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CHAPTER 1 
 

Neurotransmitters: early signals for nervous system 
development? 

 

The morphogenesis of the nervous system  is dependent on a complex genetic program, 

responsible for the emergence of the large number of cell types present in adulthood; 

through the interaction and cooperation of these different cell types the coordinated 

function of the nervous system as an integrated structure is made possible. 

Due to this complexity, neural development and differentiation occur through a number 

of successive steps. Neural differentiation begins with the formation of the neural tube; 

cell proliferation and migration then takes place, gradually leading to the emergence of 

cell lineages, which then originate glial cells or neurons. A specific differentiation 

pathway is then selected by glial or neuronal progenitors and requires the activation of 

other regulatory genes, acting on the final steps of differentiation. 

As far as neuron differentiation is concerned, after the emergence of neuronal 

precursors from neural stem cells and their proliferation, differentiation eventually 

occurs through the activation of several genes involved in neurite elongation, 

production of specific adhesion molecules, assembly of a mature neurotransmitter 

synthesis apparatus and expression of neuronal specific features.  

Other gene products, largely still unidentified, participate in the formation of mature 

synaptic structures. Thus, differentiation of a specific neuronal population requires the 

activation of a rather large set of genes; some are shared by different neuronal types 

(e.g. those intervening in fibre formation and possibly in the basic neurotransmitter 

releasing mechanism), others are type specific.  

One of the major questions related to nervous system development, and more 

specifically to neuron differentiation, is the identification of signals directing neuronal 

populations to specific phenotypes (e.g. cholinergic, adrenergic or peptidergic 

neurones).  

A number of factors are known, which can direct neuronal or glial differentiation (Calof 

A. 1995). Among these, neurotrophine play a major role; however the role of cell 
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adhesion molecules(Cunningham 1995) and neurotransmitters (Lauder 1999; Biagioni 

et al., 2000) has also been demonstrated.   

While growth factors have long been known for their function in development, the role 

of cell adhesion and neurotransmitters as modulator of gene expression, relevant for the 

acquisition of specific phenotypes, has only recently been recognized. 

A large body of evidence, emerging from diverse experimental system and approaches, 

indicates that neurotransmitter molecules are present in a wide variety of animal species 

throughout development, thus giving support to their role as signal molecules 

controlling various basic cellular processes. In this view, as development proceeds, 

neurotransmitters take up new functions, ending up in the nervous system as mediators 

of synaptic communication (Buznikov et al. 1996). It is well known that 

neurotransmitter synthesis as well as neurotransmitter receptor expression are activated 

in an early phase of neurogenesis, before the formation of synaptic contacts, in several 

regions of the nervous system. Immunoreactivity for glutamate and GABA has been 

found in the developing  cortical marginal zone (Del Rio et al., 1992) and subplate cells 

(Chun and Shatz, 1989) respectively, both examples of transient populations in nervous 

system development. GABA immunoreactivity is also found in hypothalamic neurons at 

the beginning of hypothalamus neurogenesis (Van Den Pol, 1997). As far as the 

cholinergic system, Choline Acethyltransferase (ChAT) immunoreactivity has been 

demonstrated in dividing cells of mouse ventricular germinal zones (Schambra et al., 

1989) and in pre- or early migratory neurons of rat spinal cord (Phelps et al., 1990). 

Muscarinic receptors have been revealed in rat central nervous system by 

autoradiography, using 3H-methyl scopolamine  as ligand, as early as day 14 of 

embryonic life (Schlumpf et al.,1991). These observations, together with data arising 

from in vivo and in vitro experiments, have led to propose that neurotransmitter 

molecules may play alternative roles in the development of nervous system as 

regulators able  to influence various cellular events, taking place during neuron 

differentiation.  

Developing cells are affected in a specific ways along the  concentration gradient of 

“morphogens”, developmental signals,  that exert specific effects on receptive cells 

depending on concentration. 
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This concept has traditionally be applied to substances involved in pattern formation 

and morphogenesis, such as retinoic acid. However, it may also be appropriate to 

consider neurotransmitters as morphogens when they act as dose dependent 

morphogenetic signals in neural and non-neural tissue. Neurotransmitters are known to 

have these  actions in primitive organisms and embryos, where they exert their effects 

using receptors and signal transduction mechanisms similar to those characteristic of the 

adult nervous system. These experimental evidence raise the possibility that the highly 

specialized roles played by neurotransmitters in synaptic transmission may have 

evolved from phylogenetically old functions, many of which are recapitulated during 

development. Data are available showing the action of neurotransmitters on cell 

motility, proliferation and survival of neural cells, as well as on neuritogenesis  and 

expression of other neuro-specific features. 

 

 

Administration of antagonist molecules to embryos has also led to propose a role for 

neurotransmitters in the control of cell  motility. Both monoamines and acetylcholine 

(ACh) stimulate activity of the cilia in sea urchin before hatching. As gastrulation starts, 

serotonin may control migration of primary mesenchymal cells and later acetylcholine 

appears to control archenteron invagination. Monoamines are involved in the regulation 

of morphogenetic movements also in vertebrate embryos, as suggested by 

malformations (e.g. neural tube defects in chick and craniofacial defects in rodents) 

caused by inhibitors of monoamine uptake or by receptor antagonists (Lauder, 1993).  

 

 

Stimulation of proliferation has been reported on various cell populations by different 

neurotransmitters.  Large and diverse groups of growth factors and neurotransmitters, 

work together to regulate cell number and identity in the developing and adult  brain 

(Cameron et al., 1998). 

Monoamines (as serotonin and norepinephrine) are released by yolk granules at 

fertilisation in sea urchin and chick and are still present at blastula (Emanuelsson et al., 

1988; Buznikov,1991);  experiment using agonists and antagonists for monoamines and 
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acetylcholine have suggested  a role for neurotransmitter molecules in the regulation of 

cell division during cleavage, although the mechanism is still unclear (Lauder, 1993)  

Serotonin action as a positive regulator of adult granule proliferation has been 

demonstrated by grafting raphe explant in rats, after hippocampus serotonin input had 

been abolished by 5,7-dihydroxytryptamine injection (Brezun et al., 2000). Proliferation 

of  rat cortical neural precursors can be enhanced by activation of muscarinic receptors 

(Ma et al., 2000). 3T3 cells have been transfected with individual subtypes of 

muscarinic receptor construct; m1,m3, and m5 transfected cells produced foci of 

transformation when exposed to carbachol, suggesting that, in a specific cellular 

context, these receptors can act as “conditional oncogen”. Transformation was not 

observed in m2 and m4 transfected cells, indicating that the action of acethylcoline on 

cell proliferation is mediated through the phosphatidylinositol cascade, which 

eventually leads to fluctuations in cellular Ca2+ level (Gutking at al., 1991). 

Evidence for coupling of both serotoninergic and cholinergic receptors to this cascade 

has been reported also in sea urchin embryos (Buznikov et al., 1996). 

In rat embryo explants cortical progenitors show a reversible decrease of proliferation 

rate in the presence of glutamate, mediated by non NMDA receptors  (Lo Turco et al., 

1995). NMDA receptors mediate the decrease of proliferation in dentate gyrus granule 

cell precursors in rat post-natal development (Gould et al., 1994). Recently NMDA-

mediated inhibition of proliferation has been reported in vivo in rat striatal neurons 

(Sadikot et al., 1998). Systemic injection of NMDA and AMPA receptor antagonist in 

adult gerbils increased BrdU labelled cells in the dentate subgranular zone (Bernabeu et 

al., 2000).  

Some neuropeptide promote neuronal proliferation in the olfactory epithelium (Hansel 

et al., 2001). Conversely in cortical epithelium GABA receptor activation depolarises 

progenitors cell  and elevates their cytosolic Ca2+ level, resulting in a decreased 

proliferation; on the other hand GABA stimulates progenitor cell motility via Ca2+ 

signalling (Barker et al., 1998). Pharmacology approaches have also suggested that 

monoamines increase cell proliferation in pre- and postnatal rat brain (Holson et al., 

1994; Patel and Lewis, 1998). Down regulation of dopamine D3 receptors  expression 

in the adult rat brain and the receptor selective localisation in the proliferative zone of 
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neuroepithelium support a role  for dopamine in early neurogenetic events (Diaz et al., 

1997). 

 

The role of neurotransmitter release on neuron survival has also been shown in mice by 

deletion of Munc 18-1, a neuron specific protein of the SEC 1 family involved in 

membrane trafficking, which leads to loss of neurotransmitter release from synaptic 

vesicles. The ensuing abolishment of synaptic activity during development allows 

normal assembly of brain structures, but impairs neuronal survival  during successive 

developmental stages (Vehrage et al., 2000) 

 

A later event in neurogenesis is the formation of fibres, which is a key aspect of 

neuronal differentiation and is known to be regulated by growth factors (Otten, 1994; 

Ruitt et al., 1992). Neurotransmitters come into action also as modulators of this 

process.  

Motility of growth cones is greatly reduced by dopamine in cultures of embryonic chick 

retina; this effect can be mimicked by forskolin, suggesting that it is receptor-mediated  

and operates through the cAMP intracellular signalling system (Lankford et al., 1988). 

An inhibitory effect on fibre growth has been observed on retinal ganglion cells also for 

acetylcholine (Lipton et al., 1988), and it has been proposed as a possible mechanism to 

control dendrite growth, upon reaching the appropriate target cells. A similar 

acetylcholine-induced retraction of growth cone has been  reported for axons of Retzius 

neurons in leech embryos (Elsas et al., 1995). On the other hand, acetylcholine  

counteracts the inhibitory  action of serotonin on neurite elongation of B19 neuron of 

Helisoma  (Mc Cobb et al., 1998), showing  that multiple transmitters may exert 

combinatorial regulation on neurite elongation as well as on electrical activity.  In fact 

serotonin acts as an excitatory transmitter on B19 neurons, while acetylcholine elicits an 

inhibitory response. They have opposite effects on Ca2+ concentration in the growth 

cone as well, serotonin evoking a rapid rise  and acetylcholine a decline of Ca2+ , which 

can be considered as the integrator of different (co-operative or opposite) signals 

regulating growth cone activity and neurite elongation (Kater et al., 1988).  

Glutamate reduces dendrite formation in embryonic mouse cortical neurons and the 

effect is mediated by NMDA receptors (Esquenazi et al., 2002). In developing motor 
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neurones dendrite arborization is dependent on glutamate receptor activation (Inglis et 

al., 1998); furthermore it has been shown that dendrite architecture can be remodeled, 

when a glutamate receptor subunit highly expressed in developing neurons is 

reintroduced in mature motor neurones (Inglis et al., 2002). Xenopus retinal ganglion 

cells express GABA receptors on their axons and growth cones; baclofen, a GABA 

agonist, has been observed to stimulate neurite outgrowth in cultured cells, while a 

GABA antagonist in vivo reduces the length of optic projections (Ferguson et al., 2002). 

Regulation of fibre elongation is instrumental for building the cytoarchitecture of 

nervous system and allowing the establishment and stabilisation of correct functional 

circuits. Thus it is not surprising that different neurotransmitters have opposite effects 

on growth cone motility and that a single neurotransmitter may have opposite effects on 

different neurons. As an example, neurite extension by mouse retinal ganglion neurons 

in culture was inhibited by acetylcholine (Lipton et al., 1988) while growth cones of 

Rana Pipiens dorsal root ganglia (Kuffler, 1996) or Xenopus spinal cord  neurons in 

culture (Zheng et al., 1994) will turn and grow up concentration gradients of this 

neurotransmitter (Fig.1).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 : Turning response of Xenopus spinal neurons in the presence of  acetylcholine gradient in the absence (a,b) and 

presence (c,d) of  d-tubocurarine.  Composite drawings of the path of neurite extension for a population of neurons in 

the absence (e) and presence (f) of d-tubocurarine. Scatter plots of all data (g, h) corresponding to experiments 

illustrated in a-f. Images of a growth cone (i)subjected to the acetylcholine gradient before and at various times after 

the onset of the acetylcholine gradient (Zeng et al.,1994). 
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However if neurotransmitters exert such morphogenetic function in early neurogenesis, 

a major question is the source and mechanism of their release. As a matter of fact, a 

spontaneous release of low levels of acetylcholine has been detected in rat dissociated 

retinal cell cultures (Lipton, 1988). This finding is consistent with an acetylcholine 

release by amacrine cells, modulating fibre elongation of ganglion cells. Moreover 

neuron-glia interactions could also mediate trophic functions exerted by 

neurotransmitters during development. Astrocytes, for example, express a large number 

of neurotransmitter receptors on their surface, and they also produce trophic factors that 

are region-specific for ingrowing fibers (Lauder, 1993). Synthesis and release of these 

growth factors could be modulated by neuronal activity and by neurotransmitters. If this 

were the case, temporally regulated expression of glial receptors and selective responses 

of neurons to different growth factors could result in a highly specific control by 

neurotransmitters of the development of neuronal circuitry (Lauder, 1993). In this 

respect it is pertinent to mention that via stimulation of their receptors, both 

neurotransmitters and growth factors  activate second messenger systems, such as 

cAMP, PLC-β, Ca2+ and βγ subunits of heterotrimeric G proteins. Utilization of 

common signalling pathways may provide a mechanism for interaction between 

neurotransmitters and growth factors (Weiss et al., 1998).  

 

Finally as far as regulation of neurospecific gene products, noradrenaline has been 

shown to act early in neurogenesis, promoting the expression of proteins, as N-CAM 

and N-tubulin, in noggin-expressing ectodermal cells (Messenger et al., 1999). A 

number of data have also been obtained at later developmental stages. In slice cultures 

of olfactory epithelium expressing D2 receptors, dopamine enhances the expression of 

β-galactosidase driven by the promoter of the olfactory marker protein (OMP), a marker 

of mature olfactory neurones, in a dose dependent manner directly acting on epithelial 

cells  (Feron et al., 1999).  Retinal cultures of 3 day rats treated with 20 µM glutamate 

showed higher neuronal survival and differentiation,  as judged by the higher number of 

MAP2 positive neurones  (Govindaiah et al., 2002). Glutamate and GABA  stimulate 

the expression of BDNF and NGF in primary cultures of hyppocampal neurones (Zafra 

et al., 1991); the stimulation is dependent on Ca2+ influx and is enhanced by activation 

of adenylate cyclase (Zafra et al., 1992). A similar effect is elicited by serotonin in a 
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glioma cell line (Meller et al., 2002). The ability of neurotransmitters to act on glial 

cells, stimulating  growth factor expression is in favour of their role as overall regulator 

of the developmental program.   

 

This large body of evidence suggests that a single neurotransmitter may exert different 

action on neural cells, once they have been committed to a specific differentiation 

pathway.
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CHAPTER 2 
Choline Acetyltransferase-transfected neuroblastoma 

clones 
 
 

The presence of both ChAT and acetylcholine receptors during early embryogenesis 

(Role and Berg 1996) strongly suggests a role for acetylcholine during neuronal 

development. Several studies have shown that acetylcholine may regulate different 

aspects of nervous system morphogenesis at least in vitro (Zheng et al., 1994; McCobb 

et al., 1988; Lauder, 1993). 

Mouse  neuroblastoma N18TG2 cell line appears as an interesting experimental system 

to study ACh morphogenetic action on neuronal differentiation. They are defective for 

neurotransmitter production  but respond to various molecules (e.g. dibutyryl-cAMP or 

retinoic acid) undergoing a morphological transition with formation of fibers. However 

they lack the ability to establish synaptic contacts. (Denis-Donini and Augusti-Tocco, 

1980) and to express neurospecific trait.  

In this context it’s interesting to remind the properties of neuroblastoma x glioma hybrid 

108CC15, in fact, the inability of the parental mouse neuroblastoma N18TG2 clone to 

establish synaptic contacts is overcome in the hybrid line; the acquisition of the ability 

to attain a more advanced state of differentiation is accompanied by a marked difference 

in the production of acetylcholine, which is actively synthesized in the hybrid 

(Hamprecht, 1977), while not detectable in the parental line (Amano et al., 1972). These 

observations pose the question whether the inability of N18TG2 cells to progress in the 

neuronal developmental program is related to the block in neurotransmitter production. 

A construct containing the cDNA for choline acetyltransferase (ChAT), the biosynthetic 

enzyme for ACh, has been transfected into N18TG2 cells and its FB5 subclone, isolated 

to reduce the intrinsic heterogeneity of neuroblastoma lines. Clones expressing high 

ChAT activity have then isolated (Bignami et al., 1997); thus providing an experimental 

system where the role of a functional neurotransmission apparatus for the progression of 

differentiation can be directly analyzed.  
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Properties of neuroblastoma clones expressing high ChAT activity 

Isolated clones expresses different ChAT levels (Fig.2A); in particular, as expected, 

ChAT activity was undetectable in N18TG2 cells and in its FB5 subclone, while the 

enzyme activity levels in the transfected clones, appeared similar or higher to that 

observed in the hybrid neuroblastoma-glioma 108CC15 cholinergic cell line. 

Differences in enzyme levels observed in the transfected clones most likely can be 

ascribed to a variable number of integrated constructs. Neomycin resistant clones 

isolated after transfection with a construct containing an antisense ChAT cDNA or with 

the empty vector (aCS5 and 1/2 clones respectively) do not express ChAT activity, like 

N18TG2 and FB5 cells (Bignami et al., 1997; De Jaco et al., 2000). 

 

 

  

 

 

 

     

 

 
 

 

Fig.2 . (A) ChAT specific activity measured in extracts of mouse brain, 108CC15 neuroblastoma-glioma hybrid cells, 

N18TG2 cells and in ChAT transfected N18TG2 clones.  Data are expressed as mean ± SEM of at least six 

independent experiments run at least on triplicate cultures. (B). Intracellular choline and acetylcholine levels 

(nmol/mg of protein) of N18TG2 cells, ChAT transfected N18TG2 clones and 108CC15 neuroblastoma-glioma 

hybrid cells. Values are the mean ± S.E.M. of at least five independent experiments. (* = not detectable) (Bignami et 

al., 1997; De Jaco et al., 2000). 

 

 ChAT Activity
(nmol ACh 

synthetized/mg 
prot/min) 

 
mouse brain 1.10±0.18 

108CC15 0.21±0.01 
N18TG2 n.d. 

FB5 n.d. 
1/2 clone n.d. 

aCS5 clone n.d. 
CS37 clone 0.23±0.04 
CS42 clone 0.19±0.02 
CS43 clone 0.37±0.07 
2/4 clone 18.86±1.78 
3/1 clone 2.27±0.47 
3/2 clone 2.04±0.24 

CLONES CHOLINE ACh 

N18TG2   1.2 ± 0.16  nd* 

2/4 clone   3.8 ± 1.03 4.81 ± 0.16 

3/2 clone   1.8 ± 0.44 0.75 ± 0.10 

3/3 clone   0.4 ± 0.08 0.04 ± 0.01 

108CC15 25.1 ± 5.18 0.89 ± 0.22 

A 

B 
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In transfected N18TG2-ChAT positive clones acetylcholine was always present 

(Fig.2B) and its level appeared to be related to the levels of enzyme activity, although a 

linear relation could not be observed (Bignami et al., 1997).  

 

N18TG2 cells, as well as transfected clones not expressing ChAT, were characterised 

by an immature morphology, with cells bearing short processes and its ability to extend 

fibers remains rather poor also in the presence of differentiation agents, as retinoic acid. 

On the other hand, clones expressing ChAT activity (2/4, 3/1 and 3/2)  display higher  

fiber outgrowth as compared to clone 1/2 both in the absence or presence of 

differentiating agents (Fig.3A-B). (Bignami et al., 1997). A morphometric analysis has 

shown that fiber extension was about 3-5 fold higher in transfected clones  expressing 

ChAT activity  as compared to those not expressing  the enzyme (Fig. 3).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Quantification of process length, normalised to cell number per microscopic field in cultures maintained in non 

differentiating conditions (A), and in the presence of 10-6 M retinoic acid for four days (B) (Bignami et al., 1997).   
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Moreover, the activation of ACh synthesis modified the expression of several neuronal 

markers; in particular increased levels of high affinity choline uptake and voltage-gated 

Na+ channels were observed, while secreted AChE activity levels were reduced 

according to a progression in the cholinergic differentiation program (De Jaco et al., 

2000). Interestingly in ChAT-transfected clones the activation of synapsin I mRNA 

expression, not detectable in the parental line, was also observed (Fig.4) (Bignami et al., 

1997). Synapsin I belongs to a family of neuron-specific phosphoproteins and plays a 

key role in neurotransmitter release (Greengard et al., 1993). Synapsin I is also believed 

to play a role in synapse formation; the injection of synapsin I in Xenopus blastomeres 

accelerates synapse formation (Lu et al., 1992; Valtorta et al., 1995) while its 

suppression in transgenic mice results in the inhibition of synaptogenesis (Chin et al., 

1995). Moreover, cultured hippocampal neurons, dissected from synapsin I-deficient 

mice, develop shorter and less branched axons than those observed in wild type cells 

(Chin et al., 1995) suggesting that synapsin I may play a major role in axonal elongation 

and branching. 

 

 

 

 
Fig.4. A: Northern blot analysis of total RNA from murine brain, NG108CC15, N18TG2 cells, 1/2 transfected 

clone not expressing ChAT activity and 2/4, 3/1, 3/2 transfected clones expressing ChAT activity. Ten micrograms of 

total RNA from each sample was electrophoresed and hybridised with specific probes for synapsin I and GAPDH. B: 

Western Blot analysis showing synapsin I levels in the different clones. Samples obtained from the same number of 

cells were loaded onto SDS-PAGE slabs (Bignami et al., 1997).  

 

 

It is known that fiber elongation and other neuronal properties can be modulate by 

muscarinic acetylcholine receptors (mAChR) activation which  induce  a number of 

cellular responses, being coupled to several G proteins (Hulme et al., 1990; Richards, 

3/1                    2/4                 N18TG2        Brain

N18    NG   1/2     2/4    3/1    3/2            Brain

− GAPDH

−
−

Synapsin

A 
B
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1991). It is also known that promoters of neuronal proteins contain consensus sequences 

for various transcription factors among which the zinc-finger EGR-1 protein (Beckmann 

and Wilce, 1997; Herdegen and Leah, 1998) and that EGR family expression is 

increased by mAChR activation in different neuronal cells (Ebihara and Saffen, 1997; 

Nitsch et al., 1998; Von der Kammer et al., 1998). 

QNB binding studies on homogenate of the neuroblastoma clones revealed the presence 

of muscarinic acetylcholine receptors in all examined clones (Fig.5) although no 

significant correlation between binding and ChAT activity was observed. Moreover 

although ChAT-positive clones showed different ability to accumulate ACh  QNB 

binding appeared not related to the levels of ACh (De Jaco et al., 2000; De Jaco et al., 

2002). 

   

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Presence of muscarinic acetylcholine receptors in ChAT transfected clones. [3H]-QNB binding was evaluated 

on homogenates of  108CC15 (NG) hybrid cells, FB5 non transfected cells, CS37, CS42, CS43 ChAT positive clones 

and the aCS5 clone transfected with a construct containing the antisense ChAT gene. Values are the mean ± SEM of 

at least twelve observations (De Jaco et al., 2000; De Jaco et al., 2002). 

 . 

 

 

It has been reported that Egr gene family expression is increased by muscarinic receptor 

also in NG108CC15 cells (Katayama et al., 1993) and modulation of Egr-1 mRNA 

expression and EGR-1 protein synthesis was observed in cells expressing all the 

different muscarinic subtype receptors (Von der Kammer et al., 1998). As reported in 
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Fig 5, muscarinic receptors are present in the studied clones; it is thus possible to 

propose that in the ChAT positive clones an autocrine loop becomes active, leading to 

the expression of synapsin I and regulation of fibers outgrowth, through  the activation 

of Egr genes.  

As shown in Fig.6  EGR-1 protein was detectable  only in the omogenates of the 

transfected clones (De Jaco et al.,2002). 

 

 

 

 

 

 

 
 

 

 

Fig. 6. Immunoblot analysis showing EGR-1 levels in different clones: clone 2/4 , clone 3/1 , N18TG2 parental clone. Cultured cells 

were collected in PBS, counted and then treated with solubilizing buffer. Samples obtained from the same number of cells were 

loaded onto SDS-PAGE slabs (De Jaco et al.,2002).. 

 

 

The data summarized above support the hypothesis that the forced expression of ChAT 

in neurotransmitter inactive neuroblastoma cells brings about the modulation of neuron 

specific trait expression, and to provide evidence for the existence of a direct 

modulation of fiber outgrowth and neuronal marker expression by muscarinic receptor 

activation, which may be related to EGR-1 levels. It thus appear of interest to observe 

that  in N18TG2 and in ChAT-transfected clones, muscarinic agonist/antagonist could 

modulate neurite outgrowth. Figure 7 shows the results obtained when N18TG2 cells 

and 2/4 ChAT-transfected clone were cultured in the presence of 10-6 M atropine, a 

mAChR antagonist. Atropine treatment reduced the average fiber length normalized to 

cell number only in ChAT-positive clone (P<0.001). Moreover the non-hydrolyzable 

cholinergic agonist carbachol (CCh) induced higher  neurite outgrowth (P<0.001) in the 

parental non transfected N18TG2 neuroblastoma line with respect to untreated cultures; 

the effect of CCh was inhibited by the muscarinic receptor antagonist atropine, 

demonstrating that the effect of ACh on neurite outgrowth was mediated by muscarinic 

receptors (De Jaco et al.2002). 

2/4 3/1 N18 
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Figure 7. A Quantification of fiber outgrowth, per microscopic field in N18TG2 cultures maintained, for five days, in the presence 

of 10-3-10-5 M carbachol and normalized to cell number present in each microscopic field . Carbachol induced higher  neurite 

outgrowth which is abolished in the presence of 10-6 M atropine. *** P<0.001 (Mann-Whitney test). significant difference with 

respect to  N18TG2 cultures maintained in the absence of carbachol. Micrographs of randomly selected areas of the culture dishes 

were taken from five independent 60-mm dishes (22 fields/ dish); values are the mean ±S.E.M. of about 110 observations for each 

culture condition.CTRL control condition (De Jaco et al.2002). B: : Quantification of fiber outgrowth per microscopic field in 

N18TG2 cultures maintained in the presence of 10-6 M atropine for five days and normalized to cell number present in each 

microscopic field. *** P<0.001 (Mann-Whitney test). significant difference with respect to 2/4 clone cultures maintained in the 

absence of atropine. 

 

 

To evaluate the activity of transcription factors elicited by the endogenous ACh or by 

treatment with muscarinic agonist N18TG2 and ChAT-positive clones were transiently  

transfected (De Jaco et al., 2002) with the the pSyCAT-10 plasmid containing the 

Chloramphenicol acetyltransferase (CAT) reporter gene under the control of the human 

synapsin I promoter (Jungling et al., 1994). The promoter activity was about 4 fold 

higher in transfected clones with respect to the parental line and atropine treatment 

reduced its force (De Jaco et al., 2002). Furthermore the nicotinic receptor antagonist 

mecamylamine resulted ineffective, indicating a regulation of the synapsin I promoter 

mediated by muscarinic receptor activation. Moreover, as shown in Fig.8 in parental 

N18TG2 cells, transiently transfected with synapsin I-CAT construct, the reporter gene 

expression was dose dependently induced by CCh and this effect was abolished by 

atropine, while mecamylamine resulted ineffective (De Jaco et al., 2002). 
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Fig.8. Muscarinic induction of synapsin I gene promoter activity in N18TG2 cells. All transfections were normalized for variations 

in transfection efficiency, cotrasfecting the pSyCAT-10 plasmid with a plasmid containing the β-galactosidase gene under the 

control of a constitutive promoter. Normalization was achieved by dividing CAT activity by β-galactosidase activity. Atropine and 

mecamylamine  were used at 10-6 M final concentration. Values are the mean ± SEM of at least twelve observations. (* = P<0.05; 

** = P<0.01) (De Jaco et al., 2002). 
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regulates the expression of neuronal type II voltage-gated Na+ channels (Chong et al., 
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REST mRNA is expressed in yet undifferentiated neural precursors, suggesting that it 

prevents the precocious expression of specific neuronal proteins during neurogenesis 

(Schoenherr et al., 1995). Therefore the observed increase in the level of voltage-gated 

Na+ channels (De Jaco et al., 2000) and synapsin I (Bignami et al., 1997; De Jaco et al., 

2002) in ChAT transfected clones may be also due to a decrease in the expression of 

REST consequent to the progression in the neuronal developmental program observed 

in ChAT transfected clones. It was demonstred by RT-PCR (Fig.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9  A: RT-PCR analysis of REST and L19 (ribosomial protein as positive control) expression in FB5 clone, in aCS5 ChAT-

negative transfected clone, and in CS37 positive transfected clone. B : Densitometric  analysis. The REST expression value 

normalized to L19, show a significant decrease in ChAT-transfected clone (Biagioni, unpublished data) 
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CHAPTER 3 
 

RESEARCH AIM 
 

The data reported above are consistent with the hypothesis that the forced expression of 

ChAT in neurotransmitter-inactive neuroblastoma cells trigger the activation of an 

autocrine loop via muscarinic receptors, which is responsible for the modulation of 

neuron-specific trait expression, probably through the modulation of  transcription 

factor expression like EGR-1 or REST (Fig.10) 

 

 

 
 

 

 

 

 
Fig.10 Model explaining neuronal features observed in ChAT-transfected clones. The forced expression of ChAT brings about the 

activation of an autocrine loop via muscarinic receptors, which is responsible for the modulation of neuron-specific trait expression, 

probably through modulation of  transcription factors expression like EGR-1 or REST  
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The experimental work presented in  this thesis was to analyze the molecular 

mechanism of ACh action  during differentiation of neuroblastoma ChAT-transfected 

clones and to study,  the modulation of EGR-1 and REST expression to verify the 

correlation between  muscarinic  ACh receptors activation and neuronal feature 

expression. Moreover,  it is also interesting to analyze the possible interaction between 

EGR-1, which is a positive transcriptional modulator and REST, which is a 

transcription repressor. 

 

 

Principal points dealed in this thesis: 

 

1. Demonstration and characterization of ACh release from ChAT transfected clones to 

prove the hypothesis of autocrine loop existence (Fig.11). 

 

 

 

 
 

 

Fig.11 ACh release from  ChAT-transfected clone. The release could be vesicle mediated (B) or/and also constitutive trough the 

membrane(A). 

A B
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2. Identification and characterization of muscarinic receptor subtypes expressed in 

ChAT  transfected clones and evaluation of their activity (Fig.12) to asses their 

ability to transduce ACh signal inside the cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.12  Muscarinic receptor subtypes. The M2 and M4 mAChR interact with the α− subunit of GTP-binding protein, Gi, known to 

inhibit adenylyl cyclase (AC). The M1, M3 and M5 mAChR interact with GTP-binding proteins of the Gq family which activates 

phospholipase  C (PLC) and modulate K+ channel conductance. 
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3. Study of Egr-1 expression mediated by muscarinic receptor stimulation. Stable 

transfection of neuroblastoma N18 with EGR-1 to analyze  the transcriptional 

factor role in neuroblastoma differentiation (Fig.13).  

 

 

 

 

 

 

 

 

 

 
 

 
Fig.13 EGR-1 is a zinc finger transcriptional factor that is able to regulate neurospecific genes 

 

4. Analysis of REST expression in EGR-1 transfected clone. Possible interaction 

between EGR-1 and REST expression (Fig.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.14  Possible existence of a relationship between EGR-1 and REST expression 
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5. Knowing  that ChAT and EGR-1 transfected clones show an higher ability to 

growth fiber I analyzed the expression of metalloproteases. Matrix 

metalloproteases have in fact been recently implicated in the formation of neural 

connections and in axon elongation during the development of the nervous 

system (Fig.15).  

 

 

 

 

 

 

 

 
Fig.15  Role of  metalloproteases in axon elongation 
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CHAPTER 4 
ACh release 

Neurotransmitter functions during early development are independent from the 

establishment synapses or synaptic activity, and involve processes such as cell 

proliferation, differentiation, migration, axon outgrowth, and axon branching (Chapter 

1). In these contest, neurotransmitters are apparently released by mechanisms that are 

distinct from the conventional synaptic vesicular pathway (Nguyen et al., 2001; Owens 

et al., 2002).  

Vesicular synaptic pathway is the best understood example of regulated secretion. 

Accumulation of neurotransmitters in synaptic vesicles at the nerve terminal is mediated 

by specific transporters. The fusion of synaptic vesicles with the plasma membrane at 

the nerve terminal is triggered by the rapid elevation of cytoplasmic Ca2+ during an 

action potential (Augustine et al., 1987; Bennett, 1997). The targeting of synaptic 

vesicles to the release sites and the tight excitation-secretion coupling observed at the 

nerve terminal are mediated by proteins specific of synaptic vesicles (Sudhof, 1995; 

Calacos and Scheller, 1996; Hanson et al., 1997). 

A possible exception to this generally accepted model of neurotransmitter release is may 

represented by an integral plasmalemmal protein which can support the formation of 

ACh quanta. Such a protein has been isolated, characterised and called mediatophore. 

Mediatophore has been localized at the active zones of presynaptic nerve terminals. It is 

able to release ACh with the expected Ca2+ -dependency and quantal character, as 

demonstrated using  mediatophore-transfected cells and other reconstituted system. 

Mediatophore is believed to work like a pore protein, the regulation of which is in turn 

likely  to be dependent on the usual vesicle docking apparatus (Dunant and Israel, 2000; 

Falk-Vairant et al., 1996) 

The constitutive (or non-regulated) secretory pathway operates in all cells and is 

responsible for recycling of plasma membrane components and for secretion of 

molecules into the extracellular environment. In contrast to synaptic vesicle exocytosis, 

constitutive vesicular exocytosis occurs at resting Ca2+ levels. Despite different 

sensitivities to Ca2+, the pathways of synaptic vesicles at the nerve terminal and of 

endosomal membranes in non neuronal cells are mechanistically similar. Both are local 

EGR-1 EGR-1 
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and do not depend on the Golgi apparatus. Retrieval of synaptic vesicles after 

neurotransmitter release is believed to occur through the formation of clathrin-coated 

vesicles, followed by their uncoating, fusion with endosomes, and sorting of synaptic 

vesicle proteins during budding from endosomes (Calacos and Scheller, 1996). 

Although the term “constitutive” implies the constant flux of secretory products to the 

plasma membrane, emerging evidence suggests that various trafficking steps involved 

in the constitutive secretion pathway may be regulated by calcium (Buys et al., 1984; 

Beckers and Balch, 1989; Dan and Poo, 1992; Steinhardt et al., 1994; Coorsen et al., 

1996; Rodriguez et al., 1997). Moreover, molecular characterization of the secretion 

machinery components in both neuronal and non-neuronal cells has demonstrated that 

constitutive and regulated secretion pathways share homolog proteins (Schiavo et al., 

1992; Bennett and Scheller, 1993; Sollner et al., 1993). These findings have prompted 

the suggestion that the transmitter secretion pathway at the nerve terminal has 

developed through addition of synaptic vesicle-specific proteins to the ubiquitous 

endosomal membrane recycling pathway. This idea has provided a rationale for the 

attempts to reconstitute the molecular machinery for neurotransmitter secretion in non 

neuronal cells (Cavalli et al., 1991; Alder et al., 1992; Morimoto et al., 1995). One of 

the functional assays for exocytosis in non-neuronal cells is based on the  loading of 

exogenous ACh into non-neuronal cells. Surprisingly, ACh microinjection into the 

cytoplasm of Xenopus myocytes (Dan and Poo, 1992), or frog fibroblasts in culture 

(Girod et al., 1995) resulted in the accumulation of ACh in the membrane compartments 

and ACh quantal release, as detected by whole-cell patch clamp recordings. Moreover, 

secretion of exogenous ACh from these non neuronal cells was found to be Ca2+-

dependent (Girod et al., 1995). These results suggest that the rudimentary molecular 

machinery for the vesicular uptake of cytoplasmic ACh and quantal Ca2+-dependent 

secretion may exist in non-neuronal cells. However, the nature of the vesicles capable of 

accumulating exogenous ACh, as well as the mechanism of cytoplasmic ACh 

penetration into the vesicles, remains unclear. Data in the literature suggest that these 

vesicles may be of lysosomal (Rodriguez et al., 1997), trans-Golgi (Chavez et al., 1996), 

or endosomal (Miyake and McNeil, 1995) origin.  

In summary, it seems  that the endocytic compartments in non neuronal cells are able to 

accumulate and secrete cytoplasmic  ACh in a Ca2+-dependent fashion, thus resembling 
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the basic functions of synaptic vesicles. On the other hand, the ubiquitous endosomal 

membrane recycling pathway may contribute to spontaneous quantal neurotransmitter 

secretion in neurons (Chang et al., 1998). Indeed, ACh is present in the cytoplasm of 

neuronal cells (Parsons et al., 1983), and endocytic recycling pathway operates in any 

type of cell, including neurons (Kraszewski et al., 1995; Dai and Peng, 1996). 

Constitutive exocytosis of the endosome-derived vesicles is expected to result in a 

detectable change of the membrane potential in the postsynaptic cell. Thus, the small 

amplitude of miniature endplate currents (mepcs) observed at the neuromuscular 

junction, which presumably reflect the exocytosis of vesicles with unusually low ACh 

content (Parsons et al., 1983), may reflect the exocytosis of constitutively recycling 

vesicles. The absence of defined quanta at the developing Xenopus neuromuscular 

synapse (Kidokoro, 1984; Evers et al., 1989), re-innervated mouse neuromuscular 

junction (Muniak et al., 1982) and central synapses (Bekkers et al.,1990) may reflect 

high proportion of “immature” synaptic vesicles, which are similar in molecular 

composition to constitutive recycling vesicles in that they lack some molecular 

components specific of synaptic vesicles. 

Moreover, it has been shown that the neurotransmitters -aminobutyric acid and 

glutamate can   be released in a Ca2+ independent manner, before   synapse formation           

(Demarque et al., 2002). Nevertheless, there is also evidence in several preparations that 

Ca2+ is not fully required for vesicular exocytosis (Mochida et al. 1998; Tse and Tse 

2000 and Zhang and Zhou 2002). Interestingly, in DRG neurons, tetanus toxin, which 

cleaves synaptobrevin, did not completely abolish a calcium-independent, voltage-

dependent exocytosis (Zhang and Zhou, 2002). This raises the possibility that some 

vesicles fuse with the plasma membrane without the requirement of Ca2+ This 

hypothesis  is supported by the observation that the formation of the major brain 

structures is not altered in Munc18-deficient mice in which vesicular release is 

abolished (Verhage et al., 2000). Munc18, in fact, interacts with the protein syntaxin 

and is supposed to influence transmitter release by controlling the formation of 

exocytosis-relevant protein complexes(Sudhof, 1995).  

Neurotransmitters may function as chemical signals in axon pathfinding. Experiments 

on isolated chick embryo Xenopus (Young et al. 1983, Hume et al., 1983) and 

Drosophila CNS neurons (Yao et al., 2000) have indicated that the acetylcholine is 
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synthesized very early in neural development and is present on growing axons well 

before they reach their target or establish functional synapses. Experiments in culture 

have supported the hypothesis  that acetylcholine may have a role in axon navigation; 

acetylcholine gradient, can cause a growth cone to change direction (Zheng 1994). The 

establishment of the precise fine structure of photoreceptor axon projections in the 

Drosophila visual system depends on the synthesis and release of acetylcholine. This 

developmental role of acetylcholine does not require the vesicular acetylcholine 

transporter protein, VAChT which is required for acetylcholine synaptic transmission. 

Spontaneous acetylcholine secretion from developing growth cones of Drosophila can 

be blocked by nicotinic receptor antagonists, but not by tetrodotoxin, which specifically 

blocks nerve-evoked synaptic transmission. This observation is consistent with an early 

role of acetylcholine in the establishment of axon projections that does not use an 

activity-dependent vesicle-mediated mode of delivery (Yang and Kunes .2004). These 

studies raise the possibility that neurotransmitters release, playing a role in development, 

could be dependent by mechanisms different from those which characterize synaptic 

transmission. 
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ACh RELEASE IN NEUROBLASTOMA CELLS 
In the aforementioned cell model ACh is thought to have the main role in ChAT-

transfected clones differentiation mediated by muscarinic receptors activation. To prove 

the existence of an autocrine/paracrine stimulation mechanism, it’s necessary to 

demonstrate that ChAT-transfected clones are able to release the ACh synthesized. To 

analyse ACh release in ChAT transfected clones I used 2/4 clone because it shows the 

highest ChAT activity and ACh production. As a negative control, the release of 1/2 

transfected clone, neomycin resistant, but not expressing  ChAT activity, was tested. 

ACh release was evaluated using the choline chemioluminescent procedure. 

Figure  B shows representative light peak recordings of ACh standards in preliminary 

experiments.  It is evident (Fig16 A) that a linear correlation between the light peaks 

measured and ACh amount exists . 

 

 

 

 

 

 

 

 

 

 

 
Fig.16 A linear correlation between known amount of ACh and light peak B recorded with choline chemioluminescent procedure. 

 

Figure 17 shows that clone 2/4 was able to release ACh in basal conditions and that 

such a release was increased about two folds after potassium stimulation (KCl 80 mM). 

Basal ACh release showed a mean value of 18,5 ± 2.1 pmol ACh/105 cells, after KCl 

stimulation mean Ach release was 38.1 ± 4.7 pmol ACh/105; the difference was 

significant (p < 0.001). 

A
B Arbitrary units 
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The 1/2 clone recording were very low, not modified by potassium stimulation and 

probably they do not represent ACh secreted but a leakage of Choline in the medium by 

the cultured cells. 

 

 

 

 

 

 

 

 

 

 
 

Figure 17 . Basal and KCl-stimulated ACh release in 2/4 ChAT-transfected clone and 1 /2 transfected clone, not expressing  ChAT 

activity. ACh release was measured maintening the cell in saline solution for three consecutive periods (5’ each), during the second 

KCl was added to a final concentration of 80mM. Asterisks indicate the a significant  difference between basal and stimulated ACh 

release (***=p<0.001). Values are the mean±SEM of at least eight impendent experiment ;  

 

As previously shown 2/4 ChAT-transfected clone is able to elongate fibers in 

differentiating conditions.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 18: 2/4 ChAT-transfected clone in basal conditions (A), after 24h (B) and after 48h (C) in differentiatimg medium with 1 mM 

dibutyryl cyclic AMP (dbcAMP).   
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Fig 18 shows that the fibers produced after 96 hours are much longer than those 

produced after 48 hours of treatment.To analyze the possible correlation between the 

levels of ACh released and fiber elongation, ACh release in 2/4 clone maintained for 

48-96 hours in the presence of 1 mM dibutyryl cyclic AMP (dbcAMP) as differentiating 

agent, was also investigated. The cells in differentiating conditions showed a higher 

ability to release ACh with respect to cells maintained in non differentiating culture 

conditions (Fig.19). Such an increase was observed both for ACh released in basal 

condition and after high K+ stimulation. 

It is interesting to notice that the amount of ACh released is correlated with the time of 

differentiation; in fact, the release was higher after 96 hours in culture with respect to 

release measured  after 48 hours of culture in differentiating conditions. 

Moreover it is possible to currelate ACh release levels with fibres outgrowth because 

this latter is, as expected, higher after 96 hours of differentiation (Fig.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.19: Basal and KCl-stimulated ACh release in 2/4 ChAT-transfected clone after 48 and 96 hours of culture in the presence of 1 

mM dibutyryl cyclic AMP (dbcAMP) as differentiating agent. The ACh  release increase with time in culture in differentiating 

conditions (***=p<0.001). Values are the mean±SEM of at least eight  independent experiments. 
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In order to assess the calcium dependency of ACh release, 2/4 ChAT-transfected clone 

was stimulated in the absence of extracellular Ca2+ ions and in  the presence of 1 mM 

EGTA.  

No significant differences were observed between  ACh release in cells maintained in 

the presence or in the absence of calcium for both basal condition and after KCL 

stimulation. It seems that Ach release in 2\4 cells is not depending on Ca2+ presence 

(Fig.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.20:  Basal and KCl-stimulated ACh release in 2/4 ChAT-transfected clone in the presence or in the absence of extracellular Ca2+ 

(**=p<0.01, *=p<0.05respect to pre-stimulation condition) Values are the mean ±SEM of at least five independent experiments. 

 

 

Synaptic level of ACh are known to be regulated by the activity of presynaptc mAChRs 

mediating feedback inhibition of ACh release from Cholinergic nerve terminals 

(Kilinberger et al.,1984; Starke et al., 1989). 

In order to asses if the ACh release in 2/4 ChAT-transfected clone is auto-modulated by 
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Atropine was maintained  in medium before, during and after the KCl stimulation.  Fig 

21 shows that a significant difference between  ACh release in basal condition and after 

KCL stimulation is observed in cells maintained in the presence of atropine, as in 

control conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21: Basal and KCl-stimulated ACh release in 2/4 ChAT-transfected clone in the presence or in the absence (CTRL) of 10-6 M 

atropine. (*=p<0.05) Values are the mean±SEM of at least five independent experiments. 

 

 

These experiments prove that 2/4 ChAT-transfected clone is able to release Ach and 

that this release is increased by high K+ 80mM .  Moreover it was shown that the release 

is not regulated by Ca2+, and not modulated by muscarinic receptors. It is concevaible  

to suppose that 2/4 ChAT-transfected clone lack some molecular components specific 

of synaptic vesicle release pathway and use an “immature” system to release ACh. 
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CHAPTER 5 
Muscarinic receptors 

 
It has been 90 years since Dale (Dale 1914) divided the action of Acetylcholine into two 

component: nicotinic and muscarinic. These effects are presently known to be mediated 

by two quite distinct classes of receptors which are characterized by different structure 

and molecular action mechanism and share only their ability to bind acetylcholine. The 

Muscarinic class of acetylcholine receptors (mAChR) are members of the super family 

of G protein coupled receptors (GPCRs). They are relatively abundant and mediate the 

diverse actions of acetylcholine in the CNS, as well as throughout non-nervous tissues 

innervated by the parasympathetic nervous system. Since the early 1950s 

pharmacological  studies demonstrated  the heterogeneity of muscarinic receptors that 

was unequivocally prove using molecular biological techniques. 

In 1986 Numa and his colleagues (Kubo et al., 1986; Kubo et al.,1986b) cloned the m1 

and m2 subtypes of muscarinic receptors by screening cDNA library prepared from 

porcine cerebrum and heart, respectively. Three more receptor subtypes (m3-m5) were 

then cloned by screening both cDNA and genomic libraries under low-stringent 

conditions using oligonucleotide probes corresponding to regions of high homology 

between the m1 and m2 sequences  (Liao et al., 1989; Bonner et al., 1987; Peralta et al., 

1987).  

This family of receptors is characterized by the presence of seven hydrophobic regions 

in their sequence which are thought to form alpha helixes which span the membrane.  

The transmembrane segment (TM) of the muscarinic receptor represents the region of 

highest homology among the different subtypes and across other members of this large 

family of G-protein –linked receptors. Major  differences between sequences of the five 

muscarinic receptor subtypes lenght are present in: the extracellular  amino terminus, 

the cytoplasmic carboxy terminus, and the third intracellular loop (i3). The greatest 

divergence arises from i3 loop which varies in length from 156(M1) to 239 (M3) 

residues in the five human subtypes. A comparision of the sequences shows that the 
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M1, M3, and M5 subtypes share the maximum homology, whereas the M2 and M4 

subtype constitute a separate homologous group. 

The seven TM segments are thought to form the staves of a barrel-like structure having 

a central pore. Hulme et al. (1990) have predicted that most of the conserved residues in 

the TM  segments form the inner lining of the central pore, whereas the few non 

conserved residues are on the outside. Acetylcholine and other muscarinic ligands are 

thought to bind at a site within this pore, and Hulme et al. (1990) have pointed to the 

highly conserved nature of the central pore as the explanation for the present lack of 

highly selective muscarinic agonist and antagonist (Fig.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 22: Predicted amino acid sequence and transmembrane domain structure of the human M1 muscarinic receptor. Amino acid that 

are identical among the M1, M2, M3 and M4 receptors are darkened. The shaded cloud represent  the approximate region that 

determines receptor-G-protein coupling. 
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The five muscarinic receptor subtypes are referred to as M1-M5. The subtype differ in 

their capability to couple to different G proteins depending on the nature of the G-

protein, the receptor-G protein interaction can initiate  any of several early biochemical 

events seen with muscarinic receptor occupation: inhibition of adenylyl cyclase, 

stimulation of phosphoinositide hydrolysis, or regulation of an ion channel. 

The M2 and M4 mAChR interact with the α−subunit of GTP-binding protein, Gi, known 

to inhibit adenylyl cyclase (AC). The M1, M3 and M5 mAChR interact with GTP-

binding proteins in the Gq family to activate phospholipase  C (PLC) and K+ channels. 

Mediators formed within the cell include cAMP, inositol trisphosphate (InsP3), and 

diacylglycerol (DAG). The inositol phosphates are generated from phosphatidylinositol 

bisphosphate (PIP2), phosphatidylinositol monophosphate (PIP), and 

phosphatidylinositol (PI) (Fig.23-24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig23: Primary biochemical response mediated by M2 and M4 mAChR. They interact with the α− subunit of GTP-binding protein, 

Gi, known to inhibit adenylyl cyclase (AC)..  
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Fig.24  Primary biochemical response mediated by M1,M3, M5 and  mAChR. They interact with GTP-binding proteins in the Gq 

family to activate phospholipase  C (PLC). Mediators formed within the cell include inositol trisphosphate (InsP3), and 

diacylglycerol (DAG). The inositol phosphates are generated from phosphatidylinositol bisphosphate (PIP2), phosphatidylinositol 

monophosphate (PIP), and phosphatidylinositol (PI) 

 

 

 

Beside their coupling to the well-established phosphatidylinositol and cyclic AMP 

effector systems, evidences are now available suggesting that muscarinic receptors also 

couple to, or intersect with, signalling pathways which involve sequential activation of 

serine/threonine protein kinases, thus leading to modulation of gene expression. For 

example muscarinic receptors can activate certain MAP-kinase pathways (Wotta et al., 

1998; Berkeley and Levey.2000). Some components of the phosphokinase pathways 

that could conceivably be modulated by muscarinic receptors in vivo have the potential 

to enhance cell survival by means of up-regulation of certain protection systems and/or 

blockade of apoptosis (Rosemblum, K. et al.2000). 

Cellular response of mAChRs includes the activation of neurite outgrowth, the fine 

tuning of membrane potential, and the regulation of mitogenic growth response in cells 

that are not terminally differentiated (Conklin et al., 1988). 
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In brain, mAChRs are involved in long term potentiation, synaptic plasticity, and higher 

cognitive functions, including learning and memory. 

mAChRs are known to increase the expression of immediate early-genes like c-fos, c-

jun, fos-b, fra-1, nurr-77, egr-1, egr-2, egr-3. Considering that these transcription factors 

regulate the expression of a broad variety of  target genes, it is conceivable  that 

muscarinic  receptor activity is involved in the activation of plastic response in 

postsynaptic element or in the activation of differentiating  response in neuronal 

progenitor (Coso et al., 1995; Huges et al. 1992; Katayama et al.,1993).  
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Muscarinic receptors expression in ChAT-transfected 

clones 
QNB binding studies demonstrated the presence of muscarinic receptors in 

neuroblastoma N18TG2 and in ChAT-transfected clones (Fig.5) 

In the present work I have analysed, by pharmacology competition, the expression of 

muscarinic receptor subtypes in one of the most representative ChAT-transfected 

clones, the 2/4 clone. 

Moreover we have investigated  the activation of the transduction pathway to  

demonstrate the functionality of muscarinic receptors in order to show that ChAT 

transfected clones are potential responsive to Ach .  

 

Homogenates of ChAt-transfected cells specifically bind [3H]-QNB. The 

binding was concentration dependent (Fig.18). The Scatchard plot of the 

saturation isotherms indicate that the binding sites belonging to a single 

class of high affinity sites and reveal a dissociation costant (Kd ) value of 

0.54± 0.16 nM. Saturation of the specific binding occurred at [3H]-QNB 

concentration of 37.18 ±2.19 fmol/mg protein (Fig.25B). 
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Fig.25A [3H]-QNB saturation curve in 2/4 Chat positive  clone. 
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[10-6M]. Specific isotherm is obtained subtracted the aspecific 

isotherm  value from total amount of [3H]-QNB binding obtained in 

absence of antagonist. Values are the mean ± SEM of at least five 

observations. 

B  Scathard plot analysis of data in (A).  
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Competition binding experiments was also performed using selective drugs 

for different muscarinic receptor subtypes.  

Table I  reports  various agonist and antagonists for the different types of 

muscarinic receptors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.I: Characteristic of the different muscarinic receptors 

 

 



Chapter 5 Muscarinic receptors 

 39

In particular I used pirenzepine for M1, gallamine for M2, 4-DAMP for 

M3 and tropicamide for M4 subtype (Giraldo et al, 1988; Michel et al, 

1989; Lazareno et al, 1993; Tata et al, 2000) (Fig.26) at present no 

selective drug for M5 subtype is avalaible. 
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Fig.26 [3H]-QNB binding inhibition by different  selective antagonist treatment. Values are the mean ± SEM of at least six 

observations. 

The IC50 and Ki values obtained for the different ligands were reported in 

Tab II The data obtained in these experiments compared with the Ki 

reported for other tissues (Bronzetti et al, 1996; Tata et al. 1995; 2000) 
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show that 2/4 ChAT-transfected neuroblastoma clone express M1, M2, M3 

and M4 muscarinic subtypes.  

 

 

 
Tab.II  Values of Ki and EC50 obtained with pharmacological competition experiments. 

 

DRUG SELECTIVITY Ki (nM) EC50 

PIRENZEPINE M1 1.2x10-7M  2.3x10-7M 

GALLAMINE M2 8.4x10-7M  1.6x10-6M 

4-DAMP M3 2.3x10-9M  4.3x10-9M 

TROPICAMIDE M4 2.6x10-8M  5.0x10-8M 
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mAChRs and activation of signal trasduction pathways 
 

With the aim to establish if the mAChRs expressed in ChAT-transfected neuroblastoma 

cells are able to activate specific signal trasduction pathways, I analyzed the modulation 

of the cAMP and IP3 levels after treatment with cholinergic agonists. Fig.27 shows the 

effect of 10-4 M muscarine treatment on IP3 levels both in ChAT-transfected clone and 

in N18TG2 parental cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.27: IP3 levels in N18TG2 parental cells and in 2/4 ChAT-positive clone stimulated with 10-4M muscarine. Mus: muscarine; 

U73122: phospholipase C inhibitor.Values are the mean ± SEM of at least four observations. 
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In both cases a fast increase of IP3 was evident 10’’ after the agonist addition. The 

increase observed in the two cell types was comparable and significant (p<0.001) with 

respect to the basal condition. Moreover in both cases IP3 level decrease 30’’ after 

agonist addition. Finally the muscarine effects were significantly reduced (p<0.01) in 

the presence of U73122,  indicating  the IP3 level increase induced by muscarine is 

dependent on PLC activation.  

Fig. 28 shows the effect of 10-4M muscarine treatment on cAMP levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.28: cAMP levels in N18TG2 parental cells and in 2/4 ChAT-positive clone. PGE1: prostaglandine E1; Musc: muscarine, Atr: 

atropine; MT1: mamba toxin 1, Ptx: pertussus toxin. Values are the mean ± SEM of at least four observations. 
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It is well known that M2 and M4 receptor are coupled to Gi and that their activation 

inhibit of adenylate cyclase activity resulting in a decrease of cAMP level. Therefore I 

analyzed if muscarine treatment of parental and ChAT-transfected clone is able to 

produce  a decrease of cAMP level induced by PGE1 stimolation. Although the cAMP 

levels induced by PGE1 was different in ChAT-transfected clone and N18TG2 parental 

cells, the ability of muscarine to inhibit PGE-1 effect on cAMP level was similar in the 

two types of cells. Moreover the agonist effect was abolished by the pre-treatment with 

the antagonist atropine, confirming that the decrease of cAMP level is dependent on 

muscarinic receptor activation. Moreover the treatment of ChAT-transfected clone with 

the Mamba Toxin 1 (MT1), a selective agonist of M1 and M4 receptors  (Potter, 2001), 

also reduce the cAMP level at the same extent observed after muscarine treatment, 

suggesting a direct involvement of M4 subtype. These observation were confirmed by 

the use of pertussis toxin (PTX). In fact the pre-treatment of the cells with PTX reduced 

the muscarine effect indicating that PTX-sensitive G-protein, likely belonging to the Gi 

family, was involved. As reported above this type of G-protein is usually coupled to 

M2/M4 receptors, therefore these data strongly suggest an involvement of M2/M4 

receptor in the modulation of cAMP levels.  

 

All together these data demonstrate that mAChRs expressed both in ChAT-transfected 

clone and N18TG2 cells are functional and able to activate different signal transduction 

pathways. 
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CHAPTER 6 
Egr-1 

The neurotransmitters can lead to long lasting changes in cell phenotype and function 

by altered gene expression. Mechanism must exist to couple short term, cell surface 

events to the long term and coordinated changes in gene expression that give rise to the 

required alteration in cell function. Immediate early-genes (IEG) are the first targets 

activated by the diverse intracellular messenger systems linking membrane events and 

the nucleus. These genes are defined by rapid, and often transient, induction 

independent of the novo protein synthesis. A subclass of immediate early genes encodes 

inducible transcription factors which act as third messengers coupling 

neurotransmission to a cascade of altered expression (Curran, 1988);  egr-1 belongs to 

this subclass of early genes. 

egr-1 is the prototypical member of a family of closely related genes including egr-2, 

egr-3 and egr-4. 

The gene named egr-1 (early growth response gene 1) is also called zinc finger binding 

protein clone 268 (zif268), nerve growth factor-induced gene A (NGFI-A), gene 

containing sequences homologous to the Drosophila Kruppel  finger probe (Krox-24) 

and tetradecanoyl phorbol acetate-induced sequence 8 (TIS8). The ambiguity in the 

nomenclature results from the fact that this gene has been independently identified in 

different laboratories and animal species. Thus, a term ZENK (the acronym of the 

previous four names) has been coined, and it is used nowadays in parallel with all the 

other names. It was initially identified by Lau and Nathans (1987) in mouse fibroblasts, 

where it was induced by serum and growth factors. At the same time Milbrandt (1987) 

identified NGFI-A in a screening strategy that aimed at detecting genes induced by 

NGF (nerve growth factor) in rat PC12 cells (Rat pheochromocytoma cells). These 

discoveries were quickly followed by several independent descriptions of similar gene 

sequences from mice, rats and humans (Almendral et al., 1988; Christy et al., 1988; 

Lemaire et al., 1988; Sukhatme et al., 1988; Tsai-Morris et al., 1988; Arenander et al., 

1989; Cao et al., 1990; Lemaire et al., 1990; Suggs et al., 1990). 

In this thesis I will use egr-1 to indicate the gene and Egr-1 to indicate the protein. 
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In the brain, egr-1 has a distinct basal expression, i.e. the one maintained by normal 

ongoing synaptic or neurohormonal/neurotrophic activity (Worley et al., 1991; 

Herdegen and Leah, 1998; Beckmann and Wilce, 1997). This feature is probably crucial 

for egr-1 functions since it allows for either increasing or decreasing the level of its 

expression. 

egr-1 mRNA expression is detectable in the mouse cortex and hippocampus by in situ 

hybridization (Christy et al., 1988). A more detailed study shows basal egr-1 mRNA 

expression in the rat neocortex, primary olfactory, amygdaloid nuclei, nucleus 

accumbens, striatum, cerebellar cortex and hippocampus (Schlingensiepen et al., 1991). 

The spatial expression patterns of egr-1 mRNA and Egr-1 protein show thigh 

correspondence that may indicate that the basal level of Egr-1 expression is regulated 

principally at transcriptional level (Worley et al., 1991) egr-1 mRNA is, in fact, 

expressed at low levels in the early post-natal rat cortex, midbrain, cerebellum and brain 

stem. Moreover egr-1 mRNA increase throughout postnatal development to adult levels 

(Watson and Milbrant, 1990). In particular, in-situ hybridization studies showed that 

egr-1 mRNA is firstly detectable in rat sensory cortex at postnatal day 10 and that after 

day 12, expression more prominent in this region and becomes apparent throughout the 

entire frontal cortex with a marked increase in the occipital cortex on day 14 (Herms et 

al., 1994). 

 

The gene encoding Egr-1 is present in the mammalian genomes as a single copy genes. 

The coding region of the gene spans about 3.8 kb and consists of two exons and one 

intron. The  exon at the 3’-end includes three zinc-finger DNA-binding domains (Tsai-

Morris et al., 1988; Changelian et al., 1989), while the intron is positioned at the 5’end 

of the region encoding the zinc fingers (Tso et al., 1986). 

The upstream region of the Egr-1 gene contains (Fig. 29) some serum response 

elements (SREs), binding sites for the Ets transcription factor family (EBS) (Sakamoto 

et al., 1991), Sp1 (specificity protein-1), CRE (Calcium/cAMP response element) sites, 

two CCAATT sequences, and AP-1- (Activator protein -1)  binding sequences (Christy 

et al., 1988; Tsai Morris et al., 1988; Changelian et al., 1989). Interestingly, the Egr-1 

protein can bind its own gene via the EBS 5’-CGCCCCCGC-3’ sequence (Thiel and 

Cibelli 2002 ). Moreover the human promoter  contain the ERE (Egr response element ) 
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(Sakamoto et al., 1991). As a result, Egr-1 down regulates the transcription of its own 

gene (Cao et al., 1993). Although the molecular mechanism of this repressive activity is 

unknown, this is a further negative feedback loop, in addition to other  repressive 

system, that allows only a transient but not a sustained synthesis of Egr-1 (Thiel and 

Cibelli 2002). 

 

 

 

 

 

 

 
 

 
Fig.29:  EGR-1 promoter. EBS: binding sites for the Ets (Ets family from sequences transduced by the E26 avian leukemia virus); 

cAMP:CRE-like(Calcium/cAMP response element)sequence; SRE: serum response elements; AP-1: AP-1-like (Activator protein -

1) motifs  binding sequences; NFkB-like binding site for nuclear factor kappa B; SP1 binding site for SP1 (specificity protein -1) 

 

 

This transcriptional factor have a modular structure: different functions such as DNA-

binding, activation or repression of transcription, can be attributed to distinct regions 

within the molecule. The modular structure of Egr-1 is depicted in figure 30. 

 

 

 

 

 

 

 
Fig.30:  Modular structure of the zinc finger transcription factor Egr-1. The Egr-1 protein contains an extended transcriptional 

activation domain on the N-terminus and a DNA-binding domain, consisting of three zinc finger motifs. Additionally, an inhibitory 

domain has been mapped between the activation and DNA-binding domain that functions as a binding site for the transcriptional co-

repressor proteins. 
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The DNA-binding domain of Egr-1 contains three zinc finger motifs and is sufficient 

for DNA-binding activity (Pavletich and Pabo, 1991). 

The three zinc fingers domain are arranged in a semicircular structure that fits snugly 

into the major groove of B-DNA. Each zinc finger domain consists of anti-parallel beta 

sheet and an alpha-helix held together by a zinc ion coordinated by two cysteines from 

the beta sheet and two histidines from the alpha-helix (Pavletich and Pabo, 1991; 

Gashler et al., 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.31 A zinc finger motif rappresentation. Each zinc finger domain consists of anti-parallel beta sheet and an alpha-helix held 

together by a zinc ion (in red) coordinated by two cysteines (sulphur in yellow)  from the beta sheet and two histidines (nitrogen in 

blue) from the alpha-helix 

 

 

Egr-1 preferentially binds to the GC-rich sequence 5’-GCGGGGGCG-3’ (Christy and 

Nathans, 1989; Cao et al., 1993) also known as ERE (Egr-1 response element). 

The activation domain of Egr-1, that is not well characterized, is made up of four 

regions which have the ability to stimulate transcription: A1(between amino acids 16-

41), A2(89-148), A3(420-536) and A4 (226-267). (Gashler et al.1993; Thiel et al., 

2000). 
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An inhibitor domain (R1) between the activation domain and the DNA-binding domain 

was identified that functions as binding site for two transcriptional co-factors termed 

NGFI-A binding proteins 1 and 2 (NAB1, NAB1) (Russo et al., 1995; Svaren et al., 

1996). Both NAB1 and NAB2 block the biological activity of Egr-1 (Russo et al., 1995; 

Svaren et al., 1996; Thiel et al.,2000). 

NAB-1 and NAB-2 are highly expressed in brain (Russo et al., 1995; Svaren et al., 

1996). NAB proteins do not interfere with DNA binding by Egr-1, but rather repress 

transcriptional activity of promoters to which they are tethered (Swirnoff et al., 1998).  

Interestingly NAB2 is induced by nerve growth factor in PC12 cells with slightly 

delayed kinetics with respect to Egr-1, while NAB1 expression is unchanged. This 

suggests that NAB1 and in particulary NAB2 may play an important role in the 

regulation of the function of Egr-1  in vivo (Svaren et al., 1996). 

The discovery of these two repressors produced a further level of complexity for 

understanding the various functions of Egr-1 because induction of egr-1 transcription 

gene may have no biological effect when the function of Egr-1 as a transcriptional 

activator is neutralized by NAB1 or NAB2. The concentration of both co-repressor in a 

particular cell is thus of extreme importance for Egr-1 function. Moreover, the 

expression of the NAB2 gene is controlled by Egr-1 (Ehrengruber et al., 2000), 

indicating that Egr-1 controls its biological activity in a negative feedback loop via the 

synthesis of NAB2. This Egr-1-induced NAB2 expression can be repressed by NAB 

proteins, supporting a negative feedback mechanism (Mechta-Grigoriou et al., 

2000;Svaren et al.,1998) which is crucial to control a damaging overreaction in 

response to environmental signals. Alterations in expression of Egr-1 and Nab proteins 

have been associated with deficiencies in neuronal development (Mechta-Grigoriou et 

al., 2000; Venken et al.,2002). 

 

Egr-1 protein was localized to the cell nucleus (Cao et al., 1990; Waters et al., 1990). 

The nuclear localization is provided by a bipartite signal in the DNA-binding domain 

(the second or third zinc finger) and in the basic flanking sequences (Gashler et al., 

1993). Two protein species of molecular weights 82 and 88 KDa encoded by egr-1 are 

translated in vitro in a rabbit reticulocyte lysate system using the complete open reading 

frame of the egr-1 gene. The existence of these two proteins  is due to the existence of 
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two start codons. Both form of Egr-1 are also found in serum or TPA-stimulated 

NIH3T3 fibroblast (Lemaire et al., 1990). 

A doublet with apparent molecular weight of 84 kDa and a single band of 54 kDa are 

detected by western blotting of PC12 cell extracts after stimulation by NGF, phorbol 

ester or calcium ionophore (Day et al., 1990). The 54 kDa protein is a form of Egr-1 

truncated prior to nucleotide 1528. This protein is exclusively found in the cell 

cytoplasm whereas the 84 kDa form is nuclear. The doublet at 84 kDa represents 

phosphorylated and unphosphorilated forms of the protein (Day et al., 1990). 

 

Several levels of post-translation regulation have been observed for Egr-1.  A consensus 

site for phosphorilation  is present in the Egr-1 protein sequence (Milbrant,1987) and 

Egr-1 proteins are phosphorilated on as serine residue (Lemaire et al., 1990). 

Phosphorylation of Egr-1 enhances its DNA-binding activity (Huang and 

Adamson,1994). Phosphorylation is also proposed to mediate the interaction of Egr-1 

with the NAB inhibitors (Russo et al. 1993).  

Several potential N- and O- glycosylation sites are also present in the predicted Egr-1 

protein sequence (Milbrant, 1987).  

The DNA-binding activity of Egr-1 is dependent on the presence Zn2+, Fe2+or Mn2+ 

(Cao et al., 1992). The cellular redox state may control the DNA-binding activity of 

Egr-1 by excluding zinc from the protein and rendering the oxidised form inactive 

(Huang and Adamson,1994). 

 

The transcriptional activity of Egr-1 could be regulated through the interaction with 

other transcription factors. DNA-binding site for Sp1 and Egr-1  proteins often overlap. 

In same cases, Egr-1 protein or Sp-1 binding is mutually exclusive (Akerman et al. 

1991; Cao et al., 1993). Other transcriptional factors can recognize GC rich sequences 

(ERE-like), it is therefore possible that these transcription factors could interact with 

some promoters containing Egr motif within the nervous system (Beckmann and Wilce 

1996). 

Egr-1 protein may also interact with transcription factors bound to other sequences. A 

protein binding to the neural-restrictive silencer element (NRSF) (Mori et al., 1992; 

Schonherr and Anderson,1995), present in the human synapsin I gene promoter next to 
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the Egr-1 binding motif, may control Egr-1 transactivation of this gene (Thiel et al., 

1994). 

 

Egr-1  is induced in neurons after extracellular stimulation with neurotransmitters or 

trophic substances. Neuronal activation via all glutamate receptor subtypes can increase 

Egr-1 expression. For instance, in neuronal cultures, Condorelli et al. (1994) have 

observed that kainate was the most potent, followed by glutamate, N-methyl-D aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), trans-1-

aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) and quisqualate (the last two 

agonists activate metabotropic glutamate receptors).  

Blockade of GABAA receptor by pentylenetetrazole, a  channel blocker, induces Egr-1 

mRNA in all subfields of the hippocampus, but has no effect on expression in the 

midbrain, cerebellum or brain stem (Saffen et al., 1988). 

Activation of dopamine D1 receptors by a specific agonist increases Egr-1 m-RNA 

expression in cultured striatal neurons, which is antagonized by the action of D2 

receptors (Simpson and Morris, 1995). Egr-1 induction is also modulated by muscarinic 

receptors. The non-selective muscarinic receptor agonist pilocarpine increases the 

neuronal expression of Egr-1 in rat cortex and hippocampus (Huges and Dragunow 

1994). Pre-treatment of animals with atropine (non selective muscarinic antagonist)  or 

pirenzepine (M1 selective antagonist) significantly reduces induction of Egr-1 in both 

cortex and hippocampus. 

Administration of carbachol, noradrenaline, and bradykinin induced Egr-1 mRNA 

expression within 1h in mouse neuroblastoma x rat glioma hybrid NG105-15 cells. Egr-

1 induction by carbachol was inhibited specifically by atropine but not affected by α -

bungarotoxin (Katayama et al., 1993). 

The neuronal stimuli describe above are coupled to diverse intracellular second 

messengers cascades. 

Calcium ions and cyclic AMP cause the activation of immediate early gene transcription 

through the phosphorylation of calcium response element (CREB) which activates 

transcription of immediate early genes through the Calcium/cAMP response element 

(CRE) (Sheng at el., 1990). 
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The product of phospholipase C activity induces the expression of immediate early 

genes through the serum-response element (SRE) (Gilman, 1981). These second 

messenger pathways are subject to cross-talk at multiple levels (Ewards,1994).  

In response to increased cytosolic calcium level, several downstream signal transduction 

pathways are activated and many of them have been implicated in Egr-1  activation. 

Sgambato et al. (1998) observed a transient activation of mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK), spatially coincident with the 

onset of Egr-1  expression in the lateral striatum, following in vivo stimulation of the 

glutamatergic corticostriatal pathway. In addition, Elk-1 (one of ternary complex factors 

binding to SRE) and CREB transcription factors were activated (phosphorylated) 

simultaneously with ERK and Egr-1  induction. Egr-1  induction as well as Elk-1 and 

CREB phosphorylation were abolished by the inhibition of ERK activation. Thus 

transient activation of the MAPK/ERK signalling pathway targeted both CREB and 

Elk-1 transcription factors and, as a result, induced Egr-1  expression via CRE and SRE 

transcriptional regulation sites. Greenwood and Dragunow (2002) observed that the 

treatment of the SK-N-SH neuroblastoma cells with a cholinergic agonist, carbachol, 

led to an increased Egr-1  expression, preceded by the phosphorylation of CREB. In 

PC12 cells, the activation of protein-tyrosine kinase (such as Fps, Src) led to Egr-1  

expression mediated by Ras (a small Gprotein) and Raf (a serine/threonine protein 

kinase) (Qureshi et al., 1991; Alexandropoulos et al., 1992). In these  cells treated with 

NGF, Egr-1  induction was also mediated by Src, Ras and Raf (D’Arcangelo and 

Halegoua, 1993; Wood et al., 1993) perhaps by MAPK, with a possible involvement of 

JNK (Jun N-terminal kinases) as well as by PI 3-kinase (phosphatidylinositol 3-kinase). 

Calcium influx through voltage-dependent calcium channels into PC12 cells caused Src 

activation, formation of an Shc/Grb2 complex (an adaptor protein/growth-factor-

receptor binding protein 2), leading to Ras and MAPK activation and subsequent 

induction of Egr-1  (Rusanescu et al., 1995). Lerea et al. (1995) observed an NMDA 

induction of Egr-1  in dentate granule neurons, which was dependent on phospholipase 

A2 and lipoxygenase. These data suggest that the induction of Egr-1  by different 

factors may be mediated through different MAP kinases. The induction of Egr-1  also 

depends on the activation of protein kinase A (PKA) and protein kinase C (PKC) 

(Mechta et al., 1989; Ginty et al., 1991; Vaccarino et al., 1992; Simpson and Morris, 
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1995). Possible signal transduction pathways involved in controlling Egr-1 expression 

are depicted in Fig. 32.  

 

 

 
 
Fig.32 . Schematic representation of possible signal transduction pathways involved in controlling  Egr-1 induction. 

 

 

Egr-1, whose expression is linked to neural activity, is one of the inducible transcription 

factors (ITF) in the neuronal cells. Egr-1 can act in concert with other transcription 

factors to modulate (activate or repress) the expression of the target genes by binding to 

their promoters. The details of these mechanisms are yet to be clearly identified. The 

regulatory sequence for Egr-1  binding is present within the promoters of a host of 

different late-response genes, thereby enabling Egr-1  to exert a commanding influence 

on long-term cellular homeostasis by regulating the expression of such genes (Tab.III). 

Although several genes, whose expression in the brain can be controlled by Egr-1 , have 

been identified, most of them probably still remain unknown. Owing to the great 
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diversity of possible target genes, different potential functions of Egr-1  can be 

expected. It may be engaged in cell growth and differentiation, as well as in structural 

and metabolic changes in the mature neural cell. Even though discovering the target 

genes of Egr-1  is a valuable effort, it will be difficult to uncover its role without the 

knowledge of the mechanisms by which Egr-1  interacts with other transcription factors. 

Given many possibilities of such interactions in the cell, it is obvious that these 

mechanisms create a very efficient and sensitive, but potentially very complicated, 

regulatory system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Tab III  Genes regulated by Egr-1 and transcription factors interacting with Zif268 
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EGR-1 EXPRESSION IN ChAT-TRANSFECTED 

NEUROBLASTOMA 
Egr-1  has been implicated in the differentiation of various cell types. In human 

myeloblastic leukemia HL60 cells, Egr-1  is transcriptionally silent but is activated 

when these cells are induced to differentiate along either the macrophage or the 

granulocyte lineage (Krishnaraju et al., 1995 ). Additionally, in other cell lines the 

expression of this gene is induced by molecule, such as retinoic acid, known to promote 

differentiation. Following retinoic acid treatment Egr-1  protein levels remain at high 

constitutive levels in differentiated P19 cells, (Mouse embryonic teratocarcinoma cell 

line) indicating a distinct role for this transcription factor in the induction and 

maintenance of differentiated state (Darland et al., 1991). In rat brain the levels of Egr-1 

transcripts are induced by neuronal activation (Bhat et al., 1992; Lam et al., 1997) and 

thyroid hormone (Mellstrom et al., 1994; Pipaòn et al., 21-23 ),  which is known to be 

required for adequate development of the dendritic arbour of different neuronal type 

(Lam et al., 1997). The morphological differentiation induced by serum withdrawal in 

N2A neuroblastoma cells can be blocked by the presence of Egr-1  antisense 

oligonucleotides in the culture medium. Stable transfection of N2A cells, 

overexpressing the Egr-1 protein, extend very long neurites much higher then in 

parental cell line (Pignatelli et al., 1999). The PC12 cell line respond to NGF by 

undergoing growth arrest and proceeding to differentiate towards a neuronal phenotype. 

NGF stimulation induce expression of Egr-1. The overexpression of NAB2, a 

corepressor of Egr-1, blocks the ability of NGF to induce differentiation of PC12 (Qu et 

al., 1998). The same result could be obtained with the overexpression of Egr-1 binding 

domain, because it acts like a selective antagonist of Egr (Levkovitz et al., 2001). 

These data are very suggestive of an in vivo role for Egr-1  in the late stages of neuronal 

differentiation, when neuronal processes begin to develop and connections among cells 

begin to be established. In support of this idea is also the presence of Egr-1 binding site 

in the promoters of several neuronal genes (Tab III ), such as synapsin I, Synapsin II, 

Synaptobrevin II and neurofilament. 
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In the present work, I analysed the role of Egr-1 in neuroblastoma differentiation 

induced by ACh.  

It was previously demonstrated that Egr-1 protein is expressed in ChAT positive clones 

but not in N18TG2 parental cells (Fig.6) and it was shown that EGR family expression 

is increased by mAChR activation in different neuronal cells (Ebihara and Saffen, 1997; 

Nitsch et al., 1998; Von der Kammer et al., 1998). 

In order to demonstrate that Egr-1 expression, in ChAT transfected clones, is due to 

activation of muscarinic receptors, I have analyzed by western blotting the protein 

levels after stimulation of  N18TG2 and 2/4 ChAT positive clone with muscarinic 

agonist and antagonist. 

As shown in Figure 33  Egr-1 protein was not detectable in N18TG2 nuclear extract of 

untreated cells but when the cells are  stimulated with CCh, which is a muscarinic 

receptor agonist, a band is recognized at the expected molecular weight. The CCh effect 

is strongly reduce by the pre-treatment with atropine, a muscarinic receptor antagonist. 

On the other hand 2/4 ChAT-positive clone costitutively expresses Egr-1 and CCh 

stimulation does not further increase the signal. Egr-1  band almost disappears when the 

cells are pre-treated with atropine.  

 

 

 

 

 

 

 

 

 

 

 
Fig.33 Western Blotting on nuclear extract samples. The cells are treated with CCh 10-4M and/or atropine 10-6M. N18TG expresses 

Egr-1 only after CCh stimulation, this effect is abolished by pre-treatment with atropine. 2/4 ChAT positive clone shows Egr-1 band  

at basal condition, CCh stimulation does not increase the expression level. Level of Egr-1 is lower after pre-treatment with 

muscarine. Samples obtained from the same number of cells were loaded onto SDS-PAGE slabs. 
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To analyze the effect of colinergic stimulation on the Egr-1 mRNA expression, I 

stimulated, after six hours of starvation, N18TG2 cells with CCh (10-4M) for different 

times: 0 (CTRL), 30’, 60’, 90’,120’. RT-PCR (reverse transcriptase PCR) analysis (Fig 

34) shows that, after  the addiction of carbachol the level of Egr-1 mRNA expression 

increases to reach a maximum after 60’ and then decreases, whereas there’s no 

significative change in GAPDH mRNA level, the endogenous amplicone used to 

normalize the signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.34 RT-PCR  using  mouse Egr-1 and mouse GAPDH  primers in N18 TG2 cells after  CCh stimulation for different time  
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Considering RT-PCR performed with a defined number of cycle is only a semi-

quantitative technique, to confirm the time course and to obtain a more quantitative 

evaluation of Egr-1 mRNA expression, I analyzed the samples using a real-time RT-

PCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.35: Real time RT-PCR analysis. Egr-1 mRNA expression in N18TG2 cells stimulated with 10-4M CCh for different times. The 

expression is referred to the level in untreated cells. (CTRL). Values are the mean ± S.E.M. of about six independent experiments. 

 

Data presented in Figure 35 confirm that, in N18TG2 cells, mRNA expression induced 

by CCh stimulation is depending on treatment time. The maximum is reached after 60’ 

of stimulation but the expression level decreases after 90’ or 120’ of stimulation. This 

data are consistent with results obtained in other cell types where muscarinic 

stimulation induces a strong but temporary induction of Egr-1 mRNA (Von der 

Kammer et al., 1998; Katayama et al., 1993).  
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followed by stimulation with CCh for an hour, was performed.  mRNA levels were 

evaluated by real-time RT-PCR. 

In this experiment I used Pirenzepine as antagonist for M1, Gallamine for M2, 4-DAMP 

for M3,Tropicamide for M4 and atropine as antagonist of all different muscarinic 

receptor subtypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.36: Real time RT-PCR analysis. Egr-1 mRNA expression in N18TG2 cells stimulated with 10-4M CCh after pre-treatment with 

muscarinic antagonist. The expression is referred to the level in untreated N18TG2 cells. Values are the mean ± S.E.M. of at least 

six independent experiments. **P < 0.001 *** P< 0,0001 

 

 

Analysis of mRNA expression (Fig.36) shows that 4-DAMP is able to reduce egr-1 

expression at levels similar to those obtained by atropine pre-treatment, while the other 

antagonists were less efficient suggesting that the most important effect on egr-1 

trascription is due to signal transduction pathway activated by M4 receptors. 
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It has been reported that Egr-1 is implicated in cellular differentiation (above mentioned 

references) and I have demonstrated that muscarinic receptors activation modulate egr-1 

transcription also in ChAT-transfected neuroblastoma cells. 

In order to study the relationship between, differentiation induced in ChAT transfected 

clones by ACh mucarinic stimulation and egr-1 expression, I transfected N18TG2 cells 

with a construct containing the cDNA for mouse egr-1. egr-1 stable transfected clones 

were selected for neomycin resistance and were characterized for their ability to express 

egr-1. The stable expression of egr-1 gene was detected by RT-PCR. The expression of 

egr-1 gene in transfected clones appeared higher than in N18 TG2 cells and in 2/4 

ChAT-transfected clone (Fig.37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.37: RT-PCR  using  mouse Egr-1 (A) and mouse GAPDH  primers (B) in N18 TG2 cells, in 2/4 ChAT transfecte clone, and 

Egr-1 transfected clones. 
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The Egr-1 transfected clones have a morphology more similar to ChAT transfected 

clones than to N18TG2 parental cells (Fig. 38). 

N18TG2 neuroblastoma cells is characterized by a roundish immature morphology, 

with cells bearing short processes  (Fig.38 A). EGR-1 transfected clones  (Fig  B-C) 

shows a significantly different morphology. They in fact display longer and more 

branched fibers, while the cell body appears flattened on the culture dish. They appear 

more similar to 2/4 transfected clone (Fig.38 D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.38: Phase-contrast micrographs of N18TG2, 2/4 ChAT-transfected clone and Egr-1 transfected clones cultured in non 

differentiating  condition. Magnification 40X 
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It is possible to point out this difference by immunostaining with an anti βIII-tubulin 

monoclonal antibody.  

βIII-tubulin belongs to a specialized class of tubulins specific for neurons, is considered 

to be one of the earliest neuron-associated cytoskeletal marker proteins [Moody et al., 

1989; Lee et al., 1990b; Easter et al., 1993; Katsetos et al., 1993]. 1993]. Its expression, 

either immediately before, or during terminal mitosis, (Moody et al., 1989; Easter et al., 

1993; Katsetos et al., 1993; Haendel et al., 1996), suggests that βIII-tubulin may be 

regulated by transcription factors necessary for neuronal lineage commitment and early 

morphological differentiation [Dennis et al., 2002]. 

The existence of three  critical steps along the pathway of cytoskeletal specialization in 

differentiating neurons was recently demonstrated: initially, when neuroepitelial cells 

activate microtubular reorganization towards neurons, upregulating class βIII-tubulin 

expression; next, a stage when βIII-tubulin is citoplasmically accumulate in neuroblasts; 

and finally, a stage when most βIII-tubulin is incorporated into microtubules, and thus, 

indicating, when microtubular reorganization starts in mature neuron (Fanarraga et al. 

1999). 

Fig. 39 shows representative microscopic fields of N18TG2 cells, 2/4 ChAT transfected 

clone and one of the Egr-1 transfected clone, cultured in non differentiating condition 

and immunostained with an anti- βIII - tubulin monoclonal antibody . 

In N18TG2 cells, which are representative of an immature stage of development,  βIII-

tubulin has a cytoplasmic and perinuclear localization. In transfected clones, both ChAT 

and Egr-1 transfected clones, βIII-tubulin seems to be peripherally localized with 

stronger spots along fibers, this is clear at higher  magnifications (Fig.39 panels B,C). 
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Fig. 39:  : Immunostaining for βIII - tubulin in N18TG2 cells, 2/4 ChAT transfected clone and one of the Egr-1 transfected clone 

cultured in non differentiating condition. Panels A magnification: 40X; Panels B and C: magnification 100X. 

 

 

 

One of the most important characteristic of ChAT transfected clones is the higher ability 

to extend fibers compared to N18TG2 parental cells; and it was also demonstrated that 

it is depending on muscarinic receptors activity (chapter 2). To test the possible Egr-1 

involvement in neurite outgrowth I cultured the Egr-1 transfected clones for 4 days in 

the presence of 1 mM dibutyryl cyclic AMP (dbcAMP), as differentiating agent. 

Immunostaining for  βIII - tubulin (Fig 40) shows that Egr-1 clones display an higher 

ability to grow longer and more branched fibers with respect to N18TG2 cells, 

moreover tubulin, probably incorporated into microtubules, is localized mainly in the 

fibers (see insect). 
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Fig.40: Immunostaining for βIII - tubulin in N18TG2 cells, 2/4 ChAT transfected clone and one of the Egr-1 transfected clone 

cultured for 4 days in the presence of 1 mM dibutyryl cyclic AMP (dbcAMP), as differentiating agent. Magnification 100X. 

 

 

 

 

For a more accurate evaluation of morphological differentiation I performed a 

morphometric analysis. Figure 41 shows the results of the analysis carried out on the 

parental clone and on two transfected clones. Cell numbers and fiber lengths per 

microscopic field were evaluated and considering that cell number per microscopic field 

is not constant, fiber length was normalized to cell number, and fiber number per cell 

was also reported. A significant increase of both fiber number/cell and length/cells were 

observed in Egr-1 transfected clones with respect to N18TG2 cells and 2/4 ChAT-

transfected clone. Differences between 2/4 clone and each of the EGR-1 transfected 

clones were always significant (P < 0.001) by nonparametric Mann-Whitney test. 

N1
8 

2/4

Egr-

Egr-
1 



Chapter 6  Egr-1 

 65

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.41 Quantification of fiber outgrowth, per microscopic field in N18TG2 cells, 2/4 ChAT transfected clone and one of the Egr-1 

transfected clone maintained for 4 days in the presence of 1 mM dibutyryl cyclic AMP (dbcAMP), as differentiating agent and 

normalized to cell number present in each microscopic field. Micrographs of randomly selected areas of the culture dishes were 

taken from five independent 60-mm dishes (22 fields/ dish); values are the mean  ±S.E.M. of at least 110 observations for each 

culture condition. Differences between 2/4 clone and each of the EGR-1 transfected clone were always significant (P < 0.001) by 

nonparametric Mann-Whitney test, 

 

These experiments show that egr-1 expression  in neuroblastoma cells, is modulated by 

muscarinic receptors, therefore the higher basal egr-1 level observed in ChAT-

transfected clones could be explained by ACh constitutive autostmulation of muscarinic 

receptors. Furthermore the egr-1 overexpression in N18TG2 cells induce neurite 

outgrowth similar to those observed in ChAT-transfected clones, so it is possible to 

speculate that egr-1 is a key regulator differentiation induced by ACh. 
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CHAPTER 7 
REST 

 
Neurogenesis, a process central to vertebrate development, requires the acquisition of 

neural cell fates within the developing nervous system and, in parallel, maintenance of 

non-neural cell fates outside the nervous system (Edlund and  Jessell 1999). 

These two complementary events must be coordinated precisely for correct formation of 

the nervous system. Furthermore, neurogenesis requires that, within the developing 

nervous system, only post-mitotic neurons will express neuronal genes, because neural 

stem cells or progenitors have not yet committed to a neural lineage (Temple 2001). 

These requirements raise the fundamental question of how neuronal gene chromatin is 

epigenetically programmed in different cellular contexts.  

For the establishment of epigenetic modifications representing distinct stages of 

differentiation, chromatin modifiers, such as DNA methyltransferases, histone 

methyltransferases and histone acetyltransferases, are recruited to specific genomic loci 

by DNA binding proteins, either repressors or activators (Peterson and Laniel 2004). A 

compelling candidate for orchestrating epigenetic events is the DNA binding protein, 

REST (RE1 silencing transcription factor; also called NRSF). REST was discovered in 

1995 as a repressor of neuronal genes containing a 21 bp conserved motif, known as 

RE1 (repressor element 1 or NRSE) (Chong et al., 1995; Schoenherr and Anderson, 

1995).  The NRSE is a 21-bp DNA sequence (Figure 42 ) originally isolated from the 

promoters of the genes that express, primarily in neurons, the type II sodium channel 

(Maue et al., 1990; Kraner et al., 1992) and SCG10 (Mori et al., 1990; Mori et al., 

1992). Numerous genes with expression restricted mainly to the nervous system contain 

an NRSE motif. A Blast search of the Celera mouse database identifies at least 324 gene 

promoter with NRSE consensus sequences, and functional analysis of cloned promoter 

sequences reveal that NRSE consensus sequences reside in a diverse set of genes of 

interest to neuroscience (Tab. IV). 
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Tab IV: Selected NRSE-containing genes of interest to neuroscience 

 

 

 

NRSF is a member of the GLi-Krüppel family of transcriptional zinc-finger proteins, it 

contains a cluster of eight zinc-finger repeats near its N-terminus, followed by a region 

rich in basic amino acids, a cluster of six proline-rich repeats, and a single zinc finger 
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near the C terminus (Fig.42) (Tapia-Ramirez  et al.,1997). A number of splice variants 

of NRSF exist, including REST4 (Figure), a neuron-specific variant lacking the C-

terminal repression domain (Timmusuk et al., 1999). 

Deletion and GAL-4 analyses have demonstrated two independent repressor domains of 

NRSF, one at each terminus (Tapia-Ramirez et al., 1997; Thiel at al., 1998). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig.42: The NRSE–NRSF system. A. Consensus sequence of the NRSE deduced from functional analysis of silencer elements in 

nineteen genes (57). Nucleotides in lower case vary frequently among functional silencer elements. 

B. Domains of the NRSF protein (also known as REST).C. REST4 is a C-terminally truncated splice variant of the NRSF protein. 
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The amino terminal repressor domain interacts with mSin3, a corepressor found in all 

eukaryotes that recruits histone deacetylases (HDACs) (Grimes et al., 2000; Huang et 

al., 1999). The mSin3–HDAC complex, however, is primarily associated to a dynamic  

 

mode of repression that can alternate between repression and activation and, therefore, 

by itself, would probably be inadequate for long-term silencing of neuronal genes. This 

conundrum was solved by the discovery of the corepressor CoREST, which interacts 

directly with the carboxy terminal repressor domain of REST (Andres et al., 1999; 

Ballas et al., 2001) and, like to mSin3, estabilish complexes with HDACs (Ballas et al., 

2001;You et al., 2001) . Interestingly, unlike mSin3, CoREST is present only in 

organisms with a nervous system (Dallman et al.,2004), pointing to CoREST as a more 

specialized corepressor. Several recent studies indicate that the REST–CoREST 

complex recruits chromatin modifiers for long-term silencing of neuronal genes 

(Lunyak et al., 2002; Roopra et al., 2004) (Figure 1a). Specifically, CoREST can form 

immuno-complexes not only with HDACs but also with the histone H3 lysine 9 (H3–

K9) methyltransferase G9a (Shi et al., 2003) and with the newly discovered histone H3 

lysine 4  (H3–K4) demethylase LSD1 (Shi et al., 2004) (that is also known as 

KIAA0601 or BHC110) (Hakimi et al., 2002) both of which mediate modifications 

associated with gene silencing. These histone-modifying enzymes are required for 

REST–CoREST silencing in non-neuronal cells (Ropra et al., 2004; Shi et al., 2003; Shi 

et al., 2004). 

Furthermore, CoREST recruits to the REST–RE1 site other silencing machinery, 

including the methyl DNA-binding protein MeCP2 and the histone H3–K9 

methyltransferase SUV39H1 (Lunyak et al., 2002). Heterochromatin protein 1 (HP1), 

which causes condensation of chromatin and is associated with histone H3–K9 

methyltransferases, is also present on the neuronal gene chromatin (Lunyak et al., 2002) 

specifically on the RE1 region (Roopra et al., 2004). The effects of these modifications 

result in histone deacetylation, the absence of H3–K4 methylation, the presence of H3–

K9 methylation, which creates binding sites for HP1 and condensation of the targeted 

chromatin (Fig.43). Additionally, the recruitment of silencing machinery by REST–

CoREST might result in the propagation of silencing complex along a large 

chromosomal trait containing several neuronal genes that do not have their own REST 
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binding sites (Lunyak et al., 2002), suggesting a relationship between higher order 

chromatin structure and patterns of gene expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.43: REST–CoREST orchestrates differential epigenetic mechanisms to inactivate neuronal genes in non-neuronal cells. REST–

CoREST recruits a silencing complex to neuronal genes in terminally differentiated non-neuronal cells. Neuronal gene chromatin is 

a substrate for chromatin modifying enzymes including histone deacetylases (HDAC 1,2), histone H3 lysine 4 demethylase (histone 

demethylase K4), and histone H3–K9 methyltransferases (HMTases K9). Methylated lysine 9 residues (mK9) are binding sites for 

heterochromatin protein 1 (HP1), which causes chromatin condensation. The REST binding site (RE1) and adjacent region is 

methylated at CpGs (m) and associated with the methyl DNA binding protein MeCP2. MeCp2 is also associated with Sin3–HDAC 

complexes. DNA methyltransferase 1 (DNMT1) is recruited to the methylated RE1 site. The small carboxyl terminal domain (CTD) 

phosphatase (SCP) might block RNA polymerase II activity 
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The silencing of neuronal gene chromatin in differentiated non-neuronal cells is stable, 

inheritable and endures the lifetime of the animal. By contrast, embryonic stem cells 

(ES), although also non-neuronal, still have the capacity for self-renewal and 

differentiation along different cell lineages. 

Arising the question whether these two fundamentally different non-neuronal cell types 

utilize similar epigenetic mechanisms to suppress the same neuronal genes. Recent 

studies suggest that erasure and reprogramming of chromatin does not occur and that 

neuronal gene chromatin in ES and progenitor cells is programmed to stay in a 

repressed state that is none-the-less poised for expression (Ballas et al., 2005). In this 

contest REST is bound to the RE1 motif and in spite of this it was demonstrated that  

RNA polymerase II (Pol II) is present on RE1 sites in the 5’ untranslated regions of 

several neuronal genes, resulting in a very low transcript levels (Ballas et al., 2005). It is 

conceivable that epigenetic modifications, associated with RE1 sites of neuronal genes 

in stem cells, that point to an inactive chromatin state that is poised for subsequent 

activation may be exsist. Interestingly RE1 motif and surrounding sequences in 

neuronal genes are not methylated; whether the absence of DNA methylation prevents 

recruitment of specialized machinery necessary for long-term silencing typical of 

differentiated non-neuronal cells remains to ascertain.  Moreover recent studies have 

shown that, in P19 embryonal carcinoma stem cells, a family of small Pol II carboxyl-

terminal domain phosphatases (SCPs) are probably recruited by REST to the RE1 sites 

of neuronal genes (Yeo et al., 2005). Phosphatase inactive forms of SCP interfere with 

REST function and promote neural differentiation (Yeo et al., 2005). One of the roles of 

the SCPs in ES cells might be to contribute to a poised state by maintaining lower levels 

of Pol ll activity on neuronal genes. On the other hand SCPs were also found in REST 

complexes in differentiated non-neuronal cells (Yeo et al., 2005). Although in these 

cells Pol ll is not associated with neuronal genes, SCPs might provide additional 

security for the silenced state. Taken together, these findings suggest that the core REST 

complex establishes a distinct set of epigenetic marks by recruiting different chromatin 

modifying proteins in differentiated non-neuronal and ES cells. 

How does the inactive yet permissive chromatin state escape being converted to an 

active state? Several diverse enzymatic activities might help to maintain neuronal genes 

in a state of suspended animation. For example, HDACs, which reduce of acetylated 
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histones levels; SCPs, which might reduce activity of Pol II; and the histone H3–K4 

demethylase LSD1, which is present in CoREST immuno-complexes of ES cells might 

all contribute to maintain the poised state. Finally, microRNAs have recently been 

proposed as key players in the self-renewal of stem cells (Cheng et al., 2005). These 

small non-coding RNAs might complement the activities of chromatin modifiers, either 

by blocking translation of neuronal mRNAs or by selective degradation of neuronal 

transcripts.  

There are two separate models to explain REST regulation of neuronal genes during 

embryonic and adult neurogenesis (Fig.44 ). In both embryonic and adult neural stem 

cell neuronal genes are actively repressed by REST repressor complexes. During 

embryonic differentiation (Fig.44 left), REST is removed at two distinct stages, first at 

the dividing progenitor stage by proteosomal degradation (broken pink oval), and then 

at terminal differentiation (mature neuron). In the mature neuron, REST corepressors 

are dissociated from RE1 but still present, chromatin is relaxed and neuronal genes are 

expressed. During cortical differentiation, degradation of REST protein precedes its 

dismissal from RE1 sites (Ballas et al., 2005).  The identity of transcriptional activators 

that might function after REST departure is not known. During differentiation of adult 

neural stem cells (Fig. 44 right), REST remains on neuronal gene chromatin, and a 

small double stranded non-coding RNA containing RE1 (green wavy line between RE1 

and REST), converts REST from a repressor to an activator by dismissal of corepressors 

and recruitment of coactivators. Whether this dsRNA plays a role in differentiation of 

neural stem and progenitor cells during development has yet to be ascertain. Epigenetic 

regulation of neuronal gene chromatin by REST is fundamental for maintaining stem 

cells in an undifferentiated pluripotent state and for proper acquisition of neural fate 

during neurogenesis. The disappearance of REST during cortical neurogenesis appears 

to be a prerequisite for normal neuronal function in the adult.  These observations have 

led to the proposal that REST levels must be downregulated in order to permit 

acquisition of the terminally differentiated neuronal phenotype. The PC12 cell line 

provided an excellent model to test REST downregulation during neuronal 

differentation. By generating stable lines that express REST under the control of an 

inducible promoter, it was possible to induce REST prior to the treatment with a 

specific growth factor signal (NGF) that cause terminal differentiation. The presence of 
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REST completely blocked induction of sodium channel mRNA in response to NGF. 

Consistent with the effects of REST on sodium currents, persistent expression of REST 

reduced the growth of neurites in response to NGF (Ballas et al., 2001). Although the 

specific REST target genes for neurite growth are not known, the suppression is 

consistent with the large number of proteins important to neuronal physiology that are 

known to be regulated through the REST repressor pathway (Schoenherr et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.44: REST regulation of neuronal genes during embryonic and adult neurogenesis. 
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REST IN ChAT-TRANSFECTED NEUROBLASTOMA 

CELLS 

 
Nervous system development relies on a complex signalling network to engineer the 

orderly transitions that lead to the acquisition of a neural cell fate. Progression from the 

non neuronal pluripotent stem cell to a restricted neural lineage is characterized by 

distinct patterns of gene expression, in particular the restriction of neuronal gene 

expression to neurons. REST, which is a trascriptional repressor, restrict neuronal traits 

to neurons by blocking their expression in non neuronal cells. 

N18TG2 cells are representative of an early developmental stage and express immature 

neuronal phenotype, ChAT-transfected clones instead, seem to proceed toward a more 

specific differentiation state, in fact they express neurospecific features absent  in 

N18TG2 cells. In ChAT-transfected clones, for example, increased levels of voltage-

gated Na2+channels and synapsin I were observed, and each of these genes are regulated 

by REST. It was shown a significant REST expression decrease in ChAT-transfected 

clone (De Jaco et al., 2002). In order to asses if REST levels could be modified by 

muscarinic receptors activation, REST expression in cells pretreated with muscarinic 

agonist and antagonist was analyzed by RT-PCR. Fig 45 shows that in N18TG2 cells 

pre-treated with atropine, a muscarinic antagonist, REST expression decrease but in 

ChAT-transfected clone, pretreated with carbachol, a muscarinic agonist, the expression 

increase.  

 

 

 

 

 

 

 

 
 

 

Fig.45:  REST expression is referred as per cent of N18TG2 level. CCh pre-treatment in N18TG2 cells produces a decrease, instead 

atropine pre-treatment in 2/4 ChAT-transfected clone produces an increase of REST expression.  
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Studies  on REST promoter have shown that in a region wich seem involved negative 

control of gene expression is present an ERE sequence, that could be recognized by 

Egr-1 (Koenigsberger et al., 1999). It should be possible to suppose that Egr-1 can 

regulate the expression of REST so I analyzed REST expression in Egr-1 transfected 

clones by RT-PCR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.46:  : RT-PCR using  mouse REST and mouse GAPDH primers in N18TG2 cells, in 2/4 ChAT transfected clone and Egr-1 

transfected clones 

 

Fig 46 shows that REST expression appeared higher in N18TG2 than in 2/4 ChAT-

transfected clone and Egr-1 trasfected clones. 

To confirm this difference and to obtain a quantitative evaluation of REST mRNA 

expression, I analyzed samples using a Real-time polymerase chain reaction. Data in 

Fig.47 shows that, in all Egr-1 transfected clones REST is expressed at lower levels 

than in N18TG2 although the higher decrease is shown by 2/4 ChAT-transfected clone.  
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Fig.47: Real time PCR. REST mRNA expression in 2/4 ChAT-transfected clone and Egr-1 transfected clones in respect to REST 

expression in N18TG2. Values are the mean±SEM of at least six in pendent experiment.  

 

 

These data suggest that Egr-1 could be implicated directly or indirectly in the regulation 

of REST transcription, reducing its levels thus contributing to the expression of 

neuronal features in ChAT-transfcted clones.  
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CHAPTER 8 
Matrix Metalloproteinases 

Matrix metalloproteinases (MMPs) are a part of a larger family of structurally related 

zinc-dependent metalloproteinases called metzincins. Other subfamilies of the 

metzincins are ADAMs, bacterial serralysins and the astacins. Metzincins use three 

histidine (H) residues to bind the zinc ion at their active site. These residues occur in the 

conserved sequence motif HExxHxxGxxHZ, where Z is a family-specific residue: 

serine in most MMPs, aspartate in ADAMs, proline in serralysins and glutamate in 

astacins. A distinct β-turn at the active site, which is delineated by a methionine residue 

(‘met-turn’) seems to be essential for the protease activity. There is about 20% 

similarity between metzincin subfamilies (Stocker, et al., 1995) , but identity in the 

catalytic domain is much higher. Extracellular proteases are crucial regulators of cell 

function. 

The family of MMPs has classically been described in the context of extracellular 

matrix (ECM) remodelling, which occurs throughout life in different processes that 

range from tissue morphogenesis to wound healing. Recent evidence has implicated 

MMPs in the regulation of other functions, including survival, angiogenesis, 

inflammation and signalling. There are at least 25 members of the MMP family and, 

collectively, these proteases can degrade all constituents of the ECM. As a result of their 

potent proteolytic activity, abnormal MMP function can also lead to pathological 

conditions. 

Every MMPs have an N-terminal signal sequence (or “pre” domain) that is removed 

after it directs their traslocation into endoplasmic reticulum. Thus most MMPs are 

secreted; however, six of them display transmembrane domains and are expressed as 

cell surface enzymes. The pre domain is followed by a propeptide (“pro” domain) that 

maintains enzyme latency until it is removed or disrupted, and a catalytic domain that 

contains the conserved zinc-binding region (reviewed in Nagase & Woessner 1999). 

The catalytic domain dictates cleavage site specificity through its active site cleft, 

through specificity sub-site pockets that bind amino acid residues immediately adjacent 

to the scissile peptide bond, and through secondary substrate-binding exosites located 

outside the active site (Overall 2001). With the exception of MMP7 (matrilysin), 
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MMP26 (endometase/matrilysin-2), and MMP23, all MMPs have a 

hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge 

or linker region. The hinge region, in turn, varies in length and composition among the 

various MMPs and also influences substrate specificity (Knauper et al. 1997) (Fig. 48). 

Gelatinases A and B (MMP2 and MMP9, respectively) (Fig.48) are further 

distinguished by the insertion of three head-to-tail cysteine-rich repeats within their 

catalytic domain. These inserts resemble the collagen-binding type II repeats of 

fibronectin and are required to bind and cleave collagen and elastin (Murphy et al. 1994, 

Shipley et al. 1996). In addition, MMP9 has a unique type V collagen-like insert of 

unknown function at the end of its hinge region. Finally, the membrane-type (MT) 

MMPs have a single transmembrane domain and a short cytoplasmic C-terminal tail 

(MMPs 14, 15, 16, and 24) or a C-terminal  hydrophobic region that acts as a 

glycophosphatidyl inositol (GPI) membrane-eanchoring signal (MMP17 and MMP25) 

(Itoh et al. 1999, Kojima et al. 2000). These domains play an essential role in the 

localization of several important proteolytic events to specific regions of the cell 

surface. 

To accomplish their normal (or pathological) functions, MMPs must be expressed by a 

defined cell type and present in the pericellular location, at the right time, in the right 

amount, and they must be activated or inhibited appropriately. Thus MMPs are strictly 

regulated at transcriptional and post-transcriptional levels and are also controlled at the 

protein level via their activators, their inhibitors, and their cell surface localization 

(Fig.49). 

Considerating that MMP substrate specificities mostly  overlap, the biological function 

of individual MMPs is largely dictated by their differential patterns of expression. 

Indeed, differences in the temporal, spatial, and inducible expression of the MMPs are 

often indicative of their unique roles. Accordingly, most MMPs are closely regulated at 

the level of transcription, with the notable exception of MMP2, which is often 

constitutively expressed and controlled through a unique mechanism of enzyme 

activation (Strongin et al. 1995) including post-transcriptional mRNA stabilization 

(Overall et al. 1991). Nevertheless, data in the literature indicate that the basal 

expression of MMP2, MMP14 (MT1-MMP), and TIMP2 is co-regulated, which is 

consistent with their cooperation during MMP2 activation and with specific similarities  
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Fig.48: Domain structure of the MMPs. Pre, signal sequence; Pro, propeptide with a free zinc-ligating thiol (SH) group; F, furin-

susceptible site; Zn, zinc-binding site; II, collagen-binding fibronectin type II inserts; H, hinge region; TM, transmembrane domain; 

C, cytoplasmic tail; GPI, glycophosphatidyl inositol-anchoring domain; C/P, cysteine/proline; IL-1R, interleukin-1 receptor. The 

hemopexin/vitronectin-like domain contains four repeats with the first and last linked by a disulfide bond. 
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Fig.49: Regulation of the MMPs. MMP regulatory mechanisms include inductive and suppressive signaling (1), intracellular signal 

transduction (2), transcriptional activation and repression (3), post-transcriptional mRNA processing (4), mRNA degradation (5), 

intracellular activation of furin-susceptible MMPs (6), constitutive secretion (7), regulated secretion (8), cell surface expression (9), 

proteolytic activation (10), proteolytic processing and inactivation (11), protein inhibition (12), ECM localization (13), cell surface 

localization (14), and endocytosis and intracellular degradation (15). 
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in their gene promoters (Lohi et al. 2000). Otherwise, MMP gene expression is 

regulated by numerous stimulatory and suppressive factors that influence multiple 

signaling pathways (Fini et al. 1998). 

For example, the expression of various MMPs can be up- or downregulated by phorbol 

esters, integrin-mediated signals, extracellular matrix proteins, cell stress and changes in 

cell shape (Kheradmand et al. 1998; reviewed in Sternlicht & Werb 1999). In some 

cases, one signal may coordinately regulate some MMP genes and differentially 

regulate others (Uria et al. 1998). Post-trascriptional mechanism can also influence 

MMP expression. For example mRNA transcripts can be stabilized by different factors 

(Delany et al. 1995, Vincenti 2001) or multiple transcripts can be generated by 

alternative mRNA splicing (Matsumoto et al. 1997) or polyadenilation (reviewed in 

Sternlicht & Werb 1999). 

 

Like other proteolytic enzymes, MMPs are synthesized as inactive proenzymes or 

zymogens. Their latency is maintained by an unpaired cysteine sulfhydryl group near 

the C-terminal end of the pro-peptide domain. This sulfhydryl residue acts as a fourth 

ligand for the active site zinc ion, and activation requires the removal of this bound by 

the hydrolisis of the propeptide domain or by ectopic perturbation of the cysteine-zinc 

interaction (VanWart&Birkedal-Hansen 1990). The extracellular activation of most 

MMPs can be initiated by other already activated MMPs or by several serine 

proteinases that can cleave peptide bonds within MMP pro domains (Woessner & 

Nagase 2000). However, MMP2 is refractory to activation by serine proteinases and is 

instead activated at the cell surface through a unique multistep pathway involving MT-

MMPs and TIMP2 (Fig.50) (Strongin et al. 1995). Tissue inhibitors of 

metalloproteinases (TIMPs) are specific inhibitors of MMPs that participate in 

controlling of the local activities of MMPs in tissues. First, a cell surface MT-MMP 

binds and is inhibited by the N-terminal domain of TIMP2, and the C-terminal domain 

of the bound TIMP2 acts as a receptor for the hemopexin domain of ProMMP2. Then, 

an adjacent, active MT-MMP cleaves and activates the tethered ProMMP2. Following 

the initial cleavage of ProMMP2 by MT1-MMP, a residual portion of the MMP2 

propeptide is removed by another MMP2 molecule to yield a fully active, mature form 

of MMP2 (Deryugina et al. 2001). While the C-terminal domain of TIMP2 participates 
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in the cell surface docking and activation of MMP2, its N-terminal domain acts as MMP 

inhibitor. Not surprisingly, low-to-moderate levels of TIMP2 promote the activation of 

MMP2, whereas higher levels block its activation by saturating free MT-MMPs that are 

needed to remove the MMP2 prodomain (Strongin et al. 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.50: Cell surface activation of MMP2. A ProMT-MMP is activated during transport to the cell surface by an intracellular furin-

like serine proteinase, at the cell surface by plasmin, or by non-proteolytic conformational changes. The activated MT-MMP is then 

inhibited by TIMP2 and the hemopexin domain of ProMMP2 binds to the C-terminal portion of TIMP2 to form a trimolecular 

complex. An uninhibited MT-MMP then partially activates the ProMMP2 by removing most of the MMP2 propeptide. The 

remaining portion of the propeptide is removed by a separate MMP2 molecule at the cell surface to yield fully active mature MMP2. 

Mature MMP2 can then be released from the cell surface or bound by another cell surface MMP2-docking protein. It can also be 

inhibited by another TIMP molecule or left in an active state depending on local MMP:TIMP molar ratios. 

 

The TIMPs represent a family of at least four 20–29 kDa secreted proteins (TIMPs 1–4) 

that reversibly inhibit the MMPs in a 1:1 stoichiometric fashion (reviewed in Edwards 

2001, Sternlicht & Werb 1999, Gomez et al. 1997). Four TIMPs (TIMP-1, TIMP-2, 

TIMP-3, and TIMP-4) have been identified in vertebrates, and their expression is 

regulated during development and tissue remodelling. Under pathological conditions 

associated with unbalanced MMP activities, changes of TIMP levels are considered to 

be important because they directly affect the level of MMP activity. They share 37–51% 
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overall sequence identity, a conserved gene structure, and 12 similarly separated 

cysteine residues. These invariant cysteines form six intra-chain disulfide bridges to 

yield a conserved structure. Although some studies indicate that the inhibitory activity 

of the TIMPs resides almost entirely in the N-terminal domain (O’Shea et al. 

1992,Willenbrock&Murphy 1994, Huang et al. 1997;Bodden et al. 1994), both C-  and 

N-terminal domains influence enzyme-inhibitor binding (Willenbrock & Murphy 1994). 

Individual TIMPs differ in their ability to inhibit various MMPs (reviewed in Woessner 

& Nagase 2000). In addition, the TIMPs differ in terms of their gene regulation and 

tissue-specific patterns of gene expression (Edwards 2001). 

In according to the classic role of MMPs in modulating the motility of cells across 

tissue matrices, metalloproteinases might regulate the migration of precursor cells to 

their destinations during neural development. Neural stem cells express MMP2 and all 

four TIMPs (Frolichsthal-Schoeller,. et al. 1999), and the migration of an 

oligodendrocyte progenitor requires MMP activity in vitro. Another role for MMPs in 

CNS development might lie in myelinogenesis, the process whereby oligodendrocytes 

extend several processes from their soma that reach and enwrap axons to form myelin. 

The initial expansion of oligodendroglial processes is massive and could require 

remodelling of the brain matrix by MMPs. This hypothesis has been tested and 

oligodendrocytes were found to express MMP9 during the period of myelinogenesis. 

Furthermore, the inhibition of MMP activity in vitro prevented the extension of oligo-

dendroglial processes (Oh,. et al.1999). In parallel with myelinogenesis, 

metalloproteinases also participate in axon elongation (Fig.51). Early studies showed 

that the presence of proteolytic activity at neuronal growth cones during attachment and 

reattachment events (Pittman, 1985); some of the activity is probably contributed by 

metalloproteinases, as interference with MMP activity inhibited growth-cone motility 

(Karkkainen et al 2000).. Inducers of neuronal differentiation and axonal outgrowth, 

such as nerve growth factor, laminin or retinoic acid, enhanced the expression of 

MMP2,-3 and -9 by dorsal root ganglion (DRG) neurons (Sheffield et al., 1994), PC12 

and neuroblastoma cells (Machida et al., 1989; Chambaut-Guerin et al., 2000). 

Furthermore, growth cones of PC12 cells that stably expressed MMP3 had a reduced 

capacity to penetrate a reconstituted basement membrane (Machida et al., 1989). In a 

study in which neurite outgrowth of DRG neurons that grow on top of normal adult 
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nerves was evaluated, the slow neurite elongation was further reduced by treatment with 

metalloproteinase inhibitors (Zuo et al., 1998). By contrast, pre-treating the nerves with 

recombinant MMP2 accelerated neurite growth (Zuo et al., 1998). Further studies led to 

the conclusion that DRG neurons expressed MMP2 that degraded and inactivated the 

neurite-inhibiting activity of chondroitin sulphate proteoglycans present on nerves, 

leading to the exposure of permissive laminin for neurite outgrowth (Zuo et al., 1998).  

Indeed, cleavage of a specific peptide bond in an ECM molecule leads to profound 

functional changes in other systems. For example, the cleavage of the  Ala586–Leu587 

bond in the α2 chain of laminin-5 by MMP2 induced migration of breast epithelial cells 

by exposing a cryptic pro-migratory site on laminin-5 (Giannelli et al., 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.51: Metalloproteinases regulate axonal growth. Several growth factors, including nerve growth factor (NGF), increase the 

expression of metalloproteinases (MPs) by neurons. MPs, in turn, regulate neurotrophic factor activity. One mechanism involves the 

release of growth factors that are anchored to the extracellular matrix (ECM). MPs that are located in the vicinity of growth cones 

can promote the elongation of axons owing to their ability to remodel the ECM and degrade inhibitory molecules such as the Nogo 

proteins. By interacting with molecules implicated in axonal guidance  

 

Finally, in concordance with the activity of MMP2 on proteoglycans described above, 

metalloproteinases might be used in the CNS to destroy other inhibitory proteins. C6 

glioma cells and fibroblasts transfected with MT1-MMP could digest NI250 (Belien et 
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al., 1999), a Nogo protein identified as one of the most potent inhibitors of axonal 

elongation. In this way, some MMPs might act by neutralizing inhibitory proteins for 

axonal outgrowth. Although these data implicate metalloproteinases in the creation of 

penetrable paths for axonal elongation (Fig.51), metalloproteinases can also regulate 

guidance cues for growth cones. Ephrins are guidance molecules that bind to receptor 

tyrosine kinases of the Eph family. When the growth cone of a neuron that expresses 

Eph receptors encounters ephrin ligands on the surface of another cell, this facilitates 

the adherence of the cells to each other and bidirectional signalling to occur. The growth 

cone then overcomes these adhesive forces and breaks away from the ephrin surface. 

Hattori et al. 1993 showed that the adhesive ephrin–Eph interaction is broken in vitro by 

ADAM10, which becomes activated after engagement of the Eph receptor, another 

guidance molecule is netrin-1,which binds a receptor known as DCC (deleted in 

colorectal carcinoma). When axon outgrowth from embryonic dorsal spinal explants 

was evaluated in vitro, the facilitatory activity of netrin 1 was potentiated by IC3 and 

GM6001, hydroxamate metalloproteinase inhibitors (Galko et al., 2000). It was found 

that DCC was shed from the cell surface by the activity of an unidentified MMP; 

preventing the ectodomain shedding of DCC with a metalloproteinase inhibitor resulted 

in responsiveness to netrin 1 (Galko et al., 2000). The recent report of a phenotype-

based GENE-TRAP screen to identify genes that control wiring patterns in the mouse 

CNS further implicates metalloproteinases in axonal guidance. ADAM23 was one of 

the genes identified in this screening; its inactivation in vivo led to neurological defects, 

tremor and ataxia (Leighton et al., 2001).  
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MMP IN NEUROBLASTOMA CELLS 
 

ChAT-transfected clones show an higher ability to grow fibers than N18TG2 parental 

cells, and I have demonstrated that stable transfection of N18TG2 with Egr-1 increase 

neurite outgrowth. 

It was shown that Egr-1 regulate the expression of MT-MMP1, which is necessary for 

MMP-2activation (Haas et al., 1999), one of the MMP expressed during nervous system 

development.  

For this reason it seems interesting to study MMP2 activity in neuroblastoma cells and 

transfected clones to analyze the possible correlation between fibers outgrowth and 

MMP activity. 

The activity of MMP2 in N18TG2 cells and ChAT-transfected clones were studied by 

zymography. Zymography involves the electrophoretic separation of proteins in the 

presence of SDS and in the absence of reducing agents on a polyacrylamide gel 

containing gelatine, which is the substrate of some MMPs, for example MMP2 and 

MMP9.  Gelatin therefore represent  an in situ protease substrate for MMPs. I analyzed 

the culture medium of cells maintained in different conditions. In order to asses if the 

MMP2 activity is dependent on muscarinic activation, I analyzed N18TG2 and ChAT-

transfected cells treated with muscarinic agonist and antagonist. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.52: Zymography comprising 10% polyacrylamide, 1 mg/mL gelatine. Culture media of N18TG2cells, N18TG2 treated with  

CCh 10-4M (N18TG2+C), and N18TG2 treated with CCh 10-4M and atropine 10-6M (N18TG2 + C + A) were analyzed. A band of 
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proteolitic activity is recognized only in N18TG2+ C corresponding to 62 KD MMP2 activated form. Standard is obtained with 

sample of  periferic blood treated with sample buffer. 

As shown in Figure 52 a proteolitic band is detectable only in N18TG2 cells cultered in 

the presence of Charbacol 10-4 M.  As expected, the observed band has an experimental 

MW of 62 KD, corresponding to MMP2 actived. If the cells are treated with CCh and 

atropine 10-6 M the effect of CCh is abolished.  

 

Then I analyzed the culture media of two different ChAT-transfected clones (2/4 and 

3/1) before and after atropine treatment. Proteolitic bands of MMP2 activated form is 

present in 2/4 and 3/1 clone but disappear when the cells are treated with atropine. Two 

bands corresponding to active form of MMP9 (88KD) and its proenzyme  form (92 KD) 

are also observed, but they seem to be constitutively expressed and not change after 

atropine treatment (Fig.53).   

 

 

 

 

 

 

 

 

 

 

 

 
Fig.53: Zymography comprising 10% polyacrylamide, 1 mg/mL gelatine. Culture media by ChAT-transfected clones (2/4 and 3/1) 

abd ChAT-transfected clones treated with atropine 10-6M (2/4 +A, 3/1 +A) were analyzed.  Bands of MMP2 activated form (62 

KD), present in ChAT-transfected clones, disappear after atropine treatment. 

 

In order to demonstrate if these bands are produced by MMP activity I analized 

proteolitic activity in absence of Zn2+ and Ca2+ ions, considering that MMPs are Zn2+ 

and Ca2+ dependent enzyme. Furthermore I used a specific MMP synthetic inhibitor 

(SB-3CT  5µM) to abolish the proteolitic activity, as shown in Fig.54 and Fig.55 each 
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of these treatment prevence the diction of the specific bands, confirming that proteolitic 

activity is due to MMP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.54: Zymography comprising 10% polyacrylamide, 1 mg/mL gelatine. Culture media by N18TG2 and 2/4 ChAT-transfected 

clones in the  presence and in the absence of Zn2+ and Ca2+ were analyzed. In absence of ions proteolitic band of MMPs disappears 
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Fig.55: Zymography comprising 10% polyacrylamide, 1 mg/mL gelatine. Culture media by 2/4 ChAT-transfected clones maintened 

in basal condition (2/4) or treated with atropine (2/4 + A). Samples treated with the specific inhibitor  SB-3CT  5µM (2/4 + In, 

2/4+A+In) were also loaded on the gel. 

 

Zymography analysis on Egr-1 transfected clones was also performed. As shown in 

Figure 56 proteolitic activity of MMP2, like in 2/4 ChAT-transfected clone, is present in 

Egr-1 transfected clone. This observation suggests a possible involvement of Egr-1 in 

the regulation of MMP2 activity. 

 

 

 

 

 

 

 

 

 

 
Fig.56 Zymography comprising 10% polyacrylamide, 1 mg/mL gelatine. Culture media conditionated 2/4 ChAT-transfected clone 

and Egr-1 trasfected clones were analyzed. 
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DISCUSSION 
 

A large body of evidence, emerging from diverse experimental system and approaches, 

indicates that neurotransmitter molecules are present in a wide variety of animal species 

throughout development, thus giving support to their role as signal molecules which can 

direct neuronal differentiation playing alternative roles in the development of nervous 

system as regulators able  to influence various cellular events, taking place during 

neuron differentiation before  synapses formation.  

As far as the cholinergic system, Choline Acethyltransferase (ChAT) immunoreactivity 

has been demonstrated in dividing cells of mouse ventricular germinal zones, 

(Schambra et al., 1989) in pre- or early migratory neurons of rat spinal cord (Phelps et 

al., 1990) and  muscarinic receptors have been revealed in rat central nervous system by 

autoradiography as early as day 14 of embryonic life (Schlumpf et al.,1991).  

ACh acts on proliferation of  rat cortical neural precursors by activation of muscarinic 

receptors. It exherts  inhibitory effect on fibre growth on retinal ganglion cells (Lipton 

et al., 1988) and it has been proposed as a possible mechanism to control dendrite 

growth, upon reaching the appropriate target cells. An acetylcholine-induced retraction 

of growth cone has been  reported for axons of Retzius neurons in leech embryos (Elsas 

et al., 1995). On the other hand, acetylcholine  counteracts the inhibitory  action of 

serotonin on neurite elongation of B19 neuron of Helisoma  (Mc Cobb et al., 1998). 

It was shown that neuroblastoma N18TG2 cell line appears as an interesting 

experimental system to study ACh morphogenetic action on neuronal differentiation 

because they are defective for neurotransmitter production and when they are forced to 

express ChAT they acquire new neuronal features (Chapter 2). 

The aim of this thesis is the elucidation of the molecular mechanism by which ACh 

exherts a morphogetic activity on ChAT - transfected neuroblastoma cells. 

Neurotransmitter functions during early development are independent from the 

establishment synapses or synaptic activity, in these contest, neurotransmitters are 

apparently released by mechanisms that are distinct from the conventional synaptic 

vesicular pathway (Nguyen et al., 2001; Owens et al., 2002). Molecular characterization 

of the secretion machinery components in both neuronal and non-neuronal cells has 

demonstrated that constitutive and regulated synaptic secretion pathways share homolog 
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proteins (Schiavo et al., 1992; Bennett and Scheller, 1993; Sollner et al., 1993). These 

findings have prompted the suggestion that the transmitter secretion pathway at the 

nerve terminal has developed through addition of synaptic vesicle-specific proteins to 

the ubiquitous endosomal membrane recycling pathway. 

It seems  that the endocytic compartments in non neuronal cells are able to accumulate 

and secrete cytoplasmic  ACh in a Ca2+-dependent fashion, (Cavalli et al., 1991; Alder 

et al., 1992; Morimoto et al., 1995; Dan and Poo, 1992; Girod et al., 1995) thus 

resembling the basic functions of synaptic vesicles. On the other hand, the ubiquitous 

endosomal membrane recycling pathway may contribute to spontaneous quantal 

neurotransmitter secretion in neurons (Chang et al., 1998). Indeed, ACh is present in the 

cytoplasm of neuronal cells (Parsons et al., 1983), and endocytic recycling pathway 

operates in any type of cell, including neurons (Kraszewski et al., 1995; Dai and Peng, 

1996).  

 

Acetylcholine measurements demonstrate that ChAT-positive cells can synthesize and 

release acetylcholine in the culture medium, and that such a release can be increased, 

e.g. when cells are depolarized by high potassium. 

These data support the hypothesis that acetylcholine may act on ChAT-positive cells by 

establishing an autocrine/paracrine loop; muscarinic acetylcholine receptors would be 

activated on those cells releasing acetylcholine. 

In addition, the data demonstrate that ChAT-positive cells increase neurotransmitter 

release after treatment with differentiating agents, which induce an increase in both 

length and number of neurites. The increase in ACh release could be explained by the 

increase in the surface available for release, due to neurite extension. In vivo, 

neurotransmitter release during an intensive neurite outgrowth could play a role in the 

mechanisms of axon guidance to its target. 

As ACh release in ChAT-N18TG2 cells is induced by high potassium (potassium-

dependent) it could be mediated either by vesicles or by a pore system similar to that of 

the mediatophore. Our data demonstrate that the release is not dependent on 

extracellular calcium.  

It has been shown that the neurotransmitters -aminobutyric acid and glutamate can be 

released in a Ca2+ independent manner, before synapse formation (Demarque et al., 
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2002). Nevertheless, there is also evidence in several preparations that Ca2+ is not fully 

required for vesicular exocytosis (Mochida et al. 1998; Tse and Tse 2000 and Zhang 

and Zhou 2002). Interestingly, in DRG neurons, tetanus toxin, which cleaves 

synaptobrevin, did not completely abolish a calcium-independent, voltage-dependent 

exocytosis (Zhang and Zhou, 2002). This raises the possibility that some vesicles fuse 

with the plasma membrane without the requirement of Ca2+  

Anyway it still has to be demonstrated, in this experimental system, whether the release 

is dependent on intracellular calcium stores. The hypothesis is that these cells release 

acetylcholine through still immature vesicles, in which calcium-dependent release 

mechanism is not yet fully developed. A possible further development of these 

experiments would be the electron microscopic analysis of transfected cells, to study the 

presence and localization of synaptic vesicles. 

Pharmacological experiments on ChAT-transfected clones  show that M1, M2, M3 and 

M4 muscarinic receptors are expressed on ChAT-positive cells, while second messenger 

analysis indicates that they are functionally capable of activating their specific signal 

transduction pathways. 

All these data suggest that the progression along their differentiation pathway of ChAT-

positive cells can be triggered by the acetylcholine released in the culture medium. 

A further step in the thesis is the identification of those transcription factors involved in 

the appearance of neurospecific markers following the activation of muscarinic 

receptor-dependent intracellular pathways. 

Egr-1 is a transcription factor strongly involved in differentiation and in neurite 

extension in several cell types.  

The expression of this gene seems induced by molecule, such as retinoic acid, known to 

promote differentiation. Following retinoic acid treatment Egr-1  protein levels remain 

at high constitutive levels in differentiated P19 cells, (Mouse embryonic 

teratocarcinoma cell line) indicating a distinct role for this transcription factor in the 

induction and maintenance of differentiated state (Darland et al., 1991). In rat brain the 

levels of Egr-1 transcripts are induced by neuronal activation (Bhat et al., 1992; Lam et 

al., 1997) and thyroid hormone (Mellstrom et al., 1994; Pipaòn et al., 21-23 ),  which is 

known to be required for adequate development of the dendritic arbour of different 

neuronal type (Lam et al., 1997). The morphological differentiation induced by serum 
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withdrawal in N2A neuroblastoma cells can be blocked by the presence of Egr-1  

antisense oligonucleotides in the culture medium. Stable transfection of N2A cells, 

overexpressing the Egr-1 protein, extend very long neurites much higher then in 

parental cell line (Pignatelli et al., 1999). The PC12 cell line respond to NGF by 

undergoing growth arrest and proceeding to differentiate towards a neuronal phenotype. 

NGF stimulation induce expression of Egr-1. These data are very suggestive of an in 

vivo role for Egr-1  in the late stages of neuronal differentiation, when neuronal 

processes begin to develop and connections among cells begin to be established. In 

support of this idea is also the presence of Egr-1 binding site in the promoters of several 

neuronal genes (Tab III ), such as synapsin I, Synapsin II, Synaptobrevin II and 

neurofilament. 

 

The data here reported by western blot show that Egr-1 is expressed in transfected cells 

and it is not expressed in parental N18TG2 cells. Egr-1 expression can be induced in 

parental N18TG2 treated with charbachol and can be repressed in ChAT-positive cells 

by atropin. 

When N18TG2 cells are treated with acetylcholine Egr-1 mRNA expression increases 

to reach a maximum after 1 hour treatment. Considering this time as that necessary for 

the maximum activation of the transcription factor, it has been possible with 

pharmacological studies, to find out that regulation of Egr-1 is mediated by M3 

receptors. Therefore acetylcholine, through M3 muscarinic receptors, can activate Egr-1 

in neuroblastoma cells. 

N18TG2 neuroblastoma has also been stably transfected with Egr-1 and neurite 

extension has been measured in these cells; morphometric analysis shows that Egr-1 

transfected cells exhibit a neurite extension ability similar to that of ChAT-positive 

cells, and much greater than parental cells. 

Egr-1 is a finely regulated transcription factor, which undergoes several inhibition 

mechanisms that keep its levels under constant control; it is therefore of interest to 

analyze the expression in our cells of inhibitors such as NAB1 and NAB2 in fact it was 

shown that the overexpression of NAB2,  blocks the ability of NGF to induce 

differentiation of PC12 (Qu et al., 1998).  
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In addition, in order to better correlate Egr-1 expression with neurite outgrowth it would 

be appropriate to identify the target genes of Egr-1 in ChAT- and Egr-1 transfected 

cells, and which are the molecules involved in nerve fiber extension. 

During the development of the nervous system neural precursors travel within the 

extracellular matrix extending fibers toward their target, and this phenomenon requires 

the activation of matrix metalloproteinases (MMPs) to hydrolize some of the 

components of the surrounding extracellular matrix. 

Early studies showed that the presence of proteolytic activity at neuronal growth cones 

during attachment and reattachment events (Pittman, 1985); some of the activity is 

probably contributed by metalloproteinases, as interference with MMP activity inhibited 

growth-cone motility (Karkkainen et al 2000).  Inducers of neuronal differentiation and 

axonal outgrowth, such as nerve growth factor, laminin or retinoic acid, enhanced the 

expression of MMP2,-3 and -9 by dorsal root ganglion (DRG) neurons (Sheffield et al., 

1994), PC12 and neuroblastoma cells (Machida et al., 1989; Chambaut-Guerin et al., 

2000). Furthermore, growth cones of PC12 cells that stably expressed MMP3 had a 

reduced capacity to penetrate a reconstituted basement membrane (Machida et al., 

1989). In a study in which neurite outgrowth of DRG neurons that grow on top of 

normal adult nerves was evaluated, the slow neurite elongation was further reduced by 

treatment with metalloproteinase inhibitors (Zuo et al., 1998). By contrast, pre-treating 

the nerves with recombinant MMP2 accelerated neurite growth (Zuo et al., 1998). 

 

In this thesis it was demonstrated that muscarinic receptors can modulate the activity of 

MMP2, which in turn could be at least in part involved in the neurite outgrowth 

mechanism. To support this hypothesis, in the literature it is reported that Egr-1 is 

involved in the expression of MT-MMP1, which is necessary for MMP2 activation. 

Accordingly, in our experiments Egr-1 positive clones, as well as ChAT-positive 

clones, express MMP2, unlike their parental counterparts. 

With the aim of better defining the transcriptional mechanism downstream the self 

activation of muscarinic receptors in ChAT-positive clones, I also studied the 

expression of REST transcription factor. This is a repressor of neurospecific genes, 

among which are synapsin I and voltage-activated sodium channels, both genes 

upregolated in ChAT-positive clones.  
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REST levels must be downregulated in order to permit acquisition of the terminally 

differentiated neuronal phenotype. The PC12 cell was used as  model to test REST 

downregulation during neuronal differentation. By generating stable lines that express 

REST under the control of an inducible promoter, it was possible to induce REST prior 

to the treatment with NGF that cause terminal differentiation. The presence of REST 

completely blocked induction of sodium channel mRNA in response to NGF. 

Consistent with the effects of REST on sodium currents, persistent expression of REST 

reduced the growth of neurites in response to NGF (Ballas et al., 2001). Although the 

specific REST target genes for neurite growth are not known, the suppression is 

consistent with the large number of proteins important to neuronal physiology that are 

known to be regulated through the REST repressor pathway (Schoenherr et al., 1996).  

 

PCR experiments indicate that REST expression is decreased in ChAT-positive clones, 

and that it can be modulated by muscarinic receptors stimulation. 

REST expression is also decreased in Egr-1 positive clones, and therefore Egr-1 is a 

potential regulator of REST expression, either directly or indirectly. 

However, as it is clearly pointed out by studies on the regulation of REST expression, 

the mechanism is likely to involve other molecules, in fact the decrease of REST 

expression is more evident in ChAT-positive clones than it is in Egr-1 transfected cells. 

 

In conclusion in this thesis it has been demonstrated that acetylcholine can induce 

differentiation of ChAT-positive cells, because it is released by the cells that synthesize 

it and it acts on muscarinic receptors of the M3 type, which are present on the surface of 

the same cells. Muscarinic receptors activate mechanisms that increase the levels of 

Egr-1 and decrease the levels of REST. The combined action of these two transcription 

factors, possibly with the cooperation of other still unidentified components, enables the 

transfected cells to enhance neurite outgrowth and to increase MMP2 activity. 
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CHAPTER 10 
MATERIALS AND METHODS 

 

Neuroblastoma cell cultures 

N18TG2 cells, derived from mouse C-1300 neural crest tumor (Nelson et al., 1976), 

were cultured in Dulbecco’s modifed Eagle’s medium (DMEM) supplemented with 

10% fetal calf serum (FCS). ChAT-transfected clones were obtained as previously 

described (Bignami et al., 1997) using the pcDL1-ChAT expression plasmid (Ishii et al., 

1990) which contains a 2.1-kb insert for the complete coding sequence of rat ChAT. 

The transfected clones were cultured in DMEM supplemented with 10% FCS and 400 

mg/ml geneticin. The cells were seeded in 90-mm tissue culture dishes at a density of 

5X105 cells and maintained at 37°C in a 10% CO2 atmosphere: for subculturing they 

were removed from the culture dish with 0.05% trypsin and 0.02% EDTA in phosphate-

buffered saline (PBS) for 5 min at room temperature. The doubling time of transfected 

clones ranged between 21 and 23 h; no signifcant differences were observed with 

respect to N18TG2 cells. 

 

ACh release 

To evaluate ACh release we used the choline oxidase chemiluminescent procedure 

previously described by Israel and Lesbats (1981). The transfected clone 2\4 was seeded 

in 35 mm tissue culture dishes at a density of 2x 105 cells and maintained in culture for 

two days. At this time, each dish was repeatedly washed with a saline solution (136 mM 

NaCl, 5.6 mM KCl, 1.2 mM MgCl2, 6 mM CaCl2 in 10 mM Tris buffer, pH 8.6) in 

order to avoid interference by choline present in the medium. The dishes were then 

incubated at 37°C for three consecutive periods (5 min each) in 750 µL of the saline 

solution; during the second incubation period, 20 µL of KCl (final concentration 80 

mM) were added to trigger the release.  

ACh release by 2\4 clone was also measured in the presence of 10-6 M atropine as 

muscarinic receptor antagonists. 

Culture medium was added to a reaction mixture containing 10 µL luminol (1 mM stock 

solution), 5 µL horseradish peroxidase (2 mg/mL stock solution) and 5 µL AChE (1000 
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U/mL stock solution purified on a Sephadex G-50 column). Chemiluminescence was 

recorded using a Lumat LB9507 (EG & G Berthold, Bad Wilbad, Germany) and when 

the light emission reached a stable baseline, 50 µL choline oxidase (50 U/mL stock 

solution) were added. Control experiments showed that the ACh assay was linear over a 

concentration range between 0.1 and 150 pM (the slope of linear regression was 0.78 ± 

0.1 and the F-test for the slope showed a significant difference from zero at p < 0.0001). 

The calcium dependency of the release mechanism was tested by incubating dishes with 

a Ca2+ -free saline solution containing 1 mM EGTA.  

Statistical analysis 

Non-parametric statistical comparisons within different groups were performed using 

Mann–Whitney U-test. Difference were considered statistically significant at p < 0.05 

(*), p < 0.01 (**) and p < 0.001 (***). 

 

 

Binding and competition experiments 

Binding and competition experiments were performed according to the procedure of 

Tata et al, (1995; 2000). Briefly, the cells grown on 90-mm-diameter culture dishes 

were harvested and then collected by centrifugation. Cells were then resuspended in 

Tris-HCl 0.01M pH 7.4 containing 40 µg/ml leupeptin and 20 µg/ml pepstatin as 

protease inhibitors and homogenized with quick freezing in dry ice and thawing for 

three times.  Aliquots of cellular homogenate were added to an incubation medium 

containing different concentration (0.05-10 nM) of [3H]-quinuclidinyl benzilate (3H-

QNB) (specific activity, 49 Ci/mmol- Amersham) in Tris–HCl (0.01M, pH7.4) and 

maintained for 1 h at room temperature. Non-specific binding was evaluate in the 

presence of 1 µM atropine. 

For competition experiments the cellular homogenates were pre-incubated for 20 min at 

room temperature in the presence of different muscarinic ligands at concentration 

ranging from 10-10M to 10-4M. The ligands used were pirenzepine for M1, gallamine for 

M2, 4-DAMP for M3 and tropicamide for M4 (Giraldo et al, 1988; Michel et al, 1989; 

Tata et al, 2000). [3H]-QNB was subsequently added at a final concentration of 0.5 nM 

and the samples were incubated for additional 40 min at room temperature. The optimal 
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incubation time and temperature were established in previous experiments (Tata et al, 

2000).   

The binding reactions in both types of experiments were stopped adding Tris–HCl 

(0.01M, pH7.4) at 4°C. The incubation mixture was filtered through glass microfiber 

filters Whatman GF/C. After three washes with Tris–HCl (0.01M, pH7.4), filters were 

put into 5 ml of Insta gel (Packard) liquid scintillator and counted for radioactivity in a 

Tri-Carb 2100 TS (Packard). The Kd and Bmax values were calculated using a 

Scatchard plot analysis, IC50 values and competitor dissociation constant (Ki ) values 

were obtained according the method of Cheng and Prusoff (1973). 

Values obtained both in binding and competition experiments are the average of at least 

three independent experiments performed in duplicate.  

 

 

Measurement of  cyclic-AMP and d-myo-inositol 1.4.5 triphosphate levels  

The cells (neuroblastoma N18TG2 cells and 2/4 ChAT-transfected clone) were plated 

onto 60-mm-diameter dishes. After 72 h the medium was removed and the dishes were 

washed with Krebs-Henseleit-Hepes (KHH) buffer (140.7mM Na+, 5.3mM K+, 132.4 

Cl-, 0.98 mM PO2-, 1.25 nM Ca 2+, 0.81mM Mg 2+, 5.5 mM glucose, 20.3 mM Hepes) 

pH 7.4.  

For cAMP assay the samples were previously incubated for 10 min at 37°C in KHH 

containing 1mM 3-isobutyl-1-metylxantine (IBMIX) as phosphodiesterase inhibitor. 

Some samples were then stimulated for 30 min at 37°C with only 5x10-6M PGE1 to 

increase the cAMP levels while other samples were stimulated in the same time with 

5x10-6M PGE1 and muscarinic agonists such as muscarine (10-4M) or mamba toxin –1 

(MT1, 10-7M) ( Potter, 2001 ). 200 ng/ml of  PTX was also used when required to block 

the Gi/G0 proteins. After stimulation the incubation medium was removed and the cells 

were harvested in 10% trichloroacetic acid (TCA) and incubated for 10 min in ice. The 

samples were then centrifuged at 5000 rpm for 10 min at 4°C and the supernatant was 

collected. TCA was then removed by washing of the extract 5 times with 2 volumes of 

water-saturated diethyl ether.  

For IP3 assay the cells were pre-incubated with 20mM LiCl and then with 10-4M 

muscarine at 37°C. The IP3 levels were measured over a period of 10 s to 2 min. The 
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inhibitor U73122 (10-5M; Calbiochem) was used when required to block the 

phospholipase C (PLC) acticity. After stimulation the pH of the samples was adjusted to 

7.5 with 0.25M NaHPO3  and then they were treated as above reported for cAMP 

(Aducci and Marra, 1990). Finally the cAMP and IP3 levels were measured using a 

radioimmunoassay (Amersham).  

Snake toxins that bind specifically to individual subtypes of muscarinic receptors (Life 

Sci. 68: 2541-2547) 

 

 

Stable transfection of mouse Egr-1 cDNA 

N18TG2 cultures (5 x 105 cells) were cotransfected with 0,6 µg of pIBW3 and 5,4 µg of 

pCMVegr-1-SPORT6 plasmids (ATCC), by the polyethylenimine (PEI) procedure 

(Boussif et al., 1995). The pCMVegr-1-SPORT6 plasmid contains the sequence of 

mouse EGR-1. Plasmid pIBW3, containing the neomycin resistance gene, and was 

obtained from S. Pellegrini (Institut Pasteur, Paris, France). 

Briefly 2x105 cells were seeded on 35 mm plastic dishes; after 2 days in culture they 

were treated with 6 µg of DNA mixture in the presence of 5x10-5 M PEI (final 

concentration) for one hour. 

Selection of stably transfected clones was performed with geneticin (600 mg/ml) for 15 

days.  

 

 

Morphometric analysis 

For morphometric analysis cells were grown in 60-mm plastic dishes. Five days after 

seeding the cultures were washed with PBS, fixed for 20 min in 4% paraformaldehyde 

in PBS at room temperature and stained with 0.5% Coomassie Brilliant Blue R-250 in 

1% formic acid, 50% isopropanol and 49% H2O. Micrographs of randomly selected 

areas of the cultures were taken from five 60-mm dishes (21 fields /dish, a total of about 

105 observations for a single clone). Measurements of the chosen cellular parameters 

(cell number, fiber number and length) were carried out manually on each photographic 

field. 
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Immunocytochemical localisation of βIII tubulin 

 

Cells, cultured on cover slides, were fixed for 10 min. in 4% paraformaldehyde in PBS 

pH 7.4 at room temperature and then washed in PBS pH 7.4 containing 1% bovine 

serum albumin. The slides were pre-incubated first in 0.1 M glycine in PBS and then in 

PBS containing 10% normal goat serum, 1% bovine serum albumin, 0.2% Triton X-100 

for 40 min. at room temperature. Samples were incubated with primary antibody 

(monoclonal anti mouse βIII Tubulin, Promega) diluted (1:1000) in PBS containing 1% 

normal goat serum, 1% bovine serum albumin, 0.2% Triton X-100 overnight at 4°C. 

The cultures were then washed and incubated with the secondary antibodies (anti-mouse 

IgG FITC diluted 1:70) for 90 min. at room temperature. After washing samples were 

mounted in Glycine/PBS 3:1 (v/v). No staining was observed in controls omitting 

primary antibodies 

 

 

Nuclear Extraction 

Cells were plated on 90 mm plastic dishes and after 72 hours, were washed twice, with 

PBS, and then maintained in medium without serum for six hours. Cultures were treated 

with 10-4M Charbacol for 1 hour, and when necessary a pre-treatment with 10-6M 

atropine for 30 min was performed. Cells were then washed twice with PBS, scraped 

from the plates in hypotonic buffer, swollen on ice, and lysed with 1% Nonidet P-40. 

Nuclei were pelleted and extracted in 200µl of ice-cold 10 mM HEPES (pH 7.9), 

400mM NaCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM dithiothreitol, 1% Nonidet P-40 

in the presence of pepstatin and aprotinin. Protein concentrations of nuclear extracts 

were determined by the Bradford protein assay  

 

 

Western blot analysis 

SDS-polyacrylamide gel electrophoresis was performed on 8% slab gels according to 

Laemmli (1970) and proteins then transferred to nitrocellulose membranes. The blots 

were incubated  overnight at 4°C with  an affinity purified rabbit polyclonal anti-EGR-1 
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antibody (Santa Cruz Biotechnology) at a diluition of 1:500. Secondary antibody used 

to reveal immunocomplexes was anti-rabbit IgG alkaline phosphatase conjugated. The 

bands were stained with nitro blue tetrazolium in the presence of 5-bromo-4-chloro-3-

indolyl-phosphate.  

The same protein amount of sample obtained from nuclear extraction was loaded on 

each lane. No difference in transferred protein was observed on nitrocellulose 

membranes stained with 0.3% Ponceau S in 3% TCA. 

 

 

RNA Extraction and RT-PCR 

 

Total RNA was prepared using the TRI Reagent (Sigma) according to the 

manufacturer's instructions for the isolation of RNA for RT-PCR. Purified RNA was 

treated with RNase-free DNase I (Ambion). 

RT-PCR analysis was performed with the Promega RT-PCR kit using Go Taq 

polymerase (Promega). The first strand cDNA was synthesized by reverse transcription 

of total RNA (2µg) from cells using random hexamers. Controls, omitting reverse 

transcriptase, were included in the reactions.  

Quantitative PCR was performed in a final volume of 25 µL with 1X Go Taq reaction 

buffer, 0.2 mM dNTP, 1 µM forward primer, 1µM reverse primer, 1.25 U Go Taq 

Polimerase and 200ng template cDNA. 

Specific primers designed for mouse Egr-1 were: 

forward: 5’-GGT TTG ATA ATG ATG AAG GGG ACCA-3’  

reverse: 5’-CAT CAC GTT CCC GTG TTA AAG TATC-3’  

The two oligonucleotides were paired to amplify a 532 bp product . 22 PCR cycles were 

performed on cDNA using the following profile: 95°C for 40 sec, 58°C for 40 sec, 72°C 

for 40sec.  

 

Specific primers designed for mouse REST were: 

forward: 5’- CTACATGGCACACCTGAAG -3’  

reverse: 5’- GGGATGCTTAGATTTGAAATGG -3’  
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The two oligonucleotides were paired to amplify a 550 bp product . 26 PCR cycles were 

performed on cDNA using the following profile: 95°C for 40 sec, 55° C for 40 sec, 

72°C for 45sec.  

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene was used as standard. 

Specific primers designed for mouse GAPDH were: 

Forward: 5’- ACCACAGTCCATGCCATCAC-3’ 

Reverse:  5’- TCCACCACCCTGTTGCTGTA-3’ 

The two oligonucleotides were paired to amplify a 452 bp product . 18 PCR cycles were 

performed on cDNA using the following profile: 95°C for 40 sec, 66° C for 40 sec, 

72°C for 40sec.  

 

 

 

REAL TIME PCR 

Real-time PCR was performed on the reverse transcription (RT) products with the 

SYBR Green JumpStart Taq ReadyMix (Qiagen) in a Lightcycler apparatus (Biorad), 

following the manufacturer's instructions. 

Thermal cycling conditions comprised an initial denaturation step at 95°C for 3 min 

followed by 45 cycles at 95°C for 30 sec. Annealing temperature was 55°C for egr-1, 

and 50°C for REST.  As final steps, we included two cycles: one at 95°C and the other 

at the corresponding annealing temperature of each tested gene, both for 1 min. All 

samples were run in duplicate, and each well of PCR contained 25 µL as a final volume, 

including 2.5 µL of cDNA, 0.2 µM forward primer, 0.2µM reverse primer, and 12.5 µL 

SYBR Green JumpStart Taq ReadyMix  and 0.2 internal reference dye. 

The threshold cycle (CT), defined as the fractional PCR cycle number at which the 

fluorescence reaches 10 times the baseline standard deviation, was compared for the 

expression.  

Delta-Delta ct method was used to evaluate the relative expression ratio for all genes 

compared with HPRT (hypoxanthine-guanine phosphoribosyltransferase),used as 

internal control gene.  

Specific primers designed for mouse egr-1 were: 

Forward 5’- TCCGACCTCTTCATCCTC-3’ 
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Reverse 5’- ATGTCAGTGTTGGGAGTAG-3’  

for mouse REST were: 

Forward: 5’- GTGACTACAAAACAGCAGATAG-3’ 

Reverse: 5’- TGGGATGCTTAGATTTGAAATG-3’ 

And for mouse HPRT were  

Forward: 5’-AGTCCCAGCGTCGTGATTAG-3’ 

Reverse: 5’-CCATCTCCTTCATGACATCTCG-3’ 

 

 

ZYMOGRAPHY 

Cells used for zymography were cultured until semiconflence condition, with or without 

atropine 10-6M or/and Charbacol 10-4M, and after two wash, the cultures were 

maintained in DMEM with or without atropine 10-6M or/and Charbacol 10-4M in the 

absence of serum. After 24h cells were collected and counted. 

Gelatin zymography was used for detection of MMP-2 and MMP-9 activity.  

The proteins present in medium conditioned by cells were concentrated with salting out 

technique. To obtain maximum protein precipitation 56% of ammonium sulphate salt 

was used, then samples were centrifuged at 10000X g for 10 minutes. Supernatant was 

decanted and precipitates were resuspend (40-45 µL for 106cells) in activation buffer 

(50 mM Tris, pH 7.8, 150 mM NaCl, 5 mM CaCl2). The gel consisted of 7.5% 

acrylamide containing 1 mg/ml gelatin (Gelatin, type A, from pork skin, electrophoresis 

reagent, Sigma). Sample of periferic human blood was loaded on the gelatin gel as 

standard. For gelatin zymography, after electrophoresis, gels were soaked in 2.5% 

Triton X-100 (in 50 mM Tris, pH 7.6) with gentle shaking at room temperature for 60 

min with one change. Gels were rinsed three times in activation buffer (50 mM Tris, pH 

7.8, 150 mM NaCl, 5 mM CaCl2) and then incubated at 37°C for 16–20 h. The gels 

were stained with Coomassie blue for 1 h and destained in a solution of 45% methanol 

and 10% acetic acid. Gelatinase activities appeared as clear bands against a blue 

background. 
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