have been recently shown to be induced by PT toxin 

in mice (Andreasen et al., 2009). Although the host defence against extracellular bacteria 

is widely considered pertaining to the Th17 arm, some evidence indicates that efficient 

protection requires synergy between the Th1 and Th17 lineages (Lin et al., 2009). Whether 

these double-positive cells represent a subset of cells in a transient stage of Th 

development or a new population derived from a distinct but unknown differentiation 

program remains unclear. However, the latter hypothesis is strengthened by our 

observation that Th1/Th17 cells are expanded by B. pertussis-challenged MDDC 

independently of the use in polarization experiments of naive or already committed T cells 

and might suggest that, also in this model, these cells are involved in protection.  

The fact that both BPZE1-primed and BPSM-primed MDDC produced high levels of 

IL-10 argues for the induction of Ts. Our experiments show that BPZE1-treated or BPSM-

treated MDDC induce in vitro a population of T lymphocytes that are functionally able to 
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suppress the proliferation of syngeneic T cells, and the suppressor activity was mediated 

mainly by cell contact rather than by soluble factors. These cells were not classical 

CD4
+
CD25

+
Foxp3

+
 Tregs. Other phenotypes for Ts subsets have been described, such as 

IL-10-producing CD4+Foxp3
-
 type1 Tregs or CD8

+
 Ts (Sakaguchi et al., 2009).  

The findings presented in this study indicate that the interactions between B. pertussis 

and the human host have evolved a mechanism of suppression to limit T cell responses. 

Whether this represents an immune evasion mechanism for the bacterium or has a role in 

dampening exacerbated immune responses dangerous for the host still requires further 

investigation. However, it may be relevant in view of recent findings showing that the 

administration of BPZE1 strongly reduces the cytokine storm induced by influenza A virus 

infection in mice (Li et al., 2010).  

Since BPZE1 and BPSM showed the same capacity to promote Ts induction, 

bacterial products involved in this process are necessarily shared by the two strains. 

Studies are needed to unveil the role of other components, including filamentous 

hemagglutinin, adenylate cyclase toxin, and lipooligosaccharide, all described as inducers 

of DC with a tolerogenic phenotype (Spensieri et al., 2006; Fedele et al., 2007, Fedele et 

al. 2008, McGuirk et al., 2002, Ross et al., 2004).  

Our data demonstrate that BPZE1 behaves similarly to BPSM in the modulation of 

DC functions. This observation is not surprising, as the adenylate cyclase toxin and the 

lipooligosacharide, that, together with PT, were demonstrated to have a direct effect on DC 

functions (De Gouw et al., 2011), are present in both strains, although PT present on 

BPZE1 does not express its toxicity. The other genetic differences between BPZE1 and 

BPSM concern the DNT and TCT, but our data show that these two toxins do not appear 

to have a relevant effect on functions that were analyzed.  

In conclusion, our studies enable us to predict that in humans, the BPZE1 strain is a 

good candidate vaccine; indeed it strongly activated the maturation of DC with full-blown 

activity, including the acquisition of a mature phenotype, resistance to apoptosis, and 

capacity to prime naive Th cells. Attenuation provides to BPZE1-challenged DC the 

capacity to survive death signals and migrate from the site of infection to the lymph nodes. 

This allows priming of Th cells and mounting of the adaptive immune response. BPZE1-

committed DC have the ability to orchestrate a broad spectrum of protective, albeit 

proinflammatory, Th1/Th17 responses and Ts responses, which likely balance each other 

to restore local homeostasis. 
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