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Introduction

In [DC-P], De Concini and Procesi defined, for any connected semisimple
adjoint algebraic group GG, a smooth projective variety X endowed with a
G x G-action, containing GG as a dense open subset, the complement of which
being a normal crossings divisor. Together with these compactifications, they
defined and studied more generally compactifications of symmetric varieties
G/H. The interest in this class of varieties came originally from the prob-
lem of giving rigourous foundation to Schubert calculus. Recently however,
the compactifications X have found applications of other types; for example
they are an ingredient in Lafforgue’s proof of Langlands’ correspondence over
function fields of positive characteristic. Yet another link is with Lusztig’s
theory of character sheaves. In [L|, Lusztig defines a generalization of the
notion of character sheaf and is lead to study the geometry of G-orbits in

the compactification X of G.
Unlike the case of the G x G-orbits, the geometry of G-orbits of X is

not at all well understood, even for low rank groups. The object of this
thesis is the study of G-orbits inside group compactifications and the study
of the relations of closure between such orbits. We consider De Concini-
Procesi compactifications and canonical projections of such varieties. The
main question we address is whether, for a given compactification, the clo-
sure of any G-orbit is a finite union of G-orbits. In the open part of any
compactification this property holds (it is a consequence of the finiteness of

the number of unipotent conjugacy classes in a reductive group, see [Spal).
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The question is, does such property continue to hold at the boundary? For
De Concini-Procesi compactifications this was conjecturally believed to be

the case.

We will check that it holds in the simplest example of a variety which
is a projection of a De Concini-Procesi compactification, namely the case of
X = P(EndV) and G = PGL(V), for V a vector space. This extremely
simplified version of the problem may be approached by techniques from

linear algebra and basic algebraic geometry.

For G = PGL(2), the De Concini-Procesi compactification is the pro-
jectivization of the space of two-by-two matrices, so it falls under this first
typology. But already for G = PGL(3), one has to develop new techniques

to give a classification of G-orbits.

There are two different possible ways to tackle such problem. One may
use the geometric interpretation of G x G-orbits in the De Concini-Procesi
compactification and undertake a geometric classification of these objects.
This has the advantage of being geometric, hence might be the appropri-
ate setting to study the question of the closure of G-orbits. The drawback
is that, such geometric classification may be very hard for general G. The
second appoach available is due to Lusztig. It is algebraic in nature, one
completely loses track of the geometry in this approach. But it has the
advantage of giving a classification in terms of basic classifying data, more-
over representatives and dimensions of orbits are easily determined through
an inductive procedure. Unfortunately, it says very little on the closures of

G-orbits. Nonetheless, this is the approach we choose to follow.

This forces us to develop adequate techniques for the study of the closures
of G-orbits. A first general technique consists in a modification of Lusztig’s
procedure for the classification of G-orbits in X. But, losing the possibility of
being iterated, it gives little more information than the normal method. For
the smaller orbits one may argue by explicit degenerations and the modifica-

tion of Lusztig’s algorithm to obtain orbits in the closure, and by dimension
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arguments and geometric considerations to rule out orbits from the closure.

For regular orbits, i.e. those of maximum dimension, the principal method
is the determination of invariants. The conjecture is that the closure of a
regular orbit is the union of all orbits having the same invariants plus the
null-cone, i.e. the union of those orbits on which all invariants vanish. We
do not prove in general the conjecture, but we check its validity in the cases
G = PGL(2), G = PGL(3), G = PSp(4); the method employed works also
for the case G = PGL(4).

For the first three cases we give a complete list of G-orbits in the compact-
ification X together with their closure relations. To determine the closure of
intermediate orbits in the canonical compactification of PSp(4), the modified
algorithm, the computation of invariants and dimension considerations are
usually not sufficient. One must also use considerations from representation

theory.

The determination of the G-orbits in X and their closures for G =
PGL(2), G = PGL(3) and G = PSp(4), allows for various considera-
tions. For one, it disproves the conjecture that for any group G, the De
Concini-Procesi compactification X of G has the property that the closure
of any G-orbit in X is the union of a finite number of G-orbits. In fact it
is not so in the case G = PSp(4), while the conjecture is true in the cases
G = PGL(2) and G = PGL(3). Another interesting consideration is that,
since the classification of G-orbits in X as afforded by Lusztig’s algorithm
clearly depends only on the combinatorics of the Weyl group, one could be
lead to ask whether also the closures of the orbits depend only on the com-
binatorics of the Weyl group. This is the case for PGL(3), but in such case
there is an automorphism exchanging the two boundary divisors, i.e. there
is an automorphism of the root system A, exchanging the two simple roots.
The case of G = PSp(4) shows in fact that the relations of closure between
G-orbits do depend on the geometry of the boundary divisors and not just

on the combinatorics.

iii
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Regarding the case G = G5, we investigate it only as far as to be able
to conclude that its canonical compactification does contain G-orbits which
close to infinitely many G-orbits. We base our analysis on the study of
G-orbits contained in a minimal nonclosed G' X G-orbit. In such case the
modification of Lusztig’s algorithm permits a complete understanding and
reduces the question to combinatorics in the Weyl group. The method of
study of G-orbits in minimal nonclosed G x G-orbits works in general; we
apply it also in the case of G = PGL(4) to deduce that in its canonical

compactification there are G-orbits closing to infinitely many G-orbits.

Having proved that the conjecture about closure of G-orbits in X does
not hold for the cases G = PSp(4), G = G and G = PGL(4), we deduce,
by Dynkin diagram considerations and application of the modified Lusztig
algorithm, that if a connected semisimple adjoint algebraic group G is such
that the closure of any G-orbit in its canonical compactification X is a fi-
nite union of G-orbits, then GG is a product of simple factors each of which
isomorphic either to PGL(2) or PGL(3).

Let us very briefly recall how this material is divided into chapters.

The first chapter deals with G-orbits and closure of G-orbits in the case
G = PGL(V) and the compactification is P(EndV'). The results are easily
stated in terms of partitions and a natural partial order on partitions.

The second chapter develops the techniques to tackle the study of G-orbits
and their closures inside the canonical compactification X of G. Lusztig’s
iterative procedure for the determination of G-orbits is exposed. Various
criteria to study the closure of G-orbits are developed: the modified Lusztig
method, a geometric lemma which is the foundation for considerations based
on invariants, and a basic but useful representation theoretic criterium.

In the third chapter, Lusztig’s algorithm is employed to determine the G-
orbits in X and their dimensions together with representatives, in the cases
G = PGL(2), G = PGL(3) and G = PSp(4); the closure relations between

orbits are determined. The study of minimal nonclosed G' x G-orbits in X,

v
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for G = Gy and G = PGL(4), is expounded. The chapter ends with the
result that the conjecture holds only for products of PGL(2) and PGL(3).

Acknowledgements. This thesis owes a lot to many people. In particular,
I must thank Prof. De Concini for having suggested the problem and for his
advice; Andrea Maffei for his constant help and guidance, and for all he has
taught me; Prof. Silva and Prof. Salvati Manni for their support in these
years; and lastly I thank Mario Marietti, Elisa Rossi and all my friends and
colleagues of Ph.D. in Rome fot their presence, for the many stimulating

discussions and for the moments of recreation.






Chapter 1

Classification and closure of
GL(V)—orbits in P(End(V))

If G is a connected semisimple algebraic group of adjoint type and V,,,

.., Vi, the irreducible representations of G associated to the fundamen-
tal weights wy, ..., w;, then the canonical compactification X of G may be
defined as the closure of G inside P(EndV,, ) x ... x P(EndV,,), (see [DC-P]).
By its very definition, X comes equipped with G' X G-equivariant morphism
to the projective spaces P(EndV,,), ..., P(EndV,,). The images of X in these
projective spaces are also compactifications of GG, in general not smooth. One
may approximate the problem of studying the G-orbits in X with the problem
of studying the G-orbits in the image of X inside one of the above projective
spaces. The simplest such case being G = PGL(V') and the compactification
being the whole P(EndV'), where V' is any vector space. The problem of de-
termining the PG L(V')-orbits and their closures in P(EndV) turns out to be
much simpler than the analogous problem for the canonical compactification
of PGL(V'). The determination of PG L(V)-orbits is reduced to the problem
of GL(V)-orbits in EndV, which is the theory of Jordan normal form of an en-
domorphism. The closure relations between PGL(V)-orbits in P(EndV') are

not all consequences of closure relations between G'L(V')-orbits in P(EndV).

1
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A PGL(V)-orbits in P(EndV') may degenerate to nilpotent PG L(V')-orbits.
To which nilpotent PGL(V)-orbits it may degenerate is well characterized
in terms of a partial order on partitions.

In the course of the discussion, we recall the classification and closure
relations of GL(V') x GL(V')-orbits and of GL(V)-orbits in EndV'; moreover
we establish a link in general between the classification and closure of G-
orbits in a representation V and the classification and closure of G-orbits in

P(V'), for a general connected (reductive) algebraic group G.

1.1 Classification of GL(V)—orbits in P(End(V))

Let V be a vector space of dimension n over C and G = GL(V). Let S be the
graded ring C[End(V)] of polynomials on End(V). On End(V) acts the group
G X G by left and right multiplication.This induces an action of G X G on S,
restricted to the diagonal it gives an action of G on S which is the conjugacy
action. Let X be the generic element of S. Putting T;(X) := Tr(\* X), we
have S¢ = C[T,...,T,], S¢ being the subring of invariants of S under the

action of G.
We recall the classification of G x G-orbits and of G—orbits in P(End(V)).
Let

D; =P{X € End(V) : rank(X) = i}).
D; is a locally closed subset of End(V), it is a G x G—orbit, its closure D; is
defined by the ideal

Iy, = Span((i + 1) X (i 4+ 1) — minors).

We have the following obvious inclusion relations
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D,D>Dn1D...0Dy, with D;=D; = (P")" xP"

So the orbit decomposition of P(End(V)) is

P(End(V)) = D,UD,_1U...UD;.

The dimension of the D; is

dimD; = dimGr(i,n) + dimGr(n —i,n) + dimMat;x; — 1
= 2i(n—1)+14° - 1.

A standard representative of the orbit D; is

I 0
00)°
While the classification of G—orbits in P(End(V)).

Let [ be an integer such that 1 <1 <n and let A, Ao, ..., A\, € C be distinct
complex numbers. Let ai,as,...,a; € N such that a; + ... + a; = n and
a; > ag > ... > q.

Let p® be a partition of a;, more explicitly p® = (pgi) > ..> pg))

Let us call OA(ll’f‘ 2’('2')'”\’ o the G—orbit of the element
PPN ey D
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Ay Y
pD) p@), pO =

Q)

Pry

N1

Every G—orbit in P(End(V)) contains elements of the type A)‘(ll’))‘;’@)’)‘ RO
AL, A2, 250

) I‘t 7
moreover A S o) is conjugate to A D) o) if and only if there exists

veC and a permutatlon o € §; such that

pi = vd  and  ¢@ = pll),

A1,A25005A _ A15A2,00A7 :
Since O D) ) = G-A S o) then the following holds

AL, A1,A2,..,M;
dim QM A2A = — dim Stabg A2 .
D) o) G A1) @), pD)

The calculation of dim Stabg A)‘ll’)‘z’;’)" is reduced to the case of a nilpo-
P p@ D

tent endomorphism.
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1.1.1 Classification and closure of GL(V)-orbits in End (V)

We briefly recall results about the classification and closure of GL(V')-orbits
in End(V). These are consequences of the theory of the Jordan canonical
form of a matrix.

Let V' be a vector space of dimension n over an algebraically closed field

k. Let [ be an integer smaller than or equal to n, Ay, ..., \; distinct elements
of k£, ny,...,n; a partition of n, i.e. ny +---+ n; = n, and for ¢ from
1 to [ a sequence of integers agi) < agi) < ... < ag? = n; with ag-i) <

2a§21; then to such a datum corresponds a GL(V)-orbit O in End(V'), with

representative A having Ay, ..., \; as eigenvalues with multiplicities ny,...,n
and such that dim(ker(4A — A\ 1)) = ag-i). The closure of such orbit are the
orbits with Aq, ..., \; as eigenvalues of multiplicities nq, . .., n;, but satisfying

the equations dim(ker(A — \;1)7) > a§-i).

Defining qJ(-i) = ag-ill —a". we get qgi) > q;) > ... 2 qg? > (0 and

5
q@—i—. . .+¢% = n;. Let us make a diagram with qu) boxes in the first column,
qéi) boxes in the second column, and so on. The number of boxes in each row
give the integers of another partition of n;, pgi) +...4+ p%) = n;, this partition
(4)

is by definition the transposed partition of qgi) +...44¢s; = n;, and of course

the transposed partition of pgi) +... +p7(«? = n; is again q@ +...+ qg? =n,;.

So to there is a bijection between the set of sequences of integers agi) <
agi) <...< ag? = n,; with ag-i) < 2a§21 and the set of partitions pgi) + ...+
pY = n; of n;. Then we can restate the parametrization of GL(V)-orbits in
End(V) as follows:

Let [ be an integer smaller than or equal to n, Ay, ..., A\; distinct elements
of k, mi,...,m a partition of n, and p@® = {p{ > p{) > .. > pi1 4
partition of n;. To this datum we associate a Jordan matrix with, for each

(#) (#)

p;’, a Jordan block of eigenvalue A; and size p;”. The endomorphisms having

i
J
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Jordan canonical form of this type make up a GL(V)-orbit in End (V).

Let p and p' be two partitions of the same integer, ¢ and ¢ the transposed
partitions respectively of p and p , then we denote p < p’ the relation Vj, ¢+
it > q'1 +... 4+ q'l. The relation of closure between orbits reads in the
following way on the parameters:

An orbit O’ is in the closure of another orbit O if and only if they cor-
respond to the same A{,..., \; and nq,...,n;, and moreover, for each 7 the

inequality p < p'* holds.

1.2 Closure of GL(V)—orbits in P(End(V))

Definition 1.2.1. If p™, p@, ... p® are partitions of respectively ny, ns,
.., ny, then we define the partition p = p) +p@ + ... +p® of n =ny +

no + ...+ n; as follows:

p1=p§l)+p§2)+...+p(”1, ,pl:pl(l)+pl(2)+...+p(l)’.

We now determine the closure of a GL(V)—orbit O in P(End(V)). If 0" is a
GL(V)—orbit in (End(V)) projecting to O, then naturally the projections of
orbits in the closure of O" are in the closure of O, but these do not make up
the whole closure. The remaining orbits are the nilpotent orbits associated

to partitions smaller than or equal to the sum of the partitions associated to
0.

Nlay‘?:'"a/-‘l’

Theorem 1.2.2. O)‘(ll’))‘22'z')")\l w20 !
ppl2) L p q(l),q(z),...,q(l)

if and only if
either | = {' and there exists a permutation o € S; and a complex number
A € C* such that
oy = A,
{Iq("("))l = p9

P > go@)
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’

or [ = ]_; H = 0 andp > q(l); fwhe/]"ep = p(1)+p(2)++p(l)

Proof. Let us prove <. The first case reduces to End(V). Let us consider

the second case. We observe that, for ¢ # 0,

A1,A2,.. 0,0 _
€) =
p(l),p(z),---,p(”( )

( (1)
1
/_/%
e 1

1
€A1

5%

eXo 1

-1
(2.0

3

eds 1

€A3

50

e 1

’ (V]

/



CHAPTER 1

(where the 1’s above the block-diagonal are in the row corresponding to the
last row of the k-th block associated to A; and the column corresponding to
the first column of the k-th block associated to A; 1), belongs to 0;\(11,)): ;;'2')",_)‘_’_,1)(,).

And

. A15A2,..0,7] 0
PE% Ap(l),p(z),---,p(” (€) € Op-

Let’s prove =-. But first we state some lemmas and propositions. Let as usual
A1, Ag, - .., Ay be complex numbers (not necessarily distinct), and a1, as, . . ., @

be natural numbers such that Y a; = n. Let’s define

g)\l,)\z,...,)\l _
a1,02,..-,a]

= P({X € End(V) | 3A € C, such that det(tI—X) = (t—A\;)™ --- (t=AX)%}).

Then we have the following lemmas:

Lemma 1.2.3. Denoting with N the cone of nilpotent endomorphisms, then
for any ({7}, a),

N C 8)\1,)\2,...,)\1 )

a1,32,...,0]
Proof. Obvious. O

Lemma 1.2.4. Supposing that Fi : \; # 0, and denoting Ay = > a; A,
we have that EN:2N s a Zariski-closed subset of P(End(V)) cut out set-

a1,32,...,0]

theoretically by the following equations:

for any ((si,0;)) , ((r5,¢;) such that > s;b; = Y. rici,

Tr(X )" o Tr(X*) - A2 - AL = Tr(X™) - Tr(X™)% - A oo Al

Su
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Proof. One implication is straightforward. We check now that if the given

equations hold for X, then X belongs to £21:22+». ‘We make some remarks.

Remark 1.2.5. Since there is a \; # 0, then there is a Ay, # 0.

Remark 1.2.6. If X is such that, for all r, Tr(X") =0, then X € N and
a fortiori X € E)r22M - for any ({\}, a).

a1,a2,...,a] 7

If X is nilpotent, this last remark concludes the lemma. So we may suppose

from now on that X is not nilpotent.

Remark 1.2.7. If for a specific r we have Tr(X") # 0 then we will have
also A, # 0. This follows from the following identity for X:

Tr(X®o)y AR = Tr(XT)9AL # 0.
Remark 1.2.8. In a similar way we see that Tr(X") =0 < A, =0.

Now, to prove the lemma, it is sufficient to check that there is a A € C* such
that Tr((AX)") = A,, for every r. We prove this in three steps.
step one. If Tr((X)?) = Ay # 0, then it holds also for any multiple of d.

This follows from

Aai
(Aa)?
step two. If Tr((X)") = A, # 0 and Tr((X)*) = As; # 0, then the same

will hold also for any natural number in the monoid generated by r and s.

Tr((X)") = (Tr(X%)" = Aas.

Indeed, if  is one such natural number, then Vu >> 0 there will be ¢ > 0 and
b > 0 such that tu = ar + bs, and so the following equation holds
Tr(X")eTr(X®)°

(X)) = (A)e (A (A)* = (A", Yu>0.

And so
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step three. Let p, po, ..., p, be natural numbers. Making the assumption
that Tr((X)P) # 0, then we can find A € C* such that Tr((AX)?P) =
A, # 0. Let us do explicitly only the case of two natural numbers, p and
q, the general case follows the same lines. It is clear that one can choose
a particular A such that Tr((X)?) = A,. And, from step one, one has also
(TT((X)q))m = (Aq)m. There exists then a root of unity (s = 1,
such that Tr((X)?) = (A,. Letting ¢ = w?, then clearly w@rm? = 1, and

Tr((w™ '~ "st0 X)) = A

q

T —1l—a—2— P\ __ _p_ﬁ
r((w gcd(p,q)X) ) = w ged(p,9) Ap

It is possible to find a natural number a satisfying the congruence —p —

2 . :
gm‘ﬁ’p,q) = 0 mod(mem(p, q)), i.e. % = -1 mod(gcd G )) This proves the
third step.

To resume the proof, we consider the monoid generated by the r’s for which
Tr((AX)") # 0. It will be generated by a finitely many natural numbers p,
D2, - - -, Pn. Thus, by step three we can choose A € C* such that Tr((AX)") =
A, , ¥Yr € (p1,p2,...,pn). For the r’s outside of the monoid (py, po, - .., Pn),
the equality is trivially satisfied, both sides of which being zero by the last
remark. So the statement holds for all » € N. It is then clear that the
characteristic polynomial of AX is determined and AX € £x2--2t. This

concludes the proof. O

Corollary 1.2.9. Let A = A)‘(ll’f‘z’(z)’)‘ o0 and O = 0/\(11,))\2,(2), 20 its orbit
under G. Let B € O, then

either B is nilpotent,

or B e 02(11’)/\;&)7 oY with |(] | = |p(z)|-

10
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Now we resume proving the theorem, which will follow at once from this

proposition and the later general digression.

Proposition 1.2.10. Let B € O, B not nilpotent. Then 3\ € C* such that
B € GL(V) - M C End(V). In particular, the first instance of the theorem
holds.

Proof. B € O implies B € &2, Moreover, 3\(e) € C* and g(e) €
GL(V) such that

lim A(e)g(e)Ag(e) ' = B.

e—0

Being as usual A; = ai)\g, and s be such that A; # 0 (B is not nilpotent,
and thus also A4 is not). We have then A, B € 22N A B not nilpotent,

a1,02,...,4] ?

and

Tr(A®)#0 , Tr(B°)#0.

Now, we have

Ae)’g(e)A%g(e)™! — B*,

SO

Ae)'Tr(A%) — Tr(B?)
from which derives A(g)® — u = ;:Eﬁ:g € C*. It follows then that A(¢) —
A € C*, and thus

g(e)Ag(e) ' — A 'B € End(V) .

11



CHAPTER 1

We could go on and prove the second instance of the theorem along the
same line but we prefer to obtain it as a byproduct of a more general dis-
cussion. So we now make a digression and later come back to finish off the

proof. The forthcoming discussion will not depend on the theorem. O

1.3 Classification and closure of orbits in P(V)

Let V' be a vector space of dimension n over the algebraically closed field &
on which acts linearly a connected reductive algebraic group G, i.e. V is the
underlying vector space of a linear representation of the group G. Then the
action of G on V induces an action of G on P(V'). We will discuss the classi-
fication of the orbits of G in P(V') and the closures of such orbits, ultimately
reducing the problem to the classification and closure of G-orbits in V', and
to the determination of the ideal of polynomial functions on V' vanishing on
an orbit. It is a generalization of the previous section to an arbitrary con-
nected reductive group G and to an arbitrary linear representation V' of G.
For such purpose we introduce the completion V of V with a hyperplane at

infinity and study the extended action of G on V.

1.3.1 The completion V of V

If z1,... ,z, are coordinates in V' corresponding to a basis (ei, ... ,e,), then

V is identified with P(V"'), where V' denotes a vector space of dimension

n + 1 with basis (eg, e1,... ,e,). Thus V is a projective space of dimension
n, if ©o, Z1,... , T, are the coordinates of V' corresponding to the basis
(eo, €1,--- ,€y), then one can introduce the homogeneous coordinates [z :
Ty :...: T,]in V. In such coordinates, the inclusion V < V, is given by
(X1,... ,Tp) — [1: @ :...: x|, hence the complement, i.e. the part at
infinity, is the subspace with homogeneous coordinates [0 : z; :...: z,], and
this is identified with P(V') by the themap [0: z1 :...: ] = [z1: ... z,].

12
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G acts on V by its action on the coordinates z1,... ,z,. In more intrinsic
terms, V' = k@®V, where k is the trivial representation of G, V = P(V') and
the action of G is the one induced by the action on V'. We may restate this

as follows. We have a G-equivariant commutative diagram

V ——= V +—— P(V)

I

A" —— PP P
and the decomposition V = V][[P(V) is G-stable. Furthermore, the

bundle map
vV —{0}

|

P(V)
is G-equivariant. Hence the image under 7 of a G-orbit in V' —{0} is a G-orbit
in P(V) and, conversely the inverse image of a G-orbit in P(V') is a union of
G-orbits in V — {0}. One can extend the map 7 to all V — {0}, it is just the
projection in the projective space P from the point 0 = [1: 0: ...: 0]
to the hyperplane P*~' = {[0 :z; :...: z,] € P", ie. the projection on
the last n coordinates. We have seen that every G-orbit O in P(V) is the
projection of a G-orbit O' in V' — {0}. Now we relate the closure O of the
orbit O in P(V) with the closure of the orbit O" in V, in the case that the

closure of the orbit O" in V does not contain the origin.

Proposition 1.3.1. Assuming that the closure of the G-orbit O' in V does

not contain the origin 0 of V', we have the equality
(0 =n(0).

Proof. This is a special instance of a basic and general fact, which we state

here in the form of a lemma:

Lemma 1.3.2. Let Y C P™ be a closed subvariety of projective n-space, o

a point in P™ not contained in Y, H a hyperplane of P* not containing o,

13
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pr, : P — {0} — H the projection from the point o to the hyperplane H.
Then we have that the image pr,(Y) of the subvariety Y under the projection

pr, is a closed subvariety of the projective space H.

Proof. Y is projective, hence complete. pr,(Y) is the image of a complete

variety under a regular map, so it is a closed subvariety of H. O

a variant of this is:

Lemma 1.3.3. Let A C Y be an open subset of Y, then w(A) = w(A).

Proof. Since 7 is regular on Y, we have 7(A4) C 7(A), i.e. m maps A into
m(A), this map is dominant since A maps onto m(A), but by the previous
lemma the image of A must be closed. Thus 7(A4) = 7(A). O

Now the proposition follows by taking the projective space to be V, the
hyperplane to be P(V'), the point o to be the origin of V, and the locally
closed subset A to be the G-orbit O in V. O

In this way the problem of determining the closure of a G-orbit in P(V') is
translated into the problem of determining the closure inside the projective
space V of a G-orbit O" which projects onto O.

Now we relate the closure of O inside V with the ideal I(O') C k[V] of
polynomial functions on V restricting to zero on O, thus achieving the aim
of reducing the study of orbits and orbit closures in P(V') to the study of
orbits and orbit closures in V. This second reduction also is consequence of
a basic and general fact.

Let us digress a bit at this point. We consider the following situation,
Z C P™ is an irriducible projective subvariety of projective n-space, not
contained in the hyperplane H of P". Let us denote by I(Z) the graded ideal
of the graded algebra k[zy,...,x,] of those polynomials which are zero on
Z. Consider the affine part of Z, i.e. the intersection Z N A" of the variety

14
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Z with the affine space A" = P* — H. We may summarize the inclusion

relations between these varieties in the following commutative diagram

ZNA" —— A"

| l

A — P

We may choose as hyperplane H the one given by the equation zy = 0; in
this case A" has coordinates z1, . . ., z,, and the algebra k[A"] of regular func-
tions on A" is identified with the algebra of polynomials k[z1, ..., z,] in the
indeterminates z1,...,z,. Let I(Z N A™) be the ideal in k[zq, ..., z,] of the
polynomialsin x4, ..., z, restricting to zero on ZNA™. There is a map « of de-
homogeneization, which is just a restriction, from the algebra k[zq, 1, . . ., Zp]
to the algebra k[zi,...,z,] given by f(zo,z1,...,2,) — f(1,21,...,2,).
This map sends the graded ideal I(Z) to the ideal I(Z N A™):

klxo, 1, ...\ Tn] —— k[1,..., 2]
1(Z) — I(ZNA").

There is also a map 8 of homogeneization:

B
klxy,..., 2, —— k[xo,T1,..., 2],

which sends a degree r polynomial in k[zy,...,z,] to a homogeneous poly-
nomial of the same degree in k[xg, z1, . .., x,]. Observe that the map S does
not preserve any of the algebraic structures present on k[zi,...,x,] and
klxo, z1,...,2,]. The image of the map 3 is the set of homogeneous polyno-
mials in k[zg, z1,...,2,]. So, if J is the ideal in k[xg,z1,...,z,| generated
by B(I(ZNA"™)), J is a graded ideal of k[zq, x1, ..., z,)].

Now the basic lemma:

Lemma 1.3.4. rad(J) = I1(Z).

15
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Proof. If f € klzg,x1,...,x,] is homogeneous, irreducible and f # z, then
B(a(f)) = f. Since Z is irreducible, there is a set of generators {f;}, with
fi € kl[zg,x1,...,2,] homogeneous and irreducible. The fact that Z is not
conatined in H implies that f; # z( for all 7. Now, it is easy to see that g
sends I(Z N A™) to I(Z) and that «(B(f)) = f for any f in k[z1,...,2,], so
a(I(Z)) = I(Z N A"); thus

J=BI(ZNA")) - k[xy,z1,...,2,] = B(a(I(Z))) - k[zo,21,...,2Z0] D

D Bla({fi}) - klzo, x1, .. .y 2] = (fi) - k[T, 21, - .., 20]) = I(Z).

So J is a graded ideal containing I(Z). The closed subset Z' which it defines
must satisfy Z N A") C Z' < Z. This implies Z' = Z, since Z N A™) is dense
in Z. And so, by the nullstellensatz, rad(J) = I(7). O

We may now return to the discussion of the main problem which we may
restate as follows: given a linear representation of the connected reductive
group G in the vector space V, supposing known the classification of G-orbits
in V' and the relations of closure between these G-orbits, to determine the
G-orbits in P(V') and the orbit closures.

Remark 1.3.5. The map 7 : V — {0} — P(V) is G-equivariant, thus G-
orbits in P(V') correspond to unions of G-orbits in V — {0}. Another way to
state this is that the torus k* acting by homotheties on V preserves G-orbits,

thus one wants to understand the equivalence relation on the set of G-orbits
in V. — {0} afforded by the action of the torus k*.

A first step in the study of an action of a group is the determination
of the invariants for that action. The algebra of invariants for the action
of G on V is the graded subalgebra k[V]¢ C k[V]. A fundamental result
states that k[V]¢ is finitely generated as an algebra over k (G is reductive).
Let {fi,..., f-} be a minimal set of homogeneous generators of k[V]¢ as k-
algebra, the affine closed subset of V' associated to the ideal (fi,..., f.)k[V]
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is a cone in V', the null-cone of V. If we define the map ® : V — A", by
v (fi(v),..., fr(v)), i.e. ® associates to v its invariants, then the fibers
of ® are stable under G, and the null-cone N is the fiber over the origin
(0,...,0) € A". The null-cone consists of those elements having the same
invariants as 0 € V; the closure in V' of a G-orbit outside of the null-cone
does not contain 0 since it must be contained in a fiber of the map & different
from the null-cone. N determines a closed subvariety of the projective space
P(V') which we will also call N. The main result for G-orbits in P(V') — N is:

Proposition 1.3.6. Let O be a G-orbit in P(V)—N, O' a G-orbit in V — N
projecting to O through the map =, let O be the closure of O in P(V), O that
of O in V. If Q C (P(V) — N)NO is a G-orbit, then there exists a G-orbit
Q c (V-=N)NO'. The G orbits of P(V) which are in the null-cone and in
O are the G-orbits in O’ NP(V'), where P(V )is identified with the hyperplane
at infinity of V. Such intersection is cut out set-theoretically inside P(V') by
the ideal obtained homogenizing I(O') and then replacing xo with 0.

Proof. Follows from the above discussion. O

With the adjunction of a restrictive hypothesis on the action of G, we

may complete this with a statement about nilpotent orbits.

Proposition 1.3.7. If the action of G on'V is such that the fibers of the map
® are finite unions of G-orbits, then the orbits in the nullcone are invariant
with respect to homotheties and the closure relations are consequences of the
affine closure relations. Moreover the closure of a G-orbit in P(V') is a finite

union of G-orbits.

Proof. Since k* is connected, a homothety class of an orbit consists of either
just one orbit or of an infinite number of orbit. Since an orbit homothetic
to an orbit in the null-cone is again an orbit of the null-cone then all orbits
in the null-cone must be invariant with respect to homotheties. This implies
that the closure relations in the null-cone as subvariety of P(V') are just the

closure relations in the null-cone as subvariety of V. O
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1.4 Conclusion of the proof of theorem 1.2.2

We now finish off the proof of theorem 1.2.2. The strategy is to use propo-
sition 1.3.6 to find the equations of the closure of a GL(V)-orbit in P(V)
and to translate such equations in terms of partitions. For that, we use an

elementary lemma.

Lemma 1.4.1. Let p_ ... p® be partitions of nq,...,n; respectively. We
denote by ¢V, ... q" the transposed partitions of the partitions p», ... p®
respectively. For 1 < i < [, j > 1 we define ag-i) =q¢ +...+ q; Let
p=pW +...+p® be the partition of n = ny +...+n,, sum of the partitions
p o pW®, and q the transposed partition of p. Defining, for j > 1, a; =
p1+ ...+ p;, we have the identities

Proof. Follows from the definitions by elementary arithmetic. O

Let now O be a GL(V)-orbit in P(V'), O" a GL(V)-orbit in End(V) pro-
jecting onto O. Let Aq,..., )\ the eigenvalues associated to O' with the
multiplicities nq,...,n;, and p®, ... p® the partitions specifying the Jor-
dan canonical form of endomorphisms in O'. Define ag-i)
lemma 1.4.1. By proposition 1.3.6, one gets equations satisfied by O by tak-

, p and a; as in

ing equations satisfied by O" and taking the homogeneous part of maximum

total degree if there is one. The equations

dim(ker(J (X — AD))) > af + ...+ o

2

are satisfied by O'. These, by lemma 1.4.1 become

dim(ker(H(X — X)) > a;.

1
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It is readily seen that the homogeneous parts of maximum total degree of

these polynomial equations are
dim(ker(X7) > a;.

This implies that a nilpotent orbit in the closure of O must have the corre-
sponding partition smaller than or equal the partition p. This concludes the

proof of theorem 1.2.2.
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Chapter 2
Lusztig’s method

This chapter is divided in two parts. In the first we develop an inductive
procedure for finding the G-orbits for a class of homogeneous spaces under
the group G x G, for any G connected reductive. The class of homogeneous
spaces under consideration contains the homogeneous spaces which arise as
G' x G-orbits in the canonical compactification X of G. In some sense, the
class considered is the smallest class of homogeneous spaces under G x G
which is closed under the inductive procedure exposed. The procedure is
due to Lusztig in the main lines. In [L], Lusztig applied it to the study of
parabolic character sheaves. This presentation is a refinement of Lusztig’s
procedure as exposed in unpuplished notes [S] by Springer. While the second
part of the chapter deals with the problem of the closure of G-orbits in an
ambient space. Again, the aim is to develop a bit of general machinery to be
used in finding which G-orbits of the canonical compactification X of G are in
the closure of a given G-orbit. There isn’t a simple general way to determine
the closure of a G-orbit in X, so one is forced to an almost case by case
analysis. One can divide the G-orbits of X roughly in three classes, those of
high dimension i.e. the regular orbits and some subregular orbits, the orbits
of intermediate dimension, and finally the smaller orbits. For regular orbits,

the method of computing its invariants usually allows the determination of
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its closure. For G classical group of rank smaller than or equal to two, i.e. for
the cases in which the computations were carried out, the result is that the
closure of a regular G-orbit in X is made up of the regular orbit in question
plus all nilpotent G-orbits in X, i.e. those orbits every component of which
is nilpotent. Such result should be true for any G, although it does not follow
immediately from the methods developed here. The intermediate orbits are
the most problematic since computing invariants is not very useful in such
case, and also dimension arguments are usually not sufficient. So one must
resort to explicit degenerations and to a basic but handy negative criterion
which will be exposed in this chapter. While for low dimensional orbits one
may usually just argue by dimension considerations, thus no new method is
needed. The techniques developed in this chapter will be put to use in the

next.

2.1 Basic definitions

Let G be a connected reductive algebraic group over an algebraically closed
field k, g its Lie algebra. Let us fix a maximal torus T of GG; t C g be the Lie
algebra of T'. Denote by R the set of roots of g with respect to t, i.e. R C t*
and there exists a root decomposition g = t® @, ga, Where g, is defined
by the property [t, g] = a(t)g, Vt € t, Vg € g,.

The Weyl group W of (G, T) is defined as the quotient Ng(T)/T. W acts on
T, through the action induced by the action of Ng(T') on T by conjugation.
In the same way, the adjoint action of Ng(T') on t induces an action of W
on t.

Let us fix a Borel subgroup B of . This yields a choice of simple roots
A C R,i.e. asubset A of the set of roots R of GG such that any root a € R can
be uniquely expressed as a linear combination > n;o; o; € A, with integer
coefficients, either all nonnegative or all nonpositive. The subset Rt C R

of positive roots, relative to the choice of simple roots A, is defined as the

22



CHAPTER 2

set of roots which are linear combination of simple roots with nonnegative
integral coefficients. By what has been said and properties of root systems
R=R'[]-R".
A parabolic subgroup of G is defined as a connected subgroup containing a
Borel subgroup of G. A standard parabolic subgroup P of G (with respect
to the choice of B) is a parabolic subgroup P containing the Borel subgroup
B; since all Borel subgroups of G are conjugate to B, then any parabolic
subgroup of GG is conjugate to a standard parabolic subgroup of G.
The Lie algebra p of a standard parabolic P has a decomposition in root
spaces

P=tob® (P oo

acRf

where for I a subset of the set of simple roots A, R; denotes the subroot
system generated by I, and R} the set of positive roots for such system.
A parabolic subgroup P of G containing 7 is conjugate to a standard parabolic
by an element of Ng(T'); since conjugation by an element of T stabilizes @,
then the action of Ng(7T) on parabolics containing 7' passes to the Weyl
group W. Let us, for example, suppose that Q = wPw™, w € W, then its

Lie algebra q has root space decomposition

q= to @ Gw(a) @ @ Juw(—a)-

a€ERT aERj—

1 -1

If P = L-U is a Levi decomposition of P, then obviously @ = wLw ™ -wUw

is a Levi decomposition of (). The corresponding decomposition of the Lie

1= P 0o P s
)

acw(Ra—71) acw(Ry

algebra q is

Remark 2.1.1. If P, @) are two parabolic subgroups of G' containing T, with
Lie algebra, respectively, p, q, then PN Q has Lie algebra p N q; moreover if

p=te@e.. a=te@ae.

a€cA aEB
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with A C R and B C R, are the root space decompositions of p and q, then

p N q has root decomposition

pna=te P o
acANB
Thus p N q is completely determined by AN B; and, more important, AN B
determines PNQ. If I(P), 1(Q), I(PNQ) are respectively the ideals in C[G]
corresponding to P, @ and PNQ, then of course I[(PNQ) = I[(P)+1(Q) and
the union of a basis of I(P) and a basis of 1(Q) is a basis of [(P) NI1(Q).
Now there is a family {go}acr, 9o € C[G|, such that, if P is a parabolic

subgroup of G containing T, with root space decomposition of the Lie algebra

p=1ta @ga:

aEA

then {ga}acr_a is a basis of the ideal I(P). This implies that {ga}acr—anB
is a basis for the ideal I(P N Q) of PN Q. Thus one can determine the
conjugate of a parabolic containing T' by an element of W by looking at the
action on roots and determine the intersection of two parabolics containing

T just by looking at roots.

Lemma 2.1.2. Let P and Q be two parabolic subgroups containing the maz-
mmal torusT; P=L-U, Q = M-V Levi decomposition respectively of P and
Q, compatible with the root space decomposition, i.e. T C L andT C M. Let
mp 1 P — L be the canonical projection of P to L, and mg : @ — M be
the canonical projection of QQ to M. Then the following decomposition holds:

PNn@Q=(LNM)-(LnV)-(UNM)-UnYV).

moreover
mp(PNQ)=(LNM)-(LNV),

and
mQ(PNQ)=(LNM)-(UnNM).
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Proof. Let us prove the decomposition PN Q = (LN M)-(LNV)-(UN
M)-(UNV). Since LNU = {1} and M NV = {1}, the four subgroups
LM, LNV, UNM,UNYV are disjoint. Let ¢ be an element of PN Q. It
decomposes in a unique way in a product hk =g, h€ L, k € U. h = mp(g),
sohe€mp(PNQ)=LNQ. While k = hlg € UNQ. Now h, as an
element of (), decomposes uniquely as h = hihy, hy € M, hy € V. hy =
np(h) € mp(LN Q) = LN M, while hy = h;'h € LNV. Analogously for k&,
k = kiky, with k1 = mg(k) € mg(UNQ) and mo(UNQ) = UN M, while ky =
k; 'k € UNV. The proof of this decomposition yelds also the decompositions
mp(PNQ)=(LNM)- (LNV)and mg(PNQ)=(LNM)-(UNM) O

Corollary 2.1.3. mp(PNQ) is a parabolic subgroup of L, its unipotent radical
being LNV, and LNM being a Levi factor. mo(PNQ) is a parabolic subgroup
of M with unipotent radical U N M, and L N M a Levi factor.

Corollary 2.1.4. If A is the set of roots of P and B the set of roots of Q,
A = A, [] Az the partition of A afforded by the Levi decomposition P = L-U,
B = B[] By the partition afforded by the Levi decomposition Q = M -V,
then PN Q is the subgroup corresponding to AN B, 1p(PN Q) =LNQ the
subgroup corresponding to Ay N B, its Levi decomposition corresponds to the
partition AyNB = (A1NBy) [[(A1NBy). Analogously, 1g(PNQ) = PNM is
the subgroup corresponding to AN By and its Levi decomposition corresponds
to the partition AN By = (A1 N By) [[(A2 N By).

2.2 The group Apg, and its orbits in G

Let P, Q, L, M, U, V, wp, mg be defined as above, and let 0 : L — M
be an isomorphism such that o(7T) = T. Then the following lemma is easily
checked:

Lemma 2.2.1. If A; C t* is the set of roots of L, and B, C t* that of M,
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i.e.

where [ and m denote respectively the Lie algebra of L and M, then o(A;) =
By and 0(ga) = 8o(a) for o € A;.

We now define the subgroup Apg, of G x G.

Definition 2.2.2. G be a connected reductive group, T a maximal torus
of G, P, QQ parabolic subgroups of G containing T, with Levi decompositions
P=LU,Q=M-V, L, M reductive subgroups containing T, U, V unipotent
radicals respectively of P and Q); then we define the subgroup Apg, C G xG

as

Apgo={(p,g) € P xQ | o(mr(p)) =ma(e)}-
If A, is the graph of 0 : L — M, i.e.
{(lm)e Lx M | m=o(l)},
then Apg, is the semidirect product of A, and U x V:
Apgs =20, x U x V.

Apg,. as subgroup of G x G inherits the action on G' by left and right
multiplication, i.e. Apg, X G — G is defined by ((p,q),9) — pgq".

Let us study the orbits of Apg, in G. For this purpose we first decompose
G in P x (Q—orbits, and then study the Ap g ,—orbit decomposition of each

P x Q—orbit separetely.
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2.3 P x Q—orbits in G (Bruhat decomposi-
tion)

We recall some well-known facts (see [B]).

Let G be a connected reductive algebraic group, 7" a maximal torus and
W = N(G)/T the Weyl group of G relative to T.. For two parabolic sub-
groups P, @) of G containing 7', we define the subgroups Wp, Wg of W as
the subgroups of W stabilizing respectively P and Q).
G x G acts on G by left and right multiplication: (g1, 92)g = 91995 . While
G x G acts transitively on G, its subgroup P X () does not. We have:

Proposition 2.3.1. The action of P X QQ partitions G into finitely many
orbits; such orbits are locally closed subvarieties of G, they are indezred by
the elements of Wp\W /W in the following way

[w]— P xQ-(1,w™")-1g = orbit of w.
Here by w we denote both an element of W and a representative in Ng(T').

The closure of a P x @Q-orbit is P x Q)-stable, so is the union of P x )-
orbits.
Let Op,, [(w] € Wp\W/Wg denote the P x Q-orbit corresponding to the class
[w], then we may define an order relation on Wp\W/W such that [w] > [w']
if and only if O, C m
On the other hand, if we fix a Borel subgroup B of GG, we have the Bruhat
order on W (with respect to the choice of generetors yielded by B).

We state the relation between these two orders.

Lemma 2.3.2. w; € W be such that P’ = wlel_l D B, and wy € W
such that Q' = wy,Qwy' D B. We may endow the set Wp\W/W with the
structure of a partially ordered set by embedding it in W in the following way:

Wp\W/Wy =W, ceWp\W/Wy — w(c),
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where with w(c) we denote the minimum length representative of c. Then,

with respect to these order relations, the map
Wp\W/Wgqg — Wp\W/ Wy

defined by

[w] = [wiww; ]

1s an order preserving bijection.
Also the dimension of the orbit O, can be read off from the class [w]; in
fact, the codimension of O, in G 1is equal to the length of the representative

of minimum length in the class [wiww,'].

2.4 Apgs-orbits in a P x Q-orbit of G

Let O, be the P x Q-orbit in G corresponding to [w] € Wp\W/Wy, Apg,»
acts on Op, and we will study its orbit decomposition. Let w € W be the
representative of [w] of minimal length, we will also denote w a representative
in Ng(T). Let Z,, be the group Z,, = {(p,w 'pw) € PxQ | p € PNwQuw '},
then it is easy to see that Z,, is the stabilizer of w € G in P x ). So we have
an isomorphism

P x Q/Zy — Oy,

(p,q) — pwg ™.

This isomorphism is P x (-equivariant, hence a fortiori Apg ,-equivariant.
Composing the natural projection from P x @ to P x Q}/Z,, with the above

isomorphism we get a map
P x Q — O

which is compatible with the following action of Apg , X Z, on the source

and on the target:

Apgo X Zyx (PxQ) =P xQ
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defined by
(1, @1), (2, 22)); (P, @) = (Papp3 s 01495 ),
and
ApQo X Zy X O] = Opw
defined by

((p1,q1), (P2, q2), T) = Prg; "

This morphism induces a bijection between the set of Apg , X Z,-orbits in
P x @) and the set of Ap g ,-orbits in Op,). Analogously, we can consider the

coset space Apg,\P x @ endowed with the natural action of Z,:

Zw X (AP,Q,O'\P X Q) — AP,Q,O’\P X Q,

((pla CIl)) (AP,Q,U : (p) q))) = AP,Q,U : (ppfla QQII);

and the natural projection
P x Q — AP,Q,U\P X Q,

which will induce a bijection between the Apg , X Z,-orbits in P x () and
the Z,-orbits in Apg,\P X Q.

Summing up, we have defined a bijective correspondence between the Apg ,-
orbits in O, and the Z,-orbits in Apg ,\P x Q.

Lemma 2.4.1. The map P x Q — L given by (p,q) — (0 (mg(g)))™"

7(p)
induces an isomorphism o : Apg,\P x Q — L. Letting G = L, the
subgroups Py = o Y (w™'Pw N M) and Q; = LN wQuw™" are two parabolic
subgroups of the connected reductive group G containing the mazimal torus
T, whose Levi subgroups containing T are respectively Ly = o~ (w™'Lw N
M) and My = LN wMw™", and unipotent radicals are respectively U, =
o w ' UwNM) and Vi = LNwVw™'. We may define between the subgroups
Ly and M, the isomorphism o, : Ly — M, defined by | — wo(l)w™'; there
s a morphism Z,, — Ap, g, defined by the commutativity of the diagram
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TP,TQ) (id,o~1) (I1,l2)—(l2,01)
- 5 e

PxQ - LxM LxL LxL

T |

B
Zny ? APlle,Ul

Considering the action of Ap g0, on G1 by (p,q) - 9 = pgq™t, (p,q) €
Ap, 01,01, 9 € G1; then the isomorphism o is compatible with the action of

Zy on Apg,\P x Q, the action of Ap, g, on Gy and the isomorphism
ﬁ : Zw — APl,Ql,Ul'

Proof. The morphism P x () — L considered above is just the composition

7rPa7rQ) (id,O'_l) (mvy)'_)(yam) (zay)'_)my_l L.

PxQ - LxM Lx L &892 g

It is surjective as composition of surjestive maps, and (p1,¢1), (p2,¢2) € PXQ
have the same image in L if and only if they are in the same right coset of
the group {(p,q) | o(mp(p)) = mo(q)}, which is exactly Apg,. This proves
that the morphism « is well-defined and that it is an isomorphism.

Zy acts on P x @) on the right, andsuch action, through the morphism « is
turned into the action (p, q) -1 = 07! (mg(q))lmp(p)~*; so one must just check,
to prove the second statement, that the image of Z,, by the homomorphism
Zy +PxQ —=LxM—LxL— LxLis the group Ap, g,,- Let us
check this. The first arrow above is the canonical inclusion, the second is the
canonical projection, the third is to apply 0! to the second coordinate and
the last is to interchange the first and second coordinates. Z,, is the image of
the homomorphism PNwQw ™" — Px(Q defined by p — (p, w™'pw). We have
seen that PNwQuw ™' = (LNwMw™ ) (LNwVw ) (UNnwMw™)(UnwVw™?),
so the image of Z,, is the product of

Hy = {(0™ (mq(w™"gw)),7r(g)), g € LNwMw™'} =

={(oc Y(w tgw),9), g€ LNnwMw '},
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Hy = {(o  (mo(w™'gw), mp(g)), g € UNwMw '} =
={(c7 (wgw),1), g € UNnwMw™},
Hs = {(c™ (mo(w™"gw)),7p(g)), g € LNwVw ™'} = {(1,9), g € LhwVw ™'},

Hy = {(07 (mq(w™ gw)),7r(g)), g € UNwVw™'} = {1}.

So the image of Z,, is the product HiHyHj3; but we can write
Hy ={(g,wo(g)w ™), g € o (w 'LwN M)},

Hy, ={(g,1), g € o *(w 'Uwn M)}, and
Hy={(1,9), g€ LNwVw '}.

This is exactly Ap, o, ,- Thus the lemma is proved. O

Summing up, to classify Apg ,-orbits in G' one partitions G into P x Q-
orbits; in each of the P x Q-orbits the problem of classifying Ap g ,-orbits
is reduced to the classification of Ap, g, »,-orbits in a smaller group G;. So
one can iterate the procedure, subdividing GG; in P; x (Q;-orbits and then
analyzing each P; X @Q;-orbit separately. Inside a P, X Q);-orbit one is re-
duced to the study of Ap, g, +,-0rbits in a smaller group G, and so on. The
procedure terminates when P, = (),, = G,,; in this case the Ap, ¢, »,-0rbits
in G,, are the twisted o,-conjugacy classes in G,,. Hence the classification of

Ap g s-orbits in G reads as follows:

Proposition 2.4.2. There is a finite partition of G into Apg ,-stable lo-
cally closed subsets indexed by sequences ([wol, [w1], ..., [wy]), where [wy] €
Wp\W/Wq, [w;] € Wp\W,;/W,, with W; the Weyl group of G; relative to T,
and such that P11 = Qny1 = Gny1. Moreover, the Apg ,-orbits inside the
locally closed subset indexed by ([wo), [w1], ..., [wn]) correspond to the twisted

conjugacy classes in G,.1 with respect to the automorphism o, 1.
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More important is the fact that this method of classification actually gives
a set of representatives for the Ap g ,-orbits in G provided one can produce a
set of representatives of the twisted conjugacy classes in the subgroups G,

appearing.

Proposition 2.4.3. Let ([wo], [w1],...,[w,]) be a sequence parametrizing a
locally closed subset as above, w; € W; the representative of minimum length
of the class [w;]. We choose a lifting in G; of w; and we denote it w; as well.
Let {s.} be a set of representatives of the o,1-twisted conjugacy classes in
Gr1, then {sqwpwy_1 ... wywy € G} is a set of representatives of the Ap g -

orbits in the locally closed subset of G indexed by ([wo), [wi], ..., [wn])-

Proof. The way o,1-twisted conjugacy classes in G, correspond to Ap g .-

orbits in G is through the diagram
G

T

Oy +—— PoxQy — Gi

— G,

T

O, —— P X Qp —— Gpy1;
we just have to lift back the representatives s, to G. A lift from G, to
P, x Qp of 5415 (54, 1). Pushing it down to Oy,,) one obtains s,wy, in G,. We
lift it to (sqwn, 1) in P, 1 X Q,_1; then pushing it down to Op,,_,) one gets

SqWnpw, 1 € Gy 1. Proceeding in such way up to GG, one gets the element
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SqWpWp_1...wo € G. These are representatives of the Ap g ,-orbits in the

subset in question. O

Proposition 2.4.4. If O is a Apg ,-orbit in the locally closed subset indezed
by ([wo], [wi], ..., [wn]) corresponding to a o,1-twisted conjugacy class S in

Gp+1, then codimgO = ) codimg, Oy, + codimg, ., S.
Proof. Straightforward from the definition of O. O

This proposition permits to compute the dimension of Apg ,-orbits by
looking at their classifying data. The codimension of the Oy, is readily
expressed in terms of the length function in W;, while the codimension of S in
G+1 is equal to the dimension of the stabilizer Stabg, _, (s) of a representative
s of S.

This is Lusztig’s method for classifying Ap g ,-orbits in &, but of course

it can also be seen as a classification of the G-orbits in G x G/Apg,:

Proposition 2.4.5. There is a bijection between G-orbits in G X G/Apg o
and Apg o-orbits in G, moreover if {s.} is a set of representatives of Ap g -
orbits in G, then {((so)™",1)} is a set of representatives of G-orbits in G x
G/Apg,e-

Proof. Indeed both sets of orbits correspond to the G x Apg ,-orbits in
G x G under the maps G x G/Apg, + G x G — G, where the first is
canonical projection and the second is (g1, g2) — (g1) 'go; so lifting a set of
representatives to G'x G one gets that {((so)™', 1)} is a set of representatives
for G-orbits in G x G/Apg,q-. O

We can also give a parallel, slightly more geometric presentation of Lusztig’s
method for classifying the G-orbits in G x G/Apg,. Consider the projec-
tion G x G/Apg, -+ G x G/P x Q, it is a fibration with fiber isomorphic
to L\L x L; over the point (P, Q) of G x G/P x Q the fiber is P X Q/Apg o
and is isomorphic to L\L x L through the map P x Q/Apg, — L\L x L

given by (p,q) = (mp(p)~", (07 (mq () ™).
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Lemma 2.4.6. G x G/P x Q decomposes into finitely many orbits under the
action of G; a set of representatives is {(1,w)-(P,Q)}, w € Ng(T) represen-
tatiwe of minimum length of a double coset class in Wp\W/Wq. The stabi-
lizer of the point (1,w) - (P, Q) in the group G is the group S, = {(g9,9), g €
PNnwQuw™'}.

Proof. The first part is just Bruhat decomposition. As for the second, the
stabilizer of (1,w) - (P, @) in G is the intersection of G with the stabilizer of
(1,w) - (P,Q) in G x G, which is P x wQuw™?. O

Lemma 2.4.7. The inverse images of the G-orbits in G X G/P x @ are
G-stable subsets of G x G/Apg,. The G-orbits in G x G/Apg, over G -
(1, w)-(P, Q) are in bijection with the Sy,-orbits in the fiber over (1, w)-(P, Q).
Defining Z, = (1, w) 1S, (1,w) = {(p,w pw), p € PNwQuw™'}, the map
x — (1,w)x takes the fiber over (P,Q) to the fiber over (1,w) - (P,Q) and
defines a bijection between the Z,-orbits in the first fiber and the S,,-orbits

wn the second fiber.

Proof. All statements are straightforward. The first follows because the fi-
bration is G-equivariant. The second follows by the basic general fact that in
a G-equivariant fibration X — Y, Y homogeneous under GG, any point in X
is G-conjugate to a point over any fixed y € Y, and any two points over y are
G-conjugate in X if and only if they are Stabg(y)-conjugate in the fiber X,
of X over y. That x — (1, w)z maps the fiber over (P, Q) to the fiber over
(1,w) - (P, Q) is obvious, but since through this map the Z,-action becomes

the S,-action, the bijection on orbits follows. O

Lemma 2.4.8. Let P, = LNwQuw ™, Q1 = o '(w'Pwn M), G, = L.
Then Py, Q1 are parabolic subgroups of G containing T, with Levi factors
respectively Ly = LNwMw™" and My = o~ (w™'LwN M), unipotent radicals
respectively Uy = LNwVw™" and V;, = o~ (w™'UwNM). Ifoy: Ly — M, is
defined by | — o~ (w™lw), then the Z,-action on the fiber over (P, Q) fac-
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tors through the map Z, — Ap, 9,0, defined by (p,q) — (7p(p),0 (mq(q))
and the action of Ap, g, 0, on G1 X Gy by right multiplication.

Proof. Since the fiber over (P, Q) is identified to L\L x L, one sees that
the action of Z,, factors through Z,, — L x L, so one must check that the
image of this map is Ap, ¢, . This follows readily from the decomposition
PnwQuw ' = (LNwMw H(LNwVw ) (UnNnwMw ) (UNwVw?), and
the definition of Z,,. O

Notice the slight change in the definition of P, @)1, o1. This makes keep-
ing track of representatives easier, at the expense of making the computation
of the o; messier.

We state in this new guise Lusztig’s method.

Lusztig’s algorithm

e Set Go =G, Ph=P,Q=Q, Lo=L, Myg=M,Uy=U, Vy =V,
UOZO',W():W.

e Choose [wy] € Wp,\Wy/Wyg,, and wy be a lifting to Gy of the represen-

tative of minimum length of [w].

o Set Gy = Ly, P = Lo NwoQowy"', Q1 = 0wy Pywy N My, Ly =
Lo NwoMowy, My = 07wy ' Lowe N My, Uy = Lo N woVowy*, Vi =
oY wy *Upwe N My, o1 : Ly — M such that o1(l) = o, ' (wy Hwe, Wi
the Weyl group of G; with respect to the maximal torus 7'.

e Choose [wy] € Wp,\W1/Wy,, and w; be a lifting to G of the represen-

tative of minimum length of [w].

o Iterate to get Go, P, QQo, Lo, My, Us, Vs, 09, ..., and so on until
Gk+1 = Pk+1 = Qk+1-

o Classify the oy 1-twisted conjugacy classes in G, 1, and choose repre-

sentatives {sgwo],...,[wk])}.
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e Define
_1\k+1 _ _ —

t(([woly - - -, [wi]), 8a) = (s(()Z D wows . cwpwy wty . wr )
if £ is odd,
and

_ ((=DET -1, -1 —1
t((Jwol, - - -, [wk]), Sa) = (s& , WoW3 - . . WEWy_ Wy 5 ... W] )
if k is even.

Proposition 2.4.9. The family {t(([wo], ..., [wk]), sa) € G x G},
as (([wo],-- ., [wk]), sa) varies through all the different outputs of Lusztig’s
algorithm, is a set of representatives of G-orbits in G X G/Apg.s.

Proof. We have already seen that the G-orbits in G x G/Apg, correspond

to sequences ([wy), - - ., [wk]) and to o, 1-twisted conjugacy classes in G, 1;

.....

must just lift these to G x G. Then we get s, — (54,1) — (551, wg) —
(sa,wk_lwgl) > (s;l,wk_gwkw,;ll) — (sa,wk_gwk_lwk_lw,;lQ) — ..., and
soon up to G xG. In the end we get (s(_l)k+1, Wy - . . Wp_ Wy, Wiy - wi)
if k is odd, otherwise we get (s&_l)k+l,w0w2...wkw,;_llw,;_l?,...wl_l). This
proves the proposition. O

2.5 Lusztig’s method: a generalization

We wish to apply Lusztig’s method to study the G-orbits inside the canonical
compactification X of G. We subdivide X into G x G-orbits

x=1]x
ca
and study the G-orbits inside each X separately. If P; denotes the standard
parabolic subgroup of G associated to the subset I of the set of simple roots
A, L; its Levi factor containing T, L; = L;/Z(L;) its adjoint quotient, P,
the opposite parabolic to Pr; then (see [DC-P]), X; fibers over G/Pr x G/ P,
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with fiber L;, the stabilizer P; x P; acting on the fiber L; over (P, P;") by

(p,q) -1 =7, ()7 p- ()
This implies that the stabilizer of the point over (P;, P, ) corresponding to
1;, is the group

Ap, p- =A{(p,9) € Py x Py | 7, (p) = Tp-(a)}-

So X is isomorphic to the coset space G x G/ A PP and not to the space
G x G/ AP,,P;- Thus Lusztig’s method is not applicable as it is, we need to

generalize it to a class of groups including A PP

2.5.1 The group AP,Qﬁ and the G-orbits in G X G/AP,Q,(;

Let P and () be as usual two parabolic subgroups of G containing 7'; L the
Levi subgroup of P containing T, M the Levi subgroup of () containing 7',
U the unipotent radical of P, V' the unipotent radical of Q, 7p : P — L
and mg : Q — M the canonical projection; furthermore let Z;, C Z(L) be
a subgroup of the center of L, Zy, C Z(M) a subgroup of the center of
M,L=1/Zy,, M =M/Zy, 7p: P — L, 7g:Q — M, 7y : L - L,
7ar : M — M the canonical projections. Let & : L — M be an isomorphism

of the groups L and M, then we can define the group

Apgs={(p,q) € Px Q| &(7p(p)) = Tgla)}-

We may proceed in the study of G-orbits in G x G/ A P,Q,5- We consider the
fibration

G x G/AP,Qﬁ

|

G x G/P x @
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the fibers are isomorphic to L\ L x L. The fibers over (P, Q) is P X Q/AP,Q,;,,
it is isomorphic to f)\i x L through the isomorphism

P x Q/AP,Q,& — L\L X f/

given by
(p,q) = Fp(p) ™" 7o) ™).

By Bruhat decomposition, the base space decomposes into the disjoint union
of a finite number of G-orbit

GxG/PxQ=]]G (1w (PQ),

where w is the rapresentative of minimum length of a double coset class in
Wep\W/Wy. As before, the G-orbits in G x G/Apgq s above the G-orbit G -
(1, w)-(P, @) correspond bijectively to the orbits in the fiber over (1, w)-(P, Q)
under the group Stabg((1,w) - (P, Q)) = S,. Moreover the map z — (1, w)x
maps the fiber over (P, Q) to the fiber over (1, w)- (P, @), and transforms the
orbits under the group Z,, = (1,w)'S,(1,w) into the orbits under S,,. Thus
the problem is reduced to the study of Z,-orbits in the fiber over (P, Q). If
the fiber over (P,Q) is identified with L\L x L, then Z, acts through its
image Z, < P x Q — L x M — L x L, and it acts by right multiplication.

Proposition 2.5.1. Let G, = L, P, = #p(LNwQu™"), Q, = 6 "7 (w™ " Pwn
M), Ly = 7p(LNwMw™), My = 6 iy (w'Lw N M), Zy, = 7(LN
wZyw™), Zy, = 6 iy(w ' Zyw N M), Ly = Li/Z,, My = M,/ Z,,
&1 : Ly — M, such that o1(l1) = 6 Y(w tlhw). Then the image of Z, in
I isAp o

Proof. We have PNwQuw™' = (LNwMw™)-(LNwVw™) - (UNwMw™")-
(UNnwVw™), and Z, = {(p,w 'pw), p € PN wQuw™'}; so the image of
Z, in L x L is the product of the images of these four factors. The last
one vanishes, the third has image of the type {(1,z)}, the second has images
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{z,1}, the first goes injectively to L x M through the map L x M — L x L
defined by (I,m) — (71 (1), 7x(m)). It is certainly a subgroup of

Fr(LNwMw ') x & 17y (w 'Lwn M) =

2 (LNnwMw ' /ZynwMw ™) x& Y(w 'Lwn M/w 'Lw N Zy),

so we want, the image of a group in the direct product of two quotients by two
different normal subgroups H — H/A x H/B; then, by the exact sequence

{1} = H/ANnB - H/A xH/B — H/AB — {1},

we may conclude that the image of Z,, in L x L is the subgroup defined as
APl,Ql,r'h' ]

This propositon is the basic step in the classification of G-orbits in G x
G/Apg;s Indeed, the classification of the G-orbits over (1,w) - (P, Q) is
reduced to the classification of G;-orbits in G; x G/ API,QI,&I' The group
(G is smaller so, iterating, the process ends after a finite number of steps.
For clarity, we state explicitely the algorithm for the classification.

Lusztig’s algorithm (second version)

e Set Go =G, Ty =T, B =P, Q=0Q, Lo =L, My = M, Uy = U,
Vo=V, Wo=W, Z1, = Z1, Znty = Zat, Lo =L, My = M, 5y = 6 :
I/O—>M0,7?LOZﬁ'LiLO—)Eo,ﬁ'MOZﬁ'MZMO—)Mo.

e Choose [wg] € Wp,\W/Wg,, and wy be a lifting to Gy of the represen-

tative of minimum length of [w].

o Set Gy = Ly, Ty = 71, (Tp), Pi = 71, (Lo NwoQowy ),
Q1 = 65 ' (7, (wy ' Pywo N My)),
Ly = 71, (Lo N woMowy ),
M,y = &4 (g, (wg t Lowo N My)),
Uy = 7o (Lo NwoVowg 1),
Vi = 64t (Fag, (wy ' Lowo N My)),
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W1 the Weyl group of GG; with respect to the maximal torus 71, 71, =
ﬁLO(Loﬂ’w()ZMOwo_l), Z]M1 = 60_1(7?M0(w0_1ZM0w0ﬂM0)), il = LI/ZLU
M, = Mi/Zy,, 61 L, — M, such that a1(l) = Y w thw).

e Choose [wi] € Wp \W/Wg,, and w; be a lifting to G of the represen-

tative of minimum length of [w;].

e Iterate to get GQ, T27 P2? Q27 L2a M27 U2a ‘/25 W2a ZLQ’ ZM27 I~/2: MZ;

9, and so on until Gyyq = Prp1 = Qpy1.

e Classify the g, 1-twisted conjugacy classes in G,1 and choose repre-

sentatives {sq, ([wo), -.-, [w])}
e Choose liftings of w; and s, to G; define
t(([wo), -, [Wk])s Sa) = (Say Wowa...wp—1wy 'w; Ly wi ™)
if £ is odd, and
t(([wol, -+ [Wi]), 8a) = (55", wows...wpwy 'y ..wih)
if £ is even.

Now, as in the first version of Lusztig’s algorithm, the following proposition
holds.

Proposition 2.5.2. The family {t(([wo], -.-, [wk]), Sa)}, as ([wo], --., [wWk]), Sa)
varies through all different outputs of Lusztig’s algorithm, is a set of repre-
sentatives of G-orbits in G x G/Apgs.

Proof. The only difference with the case of G-orbit in G x G/Apg,, is that
the G; are not subgroups of G but subquotients, so one must each time lift
representatives from G; to G;_1, all the way up to G; otherwise the proof

runs parallel. O

For the codimensions of orbits we have:
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Proposition 2.5.3.

codimg, . (G - t(([wo], .-, [wi]), Sa) - AP,Q,Fr) =

k
Y codimg, (PwiQ;) + (dim Gryr — dim Stabg, , (sa))-
i=0
Proof. Follows from the definition of the G-orbit G - t(([wo), .-, [wk]), Sa) -
AP,Q’&. l:‘

2.6 Closures of G-orbits

Let X be the canonical compactification of a connected semisimple algebraic
group G of adjoint type. Our main aim is the study of G-orbits in X and
their closures. The last two propositions give a satisfactory classification of
G-orbits in X, unfortunately they say almost nothing on the relations of
closures between orbits. Let us state in the form of a proposition what kind

of information we can derive.

Proposition 2.6.1. Let O;, Oy (01 # Oy) be two G-orbits in X. If O, C Oy
then:

(i) if Oy is contained in the G x G-orbit Xy, then O is contained in its
closure X1 =11,5; Xs;

(#i) if Oy and Oy are contained in the same G x G-orbit Xy, then the se-
quences ([w%l)], oy [w,(cll)]), ([w?)], oy [w,(;)]) associated respectively to O
and Oq, must satisfy the condition:
if 1 <i < min (ky, ko) is the integer such that, for j < i,

1 2
Gy =G =G¥

J

P=pPY =pP? ;=@ =Q?, [w
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and
W] # W],
then
Pi—lw«gl)Qi—l C Pz'—lwg)lQi—l;

(1v) if the sequences associated to Oy and Os are the same, then Oy and O,
correspond to ogy1-twisted conjugacy classes G and Gy in Gy, we
must have Gy C Gy in Gry1; and vice versa if G1 C G, then O1 C Os.

Proof. (i) and (ii) are obvious; (iii) and (iv) depend on the basic general fact
that if X — Y is a G-equivariant fibration, for two G-orbits in X, O; and
O, over the same G-orbit G, in Y, we have O, C O, if and only of the
Stabg (y)-orbits in X,,, O1 N X, and O, N X, satisfy O, N X, C m O

More loosely speaking, there is decomposition of X into G-stable locally
closed pieces inside each of which the relations of closure between G-orbits
are reduced to relations of closure between twisted conjugacy classes; i.e., the
closure of a G-orbit inside the locally closed G-stable set which contains it
is known, but outside such locally closed piece it is not clear which G-orbit
it will contain. Of course it may contain only G-orbits from locally closed
pieces in the closure of the locally closed piece which contains it, and of
course it may contain only G-orbits of lesser dimension. The dimension of
G-orbits is easy to compute and the relations of closure between the locally
closed subsets of the decomposition is easy to understand; so this gives many
candidates, but other criteria of closure are necessary to actually be able to
determine wheter a candidate G-orbit is in the closure or not.

Let us discuss some results which in many cases enable us to gain more
information on the closure of a G-orbit. One way to maintain control of
closure relations is by considering the fibration X; — G/P; x G/P; and not
just its restriction to the open subset X;. Such fibration has fiber isomorphic

to G, the canonical compactification of the adjoint quotient G of the Levi
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factor of P;. One looks separately at G-orbits over each Bruhat cell in G/ Py x
G/ P;; for the orbits over the cell corresponding to w, the problem reduces
to the classification and closure of Z,-orbits in G;. Z, acts on G; through
its image in G; x G, which we have seen to be Ap, ¢, 5, for particular P,
@1, 71. Unfortunately this method may not be iterated, and it is not clear
how to solve the problem of closure of Ap, ¢, 5,-orbits in G, except for few

specific case. Summarizing, we have:
Lemma 2.6.2. Consider the fibration
X;

G/PI X G/PI_,
with fiber isomorphic to G, then for the G-orbit in X; over the cell G -
(L,w) - (Pr, P;) of G/Pr x G/P;, the problem of understanding the closure
of G-orbits is reduced to the problem of understanding the closure of Apl,Ql,gl -
orbits in Gy.

Remark 2.6.3. Even if one were to understand the closure relations of
APth,g-l—OT'b’L'tS in Gp, one would still have no information on which orbits

not over G - (1,w) - (Pr, P;) are in the closure of the orbit in consideration.

Remark 2.6.4. Over G - (P, P;), the G-orbits correspond to Gr-orbits in
G1, and as we have said, such correspondence is compatible with the relation

of closure between orbits.

Remark 2.6.5. If G; = PGL(2), it is easy to check that the only possi-
ble Ap, g5 are either P, = Q, = PCGL(2), &, : PGL(2) — PGL(2), or
Ap, g1.5» = B x B~, where B denotes a Borel subgroup of PGL(2).

Remark 2.6.6. Decomposing X into the G-stable locally closed subsets in-

dezxed by the sequences ([wy, ..., [wk]),

X=JI Ugwelsiw:

([wO]aa[wk])
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if a particular U decomposes into a finite disjoint union of G-orbits, then
this decomposition corresponds to a Bruhat decomposition; the open orbit is
dense in U, and thus closes to a union of the Uljuy,...[wy); which are in the

closure is easily determined.

Others methods of determination of the closure of an orbit are be explicit
degeneration, i.e. exhibiting a family or sequence of elements contained in
the orbit and having limit inside another orbit; or, usually for big orbits, e.g.

regular orbits, the lemma:

Lemma 2.6.7. Let V be a smooth projective variety of dimension n, let
G be a connected reductive group acting on V', let Dy, ..., Dy be G-stable
divisors of V. Supposing that the intersection Z = D N ... N Dy contains
gust one G-orbit O of codimension not greater than k, and that there exist

no i-dimensional families of G-orbits of codimension not greater than k + 1,
then O = Z.

Proof. The irreducible components of Z must all have codimension not greater
than k. These irreducible components are G-stable, hence must contain ei-
ther an open dense G-orbit or an i-dimensional family of G-orbits whose total
space is dense. By the hypotheses, only O fulfills these requirements. 7 is

irreducible, containing O as an open subset. O

A useful negative criterion for an orbit not to be in the closure of another

one is:

Lemma 2.6.8. Let X — P(EndV,,) x ---P(EndV,,) be the canonical com-
pactification of G with its canonical embedding in P(End(V,,)x- - -P(EndV,,),
where w1, . ..w; are the fundamental weights of G and V,,, is a representation
of highest weight w;. Let s = (stV, .. .sl(l)) € EndV,, x ---EndV,,, s* =
(s§2), . --51(2)) € EndV,,, x ---EndV,, such that their image in P(EndV,,) x
---P(EndV,,) belongs to I; supposing that EndV,,, = W' @ W" as G-module,
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. 1 . / . 2
and for such 1, sg ) has nonzero component in W while sz( ) has zero compo-

nent in W', then the G-orbit G - [sV] of the image of s in X is not in the
closure of the orbit of [s?] under G.

Proof. 1f one component is zero, it cannot degenerate to an element which

has nonzero such component. O
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(G-orbits and closure of G-orbits
in the canonical

compactification X of G

In this chapter we apply the methods developed in chapter two to classify
the G-orbits in the canonical compactification X of G for low rank G. More
explicitly, we treat exhaustively the cases G = PGL(2), G = PGL(3), G =
PSp(4), in the sense that for each of these we give the list of G-orbits in
X, for each G-orbit we produce a representative and moreover we give the
closure relations between such orbits. For cases G = PGL(4) and G = G, we
do not provide such an exhaustive discussion of G-orbits; we limit ourselves
to showing that in such cases there are G-orbits whose closure in X contains
infinitely many G-orbits. That will be sufficient to give a negative answer to
the question of whether, for such GG, the closure of any G-orbit in X consists
of a finite union of G-orbits. In fact, we are able to say much more; from
these basic cases we deduce that if G semisimple adjoint is such that any G-
orbit in its canonical compactification X closes to a finite number of G-orbits,
then G is a product of simple factors, each of which being either PGL(2) or
PGL(3).
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3.1 G=PGL(2)

The case G = PGL(2) is particularly simple, the analysis of G-orbits and of
their closure relations can be carried out quite explicitly. Let Ms.o denote
the set/vector space/algebra of two-by-two matrices with coefficients in C,
then P(Msys) carries a G X G-action

G x G x P(szz) — ]P(MQXQ)a

given by (g1, g2, ) — gizg; "
Thus X = P(Myyy), and the G x G-orbit decomposition of X is X =
Xy X1, with

Xp=GxG-(',)=PGL(2),

X, =G x G- (}3) = P({matrices of rank 1}) ¥ G/B x G/B = P' x P'.

The G-orbits in Xy are just the conjugacy classes in G = PGL(2), these are
classified by the Jordan form:

Ay =G- (1)) (3.1)
B =G-(g

), (3.2)

—=—s

App = Ay € X = Xdor X' = X1, dimAp = 2 for A # 1, dimAp; = 0,
dimB = 2.
The G-orbits in X; correspond to the Bruhat cells in G/B:

Xi=G-(3O)1[6- (o).

Denoting C = G-(§9)and D =G-(J}), we have dimC = 2 and dimD = 1.
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3.1.1 Closure of G-orbits

By the results of chapter one, we have

Lemma 3.1.1. Ay = A,[[D, B=B][D,C=C]]D.

3.2 G =PGL(3)

3.2.1 Basic definitions

The Lie algebra of G is g = sl(3, C). Let T be the torus of diagonal matrices
inside G, t its Lie algebra, oy : t — C be the root such that a;((t1,t,t3)) =
t; — tg, and g : t — C be the root such that as((t1,12,%3)) = to — t3. The
roots of g relative to t are oy, g, a1 + g, —vy, —ip,—a; — g Choosing the
Borel subgroup B of upper triangular matrices in G, we get that the positive
roots are oy, qg, a1 + g, and the simple roots oy, as. The Weyl group W of
G relative to T is generated by the reflection sy, for which s;(ay) = —ay and
s1(ag) = a1 + s, and the reflection sy, for which sy(an) = —an and so(ay) =
oy + ay. More precisely, we have W = {e, s1, So, $152, $251, 515251 = $25152}-

The root spaces are the lines generated by the elementary matrices

010 000
E :(000) E :(100)
a1 000/’ a1 000/’

000 000
E, =(001 E .. =1(000
a9 OOO ) a2 010 )

001 000
Pasos = (§43) Boores = (111)-

W is isomorphic to &3, and can be identified with the group of permutation

.. 010 100
matrices inside G. So, for example, s; = ((1) 0 (1)), and s = (8 0 (1)) The
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Bruhat order of W is as follows:

Let us now list the standard parabolic subgroups of G and make some re-
marks about the homogeneous spaces relative to those subgroups, which
we will need later on. P be the standard parabolic subgroup of G thus
defined: P = {(ﬁ%%) € PGL(3)}, for its Lie algebra p we have p =
CE,, + CE,, + CEy, 44, + CE_,, + t, and the subgroup Wp of the Weyl
group W corresponding to P is Wp = {e, so}. @ be the standard parabolic
subgroup of G thus defined: ) = {(% (I) E) € PGL(3)}, for its Lie algebra q
we have q = CE,, + CE,, + CE,, +4, + CE_,, +t, and the subgroup Wy, of

the Weyl group W corresponding to @ is Wg = {e, s1}.

Remark 3.2.1. dim G/P =2 and dim G/Q = 2, thus, dim G/PxG/P =4
and dim G/Q x G/Q = 4.

Remark 3.2.2. /B, Bruhat decomposition] Wp\W/Wp = {e, s1}, and G/ P x
G/P =G - (P,P)[]G: (P,s1P). Analogously for Q, Wo\W/Wq = {e, s2},
and G/Q x G/Q = G- (Q, Q)]G - (@, Q). And for B, G/B x G/B =
H,ew G- (B,sB), dim G/B x G/B = 6.

Definition 3.2.3. Let Ap be the subgroup of G x G defined by Ap =

{(g91,92) € P x P~ | mp(g1) = mp-(g2)}, and analogously Ag = {(g1,92) €
Q@ *x Q™ [ mq(g1) = mo-(92)}-

3.2.2 The canonical compactification of G = PGL(3)

Let Mjy3 denote the set/vector space/algebra of three-by-three matrices with

coefficients in C. Let us consider the inclusion
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G — P(ngg) X P(M3X3),

given by g — (g, 'g~!). This inclusion is G x G-equivariant with respect to
the G x G-action on G defined by (g1, 92) -9 = 9199, ', and the G x G-action

on P(Msys) x P(Msys) defined by (g1,92) - (z,9) = (q1295 %, ‘g, y('g2))-
The closure of G in P(M3y3) X P(M3y3) is a smooth projective variety with a
G x G-action which extends that on G (see [DC-P]). We denote this variety
by X, it is the DeConcini-Procesi compactification of G. The G x G-orbit
decomposition is as follows,

X =X0HX1 HXZHXIZa

with

—GxG- ((1 )(1 ))%PGL(Z’)),
XlszG-((lo ) ( 1))’£G><G/Ap,

%=6xG-(("1,).(%))) 26 x6/a,,

X =G xG- ((1 ) ( 0, ) ~G/Bx G/B".
The G x G-orbits are locally closed subsets of P(Mj,3) x P(M3y3), the closure

relations are

G=%=X=X]][x[][X]]Xe
=X [[ X,
=X, [[ Xue,
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X—12 - X12-

Let us give the equations defining these closed sets inside P(Mj3y3) X P(M3x3).
X=X [[Xi [T X2 [T X12 = {(9,h) € P(Ms3) xP(Maxs) | g ' = "hg = Iy},
X1 HX2 HX12 = {(g, h) € P(Msy3) x P(Msy3) | g 'h ="hg = 0},
X1 [ X2 = {(9,h) € P(Max5) x P(M3) | g 'h="hg =0, rk g =1},
Xy HX12 ={(9,h) € P(Msx3) X P(Msy3) | g h="hg =0, tk h =1},

X12 = {(g,h) € P(ngg) X P(ngg) | g th = thg =0 , rk g = rk h = 1}

3.2.3 G-orbits in X

We begin the determination of G-orbits in X. The G-orbits in the open part
Xy are just conjugacy classes of PGL(3). These are:

o A={I}, dimA=0;

B=G- (éi(‘i)), dimB=4;

« Dy=G-(§18), with A #0,1, dimD,=4;
110 . .
« &=G-(018), with A #0,1, dim&,=6;
* Fou=G- (égﬁ) with A #0,1, u# 0,1, A # p, dimF=6.
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3.2.4 (G-orbits in X3

We now pass on to the determination of the G-orbits in the boundary piece
of the compactification X of G. The boundary X — Xy subdivides in the
disjoint union of X, Xy and Xi5. We must determine the G-orbits inside
each of these three pieces. The way we do it is by applying the results of 2.5,
in particular Lusztig’s algorithm and proposition 2.5.2.

We have the following G-equivariant fibration involving X;:

X4 — GXG/AP

! L

G/PxG/P~ «—— GXG/Px P~

And the decomposition G/P xG/P~ = G- (P,P~)[[ G- (P, s1P~). Thus the
G-orbits in X are partitioned in two classes, the G-orbits over G - (P, P)
and the G-orbits over G - (P,s1P~). Let us list these two types and gives
their dimensions. Following the steps of Lusztig’s algorithm as exposed in

2.5 we get the following.

G-orbits over G - (P, P~)

:mﬂi;eﬁ<<u>m>><<loo>,<°u>>a<<100>,<°a>>,
7= () () (o) () =e (o) ()

G-orbits over G - (P, s;P7)

7= o (LD (C)-C)() = e

010 000 )
000 100 dim J = 6;
000)’(001))’ J ’
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3.2.5 G-orbits in X,

As in the case of X7, we apply the algorithm explained in 2.5.

We have the following G-equivariant fibration involving Xj:
X —— G xG/Aq
G/QxG/Q- +—— GxG/Q xQ~

And the decomposition G/Q X G/Q~ = G-(Q,Q) [[ G- (Q, s2Q~).Thus the
G-orbits in X, are partitioned in two classes, the G-orbits over G - (Q, Q™)
and the G-orbits over G - (Q, soQ~). Let us list these two types and gives

their dimensions. Going through Lusztig’s algorithm we get the following.

G-orbits over G- (Q,Q ")

::’“32{06((\) (e ACr) o)) =e((0,)- (%))
= (1)) () (o)) =6 () ()
G-orbits over G - (Q, ,Q")
7= () L) () () () = @
((é(ég)’((é%))’dimj':ﬁ;

C=6-((0). (o) () () () () -6
((ggé)’(ggg))adimﬁza
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3.2.6 G-orbits in X5

The closed G x G-orbit X, is isomorphic to G/B x G/B~, so the G-orbits

in X5 are just the Bruhat cells of the Bruhat decomposition. Hence we get:

Le:G'((lll)’(lll)) ((100)’(001>):G'((l()o)’(ool))’

::{f—_%_mm)<<1oo>,< ) -e-((349)- (349))
ea (). (1) (o)) e () (380
=6 (1) () () (o)) = (1) (1)
Ce=e (1) () (o) (o) = () ()
o =6((1). () () () = (88 (149))

dim Ly, 5,5, = 3.

3.2.7 Closure of G-orbits in X

Let us give the closures of the regular orbits, i.e. those of maximal dimension.

Proposition 3.2.4. The closure of a reqular orbit contained in Xy is that

same orbit plus the set of nilpotent orbits of X.

Proof. Let us consider the following G-invariant meromorphic functions on
X: fi: X - P and f, : X — P!, defined respectively by (g, h) — IT)Z(&):)
and (g, h) — g‘; (t’(l;:; It is well known that these separate the regular G-orbits
in Xy, i.e. if Oy, Oy are two regular orbits in Xy with f1(O;) = f1(O2) and
f2(01) = f2(O3), then O; = Oy. Thus, if O is a regular orbit in Xy with
f1(0) = a and f»(O) = B, we may consider the equations Tr(g)® = aDet(g)
and Tr(h)®> = aDet(h). The hypotheses of lemma 2.6.7 are satisfied with

respect to these two equations. Moreover, by direct verification, we check

that in X — X only the nilpotent orbits satisfy these equations. O
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Let us look at the regular orbits in X.

Proposition 3.2.5. Let us consider the meromorphic function f : X — P!

defined by (g,h) — gggz) Then f separates all the regular orbits of X

except J and L., for which f(J) = f(L.) = 1.

Proof. Direct verification on representatives. O

Corollary 3.2.6. If O is a regular G-orbit in X1, different from J, then its
closure O is the union of all G-orbits in X, projecting in the nilpotent variety

by the second projection.
Proof. Apply lemma 2.6.7. O
Proposition 3.2.7. L, is in the closure of J, L, is not.

Proof. L, cannot be in the closure of J since its first component is not
nilpotent while that of J is. To prove that L,, is in the closure of J one
can either produce an explicit degeneration of elements of 7 that tends to
an element in Ly, , or apply lemma 2.6.2: both G-orbits intersect the fiber
of X, over (§ é §) by the projection on the second component, in such way
the problem is reduced to the closure of B x B~ -orbits in the canonical
compactification of PGL(2), the orbits are given by Bruhat decomposition,
J corresponding to the open orbit. O

Of course analogous arguments hold in the case of X,. Summing up:
Corollary 3.2.8. In X, for reqular orbits, we have:
¢ C=CUBUAUKUK ULy s ULgs ULg srsrs

¢ &5, =EUDN\UKUK ULy sy ULgys, UL isnsis

o Finu=FpUKUK UL, UL ULy sps5

¢ T=TUGULL, ULy ULgs ULy srsis
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hd = H[/\] U ‘C-‘iz U ‘68182 U ['5251 U ['513251;
e J=JUKU Lo ULgisy ULy UL sps,5

J
¢ T =T UG ULy ULy, ULy ULy s

!

°
X

N=H ULy ULy, UL ULy s
L4 7 = \7, U K:, U ESQ U Eslsz U £3251 U £s13251 ;

e=Le ULy UL, ULy s, ULsys, ULy sns,-

D

[ J
Now we go on to the closures of the smaller orbits.

Proposition 3.2.9. The closure IKC of K is the union of the nilpotent G-orbits
of X contained in X, i.e. K=KU Ly, ULgs, ULs sms,-

Proof. K is in the intersection of the two G-invariant divisors D; and Dy
of X; defined by D; = {(g,h) € X, | Tr(g) = 0} and Dy, = {(g9,h) €
X, | Tr(h) = 0}. We verify directly that these two conditions are equivalent
respectively to g being nilpotent, h being nilpotent. Moreover the hypotheses
of the lemma 2.6.7 are satisfied, thus K is the intersection of the nilpotent
variety of X with X;. O

An analogous argument holds for C'.

Proposition 3.2.10. The closure K of K' is the union of the nilpotent G-
orbits of X contained in Xa, i.e. K =K ULy s, ULgs ULgisys,

Proposition 3.2.11. B=BU AU L, ,,s,, Dy = Dy U Ly, 505,

Proof. the dimension of the G-orbits B and D, is four, hence the only G-
orbits to which they can degenerate are A and L ,,s,. It is clear that B
degenerates to A; now B U A cannot be closed since it has dimension four
and is contained in the affine variety X3. The same argument holds for
D. O
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Proposition 3.2.12. G =G U L, 5, and G =G U Ly, 4.5,

Proof. The G-orbit G is not closed since its projection on the first compo-
nent is not. Again, by dimension reasons, the only G-orbit to which it can

degenerate is L, ,,,- The analogous argument holds for G . O

We summarize the complete list of G-orbits in X together with their
closure relations, for G = PGL(3), in the following diagrams.

c & Faw I My g &
5 \ » .
K
4 5281
3 Eslszsl
0 .

A

In the first three columns of this diagram we find the G-orbits in Xj, in
the second three the G-orbits in X, and in the last three the G-orbits in
X12.
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We reproduce also the analogous diagram with in the second three columns
the G-orbits in X,. There is a symmetry which reflects the symmetry be-
tween the roots o and ay of PGL(3).

6 ¢ & T T M T Le
\X

5 51 s2

4 $281

3 L

0 [

A

For G = PSp(4) there will be an analogous symmetry only as regards the
classification of orbits, i.e. the graphs of depicting orbit closures for PSp(4)

will have the same vertices but different edges.

3.3 G=PSp4)

Let J be the block (_OI 6), I being the two by two identity matrix, then the
symplectic group of rank two is defined in the following way: Sp(4) = {g €
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GL(4) | gJ'g = J}. The center of Sp(4) is {£1}, the group PSp(4) is defined
as the quotient Sp(4)/{+1}, it is the adjoint group associated to the simply
connected group Sp(4).

3.3.1 Basic definitions
The Lie algebra of G is g = sp(4, C). Let T be the torus of diagonal matrices

t1
t h
inside Gi.e. T = {( 2 ! 1 ) }, tits Lie algebra,i.e.t = {( b2 - )}
= —ta

2
ap : t = C be the root such that oy (diag (¢1,t2, —t1, —t2)) = t1 — t3, and
ay : t = C be the root such that ay(diag (1, e, —t1, —t2)) = 2t5. The roots

of g relative to t are ay, ag, oy + o, 204 + g, — 1, —Qip,— Q] — g, — 2011 — Q.

t1 *x %
0t x =

Choosing the Borel subgroup B as the group {( 00 =1 0 ) € PSp(4)}, we
00 * t;'

get that the positive roots are o, ay, a1 + @, 21 + 9, and the simple roots
a1, ag. The Weyl group W of G relative to T is generated by the reflection
s1, for which s1(a;) = —ay and s1(a2) = 2a4 + ay, and the reflection s,
for which s9(ap) = —ay and s9(@;) = a1 + as. More precisely, we have
W = {e, 51, 2, 5152, 5251, 515251, 525152, (5152)° = (8251)?}. The root spaces
are the lines generated by the matrices

188
Em: ’ E—Oq: 000 -1 ’
000 O

0
0
0

SOCO
oo
SOoCO

[ary

0000 0000
Esai4+a: = | 0000 | » E—2a1-a = | 1000 | -
0000 0000
T T
Eoitas =10000) » B-ar-as =\ 0100 | -
0000 1000
T T
Eo,=10000) » E-as=10000 ] -
0000 0100
W is isomorphic to the dihedral group ¥4, and can be identified with the
bl

0-1 1
group of matrices inside G generated by s; = (1 o 01 ) ,and s = ( 0, _1) ,
10
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the Bruhat order of W is as follows:

sl Nys,

81821><18281
S1 8281l><i523182
N

(81:92)2

Let us now list the standard parabolic subgroups of G' and make some remarks
about the homogeneous spaces relative to those subgroups, which we will

need later on. P be the standard parabolic subgroup of G' thus defined:
P={
CEq4y1a, +CFEoy 10, +CE 4, +t, and the subgroup Wp of the Weyl group W
corresponding to P is Wp = {e, s1}. @ be the standard parabolic subgroup
of G thus defined: @ = {<§ % Z %) € PSp(4)}, for its Lie algebra q we have

* %k %k

q=CE,, +CE,, +CE,, +a, + CE5,; +a, + CE_,, +t, and the subgroup Wy
of the Weyl group W corresponding to @ is Wy = {e, s2}.

* ¥ X ¥

€ PSp(4)}, for its Lie algebra p we have p = CE,, + CE,, +

* %K X ¥

OO * *
OO * ¥

Remark 3.3.1. dim G/P = 3 anddim G/Q = 3, thus, dim G/PxG/P =6
and dim G/Q x G/Q = 6. G/P parametrizes the set of isotropic planes in
C* with respect to the standard symplectic form J, while G/Q parametrizes

the set of isotropic lines inside C* with respect to the standard symplectic
form J.

Remark 3.3.2 (Bruhat decomposition). For any connected reductive
group G and two parabolic subgroups Py, P, containing a mazximal torus T
of G, we have that the double coset classes in G with respect to Py and P,
are indezed by elements of Wp \W/Wp,, where Wp, is the subgroup of the
Weyl group W of G associated to Py, and likewise Wp, for P,. Moreover
if s € Ng(T) is a representative of the double coset class s € Wp, \W/Whp,,
then the double coset class in G indexed by s is PisP;.
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We will need such decomposition in the case G = PSp(4), P, = P,
P, = P~ the opposite parabolic of P and the case G = PSp(4), P, = Q,
P, = @~ the opposite parabolic of Q: Wp\W/Wp = {e, s2, 595152}, and
G/PxG/P~ =G-(P,P)][[G-(P,soP )| G- (P, s38152P~). Analogously
for Q, Wo\W/Wqg = {e, s1,s18251}, and G/Q x G/Q~ =G - (Q,Q)[[G -
(@,51Q7)[1G - (Q,515251Q7). And for B, G/B x G/B™ = [[,en G -
(B,sB7),dim G/B x G/B~ =8.

Definition 3.3.3. We define, following chapter two, L to be the unique Levi
factor of P containing T, L to be the semisimple adjoint quotient of L, and
7p : P — L the canonical surjection. We define M to be the unique Levi
factor of Q containing T, M to be the semisimple adjoint quotient of M, and
Q@ — M the canonical surjection. Now let Ap be the subgroup of G x G
defined by Ap = {(g1,92) € P x P~ | mp(91) = mp-(g2)}, and analogously

Ag ={(91,92) € Q x Q™ | mq(91) = Tg-(92)}-

3.3.2 The canonical compactification of G = PSp(4)

Let us consider the standard representation V = C* of Sp(4), and its exterior
square A\*(V), the representation V is irreducible with highest weight the
fundamental weight w;, while A*(V) is not irreducible but has a highest
weight corresponding to the fundamental weight w; and the corresponding
weight space is one dimensional. Then by results of [DC-P|, we have that

the closure of the immersion

2

G — P(End(V)) x P(End(/\(V))

inside P(End(V)) x P(End(A*(V)) is a smooth projective variety endowed
with a G x G-action extending the one on G given by left and right multi-

plication. The G x G-orbit decomposition is:

X=X@HX1 HXQHX127
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with

1
1 1
Xp= Gx G20~ GxGJAG) =G, with$0=(( L )( b ))
1 11
1 10
X1=GXG-$1gGXG/AP, With$1:(< 10 )a( 00 >)
0 00
1 10
X2:GXG'.’I)2§GXG/AQ, Wlth$2:(< 00 ),( 10 ))
0 0
0

1
1 0
Xi2=GxG -29=2G/BxG/B™, Withl‘m:(( % )v( % ))
0 0
0

It is also possible to give a geometrical interpretation of these subvarieties,
and to base the classification and closure of G-orbits in X on such geometric
interpretation. We follow the method of Lusztig for the classification of
G-orbits which is more algebraic, hence we will not use such a geometric
interpretation even though it would be of interest to understand the exact

relations between these two methods.

3.3.3 G-orbits in Xj

The G-orbits in X are the conjugacy classes in PSp(4). The classification
of conjugacy classes in PSp(4) is well-known. If {g, € PSp(4)} is a family
of representatives of conjugacy classes, then a family of representatives of G-
orbits in Xy is given by {(ga, A%da, 'g;' € Xy}. Let us then list the conjugacy
classes of PSp(4):

1
° A=G-( b ),dim.A:O;

1
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), dim 5[)\] = 6, A 75 0,1,—1;

,dim Fryy=8, A#0,1,—1;
(Al

A1 0 0 0
0 X O 0 .

b I[)q A2] — G ( 0 02 )\fl 0 )a dim I[)\l,)\z} = 8: /\laAZ 7é Oa la —1
00 0 A

3.3.4 G-orbits in X;

We now determine the G-orbits in the boundary of X. X — Xj is the union
of X1, Xo and Xj5. As for the case of PGL(3), we determine the G-orbits in
each of these pieces by applying the results of 2.5 and in particular Lusztig’s
algorithm and proposition 2.5.2.

We have the following G-equivariant fibration involving X;:

X, —— GxG-z1 — GxG/Ap

! .|

G/P x G/P~ +—— G x G -pry(z1)
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We have also the decomposition

G/P x G/P~ =G - pro(z1) HG- (1, s9)pra(x1) HG- (1, 8981 82)pra(z1).

Thus the G-orbits in X; are partitioned in three classes, the G-orbits over
1
0

1
0
G- ( %, ) , the G-orbits over G - (1, s5) ( %, ), and the G-orbits
0
0

0
0

1
0
over G - (1, 598189) ( o, ) . Let us list these three types and gives their
0
0

dimensions. Following the steps of Lusztig’s algorithm as exposed in 2.5 we

get the following.

G-orbits over G - proxy

The representatives of the orbits are:

(C)()

Thus the G-orbits are

1
.jzg.((110 >’( 000 ))’dimjzﬁ;
0 0
0
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1
0
),( %, )),dimlCzS;
0
0

OOOO
OOOO
——HOO
—HOoOoO

e K=(G-

8, with \#0, 1.

1
0
),( 000 )),dimﬁ[)\]
0

G-orbits over G - (1, so)praz;

The representatives of the orbits are:

Thus the G-orbits are

)),dimM:&

OCOoOOCOOO
[=]elolelolo]
OOOOSO
—HOOOOO
OOOOOO
[=]elolelolo]

S—HO O
cooC
ocooC
—oOoo

o M=G-

=1.

o

[=]ele e o]
(=]l e o]
[=]ele el
—HOOOOO
[=]ele e o]
(=]l e o]

N——————

7 N
—ooo
cooo
cooo
oo

e N=G-

G-orbits over G - 595189prox1

The representatives are:
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() 0 C))

() G D0 ()

N
7N
—OOoOOoOoOo
SOOOOO
OO OOO
OO OoOOO
OO OOO
OO OoOOO

Thus the G-orbits are

)),dim@zS;

—HOOOoOOoOO
[l e fenJenTen]
SOOOOO
SOOOOO
[e]e Yo e Yen ]
[l e fenJenTen]

—O OO
—

(=] | oo

SO OO

[l o)

e O=G-

)),dimP=5;

—OOOOO
COOCOO
COOCOO
cooCcOoo
SooCcOoO
COOCOO

—
| [e=leje)

— OO
(=Y el i)
(=Yl )

e P=_G-

5, with A #0,1.

)) , dim Qyy

As for X, we apply the algorithm of 2.5.

—HOOOOO
[=]= o]l
COOCOOO
[=]= ]l
OO
OOOOOO

—OooOo
o<oD
(=l lemlen]
(=l jelen]

e On=G- ((
3.3.5 G-orbits in X,

We have the following G-equivariant fibration involving Xj:

G x G/AQ

=

Gx@G- i)
Prll
G x G -pri(z2)

=
P

Xo
|
G/QxG/Q
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We have also the decomposition

G/Q xG/Q~ =G - pri(z2) HG- (1, s1)pri(x2) HG- (1, 518281)pra(zy)-

Thus the G-orbits in X, are partitioned in three classes, the G-orbits over

1 1
G- ( %0 > , the G-orbits over G - (1, s1) ( 0, >, and the G-orbits over
0 0

1
G - (1, 528189) ( O, ). We list these three types and give their dimensions
0

by Lusztig’s algorithm.

G-orbits over G - prizs

The representatives of the orbits are:

() (7))

Thus the G-orbits are

1
1 0

0 0
10
) 1 00
'K:G'(< 00>7<88
0 00
00
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8, with A # 0, 1.

1 )\0 L . ,
G- < 00 ), AT 0 ,dlm,Cm
0 00

G-orbits over G - (1, s1)prizs

The representatives of the orbits are:

OOOOOO
[e]e e fen ] Y]
[ oo el ]
[=le e Yen ] en]
OOOOOO
OO—HODOO

SoOoOo
coo0o
—OoOoO
SOOO

Thus the G-orbits are

)),dimM':&
)),dim/\/’:7.

SO OO
OO OO

~—
[e=Yen] | [eJenYen]
SO OO

OO OO0
—OOoOOoO

OOOO
[==]eJenYen]
—OoOoO
OOOO

G -

o M

COOCOOO
COOCOoOO
—HOOOOO
OO O
COOCOOO
COHOOO

[e=]e]en]en]
[=>]en]en]en]
—OoOoO
[=)en]en]en]

e N =@G-

G-orbits over G - 515951priTy

The representatives of the orbits are:
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() G ) C))

COKOOD
[=lelelelolo)
—HOOOOO
[=lelelelole)
[=lelelelole)
[=lelelelolo)

[e=jenlenlen)
—OoO
[=jele o)
oo Oo

Thus the G-orbits are

),dim(’)’—f&;
/

OO—HOOO
[=Yelololole)

—
| [l

OOOOOO
[=lelwololole)
[=Yelololole)

OOOO
—HOoOoO
[=>Yen Yo Y]
OOOO

G -

e O

),dimP'E);
J

—OoO—O0O
[}l o)

—
| (el enfen]en]

[}l o)
[}l o)
OO0

[=)en]enYen]
—OooO
[e=]en]enYen]
[e=]en]enlen]

G -

o P

5, with A %0, 1.

) ) , dim Q'py

The G-orbits in X9 are just the cells of the Bruhat decomposition. So we

co<cocoo
COOCOO
—HOOOoOO
cooCcoo
COOCOoO
COOCOO

[=)eJenlen]
—OoOoOo
OOOO
OOOO

e Q=G ((
3.3.6 G-orbits in X12

have:

G -

Ve
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7;

)), dim Vg,

[e]e e Yen]en]en]
[l e Yen]en]en]
[e>]e e fen]en] ]
[e=]e e fer]en]en]
[e]e e Yen]en]en]
[ e e ler]en]en]

OOOO
OOOO
—HOoOOO
[=]eJen]en]

)),dim Vs, =T,

[=]elelolelo)]
[=]e]elelelo)
OOOOOO
iplelelelele)
[=]elelolelo)]
[=]e]elelelo)

OOOO
OO
[ Yo Yen]
—OoOoO

6;

)) , dim Vg, s,

[l lololol]
[e]elelolo]l]
SOOOOO
—OOoO0OO
[l lololol]
[e]elelolo]l]

—OoO
[e=]en]enlen]
[==)en]enYen]
[=]en]enYen]

6;

)) , dim Vg,

[=]elelololo]
[=]elelelele)
iplelelelele)
[=lelelelele)
[=]elelwlolo]
[=]elelelele)

OO
OO
—OoOoo
SooCo

5,

)) , dim Vs, g6,

—HOOOOO
[e el o] ] o]
OOOOCO
OOOOCO
[=]elee]e]w]
[e el o] ] o]

—OOC
[e=lelen]en]
[==]eJe]en]
[==]eJen]en]

4.

)) , dim Vis1s0)?
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3.3.7 Closure of G-orbits in X

In the open part Xy, the G-orbits correspond to the conjugacy classes in
PSp(4) and the relations of closure between G-orbits correspond to the re-
lations of closure between the conjugacy classes in PSp(4). These are well

known and we recall them below in the form of a diagram:

8 1D tFio o Hp L]
6 1C 3N G

4 18

0 ‘A

The numbers to the left indicate the dimensions of the orbits, and the
straight lines connect an orbit to another in its closure, going downwards
of course. So the orbits on the top row are the regular orbits. In the first
column there are the unipotent conjugacy classes, while the last one contains
the semisimple regular conjugacy class.

So the the relations of closure between orbits of the open part are not
problematic. Let us determine the closure of a regular orbit of the open part

inside all of X. These will follow by a computation of the invariants.

Proposition 3.3.4. The closure of a regular orbit in Xy is the set of nilpotent
orbits of X.

Proof. We consider the G-invariant meromorphic functions on X already
considered in the case G = PGL(3): fi : X — P! and f, : X — P', defined

Tr(g)3 Tr(h)3
De(tg(z,) and (g, h) — De(t(l)z)'

G-orbits in Xy. Outside of Xy, having a complete list of representatives of

These separate the regular

respectively by (g, h) —

orbits, we may check directly that the equations Tr(g) = 0, Tr(g) = 0, imply
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g and h are nilpotent. We verify also that no regular G-orbit in X — Xj is

nilpotent. Lemma 2.6.7 thus concludes. O

A similar computation of invariants permits the determination of closures

of regular orbits in the boundary. Let us start with the regular orbits in X.

Proposition 3.3.5. Again as in the case of G = PGL(3), let us consider
the meromorphic function f : X — P! defined by (g,h) — gg% Then f
separates all the regular orbits of X, except M and V., for which f(M) =

fVe) = 1.

Proof. Just compute the function on the representatives of the regular orbits
in Xl. O

Corollary 3.3.6. If O is a reqular G-orbit in X1, different from M, then its
closure O is the union of the G-orbits with the same value of f as O and of

the G-orbits in X, projecting in the nilpotent variety by the first projection.

Proof. Follows by application of 2.6.7. O
For the closure of M one needs a further argument.

Proposition 3.3.7. V, is in the closure of M, L, is not.

Proof. L, cannot be in the closure of M since its second component is not
nilpotent while that of M is. To prove that Ly, is in the closure of M
one goes about in exactly the same way as for G = PGL(3):either by an
easy explicit degeneration , or by 2.6.2, reducing the problem to the Bruhat
decomposition of the canonical compactification of PGL(2) by projecting on

the second component. O

Now, in the case of G = PSp(4) there is no symmetry between X; and
X5. Indeed, neither the homogeneous spaces nor X; and X, are isomor-
phic. Nonetheless, the arguments we used to find the closures of the regular
G-orbits in X, work also in the case of regular G-orbits in Xy by just inter-

changing 1 and 2 in their various occurences. We may conclude:
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Corollary 3.3.8. In X, for reqular orbits, we have:

o K = KUJUNUPUQRUOUV,, UV, 5,UVs, 5, UV, 051 UViy515, UV (5150)2 5
o Ly = LpUNUPUQRUOUV,, UV, 5, UVs,6 UVs, 56, UVsy515, UV (515)25
e M= MUNUPUQRUOUV,, UV 5, U V505, UVs, 555 U V505 UV (515025

K=K UJ UN UP UQ,UO UV, UVs, 5, UVsye, UV 00 UV sys16, U

<

(s152)27

Liy = LiUN'UP UQ L UO UV, UVs, 5, U35, Wsi 6350 W s 15UV (s 5025

o M = MUN'UP'UQ [, UO UV;,UVs, 5,UVs0, UV, 536, UV iy 515UV (510)
o 7e = Ve U Vsl U VSQ U Vslsg U Vszsl U Vslsgsl U ngslsg U V(slsz)2 .

Now we go on to the closures of the smaller orbits. Only for N and
N, considerations of invariants are sufficient for the determination of the

closures.

Proposition 3.3.9. The closure N of N is the union of the nilpotent G-
orbits of X contained in X1, i.e. N = NUPUQp UO UV, UV, U
V81$281 U VS28182 U V(8182)2'

Proof. We use the same argument as in the case of G = PGL(3). N is
in the intersection of the two G-invariant divisors D; and D, of X; defined
by D; = {(g9,h) € X; | Tr(g9) = 0} and Dy = {(g,h) € X; | Tr(h) = 0}.
We check directly that these two conditions are equivalent respectively to g
being nilpotent, h being nilpotent. Moreover the hypotheses of lemma 2.6.7
are satisfied, thus A is the intersection of the nilpotent variety of X with
Xi. O

Analogously for N

Proposition 3.3.10. N = N UP U Q;,;U O UV, UV, UV U
Vsys1s, U V(5182)2'
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This takes care of G-orbits of dimension greater than or equal to seven,
for the orbits of dimension six this type of argument breaks down and one

must resort to arguments based on lemma 2.6.8 instead.

Closure of the orbits of dimension six

In the open part the orbits of dimension six are C, &y}, Gpyj; in X there is 7,
in X, J'; and in X, there are £L,,,, and L,,,,. The closure of these last two
needs just Bruhat decomposition of X5, for the rest of them we will apply
lemma 2.6.8.

If V is the standard representation of Sp(4), the canonical compactifi-
cation X of G = PSp(4) is the closure of the natural immersion of G in
P(EndV) x P(End A”V), hence to apply lemma 2.6.8 we must decompose
the representations EndV and End A*V of Sp(4) into irreducible pieces and
determine the components of representatives of the orbits in question with
respect to this decomposition.

As usual, J denotes the standard symplectic form, which in block nota-
tion is written (% §), the entries of the matrix being two-by-two matrices
themselves. With such choice of J, the definition of sp(4), in block notation
is, sp(4) = {(5 %) | 'B =B, C =C}. The symplectic scalar product
J on the vector space V defines an isomorphism V' — V*; in the standard
basis (e1, e, €3, e4) for V, and the dual one (e}, €3, e}, e;) for V*, the matrix
of such isomorphism is J.

J allows to identify V ® V = Hom(V*,V) to End(V). In coordinates,
the isomorphism from V ® V' to End(V), is defined by B — BJ; the inverse
isomorphism will of course be M — M.J~!. This identification is compatible
with the action of Sp(4) on both sides. Hence the decomposition of End (V)
as a representation of Sp(4) will follow from the decomposition of V ® V' as
a representation of Sp(4). This decomposition is easily obtained:

VeV=SVe A\ VeCit,

with SV = {B | 'B = B}, /\gV ={B|'B=-B, Tr(BJ) = 0}, and
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of course CJ~! are the scalar multiples of J~1. We list the projections from
V®V =2 Hom(V*, V) to its components.

1. Hom(V*,V) — S2V,

t
B — B—|—2 B;
2. Hom(V*)V) — /\2 V,

B— ‘B,
B — T

* 2
3. Hom(V*, V) = A, V,
B-— B TrBJ) 7-1.
B B2 — — 22 g

4. Hom(V*,V) — CJ 1,
B Tien o1

Note that this last projection, if Hom(V*, V) is identified to End(V), is just
projection on the line generated by the identity. To apply lemma 2.6.8,
we must compute the projections of the orbits under consideration to these
components. It is an easy computation, we display below, for each component

whether the projection of the orbit under consideration is zero or not.

proj. to S2(V ® V) | proj. to AL(V ® V) | proj. to CJ~!
c 40 0 £0
Eppy N # £1 £0 0 £0
g, A #1 #0 #0 £0
J #0 0 £0
O 0 £0 0
P £0 £ 0 0
Opp, A#£ 1 #0 £0 0
9 # 0 0 0
Vs 5051 #0 0 0
Vsys1ss #0 #0 0
Vis152)? #0 0 0
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Thus we may deduce the following.

Proposition 3.3.11. Neither C, & nor J close to O, P, Qi (A # 1),

vszslsg .

Proof. C, €and J have zero component in /\g(V ® V), while O, P, Qpy
(A # 1), V,s,5, have nonzero such component. Apply lemma 2.6.8. O

Thus, for C, & and J, the orbits we need to check are Q;, V;,,,,, and

V(s1s0)2- For all these cases explicit degenerations are conclusive:

Proposition 3.3.12. J closes to Q1, Vs, 5,5, and Vg, s,)2-

1001
easily seen to be conjugate to (8 5 8) by an element of Sp(4); as a matter
0000

0
1
0
0
100 ¢
of fact, the whole family { 33§93 | is contained in J. For ¢ — oo the limit
0000
0001
of the family in P(EndV) is | 3348 ) which is the first component of the
0000

representative of Q;; second components follow. J degenerates to V;,s,s, by

lemma 2.6.2 and Bruhat decomposition. ]
An analogous degeneration allows to conclude:

Proposition 3.3.13. & closes to Q.

A0 0 0
: : 0X 0 0
Proof. The first component of the representative of & is | (§ \-1 0,
A0 0 1 oo oty 00
which is conjugate to (8 PRI ); so the family (8 ook S ) is contained
00 0 A! 00 0 A!
0001
in £y and tends to | 0§ 8) as ¢ tends to infinity. The second components
0000
also follow. 0
Similarly:
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Proposition 3.3.14. C closes to Q;.

1001
Proof. The first component of the representative of C is <§ é (%) §) ; the family
100 ¢ 1001
<83{8>,theebnwnm of which are all conjugate to (85%8),tﬁndsto
0001 0001
0001
(8858) as t tends to infinity. The second components also follow. O
0000

This takes care of the closure of the orbits of dimension six in X, and of
the closure of part of the orbits in X to orbits of X;. As regards the closure of
Gy such computations are not conclusive and we need to push the analysis to
the second order. If we consider the locally closed subvarieties A and B of the
affine space A", then A C B if and only if I(A) D I(B). So, a way to prove
that A is not in the closure of B to look for a regular function on A" which is
zero on B but is nonzero on A. In our case the subsets in question are cones,
so we only need to consider homogeneous polynomials. The homogeneous
polynomials of degree d make up a finite dimensional vector space over the
ground field k. Still, in general it is not easy to find the subspace of those
homogeneous polynomials of degree d which are zero on B, and analogously
to check that a homogeneous polynomial vanishes on A. Nonetheless, for the
case in question, it is possible to reduce these problems to linear algebra by
representation theoretic considerations. The point is that the subvarieties
we consider are orbits containing explicitly given representatives, under the
group G (or more exactly the simply connected covering of G). G acts
linearly on the affine ambient space and thus on the regular functions on
that affine space. The ideal of functions vanishing on a G-orbit constitutes
a subrepresentation of the space of regular functions. The ambient space is
End(V) x End(A”V), but since to show that a subbariety in a product of
two affine spaces does not degenerate to another subvariety in such product
it is enough to prove that the projection on one of these actors of the first
does not degenerate to the projection on the same factor of the second, we

consider just End(V') as ambient space. We thus look at regular functions
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on End(V) and the action of G on these; the space of such functions is
isomorphic to S(End(V)), the symmetric algebra over End(V). An element
A of End(V) is identified with a linear function on End(V') by considering the
bilinear form End(V) x End(V') — k which associates to the endomorphisms
A and B the scalar Tr(AB). Extending the application A — Tr(AB) to the
symmetric algebra of End(V'), we obtain an identification of the symmetric
algebra of End (V') with the algebra of regular functions on End(V); in this
identification the r-th symmetric tensor power S™(End(V')) corresponds to
the homogeneous regular functions of degree r.Hence, to check that the orbit

A is not in the closure of the orbit B we proceed as follows:

e Consider the space of linear functions on End(V'), which is identified
with End (V') itself, decompose it into irreducible representations with
respect to GG, determine which of these representations are identically
zero on B (one need only check that all elements of a representation
are zero on a fixed representative of the orbit), check whether the ir-
reducible components which annihilate B also annihilate A. If that is
not the case, A is not in the closure of B. This is actually the content

of lemma 2.6.8.

e If all linear functions on End(V') that are zero on B are also zero on
A, one repeats the analysis for the degree two homogeneous regular
functions on End(V). So, decompose the representation S?(End(V))
into irreducible components, determine which are in the ideal of B,
then determine if these are also in the ideal of A. If not A is not in the

closure of B.
e Else proceed to degree three and higher if necessary.
We will apply this procedure to prove:

Proposition 3.3.15. Gy closes to Qy and Vi, inside X;.
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Proof. Following the procedure in degree two, we consider S?(End(V)). If w
is an integral dominant weight of g, we will denote by L, the irreducible g-
module (or G-module) of highest weight w. The decomposition of S?(End(V))
is obtained by S?(End(V)) = S2(V @ V) = S2(S2(V) @ Ao(V) @ CJ) =
S*(S*(V) @ S*(Ag(V)) @ (S*(V) @ Ag(V)) @ S*(V) @ Ag(V) @ C. Denot-
ing wi, wo the fundamental weights of g, we have V = L, /\(2)(V) = L,
S%(V) = Lg,,. To get the decomposition into irreducibles of S?(End(V))
it suffices to decompose into irreducibles the representations S?(S*(V)) =
S%(Law,), S2(Ne(V)) = S?(Ly,) and S?(V) @ A2(V) = Lyy, ® Ly, Tt is
easily checked that S?(Lo,,) = Ly, ® Loy, ® Ly, ® Lo, S*(L,,) = Loy, ® Lo
and Lo, ® L,, = Ly, +w, ® Lo. We thus observe that in the decomposi-
tion of S?(End(V)) there are two irreducible factors isomorphic to Ls,,, one
in S2(S?(V)) and another in S2(AZ(V)). If {e1, ey, €3, €4} is the standard
basis of V, then a basis of S*(V) is given by the products {e;e;} and a
basis of S?(S%(V)) is given by the products {(e;e;)(exe;)}; where the fac-
tors inside different parentheses may not be mixed. With this choice of
basis for the space S?(S?(V)), a highest weight vector for the irreducible
G-module Ly, is given by X = (e3eq)? — (e3)?(e3)?. In an analogous man-
ner we give a basis of S?(Ao(V)). A basis of A2(V) may be given by
{e1 N ey, €1 ANey, e Nes, €3 Aey, €1 A es — e A eq}, hence a basis for
5’2(/\3(‘/)) may be given by the products of these factors. With respect
to such basis we find a highest weight vector inside S?(AZ(V)), spanning
a G-module isomorphic to Lg,,, having expression Y = (e3 A ey)?. The
space of highest weight vectors inside S*(End(V)) of weight 2w, and gener-
ating G-modules vanishing on Gy, is one dimensional spanned by the vector
Zy=(A=1)2X — (A +1)?Y. One verifies that the module generated by 7,
vanishes on Q, if and only A = por A = p~'. One verifies in the same
manner that the module generated by Z), does not vanish on the orbit P.
This ends the proof. O

Now we turn to the closures of C, &y, Gy and J in X,. The strategy is
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the same as for the closures in X7, i.e. give explicit degenerations to show that
certain orbits degenerate to certain other orbits and use the representation

theoretic criterion to show that there are no other possible closure relations.

Proposition 3.3.16. C degenerates to P'.

11
Proof. The standard representative for C is ( 1 ), one checks easily that

1
1

ooo
SO~ O
O = |
OO

the matrix < ) is symplectic and is conjugate to the above represen-

t
tative. Conjugating by the torus ( ! 1 1) and taking the limit as ¢ — oo

one gets that C degenerates to P'. O

Proposition 3.3.17. &\ degenerates to Q’[—v]-

A A0 1 0
- A : : ox 0 1

Proof. The usual representative < A1 ) 1s conjugate to (0 0=l o >
At 00 0 X!

|
>

* K K K X ¥

A 1

The exterior square of this matrix is of type , hence conju-

X % KK ¥ X
X ¥ KK ¥ X
X K KK ¥ X
% % ¥ %X %
TR Ex

th
gating by the torus ( ¢! 10 ) and sending ¢ to infinity, one shows that
t

&\ degenerates to QI[—V}' O

Proposition 3.3.18. Gy degenerates to Ql[f)\z].

TA-1 A+l 1
Proof. One checks that the matrix (g f)‘ A g ) is symplectic and is
0 0 1-x"1x?
1
conjugate to the usual representative A of Gp\- The exterior square
)\—1
* ok ok —2A % %
o * % ok kK *71 . . .
of such matrix is of the type | xx* * *2A" | hence again conjugating
* %k ok * * *
k %k ok * * *

t10
by the torus < =1 1o ) and sending ¢ to infinity, one shows that Gy
t

degenerates to Q'[_ - O
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Proposition 3.3.19. J degenerates to P’ .

Proof. The standard representative of J is

() (")

1011
the conjugate of such representative by the symplectic matrix (8 §h 8) is
0001

the element

-1 1

SOO O
=

10-1-1
00 0 O
00 0 O )
00 0 O

t
Conjugating by the torus ( ! -1 1) and taking the limit as ¢ — oo one gets

that J' degenerates to P O

coococor
coocoor
coo ol

0
0
1
0
0
0

OO OO+
[l Y lw)

Proposition 3.3.20. J degenerates to Vs,s,s,.

Proof. X, fibers over G/Q x G/Q~ G-equivariantly, the fiber being isomor-
phic to the canonical compactification of PGL(2). G/Q x G/Q~ has three
G-orbits, J' lies over the open one. Since X, is compact, J must close to
some G-orbit over the intermediate G-orbit of G/Q x G/Q~. For dimension

reasons, Vs, s, 1S the only possible candidate. 0J

Proposition 3.3.21. The above stated degenerations, together with their

consequences, are the only possible closure relations between orbits of X — X.

Proof. As we said above, the strategy is to look for functions which are
zero on the dimension six orbit under consideration but are nonzero on the
smaller orbits to which we wish to show that the dimension six orbit does not
degenerate. In this case, the linear functions are of no help since no nonzero
linear function vanishes on the orbits in question. Going to the homogeneous
functions of degree two, we are looking at S?(End(A2 V). Since ALV = Ly,
End(AJV) = Ly, ® Ly, = Loy, ® Loy, ® Ly. Hence S*(End(A)V)) =
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S?(Law, @ Loy, ® Lo) = S?(Layw,) @ S*(Law,) ® (Low, ® Loy, ) @ Loy, ® Loy, &
Ly. By straightforward calculations using Weyl’s character formula, we get:
S?*(Law,) = Luawy ® Law, ® Loy, ® Lo, S*(Law,) = Law, & Loy, ® Ly, & L,
Loy, ® Loy, = Loy, +2uw, D Ly +20w, D Loy, ® Lo, . Carrying out the computations
for the submodule L3, we get that no other degeneration is possible. O

Closure of the orbits of smaller dimension

Proposition 3.3.22. P = P U O U V502, O = QU Visisn)s P =
P'UO UV, Q= Q’W U Vis1s0)2s O and O are closed.

Proof. P degenerates to O, but PUQ is not closed in X. Indeed, PUO C Xj;.
So it must degenerate to some G-orbit in X;5; for dimension reasons, the only
possibility is P = PUOUYV(4,5,)2- For the same reason P =P U0 UV(s150)2-
Qpy is closed in X, but not in X, so again, the only possibility is % =
Qi U Visys0)2- Same for Q'[/\]. That © and O are closed is easily seen by

considering dimensions for example. O

Summary of orbit closures

We summarize the complete list of G-orbits in X together with their closure

relations , for G = PSp(4), in the following diagrams.
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The first diagram depicts the closure relations between the G-orbits in
Xp, X; and Xi5; while the second depicts the closure relations between the
G-orbits in Xy, X5 and X;5. Together they give a complete picture of closure
relations between G-orbits in X. This clearly shows that while the G-orbits
depend only on the combinatorics of the Weyl group, the closure relations
between such orbits in general depend on the geometry of the boundary

divisors of the compactification.

3.4 The conjecture on the closure of G-orbits
in the canonical compactification of G is

false

The G-orbits in the open part of the compactification coincide with the con-
jugacy classes of G. It is known that the closure in G of a conjugacy class is
the union of a finite number of conjugacy classes (see [Spal]). So the question
whether in X the same result holds seems natural. By Lusztig’s method,
the variety X is subdivided in a finite union of locally closed subvarieties,
stable with repsect to the G-action, and inside each of these, the G-orbits
correspond to twisted conjugacy classes in smaller reductive groups in a way
compatible with closures. So the result still holds for a G-orbit inside the
locally closed subvariety which contains it, since it is known that the clo-
sure of a twisted conjugacy class inside a reductive group is the union of a
finite number of twisted conjugacy classes ([Spa]). The problem is in pass-
ing from a locally closed piece to another. For a given G-orbit, determining
explicitely its closure may be quite hard, but to show that the conjecture
does not hold for a group G, one must just look at one particular G-orbit
and prove that its closure in X contains infinitely many G-orbits, which is
a quite easier task. We prove that the only groups for which the conjecture
holds are PGL(2), PGL(3) and products of these. We do this by reducing
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the problem to the rank two case and to PGL(4). We have determined ex-
plicitely all the G-orbits in the compactification and the closure relations for
the cases G = PGL(2), G = PGL(3), G = PSp(4); for the case G = G5 we
give only some of the closure relations, enough to show that the conjecture is
false in such a case; for the case G = PGL(4) we give just a counterexample
to the conjecture. These counterexamples are based on an analysis of small
G x G-orbit, i.e. G x G-orbits whose canonical fibration has fiber PGL(2),
in other words GG x G-orbits corresponding to parabolic subgroups minimal
among the nonBorel parabolic subgroups. For the G x G-orbits the finite
locally closed decomposition is a Bruhat decomposition, and each of these
decomposes either as twisted conjugacy classes of PGL(2), i.e. in two cells
one of which is dense. Which of these two cases occurs may be read off from
the G-orbit decomposition of the closed G x G-orbits, i.e. from combinatorial

data. Let state it precisely.

Lemma 3.4.1. Let G be a connected reductive group, T a mazimal torus,
W the weyl group, P a parabolic subgroup containing T', L Levi factor of
P which contains T. Suppose L/Z(L) = PGL(2). Let w € W, and Z,, =
{(p,w™'pw), p € PNwP~w™'}. Then the image of Z,, in PGL(2) x PGL(2)
through the composition Z,, — P x P~ — PGL(2) x PGL(2), is either the
graph of an automorphism &, : PGL(2) — PGL(2), or it is the product
B' x B" of two Borel subgroups of PGL(2).

Proof. We have seen that the image is a subgroup Apl,Ql,,;l, where P;, ()
are parabolic subgroups of PGL(2), and &, : L; — M is an isomorphism
between two quotients of the Levi factor of P, and ()1 by central subgroups.
If P, = Q, = PGL(2), then &, : PGL(2) — PGL(2) and the Ap, g, 5, is the
graph of &,. If P, is not all of PGL(2) then it is a Borel subgroup B’ of
PGL(2). In such case also Q; must be a Borel subgroup B" of PGL(2), since
PGL(2) has no center and a Levi factor of B’ is a one-dimensional torus.
Since P, = B', Q, = B", conjugation by w does not stabilize L; applying

the second version of Lusztig’s algorithm to compute Z;, and Z;; we have
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that both are nontrivial. Since L; and M; are one-dimensional tori, we have
Zy, = Ly, Zy, = M,. This implies Ap o, 5, = B' x B" in this case. O

Let G be a connected semisimple group of adjoint type, 7" a maximal
torus, W the Weyl group of G with respect to T', B a Borel subgroup con-
taining 7', A the set of simple roots corresponding to the choice of B. Let
a € A, and I = A — {a}, P; be the standard parabolic subgroup associ-
ated to I, Wp, = {e,s,} C W, X; be the G x G-orbit in the canonical
compactification X of G induced by I. Consider the fibration

Xi

|

G/P x G/P~
the G-orbits in G/P x G/P~ are indexed by elements of Wp,\W/Wp,. Then

the basic result is:

Lemma 3.4.2. The G-orbit in X; over the G-orbit G - (1,wy) - (P;, P;) are
infinitely many if the double coset class Wp,woWp, contains two elements.
The G-orbits in Xy over G - (1,wq) - (Pr, P;) are two if Wp,woWp, contains

four elements.

Proof. The G-orbit in X; over G - (1,w) - (Pr, P;") corresponds to Ap, ,.5,-
orbits in PGL(2). Now, by the previous lemma, either Apl,Ql,,;l is the graph
of &, : PGL(2) — PGL(2) or Ap, g,5, = B x B", with B', B" Borel sub-
groups of PGL(2). In the first case the G-orbits in X over G- (1, wp)-(Pr, P;)
correspond to twisted conjugacy classes in PGL(2), so there are infinitely
many. In the second case, they correspond to B" x B”-orbits in PGL(2), so
there are two. One must distinguish these two cases in terms of double coset
class Wp,woWp,. Along the lines of lemma 2.6.2, the fibration X; — G/ Py x
G/P; may be extended to a fibration X; — G/P; x G/P; with fiber the
canonical compactification PGL(2) of PGL(2), XA & G/B x G/B~ mapping
to the closed PGL(2) x PGL(2)-orbit PGL(2)/B; x PGL(2)/B; , where B, is
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the Borel subgroup of PGL(2) which is the image of B through the projection
to PGL(2). The G-orbit in XA =2 G/B x G/B~ over G- (1,wy) - (P, P;) are
indexed by the elements of the double coset class Wp,woWp,. On the other
hand they correspond to Ap, g, 5,-orbits in PGL(2)/B; x PGL(2)/B;. So
when [Wp,woWp,| = 4, Ap,g,5, = B x B, and there are only two orbits
in X; above G - (1, wp) - (Pr, P;"). While, if [Wp,woWp,| = 2, then Ap, o, 5,
is the graph of an automorphism of PGL(2), and there are infinitely many
orbits in X above G - (1,wy) - (Pr, P, ) O

Corollary 3.4.3. The conjecture does not hold for G = G4, i.e. if X is the
canonical compactification G = Gg, then there is at least one G-orbit in X

whose closure contains infinitely many G-orbits.

Proof. Using the preceding lemma it is easy to produce one such orbit. The

Weyl group W of G5 has the presentation
W =< 1,19 (nn)’ = (2n)* >,
SO
W = {6, T1,T2,T1T2,T2T1,T17T2T1,T2T17T1,T1T9T1T2, T2T1T2T1, T1T2T1T27T1, T2T1T2T1 T2,

T1TT1T2T1 T2 = ’7'2’7'1’7'27'17'27'1}.

Let P the standard parabolic subgroup of G5 such that Wp = {e, 72}, then
Wp\W/Wp = {e, T2, ToT1 T2, ToT1 T2T1 T2 }, the Bruhat order induced on these is
e < Ty < TomTy < ToTTaT1To}. Now, |WpeWp| = |Wp| = 2, [WpnWp| = 4,
\WprerimeWp| = 4, [Wpreniemi7eWpe| = 2. So over G - (1, 72) - (P, P™) there
are only two G-orbits, one of which is open in the inverse image. The same
holds for G - (1, o7y 72) - (P, P~), while over G - (1, o777 72) - (P, P™) there
are infinitely many. Taking for example the big orbit over G- (1,72) - (P, P™),
its closure will contain infinitely many orbits, since it will contain all orbits
over G - (1, »773) - (P, P~) and over G - (1, o7 72) - (P, P7) O
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Corollary 3.4.4. The conjecture does not hold for G = PGL(4), i.e. if X
is the canonical compactification of G = PGL(4), then there is at least one

G-orbit in X whose closure contains infinitely many orbits.

Proof. W =2 S is the Weyl group of PGL(4), it has the presentation
W =< S1, S92, S3, S1S281 = S2S1S2, S2S83S2 = S3S2S3, S1S3 = S3S1 > .

Let P be the standard parabolic of PGL(4) such that Wp = {e, so}. We will
look at G-orbits in the G x G-orbit of X which fibers over G/PxG/P-. Using
the isomorphism W — Sy given by s; — (12), so — (23), s3 — (34), we have
Wp = {e, (23)}, and Wp\W/Wp = {e, (14), (12), (34), (12)(34), (1234), (1432)}.
It is easily seen that |WpeWp| = |Wp| = 2, [Wp(14)Wp| =2, [Wp(12)Wp| =
4, (Wp(34)Wp| =4, [Wp(1234)Wp| = 4, |Wp(1432)Wp| = 4. To understand
the Bruhat ordering between these elements one must write them in terms
of the simple reflection (12), (23), (34):

(14) = (12)(23)(34)(23)(12), (12), (34), (12)(34), (1234) = (12)(23)(34),
(1432) = (34)(23)(12).
An element in a Coxeter group is smaller than another for the Bruhat or-
dering if a reduced expression of the first appears as a subword in a re-
duced expression of the second. This shows that (14) is bigger than all
others. So the orbit of greater dimension over G - (1,s) - (P,P~), with

s = (12),(34),(12)(34), (1234), (1432) closes to infinitely many orbits, viz.
those over G - (1,(14)) - (P, P™) O

We could apply the same strategy to PSp(4), or just take into consider-
ation the explicit computation carried out for that group, to argue that the
conjecture does not hold in that case. Now, these three special cases suffice
to prove that the conjecture is false for all simple groups of rank greater
than or equal to three. The explicit computations carried out for the cases
of PGL(2) and PGL(3) show that for such groups the conjecture is true. So

we get:
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Proposition 3.4.5. If the connected semisimple group G of adjoint type is
such that in its canonical compactification X the closures of G-orbits are
unions of a finite number of G-orbits, then G = PGL(2)* x PGL(3)°, with
a,be N

Proof. G is the product of simple groups of adjoint type G;, and X is the
product of the compactifications X; of the factors of G. G-orbits in X are
products of G;-orbits in X; for varying ¢, so the conjecture is false for G if and
only if it is false for at least one factor G; of G. We are thus reduced to the
case of GG a simple group. Simple groups are classified by irreducible Dynkin
diagrams. These are of type A; (for [ > 1), B, (for [ > 2), C; (for [ > 3),
D, (for | > 4), Eg,E;, Eg, Fy, Go. PGL(2) corresponds to A;, PGL(3) to
Ay, PGL(4) to Az, PSp(4) to B, and the group G2 to the Dynkin diagram
by the same name. Any Dynkin diagram different from A; or A, contains
either A3, By or Gy as subdiagrams; so if G is different from PGL(2) or
PGL(3), it contains a parabolic subgroup P whose semisimple component
of adjoint type Gy is either PGL(4), PSp(4) or Go. If X is the closure of
the G' x G-orbit X[ fibering over G/P x G/P~, then the G-orbits in X over
the G-orbit G(P, P~) in G/P x G/P~ correspond to the Gj-orbits in the
canonical compactification of G, (lemma 2.6.2). Hence if the conjecture is
false for GGy, it is false also for G. Applying such arguments to the simple
factors of a semisimple group of adjoint type G, we get that the conjecture
is true for G if and only if the simple factors of G are isomorphic either to
PGL(2) or to PGL(3). O
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