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Introduction

The understanding of the High-Temperature Superconductors (HTS) is one
of the most challenging problem in the field of the condensed matter physics.
Since their discovery in 1986 [1], many experimental and theoretical points
are been clarified, but a global comprehension of their features is far away.
The main focus of this thesis deals with the competition between Supercon-
ductivity (SC) and Charge Density Waves (CDW), trying to outcrop the
role of quenched disorder in superconductors with short coherence length.
We will develop and analyze Ginzburg-Landau like phenomenological mod-
els of this competitions with an eye on the physics of underdoped HTS. This
competition has been studied in the context of bismuthates [2] and we will
extend and deepen these studies for an application to cuprates.

Cuprates are very complex materials so we will concentrate ourselves on
simplified models which capture at least qualitatively their physics. In this
regard several recent experiments show a qualitatively different behaviors
for HTS in respect to traditional superconductors and we will try to find a
qualitative explanation to at least some of them. In particular the following
experiments will be addressed:

• Giant Proximity Effect: It has been observed [3] that in a SS′S
junction, where S and S′ are two different HTS with Tc(S

′) < Tc(S),
there is an anomalous proximity effect in the temperature range where
Tc(S

′) < T < Tc(S). The anomaly is that Josephson effect is observed
even if the intermediate layer has a width which is several times the
superconductivity coherence length, in strong contrast with BCS the-
ory.

• Precursor diamagnetism above Tc : Tunneling experiments [4, 5]
as well as susceptibility experiments [6, 7, 8, 9, 10, 11, 12] have revealed
anomalous diamagnetic activity above Tc.

• Anomalous Nernst effect: Nernst transport experiments [13, 14,
15, 16, 17, 18, 19] have revealed the presence of vortex like excitations
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for temperatures much larger than Tc.

• Modulations in the vortex core: Conductance modulations in
Scanning Tunneling Miscroscopy (STM) has been interpreted as CDW
formation at the vortex core [20].

More recently STM experimets present firm evidence of some kind of
charge modulation in underdoped cuprates[21]. The peculiar observations
of the above experiments are located in the so called “pseudo-gap” region
of the phase diagram, just over the “superconducting-dome”.

The model that will be used captures in a simple way the idea that
the “pseudo-gap” phase is formed of bound fermion pairs which are close
to a CDW instability but generally do not have long range order due to
quenched disorder. Thus the charge degrees of freedom will be modeled by
an Ising order parameter in the presence of quenched disorder, so represent-
ing a charge glassy phase. This glassy phase will be in competition with a
superconducting phase modeled by a complex order parameter.

In order to derive the model the additional simplified assumption has
been made, that the order parameter behaves similarly as in a large nega-
tive U Hubbard model close to half-filling. This last condition can appear
rather arbitrary but can be at least qualitatively justified in some micro-
scopic “stripe” like models. The model is clearly oversimplified in that it
ignores some basic features of cuprates like the d-wave symmetry of the su-
perconducting gap and the complexity of the possible CDW textures. How-
ever it captures in a simple way the competition between CDW and SC. The
two order parameters can be embodied in a single SO(3) order parameter
with the order along the z-axis corresponding to CDW order and the order
in the xy-plane corresponding to superconducting order. Thus the model
can be written in the lattice as an anisotropic Heisenberg model. Also we
are interested in the long wave length physics where quantum effects can
be taken into account as renormalization of the parameters, thus the model
reads:

H = −J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(Sz
i )2 +

W

2

∑

i

hiS
z
i (1)

where ~Si = {Sx
i , S

y
i , S

z
i } is a classical Heisenberg pseudospin (hereafter spin)

with |~S| = 1, J is a positive coupling constant. The first term represents
the nearest neighbor interaction of the order parameter. For simplicity we
are assuming that this term is isotropic in the spin space. The second
term breaks the symmetry in the spin space with G > 0 favoring a CDW
and G < 0 favoring a superconducting state; hi are statistical indipendent
quenched random variables with a flat probability distribution between −1
and +1; also W > 0. These random fields would mimic impurities always
present in the real samples.
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As said above this effective Hamiltonian is inspired on the negative U
Hubbard model at strong coupling. Indeed if we start from a one band
generalized attractive Hubbard model at half-filling:

H =
∑

<i,j>

∑

σ

tijc
†
iσcjσ − 1

2
|U |

∑

i,σ

niσni,σ +

+
1

2

∑

<i,j>

∑

σ,σ′

Wijniσnjσ′ +
∑

i,σ

Einiσ (2)

where Wij is the interatomic interaction and Ei is a random single site en-
ergy, one can do the following transformations. First, an attraction-repulsion
transformation in order to map the starting Hamiltonian into a half-filled
positive Hubbard model; second, in the strong coupling limit (U ≫ tij) it
is possible to perform a canonical transformation that maps the positive
Hubbard model into an antiferromagnetic quantum Heisenberg model. At
long wave lengths the antiferromagnetic order parameter behaves classically
in the sense that the only effect of quantum fluctuations is to renormalize
the original parameters (renormalized classical regime). Thus the spin is
treated as a classical variable and at this point the antiferromagnetic model
can be mapped trivially on the ferromagnetic one just by using the stag-
gered magnetization as a variable. This gives a slightly different version of
the model with anisotropy in J induced by the W term in Eq. (2). But we
prefer Eq. (1) which has essentially the same symmetries but is easier to
analyze.

As a first step we will study the model in one dimension without disorder
to familiarize with it and also to search for a possible explanation of the
Giant Proximity Effect (GPE). In the continuum limit the model reads:

F [θ(x), φ(x)] =

∫
dx

{ρ
2

[(dθ
dx

)2
+ cos2 θ

(dφ
dx

)2]
− g sin2 θ

}
(3)

where θ(x) is the azimuthal angle of our order parameter (controlling the
CDW-SC competition), φ(x) is its angle in the xy-plane, i.e. the supercon-
ducting phase, while ρ and g are the coupling constants in the continuum
limit with ρ playing the role of a SO(3) stiffness.

To address the Giant Proximity Effect the model will be studied in a
Josephson junction geometry of the type S-CDW-S where S represent a su-
perconductor and the role of the Josephson barrier is played by the CDW
phase. The idea is that the S′ superconductor of the experiment done at
Tc(S

′) < T < Tc(S) is in reality a CDW which condensates in a supercon-
ductor at T < Tc(S

′). In practice one takes g > 0 (g < 0) inside (outside)
the barrier region.

After that we will investigate numerically the ground state properties of
the 2-dimensional lattice model Eq. (1), focusing our attention especially
on the stiffness and magnetization of the system in the xy plane. We will
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show that disorder can induce superconductivity in a CDW phase. This
picture is really interesting because it could show how an insulating system
can produce a superconducting phase thank to the interplay with impurites.

Outline of the Thesis

In Chapter (1) we will review the basic ideas regarding superconductors in
a simple pedagogical way.

In Chapter (2), as in the previous one, we will introduce the fundamental
concepts of the Charge Density Wave state.

In Chapter (3) we will illustrate the model Eq. (1) starting from the
microscopic Hubbard model.

In Chapter (4) we will solve the model (without disorder) in 1-dimension
and in the continuum limit, in order to discuss the problem of the
Giant Proximity Effect.

In Chapter (5) we will describe the results obtained from the numerical
study of the 2-dimensional model with quenched disorder.

In the appendicies (A), (B), (C) it is possible to find more details about
calculations performed into the chapters (3), (4) and (5).



Chapter 1
Superconductivity: an Overview

In this chapter we want to review some basic concepts regarding the Super-
conductivity (SC), introducing symbols and notations we shall use hereafter.
Following in a some way a historical line, we shall describe what is the pen-
etration depth λ, the coherence length ξ, the superconducting stiffness ρs,
and what are the main differences between the so called Type I and Type
II superconductors. We will also speak about of High Temperature Super-
conductors (HTS), particularly with an eye on some specific experiments
that are our starting point in this research thesis, motivating some choices
for the model that we will study later.

1.1 The Discovery of Superconductivity

In 1911 the Dutch physicist H. Kamerlingh-Onnes discovered a new fasci-
nating natural phenomenon after called Superconductivity[22]1. He wanted
to measure the electrical resistance of a substance when it was cooled and
purified as much as possible; in great astonishment he observed that the
electric resistance of mercury at a temperature below 4.15 K was zero. This
temperature at which the jump of the resistance is observed is called the
critical temperature Tc. After this discovery new challenges and new puzzles
broke in the world of science.

1The true discovery was due to a Onnes’ student, who did not appear into the pubbli-
cation.
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1.1.1 The Meissner effect

The progress of superconductivity studies was very slow, because one had
to cool metals down to very low temperatures and this task was not so sim-
ple; these studies had to be carried out with liquid helium getting to few
Kelvin degrees. But the liquefaction of helium was itself another both inter-
esting and difficult problem. It was twenty-two years after Onnes’ discovery
that the second fundamental property of superconductors was revealed. W.
Meissner and R. Ochsenfeld [23] observed that a superconducting sample
was able to force a constant, but not very strong, magnetic field out of it;
now we refer to this effect as the Meissner effect. To prove the existence of
superconductivity it is necessary, at least, that both fall of resistence and
Meissner effect be observed. At this point we could put a simple but also
important question: why is a superconductor characterized by both zero
resistance and Meissner effect, what is the real difference between a super-
conductor and a perfect conductor, that has only a zero resistance? To
answer this question we describe three ideal experiments following the next
pictures with their captions:

Figure 1.1: A normal conductor (N) has a finite resistance at any tem-
perature, so when it is immersed in a magnetic field, currents
arise to preserve field’s flux, according to the laws of electro-
magnetic induction. But since the resistance is nonzero, these
currents decay and the field penetrates in the ball.
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Figure 1.2: If a normal metal is cooled below its critical temperature Tc becom-
ing a superconductor (S), and then we apply a magnetic field, it is
expelled from the sample according to the laws of electromagnetic
induction. But because of its zero resistance this situation does not
change over the time. On the other way, if we start with a normal
metal and we apply a magnetic field we see (as described in the pre-
vious picture) that this field penetrates into the sample; but now if
we lower the temperature below Tc, the field is expelled from the
sample. This is precisely the Meissner effect.

Figure 1.3: If a hypothetical ideal conductor (zero resistance) does not exhibit
the Meissner effect, we would see a different behavior. If the temper-
ature is lowered in the presence of the field, when the resistanceless
state (X) is achieved the magnetic field is conserved, even if the
external field is removed. However, such a state has never been
observed in experiments.
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The Meissner effect is really important, and it proves that the “supercon-
ducting state” is a reversible equilibrium state, a stable thermodynamic one,
while for a simple perfect conductor the magnetic field history is important.
The reversibility of the expulsion of a magnetic field from a superconductor
implies that the transition between normal and superconducting state is re-
versible in temperature T and magnetic field H; thus there are two phases
separated by a critical curve H = Hc(T ) as skecthed in Fig: (1.4). Here we
are referring to so-called Type I superconductors, defined more precisely be-
low. The critical field Hc can be related to the free energy difference between

Figure 1.4: Phase diagram of a transition from the normal (N) to the
superconductor (S) state.

the normal and the superconducting state.To see this we have to define the
thermodynamic potential density of both normal and superconducting state
in presence of a magnetic field. Imposing their equality at the transition line
we can obtain the expression that defines Hc. The thermodynamic potential
energy in a magnetic field is the Gibbs free energy, given by:

G(H,T ) = F (T ) − 1

4π

∫ H

0
B(H ′)dH ′ (1.1)

where F (T ) is the Helmholtz free energy. In a superconductor, negleticing
surface effects, B = 0, then:

Gs(H,T ) ≡ Fs(T ) (1.2)

while neglecting the much smaller response of the normal state, we can have
B = H, then:

Gn(H,T ) = Fn(T ) − H2

8π
(1.3)
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Along the transition line H = Hc(T ) the two thermodynamic potentials are
equal, so we obtain:

Fn(T ) − Fs(T ) =
H2

c (T )

8π
(1.4)

This expression defines the thermodynamic critical field Hc(T ) as a func-
tion of the difference of free energy density between the normal and the
superconducting phases.

It was found empirically that Hc(T ) is well approximated by a parabolic
law:

Hc(T ) ≈ Hc(0)[1 − (T/Tc)
2] (1.5)

and while the transition in zero field at Tc is of second order, the transition
in the presence of a field is of first order as we can see observing the jump
in the variation of the specific heat between the two phases:

Cn − Cs = T
[∂2Gs

∂T 2
− ∂2Gn

∂T 2

]

H
= − T

8π

d2(H2
c )

dT 2
(1.6)

We have also to remember that for T = 0 the free energy densities difference
between the two states is called condensation energy, and as we show better
later it is realted to a kind of condensation of the electrons near the Fermi
surface:

Fn(0) − Fs(0) =
H2

c (0)

8π
(1.7)

Finally we want to come back to Meissner effect, observing that if a sam-
ple is in a magnetic field, the transition to a superconductor requires energy
expenditure to expell the magnetic filed outside the bulk of the sample. But
if the magnetic field is too strong it is impossible to the sample to gain the
superconductovity state at any temperature. There exists also another crit-
ical parameter which obstructs the occurrence of superconductivity; it is a
critical current jc. We known that if there exists an external magnetic field,
there is a screening current running along the sample surface and provid-
ing the Meissner effect. But we could ask ourselves what happend when a
generic transport current runs through a superconductor. This current gen-
erates a magnetic field and if it runs into the bulk of the superconducting
sample, due to the Meissner effect the magnetic field is forced out of the
bulk superconductor. But it is equivalent to say that the transport currents
must run on the surface. So all currents are on the surface. Obviously it
is impossible for these currents to flow in a zero thick layer, but they are
distributed over a certain thickness; so the magnetic field penetrates inside
the superconductor too. Both currents and magnetic fields decrease with
depth into the material and the tipical length scale over which they go to
zero is called London penetration depth λL, to be defined later. It is im-
portant to note that the above assertions are valid for the so called Type I
superconductors, which we shall describe more deeply later; up to now we
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can say that these superconductors were the first historically discovered and
their physics is well understood.

1.1.2 The London equation

In 1935 F. London and H. London [24] gave the first theoretical description
of the behavior of a superconductor in a magnetic field.

In an approximate way we can write down the following free energy for
a superconductor into a magnetic field:

F =

∫
Fs(0)d~r + Ekin + Emag (1.8)

where Fs(0) is the free energy density of the condensed state, Ekin is the
kinetic energy related to the current ~js, and Emag is the magnetic energy

due to the field ~h. But we have:
∫
Fs(0)d~r ≡ E0 = constant (1.9)

Ekin =

∫
1

2
mv2ns d~r (1.10)

Emag =

∫
h2(~r)

8π
d~r (1.11)

where ns is the superconducting electron density, and Eq: (1.10) is valid
only if the velocity (and thus the current ~js) is a spatially slow function.
Now we have to remember the definition of the current and the Maxwell
equation relating the magnetic field with the current:

~js = nse~v(~r) (1.12)

~∇ · ~h =
4π

c
~js (1.13)

where e is the electron charge; thus we can write the kinetic energy as:

Ekin =

∫
1

2
m

( j2s
n2

se
2

)
ns d~r

=

∫
1

2

m

nse2
c2

(4π)2
|~∇ · ~h|2 d~r (1.14)

Now we can rewrite the free energy for the superconductor as:

F = E0 +
1

8π

∫ [
h2 + λ2

L|~∇ · ~h|2
]
d~r (1.15)

where

λL ≡
√

mc2

4πnse2
(1.16)
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is the so called London length. Now minimizing the free energy with respect
to the variation of the field distributions δ~h(~r) we can obtain the equilibrium
state:

δF =
1

4π

∫
[~h · δ~h + λ2

L
~∇× ~h · ~∇× δ~h] d~r

=
1

4π

∫
[~h+ λ2

L
~∇× ~∇× ~h] · δ~h d~r ≡ 0 (1.17)

thus the so called London equation is:

~h+ λ2
L
~∇× ~∇× ~h = 0 (1.18)

and it allows, within the Maxwell equations, to obtain the magnetic field
and current distributions.

We can see at work the London theory investigating the properties of a
flat semi-infinite superconducting sample parallel to the XY plane. Taking
in mind the Maxwell equations:

~∇× ~h =
4π

c
~js (1.19)

~∇ · ~h = 0 (1.20)

and assuming the magnetic field ~h orthogonal to the z axis2, and without
loss of generality parallel to the x axis, the Maxwell equation Eq: (1.19)
becomes:

dh

dz
=

4π

c
~js (1.21)

and then the London equation reads:

h− λ2
L

d2h

dz2
= 0 (1.22)

and its solution is:
h(z) = h(0)e−z/λL (1.23)

This result show that the magnetic field is able to penetrate into the su-
perconductor over a length of the order of the London length λL, falling off
exponentially (see Fig. (1.5)). The penetration depth λL depends on the
properties of the material and its order of magnitude, for many common
materials such as Aluminium, Mercury, Niobium, is roughly 102 Å. It has
to underline that λL is temperature-dependent, so as the temperature is
increased from zero to a critical value, λL increases too. And we can imag-
ine the loss of superconductivity upon heating as the increase of λL until it
covers the whole of the sample.

2If the magnetic field is parallel to the z axis, using the Maxwell equations and the
London equation it is possible to see that the magnetic field cannot penetrate into the
superconductor.
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Figure 1.5: The boundary between a superconductor and a magnetic field.
The field falls exponentially with increasing depth.

1.1.3 The coherence legth ξ and the energy gap ∆

Pippard gaves an estimate for ξ using the uncertainty principle; the corre-
lation distance of the superconducting electrons ξ is related to the range of
momentum δp by:

ξδp ∼ ℏ (1.24)

In the condensation process the electrons involved are those whitin distance
KBTc of the Fermi surface, i.e.

KBTc ∼ vF δp (1.25)

where vF is the Fermi velocity. The cooherence length is such that:

ξ ∼ ℏvF

KBTc
(1.26)

Another important feature is the existence of a gap in the low energy
excitations, in which the electrons are bound in so called Cooper pairs of
size ξ. A gap ∆ appears in the excitation spectra, and it is of the order of
the energy to break a Cooper pair. Another relation for ξ can be deduced
from the knowledge of ∆, indeed to create a Cooper pair, the important
momentum range is given by:

δp ≈ 2∆

vF

(1.27)
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thus using again the uncertainty principle we have:

ξ =
ℏvF

π∆
(1.28)

where the factor 1/π is arbitrary and chosen for convenience. It is really in-
teresting to observe also that the energy gap ∆ and the critical temperature
Tc are proportional each other.

1.1.4 Type I and Type II superconductors

Up to now we have described general features of superconductors whitout
specifying if we can apply them to all superconducting materials. The ex-
istence of the coherence length ξ and of the London penetration depth λL

leads to a natural classification of superconductors into two categories, which
result to have very different properties:

1. Type I superconductors for which λL ≪ ξ

2. Type II superconductors for which λL ≫ ξ

Type I superconductors, also called Pippard superconductors, behave
roughly as “ideal” superconductors, they are described not by the London
theory but by the nonlocal Pippard theory. From the microscopic point of
view, the properties of Type I superconductors are well explained by the
BCS theory. We have to point out also that the behavior of the magnetic
field could be more sophisticated in a Type I superconductor than described
up to here. For example if we have a sample with a dimension d less than
the penetration depth λL, or with a peculiar geometry, we can see an un-
obvious penetration of the magnetic field in the sample where some regions
are superconducting and others are normal. In these situations we shall
speak of the intermediate state. To clear this situation we can imagine a
superconducting ball (whose radius is much larger than λL) immersed in a
weak uniform magnetic field. We assume that initially the magnetic field
is completely forced out of the ball, so now the magnetic field is nonuni-
form; its magnitude near the “poles” is smaller, while near the “equator”
is greater. If we strengthen the magnetic field it reaches the critical value
firstly near the equator, so this field destroys superconductivity penetrating
inside. But when the field penetrates inside the ball its magnitude decreases,
it will become lower than critical value and it therefore cannot obstruct su-
perconductivity. So now we are in a paradoxical situation; the solution is
that the sample splits into alternating normal and superconducting zones
and “transmits” the field through its normal zones (see Fig. (1.6)). Such a
state is the intermediate state. So in the Type I superconducting phase di-
agram we have not only the thermodynamic field transition line Hc(T ), but
also another transition line Hc1(T ). The critical field Hc1 is smaller than the
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Figure 1.6: A superconducting ball in a magnetic field. In a sufficiently
strong magnetic field an intermediate state occurs; the normal
regions are traversed by magnetic field lines.

termodynamic critical field Hc, and for field H smaller then Hc1 we observe
a perfect Meissner effect with the total exclusion of the field from the sam-
ple, while for Hc1 < H < Hc in the sample there is the establishment of
the “intermediate state”, as described above. Type II superconductors fol-
lows the London equation for small fields, and they are completely different
from Type I superconductors. The concept of a “thermodynamic critical
field” Hc for a Type II superconductor can be introduced, but it is only a
convenient concept; for this kind of superconductors we have to define two
other different critical field3, Hc1 and Hc2. For field H smaller then Hc1

we observe a perfect Meissner effect, while for Hc1 < H < Hc2 the field
penetrates the sample but this situation is completely different from the in-
termediate state of Type I superconductors. For these field values in Type
II superconductors, eddy currents spontaneously appear in the sample and
a vortex state is created as it was theoretically predicted by A. A. Abrikosov
[25]. The vortex is formed by a normal state core of diameter of the order
ξ, and screening currents in the region of finite magnetic field of size λL.

3Here we are neglecting surface superconductivity, and then the possibility to define
the critical field Hc3, that is greater then Hc2
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The diameter is perfectly determined and does not depend on the external
magnetic flux, and it does not reach the ordinary dimensions of the inter-
mediate regions in type I superconductors. In a type II superconductor,
the vortices are oriented parallel to the magnetic field and also they interact
each other with a repulsive force forming a regular triangular lattice. Vor-
tices occur if the external magnetic field strength reaches the so-called lower
critical field Hc1; at this value, vortices penetrate superconductor and if the
field strengthens their number increase as their density all superconducting
diamagnetic effects are destroyed. This happens when the so-called upper
critical field Hc2 is reached.

Now we can describe better the vortex state starting from the situation
for which the magnetic field is small; this implies that only few field lines
penetrate into the sample that has only few regions into the normal state.
In this vortex state the superconducting electron density ns is zero at the
centre of the vortex and, over a length of the order of ξ, it reaches the
maximum value, while the field lines extend themselves for a distance of the
odrer of λ, that in this situation is greater than the coherence length itself.
We have to point out also that orthogonal to the vortex line there are eddy
currents, and for a single vortex the magnetic flux enclosed by a circle of
radius r ≫ λ around the vortex is quantized:

φ0 =
ch

2e
(1.29)

where φ0 is the elemental quantum flux. Now we can study the energy
of a single vortex line, and the shape of the magnetic field, for the case
λ ≫ ξ; in this situation the vortex core is really small and we can neglect
its contribution to the energy, so writing for the vortex energy the following
expression:

E =

∫

r>ξ

1

8π
(h2 + λ2|~∇ · ~h|2) d~r (1.30)

Minimizing the above expression we find the London equation (Eq. (1.18)),
that is valid outside the vortex core. In order to include the core contribution
we can, thanks to small dimension of the core itself, use a delta function,
and write down:

~h+ λ2~∇ · ~∇ · ~h = ~φ0δ(~r) (1.31)

where ~φ0 is a vector parallel to the vortex line, with an intensity equal to
the magnetic flux through the vortex itself. If we now integrate Eq. (1.31)
over a disk C with radius r concentric to the vortex, we obtain:

∫

C

~h · d~σ + λ2

∮

C

~∇× ~h · d~l = φ0 (1.32)

Using the Maxwell equation ~∇ · ~h = 0 it is possible to find the solution of
Eq. (1.32):

h =
φ0

2πλ2
K0(r/λ) (1.33)



12 Superconductivity: an Overview

where K0 is a Bessel function; and using the asymptotic expression of K0

we have:

h =
φ0

2πλ2
ln(λ/r) for ξ < r ≪ λ (1.34)

h =
φ0

2πλ2

√
πλ

2r
exp(−r/λ) for r ≫ λ (1.35)

Using the explicit expression of the magnetic field it is possible to calcu-
late the energy of the vortex line:

E =
( φ0

4πλ

)2
ln(λ/ξ) (1.36)

This expression shows more clearly that φ0 is the elemental quantum flux,
because if for example we double the flux, it is better to have two distinct
vortex lines each one with a flux φ0 than a single flux line with the flux
equal to 2φ0.

The physics of the vortex lines is really rich and interesting, for exam-
ple these vortex line can interact each other rearranging themselves into a
triangular lattice as predicted by Abrikosov.

1.2 The Landau-Ginzburg theory

In 1950 L. D. Landau and V. L. Ginzburg [26] suggested a more general
theory of superconductivity that is used to present day too. It is based on
the more general theory of the second order phase transition developed by
Landau himself; in a few words we can say that if there exists an order
parameter ψ which goes to zero at the transition temperature Tc, the free
energy may be expanded in powers of ψ, and the coefficients of the expansion
are regular functions of the temperature. Thus the free energy density is
written as:

F = Fn + α(T )|ψ|2 +
β(T )

2
|ψ|4 + · · · (1.37)

where Fn is the free energy density of the normal state. The equation (1.37)
is limited to the case where the order parameter ψ is a constant throughout
the specimen. If ψ has a spatial variation, then the spatial derivative of ψ
must be added to Eq: (1.37), and at the leading order we can write:

F = Fn + α(T )|ψ|2 +
β(T )

2
|ψ|4 + γ|∇ψ|2 + · · · (1.38)

Eq: (1.38) would not have been of a great help in the understanding of
the properties of superconductors if Ginzburg and Landau had not proposed
an extension to describe the superconductors in the presence of a magnetic
field. With a great physical insight, they considered the order parameter ψ
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as a kind of “wave function”, and in order to ensure the gauge invariance
they wrote the free energy density as:

F = Fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m

∣∣∣
(
− iℏ∇− e∗ ~A

c

)
ψ

∣∣∣
2
+
h2

8π
(1.39)

where ~A is the vector potential for the magnetic field ~h, and e∗ for Landau
and Ginzburg “had no reason to be different from the electron charge”. Only
thanks to the microscopic theory we know that e∗ = 2e.

1.2.1 The Ginzburg-Landau equations

Starting from Eq: (1.39) and minimizing the free energy f =
∫
F d~r for

variations of the order parameter ψ and of the magnetic field ~h, we obtain
the famous Ginzburg-Landau equations:

δf =

∫
d~r

{
δψ∗

[
αφ+ β|ψ|2ψ +

1

2m

(
− iℏ∇− 2e ~A

c

)2
ψ

]
+ c.c.

}
+

+

∫ {
δ ~A ·

[ ~∇× ~h
8π

− e

mc
ψ∗

(
− iℏ∇− 2e ~A

c

)
ψ

]
+ c.c.

}
(1.40)

where c.c.means the complex conjugate. For f to be a minimum, i.e. δf = 0,
Eq: (1.40) yields the two equations of Ginzburg and Landau:

1

2m

(
− iℏ∇− 2e ~A

c

)2
ψ + αψ + β|ψ|2ψ = 0 (1.41)

~∇× ~h
4π

=
~j

c
=

eℏ

imc
(ψ∗∇ψ − ψ∇ψ∗) − 4e2

mc2
ψ∗ψ ~A (1.42)

1.2.2 The two characteristic lengths ξ(T ), λ(T )

The two Ginzburg-Landau equations (1.41) and (1.42) have two special and
obvious solutions:

1. ψ ≡ 0, where ~A is determined only by applied field ~H (that is different
from the internal field ~h). This solution describes the normal state.

2. ψ ≡ ψ0 =
√

−α/β and ~A = 0. This solution describes the ordinary
superconducting state with perfect Meissner effect. ψ0 corresponds to
the lowest free energy when α < 0.

In the case of a very weak field, ψ is expected to vary very slowly, close
to the value ψ0. The range of variation of ψ can be deduced by the first
Ginzburg-Landau equation by setting ~A = 0. Introducing the rescaled vari-
able:

Ψ = ψ/ψ0 (1.43)
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Eq: (1.41) is written as:

− ℏ
2

2m
∇2Ψ + αΨ − αΨ3 = 0 (1.44)

In order to have a rigth dimensional equation, it is natural to introduce the
length ξ(T ) such that:

ξ2(T ) = − ℏ
2

2mα
(1.45)

which gives the range of variation of ψ. This characteristic length ξ(T )4 is
called the temperature dependent coherence length. Its physical meaning
is clear: if we depress the superconducting order parameter at one point,
ξ represents the distance over which the order parameter is recovevered
(indeed if we solve Eq: (1.44) neglecting the non linear term, we can easily
find a solution for which the order parameter decays exponentially over a
distance of the order of ξ).

If we now eamine Eq: (1.42) for the current, to the first order in h, |ψ|2
can be replaced by ψ2

0 , i.e.:

~j =
eℏ

im
(ψ∗∇ψ − ψ∇ψ∗) − 4e2

mc
ψ2

0
~A (1.46)

Taking the curl of the current, one obtains:

~∇×~j = −4e2

mc
ψ2

0
~h (1.47)

which is equivalent to the London equation, with penetration depth:

λ(T ) =

√
mc2

16πe2ψ2
0

(1.48)

The above expression for the penetration depth is equal to the London ones,
where the number of superconducting electrons ns is replaced by 4ψ2

0 . As
in the London theory, λ determines the range of variation of the magnetic
field.

1.2.3 The Ginzburg-Landau parameter κ(T )

The ratio between the two characteristic lengths ξ(T ) and λ(T ) defines the
so-called Ginzburg-Landau parameter κ:

κ(T ) =
λ(T )

ξ(T )
(1.49)

4This length is certainly not the same length as Pippard’s ξ, since this ξ(T ) diverges
at the critical temperature, whereas the electrodynamic ξ is essentially constant
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This parameter κ is useful to distinguish Type I superconductors from
Type II superconductors; for the former ones we have κ≪ 1, while for the
latter κ ≫ 1. The value κ = 1/

√
2 5 is special because it is the boundary

line between the two families fo superconductors.

1.3 The BCS theory

In 1957 three American physicist, J. Bardeen, L. Cooper and J. R. Schrieffer
[27] discovered the mechanism of the superconductivity and nowadays it is
often called Cooper Pairing. It is a milestone in the history not only of the
condesed matter physics, but also of the entire physics. Here we will show
something about the theory developed by them, the so-called BCS theory.

1.3.1 Attractive interaction and Cooper’s argument

If we consider the ground state of a free electron gas, we have to fill every
energetic single electron level untill the Fermi level, everyone with a mo-
mentum ~k and an energy ℏ

2k2/2m. Cooper showed with a simple argument
that a very small attractive interaction into the system was able to get the
ground state unstable.

If we take two electrons at the positions ~r1 and ~r2 interacting each other,
and we treat the other ones as a free electron gas, the first two electrons be-
cause of the Pauli’s exclusion principle will stay into states with momentum
k > kF . Choosing states for which the centre of mass of the two electrons is
fixed, their wave function Ψ(~r1, ~r2) will be only a function of the difference
~r1 − ~r2. Expanding Ψ as plane waves, we have:

Ψ(~r1, ~r2) =
∑

k

g(~k)ei
~k·(~r1,~r2) (1.50)

where g(~k) is the probability amplitude to find one electron in a plane wave
state ~k and the other one into the state −~k (We have to point out also
that g(~k) = 0 for k < kF because of the occupied states by the other free
electrons gas). The Schrödinger equation for the two electrons is:

− ℏ
2

2m
(~∇2

1 + ~∇2
2)Ψ + V (~r1, ~r2)Ψ =

(
E +

ℏ
2k2

F

m

)
Ψ (1.51)

where E is the energy of the two electron with respect to the Fermi level,
and V (~r1, ~r2) is the interacting potential. Putting the explicit expression of

5κ = 1/
√

2 is the exact value for which the surface energy between a superconductor
and a normal metal goes from negative (Type II superconductors) to positive (Type I
superconductors) values.
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the wave function (Eq: (1.50)) into the Schödinger equation, we obtain:

ℏ
2

m
k2g(~k) +

∑

k′

g(k′)Vkk′ = (E + 2EF )g(~k) (1.52)

Vkk′ =
1

V ol

∫
V (~r)e−i~r·(~k−~k′) d~r (1.53)

This equation within the Pauli principle, represents the so-called Bethe-
Goldstone equation for the two electrons problem. If the interaction V is
attractive, it is possible to show that a binding state exists. A way to see
this is to take a constant attractive potential different from zero only over
the Fermi level at an energy ℏωD

6. If ℏωD ≪ EF and if we are in the weak
interaction limit (N(0)V ≪ 1), we have:

E = −2ℏωDe
−2/N(0)V (1.54)

where N(0) is the density of states at the Fermi level. We can observe
E < 0 , so the binding state exists and thus the normal state is unstable
with respect to the formation of electrons pairs.

1.3.2 The electron-phonon interaction

Now a good question could be: why into a simple electron gas two electrons
have to attract each other? In order to achieve this attraction, the electrons
have to couple with other particles or excitations, such as phonons, spin
waves . . . Here we will consider only the electron-phonon interaction, just
to give an example of how it is possible to have an attractive interaction.

We want to know the matrix element of the electron-electron interaction
between a starting state |I〉 and a final state |II〉, for which the electrons
are described respectively by plane wave ~k, −~k for |I〉 and ~k′, −~k′ for |II〉.
This electron-electron matrix element will have a Coulomb repulsion term
Uq and a phononic term; in the latter case the electrons can interact with the

lattice via two ways: either the electron ~k emits a phonon with momentum
−~q adsorbed by the electron −~k, or the electron −~k emits a phonon with
momentum ~q adsorbed by the electron ~k. Up to the second order of the
perturbation theory we can write the matrix element as:

〈I|H|II〉 = Uq + 2
|Wq|2

ℏ

ωq

ω2 − ω2
q

(1.55)

where ω is the energy difference between the starting state |I〉 and the final
state |II〉; and ωq is the phonon energy. When ω < ωq the phononic term
will be negative (i.e. attractive), thus if the Coulomb repulsion is not so big,
the total interaction is attractive7.

6This will be justified in the next subsection.
7This justifies the assumption of the previous subsection.
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1.3.3 The BCS ground state

Starting from the above osservations Bardeen, Cooper and Schrieffer pro-
posed their microscopic theory; simplifying the expression of the effective
potential of Eq: (1.55) to a small square well potential around the Fermi
surface, they wrote down the following Hamiltoian in second quantization:

H =
∑

~k,σ

ǫkc
†
k,σck,σ +

∑

k, k′,σ

Vkk′c†k,σc
†
−k,σc−k,σ′ck′,σ (1.56)

where Vkk′ is the effective potential, ǫk is the kinetic energy of the electrons
and c†k,σ (ck,σ) is the creation (annihilation) operator for an electron with
momentum k and spin σ.

Because in the real space the electron-phonon coupling is expected to be
short range, in the k-space it will be long range, so a mean field approach
is justified. We can define:

bk = 〈c−k,↓ck,↑〉 (1.57)

b∗k = 〈c†k,↑c
†
−k,↓〉 (1.58)

then we have:

c−k,↓ck,↑ = bk + δbk ≡ bk + (c−k,↓ck,↑ − bk) (1.59)

substituting these expressions into the Hamiltonian (1.56) neglecting the
square terms (δbk)2, we obtain:

H =
∑

~k,σ

ǫkc
†
k,σck,σ −

∑

k

(
∆∗

kc−k,↓ck,↑ + ∆kc
†
k,↑c

†
−k,↓ − b∗k∆k

)
(1.60)

where:

∆∗
k′ = −

∑

k

Vkk′b∗k (1.61)

∆k = −
∑

k′

Vkk′bk′ (1.62)

In order to diagonalize the Hamiltonian (1.60) we need to define two new
fermionic operators, ηk and γk, by the following unitary transformation:

ck,↑ = cos θηk − sin θγ†k (1.63)

c†
−k,↓ = sin θηk + cos θγ†k (1.64)

Substituting these operators into the Hamiltonian 1.60 and putting:

tan(2θ) = −∆k

ǫk
(1.65)
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it is possible to diagonalize the Hamiltonian itself8 obtaining:

H =
∑

k,σ

[
ǫk + ∆kb

†
k

]
+

∑

k

Ek(η
†
kηk − γ†kγk) (1.66)

with:

Ek =
√
ǫ2k + |∆k|2 (1.67)

The expression of Ek shows that |∆k| is a gap into the spectrum, and it
represents the superconducting order parameter of the system.

1.3.4 The gap ∆ and the critical temperature Tc

In the BCS framework it is also simple to find a self-consistent equation that
defines the gap ∆k because the Hamiltonian is written as a free fermion gas.
Thus minimizing the free energy of the system with respect to the gap, we
obtain:

∆k = −
∑

k′

Vkk′∆k′

tanh(βEk′/2)

2Ek′

(1.68)

If we also consider the following simple expression of the interaction poten-
tial:

Vkk′ = −V for |ω − ωF | < ω0 (1.69)

i.e. an attractive constant interaction around the Fermi level with an am-
plitude ω0 (if the nature of the attraction is phononic, the energy ω0 corre-
sponds to the Debye energy ωD), the gap is momentum-indipendent, and so
the self-consistent equation becomes:

1 = V
∑

k′

tanh(βEk′/2)

2Ek′

(1.70)

Now two simple expansion can be done: one around the critical temper-
ature Tc, and the other one around zero temperature.

T −→ Tc

In this limit ∆k → 0, so Ek ≃ ǫk, and approximating the density of
states with its value at the Fermi level D(0) (we have to remember that we
are into an energy band around the Fermi level), the self-consistent equation
writes as:

1 = λ

∫ ωD

0

tanh(βǫ/2)

ǫ
dǫ (1.71)

8This means that there are only terms such as η†η or γ†γ, and also every ∆k need to
have the same phase, i.e. the global order parameter has a global phase.
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where λ ≡ V D(0). In the weak coupling limit (λ≪ 1) it is possible to find:

KBTc =
2eγ

π
ωDe

−1/λ (1.72)

where γ ≃ 0.5772 · · · is the Euler constant.

T −→ 0

In this limit the gap equation becomes:

1 = λ

∫ ωD

0

dǫ√
ǫ2 + ∆2

(1.73)

And in the weak coupling limit (λ≪ 1) we have:

∆(T = 0) = 2ωDe
−1/λ (1.74)

From the previous results we can also find a universal ratio value between
the gap at zero temperature and the critical temperature:

∆(T = 0)

KBTc
≈ 1.76 · · · (1.75)

1.3.5 Anderson’s theorem

An important result that is well known for conventional metallic supercon-
ductors is the Anderson’s theorem [28]. It states that those materials are
insensitive to nonmagnetic impurity doping, so that the superconconduc-
tor critical temperature Tc, and the superconductor density of states are
not affected by the nonmagnetic impurity scattering. In contrast to this
behaviour of conventional metallic superconductors, for High-Temperature-
Superconductors (see next section for them) doping with a small amount of
nonmagnetic impurity like Zn destroys superconductivity, as reported for
some materials Y Ba2(Cu1−xZnx)3O7 [29], Y Ba2(Cu1−xZnx)4O8 [30, 31],
La1.85Sr0.15Cu1−xZnxO4 [32], Bi2Sr2Ca(Cu1−xZnx)2O8 [33].

Thus understanding the role of the disorder is really important for a
better comprehension of the behaviour of these materials. This will be a
main point in our research.
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1.4 HTS and cuprates

In 1986 K. A. Müller and G. Bednorz [1] discovered new classes of the so-
called High-Temperature-Superconductors (HTS). After that a new era in
superconductivity began.

We want to review something about these materials, focusing our atten-
tion on the cuprates superconductors and on some experiments [3, 4, 5, 6,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] that up to now have not a
clear interpretation, and that are the starting point of our research thesis.

For many years prior to the discovery of HTS, the highest Tc had been
stuck at 23 K (Nb3Ge). This discovery took place in an unexpected ma-
terial, a transition-metal oxide, so it was clear that some novel mechanism
must be at work. From that time cuprate HTS are studied intensively, both
from an experimental point of view and a theoretical point of view. But
the superconductivity in these materials is only one aspect of a rich phase
diagram which must be understood; many other physical properties are in-
teresting and unclear outside the superconduting region. While there are a
lot of HTS materials, they all share a layered structure made up of one or
more copper-oxygen planes. But for all of them it is possible to skecth a
similar phase diagram (see Fig. 1.7)

Figure 1.7: Schematic doping phase diagram of electron- and hole-doped
HTS (SC indicates the superconducting phase, and AF the
antiferromagnetic one). [Figure taken from [34]]
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We start our discussions from a so-called parent compound, the La2CuO4.
There is general agreement that it is an insulator, more precisely a Mott in-
sulator. The last one concept was introduced many years ago [35] to describe
a situation where a material should be metallic according to band theory,
but is insulating due to strong electron-electron repulsion. In our case, in
the copper-oxygen layer there is an odd number of electrons per unit cell.
More specifically, the copper ion is doubly ionized and is in a d 9 configu-
ration so that there is a single hole in the d shell per unit cell. According
to band theory, the band is half-filled and must be metallic. Neverthe-
less, there is a strong repulsive energy cost when putting two electrons (or
holes) on the same ion, and when this energy (commonly called U) dom-
inates over the hopping energy t, the ground state is an insulator due to
strong correlation effects. It also follows that the Mott insulator should be
an antiferromagnet because when neighboring spins are oppositely aligned
one can gain an energy 4t2/U by virtual hopping. This is called the su-
perexchange energy J. The parent compound can be doped by substituting
some of the trivalent La by divalent Sr. The result is that x holes are
added to the Cu−O plane in La2xSrxCuO4, which is called hole doping. In
the compound Nd2xCexCuO4 [36], the reverse happens in that x electrons
are added to the Cu − O plane, which is called electron doping. On the
hole-doping side the antiferromagnetic order is rapidly suppressed. Almost
immediately after the suppression of the antiferromagnet, superconductivity
appears. The dome-shaped Tc is characteristic of all hole-doped cuprates.
On the electron-doped side, the antiferromagnet is more robust and survives
up to higher x concentrations, beyond which a region of superconductivity
arises. We shall focus on the hole-doped materials.

The metallic state above Tc has been under intense study and exhibits
many unusual properties not encountered before in any other metal. This
region of the phase diagram has been called the pseudogap phase. We will
see below that a depletion of the DOS occurs in this region justifying its
name. It is not a well-defined phase in that a definite finite-temperature
phase boundary has never been found. The region of the normal state
above the optimal Tc also exhibits unusual properties. The resistivity is
linear in T and the Hall coefficient is temperature dependent [37]. Beyond
optimal doping (the overdoped region), the standard behaviour returns. A
point of view is that the strange metal is characterized by a quantum critical
point lying under the superconducting dome [38, 39, 40]. A different point
of view is that the physics of HTS is the physics of the doping of a Mott
insulator, strong correlation is the driving force behind the phase diagram.
The simplest model which captures the strong-correlation physics is the
Hubbard model and its strong-coupling limit, the t− J model.
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1.4.1 Basic electronic structure of the cuprates

The physics of high-Tc superconductivity is related to the copper-oxygen
layer (see Fig. (1.8)).

Figure 1.8: Electronic structure of the cuprates. (a) The copper d and
the oxygen p orbitals in the hole picture. A single hole with
S = 1/2 occupies the copper d orbital in the insulator. [Figure
taken from [41]]

In the parent compound La2CuO4, the formal valence of Cu is 2+, which
means that its electronic state is in the d 9 configuration. The copper is
surrounded by six oxygens in an octahedral environment with the apical
oxygen lying above and below Cu. The distortion from a perfect octahedron
due to the shift of the apical oxygens splits the eg orbitals so that the
highest partially occupied d orbital is x2 − y2. The lobes of this orbital
point directly to the p orbital of the neighboring oxygen, forming a strong
covalent bond with a large hopping integral tpd. Thus the electronic state
of the cuprates can be described by the so-called three-band model, where
in each unit cell we have the Cu dx2−y2 orbital and two oxygen p orbitals
[42, 43]. The Cu orbital is singly occupied while the p orbitals are doubly
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occupied. By substituting divalent Sr for trivalent La, the electron count
on the Cu−O layer can be changed in a process called doping. For example,
in La2xSrxCuO4, x holes per Cu are added to the layer. As seen in Fig.
(1.8), due to the large Ud the hole will reside on the oxygen p orbital. The
hole can hop via tpd, and due to translational symmetry the holes are mobile
and form a metal, unless localization due to disorder or some other phase
transition intervenes. The full description of hole hopping in the three-band
model is complicated, on the other hand, there is strong evidence that the
low-energy physics (on a scale small compared with tpd and Ep −Ed) can be
understood in terms of an effective one-band model on the square lattice,
with an effective nearest neighbor hopping integral t and with Ep − Ed

playing a role analogous to U . In the large U limit this maps onto the t− J
model plus constraint of non double occupancy:

H = −
∑

〈i,j〉,σ

tijc
†
iσciσ + J

∑

〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
(1.76)

where c†iσ (ciσ) is the fermion creation (annihilation) operator on site i and

spin σ, ni =
∑

σ c
†
iσciσ is the number operator, and J = 4t2/U .

1.4.2 Underdoped cuprates

Here we want to show some features of the so-called pseudogap region, that
has a rich phenomenology. Doping an antiferromagnetic Mott insulator with
a hole, means that a vacancy is introduced into the antiferromagnetic spin
background, and this vacancy would like to hop with an amplitude t to lower
its kinetic energy. However, after one hop its neighboring spin finds itself in
a ferromagnetic environment. It is clear that the holes are very effective in
destroying the antiferromagnetic background. This is particularly so at t ≫
J when the hole is strongly delocalized. The basic physics is the competition
between the exchange energy J and the kinetic energy, which is of order t
per hole or xt per unit area. When xt ≫ J , we expect the kinetic energy
to win and the system would be a standard metal with a weak residual
antiferromagnetic correlation. When xt≪ J , however, the outcome is much
less clear because the system would like to maintain the antiferromagnetic
correlation while allowing the hole to move as freely as possible. This region
of the phase diagram is referred to as the pseudogap region. Below we
review some experiments done in this region, focusing our attention on the
following ones:

• - Knight-shift

• - Giant proximity effect

• - STM
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• - Specific heat

• - Nerst effect

• - Diamagnetic effects above Tc

Knight-shift

The Knight shift is a shift in the nuclear magnetic resonance frequency of
a paramagnetic substance. It is due to the conduction electrons in metals.
They introduce an “extra” effective field at the nuclear site, due to the spin
orientations of the conduction electrons in the presence of an external field.
This is responsible for the shift observed in the nuclear magnetic resonance.
Depending on the electronic structure, Knight shift may be temperature
dependent. However, in metals which normally have a broad featureless
electronic density of states, Knight shifts are temperature independent.

But as we can see in Fig. (1.9), the Knight-shift measurement in the
underdoped Y B2Cu4O8 shows that while the spin susceptibility is almost
temperature independent between 700K and 300K, as in an ordinary metal,
it decreases below 300K and by the time the Tc of 80K is reached, the
system has lost 80% of the spin susceptibility [44] indicating the presence of a
pseudogap. This one is seen by several other probes, and it may indicate the
tendency to form some kind of ordered state, or the presence of preformed
pairs, or both.
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Figure 1.9: Knight shift of the planar 63Cu for an underdoped
Y Ba2Cu4O8 with Tc = 79K. [Figure taken from [44]]
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Giant proximity effect

It is well known that putting a normal metal (N) in close contact with a
superconductor (S), it is possible to observe a penetration of the super-
conducting wave function into N over some characteristic distance ξn, the
coherence length in N . This is the standard proximity effect, by means it is
possible to build SNS Josephson junctions throughout a current is carried
out. This can be easily understood from Eq: (1.44), indeed if we think for
simplicity to have a contact between a strong superconductor and a normal
metal, at the interface the superconducting order parameter has its maxi-
mum value and solving the Eq: (1.44) (neglecting the non linear term) we
see that this order parameter decays exponentially over a distance of the or-
der of ξ into the normal metal. So if we have a SNS junction whose barrier
has a length d of the order of ξ, it is possible to observe a superconducting
current through the barrier itself.

In recent experiments [45, 3], SS′S Josephson junctions were considered,
where S′ is a parent compound HTS. In spite of the really small value of
the coherence length of the barrier (roughly 4 Å), a current was observed in
the junction even if the barrier amplitude d was bigger than the coherence
length. For this reason this phenomenon was called Giant Proximity Effect
and maybe it is possible to observe it because of the pseudogap nature of the
S′ barrier as claimed by some authors [46]; the giant scale of the phenomenon
is provided by the presence of “superconducting” islands that percolating
allow the transfer of the current. However this mechanism requires a fine
tuning of the spacing between the superconducting islands so that they are
of the order of ξ. We will propose a different explanation involving the
competition with a CDW phase.

STM

In the past few years, low-temperature STM data have become available,
mainly on Bi − 2212 samples. STM provides a measurement of the local
density of states with atomic resolution. It is complementary to ARPES
in that it provides real-space information but no direct momentum-space
information. One important outcome is that STM reveals the spatial inho-
mogeneity of Bi− 2212 on roughly a 50− 100 Ålength scale, which becomes
more significant with underdoping. As shown in Fig. 1.10, spectra with
different energy gaps are associated with different patches and with progres-
sively more underdoping; patches with large gaps become more predominant.
There is much excitement concerning the discovery of a static 4× 4 pattern
in this material and its relation to the incommensurate pattern seen in the
vortex core of Bi− 2212 [20]. How this spatial modulation is related to the
pseudogap spectrum is a topic of current debate. In the next chapter we
will give more informations about the STM and the charge modulation.
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Figure 1.10: STM images showing the spatial distribution of energy gaps
for a variety of samples which are progressively more under-
doped from (a) to (e). (f) Th eaverage spectrum for a given
energy gap[Figure taken from [47]]
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Specific heat

A second indication of the pseudogap comes from the linear T coefficient γ
of the specific heat, which shows a marked decrease below room tempera-
ture (see Fig. (1.11)). Furthermore, the specific-heat jump at Tc is greatly
reduced with decreasing doping.

Figure 1.11: The specific-heat coefficient γ. (a) Y Ba2Cu3O6+y. (b)
La2xSrxCuO4. Curves are labeled by the oxygen content
y in the top figure and by the hole concentration x in the
bottom figure. Optimal and overdoped samples are shown in
the inset. The jump in γ indicates the superconducting tran-
sition. Note the reduction of the jump size with underdoping.
[Figure taken from [48, 49]]
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Nerst effect

The Nernst effect in a solid is the detection of an electric field ~E (along
±y, say) when a temperature gradient −~∇T ‖ ~x is applied in the presence
of a magnetic field ~H ‖ ~z. The Nernst signal, defined as E per unit gra-
dient (eN (H,T ) = E/|~∇T |) is generally much larger in ferromagnets and
superconductors than in nonmagnetic normal metals. Where eN is linear
in H (conventional metals), it is customary to define the Nernst coefficient
ν = eN/B with ~B = µ0

~H. Our focus here, however, is on the Nernst effect
in Type-II superconductors, where eN is intrinsically strongly nonlinear in
H [19, 17, 16, 14, 15].

Figure 1.12: The vortex-Nerst effect in a Type II superconductor. Con-
centric circles represent vortices. [Figure taken from [19]]

The observation of a large Nernst signal eN in an extended region above
the critical temperature Tc in hole-doped cuprates provides evidence that
vortex excitations survive above Tc. The results support the scenario that
superfluidity vanishes because long-range phase coherence is destroyed by
thermally created vortices and that the pair condensate extends high into
the pseudogap state in the underdoped regime. Nonetheless, acceptance of
a vortex origin for eN above Tc is by no means unanimous; several mod-
els interpreting the Nernst results strictly in terms of quasiparticles have
appeared [50, 51, 52, 53].

In cuprates, eN (T,H) exists as a strong signal over a rather large region
in the T −H (temperature-field) plane. Fig. (1.13) shows plots of eN vs H
in overdoped La2xSrxCuO4 in which x = 0.20 and Tc0 = 28K (Tc0 is the
critical temperature in zero-field). The characteristic profile of the curve of
eN vs H below Tc0 becomes apparent only in very high fields. Starting at the
lowest T (4.5K), we see that eN is zero until a characteristic field, where the
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vortex lattice is known to melt. The solid-liquid melting transition occurs
at Hm (∼ 25T ). In the liquid state, eN rises to a maximum value before
decreasing monotonically towards zero at a field that we identify with the
upper critical field Hc2 ∼ 50T (the field at which the pairing amplitude is
completely suppressed). As T increases, both Hm and the peak field move
to lower field values. A complication in overdoped La2xSrxCuO4 is that the
hole carriers contribute a moderately large, negative Nernst signal. Close
to Tc0, this carrier contribution pulls the vortex signal to negative values
in high fields. The hole contribution complicates the task of isolating the
vortex signal at high T in overdoped samples, but is negligible for x 6 0.17.

A different perspective on eN (T,H) is shown in Fig. (1.14) in under-
doped La2xSrxCuO4 (x = 0.12, Tc0 = 28.9K). Each curve represents the
profile of eN vs T at fixed field. At this doping, the hole contribution to eN
is negligibly small compared with the vortex signal. The important feature
here is that they extends continuously to T high above Tc0. There is no
sign of a sharp boundary separating the vortex liquid state at low T and
H from a high-T “normal state”. Displaying the data in this way brings
out clearly the smooth continuity of the vortex signal above and below Tc0.
This continuity is also apparent in contour plots of eN (T,H) in the T −H
plane (see Fig. (1.15)).
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Figure 1.13: The observed Nernst signal eN vs field H up to 45T in over-
doped La2xSrxCuO4 at selected T (x = 0.20, Tc0 = 28.9K).
The prominent peak and decrease at high fields are the vor-
tex Nernst signal. At T > 18K, the Nernst signal of the
holes which is negative causes eN to become slightly negative
at high fields. [Figure taken from [17]]
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Figure 1.14: The T dependence of eN at fixed H in underdoped
La2xSrxCuO4 (x = 0.12, Tc0 = 28.9K). [Figure taken from
[17]]
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Figure 1.15: Phase diagram of La2xSrxCuO4 showing contour lines of the
vortex Nernst signal observed above Tc0. The vortex-Nernst
signal is not observed in the samples at x = 0.26 and 0.03.
[Figure taken from [17]]
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Diamagnetic effects above Tc

Above the critical temperature, into the pseudogap state, a rich phenomenol-
ogy can be observed; for example diamagnetic effects are really important
because they are a mark that something related to superconductivity is
happening. Iguchi [4] studied these effects in the pseudogap region of the
La2−xSrxCuO4.

In Fig. (1.16) three or more diamagnetic precursor domains, a few tens
of micrometres in size, are already present at 57 K. The dark-orange re-
gion corresponds to the background-field level. A similar but less developed
structure (< 5µm) was also observable at 80 K, which indicates that the nu-
cleation of diamagnetic domains would start at temperatures significantly
higher than 80 K. With reducing temperature, these domains developed
to form one big domain, which developed further. The growth of domains
became remarkable from temperatures approximately 10 K above Tc. Just
after the coverage of most area by the big-domain region, the superconduct-
ing transition occurred. In contrast to the development of the domain area,
the diamagnetic amplitude of high-temperature domains was significantly
large in the first stage and then decreased with reducing temperature.
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Figure 1.16: Development of magnetic domains with temperature, as ob-
served by scanning SQUID microscopy. Tc was 18 K. [Figure
taken from [4]].
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1.5 Two-dimensional Superconductivity

Because of our interest in cuprates HTS and in their properties in the pseu-
dogap region, it is useful to discuss the two-dimensional superconductivity
because, as we have seen in the previous section, these materials are layered
and the superconductivity takes place in the two-dimensional CuO-planes,
and also because the pseudogap features could be interpreted in a picture
for which there exist preformed Cooper-pairs above the critical temperature
Tc that do not have global phase coherence yet.

Our starting point is the Ginzburg-Landau model, whose effective Hamil-
tonian is given by:

H =

∫ [
α|ψ|2 +

β

2
|ψ|4 +

1

2m

∣∣∣
(
− iℏ~∇− 2e ~A

c

)
ψ

∣∣∣
2
+

|~∇× ~A|2
8π

]
d~r (1.77)

where ψ(~r) = |ψ(~r)|eiφ(~r) is the complex scalar order parameter of the su-
perconducting phase.

Now two simplifications have to be made: in Type II superconductors
the zero temperature mean-field penetration depth is much greater then the
zero temperature coherence length (λ(T = 0) ≫ ξ(T = 0)), thus fluctuations
of the field represented by the last term in Eq: (1.77) around the external
field configuration are strongly suppressed and can therefore be neglected;
also amplitude fluctuations of the order parameter are neglected too, be-
cause in the preformed Cooper-pairs picture the only degree of freedom of
the problem (

√
ρs where ρs is the superfluid density) is represented by the

phase of the order parameter. So we put |ψ| = 1, simplifying the effective
Hamiltonian into:

H =

∫ [ 1

2m

∣∣∣
(
− iℏ~∇− 2e ~A

c

)
ψ

∣∣∣
2]
d~r (1.78)

We can also simply further the model because the field ~A, as observed before,
is frozen, so we can put it equal to zero, obtaining9:

H = −J0

∫
|~∇ψ|2d~r = −J0

∫
|~∇φ|2d~r (1.79)

where J0 = ℏ
2/2m. Here we can introduce easily the concept of the su-

perfluidity density ρs, indeed we can rewrite the Eq: (1.79) as a kinetic
energy:

H = −1

2
ρsv

2
sV (1.80)

where V is the volume and vs = (ℏ/m)(
∫
|~∇φ|d~r/V ) is the superfluid ve-

locity.

9We are assuming also that external fields are zero.
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The last modification that we perform is to transform this continuum
theory into a lattice one, introducing a short distance cutoff in the problem,
which in physical term is taken to be of the order of the coherence length
ξ (we remember that in Type II superconductors ξ ∼ 4 Å, so it is of the
order of the real lattice spacing a of the underlying lattice). First of all we
change the name of the order parameter from ψ to ~S (we can think to the
order parameter as a spin variable with modulus equal to one, and defined
on lattice sites of our two dimensional space), and we observe that:

~Si · ~Sj = 1 − 1

2
(~Si − ~Sj)

2 (1.81)

so the square gradient of the order parameter of Eq: (1.79) can be written as
a sum of nearest neighbour (along x and y directions) spin variables square
differences, and by means of Eq: (1.81) we have:

H = −J
∑

〈ij〉

(1 − ~Si · ~Sj) (1.82)

where J = J0/a
2−d, being a the lattice spacing (we take ax ≡ ay for sim-

plicity) and d the dimension over which is defined the system. Using the
condition |~S| ≡ 1, we can also write:

H = −J
∑

〈ij〉

(1 − cos(φi − φj)) (1.83)

This is the well known XY model, that we will use to describe some impor-
tant features of the two-dimensional superconductivity.

1.5.1 Quasi-long-range-order

If we consider the model (1.83) at low temperature, we expect that thermal
fluctuations in φ are small, this means that we can expand the cosine-term
to leading order arriving at:

H = −J
2

∑

〈ij〉

(φi − φj)
2 (1.84)

The correlation function that probes the phase coherence in the system is:

Γ(~r) = 〈ei(φi−φj)〉 (1.85)

where ~r =~i−~j is the lattice vector between the points i and j. Eq: (1.85)
can be evalueted easily because we have a gaussin integral, so we can write:

Γ(~r) = e−〈(φ(~r)−φ(~0))φ(~0)〉 (1.86)
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Thus the phase coherence is reflected on the correlation function:

G(~r) = 〈(φ(~r) − φ(~0))φ(~0)〉 (1.87)

This correlation function can be computed passing in the Fourier space and
using the equipartition theorem applied to the Fourier-modes φ(~k):

J

2
k2〈φ(~k)φ(−~k)〉 =

KBT

2
(1.88)

Thus we get:

G(~r) =
KBT

J

∫
d2k

(2π)2
ei

~k·~r − 1

q2
=

=
KBT

2πJ
ln(r/a) (1.89)

where a is some short-distance cutoff (a = e−γ/2
√

2, with γ the Euler
constant). We can note that the phase fluctuations vanish when T → 0,
this means that phase-correlations become truly long-ranged. Inserting Eq:
(1.89) into Eq: (1.86), we have:

Γ(~r) =
( r
a

)η
(1.90)

where η = KBT/2πJ . An important feature of Γ(~r) is that it goes to zero for
~r → 0 at every temperature different from zero. Hence, there is never true
long-range order at finite temperature in a two dimensional superconductor.
This is a specific example of the Hohenberg-Mermin-Wagner theorem that
states that at finite T no continous symmetry can be spontaneously broken
in dimensions d 6 2 [54, 55]. What we at most can have is power-law decay
(which is slower than exponential decay characteristic of short-range order).
Even if long-range order does not exist, this does not mean that there is not
any energy cost to “twist” the phase of the superconducting order parameter
at low temperature (we shall call this energy cost phase stiffness). On the
other hand, at very high temperatures, phases are randomly oriented relative
to each other even on short length scales, and a local twist is expected to
come at no cost in the free energy. Hence somewhere in between low and high
temperatures a phase transition must occur. Clearly it will be a peculiar
transition from a quasi-ordered state to a disordered one, and not from an
ordered state to a disordered one.

1.5.2 Vortex-antivortex pairs

In order to understand the nature of the phase transition that occur in the
XY model, we have first of all to define the vorticity q of a phase field:

∮
d~l · ∇φ = 2πq (1.91)
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where q = {0,±1 ± 2, · · · }. Phase fields for which q = 0 are topologically
different from those where q 6= 0; it is impossible to continually deform a
phase field with q = 0 into one with q 6= 0. Vortices will be generated spon-
taneously at high temperatures since this will increase the configurational
entropy of the system, lowering the free energy. We can note that for a su-
perconductor ∇φ gives rise to an electric current, and the curl of this current
is a magnetic field, thus q can be seen as the quantized magnetic field pene-
trating through the area enclosed by the contour over which the integral is
taken. Because no net magnetic field can be generated throughout the sys-
tem by thermal fluctuations, vortices must be always generated in pairs of
opposite vorticity, a vortex-antivortex pair. At low temperature where vor-
tices are expected to be unimportant, they are tightly bound; while at high
temperature there is an unbinding of these pairs, responsible for destroying
the phase stiffness of the system.

1.5.3 Stiffness or Helicity modulus and the BKT transition

The pioneering work of Berezinsky, Kosterlitz and Thouless [56, 57, 58]
allowed the better comprehension of this peculiar transition, after them
called Berezinsky-Kosterlitz-Thouless (BKT) transition. They showed that
it is possible to define a stiffness parameter that has a jump of 2/π at a
transition temperature; this stiffness parameter is anything else that the
phase stiffness of the XY model, or in other way the superfluid density ρs of
the system. The phase-stiffness of the XY model represents the energy cost
of introducing twists in the phase of the superconducting order parameter.
The phase stiffness, often called the Helicity modulus Υ, of the XY model
is defined as the cost in free energy of an initial twist ∆Φ in the phase of
the order parameter across the system:

Υ ∼ ∂2F

∂∆Φ2

∣∣∣
∆Φ=0

(1.92)

This twist may be viewd as adding a vector potential ~A to the argument of
the cosine in the XY model (by minimal coupling). By standard quantum
mechanics the current is given by the first derivative of the free energy with
respect to the added vector potential, so the second derivative of the free
energy with respect to the vector potential is equal to the first derivative
of the current with respect to the vector potential, that is the superfluid
density ρs. Thus we have Υ(T ) ∼ ρs(T )10, and thanks to Kosterlitz and

10The Helicity modulus could be defined in the same way of the superfluidity density
of the equation 1.80, i.e. the cost in free energy of an initial twist ∆Φ in the phase of
the order parameter across the system could be written as F = (1/2)Υ(∆Φ)2V . Thus
comparing this expression with Eq: (1.80) we have: Υ = (ℏ/m)2ρs.
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Thouless we know that at the transition we have the following jump:

lim
T→T−

c

ℏ
2

m2

ρs(T )

KBT
=

2

π
(1.93)

1.5.4 An historical note

Historically the concept of the Helicity modulus was rigorously defined for a
d−dimensional isotropic system with an n−vector (n > 2) order parameter
by M. E. Fisher et al. [59]. This definition is phrased in terms of well-defined
equilibrium free energies, and it is given by:

Υ(T ) = lim
A(Ω),L(Ω)→∞

( L(Ω)

2θ2A(Ω)

)
[F (T ; Ω,W+−

θ ) − F (T ; Ω,W++
θ )] (1.94)

where Ω is the domain over which is defined the order parameter, L(Ω)
is the direction along which we want to calculate the Helicity Modulus,
A(Ω) is the cross-sectional area orthogonal to L(Ω), Wθ are wall potentials
which establish a definite phase angle θ for the order parameter. Finally
the superscript symbols + or − over the potential barriers indicate that the
angle θ at the ends of the domain are choosen either positively or negatively
with respect to a fixed axis. So the (+,+) or (−,−) wall combinations will
yeld uniform bulk phases in which the order parameter has a constant phase
angle indipendent of positions; while the mixed (+,−) barrier potentials
impose some sort of “twist” on the system. The simplest choice for wall
potentials consists in taking periodic and anti-periodic boundary conditions
for the system, but nonetheless the definition (1.94) is difficult to employ,
particularly for non homogeneus system we cope with.

A different but equivalent and most powerful definition of the Helicity
Modulus was given later by Jasnow et al. [60], using the idea that Υ can
be considered as a response function of the system to a distorsion ∆φ of the
order parameter; so we can write down:

Υ(T ) = lim
L→∞

∂2f

∂ǫ2

∣∣∣
ǫ = 0

(1.95)

where L is the length of the system along the direction we are calculating
the Stiffness, f is the free energy density, and ∆φ = ǫL. This is exactly
the definition introduced above with Eq: (1.92). If we want to write the
Stiffness directly using the distorsion parameter ∆φ, we have for a cubic
system:

Υ(T ) = lim
L→∞

1

Ld−2

∂2F

∂∆φ2

∣∣∣
∆φ = 0

(1.96)

where d is the dimension over wich the system is defined, and F is the
extensive free energy.
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Figure 1.17: A cartoon to show the meaning of the variables that are into
Eq: (1.96).

1.5.5 A toy model

Now we want to calculate the Helicity Modulus for a really simple toy model,
first of all in order to see immediately an application of the just introduced
definition, but more than anything because the zero temperature Stiffness
value for this toy model will give us an insight about another different way
to calculate the Helicity Modulus at zero temperature.

The toy model is a simple ferromagnetic 1−dimensional XY model de-
fined on only three sites; its Hamiltonian is:

H = −J1 cos(φ0 − φ1) − J2 cos(φ1 − φ2) (1.97)

and the positions of the variables are showed in the Fig: 1.18.

Figure 1.18: A sketch of the toy model defined by Eq: (1.97).

In order to find the Helicity Modulus Υ, first we have to fix arbitrarily
the value of φ0 and then we have to “twist” the variable φ2; for simplicity
we put:






φ0 = 0

φ2 = φ0 + ∆φ ≡ ∆φ
(1.98)
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To evaluate the Stiffness it is necessary to find the free energy of the system
and then to take its second derivative with respect ∆φ and evaluate this one
for ∆φ = 0. We know that the free energy is given by:

F = − 1

β
lnZ (1.99)

so we have:

∂2F

∂∆φ2

∣∣∣
∆φ= 0

= − 1

β

[ 1

Z

∂2Z

∂∆φ2
− 1

Z2

( ∂Z

∂∆φ

)2]

∆φ= 0
(1.100)

Before calulating the partition function Z and its 1st and 2nd derivatives, we
perform a change of variables in order to write a more symmetric expression
for the Hamiltonian; the variable transformation is defined by:

φ′i = φi −
∆φ

2
i with i ∈ {0, 1, 2} (1.101)

and then the Hamiltonian Eq: (1.97) becomes:

H = −J1 cos(φ+ ∆φ/2) − J2 cos(φ− ∆φ/2) (1.102)

where we also renamed the variable φ′1 into φ for simplicity. At this point
we can write down:

Z|∆φ=0 =

∫ 2π

0
dφ eβ(J1+J2) cos φ ≡ Z0 (1.103)

∂Z

∂∆φ

∣∣∣
∆φ=0

=
β

2
(J1 − J2)

∫ 2π

0
dφ eβ(J1+J2) cos φ sinφ ≡ 0 (1.104)

∂2Z

∂∆φ2

∣∣∣
∆φ=0

=

∫ 2π

0
dφ eβ(J1+J2) cos φ

[β2

4
(J2 − J1)

2 sin2 φ+

−β
4
(J2 + J1) cosφ

]
(1.105)

and using the modified Bessel functions of first kind, I0(z) and I1(z), we
have the following expression for the Stiffness of the toy model:

Υ = 2
( 1

J1
+

1

J2

)−1 I1
[
β(J1 + J2)

]

I0
[
β(J1 + J2)

] (1.106)

We can underline that if J1 = 0 or J2 = 0 the Stiffness is equal to zero;
this can be simply understood because if one link (J) is missing, then the
variables φ0 and φ2 are not connected and so a change into one of them
doesn’t influence the other one. But more important is the observation of
the zero temperature value of the Stiffness:

Υ(T = 0) = 2
( 1

J1
+

1

J2

)−1
(1.107)
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As it is possible to note, if we think to J1 and J2 as two conductances, the
expression of the zero temperature Stiffness is proportional to the global
conductance of the system. This result is really interesting because, as we
are going to show in the chapter (5), it is valid also for a two-dimensional
lattice system in a complete general way. Indeed, as we will see in more
detail in the chapter (5), we shall interested in evaluating the stiffness of a
random XY model:

H = −
∑

〈i,j〉

Jij cos(φi − φj) (1.108)

where Jij are quenched random bonds.





Chapter 2
Charge Density Waves: a Glance

In this chapter we want to describe the ideas underlying the Charge Density
Waves state, giving also an overview to Scanning Tunnelling Microscopy
technique, and then illustrating some recents experiments performed with
this technique on High-Temperature-Superconductors, especially in the so-
called pseudogap state.

2.1 Charge Density Waves: Basic Concepts

Density waves are broken symmetry states of metals, due to electron-phonon
or electron-electron interactions. The CDW is an electronic-lattice instabil-
ity (while the electron-electron intraction generates the so-called Spin Den-
sity Waves (SDW)), and the driving force behind the CDW instability is
the reduction in the energy of electrons in the material as a consequence
of establishing a spontaneous periodic modulation of the crystalline lattice
with an appropriate wave vector.

CDW were first discussed by Fröhlich in 1954 and by Peierls in 1955;
the highly anisotropic band structure is really important to observe this
ground state in metals. Indeed the experimental evidence of these ground
state was found much later their theoretical prediction, when the so-called
low-dimensional materials were discovered and investigated.
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2.1.1 The 1-dimensional electron gas

Because of the importance of the low-dimensionality for observing CDW, it
could be useful to review some results regarding the one-dimensional electron
gas.

Considering the 1D free electron gas, its energy dispersion is given by:

ǫ(k) =
ℏ

2k2

2m
(2.1)

and the Fermi energy is equal to:

ǫ(kF ) =
ℏ

2k2
F

2m
(2.2)

where the Fermi wavevector is:

kF =
N0π

2L
(2.3)

and N0 is the total number of electrons, while L is the length of the 1D
chain. The topology of the Fermi surface in 1D is really peculiar, indeed it
has only two points, ±kF . This kind of Fermi surface gives a response to an
external perturbation completely different from that in higher dimensions.
If we consider a time indipendent potential φ(~r) acting on an electron gas,
the rearrangement of the charge density ρ(~r), expressed in the Fourier space
and within the framework of linear response theory, is given by:

ρ(~q) = χ(~q)φ(~q) (2.4)

where χ(~q) is the so-called Lindhard response function, that in d dimensions
is equal to:

χ(~q) =

∫
d~k

(2π)d
fk − fk+q

ǫk − ǫk+q
(2.5)

and fk = f(ǫk) is the Fermi function. For the one-dimensional case, as-
suming a linear dispersion relation around the Fermi energy, the Lindhard
response function becomes:

χ(q) = −e2n(ǫF ) ln
∣∣∣
q + 2kF

q − 2kF

∣∣∣ (2.6)

where n(ǫF ) is the density of states at the Fermi level; χ(q) diverges for
q = 2kF , and this implies that at T = 0 the electron gas is unstable with
respect to the formation of a periodically varying electron charge.



2.1 Charge Density Waves: Basic Concepts 47

2.1.2 The mean-field CDW ground state

The electron-phonon interaction and the divergence of the electronic re-
sponse at q = 2kF in one dimension give a strongly renormalized phonon
dispersion spectrum Ω(q), generally referred to as the Kohn anomaly. This
renormalization is deeply temperature-dependent. At some temperature and
for q = 2kF , Ω(q) becomes zero, thus identifying a phase transition to a state
where a periodic static lattice distortion and a periodically varying charge
modulation develop. So we have the CDW state. This transition is generally
called Peierls transition, but also Kuper (1955) and Fröhlich (1954) studied
it.

Now we will skecth how it is possible to obtain the transition to a CDW
state in a one-dimensional electron gas coupled to the underlying chain of
ions through electron-phonon interaction, in the framework of the mean field
theory using the so-called Fröhlich Hamiltonian:

H =
∑

k

ǫkc
†
kck +

∑

q

ℏωqb
†
qbq +

∑

k,q

gqc
†
k+qck(b

†
−q + bq) (2.7)

the first term is the Hamiltonian of the electron gas where c†k and ck are
the fermionic creation and annihilation operators for the electron states
with energy ǫk = ℏ

2k2/2m; the second term is the Hamiltonian describing

the lattice ions vibrations, where b†q and bq are the bosonic creation and
annihilation operators for the phonons with a wavevector q, and ωq being
the normal mode frequencies; the third term is the interaction Hamiltonian,
where gq is the electron-phonon coupling constant.

Writing down the equation of motion of the normal coordinates of the
ions, and using the linear response theory it is possible to find the renor-
malized phonon frequency:

ω2
ren, q = ω2

q +
2g2ωq

ℏ
χ(q, T ) (2.8)

The phonon frequency for q = 2kF becomes:

ω2
ren,2kF

= ω2
2kF

− 2g2n(ǫF )ω2kF

ℏ
ln(1.14ǫF /kBT ) (2.9)

With decresing temperature the renormalized phonon frequency goes to zero
and this defines the mean field CDW transition temperature:

kBT
mf
CDW = 1.14ǫF exp(−1/λ) (2.10)

where λ is the dimensionless electron-phonon coupling constant

λ =
g2n(ǫF )

ℏω2kF

(2.11)
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Below the CDW transition temperature there is a “frozen-in” lattice distor-
sion and then the mean lattice ionic displacement 〈u(x)〉 is different from
zero:

〈u(x)〉 = ∆u cos(2kFx) (2.12)

with

∆u =
( 2ℏ

NMωkF

) |∆|
g

(2.13)

and N is the number of lattice sites for unit length, M is the ionic mass,
and ∆ is the CDW gap energy opened in the energy dispersion at the Fermi
level. It is also possible to calculate the modulation of the electronic density:

ρ(x) = ρ0

[
1 +

∆

ℏvFkFλ
cos(2kFx)

]
(2.14)

where ρ0 is the constant electronic density in the metallic state.

To summarize we have seen that the ground state has a periodic mod-
ulation both of the charge density and lattice distorsion, and also the gap
opening in the energy dispersion at the Fermi level turns the material into
an insulator.

2.1.3 Variants and (In-)Commensurate CDW

As seen above the electron-phonon coupling allows a periodic modulation
both of the charge density and lattice distorsion. For one-dimensional sys-
tems we can imagine the CDW in a simple way: if we have a chain for which
the ions are placed at a distance a (the lattice spacing) each other, we can
think to have more charge density on a lattice site and less on the neighbour
site and so on, as skecthed in Fig. (2.1). In this case we have created a
charge modulation with a period equal to twice the lattice spacing, but it is
clear that this modulation breaks the translational symmetry of the system,
indeed we can easily think to have a charge modulation that is equal to the
previous one but shifted by one lattice spacing, as shown in Fig. (2.2). The
cartoons showed in Fig. (2.1) and (2.2) are valid if we have a number of
electron for lattice site (n) equal to one (i.e. n = 1). This is consistent with
the periodicity obtained in weak coupling: λ = 2π/2kF = 2a/n, so for n = 1
we have λ = 2a as skecthed in the figures.

These two kinds of modulation will be called “variants” of the CDW,
borrowing the term from crystallography. The number of these variants can
increase if we have a charge modulation with a larger period. In our one-
dimensional case where λ/a is an integer, the CDW is said commensurate
(below we will explain better this concept) and λ/a gives the numbers of
“variants”. In general this number is given by the number of atoms in the
unit cell. In Fig. (2.3) we show a charge and spin density wave of purely elec-
tronic origin; in this case there are 64 variants because the unit cell is given
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Figure 2.1: A 1-dimensional charge density wave; it represents a kind of
variant. The radius of the circles is proportional to the charged
density.

Figure 2.2: A 1-dimensional charge density wave; it represents a kind of
variant. The radius of the circles is proportional to the charged
density.

by a rectangle of 8×4 atoms that gives 32 different trnslations, and we have
also to multiply this value for 2, that represents the 90◦ rotational symme-
try breaking. Indeed the building block of a two-dimensional charge ordered
pattern is a two-dimensional unit cell, that could breaks translational and
rotational symmetries in many ways. If we imagine an experiment in which
the system is quenched from a paramagnetic state to a CDW, it can nu-
cleates a CDW variant into a region and another variant into a different
region. Even more if we have quenched impurities into the sample, these
will favour a variant in one region and a different variant in another region.
The resulting state for this case could be a policristal charged ordered state,
where more ordered patterns, corresponding to different variants, mismatch
each others don’t allowing for the observation of a single ordered state. As
we shall point out later, in our research we will study the simplest situation
for which we have only two variants of charge ordering.

We can also point out another important feature that emerges from the
pictures Fig. (2.1) and (2.2); these one represent a strong coupling limit
behaviour, indeed in our chain we have sites with a really big charge density
and others sites with a really poor charge density. This situation can be
viewed as a preformed electrons pairs scenario, where in the sites with a
huge charge density we have two electrons (with opposite spins in order to
satisfy the Pauli’s exclusion principle), and the other sites are almost empty.
In this strong coupling framework we can think to introduce an Ising like
pseudospin variable that has an up value corresponding to the sites where
there are electrons pairs, and a down value corresponding to the sites where
there aren’t electrons. This picture with an Ising like pseudospin variable
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Figure 2.3: A system of two half-filled stripes. The radius of the circles
gives the hole density; the length of the arrow gives the local
magnetization. Notice that every cluster of four big circles
contains in total approximately two holes with a singlet orien-
tation for the spins: real-space Cooper pairs.
[Figure taken from [61]]

will be really useful to formulate our model, as we shall see in the next
chapter.

Another important concept has to be introduced at this level: the differ-
ence between a commensurate and an incommensurate CDW. The former
is a CDW for which the charge modulation has a period equal to a rational
number of the underlying lattice spacing a, while the latter is a CDW for
which the ratio between the period of the charge modulation and the lattice
spacing is equal to an irrational number. In other words if we think to get a
maximum of the charge modulation corresponding to a lattice site, for the
commensurate CDW we will always find another lattice site over which the
charge modulation is maximum, while for the incommensurate CDW this
does not happen.

2.2 Experimental techniques and CDW

Hereafter we will focus our attention to hole-doped cuprates. In these ma-
terials doped holes tend to aggregate into one-dimensional domain walls
(stripes) separating regions of antiferromagnetically ordered spin domains
(see Fig. (2.3)); but also a different kind of order can be observed, the
checkboard one.

Stripes are characterized by modulations of the charge density at a single
ordering vector ~Q and its harmonics ~Qn = n~Q with n an integer. In a
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crystal, we can distinguish different stripe states not only by the magnitude
of ~Q, but also by whether the order is commensurate [when | ~Q|a = 2π(m/n)
where a is the lattice constant and n is the order of the commensurability]
or incommensurate with the underlying crystal, and on the basis of whether
~Q lies along a symmetry axis or not. In the cuprates, stripes that lie along
or nearly along the Cu-O bond direction are called “vertical” and those at
roughly 45◦ to this axis are called “diagonal”.

Checkerboards are a form of charge order that is characterized by bidi-
rectional charge density modulations, with a pair of ordering vectors ~Q1 and
~Q2 (where typically | ~Q1| = | ~Q2|). Checkerboard order generally preserves
the point group symmetry of the underlying crystal if both ordering vec-
tors lie along the crystal axes. In the case in which they do not, the order is
rhombohedral checkerboard and the point group symmetry is not preserved.
As with stripe order, the wave vectors can be incommensurate or commen-
surate, and in the latter case ~Qja = 2π(m/n,m′/n′). Commensurate order,
as with stripes, can be site centered or bond centered.

If we have a material with CDW modulation, it is not always simple
to distinguish a stripe order from a checkboard order, expecially when the
disorder effect is strong. For example if we see the right panels of the Fig.
(2.4) and (2.5), they appear really similar even if they cames from different
order modulation (stripe and checkboard ones) [62].

Figure 2.4: Left panel: Highly stripe-ordered system, with weak impu-
rities. Center panel: Otherwise identical to the first system
(including the spatial distribution and concentration of impu-
rities), but the strength each impurities has increased. Right
panel: Identical to the left panel, except for a more strong
disorder intensity. [Figure taken from [62]]
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Figure 2.5: The parameters entering the effective Hamiltonian and the im-
purity realizations are identical here to the panels of Fig. (2.4),
with the exception of the symmetry breaking term. In the cen-
ter panel, because the checkerboard state is more stable than
the analogous stripe state. Unlike the stripe ordered system,
the checkerboard system does not break into domains, but
rather develops pair wise dislocations (visible in the central
panel). Note the similarity between the right panel of each set
of Fig. (2.4) and (2.5). [Figure taken from [62]]
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2.2.1 Neutron and X-ray scattering

Despite extensive experimental work on the incommensurate spin fluctua-
tions and ordering in cuprate superconductors, experimental studies on the
charge counterpart have been relatively scarse. In recent years, the Scan-
ning Tunneling Microscopy (STM) technique has attracted much attention
due to its ability to provide real space image of charge distribution (we will
discuss this technique better in the next subsection). Although these STM
studies provide unprecedented information on the inhomogeneous distribu-
tion of charge density and superconducting gap, due to the surface sensitive
nature of the technique, its application has been so far limited to a subset
of cuprate samples. In contrast, neutron and X-ray scattering investigations
have been performed in many materials [63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76].

We have to stress that neutron scattering gives only indirect evidences of
charge modulations through its coupling with the underlying lattice, thus a
lattice distrosion due to charge modulations can be seen by neutron scatter-
ing. On the other hand, X-ray scattering can couple directly to the charge
degree of freedom1. The first X-ray study of the charge stripes was done
with very high energy intensity X-rays by Zimmermann [63], in order to
obtain a good momentum resolution. Recent avability of the LBCO crystals
have made it possible to carry out more detailed investigations using soft
X-ray resonant scattering [65].

In these kinds of experiments the signature of charge ordering is new
peaks in the static structure function corresponding to a spontaneous break-
ing of symmetry, leading to a new periodicity longer than the lattice constant
of the host crystal. It is also interesting to understand if the charge order
eventually observed is commensurate or incommensurate; one way to de-
termine this is to observe the position of the charge order Bragg peak as
function of the temperature or of the pressure. If this position is locked
then the CDW is commensurate.

2.2.2 The STM technique

First of all we review some concepts about one of the most important ex-
perimental technique used to study HTS cuprates nowadays: the Scanning
Tunneling Microscopy.

This kind of spectroscopy was invented by Binnig and Rohrer (1982)
[77, 78], and it gives the possibility to study a material with a spatial res-
olution down to the atomic scale. A really nice and historical demonstra-
tion of the possibility for studying superconductors with STM was achieved

1Except for when the incident photon energy is near the absorption edges, the largest
contribution to the X-ray scattering comes from the structural modulation accompanying
charge order. In this case, X-ray scattering is similar to the neutron one.



54 Charge Density Waves: a Glance

by Hess (1989) [79], showing the electronic structure of the vortex core
of the vortex lattice in NbSe2. Thanks to its highly spatial and energy
resolution, the STM is complementary to other techniques like optical spec-
troscopy and Angle-Resolved-PhotoEmission-Spectroscopy (ARPES), which
offer k−space resolution.

The STM measures the tunneling current that flows between a metallic
tip and a conducting sample separated by a thin insulating layer, generally
vacuum. It allows one to obtain not only the surface topography with atomic
scale resolution, but also the Local Electron Density of States (LDOS). The
phenomenon behind the STM is the well-known quantum tunneling of elec-
trons between two electrodes separated by a thin potential barrier. The core
of this microscopy is the metallic tip, which is free to move in the x−y plane
above the sample scanning its surface, and in the z direction. The tunneling
regime is defined by three interdependent parameters: the electrode spacing
d, the tunneling current I, and the bias voltage V between the tip and the
sample.

Figure 2.6: (a) Tunneling process between the tip across a vacuum barrier
of width d and height φ. The electron wave functions Ψ decay
exponentially into vacuum with a small overlap, allowing elec-
trons to tunnel from one electrode to the other. (b) Schematic
view of the scanning tunneling microscope.
[Figure taken from [34]]

This kind of microscopy can be used in two different operating modes: a
constant-current imaging mode, and a constant-height imaging mode. In the
first case the tunneling current I is kept constant by a feedback adjustment
of the tip during the scan, so recording the height of the tip as a function
of position it is possible to obtain an image, z(x, y), of the surface of the
sample. In the second operating mode the tip is scanned over the sample
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at a constant absolute height, recording the tunneling current I(x, y) as a
function of position. The last mode is the most used operating mode, and it
can be showed theoretically that the tunneling conductance dI/dV provides
a measurement of the sample LDOS.

Figure 2.7: Generic STM operating mode: (a) constant-current and (b)
constant-height imaging.
[Figure taken from [34]]

The starting point to intepret the STM measurements is the tunneling
Hamiltonian formalism, that it is able to provide understanding both of the
single-particle and pair-tunneling phenomena. The basic idea is to describe
the transfer of particles across the barrier by a phenomenological tunneling
Hamiltonian:

HT =
∑

λ, ρ

Tλρc
†
ρcλ + h.c. (2.15)

where λ is the label of single-particle states on the left side of the junction,
and ρ is the label for the analogous states on the right side. The operator cλ
destroys a state in the left side, while the operator c†ρ creates a state in the
right side of the barrier. Tλρ is the tunneling matrix that depends upon the
geometry of the tuneling junction and on the electronic states on both states.
If a low bias voltage V is applied across the junction, the total current can
be calculated using linear-response theory. Neglecting the current of the
electron pairs, the single-particle current is given by:

Is =
2πe

ℏ

∫
dω[f(ω − eV ) − f(ω)]

∑

λ, ρ

|Tλρ|2Aλ(ω − eV )Aρ(ω) (2.16)

where Aλ(ω) and Aρ(ω) are the single-particle spectral function of the tip
and sample materials, and f(ω) is the Fermi function.

At zero temperature and assuming constant tunneling matrix elements
Eq. (5.17) leads to a simple formula, that shows how the bias dependence
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of the conductance directly probes the DOS of the sample:

σ(V ) =
dIs
dV

=
2πe

ℏ
|T |2NT (0)NS(eV ) (2.17)

where “T” and “S” indicate “tip” and “sample” and N(ω) is the DOS at the
Fermi level. It is necessary to underline also that for understanding local
probes like STM, it is better to write down expression related to sample
LDOS Nsample(~x, ω):

Is ∝
∫
dω[f(ω − eV ) − f(ω)]Ntip(ω − eV )Nsample(~x, ω) (2.18)

Assuming a constant tip DOS the tunneling conductance becomes:

σ(~x, V ) ∝
∫
dω[−f ′(ω − eV )]Nsample(~x, ω) (2.19)

where f ′ is the derivative of the Fermi function.

Some experimental observations

Before giving some experimental evidences of charge modulations in HTS
thanks to STM spectroscopic measurements, we can show some other find-
ings about HTS obtained with STM.

An important application of STM consists in surface characterization of
a sample; the most widely studied HTS using STM is Bi2Sr2CaCu2O8+δ

(Bi2212), because of the simplicity to prepare atomically flat and clean
surfaces by cleaving, but Y Ba2Cu3O7 (Y 123) is also widely investigated.

At low temperature (and zero magnetic external field) the STM per-
formed on HTS gives the possibility to identify generic features in the elec-
tronic DOS of the superconducting phase. For example observing conduc-
tance spectra it is possible to see: linear V-shaped energy dependence near
the Fermi level, that is consistent with the d-wave symmetry; a large finite
conductance at V = 0; multiple broad coherence peaks at the gap edges
(e.g. see Fig. (2.9)).

The STM is also used to investigate the so-called pseudogap region in
HTS; many experimental techniques provide evidence for an unconventional
normal state characterized by the opening of a gap in the electronic spec-
trum at a temperature T ∗ above the critical temperature. What is the
origin of the pseudogap phase is not clear yet, and there are essentially two
possible theoretical interpretations: the pseudogap is the manifestation of
some order unrelated to and/or in competition with the superconducting or-
der; the pseudogap is the precursor of the superconducting gap, and reflects
pairs fluctuations above Tc. In this thesis we will explore the possibility
that the pseudogap is due to a disordered CDW of preformed Cooper pairs
analogous to Fig. (2.3). The study of the pseudogap phase by STM is not
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Figure 2.8: STM images of the BiO surface of Bi-based HTS cuprates. (a)
Bi2Sr2CuO6 at 4.6 K [80]; (b) Bi2Sr2CaCu2O6 at 4.2 K [81];
(c) Bi2Sr2CaCu2O6 at 4.3 K [82]; (d) Bi2Sr2CaCu2O6 at 4.3
K [83].

Figure 2.9: (a) Nb at 335 mK (BCS-like) [84]; (b) Bi2212 at 4.8 K [85];
(c) Y123 at 4.2 K [86]; (d) Bi2201 at 2.5 K (solid line) and 82
K (dashed line) [87].

simple because measuring the T dependence of the LDOS is difficult due
to tip shifts, that induce current variations caused not only by temperature
variations but also by different tunneling locations. However observing the
T-dependence of quasiparticle DOS in Nb (a conventional BCS supercon-
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ductor) and of Bi2212, it is clear the existence of a pseudogap into the HTS
above Tc(see Fig. (2.10)).

Figure 2.10: T dependence of DOS measured by STM. (a) Nb (BCS-like)
with Tc ≈ 9 K [84]; (b) Bi2212 (HTS) with Tc ≈ 83 K [88].

Another beautiful application of STM consists obtaining real-space imag-
ing of vortices. The first observation of them was achieved using Bitter deco-
ration ten years later (1967) the theoretical prediction by Abrikosov (1957);
while the first STM image of vortex lattice was obtained by Hess roughly
thirty years later (1989) on NbSe2.

2.3 Charge Modulations in HTS

Another important feature of HTS that can be studied by STM is the ex-
istence of spatial charge modulations like stripes, or charge-density-waves.

The presence of periodic spatial modulations of the DOS (not necessarily
of the density) in HTS was observed for the first time by Hoffman [20], who
detected a modulation of the LDOS with a periodicity of about 4 a0 around
the center of a vortex. Then many others experiments were able to see
DOS modulations either in the superconducting state, or in the pseudogap
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Figure 2.11: STM images of vortex latices in conventional superconduc-
tors. (a) Hexagonal lattice in NbSe2 [89]; (b) Hexagonal
lattice in MgB2 [90]; (c) Square lattice in LuNi2B2C [91].

Figure 2.12: Quasiparticle interference in Bi2212. Real-space (a-b) and
Fourier-spaces (c-d) images of conductance maps at −8 mV
and −10 mV [92].

state, or in vortex cores. Initially there was a problem interpreting DOS
modulations in the superconducting state as due to charge modulations be-
cause in some experiments these modulations were dispersed in energy and
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not in others; the puzzle was solved interpreting these findings in terms of
quasiparticle interference due to scattering from impurities and other inho-
mogeneities, and hence not due to a real CDW. This explains why in some
experiments the DOS modulations into the superconducting state were not
observed, because of the relatively good homogeneity of samples.

A square pattern modulation was observed in vortex cores, and a very
similar order was found also in the pseudogap state: both are nondispersive
(this suggests a CDW state), and the overall spectra are similar. This open
a new question about the precise relation between the vortex core state and
the pseudogap state.

Figure 2.13: Conductance map on Ca1−xNaxCuO2Cl2 at 8 mV and the
corresponding Fourier transfrom [93].

Kohsaka et al. [21] proposed a different technique to detect real charge
modulations. Their proposal is based on theoretical studies that suggest that
doping-induced correlation changes might be found directly as an asymmetry
of electron tunneling currents with bias voltage2 as observed by Anderson
et al. [94] and Randeira et al. [95]. We remember that The STM tip-sample
tunneling current is given by:

I(~(r), z, V ) = f(~r, z)

∫ eV

0
N(~r,E)dE (2.20)

where z is the tip’s surface-normal coordinate, V is the relative sample-tip
bias, and N(~r,E) is the sample’s LDOS at lateral locations ~r and energy
E. Unmeasurable effects due to the tunneling matrix elements, the tunnel-
barrier height, and z variations from electronic heterogeneity are contained

2Electron extraction at negative sample bias being strongly favored over electron in-
jection at positive sample bias.



2.3 Charge Modulations in HTS 61

in f(~r, z). For a simple metallic system where f(~r, z) is a featureless con-
stant, Eq. (2.20) shows that spatial mapping of the differential tunneling
conductance dI/dV (~r, V ) yields N(~r,E = eV ). However, for the strongly
correlated electronic states in a lightly hole doped cuprate, the situation
is much more complex. According to the theoretical studies, the correla-
tions cause the ratio Z(V ) of the average density-of-states for empty states
N(E = +eV ) to that of filled states N(E = −eV ) to become asymmetric
by an amount:

Z(V ) =
N(E = +eV )

N(E = −eV )
≈ 2n

1 + n
(2.21)

where n indicates the number of holes per unit cell. Spectral-weight sum
rules [95] also indicate that the ratio R(~r) of the energy-integrated N(~r,E)
for empty states E > 0 to that of filled states E < 0 is related to n by:

R(~r) ≈ 2n(~r)

1 − n(~r)
(2.22)

Eq. (2.21) and (2.22) have also a practical advantage; if we define the ratios
Z(~r, V ) and R(~r, V ) in terms of the tunneling current:

Z(~r, V ) =
dI/dV (~r, z,+V )

dI/dV (~r, z,−V )
(2.23)

R(~r, V ) =
I(~r, z,+V )

I(~r, z,−V )
(2.24)

we see immediately from Eq. (2.20) that the unknown effects in f(~r, z)
are all canceled out by the division process. Thus, Z(~r, V ) and R(~r, V )
contain important physical information and are also expressible in terms of
measurable quantities only. An example of the power of the application of
this prescription is given in the Fig. (2.14).

Recent systematic doping and temperature dependent STM studies [96]
show CDW modulations in the HTS Bi2−yPbySr2−zLazCuO6+x. Authors
find that a static and non-dispersive, checkerboard-like electronic lattice
exists over a wide range of doping, and that its wavelength increases with
increasing hole density, supporting the physical picture of CDW formation.

2.3.1 The Random Field Ising Model

As we have seen up to now, it is possible to find in underdoped cuprates
CDW configurations, where on short length scales there is an ordered charge
modulation, while not on long length scales, where a glassy like CDW be-
haviour emerges. This disordered CDW pattern could be due to the pinning
of differents CDW “variants” caused by local impurities, as ions located out
of the Cu-O plane acting as pinning fields with respect to a CDW variant.
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Figure 2.14: A 25−nm2 R map; no long-range order is apparent. Instead,
we see randomly distributed electronic variations of the Cu-
O-Cu bond state with equal probability of orientation along
the two Cu-O axes. The Cu-O bond directions are shown as
pairs of orthogonal black arrows. The inset shows its Fourier
transform. The predominant peaks occur at wave vectors ~q ∼
(3/4, 0) and (0, 3/4) in units 2π/a0 (orange arrows), and the
peaks at ~q ∼ (1/4, 0) and (0, 1/4) (blue arrows) are weaker.
Atomic peaks ~q ∼ (1, 0) and (0, 1) are shown by black arrows.
[Figure taken from [21]].

So at a coarse grained level, keeping in mind the strong coupling picture
previously described using an Ising like pseudospin variable, we can think
local impurities as quenched random fields coupled wiht the pseudospin Ising
variable. Clearly as we already underlined, the real systems present more
than two variants3 but for simplicity we shall consider only the situation

3A better schematization of this situation could be obtained using a Potts variable.
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with two variants, because it is able to catch the most important features
that are in the pseudogap state. So a natural ingredient of our model will
be the presence of quenched random fileds that couple with the Ising like
part of the order parameter.

Now we are going to describe how a glassy CDW pattern is a natural
consequence of the presence of impurities. Indeed we are handling a Random
Field Ising Model (RFIM), and it is known that the RFIM in two dimensions
has not an ordered state also at zero temperature [97]. Here we want to show
briefly the so called Imry-Ma argument, which asserts that quenched random
fields induce the lack of long range order into the system if it is defined on
a d-dimensional space lower than a critical dimension dl (the so called lower
critical dimension) depending on the symmetry of the order parameter4.
First of all we have to underline that the interesting case to analyze is the
weak disorder limit, otherwise the result is obvious: in the strong limit the
disorder acts as a strong pinning centre settling the variable to a fix value
independently from the interaction from the others variables.

We take a spin system ~Si interacting with quenched random fields {hi}
which are coupled with our variables and have 〈h〉 = 0 and 〈h2〉 = σ2. Now
we take at zero temperature a state for which every spin point along the
same direction and we will call it “positive” for brevity; now we choose a
domain of linear size L and we reverse all spins in the opposite direction, we
we will call this situation “negative” for brevity. Clearly whithout quenched
random fields this reversing operation is not possible at zero temperature
because we have to pay an energy cost to form the interface between the
positive and negative state. But if there are random fields into the system,
the situation is different because we can gain energy from these random
fields. While the lack of energy due to the interface is proportional to the
length of the interface itself, the gain is proportional to the square root of
the number of spins inside the domain (this is a direct consequence of the
central limit theorem, because every fields into the domain give an energy
contribution proportional to σ, so assuming these fields indipendent each
others their global contribution will be proportional to

√
N , where N is

the number of spins into the domain). If we indicate with J the coupling
constant between two spins, the interface energy is given by JLd−1, while
the volume energy gain is given by σLd/2, because N ∝ Ld.

We can summerize this energetic balance as follow:

∆E ∝ JLd−1 − σLd/2 Ising like (2.25)

∆E ∝ JLd−2 − σLd/2 Heisenberg like (2.26)

4The Imry-Ma argument is not so stringent to assure that for the RFIM the lower
critical dimension is two; the rigorous demonstration of this fact is due to Imbrie [98].
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The system will break itself into domains if ∆E < 0, thus:

{
d < 2 Ising like
d < 4 Heisenberg like

(2.27)

and these domains have a characteristic sizes L∗ of the order of:





L∗ ≈
(

J
σ

)2/(2−d)
Ising like

L∗ ≈
(

J
σ

)2/(4−d)
Heisenberg like

(2.28)

We can observe from Eq. (2.28) that the cases d = 2 for the Ising situation,
and d = 4 for the Heisenberg situation are marginal ones, and Eq. (2.28)
lacks its meaning.

For the two dimensional RFIM Binder gave the right expression of L∗

taking into account roughness of the domain interface [99]:

L∗ ∝ e(J/σ)2 (2.29)

L∗ is also called Binder scale.



Chapter 3
A Model for CDW-SC Competition

Here we shall introduce the model that will be studied in the next chapters.
The model is an oversimplified and coarse-grained model for the description
of the competition between SC and CDW. Even if it is possible to introduce
on a phenomenlogical basis the model using only some arguments based on
the symmetry properties of the competing orders, here we will show how
to reach the same result starting from a microscopic Hamiltonian, giving
to the model a more stable ground. Nevertheless it is important to stress
that this microscopic derivation does not pretend to be a demonstration of
the validity of our model, but it is simply a way to better understand the
reasons in studying it and to build a bridge between the experiments and
the features of the model that we will analyze.

3.1 The repulsive Hubbard model

The Hubbard model, an interacting fermion model independently proposed
in 1963 by Gutzwiller [100], Hubbard [101] and Kanamori [102], has played
an extremely relevant role in condensed matter physics. Originally designed
to describe, in a simplified way, the effects of the competition between elec-
tronic delocalization and correlations within the narrow d-band of transition
metal-oxides, the model has then been shown to be the ideal tool to describe
the relevant collective features of these materials.

The simplest expression of the Hubbard model relevant to the physics of
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cuprates is the single-band two-dimensional Hubbard model:

H =
∑

i,j,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ + h.c. (3.1)

where c†iσ (ciσ) creates (annihilates) an electron at site i with spin σ, tij is

the inter-site hopping, ni↑ = c†i↑ci↑ (ni↓ = c†i↓ci↓) is the number operator for
a spin up (down) on the site i, U > 0 is the Hubbard constant corresponding
to the on-site Coloumb repulsion and h.c. stands for “hermitian conjugate”.
For many purposes it is sufficient to assume that tij is non-zero only when
i and j are nearest neighbors, and we will assume:

tij =






−t if 〈i, j〉

0 otherwise
(3.2)

Despite the simplicity of the model, its solution turns out to be a very diffi-
cult task from a theoretical point of view. Only in one-dimension an exact
solution is known. An important approach is the mean field theory solution
of the model, even if it is not accurate in lower spatial dimensions due to ne-
glecting spatial and temporal fluctuations; an improvement of this approach
is the so called dynamical mean field theory, which neglects only spatial fluc-
tuations. Another class of approximate analytic methods is known as the
slave particle methods, closely related to the so called Gutzwiller projec-
tion variational approach, which searches for an approximate ground state
of the model. Finally two others ways to attack the model are the purely
numerical Monte Carlo and Exact Diagonalization methods; the first one is
computationally exspensive in terms of computer time, while the second one
is expensive in terms of computer memory.

3.2 The Hubbard to Heisenberg mapping

Now we want to review how and when it is possible to map a Hubbard
model into a quantum antiferromagnetic Heisenberg model (more details
can be found in the appendix (A)).

The repulsive Hubbard model (U > 0) can be transformed in the strong
coupling limit (U ≫ tij) into an effective spin Heisenberg model with anti-
ferromagnetic coupling. This can be done either using the standard methods
of perturbation theory or performing a canonical transformation. We shall
describe the second way as showed in [103]. The idea of this technique is
to divide the Fock space of the system into two subspaces: one containing
only single occupied states (plus the vacuum), and the other one with only
double occupied states. In the strong coupling limit, these two subspaces
are well separated in energy each other, so that in the lowest order approx-
imation the dynamic of the system will be described only by the dynamic
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within the two subspaces, neglecting the dynamics associated to the tran-
sition from one subspace to the other one. The idea is then to divide the
starting Hamiltonian into two pieces, one (H0) associated to the intra-band
dynamics, and the other one (H1) associated to the inter-band dynamics;
performing a canonical transformation on H it is possible to obtain an effec-
tive Hamiltonian for the low-energy subspace as a perturbative expansion
in H1 .

The decomposition of the starting Hamiltonian will be:

H = H0 + ǫH1 (3.3)

where we introduced ǫ for bookeeping the perturbative orders, but at the
end it will be put equal to one. The target now is to find an operator S for
which the following canonical transformation:

H̃ = e−iǫSHeiǫS (3.4)

does not have linear ǫ-terms. For this reason at the 2nd order in ǫ the
effective Hamiltonian reads:

H̃ = H0 +
i

2
[H1,S]ǫ2 (3.5)

Now it is necessary to find H0, H1 and S in order to write down the explicit
expression of the effective Hamiltonian. To achieve this target it is useful to
define two projector operators P1 and P2 respectively for the subspace with
double occupied states and for the subspace with empty or single occupied
states. Thanks to these projectors it is possible to rewrite the starting
Hamiltonian H using the following operators: P1HP1, P2HP2 and P1HP2,
P2HP1; the former two represent the intra-band dynamics, while the latter
two represent the inter-band dynamics. Schematically we can write the
effects of these operators in the following way:






|0 , ↑〉 =⇒ | ↑ , 0〉 P1HP1

| ↓ , ↑↓〉 =⇒ | ↑↓ , ↓〉 P2HP2

|0 , ↑↓〉 =⇒ | ↓ , ↑〉 P1HP2

| ↑ , ↓〉 =⇒ | ↑↓ , 0〉 P2HP1

(3.6)

where the meaning of the above symbols is the following: considering for
simplicity a two site system (the generalization to more sites is trivial and
more details can be found into the appendix (A)), we indicate with |·, ·〉 a
generic state of our Fock space, where at the first position we write the state
of the first site, and at the second position we write the state of the second
site. A single state site can be empty (0), or single occupied with a spin up
(↑) or down (↓), or double occupied with two opposite spins (↑↓). Thus for
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this two sites system the global Fock space is given by the following Fock
states:

|0, 0〉 | ↑, 0〉 | ↓, 0〉 |0, ↑〉
|0, ↓〉 | ↑, ↑〉 | ↑, ↓〉 | ↓, ↑〉
| ↓, ↓〉 | ↑↓, 0〉 |0, ↑↓〉 | ↑, ↑↓〉
| ↓, ↑↓〉 | ↑↓, ↑〉 | ↑↓, ↓〉 | ↑↓, ↑↓〉

So with the symbol:
|0 , ↑〉 =⇒ | ↑ , 0〉

we intend a transition from the state |0 , ↑〉 to the state | ↑ , 0〉, and because
they are clearly both in the subspace selected by the projector P1, the op-
erator that act this transformation is P1HP1. In the same way we can read
the scheme reported by Eq. (3.6) (Obviously in that scheme there are not
all the possible transformations, but only some ones as examples).

Now H0 and H1 can be easily identified:

H0 = P1HP1 + P2HP2 (3.7)

H1 = P1HP2 + P2HP1 (3.8)

After some algebra it is possible to find the relations among S and the projec-
tors P1 and P2, and then to write the expression of the effective Hamiltonian:

H̃ = P1HP1 + P2HP2 −
1

U
[P1HP2HP1 − P2HP1HP2] (3.9)

Considering both two-sites and three-sites interactions, the most general
form of the effective Hamiltonian is:

H̃ = −t
∑

〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c

)
+

4t2

U

∑

〈ij〉

(
~Si · ~Sj −

n̂in̂j

4

)
+

− t
2

U

∑

〈ijm〉σ

(
ĉ†iσn̂jσĉmσ − ĉ†iσ ĉ

†
jσ ĉjσ ĉmσ + h.c.

)
(3.10)

where





ĉ†iσ = c†iσ(1 − niσ)
ĉiσ = ciσ(1 − niσ)

n̂iσ = ĉ†iσ ĉiσ

(3.11)

and ~S is the quantum spin operator. If this effective Hamiltonian is studied
for the special half-filling (ni↑ + ni↓ = 1) case, it reduces to a quantum
antiferromagnet Heisenberg model:

H̃ = J
∑

〈ij〉

(
~Si · ~Sj −

1

4

)
(3.12)

where J = 4t2/U . We’ll focus our attention to this special situation.
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3.3 The attractive Hubbard model

Now we shall describe another really important model, the attarctive (U <
0) Hubbard model. It is the simplest model able to describe the SC-CDW
competition. It can be written as:

H =
∑

<i,j>

∑

σ

tijc
†
iσcjσ − 1

2
|U |

∑

i,σ

niσni,σ + h.c. (3.13)

With this model it is possible to study in a simple and systematic way both
the weak coupling limit (U ≪ tij) corresponding to the standard BCS su-
perconductivity, and the strong coupling limit (U ≫ tij) corresponding to
the Bose-Eistein Condensation (BEC) driven superconductivity. In HTS the
overdoped regime is close to the BCS theory, while in the underdoped regime
probably the BEC scenario dominates. So a natural question is how to re-
late them and what is the nature of the BCS-BEC crossover. This problem
deals with the “bosonic” nature of the Cooper pairs and the possibility of
interpreting superconductivity itself as a superfluid of charged bosons. Even
if this interpretation is not correct in the framework of the BCS theory, i.e.
when the attractive coupling between the electrons is weak: indeed as a
result of the small value of the binding energy, the Cooper pairs have a large
size and are strongly overlapped, which make not possible to neglect the
fermionic nature of their components. The situation is radically different
in the opposite limit, when the attractive interaction between the electrons
are strong. In this case the size of the Cooper pairs is really small and, as
a consequence, they can be actually regarded as charged bosons. In this
situation the onset of superconductivity, and hence the value of the critical
temerature, is no longer controlled by the formation of Cooper pairs as in
the BCS case, but by the superfluid transition associated to the Bose con-
densation of electron pairs. In this framework the pseudogap state observed
in underdoped cuprates can be understood as a landmark of the presence of
preformed pairs not yet condensed into a unique quantum state. In this re-
gion of the phase diagram the destruction of the superconducting ordering,
and the behaviour of Tc would not be determined by the breaking of the
Cooper pairs, whose binding energy scale is given by the superconducting
gap ∆, but by phase fluctuations associated to the condensate wave function
, whose energy scale is governed by the superconducting stiffness.

Because of our interest on the pseudogap region of underdoped cuprates,
a good starting point for the formulation of our model is the attractive
Hubbard model. Moreover this model presents further advantage for us
because it has both a superconducting order and a charge density wave
ordering competing between each other, and while away from half-filling
the ground state of this model is always a SC, exactly at half-filling the SC
and the CDW are degenerate (for a review on the attractive Hubbard model
there is [104]). A lot of informations about the attractive Hubbard model can
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be easily obtained transforming this model into the more familiar repulsive
Hubbard model, for which there exists a more extensive literature. This
can be achieved by a canonical transformation known as the “attraction-
repulsion” transformation. In this way it is possible to obtain a one-to-one
correspondence between the states of the repulsive Hubbard model and the
states of the attractive Hubbard model, and between the charge and spin
operators of the two models. In the next subsection we will see at work the
“attraction-repulsion” transformation.

3.3.1 The “Attraction-Repulsion” transformation

In order to map the negative Hubbard model into a positive Hubbard
model, we have to perform a canonical transformation known as “attraction-
repulsion” transformation, defined by:






c†i↑ = b†i↑
ci↑ = bi↑

c†i↓ = ei
~Q·~Ribi↓

ci↓ = e−i ~Q·~Rib†i↓

(3.14)

where Qi satisfies the relation ei
~Q·~R = −1 for every traslational vector ~Ri

that transforms one sub-lattice into the other one (I’m assuming the model

defined on a bipartite lattice). Also the operators biσ and b†iσ satisfy the

same anticommutating rules of the operators ciσ e c†iσ.

If we indicate the single site states of the attractive Hubbard model with:

|0〉a | ↑〉a | ↓〉a | ↑↓〉a (3.15)

and the states of the repulsive Hubbard model with:

|0〉r | ↑〉r | ↓〉r | ↑↓〉r (3.16)

where a stays for “attractive” and r for “repulsive”, it is possible to show
using Eq. (3.14) and the anticommutantig rules, that the following corre-
spondence among the states (3.15) and (3.16) is valid:






|0〉a ⇐⇒ | ↓〉r
| ↑〉a ⇐⇒ | ↑↓〉r
| ↓〉a ⇐⇒ |0〉r
| ↑↓〉a ⇐⇒ | ↑〉r

(3.17)

We can also define the number, spin and charge density operators for the
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attractive Hubbard model by:






niσ = c†iσciσ
σ+

i = (σ−i )† = c†i↑ci↓
σz

i = 1
2 (ni↑ − ni↓)

ρ+
i = (ρ−i )† = c†i↑c

†
i↓

ρz
i = 1

2(ni↑ + ni↓ − 1)

(3.18)

These quantities after the transformation become:






σ†i = e−i ~Q·~Rib†i↑b
†
i↓

σz
i = 1

2 (b†i↑bi↑ + b†i↓bi↓ − 1)

ρ+
i = ei

~Q·~Rib†i↑bi↓

ρz
i = 1

2(b†i↑bi↑ − b†i↓bi↓)

(3.19)

So defining the analogous number, spin and charge density operators for the
repulsive Hubbard model:






n̄iσ = b†iσbiσ
σ̄+

i = (σ̄−i )† = b†i↑bi↓
σ̄z

i = 1
2 (n̄i↑ − n̄i↓)

ρ̄+
i = (ρ̄−i )† = b†i↑b

†
i↓

ρ̄z
i = 1

2(n̄i↑ + n̄i↓ − 1)

(3.20)

we will have the following correspondence:






σ+
i = (σ−i )† = e−i ~Q·~Ri ρ̄+

i

σz
i = ρ̄z

i

ρ+
i = (ρ−i )† = ei

~Q·~Riσ̄+
i

ρz
i = σ̄z

i

(3.21)

The equation (3.21) shows that the density operators in the new (repulsive)
representation play the same role of the spin operators in the old (attractive)
representation and viceversa. Also the Hamiltonian after the attraction-
repulsion transformation reads as:

H̃ =
∑

<i,j>

∑

σ

tijb
†
iσbjσ +

1

2
|U |

∑

iσ

n̄iσn̄i−σ (3.22)

This shows that the negative (attractive) Hubbard model can be trans-
formed easily into a positive (repulsive) Hubbard model.
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3.4 Our model for the CDW-SC competition

At this level we have all ingredients to define our model. We have to take
in mind that we want to focus ourselves on the pseudogap region of HTS
cuprates where it is possible to have both precursor superconductivity ef-
fects and CDW ordering. Thus a good candidate for the description of this
region is the attractive Hubbard model which has at half-filling a ground
state degeneracy between the SC and the CDW. But as we have seen into
the chapter (2), glassy like CDW configurations are found in the pseudogap
region, so we need to break the degeneracy of the half-filled attractive Hub-
bard model in order to favour the CDW state. This can be done introducing
into the Hamiltonian (3.13) an interaction term Wij in the following way:

H =
∑

〈i,j〉

∑

σ

tijc
†
iσcjσ − 1

2
|U |

∑

i,σ

niσni,σ +

+
1

2

∑

〈i,j〉

∑

σ,σ′

Wijniσnjσ′ + h.c. (3.23)

and after the “attraction-repulsion” transformation this Hamiltonian reads
as:

H̃ =
∑

〈i,j〉

∑

σ

tijb
†
iσbjσ +

1

2
|U |

∑

iσ

n̄iσn̄i−σ + 2
∑

〈i,j〉

Wijσ̄
z
i σ̄

z
j (3.24)

A more clear way to see that Wij introduces an anisotropy term into the
Hamiltonian consist to take the strong coupling limit of Eq. (3.24). This
limit it is also really important for our study because we would describe the
system in the framework of preformed Cooper pairs. Taking this strong cou-
pling limit of Eq. (3.24) we obtain an antiferromagnetic quantum Heisenberg
model as we have seen in the section 2:

H =
∑

〈i,j〉

[
J‖(S

x
i S

x
j + Sy

i S
y
j ) + J⊥S

z
i S

z
j

]
(3.25)

where J‖ = J , J⊥ = J +W with J = 4t2/U and W〈ij〉 ≡ W . Hereafter we
shall consider a slightly different anysotropy term which has essentially the
same symmetries but that is easier to analyze:

H = J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(S2
i )2 (3.26)

We have substituted an exchange anisotropy term with a ionic anisotropy
term. G breaks the rotational spin symmetry and because we want to favour
the CDW state it is necessary that G > 0.

At long wave lengths the antiferromagnetic order parameter behaves
classically in the sense that the only effect of quantum fluctuations is to
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renormalize the original parameters [105] (renormalized classical regime).
Thus the spin is treated as a classical variable and at this point the antifer-
romagnetic model can be mapped trivially on the ferromagnetic one just by
using the staggered magnetization as a variable.

Treating the model classically there are two possible phases. Either the
magnetization is into the XY plane (we will refer to this one as SC), or it
is along the z−axis (we will refer to this one as CDW). In Eq. (3.25) this is
controlled by the ratio J⊥/J‖; however this ratio also controls the stiffness
of the two phases. On the other hand in Eq. (3.26) the ratio G/J controls
only the relative stability of the two phases. For simplicity we assume that
the two phases have the same stiffness.

We have now to introduce the last ingredient to our model; as we said in
the chapter (2), in cuprate HTS there are random impurities out of the su-
perconducting Cu-O plane that act as pinning fields with respect the CDW.
So in the pseudogap region it is possible to observe glassy like CDW con-
figurations where the different CDW “variants” are pinned by the quenched
impurities. We can model this effect adding to the Hamiltonian a term that
couple the z−component of the spin variable with a quenched random field.
Then the model that we will analyze reads:

H = −J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(Sz
i )2 +

W

2

∑

i

hiS
z
i (3.27)

where ~Si = {Sx
i , S

y
i , S

z
i } is a classical Heisenberg spin with |~S| = 1, J is a

positive coupling constant. The first term represents the nearest neighbor
interaction of the order parameter. The second term breaks the symmetry in
spin space with G > 0 favoring a CDW state; hi are statistical independent
quenched random variables with a flat probability distribution between −1
and +1; also W > 0. These random fields would mimic impurities always
present in the real samples. We have to note also that the length of our
spins is fixed to one because we are thinking to stay in the framework of
preformed Cooper pairs, for which it is important the phase of the order
parameter and not its amplitude.

3.5 The magnetic field and the Peierls substitu-

tion

Understanding how a system respond to an external applied magnetic field
is important from both the theoretical and the experimental points of view,
so we shall show how to introduce the magnetic field into the effective model
that we’ll study.

First of all we want to underline that the magnetic field can be cou-
pled either with the orbital degrees of freedom of electrons or with the spin
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Figure 3.1: A sketch of the order parameter.

degrees of freedom of electrons; in the last case we have a Zeeman cou-
pling term −µ ~B · ~S, but now we are interested in the orbital coupling. The
standard way to introduce this magnetic coupling is the so called Peierls
Substitution:

ciσ −→ ciσe
−i e

ℏ

R ~Ri
~R0

~A(~r)·d~r
(3.28)

where ~R0 is an arbitrary fixed vector, while ~A(~r) is the potential vector
related to the magnetic field ~B. Performing this transformation on the
repulsive Hubbard model we have:

H = −
∑

〈ij〉σ

te
−i e

ℏ

R

~Rj
~Ri

~A(~r)·d~r
c†iσcjσ + U

∑

i

ni↑ni↓ + h.c. (3.29)

We want to stress now that the half-filling repulsive Hubbard model with
magnetic field and in the strong coupling limit is equal to a Heisenberg
model too, so the magnetic field doesn’t play any role unless either more
than two-body terms are considered or more then the 2nd order terms into
the perturbation series is taken.

For the half-filling attractive (U < 0) Hubbard model, the situation in
a magnetic field is completely different because we have coupled electrons



3.5 The magnetic field and the Peierls substitution 75

able to move forming a current. The effective Hamiltonian reads now:

H̃ = −2t2

U

∑

〈ij〉σ

niσnjσ +

+
2t2

U

∑

〈ij〉

(
c†i↑c

†
i↓cj↑cj↓e

−i 2e
ℏ

R

~Rj
~Ri

~A(~r)·d~r
+ c†j↑c

†
j↓ci↑ci↓e

i 2e
ℏ

R

~Rj
~Ri

~A(~r)·d~r
)

(3.30)

writing also:

Aij ≡
2e

ℏ

∫ ~Rj

~Ri

~A(~r) · d~r (3.31)

and
{
S+

i = c†i↑c
†
i↓

S−
i = ci↑ci↓

(3.32)

We have

H̃ = −2t2

U

∑

〈ij〉σ

niσnjσ +
2t2

U

∑

〈ij〉

(
S+

i S
−
j e

−iAij + S+
j S

−
i e

iAij

)
(3.33)

and using the relations:





S+
i = Sx

i + iSy
i

S−
i = Sx

i − iSy
i

Sz
i = 1

2 (ni↑ − ni↓)
(3.34)

it is possible to write the following effective Hamiltonian:

H̃ = J
∑

〈ij〉

[
(Sx

i S
x
j + Sy

i S
y
j ) cosAij − (Sx

i S
y
j − Sy

i S
x
j ) sinAij + Sz

i S
z
j − 1

4

]

(3.35)

where J = 4t2/U , and if Aij is equal to zero the standard Heisenberg Hamil-
tonian is recovered.

If we want to obtain the physical current jij through a bond, we have to
evaluate the following expression:

jij = −∂H
∂A

(3.36)

where A is the potential vector between the points ~Ri and ~Rj ; A can be
considered a constant over the distance of a lattice spacing a, thus we can
write:

Aij ≡
2e

ℏ

∫ ~Rj

~Ri

~A(~r) · d~r ∼ 2e

ℏ
aA (3.37)
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So Eq. (3.36) can be rewritten as:

jij = −∂H
∂A

∼ −2ea

ℏ

∂H

∂Aij
(3.38)



Chapter 4
Giant Proximity Effect in

Competing Charge Density Waves -

Superconducting Systems

In this chapter we want to study the simple coarse-grained model of the com-
petition between SC and CDW introduced in the previous chapter. We show
that in a Josephson-Junction geometry the system has a Giant Proximity
Effect (GPE) as observed in cuprate High-Tc Superconducting junctions that
recently caught a lot of attention both from experimental and theoretical
point of view.

4.1 Introduction and formulation of the problem

A striking property of cuprate superconductors is the possibility to observe
an unusually large proximity effect as reported by many authors [45, 106, 3].
We refer to the case of (S −S′ −S) junctions where the electrodes are High
Temperature Superconductors and the barrier S′ is made by an underdoped
cuprate, with T ′

c < Tc. Here T ′
c is the critical temperature of the barrier and

Tc the one of the electrodes. The GPE consists in a finite superconducting
current through the Josephson junction whose barrier thickness L is larger
than the proximity coherence length ξS′ (L≫ ξS′). We focus on the geom-
etry where the barrier is parallel to electodes so that the Josephson current
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flows along the c-axes where the coherence length is very short (ξc ≈ 4 Å).
It has been proposed that this phenomenon could be explained with the
presence of preformed pairs, superconducting fluctuations, or droplets well
above T ′

c. Our idea is that they could be due to the competion between Su-
perconductivity and Charge-Density-Waves. We will show below that the
distance over which a superconductor is converted into a CDW can be much
larger than ξS′ . Thus a superconductor can propagate into a CDW state for
much larger distance than into a normal metal. Of course it is not clear that
the state above T ′

c can be described by a CDW. Indeed, long range ordered
CDW are rarely observed in cuprate HTS. However our proposal is that the
system can be viewed as a CDW glass (see chapter (2)) due to quenched
disorder. This however will be not essential for ours arguments, therefore
for the moment we will ignore the role of disorder.

Now we want to present analytic and numerical results for the properties
of a SS′S Josephson Junction system with the geometry showed on Fig.
(4.1)

Figure 4.1: A SC-CDW-SC sandwich.

Taking in mind the model introduced in the previous chapter (Eq. (3.27)),
and discarding the contribution of the quenced random fields, we will work
in a Ginzburg-Landau framework describing our system using a three di-
mensional order parameter ~S ≡ {Sx, Sy, Sz} (see Fig. (4.2)), where the first
two components (Sx, Sy) are the real and imaginary parts of the supercon-
ducting order parameter and the third component (Sz) represents the order
parameter of the CDW state. Also ~S will be subjected to the constrain
| ~S |≡ 1, so that, when ~S is totally in the xy plane, superconductivity could
be lost only by phase decoherence and not by amplitude annihilation of
the order parameter itself (see chapter (3) for a deeper explanation of the
model).

A similar approach was used by Demler et al. [107] to study the same
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Figure 4.2: Order parameter.

problem but in the Zhang’s SO(5) scenario [108], where the two competing
phases are the Superconductivity and the Anti-Ferromagnetism. Even if
many our results are similar to Demler’s ones, his perspective to explain
GPE was unsuccessful. Indeed, Bozovic et al. [106] reported that one-unit-
cell thick antiferromagnetic La2CuO4 barrier layers remain insulating and
completaly block a supercurrent. We have to notice also that others authors
have investigated theoretically this problem with different techniques [109,
110, 111].

We will describe the system using the following functional, obtained from
the lattice Hamiltonian Eq. (3.27) taking its continuum limit1:

F
[
~S(~x)

]
=

J

2ad−2

∫
|~∇~S|2d~x− G

ad

∫ (
Sz(~x)

)2
d~x , (4.1)

where the order parameter ~S is defined into a d−dimensional space and it
has to satisfy the constraint | ~S |= 1. We notice also that a represents the
lattice spacing of the underlying lattice over which is defined the Hamilto-
nian descried in the previous chapter (we remember that in this chapter we
are not considering the effects of quenched disorder). We put:






J
ad−2 ≡ ρ

G
ad ≡ g

(4.2)

1The continuumm limit of the lattice model is easily get following the reverse steps
described in the chapter (1) when we had to transform the continuum XY model into its
lattice expression (see section (1.5)).



80 GPE in Competing CDW-SC Systems

We have to underline here that the constant ρ has the same meaning of the
stiffness introduced in the chapter (1) speaking about the XY model. But
here we have a three dimensional spin variable, so we can think to have
a stiffness into the XY plane (as for the XY model) and another one to
describe the energy cost to pass from the XY plane to the z-axis. We have
taken both stiffnesses equal for simplicity.

From here in we will study the functional Eq. (4.1) relatively to the
geometry showed on Fig. (4.1), so considering a one dimensional problem.
We can rewrite the functional in spherical coordinates in order to satisfy
automatically the constraint on the length of the order parameter:

F [θ(x), φ(x)] =

∫
dx

{ρ
2

[(dθ
dx

)2
+ cos2 θ

(dφ
dx

)2]
− g sin2 θ

}
, (4.3)

where θ ∈ [−π/2, π/2] and φ ∈ [0, 2π) are the two angles as sketched in
Fig. (4.2), and obviously related to the Cartesian components of the order
parameter via these relations:






Sx = cos θ cosφ
Sy = cos θ sinφ
Sz = sin θ

(4.4)

While the angle θ is related to the CDW order, the angle φ represents the
phase on the SC order parameter.

If we want to study the proximity effect in a SS′S Josephson junction
using the above functional, we have to choose the anisotropy constant g
to be negative outside the barrier (i.e. for x < −d/2 and x > d/2) and
positive into the barrier (i.e. for −d/2 < x < d/2). We put the x-axis
origin in the middle point of the barrier, whose thickness is d. From a
mathematical point of view this problem is well defined if we choose proper
boundary conditions; we know that the two superconductors forming the
junction have both a well-defined phase. So we can choose the following
boundary conditions for the superconductors:






θ(−∞) = θ(+∞) = 0
φ(−∞) = 0
φ(+∞) = ∆Φ

(4.5)

and we have to impose continuity at the interface barrier. For simplicity
the previous conditions could be simplifyed considering a junction where
the anisotropy constant g outside the barrier is much greater than the one
inside the barrier itself; this is the case of rigid superconducting boundary
conditions. So we can write:






θ(−d/2) = θ(+d/2) = 0
φ(−d/2) = 0
φ(+d/2) = ∆Φ

(4.6)
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and solve the problem more easily only into the barrier. This choice for the
boundary condition is clearly a simplification, and its physical meaning is
that we are assuming there is not any kind of penetration for the CDW into
the SC.

So we have to minimize our functional, or in other words we have to
solve the Eulero-Lagrange equations related to

F [θ(x), φ(x)] =

∫
dxf

(
θ, φ,

dθ

dx
,
dφ

dx

)
, (4.7)

so





d
dx

(
∂f

∂(dθ/dx)

)
− ∂f

∂θ = 0

d
dx

(
∂f

∂(dφ/dx)

)
− ∂f

∂φ = 0

(4.8)

and explicitly we can write down:

ρ
d2θ

dx2
+ ρ sin θ cos θ

(dφ
dx

)2
+ 2g sin θ cos θ = 0 (4.9)

d

dx

(
cos2 θ

dφ

dx

)
= 0 (4.10)

As it is possible to see, φ is a cyclic coordinate (i.e. it does not appear
explicitly into the expression of the functional), and so the current I related
to this coordinate must to be conserved; this is also clear observing the
second Eulero-Lagrange equation:

I = cos2 θ
dφ

dx
≡ constant (4.11)

We have to stress also that I is not simply the Noether current related
to the coordinate φ, but it represents the real physical current I passing
through the junction, indeed performing the same calculations seen into the
last section of the chapter (3) speaking about the Peierls substitution, we
obtain for the physical current:

I =
2ea

ℏ
I (4.12)

Taking the conservation law Eq. (4.11) we can rewrite the first Eulero-
Lagrange equation in the following way:

ξ2g
d2θ

dx2
+ ξ2gI

2 sin θ

cos3 θ
+

1

2
sin(2θ) = 0 (4.13)

where
ξ2g =

ρ

2g
(4.14)

We want to underline that ξg has the physical dimension of a length, and
it represents the length scale over which the order parameter of the system
pass from the CDW value to the SC value and viceversa.
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4.2 Outlines of the solutions

In this section we show the solutions of Eq. (4.13) and (4.11) for our order
parameter, but it is also important to stress that two others kind of solutions
are possible for our problem. So we have three families of solutions, and we
refer to them as:

• SC Superconducting solution;

• MIXED/CDW Mixed/Charge-Density-Wave solution;

• MIXED Mixed solution.

Here we want to give the profiles of the order parameter in these cases,
showing how they change by tuning the parameters of the problem. More
details can be found into the Appendix (B).

4.2.1 SC solution

As can be checked easily, there is a trivial solution θ(x) ≡ 0 of the equation
4.13, and the corresponding value for φ(x) is φ(x) = (∆Φ/d)x + (∆Φ/2).
This kind of solution, where our order parameter stays into the XY plane,
changing its phase from zero to ∆φ linearly, corresponds in our picture to
the superconducting state. The energy of this solution (i.e. the value of the
functional F [θ(x), φ(x)] ) is:

ESC = C∆Φ2 (4.15)

where

C = ρ/2d = (
gξg
2

)
1

(d/2ξg)
(4.16)

is a constant depending only on the parameters of our problem, and remem-
ber the definition of the stiffness into the chapter (1), it represents the SC
stiffness itself.

4.2.2 MIXED/CDW solution

We have analyzed another kind of solution in which we have a perfect Charge
Density Wave (θ = ±π/2) in the middle point of the junction (i.e. for x = 0),
or in a symmetric-middle region of the junction (i.e. for −c/2 < x < c/2
with c < d). This kind of solution cannot be found from Eq. (4.13) and
(4.11), because of its non-analyticity in x = 0 or x = ± c. In this case the
order parameter pass through the North or South pole of its domain space,
so φ(x) remains arbitrary in the perfect CDW region; while θ(x) must to be
obtained solving the following differential equation:

d2θ

dx2
+

1

2

(
1 − c

d

)2( 1

ξg

)2
sin(2θ) = 0 (4.17)



4.2 Outlines of the solutions 83

In this situation we have to put for our boundary condition: θ(±d) = 0,
θ(±c) = π/2, φ(x) ≡ 0 for −d/2 < x < c, φ(x) ≡ ∆Φ for c < x < d/2, and
0 6 c 6 d.

The energy of this solution is given by:

ECDW = C
{
− 4c

d

( d

2ξg

)2
+

4d

d− c

∫ 1

0
dt

[(dθ
dt

)2
−

(
1− c

d

)2( d

2ξg

)2
sin2 θ

]}

(4.18)
This solution is presented only for completeness, indeed we have found,

comparing its energy with the SC and MIXED energy, that it is not stable.

4.2.3 MIXED solution

The solution of the Eq. (4.13) and (4.11) in the mixed case, for which the
order parameter is an analytic function, can be written down in closed form
using elliptic integrals as shown in the following:

2x+ d

2ξg
=

cos θ0√
cos2 θ0 + ω2

F (ϕ; k2) (4.19)

φ(x) =
∆Φ

2

Π(ϕ; sin2 θ0, k
2)

Π(π/2; sin2 θ0, k2)
(4.20)

sinϕ =
∣∣∣
sin θ(x)

sin θ0

∣∣∣ (4.21)

k2 =
cos2 θ0 sin2 θ0
cos2 θ0 + ω2

(4.22)

ω = Iξg (4.23)

ξ2g =
ρ

2g
(4.24)

Here F (ϕ; k2) is an elliptic integral of first kind, and Π(ϕ; sin2 θ0, k
2) is

an elliptic integral of third kind. So Eq. (4.19) and (4.20) define implicitly
our order parameter, where θ0 ≡ θ(0) is obtained by solving the following
equations:

d

2ξg
=

cos θ0√
cos2 θ0 + ω2

K(k2) (4.25)

where K(k2) = F (π/2, k2) is a complete elliptic integral of first kind. We
have to point out also that ω represents the dimensionless currrent.

The energy of this solution is given by:

EMIXED = 4C

∫ 1

0
dt

[(dθ
dt

)2
−

( ω2

cos2 θ
− sin2 θ

)( d

2ξg

)2]}
(4.26)
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Into Fig. (4.3) it is possible to see on the left side of the panel the outline
of the superconducting solution, with θ(x) ≡ 0 and the phase angle φ(x)
changing linearly across the junction. In the centre of the picture is shown
the solution for the MIXED/CDW case, for which θ(x) is not differentiable
because it has a cusp in the middle point of the junction or a pure CDW
segment in the middle region of the junction itself. Finally, on the rigth side
of the panel is drawn the solution for the Mixed case; here it is possible to
see how increasing the ratio d/(2ξg) the solution goes from a more similiar
superconducting behaviour to a more similar MIXED/CDW. Into Fig. (4.4)
we also show the mixed solution for three different values of the current ω,
tuning also the ratio d/(2ξg).

We can better understand the behaviour of these solutions building a
“phase diagram” for our problem, and commenting the solutions showed
above relating them to the “phase diagram” itself.

4.3 Phase diagram and behaviour of the current

Until now we discussed in a complete general way the solutions of our prob-
lem whitout saying which is the “best” solution for a given set of parameters.
We have three different kinds of solutions competing with each other, so we
need to understand when one of them is better than others, i.e. when its
energy is lower than others ones. To achive this target we have to compare
the energies of the three solutions2, and then we can build a phase diagram
into the space of parameters ∆Φ and d/(2ξg). These parameters are the nat-
ural ones to build up the phase diagram because they are quantities easily
controllable from the experimental point of view, indeed we can easily tune
the length of the barrier d and the current or the phase difference passing
across the junction (as we shall see below the current is related to the phase
difference).

2These energies are evaluated numerically for the MIXED and MIXED/CDW cases by
Eq. (4.26) and (4.18) respectively, while the SC energy (eq. 4.15) is known analitically.
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Figure 4.5: Phase diagram with ∆Φ vs d/(2ξg); under the green line the
order parameter has only the x and y components, otherwise
all components are not zero.

As we can see into Fig. (4.5) the MIXED/CDW solution is never
a good one (we anticipated this result previously speaking about of the
MIXED/CDW solutions), even if for some values of the parameters it is re-
ally similar to the MIXED solution. The line dividing the superconducting
region from the mixed one in the phase diagram can be obtained analytically,
and it is given by:

∆Φ∗ =

√

π2 − 4
( d

2ξg

)2
(4.27)

At this point we can comment the behaviour of the solutions of our prob-
lem looking at the “phase diagram”. First of all we have to remember
that we have rigid superconducting boundary conditions (φ(−d/2) = 0 and
φ(+d/2) = ∆Φ); if we fix the thickness of our barrier, we can observe two
different behaviours: (i) For ∆Φ = 0, if this thickness is small respect to ξg
the order parameter prefers to remain into the XY plane forming a pure SC
state because the energy cost to leave the XY plane in order to gain a CDW
component is higher than the cost in stiffness to bend the order parameter
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out of the XY plane. Since the width of an interface is ξg, when d < ξg there
is not enough space to fit the interface. If the phase difference ∆Φ across
the junction is increased from zero, at some point the system prefers to form
a partial CDW because in this way it reduces the superconducting stiffness.
(ii) If the thickness of the barrier is large enough the order parameter is
always able to gain a CDW component giving a MIXED solution, because
in this situation the barrier is so large that the order parameter can go to
the CDW solution. Indeed, we have to remember that over a length of the
order of ξg the order parameter is able to pass from the SC to the CDW
value.

Another remarkable behaviour of the system is represented by the re-
lation between the current ω and the phase difference ∆Φ across the junc-
tion. As we can see from the caratteristic Current-Phase Difference (see
Fig. (4.6)) the standard Josephson like behaviour is recovered only for
d/(2ξg) ≫ 1, otherwise we have a non-analytic current behaviour with a
linear dependence for small phase differences (this is the superconducting
solution) and a non-linear dependence for greater phase differences (this is
the mixed solution).

We have to point out that the black dashed line in the Fig. (4.6) is the
locus of the points where the current goes from the linear behaviour to the
non-linear one. This line can be obtained analytically, and it is defined by:

ω =
∆Φ∗

√
π2 − ∆Φ∗2

(4.28)

The Current-Phase Difference plot is a really important result because it can
be compared directly with experiments, indeed if our description is exact it
would be possible to observe for SS′S junction a non analytical behaviour
of the current, and also the maximum current that can be carried out by
the junction (the so-called critical current) should be fitted by Eq. (4.28).

Finally in our framework we could give an explanation of the GPE based
on the following observation: by means of the coupling between the CDW
order parameter and the SC order parameter, the system will have a stiffness
associated to the CDW ordering, or in other words there will be a length
scale ξg related to the capability of the system to pass from the SC state to
the CDW state (in our model this means that the spin variable has to go
from the XY plane to the z-axis). The length scale ξg has not anything in
common with the coherence length ξ′ of the barrier S′ (that we remember
it is really small, ξ′ ∼ 4Å), but if ξg is big enough it is possible to observe
a GPE derived by the presence of the CDW. We can think that there is a
latent stiffness stored into the CDW.
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Figure 4.6: The current ω as a function of the phase difference ∆Φ for
different values of the ratio d/2ξg.

Of course this scenario implies that CDW Bragg peaks have to be ob-
served above the superconducting critical temperature T ′

c of the barrier, but
this is not the case. In the next chapter we will show that in the presence
of disorder the CDW can be replaced by glassy CDW, which will not show
Bargg peaks.





Chapter 5
Competition between CDW and SC

in the presence of disorder

In this chapter we are going to show some results regarding zero temper-
ature properties of the model introduced previously. The Random Field
Anisotropic Heisenberg Model (RF-AHM), defined on a two-dimensional
square lattice, is analyzed numerically looking for features that recall the
phenomenology of HTS highligthed in the previous chapters. Mainly our
target is to find glassy-like CDW configurations which enable also the es-
tablishment of some kind of superconducting order, either local or global in
the system. We want to remember that the Hamiltonian of our model is:

H = −J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(Sz
i )2 +

W

2

∑

i

hiS
z
i (5.1)

where ~Si = {Sx
i , S

y
i , S

z
i } is a classical Heisenberg spin with |~S| = 1, J is a

positive coupling constant. The first term represents the nearest neighbor
interaction of the order parameter. The second term breaks the symmetry
in spin space with G > 0 favoring a CDW; hi are statistical independent
quenched random variables with a flat probability distribution between −1
and +1; also W > 0.

As we pointed above, the system is defined on a two-dimensional square
lattice, and the results described here are referred to the zero temperature
state; so first of all we have to clarify the meaning of the “zero temperature
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state”. In principle it is the ground state of our Hamiltonian, but how can
we find it for this random field Hamiltonian? While for the Random Field
Ising Model are known exact algorithms to find the ground state, to our
knownledge similar algorithms don’t exist for the Heisenberg situation. So
every kind of algorithm we have in mind to search the ground state of our
Hamiltonian necessary doesn’t assure the achievement of this target; every-
time, we find a local minimum and we can only “hope” that it is the global
one. Then a proper question is why we are speaking about zero tempera-
ture properties if we are not able to guarantee the reaching of the ground
state? We can try to answer this question as follow: first we have to un-
derline that even from the experimental point of view we can’t say firmly
to have gained the ground state of a material whatever is the experimental
protocol used; second we are not truly interested in the real ground state
of the system because with our effective model we want only to reproduce
stable glassy-like CDW situations observed in the pseudogap state of under-
doped HTS. So our “zero temperature state” refers simply to these stable
configurations, local minima of our Hamiltonian, that we found numerically
through conjugate gardient methods. Physically the last ones correspond to
quench experiments from high temperature down to low temperature.

5.1 Interface thickness

In this section we want to show more explicitly that the thickness of the
interface between two different CDW is of the order of ξg, the length scale
introduced into the previous chapter.

To solve this problem we can think to cut our system along a straight
line perpendicular to the interface, reducing the problem itself into a one-
dimensional problem, similar to that one solved for the Josephson junction.
Thus taking the continuum limit of Eq. (5.1), excluding the term with the
disorder, we have to minimize the following functional:

F [θ(x), φ(x)] =

∫
dx

{ρ
2

[(dθ
dx

)2
+ cos2 θ

(dφ
dx

)2]
− g sin2 θ

}
(5.2)

with boundary conditions:

{
θ(−∞) = −π

2
θ(+∞) = +π

2

(5.3)

We remember that the angle θ gives information about the CDW order, so
when θ = −π/2 we have a variant of the CDW, while for θ = +π/2 we
hve the other variant of the CDW. Following the strategy of the chapter
(4) for the solution of the minimization problem, we can write down these
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Eulero-Lagrange equations:






I = cos2 θ dφ
dx ≡ constant

ξ2g
d2θ
dx2 + ξ2gI

2 sin θ
cos3 θ + sin θ cos θ = 0

(5.4)

where I is the Noether current, hereafter current1, related to the phase
angle φ, and ξ2g = ρ/2g. Moreover the boundary conditions impose I ≡ 0
∀x, simplifying a lot the equation for θ:

ξ2g
d2θ

dx2
+ sin θ cos θ = 0 (5.5)

The differential equation (5.5) can be easily solved obtaining the following
solution:

θ(x) = 2 arctan ex/ξg − π

2
(5.6)

Eq. (5.6) shows clearly that the thickness of the interface between two
different CDW is of the order of ξg, as also sketched in Fig. (5.1).

-5 -4 -3 -2 -1 0 1 2 3 4 5
d

-π/2

-π/4

0

π/4

π/2

θ(
x)

ξ
g
  =  0.5

Figure 5.1: Interface between two different CDW

1As we have seen into the previous chapter, the physical current is equal to the Noether
current multiplied by some constants (2ea/ℏ).
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We studied also more generally the interface between two different CDW
in two dimensions. The problem was defined on a square domain, and the
boundary conditions were taken as:






θ(−d/2, y) = −π/2
θ(+d/2, y) = +π/2
φ(x,−d/2) = 0
φ(x,+d/2) = ∆Φ

(5.7)

In this case we can show that the system is invariant under translation
along the y direction, thus it is possible to find an expression for θ depending
only by x. We found that (see Appendix (C) for more details):

θ(x) = 2 arctan ex/ξ′g − π

2
(5.8)

where

ξ′g =
ξg√

1 + (∆Φ
d )2ξ2g

(5.9)

Thus we obtained the same result of the one-dimensional case, but with an
amplitude of the interface between the two CDW that depends on the phase
difference ∆Φ2 applied along the y direction (i.e. on the current along the
y direction). If ∆Φ = 0, ξg ≡ ξ′g.

5.2 Helicity Modulus or Stiffness

As we pointed out many times previously, an important target of our re-
search is to see if in systems where there is competition between CDW and
SC, we are able to see glassy-like CDW configurations and if a supercon-
ducting order can be found not only locally but also globally on the entire
sample. We have to remember that our order parameter describes the SC
when it stays in the XY plane, while it is associated to the CDW when
it points along the positive or negative z−axis (the two possible directions
representing the two possible variants of the CDW in our model). So a nat-
ural way to obtain an information about the SC order in our system is to
measure the in-plane magnetization:

mxy =

√√√√ 1

N

N∑

i

[
(Si

x)2 + (Si
y)

2
]

(5.10)

2This result is really interesting because it tells us that if into the system there are
interfaces with different thickness, the current going through smaller interfaces has a value
higher then current going through bigger interfaces. This is analogous to the situation for
which a constant flow of water going through a pipe with a no-constant transverse section,
has a velocity higher when the section is smaller.
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where N is the total number of lattice sites and · · · is the average over the
disorder. But we have to stress that this variable is not able to give us
informations about the overall superconductivity in the sample, because it
measures only local SC contributions, masking the possible global SC. For
this reason we need a variable able to check for the overall SC, and it is
given by the Helicity modulus Υ, also called Stiffness.

5.2.1 Stiffness at T=0 as a Kirchhoff problem

As we said in the chapter (1) solving the XY toy model on three lattices, the
zero temperature stiffness could be obtained finding the global conductance
of the corresponding conductance network, where the single conductances
are related one to one to the bonds {J} of the XY model itself. Now we
want to show that this stategy can be applied also to our problem.

We know that our model is given by the following Hamiltonian:

H = −J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(Sz
i )2 +

W

2

∑

i

hiS
z
i (5.11)

that in spherical coordinates can be written as:

H = −J
∑

〈i,j〉

cos θi cos θj cos(φi − φj)−G
∑

i

sin2 θi +
W

2

∑

i

hi sin θi (5.12)

Figure 5.2: Order parameter.

The first step in the numerical analysis of our system is finding a stable
configuration, a local minumum, by the conjugate gradient method. So we
want to measure the in-plane stiffness along X or Y direction (because of the
isotropy of the problem into the XY plane, considering the mean Stiffness
Υx or Υy is the same, and hereafter we’ll refer to Υx

3). Only the first term

3We have to stress that for a single configuration Υx and Υy can be clearly different,
and only averaging on the disorder we find that their mean values are statistically equal.
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of Eq. (5.12) is important for the calculus of the Stiffness, because only here
there are the phase angles essential for finding Υ. For this reason now we
can restrict ourselves to the following two-dimensional random bond XY
model:

H = −
∑

〈i, j〉

Jij cos(φi − φj) (5.13)

where Jij = J cos θi cos θj are quenched random bonds obtained after the
minimization.

First of all we have to remember that the current jij through a bond Jij

is defined by the following relation:

jij = −2ea

ℏ

∂H

∂Aij
(5.14)

where Aij is the line integral of the potential vector ~A between the point ~Ri

and ~Rj:

Aij =
2e

ℏ

∫ ~Rj

~Ri

~A · d~l (5.15)

As we have seen in the capther (3), the potential vector enters into our
model thank to the Peierls substitution in the following way:

H = −
∑

〈i, j〉

Jij cos(φi − φj −Aij) (5.16)

and then the current jij is equal to:

jij =
2ea

ℏ
Jij sin(φi − φj) (5.17)

where we put Aij = 0 in the absence of the external field.
At this point we can start the calculation of the Stiffness as described by

Jasnow (see Eq. (1.96)), and because we are at zero temperature we have
to replace the equilibrium free energy density with the equilibrium energy
density. So, if we are looking for the Stiffness along the X direction, we have
firstly fixe all phase angles on the left side of the lattice and also apply a
twist ∆φ to all phase angles on the right as sketched in Fig. (5.3).
Now the system has to relax this “torsion” finding a stable phase angle
configuration {φi} ≡ φ⋆ for which it is:

∂H

∂φi
= 0 ∀φi ∈ φ⋆ (5.18)

and we indicate the energy of the system for this configuration as H⋆. Now
we can see that the first derivative of H⋆ with respect to ∆φ corresponds to
the total current along the X direction:

dH⋆

d∆φ
=
∂H⋆

∂∆φ
+

∑

i∈L

∂H⋆

∂φi

∂φi

∂∆φ
=
∂H⋆

∂∆φ
(5.19)
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Figure 5.3: A square lattice with an applied twist angle ∆φ on the right
side.

where L is the symbol for our square lattice consisting of N × N sites. If
we want to write explicitly Eq. (5.19), it is clear that the only terms of the
Hamiltonian (Eq. (5.16)) which have a non-zero derivative with respect to
∆Φ, correspond to that ones for which the bond Jij joins a lattice site on
the last but one column of the lattice with its neighbour on the last column
of the lattice itself4. Thus we can write down:

dH⋆

d∆φ
=

N∑

k=1

j
(N−1,N)
k ≡ jTOT

x (5.20)

where j
(N−1,N)
k is the current passing through the last bond of the k−th row

(with the couple (N − 1, N) we indicate the column positions of the lattice
sites corresponding the current we are considering; in other words the first
index of this couple indicates the (N − 1)-th column of the lattice where is
located the site i, and the second index represents the N -th column of the
lattice where is the site j. This couple whithin the row index k are sufficient
to identify univocally the two sites.)

We have to point out also that writing explicitly Eq. (5.18) we obtain
for every node of the lattice an equation for which the sum of the currents
impinguing the node itself is zero; thus the currents satisfy the Kirchhoff

4We are counting the columns of the lattice L from left to right, and the rows from
top to bottom.
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law: ∑

k ∈ n.n.

ji,k = 0 ∀ i ∈ L (5.21)

In the limit that ∆Φ → 0 all phase angle differences are small, therefore
Eq. (5.17) becomes:

jij =
2ea

ℏ
Jij(φi − φj) (5.22)

This equation is analogous to Ohm’s law if we identify Jij with a conductance
and (φi −φj) with a potential difference between the two sites i and j. Also
the phase difference ∆Φ represents the total bias applied between the first
and the last column of the lattice:

∆Φ = φN − φ1 (5.23)

This system of equations, within the above identification, is identical to the
system of equations corresponding to a random conductance network.

So we have found a perfect analogy with a random electrical network,
where the bonds Ji,j correspond to conductances and the phase angle differ-
ences φi−φj are similar to a bias applied at the two nodes i and j. Moreover
the Stiffness along the X direction is given by5:

Υx =
d2H⋆

d∆φ2

∣∣∣
∆φ = 0

=
d jTOT

x

d∆φ

∣∣∣
∆φ = 0

(5.24)

and in the limit ∆Φ → 0 it reads:

jTOT
x = Υx∆Φ (5.25)

Eq. (5.25) is exactly the Ohm’s law for the entire network, where ∆φ is
the bias applied to the left and right ends of our lattice, while Υx represents
the global conductance of the network itself.

So our strategy to calculate the Stiffness of the system will be to imple-
ment Eq. (5.21), (5.23) and (5.25), i.e. first of all we have to find all phase
angle φi solving the linear equation system defined by (5.21) and (5.23),
then using Eq. (5.22) it is possible to find the currents jij for every bond
of the network, at this point is possible to find the global current along the
X direction, and finally using Eq. (5.25) it is possible to find Υx. The only
technical difficulty to be overcome is the numerical solution of a huge sparse
linear system of equations.

5If we have not a square lattice but a rectangular one, the expression of the Stiffness

is: Υx =
“

Lx

Ly

”

d2H⋆

d∆φ2

˛

˛

˛

∆φ = 0

, where Lx and Ly are the two dimensions of the lattice.



5.3 Some configuration snapshots 99

5.3 Some configuration snapshots

Here we want to show some configuration snapshots of our system. First of
all we are going to show some configurations with different parameter values
just only to have an idea of what kind of configurations we can obtain (see
Fig. (5.4) and (5.5)). After that we shall describe a set of configurations with
same realization of quenched randomness, but different anisotropy intensity
(see Fig. (5.6)).

Figure 5.4: Intensity of the z component of spin variables. For every row
we have from left to right the following anisotropy values: G =
0.02, 0.1, 0.3. For every column we have from top to bottom
the following disorder intensity values: W = 0.5, 2.0, 5.0.
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Figure 5.5: Intensity of the z component of spin variables. For every row
we have from left to right the following anisotropy values: G =
0.3, 0.5, 0.7. For every column we have from top to bottom
the following disorder intensity values: W = 0.5, 2.0, 5.0.

In Fig. (5.4) and (5.5) it is possible to see many different kinds of
configurations of our system: from stripe like along x or y direction, to
domain bubble like with different sizes.

First of all we have to remember that we can observe domain configura-
tions because of the presence of quenched random fields, indeed as we said in
chapter (2) speaking about the Imry and Ma argument, a random field Ising
model has a lower critical dimension equal to two, thus in our case because
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the system is defined on a two-dimensional lattice it must breaks itself into
domains. We can see that for a fixed value of the disorder intensity we are
able to see that the interface (the SC state) between two different domains
(two different CDW) become thicker decreasing the value of the anisotropy
G, or in other words we can pass from a “soft” like to a “sharp” like inter-
face behaviour tuning G. This behaviour can be explained easily taking in
mind the results of the section (5.1), indeed as we have seen there the length
scale over which the spin goes from the XY plane to the z−axis (i.e. from
the SC to the CDW) is related to the anisotropy parameter G in an inverse
proportional way (i.e. ξg ∼

√
J/G), so increasing G we obtain more small

interfaces and arriving to a thickness of the order of the lattice spacing we
pass from a “soft” like to a “sharp” like interface. Situations for which the
interfaces between different CDW domains is “sharp” like don’t allow neither
magnetization in the XY plane, nor global stiffness; but clearly if we have
“soft” like interfaces, this doesn’t guarantee to observe an overall stiffness in
the sample, indeed could be possible to have disconnected Heisenberg inter-
faces that gives a finite contribute for the XY magnetization but a zero (or
exponentially small) contribute for the stiffness. This situation corresponds
for example to the configuration on the right panel in the central row of Fig.
(5.4).

Also increasing the disorder intensity W it is possible to obtain much
more pulverized domains; this can be understood thinking to the Binder
length scale introduced in the chapter (2) speaking about of the RFIM. We
remember that the Binder scale gives the order of the size of the domains,
and it depends on the disorder intensity in the following way: LBinder ∼
exp[(J/W )2], so increasing W we decrease LBinder.
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Figure 5.6: Some configuration snapshots for a fixed random field config-
uration with intensity W = 2.0, and for different anisotropy
values (see Table (5.1) for G values and Fig. (5.8) for colorbar
legend).
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Figure 5.7: Some configuration snapshots for a fixed random field config-
uration with intensity W = 8.0, and for different anisotropy
values (see Table (5.1) for G values and Fig. (5.8) for colorbar
legend).
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-0.1 0.0
0.03 0.07
0.1 0.4

Table 5.1: Values and positions of the anisotropies G corresponding to Fig.
(5.6) and (5.7).

Figure 5.8: Colorbar indicating the intensity of the z component of the
spin variables for Fig. (5.6) and (5.7).

Now we can pass to describe Fig. (5.6) and (5.7). These configurations
are obtained fixing the disorder configuration and changing the value of
the anisotropy G minimizing every time the energy of the system using as
starting configuration that one obtained from the previous minimization. In
both cases increasing G we have a more “sharp” like scenario, but how is
evident from the pictures the two sets of configurations are really different.
In the weak disorder case (W = 2.0) we have clear CDW domains, which
sizes are of the order of 20− 30 lattice sites, while for strong disorder (W =
8.0) it is difficult to distinguish differents CDW domains, which sizes are
of the order of few lattice sites. Also the evolution of the configuration as
G increase is more evident in the weak disorder case (W = 2.0) than in
the strong disorder case (W = 8.0). This is due to the fact that for strong
disorder the length scale ξg becomes irrelevant; indeed into the system there
are a lot of small CDW domains really close each other, and for this reason
it is impossible to establish a SC interface as in the weak disorder case,
because there is not enough space between two different CDW.

5.4 XY Magnetization and Stiffness

In this section we shall show the results of the numerical study of our Ran-
dom Field Anistropic Heisenberg Model, in particular we shall present the
behaviour of the XY magnetization and Stiffness, as functions both of the
anisotropy parameter G and of the disorder intensity W .

We have to stress also that the coupling constant J is fixed to one, thus
every energy scale is referred to this one; also every physical observable is
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averaged over 200 different realizations of the disorder6, and the system size
is fixed to 100 × 100 (Into the appendix C it is possible to find a finite size
analysis study, which shows that finite size effects are small.).

5.4.1 XY magnetization
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Figure 5.9: Mean XY magnetization as a function of the anisotropy G for
different values of the disorder intensity W .

If into the system there is not any kind of disorder (W = 0) the ground
state is a simple ferromagnet along the z−axis for everyG > 0 (with a double
degeneracy, corresponding to all spins pointing either along the positive or
the negative z−axis), and a ferromagnet into the XY plane for every G < 0
(with an infinite degeneracy, corresponding to all spins pointing along one of
the infinite direction into theXY plane), so we should observe both for |mxy|
a step function with G as indipendent variable (i.e. |mxy| ≡ Θ(−G)). But
when the disorder intensity is not zero, the above step function behaviour

6To be more precise, the Stiffness curves for high values of the disorder intensity are
obtained averaging over a small set of configuratios; indeed the error bars in those plots
are not all equal. While for the magnetization curves the error bars are not equal (even if
the set of configurations is fixed to 200) because they are obtained by error propagation
applied to square magnetization (∆mxy ∝ ∆m2

xy/(2mxy)).
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change immediately, allowing to the XY magnetization an enhancement for
positive G values, and a reduction for negative G values (see Fig. (5.9)).
While the reduction of |mxy| for G < 0 was expected introducing the disor-
der, it is really interesting the situation for G > 0, for which the disorder
favours the establishment of the SC.

Now we can also observe the behaviour of |mxy| as function of the dis-
order for a fixed value of the anisotropy. While for G < 0 values we observe
monotonic decresing functions, for wich the disorder simply weakens the
XY ferromagnetic order (this is the trivial effect for which the disorder de-
grade the superconductivity), for G > 0 values we have a non monotonic
behaviour and there is an optimum disorder intensity for which the in-plane
magnetization is maximum (see Fig. (5.10)).
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Figure 5.10: Mean XY magnetization as a function of the disorder inten-
sity W for different values of the anisotropy G.

Now we can say that the quenched disorder into our system allows the
formation of ferromagnetic islands (along the z−axis), and among them
there are “sharp” like or “soft” like domain walls. The last ones let to the
system to have non zero in-plane magnetization and local Stiffness.

A good question could be if the superconductivity measured by |mxy| is
only local or global into the system. Following the idea of the “soft” like
domain walls introduced above, this question is equal to ask the existence of
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a percolating “soft” like domain wall into the system. This will be clarified
in the next section, where we show the behaviour of the Stiffness Υx as a
function of the anisotropy G and of the disorder intensity W .

5.4.2 Stiffness
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Figure 5.11: Stiffness Υx as a function of the anisotropy G for different
values of the disorder intensity W .

The Stiffness has the same qualitative behaviour of the in-plane magne-
tization |mxy|; i.e. Υx, as function of the anisotropy G, is lowered by the
presence of the disorder if G < 0, but more surprisingly it gains a non-zero
value for G > 0 (see Fig. (5.11)). Also the behaviour of Υx as function of the
disorder intensity W is qualitatively similar to that one of the in-plane mag-
netization, i.e. or G < 0 we have the trivial monotonic decresing behaviour
for the Stiffness, while for G > 0 we observe a non monotonic behaviour of
Υx (see Fig. (5.12)), with an optimum disorder intensity where the Stiffness
is maximized.
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Figure 5.12: Stiffness Υx as a function of the disorder intensity W for
different values of the anisotropy G.

5.5 A “Phase Diagram”

Now we want to show better the above results, trying to go deeply into
the understanding of our system. First of all we shall give a more unified
vision of the XY magnetization and of the Stiffness as functions of the
anisotropy G and of the disorder intensity W , and then we try to build
a “phase diagram”. We have to remember that one important question
of our research is the possibility to find in our system glassy-like CDW
configurations allowing the establishment of local and global SC. Because
we are able to obtain informations about local SC in our system through the
magnetization |mxy|, and about global SC through the Stiffness Υx, we can
ask when we have a global superconducting order, or when we have only a
local SC, or when we have neither a global nor a local SC. Then could be
useful to build a some kind of “phase diagram” in order to distinguish the
previous described situations. We can achieve this aim by fixing a threshold
for both |mxy| and Υx, and considering roughly equal to zero the variable if
it is below the threshold, while different from zero if it is above the threshold.
It is clear that the value of the threshold is completely arbitrary, so we need
to fix more than one threshold value and studying how this “phase diagram”
changes.
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Figure 5.13: Contour plot of the magnetization mxy as a function of the
disorder intensity W and of the anisotropy G.

Figure 5.14: Contour plot of the Stiffness Υx as a function of the disorder
intensity W and of the anisotropy G.
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Fig. (5.13) and (5.14) are contour plots of the magnetization |mxy|
and of the Stiffness Υx as functions of the disorder intensity W and of the
anisotropy G. In each plot we can see that there exists a CDW region for
high G values (the dark region), while the SC region has qualitatively the
same shape even if into the magnetization plot it represents only local SC
and it is bigger then the same region into the stiffnes plot, where this region
represents global SC. It is really interesting to observe also that for G > 0 we
can see superconductivity, due only to the presence of the disorder. Finally
we can say that for a fixed value of the anisotropy there is a maximum
value for |mxy| and Υx because of opposite tendencies of the system: (i) to
have a high disorder intensity to gain superconductivity by increasing the
density number of domains, (ii) and to have a low disorder intensity to gain
superconductivity by obtaining more “soft” interfaces between two different
CDW.
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In the Fig. (5.15) we show the “phase diagram” as described above for
a fixed threshold value; the threshold is taken the same for both |mxy| and
Υx, because they are normalized in the same way.

Figure 5.15: “Phase diagram” for a threshold value equal to 0.3.

Into the “phase diagram” the region below the green line has a global
superconducting order, the region between the green line and the blue line
has only a local superconducting order, while the region above the blue line
is a glassy CDW. This is exactly the behaviour that we were exptecting. We
have to point out that changing the threshold value, the overall feature of
the phase diagram remains the same.
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In this research we focused our attention to some open problems concerning
HTS, particularly we concentrate ourselves to the pseudogap region of short
coherence length HTS cuprates. Many questions about these materials are
waiting for a response and a lot of experiments do not have a clear explana-
tion yet, thus the research in this field of condensed matter physics is really
exciting.

The aim of our research was to find a possible explanation to some
“anomalous” experiments performed in the pseudogap region of HTS, based
on the study of a simplified coarse-grained model. However, before introduc-
ing the model we have revisited in the chapters (1) and (2) the basic concepts
about the superconductivity and the charge-density-waves in order to have
clear the context in which we have worked on. It is really important to un-
derline that our research is based on two features observed directly by the
experiments, i.e. the presence of CDW and precursor SC effects in the pseu-
dogap region for these materials. Even if the observation of CDW in HTS
comes back to years ago using different techniques, as neutron or X-ray scat-
tering, more recently the STM has given us an important real-space probe
for these materials, allowing to see more clearly their polycrystal/glassy like
behaviour in the pseudogap region. Also the experiments concerning the
Nerst and diamagnetic effects above the superconducting temperature Tc,
are important and give us additional informations about the nature of the
pseudogap region.

Keeping in mind the above experimental evidences, we have built (see
chapter (3)) a coarse-grained model that captures in a simple way the idea
that the “pseudo-gap” phase is formed of bound fermion pairs which are
close to a CDW instability but do not have long range order due to quenched
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disorder. Following this line we modeled the charge degrees of freedom by
an Ising order parameter because for simplicity we think to have only two
differents CDW “variants” (even if in real systems they are much more than
two), while the superconducting phase was modeled by an XY spin vari-
able. These degrees of freedom are been embodied together forming a single
Heisenberg variable, where the order along the z-axis corresponds to CDW
order and the order in the xy-plane corresponds to superconducting order.
Moreover the SO(3) symmetry is broken by introducing an anisotropic term
favouring the CDW state; and the impurities always present in the real sam-
ples are reproduced by quenched random fields coupled to the Sz component.
So we wrote our model as:

H = −J
∑

〈i,j〉

~Si · ~Sj −G
∑

i

(Sz
i )2 +

W

2

∑

i

hiS
z
i (5.26)

where ~Si = {Sx
i , S

y
i , S

z
i } is a classical Heisenberg spin with |~S| = 1, J >

0. The anisotropy G > 0 favours a CDW, and hi are statistical indipendent
quenched random variables with a flat probability distribution between −1
and +1 (also W > 0). The policristal/glassy CDW configurations are surely
obtained by this model in two-dimensions because, as descrided in chapter
(2) using the Imry-Ma argument, the lower critical dimension for a random
field Ising model is dl = 2.

As we saw in chapter (3) our model can be obtained starting from an
attractive Hubbard model in the strong coupling limit at half-filling. Indeed
in this limit it is possible to map the Hubbard model into a quantum antifer-
romagnetic Heisenberg model, for which the staggered magnetization both
in the XY plane and along the z axis represents the order parameter corre-
sponding to the SC and CDW order respectively. Because of our interest on
long wave length physics where quantum effects can be taken into account
as renormalization of the parameters, we can study the Heisenberg model
considering classical spin variables and performing the transformation from
antiferromagnetic to ferromagnetic Heisenberg model.

The competition between SC and CDW is a fundamental ingredient of
our model, thus in chapter (4) we investigated their interplay into a sim-
ple one-dimensional geometry excluding the effect of the disorder, focusing
our attention to intrisic features deriving from this competition. Taking
a Josephson junction SS′S, where S and S′ are HTS with T ′

c < Tc, and
putting ourselves into a temperature region T ′

c < T < Tc, we studied if and
how the superconducting order outside the CDW barrier S′ could propagate
through the barrier itself. Another assumption was that we had strong su-
perconductors outside the barrier, this means that the CDW order could not
penetrate into the SC. Studying our model in the continous limit, we found
that a characteristic length ξg ∼

√
J/G exists; it represents the length over

which our order parameter passes from the SC state to the CDW state. By
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the analytical and numerical solution of the problem we were able to build
a phase diagram as function of the ratio d/ξg between the length d of the
barrier and the characteristic length ξg, and of the superconducting phase
difference ∆Φ applied at the ends of the barrier. This phase difference ∆Φ
is directly related to the current that passes across the barrier. We found
that in our phase diagram there was a transition line separating a perfect
SC region from a MIXED region where our order parameter had an out of
plane component. At zero ∆Φ the pure SC region could be observed for
barrier small with respect ξg, in other words the order parameter had not
enough space to acquire a CDW component. Increasing ∆Φ the energy cost
of the SC solution over the entire barrier was higher than the MIXED energy
solution, allowing the stabilization of the MIXED solution itself. Another
important result of this study in one dimension was the behaviour of the
current I through the barrier as a function of the phase difference ∆Φ, that
showed a non-analytical behaviour that could be tested experimentally (the
standard Josephson like behaviour (I ∼ sin ∆Φ) was recovered only for high
values of the ratio d/ξg). Finally we have to underline that keeping in mind
the results obtained with this study, it is possible to give a possible expla-
nation of the GPE. Indeed, even if in a Josephson junction experiment the
barrier is a HTS parent compound with a short coherence length ξ, we can
observe an anomalous proximity effect driven not by the short supercon-
ducting coherence length ξ, but by the length scale ξg, whose value could be
much bigger than ξ.

After that in chapter (5) we analyzed numerically our anisotropic ran-
dom field Heisenberg model on a two dimensional square lattice. First of
all we have to stress that the results are size indipendent as showed by the
finite size analysis into the appendix (C), thus we concentrated ourselves on
a fixed size (100× 100). Because we were interested in stable configurations
(local minima of our Hamiltonian) we found those numerically through con-
jugate gardient methods, that physically correspond to sudden experimental
quenches from high temperature to low temperature. An important target
of our research was to see if in systems where there was competition between
CDW and SC, we were able to see glassy-like CDW configurations and if
a superconducting order could be found not only locally but also globally
on the entire sample. We have to remember that our order parameter de-
scribes the SC when it stays in the XY plane, while it is associated to the
CDW when it points along the positive or negative z−axes (the two pos-
sible directions representing the two possible variants of the CDW in our
model). So a natural way to obtain an information about the SC order in
our system was to measure the in-plane magnetization mxy. But we have
to stress that this variable was not able to give us informations about the
overall superconductivity in the sample, because it measured only local SC
contributions, masking the possible global SC. For this reason we checked
for the overall SC by using the stiffness Υ, also called Helicity modulus.
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If into the system there was not disorder (W = 0) the ground state
was a simple ferromagnet along the z−axis for every G > 0 (with a double
degeneracy, corresponding to all spins pointing either along the positive or
the negative z−axis), and a ferromagnet into the XY plane for every G < 0
(with an infinite degeneracy, corresponding to all spins pointing along one
of the infinite direction into the XY plane). But due to the presence of
quenched random fields, the system broke itself into ferromagnetic domains
(along the z−axis), and among them there were Ising-like or Heisenberg-like
domain walls. For a fixed value of the disorder intensity we were able to
see that the interface (the SC state) between two different domains (two
different CDW) became thicker decreasing the value of the anisotropy G.
This behaviour is connected to the results of the chapter (4), indeed as we
have seen there the length scale over which the spin goes from the XY plane
to the z−axis (i.e. from the SC to the CDW) is related to the anisotropy
parameter G in an inverse proportional way (i.e. ξg ∼

√
J/G), so increasing

G we obtain more small interfaces and arriving to a thickness of the order of
the lattice spacing we pass from an Heisenberg like to an Ising like interface.
While increasing the disorder intensity W it was possible to obtain much
more smaller domains, because the Binder scale LBinder (related to the size
of the domains by LBinder ∼ exp(J/W )2) decreased. Situations for which
the interfaces between different CDW domains were Ising like don’t allow
neither magnetization in the XY plane, nor global stiffness; but clearly
if we had Heisenberg like interfaces, this didn’t guarantee to observe an
overall stiffness in the sample, indeed could be possible to have disconnected
Heisenberg interfaces that gives a finite contribute for theXY magnetization
but a zero contribute for the stiffness.

We studied in a detailed way the behaviour of the magnetization mxy and
of the stiffness Υ as a function both of the anisotropy G and of the disorder
intensity W . Their observed behaviour was qualitatively similar. For G < 0
we observed a reduction of |mxy| and Υ, corresponding simply to destroying
the superconductivity by disorder, but for G > 0 the disorder favours the
establishment of the SC and for a fixed value of the anisotropy there was
an optimum disorder intensity for which the in-plane magnetization and the
stiffness were maximum. In order to clarify if the superconductivity was
local or global we built a “phase diagram” into the G −W plane, where
we divided the plane into three regions: one had a global superconducting
order, another one had only a local superconducting order, while the last
region had not any kind of superconducting order, and had a glassy CDW.

Thus we can conclude saying that in strong coupling a CDW can become
globally superconducting by introducing disorder, and there is an optimum
value of the disorder intensity to enhance superconductivity. Also there is a
region with short range superconducting correlations but not global stiffness
resembling the pseudogap phase of underdoped cuprates.



Conclusions 117

Figure 5.16: “Phase diagram” for our model.

Figure 5.17: Phase diagram of La2xSrxCuO4 showing contour lines of the
vortex Nernst signal observed above Tc0.
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If we compare the phase diagram of our model with that one obtained for
example by Ong in his Nerst experiment, we can find a strict correspondence
between them. Indeed in both cases by putting disorder into the system, we
can observe superconductivity; moreover, if we follow the red line drawn on
Fig. (5.17) and (5.16), we pass from a completely superconducting region,
to a region with only local superconductivity, and finally to an insulator
region.

We can also point out that the diamagnetic activity observed experimen-
tally in the pseudogap phase of many HTS materials (see for example Fig:
(1.16)) could be explained in our context if we think that along the “soft”
interface of a CDW domain a superconducting current flows, expelling the
magnetic field and generating a diamagnetic domain. However, this conjec-
ture must be verified more deeply for our model studying it in the presence
of a magnetic field.



Appendix A
Some Results about Hubbard

Model

Here we shall give a little review of the basic results regarding the Hub-
bard model because of its importance in condensed matter physics. Indeed,
this model and its many variants are widely used nowadays to investigate
theoretically a lot of different features that can be observed in strongly cor-
related systems, particularly those concerning HTS. We shall give only a
limited view of the results regarding the Hubbard model, just to give an
idea of the main features that characterize the field we are working on.

Some physical quantities

We shall define some basic conserved quantities. The total-number operator
N̂e

N̂e =
∑

i∈Λ

(ni,↑ + ni,↓) (A.1)

where Λ indicate the lattice (while with |Λ| we indicate the number of its
sites), commutes with the Hamiltonian H. Since each lattice site can have
at most two electrons, we have 0 6 Ne 6 2|Λ|, where Ne is the eigenvalue
of the number operator N̂e, that tell us the total number of electrons that
are in our lattice.
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The spin operator Ŝα
i ≡ (Ŝx

i , Ŝ
y
i , Ŝ

z
i ) at site i is defined by

Ŝα
i =

1

2

∑

σ,τ=↑,↓

c†i,σ(pα)στ ci,σ (A.2)

for α = x, y, z where pα are the Pauli matrices. The operators for the total
spin of the system are defined as:

Ŝα =
∑

i

Ŝα
i (A.3)

The operators Ŝα commute with the Hamiltonian, hence the latter is invari-
ant under any global rotation in the spin space. On the other hand, as the
operators Ŝα do not commute with each other, we follow the standard con-
vention in the theory of angular momenta, and simultaneously diagonalize,
together with the Hamiltonian, the total-spin operator Ŝ2,

Ŝ2 =
∑

α=x,y,z

(Ŝα)2 (A.4)

and the z−component Sz. We denote by Sz and S(S + 1) the eigenvalues
of Ŝz and Ŝ2, respectively. For a given electron number Ne, we let:

Smax =






Ne/2 when 0 6 Ne 6 |Λ|

|Λ| −Ne/2 when |Λ| 6 Ne 6 2|Λ|
(A.5)

Then S can be S = 0, 1, · · · , Smax (or S = 1/2, 3/2, · · · , Smax).

The Lieb-Mattis theorem

The Lieb-Mattis theorem [112] states that if we have an Hubbard model on
a one dimensional lattice with open boundary conditions, and we assume
that the hopping matrix elements satisfy |tii| < ∞, |tij| < ∞ for 〈i, j〉, and
tij = 0 otherwise, and also U < ∞ for any site, then the eigenvalues of the
energy E(S) for a fixed value of the spin satisfy the following inequality:

E(S) < E(S + 1) (A.6)

for any S = 0, 1, · · · , Smax − 1 or (S = 1/2, 3/2, · · · , Smax − 1). This means
that the one-dimensional Hubbard model as described above has the total
spin S = 0 in its ground state. It is clear that from this fact one can-
not conclude the system to be paramagnetic, but only say that there is no
ferromagnetism.

However, there are other rigorous results which show the absence of
order in low-dimensional Hubbard models, among which we mention the
extensions, by Ghosh [113] and Uhrig [114], of the well known theorem of
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Mermin and Wagner. Ghosh proved that the Hubbard model in one or
two dimensions does not exhibit symmetry breaking related to magnetic
long-range order at any finite temperature. Uhrig similarly ruled out the
possibility of a general planar magnetic ordering.

The Lieb’s theorem

Before describing the Lieb’s theorem, let us first introduce the notion of
bipartiteness. Consider a Hubbard model on a lattice Λ with hopping matrix
elements tij. The system is said to be bipartite if the lattice Λ can be
decomposed into a disjoint union of two sublattices, Λ = A∪B (with A∩B =
⊘), where tij = 0 holds whenever i, j ∈ A or i, j ∈ B. In other words, only
hoppings between different sublattices are allowed.

Then Liebs theorem [115] for the repulsive Hubbard model is as follows.
Consider a bipartite half-filled Hubbard model. We assume that |Λ| is even,
and that the whole of Λ is connected through non-vanishing tij. We also
assume that U > 0 for any site. Then the ground states of the model are
non-degenerate (apart from the trivial spin degeneracy), and have total spin
S = ||A| − |B||/2.

The total spin S of the ground state determined in the theorem is ex-
actly the same as that of the ground state of a corresponding Heisenberg
antiferromagnet on the same lattice. It should be noted, however, that the
knowledge of the total spin of the ground states in a finite volume does not
necessarily allow one to determine the properties of the ground states in
the corresponding infinite system. Despite the strong similarity between the
half-filled Hubbard model and the Heisenberg antiferromagnet (expecially
in the strong coupling limit as we’ll see in the next section), there isn’t any
rigorous demonstration of the equivalence of the two models yet.

A very important corollary of Lieb’s theorem is that half-filled Hubbard
models on asymmetric bipartite lattices universally exhibit a kind of fer-
romagnetism, or more precisely, ferrimagnetism. Not all the spins in the
system completely align with each other; spins on neighbouring sites have
a tendency to point in opposite directions, but the big difference between
the number of sites in the two sublattices cause the system to possess a
bulk magnetic moment. Such a magnetic ordering is usually called ferri-
magnetism.

Nagaoka’s ferromagnetism

At this point a good question could be if it does exist the possibility to
observe the ferromagnetism in an Hubbard model. Up to now only few
situations are known to have ferromagnetism, and one of them was demon-
strated by Nagaoka [116], and it is also called Nagaoka’s ferromagnetism.

The Nagaoka’s theorem states that if we take an arbitrary finite lattice



122 Some Results about Hubbard Model

Λ, and assume that U → ∞ for every site, and we fix the electron number
as Ne = |Λ| − 1, then among the ground states of the model, there exist
states with total spin S = Smax = Ne/2. The requirements that U should
be infinitely large and that there should be exactly one hole are admittedly
rather pathological. Nevertheless, the theorem is very important since it
showed for the first time in a rigorous manner that quantum mechanical
motion of electrons and strong Coulomb repulsion can generate ferromag-
netism. The conclusion that the system which has one less electron than
the half-filled model exhibits ferromagnetism is indeed surprising. This is
a very nice example which demonstrates that strongly interacting electron
systems produce very rich physics.

Hubbard to Heisenberg mapping

As we said in the chapter (3) the repulsive Hubbard model (U > 0) can
be transformed in the strong coupling limit (U ≫ tij) into an effective spin
Heisenberg model with antiferromagnetic coupling. Here we will describe in
more detail the calculations performed in order to obtain this result as also
showed in [103].

We remember that the starting idea is to divide the Hamiltonian into two
pieces, one (H0) associated to the intra-band dynamics, and the other one
(H1) associated to the inter-band dynamics; then performing a canonical
transformation it is possible to obtain as a perturbation in H1 the effective
Heisenberg Hamiltonian. The decomposition of the starting Hamiltonian
will be:

H = H0 + ǫH1 (A.7)

Now we have to find an operator S for which the following canonical trans-
formation:

H̃ = e−iǫSHeiǫS (A.8)

does not have linear ǫ-terms, so expanding the exponential factors and using
the following notation:

[[A,B]]n = [[· · · [[A,B]] · · · ], B], B] (A.9)

with n commutators in the r.h.s., the transformed Hamiltonian can be writ-
ten as:

H̃ = H0 + ǫ(H1 + i[H0,S]) +

∞∑

n=2

(−iǫ)n
n

(in[[H1,S]]n−1 − [[H0,S]]n) (A.10)

In order to eliminate linear ǫ dependence we need to put:

H1 + i[H0,S] = 0 (A.11)
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so the transformed Hamiltonian up to 2nd order in ǫ, becomes:

H̃ = H0 +
i

2
[H1,S] (A.12)

At this point it is really useful to introduce the projector operators P1 and
P2 respectively for the subspace with no double occupied states and for the
subspace with empty or single occupied states. But first of all we introduce
the m electron projector p(i,m) on the site i (obviously m can take only the
values {0, 1, 2}), and for two single sites1 the complete Fock space is given
by P1 ∪ P2:

P1 =






|0 , 0〉
|0 , ↑〉 |0 , ↓〉 | ↑ , 0〉 | ↓ , 0〉
| ↑ , ↑〉 | ↑ , ↓〉 | ↓ , ↑〉 | ↓ , ↓〉

(A.13)

P2 =

{
| ↑↓ , 0〉 |0 , ↑↓〉 | ↑↓ , ↑↓〉
| ↑↓ , ↑〉 | ↑↓ , ↓〉 | ↑ , ↑↓〉 | ↓ , ↑↓〉 (A.14)

So we can now define the projectors P1 and P2 for the Fock subspaces P1

and P2 using the single site projectors p(i,m):

P1 = p(1, 0)p(2, 0) +
∑

i6=j

p(i, 1)p(j, 0) + p(1, 1)p(2, 1) (A.15)

P2 = p(1, 2)p(2, 2) +
∑

i6=j

p(i, 2)[p(j, 0) + p(j, 1)] (A.16)

Now we can calculate the expressions PµHPν . Using the relation
p(i,m)p(i, n) = p(i,m)δm,n and a lot of algebra we arrive to:

P1HP1 = t
∑

i6=j,σ

(1 − niσ)c†iσcjσ(1 − njσ) (A.17)

P1HP2 = t
∑

i6=j,σ

(1 − niσ)c†iσcjσnjσ (A.18)

P2HP1 = t
∑

i6=j,σ

niσc
†
iσcjσ(1 − njσ) (A.19)

P2HP2 = t
∑

i6=j,σ

niσc
†
iσcjσnjσ + U

∑

i

ni↑ni↓ (A.20)

1Hereafter we will use a two sites Hamiltonian because we can observe that the full
Hamiltonian can be written as a sum of two sites Hamiltonians, where the two sites of
these Hamiltonians are obviously nearest neighbour. Only at the end we will write the
result for the full lattice.
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where P1HP1 and P2HP2 represent the intra-band dynamics, while P1HP2

and P2HP1 bescribe the inter-band dynamics. So we can identify:

H0 = P1HP1 + P2HP2 (A.21)

H1 = P1HP2 + P2HP1 (A.22)

but in order to write down the expression of the effective Hamiltonian we
need to know the operator S acts, so we apply the projectors P1 and P2 to
the equality H1 + i[H0,S] = 0, obtaining:

PµHPν(1 − δµν) + iPµHPµPµSPν − iPµSPνPνHPν = 0 (A.23)

There are two possibilities:

1. µ = ν

PµHPµ(PµSPµ) = (PµSPµ)PµHPµ

PµSPµ = γPµ con γ ∈ R (A.24)

2. µ 6= ν

iPµHPν = PµHPµ(PµSPν) − (PµSPν)PνHPν

approximating PµHPµ and PνHPν with their expectation values Hµµ

and Hνν we obtain:

iPµHPν = (Hµµ −Hνν)PµSPν

but Hµµ − Hνν = ±U (thisi is the energy that divide the two sub-
spaces), so:

P1SP2 = − i

U
P1HP2 (A.25)

P2SP1 =
i

U
P2HP1 (A.26)

Then the effective Hamiltonian is:

H̃ = H0 +
i

2
[H1,S] =

= H0 +
i

2
H1S − i

2
SH1 =

= H0 +
i

2
(P1HP2 + P2HP1)S − i

2
S(P1HP2 + P2HP1)

or:

H̃ = P1HP1 + P2HP2 −
1

U
[P1HP2HP1 − P2HP1HP2] (A.27)
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At this point we have:

P1HP2HP1 = P1HP2P2HP1 =

= t2
∑

i6=j,σ

∑

l 6=m,σ′

(1 − niσ)c†iσcjσnjσnlσ′c
†
lσ′cmσ′(1 − nmσ′)

(A.28)

P2HP1HP2 = P2HP1P1HP2 =

= t2
∑

i6=j,σ

∑

l 6=m,σ′

niσc
†
iσcjσ(1 − njσ)(1 − nlσ′)c

†
lσ′cmσ′nmσ′

(A.29)

Now we have to consider every possibility, so for the two-sites interaction:
either δi,lδj,mδσ,σ′ or δi,mδj,lδσ,σ′ or δi,lδj,mδσ,σ′ or δi,mδj.lδσσ′ , while for the
three-sites interaction: either δj.lδσ,σ′ or δj,lδσ,σ′ .

Case δi,lδj,mδσ,σ′

P1HP2HP1 = t2
∑

i6=j,σ

(1−niσ)c†iσcjσnjσniσc
†
iσcjσ(1−njσ) = 0 (A.30)

P2HP1HP2 = t2
∑

i6=j,σ

niσc
†
iσcjσ(1−njσ)(1−niσ)c†iσcjσnjσ = 0 (A.31)

Case δi,lδj,mδσ,σ′

P1HP2HP1 = t2
∑

i6=j,σ

(1−niσ)c†iσcjσnjσniσc
†
iσcjσ(1−njσ) = 0 (A.32)

P2HP1HP2 = t2
∑

i6=j,σ

niσc
†
iσcjσ(1 − njσ)(1 − niσ)c†iσcjσnjσ =

= −t2
∑

i6=j,σ

niσc
†
iσc

†
iσ(1 − njσ)(1 − niσ)cjσcjσnjσ =

= −t2
∑

i6=j,σ

c†iσc
†
iσ(1 − njσ)(1 − niσ)cjσcjσ =

= −t2
∑

i6=j,σ

c†iσc
†
iσcjσcjσ = −2t2

∑

i6=j

c†i↑c
†
i↓cj↑cj↓

(A.33)
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Case δi,mδj,lδσ,σ′

P1HP2HP1 = t2
∑

i6=j,σ

(1 − niσ)c†iσcjσnjσnjσc
†
jσciσ(1 − niσ) =

= t2
∑

i6=j,σ

niσ(1 − niσ)njσ(1 − njσ)

(A.34)

P2HP1HP2 = t2
∑

i6=j,σ

niσc
†
iσcjσ(1 − njσ)(1 − njσ)c†jσciσniσ =

= t2
∑

i6=j,σ

niσniσ(1 − njσ)(1 − njσ)

(A.35)

Case δi,mδj,lδσ,σ′

P1HP2HP1 = t2
∑

i6=j,σ

(1 − niσ)c†iσcjσnjσnjσc
†
jσciσ(1 − niσ) =

= −t2
∑

i6=j,σ

(1 − niσ)c†iσcjσc
†
jσciσ(1 − niσ) =

= −t2
∑

i6=j,σ

c†iσcjσc
†
jσciσ =

= −t2
∑

i6=j

(
c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓

)
=

= −t2
∑

i6=j

(
S+

i S
−
j + S−

i S
+
j

)
(A.36)

where S+ and S− are the rising and lowering spin operators.

P2HP1HP2 = t2
∑

i6=j,σ

niσc
†
iσcjσ(1−njσ)(1−njσ)c†jσciσniσ = 0 (A.37)

Now we can consider the three-sites terms (We underline also that the
situations δjmδσσ′ , δjmδσσ′ , δilδσσ′ , δilδσσ′ are all equal to zero as can be
checked easily, while the situations δimδσσ′ and δimδσσ′ are equal to the
following if we rename the indeces).

Case δjlδσσ′

P1HP2HP1 = t2
∑

〈ijm〉σ

(1 − niσ)c†iσcjσnjσc
†
jσcmσ(1 − nmσ) (A.38)

P2HP1HP2 = t2
∑

〈ijm〉σ

niσc
†
iσcjσ(1 − njσ)c†jσcmσnmσ (A.39)
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Case δjlδσσ′

P1HP2HP1 = t2
∑

〈ijm〉σ

(1 − niσ)c†iσcjσc
†
jσcmσ(1 − nmσ) (A.40)

P2HP1HP2 = 0 (A.41)

Before writing down the final effective Hamiltonian, we can point out
that if our system is defined onto a bipartite lattice, and we can assume this,
there exist the particle-hole symmetry and then it is possible to describe the
system only for electron density up to half-filling. This condition enables to
trash these kind of terms P2 · · ·P2. So:

H̃ = t
∑

〈ij〉,σ

(1 − niσ)c†iσcjσ(1 − njσ) +

− t
2

U

∑

〈ij〉,σ

niσ(1 − niσ)njσ(1 − njσ) +

+
t2

U

∑

〈ij〉

(
S+

i S
−
j + S−

i S
+
j

)
+

− t
2

U

∑

〈ijm〉σ

(1 − niσ)c†iσcjσnjσc
†
jσcmσ(1 − nmσ) +

− t
2

U

∑

〈ijm〉σ

(1 − niσ)c†iσcjσc
†
jσcmσ(1 − nmσ) (A.42)

Introducing the following operators:





ĉ†iσ = c†iσ(1 − niσ)
ĉiσ = ciσ(1 − niσ)

n̂iσ = ĉ†iσ ĉiσ

(A.43)

it is possible to write the following effective Hamiltonian:

H̃ = t
∑

〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c

)
+

4t2

U

∑

〈ij〉

(
~Si · ~Sj −

n̂in̂j

4

)
+

− t
2

U

∑

〈ijm〉σ

(
ĉ†iσn̂jσĉmσ − ĉ†iσ ĉ

†
jσ ĉjσĉiσ + h.c.

)
(A.44)

If this effective Hamiltonian is studied for the special half-filling (ni↑ +
ni↓ = 1) case, it reduces to a quantum antiferromagnet Heisenberg model:

H̃ = J
∑

〈ij〉

(
~Si · ~Sj −

1

4

)
(A.45)

where J = 4t2/U .





Appendix B
GPE in Competing CDW-SC

Systems

In this appendix we show more explicitly the calculations performed in the
chapter (4) regarding the MIXED solutions, because the others solutions
(the MIXED/CDW and the SC) are trivial to solve.

Willing to solve the differential equation

ξ2g
d2θ

dx2
+ ξ2gI

2 sin θ

cos3 θ
+

1

2
sin(2θ) = 0 (B.1)

with rigid superconducting boundary conditions, we can simply integrate
one time obtaining:

ξ2g
2

(dθ
dx

)2
+
ξ2gI

2

2

1

cos2 θ
+

1

2
sin2 θ +C = 0 (B.2)

The integration constant C could be expressed as a function of the max-
imum (or minimum) θ0, which will be taken, thank to the symmetry of the
problem, for x = 0:

C = −
ξ2gI

2

2

1

cos2 θ0
− 1

2
sin2 θ0 (B.3)
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Now we can write our differential equation as:

ξ2g

(dθ
dx

)2
+ ξ2gI

2 1

cos2 θ
+ sin2 θ − ξ2gI

2 1

cos2 θ0
− sin2 θ0 = 0 (B.4)

and integrating by variables’ separation the above equation, we have:

∫ x

−d/2

dx

ξg
=

∫ |θ(x)|

0

dθ√
sin2 θ0 − sin2 θ + ξ2gI

2 1
cos2 θ0

− ξ2gI
2 1

cos2 θ

(B.5)

We use |θ(x)| to ensure r.h.s. to be positive because of the l.h.s. is obviously
not negative. So we have:

2x+ d

2ξg
=

∫ |θ(x)|

0

dθ√
sin2 θ0 − sin2 θ + ξ2gI

2 1
cos2 θ0

− ξ2gI
2 1

cos2 θ

(B.6)

We can simplify the above integral in the following way:

∫ |θ(x)|

0

dθ√
sin2 θ0 − sin2 θ + ξ2gI

2 1
cos2 θ0

− ξ2gI
2 1

cos2 θ

=

=

∫ |θ(x)|

0

dθ√
sin2 θ0 − sin2 θ + ω2 1

cos2 θ0
− ω2 1

cos2 θ

=

=

∫ |θ(x)|

0

cos θ cos θ0dθ√
(sin2 θ0 − sin2 θ)(cos2 θ cos2 θ0 + ω2)

=

=

∫ | sin θ(x)|

0

cos θ0dt√
(sin2 θ0 − t2)(ω2 + cos2 θ0 − cos2 θ0t2)

=

=

∫ | sin θ(x)|

0

dt√
(sin2 θ0 − t2)(ω2+cos2 θ0

cos2 θ0
− t2)

(B.7)

we can observe that we put sin |θ(x)| = | sin θ(x)|, and it is true for the
range of variability of θ; we also introduce the adimensional parameter ω,
that represents the current I rescaled by the length scale ξg, so from here in
we will refer to it as current too:

ω = ξgI . (B.8)

If now we put:

p2 =
cos2 θ0 + ω2

cos2 θ0
(B.9)

q2 = sin2 θ0 (B.10)
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our integral can be written as:

∫ | sin θ(x)|

0

dt√
(p2 − t2)(q2 − t2)

(B.11)

After a change of variable and keeping in mind the expression of the elliptic
integral of first kind:

F (ϕ; k2) =

∫ y

0

dt√
(1 − t2)(1 − k2t2)

=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

(B.12)

we can write down:

∫ | sin θ(x)|

0

dt√
(p2 − t2)(q2 − t2)

=
1

p
F (ϕ; k2) (B.13)

where we have:

sinϕ =
∣∣∣
sin θ(x)

sin θ0

∣∣∣ (B.14)

k2 =
q2

p2
=

cos2 θ0 sin2 θ0
cos2 θ0 + ω2

(B.15)

So we can write now an implicit expression for the solution θ(x) of our
problem:

2x+ d

2ξg
=

cos θ0√
cos2 θ0 + ω2

F (ϕ; k2) (B.16)

Now we have to find a similar relation for the other component φ(x) of
our order parameter. Starting from the conservation law:

I = cos2 θ
dφ

dx
(B.17)

we can integrate by variables’ separation, obtaining:

∫ φ(x)

0
dφ = I

∫ x

−d/2

dx

cos2 θ(x)
(B.18)

and then:

φ(x) = I

∫ θ(x)

0

(dθ
dx

)−1 dθ

cos2 θ
(B.19)

Using the differential equation that define θ(x) we obtain:

φ(x) = ω

∫ |θ(x)|

0

dθ

cos2 θ
√

sin2 θ0 − sin2 θ + ω2 1
cos2 θ0

− ω2 1
cos2 θ

(B.20)
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We can simplify this integral using again an elliptic integral; specifically:

∫ |θ(x)|

0

dθ

cos2 θ
√

sin2 θ0 − sin2 θ + ω2 1
cos2 θ0

− ω2 1
cos2 θ

=

=

∫ |θ(x)|

0

cos θ cos θ0dθ

cos2 θ
√

(sin2 θ0 − sin2 θ)(cos2 θ cos2 θ0 + ω2)
=

=

∫ | sin θ(x)|

0

cos θ0dt

(1 − t2)
√

(p2 − t2)(q2 − t2)
(B.21)

and now with the help of the elliptic integral of third kind,

Π(ϕ;α, k2) =

∫ y

0

dt

(1 − α2t2)
√

(1 − t2)(1 − k2t2)
=

=

∫ ϕ

0

dθ

(1 − α sin2 θ)
√

1 − k2 sin2 θ
(B.22)

we can write:

φ(x) = ω
cos θ0√

ω2 + cos2 θ0
Π(ϕ; sin2 θ0, k

2) (B.23)

We summarize the above results:

2x+ d

2ξg
=

cos θ0√
cos2 θ0 + ω2

F (ϕ; k2) (B.24)

φ(x) = ω
cos θ0√

ω2 + cos2 θ0
Π(ϕ; sin2 θ0, k

2) (B.25)

sinϕ =
∣∣∣
sin θ(x)

sin θ0

∣∣∣ (B.26)

k2 =
cos2 θ0 sin2 θ0
cos2 θ0 + ω2

(B.27)

ω = Iξg (B.28)

ξ2g =
ρ

2g
(B.29)

At this point we have two equations that implicitally define our order
parameter, but we have to observe that these solutions are be found with
the underlying assumption for which a θ0 6= 0 exists for x = 0. So it is
necessary to understand when θ0 really exists. In order to achieve this we
can solve a self-consinstent equation for θ0, indeed taking the equation that
define θ(x) and imposing x = 0 we have a new equation that implicitally
defines θ0:

d

2ξg
=

cos θ0√
cos2 θ0 + ω2

K(k2) . (B.30)

K(k2) = F (π/2, k2) represents the complete elliptic integral of first kind.



Appendix C
CDW vs SC: size analysis

Interface thickness in two dimensions

Here we will show the analytical solution of the problem of the interface
thickness between two different CDW in two dimensions.

First of all we have to write the rigth expression of the functional to be
minimized:

F [θ, φ] =

∫
dxdy

{ρ
2

[(dθ
dx

)2
+

(dθ
dy

)2
+ cos2 θ

(dφ
dx

)2
+

+ cos2 θ
(dφ
dy

)2]
− g sin2 θ

}
. (C.1)

thus the Eulero-Lagrange equations are:






∂
∂x

(
∂F
∂θx

)
+ ∂

∂y

(
∂F
∂θy

)
= ∂F

∂θ

∂
∂x

(
∂F
∂φx

)
+ ∂

∂y

(
∂F
∂φy

)
= ∂F

∂φ

(C.2)

that give us:






ρ ∂2θ
∂x2 + ρ∂2θ

∂y2 + ρ sin θ cos θ
[(

∂φ
∂x

)2
+

(
∂φ
∂y

)2]
+ 2g sin θ cos θ = 0

∂
∂x

[
ρ cos2 θ ∂φ

∂x

]
+ ∂

∂y

[
ρ cos2 θ ∂φ

∂y

]
= 0

(C.3)
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If we define the Noether current vector ~I ≡ (Ix, Iy):






Ix = cos2 θ ∂φ
∂x

Iy = cos2 θ ∂φ
∂y

(C.4)

we can rewrite the Eulero-Lagrange equations as:






ξ2g △ θ + ξ2gI
2
x

sin θ
cos3 θ

+ ξ2gI
2
y

sin θ
cos3 θ

+ sin θ cos θ = 0

~▽ · ~I = 0

(C.5)

Now we have to specify the geometry and the boundary conditions for
our problem. We take a square domain d×d with axes origin coicident with
the centre of the square. The boundary conditions are taken as following:






θ(−d/2, y) = −π/2
θ(+d/2, y) = +π/2
φ(x,−d/2) = 0
φ(x,+d/2) = ∆Φ

(C.6)

and they imply that Ix(−d/2, y) = Ix(+d/2, y) = Iy(−d/2, y) = Iy(+d/2, y) =

0. Moreover, using the equation ~▽ · ~I = 0 we can write:

∫ d/2

−d/2

~▽ · ~Idx = 0 (C.7)

∂

∂y

∫ d/2

−d/2
Iydx = −

∫ d/2

−d/2

∂

∂x
Ixdx =

[
Ix

]d/2

−d/2
≡ 0 (C.8)

Thus the “charge” related to the current Iy is conserved:

Qy =

∫ d/2

−d/2
Iydx ≡ constant (C.9)

and this means that the current Iy ≡ Iy(x) is a function only of the x
variable. At the same way we have that Ix ≡ Ix(y) is a function only of the
y variable, but we know by the boundary conditions that Ix(−d/2, y) = 0,
so Ix ≡ 0 ∀x, y.

Using the expression Iy = cos2 θ(∂φ/∂y), and keeping in mind that Iy ≡
Iy(x), we will have necessarily:






θ(x, y) ≡ θ(x)

φ(x, y) ≡ f(x) + g(x)y
(C.10)
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This shows that there is translational invariance along the y direction for
the angle θ. But we know also that the current Ix = cos2 θ(∂φ/∂x) ≡ 0, and
also that Ix ≡ Ix(y), thus θ ≡ θ(x) and (∂φ/∂x) ≡ 0, i.e.:

φ(x, y) ≡ φ(y) = A+By (C.11)

where A and B are two real numbers. We have obtained translational in-
variance along the x direction for the angle φ, while its variation along the
y direction is linear. The constants A and B can be easily obtained by the
boundary conditions, so at the end we have:

φ(x, y) ≡ φ(y) =
∆Φ

2
+

∆Φ

d
y (C.12)

Using these results the differential equation that defines the angle θ is
simplyfied into:

ξ2g
∂2θ

∂x2
+ (ξ2gB

2 + 1) sin θ cos θ = 0 (C.13)

We have obtained the same equation solved for the one-dimensional case
with the difference that the caracteristic length ξg has to take into account
of the boundary phase difference ∆φ:

θ(x) = 2 arctan ex/ξ′g − π

2
(C.14)

ξ′g =
ξg√

1 +B2ξ2g

=
ξg√

1 + (∆Φ
d )2ξ2g

(C.15)

Finite size effects

Another important point to be discussed is the size dependence of the phys-
ical observables; we would not want that our results are strongly influenced
by the size of our system. Now we shall display the behaviour of the square
magnetization in the XY plane and stiffness as a function of the lattice size.
We find that for large enough lattice the size effects are negligible, in fact
all our results refer to a 100 × 100 square lattice for which the size is not
important.

In all plots it is possible to see that for every measured variable the
lattice size is important only for small samples, and even if this behaviour
is showed only for one value of the disorder intensity, it is valid in general.
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