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Preface 
 
 

The subject of Finite Element Method (FEM) has been developing for decades, and 
has reached now a so widespread diffusion that lots of journals and books focus on it and 
introduce each day new arguments of discussion for the research community. 

The high performance calculators that have been growing up since the eighties and 
are nowadays available at reasonable prices, significantly accelerated this spreading 
process of FEM, both for research investigation and for industries, being responsible for 
the growth of more and more different fields of application for problem discretization 
methods in general. 

It is a matter of fact that continuous problems, which model real phenomena, could be 
solved with rigorous mathematics only in few cases (and in simplified conditions), which 
practically means intractability of realistic types of continuum problems. The researcher 
is thus allowed to attempt to solve discretized problems that should hopefully recast the 
real situation in the continuum limit. In this framework FEM found its origin and started 
to develop and involve several fields of application, the most important being solid and 
fluid mechanics. 

In the last decade turbomachinery design and development has started to represent a 
fertile field for FEM, since one of the key features to be issued for improving their 
performance is a better knowledge of their fluid dynamics, with particular interest in the 
secondary flows and loss phenomena. In this viewpoint, a large extent of experimental 
work must be performed, including in this definition all the techniques that permit to 
obtain trustable information on the real physics of these complex flows, due to the 
difficulties that could arise in executing measurements on unhandy and small locations. 
This discussion should be enriched with some economics considerations that lead to the 
conclusion that the number of prototypes must be reduced, so as the market time of new 
devices, but on this aspect another Ph D Thesis would be needed. 

FEM and CFD represent thus an inviting “strategy” for turbomachinery industries, 
due to the relatively low costs with respect to measurement campaigns and prototyping, 
and the relatively short time to obtain results, limited just by the PC clusters performance, 
that are growing faster and faster. The conditions under which the last statement is correct 
are mainly two:  

 
1. It is possible to consider CFD as an experimental investigation? 
2. FEM is the best mathematical background for CFD? 

 
Concerning the latter question, that involves a comparison with Finite Volumes Methods 
(FVM), the reader could readily understand the writer’s opinion, so only few concepts 
will be reported, due to a large number of publications on the argument: the intrinsic 
ability of FEM to fulfill the prescribed boundary conditions of the problem, especially in 
the outflow regions, the global satisfaction of well established conservation laws, the 
higher precision due to a rigorous mathematical approach, are just some of the advantages 



VI  

of FEM with respect to the Finite Volume approach, still widely used in commercial CFD 
codes. 
This Ph D thesis focuses on the first question, namely it addresses the theme of CFD 
performance and reliability in turbomachinery flow prediction, splitting the 
argumentations in two main themes: turbulence modeling and numerical aspects of FEM. 

Concerning turbulence modeling, it is possible to find several closure strategies 
within the RANS approach, that in this work is considered as the state of the art of this 
science branch. Amongst the several new formulations proposed in the recent years, some 
interesting linear and non-linear models will be considered, in order to have the big 
picture of the problem of modeling complex flows, and to understand how they fit in the 
more general framework of computational mechanics. 

On a numerical point of view, the need of dealing with advanced turbulence 
modeling, which represents a necessary step towards more meaningful results, magnifies 
the main differences between solid mechanics and fluid mechanics computation, due to 
the lack of optimality in the Galerkin method for the typical differential operators 
introduced by the latter. 

The previous argumentations could be seen as a simple explanation of the need for 
stabilized formulations to solve turbomachinery flows, which opened the way to 
something that could be defined as a new discipline in science, and more in particular in 
computer science: stabilized finite element methods. 

In the recent years, stabilization techniques permitted to obtain more and more 
accurate results on several types of flow, and reached high level of reliability, thus 
justifying the idea of their influence in the process of modeling multiscale phenomena, 
such as turbulence. 

This work, which represents the “concluding act” of a Ph D experience, presents new 
finite element formulations for multiscale problems, developed at the Department of 
Mechanics and Aeronautics of University “La Sapienza”, and addresses the study of the 
link between stabilization and advanced turbulence modeling. 

 
 

Andrea Santoriello 
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List of symbols and abbreviations 
 
 
The main rules followed to choose styles of characters and notations are briefly 
described: 

• Matrices and Vectors are bold and italic, i.e. A, B, a, b, …. both of them could be 
written in upper or lower case, depending on the context; 

• Italic style is used to indicate number of components, dimension of a problem, 
and more in general concepts to be highlighted or useful for the rest of the text; 

• Parentheses indicate a function; 
• Indicial notation will be generally used for derivatives and components, i.e. ui is 

the i-th component of the u vector, u,i is the i-th derivative of the u vector; 
• Quotations from other publications will be presented in the following way: 

“quotation”; 
• When possible, acronyms of mathematical tools, turbulence closures and test 

cases will be used, as well established in literature; 
 
In the following, a (hopefully) helpful list of the most important symbols and 
abbreviations used in the text is presented. 
 
Ω, Ωe   Problem Domain, Element Domain 
Γ, Γe  Boundary, Element Boundary 
Γg  Dirichlet boundary 
Γh  Neumann boundary 
Ω   Closed Domain 
w  weight functions 
u  unknowns of the problem 
h  element characteristic length 

hS   set of trial solutions 
Wh  set of weight functions 
Hnh  Sobolev space of order n on the support of characteristic length h  
Kji  generic element of the stiffness matrix 
Fj  generic element of right-hand side 
x, h, z  coordinates in the logic element 
Ni  shape functions 
J  Jacobian matrix 
x, r  position vectors 
D
Dt

  material derivative 

r  fluid density 
ν  kinematic viscosity 
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µ  dynamic viscosity 
∇ ⋅   divergence operator, i.e. j ju ,∇ ⋅ =u  

∇   gradient operator, i.e. T
x y zu, u, u,⎡ ⎤∇ = ⎣ ⎦u  

p  static-fluid pressure 
dij  Kronecker delta operator 

eij  rate of strain tensor, i.e. ( )ij i , j j ,i
1e u u
2

= +  

ωij  vorticity tensor, i.e. ( )ij i , j j ,i
1 u u
2

ω = −  

Re  Reynolds number 
ReT  Turbulence Reynolds number 
o(..)  “order of” operator 
∝  symbol of proportionality 
φ   mean (in Reynolds decomposition sense) 
u’,v’,w’   velocity components fluctuations (Reynolds decomposition sense) 
lk  Kolmogorov scale 
RANS  Reynolds Averaged Navier-Stokes 
R  Reynolds stress tensor (i.e. ij i jR u uρ ′ ′= − ) 

ε  viscous rate of turbulent kinetic energy dissipation 
k  turbulent kinetic energy 
Pk  turbulent kinetic energy production term 
dk  turbulent kinetic energy distribution term 
νt  turbulent eddy viscosity 
Sij  mean strain rate tensor 
Wij  mean rotation rate tensor 
lm  mixing length 
LS74  Launder & Sharma linear k-ε turbulence closure 
ε   modified dissipation rate 
τ  turbulence time scale 
CLS96  Craft, Launder & Suga non-linear k-ε turbulence closure 

( ,t )U x   filtered velocity field 
( ,t )u x    subgrid scale component 

Rres  residual norm 
Rsol  error norm 

  absolute value 

2   norm two (also used as Euclidean norm) 
PSPG  Pressure Stabilizing Petrov-Galerkin 
SUPG  Streamline Upwind Petrov-Galerkin 
SPG  Spotted Petrov-Galerkin 



IX  

Pe  element Peclet number 
sgn()  “sign of” function, i.e. sgn(u)=1 for u>0, sgn(u)=-1 for u<0 
s  unit vector in direction of the streamlines 
r  unit vector in direction of the solution gradient 
π  vector of weight function modifications 
r  element reaction number 
DRD  Diffusion for Reaction Dominated problems 
DRDJ  Diffusion for Reaction Dominated problems with Jump factor 
VMS  Variational MultiScale 
V-SGS    Variable SubGrid Scale formulation 
rs  r-switch coefficient 

eg ( x, y )  element Green’s function 
( x, y )δ  Dirac’s delta operator 

TI  Turbulence intensity 
y+  Dimensionless wall distance 
δ*  Displacement thickness 
θ*  Momentum thickness 
H  Shape factor 
Cp  Static Pressure Coefficient 
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Chapter 1 
 

 

THE FINITE ELEMENT METHOD FOR 

COMPUTATIONAL FLUID DYNAMICS 
 

 

1.1 Introduction 
 

As remarkably underlined in Taylor and Zienkiewicz (2000), the Finite Element 
Method could be seen as “a general discretization procedure of continuum problems 
posed by mathematically defined statements”, based on a decomposition of the original 
system into individual components, or ‘elements’, whose behavior could be readily 
understood, and rebuilding the original system from such components. 

This procedure involves two stages, respectively the system discretization in 
elements, whose behavior could be easier understood by means of a particular class of 
parameters, and the description of the whole system as an assembly of the elements. 

The use of such a strategy is shared by most of the classical mathematical 
approximation procedures, thus “softening” the borderlines between Finite Element 
method and other formulations. 

This chapter will first introduce the reader to some basic mathematical aspects of the 
Finite Element method and to the notation used in the rest of the work, stressing on the 
features proper of computational fluid dynamics (CFD). The analysis is made quick and 
synthetic, for further details the reader could refer to Chung (1978), Gresho and Sani 
(1998), Hughes (2000), Taylor and Zienkiewicz (2000) and Tezduyar (2001). 

After that, aspects related to the weighted residual method and the Galerkin 
formulation will be discussed, remarking when needed all the necessary hypotheses, 
finalized to implement the formulation in a CFD finite element tool, such as the code 
XENIOS. 

 Finally, the element point of view will be presented, addressing the expression and 
properties of the shape functions and introducing some considerations about the 
fundamental issue of convergence. 
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1.2 Problem statement and weighted residual method  
 

Many continuum problems that arise in engineering could be modeled by means of a 
system of partial differential equations with appropriate boundary and initial conditions 
on the unknowns, which could be thought as a scalar or more in general as a vector. In 
this work only second order differential operators are considered, with the structure 
typically encountered in fluid flow modeling equations. 

The problem statement could be described as follows: find a function u which 
satisfies this matrix equation on a closed domain Ω : 
 

=Au f      (1.1) 
 

where A is a n × n matrix, u is a vector of n variables (the unknowns) and f is the source 
vector of n components. It is worth noting that the set of differential equations could be 
non-linear, as often happens in real physics and that the non-diagonal terms of the A 
matrix represent coupling between the variables. The unknown u must also satisfy a 
system of boundary conditions on the domain boundary G, described as follows: 
 

g

n n h
( )

Γ
Γ

= →⎧ ⎫⎪ ⎪= ⎨ ⎬
= →⎪ ⎪⎩ ⎭

u g
B u

u, h
    (1.2) 

 
where Γ  has been divided in two parts, namely Γg and Γh, as follows: 
 

g hΓ Γ Γ∪ =       (1.3a) 
 

g hΓ Γ∩ = ∅       (1.3b) 
 
with Dirichlet boundary conditions imposed on Γg and Neumann boundary conditions 
imposed on Γh. 

In an equivalent way we could write (1.1) and (1.2) in vector form as: 
 

1 1

2 2

n n

A ( ) f
A ( ) f

( )
..........
A ( ) f

−⎡ ⎤
⎢ ⎥−⎢ ⎥− = =
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

u
u

A u f 0

u

 in W   (1.4a) 
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1

2

n

B ( )
B ( )

( )
..........
B ( )

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u
u

B u

u

 on G     (1.4b) 

 
where Ai and Bi represent respectively the i-th row of the matrix A and the i-th component 
of the boundary conditions vector B. Eqs. (1.1) and (1.2) together, or equivalently (1.4), 
express what is called the strong form of the original differential problem. 

If we consider the Finite Element method as an integral approach to the problem, two 
ways could be followed to obtain the formulation, the first one being the weighted 
residual method and the second the determination of variational functionals. In this work 
only the first one will be considered, because variational functionals could be derived 
only for some simple types of problem, fluid dynamics of viscous flows being not 
included (Corsini (1996)). 

The weighted residual method could be seen as a general approach to differential 
problems, since the integral equation of the problem is obtained towards the inner product 
of the differential equations for a basis of weight functions, integrated in all the domain. 

Let now consider the form (1.4a) of the problem and let multiply it by a set of 
arbitrary functions w, that we will call weight functions. Since the set of differential 
equations must be satisfied at each point of the domain, it is simple to conclude that: 
 

T T( )d d 0
Ω Ω

Ω Ω− =∫ ∫w A u w f    (1.5) 

 
where w could be written in vector form as: 
 

1

2

n

w
w
.....
w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w       (1.6) 

 
whose components are the weights for each different variable of the problem. 

The integral statement we are dealing with is more powerful, because (1.5) must be 
fulfilled for all w, being this the only condition that allows (1.1) to be satisfied at any 
point of the domain. 

Before going further in details on this last statement, let note that the existence of 
(1.5) involves a background of hypotheses, implicitly related to the fact that each of the 
terms must not be infinite, that implies the necessity of having certain restrictions on the 
functions w and u. Considering the latter, the order of derivatives must be considered in 
order to make a decision about these restrictions: if n order derivatives are involved, then 
the only way to obtain integrable terms is the continuity of n-1 order derivatives, as well 
stated in Taylor and Zienkiewicz (2000). 
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This situation could be manipulated via the continuity of the problem, which permits 
to apply an integration by parts on (1.5), that reduces the order of derivatives on u, giving 
rise to derivatives of w, with a subsequent beneficial balance between the restrictions on u 
and w. In order to have simplified analytical developments, let consider the linearization 
of the original differential operator A(u). The integration by parts leads to the following 
formulation of the original second order differential problem: 
 

T T T( ) ( )d d ( )d 0
Ω Ω Γ

Ω Ω Γ− + =∫ ∫ ∫E w F u w f w G u    (1.7) 

 
where E involves derivatives of the weight functions, while F involves lower order 
derivatives of u with respect to A. Moreover, G(u) contains derivatives normal to the 
boundary of the unknown. The nature of the last integral in (1.7) must be clarified, 
demonstrating another benefit introduced by integration by parts. 

By now, retaining in mind the restrictions on the terms in the integrals, no 
approximations have been done, and in fact we could state an equivalence between strong 
form of the problem and formulation (1.7), subjected to some condition on its last integral 
that permits to fulfil the Neumann boundary conditions. If we impose that the operator 

( )G u  is equal to − nh , then we obtain what is called the weak form of the original 
problem, that automatically satisfies its Neumann boundary conditions. 

In order to demonstrate this equivalence we have to ensure that (1.5) and (1.7) are 
fulfilled for all w, which should thus take their origin from a basis of infinite components. 

Let now introduce a function u  as the trial solution for the problem, chosen in such a 
way to satisfy the Dirichlet boundary conditions. Let also call ε the residual or error, 
which reads as: 

 
( ) − =A u f ε      (1.8) 

 
In view of this notation, (1.5) could be re-written in a more meaningful way (the same 
procedure could be followed for (1.7)): 

 
( ) 0w,ε =      (1.9) 

 
Eq. (1.9) corresponds to an inner product and is equivalent to ask for the orthogonality 
between the error and the space of the weight functions, but since the latter is infinite-
dimensional, the only way to satisfy (1.9) is to have null residual at each point of the 
domain, which means u u= , and thus demonstrates the equivalence between strong and 
weak formulation. 

Actually, when dealing with discretized solution methods, it is not possible to have 
infinite functions at our disposal, both for weights and trial solution, which are both 
approximated by finite-dimensional sets of functions. 

Considering the trial solution, it could be described in the form of a finite series: 
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totn
h

i
i 1

N
=

=∑ iu D      (1.10a) 

 

Di=

i1

i2

in

D
D
......
D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (1.10b) 

 
where the superscript h represents the characteristic length of the grid (or mesh) that 
discretizes the domain with ntot nodes, Dik is the value assumed on the i-th node by the k-
th unknown vector component, and Ni are linearly independent functions, called shape 
functions, which take unit value on the corresponding node. 

There are some constraints in the choice of the shape functions, because the trial 
solution must fulfil the boundary conditions, which are given data of the problem, and 
must guarantee the existence of the integrals to be computed, as already requested for 
(1.5). 

The first condition is respected if the choice of hu  leads to automatic satisfaction of 
the Dirichlet boundary conditions g. The latter could be completely understood 
introducing the notion of Sobolev spaces (see Chung (1978) for further details), but it 
could be intuitively depicted stating that if n is the maximum order of derivatives 
appearing in the integrals, then the square of the n-1 order derivatives must be integrable. 

All these considerations could be summarized with this synthetic definition of the set 
hS  of the trial functions: 

 

{ }h h h 1h h
g, on Γ= ∈ =S u /  u H u g    (1.11) 

 
where H1h is the first order Sobolev space defined on the support of the grid with 
characteristic length h. 

Turning the attention to the weight functions, they are chosen in such a way to fulfil 
same Sobolev conditions for the integration, and the homogeneous counterpart of the 
Dirichlet boundary conditions, which permits to discard all integrals on Γg form (1.7). 
Therefore the weight functions must belong to a finite dimensional set Wh, described as 
follows: 
 

{ }h h h 1h h
g/ , on Γ= ∈ =W w w H w 0    (1.12) 

 
Now it is possible to write the finite dimensional approximation of the weak formulation 
(1.7), which reads as follows: 
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h

h T h h T h T h( ) ( )d ( ) d ( ) ( )d 0
Ω Ω Γ

Ω Ω Γ− + =∫ ∫ ∫E w F u w f w G u  (1.13) 

 
where h( )G u  is forced to be equal to − nh . 

In view of (1.13), the orthogonality condition on the residual (1.9) could be satisfied 
only in an average sense, since the finite element trial solution hu  could approach the 
differential problem solution u only on the ntot nodes of the grid. The condition (1.13) 
represents a weighted integral of the solution residual, and must be recast in a system of 
equations in the Di unknowns, which are the values to be determined on the grid nodes. 

In order to have a complete understanding of the weak form of the problem, some 
further considerations must be done about the boundary conditions. It should be noted 
that trial solutions are required to satisfy explicitly the Dirichlet boundary conditions, 
which are thus called essential boundary conditions, while Neumann boundary conditions 
are not imposed directly on the trial functions, but are implied by the satisfaction of the 
integral equation (1.13) with h( )G u  forced to be equal to − nh , being thus called natural 
boundary conditions (Hughes (2000)), because they naturally appear in the residual 
formulation. 

Starting from (1.7), or from (1.13) in approximated way, it is possible to demonstrate 
that the original differential equations and the natural boundary conditions are the Euler-
Lagrange equations of the weak form of the problem. 
 
 
1.3 The Galerkin weighted residual formulation 
 

In this Section the Galerkin formulation of the weighted residual method is presented, 
introducing the reader to the treatment of the Finite Element Method in the XENIOS 
code. 

There are various ways to choose the weight functions, leading to different Finite 
Element formulations. The most widespread one is the Galerkin method, that is also used 
in the XENIOS code. It is characterized by the choice of using weight functions with the 
same basis of the trial functions, namely: 

 
totn

h
j

j 1
N

=
=∑ jw C      (1.14a) 

 

j j

1
1

c c
..
1

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

j nC I      (1.14b) 
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where Cj is a vector of n components all equal to the value cj assumed by the weight in 
the j-th node. 

To be more precise, the conditions expressed by (1.11) and (1.12) for the Dirichlet 
boundary conditions enforce hW  to be a subspace of hS , since we must consider that 
not all ntot nodes  have unknown values of the variables. Thus, if we consider the last ng 
nodes to be the ones on the Dirichlet boundary Γg we could write: 
 

tot g tot

tot g

n n n
h

i l
i 1 l n n 1

N N
−

= = − +
= +∑ ∑i lu D g     (1.15) 

 
tot gn n

h
j

j 1
N

−

=
= ∑ jw C      (1.16) 

 
Let now introduce the expressions (1.15) and (1.16) in the weighted residual 

formulation (1.13), the integral formulation could be re-written as: 
 

tot g tot g tot g

tot g tot gtot

h
tot g

n n n n n n
T T

j i j
j 1 i 1 j 1

n n n nn
T T

j l j
j 1 l n n 1 j 1

( N ) ( N )d ( N ) d

( N ) ( N )d ( N ) d

Ω Ω

Ω Γ

Ω Ω

Ω Γ

− − −

= = =

− −

= = − + =

= +

− +

∑ ∑ ∑∫ ∫

∑ ∑ ∑∫ ∫

j i j

j l j n

E C F D C f

E C F g C h

(1.17) 

 
Since (1.17) must be valid for all the hw , then it must not depend on the choice of Cj. In 
this way we could write an equation for each j, thus obtaining ntot-ng equations, sufficient 
in number to determine the unknown values of the variable u. Each of these equations 
reads as: 
 

tot g

tot

h
tot g

n n
T T

j i j
i 1

n
T T

j l j
l n n 1

( N ) ( N )d ( N ) d

( N ) ( N )d ( N ) d

Ω Ω

Ω Γ

Ω Ω

Ω Γ

−

=

= − +

= +

− +

∑∫ ∫

∑∫ ∫

n i n

n l n n

E I F D I f

E I F g I h
  (1.18) 

 
Since we made the hypothesis of a linear second order differential operator, or, which is 
the same, considering the linearized form of the original differential operator, Eq. (1.18) 
could be re-written as: 
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tot g

tot

h
tot g

n n
T T

j i j
i 1

n
T T

j l j
l n n 1

( N ) F( N )d ( N ) d

( N ) ( N )d ( N ) d

Ω Ω

Ω Γ

Ω Ω

Ω Γ

−

=

= − +

⎡ ⎤ = +⎣ ⎦

− +

∑ ∫ ∫

∑∫ ∫

n i n

n l n n

E I D I f

E I F g I h
  (1.19) 

 
If we now put  

T
j i( N ) F( N )d

Ω
Ω =∫ n jiE I K     (1.20a) 

 
and 

 
tot

tot g

h

n
T T

j j l
l n n 1

T
j j

( N ) d ( N ) ( N )d

( N ) d F

Ω Ω

Γ

Ω Ω

Γ

= − +
− +

+ =

∑∫ ∫

∫

n n l

n n

I f E I F g

I h

  (1.20b) 

 
it is possible to write in a synthetic way the resulting linear system of equations in the Di 
unknowns: 
 

     
tot gn n

j tot g
i 1

F j 1,....n n
−

=
= = −∑ ji iK D      (1.21) 

 
This is the final expression of the Galerkin weighted residual formulation. Finally, it is 
worth noting that the procedure followed to obtain (1.21) is valid both if u is a scalar 
variable, in which case Kji is a coefficient and Di is the scalar value of the unknown on the 
i-th node, and if u is a vector of n components, in which case each Kji is a vector of n 
components, and each Di is a vector of n components, which represents the solution for 
the vector u on the i-th node. 
 
 
1.4 The element point of view 
 

In the preceding Sections a global point of view has been adopted, because of its 
usefulness in establishing the mathematical properties of the Finite Element method. 
Nevertheless, in order to obtain a Finite Element method from the previous analytical 
developments, it is necessary to start from a local approach. 

On an engineering point of view, the formulation must be capable of reproducing the 
local behavior of each element, that could be readily understood without many 
complications, and could be interpreted as a component of the global continuous system, 
whose behavior could be rebuilt simply as an assembly of its components.  
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In addition to these considerations, it must be noted that the major difficulty arising in 
a global approach would be the satisfaction of global boundary conditions. This aspect 
could be readily understood with a glance at (1.15), in which Ni and Nl functions must be 
chosen in order to satisfy the Dirichlet conditions g on the nodes on Γg, and this must be 
obtained notwithstanding the geometry of the domain. 

Another question that must be addressed is the ease in the implementation into a 
computer code. To this end, let consider the generic contribution Kji to the matrix of the 
problem (often called stiffness matrix), as defined in (1.20a), and for the sake of 
simplicity let consider the situation of u representing a scalar variable. If i j≠ , non-
diagonal coefficients are introduced in the matrix and the solution procedure is more 
cumbersome. The only way to overcome these difficulties is to have Ni and Nj (and also 
their derivatives) defined just in the neighborhood of the nodes to which they refer. In this 
way it is possible to have a banded matrix, which is a desired feature for all the numerical 
solution procedures adopted in computer codes. 

All these considerations lead to the conclusion that a local approach must be adopted, 
based on an element point of view. To this end, let consider the decomposition of the 
original domain in a certain number nel of non-overlapping elements by means of a 
certain grid (or mesh), as shown in Fig. 1.1. 

 

Ωe Γe

nodes

Γ

Ω

 
Fig. 1.1. Domain discretization. 

 
The procedure to be followed must be equivalent to the global approach and should 

be the more similar as possible for each element of the grid. In order to design a local 
contribution of each element domain Ωe to the global problem in Ω, a local system of 
coordinates is adopted, where all the terms are computed easily and with a standard 
procedure, then all the information are collected and assembled in the global matrix of the 
problem, by means of the knowledge of connections between different elements and of 
the position of the nodes. 

The Finite Element formulation of the problems will thus read as: 
 

tot gn nnel nel
e

j tot g
e 1 i 1 e 1

F j 1,....n n
−

= = =

⎡ ⎤
⎢ ⎥ = = −
⎢ ⎥⎣ ⎦

∑ ∑ ∑e
ji iK D    (1.22) 

 
where on left-hand side the contribution of a certain element e is non-zero only if it is in 
the “neighborhood” of i and j nodes, and on right-hand side the contribution of the 
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element e is non-zero only if it is in the “neighborhood” of j node (for examples of the 
assembling procedure the reader could consult Hughes (2000), where some one-
dimensional problems are addressed).  
A particular attention must be given to the boundary integrals, because now the 
integration by parts must be applied element by element, so each element e contributes 
with boundary integrals on  Ge. More in particular, each element has some sides (or 
surfaces in three dimensions) in common with other elements, and if it lays on the global 
domain boundary, it has one or more sides (or surfaces) on G. For the first type of sides 
there are two integrals, which represent the contributions of two facing elements, and give 
rise to what is called a jump term (Hughes et al. (1998), Tezduyar and Osawa (2000)). 
Usually this contributions are discarded from the formulation, even if they should be 
considered when higher order shape functions are employed. Concerning the second type 
of boundary integrals they contribute to right-hand side when element e has a boundary 
on Gh and it is in the “neighborhood” of j node. 
 
 
1.5 Finite elements and shape functions 
 
1.5.1  Convergence 
 

The final scope of the Finite Element method is obviously the convergence to the true 
solution of the governing differential problem. The discussion on mathematical properties 
of Finite Elements, pursued in the preceding Sections, leads to two fundamental concepts: 
 

a. The global representation of a variable is obtained towards the assembly of 
integrals over the local domains Ωe of non-overlapping finite elements; 

b. The Galerkin finite element formulation is obtained using shape functions that act 
also as weights in the Galerkin integral (Chung (1978)). 

 
This simplified description permits to understand that the two crucial issues of a 

Finite Element method are the elements and the shape functions. To be more precise, the 
finite element interpolation is characterized by the shape of the element and the type of 
shape functions, and both of them must meet certain criteria such that convergence could 
be reached. 

The concept of convergence that could be addressed is not “how good the 
approximated solution is”, because this would imply the knowledge of the exact solution 
of the problem. The real question is “how the approximated solution could be improved”, 
and the answer should be “increasing the number of nodes (and elements)” or 
equivalently “reducing the element characteristic length  h”. This criterion turns to a 
sufficient condition of convergence when the following three constraints are fulfilled by 
the shape functions: 

 
1. they must be continuous with their first order derivatives into the element; 
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2. they must be continuous along the element boundary; 
3. they must be complete. 
 

The first two requirements are imposed for the existence of the integrals, because for 
second order differential operators integration by parts permits to have at the maximum 
first order derivatives of the shape functions in the integrals over the domains, while the 
terms into boundary integrals involve the Neumann boundary conditions and the shape 
functions directly. The third requirement actually means that if the mesh is progressively 
refined, the elements are so little that the exact solution would be constant in each of 
them. Thus the shape functions must be capable of reconstructing a constant behavior of 
the solution when h 0→ . 

These conditions pose some restrictions in the choice of the analytical expression of 
the shape functions. In this respect some typical choices are polynomial expressions 
(typically linear or quadratic) or polynomial multiplied by exponential or trigonometric 
functions. It is obvious that a higher order of the shape function causes a better precision 
in the interpolation of the variation of the solution into each element, but it requires more 
nodes on the sides (or surfaces in three dimensions) and in the element interior. In this 
way the benefits obtained in terms of precision are paid with more complicated 
computations and difficulties in the implementation in computer codes. This problem is 
also influenced by the geometry of the elements and by the choice of the system of 
coordinates in which perform the calculation of the integrals. A compromise is thus 
needed, and usually it is given by polynomial shape functions, with linear ones being the 
most common choice. It is worth noting that the XENIOS code features linear and 
quadratic polynomial shape functions. 

 
1.5.2  Isoparametric finite elements 

 
 In general, the geometry of the elements which discretize the global domain is 

triangular or quadrilateral in two-dimensional problems and tetrahedrical or 
hexahedrical in three-dimensional problems. The nodes of the grid are usually on the 
corners and on the sides (and surfaces in three dimensions), depending on the order of the 
shape functions. It is useful now to state that in this work only quadrilateral elements in 
2D and hexahedrical in 3D will be considered. 

In order to design the expression of the shape functions, the fundamental point of  
geometrical mapping must be addressed. In particular, if the real domain has a complex 
geometry, then it could be hard to work with shape functions defined on the Cartesian 
coordinates. It is easier to make a coordinate transformation and define a non-dimensional 
system of coordinates (natural or normal coordinates) and write shape functions with 
respect to it. Moreover the transformation could be chosen in such a way to lead to the 
same logic domain for all the elements of the grid, in order to have a unique expression 
for the shape functions. 

Limiting for simplicity the attention to two-dimensional problems, the quadrilateral 
element imagine in the natural system of coordinates (x,h) is shown in Fig. 1.2.  
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(1,-1)(-1,-1)

(1,1)(-1,1)
3

1 2

ξ

η

4

 
Fig. 1.2. two-dimensional quadrilateral finite element in natural coordinates. 

 
The real geometry of the element, and the expression of the shape functions in it are 

obtained by means of the following coordinate transformation: 
 

x
f

y
ξ
η

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
     (1.23) 

 
More in detail, the function f, which is proper of the element under consideration, 

gives rise to a biunivocal correspondence between logic and real coordinates, which is 
schematically represented in Fig. 1.3. 

 

f
4

η

ξ

21

3

(-1,1) (1,1)

(-1,-1) (1,-1)x

y

(x3,y3)
(x4,y4)

(x2,y2)

(x1,y1)

 
Fig. 1.3. Corresponding real and natural quadrilateral element. 
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A better understanding of the coordinate transformation could be attained if it is 
expressed with respect to the coordinates of the nen nodes of the real finite element. In 
particular x and y coordinates of a certain point must be functions of the corresponding 
(x,h) couple, with coefficients related to the nen coordinates of the element nodes xi and 
yi: 

 
nen nen

i i i i
i 1 i 1

x( , ) ( , )x y( , ) ( , )yξ η φ ξ η ξ η φ ξ η
= =

= =∑ ∑    (1.24) 

 
Where φi are the interpolation functions, that permit to map in the real system of 

coordinates a point described by the couple (x,h) in the logic domain. If linear elements 
are considered, then φi expression is bilinear with respect to ξ and η, and reads like this: 

 
   i 0i 1i 2i 3i( , )φ ξ η α α ξ α η α ξη= + + +     (1.25) 

 
It is possible to obtain all the coefficients jiα  solving a linear system of equations 

that require information from four corner nodes, as well described in Chung (1978), 
where it is also possible to find details on the procedure to obtain high order polynomial 
interpolation functions and the extension to three-dimensional elements. 

Before presenting the analytical expression the interpolation functions for two- and 
three-dimensional finite elements used in the XENIOS code, it is now crucial to discuss 
about the shape functions and their link with the interpolation functions. In this respect, 
Zienkiewicz (1971) introduced the extremely advantageous concept of isoparametric 
elements. The idea is that the same parametric function which maps the geometry can be 
used as shape function for describing the variation of the solution into the element, thus 
obtaining: 

 
i i( , , ) N ( , , )φ ξ η ζ ξ η ζ=      (1.26) 

 
where the formulation has been considered for the more general three-dimensional 
context, being ζ the third logic coordinate. It is thus possible to write: 

 

       
nen

i i
i 1

x( , , ) N ( , , )xξ η ζ ξ η ζ
=

=∑     (1.27) 

       
nen

i i
i 1

u( , , ) N ( , , )uξ η ζ ξ η ζ
=

=∑     (1.28) 

 
where ui are the values assumed in the nodes by the unknown. 

In order to perform the integration of all the terms in natural coordinates, the problem 
of derivation of the shape functions must be addressed, because the original problem 
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features derivatives with respect to Cartesian coordinates. These could be easily 
expressed in terms of the natural derivatives, following these simple passages: 

 

i i i

i i i

i i i

i

i

i

N x y z N N
x x

N N Nx y z
y y

x y zN N N
z z

N
x

N
y

N
z

ξ ξ ξ ξ

η η η η

ζ ζ ζζ

∂⎧ ⎫ ⎡ ⎤∂ ∂ ∂ ⎧ ⎫ ⎧ ⎫∂ ∂
⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂∂ ∂ ∂
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂∂ ∂ ∂⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎣ ⎦⎩ ⎭

⇓

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪

∂⎪ ⎪ =⎨ ⎬∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪

∂⎩ ⎭

-1

J

J

i

i

i

N

N

N

ξ

η

ζ

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂⎪ ⎪
⎨ ⎬∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪

∂⎪ ⎪⎩ ⎭

  (1.29) 

 
where J is the jacobian matrix of the coordinate transformation. 

Following this procedure, it is possible to calculate all the integrals in the logic 
system of coordinates thus eliminating the difficulties arising with the original geometry. 
The generic term K of the formulation could be integrated by using the following identity: 

 
1 1 1

V 1 1 1

KdV K(det J )d d dξ η ζ
− − −

=∫ ∫ ∫ ∫    (1.30) 

 
Integrals are evaluated by means of a Gauss-Legendre quadrature approach, as 

simply explained in  Segerlind (1984). 
 

1.5.3 Shape functions 
 
In the following, the analytical expression of the shape functions for all the types of 

elements implemented in the XENIOS code are presented. It is worth noting that the node 
numbering to which they refer is local and is related to the global numbering of the nodes 
by means of an array of connections. 

The first element to be presented is the quadrilateral one with linear shape functions, 
called Q1 element, and characterized by four corner nodes, as shown in Fig. 1.4. 
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4

21

3

   
Fig. 1.4. two-dimensional element with four nodes (Q1 element). 

 
The shape functions for the four nodes of the Q1 element read as follows: 
 

        

( )( )

( )( )

( )( )

( )( )

1 1 1
4
1 1 1
4
1 1 1
4
1 1 1
4

ξ η

ξ η

ξ η

ξ η

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

     (1.31) 
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In two-dimensional problems it is also widely adopted the Q2 element, with quadratic 
shape functions and nine nodes, as shown in Fig. 1.5. 

 

8 9

32

6

4

7

1

5

 
Fig. 1.5. two-dimensional element with nine nodes (Q2 element). 

 
The shape functions for this element read as follows: 
 

   

( )( )

( )( )

( )( )

( )( )
( )( )

( )( )

( )( )

( )( )

( )( )

2

2

2

2

2 2

1 1 1
4
1 1 1
2
1 1 1
4
1 1 1
2

1 1 1
2
1 1 1
4
1 1 1
2
1 1 1
4
1 1

ξη ξ η

η ξ η

ξη ξ η

ξ ξ η

ξ ξ η

ξη ξ η

η ξ η

ξη ξ η

ξ η

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥− + −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎢ ⎥⎣ ⎦

    (1.32) 
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In three-dimensional problems, there are again Q1 and Q2 element available, with 
eight and twenty-seven nodes respectively. Concerning the first type, Fig. 1.6 sketches 
the geometry and the nodes. 

 
8 6

4

3 1

2

7 5

 
Fig. 1.6. three-dimensional element with eight nodes (Q1 element). 

 
The related shape functions read as follows: 
 

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

1 1 1 1
8
1 1 1 1
8
1 1 1 1
8
1 1 1 1
8
1 1 1 1
8
1 1 1 1
8
1 1 1 1
8
1 1 1 1
8

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤− − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − −⎢ ⎥
⎢ ⎥
⎢ ⎥− + −
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + −
⎢ ⎥
⎢ ⎥

− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥− + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎢ ⎥⎢ ⎥⎣ ⎦

   (1.33) 
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For the Q2 three-dimensional element, less used for its higher computational cost, the 
reader could consult Corsini (1996). 
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Chapter 2 
 

 

INTRODUCTION TO FLUID DYNAMICS OF 

INCOMPRESSIBLE FLOWS 

 

2.1 Introduction 
 

The study of the evolution in time and space of a variable such as velocity 
components of a fluid flow requires some fundamental preliminary choices. The first 
decision to be made concerns the system of coordinates in which the flow has to be 
described. In this respect two main approaches could be considered, namely the 
Lagrangian and the Eulerian one. The first one is “attached” to a fluid particle (Chung 
(1978)) and must follow it with rotations and translations of the coordinate axes, while 
the second one introduces a system of coordinates fixed in space. 

In general, Eulerian coordinates are preferred, because they better reproduce the 
scientist point of view, being based on an eye fixed at a point in space and observing 
particles of fluid passing, with the scope of obtaining a picture of the spatial distribution 
of the flow quantities (in general velocity components, pressure and turbulent variables). 

All the characteristic parameters of the fluid are functions of both space and time, 
because their evolution is related to what happens to the particle they are moving with at 
a certain time. In order to describe a particular function f(x,t), it is necessary to 
understand that it is a property of the fluid particle that at the instant t is passing in the 
position x. The evolution of the function f is thus governed by a local rate of change due 
to temporal changes at position x, and by the convective rate of change due to the 
transportation of the element to another position (Batchelor (1967)), giving rise to what is 
called material derivative, which reads as: 

 
j

j t j j
j j

xDf f f f f u f , f , u
Dt t x t t x

∂∂ ∂ ∂ ∂= + = + = +
∂ ∂ ∂ ∂ ∂

  (2.1) 

 
This chapter will introduce the reader to the fluid dynamics of incompressible steady 

flows, restricting the attention to the properties of interest for turbomachinery 
aerodynamics. The description of such flows needs the introduction of some conservation 
laws, that are discussed in the following with respect to an inertial frame of reference.  
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The laminar hypothesis will be first considered, in order to simplify the analytical 
developments, but the description will soon turn to a turbulent context, that is the main 
issue of this work. 
 
 
2.2 Conservation laws for incompressible flows 
 
2.2.1 Conservation of mass 
 

Let consider a fixed closed surface A that encloses a volume V entirely occupied by 
the fluid. In the absence of any source of fluid, the mass of the fluid is conserved, so the 
density variation in each control volume V must be balanced by a net flux on the surface 
A. So we could write: 

 

        j j
V A

d dV u n dA 0
dt

ρ ρ+ =∫ ∫      (2.2) 

 
Considering that the volume V is fixed in space, then the time derivative could be put 

into the integral sign, and applying the transformation of the surface integral by means of 
the divergence theorem, it is possible to write (2.2) in a more meaningful way: 

 

         ( )
V

dV 0
t
ρ ρ∂⎡ ⎤+ ∇ ⋅ =⎢ ⎥∂⎣ ⎦∫ u        (2.3) 

where the control volume could be selected without any restriction, so (2.3) is satisfied if 
the integrand is zero everywhere in the fluid: 
 

           ( ) 0
t
ρ ρ∂ + ∇ ⋅ =

∂
u        (2.4a) 

 
or equivalently: 

            D 0
Dt

ρ + ∇ ⋅ =u        (2.4b) 

 
Eq. (2.4), in the two forms of (2.4a) and (2.4b), is the fundamental mass conservation 
equation, and could be simplified if the flow is incompressible, as in the rest of the work 
will be assumed. In this condition, fluid density is not affected by changes in pressure, but 
it could be approximately stated that fluid density of each element is constant (Batchelor 
(1967)), that implies the material derivative of density to be zero, so it is possible to write 
the mass conservation equation for incompressible flows: 
 

     0∇ ⋅ =u       (2.5a) 
or equivalently 
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       j ju , 0=         (2.5b) 

 
It could be thus inferred that an incompressible flow presents a zero rate of expansion. 
 

2.2.2 Conservation of momentum 
 

The momentum conservation could be analyzed considering the equilibrium between 
the rate of change of momentum of a certain portion of fluid and the sum of all forces 
acting on this portion. According to the definition (2.1) of material derivative, and 
retaining in mind the invariability of the control volume V, the rate of change of 
momentum is: 

 

          
V

D dV
Dt

ρ∫
u             (2.6) 

 
where it must be recalled that the flow has been assumed incompressible (i.e. null 
material derivative of density). 

As well explained in Batchelor (1967), the fluid experiments both volume and surface 
forces. The first ones could be written as: 

 
            

V

dVρ∫ F          (2.7) 

 
while the latter have i-th component that could be obtained by means of the stress tensor 
sij, that could be written both as a surface and as a volume integral: 
 

       ij j ij j
A V

n dA , dVσ σ=∫ ∫         (2.8) 

 
Considering again that the control volume could be chosen without any restriction, 

then the balance of momentum sources could be written on each point, and for the i-th 
component reads as: 

 

   i
i ij j

Du F ,
Dt

ρ ρ σ= +           (2.9) 

 
Which could be re-written expliciting the material derivative and retaining in mind that 
the flow is steady: 
 

    j i j i ij ju u , F ,ρ ρ σ= +          (2.10) 
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Eq. (2.10), called usually momentum conservation equation or equation of motion, 
could be used for the determination of the distribution of fluid velocity, but could be 
solved only after a better knowledge of the right-hand side terms.  

The first one represents body forces, and considering an inertial frame of reference, 
could be usually identified with gravity, thus being F=g. 

Concerning the stress tensor sij, it is the manifestation of short range interactions 
between fluid particles, thus being intimately related to internal reactions in the fluid, and 
requires some more considerations in order to be explicited.  

If the flow is at rest, then the concept that it cannot withstand any tendency to be 
deformed without change of volume could be interpreted observing that in this case the 
stress tensor has only non-zero normal stresses, and reads as: 

 
ij ijpσ δ= −      (2.11) 

 
where all the normal stresses are identical, which means that the stress tensor in a fluid at 
rest is everywhere isotropic and all axes are principal axes. Moreover the sign minus (-) is 
related to the fact that the usual state of fluids at rest is compression, with the variable p 
called static-fluid pressure. 

When the fluid is in motion there is no reason to believe that tangential stresses will 
remain zero, as shown in real experiments, so the stress tensor will be no more isotropic, 
and could be decomposed in an isotropic part and a non-isotropic one. The first one could 
be obtained as the average of the invariant sii, namely: 

 

ii
1p
3

σ= −      (2.12) 

 
where a new definition of pressure has been introduced, which represents now the mean 
normal stress with sign reversed, and could not be related in a simple way to the static-
fluid pressure, that refers to an equilibrium state (i.e. it is a variable of state). The stress 
tensor could be thus written as: 
 

ij ij ijpσ δ τ= − +     (2.13) 
    
The deviatoric part τij of the tensor is due entirely to the existence of motion, and is 
associated to the internal friction that permits the transport of momentum in the fluid, as a 
manifestation of a departure from equilibrium. The most relevant parameter that governs 
this departure is the velocity gradient ∇u. To be more precise, only short range 
interactions are important, so if we approximate the velocity filed locally as a linear 
function, then ∇u will be the maximum order of derivatives appearing in the expression 
of the deviatoric part of the stress tensor. For sufficiently small values of the magnitude 
of ∇u, it is possible to state that τij depends linearly on it, reading as: 
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   ij ijkl k ,lA uτ =          (2.14) 
 
where the fourth order tensor Aijkl must be symmetric with respect to i and j because of the 
symmetry of the tangential stress tensor τij (see Cohen and Kundu (2002)), and depends 
on the local properties of the material. At this point it is useful to introduce the hypothesis 
that the material is homogeneous and isothermal, so Aijkl does not depend on the position. 
Moreover simple fluids are usually isotropic, so that Aijkl does not depend on the 
orientation of the element, and could be written as a combination of delta tensors (i.e. see 
Batchelor (1967) for further details): 
 

ijkl ik jl il jk ij kl
2A ( )
3

µ δ δ δ δ δ δ= + −     (2.15) 

 
where the scalar coefficient µ is the viscosity of the fluid, which must be positive, and the 
effects of bulk viscosity have been assumed to be negligible, as well explained in Cohen 
and Kundu (2002). With this expression, the tangential stresses read as: 
 

   ij i , j j ,i ij k ,k
2( u u u )
3

τ µ δ= + −     (2.16) 

 
Fluids for which a linear relation between the tangential stresses and the rate of strain 

tensor eij (equal to 1
2

(ui,j+uj,i)) holds, are called Newtonian fluids. 

Recalling that the flow is incompressible and steady, and the frame of reference is 
inertial, it is possible to re-write the momentum equation (2.10) in a more meaningful 
way, which is : 
 

  j i , j i i , jju u P, uρ µ= − +         (2.17) 
 

where the new pressure P includes also the potential of the gravity field. Eq. (2.17) is 
the Navier-Stokes equation of motion for incompressible, homogeneous, isothermal, 
isotropic and steady flows in an inertial frame of reference. In view of its expression, it is 
now worthwhile expliciting the name of the terms appearing: the left-hand side one is 
called convective (or advective) term,  since it represents the transport (or convection) of 
momentum into the control volume; the first term on right-hand side is the pressure 
gradient term, and the last one is the diffusive term. 
 
 
2.3 The Reynolds number 
 

Most of the research in fluid dynamics concerns with the development of 
experimental and/or numerical procedures able to reproduce the main characters of real 
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flows. In this respect the best procedure is to consider a similar geometrical apparatus, 
and try to obtain information about the real flow by means of the study of a dynamical 
similar one. Given the geometrical similarity between the real flow domain and the 
experimental apparatus or the numerical grid, it is possible to establish some conditions 
ensuring that the experimental or numerical flow pattern, in the following called 
laboratory flow pattern, will give similar dynamic behavior with respect to the real one if 
corresponding geometrical positions are considered (Tritton (1998)). 

Let consider the laboratory flow pattern, and let normalize all the lengths with respect 
to a characteristic length L of the apparatus (i.e. the diameter of the duct, the chord of a 
blade etc.). Let do the same for the velocities, that must be referred to a characteristic 
velocity U (i.e. the bulk velocity in the duct, the free stream velocity on a blade etc.). In 
this way it is possible to define non-dimensional values of all parameters and variables to 
be calculated, as described in the following, where some basic criteria of dimensional 
analysis have been employed: 

 
i

i
xx L=       (2.18a) 

 

( )
tt L

U
=      (2.18b) 

 

        ( ) ( )i
i

u ,tu ,t U= xx      (2.18c) 

 

      ( ) ( )
2

P ,tP ,t
Uρ

= xx      (2.18d) 

 
If the conservation equations (2.5) and (2.17) are expressed with this new notation, it 

is possible to obtain their non-dimensional (or normalized) counterparts: 
 

j , j
U u 0
L

=      (2.19a) 

 

         
2 2

j i , j i i , jj2
U U Uu u P, u
L L L

ρ ρ µ= − +        (2.19b) 

 
which, after some simple passages, read as: 
 

j , ju 0=     (2.20a) 
 

j i , j i i , jj
1u u P, u

Re
= − +       (2.20b) 
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where 

 

       ULRe ρ
µ

=        (2.20c) 

 
The non-dimensional Navier-Stokes equation contains a parameter Re, called Reynolds 
number, which permits to identify dynamical similar flows: if two different flow patterns 
with similar geometrical features are characterized by the same Reynolds number, then 
their non-dimensional (or normalized) solution will be the same under the same 
normalized set of boundary conditions (Pope (2000)). This conclusion has a relevant 
importance in all the fluid dynamics research, since it permits to forecast the main 
characteristics of a certain real flow that could be not accessible to experiments, by means 
of a laboratory flow pattern which has similar geometrical domain and same Reynolds 
number. Moreover it is possible to repeat the same considerations for the dependent 
quantities, useful for the analysis of the properties of the flow: it is possible to infer these 
properties for a certain flow if the same properties are known for a dynamical similar one. 

Focusing on the expression of Re, it is possible to understand that it indicates the 
relative importance of two dynamical processes, the convective on the diffusive, and in the 
following we will understand that when convection dominates (i.e. Re is high), the 
numerical solution of the problem is cumbersome. 

The Reynolds number is the only non-dimensional parameter which characterize 
incompressible and steady flows without body forces. If other terms appear in the 
governing equations due to the physics of the flow (i.e. free surfaces, waves etc.), the 
procedure of finding non-dimensional parameters is applicable, but now there is the need 
for more non-dimensional parameters which added to the geometrical similarity permit to 
obtain same normalized solutions. 
 
 
2.4 The CFD approach to fluid dynamics 
 

In the previous Section we dealt with the laboratory flow pattern, as the flow field 
that, being dynamically similar with the real one, has a normalized solution equal to it. 
More in particular this work focus on CFD, which implies that the laboratory flow pattern 
is a numerical solution field obtained with a computer code.  

As already explained in the Preface, a variety of reasons could be cited for the 
increased importance of simulation techniques (i.e. see Löhner (2001), Tezduyar et al. 
(1993), (1994) and (1996)), with arguments that could be used also in other science 
branches. To mention but a few: 

 
• The need to forecast performance of a new product before its commercial 

spreading is of fundamental importance for companies, and in this process 
the major cost is related to the realization of prototypes. In this respect a 



Chapter 2                             Introduction to fluid dynamics of incompressible flows 

 26

preliminary numerical assessment of different solutions is useful to reduce 
the variety of prototypes; 

• The cost of experiments is often unsustainable and sometimes it is actually 
impossible to conduct experiments, i.e. because of the difficulty of reaching 
the point where probing data. The numerical investigation can give an 
answer where is needed, with the only limit of the grid resolution. 

• The computer speed and memory capacity continue to improve year after 
year. 

 
Nonetheless, it is important to understand that CFD is a discrete approach to the flow 

pattern and, even if it would be possible to demonstrate the correctness of all the 
governing equations, as if the mathematical model of the real problem would be exact, 
still the quality of the results would be dependent on the grid resolution, that should be 
able to describe the smallest scale of motion of the flow field (Corsini (1996), Lentini 
(1996)). This argumentations give rise to the following question: how to deal with 
turbulent flows? 

 
2.4.1 Turbulent flows and their computation 

 
Laminar flows are characterized by large scale physics, easy to be captured with 

relatively coarse (or rough) grids. The mass conservation and the equation of motion 
represent thus a complete system of equations able to reconstruct the flow pattern.  

Turning to turbulent flows, the physics involves very small scales, increasing too 
much the quantity of grid nodes, and even if modern calculators are able to manage with 
lots of data, still it is not worthwhile proceeding in a direct integration of Navier-Stokes 
equations (DNS – Direct Numerical Simulation), except for very simple flow 
configurations (i.e. for further details see Hoffman and Johnson (2004)). 

As underlined in Cohen and Kundu (2002), turbulence could be characterized by 
some key words, which in the following will be shortly explained: diffusion, non-
linearity, vorticity, dissipation, randomness. 

An empirical approach to turbulent flows permits to quickly understand their high 
rate of diffusion of both momentum and heat. This phenomenon is related to the relevant 
non-linearity of turbulent flows, which grows up with the Reynolds number and is related 
to the importance of convective effects. Moreover the non-linearity of these flows gives 
rise to disturbances which are represented by small flow structures, called vortices, that 
give three-dimensional character to turbulent flows. 

On a computational point of view, the more interesting concepts are dissipation and 
randomness. Each vortex undergoes a stretching process, which extracts kinetic energy 
from the average motion and transfers it to smaller and smaller structures, until it is 
balanced by the heat production due to viscosity, which is represented by the viscous rate 
of turbulent kinetic energy dissipation, from now on called e. The equilibrium between 
these opposite processes is reached when vortices have a critical dimension, to which the 
grid discretization should refer. In order to have an order of magnitude of this scale, let 
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present some results based on dimensional analysis. If l is the scale of largest vortices, it 
defines the rate of subtraction of energy from the mean flow, as follows: 

 

     
2 2 3u u uo o olt lu

ε
⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′ ′⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦′⎣ ⎦

       (2.21) 

 
where u’ is used to represent the order of magnitude of velocity fluctuations, and t is the 
characteristic time of the largest vortices, related to their scale and to the velocity 
fluctuations too. As already said, this rate must be equal to the viscous rate of turbulent 
kinetic energy dissipation. On the other hand, the scale of the smallest vortices could 
depend only on ε and viscosity, being not related to what happens on larger scales, and 
according to the Kolmogorov criterium, it reads as: 
 

1
3 4

kl
ν
ε

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

     (2.22) 

 
It could be demonstrated (see Corsini (1996) or Lentini (1996)) that the ratio between l 
and lk is related to the turbulence Reynolds number ReT:  
 

( )3
4T

k

l o Re
l

=      (2.23a) 

where 
 

( )TRe o Re=      (2.23b) 
 
Thus it could be readily concluded that the grid nodes should be proportional to the cube 
of the ratio (2.23a), which means that the number of nodes ntot increases in the following 
way: 
 

2.25ntot Re∝      (2.24) 
 
It is obvious that when Re becomes relevant, the computing load becomes unsustainable, 
and DNS calculations require too much computing resources, even for nowadays 
computers. More loading is the situation of unsteady turbulent flows, for which ntot 
should be almost proportional to the cube of Re. In Hoffman and Johnson (2004) it is 
claimed that for a flow at Re=106, 1018 mesh points are needed to perform an accurate 
DNS, but these are numbers out of the possibilities of any foreseeable supercomputer. 

As a final argumentation in this synthetic analysis of the turbulence computation 
issue, it should be clear that turbulent flows contain a certain amount of randomness, 
which introduces two consequences: 
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• The superposition of non-linear and randomic effects, which makes the fluid 
response to perturbations unstable, that means that a small change in the 
fluid properties, i.e. due to a little inhomogeneity or impurity, could cause a 
totally different flow pattern (Pope (2000)). This consideration reduces DNS 
reliability, because more than a calculation should be done under different 
sets of parameters in order to have some idea about the real flow behavior.  

• A statistical approach is more appropriate for the study of turbulent flows, 
because the flow details contain randomic dependencies, whereas the 
average quantities are  repeatable from experiment to experiment (Tritton 
(1998)). 

• The DNS approach must not be discarded by researchers, because of  three 
fundamental reasons: first, for moderate Reynolds number it permits to 
provide data for the development of better RANS and LES approaches; 
second, it could be applied to niche areas also at relevant Reynolds number; 
third, the current rate of performance improvement of supercomputers 
suggests a potential doubling of Reynolds number of DNS calculations every 
six years, and Sandham (2002) forecasts that with timescales upwards of 20 
years, the application of DNS will start to be reliable also for aerodynamics 
purpose, which is the most extreme. 

 
2.4.2 The RANS approach 

 
Let now consider the statistical behavior of a certain variable f(t), which could 

represent a particular velocity component. If several experiments are conducted with the 
same conditions, it is possible to obtain an ensemble of evaluations of f at a certain time 
t, and it is possible to calculate the ensemble average of the experiments ( t )φ  as: 

 

      ( ) ( )
N

i
i 1

1t t
N

φ φ
=

= ∑      (2.25) 

 
where N is the number of samples. 

Let also consider the simplified situation in which the ensemble average does not 
depend on time, which means that the flow is statistically steady, then we could write: 

 

( ) ( )
0

0

t t

t t

1t lim t
t

∆

∆
φ φ φ

∆

+

→∞
= =∫     (2.26) 

 
which practically means that for a (statistically) steady flow the ensemble averages could 
be commuted with the time averages taken over a sufficient relevant time interval. 

It is thus possible to decompose each variable with these notation: 
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φ φ φ′= +       (2.27) 
 
where by definition: 
 

     φ φ=       (2.28a) 
 

    0φ′ =       (2.28b) 
 

This kind of decomposition is called Reynolds decomposition and, if applied to two 
variables f and l it fulfils the following two properties: 
 

0φ λ λ φ′ ′= =      (2.29a) 
 

φλ λ φ φλ′ ′= +      (2.29b) 
 
Moreover, the ensemble average concept grants that derivation and integration operators 
can commute with the average operator. 

Let now use the Reynolds decomposition in the governing equations (2.5) and (2.17), 
and let average them. For the continuity equation we obtain: 

 

     ( )j j j j j j j j j j ju u , u , u , u , u , 0′ ′ ′+ = + = + =    (2.30) 

 
which means that 
 

            j ju , 0=       (2.31) 
 
This represents the continuity equation for the mean flow. Moreover subtracting it from 
(2.5b), it is possible to demonstrate that: 
 

            j ju , 0′ =       (2.32) 
 
which means that also the turbulent fluctuations are divergence-free. These results have 
been obtained in view of the linear structure of the continuity equation. 

If we repeat the same procedure for the momentum equation (2.17), unfortunately 
some problems arise. Averaging each term, we obtain: 

 

( ) ( ) i
i i i

PP P P P P,
x x x
∂ ∂ ∂′ ′+ = + = =

∂ ∂ ∂
    (2.33a) 
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( ) ( )2 2

i i i i i jj
j j j j

u u u u u ,
x x x x

µ µ µ∂ ∂′ ′+ = + =
∂ ∂ ∂ ∂

   (2.33b) 

 

( ) ( ) ( )( )j j i i j j i i j i j i j j
j j

u u u u u u u u u u , u u ,
x x
∂ ∂′ ′ ′ ′ ′ ′+ + = + + = +

∂ ∂
  (2.33c) 

 
where the average of the convective term has been obtained using the continuity property 
for the first passage and the Reynolds average properties for the second. The non-linear 
structure of the convective term is thus the origin of an additional term, that stems from 
the velocity fluctuations. More in particular this additional source of stress is related to 
the correlation of two velocity fluctuations at the same point, and is called Reynolds 
stress term. It is thus useful to put it on right-hand side, and after some simple 
developments it is possible to obtain the following mean momentum equation: 
 

       ( )j i j i i j j i i j ju u , P, u , u , u u ,ρ µ ρ⎡ ⎤′ ′= − + + −⎣ ⎦    (2.34) 

 
where the diffusive term has been expressed in its original form in order to obtain a 
global right-hand side term which reads as: 
 

         ( )ij j ij i j j i i j j, P u , u , u u ,τ δ µ ρ⎡ ⎤′ ′= − + + −⎣ ⎦    (2.35) 

 
The additional stress acting on the mean field of a turbulent flow is much larger than the 
diffusive (or viscous) one, except near the solid walls, where velocity gradients are 
relevant. It is thus useful to define the following Reynolds stress tensor R: 
 

u u u v u w

v u v v v w

w u w v w w

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡ ⎤′ ′ ′ ′ ′ ′− − −
⎢ ⎥

′ ′ ′ ′ ′ ′= − − −⎢ ⎥
⎢ ⎥′ ′ ′ ′ ′ ′− − −⎢ ⎥⎣ ⎦

R    (2.36) 

 
It is a symmetric tensor, with diagonal components representing normal stresses, and 
non-diagonal terms representing shear stresses. If the flow tends to an homogeneous 
isotropic turbulent behavior, the normal stresses dominate and u v w′ ′ ′= = . Even in this 
simplified setting, that is widely used in experimental studies, it is worth noting the 
intrinsic three-dimensionality of turbulence. 

Eqs. (2.31) and (2.34) are the basis of the RANS - Reynolds Averaged Navier-Stokes 
approach to turbulence, which is nowadays the most widespread strategy for simulating 
turbulent flows, due to the enormous computational cost of direct simulation of complex 
turbulent flows. 
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Although the process of Reynolds decomposition permits to avoid the complete 
resolution of a turbulent motion, its drawback is that it introduces unknown single-point, 
higher-order correlations, which need to be included in the number of variables of the 
system of equations (Gatski and Rumsey (2002)). The need to model these correlations is 
what is called closure problem, and will be issued in the next Chapter, where different 
strategies to obtain a closed system of RANS equations will be presented. 

As a conclusive remark, it is worthwhile mentioning that the high Reynolds number 
flows, with their non-linearity and their complex differential structure in modeling both 
the mean continuity and momentum equation and the effect of turbulent correlations, 
introduce a lot of numerical drawbacks, that must be addressed with an advanced 
stabilized finite element method. This issue will become clearer in the next Chapter and 
will be addressed in the fourth Chapter of the work. 
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Chapter 3 
 

 

TURBULENT FLOW COMPUTATIONS 

 

3.1 Introduction 
 

Let recall the mean continuity and momentum equation, obtained in the previous 
Chapter: 

 

j ju , 0=      (3.1) 
 

( )j i j i i j j i i j ju u , P, u , u , u u ,ρ µ ρ⎡ ⎤′ ′= − + + −⎣ ⎦     (3.2) 

 
These equations represent the basis of the RANS approach to turbulent flows, and appear 
in all the turbulence models presented in the following. Notwithstanding, the presence of 
six more unknowns, namely the Reynolds stress components ij i jR u uρ ′ ′= − , introduces 
the necessity of additional equations in order to reach the closure of the system. 

In this Chapter a description of the most used closure strategies within the RANS 
approach will be proposed, focusing on first moment closures, the ones adopted for the 
simulations reported at the end of the work, but also including a brief discussion on the 
recent LES and hybrid LES/RANS strategies. Second Moment closures won’t be 
considered, being out of the scope of this research work, even if the multiscale 
formulations that will be derived in the next Chapter could be applied with beneficial 
effects in that context. 

It is worth mentioning that First Moment closures, Second Moment closures and LES 
are based on models, which imply that a good numerical solution of the system of 
governing equations will be near to the real flow behavior depending on the quality of the 
model itself. 
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3.2 Moments and turbulent kinetic energy budget 
 

At first sight, a good strategy to obtain the closure of the RANS system of equations 
is to deduce explicitly a conservation equation for each of the six unknown components 
of the Reynolds stress tensor. This procedure is called direct closure, and after some 
analytical passages, well described in Lentini (1996), leads to the following expression 
for the Rij component governing equation:  

 

k i j k i j k k j k i k i k j k

j ,i i , j j i i j i j kk i ,k j ,k

u ( u u ), ( u u u ), u u u , u u u ,

P u P u ( P u ), ( P u ), ( u u ), 2 u u

ρ ρ ρ ρ

µ µ

′ ′ ′ ′ ′ ′ ′ ′ ′= − − − +

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − − + −
  (3.3) 

 
It is thus possible to understand that the attempt to obtain a conservation equation for a 
second order moment, that is an average of the product between two fluctuation 
components (i.e. i ju u′ ′ ), gives rise to higher order moments and other unknowns such as 
the interaction moments between velocity and pressure fluctuations. In this way, the 
number of unknowns would progressively grow up, thus demonstrating the 
impracticability of the direct closure. The problem could be described by two key words: 
non-linearity and non-locality (Durbin and Petterson Reif (2001)). Non-linearity is 
represented by the fact that n+1-th moments appear in the governing equation of a n-th 
order moment, while non-locality is related to the terms containing pressure fluctuations, 
which are expression of two-point velocity fluctuation correlations, being pressure 
governed by elliptic operators, thus introducing the influence of the velocity field 
behavior in the surrounding of the point considered. Non-locality is nowadays out of any 
closure capabilities, and in the following it will be granted that only single-point closures 
will be issued, discarding or modeling all the terms introducing two-point correlations. 

Concerning non-linearity and moments, it is possible to distinguish between 
formulations with first moment closure, where only the first order moments (mean 
velocity and pressure) are solved for, and formulations with second moment closure, 
where specific equations are written for the Reynolds stress components. Therefore the 
difference lays in the fact that first moment closures contain a totally modeled effect of 
Reynolds stress components, while second moment closures try to solve for them 
explicitly, and model only higher order moments. 

In order to have a quick but complete comparison between first and second moment 
closures, it must be noted that second moment closures include the four scalar equations 
stemming from mean continuity and momentum, six equations for the second moments, 
and some equations modeling the effect of non-locality and/or higher order moments. On 
the other hand, first moment closures solve only for mean continuity and momentum 
equation, where the effect of Reynolds stress components is modeled by means of some 
empirical law or additional equation. Therefore, even if second moment closures are 
potentially more accurate in the description of complex turbulent flows, their 
computational cost is much higher. 
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Despite the difference in number and type of closure equations, generally the 
turbulence models share a common analytical basis, related to the representation of 
turbulence production and dissipation mechanisms. These physical aspects could be 
understood with the aid of the turbulent kinetic energy budget. The turbulent kinetic 
energy k (per unit mass) is defined as follows: 

 

( )2 2 21k u v w
2

′ ′ ′= + +      (3.4) 

 
The equation that governs its evolution could be obtained by subtracting the mean 
momentum equation (3.2) from the “instantaneous” momentum equation (2.17), thus 
obtaining the governing equation for each iu′ , multiplying it for iu′  (performing also the 
sum due to the repeated indices) and averaging (i.e. see Cohen and Kundu (2002)). The 
equation reads as follows: 
 

j j l j l j l j l j j j j j
Pu k , u u u , u , u , ku u k , ,ν ν
ρ

⎛ ⎞′′ ′ ′ ′ ′ ′= − − − + −⎜ ⎟
⎝ ⎠

   (3.5) 

 
It is possible to understand the nature and the function of each of the three right-hand side 
terms, that could be written synthetically as: 
 

 l j l j ku u u , P′ ′− =      (3.6a) 
 

  l j l ju , u ,ν ε′ ′ =       (3.6b) 
 

   j j j j k
Pku u k , , dν
ρ

⎛ ⎞′′ ′− + − =⎜ ⎟
⎝ ⎠

     (3.6c) 

 
Starting from the last one, namely dk, it governs the spatial re-distribution of the turbulent 
kinetic energy, as demonstrated by its flux divergence form; the first two terms of it 
represent the turbulence transport by itself, the third one the turbulence transport due to 
molecular viscosity. The ε term is exactly the viscous rate of turbulent kinetic energy 
dissipation, already introduced but now analytically defined; it is worth noting that ε must 
be positive and its role in the k budget is to destroy the smaller fluctuation structures by 
means of viscous production of heat. Finally the Pk term must necessarily represent the 
turbulent kinetic energy production, which extract energy from the mean flow in order to 
give it to turbulent structures. The turbulent kinetic energy governing equation could thus 
be re-written in a more intuitive way as follows: 
 

         j j k ku k , P dε= − +          (3.7) 
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It contains some additional unknowns related to the fluctuations of velocity and pressure, 
that must be modeled in terms of the mean flow features in order to solve for k, as will be 
shown later. 

From this discussion, it is possible to draw some important conclusions on the 
turbulence governing mechanisms, useful for the modeling of the Reynolds stress tensor 
components: 

 
• The viscous dissipation ε contribution is relevant (see for example the 

dimensional analysis performed in Lentini (1996), which compares it with 
the molecular viscosity effect) and takes into account information from all 
the directions in the neighboring of the point considered, thus being difficult 
to be modeled and numerically computed; 

• The dk term does not contribute globally to the turbulent kinetic energy 
balance, but tends to redistribute it due to its viscous-like analytical structure. 
It contains a pressure-velocity term that must be modeled in order to pursue a 
single-point closure; 

• The turbulence production Pk is active only in presence of mean velocity 
fluctuations, which means that this is the mechanism that enable turbulence 
to persist. This consideration suggest that the mean velocity gradient could be 
an important parameter for the definition of turbulence models; 

• The k budget equation gives a lot of information about the turbulent behavior 
of a flow, thus it could be useful to include it in a turbulence closure, after 
having modeled all the terms containing additional unknowns. 

 
As a final introductory remark to the turbulence models analysis that follows, the 

writer wants to highlight the fact that the main address of this work has been the study of 
first moment closures, for several reasons that could be summarized as follows: 

 
• On a turbomachinery R&D point of view, the computational load is a 

fundamental issue for the industrial application of CFD results, since a new 
product could be out of market if competitors are faster. Quick answers are 
thus needed in order to Develop the Research results as soon as possible; 

• On the numerical point of view, Second Moment Closures introduce a 
turbulent transport mechanism based on a source term in the mean 
momentum equation, namely the Reynolds stress tensor, which could 
introduce some difficulties. On the other hand, the following Section will 
demonstrate that First Moment Closures model the effect of Reynolds stress 
as an additional viscosity, which is beneficial for the numerical solution 
because it artificially reduces the computational Reynolds number; 

• Considering the modeling difficulties, the challenge of First Moment 
Closures is to enclose the physics of Reynolds stress in a simple analytical 
form that could be representative of most of the situations encountered in the 
real flow behavior. In this regard, Second Moment Closures could be 
considered as a good basis to understand the underlying mechanisms that 
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permit a better choice of the parameters to be included in an advanced first 
order closure. These argumentations are in agreement with a more research 
employment of Second Moment formulations and a more development 
employment of First Moment ones. 

 
 
3.3 First Moment Closures 
 

As already explained in the preceding Section, first moment closures (or first order 
closures) are based on the solution of the mean flow equations (3.1, 3.2) and avoid 
specific equations for the Reynolds stress tensor components. This end is pursued by 
means of some modeling, based on empirical laws and/or on the solution of additional 
equations (such as the one for the turbulent kinetic energy), of the effect of Reynolds 
stress terms in the mean momentum equation. 

From a physical standpoint, the cornerstone behind the development of a good first 
order turbulence model is to adequately describe the velocity and length characteristic 
scales associated with a turbulent flow (Gatski and Rumsey (2002)), and to introduce 
them in the term that models the Reynolds stress effect in the mean momentum equation. 
This operation could be done through an additional viscosity, which dimensionally is 
length x velocity, that from now on will be called turbulent eddy viscosity and will be 
described by νt. 

All the models presented in this Section share the eddy viscosity approach, with an 
analytical operator which generally reads like this: 

 

i j t ij iju u [ l* ( ,t ),u* ( ,t )] f ( S ,W )ν′ ′ = ⋅x x    (3.8) 
 
where l* and u* are function of space (and in general of time), and represent, 
respectively, the local characteristic length and velocity scale of the turbulent flow, and 
Sij and Wij are, respectively the mean strain and rotation rate tensor, reading as follows: 
 

( )ij i j j i
1S u , u ,
2

= +     (3.9a) 

 

( )ij i j j i
1W u , u ,
2

= −     (3.9b) 

 
Depending on the expression used for t ( l*,u*)ν  and for ij ijf ( S ,W ) , it is possible to 

derive all the closures presented in this work, but a preliminary classification could be 
done with respect to the order of the tensor representation f: linear eddy viscosity models 
(EVMs) adopt a linear relationship between the turbulent stresses and the strain rate tensor 
Sij, non-linear eddy viscosity models (NLEVMs) feature polynomial relationships 
involving generally combinations of Sij and Wij. The expansion coefficients could be 
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related to empirical or numerical rules, or could be derived directly from the closure 
coefficients of Second Moment Closures, whose usefulness as basis of First Moment 
Closures is thus demonstrated. 

Concerning the expression of the turbulent eddy-viscosity t ( l*,u*)ν , the definition of 
the length and velocity scales could be done with algebraic relations, thus avoiding 
additional equations (zero equation models), or solving differential transport equations 
(one, two and more equations models). 

Over the years, there has been a multitude of EVMs and NLEVMs proposed for the 
RANS equations, each more suitable (or calibrated) for certain applications, thus being 
not worthwhile (and probably useless) to consider all the formulations. Notwithstanding, 
if the turbomachinery field is considered, some turbulence closures are usually preferred, 
in view of their better compromise between the quality of the results and computational 
load, which is relevant for this CFD application due to the complex geometries of the 
flows. Between the most used turbulence models for turbomachinery CFD, this work 
deals with the mixing length zero equation model (Prandtl (1925)), the linear k-ε two 
equations model (Launder and Sharma (1974)), the linear k-ε-v2-f four equations model 
(Durbin (1995)), and the non-linear cubic k-ε two equations model (Craft et al. (1996)). 
The models here considered permit thus to have a comprehensive panoramic on first 
moment closures with both linear and non-linear eddy viscosity models, and have shown 
good performance for the test cases reported in the last Chapter of this work. 

 
3.3.1 Linear eddy viscosity models 

 
The idea behind the linear eddy viscosity models (EVMs) is to express the Reynolds 

stress term in the mean momentum equation as a first order function of the rate of strain 
Sij tensor (gradient diffusion hypothesis), with a proportionality coefficient, namely the 
eddy viscosity νt (eddy viscosity hypothesis), related to the local flow conditions. In this 
way the resulting expression for the modeled Reynolds stress term is equivalent to an 
additional diffusive operator. This choice could be first justified considering that one of 
the major effects of turbulence is to magnify the momentum transport, which is related to 
the diffusion mechanism. A detailed explanation of this concept could be inferred from 
the analysis of a geometrically simple turbulent statistically steady flow, namely a two-
dimensional channel flow with axial velocity component u and crosswise v. Fig. 3.1 
shows the possible relationships between the distributions of mean velocity components 
and the Reynolds stress. 

Fig. 3.1a and 3.1b show the effects of v’ fluctuations,  while Fig. 3.1c and 3.1d show 
the effects of u’ fluctuations. Considering the first ones, Fig. 3.1a is the situation of u 
velocity component decreasing in y direction, which means that yu , 0< ; in this case, if a 
fluid particle moves in the positive y direction due to a fluctuation v 0′ > , then it will be 
in a position in which the u velocity component is smaller, and its axial fluctuation is 
positive, i.e. u 0′ > . On the contrary, if it moves in the negative y direction, due to a 
fluctuation v 0′ < , then its other fluctuation will be u 0′ < . In both the situations the 
resulting non-diagonal component of the Reynolds stress tensor is positive, i.e. u v 0′ ′ > , 
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which is opposite in sign with respect to yu , 0< . Same considerations could be done for 

Fig. 3.1b, where yu , 0>  and u v 0′ ′ < . Switching to the effects of u’ fluctuations, Fig. 

3.1c and 3.1d suggest that u v′ ′  is opposite in sign with respect to xv , . 

 
Fig. 3.1. Turbulent channel flow; Reynolds stress and velocity gradient. 

 
These short considerations lead to the following gradient diffusion hypothesis: 
 

i j iju u S′ ′ ∝ −      (3.10) 
 
The proportionality parameter is chosen, following the Boussinesq hypothesis, as a 
turbulent viscosity t ( l*,u*)ν , and the resulting expression is: 
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( )i j t ij t i j j iu u 2 S u , u ,ν ν′ ′ = − = − +    (3.11) 

 
Eq. (3.11) is based on an analogy with the Newtonian flow stress – rate of strain 
relationship and was derived by Boussinesq in 1877. Unfortunately this kind of 
expression is not correct for the diagonal components of the Reynolds stress, for which it 
would read as: 
 

( )i i t ii t i i i iu u 2 S u , u ,ν ν′ ′ = − = − +      (3.12) 

 
It is obvious to understand that in this case the sign of the modeled diagonal Reynolds 
stress would be related to the sign of i iu , , while it must be semi-positive defined and 
related to the turbulent kinetic energy k, which is half the sum of the three diagonal 
Reynolds stress components. In order to avoid unphysical behaviors and to fulfil the 
turbulent kinetic energy definition, the final expression proposed for the Reynolds stress 
term in a linear eddy viscosity model is: 
 

       i j t ij ij
2u u 2 S k
3

ν δ′ ′ = − +         (3.13) 

 
If we re-write the mean momentum equation, it reads now as: 
 

    ( )( )j i j i t i j j i ju u , P*, u , u , ,ρ ρ ν ν⎡ ⎤= − + + +⎣ ⎦    (3.14) 

 
where the isotropic part of (3.13) has been included in the pressure term, which reads as: 
 

       2P* P k
3

ρ= +      (3.15) 

 
Eq. (3.14) represents the mean momentum equation for all the linear eddy viscosity 
models. Each of them could be identified by means of its definition of the turbulent 
viscosity t ( l*,u*)ν . More in particular, the attention should be focused on how to 
determine  l* and u*, and on the type of function relating u*, l* and νt. In the following, 
first a description of the mean features of the simplest turbulence model, namely the zero 
equation mixing length closure, will be proposed; then the classical two equations k-
ε model will be issued; finally the linear first moment closures Sub-Section will be 
completed with the presentation of the four equations k-ε-v2-f model. It is worth noting 
that both the k-ε and k-ε-v2-f model will be considered in the low-Reynolds version, which 
permits an analytical near wall treatment (i.e see Patel and Rodi (1985) for a complete 
understanding of near wall treatments). 
 



Chapter 3                                                                    Turbulent flow computations 

41 

3.3.1.1 The mixing length 
  
The simplest turbulence models add no equations to the RANS system (they are 

called zero equation models), and define the turbulent viscosity on the basis of physical 
and empirical laws. Amongst them, the oldest is the mixing length theory by Prandtl 
(1925) (founded on the analogy with kinetic theory of gases), which expresses the 
turbulent viscosity as product of the velocity and length scale of the turbulent motion, 
namely: 

 
t u* l*ν =      (3.16) 

 
In order to determine u* and l*, an analogy between the molecular and the turbulent 
diffusion mechanism is done: let consider again the simple channel flow of Fig. 3.1; in 
particular let focus on a position characterized by crosswise coordinate y and streamwise 

velocity fluctuation with root mean square equal to 2u′ . If a particle moves due to a 
crosswise fluctuation (Fig. 3.1a and 3.1b) and reaches a position characterized by a 

velocity whose difference from the undisturbed one is equal to 2u′ , then the distance 
from the starting position is called mixing length, and reads as lm. The value of l* is 

imposed as equal to lm, and the value u* is imposed as equal to 2u′ , which in view of 
the preceding considerations is equal to m yl u , . The turbulent eddy viscosity of the 

mixing length model reads as: 
 

2
t m yl u ,ν =      (3.17) 

 
The first implication of (3.17) is that the velocity scale u* is calculated with the mean 
streamwise velocity gradient projected normal to the wall, thus when it is zero there is no 
turbulent viscosity. This fact is in contrast with lots of real situations (Pope (2002)) in 
which yu , 0=  but turbulent scales exist (i.e. this is the case of the decaying turbulence 

grid). Another important drawback is that ml  is dependent on the “geometric features of 
the flow considered”, thus there are some typical situations in which one is able to choose 
a correct value for it, and other situations in which a lot of guesswork is needed, in 
addition to a relevant experience in judging the results.  
The mixing length model is the simplest closure and, though the several drawbacks due to 
its incompleteness, the lack of additional computational load and the ease of 
implementation in computer codes led many authors to develop some variants, with the 
Baldwin and Lomax one (1978) being the most widespread.  
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3.3.1.2 The linear k-ε model and the Low Reynolds extension 
 
At the zero equation level, the models usually focus on the specification of a 

turbulent eddy viscosity to be used directly in the RANS equations (3.14), and no 
importance is given to the transport of the turbulent velocity and length scales of the flow. 

When introducing turbulent flows, it is always underlined the importance of the 
transport of the turbulent kinetic energy k, first because its underlying mechanisms are the 
basis for a better understanding of turbulence, and second because of its property of being 
the major indicator of the evolution of the flow. Following these ideas, one equation 
models started to appear (first by Prandtl himself and Kolmogorov), including typically a 
transport equation for k, that is used to determine the turbulent velocity scale, while still 
some empiricism remains in the determination of the turbulent length scale.  

Up to this point, it should be more clearly highlighted the nature of the drawbacks 
related to the “geometric features of the flow considered”, already exposed in the mixing 
length presentation. The problem is not only due to the lack of specifications of 
characteristic turbulent length scales for complex flows, but also and primarily to the fact 
that l* should be determined locally, as expressed by its definition in (3.8), without any 
algebraic relationship with other portions of the flow, or the use of distance functions to 
the nearest wall, that could be limiting in the development of the grid for the 
computations. On the contrary, a local approach to the calculation of the turbulent length 
scale is easily usable with any type of grid: structured, unstructured, single- or multi-
block (Gatski and Rumsey (2002)), that are needed for the discretization of aerodynamics 
and turbomachinery flows. 

In this viewpoint, a further step is represented by two equations models, that develop 
a specific equation for both the turbulent velocity and length scales. More in particular, 
the equation for the turbulent velocity scale is the turbulent kinetic energy transport 
equation, while the equation for determining the turbulent length scale, or a parameter in 
strong relationship with it, has been matter of discussion and several solutions have been 
proposed. Between these, the simplest and more widespread solution is to design a 
transport equation for the viscous dissipation rate ε, a concept that gave rise to the two 
equations k-ε model (i.e. see Launder and Sharma (1974) or Launder et al. (1977)). 

For the sake of clarity, let consider again the definition used in First Moment 
Closures for the Reynolds stress components: 

 

i j t ij iju u [ l* ( ,t ),u* ( ,t )] f ( S ,W )ν′ ′ = ⋅x x    (3.8) 
 
Since an EVM approach is under consideration, the definition (3.8) adopts the gradient 
diffusion hypothesis and turns to the already introduced relation: 
 

( )i j t ij t i j j iu u 2 S u , u ,ν ν′ ′ = − = − +    (3.11) 
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The rationale of the k-ε model is to consider the following expressions for l*, u*, and for 
the function that permits to calculate the eddy viscosity νt: 
 

      
3

2kl*
ε

=         (3.18) 

 
      u* k=      (3.19) 

 

    
2

t
k( l*,u*) c l* u* cµ µν
ε

= =     (3.20) 

 
with cµ being a model constant, whose value will be presented in the following Tab. 3.1. 
Retaining in mind the synthetic expression (3.7) for the turbulent kinetic energy transport 
equation, it is now possible to re-write its complete expression (3.5) in the form proposed 
in the Launder and Sharma (1974) k-ε model: 
 

         t
j j t ij i j j j

k
u k , 2 S u , k , ,νν ε ν

σ
⎡ ⎤⎛ ⎞

= − + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

   (3.21) 

 
where the production, dissipation and diffusion terms in right hand side are evident, and 
the σk parameter used in the diffusive term is an effective Prandtl number for diffusion, 
taken as constant for incompressible flows and explicated in Tab. 3.1. Concerning the 
transport equation for the viscous rate of turbulent kinetic energy dissipation ε, the rather 
general expression from which some variants have been determined is the one proposed 
in Jones and Launder (1972), which reads as: 
 

t
j j 1 t ij i j 2 j j

1 1u , C 2 S u , C , ,ε ε
ε

νε ν ε ν ε
τ τ σ

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
  (3.22) 

 
where Cε1 is fixed from calibrations with homogeneous shear flows, Cε2 is determined 
from the decay rate of homogeneous isotropic turbulence, σε is an effective Prandtl 
number for dissipation diffusion, and τ is the time scale of turbulence (for a description of 
all the parameters, see Tab. 3.1). 

In order to complete the presentation of the Launder and Sharma (1974) k-ε model, 
two issues must be addressed, the first being the near wall integration, and the second 
being the rationale of the coefficients and parameters, which will drive to a general 
synthetic expression of the complete system of RANS equations. 

Concerning near wall integration, the research community started in 1980s’ a wide 
discussion about some ambiguities in the results obtained with turbulence closure models 
for wall-bounded shear flows. The original versions of many turbulence models were in  
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fact designed for high Reynolds number flows, and their near wall behavior was governed 
by the application of near wall functions. This kind of procedure has demonstrated to be 
unsuitable for low and transitional Reynolds number flows, separated flows, and complex 
three-dimensional flows.  

In order to enable the use of turbulence closures at low Reynolds number and to 
describe near wall behavior, there has been an intense research work, preceded by some 
pioneer idea, such as the Van Driest (1956) damping function for the mixing length. The 
great amount of information from calculations and experiments available in the last 
twenty years, led to some modifications of the original fashion of the models, that gave 
rise to their Low Reynolds extension. These could be obtained adding or modifying some 
terms of the closure equations, in view of some fundamental discoveries, which are well 
described in Patel et al. (1985). More in particular, the most important modifications in 
the k-ε model are related to the near wall experimental behavior of k and ε, characterized 
by homogeneous surface boundary conditions for k and a finite ε at the wall. This 
condition causes a null turbulent time scale τ, which is defined for this model as k/ε, and a 
singular behavior of both the production and dissipation terms in the dissipation rate 
equation. 

The k-ε model in its Low Reynolds extension is able to circumvent these singularities 
in the near wall integration, and is well behaved for both high and low Reynolds number 
flows. The associated closure equations solve for k and for a modified dissipation rate ε , 
that has homogeneous boundary conditions on solid walls, and reads as: 

 
        2

i2 ( k / x ) Dε ε ν ε= − ∂ ∂ = −        (3.23) 
 
The governing equations for k and ε  read as: 

 

            t
j j t ij i j j j

k
u k , 2 S u , k , , Dνν ε ν

σ
⎡ ⎤⎛ ⎞

= − + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

   (3.24) 

 

       t
j j 1 1 t ij i j 2 2 j j

1 1u , C f 2 S u , C f , , Eε ε ε ε
ε

νε ν ε ν ε
τ τ σ

⎡ ⎤⎛ ⎞
= − + + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
   (3.25) 

 
The meaning of each of the parameters and coefficients included in (3.24) and (3.25) is 
explained in detail in Patel et al. (1985), where it is underlined the presence of some 
differences in the choices of the quoted authors. For the Low Reynolds k-ε model 
implemented in the XENIOS code, that will be labeled as LS74 (Launder & Sharma 
(1974)), the coefficients and parameters expressions are summarized in Table 3.1. 
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νt 
2kc fµ µ ε

 

cµ 0.09 

fµ exp[-3.4/(1+ tRe /50)2] 

Ret 2k /( )νε  

σk 1 

σε 1.3 

Cε1 1.44 

Cε2 1.92 

fε1 1 

fε2 [1-0.3exp(- 2
tRe )] 

D 2
i2 ( k / x )ν ∂ ∂  

E 2ννt ( 2
i j ku / x x∂ ∂ ∂ )2 

τ /k ε  

 

Table 3.1. Closure Coefficients of Low Reynolds k-ε model. 

 
It is noticeable that no additional terms have been included in (3.24), while (3.25) 

contains a term E used to correct the near wall behavior of the modified dissipation rate 
variable.  

The complete system of RANS equations, including mean momentum, continuity and 
closure equations, could be recast in a more synthetic form, first introduced in Borello et 
al. (1997) and more evident in Corsini and Rispoli (2002), that is very general and will be 
used for presenting the other turbulence closures addressed in this work. The formulation 
makes use of fluxes vectors, and the resulting boundary value problem reads as: 

 
( ) ( ), ,

,a dj j
ρ+ ∇ − =F U F U U f 0  in Ω ∈R nsd 

 D=U U  on DΓ                                 (3.26) 
 ,d n N=F θ  on NΓ  

 
where U  is the vector of the averaged unknowns related to U  by 
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T T
1 2 3u , u , u , P, k , 0, 0, 0, P 1, 0, 0ε⎡ ⎤ ⎡ ⎤≡ = + −⎣ ⎦ ⎣ ⎦U U    (3.27) 

 
which could be interpreted in terms of the primary-turbulent flow properties 

T
p 1 2 3u ,u ,u ,0,k ,ε⎡ ⎤≡ ⎣ ⎦U and of the constrained variables , , , , ,

T
c 0 0 0 P 0 0⎡ ⎤≡ ⎣ ⎦U . The 

boundary conditions, specified along the computational domain boundary, generally 
include inflow Dirichlet conditions ( DU ) and outflow Neumann conditions ( Nθ ). On 
solid boundaries, homogeneous Dirichlet conditions are imposed for pU . 

The flux vectors appearing in (3.26) read as: 
 

      ( ) 1 2 3, , , , ,
T

a j j j j j ju u u u u u u u k uρ ρ ρ ρ ρε⎡ ⎤= ⎣ ⎦F U     (3.28a) 

 

( ) 1 2 3, , , , , , , ,
T

t t
d j j j j j

k
0 k

ε

ν νσ σ σ ρ ν ρ ν ε
σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞
∇ = − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
F U U   (3.28b) 

 
with 
 

( )( ), ,
*ij ij t i jj i

P u uσ δ ρ ν ν= − + +    (3.28c) 

 
and the source vector reads as: 
 

  
T2

k 1 1 k 2 20, 0, 0, 0, P D, c f P / k c f / k Eε ε ε εε ε ε⎡ ⎤≡ − − + + − + −⎣ ⎦f  (3.28d) 

 
with ( )k t ij i j t i j i j, j ,i

P 2 S u , u u u ,ν ν= = + , and all the coefficients defined in Tab. 3.1. The 

loosely explicit coupling between the turbulence scale determining equations is 
strengthened by means of the following decomposition of the source vector f: 
 

       ( )rρ ρ− = − +f f F U         (3.29) 
 
where 
 

[ ]Tk 1 1 k0, 0, 0, 0, P D, c f P / k Eε ε ε≡ − − + − −f   (3.30a) 
 

     [ ]Tr k( ) 0,0,0,0,c k ,cεε=F U         (3.30b) 
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with  
 

    

2 2

kc
k

c c f
kε ε ε

ε

ε

=

=
         (3.30c) 

 
By that way the dissipation-destruction budget components in ( )rF U  establish a direct 
non-linear coupling between the turbulence variables. Moreover this kind of 
representation will be useful for the numerical developments of the next Chapter, because 
it introduces the concepts of advective fluxes, namely ( )aF U , diffusive fluxes, namely 

( ),d ∇F U U , and reactive fluxes, namely ( )rF U , which are related respectively to first, 

second and zero order derivatives to the unknowns. 
The final expression of the problem statement reads as: 
 

( ) ( ), ,
, ( )a d rj j

ρ+ ∇ + − =F U F U U F U f 0   in Ω ∈R nsd   

 D=U U  on DΓ                                  (3.31) 
,d n N=F θ  on NΓ      

 
The reader should note that formulation (3.31) is very smart and features a relevant ease 
of implementation in a computer code. 
 
3.3.1.3 The  k-ε-v2-f model 
 

Starting from 1990s’, a growing request for accurate simulations of complex 
turbulent flows, featuring massively separated boundary layers and non-equilibrium 
effects. This necessity led to develop some new turbulence closures with the scope of 
eliminating some of the drawbacks encountered with linear zero, one and two equations 
model. 

It was first noted by Launder (1986) that the standard k-ε model features an 
inappropriate velocity scale (i.e. k) for the turbulent transport toward the wall. In the 
simulation of wall-bounded flows a better choice would be to use the mean square of the 

turbulence fluctuation in the wall-normal direction, namely 2v' . In this respect, one of 

the major shortcomings of using k instead of 2v'  as velocity scale for turbulent transport 
toward the wall is a too early prediction of transition phenomena for complex geometries, 
related to the stagnation point anomaly (see Durbin (1996)). As a remedial strategy 
Durbin (1995) proposes the employment of the k-ε-v2-f turbulence model, which consists 
of three closure equations respectively for the turbulent kinetic energy k, the dissipation 
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rate ε, and the energy of the turbulence fluctuations normal to the streamlines 2v' . An 
additional elliptic relaxation equation is written for the variable f, which models the 

pressure-strain term for 2v' .  
The adopted version of the model refers to Lien et al. (1998) (i.e. it is called the code-

friendly version of the k-ε-v2-f turbulence model), with a modified elliptic relaxation 
variable f  that has homogeneous boundary condition on solid walls. It has been 
implemented in its Low Reynolds extension in Corsini et al. (2004). The linear nature of 
the model arises from the adoption of the Boussinesq approximation of the stress-strain 
relation (3.13), where the turbulent eddy viscosity is now defined as: 

 

       2
t

kc vµν ε′=      (3.32) 

 
The RANS complete formulation is obtained in terms of: momentum components ρ iu  

(i=1,…,3) (where ρ is the density, and iu  the Cartesian averaged velocity components), 
static pressure P , turbulent kinetic energy k, homogeneous dissipation variable 

2
i2 ( k / x )ε ε ν= − ∂ ∂ , average of the square of turbulence fluctuation in the wall-

normal direction, namely 2v' , and modified elliptic relaxation variable f . The boundary 
value problem reads as: 
 

( ) ( )a d r, j , j
( )+ + − =F U F U F U B 0   in Ω ∈R nsd, j = 1,… 3    

 D=U U  on DΓ                            (3.33) 
                              d ,n N=F θ     on NΓ       

 
where D NΓ Γ Γ= ∪ , with D NΓ Γ Ο∩ = , n is the direction normal to the boundary, 
and U  is the vector of the averaged unknowns related to U  by 
 

  

T
2

1 2 3

T

u , u , u , P, k , , v' , f

0, 0, 0, P 1, 0, 0, 0, 0

ε⎡ ⎤≡ =⎢ ⎥⎣ ⎦

⎡ ⎤= + −⎣ ⎦

U

U
                    (3.34) 

 
and could be interpreted in terms of  primary-turbulent flow properties 

T
2

p 1 2 3u ,u ,u ,0,k , ,v , fε⎡ ⎤′≡ ⎢ ⎥⎣ ⎦
U and constrained variable 

T
c 0,0,0, p,0,0,0,0⎡ ⎤≡ ⎣ ⎦U . The 

boundary conditions, specified along the computational domain boundary, generally  
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include inflow Dirichlet conditions ( DU ) and outflow Neumann conditions ( Nθ ). On 
solid boundaries, homogeneous Dirichlet conditions are imposed for pU . The flux 
vectors appearing in (3.34) are defined as: 
 

( )
T

2
a j 1 j 2 j 3 j j j ju u ,u u ,u u ,u ,u k ,u ,u v ,0ρ ρ ρ ρ ρε ρ⎡ ⎤′= ⎢ ⎥⎣ ⎦

F U             (3.35a) 

 
( ) [

]

d 1 j 2 j 3 j

2 2 Tt t t
j j j s j

k k

, , ,

, k , , , , v , , L f ,
ε

σ σ σ

ν ν νρ ν ρ ν ε ρ ν
σ σ σ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′− + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

F U
   (3.35b) 

 
where sL  is the turbulent length scale, defined in Table 3.2, and the stress tensor is as 
defined in (3.28c) for the k-ε model. The reactive terms are described by 
 

      2

T
2

r k fv( ) 0,0,0,0,c k ,c ,c v ,cεε⎡ ⎤′= ⎢ ⎥⎣ ⎦
F U    (3.35c) 

 
with 
 

2

k 2 2
s

fv

1c , c c f ,
k T

c 6 , c 1
k

ε ε ε
ερ ρ

ερ

= =

= =
    (3.35d) 

 
Finally the source vector reads as: 
 

( ) ( )

T
k 1 1 k

2 2
1 s s 2 k

0, 0, 0, 0, P D, c f P / k ,
=

kf , ( C 1)( v k 2 3 ) T 5 T v k C P k

ε ερ ε

ρ ρ

−⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥′ ′− − − + +⎢ ⎥⎣ ⎦⎣ ⎦

B    (3.35e) 

 
Tab. 3.2 shows the 2k v fε− − − closure coefficients, according to the formulation 
implemented in the XENIOS code, well documented in Corsini et al. (2004). 
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σk 1 

σε 1.3 

cε1 1.4(1+0.05 2k v′ )+0.4exp(-0.1 Ret ) 

cε2 1.9 

fε1 1 

fε2 [1-0.3exp(- 2Ret )] 

tRe  2k /( )νε  

cµ  0.22 

kP  ' ' ,i k i ku u uρ−  

D  2 ν( ik / x∂ ∂ )2 

sL  ( )3 2 3 4 1 4
LC max k ,Cηε ν ε    

sT  ( )max k ,6ε ν ε  

1C  1.4 

2C  0.3 

LC  0.23 

Cη  70 

 

Table 3.2. Closure coefficients of the adopted k-ε-v2-f closure. 

 
3.3.2 Limits of linear closures and non-linear k-ε model 
 

The linear EVM approach to turbulent flows represents a valuable tool, both for 
industrial studies, for which it represents the state of the art, and for research 
investigations, where it provides benchmark solutions for the assessment of the results of 
newer models. Unfortunately it suffers from a certain number of drawbacks, with some of 
them resolvable retaining a gradient diffusion point of view, as done with the k-ε-v2-f 
closure, that uses a more reliable turbulent velocity scale toward to the walls. It is also  
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possible to elaborate strategies that permit case by case to modify a linear model, in order 
to avoid some drawbacks, but this procedure is in contrast of the necessity of turbulence 
modeling to be a predictive tool (i.e. the reader could consider the intermittency factor γ, 
which is used as a constraint for the transition phenomena). 

Even in presence of ad-hoc tools, such as the intermittency factor, there are still some 
deficiencies that could not be cured remaining in a linear EVM framework. To mention 
but a few, the most important ones are the isotropy of the eddy viscosity, that is evident in 
definition (3.13), and the material frame-indifference (Gatski and Rumsey (2002)). 
Moreover the standard linear modelling of turbulence is not adequate in presence of 
strong curvature and features a relevant overproduction of turbulence in stagnating flow 
cores (Durbin (1996)), that are a typical feature of turbomachinery flow fields. 

Several studies have been performed in order to remove these deficiencies, without 
abandoning a first moment closure approach, overturning the structure of the equations 
and increasing their number. The most widespread idea is to turn to non-linear relations 
between Reynolds stress components and velocity gradient, as suggested by the non-
Newtonian fluids analogy proposed by Rivlin (1957). Such relationships may be arrived 
at by simplifying stress-transport models (so-called algebraic stress models) (Pope 
(1975)) or by tensor representations, generally routed on the invariant theory in 
continuum mechanics (Lumley (1970)), which are kinematic relations that mimic the 
functional dependencies of stress anisotropies.  

Here an approach belonging to the latter family of models will be addressed, namely 
the cubic formulation proposed by Craft et al. (1996), which gives rise to the non-linear 
k-ε model, labeled CLS96 (Craft, Launder & Suga). To be more precise, let consider 
again the expression of the Reynolds stress components for a first moment closure: 

 

i j t ij iju u [ l* ( ,t ),u* ( ,t )] f ( S ,W )ν′ ′ = ⋅x x    (3.8) 
 
Linear eddy viscosity models are characterized by definition (3.13), which establish a 
linear relation between the Reynolds stress and the Sij tensor. On the contrary, in the non-
linear k-ε, the authors state that in a polynomial sense, in order to have a correct 
flexibility of the function f, it should be at least of the third order in ijS  and ijW . The 
non-isotropic constitutive relation is thus modeled in the form of a third-order polynomial 
of the mean strain and vorticity tensors, and scalar turbulent viscosity νt, where cubic 
terms are able to sensitize the model to streamline curvature effects (Chen and Leschziner 
(1999)). By adopting the Reynolds averaging, the full tensor functional form is: 
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( )

( )

i j ij t ij t ik kj kl kl ij

t ik kj jk ki t ik kj kl kl ij

2
2

t ki lj kj li kl

2 2
2 2

t ij kl kl t

2 k 1u' u' k 2 S 0.1 2S 2S 2S 2S
3 3

k k 10.1 2W 2S 2W 2S 0.26 2W 2W 2W 2W
3

k10c 2S 2W 2S 2W 2S

k k5c 2S 2S 2S 5c

µ

µ µ

δ ν ν δ
ε

ν ν δ
ε ε

ν
ε

ν ν
ε ε

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + −⎜ ⎟
⎝ ⎠

⎛ ⎞− +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ij kl kl2S 2W 2W

     (3.36) 

 

where it is noticeable that ( )ij i j j i
1W u , u ,
2

= − +emjiωm is the absolute vorticity tensor, ωm 

is the frame angular velocity, emji is the permutation tensor. The non-isotropic model 
under investigation is coupled with a two-equation closure. The turbulent velocity- and 
length-scales are determined by solving conservation equations for the turbulent kinetic 
energy (k) and the commonly used homogeneous turbulent dissipation rate ( ε ), that read 
as: 
 

        t
j j i j i j j j

k
u k , u' u' u , k , , Dνε ν

σ
⎡ ⎤⎛ ⎞

= − − + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

   (3.37) 

 

     t
j j 1 1 i j i j 2 2 j j

1 1u , C f u' u' u , C f , , Eε ε ε ε
ε

νε ε ν ε
τ τ σ

⎡ ⎤⎛ ⎞
= − − + + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
   (3.38) 

 
where  

   t c f kµ µν τ=      (3.39) 
 
with τ= /k ε . It is now clear how the CLS96 model features a strong relationship with the 
standard LS74 model, the only difference being the definition of the Reynolds stress term, 
and the expressions and values of the coefficients, reported in  Table 3.3, where a 
comparison is done with respect to the linear k-ε (i.e. the reader could consider the 
argumentations of Corsini and Rispoli (2005)). It is worth noting that both models are 
considered in their Low Reynolds extension, and that the acronyms S and W stand for 
strain and vorticity invariants, which read respectively as ij ijS 2S Sτ=  and 

ij ijW 2W Wτ= .  
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 CLS96 LS74 

νt 
2kc fµ µ ε

 
2kc fµ µ ε

 

cµ 
( )

( )
0.3 1 exp -0.36/exp -0.75 max S ,W

1.5
1 0.35 max S ,W

−

+

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦
0.09 

fµ ( ) ( )0.5 2
1 exp Re / 90 Re / 400t t− − −⎡ ⎤

⎢ ⎥⎣ ⎦
exp[-3.4/(1+ tRe /50)2] 

Ret 2k /( )νε  2k /( )νε  

σk 1 1 

σε 1.3 1.3 

Cε1 1.44 1.44 

Cε2 1.92 1.92 

fε1 1 1 

fε2 [1-0.3exp(- 2
tRe )] [1-0.3exp(- 2

tRe )] 

D 2
i2 ( k / x )ν ∂ ∂  2

i2 ( k / x )ν ∂ ∂  

E 0.0022 S k τνt ( 2
i j ku / x x∂ ∂ ∂ )2 2ννt ( 2

i j ku / x x∂ ∂ ∂ )2 

τ /k ε  /k ε  

kP  ' ' ,i j i ju u u−  t ij i j2 S u ,ν  

 

Table 3.3. Closure coefficients of non-linear k-ε closure compared with linear k-ε. 

 
The RANS complete formulation with the CLS96 closure in its Low Reynolds extension, 
is obtained in terms of: momentum components ρ iu  (i=1,…,3) (where ρ is the density, 
and iu  the Cartesian averaged velocity components), static pressure P , turbulent kinetic 

energy k and homogeneous dissipation variable 2
i2 ( k / x )ε ε ν= − ∂ ∂ . The boundary 

value problem reads as: 
 

( ) ( ), ,
,a dj j

ρ+ ∇ − =F U F U U f 0  in Ω ∈R nsd 

 D=U U  on DΓ                                 (3.40) 
 ,d n N=F θ  on NΓ  
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where U  is the vector of the averaged unknowns related to U  by 
 

T T
1 2 3u , u , u , P, k , 0, 0, 0, P 1, 0, 0ε⎡ ⎤ ⎡ ⎤≡ = + −⎣ ⎦ ⎣ ⎦U U    (3.41) 

 
which could be interpreted in terms of the primary-turbulent flow properties 

T
p 1 2 3u ,u ,u ,0,k ,ε⎡ ⎤≡ ⎣ ⎦U and of the constrained variables , , , , ,

T
c 0 0 0 P 0 0⎡ ⎤≡ ⎣ ⎦U . The 

boundary conditions, specified along the computational domain boundary, generally 
include inflow Dirichlet conditions ( DU ) and outflow Neumann conditions ( Nθ ). On 
solid boundaries, homogeneous Dirichlet conditions are imposed for pU . Up to this point 
no differences are noticeable between the CLS96 problem statement and the LS74 one, 
they will appear now in the definition of the flux vectors appearing in (3.40), which read 
as: 

 

   ( ) 1 2 3, , , , ,
T

a j j j j j ju u u u u u u u k uρ ρ ρ ρ ρε⎡ ⎤= ⎣ ⎦F U    (3.42a) 

 

( ) 1 2 3, , , , , , , ,
T

t t
d j j j j j

k
0 k

ε

ν νσ σ σ ρ ν ρ ν ε
σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞
∇ = − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
F U U   (3.42b) 

 
with 
 

( )( ), ,
*ij ij t i jj i

P u uσ δ ρ ν ν= − + +    (3.42c) 

 
and the source vector reads as: 
 

T2

M 1 M 2 M 3 k 1 1 k 2 2P , P , P , 0, P D, c f P c f E
k kε ε ε ε
ε εε

⎡ ⎤
≡ − − + + − + −⎢ ⎥

⎢ ⎥⎣ ⎦
f     (3.42d) 

 
Concerning the momentum source components MiP , they account for volume sources 
originating from square and cubic terms in the assumed constitutive relation (3.36). As 
for the other closures presented, the loosely explicit coupling between the turbulence 
scale determining equations is strengthened by means of the following decomposition of 
the source vector f: 
 

       ( )rρ ρ− = − +f f F U         (3.43) 
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where 
 

[ ]Tk 1 1 k0, 0, 0, 0, P D, c f P / k Eε ε ε≡ − − + − −f   (3.44a) 
 

     [ ]Tr k( ) 0,0,0,0,c k ,cεε=F U          (3.44b) 
 
with  
 

   

2 2

kc
k

c c f
kε ε ε

ε

ε

=

=
     (3.44c) 

 
In terms of advective ( )aF U , diffusive ( ),d ∇F U U  and reactive ( )rF U  fluxes, the final 

expression of the problem statement reads as: 
 

            ( ) ( ), ,
, ( )a d rj j

ρ+ ∇ + − =F U F U U F U f 0   in Ω ∈R nsd    

 D=U U  on DΓ                                 (3.45) 
,d n N=F θ  on NΓ      

 
 
3.4 Hints on LES and Hybrid RANS/LES 
 

One of the main characteristics of turbulent flows is the dominant non-linearity and 
the continuous and wide spectrum of observed scales. In a DNS calculation no model is 
applied to turbulent scales so that motions of all sizes could be resolved, but the price that 
must be paid is in terms of a too expensive grid. On a practical point of view, probably 
this limit is not the main shortcoming of DNS, or not the only one, because another main 
issue is that a great number of points generates a large amount of data, that is 
unaffordable and sometimes useless to manage with. Probably this is the major drawback 
that reduces the reliability of DNS for many applications (mostly in the industrial field), 
as well described in Frölich and Rodi (2002). 

An approach that permits to adopt a coarser grid, able to capture the larger eddies of 
the flow, would be a very good compromise between the DNS and the RANS, which is 
characterized by some difficulties in the computation of more complex flows, probably 
due to the necessity of improved models. In order to accurately resolve the larger scales, 
it is of fundamental importance to model the effect of the finer ones on them. 
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The idea behind LES (Large Eddy Simulation) is to develop a method which needs a 
coarser grid with respect to DNS, and is able to resolve larger eddies taking into account 
the effect of the smaller scales by means of a subgrid-scale (SGS) model. The starting 
point is the Navier-Stokes equations system, including the time dependent term:  

 

       
j , j

i ,t j i , j i i , j j ,i j

u 0

u u u P, [ ( u u )],ρ ρ µ

=

+ = − + +
   (3.46) 

 
In order to have a quick look at the method (for a more detailed description and 
references the reader could consult for example the book from Pope (2000)), the approach 
to obtain the LES system of equations is conceptually different from the one adopted in 
RANS, because now an operation of filtering is pursued, which decomposes the velocity 
field as follows: 
 

       ( ,t ) ( ,t ) ( ,t )= +U x U x u x            (3.47) 
 
where ( ,t )U x  represents the filtered velocity field, which is three-dimensional and time-
dependent, while ( ,t )u x  is the subgrid scale component. The procedure followed to 
obtain the closure of the system is to include this decomposition in the Navier-Stokes 
equations, and to model the subgrid contribution arising from the convective term. In this 
respect, there have been a lot of works on the argument of SGS modeling, but here only 
two milestones will be quoted, namely the first pioneer work on LES by Smagorinsky 
(1963) and the more recent dynamic SGS by Germano et al. (1991). After having included 
the SGS model in the filtered Navier-Stokes equation, it is possible to solve for the 
filtered velocity field, which permits to obtain the evolution of the large eddies of the 
motion. 

Unfortunately, for accurate predictions of wall-bounded flows, LES imposes severe 
near-wall grid resolution constraints (very close to those imposed by DNS) in all the 
directions, while RANS needs a proper resolution only in wall-normal direction. 
Moreover there is no sufficient confidence in the LES performance on unstructured grids, 
which are necessary to discretize the complex geometries and wall topologies pertinent to 
industrial CFD (Hanjalic (2005)). Finally, it should be noted that LES is defined as a 
three-dimensional time-dependent tool, thus needing three-dimensional grids and long 
time calculations. 

In the work by Hanjalic (2005) it is claimed that LES will be more and more useful in 
a research context in parallel with DNS, but for the daily industrial application the RANS 
approach will be preferred, because of several reasons, including the necessity of 
shortening design and market time, and the continuous broadening of the applicability of 
CFD, that must handle more and more complex problems and would require prohibitive 
computer resources for LES calculations. 

As a compromise solution for realistic engineering and environmental flows, an 
attractive proposition is to combine LES and RANS, into an Hybrid RANS/LES approach. 
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In this context, among the different proposed strategies, the most popular is the zonal 
approach, where LES on coarse grid is applied far from the wall, while RANS is used to 
compute the near wall flow field. The key problem of this approach is to find an 
appropriate location for the interface between the two zones and to find proper matching 
conditions between the two flow fields. Several investigations have been developing in 
the framework of Hybrid RANS/LES, and their results are expected to give also some 
answers about how to improve advanced RANS closures. 
 

 

3.5 Structure of turbulence closure equations and Finite 
Element algorithm 
 

After the description of the adopted turbulence closures, a complete understanding of 
a CFD method could be reached only if some key ingredients are explained in detail. 
More in particular it is necessary to discuss the analytical structure of the mathematical 
operators and how they fit in the numerical formulation implemented in the computer 
code, the solution algorithm adopted and  the numerical tools that permit to obtain 
accurate and stable solutions. In the following, a short presentation of the main 
computational features of the XENIOS code is done, except for the subject of accuracy 
and stability, considered a key point of this work and widely discussed in the next 
Chapter. 

All the turbulence closures considered in this work share a common RANS problem 
statement structure, which reads as: 
 

          ( ) ( ), ,
, ( )a d rj j

ρ+ ∇ + − =F U F U U F U f 0   in Ω ∈R nsd    

 D=U U  on DΓ                                 (3.48) 
 
                                            ,d n N=F θ   on NΓ    

 
It is important to stress again on the fact that the flux vectors represent advective ( )aF U , 

diffusive ( ),d ∇F U U  and reactive ( )rF U  contributions. In this respect, the next Chapter 

will focus attention on the numerical difficulties introduced by advective and reactive 
operators.  

On the computational point of view, an incompressible Navier-Stokes fixed point 
problem (i.e. see Corsini and Rispoli (2002) for more details) is solved with a fully-
coupled Oseen-like form that contains linearized operators with respect to the ones in 
(3.48), reading as follows:  
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         ( ) ( ), ,
, ( )a d rj j

ρ+ ∇ + − =U U U U 0F F F f  in Ω ∈R nsd                           (3.49) 

 
where ( ),a j

UF  is linearized with a given velocity field (i.e. the velocity field itself 

evaluated at the preceding equilibrium iteration), and ( ),
,d j
∇U UF , ( )r UF , f  are the 

linearized version of their corresponding operators.  
The solution procedure features the possibility of data decomposition using an in-

house made code developed to guarantee both the minimization of the message passing 
requirements and the load balancing, with MPI libraries used for the message passing 
operations (i.e. see overlapping Domain Decomposition procedure in Borello et al. 
(2003)). This characteristic of the XENIOS code permits to manage with “large” grids, 
with reference to both the spatial domain and the nodes quantity attributes. 

Finally, the fully coupled solution of the RANS equations involves a Flexible 
Generalized Minimal Residual (FGMRES) solver (Saad (1993)) with convergence 
thresholds imposed on both the relative residual r norm ( res k 02 2R r r= ), where k 
indicates the current iteration, and the relative difference between two consecutive norms 
(Rsol = k k 1 k2 2 2U U U−− ) of the solution.  
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Chapter 4 
 

 

STABILIZED FINITE ELEMENT METHODS 

 

4.1 Introduction 
 

It is a matter of fact that most of the differential equation systems that model the real 
physics don’t have a known analytical solution, mainly due to complex geometries and 
particular sets of boundary conditions. In order to circumvent these difficulties 
computational science arose and has been growing up for at least three decades, in 
parallel with the performance of computers, introducing several numerical techniques to 
obtain approximate solutions of the original problems. Among these numerical tools, the 
Finite Element method (FEM) represents a valuable choice in the solution of many 
engineering problems, fluid dynamics being one of the most important fields of 
application. The most common FEM is the weighted residual Galerkin formulation, 
already described in Chapter 1, which revealed as an optimal method for structural 
problems but showed some deficiencies for computational fluid dynamics (CFD), where 
in presence of “certain conditions” the solution becomes oscillating and unstable, and 
loses accuracy. 

In this Chapter an investigation on the origins of instability of the numerical behavior 
will be performed, showing how it fits in fluid dynamics of turbulent flows, and 
describing some parameters of the discretized system of equations that govern this issue. 
After that an extensive analysis of the most common formulations proposed in literature 
to overcome instabilities will be pursued, focusing on both the well established Petrov-
Galerkin (PG) framework and the newer Variational MultiScale (VMS) approach. The 
discussion will be enriched by some original contributions from the author and the 
research team to which he belongs, that have given rise to some new stabilized finite 
element methods for advection-diffusion-reaction operators,  subject of recent 
publications and widely tested in the final Chapters of this work on both model problems 
and real turbomachinery flows. 

Nonetheless, before addressing the theme of stabilization, it is necessary a 
preliminary short discussion to clarify the concepts of convergence, stability and 
consistency. To this end, let consider a simple first order differential equation in one-
dimension, described by this Cauchy  problem: 
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0 0

y'( x ) f ( x, y( x ))
y( x ) y

=⎧
⎨ =⎩

    (4.1) 

 
Suppose the exact solution is the function y(xi) and the domain of the problem is 

0 0I [ x ,x ]β= + . Its discretization is obtained by means of n+1 nodes, which define n 
intervals of the same length, labeled h,. The numerical solution of the original problems is 
computed with the following system of difference equations: 

 
     i k i i k iy G( x ,y ,..., y ;h; f ), 0 i n k+ += ⇒ ≤ ≤ −    (4.2) 

 
where k is the order of the difference equations, which depends on the previous k 
computed values of the solution, the characteristic dimension h of the grid, and the 
original differential operator f.  If we define the error or residual as: 
 

  i k i k i ke y( x ) y+ + += −      (4.3) 
 
we could isolate two contributions as follows: 
 

( ) ( )
i k i k i i k i i i

i i k i i , i k i

e y( x ) G( x , y ,..., y ;h; f ) R( x , y( x );h; f )

G x ,y( x ),.., y( x );h; f G x y ,.., y ;h; f
+ + +

+ +

= − = +

⎡ ⎤+ −⎣ ⎦
 (4.4) 

 
the first one, labeled as R, is the local truncation error of the generic i-th step of the 
method, while the second is the propagation error due to the fact that the determination 
of yi+k is obtained in terms of approximated values on the preceding nodes. The numerical 
method is said to be convergent when: 

 

i
h 0 1 i n

e 0lim max
−> ≤ ≤

⎛ ⎞ =⎜ ⎟
⎝ ⎠

       (4.5) 

 
The first necessary condition for convergence is that all the local truncation error are 
infinitesimal with the characteristic dimension h of the grid, which means that the method 
must be consistent, as stated in the following relationship: 
 

       
( )

h 0

R x, y( x );h; f
0lim

h−>
=         (4.6) 

 
Unfortunately this is not sufficient, because the propagation error could corrupt the 
method step by step during the calculations. The concept of stability stems from the 
propagation error, and could be well described stating that if the propagation error does 
not corrupt the solution, the method is said to be stable. Stability and consistency together 
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define a sufficient condition for the convergence of the numerical solution to the exact 
one. For a more detailed discussion about errors and “best approximation” property, 
focused on the Galerkin method, the reader could consult the book from Hughes (2000). 
 
 
4.2 Numerical instabilities in CFD and classical remedial 
strategies 
 

Let recall the general Oseen-like form of the RANS system of equations, used to 
implement the governing equations that model turbulent flows into a CFD code: 

 

( ) ( ), ,
, ( )a d rj j

+ ∇ + − =U U U U 0F F F B  in Ω ∈R nsd  

                           

D=U U  on  DΓ    (4.7) 
                  

                                         ,d n N= θF  on NΓ       
  

where ( ),a j
UF  is linearized with a given velocity field (i.e. the velocity field itself 

evaluated at the preceding equilibrium iteration), and ( ),
,d j
∇U UF , ( )r UF , B  are the 

linearized version of their corresponding operators. By introducing the following vector 
function spaces for n degrees of freedom: 
 

     ( )1h ΩH  = ( )
n1hH Ω⎡ ⎤

⎣ ⎦  
 

       ( )1h
0 ΩH  =  ( )

n1h
0H Ω⎡ ⎤

⎣ ⎦     (4.8) 
   

   ( )( 1 / 2 )h ΩH  = ( )
n( 1 / 2 )hH Ω⎡ ⎤

⎣ ⎦  
 
By adopting the same notation used in the preceding Chapters, the finite dimensional 
spaces of trial and test vector functions, for primary and constrained (i.e. pressure) 
variables, are defined as: 
 

   ( ) ( ){ }on
h h hh 1h ( 1 2 )h
p p pp D D D D, Γ ,Ω Γ= ∈ = ∈S U U H U U U H               

              ( ){ }onh h h 1h h
p p p 0 p D, 0Ω Γ= ∈ =W w w H w                         (4.9) 

                                ( ) ( ){ }h hh h 1h h h 1h
c cc c 0 c c 0S W U U H , w w HΩ Ω= = ∈ ∈  
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where the Galerkin test functions could be the ones for mixed elements, namely quadratic 
for primary variables and linear for constrained ones (in the following a description of 
some problems related to the combination of interpolation spaces will be performed). The 
associated weights functions could be written in vector form as: 
 

Th h h h h h h h h
p p p c p p p pw , w , w , w , w , w , w , w⎡ ⎤= ⎣ ⎦w     (4.10) 

 
The approximated variational formulation of the linearized problem (4.7) could be thus 
written in a synthetic and meaningful way: 
 

find 
h 1h∈U H  h h

p p∀ ∈w W , h h
c cw W∀ ∈ , such that 

    ( ) ( ) ( ) ( ) ( )N
N

h h h h h h h h h
N |c , , s , r , , , Γ Γ

+ + = −V U w U w U w w wθB    (4.11) 

 
with the use of bi-linear and tri-linear forms: 
 
 

( )h h h h
, j ds , d

Ω
Ω= − ⋅∫U w w F  

 

( )h h, d
Ω

Ω= ⋅∫w wB B  

                   

( )N NNN

h h
N | | N, dΓ ΓΓΓ

Γ= ⋅∫θ w w θ                      (4.12) 

 
                                          ( )h h h h

a jc , , , d
Ω

Ω= ⋅∫V U w w F           

                 
                                           ( ) hh h h

rr , d
Ω

Ω= ⋅∫U w w F  

 
It is thus remarkable that generally the scalar equations that compose the RANS system 
appear in a complete advective-diffusive-reactive form. Diffusion, advection and reaction 
respectively refer to those terms in the partial differential equations (PDE) involving 
second, first and zero order derivatives of the unknowns.  

In this viewpoint each of the equations composing (4.11) could be written, with 
respect to the corresponding unknown U, as follows: 
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a j d j rF (U ), F (U ), F (U ) B+ + =  in Ω ∈R nsd, j = 1, …, 3     (4.13) 
 

DU U=      on Γ       
 

where for the sake of simplicity only Dirichlet boundary conditions have been 
considered, and the structure of the operators reads as: 
 

      

a j

d j

r

F (U ) u U

F (U ) kU ,

F (U ) cU

=

= −

=
           (4.14) 

 
In (4.13) and (4.14), nsd is the number of space dimensions, k > 0 is a constant 
diffusivity, ju  are solenoidal velocity components, c ≥ 0 is a reaction coefficient, and B 
the source term. According to these choices, that are representative of all the conditions 
encountered in RANS framework, the solution behavior for each of the scalar unknowns 
U is exponential (Corsini et al. (2005a)). Even if the reader should be aware of the fact 
that there is an intrinsic coupling between these equations, the problem of stabilization 
could be more easily addressed considering the problem statement (4.13), because it is a 
generalized form that could be simply specialized for each of the variables appearing in 
the turbulence closures presented in this work. 

The numerical discretization of (4.13) must adequately tackle the instability origins 
that stem from the advective (Leonard (1979)) or diffusive limit for incompressible fluid 
(Gresho (1981)), as well that related to the reaction dominated flow conditions (Tezduyar 
and Park (1986), Harari and Hughes (1994)). The next Subsections deal with all these 
numerical difficulties, in the attempt to give an explanation for each of them and to obtain 
some qualitative and quantitative parameters that permit to define the conditions under 
which the Galerkin method is stable or not. Moreover a discussion about the instabilities 
due to the presence of shocks and relevant solution gradients will be included. 

Each of the Subsections here included will be completed by the presentation of the 
classical approaches to tackle the related instability origin. Actually it must be recalled 
that a multitude of stabilized formulations could be found in the open literature, and 
probably a specialized text on the subject of stabilization would not be sufficient to 
include all of them. However, here for “classical” the author intends the methods based 
on the Petrov-Galerkin approach, which is characterized by a modification of the weight 
functions, and represents a well-established framework. In this work the PSPG method 
will be considered for the incompressibility constraint, the non-consistent Streamline 
Upwind and the SUPG for advection effects, the SPG for reactive features, and the 
Discontinuity Capturing for the treatment of gradients and shocks. It is worth noting that 
from now on, where possible, the superscript h will be removed from weight and trial 
functions, in order to have simpler expressions, even if it will be granted that finite 
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dimensional functional spaces are considered, in accordance to the concepts explained in 
Chapter 1.  
 
4.2.1 Interpolation spaces and incompressibility constraint 
 

The continuity equation for incompressible flows expresses a constraint for the 
velocity field, called incompressibility constraint, due to its equivalence with the 
Poisson’s equation for the pressure field. In practice, pressure becomes a sort of 
Lagrange multiplier for this constraint, that must be fulfilled iteration after iteration by 
the computed velocity filed. In this way the number of equations is less than the total 
unknowns because conservation of mass has been degraded to a constraint, and there is an 
indetermination that makes the solution unstable. Babuska and Brezzi explained in detail 
this problem and found (i.e. see Babuska (1971) or Brezzi (1976)) that it can be avoided 
using certain pair of interpolation spaces for velocity and pressure fields, that fulfil the so-
called div-stab or Babuska-Brezzi conditions. 

Among these stable combinations of velocity and pressure interpolation spaced used 
in CFD computations, probably the most widespread is the mixed Q2Q1 one, that uses 
quadratic functions for velocity components and linear for pressure. This choice features 
several benefits for the calculations, because it permits to avoid the pressure 
checkerboarding effects related to the incompressibility constraint, and in parallel enables 
a more accurate description of the velocity field. Notwithstanding, some problems could 
arise due to its coding complexity related to the non-negligibility of second-order 
derivatives, and due to its more demanding computational load. 
 
4.2.1.1 PSPG stabilization 
 

The Q2Q1 element will be widely used in the rest of this work, and ad-hoc stabilized 
formulations will be derived for quadratic spaces of interpolations,  for avoiding the 
oscillations due to advection, reaction and gradient effects. Nonetheless the equal order 
Q1Q1 element, which employs linear interpolation functions for both velocity and 
pressure, is simpler and less demanding, so there has been a lot of research effort to 
circumvent the Babuska-Brezzi condition without using mixed finite elements. A good 
solution to this problem is represented by the PSPG stabilization (Pressure Stabilizing 
Petrov-Galerkin)  that creates a relaxation of the incompressibility constraint and 
introduces in it a term that is proportional to the residual of the momentum equation. This 
procedure is well explained in  Tezduyar et al. (1992), and the resulting perturbation of 
the continuity equation, which is made proportional to the momentum residual, makes use 
of a function cπ  that reads as: 

 

c c, j
h zw

2 U
π =     (4.15) 
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where U is the global scaling velocity, h is the geometric characteristic length of the 
element considered, namely the diameter of the area-equivalent circle (in the following 
other definitions will be proposed for h), and the intensity of the stabilization parameter is 
defined by means of the z magic function proposed in Tezduyar et al. (1992): 
 

 # #
U U #

U

1z(Re ) coth(Re )
Re

= −     (4.16) 

. 
where #

URe  is a local Reynolds number, calculated with the global scaling velocity and 
the local length scale h.  

It has been demonstrated that the introduction of PSPG is beneficial also in presence 
of mixed Q2Q1 formulations, due to the elimination of zero diagonal entries in the 
resulting matrices (Borello et al. (2003)). It is therefore worth explaining the 
modifications that it introduces in the variational formulation of the RANS system. In  
practice a new contribution must be added to the weighted residual form of the continuity 
equation, that reads as: 

 

( ) ( )( )
e

nel M
c a, j d , j r c

e 1
d

Ω
Π π π Ω

=
= + + −∑∫ F F F B         (4.17) 

 
where the superscript (M) refers to the momentum residual, and the stabilizing 
contributions are confined on the element interior according to the continuity properties 
of the lower order perturbation function. In the next Sections, it will be clarified that 
(4.17) gives rise, together with other stabilization integrals, to a global stabilization 
vector that could be interpreted as a perturbation of the weight functions of the Galerkin 
formulation, thus explaining the attribute of Petrov-Galerkin formulations, which are 
characterized by weight and trial functions which differ.  
 

4.2.2 Advection induced instabilities 
 

Since the appearance of the first works by Hughes and Brooks (1982a, 1982b), the 
subject of advection (or convection) induced instabilities, mainly appearing in fluid flows 
computation, has been widely studied, with enormous production of literature and 
theories, speculating on both the origin of this numerical drawback and the possible 
solutions. In the following a short description of the problem will be performed, enriched 
by some helpful mathematical explanations, that will be recalled later, when presenting 
the stabilized formulations for advection effects. 

Early computations of convective transport problems with the Galerkin method gave 
rise to unsatisfactory results (Hughes and Brooks (1982a)), also on simple configurations, 
such as the following second order linear differential equation in one-dimension for the 
scalar unknown U (i.e. it could represent the temperature field): 
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        x xxuU , kU ,=            (4.18) 
 
on the domain (0,L), with boundary conditions U(0)=0, U(L)=1. It is worth mentioning 
that (4.18) could be seen as a specialized homogeneous counterpart of (4.13) in one-
dimension with null reaction. The exact solution has a known exponential behavior and 
reads as follows: 
 

          
ux / k

uL / k
1 eU( x )
1 e

−=
−

         (4.19) 

 
It was noted that for a dominating convection effect, the numerical solution featured node 
to node oscillations (or wiggles), that ruined the quality of the result. The explanation to 
this behavior is that the convection term leads to a non-symmetric (or skew-symmetric) 
matrix, with a lack of diagonal terms. As a first remedial strategy, it is possible to 
extremely refine the mesh, with the counterpart of a rapidly increasing computational 
load. The fact that the quality of the results is related to the grid refinement could be 
helpful in defining a mathematical non-dimensional parameter that governs the solution 
behavior, namely the element (or local) Peclet number (Pe), which reads as: 
 

    
u h

Pe
2k

=       (4.20) 

 
where the euclidean norm of the velocity has been considered, in order to have a 
definition valid for the multi-dimensional context too. It is thus possible to have a 
quantitative evaluation of the advection-to-diffusion ratio, with respect to the adopted 
grid. Fig. 4.1 shows in a qualitative way that when Pe number grows up, the solution of 
the proposed problem with the Galerkin method on linear finite elements starts to feature 
more and more oscillations. It is worth noting that in this discussion u has been 
considered as positive. 
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Fig. 4.1. Effect of increasing Pe; solid line=exact, dashed=Galerkin. 

 
As a matter of fact the shown oscillations (or wiggles) often corrupt all the solution field, 
especially for multidimensional problems, thus corrupting the convergence of iterative 
solution procedures and leading to poor results. Therefore it is of fundamental importance 
to determine which is the cut-off value that separates the stable region of Pe values from 
the unstable one, let consider the i-th equation of the tri-diagonal system arising from the 
application of the Galerkin method, in case of u>0: 
 

    [ ] [ ]i 1 i i 1 i 1 i 1U 2U U Pe U U 0− + − +− + − + − + =    (4.21) 
 
Following argumentations similar to those used in Corsini et al. (2005b) for a more 
general context (i.e. the advection-diffusion-reaction problem, that will be addressed in 
the following), it could be demonstrated that the so-called Galerkin nodal amplification 
factors (see Harari and Hughes (1994)), which are the solutions of the characteristic 
equation associated to Eq. (4.21), purely depend on the magnitude of Peclet: 

U 

x 

Pe=0.5

Pe=1.25

Pe=2
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                1 Pe
1 Pe

ρ − ±=
− +

     (4.22) 

 
The influence exerted on ρ shows that the exact solution exponential behavior could be 
preserved only with Pe < 1, because both the nodal amplification factors are positive. On 
the contrary, if Pe grows up, that could be interpreted as a coarsening of the mesh while 
velocity and diffusion remain constant, no stability is guaranteed, and oscillatory behavior 
starts to appear. This circumstance confirms the need of designing a stabilized scheme 
with built-in component to preclude oscillatory behavior in advection dominated cases.  

Before starting the description of the stabilization techniques addressed in this work, 
let point out an important concept about oscillations (or wiggles): a possible interpretation 
of numerical instabilities in general (i.e. both due to advection and to reaction effects) 
could be that they signal a grid space too coarse to resolve certain features (Gresho and 
Lee (1979)), such as boundary layers. In this way they could be used as an input for 
adapting meshing tools, but this argumentations are not acceptable for two major reasons: 
first, the most complex problems, such as turbomachinery flows, would require an 
exaggerate number of nodes, and second, not all the flow features must be well resolved, 
the important being that their unsatisfactory computation must not ruin the rest of the 
solution.     
 

4.2.2.1 Streamline Upwind non-consistent stabilization 
 

Originating from the concept of upwind differences, the first solution proposed   for 
advection induced instabilities has been the use of upwind differencing the convective 
term, which means writing it in terms of the central value and the one upstream, as 
follows: 

 

    i i 1
x

U UuU , u
x∆

−−≈     (4.23) 

 
In this way the matrix recovers a diagonal dominance, and instabilities disappear. This 
operation could be interpreted as an additional “artificial viscosity” to the original 
differential problem, namely: 
 

       
uhk
2

=      (4.24) 

 

An early recognized drawback of this procedure, called upwind method, is a resulting 
overly diffuse solution, and a lose in accuracy (i.e. upwind differences are only first-order 
accurate, as well explained in Hughes and Brooks (1982a)). The interpretation of upwind  
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differences as additional viscosity generated extensive criticism on the upwind method as 
it was, thus leading to more research on the argument. A first improving solution was 
recognized to be the addition of a stabilization term, depending on the Peclet magnitude, 
with a resulting artificial viscosity equal to: 
 

uhk
2

sgn( u )coth[sgn( u )Pe] Pe

ξ

ξ

=

= −

   (4.25) 

 
where the sgn function permits to correctly take into account the sign of u and to upwind 
the convective term, while the stabilization coefficient ξ damps the artificial viscosity, as 
shown in Fig. 4.2. 
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Fig. 4.2. Upwind magic function behavior. 

 
Nonetheless, for multidimensional problems, still some difficulties were encountered 

due to the isotropic nature of the operator introduced, generalized by means of the 
euclidean norm of the velocity as: 
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u h
k

2

1coth( Pe ) Pe

ξ

ξ

=

= −

    (4.26) 

 
The results obtained with these expression of the additional viscosity are characterized by 
an excessive crosswind diffusion, and this circumstance led to the development of the 
Streamline Upwind formulation, which makes use of a non-isotropic additional viscosity, 
and results in an equivalent perturbation of the weight of the convective term that reads 
as: 
 

          p k k
h 1 ( u w, )
2 u

π ξ=     (4.27) 

 
In this way both the crosswind and streamline components of the additional diffusion are 
limited, thus leading to quite satisfactory results. The resulting variational formulation for 
the RANS system of equations reads generally as: 
 

find 
h 1h∈U H  h h

p p∀ ∈w W , h h
c cw W∀ ∈ , such that 

( ) ( ) ( ) ( ) ( )N
N

h h h h h h h h h
N |c , , s , r , ( ) , , Γ Γ

Π+ + + = −V U w U w U w w wBπ θ (4.28) 

 
where a stabilization integral has been added to (4.11), which reads as: 
 
 

     ( )
e

nel

p a, j p
e 1

d
Ω

Π π π Ω
=

=∑∫ F     (4.29a) 

 

  ( ) ( )( )
e

nel M
c a, j d , j r c

e 1
d

Ω
Π π π Ω

=
= + + −∑∫ F F F B   (4.29b) 

 
where (4.29a) is added to the equations of the primary variables, and (4.29b) represents 
the PSPG contribution to continuity equation.  
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4.2.2.2 SUPG stabilization 
 

The Streamline Upwind represents a smart solution for improving Galerkin finite 
elements in solving advection diffusion problems with relevant Peclet number. 
Notwithstanding the results continue to show an excessive diffusion, and upwinding the 
convection term is not consistent with the centrally weighted reaction and transient terms. 
For these reasons, Hughes and Brooks (1982a, 1982b) developed a Petrov-Galerkin 
method, based on an upwinding procedure for all the terms of the equation, and named 
SUPG (i.e. Streamline Upwind Petrov-Galerkin). In this way, the recovered consistency 
of the numerical scheme enabled the definitive separation between numerics of finite 
elements and finite differences.  

SUPG is probably the most famous stabilized formulation, and finds application in 
commercial as well as research codes. It consists in applying to all the terms of the 
equations the weight perturbation πp already defined in (4.27). 

In this work we would like to approach the SUPG in such a way to understand how 
the final expression of the magic function ξ, which from now on will be called ζa, due to 
the fact that it tackles advection effects, could be rigorously obtained. To this end, let 
consider the modified weight function that is possible to obtain for the i-th node of the 
numerical scheme: 

 

i ii i p i aw w w Pπ ζ= + = +     (4.30) 
 
It is worth noting that the perturbation πp could be decomposed in two factors: 
 

        p SUPG k k a k k
h( u w, ) ( u w, )

2 u
π τ ζ= =          (4.31) 

 
In (4.31) the τSUPG parameter is called intrinsic time scale, due to its physical dimension. 
Let now consider the perturbed form assumed by (4.21) if we apply SUPG on linear finite 
elements: 
 

         [ ] [ ]
a

i 1 i i 1 i 1 i 1

k u h u2 U U U U U 0
h 2

ζ

− + − +

+
− + − + − + =        (4.32) 

 
If we impose the exact exponential behavior on the discrete nodal solutions appearing in 
(4.32), it turns to an equation in the unknown ζa, that has the following solution: 
 

a
1coth( Pe ) Peζ = −     (4.33) 

 
No surprise with the fact that the obtained expression is equal to the one proposed by 
Hughes and Brooks in their early works on Petrov-Galerkin upwind finite elements. The 
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magic function, that assumes the character of a stabilization function, permits to obtain 
nodal exact solution in the advection-diffusion homogeneous one-dimensional 
counterpart of problem (4.13), and has the behavior shown in Fig. 4.2, tuning the 
stabilization effect in view of the Peclet value, that represents the relative importance of 
advection with respect to diffusion. The conditions fulfilled by ζa are summarized in the 
so-called super-convergence feature (i.e. nodal exactness for the discrete solution of the 
one-dimensional homogeneous linear differential equation), well described in Corsini et 
al. (2005b), that represents the basis for all the Petrov-Galerkin formulations presented in 
the following. 

The final expression of SUPG stabilized formulation for linear elements, obtained 
including (4.33) in (4.31) could be easily generalized to multi-dimensional problems by 
choosing an adequate estimate of the element characteristic length. In the open literature, 
several expression appears, but for this work the author decided to restrict the choice 
between three different possibilities:  

 
1. the geometric element characteristic length h, equal to the diameter of the 

circle equivalent to the considered element; 
2. the streamline element characteristic length  
 

     1
a

a
h 2( N )−= ⋅∑ s ∇     (4.34) 

 
where s represents the unit vector in direction of the streamlines and Na is the 
interpolation function associated to the a-th node of the element considered. 
This kind of length has been defined and applied with success in several 
works from Tezduyar and coauthors, starting from Tezduyar and Park (1986), 
and labeled hUGN  in Tezduyar and Osawa (2000); 

3. the gradient element characteristic length  
 

    1
a

a
h 2( N )−= ⋅∑ r ∇     (4.35) 

 
where r represents the unit vector in direction of the gradient, as proposed in 
Tezduyar (2003), where this length is labelled hRGN., which is very useful for 
problems with relevant reaction or where gradients are predominant, as will 
be clarified in the following. 

 
Before presenting the formulation of the RANS problem stabilized with SUPG and PSPG 
formulations, a further capital question must be addressed: is this SUPG suitable for 
higher order elements, in particular Q2 ones? The answer is negative, because the nodal 
exactness (based on the super-convergence condition) of the discrete solution must be 
imposed on all the nodes of the grid. Provided that different equations could be obtained 
for the extreme and central nodes of a quadratic three-nodes one-dimensional element 
(see Codina et al. (1992)), it is possible to find two optimal modified weights, one for  



Chapter 4                                                           Stabilized Finite Element Methods 

75 

 
 
 
 
 
central nodes, labelled a2ζ , and one for extreme nodes, labelled a1ζ , on the basis of the 
following discrete equations for central nodes: 
 

a2 i 1 a2 i

a2 i 1

[ 4 2Pe 4 Pe ]U [ 8 8 Pe]U
[ 4 2Pe 4 Pe ]U 0

ζ ζ
ζ

−

+

− − − + + +
+ − + − =

  (4.36) 

 
and for extreme (or corner) nodes: 
 

a1 a1 i 2 a1 a1 i 1

a1 i a1 a1 i 1

a1 a1 i 2

[1 Pe 6 Pe]U [ 8 4Pe 12 8 Pe]U

[14 14 Pe]U [ 8 4Pe 12 8 Pe]U

[1 Pe 6 Pe]U 0

ζ ζ ζ ζ

ζ ζ ζ

ζ ζ

− −

+

+

+ − + + − − + − +

+ + + − + − −

+ − + + =

 (4.37) 

 
Imposing nodal exactness of the discrete solution and following the simple manipulations 
described in Codina et al. (1992), it is possible to obtain the following expression for the 
stabilization functions of the SUPG Q2 stabilization: 
 

a2
1( Pe ) [coth( Pe / 2 ) 2 / Pe]
2

ζ = −    (4.38a) 

 

        
2

a2 a2
a1 2

a2

( 3 3 Pe )tanh( Pe ) ( 3Pe Pe )( Pe )
[ 2 3 tanh( Pe )]Pe

ζ ζζ
ζ

+ − +=
−

  (4.38b) 

 
It is worth noting that the stabilization function for extreme nodes depends on the one for 
central nodes, due to the fact that for quadratic elements the shape functions associated to 
corner nodes involve adjacent elements (e.g. for the influence of interpolation space order 
on stabilization parameters, see Akin and Tezduyar (2004)). The behavior of these magic 
functions for the SUPG Q2 formulation is shown in Fig. 4.3. 
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 Fig. 

4.3. Stabilization functions for SUPG Q2; solid line: ζa2, dashed line: ζa1. 

 
For the multi-dimensional extension of SUPG Q2, it is important to define which are 

the central nodes and which the extreme nodes. This operation could be performed by 
means of the knowledge of the streamline direction with respect to the axes of the logic 
system of coordinates for the element considered, and is explained in Codina et al. 
(1992), where it is clarified that some nodes are of intermediate nature, i.e. their 
stabilization function is a combination of a1ζ  and a2ζ . 

It is now possible to present the global formulation of the SUPG/PSPG stabilized 
formulation of the RANS system of equations, that could be applied for all the turbulence 
closures presented in this work: 
 

find 
h 1h∈U H  h h

p p∀ ∈w W , h h
c cw W∀ ∈ , such that 

( ) ( ) ( ) ( ) ( )N
N

h h h h h h h h h
N |c , , s , r , ( ) , , Γ Γ

Π+ + + = −V U w U w U w w wBπ θ (4.39) 

where all the bi-linear and tri-linear forms are as defined in (4.11) and (4.12), while the 
stabilization integral is now consistent and reads as: 
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( ) ( )
e

nel

p a, j d , j r p
e 1

d
Ω

Π π π Ω
=

= + + −∑∫ F F F B    (4.40a) 

 

( ) ( )( )
e

nel M
c a, j d , j r c

e 1
d

Ω
Π π π Ω

=
= + + −∑∫ F F F B   (4.40b) 

 
where (4.40b) is added to the continuity equation, as described in the PSPG Subsection, 
while for the primary variables (4.40a), namely the SUPG contribution, adopts this 
weight: 
 

p SUPG k k ai k k
h( u w, ) ( u w, )

2 u
π τ ζ= =    (4.41) 

 
and the stabilization function must be chosen according to the order of the element, and in 
case of quadratic one, it differs for central and extreme nodes.  

The resulting RANS stabilized formulation could be thus interpreted as a 
modification of the weight function vector ≡ +w w π  as follows: 

 

   
T

p p p c p pw , w , w , w , w , w⎡ ⎤= ⎣ ⎦w    (4.42a) 

 
T

p p p c p p, , , , ,π π π π π π⎡ ⎤= ⎣ ⎦π           (4.42b) 

 
4.2.3 Reaction induced instabilities 
 

Moving towards turbomachinery CFD, an additional origin of numerical deficencies 
stems from the reaction or zero order derivative terms. These terms are usually related to 
the rotation of turbomachinery frame of reference (e.g. in the modelling of Coriolis 
forces), but they also appear in the turbulence closure equations (e.g., eddy viscosity 
models). In this ambit, they are related to dissipation terms and play a critical role in the 
development of boundary layers in the case of vanishing advection effects, such as in the 
transitional region, or in the stagnation and separation flow cores (i.e. see Corsini et al. 
(2005b)). Whenever the reaction is present, local oscillations, near boundaries or solution 
discontinuities, may be originated but they typically do not degrade the global solution 
accuracy (Codina (2001)). As a matter of fact, in this case it is not possible to obtain a 
global stability estimate in the 1H  norm, though it could be evaluated in 2L , thus 
explaining the local scale of the oscillations. 
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In order to better understand these concepts, let recall the general advective-diffusive-
reactive problem statement that could be written for each of the scalar unknowns of the 
RANS system of equations: 

 
 

a j d j rF (U ), F (U ), F (U ) B+ + =  in Ω ∈R nsd, j = 1, …, 3      (4.13) 

DU U=      on Γ       
 

where for the sake of simplicity only Dirichlet boundary conditions have been 
considered, and the structure of the operators reads as: 
 

    

a j

d j

r

F (U ) u U

F (U ) kU ,

F (U ) cU

=

= −

=
    (4.14) 

 
In (4.13) and (4.14), nsd is the number of space dimensions, k > 0 is a constant 
diffusivity, ju  are solenoidal velocity components, ., B the source term, and c, now 
considered as non-zero, is the positive reaction coefficient. It is clear that now the 
solution will be governed by two parameters, the first one being the already introduced 
element Peclet number, relating advection to diffusion, and the second being the element 
reaction number r, which reads as: 
 

    
2chr

k
=      (4.43) 

 
The new non-dimensional parameter introduced in (4.43) relates the reaction magnitude 
to the diffusion. The solution behavior, governed by both Pe and r, is always exponential, 
therefore if we restrict our attention to the one-dimensional linear homogeneous context, 
the nodal amplification factors should be both positive (see Corsini et al. (2005b)). 

In order to have a first insight on the instability origin of the reaction dominated case, 
let now consider the null advection limit of the studied problem, focusing for instance on 
element central nodes of a quadratic Galerkin finite element, as in the analysis performed 
in Corsini et al. (2003) (for a similar discussion on linear elements, the reader could 
consult Harari and Hughes (1994)). In this condition, the equation for the i-th node reads 
as: 

 
i-1 i

i+1

U  [- 4+ r/10]+U  [8 + r 4/5] +
    +U  [- 4 +  r/10]=0

   (4.44) 
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The solutions of the characteristic equation associated to Eq. (4.44), the so-called 
Galerkin nodal amplification factors, in absence of advection purely depend on the 
magnitude of reaction: 
 

     
- - -

-

2 24 4 r( 8 r ) ( 8 r ) 4( 4 )
5 5 10

r2( 4 )
10

ρ
+ ± + +

=
+

   (4.45) 

 
The influence exerted on ρ shows that the exact solution exponential behavior is 
preserved only with r < 40. This circumstance confirms the need of designing a stabilized 
scheme with built-in component to preclude oscillatory behavior in reaction dominated 
cases (Corsini et al. (2003)).  

A criticism that typically is moved against reaction controlling numerical tools is that 
the reaction instabilities appear in very limited zones of the solution field and that a 
simple mass lumping technique (for mass lumping rationale see Hughes (2000)) could be 
sufficient to control them. Actually this way of thinking doesn’t take into account two 
main concepts: first, the mass lumping is a non-consistent numerical trick (and in the 
following Chapters its inaccuracy will be demonstrated), and second, high reaction flow 
cores are physically meaningful, especially in the turbomachinery context. In this respect, 
let consider for example the CLS96 turbulence closure, described with Eqs. (3.40-3.45) 
(same discussions could be performed for LS74 and k-ε-v2-f). The reaction numbers for 
the k-ε  equations, reads as: 

 
2

k
k

t

k

c hr νν
σ

=
+

    (4.46a) 

 
2

t

c hr ε
ε

ε

νν
σ

=
+

    (4.46b) 

 
where the reaction coefficients have been defined in Chapter 3. It is remarkable that the 
magnitudes of the reaction-to-advection ratios ( k kr Pe ,r Peε ε ) become relevant in the 
near-wall region, mainly within the viscous and buffer sub-layers (Corsini et al. (2005b)). 
Moreover, reaction-driven effects are emphasized in presence of non-equilibrium 
phenomena such as stagnation region, transition or separation. To this end it is possible to 
express the relative magnitude of reaction with respect to advection in terms of time scale 
ratio: 
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        k

k

r r h T~ ~ ~
Pe Pe k u

ε

ε

ε
τ

    (4.47) 

 
where T h u= is the element mean time scale and kτ ε= is the modeled turbulence time 

scale. For instance, in case of  a fully developed plane channel flow it is easy to show that 
approaching the wall T τ behaves as: 
 

       2
T 1~
τ δ

     (4.48) 

 
where δ is the distance from the solid wall. The turbulence model related reactivity is thus 
expected to dramatically affect the boundary layer simulation in turbomachinery 
configurations, where the presence of stagnation, separation or adverse pressure gradient 
phenomena gives rise to local reaction-to-advection ratio of order o(105) (Corsini et al. 
(2003)). 
 
4.2.3.1 SPG stabilization 
 

Two alternative routes could be found in literature to build-up classical stabilization 
schemes for the reactive limit. The first one includes the earlier attempts, mainly based on 
the extension of existing advective-diffusive stabilization concepts to the reactive case. 
To mention but a few, the work of Tezduyar and Park (1986) that used a discontinuity 
capturing like operator (to this method, called DRD, in the following a Subsection will be 
dedicated), or the gradient GLS formulation proposed by Harari and Hughes (1994). 
More recently, in the framework of Petrov-Galerkin methods, Idelsohn and co-workers 
(1996) proposed a Centered PG formulation for linear elements involving two different 
stabilizing parameters, the first to control advection induced instabilities and the second, 
based on a second-order polynomial, for reaction induced ones. To the best of the 
authors’ knowledge, most of the consistent formulations proposed for advective-
diffusive-reactive flow problems have been designed for linear equations and linear 
elements, and only few works concern with reactive problems pertinent to 
turbomachinery fluid dynamics (e.g. Codina and Soto (1997)). 

In this Subsection, dedicated to reaction controlling Petrov-Galerkin methods, the 
author would like to introduce the SPG (Spotted Petrov-Galerkin) formulation, recently 
developed by the team at University “La Sapienza” (i.e. the reader could see Corsini et al. 
(2003), (2004a), (2004b) and (2005b)), and formulated on a quadratic finite element 
space of approximation. We advocate the use of a higher order stabilized formulation 
(despite of its coding complexity, due to non-negligible second order derivatives) that 
guarantees the best compromise between solution stability and accuracy (as shown by 
Borello et al. (2003)). The proposed method, namely the Spotted Petrov-Galerkin (SPG), 
possesses some distinctive features. For advection-diffusion problems it behaves like a 
SUPG Q2 method, whereas in the reactive-diffusive limit it turns to a space invariant 
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perturbation able to give rise to spot-like weight functions, symmetric and concentrated 
around each nodal position. In intermediate situations, the scheme combines the advective 
and reactive perturbation integrals using nodal stabilization or upwind coefficients that 
depend on element Peclet and reaction numbers and are designed to circumvent any 
compounding effect (Corsini et al. (2005b)). 

The discretization of the one-dimensional homogeneous counterpart of (4.13-14), for 
constant physical properties (k, c, u), using the Galerkin method on a quadratic space of 
interpolation, with uniform element of length h, gives rise to the following difference 
equations: 

 

       i-1 i

i 1

U  [- 4 - 2Pe + r/10] +U  [8 + r 4/5] +
    +U  [- 4 + 2 Pe + r/10]=0+

   (4.49) 

 
for (i) element central node, and 
 

       
i 2 i 1

i i 1

i 2

U  [1 + Pe - r/10] +U   [- 8 - 4Pe + r/5] +
    +U   [14 + r 4/5] + U   [- 8 + 4Pe + r/5] +
    +U   [1 - Pe - r/10]=0

− −

+

+

      (4.50) 

 
for (i-2, i, i+2) element extreme nodes. 

Provided that different equations have been obtained for the extreme and central 
nodes, as already said for SUPG Q2, it is possible to find two optimal modified weights, 
on the basis of the discrete Eqs. (4.49) and (4.50) separately. Each of these resulting PG 
weight functions is obtained from the addition to the Galerkin one wi of two perturbation 
functions, the first one to control advection induced oscillations and the second for 
reaction induced ones (as first suggested for linear elements by Idelsohn et al. (1996)), 
and for each element node (i) read as: 

 

i i i ii i a a r rw w P Pζ ζ= + +     (4.51) 
 

where 
iaζ  and 

irζ  the stabilization coefficients for the two perturbation functions, 

respectively 
iaP for advection induced instabilities and 

irP  for reaction induced ones. The 

first perturbation is formally similar to a SUPG one and reads as:  
 

ia k i ,k
hP u w

2 u
=     (4.52) 

 
On the other hand, the design of the perturbation function that controls reaction 

effects is based on the following constraints. First, in the null advection case the 
invariance of the equation under coordinate inversion suggests to adopt symmetric weight 
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iw~  (Idelsohn et al. (1996)). Moreover, in the pure reaction limit ( ∞→r ), the optimal 
weight would be a Dirac’s delta. On this basis, the perturbation suggested by the authors 
is a symmetric and negative definite polynomial (Corsini et al. (2004a)), and must fulfil at 
least six constraints, i.e. it must be zero with zero first-order derivative on the element 
nodes. The lowest order polynomial with these features is a sixth order one; the seventh 
constraint imposed by the authors is represented by the CSPG value which sets the 
magnitude of the weight reduction between two neighbouring nodes: 

 

- -
i

2 4
6 4 2SPG

r r 6

l lCP P [ ]
2 16l
ξ ξ

ξ
ξ ξ ξ= = +    (4.53) 

 
where ξ represents the coordinate in the master or logic space and lξ  its dimension (in 

our case equal to 2). It is remarkable that the periodic-like behaviour of this function 
permits to use the same analytical expression for each node. The coefficient CSPG is used 
to set the asymptotic values of the stabilization functions 

irζ , without affecting 
iaζ . 

The expression for the stabilization functions are consequent to the super-
convergence condition (Codina et al., 1992, Idelsohn et al., 1996), that requires the 
identity between the discrete and the exact solution in case of a homogeneous linear one-
dimensional problem. In particular, the use of the SPG method to solve the considered 
problem statement on a quadratic space of interpolation, with uniform elements of length 
h, gives rise to the following difference equations: 

 
   6 i-1 8 i 7 i+1a U   +d U a U 0− ⋅ ⋅ − ⋅ =     (4.54) 

 
for (i) element central node, and  
 

1 1

1 1

1 1

1 1

1 1

i 2 2 2 a 2 r

i 1 1 1 a 1 r

i 4 4 a 4 r

i 1 3 3 a 3 r

i 2 5 5 a 5 r

U  [a b e ] +

+U   [a b e ] +

    +U   [a b e ] + 

+U   [a b e 4.55 ] +

    +U   [a b e ]=0

ζ ζ
ζ ζ
ζ ζ

ζ ζ
ζ ζ

−

−

+

+

+ +

+ +

+ +

+ +

+ +

  (4.55) 

 
for (i-2, i, i+2) element extreme nodes. It should be remarked that in (4.54) the 
coefficients are linear function of the unknowns, namely 

2 2a r,ζ ζ , and equation (4.55) 
provides 

1 3 1 3a a r r,ζ ζ ζ ζ= = . The complete expressions of the coefficients are given in 
Table 4.1. 
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2 2 2 2 2

2 2 2

2 2 2 2 2

SPG SPG SPG
7= a a r r r

SPG SPG
8 a r r

SPG SPG SPG
6 a a r r r

C C 53Cra  [- 4 - 2Pe + r/10 4Pe Pe r ] 
2 280 140 26880

C Cd =[8 + r 4/5+8Pe r ] 
70 840

C C 53Cra =[- 4 + 2 Pe + r/10 4Pe Pe r ]
2 280 140 26880

ζ ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ ζ

− + + + −

− −

− − − + −

 

1 1

2 2

3 3

4 4

5 5

1 SPG

2 SPG

3

a - 8 - 4Pe + r/5, b 8Pe 12 r,
a 1 + Pe - r/10, b Pe 6 r / 4,
a - 8 + 4Pe + r/5, b 8Pe 12 r,
a 14 + r 4/5, b 14Pe,
a 1 - Pe - r/10, b Pe 6 r / 4,
e C (1 / 35 r / 420 ),
e C ( 53r / 13440 Pe / 140 1 / 70 ),
e

= = − + +
= = − −
= = − − −
= =
= = + +
= − +
= − − −
= SPG

4 SPG

5 SPG
12 2

SPG

C (1 / 35 r / 420 ),
e C ( 53r / 6720 1 / 35 ),
e C ( 53r / 13440 Pe / 140 1 / 70 ),

C (2 /3 ) 0.35.

− +
= − −
= − + −

= ⋅

 

Table 4.1. Coefficients adopted in SPG stabilization functions determination. 

 
The substitution of the analytical solution into Eqs. (4.54) and (4.55), permits to 

obtain first 
2 2a r,ζ ζ  and as a consequence 

1 1a r,ζ ζ . For the sake of completeness the 
analytical expressions of the stabilization functions are summarized in Table 4.2. 
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Table 4.2. SPG stabilization functions expressions. 
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Fig. 4.4 shows the perturbed weight function iw~ , for one-dimensional quadratic 
elements in case of null advection with varying stabilization coefficients 

irζ , both for 

central and extreme nodes. The weights are plotted for CSPG = (212/32)×0.35. This value 
stems from the fulfillment of seven constraints for the rP  perturbation on quadratic 
elements (e.g. see Corsini et al. (2004b)), including: null nodal values and derivatives, rP  
intensity at ξ = ± lξ /4. 
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Fig. 4.4. 1-D null advection: resulting weight for a) extreme and b) central node. 

 

 

a) 

b) 
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Fig. 4.5a shows the behaviours of 
iaζ  for different combinations of Pe and r. 

Furthermore, Fig. 4.5b shows that of 
irζ  stabilization functions. 
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Fig. 4.5. SPG stabilization functions: a) advective and b) reactive controlling. 

It is remarkable that the sensitivity to the reactive part of the differential operator gives 
rise to the stabilization functions 

irζ  and the behaviour of the formulation in the null-
reaction limit approaches the SUPG Q2 one proposed by Codina et al. (1992). 

a) 

b) 
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The two-dimensional (2D) extension of the rP  function is designed to preserve its 
1D requirement, that is the isotropic concentration of the perturbed weight around the 
nodal positions. To this end, we designed a Cartesian product between the 1D 
counterparts of the second perturbation function, where the rP  spots are moved in the 
element portion closer to the corresponding nodes. This concept is depicted in Fig. 4.6 
that shows the resulting geometries for the two-dimensional second perturbation 
functions on logic space. In such a way it is possible to maintain the continuity of the rP  
on the inter-element boundary. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Fig. 4.6. 2D Pr  functions in the logic space: a) central-central node (0,0); 

b) corner node (-1,-1); c) mid-side node (-1,0). 

 
It is worth noting that the 2D stabilization functions 

irζ  are obtained on the basis of a 

pure positional criterion on logic space. For example, in the case of the mid-side node of  
Fig. 4.6c the stabilization function is a linear combination of 

1rζ  and 
2rζ . 

The global formulation of the SPG/PSPG stabilized formulation of the RANS system 
of equations, that could be applied for all the turbulence closures presented in this work, 
is formally identical to the SUPG/PSPG one already proposed, namely: 
 

a) b)

c)



Chapter 4                                                           Stabilized Finite Element Methods 

88 

find 
h 1h∈U H  h h

p p∀ ∈w W , h h
c cw W∀ ∈ , such that 

     ( ) ( ) ( ) ( ) ( )N
N

h h h h h h h h h
N |c , , s , r , ( ) , , Γ Γ

Π+ + + = −V U w U w U w w wBπ θ  (4.39) 

 
with: 
 

   ( ) ( )
e

nel

p a, j d , j r p
e 1

d
Ω

Π π π Ω
=

= + + −∑∫ F F F B        (4.40a) 

 

 ( ) ( )( )
e

nel M
c a, j d , j r c

e 1
d

Ω
Π π π Ω

=
= + + −∑∫ F F F B   (4.40b) 

 
where (4.40b) is added to the continuity equation, as described in the PSPG Subsection, 
while for the primary variables, (4.40a) represents now the SPG contribution, and is 
defined using this weight: 
 

         
i ip ai k k r r

h ( u w, ) P
2 u

π ζ ζ= +     (4.56) 

 
and the stabilization functions must be chosen according to the nature of the node 
considered. 
 

4.2.4 Gradients and Shocks 
 

PG-like stabilized formulations are able to effectively control advection induced 
instabilities and, if built-in tools for reaction are included, also reactive features. 
Notwithstanding they suffer in presence of sharp solution layers, as encountered in 
presence of particular sets of boundary conditions, or in the situations in which the flow is 
subject to compressibility effects and shocks (for an extensive discussion about 
compressible flows and stabilized finite elements, the reader could consult Saavedra 
(2004)).  

Along discontinuities of the solution fields, the classical stabilized tools do not 
preclude some phenomena of overshooting and undershooting, due to their incapability of 
monotonic representations of sharp layers. In several applications, these oscillatory 
approximations of abrupt solution zones are not allowed, especially in turbomachinery 
CFD, and this instance led to some numerical solutions. 
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4.2.4.1 Discontinuity Capturing 
 
In Hughes and Mallet (1986) and Hughes et al. (1986), a first solution to the problem 

of controlling sharp solution layers was given. The idea behind their Discontinuity 
Capturing method, was to enrich the numerical dissipation locally where the gradient of 
the solution is relevant and in the meanwhile the convection dominates on the diffusion. 
In this way the new term is added only where it is needed, without adding diffusion 
elsewhere. 

The Discontinuity Capturing formulation is a consistent Petrov-Galerkin method that 
takes its origin from the SUPG, and it could be considered as a complementary part of the 
SUPG weight perturbation, thus a global perturbation function containing advection, 
discontinuity and reaction controlling tools, reads as follows: 

 

    
i ip ai k k DC k r rk

h[ ( u w, ) ( u w, )] P
2 u ΙΙπ ζ τ ζ= + +    (4.57) 

 
where the Discontinuity Capturing contribution contains an intrinsic time scale that reads 
as follows: 

 

   DC ai
h

2 u
ΙΙ

ΙΙ
ΙΙ

τ ζ=     (4.58) 

 
with 
 

         nen

a
a 1

2 u
h

N

ΙΙ
ΙΙ

ΙΙ
=

=
⋅∑ u ∇

          (4.59) 

 
which represents an element characteristic length in direction of the ΙΙu  vector, that is 
the projection of the streamlines along the solution gradient, namely: 
 

   

( )
2

U
U for U

U

for U

ΙΙ

ΙΙ

⋅
= ≠

= =

u
u 0

u 0 0

∇
∇ ∇

∇

∇
   (4.60) 

 
and a stabilization function aiΙΙζ  that has an expression identical to the one proposed for 
the stabilization function of SUPG, except for the governing parameter, that is the 
element Peclet number in the direction of the solution gradient, namely: 



Chapter 4                                                           Stabilized Finite Element Methods 

90 

 

II II
II

h
Pe

2k
=

u
    (4.61) 

 
In order to avoid compounding effects (see for example Tezduyar and Park (1986)), the 
Discontinuity Capturing contribution is reduced of a quantity equal to the SUPG 
contribution, that must not be doubled: 
 

DC ai ai
h hmax 0,( )

2 u 2 u
ΙΙ

ΙΙ
ΙΙ

τ ζ ζ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

   (4.62) 

 
4.2.4.2 DRD and DRDJ 
 

For reaction dominated problems or when diffusive-reactive conditions appear, due to 
a vanishing velocity field (i.e. near stagnation points), Tezduyar and Park (1986), and 
Tezduyar et al. (1987), demonstrated that the presence of sharp solution layers could not 
be controlled with classical Discontinuity Capturing terms. In these two works, a new 
stabilizing term was introduced, the so-called DRD (Diffusion for Reaction Dominated 
problems), that is a second-order term that becomes significant only where reaction rate 
becomes high, in order to preserve numerical accuracy elsewhere. 

The DRD method has been obtained for two limit cases of the general CFD problem 
structure: convection-reaction and diffusion-reaction. For both cases the analytical 
expression of the additional second-order term depends on the already introduced 
dimensionless numbers r and Pe, and on a dimensionless number that relates the reaction 
rate to the advection, retaining into account the quality of the grid adopted for the 
problem discretization. The resulting method for advection-reaction problems in one 
dimension adds a diffusivity as follows: 

 

   2
AR AR int

1k k ( ) uh( coth (1 / sinh 4r ))
2

γ γ γ γ= = − + +   (4.63) 

 
with 
 

1 hc / u
2

γ =     (4.64) 

 
and rint is determined by the integration rule used for the element coefficient matrix 
corresponding to the reaction term (e.g. rint equal to 1/6  for two point Gaussian 
quadrature). 
The multi-dimensional extension is obtained by defining a numerical diffusivity tensor as 
follows: 
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 AR AR= k ( ) + k ( )( )γ ∞K ss tt + vv    (4.65) 

 
where s is the unit vector in direction of the streamlines, t and v are two unit vectors 
orthogonal to s and each other, and (4.64) must be re-calculated with u  instead of u . 
The chosen definition of the element characteristic length h is equal to hUGN (i.e. the one 
contained in (4.34)). 

In the diffusion-reaction limit the additional diffusive term reads like this: 
 

   2 2 2
DR DR intk k ( ) c( h / 2 ) ( 4r 1 / sinh 1 / ))β β β= = + −   (4.66) 

 
where 
 

2 2( c / k )( h / 2 )β =     (4.67) 
 

and the element characteristic length h is equal to hRGN (i.e. the one contained in (4.35)). 
Both the expressions obtained for the additional diffusion share the same limit for pure 
reaction, namely: 
 

2
AR DR intk ( ) k ( ) 4r c( h / 2 )∞ = ∞ =    (4.68) 

 
The DRD method is thus a very useful stabilization for situations in which classical 
Discontinuity Capturing terms are not able to work, and is well suited for Petrov-Galerkin 
formulations. Notwithstanding, it is not-consistent, and starting from these 
considerations, a new DRD concept has been recently developed in Corsini et al. (2005c), 
based not only on the reaction rate but also on the solution gradient, turning to a DRD-
like Discontinuity Capturing technique, named DRDJ (Diffusion for Reaction Dominated 
problems with Jump factor).  

The DRDJ additional diffusivities read as follows: 
 

2
AR AR e UGN e int

1k k ( ,J ) uh J ( coth (1 / sinh 4r ))
2

γ γ γ γ= = − + +   (4.69a) 

 
2 2 2

DR DR e RGN e intk k ( ,J ) c( h / 2 ) J ( 4r 1 / sinh 1 / ))β β β= = + −   (4.69b) 
 

where eJ  is a normalized measure of the solution gradient intensity across each element 
e, that reads as: 
 

max min e
e

e

U U
J

U
−

=     (4.70) 
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with all the operators defined considering only a local point of view. In particular eU  
represents the local norm of the unknown, equal to a global scaling U for model 
problems, characterized by only one scale of the solution. On the contrary, turbulent 
variables are characterized by different orders of magnitude for different zones of the 
flow field, thus for turbulence computations eU  must take into account the local 
features of the problem and has been chosen equal to the maximum value of the unknown 
into the element. With such a choice, that has been used for the calculations presented in 
the next Chapters, it is possible to assure that eJ  ranges from 0 to 1, thus leading to a 
diffusivity that is everywhere limited. 

The resulting DRDJ could be generalized to a multi-dimensional diffusivity tensor: 
 

AR e DR e= k ( ,J ) +k ( ,J )( )γ βK ss tt + vv    (4.71) 
 

It is worthwhile noting that along the t and v direction the additional diffusion is the one 
associated to a generic diffusion-reaction one-dimensional operator. For this reason, the 
element characteristic length measure is provided by the hRGN  defined with (4.35), as 
done in (4.69b). 

Finally, as a conclusive remark that ensure the flexibility of DRDJ, it is remarkable 
that the typical structure of differential equations modeling the turbulence closure 
variables is convection-diffusion-reaction, but it is not unusual to find also diffusion-
reaction equations modeling elliptic parameters, such as f  in the k-ε-v2-f . For these 
situations the DRDJ expression is the following: 

 
       DR e= k ( ,J )( )βK tt + vv + zz         (4.72) 

 
where t, v and z define a three-dimensional system of orthogonal axes. 
 
 
4.3 Variational MultiScale approach to stabilization 
 

Recently, a new route to build-up residual based stabilized formulations has been 
suggested on the basis of the Variational MultiScale (VMS) method, first proposed by 
Hughes (1995). This approach permits to obtain formulations with a more attractive 
mathematical background (i.e. see Roach (1970), or Oberai and Pinski (1998)), the so-
called sub-grid scale models (SGS) able to deal with multiscale phenomena and to give a 
theoretical foundation of stabilized methods. The idea that lays behind the VMS methods 
is to obtain a residual based stabilization technique by computing analytically the effects 
of fine or sub-grid scale solution on the resolvable one by means of element residuals 
(Hughes (1995)). Brezzi et al. (1997) demonstrated the equivalence of the RFB (presented 
in several works, such as Brezzi et al. (1998)) and VMS approaches under certain 
hypotheses.  
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It is a matter of fact that fine scale structures, which are smaller than the characteristic 
length of the assigned grid and whose influence on coarse scales must be accounted for, 
can be captured by a classical Galerkin formulation only after a strong refinement of the 
mesh, that can quickly overload the computational resources. The SGS modeling strategy 
consists in obtaining a stabilization technique by computing the effect of the fine scale 
solution (i.e. the error in the coarse-scale solution) on the resolvable one by means of 
element residuals, without refining the mesh. The key ingredient of a VMS formulation is 
the design of the intrinsic time scale parameter τ, that appears in the stabilization integral 
containing the coarse scales residual. 

In order to have an insight of the general approach followed in the VMS framework 
(well described in Hauke (2002)), let introduce the linear advection-diffusion-reaction 
operator L, and its adjoint operator L∗ , acting on the scalar unknown variable U, that 
could represent one of the variables of the RANS problem: 

 
a j d j r

a j d j r

LU F (U ), F (U ), F (U )

L U F (U ), F (U ), F (U )∗

= + +

= − + +
   (4.73) 

 
The problem statement (4.13) can be thus recast in a compact form that reads as: 
 

D

LU B

U U on Γ

=

=
    (4.74) 

 
Now let recall some of the already introduced notation: consider ( )1S H Ω⊂  as the 

trial solution space and ( )1W H Ω⊂  as the weighting function space, where ( )1H Ω  
is the Sobolev space of square integrable functions with square integrable derivatives. 

The variational formulation of the problem could be written as: 
 

find U S∈  such that w W∀ ∈  
 

a( w,U ) ( w,B )=     (4.75) 
 
where ( , )⋅ ⋅  is the 2L ( )Ω  inner product, and a( , )⋅ ⋅ is a bilinear form satisfying the 
following identity: 
 

a( w,U ) ( w,LU )=     (4.76) 
 
for all sufficiently smooth w W ,U S∈ ∈ . 
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Given a finite element partition of the domain, as defined in Chapter 1 (for a 
systematic approach the reader could consult Corsini et al. (2005a)), the Galerkin 
formulation of the boundary-value problem (4.74) could be written as follows: 

 
find h hU S∈  such that h hw W∀ ∈  

 
    h h ha( w ,U ) ( w ,B )=     (4.77) 

 
It must be recalled that hS  and hW are discrete finite-dimensional subsets of S and W, 
unable to capture the fine scales of the solution, characterized by structures which are 
smaller than the grid-spacing used for the discretization of the problem. 

The sum decomposition of the solution hU U U ′= +  permits to distinguish the 
resolvable or coarse scales hU  and the unresolvable or fine or subgrid scales U ′ , and in 
a Galerkin sense the same decomposition is applicable to the weight functions 
w hw w'= + (Corsini et al. (2004c)). By that way the VMS approach is aimed at solving a 
problem for U ′  and calculating the effect of the fine scales on the resolvable ones by 
means of their elimination in a variational sub-grid problem, as first proposed in Hughes 
(1995). 

Let re-write the variational formulation (4.75) in terms of the decomposition in coarse 
and fine scales as: 

   h h ha( w w ,U U ) ( w w ,B )′ ′ ′+ + = +    h hw W ,w W′ ′∀ ∈ ∈   (4.78) 
 

By means of the linear independence of hw  and w′ (Hughes et al. (1998)), the 
formulation (4.78) splits into two sub-problems that, due to the linearity of the L 
differential operator, read as: 
 
for the coarse scales 

 
h h h ha( w ,U ) a( w ,U ) ( w ,B )′+ =  h hw W∀ ∈   (4.79) 

       
and for the sub-grid scales 

 
ha( w ,U ) a( w ,U ) ( w ,B )′ ′ ′ ′+ =   w W′ ′∀ ∈   (4.80) 

 
This second sub-problem must be solved in terms of U ′ in order to describe the effect of 
fine scales on the coarse ones. 

Let now make the quite strong assumption that subgrid scales vanish on element 
boundaries: 
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    U 0′ =            on   e e 1,....,nelΓ =           (4.81) 
 
Eq.(4.81) represents a widespread hypothesis in stabilized finite elements framework (e.g. 
Hughes (1995), Hauke and Garcia-Olivares (2001)), that avoids cumbersome 
mathematics, and means that unresolved scales could exert their influence in the limit of 
the coarse grid space discretization, thus reducing non-locality into individual elements. 
Hypothesis (4.81) thus discards the effect of fine scales pertaining to other elements onto 
the coarse ones of the element under consideration. This corresponds with the solution on 
each element domain of a problem, whose Euler-Lagrange equations read now as: 
 

     hLU ( LU B )′ = − −      in eΩ    (4.82a) 
 

            U 0′ =      on   e e 1,....,nelΓ =           (4.82b) 
 

As proposed in Hughes (1995), Eq. (4.82) could be tackled introducing the element 
Green’s function problem (for a complete theory of Green’s function the reader could 
consult the book by Roach (1970) or the more recent one from Kythe et al. (2003)) that 
reads as: 
 

eL g ( x, y ) ( x, y )δ∗ =   in eΩ      (4.83a) 
 

eg 0=      on    e e 1,....,nelΓ =    (4.83b) 
 
The element Green’s function permits to obtain the following coarse scales residual 
dependent expression for the fine scales: 
 

e

h
e x eU ( y ) g ( x, y )( LU B )( x )d y

Ω
Ω Ω′ = − − ∀ ∈∫   (4.84) 

 
The contribution of unresolved scales could be now substituted in the problem for coarse 
scales and by means of successive integrations by parts (Hughes et al. (1998)) reads as: 
 

         
e e

nel nel
h h h h

e e
e 1 e 1

a( w ,U ) ( w ,LU ) w LU d L w U d
Ω Ω

Ω Ω∗

= =
′ ′ ′ ′= = ⋅ = ⋅∑ ∑∫ ∫        (4.85) 

 
Substituting (4.85) into the coarse-scales problem, it turns to a subgrid scales (SGS) 
model: 
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( )
( )

e e

nel
h h * h h

e x y
e 1

h h h

a w ,U L w ( y ) g ( x, y )( LU B )( x )d d

w ,B w W

Ω Ω
Ω Ω

=
− − =

= ∀ ∈

∑∫ ∫
 (4.86) 

 
As remarkably noted in Corsini et al. (2005a), the obtained formulation contains an 
alternative consistent technique to build-up the residual stabilization term with respect to 
classical Petrov-Galerkin formulations, which in view of the introduced notations 
generally read as: 

find h hU S∈  such that h hw W∀ ∈  
 

         h h h ha( w ,U ) ( ,LU B ) ( w ,B )π+ − =          (4.87) 
A Variational MultiScale (or SGS) stabilized formulation models in a different way the 
residual term, by means of an adjoint based operator * h( L w ,U )′ , that plays the role of the 

PG stabilization term h( ,LU B )π − . The distinctive feature of each particular SGS 
method lays on the choice of a suitable approximated expression for the coarse scales 
residual based integral operator containing the element Green’s function. 
 
4.3.1 V-SGS formulation 
 

The open literature usually features adjoint-type stabilized methods where the subgrid 
scales are approximated by an intrinsic time scale parameter τ that weights the coarse 
scales residual. The review of recent research papers shows that most of the proposed 
formulations work with element-wise constant definition of τ, either computed as average 
value of the exact element Green’s function (i.e. see Hauke and Garcia-Olivares (2001)), 
or as classical in the Petrov-Galerkin context in terms of local length and velocity scales 
(Codina (2001)). Few works propose definitions tuned in order to fulfil the Discrete 
Maximum Principle (e.g. see Franca and Valentin (2001)). In this viewpoint bubble 
function based formulations constitute a vital background for the design of more accurate 
intrinsic time scale parameters, though their application is limited only to advective-
diffusive problems (Brezzi et al. (1998)), or to linear elements (Franca and Fahrat 
(1995)). 

With respect to the presented state-of-the-art, in Corsini et al. (2004c) and (2005a), an 
alternative residual based SGS stabilization technique, called V-SGS (Variable - SubGrid 
Scale) has been developed by the team at “La Sapienza” for second-order interpolation 
spaces, often applied in CFD near wall turbulence modelling. The use of higher order 
finite element spaces has been already justified in the preceding Sections, following the 
argumentations in Borello et al. (2003). In particular the use of the Q2Q1 element has 
been addressed, in which the space-dependence of stabilization parameters needs to be 
exploited. This feature has been a driving criterion in the design of the proposed SGS 
model, that here is shortly described. 
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The presented V-SGS formulation admits the following definition for the element 
Green’s function: 

 
         V SGS

eg ( x, y ) ( x ) ( x, y )τ δ−=          (4.88) 
 

where the error distributor is described by a function product including the Dirac’s delta 
and a space-dependent intrinsic time scale parameter V SGSτ − . On this basis the sub-grid 
scales could be modeled as: 
 

e

h V SGS h
e xU ( y ) g ( x, y )( LU B )( x )d ( y )( LU B )( y )

Ω
Ω τ −′ = − − = − −∫      (4.89) 

 
where the time scale V SGSτ − (y) is computed by the exact integration over each element 
of ge(x,y) as: 
 

      
e e

V SGS V SGS
x e x( y ) ( x ) ( x, y )d g ( x, y )d

Ω Ω
τ τ δ Ω Ω− −= =∫ ∫     (4.90) 

 
It should be noted that the above V SGSτ − (y) definition grants a-priori the suitability of the 
proposed approach for high order finite element interpolation spaces, such as quadratic 
ones. As a result of the proposed V-SGS model, the stabilization integral becomes: 
 

e

h h h

nel
h V SGS h

y
e 1

( w ,LU B ) ( L w ,U )

L w ( y ) ( y )( LU B )( y )d
Ω

τ Ω

∗

∗ −

=

′− = =

= − −∑∫
  (4.91) 

 
It is interesting to give more hints on the determination of V SGSτ − (y), because it 

reveals to be a quite simple operation with meaningful results. To this end, let use a one-
dimensional advective-diffusive-reactive model problem with constant physical 
properties. In this configuration the adjoint problem for the element Green’s function 
reads as: 

 
  e xx e x ekg , ug , cg ( x, y )δ− − + =          in eΩ    (4.92a) 

 
      eg 0=        on      e e 1,....,nelΓ =     (4.92b) 

 
For both linear and quadratic isoparametric finite elements, the above problem could be 
reformulated in element parent domain taking into account the invariance of the 
properties of the Dirac’s delta in the coordinate transformation (Roach (1970)): 
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e e e
2 2 2kg , ug , cg ( , )
h h hξξ ξ δ ξ ζ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
         , ( 1,1)ξ ζ ∈ −    (4.93a) 

 

    e

e

g ( 1, ) 0
g ( 1, ) 0

ζ
ζ

− =
+ =

           (4.93b) 

 
here ζ  is the auxiliary Dirac’s delta space variable. The related element Green’s function 
is found to have an exponential behaviour: 
 

1 2

1 2

e 1 2

e 3 4

g ( , ) C e C e

g ( , ) C e C e

λ ξ λ ξ

λ ξ λ ξ

ξ ζ

ξ ζ

= +

= +
 

1
1

ξ ζ
ζ ξ
− ≤ ≤

< ≤ +
   (4.94) 

 
where λ1 and λ2 are the roots of the characteristic equation associated to problem (4.93). 
The four closure constants are determined by imposing on g e  the homogeneous boundary 
values, the continuity in ζ and the value of its first derivative jump in ζ , defined as in 
Kythe et al. (2003): 

         e e
hg , ( , ) g , ( , )

2kξ ξζ ζ ζ ζ+ − ⎛ ⎞− = −⎜ ⎟
⎝ ⎠

        (4.95) 

 
where the eg  first derivative discontinuity is related to the element length and to the 
diffusivity. 

In Fig. 4.7 the behaviour of element Green’s function is shown for a one-dimensional 
logic element focusing on the effect of Pe and r magnitudes, with ζ  set equal to zero, 

1h 10−=  and 4k 10−= .  
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Fig. 4.7. Element Green’s function:  a) Pe =100, varying r, b) r=100, varying Pe. 
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It is worth noting that ge(ξ, 0) modulates the element error distributor mechanism moving 
from advection dominated limit (r → 0), where it behaves like an upwind Heaviside 
function, to reaction dominated condition where it approaches a symmetric impulsive-like 
shape (Corsini et al. (2005a)). 

By expressing the integral time scale using the element Green’s function, a 
fundamental feature of the proposed V-SGS model becomes evident: 

 

e

e

V SGS V SGS
x

1

e x e
1

( y ) ( x ) ( x, y )d

g ( x, y )d g ( , )(det J )d

Ω

Ω

τ τ δ Ω

Ω ξ ζ ξ

− −

+

−

= =

= =

∫

∫ ∫
  (4.96) 

 
and in the above integral the Jacobian determinant is defined: 

      
hdet J
2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (4.97) 

 
It could be thus inferred that the V-SGS formulation does not depend on the choice 
between quadratic or linear finite elements, thus being suitable for both these types of 
formulation. In this viewpoint, it must be recalled that one of the most remarkable 
criticisms on the use of a element-wise constant τ lays on its ability to control only 
element-wise constant residuals, that are obtained on advective-diffusive problems with 
linear elements (Hughes et al. (1998)). If reactive terms appear and/or high order 
elements are used, there is no agreement between a constant stabilizing parameter and a 
variable residual, thus addressing the need for a space dependent τ, as pursued by the 
designed  V SGSτ − . 
Another important feature of the proposed formula V SGSτ −  is its bubble behaviour, that 
permits to eliminate the inter-element integrals related to the properties of the trial and 
test function spaces used, thus allowing integration by parts for the diffusive term in the 
residual based operator. In order to show these properties it is worthwhile considering 
Table 4.3, where the V SGSτ −  expression in master element coordinates for the different 
combinations of reactive and advective effects is shown. 
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Table 4.3. One-dimensional intrinsic time scale parameter V SGSτ − . 

 
It is remarkable that in each examined case, V SGSτ −  could be decomposed in the product 
between a scaling factor, namely case

SCt , which represents the average value of the 
parameter, and a function which gives the space dependence. Moreover in the advective-
diffusive limit (r=0), the scaling factor avdf

SCt  is exactly the SUPGt  intrinsic time scale 
parameter, according to the general concept that the origin of classical stabilized  
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formulations is related to the general Variational MultiScale approach (i.e. see Hughes 
(1995)).  

In order to clarify all these aspects, Fig. 4.8 shows the bubble-like behavior of 
V SGSτ −  for 1h 10−= , 4k 10−= , and various combinations of advection and reaction 

effects. It is noticeable that the proposed intrinsic time scale exploits a relevant space-
dependence with respect to its average value, adding a sensitisation to the “wind 
direction”, extremely important in advection dominated situations.  
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Fig. 4.8. V -SGSτ for advection-diffusion-reaction with Pe=100 . Dashed lines: avdfrt

SCτ . 

 

The multi-dimensional formulation of the proposed stabilized method must face the 
difficulties arising in the treatment of the multi-dimensional integral of element Green’s 
functions in case of advective-diffusive-reactive problem (Kythe et al. (2003)). This 
forces the definition of the V-SGS model for nsd > 1 on the basis of a multi-dimensional 
generalization of the time scale V SGSτ − . The proposed method combines the 1D intrinsic 
time scale parameters computed from the element Green’s functions associated to each 
parent domain coordinate direction. In the 2D case, we solve the Green’s function 
problem for ξ and η directions, which differ due to the velocity components magnitudes 
that unbalance the advective phenomena on the parent domain. On the basis of the 
directional Peclet numbers the time scale is: 
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  (4.98) 

 
The two directional intrinsic time scales, namely V SGS V SGS,ξ ητ τ− − , computed in each 

element node must be composed in order to obtain the V SGSτ −  to be used for the sub-grid 
scales contribution. In this respect, the composing criterion, aimed to both a correct scale 
evaluation of the resulting stabilizing parameter and a simple extension to three-
dimensional problems, consists in using the following combination between the 
directional V SGS

ξτ −  and V SGS
ητ − : 
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(4.99) 
 
where an r-switch combination, with an integer exponent rs of tuning (i.e. see Tezduyar 
(2003)) has been employed for controlling the multi-dimensional scaling factor. 

The V-SGS/PSPG stabilized formulation of the RANS problem is formally very 
similar to the SUPG/PSPG and SPG/PSPG already proposed, because it includes only a 
new expression of the stabilization integral, reading as: 

 
 

find 
h 1h∈U H  h h

p p∀ ∈w W , h h
c cw W∀ ∈ , such that 

( ) ( ) ( ) ( ) ( ) ( )N
N

h h h h h h h h h h
N |c , , s , r , ( , ), , , Γ Γ

Π+ + + = −V U w U w U w U w wπ θB B (4.100) 

 
where the PSPG contribution remains the same (i.e. formula (4.40b)), while the 
components of the stabilization integral related to primary variables are now defined as: 
 

        ( ) ( )
e

nel
h h h h

a, j r j d
e 1

( , ), , d
Ω

Π Ω
=

⎡ ⎤= ⋅ + − − ⋅⎣ ⎦∑ ∫U π π πB F F B F   (4.101) 

 
where the stabilizing diffusive contributions have been integrated by parts according to 
the bubble nature of intrinsic time scale parameters, and each of the components of the π 
vector is obtained, according to (4.87) and (4.91), as a product between the intrinsic time 
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scale for the considered primary variable and the adjoint operator acting on the weight, 
which reads as: 
 

         * h h h h
p a p j d p j r pL w ( w ), ( w ), ( w )= − + +F F F    (4.102) 

 
4.3.2 V-SGS + DRDJ and the influence of stabilization in 
turbulence modeling 
 

The VMS (Variational MultiScale) method has opened new perspectives on the 
stabilization techniques nature or origin, revealing some fundamental relationships 
between subgrid scales formulations and turbulence modeling (i.e. see Hughes et al. 
(2000)). The most fascinating theme related to this new research issue is the fact that a 
model for the subgrid scales could be seen also as a sort of non-linear turbulence model, 
because it is a window opened on what happens into each element of the grid 
discretization.   

On the stabilization point of view, the VMS approach introduces additional features 
with respect to classical tools, but as shown in Hauke (2002), there is still lack of stability 
in presence of high reaction associated with sharp solution layers, thus addressing a shock 
capturing mechanism for this kind of  problems.  

Starting from these considerations, the already introduced DRDJ method has been 
developed in Corsini et al. (2005c), based not only on the reaction rate but also on the 
solution gradient, turning to a DRD-like Discontinuity Capturing technique, able to 
improve the performance of existing stabilized formulations, both in a Petrov-Galerkin 
and in a Variational Multiscale finite elements context. The main scope of this research 
has been to demonstrate which is the influence of a stabilized formulation with a SGS 
contribution not only in computing, but also in modeling turbulence, with particular 
interest in the flow features appearing in turbomachinery CFD. To this end, the DRDJ has 
been employed within the V-SGS/PSPG stabilized finite element method, and after some 
tests on scalar model problems, the final V-SGS+DRDJ formulation has been applied for 
the study of a complex three-dimensional turbomachinery flow (i.e. a compressor 
cascade), that will be presented in the last Chapter of this work. 

The idea of adopting a stabilized finite element formulation as a contribution to 
turbulence modeling could be found in the recent works by Tezduyar (2001, 2003) and 
Rispoli et al. (2005), where the low-frequency pass filtering properties of stabilization 
techniques are shown, and the role and importance of each of the parameters that define a 
stabilized formulation are emphasized, in the more general framework of implicit 
numerical filters to the Navier-Stokes equations. In the RANS context, these arguments 
lead to interpret the VMS approach (given its pure numerical effect of stabilizing tool) as 
a sensitization tool for the adopted turbulence closure, that enables it to be influenced by 
certain parameters that govern the more complex aspects of the flow behavior, such as 
transition and separation.  
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Chapter 5 
 

 

SCALAR TEST CASES 

 

5.1 Introduction 
 

It is a common procedure in the CFD stabilized finite element framework to test the 
numerical performance of the formulations on some scalar model problems before 
addressing the more complicated situation of real turbulent flows, where several 
parameters could influence the results, such as the geometry of the domain, and it is more 
difficult to distinguish in detail which are the properties of a specified numerical 
technique. In this respect, a fundamental question is the evaluation of the numerical 
dissipation introduced by the stabilization scheme (Tezduyar (2001) and (2003)), that 
could be easier quantified considering a scalar unknown on a simple geometry, and then 
generalized to more complex situations. 

It is worth noting that consistent stabilized formulations, which are the main subject 
of this work, are generally designed in order to fulfil the super-convergence feature for 
one-dimensional problems (Idelsohn et al. (1996), Corsini et al. (2003)). In this 
viewpoint, preliminary one-dimensional tests on linear model problems are useful to 
demonstrate the correctness and the main characteristics of a certain formulation (i.e. see 
Corsini et al. (2005a)), and to highlight the similarities and differences with other 
formulations proposed in the open literature (i.e. see Hauke (2002)). Nonetheless, 
historically the most used test cases to assess the performance of stabilized finite 
elements are two-dimensional scalar problems on simple square domains (i.e. see Hughes 
and Brooks (1982)). that permit to better address the question of the stability parameters 
design (Franca et al. (1992)). For these reasons, in this short Chapter that acts as an 
introduction to the last Chapter, which is the “experimental” Section of this work, some 
important two-dimensional test cases will be addressed, in order to investigate on the 
performance of the stabilized finite elements presented in the preceding Chapter. 

Following the already discussed criterion of dividing numerical instabilities in 
advection and reaction induced ones, the following Sections deal separately on these 
problems, presenting results on classical model problems, that could be found in the most 
popular papers on stabilized finite elements. A particular emphasis is also given to the 
order of interpolation spaces, showing results on both Q1 and Q2 elements. In this respect 
it must be recalled that the formulations presented in Chapter 4 cover the whole range of 
instability sources (including also shocks and div-stab condition), and are classified with 
respect to the finite elements order too. 
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The numerical performance will be investigated using SUPG results as benchmark 
solution, with the main objective of assessing the new developed SPG (for Q2 elements 
and reactive features) and V-SGS (for both Q1 and Q2 elements and both advective and 
reactive features) formulations, and to show the improvement introduced by the adoption 
of DRDJ to capture reaction induced sharp layers . 

Each of the proposed model problems could be obtained as a particular expression of 
the general advection-diffusion-reaction problem statement with respect to the scalar 
unknown U, that reads as follows: 

 

a j d j rF (U ), F (U ), F (U ) B+ + =       in Ω ∈R 2, j = 1, 2       (5.1) 

  DU U=      on Γ       
 

where for the sake of simplicity only Dirichlet boundary conditions have been 
considered, and the structure of the operators reads as: 
 

      

a j

d j

r

F (U ) u U

F (U ) kU ,

F (U ) cU

=

= −

=
             (5.2) 

 
In (5.1) and (5.2), 2 is the number of space dimensions, k > 0 is a constant diffusivity, 

ju  are solenoidal velocity components, c ≥ 0 is a reaction coefficient, and B the source 
term. 

 
 
5.2 Advection instabilities 
 

For advection induced instabilities, it is possible to find a number of publications 
addressing scalar problems on linear finite elements, since the work on SUPG by Hughes 
and Brooks (1982). Such a kind of problems originate by a one-dimensional difference 
equation that with linear interpolation functions gives rise to a constant residual (i.e. of 
the same order of the test function derivative), as underlined in the work by Hughes et al. 
(1998), and could be successfully tackled by classical stabilized tools. In order to 
introduce a more severe problem for the new proposed VMS stabilized formulation, 
namely the V-SGS, at least linear residuals have to be considered, and this led to the 
decision of considering an advection test case on Q2 elements. 
 
5.2.1 Advection skew to the mesh on Q2 elements 
 

As a first model problem, the classical advection skew to the mesh of a scalar 
unknown (i.e. a temperature field) will be considered, that could be described analytically 
by imposing c=0, B=0 and k=10-5 in (5.1). The Pe number is 36 10⋅ , due to a velocity  
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field with intensity equal to 1, and based on hUGN (Tezduyar and Park (1986), Tezduyar 
and Osawa (2000)) as element characteristic length. The problem statement is shown in 
Fig. 5.1, where the direction of the advection velocity field u is evident, so as the 
boundary conditions. The calculations have been performed on a 2D unit square domain 
with a uniform grid of 100 quadratic elements, thus consisting of 441 nodes.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Advection skew to the mesh problem statement. 

 
 
The solutions predicted by Galerkin (labelled GQ2), SPG improved with the addition 

of Discontinuity Capturing (labelled SPG+DC) and V-SGS are compared in Fig. 5.2. It is 
worth noting that Galerkin method gives rise to an oscillating solution, due to the relevant 
Pe number considered and that the SPG method here behaves like the SUPG for quadratic 
elements developed in Codina et al. (1992), that represents its limit in absence of reaction. 
Considering thus the SPG+DC solution as a benchmark, the superior behaviour of V-SGS 
in predicting strongly advective fields is evident, due to its capability of managing with 
non-constant residuals. 

 

U=1 
 

U=1 
 

U=0 
 

∂U/∂n=0 
 

∂U/∂n=0 
 

u 

   ux  / uy=2 

y 

x 



Chapter 5                                                                                    Scalar Test Cases 

112 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

U

y x

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

U

y x

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

U

y x

 
 

Fig. 5.2. Comparison of solution fields for advection skew to the mesh:  
a) Galerkin GQ2, b) SPG+DC and c) V-SGS. 

 

a) 

b) 

c) 



Chapter 5                                                                                    Scalar Test Cases 

113 

This tendency is confirmed in Fig.5.3 with the x-constant profiles of the solutions for 
x=0.1 and x=0.9. 
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Fig. 5.3. Comparison of solution profiles: a) x=0.1 and b) x=0.9. 
 

 

5.3 Reaction instabilities 
 

Reaction effects stabilization has been originally ignored, because of an excessive 
trust in Mass Lumping techniques and also for the lack of real problems modeled with 
reaction terms. This situation changed with the development of simulation techniques for 
chemical reactions and with the growing number of turbulence closures. In the author’s 
opinion the work that started the “reaction effects stabilization” literature could be 
considered the one by Tezduyar and Park (1986) and Tezduyar et al. (1987), where the 
DRD technique was developed for chemical reactions simulation. 

With respect to advection instabilities, reaction effects are less treated in literature, 
thus it is worth considering model problems for both linear and quadratic elements, with 
some additional considerations on the effect of non-uniform grids and source terms, that 
could thus be considered as some further steps towards the applied simulation of 
turbulent flows pertinent to turbomachinery. 

 
5.3.1 Advection-diffusion-reaction on Q1 elements 

 
This model problem was first proposed in Tezduyar and Park (1986) as a test for the 

original DRD formulation, and its analytical  expression could be obtained by imposing 
c=5, B=0 and k=0 in (5.1). The domain is again the unit square, and the advection 
velocity profile is not constant, reading as: 
 

b)a) 
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2
max

max

u( y ) u (1 y )

u 1

= −

=
         (5.3) 

The main objective of this choice is to have different situations along the solution field, 
with advection dominated zones and pure reaction layers. The geometry has been 
discretized by means of a non-uniform grid of 41x21 linear finite elements, and the 
problem statement is shown in Fig. 5.4. 
 

 

       0 0.5 1
0

0.5

1

 
 

Fig. 5.4. Problem statement, grid and boundary conditions. 

 
This problem has been reconsidered in Corsini et al. (2005b), in order to test the 

performance of DRDJ and to assess its reliability for both Petrov-Galerkin and 
Variational Multiscale context.  

It must be remarked that this second test case introduces three additional difficulties 
with respect to the first one: 

1. The presence of reaction combined with advection, given a negligible 
diffusivity; 

2. The advection velocity field is not constant, thus the numerical difficulties 
changes within the domain; 

3. The grid is non-uniform. 
In Fig.5.5 the solution fields obtained with SUPG, SUPG + Mass Lumping, SUPG + 

DRD, SUPG + DRDJ, V-SGS, V-SGS + DRD and V-SGS + DRDJ are presented with 
respect to the exact solution field. We note that the stabilization parameters have been 
obtained with hUGN (Tezduyar and Park (1986), Tezduyar and Osawa (2000)) for all the 
formulations, except for the DRD and DRDJ contributions, that makes use of hRGN  
(Tezduyar (2003)) in proximity of the null advection layer. 

yU , 0=

U 1=
 

yU , 0=

xU , 0=  



Chapter 5                                                                                    Scalar Test Cases 

115 

 

 

 

 
 

Fig. 5.5. Scalar test problem: a) exact solution, b) SUPG, c) SUPG + Mass Lumping, d) 
SUPG + DRD, e) SUPG + DRDJ, f) V-SGS, g) V-SGS + DRD, h) V-SGS + DRDJ. 
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Fig. 5.5 shows that SUPG (b) solution generates the largest oscillations, while V-SGS 
(g) is able to reduce them due to its control mechanism on reaction effects. Moreover the 
option of Mass Lumping seems to add too much diffusion while the DRD treatments are 
both efficient in reducing oscillations and maintaining accuracy of the solution. These 
considerations could be further developed with the observation of some extracted solution 
profiles near the boundaries where reaction dominates on convection, as shown in Figs. 
5.6, 5.7 and 5.8. 
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Fig. 5.6. Profiles extracted @ y=1 (first row of nodes). 
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Fig. 5.7. Profiles extracted @ second row of nodes. 
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Fig. 5.8.Profiles extracted @ third row of nodes. 

 

The SUPG solution exhibits a 57% undershoot in the first row of nodes (Fig. 5.6), 
that is reduced to less than 20% by DRD and DRDJ, while Mass Lumping adds too much 
diffusion. In the same row the V-SGS solution is good and also the addition of DRD and 
DRDJ permits to obtain good results, the latter being sharper.  

Turning to the second row of nodes, SUPG continues to have some undershooting  
that can be minimized by DRD and DRDJ, while Mass Lumping still adds too much 
diffusion. The V-SGS shows here a 25% undershoot, that is completely eliminated by 
DRD and DRDJ, the latter being closer to the exact solution. 

Finally in Fig. 5.8 all the formulations recover a sharp solution except that SUPG + 
Mass Lumping which is too diffusive and too far from the exact solution behaviour.  

From these considerations it is possible to draw some conclusions: 
 

• SUPG is not capable of controlling reaction induced instabilities and needs 
some additional numerical technique, that should not be the addition of Mass 
Lumping which creates an unacceptable loss of accuracy, that could be 
amplified in presence of certain sets of boundary conditions;  
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• V-SGS formulation is able on its own to control reaction effects even if it 
needs an additional tool to deal with sharp solution gradients. 

 
It is possible to give the same answer to these two problems by means of the DRD 

tools. These additional diffusions are able to control reaction effects with a little reduction 
in accuracy of the solution, and the optimization introduced with the DRDJ concept 
guarantees a minimization of this accuracy reduction without affecting the efficiency of 
the method. 

As a conclusive remark on V-SGS performance, it demonstrated to be reliable for 
tackling both advection and reaction induced instabilities, and possesses the distinctive 
feature of being applicable for both linear and quadratic finite elements, thus representing 
a promising tool to be used for the simulation of turbomachinery flows. 

 
5.3.2 Advection-diffusion-reaction on Q2 elements 
 

The test case concerns the numerical solution of the linear scalar advective-diffusive-
reactive model problem (5.1), in the already introduced unit square domain. The mesh is 
uniform with 10×10 quadratic elements, 441 nodes. The complete problem statements is 
shown in Fig. 5.9. The known velocity field u is assumed to have a parabolic profile (e.g. 
u(x,y) = 2y – y2, v(x,y) =0), with maximum value equal to 1. The coefficients are: k = 10-

5, c = 5 × 102, and the related maxima for dimensionless numbers are: Pe = o(103) and r = 
o(105), obtained with the pure geometrical element characteristic length h (i.e. see Section 
4.2). 

 

 

 

 

 
 
 
 
 

Fig. 5.9. Scalar advective-diffusive-reactive problem statement. 

 
This test case, that has been extensively discussed in Corsini et al. (2005c), is 

considered here for investigating the performance of the SPG formulation, with respect to 
quadratic Galerkin (labelled G Q2), Streamline Upwind (labelled SU Q2) and SUPG Q2 
ones. Fig. 5.10 shows the solution fields, and demonstrates that the SU Q2 is unable to 
remarkably improve Galerkin solution, suffering from the combination of its 
inconsistency and its inability to control reactive effects. With respect to the PG schemes, 
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both feature stable fields, being able of controlling completely the instability origins in 
the near- and far-wall regions, but it is evident the sharper behaviour of SPG solution, 
more correct than the benchmark one, obtained with SUPG Q2. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10. Solution fields: a) G Q2; b) SU Q2; c) SUPG Q2; d) SPG. 

 

 

 
Fig. 5.11 shows the U streamwise profiles predicted by G Q2, SUPG Q2 and SPG 

schemes at y = 0.05 and y = 0.1, close to the null advection boundary line, with a list of 
the last nodal values. The comparison between the PG-like solutions confirms that the  
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SUPG Q2 returns an over-diffused layer close to the Dirichlet conditions, thus confirming 
its inability to control the reactive effects, with respect to SPG solution that returns a 
sharp but continuous solution layer. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11. Comparison of streamwise U profiles: a) at y=0.05 and b) at y=0.1. 

 

5.3.3 Advection-diffusion-reaction on Q2 elements: effect of a 
source term 
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Q2) and reaction dominated problems. A final assessment of the method could has been 
obtained in Corsini et al. (2005c) by investigating its behavior in presence of relevant 
source terms. The last test case proposed in this Chapter reconsider the previous 
advection-diffusion-reaction problem (i.e. k = 10-5, c = 5 × 102, u(x,y) = 2y – y2, v(x,y) 
=0), and introduce a relevant source term B, with a linear-like behaviour, as shown in Fig. 
5.12, that presents the problem statement.  

 

 

    

 
 
 
 

Fig. 5.12. Advective-diffusive-reactive problem statement with Bmax (y = 0.1) = 50. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13. Solution fields: a) G Q2; b) SU Q2; c) SUPG Q2; d) SPG. 
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Fig. 5.13 demonstrates that even in this case the SU Q2 solution suffers from the 
same oscillations arising in the Galerkin one, while PG-like solutions are fairly better. 
Nonetheless SPG outperforms SUPG Q2, as shown in Fig. 5.14, with a comparison of the 
U streamwise profiles predicted by G Q2, SUPG Q2 and SPG schemes at y = 0.05 and 
y=0.1, where a reactive effect is combined with a relevant derivative of the source term. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14. Comparison of streamwise U profiles: a) at y = 0.05 and b) at y = 0.1. 
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the SUPG solution, a further analysis of Fig. 5.13c shows some numerical pathologies 
due to the presence of the relevant source term. 

It is thus possible to conclude that SPG formulation could be used to tackle all the 
instability origins appearing in turbulence closure equations, being able to capture 
reaction effects, as well as recovering a SUPG Q2 behavior for advection dominated 
equations. 
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Chapter 6 
 

 

TURBOMACHINERY FLOW SIMULATIONS 

 

6.1 Introduction 
 

In the first Chapters of this work, after an introduction to the Finite Element Method, 
an extensive discussion of turbulence and its modeling has been performed, showing an 
overview of the most adopted solutions in CFD. After that stabilized finite element 
methods have been investigated, with particular emphasis on the new formulations 
developed both in a Petrov-Galerkin and in a Variational MultiScale framework, whose 
numerical performance have been preliminary tested on some scalar model problems. The 
conclusive step of this path is the application of all these studies for the simulation of real 
turbulent flows. 

Probably the most complex framework, and in the author’s opinion the most 
important one, for turbulent flows simulation, is turbomachinery CFD. On the industrial 
point of view this concept has been already depicted in the Preface, while on the 
computational point of view it is useful to recall now that turbomachinery flow 
phenomena prediction must account for a number of challenging features, such as 
impingement, separation, transition, complex geometries, rotation, tip and passage vortex, 
to mention but a few (Borello et al. (2003)). In this respect, computational fluid dynamics 
is playing and will play a fundamental role in reducing development times and costs, 
indicating the guiding lines to improve machines performance. 

This final Chapter represents both the main scope of this work and the most severe 
test for the developed numerical techniques. It is in fact focused on the application of 
SPG, V-SGS and DRDJ formulations for incompressible turbomachinery flows 
simulation, in order to demonstrate their extreme reliability for this kind of studies. While 
doing this, it addresses, as requested by the deep analysis performed in Chapter 3, also the 
question of turbulence modelling on a computational point of view, showing the main 
characteristics of the proposed closures in predicting turbomachinery flows. In this 
respect, it is worth noting that all the turbulence models used in this work have been 
considered in their Low-Reynolds extension, as discussed in Chapter 3. 
The differences in the behaviour of turbulence models are well treated in Section 6.2, 
where a pair of two-dimensional flow configurations, widely used as benchmark studies 
by the CFD community, will be addressed, namely the ERCOFTAC T3L test case and the 
Controlled Diffusion Compressor Cascade. 
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After that, as a final evidence of the numerical formulation impact on the prediction 
of flow patterns and aerodynamic properties of blade rows, Section 6.3 will focus on a 
three-dimensional Compressor Cascade, characterized by NACA 65-1810 blades with flat 
ends. 

As established in Chapter 5, the numerical performance will be investigated using 
SUPG results as benchmark solution, with the main objective of assessing the new 
developed SPG and V-SGS formulations, and to show the improvement introduced by the 
adoption of DRDJ to capture reaction induced sharp layers . 
 
 
6.2 Two-dimensional flow configurations 
 

In this Section, a couple of turbomachinery flows will be considered. The first one, 
namely the ERCOFTAC T3L test case, includes a preliminary comparison between the 
performance of LS74 (Launder and Sharma (1974)) standard two equations closure and 
CLS96 (Craft et al. (1996)) non-linear model. After that the investigation focuses on the 
numerical formulations, comparing SPG and SUPG on Q2 elements, in order to 
demonstrate the outperforming behavior of the first on the latter one. 

The second test case, namely the Controlled Diffusion Compressor Cascade, is 
considered firstly for investigating the improvement introduced in turbulence 
computation by the k-ε-v2-f turbulence model (Durbin (1995)), with respect to the 
classical LS74 one. With this discussion, a complete assessment of the turbulence 
closures introduced in Chapter 3 is given, and the investigation could focus on the 
numerical formulations, with a comparison between V-SGS and SUPG performance on 
Q1 elements. 
 
6.2.1 Flow over a semi-circular leading edge (ERCOFTAC T3L 
test case) 
 

The test case concerns the prediction of the boundary layer development on a flat 
plate with a semi-circular leading edge. The leading edge configuration, labelled T3L, 
was proposed in 1991 by the ERCOFTAC Special Interest Group on Transition (i.e. see 
Savill (1992)). The main issue of this computation is the correct resolution of some flow 
features, with particular emphasis on transition, that is one of the most challenging 
aspects of turbomachinery CFD (i.e. see Savill (2002) for an extensive discussion on the 
question). In particular, the present study refers to the experiments carried out by 
Palikaras et al. (2002) for the zero pressure gradient configuration. The Reynolds number, 
based on the inlet velocity and the leading edge radius (lr = 5 mm), is equal to 1660. The 
flow is assumed two-dimensional with constant temperature and incompressible, with an 
experimental inlet free stream turbulence intensity (TI) set to 7%, and a dissipation length 
lε of 18 mm. 

The computations have been performed first with the classical LS74 standard k-ε 
model, and then with the non-linear CLS96 model, to show its capability of better 
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resolving stagnation and curvature effects with respect to the first one (i.e. see the 
analysis performed for this test case in Corsini et al. (2005a)). 

The computational domain, that extends 15 lr upstream the leading edge and 60 lr 
downstream of it, has been modelled with a 12681 nodes block-structured (H-O) grid, 
and mixed Q2-Q1 elements. In the vicinity of the flat plate (i.e. O-connected region) the 
first node row has a dimensionless distance from the solid wall y+ = 1.0. A grid detail in 
the vicinity of the leading edge is shown in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

Fig. 6.1. T3L grid detail. 
 

On the inlet section of the computational domain, the experimental free-stream 
uniform profile is used for the velocity ( u = 5 m/s), and uniform distributions are also 
used for the turbulent unknowns (i.e. k and ε ) which are computed on the basis of the 
measured TI and lε. No-slip conditions are used on the plate wall, and homogeneous 
Neumann conditions are imposed on the outlet section. 

The numerical campaigns for the SPG scheme assessment were carried out using the 
FGMRES(20) solver (Saad (1993)) with convergence thresholds for error Rres and 
solution Rsol residuals set to 10-6. Uniform initial fields were used for velocity components 
and turbulent variables, setting u , k and ε  respectively to the free stream values and 
v u=  0.01. The stabilization parameters have been computed by means of the 
streamwise characteristic element length hUGN ( i.e. see Tezduyar and Park (1986) or 
Tezduyar and Osawa (2000)), and the quadratic SUPG formulation proposed in Codina et 
al. (1992) was used to produce the benchmark solution. According to the concepts 
discussed in the PSPG presentation (i.e. Section 4.2.1.1), though not necessary for the 
stability of the formulation, computations have been performed with PSPG method 
(following the formulation proposed in Tezduyar et al. (1992)) for its beneficial effect on 
the matrix of coefficients. 

The first analysis takes into account the numerical robustness by comparing, in Fig. 
6.2, the convergence histories in terms of the Rsol and Rres. The plotted data refer to the 
use of SPG and SUPG stabilized formulations on RANS equations with the standard eddy 
viscosity closure, e.g. the k-ε  model proposed by Launder and Sharma (1974). The  
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shown Rsol and Rres behaviours provide the evidence that the SPG produces a slight speed-
up into the convergence. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2. T3L convergence histories for PG formulations: a) Rsol and b) Rres  
(solid line: SPG; dashed line: SUPG). 

 
The analysis then extended to a RANS closure based on an anisotropic turbulence 

model, e.g. the cubic k-ε CLS96 (Craft et al. (1996)), considered as a fair baseline in 
turbomachinery simulation, as it includes provisions to account for curvature and non-
equilibrium effects, and to attenuate stagnation-point inconsistency (Corsini and Rispoli 
(2002)). In this viewpoint, a first assessment concerned the comparison between the 
performance of LS74 and CLS96. Fig. 6.3 shows the profiles obtained for streamwise 
velocity and turbulence intensity components in the first station downwind the leading 
edge, namely at x/lr = 1.2, where experimental data are available. 
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Fig. 6.3. Streamwise velocity and turbulence intensity profiles @ x/lr = 1.2. 

 

Fig. 6.3 confirms the relevant improvement introduced by the non-linear CLS96 
model (NL labelled results), with respect to the standard one, affected by the well-known 
stagnation point anomaly (Durbin (1996)), that contributes to an over-production of 
turbulence when a stagnating flow core is approached, with several drawbacks in the 
prediction of the boundary layer development (Corsini et al. (2004a)). For this reason, in 
the following only results obtained with the CLS96 turbulence model will be shown. 

After the comparison between turbulence closures performance, the study focused on 
the T3L flow regions typically affected by non-equilibrium phenomena, in order to figure 
out the magnitude of the resolved advective-reactive values. Figure 6.4 shows the 
contours of the ratio rk/Pek (i.e. see Corsini et al. (2005a) or eq. (4.46)) about the leading 
edge profile in the case of the SPG solution. The isolines show that the reactivity of the 
turbulence equations manifests itself in the vicinity of the stagnation point, and 
downstream the leading edge starting from the axial location where the onset of the by-
pass laminar-to-turbulence transition falls. It is worth noting that within the reactivity 
cores the reaction number rk has a magnitude comparable to that of the local advection, 
while moving downstream its value grows up to o(103). 
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Fig. 6.4. Reaction-to-advection ratio rk/Pek contours. 

 

Fig. 6.4 shows the importance of taking into account the reaction intensity in 
designing the stabilization parameter, as done with SPG. Thus, it would be expected some 
difference in the results obtained in the simulation of the boundary layer development. 
This issue is first addressed in terms of streamwise velocity profiles and integral 
boundary layer parameters. Figure 6.5 shows the streamwise velocity evolution along the 
flat plate for different stations that cover the boundary layer development, comparing 
SPG results with SUPG one, with respect to the available experimental data. 
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Fig. 6.5. Streamwise velocity profiles  
(symbols: experiments; dashed line: SUPG; solid line: SPG). 

 

Fig. 6.5 shows no remarkable differences between the computed profiles, both 
(SUPG and SPG) in fair agreement with the experimental data. Instead, Figure 6.6 
compares the axial evolution of the integral properties of the flat plate boundary layer. 
The following quantities have been plotted against the available measurements: the 
displacement δ* and momentum θ* thicknesses, and the shape factor H. 

Contrarily to the velocity profiles, the axial evolutions of the displacement thickness, 
in Fig. 6.6a, provide the evidence of differences between the PG formulations under 
exam. Though the computational data under-predict the measured one, the SPG δ∗ 
distribution shows an improved capability of mimicking the velocity layer thickness 
evolution up to a fully-turbulent state, featuring higher δ∗  values and similar axial profile 
shape. This circumstance is further confirmed by the momentum thickness distributions, 
Fig. 6.6b. Here the SPG is shown to return qualitatively the variation of the boundary 
layer momentum content reproducing also the profile gradient discontinuity at the 
transition onset (e.g. x = 0.008, x/lr = 1.6). Figure 6.6c, finally, compares the shape factor 
evolutions. It is remarkable that, though under-predicting the experiments, the SPG 
solution is able of recovering a profile shape similar to the measured one and mainly 
characterized by the abrupt slope variation in the transition region where, as shown in 
Fig. 6.4, r and Pe assume a comparable magnitude. 
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Fig. 6.6. Integral boundary layer parameters: a) displacement thickness, 

b) momentum thickness and c) shape factor. 
(symbols: experiments; dashed line: SUPG; solid line: SPG). 

 

Figure 6.7, finally, investigates the streamwise evolution of the boundary layer in 
terms of the turbulence intensity profile normal to the wall.  
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Fig. 6.7. Streamwise turbulence intensity profiles 

(symbols: experiments; dashed line: SUPG; solid line: SPG).  

 

The turbulence intensity field, explicitly affected by the reactivity of the implemented 
turbulence equations, shows that the SPG solution outperforms the SUPG one in 
predicting the re-arrangement of the boundary layer. In detail, the u’ profiles at x/lr = 1.2 
clearly show that in the buffer-layer region, where the local reaction number is of o(100), 
the SPG is able of reducing the over-prediction of the local turbulence level related to the 
well known EVM failure of correctly detecting the by-pass transition. 

The application of the SPG residual scheme to the RANS equations with an 
anisotropic eddy-viscosity closure had enabled the turbulence phemonena to be 
realistically captured in flow configuration pertinent to turbomachinery. Moreover, the 
proposed advective-diffusive-reactive Petrov-Galerkin formulation improves the solution 
accuracy with respect to a standard streamline driven stabilization schemes, e.g. the 
SUPG, in that it properly accounts for the boundary layer region flow phenomena in 
presence of non-equilibrium effects. The SPG solution outperforms the purely advective 
scheme resolving adequately the axial and chord-wise evolution of the velocity layer 
thickness, as well as the turbulent energy contents. In this respect the insufficient cross-
wise turbulent mixing shown by the SUPG solutions, that typically affects the non-linear 
EVM owing to the cubic stress-strain relationship (Chen et al., 1998) (Corsini and 
Rispoli, 2002), appears to be attenuated. This feature origins from the dependence of the 
residual distributor mechanism from the reaction magnitude, through the numbers kr  and 
rε . The weight additive structure proposed with SPG is able to correct, on an element 
scale, the spatial shape of the projection operator balancing the purely anisotropic 
streamwise deformation with an elliptic diffusive-reactive effect. 
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6.2.2 Controlled Diffusion Compressor Cascade 
 

This test case concerns a 2D compressor cascade with controlled-diffusion (CD) 
blade profile, designed by Sanger (1983) and experimentally studied by Elazar and 
Shreeve (1990) using two-component LDV system. The blade profile has a 14.4° stagger 
angle, a solidity σ = 1.67, and a chord length lc = 127.3 mm. Three inlet flow angles were 
measured (quasi-design, weak off-design, off-design) and only the off-design condition 
with incidence angle β equal to 46° is here considered. In this condition the suction side 
is subjected to a strong adverse pressure gradient, that promotes a challenging transitional 
flow, with a boundary layer becoming thicker and thicker as the trailing edge is 
approached (Chen et al., (1998)). The chord Reynolds number, based on the inlet flow 
velocity Uin (=85 m/s), is set to 7×105. The flow is 2D with constant temperature, and 
could be considered virtually incompressible. 

This flow configuration is used to assess the k-ε-v2-f model with respect to the 
classical LS74 one, and to focus on the V-SGS method performance on Q1 elements (i.e. 
see Corsini et al. (2005b) for a complete assessment of the method on both Q2 and Q1 
elements). 

A H topology consisting of 27324 nodes on Q1 elements was used to model the flow 
region, as sketched in Fig. 6.8, with two details near the leading and trailing edge of the 
blade. The refinement is such that the highest dimensionless distance for the nearest node 
to the wall along the boundary is y+ = 1.0.  
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Fig. 6.8. Controlled Diffusion grid details: a) leading and b) trailing edge. 

The numerical campaigns were carried out using the FGMRES(15) solver with 
convergence thresholds for error Rres and solution Rsol residuals set to 10-5 and PSPG 
treatment (as proposed in Tezduyar et al. (1992)) for tackling incompressibility 
constraint. The k-ε-v2-f model, in its code-friendly version (Lien et al. (1998)) has been 
used in order to test the V-SGS formulation on the convection-diffusion-reaction 
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equations that model k, ε and v2, and on the diffusion-reaction equation that model f, for 
which SUPG is not applicable. It is worth noting that the chosen element characteristic 
length used to compute the stabilization parameters has been hUGN (i.e. see Tezduyar and 
Park (1986), Tezduyar and Osawa (2000)) for all the equations except for f, in which case 
hRGN (Tezduyar (2003)) has been employed. 

At the inlet section of the computational domain uniform profiles are used for the 
velocity components and the turbulent quantities. The experimental free-stream 
distribution is used for the mean velocity profile. The turbulence intensity and the 
characteristic length scale are TI = 1.5% and lε/lc = 5.6%. These return the physical 
turbulence level at the blade leading edge, located half a chord downstream the inlet 
plane. Homogeneous Neumann conditions are used at the outlet section, one chord 
downstream the trailing edge, and the flow periodicity is strictly imposed at the 
permeable boundaries in the middle of adjacent blade passages. 

Before going into the V-SGS related details, let consider the performance of the 
advanced turbulence closure adopted, due to the complex structure of this flow, with a 
leading edge separation bubble that could not be resolved with a standard k-ε model and a 
strong adverse pressure gradient characterizing all the boundary layer development. 

Fig. 6.9 shows a comparison of the streamwise velocity and turbulence intensity 
solutions obtained, using a SUPG stabilization, by k-ε-v2-f model and LS74 one, at the 
first experimental station in the suction side, downwind the leading edge, namely x/lc = 
5.2%. It is worth noting that the profiles are normalized as in Chen et al. (1998). 

 

 

 

 

 

 

 

 

 

Fig. 6.9. Streamwise velocity a) and turbulence intensity b) profiles on blade suction side 

@ 5.2 % of the chord: comparison between turbulence models. 

 

As in the T3L test case computations, the standard LS74 model is outperformed: the 
Durbin’s turbulence closure is capable of better controlling the stagnating region 
prediction, and this feature is propagated downwind, where a reduced mixing permits to 
obtain profiles that agree quite better with the experimental data concerning both the peak 
zone and the recovering of the free stream value (see Corsini et al. (2004b) for further 
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details on the comparison between k-ε-v2-f model and LS74 one). Therefore in the 
following, only results obtained with k-ε-v2-f turbulence closure will be considered. 

It is now possible to focus on the assessment of V-SGS finite element method on this 
real flow configuration, with respect to the benchmark solution given by SUPG, using an 
advanced turbulence closure, namely the k-ε-v2-f. The experimental static pressure 
coefficient Cp distribution (i.e. ( ) 2

p ref refC p p /(1 / 2 ) Uρ= − ),shown in Fig. 6.10, 

suggests the existence of a substantial uniform adverse pressure gradient governing the 
boundary layer evolution on the suction side downwind the leading edge. The PG 
formulations appear to be, quite generally, in fairly sensitive matching with the measured 
pressure distribution, and both approximate the pressure profile flattening about 15% of 
the chord that traces the leading-edge separation. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10. Static Pressure Coefficient for Controlled Diffusion. 

 

As a first difference in the V-SGS and SUPG solution behaviors, the experimentally 
predicted suction side leading edge separation is computed by both the numerical 
formulations, but Fig. 6.11 shows, by means of the streamlines plots, that SUPG over-
estimates its thickness, due to an excessive numerical dissipation introduced in cross-wise 
direction. On the contrary, V-SGS is able to better resolve this crucial flow feature, that 
influences the evolution of the boundary layer in all the suction side. 
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Fig. 6.11. Suction side leading edge separation bubble: a) SUPG, b) V-SGS. 
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The streamwise-velocity and turbulence intensity distributions on the blade suction-
side are plotted, respectively, in Fig. 6.12 and Fig. 6.13 for the chordwise location x/lc = 
5.2%, in Fig. 6.14 and Fig. 6.15 for the chordwise location x/lc = 64%, and in Fig. 6.16 
and 6.17 for the chordwise location x/lc = 95%, against the distance normalized with lc. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12. Streamwise velocity profiles on blade suction side @ 5.2 % of the chord. 

 

 

 

 

 

 

 

 

Fig. 6.13. Streamwise turbulence intensity profiles on suction side @ 5.2 % of  chord. 
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Fig. 6.14. Streamwise velocity profiles on blade suction side @ 64 % of the chord. 

 

 

 

 

 

 

 

Fig. 6.15. Streamwise turbulence intensity profiles on suction side @ 64 % of chord. 
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Fig. 6.16. Streamwise velocity profiles on blade suction side @ 95 % of the chord. 

 

 

 

 

 

 

 

Fig. 6.17. Streamwise turbulence intensity profiles on suction side @ 95 % of chord. 
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The velocity and turbulence intensity profiles show a good agreement between 
experiments and numerical results, in the limit of a too high turbulence intensity predicted 
near the stagnation point at the leading edge. This numerical drawback of the turbulence 
closure adopted (it must be recalled that the k-ε-v2-f model is still a linear EVM) is 
however recovered before reaching 64% of the chord, where the turbulence intensity peak 
is computed with good accuracy (i.e. see Fig. 6.15). 

Both the computed boundary layer developments appear to return the physical issues 
shown by the experiments, within the inner and the outer layers. It is important to note 
that the presence of an adverse pressure gradient, causing the reactivity to be more 
relevant compared to the T3L configuration, gives rise to noticeable differences in the 
streamwise velocity and turbulence intensity profiles. In detail, the V-SGS appears to 
resolve the boundary layer thickening and the turbulence energy contents in a far better 
agreement than the SUPG scheme. In fact it is possible to note in Fig. 6.13 a verification 
of the fact that V-SGS outperforms SUPG in predicting the turbulence intensity profile 
within the bubble, as stated when commenting Fig. 6.11. Moreover Figs. 6.12, 6.14 and 
6.16 show that the boundary layer thickness prediction obtained with V-SGS is in better 
agreement with experiments, while SUPG over-estimates it in the separation region, due 
to its larger separation bubble (i.e. see Fig. 6.11), and under-estimates it downwind, going 
towards the trailing edge. 

 
 

6.3 Three-dimensional flow configurations 
 
The two-dimensional test cases showed some important aspects related to the quality 

of the turbulence closures adopted for the calculations. In this respect it must be recalled 
that in turbomachinery flows non-equilibrium phenomena can not be resolved adequately 
with the Boussinesq effective viscosity concept. The overview of recent open literature on 
computational studies for compressors, indicates that the turbulence models in use range 
from simple algebraic eddy viscosity models (EVMs) (e.g. Furukawa et al. (1999), 
Gallimore et al. (2002)), to one-equation Spalart-Almaras (Eulitz (2001)) or isotropic 
two-equation models with low-Reynolds number extensions (Hah et al. (1999)). More 
advanced models, such as non-equilibrium eddy-viscosity variants (Borello et al. (1997)), 
are occasionally adopted. Only recently, second moment closure applications to two- and 
three-dimensional (3D) compressor cascade flows started to be applied, (i.e. see Borello 
et al. (2005)).  

This state of the art is mainly related to the need to work with so-called engineering 
turbulence approaches, which give ease of coding and numerical robustness, thus 
constraining industrial research to simpler models. As a result remains an unsatisfactory 
level of accuracy in demanding flow problems, and the reliability of numerical 
simulations can not be guaranteed. 

On the modeling point of view, the preceding test cases demonstrated that the two-
equation non-isotropic closure CLS96 possesses some distinctive features that make it 
preferable with respect to the other two proposed, i.e. the standard LS74 and the k-ε-v2-f. 
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In fact the performed systematical assessment showed outperforming results with respect 
to LS74 model (i.e. in the T3L test case), without including additional equations, as done 
instead by k-ε-v2-f, that still remains a linear eddy viscosity model, affected by turbulence 
over-production near stagnating points. The CLS96 closure thus represents an alternative 
simpler route for approximating the Reynolds stresses, with respect to second-moment 
closure, widely seen as the optimum level for complex flows. 

The addressed non-linear turbulence closure, still undergoing validation efforts in 
several flow problems (such as: external aerodynamics, environmental problems, etc.), 
has not yet been extensively applied in the context of real turbomachinery configurations. 
In Corsini and Rispoli (2005) the predictive capabilities of the presented cubic two-
equation model in simulating complex high-pressure axial ventilation fan have been 
tested with encouraging results. In this work the CLS96 closure is applied for the 
simulation of a challenging test case for turbomachinery CFD, namely a Linear 
Compressor Cascade with tip clearance. 

On the numerical point of view, this last test case is used to show the performance of 
the recently proposed V-SGS + DRDJ formulation (Corsini et al. (2005c)), with respect to 
the benchmark SUPG solution. 

 

6.3.1 Linear Compressor Cascade with tip clearance (NACA 
65-1810) 
 

This conclusive test case concerns the three-dimensional flow in a Compressor 
Cascade with stationary endwall at design conditions, with tip clearance, and an adopted 
blade that reproduces the NACA 65-1810 profile with flat ends. Experimental 
investigations on this machine were carried out in the Vrije Universiteit Brussel (VUB), 
and a detailed description and analysis of the measured data can be found in Kang and 
Hirsch (1993a and b). Details of the linear cascade are given in Tab. 6.1. 

 
 

Profile Type NACA 65-1810 
Aspect Ratio 1.0 

             Chord 200 mm 
Pitch 180 mm 

Solidity 1.111 
Stagger angle 10° 

Inlet angle 32.° 
Outlet angle -12.5° 

Mach Number < 0.1 
 

Tab. 6.1. Geometry of the Linear VUB Compressor Cascade. 
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The cascade flow is simulated by imposing a small incidence angle (about -2.5°). The 

flow is regarded as incompressible and steady. In accord with the experimental findings, 
the flow at the inlet was considered as fully turbulent, (the measured shape factor at the 
inlet, 40% chord upstream of the leading edge, is about 1.22). The Reynolds number, 
based on the chord length and the inlet bulk velocity is 3x105. The experimental free 
stream turbulence intensity is 3.4%. The dissipation length scale lε has been set equal to 5 
% of chord length. 

On the grid point of view, the tip clearance is 4 mm (2% of the blade chord) and 
theoretically appears near both end walls; however experimental measurements were only 
done until midspan, so that a tip clearance only appears near a wall, and this choice was 
also used for the calculations. The resulting mesh height in span direction is thus equal to 
104 mm. A Stretched H-grid with zero values of flow variables inside the blade has been 
adopted to avoid distortion in the discretisation of the leading and trailing edge regions. 

The inlet and outlet sections are placed in the first measurement section (40 % chord 
upstream from the leading edge) and one chord downstream from the blade passage 
respectively. Experimental data have been imposed as inflow-velocity Dirichlet boundary 
conditions. Inlet distribution for turbulent kinetic energy k has been imposed by scaling a 
turbulence intensity profile experimentally derived for a fan rotor of similar performance 
(Corsini and Rispoli (2004)). The scalar dissipation (ε ) distribution at the inlet has been 

derived by imposing ( )( ) ( )23 / 2
in jk l 2 k / xεε ν= + ∂ ∂ Neumann conditions are set on 

the outflow boundaries. On the walls, no slip conditions have been used, Flow periodicity 
has been strictly imposed at the permeable boundaries, thus permitting to simulate only 
one pitch distance, while symmetry has been imposed in the mid-span section. 

In order to achieve grid independent solutions, the grid was progressively refined up 
to 141x73x81 points (IxJxK), thus obtaining 833733 nodes on Q1 elements, to which the 
following results refer. The maximum y+ values in the first nodes row close to the solid 
boundary have been maintained under a threshold value of 2. Fig.6.18 shows a detail of 
the blade discretization. 
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Fig. 6.18. Blade grid. 

 
 
Computations have been performed with equal-order linear Q1-Q1 elements, and 

PSPG stabilization (i.e. see Tezduyar et al. (1992)) to eliminate the undesirable pressure-
checkerboarding effects related to the combination of interpolation spaces. Both V-SGS + 
DRDJ and SUPG stabilization parameters have been obtained using the hUGN element 
length (Tezduyar and Park (1986), Tezduyar and Osawa (2000)). The solutions have been 
obtained using an in-house overlapping parallel solver (Borello et al. (2003)), with an 
original block structured domain decomposer managed by the MPI libraries and running 
on a XEON Cluster with 14 processors and 7 Gb RAM. The numerical campaigns were 
carried out using the FGMRES(8) solver with convergence thresholds for error Rres and 
solution Rsol residuals set to 10-4. 

The first parameter considered for analysing numerical results is the Static pressure 
coefficient Cp, shown in Figs. 6.19 and 6.20 for two different spanwise locations, 
respectively at midspan and 30 mm far from the tip, where experimental data are 
available. 
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Fig. 6.19. Static Pressure Coefficient @ midspan. 
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Fig. 6.20. Static Pressure Coefficient @ 30 mm from the tip. 

 

Fig. 6.19 and 6.20 show a similar behavior of the two numerical solutions, able both 
of being in fair agreement with experimental results at midspan, while going towards the 
tip, some turbulence modelling drawbacks limit the pressure increase on pressure side, 
while suction side phenomena are well represented. 
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It is a matter of fact that the endwall zone of the field contains the most interesting 
feature, i.e. the tip leakage vortex, thus being worthwhile showing in Fig. 6.21 the 
streamlines evolution on a plane located at half of the tip clearance region, using the 
contour plots of static pressure as background. 

    
Fig. 6.21. Flow patterns in the tip clearance: a) SUPG, b) V-SGS + DRDJ. 

 

Following the argumentations presented in Kang and Hirsch (1993a), experimental 
results show that approaching the leading edge it could be found a Saddle Point, also seen 
in the computations and labelled Sp in Fig. 6.21. From this point the flow patterns split 
into two lines, creating a leading edge horseshoe vortex, well resolved by both the 
numerical formulations. The pressure side branch stretches downstream a short distance, 
and then tends to join the suction side one, giving rise to the tip leakage vortex, that could 
be seen in both the solutions. Finally, another experimental feature of the flow in the tip 
gap is well resolved by the numerical simulations, namely the tendency of the 
reattachment line of the tip leakage vortex to go near the reattachment line of the passage 
vortex, labelled PL in Fig. 6.21. 

In order to better understand the complex structure of the flow, Fig. 6.22 shows the 
velocity vectors at the tip, considering two adjacent blades. 

 

Sp Sp

PL 
PL

a) b)
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Fig. 6.22. Velocity vectors @ tip: a) SUPG, b) V-SGS + DRDJ. 

 

From the vector plots shown in Fig. 6.22, it is possible to see some first differences 
between the two numerical formulations in resolving the wake zone after the trailing 
edge, labelled with W. SUPG wake is in fact more limited with respect to V-SGS + DRDJ 
one, and this aspect will be confirmed in the following. 

Considering now the whole velocity field, some appreciable differences in the 
numerical solutions could be highlighted by the streamlines patterns. In this viewpoint, 
Fig. 6.23 shows the streamlines patterns along the pressure side, Fig. 6.24 considers the 
suction side, and Fig. 6.25 shows a detail of the streamlines patterns that define the tip 
leakage vortex. 

a) b) W W 
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Fig. 6.23. Streamlines along pressure side: a) SUPG, b) V-SGS + DRDJ. 

 

 

a) 

b) 
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Fig. 6.24. Streamlines along suction side: a) SUPG, b) V-SGS + DRDJ. 

 

b) 

a) 
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Fig. 6.25. Streamlines along tip leakage vortex: a) SUPG, b) V-SGS + DRDJ. 

b) 

a) 
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The observation of the red boxed areas in Fig. 6.23 demonstrates that SUPG solution 
contains two separate zones in the wake, while V-SGS + DRDJ tends to make them 
closer. This aspect could be fully understood considering the red boxed areas of Fig. 6.25, 
where it is possible to realize that the tip leakage vortex created by SUPG solution is 
weaker than the one obtained with V-SGS + DRDJ, capable of promoting much more 
mixing. These aspects find their counterpart in the vortex core analysis performed in Fig. 
6.26. 

 

 
Fig. 6.26. Vortex core analysis: a) SUPG, b) V-SGS + DRDJ. 

 

The red boxed areas of Fig. 6.26 trace the presence of the horseshoe vortex at leading 
edge in proximity of the tip, with a big difference in the two computed solutions, namely 
a too extended horseshoe for SUPG solution, that reduces the energy available for the tip 
leakage vortex, which remains too attached to the blade near the trailing edge. On the 
contrary, V-SGS + DRDJ is able of controlling the leading edge separation (due too a less 
pitchwise numerical dissipation), and gives rise to a larger tip leakage flow, capable of 
uniformly involving much of the span, as already shown in Fig. 6.25. 

The vorticity vectors in a crosswise plane, corresponding to station n. 15 (i.e. 50 mm 
after trailing edge) of the experimental results reported in Kang and Hirsch (1993b), are 
shown in Fig. 6.27. 

 

 

b) a) 
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Fig. 6.27. Vorticity vectors : a) SUPG, b) V-SGS + DRDJ. 

 

The comparison between Fig. 6.27a and b with the experimental data plots in Kang 
and Hirsch (1993b) shows a good agreement, with some differences between the 
numerical computations in the red boxed areas, where SUPG solution is not so capable as 
V-SGS + DRDJ solution of maintaining a correct span direction of the vorticity vectors. 

The last aspect to be examined is the evolution of the turbulent variables, and in 
particular the streamwise turbulence intensity. The more interesting zone of the field is 
the wake, thus the analysis has been performed on a section corresponding to station n. 14 
of the experimental results, i.e. just downstream the trailing edge. Fig. 6.28 shows the 
turbulence contour plots of streamwise turbulence intensity in station n. 14. 

a) 

b) 
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Fig. 6.28. Streamwise turbulence intensity @ station 14: a) SUPG, b) V-SGS + DRDJ. 

 

The comparison of the contour plots demonstrates that V-SGS + DRDJ is capable of 
reducing the spurious high turbulence intensity core (red zone) more than SUPG, 
especially near the tip, where a better prediction of the tip leakage vortex is obtained, with 
a subsequent better resolution of the wake features. 

All these considerations permit thus to conclude that the V-SGS + DRDJ method is 
able of giving accurate predictions of complex three-dimensional flows pertinent to 
turbomachinery CFD. Therefore its reliability for RANS turbulence modelling is 
demonstrated, so as its capability of introducing certain particular features in the 
numerical solution that could not be obtained with a classical SUPG stabilization. 
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Conclusions 
 
 

This work deals with two of the most important aspects in turbomachinery flow 
simulation, namely turbulence modelling and stabilization of finite element method.  

For the first subject, the discussion develops considering the state of the art of 
turbulence models used for computations presented in publications and conferences, and 
addresses some new solutions to the closure problem in the RANS framework, showing 
the physical and numerical characteristics of some recent turbulence models. All the 
aspects of these formulations are commented with respect to well established standard 
closures, in order to show similarities, differences and innovative features. 

Concerning the stabilization, this work contains some novel contributions developed 
by the research team which the author belongs to. The argument of stabilized finite 
elements is in fact considered as a crucial aspect for the correct computation of complex 
turbulent flows, such as turbomachinery ones. To this end, both the Petrov-Galerkin and 
the more recent Variational MultiScale approach to computational mechanics are 
addressed, focusing on the most important formulations available in the open literature, 
and commenting on their reliance for tackling all the typical instability origins arising in 
turbomachinery flows computation with finite element method. More in particular, 
advection, reaction and shocks induced instabilities are considered, highlighting some 
deficiencies of well established finite element formulations in dealing with them, 
focusing on the interpolation functions order too. 

After a clarification of all the numerical problems still affecting the computation of 
turbomachinery flows, the work presents the new developed SPG, V-SGS and DRDJ 
finite element formulations, showing their characteristic features and ease of 
implementation in CFD codes. 

Numerical tests are performed with both quadratic and linear finite elements in two 
and three dimensions for both model problems and real turbulent flow configurations 
pertinent to turbomachinery. 

From the performed theoretical analysis and the results of the computations here 
presented, it is possible to draw some conclusions, as follows: 

 
• Complete stabilized formulations are obtained for the RANS approach to 

incompressible turbulent flows with advanced turbulence closure models, 
with particular emphasis on the parameters governing advection and reaction 
induced instabilities; 

 
• The proposed SPG, V-SGS and DRDJ stabilization techniques improve the 

stability with respect to the state-of-art stabilization methods designed for 
turbulent problems, on linear and quadratic finite elements; 
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• The interpretation of stabilization methods as non conventional tools for 
recasting the fine scales effect in the coarse ones, permits to conclude that the 
new developed finite element formulations exert an influence on turbulence 
modeling itself, introducing some non-linear aspects that naturally arise from 
the subgrid structures. 
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