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Preface

This PhD thesis consists of three self-containetl related essays on the topic of empirical
assessment of spatial clusters of economic aeswitiithin a micro-geographic framework.

The tendency of economic activities to be concémtran a specific territory is well recognized,
starting at least from the seminal studies by Alfidarshall (Marshall, 1920). This spatial
behaviour is not fortuitous; by concentrating ilm&oareas firms enjoy a number of advantages,
which then have implications for local economic wito and regional disparities and, as a
consequence, are object of study in the fieldscohemics, geography and policy making. It has
been recognized, however, that a major obstacleirtber comprehension of the agglomeration
phenomena of firms is the lack of a method to prigpaeasure their spatial concentration.

The most traditional measures employed by econepiistieed, are not completely reliable. Their
most relevant methodological limit lies in the uskregional aggregates, which are built by
referring to arbitrary definitions of the spatialits (such as provinces, regions or municipalities)
and hence introduce a statistical bias arising fteenchosen notion of space. This methodological
problem can be tackled by using a continuous ajgpré@a space, where data are collected at the
maximum level of spatial disaggregation, i.e. efich is identified by its geographic coordinates,
say &, y), and spatial concentration is detected by refgrto the distribution of distances amongst
economic activities.

The main purpose of the dissertation is to contelia the development of this kind of continuous
space-based measures of spatial clustering.

The scientific context and motivation are outlinedlepth in the first three chapters. Then thd firs
essay introduces the space—tiiéunction empirical tool, proposed in spatial stadal literature,
into economic literature in order to detect the ggaphic concentration of industries while
controlling for the temporal dynamics that charazee the localization processes of firms. The
proposed methodology allows to explore the possikihat the spatial and temporal phenomena,
producing the observed pattern of firms at a giremment of time, interact to provide space—time
clustering. The presence of significant space—tinteraction implies that an observed pattern
cannot be explained only by static factors but Watshould also consider the dynamic evolution of
the spatial concentration phenomenon. Indeed, ¥amele, new firm settlements may display no
spatial concentration if we look separately at eawment of time and yet they may present a
remarkable agglomeration if we look at the overadiulting spatial distribution after a certain time
period. In general, without knowing the temporabletion of the phenomenon under study it is not
possible to identify the mechanism generating jatial structure. As a matter of fact, different
underlying space—time processes can lead to negudpatial patterns which look the same. The
methodology is illustrated with an application b tanalysis of the spatial distribution of the ICT
industries in Rome (ltaly), in the long period 192005.

The problem of disentangling spatial heterogeneityl spatial dependence phenomena when
detecting for spatial clusters of firms is the tomf the second essay, “Measuring industrial
agglomeration with inhomogeneo#sfunction: the case ofCT firms in Milan (ltaly)”. Spatial
clusters of economic activities can be the resuttvo distinct broad classes of phenomena: spatial
heterogeneity and spatial dependence. The formsesawhen exogenous factors lead firms to
locate in certain specific geographical zones.ifstiance, firms may group together in certain areas
in order to exploit favourable local conditionscbuas the presence of useful infrastructures, the
proximity to the communication routes or more cameat local taxation systems. The
phenomenon of spatial dependence, which is oftedire€t scientific interest, occurs instead when
the presence of an economic activity in a giveraa#iracts other firms to locate nearby. For
instance, the presence of firms with a leading ewleouraging the settlement of firms producing
intermediate goods in the same area or the incaleidknowledge spillovers driving industrial



agglomerations. This essay suggests a paramepioagh based on the inhomogenektfsinction
that allows to assess the endogenous effects efartion among economic agents, namely spatial
dependence, while adjusting for the exogenous tsffet the characteristics of the study area,
namely spatial heterogeneity. The approach is #lisstrated with a case study on the spatial
distribution of the ICT manufacturing industry inilih (ltaly).

The third paper is titletWeighting Ripley’sK-function to account for the firm dimension in the
analysis of spatial concentration”. In the methodatal context of the continuous space-based
measures of spatial clustering, firms are iderdis dimensionless points distributed in a planar
space. In realistic circumstances, however, firnesggnerally far from being dimensionless and are
conversely characterized by different dimensiotenmns of the number of employees, the product,
the capital and so on. This implies that a higlelef spatial concentration can occur, for example,
because many small firms cluster in space, or &gel firms (in the limit just one firm) cluster in
space. A proper test for the presence of spatatets of firms should thus consider the impact of
the firm dimension on industrial agglomeration. Rbors respect, the third essay develops a
methodology based on an extension ofKkkeinction considering firm size as a weight attacted
each of the points representing the firms’ location
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Scientific context and motivation



The phenomenon of spatial clustering within the egemic theory

With the birth and intensification of the globalime process, along with the rapid development of
transport and communication technologies, we weulgect the location decision making of firms
to be less dependent on geographical space. Indeeegent years, spatial distance has been less
and less a limiting factor of the circulation ofogis, capital, knowledge and other production
resources, suggesting that economic activity waepleéad over space. Paradoxically, however, the
tendency of firms to spatially concentrate seemfawe been increasing (see, e.g., Storper and
Venables, 2003; Enright, 2000). Paradigmatic examplf spatial clusters of firms are the Italian
industrial districts, Silicon Valley, Wall Stregtie European high-tech cluster in Dublin and the
German automobile industry located in Baden-Wurtterg (for an exhaustive list of examples see
Enright, 2000). In the literature, this apparentoimgruity is referred as thecation paradox
(Porter, 2000a). A useful way to summarize theedght explanations given by economists to this
paradox is to review the main approaches to théysisaof the potential determinant factors of
industrial agglomeration.

1 The determinant factors of spatial clustering: aeview of the theoretical approaches

In the literature can be found several differerfirdigons of spatial cluster of economic activities
Each of them is conceptually related to the diffier@dvantages arising by geographic proximity
that tend to induce economic operators to locaisecto other existing activities and hence to form
spatial agglomerations. Economic theory, in itddmg has identified at lest five wide classes of
spatial concentration advantages. The first oneglwban be traced back very far in time, focuses
on transportation and transaction cost advantaggsceted with geographic proximity. The second
class refers to advantages related to the spddsgess to institutions and organizations. Threl thi
kind of advantages are the so-called agglomeragimonomies and the fourth is related to the
occurrence of an innovative milieu. Finally, advaggs in geographic proximity can also be the
result of the market conditions.

1.1 Transportation and transaction cost approach

The theoretical approach that considers the tratefmn cost advantages, arising because of
geographic proximity, as a determinant factor oftsh clustering refers to the seminal
contributions of von Thinen (1826) and to the fwilogy reappraisal of Weber (1920) and Losch
(1954). In order to keep low transportation costgnomic agents may locate their activity spatially
close to their suppliers or buyers. This spatiacemtration advantage may be particularly relevant
for industries and markets where the frequencyetivery of goods and services is high or many
suppliers are bond by just-in-time agreements piidducers (Sadler, 1994).

More modern approaches take into account also dtimels of costs arising from interactions
amongst economic agents, such as search and infomeasts, bargaining costs and enforcement
costs. These are the so-calte@hsaction costg¢see, e.g., Williamson, 1999). It has been thedrize
that geographic proximity may reduce transactiostc@Scott, 1988; Capellin, 1988). In particular,
in a situation of proximity, face-to-face contaatmongst counterparts are normally more frequent
and easier to arrange and, as a result, uncertamdyrisk of opportunistic behaviour are lower.
Bargaining, policing and enforcement costs may thaslower in clusters, which in turn may
positively effect the single firms in terms of ptability.

More precisely, the transaction cost approach tisegheoretical analysis tools which have been
elaborated by some contributions of transactiorisctiseories to organization economics and, in
turn, applies them in a spatial framework. Follogvitihis contributions (see Williamson, 1979
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among others), any exchange of goods and senscashject to transaction costs which should be
minimised by economic agents in the same way agugtmn costs in order to choose the optimal
production level and also, according to Capelli®88), the optimal location. Transaction costs can
affect the decision making process about the iatesrganisation of firms, the opportunity to focus
into few products, to diversify into different lis®f activity, to concentrate in one single locatoy

to establish subsidiary plants in different geogreg@ areas and the kinds of forms of contractual
relationships with other economic operators (Capellio88).

Williamson (1981) re-elaborated the paradigmati¢inegzing problem of the firm to include
transaction costs. Essentially, for a given orgatios form ), the problem is related to the choices
about outputd) and designd) that allow to maximize the following profit funeot:

Pr(a.d, f)= p(a.d)a-Cf(qd.s)-Gf(ad) (1)

wherePr represents profitp(q,d) denotes the demand cungegenotes combinatorial economies

of scope andCf andGf represent the production costs and transactiots afsorganisation fornh
(Williamson, 1981).

The behaviour of firms, which is addressed to maenthe profit function, is assumed to be
characterized by bounded rationality and opportani@Villiamson, 1979, 1981). Bounded
rationality refers to the computational limits dieteconomic agent, which is not able to receive,
store, retrieve and transmit information withoutoer(Simon, 1982). Bounded rationality becomes
relevant since the economic and social environnvgmére agents interact is characterised by
uncertainty and complexity. When it is then impbksito outline a complete and precise decision
making process because of high uncertainty and lexityg “approximation should substitute
exactness, complete contracting is impossible armdmplete contracting and adaptive, sequential
decision making is the best that can be achie{@dpellin, 1988).

The assumption of opportunism allows to considat @tonomic agents behave taking into account
that counterparts may not be trustworthy and cotelyleeliable. A dishonest counterpart, indeed,
may achieve a higher gain by relying on threatdusion of selective and biased information or
false promises. The choice about the governances mbttansactions, denoted 8yn equation (1),
represents the decisional variable that allows tonemise on bounded rationality while
simultaneously safeguarding transactions agaimstishk of opportunistic behaviour of counterparts
(Williamson, 1981). The possible alternative goerre structures of economic activitidsare the
market and the vertical integration within a laoggnpany and also other forms of cooperation and
collaboration among firms such as networks of dgpendent activities and joint venture. In a
spatial context, the possible alternative goveraasituctures may consist on different kind of
spatial cluster such asatge metropolitan areas, small and intermediatdam centers, diffused
non urban settlement patterns, hierarchical or pelytric urban systemigCapellin, 1988) among
others.

A transaction can be characterised by three atésjuwhich give indication for a proper
governance structure: the frequency of occurrentcdransaction, the uncertainty about the
transaction outcome and the presence of transaspiecific investments (Williamson, 1981).
According to Capellin (1988), all these three htites are sensible to spatial distance. Indeesd, fir
of all, in case of frequent transactions, geograpnoximity is needed to minimize transportation
and communication costs. Secondly, uncertainty @rdplexity decrease, and hence transaction
costs tend to be lower, when counterparts aredddatthe same cluster (e.g. an urban center or an
industrial district) and hence shara Yreater reciprocal knowledge, a similar languaged it
implies similar technology, similar developmentelesimilar culture and similar socio-political
institutions (Capellin, 1988). Thirdly, when buyers and sealare bound to each others because of
specific investments, the interruption of the caotual relationship by one of the counterparts may
generate higher transaction costs for all invoheegents. Geographic proximity and spatial



agglomeration, which ease reciprocal knowledge #ndt, tend to reduce the risk of such
interruption (Capellin, 1988).

Furthermore, the establishment of trustful relatldips amongst economic agents, which located
nearby in order to minimize transaction costs, @ap encourage the exchangdaafit knowledge
(Nonaka and Takeuchi, 1995; Polanyi, 1966), that kind of knowledge that can be transferable
only through direct face-to-face interaction (Swrpand Venables, 2003), which stimulates
innovation. As a result, the flow of tacit knowledgnd the increased ability to innovate, in turn,
reinforce the tendency of firms to cluster.

1.2 Institutional thickness approach

Research on the determinant factors of spatialterig has also referred to the insights of the
institutional economics theories (see Amin and fihtB95; Scott, 2000; Bassett et al., 2002 among
others). This approach takes into considerationaiheantage to locate close to institutions and
organizations which may affect the production psscé.ocal formal institutions and organizations
and spontaneously established habits and pradtieksthe operation of the local economy by
facilitating the opportunities of exchange and rnmgetand hence encouraging untraded
interdependencies, which are relationships of tarsd reciprocity and tacit codes of conduct
between firms (Keeble et al., 1999; Capello, 1999ggins, 2000). Untraded interdependencies can
be conceived as non-rivalrous and non-excludahtéces which are intrinsically related to the
social, economic and geographical characteristich® clusters. For example, the flow of tacit
knowledge is generally assured by long-term excbegngmbedded routines, norms and habits in
the clusters (Scott, 2000; Swyngedouw, 2000).

Furthermore, the “institutional thickness” (Amindafhrift, 1995) of a cluster allows firms to
benefit from a web of supporting organisations swash financial institutions, chambers of
commerce, trade associations, training organissitilmeal authorities, and marketing and business
support agencies which reinforce a communal sehsgeatity within the cluster (Bassett et al.,
2002).

In more detail, following the institutional econarsiapproach to spatial clustering phenomena, the
achievement of local and regional economic devetgnis highly correlated to the extent of
institutional thickness within the area (Gibbs kf 2001). Since institutions are seen as a clitica
factor of reduction of information and transactmosts, they became a decisive determinant of the
efficiency of markets (Harriss et al., 199%). local and regional innovation systems, formal
institutions can also be critical in determininge thate and direction of innovative activities
(Lundvall, 1998). Formal institutions, indeed, hefpcreating links among economic agents in
order to set off collaborative activities accordittgthe needs of innovation (Landabaso et al.,
1999).

Even local based associations, a spontaneous ssdolenal kind of institutions (such as business
networks, trade associations, labour unions andl @&sgociations), have a primary role in driving
cluster competitiveness (Porter, 1998, 2000a). [itheture has given particular attention to the
importance of business associations (Best, 1990nptwey and Schmitz, 1996; Maskell et
al.,1998; Meyer-Stamer, 1997). With intensificatiohthe globalization process, the social and
economic environment in which economic agents dpdras become more complex and uncertain
making needed for firms the access to specialisiness services. On local basis, business
associations can provide such services, thus toritng to collective efficiency (Helmsing, 2001).
They then represent an important component of nisgtutional thickness of clusters and are an
important part of the local social capital (Amindanhrift, 1994).

As a matter of fact, local institutional thicknessn be conceived as a combined set of formal and
informal institutional elements, including synergyllective working for a common purpose and
shared values. A high number of different instdos, a high level of interaction amongst



institutions in the cluster and mutual awarenedseirig in a common enterprise are the factors that
contribute towards the creation of institutionatkimess (Amin and Thrift, 1995).

The local networks and partnerships facilitated ibstitutional thickness represent important
mechanisms to enable economic and social integrd@iver and Jenkins, 2005). Furthermore,
participation and involvement in voluntary assdoia promote communication and diffusion of
information and generate and reinforce trust inetat norms which, in turn, foster co-operation
and economic development and political stabilityt(lm, 1993; Yeung, 2000).

In the global competitive and technological econpifimyns need to continuously innovate. Even
though lots of technological knowledge is codifiad more and more accessible worldwide, its
proper adjustment to local conditions needs tauedge (Maskell et al., 1998; Raco, 1999). Not
all firms, however, are autonomously able to irgptcand translate in practice tacit knowledge,
especially the smaller and less experienced onethid circumstance, economic operators need to
rely on external resources in order to learn. fattins, and above all associations, help to dgvelo
the preconditions necessary foollective learning(Keeble et al.,, 1999). Therefore, institutional
thickness creates the requirements for firmieaon by interaction(Morgan, 1997; Raco, 1999).

In conclusion, the institutional economics approachsiders local institutional endowments as an
important factor of the local collectivisation diet economic and social practices which enable
regions to prosper in competitive environments &o@nd Morgan, 1994; Sassen, 1991).
Therefore, strong local institutional relationshipgich provide the basis for localised social and
economic networks, function as a step to regiooahemic success (Amin and Thrift, 1995).

1.3 Agglomeration economies approach

The agglomeration economies approach rooted irsé¢n@nal work by Marshall (Marshall, 1920)
and has been primarily developed in more receneditny the New Economic Geography (see
Krugman, 1991 and Fujitet al, 1999 among others). Following this line of thimk firms which
locate in any kind of agglomerated environmenthsag metropolitan cites, urban agglomerations
and industrial clusters, can be affected by pasitly negative payoffs. The positive payoffs are
identified asagglomeration economigwhich are a kind of external economies of scalgrasting
directly with internal economies of scale. While tatters are cost savings accruing to the single
firm because of growth in the size of plant, thenfers are increasing returns from size or growth of
output in industry generally (Marshall, 1920). Exi@ economies of scale occur as impacts, side-
effects or spillovers which are usually not refégtin the costs or prices of a particular good or
service; in other words, they do not arise as altre$ the market mechanism (Kuah, 2002). In this
context, such external economies are essentialitiadpexternalities, which may be defined
generally as economic side-effects of geographixiprity amongst economic agents (Bergman
and Feser, 1999).

Agglomeration economies can be subcategorized dnafization economies” and “urbanization
economies” (Losch, 1954). These defining categaeésr to different compositions of economic
activity and have implications for industrial loiwat and innovation (Henderson, 1983).

Localization economie®therwise labelled dglarshall-Arrowv—Romeexternalities (Glaeser et al.,
1992), are increasing returns external to the faum internal to the industry within a geographic
region and are generally thought to sourced prisnahrough the three Marshallian forces
(Marshall, 1920): labour market pooling, the shgraf a great variety of specialised intermediate
goods and services, and knowledge spillovers.

Essentially, labour market pooling implies thatf#r in clusters may have a better access to workers
and at lower recruiting and training costs. Thibesause, on one hand, firms can employ graduates
from local educational institutions that provide tinaining that is demanded on local basis; and, on
the other hand, a spatial cluster of related firoisthe same industry may create a pool of
specialized skills. Such a situation is advantagefou both firms and workers. For the formers,
labour market pooling may decrease the risks d&f tdcskilled labour; for the workers, the risk of
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unemployment is lower because, if economic shocksnat correlated amongst firms, redundant
workers in one firm may be absorbed by other IGcas (Krugman, 1991).

The sharing of intermediate inputs may be vital ifatustries where the production of goods and
services needs to use specialized machinery andcegrsuch that one single firm does not
represent a sufficiently wide market to grant pedfility for a specialized supplier. Indeed, the
presence of many local firms creates a wide enangtket to incentivize the presence of a great
variety of specialized suppliers.

Finally, the third Marshallian force is represenbsdtheknowledge spillovers/hich are defined as
informal exchanges of information and ideas thaipjea on personal level via face-to-face contacts.
This informal diffusion of knowledge is generallyone efficient when an industry is concentrated
in a rather localized area where workers of diffief@ms can meet each others in their social life
and talk freely about their job.

Therefore, within the theoretical framework of Ibzation economies, an industrial spatial cluster
“may increase innovation directly by providing inttlysspecific complementary assets and
activities that may either lower the cost of sugplto the firm or create greater specialization in
both input and output markets. We expect that imghssin which complementary assets are
important would more likely be concentrated geotpiaglly and realize greater innovative
productivity’ (Feldman, 2000).

In contrasturbanization economieare increasing returns external to the firm areittdustry but
internal to the geographical area where the firmomsated (generally the city). This kind of
agglomeration benefits source through inter-ingustther than intra-industry, relations amongst
economic agents and are generally associated \iithsize or density (Losch, 1954; Feldman,
2000). Lucas (1993) argues that urbanization ecag®ian be considered as the only undeniable
reason for the existence of cities by making theamenproductive. Following Jacobs (1969) these
increasing returns driven by geographic proximitse aealized through the exchange of
complementary knowledge across diverse firms amsh@uic agents within geographic regions.
This concept is theoretically equivalent to thatcodss-product increasing returns, which occur
when an activity increases the marginal produarather activity and the effect is directly related
to proximity (Feldman, 2000). Therefore, urbaniaateconomies may potentially decrease search
costs and also increase the possibility for fortenavents that would present innovative
opportunities (Feldman, 2000).

It has been argued by a consistent part of theatitee that knowledge spillovers occur more
frequently and are more relevant between localrdesdirms and economic agents belonging to
different industries rather than between firms ofsame core industry implying that spatial
clustering of economic activities is primarily deiv by urbanization economies rather than
localization economies (see Jacobs, 1969; Feldr2@00; Storper and Venables, 2004 among
others).

1.4 Innovative milieus approach

This approach is mainly associated with the GrodpeRecherche Europeen sur les Milieux
Innovateurs (GREMI), a research group founded enrthd 1980s with the aim of studying and

investigating the phenomena of spatial clusterihgpimovative activities by referring to the central

concept of innovative, or creative, milieu. The GREgroup has defined the innovative milieu as
“the set, or the complex network of mainly inforswdial relationships on a limited geographical

area, often determining a specific external ‘imag&d a specific internal ‘representation’ and

sense of belonging, which enhance the local inmexatapability through synergetic and collective
learning procességCamagni, 1991).

The innovative milieus approach shares many elesr@ithe other previously outlined approaches,
especially the institutional elements, but is tidyane to have given specific attention to thesrol

of culture and identity. It indeed assumes a goachll institutional endowment in terms of
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academies, research laboratories, public suppstitutions, cooperating firms and other factors as
a necessary prerequisite for spatial clustering, foauses on the elements that make these
institutions operate and interact in ways that leagositive local outcomes and hence incentivize
firms to locate in clusters (Fromhold-Eisebith, 200

In order to shed more light on the concept of iratiwe milieu, it may be useful to follow the
theoretical scheme proposed by Fromhold-Eisebifi®4®2 According to such scheme, innovative
milieus are characterised by three main sets ohemes: effective relationships amongst agents
within a local regional structure; social interaas promoting learning processes; image and sense
of belonging.

The first class of elements refers to the evidethad cooperation activities and exchanges of
information amongst the agents which can contribusconomic development are enhanced by the
geographic proximity between them, which make pissieasy and frequent face-to-face
interactions (Fromhold-Eisebith, 2004). Since cugt has a better chance to occur through
combining ideas coming from different fields ofigity never associated before (Shapero 1977), in
order to promote innovation and development, thera®f an innovative milieu need to be agents
of various kind of memberships (manufacturing firneervice firms, universities, research
institutions, administrative institutions and inthied promotion institutions among others) (Maillat
et al., 1993). Therefore, such actocari combine complementary capabilities and competen
that are necessary to create new technical solstion implement new prografgFromhold-
Eisebith, 2004). GREMI has indeed pointed out thabvative milieus have the important ability
of bringing and coordinating economic change amfloeating productive assets (Crevoisier, 2001;
Ratti et al., 1997). However, even though the @hewnetwork of personal relationships is restricted
to the local region, inflows of knowledge from ddesare also important to avoid “seclusion” and
to promote the local circulation of information @ianhold-Eisebith, 2004).

The second set of essential elements of an inn@vatilieu refers to the advantages arising from
collective learning processes. This specific typadvantages is facilitated by solid informal, in
most cases private, contacts amongst agents witieidiocal milieu, which are then bonded by
strong mutual trust (Fromhold-Eisebith, 2004). Thsulting face-to-face kind of communication
they establish bring to faster flows of private andn-codified information flows, reduced
uncertainty and accelerated learning and innovat8weeney, 1987). Furthermorehé effective
combination of personal professional and privat&atienships does not only provide preferential
or costfree access to strategically important n@wservices but also to emotional support that
backs up business decisions to innovate (motivatmeouragement, recognitidnfFromhold-
Eisebith, 2004).

Finally, another critical set of elements definiag innovative milieu is represented by regional
image and sense of belonging which refer to thetagawareness to be part of a coherent body and
to also show such unity to the outside world. Tall®ws to harmonisethe agents’ differing
professional background and interests and direanthtowards common goalgFromhold-
Eisebith, 2004). The cluster identity is also hyghlpported by the unifying role of local culture,
such as the technical tradition and the value®gry$Crevoisier and Maillat, 1991).

1.5 Market conditions approach

Geographic proximity and spatial clustering can ardiy affect production and industrial relations,
but also the markets of the goods and servicesupaatiby the firms in the cluster. Porter (1990)
argued that agglomeration advantages can be rdalatbé characteristics of the market of the local
firms. Economic operators in clusters, indeed, f@ysubject to strong local rivalry, which can be
“highly motivating” and, as a result, may have asipee influence on the productivity and
innovative character of firms (Porter, 1990). Instlcase, the agglomeration advantage is that
managers and skilled workers within clusters, intast to situations where firms are spatially
dispersed, may compete more intensely for immatgratification, such as recognition, reputation
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or professional pride. Geographical proximity alfofirms to better monitor the performance of
rivals and, because of that, fosters peer and ctifinpepressures even among economic operators
which are not directly competing on product marktsrter, 1998).

Firms in clusters may also be positively affectgdtle presence of relatively sophisticated and
demanding local customers which put them underspresto product goods and services with high
standards of quality, features and client assistgRorter, 1990). Producers that face up to this
demand-side pressure may end up to be more coimedhiain the rivals that do not and, as a result,
they will be stimulated to innovate and move to enadvanced segments or new more distant
customers. The advantages arising because of the bemand pressures are rooted in information
and incentives that do not occur when spatial degtais too high. Customers in geographic
proximity, indeed, allow for high visibility, easiecommunication and the possibility for
commercial collaboration relationships (Porter,8)99

Furthermore, geographic proximity may allow to ¢teeeomplementarities among suppliers, which
in turn can make buying from a cluster more conenior costumers (Porter, 1990). Visiting
buyers can meet many different sellers in justtoipe(Porter, 1998). This can be advantageous for
both sellers and costumers. For the formers, tlogl gerformance of a single firm may also have a
positive influence on the sales of the firms lodatearby. On the other hand, costumers have
various sources and can switch sellers if they néelfdlitionally, local proximate suppliers of
complementary products can profit from coopera@omong each others to maintain the cluster
reputation and to benefit from joint activities,chuas marketing, research, development and
training (Porter, 1998).

Even this approach identifies a strong associabetween spatial clustering and innovation.
Following Porter, who can be considered as their@igr of this line of thinking, on one hand,
firms within a cluster can perceive more clearlg aapidly new customer needs and take advantage
from the agglomeration of firms with buyer knowledand relationships (Porter, 2000b). Indeed,
since knowledge can be generated and transmitted ef@iciently in a situation of geographic
proximity, firms which production is based on newolledge may be highly oriented to locate
within a cluster (Audretsch, 1998). On the othendhydeing within a cluster allows a good position
in perceiving new technological, operating or delyw possibilities. Firms in clusters caledrn
early and consistently about evolving technologgmponent and machinery availability, service
and marketing concepts, and so on, facilitated tbgoing relationships with other cluster entities,
the ease of site visits, and frequent face-to-tacdacts. The isolated firm, in contrast, faceskeig
costs and steeper impediments to acquiring infailimaand a corresponding increase in the time
and resources devoted to generating such knowledgenally’ (Porter, 2000b).

The ways clusters foster innovation are not onliateel to the needs and opportunities for
innovation that they can potentially create, bi@igralso to the possibility that spatially aggreghat
firms can have to act rapidly to turn these opputies into actual advantages in their operative an
planning activities (Porter, 2000b). Indeed, firm within a cluster often can more rapidly soer
the new components, services, machinery, and aleenents needed to implement innovations,
whether a new product line, a new process, or a legystical model. Local suppliers and partners
can and do get closely involved in the innovatioocpss, thus ensuring that the inputs they supply
better meet the firm's requirements. New, speeidlersonnel can often be recruited locally to fill
gaps required to pursue new approaches. The conapliamities involved in innovating are more
easily achieved among nearby participdri®orter, 2000b).

The propensity to innovate within a geographicattycentrated cluster is essentially reinforced by
the sheer, competitive and peer pressure and canisn comparison assured by small spatial
distances amongst local economic agents (Port@Q0In a narrow geographical context, where
strong similarity exists in terms of fundamentaadh as the costs for labour, utility and access to
infrastructures) and the presence of competitorsgis, the only option left for firms to distinghis
themselves is creativity (Porter, 2000b). As a egngnce, the importance to innovate is very high.



However, the positive association between spatiastering and innovation does not occur
naturally and straightforwardly; as a matter oftfat some cases, to be part of a cluster may curb
innovation. Indeed,When a cluster shares a uniform approach to competa sort of groupthink
often reinforces old behaviours, suppresses newasidand creates rigidities that prevent the
adoption of improvemeritgPorter, 2000b). Glasmeier (1991) and Pouder 8hdlohn (1996)
argued that, under particular conditions, the tangeto imitation among competitors within a
cluster can lead to homogeneity and inertia and tbeeate fnacroculture that suppresses
innovatiorf (Pouder and St John, 1996).

2 The primary role of tacit knowledge

In a way or another, all the five outlined apprazglonsider the informal flows of knowledge that
occur through face-to-face personal interactionsamasimportant determinant factor of spatial
clustering. Changes in the international economyatds a knowledge-based economy have indeed
gradually shifted the basis of a firm’s competitaglvantage from static price competition towards a
better ability to create knowledge a little fastkan the competitors (Porter, 1990; Maskell and
Malmberg, 1995). All theoretical approaches to $tedy of spatial clustering argue that, to a
certain extent, creation of knowledge is more daasglusters, where many specialized workers,
firms, customers and institutions are concentratéal a relatively small limited space and where
the transmission of tacit knowledge tends to oduoore efficiently by direct human interaction
(Glaeser et al., 1992; Henderson et al., 1995; Dueiaal., 2002; Van Oort, 2004; Lambooy and
Van Oort, 2005).

Since tacit knowledge is a non-pecuniary exteyaind is not subject to market transactions
amongst economic agents, it is not directly obd#evaand identifiable. Therefore, detecting
empirically how tacit knowledge is relatively impant in driving spatial agglomeration and hence
economic development is quite problematic. Thiswehdhat empirical research in the spatial
aspects of economy is important and can help in dbmprehension of crucial phenomena
characterizing the contemporary study of economics.
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Detecting spatial clustering: a review of the mogbopular measures

Both geographers and economists have always béerested in measuring inequalities across
industries, time and space. In the empirical lite® some indices to capture these inequalities
have become standard; however, it has been re@mthat thedeal indexremains to be developed
(Combes et al., 2008). A recent discussion in iteeature, primarily developed by Combes and
Overman (2004), Duranton and Overman (2005) ande¢h@nal contribution of Arbia (1989), has
focused on the properties that the most propesgl,idedex should have. Section 1 presents and
discusses these defined properties, which in tamrepresent a conceptual benchmark framework
to evaluate the existing indices. The following temts introduce the most popular approaches
applied in the literature.

The first approach, which refers to the first gatien of measures to detect spatial clustering, is
represented by adaptations of the Gini index, oally developed to measure inequality across
individuals (Gini, 1912, 1921), to the context bétspatial concentration of firms belonging to the
same industry.

The second generation of measures, probably idtiby the seminal work of Ellison and Glaeser
(1997), takes explicitly into account the spacejciwhs completely neglected in the Gini based
indices, and tends to control for the underlyinduistrial concentration.

1 The properties of an ideal measure of spatial chtering

Any empirical descriptive tool, whatever its lewé#lcomplexity and refinement, has necessarily to
rely on clearly defined assumptions. Thereforeyruter to interpret properly a statistical measiire,

is important to be acknowledged of the implicatiaisthe given assumptions. Furthermore, the

comparison between the assumptions and the reqemtsnthat an ideal measure should have may
reveal how “good” a tool is (Combes et al., 2008).

Since economic theories on spatial clustering ofteuis on the sector or industry level, the first

requirement refers to the issue of comparabilitpsg industries (Duranton and Overman, 2005).

Property i. Measures of spatial clustering should be compamatross industries.

In other words, a good measure of spatial concemtrahould be independent from the number of
plants in the industry and from the size of theustdy; otherwise, it would be impossible to judge
whether the industries are agglomerated or not€bira2008). To be more concrete, the analyst has
to be able to compare the degree of concentrati@m iindustry with that in an other industry.
Generalizing this requirement leads directly to s®eond property, which refers to the general
tendency of economic activities to agglomerate @bton and Overman, 2005).

Property ii. Measures of spatial clustering should control foe overall agglomeration of
economic activity.

When this property holds, the measure is not aftedty the productive concentration within an
industry among plants belonging to that industriyisTmeans that, for example, the measure does
not indicate that a sector is more spatially cotregéed in one particular geographic area than in
another one just because this area has a highelgtiom and hence more labour and economic
activity.

According to Fratesi (2008), this methodologicauis is conceptually related to the theoretical
distinction between urbanization economies andlilcaidon economies, as outlined in the previous
chapter. The overall agglomeration of economicvéaas, indeed, ought to be the result of
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urbanization economies. In contrast, industrialcemration should be attributed to localization
economies, which lead to the third property, asneef by Duranton and Overman (2005) and
Combes and Overman (2004).

Property iii. Measures of spatial clustering should controlifidustrial concentration.

When a study measures spatial concentration ofassmnactivities within an industry, in fact, it
ought to implicitly aim at detecting the degreegehuine clustering tendency, and not of industrial
concentration due to purely idiosyncratic factdfeaing the spatial distribution of the plantstbé
industry under study (Duranton and Overman, 20@59ther words, the industry spatial pattern of
economic activities should reveal spatial clusggnvhen it is more concentrated than that of the
whole economy; that is, the benchmark value of mtEsef spatial clustering should be represented
by spatial randomness conditional on the generdlaistribution of production.

In practical terms, this requirement implies tHa tmeasure detectslative, rather tharabsolute
spatial concentration. In such a setting, spatigtering is then considered as a phenomenon of
extra-concentration of one industry with respecthe concentration of the plants in the whole
economy. Although developing relative measureswal®o control for industrial concentration,
however it does not permit a direct comparisonesiults across different economies or countries
(see Haalandt al, 1999 and Moret al, 2005).

Measures aiming at detecting concentration of eewonacactivities in space need also to be
developed within a methodological framework whidnsiders space in an appropriate way. To
begin with, along with comparability across indiedy it is important to ensure comparability
acrosspatial scales.

Property iv. Measures of spatial clustering should be compamaiross spatial scales.

For a concentration measure, considering spaca appropriate way means, first of all, allowing
for meaningful comparisons of spatial concentratemross different levels of spatial scales
(Duranton and Overman, 2005). In more concretedethis amounts to saying that an analyst has
to be able to judge whether the clustering phenamexf an industry is more intense, say, at the
national than the regional level.

In order to understand if this requirement is $iaiils we need to know how the spatial units are
defined. As a consequence, another property relaispace, as defined by Combes and Overman
(2004), need to be introduced.

Property v. Measures of spatial clustering should be unbiagéd respect to arbitrary changes to
spatial classification.

This property is relevant for measures which mae af aggregated data and hence have to rely on
a discretization scheme of space, which on ther ¢tiied would be naturally continuous. Following
an example similar to that proposed by Combes. €2@08), suppose that the twenty Italian regions
are replaced by twenty different spatial units miedi according to a criterion which does not respect
the administrative borders but considers otheitoeral characteristics. In detecting the spatial
clustering tendency of an industry, the measureulshbave the same value under the both
discretization schemes of space.

Subdividing a continuous space in a set of discsptgial units leads to the problem known in the
statistical literature as thmodifiable unit problen{Yule e Kendall, 1950), which in this context
takes the specific form of thmodifiable areal unit problem@AUP), discussed for instance in
Arbia (1989). The MAUP effects on the statisticaleanures give rise to two different
manifestations, namely aggregation and scale (Arb@89). To illustrate these concepts, let us
consider the stylized examples reported in Figuteotrowed form Arbia (2001).
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Figure 1. An hypothetical spatial distribution of four plantrepresented in four different spatial
classifications. Subfigured) and €) illustrate theaggregationproblem. Subfiguresbf and ¢)
illustrate thescaleproblem. Each dot represents a plant.

@

(®) c) ( d) (

The aggregation problem can be described by congp&igure 14), Figure 16) and Figure Xf).
Figure 16) shows the presence of a strong spatial clustetetecy towards the centre of the study
area. Suppose to detect concentration using spaj@egates and to define spatial units, within
which data are aggregated, by the means of a §gdamrats as in Figureld( A measure which is
not unbiased with respect to arbitrary changesptiia classification would identify absence of
spatial clustering. In contrast, referring to tlaeng spatial resolution, but shifting the originttoé
grid in the northwest direction as in Figure)l(he same measure would identify the maximum
level of spatial clustering (Arbia, 2001).

On the other hand, the comparison with Figu highlights the scale problem. Using a finer grid
of quadrats, as in Figured)( onto the same dataset, a measure which is toased with respect

to arbitrary changes to spatial classification wiotdke a value that is intermediate between the
situation depicted in Figured(and the situation depicted in Figure€)l(Arbia, 2001).

Under an economic point of view, not respecting tioperty is problematic since homogeneous
economic geographic areas seldom coincide walkiministrative geographic areas (such as
provinces, regions or states) within which datageneerally aggregated (Combes et al., 2008). As a
result, it may happen that economic agents inteirgqcpatially on regular basis (such as workers
and their workplaces or firms and their suppliers austomers) are split across different
administrative spatial units.
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Therefore, thanging the definition of spatial units may resita significant, but artificial,
redistribution of economic activity. In other wordsuch changes can translate into different
measures of concentration even though the degréeeal’ agglomeration remains unchangéd
(Combes et al., 2008).

The following requirement, as defined by Combes @wdrman (2004), is a similar property with
respect to the industrial classification.

Property vi. Measures of spatial clustering should be unbiagddrespect to arbitrary changes to
industrial classification.

In defining an industrial classification scheme dealuate spatial clustering of industries, the
activities of firms are distributed into a givennmoer of arbitrary sets, which are then considesd a
separate units. Therefore, adopting an industilaésdication scheme may arbitrarily separate
closely related economic activities or, on the oth@nd, grouped together sectors that, in point of
fact, are consistently different. Furthermore, tbeel of disaggregation can be different across
sectors. For instance, disaggregation for manufiacfus typically finer than it is for services
(Combes and Overman, 2004).

Finally, a good measure of spatial clustering sti@sbnt the possibility to inferentially assess the
results. Therefore, first of all, an analyst needaell-established benchmark, or null hypothesis,
with which compare the empirical values of the nueas

Property vii. Measures of spatial clustering should have a-esttblished benchmark.

From a strictly statistical point of view, the natl null hypothesis for the phenomenon of
localization of economic activity would be spatiahdomness, and hence the alternative hypothesis
would be spatial clustering on one hand, and dpdispersion on the other hand. Otherwise, if the
aim is to detect the relative spatial concentratiban industry, it would be more appropriate te us
the distribution of activities of the whole econanfccording to Combes and Overman (2004),
however, in order to make any statements aboutellesant economic theory, using a benchmark
grounded in a specific economic model would leathtiwe proper measures. This would allow to
validate specific theoretical frameworks.

If the benchmark is clear, then adopting the propfarential framework make possible to assess
the statistical significance of the values assuimgdhe measure. Therefore, one last property is
needed to define the ideal measure of spatialeringt, as stated by Duranton and Overman (2005).

Property viii. Measures of spatial clustering should give ancattbn of the significance of the
results.

Any statistical measure of spatial clustering, rdes to be scientifically valuable, should indicate
the probability that the difference between theeobsd spatial pattern of economic activities asd it
benchmark is due to systematic localization phemana@ad not to pure chance.

2 The first generation measures: the Gini index andts variants

The Gini index (Gini, 1912, 1921) is probably theosh popular measure to detect inequality
(Combes et al., 2008). Originally it was primarilged to measure inequality across individual
incomes (see Sen, 1973 among others). Krugman (I&88dlied it for the first time in a spatial

context and then it has become very popular asririeal tool to detect the spatial concentration
of a given industry referring to a particular vaitea such as production, employment, or value-
added (see for example Krugman, 1991; AudretschFatdinan, 1996; Brulhart and Torstensson,
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1996; Amiti, 1998; Haalanet al, 1999; Midelfart-Knarviket al, 2000; Brulhart, 2001 among
others).

The Gini index can be described as follows. Notetiand terminology are borrowed from Combes
et al. (2008). Let indicate the level of the refggrvariable (e.g., employment) in indussgy 1,. . .
,Sand in regiomr = 1,. .., Rwith x°. Essentially, the Gini index identifies how thgimnal shares
of each industrg are distributed across the regions. Thereforst @f all, we need to compute the

regional shares, denoted @y, as follows:

R
where x° = ZXf represents the total employment in industry
r=1

We then rank the regions in ascending order, reésjetheir regional shared;, to draw the
location curve. This curve, which is known lagrenz curveis constructed by representing the
fractions n/R of then regions with the lowest employment shares in inguson the horizontal
axis, so that the first-coordinate isl/R, the second i2/R, and so on. On the vertical axis we

S

represent the cumulative shares of employmentdaostrys of thisn regions, A} ,,, computed as

n
Amy = Z)lf :

r=1
In case of a completely homogeneous distributioaroployment in industrg, the regional shares
of total employment in industrgare all equal td/R of total employment in the whole economy.
As a result, the Lorenz curve coincides with thedégree line. On the other hand, in case of a non
homogeneous distribution of employment in indusirthat is when greater shares of employment
are concentrated in a small number of regionsLtitenz curve tends to lie below the 45-degree
line. In general, the more the employment in indusis concentrated across regions, the more the
Lorenz curve departs from the 45-degree line. Tint iBdex is equal to the area lying between the
Lorenz curve and the 45-degree line, and takesesatanging from 0, in case of a completely
homogeneous distribution, to 0.5, in case employngenoncentrated in just a single region. The
values of the Gini index are generally multiplytao to normalize it to a scale from O to 1.
In formula terms, the Gini index for industys represented, under the normalizatitip, =0, as

G*=1- i%[/‘f(n—l) + K-

n=1

In this version, the index identifiedsoluteconcentration, since the same weigtR is attached to

each region, and hence the benchmark is represémted uniform distribution of employment
across regions.

It is however possible to modify the Gini index onder to account for relative concentration of
industrys by referring to the comparison of the regionalrehaf employment in industigywith
the regional shares of total employmet, which are computed as follows:

r

L%
X
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S S R
where x, =) x° represents the total employment in regioand x =) x> =) x, is the total
s=1 s=1 r=1
employment in all regions of the considered area.
We then rank the regions referring to the ratiogaédo the regional share of total employment in

industrys divided by the regional share of total employmentll industries,A°/A. , to construct
the Lorenz curve for relative concentration. Instliase, the horizontal axis values are the

n
cumulative regional shares of total employment liniradustries, computed ad, =z/1r. A
=1

completely homogeneous distribution is then stiiresented by a Lorenz curve coinciding with the
45-degree line, but now it is characterized byf#ut that the regional shares of total employment i
industrys are equal to the regional share of employmentlimdiistries.

The relative version of the Gini index for indussrig formally represented as follows:

R
G“ﬂ—;&h%ﬁ%%ﬁl

Referring to the properties of an ideal measuréraa in Section 1, the Gini index proves not to be
a proper empirical tool to detect spatial clusigiah economic activities. It indeed does not altow
control for industrial concentration (Properiy), that is, it does not allow adequate comparisons
among industries with different market structurgisén by the number and size of firms) (Combes
et al., 2008). As showed by Arbia (1989), as astteél measure, it is strongly dependent on the
chosen definition of space (Propertiésndv); for example, in fact, subdividing a particulegion

into more spatial units may change the rank ofamgi and hence modify artificially the value
assumed by the index (Combes et al., 2008). Fumibrer, the Gini index is a measure with no
indication of the statistical significance of depaes from the benchmark of absence of
concentration (Propertyiiv).

2.1 The Isard, Herfindahl and Theil indices

Other indices, which essentially refer to the samethodological framework of the Gini index,
have become “standard” in the empirical literatomespatial clustering of economic activities. The
most popular are the Isard index (e.g. Krugman1189m, 1995, Batisse, 2002), the Herfindahl
index (e.g. Henderson et al., 1995; Holmes andeb®&Vv2002) and the Theildex (e.g. Mills and
Zandvakili, 1997; Brulhart and Traeger, 2005). Ajowith the Gini index, even these three
measures do not respect Properiigewi, v.

In presenting the indices, we will use the employtas the referring variable for measuring
concentration. Again, it will be adopted the naiaf and terminology used by Combes et al.
(2008).

2.1.1 The Isard index
The Isard index, in its relative version, deteasaaentration within an industry by referring to the

absolute departures of the observed regional lligian of employment in an industry from the
regional distribution of employment in the whole@eomy:

S_ER s _
|_2;4 Al
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The values assumed by the index range from thegavef the smallest regional share (indicating
that the employment is perfectly homogeneouslyibisted across the regions) to 1 (indicating that
all economic activities of the given industry acedted in just one region). This implies that the
Isard index values scale is clearly affected bydpatial scale and definition of the spatial units
(Combes et al., 2008); therefore, Propetiiesi andv are not respected.

2.1.2 The Herfindahl index

The Herfindahl index, in its relative version, fetweighted sum of the square of each regional
share of employment in the given industry:

2
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Since the Herfindahl index has a values scale ngnfyom the inverse of the number of regions,
which varies depending on the spatial classificatto 1, it does not respect Properiiesvi andv
as well.

2.1.3 The Theil index

The Theil index is based on the concepetropy which has originally born in physics where it is
basically referred as a measure of disorder.
The general class of entropy indices can be reptesas follows,

)= (4]

where a is a parameter driving the entity of weights dtetto the observations. In particular, for
a >1 the observations in the upper tail of the distiifiu weight more; on the other handaf< , 1
it is up to the observations in the lower tail ®relatively more important.

The common choice is to uge= . The limit of E° as a approacheq is the Theil indexT®.
More precisely, following the I'Hopital’s rule, weave

Li,[nl Es( ) ZR:/]r (/]S//1 ) 1:ZR:/‘r lim (/]rs//]r)aln(/‘f//]r)

lim
& a-1 e = a-1 20 -1

and hence we obtain the Theil index
R S
= ZAfln—f.
r=1 Ar

An interesting characteristic of Theil index is theparability property. In a context where we are
considering more countries, it may allow to decosgthe degree of concentration of the countries’
regions into a degree of concentratibetweencountries and a degree of concentration across
regionswithin each country (Combes et al., 2008). Formally, tepagability property can be
described by the following equation,
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TS =TS +TS,

where T, is the degree of concentration between countrigsich not takes into account the
regional dimension) andl,; is the degree of concentration within each country

Specifically, the “between component” of concendrat T,', can be computed by applying the
Theil index at the country level, that is

AY
A

C

T, = il\iln
=1

where theA terms are the country level counterparts of theerms. Indeed/\’ represents the

countryc’s share of total employment in indussyand A, denotes the countrys share of total
employment in the whole economy. More precisely,

S
S
. 2 X
C S — S — s=1
&, whereX? =Y x’ andA, ==
rCc

As =

On the other hand, the “within component” of corication, T, is the average of the regional

levels of concentration within each country whishlcomputed as the mean of the countries’ Theil
indices, weighted by each country’s share in tt& tEmployment in industr.

g

S
=1 X

where T’ is the Theil index computed only respect to thgars belonging to country, formally
is given by

A

. (e/n2)
LN A

Although the Theil index has the interesting sepiditg property, it shares the same
methodological limits with the previously outlinedeasures of spatial clustering, namely it does
not control for industrial concentration and is nabiased respect to the space definition. However,
it is possible to have indications of its statiatisignificance (Propertyiii) by relying on the
bootstrap methods proposed by Brilhart and Tra@§85).

rc

3 The second generation measures: the Ellison anddéser index

Ellison and Glaeser (1997) have introduced a measturdetect spatial clustering of economic

activities which allows to control for industriabrcentration. It indeed consists on an index that
does not depend on changes in the market stru@srrgiven by the number and size of plants, of
the industry under study (Properiy). The motivating idea of this measure is that waenndustry

is characterized by a limited number of plants, leyment may inevitably be confined to a small

number of regions and then the spatial distributibthe economic activity would appear to be non
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homogeneous. The first generation measures idesuitin inhomogeneity, which is not expression
of the localization phenomena that are of sciemtifiterest in the context of spatial economics
theories, as spatial concentration. On the othed hidne Ellison and Glaeser index identifies chearl
spatial clustering depurated from this inhomogenédty comparing the observed regional
distribution of employment in a given industry wittre one that would result if economic agents
chose to locate their plants randomly and indepathdacross the considered regions.

The Ellison and Glaeser index is based on an lggrel-measure of gross spatial concentration,

denoted as5;;, which is computed as the squared sum of all ifferdnces between the regional

share of employment in the given industry and thgional share of employment in the whole
economy, that is

G2, :ER:()If—/L)Z.

r=1

Ellison and Glaeser (1997) compute the expectedevaf GZ, for a situation where plants are
distributed randomly and independently across tmsidered regions and show that

E[GEG]:(l—rZ:‘/]fJHS

where (1—2)!?) identifies the economic activity across regionsd,ann this context,
r

H® = Z(zﬁ)2 is the plant level Herfindahl index of indusgyn which z° is the share of plamin

total employment in industry
As a result, G5, = E[GZ.] implies that the observed regional distributioh employment in

industry s is equivalent to the expected random distributibn.contrast, if G5, > E[GZ;]

(respectivelyG:, <E[GZ;]) employment in industrg tends to concentrate (respectively scatter) in

space.
Ellison and Glaeser (1997) develop their indgx,, as the magnitude of the discrepancy between

G:; and the random distribution benchm&flG;. ], indeed:

R
G —|1- )IfJHS
y. = GEG_E[GEG] — - ( rz=1:
EG

[1—Z:A$j -glee.] [1—2}3}(1— He) |

It is scaled so that it takes values from —1 taliere the higher i3, the higher is the degree of

spatial concentration of the observed pattern dfistrys. Values close to zero indicate absence of
concentration in the sense that employment is aslgoncentrated as it would be expected if the
plant locations would have been chosen randomly.

Although the Ellison and Glaeser index providesi@portant improvement in the ability to
measure spatial clustering respect to the firseg®ion measures, it is still not unbiased resfiect
the arbitrariness of the definitions of the spatiaits (Propertiess, v). The problem is related to the
fact that the data onto which the index is computkdt is the regional aggregates, are treated as
aspatial sets. In other words, the index is congtineglecting the relevant phenomena of spatial
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heterogeneity and spatial dependence (Arbia, 1988¢. former phenomenon implies that the
spatial units are not the same, i.e. they havesrdifft propensities of hosting economic activities;
and spatial dependence implies that close spatitd are more similar than distant spatial unitd an
such similarity increases as closeness increasdsgT 1970).

Various variants of the Ellison and Glaeser indexenbeen appeared in the literature, the most
popular ones are perhaps those proposed by Mawdebédillot (1999), Devereux et al. (1999) and,
notably, Mori et al. (2005) whose index is speadifig built to be statistically testable (Property
viii). However, they all share the same methodolodjivetls as the Ellison and Glaeser index.
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The continuous approach to space

As shown in the previous chapter, the traditionabsures of spatial clustering are far from being
ideal. Their most relevant methodological limit lies time use of regional aggregates, which are
built by referring to arbitrary definitions of thepatial units (such as provinces, regions...) and
hence introduce a statistical bias arising fromde@sen notion of space.

This methodological problem has been overcome mescecent works (Arbia and Espa, 1996;
Marcon and Puech, 2003, 2010; Duranton and Overgt#¥g, 2008; Arbia et al., 2008) by using a
continuous approach to space, where data are tmmlleat the maximum level of spatial
disaggregation, i.e. each plant is identified by geographic coordinatex, (y), and spatial
concentration is detected by referring to the ttigtion of distances amongst economic activities.
The original contributions of this thesis followighline of research. The reference statistical
framework here is the so callsgatial point pattern statisticshat will be presented throughout this
Section.

1 Spatial point pattern statistics

Spatial point pattern statistics is a specific bharf spatial statistics devoted to analyze the
structure and characteristics of patterns formealijgcts that are distributed in one-, two- or, at
least in principle, three-dimensional space. At plenar level the data consist of a set of spatial
coordinates, sayx{(y), describing the locations of the objects. Anylsdata-set is labelled as a
spatial point patterrand is graphically represented by a map of paissibuted within the area of
space under study.

Figure 1 illustrates three different examples datsgh point patterns in a square area. In particula
the first shows local aggregations of points, whaduld be due to some form of clustering
mechanism or to territorial variation within thensidered area. On the other hand, Figui® 1(
depicts a pattern where points are distributed@pprately regularly over the area, suggesting that
a mechanism may have favoured inhibition amongsattgolocations and encouraged an even
spatial distribution.

Figure 1: Paradigmatic examples of spatial point pattern): gggregatedpattern, ) regular
pattern, €) randompattern
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The pattern in Figure &), instead, does not show any kind of systematiecgire and might be
considered as aompletely randonpattern. The basic key concept which, indeed,essmts the
starting point for the analysis of any spatial pgaattern is the hypothesis cbmplete spatial
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randomnesg§CSR) (Diggle, 2003; Cressie, 1993). This benclntampothesis for a spatial point
pattern asserts, heuristically, that the pointsehagen generated under the two specific conditions
of (i) uniformityand (i) independencehat is, respectively:

(i) constant propensity to host points within theigrat i.e. the area of the pattern is homogeneous;

(i) absence of spatial interactions amongst poirgseach point’s location is independent from the
other points’ locations.

Generally the first step in the inferential anadysf a spatial point pattern consists on detecting
whether the observed pattern is consistent with Gl&R hypothesis. As in other branches of
statistics, inferential analysis is primarily cowted by relying on formal stochastic mechanisms
generating data. In this specific context, stodbgsbcesses are labelledsmtial point processes

1.1 Spatial point processes

A spatial point process is a probabilistic law thaves that generation of a countable set of dbjec
identified by points coordinates; :(xil,xiz), in the plane (Diggle, 2003). Most of the point

processes used in practical applications are boder the assumptions of stationarity and isotropy.
Essentially, a process is stationary if all itspmdies are invariant under translations of thenare
through the space, and it is isotropic if all itegerties are invariant under rotation (Diggle, 200
Such assumptions, however, are not so narrow aglit first appear. In particular, for example,
the stationarity assumption can be relaxed by atiguocal intensity of points to vary over space
according to a specific stochastic model or to tlehaviour of some spatially referenced
explanatory variables.

Point process based inferential methods for anadyzbserved spatial point patterns involve
comparisons between empirical summary measureleoddta and theoretical summary measures
of an underlying point process. The theoretical many measures are quantities which identify the
properties characterizing a point process.

The first-order properties of a point process are described bwyi@msity function(Diggle, 2003;
Cressie, 1993),

A(x) = lim {E[N(dx)]}.

jox~0]  |dX

To clarify the notation here employed (borrowed frBiggle, 2003),N(A) denotes the number of
points in a particular planar aréaw Is the surface oA anddx is an infinitesimal area containing

the pointx. Therefore, intuitively,)l(x)dx expresses the probability that an event locateanin
infinitesimal region centred at poiriand with a surface arekx (Diggleet al, 2007).
For a stationary process, the first-order intenisitgonstant across all the area, thail(iz) = A for

eachx, and then it represents the expected number ofteper unitary area (Diggle, 2003).
The second-orderpropertiesare described by aecond-orderintensity function(Diggle, 2003;
Cressie, 1993),

A(xy)=lim

CRICYRL

{ E[N(dX)N(dy)]}
oy )
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wherex andy denote the coordinates of two distinct arbitrapmgs. Intuitively, Az(x,y)dxdy
expresses the probability that two points locaténio infinitesimal regions centred andy and
with surface areadx anddy respectively (Digglet al, 2007). Thereforeﬂz(x,y) characterizes the

expected additional events locatedyirelative to a given event locatedxrand hence it represents
the intensity of spatial interactions amongst pint
If a process is stationary we have th@(x,y) = Az(x— y); furthermore, if a process is stationary

and also isotropiCAg(x,y) depends only on the Euclidean distance betweandy, d =||x— y||
and hencejlz(x,y) = /12(d) (Diggle, 2003).

For a process characterized by independence ampags’ Iocations,)lz(x,y) = A(X)A(y). As a
result, the functiong(x,y) = A,(x,y)/A(x)A(y), known aspair correlation function(Ripley 1976,

1977), gives indications about the entity of demsre. In particular, if there is no spatial
interaction between points of the process at looatk andy then g(x— y) =1. On the other hand,
when g(x—y)>1 the process is characterized by positive depemgjemeaning that points at
locationsx andy tend toattract each others, while ig(x— y)<1 the process is characterized by
negative dependence, which implies that points témdrepulse each others (Mgller and
Waagepetersen, 2007). Again, under the assumptistationarity and isotropyg(x— y) = g(d).

For a stationary and isotropic spatial point precés second order properties can also be deskcribe
by a different kind of function, introduced by Regl (1976), which can heuristically be defined as
follows:

K(d) = A E{numberof furtherpointsfalling atadistance< d from anarbitrarypoint} .

Therefore,AK (d) can be interpreted as the expected number ofefupthints up to a distanckof

an arbitrary point of the process (Ripley, 1977).

Under the further assumption that the processrderly, which implies that each location cannot
host more than one point, Ripley (1976) has shdvan the link betweerK(d) and Az(d) is the

following:

AK(d) = 27 A, (u)udu, 1) (
or inversely,

A,(d) = ?(2d)™*K'(d).

The link between the two function lies in the fHwit both describe the distribution of the distance
between pairs of points in a point pattern, WhKréd) is related to the cumulative distribution
function andA,(d) to the probability density function.

Since K(d) can more easily be estimated on data respeg (W), it has become the most popular
empirical tool to detect the presence of spatigletidence, and then clustering, in a spatial point
pattern. The estimator d€ (d) will be illustrated in the Essays.

Three classes of spatial point processes can beardl for the analysis of spatial clustering of
economic activities: the homogeneous Poisson psptle inhomogeneous Poisson processes and
the Poisson cluster processes.

1.2 The homogeneous Poisson process
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The homogeneous Poisson process represents aizedesidandard of the hypothesis@bmplete
Spatial Randomnes@CSR). The postulates that define this stochagéinerating mechanism,
indeed, are equivalent to the definition of CSRg(e, 2003), which considering an hypothetical

study regiomA with a surface area Q#, states:

(i) for any constantd >0, then number of points located i follows a Poisson distribution with
meanA|A;

(ii) then points inA constitute an independent random sample from iferan distribution orA.

The parameted of the process defines the first-order intensftyhe resulting point pattern, that is
the average number of points per unitary area.&fbeg, conditionif implies that the intensity of
the study regiom is constant, and hence it corresponds exactlgganiformity condition of CSR
hypothesis.

On the other hand, condition)( which parallels thendependenceondition of CSR hypothesis,
entails that the location of any point is indeperideom the locations of all other points. As a
result, the second-intensity is given as

A(d)=+:d>0,
which, according to equation (1), implies that
K(d)=7?:d>0.

A partial realization of the homogeneous Poissoncgss can be obtained following a
computational procedure working out in two stepsstFof all, the simulation of thea number of
points from the Poisson distribution with mean mmdjenal to the chosen value df is required.
Secondly, once the random valués returned, th@ events are generated independently according
to a uniform distribution on the chosen study regio

Figure 2 shows two possible realizations of the bgemeous Poisson process on the unit square,
with A parameter equal to, respectively, 50 and 100.

Figure 2: (a) A realization of a homogeneous Poisson proce#s iwiensity 50 in unit squareb)
A realization of a homogeneous Poisson processintigmsity 100 in unit square
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Alternatively, instead of referring to a randomualofn, we might be interested in implementing
simulations conditional on a fixed number of poims it can be seen in the three Essays, the
conditioned simulated patterns have a crucial ingyme within the testing scope, because they can
represent useful hypothetic theoretical counteuf@stof observed patterns.

In terms of computation, the conditioned simulasi@an be implemented working out the second
step of the procedure above mentioned wids a chosen constant. By way of illustration, Feggi
shows two possible partial realizations of a homegels Poisson process conditional on 100 points
on the unit square.

Figure 3: Two realizations of a homogeneous Poisson proaasditional on 100 points in unit
square
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The homogeneous Poisson process constitutes a rbarichto understand the general
characteristics of an observed spatial point patteideed, making use of simulated homogeneous
Poisson processes conditional on the number otgoina reference observed pattern, we are able
to run tests of randomness which allow to identifyether the situation under study belongs to the
class ofaggregatedpatterns (as Figurea), regular patterns (as Figureb] or randompatterns (as
Figure D). Once the property of non-randomness has bedoated, the analyst is in the position
to build models for non-random processes, and gbtteem to see whether they are suitable for
representing reality or not.

1.3 The aggregated processes

The main violation of a CSR point pattern is repreésd by theaggregatedpoint pattern, which
may be of two types: the aggregated pattern calgdge ‘true contagioi of one point by another,
and the aggregated pattern causeddpparentcontagiori between points (Arbia and Espa, 1996).
In the context of the analysis of spatial clustgrii economic activitiesgpparent contagiorrises
when exogenous factors lead to the location of iim certain specific geographical zones. For
instance, firms may cluster locally in order to lexjpfavourable conditions within the area, such as
the presence of useful infrastructures, the prayind communication routes or the possibility of
benefiting from public incentives by locating inesific areas outside the residential centres.

On the other handrue contagionoccurs when the presence of one event in a gikes stimulates
the presence of other events nearby. For instaheepresence of “leader” firms encourages the
settlement of “followers” in the same area, justhasincidence of knowledge spillovers accelerates
industrial agglomerations.

From a statistical methodological point of viewpapent contagion is related to the violation of the
CSR condition ofuniformity, while true contagion to that dhdependenceAggregated point
patterns can then be generated by two distincsetasf stochastic mechanisms: the inhomogeneous
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Poisson processes, driving apparent contagionjttaménd the Poisson cluster processes, driving
true contagion.

1.3.1 Apparent contagion: the inhomogeneous Poipsocesses

Apparent contagion derives from abandoning the thgms of uniformity of the homogeneous
Poisson process. In this case, the point distobus such that the intensity is no longer constant
throughout the territory. It may be higher in cartaub-regions of the area, and lower in others. As
a consequence, there will be zones with a higmsitg of points, and others with a low intensity of
points and this will produce an aggregated pattern.

Apparent contagion will thus occur as a resulthef fact that although each point is arranged in a
random fashion, independent of the other points, ghesence of some zones more suited to
accommodating points than others leads to aggldioesa(Arbia and Espa, 1996).

Therefore, in order to generate stochastically threl of aggregated patterns, we replace the
constant intensityl of the homogeneous Poisson process by an intefusitgion varying on the
space,)l(x) (Diggle, 2003). This procedure constitutes thesglaf inhomogeneous Poisson

processes which, considering an hypothetical sttetyjon A with a surface area o|fA4, is
characterized by the following postulates:

(i) then number of points located i follows a Poisson distribution with meeﬁr\m (x)dx;

(i) the n points inA constitute an independent random sample from isteilwition onA with
probability density function proportional t&(x).

A useful computational algorithm to simulate anantogeneous Poisson process was suggested by
Lewis and Shedler (1979). It is based on ‘thinnjrigat is: first of all it generates a homogeneous
Poisson process of intensity, equal to the maximum value of the functidt(ux) on the study
region A; then it deletes each point, independently of otheints, with deletion probability
AX)/ A, -

By way of example, Figure 4 shows two partial r=gtions of an inhomogeneous Poisson process
on the unit square, with spatially varying intepsftinction A(x)=1003xr(—3x1) reaching a
maximum value of 100.

Figure 4. Two realizations of an inhomogeneous Poisson psogesinit square with intensity
A(x) =100exp(- 3x,) bounded by 100.
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If we are interested in simulations conditional arixed number of points, we can follow the
same algorithm. Specifically, spatial points araeegated from the uniform distribution @n Then
each generated point= (xl,xz) is accepted with probability](x)//l0 and rejected otherwise. The
algorithm continues untih points have been accepted. Figure 5 shows twazatiahs of a
conditioned inhomogeneous Poisson process, withpddas, in whichA(x, ,x,) = x? + x2.

Figure 5: Two realizations of an inhomogeneous Poisson psocesditional on 100 points in unit
square with intensityl(x, ,x,) = x? + x2.
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1.3.2 True contagion: the Poisson cluster processes

True contagion results from relaxing the hypothesdisndependence between the locations of
points. Poisson cluster processes have been imeddoy Neyman and Scott (1958) as a class of
mechanisms that allow to model dependence amongspand hence to incorporate an explicit
form of spatial clustering (Diggle, 2003).

An interesting way of visualizing the genesis ofaggregated pattern by the means of a Poisson
cluster process is tHeaderfollower scheme proposed in Arbia and Espa (1996).

Take an area and randomly allocate a certain nuwibleader firms within its boundaries. Then
establish a threshold distance for local alliedvaats and, basing on this threshold, let us defm
area of influence for eadeader. In a first approximation this area may be congdeo be the
same for alleaderfirms. Now fix a certain number dbllowersfor eachleader, as the realization

of a random variable. There are a number of exasripléhe literature where logarithmic or Poisson
distribution were used (Upton and Fingleton, 1985).

Finally, allocate thdollowersto theleaderfirms on the basis of a given bivariate distribati For
example, a bivariate uniform distribution may bedisn those cases where the probability within
the area of influence can be taken to be constgrdlt@rnatively, we may consider a bivariate
Normal distribution if we assume that the prob#pilof localising thefollowers decreases
exponentially with an increase in the distance ftheleader.

The resulting process is the Poisson cluster psoskswn in Figure 6 (borrowed from Arbia and
Espa, 1996).
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Figure 6: The genesis of a Poisson cluster processTlie allocation ofeaders (b) setting the
dimensions of the areas of local allied activiteesl allocation of thdollowers (c) the resulting
point process.
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The generation of a Poisson cluster process thesisis of the following stages:

(i) a given number deaderpoints is generated over the surface of the stegipn so as to create a
CSR pattern; in other words, the spatial positiohshe leader points constitute an independent
random sample from the uniform distribution on shedy region;

(i) eachleader point produces a random number foflowers independently and identically
generated for eadeaderaccording to a given probability distributiomd. Poisson, logarithmic);

(ii1) the locations of théollowers with regard to théeader points that produced them, are located
independently and identically on the basis of agilsivariate probability distribution.

The locations of théollowers for instance, might be uniformly distributed irnciacle of a given
radius or they may follow a radially symmetric Naimdistribution with probability density
function, such as

h(x, ,x,) = (27702)_1exp{— (xf +x? )/ 202] 2)

where (xi,xz) are the geographic coordinates ofolower point, ando is a parameter to be
established representing, in fact, the maximumiapextension of the area of influence for each
leader

Figure 7 shows two realizations of a Poisson ctugtecess on the unit square characterized by
intensity of theleaderhomogeneous process equal to 25 and 4 as thegaveuanber ofollowers
perleader. In Figure 7§), the location of eacfollower relative to itsleaderis realized following

the uniform distribution on a random circular dsith a maximum radius of 0.025. On the other
hand, in b), such position follows the distribution represzhby equation (2) witlw = 0.025.
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Figure 7: Two realizations of a Poisson cluster processiih square witHeaderintensity 25 and
expected number dbllowers per leader 4: (@) uniform dispersion ofollowers with maximum
radius 0.025;K) radially symmetric Normal dispersion foilowers with g =0.025
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In Figure 78), it can be clearly seen that the allocation phbiliig of followerswithin the cluster is
constant in all the area of influence. In contrésg¢ pattern represented by Figurb)vidences
that thefollowersintensity tends to diminish as the distance fromdluster centre increases.
Conditioning on the number téaderpoints and number dbllowersperleaderis straightforward.
Rather than establishing the parameters of randimmables, we simply need to fix constant values.

By way of illustration, Figure 8 shows realizatiasfsa Poisson cluster process conditioned on fixed
guantities.

Figure 8: Two realizations of a Poisson cluster processnih sguare with 2%eader points and 4
followers perleader. (a) uniform dispersion ofollowers with maximum radius 0.025b) radially
symmetric Normal dispersion @fllowers with g =0.025
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In the left map of Figure 8 the 25 groups ofdllowers are clearly identifiable. Such a visual

identification is not so straightforward in Fig. (b due to the coalescence between nearby
clusters.
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For testing purposes, in order to recreate spegdradigmatic situations we might be interested in
performing simulations conditional on the total rhenof events on the study region. Indeed, when
the number ofollowers perleaderis randomly generated according to a Poissoniloligion, the
point process can be simulated by randomly allagadi fixed number of events amongst ldeder
points.

This is illustrated in Figure 9 which shows twolizations wherein the 10f@llowersare randomly
distributed amongst the 2&aderpoints.

Figure 9: Two realizations of a Poisson cluster processithsgquare with 10@ollowersrandomly

allocated amongst 28ader points and &) uniform dispersion ofollowers with maximum radius
0.025; p) radially symmetric Normal dispersion fafllowers with g = 0.025. Average number of
followersperleaderequal to 4.
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1.4 Cox processes

Another class of point processes which may be useiu economic analysis application is
represented by the Cox processes. They represattitiaal extension of the inhomogeneous Poisson
processes where the source of spatial inhomogetledyis the intensity functiov](x), rather than

being deterministic, is stochastically driven byamdom process. Therefore, these processes are
“doubly stochastic” (Cox, 1955; Grandell, 1976; &aland Vere-Jones, 2003) and allow to
explicitly model spatial intensity endogenouslyheatthan exogenously.

Formally, following Diggle (2003), a Cox processidze defined as follows,

() {A(x) = A(x): x0OD?} is a non-negative random field.

(i) conditional on {A(x)=A(x):x00?}, points are generated following an inhomogeneous
Poisson process with intensity functidii).

The resulting point process is stationary if anty einthe intensity random field is stationary ilse
(Diggle, 2003). In the stationary case, the firstes and second-order intensity functions are,
respectively, given as

A = E[A(x)] and 4, (x.y) = E[A().A(y)].
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Figure 10 shows a partial realization of a Cox pascin whichA(x) is a Normal random field with
mean u =100, varianceo = 0. 25and correlation functiorp(d) = exd—d/0.25 . Also shown is

the underlying intensity surfacd(x)=A(x) as a grey-scale image, where lighter are the grey
colours higher is the value of intensity.

Figure 10: A realization of a Normal Cox process in unit sguaith meanu = 100 variance

o® =0.25 and correlation functior)o(d)=exr{— d/0.25}. (@ The generated underlying intensity
surface (grey-scale imagel) the generated point pattern.

2 Spatial point pattern statistics in economics

Spatial point pattern statistics has recently besed in the economic field in order to develop
measures of spatial clustering comparable acroasiabpscales and unbiased with respect to
arbitrary changes to spatial classification (Propsiiv andv of an ideal measure outlined in the
previous chapter).

The most advanced contributions in the literatwee @obably those of Duranton and Overman
(2005), Arbia et al. (2008) and Marcon and Pueddl@. All this works consider the spatial
distribution of economic activities as a spatiainpgattern and regard the estimated second-order
intensity of the pattern as a measure of spatiadteting. In particular, Arbia et al. (2008) use
Ripley’s function, K(d), and Marcon and Puech (2010) use a modified versiat, thus referring

to the cumulative distribution of the distancesa®sn pairs of points. On the other hand, Duranton
and Overman (2005) use a slightly modified versibrthe pair correlation functiong(t), which

instead is related to the probability density fimctof the distances between pairs of points.

In order to control for industrial concentratiorr@Pertyiii ), in all quoted papers departures from
spatial randomness implying presence of spatiatefing have been detected by comparing the
values assumed by the employed measure for therpatt a given industry to those assumed for
the pattern of the whole economy. In other wordi®sé authors have developed measures of
relative spatial concentration. Although relativeasures are very useful in controlling for the
idiosyncratic characteristics of the territorieslanstudy, on the other hand they do not allowatlire
comparisons across different economies (see Haalaald 1999 and Moret al, 2005 for a more
detailed discussion). The original contributions tbfs thesis in the three Essays explore the
possibility to develop measures of absolute spatiatentration.
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Detecting the existence of space-time clustering ffims

Abstract: The use of th&-functions (Ripley, 1977) has become recently papur the analysis of
the spatial pattern of firms. It was first intro@wlcin the economic literature by Arbia and Espa
(1996) and then popularized by Marcon and PuecBb3R0Quah and Simpson (2003), Duranton
and Overman (2005) and Arbet al (2008). All this researches have followed a stapproach,
disregarding the time dimension. Temporal dynamics,the other hand, play a crucial role in
understanding the economic and social phenomemagwarly when referring to the analysis of
the individual choices leading to the observedtelssof economic activities. With respect to the
contributions previously appeared in the literatutieis paper uncovers the process of firm
demography by studying the dynamics of localizatibmough space-timeK-functions. The
empirical part of the paper will focus on the studyhe long run localization of firms in the arefa
Rome (ltaly), by concentrating on tHeT sector data collected by the Italian Industrialdgnn the
period 1920-2005.

Keywords: Agglomeration, Non-parametric measures; Space-##anctions, Spatial clusters,
Spatial econometrics.

JEL classification codesC21- D92 L60- 018 R12

1. Introduction: The spatial-temporal analysis of tusters of firms

There is no question that the process of locabmabf firms in space is essentially a dynamic
phenomenon. At the hearth of the observed spaitqms of clustering (where firms tend to attract
each other) or inhibition (where firms tend conedysto repulse each other), we always find
considerations related to time, dynamics, lagggueddence and evolution. As a matter of fact we
cannot study phenomena like firm demography, kighth processes and growth in space
disregarding the time dimension. Yet in the literatthe study of the clustering of firms in space
and time have stubbornly followed two separatetbhiss. On one side there is a long tradition of a
substantial number of techniques available for Mimdeclustering of firms in time based on purely
time-series methods and on the analysis of busiyedes (Hamilton, 1994). These techniques may
assist in the identification of situations of tirme@acentration where we observe a higher number of
new firms in some particular periods due to cyc¢lioevements or trends. On the other side
research on spatial clustering of economic actigithas only a more recent history and it is
originated by a reinterpretation of Marshall's gs on 19th-century industrial localization
operated by some authors in the nineties (e.g. ideung 1991; Fujitaet al, 1999). Following these
seminal works the empirical analysis of spatiaktdus has developed along two distinct lines of
research. The first was an attempt to examine ttiréee underlying economic mechanism, using
the spatial dimension only as a source of datadsgeCiccone and Hall, 1996; Jaffeteal, 1993;
Rauch, 1993; Henderson, 2003). The basic methogdlete is that of a panel data or pure spatial
regressions that employs observable covariateteceta space (Arbia, 2006; Baltagi, 2008). The
second line of researches attempts to charactémezepatial distribution of economic activities by
observing the joint behaviour of the different srdlistributed across space (Deveretial, 2004,
Duranton and Overman, 2005; Ellison and Glaese®/1®annides and Overman, 2004). The
reference methodology under this respect is thtt@Epatial point pattern analysis (Diggle, 2003).
In particular in this field the use of théfunctions (Ripley, 1977) has become recently papul
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First introduced in the economic literature by Arkdand Espa (1996) was then popularized by
Marcon and Puech (2003), Quah and Simpson (20@8gHon and Overman (2005) and Arbia
al. (2008). In particular Arbiaet al. (2008) proposed the use of Ripleysfunctions as an
instrument to study the inter-sectoral co-agglori@ngpattern of firms in a single moment of time.

The analysis of clusters in space and time, tharge lfiollowed so far two different roads and two
separated methodologies with no interactions antbegr. Time series methods have generally
disregarded the spatial dimension while spatiasteling models have been essentially static and
they analysed just the outcome of the dynamic &aij@ists as it is observed in one single moment
of time. This approach is obviously partial and mead to leave without explanations a number of
different empirical cases that may occur in practio fact new firms settlements may display no
spatial concentration if we look separately at eamment of time and yet they may present a
remarkable agglomeration if we look at the overadiulting spatial distribution after a certain time
period.

The importance of taking into account the tempdgadamics when analyzing spatial patterns of
events has been well explained by Getis (1964)Getis and Boots (1978). In particular, in this
second work, referring to a straightforward “franoekvfor viewing spatial processes”, they argue
that without knowing the temporal evolution of thkeenomenon under study it is not possible to
identify the mechanism generating its spatial $tmec In particular, they show that different space
time processes can lead to resulting spatial pettehich look the same. As a consequence, only
phenomena which exhibit no increase or decreapeiots over time might be represented as pure
spatial processes (Getis and Boots, 1978) and hmndd be meaningfully analysed neglecting the
time dimension.

With respect to the contributions previously appdain the literature, this paper attempts to
unify the two approaches and to uncover the procEsm demography in a more comprehensive
way by tackling it, both under a spatial and undetemporal point of view, within a unified
framework. This framework is provided by the thealy space-timeK-functions born as an
extension of the simple synchrormefunction (introduced ago by Ripley, 1976 more ti3@nyears
ago) and of the so called second-order analysmowit patterns (see, e.g. Getis and Boots, 1978).
Examples of applications may be found in the regligtience (Feser and Sweeney, 2000 and
2002), geography (Getis, 1983; Okatteal, 1995; Yamada and Rogerson, 2003) and ecology
literature (Goreaud and Pelissier, 1999 and 20@&sH, 2003).

In the epidemiological context, Diggkt al (1995) have proposed an extension of the spatial
univariateK-function to allow for the detection of space-tinméeractions in what was termed a
time-labelledspatial point pattern Our purpose is to introduce this statistical fesvork in the
context of economic geography to study the intévast between the spatial and temporal
distributions of firms. Specifically, we intend test empirically the presence of space-time
clustering of firms. Once the significance of sptiog clustering phenomenon is assessed by using
the space-tim&-function approach, we will be in the position &sttthe presence of hypothetical
spatial configurations like, e.g., leader-followeatterns or the presence of spatial segregation
between ‘old’ and ‘young’ industries.

In order to assess the scientific scope of our gwegd methodology we need to clarify
preliminarily what we mean with “spatial clusterfains”. The notion of spatial concentration we
refer in the present context is the “topographincemtration”, as defined by Brilhart and Traeger
(2005), which evaluates the geographic distribubbeconomic activities only relative to physical
space. In such a context, the absence of concenttaénchmark is represented by a spatial pattern
where the firms are randomly spread over the physipace. Therefore, the departures from this
random spatial diffusion are considered as clusteithout taking into account the spatial
distribution of exogenous variables like trafficcassibility, factor endowments, skills and labor
force potential. In other words, in the presentterty the spatial component of the space-time
clustering phenomenon can be jointly determinedHgy interactions among economic agents —
driven, for example, by the presence of knowledgkosers or external economies of scale — and
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the exogenous features of the territory (such agptesence of useful infrastructure, the proximity
to communication routes or the possibility to b&nfgdbm public incentives to locate in specific
areas outside the residential centres). Howeverfitins that we refer in the case study considered
in Section 3 belong to th€T sector and (unlike, e. g., the agricultural andWyemanufacturing
industries) they do not need a particularly weighhdowments. Therefore, we can reasonably
argue that the first factor, rather then spati&étugeneity, is prevalent in driving clusters.

The structure of the paper is the following. In t8at 2 we will introduce the methodological
framework and we will present the theory of thecgpameK-functions. To help the interpretation
of the subsequent empirical analysis, in this $actve will also describe some stylized spatial
distributions of firms that may occur in empiricases and the corresponding behaviour okthe
functions diagnostics. Section 3 will be devotedthe empirical part of the paper by first
introducing the working dataset based on the dpdisaribution of Information Technology and
Communication(ICT) firms in the area of Rome (ltaly) collected by tindustrial Union in the
period 1920-2005. It will also contain the empiliapplication of the models presented in Section 2
based on this dataset. Section 4 contains the s$ignu of the results and the analysis of their
economic implications. Finally Section 5 contaimsng concluding remarks and directions for
future developments in this field.

2. The statistical methodological framework
2.1 Space-time K-function analysis

Economic events, such as the establishment of mes,fmay occur at different points in space and
time. As a consequence, in order to study the @g@bgec concentration of industries, we should
control for the temporal dynamics that charactetlze localization processes. Accordingly, we
need to explore the possibility that the spatiad samporal phenomena, producing the observed
pattern of firms at a given moment of time, intérée provide space-time clustering. This
requirement can be performed referring to a siedistest about the independence between the
spatial and the temporal distribution of firms.the case of dependence, the geographic pattern of
firms is characterized by the presence of space-iimteraction meaning that such a pattern cannot
be explained only by static factors, but we sha@léd consider the dynamic evolution of the spatial
concentration phenomenon.

Univariate spatiaK-functions (proposed by Ripley 1976 and 1977) hiaeen already used in
the economic literature to detect the geographioakcentration of industries (see e.g., Arbia and
Espa 1996; Marcon and Puech 2003; Quah and Sing8¥i8). They can be exploited in a dynamic
context by analysing separately the spatial andi¢hgporal clustering pattern. However, a more
comprehensive approach refers to the analysis tf donensions simultaneously thus paying
attention also to the space-time interactionshis paper we will consider a dynamic extension of
the univariateK-functions proposed and fully described in Digegteal. (1995). In what follows we
will present a brief account of the theory of sptines K-functions. The symbolism and definitions
are in accordance with those used in Arbiaal. (2008) to which the reader is referred for the
simple, purely spatiakK-function.

Generally speaking, the technique involves the @mmpn between the observed spatio-
temporal point pattern and a theoretical patteat bias the same temporal and spatial properties as
the original data, but no space-time interactioig@® et al., 1995; Frenctet al, 2005). In this
context an auxiliary information is associated erg observed spatial point in the form of the time
of occurrence. Under the assumption of stationamitgt isotropy (Diggle, 2003; Arbia, 2006), we
can build up the space-tinkefunction:

Ao K (d,t) = E{# of points falling at a distance and a time retipely <
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d andt froman arbitrarypoint} Q)

(French et al. 2005), with E{-} indicating the expectation operator and the goaeter A,
representing the spatial and temporal joint intgnsi the point process, i.e. the number of points
per unitary area and per unit time. If the processerking in time and space are independent (that
is if there is no space-time interaction) the fimcal K(d,t) should be equal to the product of the
spatial and temporad-functions K, (d)K; (t) (Diggle et al, 1995), whereK,(d) and K. (t), are
defined, respectively, as follows:

ApK 5 (d) = E{#of pointsfalling ataspatialistances d from anarbitrarypoint (2)
and

A K+ (t) = E{#of pointsfalling ata time interval< t from anarbitrarypoint} .

In the previous expressionk, represents the spatial intensity, that is the rematb points per
unitary area. In a similar fashioh, denotes the temporal intensity, i.e. the numbepadhts per
unit time. The meaning of a univariate spa&unction (K, (d)) is well known (see Ripley, 1977
and Arbiaet al., 2008 for economic interpretation). They suggesuaily if the firms tend to
concentrate significantly in some portions of thelg area rather than in others. Purely tempiral
function (K (t)) are not treated in the statistical literaturet Gould be used to identify if in the

observed time series a significantly higher nuntdfeiirms is concentrated in some periods rather
than in others.

In the case of no space-time interaction, we miigioretically expect thak (d,t) = K (d)K (t)
(Diggle et al, 1995; Gatrelet al, 1996). The product functionel{D(d)KT (t) in fact, represents
the expected-function under the hypothesis of absence of spiawe-interaction and can be used
as a reference for comparison with the observedespmeK-function, K (d,t).

Turning now to the estimation aspects, consideginigivariate ‘time marked’ point map, we can
define the estimators of the three component peesegi.e.K(d,t), K,(d) and K. (t)) by close

analogy to those suggested in the unmarked unteasase (Ripley, 1977; Diggle, 2003).

To start with, let us consider the space-tikddunction which, as we mentioned above, is
represented by the expected number of points wétspatial distanceé and a time interval of an
arbitrary point, scaled by the expected numberoafits per unitary area and per unit time. Diggefle
al. (1995) have shown that a proper edge-correctechastr of K(d,t) from an observed ‘time

marked’ point pattern with observations can be the following:

R(d,t)=%zz%)'t(tﬁ)

i j# i Vi
whereA is the total surface of the area ant the whole observed interval of time. In additibe
terms d; andt; represent, respectively, the spatial distancetaedime interval between thth
andjth observed points. Finally, (dij) and It(tij) represent indicator functions assuming the value

1if d; =d andt; <t, respectively, and O otherwise.

Due to the presence of spatial and temporal edigetsef(which might potentially distort the
estimates close to the boundary of the @ad to the time limits of) the adjustment factorg,
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andyv; are introduced. The weight functiom; expresses the proportion of the circumference of a

circle centred on point passing through the poiptwhich lies withinA (Boots and Getis, 1988).
By analogy, the factow; refers to theime segment centred anof length t; , lying within the
observed total duration time, between 0 dn{Diggle, 2003;Diggle et al, 1995; Gatrellet al,
1996).

Referring to the same statistical framework, thgeedorrected estimators of the spatial and
temporalK-functions, K, (d) and K, (t) are defined, respectively, as:

ZZH

i j# u

(Boots and Getis, 1988; Diggle, 2003) and:

A T It(tij)
Kelt)=— 22—
i j# ij
(Diggle et al, 1995; Bailey and Gatrell, 1995). As already saiuthen there is no space-time
interaction we have that (d,t) = K, (d)K, (t). As a consequence one possible exploratory taol fo
the independence between the processes operatingeilnd space is the functional:

D(d.t)= K (d.t)- Ko (d)K- (t) 3

(Gatrell et al, 1996). This functional is proportional to thecri@ased numbers of points within
spatial distancel and time intervat with respect to a process which possesses the tnporal
and spatial characteristics, but no space-timedot®n. As a consequence, the presence of space-
time interactions might be revealed in the appearart peaks on the 3-dimensional surface of
D(d,t) plotted against the spatial distance and the sietience.

Diggle et al. (1995) and Frencét al. (2005) have proposed a transformation of (3) wiaibbws
for the possibility of working with relative quatiéis rather than absolute numbers. This is defined
as:

Dy(d.t)= B(d )R ()R () @)

Expression (4), the “Diggle function”, is proporta to the relative increase in points within
spatial distancel and time intervat with respect to a process with the same tempaordispatial
characteristics, but no space-time interaction.il&riy to D, the functlonaID can be plotted in a
3-dimensional graph versusandt to help the visualization and the detection oéidéependence
between the spatial and temporal processes.

As we stated at the beginning of this section,KHenctions-based empirical method quantifies
explicitly the spatial dependence between eventdeurthe working assumption of spatial
homogeneity (or stationarity). This is expressedhgyfact that in Equations (1) and (2) the spatio-
temporal joint intensity and spatial intensity,( andA, ) respectively, are assumed as constant. A
natural way to overcome this procedural limit cstsf allowing these two quantities to vary over
space. We could express these two functions,d%) and A, (x), where the argumentrepresents
the geographic coordinates of an arbitrary poiirhiting to the mere spatial perspective, and hence
neglecting the temporal evolution, in Arkea al. (2009) we followed this approach to analyse the
spatial interactions among firms of the high-teddustry in Milan, while controlling for the
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exogenous effects of the characteristics of thdysarea. One of the primary tasks of the future
research agenda in the subject will be that ofralitey this analytical procedure to the temporal
perspective, in order to develop a method to astesspace-time clustering phenomenon in an
inhomogeneous spatial and temporal environment.

2.2 Some stylized space-time distributions

Before moving to presenting the important aspesttsed to the inferential evaluation of space-time
interaction, in this Section it is useful to pressome stylized situations that may occur in eroglri
cases when observing the spatial distribution whdi The exam of these extreme, paradigmatic,
situations and the analysis of the correspondingateur of theK functionals,will help the

interpretation of the functional®(d,t) and D,(d,t) in the case study that will be analysed in

Section 3.

Figure 1 reports some theoretical spatial distrdmg of firms and the corresponding diagnostic
plots. These could be used as benchmarks to bearechwith the empirical situations that may be
observed in practical instances. In doing so w¥oln approach that proved already useful in a
study by Getis (1964) on the changes in the comaldemd-use pattern. In the quoted paper the
author derives a series of stylised spatial paatitgpns built under different economic hypothedes o
birth, death and diffusion, and then tries to idgnthe pattern that is closer to the observed
distribution.

Of course those depicted in Figure 1 are but agheamples and certainly they do not exhaust all
the cases that may be found in practice. We neetatiy that the distributions reported in column
a) of the figure are stylized simplified arrangensdmased on only few points and are is used just to
clarify the five extreme situations. In contras tiraphs reported in columns b) and c) are notthase
on the same points displayed in column a) (thaewet sufficient to interpolate meaningfully the
3-D graphs) and are obtained through simulatiosgd@n a much larger number of points. Notice
that the time dynamics in these examples is pbrtiaasked by the fact that we do not consider the
death of firms, but only the process of new firraation.

Case i) refers to the instanceabfistering in space with no clustering in time ancho space-
time interaction. The map appears with a strong visual impressioolustering in each time
period, but the number of newly born firms is canstover time (see the different time symbols in

the maps), thus displaying no time concentratidme Fituation is represented by a fag(d,t)

function in the time direction and a peak at dis&af.06 in space. Case ii) refers to the opposite
situation where we do hawtustering in time, but no clustering in space andho interaction. In

this case the visual impression is that of spatdomness both in each time period taken
individually and as a whole, but the number of 8rim some periods is significantly higher than in
others with, in particular, a strong concentratddmew firms in the first time period. This situati

is revealed in the graph c) with a peak of tﬁ@(d,t) function in time at lag 2 and an (almost) flat

function on the spatial axis. Case iii) refershie tase oho space, no time clustering and, as a
result, no interaction and has an appearance of no clustering in spad¢eneiv firms that are

created randomly in the different time periods. T@@(d,t) function here is flat in both the space

and time direction. Case iv) considers the instambere points arelustered both in time and
space with an interactionbetween the two dimensions. Graph a) presentstiat are highly
agglomerated in space if observed in each indiVitoee period and also if we look at all points
jointly disregarding the different time markers. tinis graph it is also evident a strong time
concentration with a higher number of new firmsated in the second time period. Finally Case v)
considers the situation where points ataestered both in time and space, but there is no
interaction between the two dimensions. Observing each yedividually produces a visual
impression of clustering, however looking at theolghmap without distinguishing between the
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different time periods the visual impression ist thiarandomness. There is also a considerably high
degree of time concentration with a higher numidenew firms created in the first time period.
This situation was generated artificially considgrthe product of the two margin&Hfunctions in
space and time separately.

It is important to stress that the purpose of theppsed methodology is to discriminate if the
observed space-time pattern of economic activisedriven by a systematic mechanism or purely
by chance. We argue that this is an important §tsp in the analysis of space-time dynamics of
firms. In fact, if the location pattern is primaritlue to randomness, then any economic model
trying to explain the observed pattern would be mregless. As a consequence we argue that the
use of the proposed tools is preliminary to theed®n of the relevant economic factors that
determined the observed spatial configuration. Ebisond important step, however, could only be
tackled with different tools and with a larger infaation set on structural variables other than just
the geographic location, such as the plant size,ctiaracteristics of the local demand and the
workforce market potential. For these reasonssgic®nd step is not undertaken here and is left to a
future study.

Obviously any substantive conclusions on the ptiexpspatial and time pattern cannot be based
merely on the visual inspection of the empiricamrs contrasted with the stylized pattern and they
need a more grounded validation based on soungkentfal tools. These tools will be introduced in
the following Section.

2.3 Inference

In the present Section we will introduce an inféi@nframework in order to formally assess the
significance of the empirically observed valuesDiﬁ,t). However, since the exact distribution of

the functionalD, is unknown, its variance cannot be evaluated #taally and no exact statistical
testing procedure can be adopted. To overcomesipisct Digglest al. (1995) suggested to obtain

a significance test by exploiting a Monte Carlo @agh. In the quoted paper the authors suggested
to performm simulations, where at each step thgeographical points are marked at random with
the observedh time ‘markers’. Having thus obtained simulated spatial-temporal point patterns,

we can thus compute different estimates of)(d,t). We will refer to these estimates with the
symbol IZA)i (d,t), i=1...,m. The observed variance of theseestimates, say7(d,t), can be

reasonably used as an estimator of the variandﬁ(dft) (Gatrellet al, 1996). Having introduced
these definitions, we can also introduce the idé'atandardized residuals” as

R(d,t) = D(d,t)/\V(d,t). ) (5
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Figure 1. Some theoretical spatial arrangements of firmspace and time (column a) and the

correspondingf)(d,t) (column b)) andlﬁo(d,t) plots (column c)). Space is represented by a unit
square. Time is represented by the[$é]DN.

a) Spatial distribution b) D(d,t) function c) Dy(d,t) function

Case i)p-value Test Montecarlo: 0.443

: 0
Case ii)p -value Test Montecarlo: 0.104 00.00 0.00

2 0.3
a u A o
o 0.
o 0.
. ] P
025
- 0
Case iv)p -value Test Montecarlo: 0.001 0.00
e W, 0.

Case vp -value Test Montecarlo: 0.401

NOTES: Case i: Spatial clustering, no time clusiggrno space-time interaction

Legend
Case ii No spatial clustering, time clustering, no spaceetinteraction yrabel Year
Case iii No spatial clustering, No time clustering, no sptige interaction. o 9
Case iv Spatial and time clustering and space-time intevact Z 3
Case v: Spatial and time clustering, no space-itiegaction. g

For the meaning of thp-value Monte Carlo test see the discussion in 8ec2.3.p-values larger than 0.05 refer to non

significant space-time interaction. Figures a) lzsed on only few points to help the visualizatiéigures b) and c) are based
on a larger number of simulated points.
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It is better to clarify that the term “standardizesiduals” is the one used in the literature, as
suggested by Digglet al. (1995), and refers to the ratios between the obsgevalues ofD(d ,t)

and its estimated standard deviation, reportedguakon (5). However the use of this term may be
misleading since it has nothing to do with the niegumore commonly assigned to it in regression

analysis. In practice, it represents the excessbeunof points of K(d,t) with respect to

Ko (d)K;(t), and it is a measure of space-time interactionthim absence of any space-time

interaction, these residuals have zero expectadioth a variance equal to one. Therefore, an
appropriate inferential method to test if the sgdadind temporal processes are independent on one
another consists in plotting the graph associatiéla Expression (5) against the product-functional

Ko (d)K, (t). If there is no space-time interaction then apjmaxely 95% of the values dR(d,t)

would lie within two standard errors (Frenehal, 2005). The interpretation of thé(d,t) plot is

not always straightforward. In fact it could be ke by the fact that the residuals could be
strongly dependent. In addition to this test, ahfer overall Monte Carlo testing procedure of
space-time clustering have been suggested. It sisnsi taking the actual observed sum of the

functionals I5(d t) over alld andt and making a comparison with the empirical distiitn of the

m analogous sums oﬁi (d,t) over alld andt, (i =1,...,m). A particularly high value of the

observed sum among the values of this ‘artific@ibtribution would constitute an evidence of
overall space-time interaction. For example, aséHadt al. (1996) pointed out, if the observed sum
is ranked above 95 out 100 simulated values, thenptobability that the observed space-time
interaction occurred by pure chance is less thper®ent.

3. Analysing the long run spatial dynamics of firmsthe case ofl CT industries in Rome (Italy)
1920-2005

3.1 Economic background: theoretical expectatiand@T firms location in cities

In the last years there was a flourishing of stsidia the increase ofkamowledge-based economy
(OECD, 1996; 2001; Drucker, 1998; Foray, 2000; dand Foray, 2003; Cooletal., 2007) and a
number of spatial economic theories can be founthen literature on industrial agglomeration
which can help in postulating the expected locagiatierns ofCT firms.

At the risk of oversimplifying the discussion, awgthout claiming to exhaust the vast literature
on the subject, we can distinguish between at teasbroad lines of thought.

According to a first, consistent, part of the lgtrre, one should expect th€T firms to be
spatially concentrated within the big metropoli@m®eas. Indeed, the idea of a strong connection
between spatial clusters and economic performartEevknowledge matters significantly has a
very long tradition that can be traced back togeminal contributions of Alfred Marshall (1920),
and to the following re-appraisal of Perroux (1956)irschman (1958) and Jacobs (1961).
Fundamentally the expectation of clusterind®T firms is supposed to be driven by the so-called
tacit knowledge(Nonaka and Takeuchi, 1995; Polanyi, 1966) assgntie knowledge to be
transferable only through direface-to-facenteraction (Storper and Venables, 2003). As aenat
of fact, the new forms of technological knowledge aisuallytacit, in the sense that their
accessibility is bounded by geographic proximity ligh-technology firms or knowledge
institutions and by the nature and extent of theractions among these actors in an innovation
system (Lambooy and Van Oort, 2005). Therefore ktievledge spillovers should be more easily
picked up in cities, where many specialized worlames concentrated into a relatively small and
limited space and where the transmission of newnkeage tends to occur more efficiently by
direct human interaction (Glaessatral. 1992; Hendersost al. 1995; Dumaiget al.2002; Van Oort
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2004; Lambooy and Van Oort, 2005). The role of gaplgical and cultural proximity fotacit
knowledgeexchange has been discussed extensively in #matlite on high-technology clusters
(Saxenian, 1994; Storper, 1997, 2002; Porter, 18@#&ble and Wilkinson, 2000; Yeurgj al.
2007) andnnovative milieuXCapello, 1999; Rallet and Torre, 1999).

In contrast, according to a second line of resear@marily leaded by the works of Sassen
(1994), Castells (1996) and Cairncross (1997 artd RQve should expect tHET firms to locate
without a significant spatial structure. Essenyialhese authors argue that the rapid developnfent o
the communication technologies in the 90’s (andatieent of internet above all) has limited the
role of space in the locational choices of econoagents. As a consequence the exchange of
knowledge and information is now less dependenplorsical flows within the geographical space
than it used to be in the past due to the increpssdibility of communicating in real time with any
point in the world.

Thus, the economic theory suggests at least twerdift location phenomena characterizing the
ICT industry: one leading to spatial concentratiom, ¢ther driving to geographic patterns where
spatial interactions among economic agents arlevaat.

In the following sections we will try to assess #mapirical relevance of these two competing
lines of though by studying the spatial configuratbf thelCT industries in the metropolitan area
of Rome. In particular in Section 3.2 we will preséhe database and in Section 3.3 we will make
use of the space-time methodology illustrated iatiSe 2 to test whether the spatial and temporal
distributions are dependent and if there is anyceijigne interaction in the locational choices of
ICT firms.

3.2 Data description

The empirical part of this paper focuses on a setioro data on the firms of tHET sector in the
area of Rome. This dataset has been collectedeofaerly long period ranging from 1920 to 2005
by the Industrial Union of Rome (UIR). The largmé span considered could, in principle, create
problems in the classification of industries thaynhave changed over time. However in G&
sector, the firms that were still operating in 2@@&ld have changed their denomination, but not
the typology of their product that remained constarer time. The dataset reports the full address
and the year of establishment of the 169 industigsently operating in the area thus disregarding
those that were born in the period considered,thit did not survive until the present year. The
ICT industries are further classified into two groupdectronic and communicatiofC) and
Information Technolog{iT). In our database there are 66 firms belongirthedirst group and 103
belonging to the second group. Table 1 reportstithe evolution of the sector in the 85 years
considered in terms of the number of firms boreach decade. It is evident the slow development
of the sector until the early eighties and the mprenounced increase in the birth of new
companies in the eighties and in the nineties. dymamic is very similar for th&lectronic and
Communicatiorand thenformation Technologgectors.

Table 1 Frequency distribution of the number of firms byyef establishment.

Number of firms
Years of (1) (2) (3)
establishment | Electronic and Information
Communication Technology ICT=(1)+(2)

1920-1960 5 0 5
1961-1970 5 1 6
1971-1980 4 10 14
1981-1990 15 30 45
1991-2000 29 37 66
2001-2005 8 25 33

Total 66 103 169
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The spatial distribution of the 169 firms of th&T sector is reported in Figure 2, which also
provides an idea of the dynamics by marking witfiedent symbols firms born in the different
decades. Data are available at the finest levehr@d and spatial resolution, having in hand thé ful
address and the exact date of registration of tlam,it is only for the purpose of illustration tha
they have been temporally grouped into decadeslneTl and Figure 2.

Figure 2: Spatial location and time evolution of thecation of 66 firms of ICT sector in Rome
(Italy), 1920-2005. Source: Our computations ondag provided by the UIR.
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NOTE: All Figures are oriented to the north andorémlso the boundaries of the administrative mipaiity of Rome. The circle in
each graph represents the location of the cityreent

Figure 2 (a) reports the spatial distribution af thholelCT sector. It is clear from a first visual
inspection of the graph that data display a matieediency to cluster by concentrating in some
specific portions of space, namely the central pathe area and particularly near the city centre.
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Different graphical symbols are used to illustridtte temporal dynamics. However in Figure 2 (a)
the number of points is too large to display anfynite time pattern that cannot be easily identifie
on purely visual considerations and requires furdrel more sophisticated analysis. The tendency
to cluster is rather different in the two groupy.IBoking at the different graphical symbols, i th
case of Figure 2 (b), due to the limited numbepaihts that are reported (only 66), we can also
notice a certain tendency of firms to locate incgpaearby industries existing in previous time
periods thus revealing evidence of space-timeactam.

This preliminary descriptive analysis clearly inates that the observed pattern is characterized
by a distinctive spatially and temporally localizawcess, but with remarkably different features in
the two groups of firms that need further invediga

The visual inspection adds further scope to theespiane analysis in that it emphasizes the
interest to test whether the spatial and tempoisitilbutions are dependent and if there is any
space-time interaction. This aim will be accompm@hby the next Section.

3.3 Analysis of the K-functions
3.3.1 Analysing the distribution of the ICT sector

Figure 3 reports the plot of the space-tikiéunctions computed for the 169 firms of the whole
ICT sector, as a function of both space and time. hiqoéar, Figure 3(a) reports the absolute
functional D(d ,t) where the spatial distance ranges between 0 anite8 (@ being one forth of the

maximum possible distance in the graph) while émeporal lag ranges between 0 and 21 (21 being
one fourth of the time span that is 85 years). Timgation is due to the corrections that are rezbd

in order to minimize the distortions induced by dmr effects (see Haase, 1995; Goreaud and
Péllissier, 1999; Arbiat al. ,2008).

Figure 3. 3-dimensional plot of the (a@(d,t) function and (b)f)o(d,t) function for thelCT sector
as a whole.
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The exam of Figure 3(a) clearly suggests the pasehspace-time clustering, but the extent of
such phenomenon is not noticeable because of tigeraf computed values df)(d,t) is too
narrow. In order to investigate more formally tisigace-time effect of interdependence, we also
computed the relative functionals. Figure 3(b) repthe plot off)o(d,t) (see Equation (4)). From

L All the computation of th&-functions and the related analysis were implementing the SPLANCS library (Rowlingson and
Diggle, 1993) available in the R software.
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the graph it is evident a peak at the short spdigtences (around the zero) and at a temporal
interval of one and a second peak at a distan@ppfoximately 1 mile and a time lag of 5 years.
This shows that the underlying concentration phesrmon tends to drive clusters with a small
spatial magnitude (circles with radius of 1 miledavhere the firms are temporally correlated in
terms of the year of establishment.

To evaluate this result more formally under anrnefgial point of view, a set of 999 simulations
was performed, permuting at random the time ‘ma'kattached to every point, thus allowing us to
plot the standardized residuals against the prooluttie separate spatial and tempdtgLinctions
(Figure 4). As we have mentioned in Section 2,ha tase of no space-time interaction the
standardized residuals are expected to have zean m&d a unitary variance. Figure 4 cannot be
attached to any substantive economic interpretatiodeed, it only constitutes a graphical
inferential tool that can only be used to decidéavour of the presence or absence of a significant
spatial structure in the observed pattern.

In the empirical case examined, we can clearlytsata relatively large number of estimated
residuals lays above 2 standard errors (correspgrai 34.5% of cases), providing support to the
hypothesis of interaction between the spatial angpbral component processes. However, because
of the, potentially strong, interdependence amotigstestimatesR(d,t) for different values ofl
andt, this diagnostic plot cannot be considered pddrturobust.

For this reason, in order to test the statistigghiBcance of the results reported in Figure 4, a
Monte Carlo test of space-time clustering was peréal. Figure 5 displays the frequency
distribution of the sum of the differences betwées space-tim&-function and the product of the
separate space and tirKefunctions as they occurred in the 999 simulatiolise sum of such
differences in the observed dataset ranked 99®foL®00. Therefore, the empiricadvalue of the
test is 0.002, thus providing formal evidence fa space-time clustering situation described by the
plot of Do(d,t). In other words, in the Rome area, the firms bgiog to thelCT sector tend to

agglomerate at a relatively small geographicalagiseé and, moreover, the clusters are constituted
by firms that established in the area with a strdyigamic component.

Figure 4: Plot of the estimated standardized residual(f,t) againstK,(d)K,(t) for thelCT
sector.

Standardized Residuals

As already said thECT sector is constituted by two groups, namalfprmation Technologgnd
Electronic and Communicatiomn this Section we wish to analyse the conceiningtattern and its
dynamics of the two groups separately.
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To start with, Figure 6 reports the plot of theabte and relativ® functionals for the group of
firms belonging to thénformation Technologindustries.

Figure 5. Empirical frequency distribution of the sum oéttlifferences between the space-tikne
function and the product of the separate spacdianaK-functions in 999 simulation$CT sector.
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Figure 6. 3-dimensional plot of

Information Technologgector.

the (a(d,t) function and (b) D,(d,t) function for the

(b)

3.3.2 Disaggregated analysis of the two groufdaformation Technologyand “Electronic and

Communication”

The visual features of this graph are rather dffiéifrom those observed for tHeT sector as a
whole (see Figure 3). In fact, th2,(d,t) functional displays a rather less marked spalistering
and a negative time cluster (graph below the zEm® ih the time direction). More specifically
Figure 6(a) displays the plot df)(d,t) where, in order to manage the edge effects, thaaspa

distance and the temporal lag range, respectiimyyween 0 and 5 miles and 0 and 11 years.
Although the graph evidences some peaks in thasaidf the functional, their magnitude is small.
Indeed, the higher positive peak reaches a value.@5 and analogously the lower negative
extremity is —0.025. As a consequence, this doésugport the hypothesis of significant space-

time interaction.
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On the other hand, the plot of the relative funmiof)o(d,t) (Figure 6(b)) might suggest the

presence of a weak space-time segregation phenon(eoanside peaks) within a short spatial
distance and a temporal lag of approximately 4s/€Binese characteristics, in turn, are evidences of
a tendency to locate in space and time further away the existing firms. However, as already
done before, these visual considerations need tsupported by a more formal statistical testing
procedure. In order to obtain this, we start bypatsing Figure 7 that reports the plot of the
estimated standardized residuals Rfd,t) against K, (d)K;(t) for the Information technology
group.

Figure 7 shows that most of the residuals (99.5%pahts) lay within thext 2 standard
deviations. Thus the diagnostic test of residubtsrs that the observed tendency to segregation is

not substantive. Therefore the space-time segmyatienomenon, observed when commenting on
Figure 6, is not substantial and it is only apparen

Figure 7: Plot of the estimated standardized residualsR{d,t) against K (d)K,(t) for the
Information Technologgroup.

2

Standardized Residuals

This conclusion is corroborated by the Monte Caést for space-time interaction. To run a
formal Monte Carlo test of randomness, Figure rep as before, the sum of the differences
between the space-timéfunction and the product of the separate spacetiamelK-functions as
they occurred in the 999 simulations. This sumhi@ vbserved dataset ranked 576 out of 1000.
Therefore, the empiricgd-value of the test is 0.424, thus providing forregidence for the space-

time randomness in the plot cﬁjo(d,t) and supporting the fact that the weak negativeraation

between the spatial and temporal component progés®ecurred by chance and is not driven by a
systematic underlying phenomenon. As a consequene®, if in the Rome area th€T industries
as a whole tend to be clustered both in space ene, those belonging to thmeformation
technologygroup present spatial agglomeration in each timre@ebut no significant interaction
between space and time. This behaviour is sinoldéne stylized fact presented in Figure 1 case v).
Let us now move to comment on similar graphics tast for theElectronic and Communication
group. Figure 9 reports the plot of the space-tikAeinctions computed for the @Blectronic and
Communicationindustries observed in the area of Rome. Againndsgure 3, we find evidences
of a space-time clustering at short distances withbeak around zero distance and at a temporal
interval of 1. TheElectronic and Communicatiofirms therefore, display a similar pattern to that
observed for théCT industries considered as a whole.
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Figure 10 reports the standardized residuals aigth by 999 random permutations of the
industrial sites plotted against the product ofskparate spatial and tempoafunctions. A high
share of the residuals (46.5%) lays above thertlatd deviations line supporting the hypothesis of
dependence between the spatial and temporal comppnecesses and the significance of the
considerations made on the previous graph.

Finally Figure 11 displays the frequency distribatiof the sum of the differences between the
space-timeK-function and the product of the separate space temel K-functions in the 999
simulations. The sum of such differences in theeoled dataset ranked 993 out of 1000 leading to
an empiricalp-value of 0.007, and hence providing a probabdisignificance to the previously
observed space-time clustering pattern.

Figure 8: Empirical frequency distribution of the sum oéttifferences between the space-tikae
function and the product of the separate spacdiameK-functions in 999 simulationgnformation
technologygroup.
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Summing up, thénformation technologynd theElectronic and Communicatiogroups have a
different spatial behavioulhe Information technologyndustries tend to locate in space with no
remarkable space-time interaction. Converselygleetronic and Communicatiocompanies tend
to display a marked agglomeration pattern bottpace (at small distances) and time. This dynamic
effect is so strong that it is the one that dongsat we look at théCT sector as a whole.

Figure 9: 3-dimensional plot of the (a(d,t) function and (b)D,(d,t) function for theElectronic
and Communicatiogroup.
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Figure 10 Standardized residual plots d¥(d,t) against K, (d)K,(t) for the Electronic and
Communicatiorsector.

Standardized Residuals

Figure 11 Empirical frequency distribution of the sum oktHifferences between the space-time
K-function and the product of the separate space tand K-functions in 999 simulations.
Electronics and Communicatiaroup.
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4. Discussion and analysis of the economic impli¢ahs

The empirical findings reported in Section 3 clgadlisplay a different spatial pattern in the
distribution of firms belonging to thiemformation technologynd those belonging to tligdectronic
and Communicatiogroups within theCT sector. The observed clustering process for thsas
a whole is mainly due to the very strong agglomenatattern displayed by the industries
belonging to theElectronic and Communicatiorgroup, while theInformation technology
companies do not display any significant tendergpgace-time interaction in the formation of
clusters. As a matter of fact the industries belogdo thelCT sector are quite heterogeneous and
they display different managerial and organizabehaviour. In fact, the industries belonging to the
Information technologygroup located in our study area are mainly brasobfe medium-large
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multinational companies (the name are not repon@ for privacy reasons). These enterprises
have in mind a network that is global rather thazal. Thus, in their location choices they mainly
tend to be present in the big metropolitan areasi¢ally Rome and Milan in Italy), rather than to
distribute evenly in the entire territory. This lgd network manifests itself mainly in the form of
theglobal citydescribed by Sassen (1994), that is more witlasipect of a production process than
as a place in the conventional meaning: a processich geography plays a very limited role and
where the production and the consumption centeséerlinked on the basis of information flows
and no more on the basis of physical flows betwlengeographical space. The advent of a new,
high-tech, manufacturing industry assisted by caemguand microelectronics, led to a new logic in
the localization processes. Historically théormation technologyndustries were those that started
this new form of spatial location based on inforimrat Such a location pattern is characterised by
the technological and managerial ability to spig production process into different places and to
integrate them subsequently through computerizekis li(Castells, 1996). The irregular spatial
distribution of activities that is thus producedsnaready observed empirically by, e.g., Gordon
(1994) who also noticed that the new distributiaietérmined more by information than by
geography) produced also, as a by-product, a netiasglivision of labour, characterized by
variable geometriesand by reciprocal links between industries that laated within spatial
agglomerations (those that are ternmatbvationmilieu; see Camagni, 1991; Castells, 1996).

With these premises one may think that in t68d market the only driving force is what
Cairncross termed th@eath of distancésee Cairncross, 2001) that is the phenomenonspiee-
time compression generated by the possibility @hrmmnicating in real time with any point in the
world as if everything took place in just one segllimensionless, point (see also Quah, 1993).
However the realization of a production processtlos kind requires a direct and physical
interaction among entrepreneurs, managers andadiged workers that are in charge of integrating
competences that are very different on one another.

This behaviour could be at the basis of the obskespace-time clustering pattern in the Rome
area for theElectronic and Communicatioimdustries and for thECT firms as a whole despite the
distribution with no space time interaction obseri@ thelnformation technologgroup.

In other words theéCT industries, rather than totally eliminating theexelnce of space in their
location decisions, increase the need for a spatiatentration of some activities that contribute t
the dispersion of other activities and are in suppbthe integration among them (Sassen, 1994).

In order to strengthen the idea of global netwagkihat seems to emerge from the previous
analysis, we run a further study in which we splé data into two sub-samples: one before and one
after internet became widespread. Our theoretigpe&ations are that if there is less spatial
clustering in the latter period, one could prove ¢haim of spatial location irrelevance.

The first regulation of the networking of IXPs @nhet exchange points) was introduced in Italy
around the year 1995. Starting from this consid@mate decided to use conventionally this year as
a cut-off point. We repeated our analysis separdelthe two sub-samples restricting ourselves to
only thelCT sector as a whole (rather than lookingrdormation technologyndElectronic and
Communicatiorseparately) due to the small number of firms m skecond sub-period. The results
are summarised in Table 2 and seem to confirm gpotheses. In fact we observe significant
spatial (at 1 mile) and temporal (at 1 year) cliste in the first period (before 1995) and
conversely no significant clustering both in space time in the second one (beginning from
1995).
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Table 2: Characteristics of the space-time clustering dinabf the ICT sector before and after
internet widespread.

Before internet widespread

Characteristics (before 1995) After internet widespread
spatial lag 1 mile no space-time interaction
temporal lag 1 year -

p-value Monte Carlo test 0.011 0.592

% of estimated residuals out of +2 SE 40.1% 0.50%

5. Conclusions and research priorities

In this paper we have introduced in the econoniédiure a set of tools, proposed in the spatial
statistical literature, to analyse simultaneouslg spatial arrangements of firms, their temporal
trends and the interactions between the spatiat@amg@oral components of growth. These tools are
based on the family df-functions and fall within the realm of the so-edlmarked point pattern
analysis.They were introduced, in an epidemiological cofjtexthe seminal work of Digglet al
(1995) and, to our best knowledge, it is the firse that they are used in the regional sciences.

We argue that these tools may help the economitysimaof spatial clusters of firms by
providing a proper and precise way to representstiybzed facts describing the localization
processes which are to be explained by theoretalels. Moreover, they allow to empirically
verify whether the time dimension is relevant ipleining the spatial arrangements of an industrial
situation. Therefore, our work has not the purpofsgiving actual consistency to specific spatial
economic models. The scientific concern in the gmegontext is to define a way to measure the
strength of the tendency for industries to clubtetaking into account the dynamic evolution of the
process leading to the observed facts.

In the empirical part of this paper we have showat tthe space-tim&-function is an
appropriate tool to uncover the process of firm dgraphy, both under a spatial and a temporal
point of view thus being able to treat trends amndles in time and spatial agglomeration
phenomena within the same methodological framewarkarticular we have applied the proposed
methodology to the space-time distribution of I6& firms in the area of Rome in the time period
between 1920 and 2005.

In this respect we obtained the following substriindings:

» |ICT firms considered as a whole tend to display a ethtendency to agglomerate in space
and, furthermore, the process of firm creation imet presents a significant space-time
interaction. New firms thus tend to be createchanieighbourhood of the existing one.

* A very similar and significant pattern is detecfed the subgroup constituted by only the
Electronic and Communicatiandustries.

* In contrast, the subgroup constituted by only ffermation Technologyirms presents a
distinctive feature with respect to the whd&T sector. While presenting a (less marked)
tendency to agglomerate in space likewise Eiectronic and Communicatioand ICT
industries, they do not display any significant gg@tme interaction. The process of firm
creation in time thus follows a dynamic that is epdndent from the spatial location of
existing firms.

» Splitting the time period into two samples: one doef and one after internet became
widespread in 1995, we observed significant spgaall mile) and temporal (at 1 year)
clustering in the first period and conversely mgngicant clustering both in space and time in
the second one for tHET sector as a whole. This result seems to confienhipothesis of
spatial location irrelevance in the ere of internet
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While presenting the theoretical and the empirfesllts, in this paper we aimed at making it
clear the usefulness of the proposed methodologyweQhe presence of a specific space-time
interaction phenomenon has been detected, thercbseas in the position to model specific
hypotheses concerning the geographical and dynadm@afigurations of economic activities.
Under this respect there are many possible questivat can be addressed using the proposed
methodology that we plan to tackle in future stadi/e review some of them here below while
describing the limitations of the examples repoitethe present work and, in this way, delineating
the future agenda in the field.

A first advance with respect to the work presertteck is represented by the extension of the
analysis to the inter-typ&-function approach proposed by Lotwick and Silvemn{a982) and
applied in an economic context by Arlaial. (2008). This tool enables us to detect more ieqatlal
the complex space-time processes that may ocquaatice. For instance, by categorizing the point
process in terms of year of establishment, we cdakt whether phenomena of geographic
segregation or aggregation between ‘old’ and ‘yodingns occur, hence indicating the presence of
specific leader-follower patterns. In addition wauld test the co-agglomeration dynamics between
different sectors.

The space-tim&-functions used in the present context are builteartde basic assumption of
stationarity and isotropy of the underlying genaprocess (Diggle, 2003; Arbia, 2006). In other
words, the geography of firms is considered sulbisinobserved on a homogeneous space. This
in turn implies that we do not consider the posspkesence of physical or administrative limitd tha
could introduce strong constraints in the locatitiwices of firms. As a consequence, one of our
future research priorities will consist in removitiggs assumption that is often violated in an
economic context. We argue that possible methodksentangle spatial heterogeneity and spatial
aggregation phenomena could be based on the itimgcd inhomogeneouk-functions (Baddeley
et al, 2000) in a space-time perspective. This approasie been followed in Arbiat al. (2009),
but neglecting the time dimension. A second possi@pproach to tackle this problem of
heterogeneity could consist in removing the po&ieterogeneous sub-areas from the initial study
area, thus obtaining a homogenous map. Howevesdtigion is not entirely satisfactory because it
introduces extra complexity by leading the researr¢h analyse irregular polygonal surfaces rather
than rectangular areas as it happened for instemtiee present context. As a consequence the
analysis should also include methods for correcédge effects when computing space-tikie
function in study areas of complex shape (see Gdraad Pélissier, 1999).

A further limitation of the present study consisfsthe fact that, for a correct analysis of firm
demography, we should consider not only the prooéssth of new firms, but also the process of
growth of the existing ones and the space-time uhycgof the firms that cease their activity in the
span of period considered (see e.g. Adiial, 2009). Under this respect in the present comext
did not take into account the aspects of firm gloand we totally neglected in our analysis the firm
dimension (as measured, e.g., by the number of e or the value added). However, when
studying the pattern of industrial agglomeratidre firm dimension is of paramount importance in
that a pattern of increased agglomeration of fioas be equally due to a higher number of firms
concentrating in the same area or, alternativelyhé firms expanding their dimension. In contrast,
in the present context we considered each econaatigity in space as a dimensionless point so
that what we have detected here was the mere g#ugreoncentration of firms and not the more
general concept of industrial agglomeration sugggst.g., by Duranton and Overman (2005). An
important step forward in the analysis of firm ¢&rgg in space and time will be constituted by
removing this strong limitation and by considermgrked point patterns where the marks refer not
only to different time periods (as we do in the gemt context), but also to different firm
dimensions. A final point refers to the considenatof the death of the existing firms, an aspeat th
was also left aside in the present paper. Whileorect approach to firm demography should
consider jointly the process of firm creation améttof firms ceasing their activity, under the
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methodological point of view this adds extra comfile in that the spatial pattern and the
interaction between space and time, should be ateduseparately in each time period and not as
the resulting process at a given moment of timeeasid here when analysing the empirical data on
theICT firm distribution in Rome. Methodological toolsahd be developed in future researches to
overcome this further limitation.
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Measuring industrial agglomeration with inhomogeneas K-function:
the case of CT firms in Milan (Italy)

Abstract: A series of recent papers (Duranton and Overmad5;2Arbiaet al, 2009; Marcon and
Puech, 2010) has introduced Riple¥Ksfunction (Ripley, 1977) based explorative methads
analyse the micro-geographic patterns of firms. particular, the proposed methods are
characterized by the ability to detect the spaligpendence between economic activities while
controlling for the heterogeneity of the territowhere they are located. Although following
different approaches, all these papers handlepgagas heterogeneity of the underlying generating
process by developingelative measures of spatial concentration, and hence aredinectly
comparable across different economies or countinethis paper we suggest a parametric approach
based on the inhomogenedgigunction (Baddeleyet al, 2000) that allows to obtain absolute
measure of agglomeration of economic activitiescwhs still able to capture spatial heterogeneity.
In order to show the potential of the proposed medhogy, we present an empirical application to
study the spatial distribution ¢CT firms in Milan (Italy) in 2001.

Keywords: Agglomeration, Parametric measures; Inhomogendodignction, Spatial clusters,
Spatial econometrics.

JEL classification codesC21- D92 -L60- 018- R12

1. Introduction

A series of recent papers (Duranton and Overma@5;28rbiaet al, 2009; Marcon and Puech,
2010) have introduced explorative methods baselipley’s K-function (Ripley, 1977) to analyse
the micro-geographic patterns of firms. In part@cuthe proposed methods are characterized by the
ability to detect the spatial dependence betweemasunic activities while controlling for the
heterogeneity of the territory where they are ledatAlthough following different approaches, all
these papers handle the spatial heterogeneityeafiiderlying generating process by referring to a
case-control design. In such a setting, spatiadtets manifest themselves as a phenomenon of
extra-concentration of one industry with respecttite concentration of the firms in the whole
economy. Therefore a positive (or negative) spaliglendence between firms is detected when the
pattern of a specific sector is more aggregatedniore dispersed) than the one of the whole
economy. As a matter of fact, the tools proposethénquoted papers arelative measures of the
spatial concentration and hence are not straigh#fatly comparable across different economies.

In this paper we suggest a parametric approachdb@se¢he so-callethhomogeneous K-function
(Baddeleyet al, 2000), a tool that produces ahsolutemeasure of the industrial agglomeration
which is also able to capture spatial heterogeneity

In order to show the potential advantages of tlep@sed method, we present here an empirical
application to the study of the spatial distribatwf high-tech industries in Milan (ltaly) in 2001.

In order to achieve this aim we structured the papehe following way. In Section 2 we will
introduce the basic concepts gipatial heterogeneity and spatial dependence. dBe8tiwill be
devoted to develop the statistical framework amdappropriate parametric model for capturing the
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lack of homogeneity of the economic space. In #agistion we will discuss the inhomogendUs
functions and their use in the analysis of the iapdistribution of firms. Section 4 illustrates a
simulation study and Section 5 contains an empiapplication of the proposed methodology to
the study of the spatial distribution of théT manufacturing industry in Milan (Italy). We will
consider the economic space to be non homogenaugjlivestimate the pattern of inhomogeneity
and we will use it to separate spatial heteroggnieitm spatial dependence. Finally Section 6
reports some general conclusions.

2. Phenomena behind spatial concentration of firms:spatial heterogeneity and spatial
dependence

In a micro-geographical context the spatial disiitm of economic activities is properly
represented by a set of points in a planar mapm@tly a point patterr) where each point
corresponds to the location of a single firm.

A point pattern which exhibits spatial clusters @fents can be originated by two distinct
phenomena which can be traced back to the stafistategories ofrue contagionandapparent
contagionbetween points (Arbia and Espa, 1996).

Applying these concepts to industrial agglomeratwoblems, the case @pparent contagion
arises if exogenous factors lead firms to locateenain specific geographical zones. For instance,
firms may group together in certain areas in otdexxploit favourable local conditions, such as the
presence of useful infrastructures, the proximitythte communication routes or more convenient
local taxation systems.

The case ofrue contagionon the other hand, occurs when the presence e€@amomic activity in

a given area attracts other firms to locate nedfby.instance, the presence of firms with a leading
role encouraging the settlement of firms produdmgrmediate goods in the same area or the
incidence of knowledge spillovers driving indudtagglomerations.

In more formal termsspatial heterogeneityproduced by an apparent contagion), is repredente
through the first-order intensity of a spatial ggyattern which in turn is expressed by the soedall
intensity functionsay A(x), with x representing the geographic coordinates of artrarpipoint.
Intuitively, A(x)dx expresses the probability that an event locateslénan infinitesimal region
centred at poink and with a surface arelx (Diggle et al, 2007). If apoint procesgwhich is a
stochastic mechanism generating points in a pattsrhomogeneous, then the intensity does not
vary across the space antﬂx) = A for eachx. The constantd can then be interpreted as the
expected number of events occurring within a upitagion (Diggle, 2003).

In contrast, the case epatial dependencgroduced by a truether than apparenbntagion) can

be expressed by the second-order intens«ig(x,y), where x and y denote the geographic
coordinates of two distinct arbitrary points. We @so defineAz(x,y)dxdy as the probability that
two events locate inside two infinitesimal regia@ehtred inx andy and with surface areak and

dy respectively (Diggleet al, 2007). Thereforeﬂg(x,y) characterizes the expected additional
events located iy relative to a given event locatedxn Hence it represents a measure of spatial
dependence.

In real cases clusters of firms could be generhtethe joint action of spatial heterogeneity and
spatial dependence, with the second phenomenam afffgaramount interest in economitkder a
substantive point of view, if it is important to aseire properly the concentration of economic
activities, it is fundamental to clearly distinguidetween spatial heterogeneity and spatial
dependence. In other words, a statistical tool éivas at detecting the genuine attraction between
economic activities (what we calpatial dependengeshould be able to control for the different
opportunities offered by the territory where firnase located which is what we refer to as
heterogeneityThis aim is accomplished in the next section.

66



3. The statistical methodological framework
3.1 Inhomogeneous-function

It is probably not an exaggeration to affirm thaplBy’s K-function (Ripley, 1976 and 1977) is
currently the most popular measure to summarizespladial distribution of micro-geographic data
where space is assumed to be homogeneous. Sug@praeh has been largely applied in various
fields like, e. g., geography, ecology, epidemigl@mnd, more recently, also economics (see Arbia
and Espa, 1996; Marcon and Puech, 2003). The tbtheoK-function can be conceived as a
measure of the second-order intensity,/g@(,y), of the underlying stationary point process which
generates the observed spatial pattern. It is etitm (usually denoted with the symbbil(d)) that,

at every spatial distanak reports the expected number of additional pdimtated in a circle of
radiusd surrounding an arbitrary event. As a consequancihe case of geographic homogeneity
of the study area (Wheh(x) = A), theK-function quantifies the spatial dependence betvesemts

at each unit of distance.

However, if)l(x) varies across the space, then the values dfthumction express the magnitude
of the spatial concentration pattern due to botpeddence between events and geographic
heterogeneity jointly without being able to distugh on an empirical basis the two phenomena
characterizing the spatial concentration of firmsteractions among economic agents and
exogenous features of the territory.

Baddeleyet al (2000) introduced in the spatial statisticalratere an instrument that enables this
distinction. It is a non homogeneous version ofl®ijjs K-function which can be used to assess the
endogenous effects of interaction among eventsewdmljusting for the exogenous effects of the
characteristics of the study area. In an indusagdlomeration context this tool can be properly
employed to test for the presence of genuine dpattaractions among economic activities
discounted of the effect of a heterogeneous gebgrapace.

The inhomogeneouk-function, sayK, (d) is essentially a generalization of Ripley’s fuootto

the case of non-stationary point processes in wégclond-order intensity-reweighted stationarity is
assumed (Baddelest al. 2000). More precisely, a non-stationary pointcess is a homogeneous
Poisson process where the constant intenkitg replaced by an intensity function varying otrex

space, sayl (x) By considering a hypothetical study regianwith a surface aretﬂ, the class of
inhomogeneous Poisson processes is characterizbe ligllowing two postulates (Diggle, 2003):

(i) the n points located inA follow a Poisson distribution with expected valgwen by
[ A(X)dx; and

(i) then points located i\ constitute an independent random sample from igtakiition on
A with probability density function proportional @(x).

Following Baddeleyet al (2000), an inhomogeneous Poisson process is sdsond-order
intensity-reweighted stationary

A(xy)=A(x)A(y)a(x-y)

where g(x—y) iIs a function which depends on the spatial lagd(Aence on the interaction)
between thex andy arbitrary events. In this case, the second orttensity of the inhomogeneous
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Poisson process, at the geographic locatioasdy, is the product of the first order intensitiexat
andy multiplied by a spatial correlation factor. If tkes no spatial interaction between the points
of the process at locationsandy then A,(x,y) = A(x)A(y) and g(x-y)=1. Furthermore, when
g(x-y) >1 we haveattraction while if g(x—y)<1 we haverepulsion(or inhibition) between the

two locations (Mgller and Waagepetersen, 2007).
In the case of isotropfwhen no directional bias occurs in the neighboadhof each point, see
Arbia, 2006), g(] depends only on the distance betweenand y, thus implying that

g(x—y)=gQ|x—y||), where |l is the Euclidean norm. In spatial statistics éitare the term
g(“x— y||) = A,(x,y)/A(x)A(y) is referred to as theair correlation function

If A(x) is bounded away from zero, the-function of a second-order intensity-reweighted
stationary and isotropic spatial point processvusmby (Baddelegt al, 2000; Diggle, 2003):

K, (d) = 277]" ug(u)du, withd > 0 @)

For an inhomogeneous Poisson process without spateractions between events, we have
K, (d)=rd?. On the other hand, whel, (d)> 7d? (or K, (d) < 7d?) the point pattern is more (or
less) aggregated than a point pattern drawn fromtfamogeneous Poisson process with first-order
intensity A(x) and no spatial interactions (Diggteal, 2007).

Following Baddeleyet al (2000), if/1(x) Is known, a proper edge-corrected unbiased estmo&to
K,(d) is

X w; 1(d; <d)
K (4) =2 S0 @

where |A4 is the total surface of the study area, the tefmis the Euclidean spatial distance
between théth andjth observed points ar1(ﬂdij < d) represents the indicator function such that

1if d; =d and O otherwise. Due to the presence of edgetsfégising from the arbitrariness of the
boundaries of the study area, the adjustment fagjors introduced thus avoiding potential biases

in the estimates close to the boundary.

The functional form of the first-order intensifi{x) is unknown and it has to be estimated from the
data. If one wishes to estimate it non-parametyicahe suitable procedure is the well known

kernel smoothing (see Silverman, 1986). Baddetegl (2000) suggest to use the following kernel

estimator

Ay(x)= Zh‘zk( j/ch(xj), 3)

i%]

2 More specifically, the weight functiom/ij expresses the reciprocal of the proportion ofdsindace area of a circle
centred on théh point, passing through thth point, which lies withirA (Boots and Getis, 1988).
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where k([)] Is a radially symmetric bivariate probability deépgunction, h represents the bandwidth
(the parameter controlling the smoothness of tinase), andC, (xj) is an edge-correction facfor
Baddeleyet al. (2000) argue that, with a proper choice for tl@dwidthh, the estimator of the
inhomogeneou&-function, Kl (d) which incorporates Equation (3) for the estimatd the first-
order intensity, is approximately unbiased. Howewar pointed out by Digglet al (2007), if we
aim to estimate non-parametrically boﬂﬁx) (the first-order structure) and, (d) (the second-
order structure), using the same observed poit¢npata practical problem arises. Indeed, without
any other information or explicit assumption abthé nature of the underlying point process, we
are not able to distinguish the contributions doespatial heterogeneity or spatial dependence
phenomena and, as a result, we risk to have spuestimates.

To tackle this problem, depending on the field gplecation, it may be plausible to assume that the
spatial scale of the first-order intensity is lartfean the spatial scale of the second-order irtiens
(Diggle et al, 2007). In other words the heterogeneity of theirenment operates at a larger scale
than the one characterizing spatial interaction®ramevents, and, as a consequence, these two
characteristics of the underlying point process saparable. This specific assumption, however,
may be too narrow or not realistic enough.

In a different way, following Diggle (2003), we f3&st thati (x) can be properly estimated by the
means of a parametric regression model whé(e) is specified as a function of a set of
geographically-referenced variables expressingagatterogeneityg.g. proximity to main roads,
presence of infrastructure, presence of publicritices and so on). A plausible specification of the
model for A(x) to describe how the probability of hosting a ficmanges through space is the log
linear model:

A(x)=exp{gﬂj z (x)} (4)

where z, (x) is thejth of a set ofm spatially referenced explanatory variables andghs are the
regression parameters.

The logarithmic transformation allows to fit the deb by maximizing the log-pseudolikelihood (see
Besag, 1975) forl(x) based on the observed pointsof the pattern under study. At the current
state of the spatial statistics literature, the nedcient and versatile method to maximize thg-lo
pseudolikelihood and then to obtain the estimateg,és parameters and, as a resu’l(x) is that
proposed by Berman and Turner (1992). For a cledrdetailed discussion of the method we refer
to Baddeley and Turner (2000).

As shown by Strauss and Ikeda (1990), in case d¢foesson stochastic process, maximum

pseudolikelihood is equivalent to maximum likelillod@ herefore, it is possible to test for goodness
of fit of the model expressed in Equation (4) byngsstandard formal likelihood ratio criteria and

the x? distribution.
The estimation ofd thus obtained (sayl) can be used to replace the true valuelah Equation
(2) in order to obtain the estimated functiéip(d). For the ease of interpretation, similarly to the

case of Ripley’s homogeneoHlsfunction, also in the case of the inhomogeneoustian we can
introduce the linearizing transformation proposgdlesag (1977) which is characterized by a more

% The kind of edge-correction factor Baddeletyal (2000) used is essentially a slightly modifiedsien of that
proposed in Berman and Diggle (1989, (xj)=j K, (xj —u)du.
A
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stable variance. In the non-stationary case sutlarsformation function assumes the following
expression:

L, (d)= K, @)/ ®)

where the function is linearized dividing by and to stabilized the variance by the square tbot.
we use such a normalization, under the null hymashef absence of spatial dependence we have

L (d)=d.
3.2 Inference

In order to evaluate the statistical significanéehe values ofK, (d) (or L, (d)), which measure
the strength of the spatial interactions among &sventhin an inhomogeneous space, a proper
inferential framework needs to be introduced. Sitiwe exact distribution oK, is unknown, its

variance cannot be evaluated theoretically andxactestatistical testing procedure can be adopted.
Therefore, to construct confidence intervals foe thull hypothesis of absence of spatial
interactions, we will base our conclusions on MdDé&lo simulations (Besag and Diggle, 1977).

In practice, we generate simulations of inhomogeneous Poisson processedittmral upon the
same number of points of the observed pattern atidprobability density function proportional to
the first-order intensity,A(x), estimated in the study area. Then for each stionlave can

calculate a different, (d) function. We are then able to obtain the approents(n +1)x100%
confidence envelopes from the highest and lowdsegeof theIA_I (d) functions calculated from the

n simulations under the null hypothesis. Finallythé observed., (d) falls, for some value ad,
outside the envelopes — upward or downward — thilisindicate a significant departure from the
null hypothesis.

In the next sections, in order to simulate the domted inhomogeneous Poisson processes to
analyze inferentially the empirical results, welvidllow the ‘thinning’ computational algorithm
suggested by Lewis and Shedler (1979). First ofngl generate points following a homogeneous
Poisson process on the study region and then vetedeach point, independently of other points,

with deletion probabilityﬁ (x)/)lO , Where A, is equal to the maximum value of the estimatest-fir
order intensity functiom(x).

4. A simulation study

To assess the performance of the proposed methodenerated two paradigmatic artificial point
patterns of economic activities. Both are charazzdr by the presence of spatial heterogeneity,
which drives economic agents to locate in spedfib-areas, but one pattern exhibits spatial
interaction between agents while the other doesshotv any evidence of spatial dependence. In
this simulation design example, spatial heterodgnaiises from some stochastically generated
spatially referenced covariates.

In order to run simulations proper to represenlisga cases, we considered covariates representing
spatial heterogeneity (such as locations of acedssthe main communication routes, locations of
industrial infrastructures, institutions, servicks firms, and so on) to have a similar spatial
behaviour and hence to be spatially correlatededddin reality we may expect, for instance, that
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both accesses to the communication routes andtmmausfrastructures are more present in the big
urban centres than in the small rural areas. Troduice this spatial similarity we generated three

covariates -z, z, and z, — by referring to the same underlying spatialnsty. Specifically, all

covariates are point patterns which are partidiza#ons of the same Gaussian Cox process, that is
an inhomogeneous Poisson process where the vasyatal intensity,)l(x), is in turn a realization

of a Gaussian random fielfi\(x)} (see Mgller et al., 1998; Diggle, 2003).
Therefore, we first simulated the common underlyimgnsity surface{A(x) = A(x): x0 02}, on
the unit square for the three covariates, whefe) is a Gaussian random field with mean= 100,

varianceg? = 0. 25and correlation functiopp(d) = exd- d/0.25 . By way of illustration, Figure 1

shows the simulatednderlying intensity surface for the three covasain which lighter are the
grey colours higher is the intensity.

Figure 1: Simulatedunderlying intensity surface for the three covasafz,, z, and z,) on the unit
square (grey-scale image)

Then, conditional ofA(x) = A(x): x00?}, we generated the point patterns for the threauiates
from an inhomogeneous Poisson process with thesiit;efunction/](x).

Since, in order to fit the regression model (3),veed the covariates to be measured continuously
through the study area (see Berman and Turner,) 1982 converted the three point patterns as

continuous surfacesz (x), z,(x) and z,(x). In particular, for each point pattern we estirdaits

intensity function using the method of kernel snhming (see Silverman, 1986). The kernel
estimator of the intensity of a point pattern tattesfollowing form (Diggle, 1985; Diggle, 2003):

3. (%) =iz:h'2k(x'hxi j/ch (x),

wherek is a radially symmetric probability density furmti the bandwidth is a positive real
number andC, (x):IAkh(x—u)du, with A representing the study area, is a factor propdsed

Berman and Diggle (1989) to correct for the presenicedge effects. For all covariates we opted
for a Gaussian probability density function andaadwidthh = 0.05. Figure 2 shows the graphs of
the three covariates both in form of point pattnd intensity surface.
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Figure 2: Graphs of the three simulated covariates, as gatierns and intensity surfaces (grey-
scale images)
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In order to simulate the two paradigmatic pointgrais of economic activities within a space which
is heterogeneous because of the influence of tiee ttovariates, we considered the joint location of
the three covariates as the source of spatial dgaeity. In particular, the two paradigmatic
patterns are both realizations of inhomogeneousegses where the intensity function, that we
denote With/iz(x), has been estimated upon the point pattern foryedll the locations of the
covariates jointly considered. For the estimatiom wsed again the kernel smoothing technique
described above.

The hypothetic pattern of economic activities cheazed by absence of spatial interactions
among agents (from now on labelled pattern A has then been simply generated from an
inhomogeneous Poisson process with intensity funoﬂiz(x) on the unit area. On the other hand,
the hypothetic pattern characterized by positivatiap dependence, and hence clustering, (from
now on labelled apattern B has been simulated following an inhomogeneousierof the
Poisson cluster proces$hat is, firstly some agents, say teaders have been allocated on the unit
area according tolz(x); then other agents, say tftidlowers has been allocated in the proximity of
eachleader on the basis of a radially symmetric Gaussianridigion centred on théeaders
position. Specifically, the probability density fttion of this distribution, which generated the
locations of thdollowersrespect to eadeader; is the following:

h(x, x,) = (27172 ) " expl- (2 + x2 )/ 207

where (xl,xz) are the geographic coordinates dbbdower, and o, that we set to be equal to 0.03,
is a parameter representing the maximum spatiaheiin of the area of influence for edehader.
Figure 3 shows the graphs péttern Aandpattern B The simulations have been run using the
same random number seed, and conditioning to time seumber of points, so that the differences
between the two patterns can only been ascribdtetabsence or presence of spatial interactions.

Figure 3: Graph of the two paradigmatic simulated inhomogesegoint patterns of economic
activities: without spatial interactions among dgefpattern A, with spatial interactions among
agents [pattern B
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We then us@attern Aandpattern Bto illustrate the application of the method, diésemt in Section

3, to detect spatial clustering while controllirgy the presence of spatial heterogeneity. For both
patterns we estimate the spatial intensity by usivegmodel expressed in Equation (4), with the
following specifications:

73



Mod0: A(x) = exda}
Mod1: A(x) = exda + £,z,(x) + B,2,(x) + Bz, (x)}
Mod2: A(x) = exa + B,z.(X)+ B,2,(X) + By, (X) + Buza(x)}

The first specification, which identifies an homageus Poisson process, represents the null model
of absence of spatial heterogeneity. Mod1l assurnat dpatial intensity is a function of the
explanatory variableg, (x), z,(x) and z,(x). Mod2 takes also into account the effects of agoth

explanatory variable,z4(x), which is the intensity surface of a point pattgenerated from an

homogeneous Poisson process unrelated, (&), and hence it does not have any effect on spatial

heterogeneity. This specification has been consdler order to verify if the inferential procedure
allows to recognize whether the effect of an exaiary variable is really significant or not.

All models have been estimated using the methodB@&iman and Turner (1992) which is
implemented in th&pat st at package of statistical softwaRe. The model selection, in terms of
parsimony and precision of the estimates, has leeaducted through likelihood ratio tests; the
results are summarised in Table 1 pattern Aand Table 2 fopattern B The p-values (denoted
with P(>|y?])in Table 1 and 2) for the likelihood ratio test$vileen Mod1 and ModO show, for both
paradigmatic patterns of economic activities, thate is significant spatial heterogeneity duehto t
effect of variablesz,(x), z,(x) and z,(x). On the other hand, the result of the test betwéed2

and Mod1 confirms that introducing, (x) does not improve the fit of the model; therefaech
variable is not relevant in affecting spatial hetgmeity.

Table 1 Model selection fopattern A results for the log-likelihood ratio tests

log LR test log LR test log LR test

Model Maximum with Mod0 with Mod1 with Mod2
log-likelihood 2 2 2
PGIXI) PGIXI) PGIXYI)
Modo 532.121 - - -
Mod1 555.369 0.000 -
Mod2 555.510 0.000 0.60

Table 2 Model selection fopattern B results for the log-likelihood ratio tests

log LR test log LR test log LR test

Model Maximum with Mod0 with Mod1 with Mod2
log-likelihood 2 2 2
PCGLY]) PCGIY]) PCIYI)
Mod0 532.121 - - -
Mod1 540.412 0.001 -
Mod2 540.708 0.002 0.44

These results lead us to use Mod1 to estirnidtd for pattern AandB and, in turn, to estimate

L, (d) using Equations (2) and (5). To formally assesscabnfidence of the results thus obtained,
we derive approximate 99.9% confidence envelopesn f999 simulated realisations of a
conditioned inhomogeneous Poisson process. Moreifgpdly, at every step of the simulation

sequence, an inhomogeneous Poisson process witathe number of points asttern A(and

* The R Foundation for Statistical Computing. ISBR®051-07-0.
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pattern B is generated and used to estimﬁteéd). Repeating this step 999 times and taking, for

each spatial distancg, the maximum and minimum values of the resultisguence ofIA_I (d)
obtained, we are able to build up the confidenoceskpes for the null hypothesis of no spatial
interactions (or dependence) within an inhomogesapace.

The graphs in Figure 4 displays the behaviour efftfmctionalsﬂ, (d) for pattern Aandpattern B

at the various spatial distanagsThe same figure also reports the confidence epesl referredo

the null hypothesis of absence of spatial deperalaha significance levet = 0.01. In the graphs,
points outside the envelop highlight significanthcentration if they lay above the envelop upper
limits or significant dispersion if they are obseavbelow. Coherently with the criteria with which

the two paradigmatic patterns have been simulaﬁe@j) for pattern Alays within the confidence

envelopes indicating absence of spatial interastiamong agents, Whildg.l (d) for pattern B
deviates upward indicating, on the contrary, presaf spatial interactions among agents.

Figure 4: Behaviour of the estimated inhomogenedudunction @olid line and of the
corresponding 99.9% confidence envelopes undendhiehypothesis dashed linesfor pattern A
(left) and forpattern B(right).
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5. A case study: the distribution ofl CT manufacturing firms in Milan (Italy)

For our empirical study we focus on a set of midata related to the&CT> manufacturing industry

in the area of Milan (Italy). A dataset was colégtin the year 2001 by the Italian National Insétu
of Statistics (ISTAT) reporting the full addressdathe number of employees of the 856
manufacturing plants operating in this area. Thetoseis dominated by small firms in that
approximately 85% oiiCT firm located in Milan have less than ten employees

The map reported in Figure 5 displays the spatstidution of the 856 manufacturing plants. It is
clear from a first visual inspection of the graple marked tendency of the firms to cluster and to
concentrate in the south part of the city.

® In this particular study we consider I&T firms the manufacturing plants which belong to ARECO classification
codes Manufacture of office machinery and computeasid “Manufacture of radio, television and communicati
equipment and apparatus”.
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Figure 5: Locations of 856CT manufacturing plants in Milan in 2001.

Due to the current scarcity of geo-referenced dataut spatial heterogeneity, our dataset, as said,
contains only the geographic coordinates and thmeben of employees of the 856 manufacturing

plants. As a consequence, for the time being, maoalysis we can only estimaxkéx) referring to

the spatial coordinates of firms as an elementetédogeneity by assuming a spatial trend. More
specifically, in order to estimate the spatial insi¢y of the process we considered the three
following specifications of the model expressedtquation (3):

Constant trend mode#(x) = exda}
Linear trend modelA(x) = exda + B,x, + 5,%,}
Quadratic trend model(x) = exda + Bx, + B,%, + ByX2 + B,X + BeX,X,}

where x, and x, are the Cartesian coordinates of locaton

The constant model, which is actually a station@doysson process, represents the null model of
absence of spatial heterogeneity. The other twoifspetions represent different ways to model the
spatial intensity producing spatial heterogeneity.

The model selection results are summarised in Tabldep-values (denoted with(>|x*|) in Table

3) for the likelihood ratio tests with the consténeind model show that both the linear trend model
and quadratic trend model are significant, thus Iying that there is significant spatial
heterogeneity in the pattern of firms under studgreover, the result of the test between the two
models with spatial trend indicates that the quiadlteend model has a better fit. As a consequence,
we opted for the quadratic spatial trend specificatrather than the simpler linear, because iebet
captures the main features of the observed vaniatithe spatial intensity.
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Table 3 Model selection: results for the log-likelihoaatio tests

log LR test log LR test log LR test
Maximum with Constant  with Linear  with Quadratic

Model log-likelinood ~ trend model  trend model  trend model
PC>Lx*)) P(>Lx*)) PLx*))

Constant trend 7998.531 - - -

Linear trend 8104.360 0.000 -

Quadratic trend 8692.956 0.000 0.000

Higher-order specifications may have a better dit, lon the other hand, they increase the risk of
introducing artificial patterns, as it is arguedtfe literature on polynomial regression modelg,(se
e. g., Magee, 1988). The values of the estimatediapntensity, A(x), are then given by the
following estimated equation:

J(x) = ex-20407801562+ 15322127, +894446378x,-4214319%-997.2483¢ +1366161X,X,} .

Having derived an estimate of(x) we can then estimate(d) using Equations (2) and (5). The

graph in Figure 6 displays the behaviour of thecfiomal L, (d) at the various spatial distanags

for theICT manufacturing industry. The same figure also reptbre confidence envelopes referred
to the null hypothesis of absence of spatial depeoel at a significance level. Observing the graph
it is evident a significant upward deviation, resp® the confidence envelopes, of the estimated
function at very small distances (below 0.4 kiloemns}. This suggests theET firms in Milan are
characterized by a very small-scale aggregationgmnenon.

Figure 6: Behaviour of the estimated inhomogenedudunction @olid line and of the
corresponding 99.9% confidence envelopes undemtiiehypothesis dashed lines of the ICT
manufacturing plants.
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The empirical tool used help us to disentangle eogly spatial heterogeneity from the spatial
dependence observed in the pattern ofIGE manufacturing industry in Milan. Thie-function
reported in Figure 6 shows clearly how strong is thndency for plants to cluster because of a
genuine interaction among economic agents. Inddéleel,L-function identifies situations of
overconcentration with respect to a non constamerying intensity explained in terms of a
guadratic trend. In this way it clearly quantifiee amount of spatial concentration which cannot be
simply ascribed to exogenous factors which changeoshly over space like, e. g., traffic
accessibility, factor endowments, law and environtalelimits. These factors (here approximated
by a spatial trend) could be better identified tigio a set of explanatory variables, as we did én th
simulation study, if these were available.

Despite this lack of information, we can argue thhé economic theories on industrial
agglomerations may have an important role herejaging thelCT industrial distribution of the
Milan area. Our empirical findings may have a jiustion in the theoretical models explaining the
industrial agglomeration as a phenomenon primatilyen by the presence of spatial interactions
between economic activities. The expectation oftelung ofICT firms within the big metropolitan
areas, such as Milan, can be ascribed to the $eddakit knowledggphenomenon (Nonaka and
Takeuchi, 1995; Polanyi, 1966) which assumes thatkinowledge is transferable only through
directface-to-facenteraction (Storper and Venables, 2003). Knowesigillovers should indeed be
more easily present in cities, where many spee@adliworkers are concentrated into a relatively
small and limited space and where the transmissiomew knowledge tends to occur more
efficiently by direct human interaction (Glaesdral. 1992; Hendersoet al. 1995; Dumaiset al.
2002; Van Oort 2004; Lambooy and Van Oort, 2009)e Tole of geographical and cultural
proximity for tacit knowledgeexchange has been discussed extensively in #ratlire on high-
technology clusters (Saxenian, 1994; Storper, 12902; Porter, 1998; Keeble and Wilkinson,
2000; Yeunget al. 2007) andinnovative milieux(Capello, 1999; Rallet and Torre, 1999) and
represent the basis to explain our findings.

6. Conclusions

One of the more controversial issues in the gedgecapanalysis of plant location is the possibility
of disentangling spatial dependence and spatia@rbgeneity or, in other words, to be able to
discern whether firms tend to locate close to amleer because they need for physical interaction
(spatial dependence tmue contagioip or because of the varying opportunity offereddifferent
locations that made more efficient to locate in sameas with respect to others (heterogeneity or
apparent contagion In the analysis presented here we employed testgtal model to estimate
separately spatial heterogeneity allowing to testthe presence of absolute spatial aggregation
while controlling for the effect of exogenous fastdhat can be at the basis of diverse location
opportunities.

The empirical analysis revealed a strong tendewcypfants to cluster at very small distances
because of a genuine interaction between them,hwdannot be explained simply by exogenous
factors such as accessibility, endowments and atsgtutional elements.

In this paper we limited ourselves to prove thimatosion on empirical basis without trying to
validate any theoretical behavioural model. Indeedorder to propose a theoretical model to
properly explain the observed situation, it wouts iecessary to avail a larger information set on
structural variables other than just the mere ggagc location, such as, for instance, the
characteristics of the local demand and the wodéaskill. For this reason this purpose is not
undertaken in the present study and is left torutafinements.

However, in the present work we were able to perftite important task of verifying empirically
the presence of an endogenous location phenomeaoimg to spatial clusters. Furthermore, the
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statistical testing procedure we applied is basedroabsolute measure of spatial dependence. The
advantage of this approach is that the resultsradalenere can be straightforwardly compared with
other geographic areas and industrial situations.
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Weighting Ripley’s K-function to account for the firm dimension in
the analysis of spatial concentration

Abstract: The spatial concentration of firms has long beeergral issue in economics both under
the theoretical and the applied point of view dugmy to the important policy implications. A
popular approach to its measurement, which doesuftgr from the problem of the arbitrariness of
the regional boundaries, makes use of micro dath lanks at the firms as if they were
dimensionless points distributed in the economiacep However in practical circumstances the
points (firms) observed in the economic space arérdm being dimensionless and are conversely
characterized by different dimension in terms @& tlumber of employees, the product, the capital
and so on. In the literature, the works that oadjinintroduce such an approach (e.g. Arbia and
Espa, 1996; Marcon and Puech, 2003) disregard gpeca of the different firm dimension and
ignore the fact that a high degree of spatial cotradon may result from both the case of many
small points clustering in definite portions of epaand from only few large points clustering
together (e.g. few large firms). We refer to thieepomena as tdustering of firmsandclustering

of economic activitiesThe present paper aims at tackling this problgnadapting the populaf-
function (Ripley, 1977) to account for the point@insion using the framework of marked point
process theory (Pentinen, 2006).

Keywords: Agglomeration, Marked point processes; Spatiastelrs, Spatial econometrics.

JEL classification codesC21 - D92 - L60 - O18 - R12

1. Introduction

Spatial economics theories show that economic iategm may boost spatial concentration of
economic activities and industrial specializatiasthbat a regional and at an international level
(Bickenbach and Bode, 2008). Furthermore, due ¢oetkternal increasing returns driven by the
spatial concentration, the core regions (whereapatsters of firms are more likely to occur) may
reach higher levels of economic growth than thepperal regions (see Krugman, 1991 and Fujita
et al, 1999 among others). As a consequence, the preamomof spatial concentration is of
paramount importance to explain the determinantgroWth and development on one hand and
regional disparities on the other.

Fostered by the centrality of these issues undetttiboretical and the practical point of view, a
variety of empirical studies have tried to devebwpper indices and statistical tests to measure the
degree of spatial clustering in real industrialiaitons. Under this respect, a series of recentrgap
(Arbia et al, 2008, 2009; Marcon and Puech, 2003, 2010; Duraaa Overman, 2005, 2008) have
introduced the use of distance-based methods. Theffgods are more robust than the traditional
measures of spatial concentration (such as Girexir(Gini 1912, 1921) or Ellison-Glaeser index
(Ellison and Glaeser, 1997)), which make use oforea aggregates and thus depend on the
arbitrariness of the definitions of the spatialtenirhe distance-based methods, conversely, make
use of micro economic data, treating each firm gmiat on a map and studying their spatial
distribution with the methods borrowed from thecatiedpoint pattern analysi¢Diggle, 2003).
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In many empirical circumstances where the presehapatial clusters of firms is tested by using
micro-geographical data, an important element téaken into account is represented by the firm
dimension.
Indeed a high level of spatial concentration canliee to two very different phenomena (see Figure
1). Namely,

Case 1 many small firms clustering in space, and
Case 2few large firms (in the limit just one firm) cligsing in space.

We can refer to the first case as to the cas#ustering of firmsand to the second as to the case of
clustering of economic activities

Figure 1: Two extreme paradigmatic situations of spatialoeortration
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A proper test for the presence of spatial clussrsuld thus consider the impact of the firm
dimension on industrial agglomeration by clearlstidiguishing these two cases.

Under this respect, Marcon and Puech (2010) andridon and Overman (2005) have extended the
use of Ripley'sK-function (Ripley, 1977) considering firm size amélating it as a weight attached
to each of the points constituting the pattern hBpioted papers developeadative measures of the
spatial concentration, detecting the extra-conegiotis of firms belonging to a specific industry
with respect to the distribution of firms of the @l economy. Following this procedure a positive
(or negative) spatial dependence between firmeisated when the pattern of a specific sector is
more aggregated (or more dispersed) than the paifehe whole economy. Although measures of
relative spatial concentration are very useful amtoolling for the idiosyncratic characteristics of
the territories under study, on the other hand teynot allow comparisons across different
economies (see Haalamtal, 1999 and Moret al, 2005 for a more detailed discussion).

In this paper we propose a similar extension oflé3ip K-function which leads to aabsolute
(rather than aelative) measure of the industrial agglomeration and wlattbws comparability
amongst different empirical situations. More sgealfy, referring to the theory aharked point
processeswe develop a stochastic mechanism which geneveggghted point patterns of firms
representing stylized facts of the different pheanenoccurring in real cases (essentially: spatial
randomness or spatial concentration in the serdieated in Case 1 or “Case 2 above). The
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values assumed by the proposed measure in theugazases constitute the benchmark that allows
us to formally test the departure from spatial mndess.

We will present our new approach along the follayines. In Section 2 we will briefly discuss the
classical Ripley'sK-function which represents the starting point to elep more sophisticated
measures of spatial concentration. Section 3 wiltlbvoted to introduce the stochastic mechanism
based on the marked point processes theory whictvalus to develop a test for the presence of
absolute spatial concentration of firms and ecoeamtivities. In this section we will introduce the
new model, we will discuss the meaning of the msdphrameters in the context of spatial
concentration of firms and economic activities aredwill present some simulation results to better
illustrate how the model works in practice. FinalBection 4 contains a discussion of the results,
some conclusions and directions for further stuthidbe field.

2. Measuring the spatial concentration of firms disegarding size: the basid-function

It is probably fair to say that Ripleyk-function (Ripley, 1976 and 1977) is currently thesn
popular distance-based measure to summarize thelatime characteristics of a spatial distribution
of events in the context of micro-geographic déithas indeed proved a very versatile tool to test
for the presence of spatial concentration withistationary point pattern where each event is
considered as a dimensionless point. As a consequéreK-function has been largely applied in
various fields such as geography, ecology, epidegyoand, more recently, economics (see Arbia
and Espa, 1996; Marcon and Puech, 2003).

TheK-function is defined as follows:

K(d) = A*E{numberof pointsfalling atadistances d from anarbitrarypoint} 1)

with E{} indicating the expectation operator addrepresenting the mean number of events per
unitary area, a parameter callgdensity Therefore,)lK(d) can be interpreted as the expected

number of further points within a distandef an arbitrary point of the process (Ripley, 197
case of a homogeneous underlying field (where tbhbability of hosting a point is constant across
the study area), th-function quantifies the level of spatial dependebeéveen points at each
distanced.

In order to develop a test for the presence of labsgpatial concentration, we can rely on the fact
that for many stochastic processes, it is posstbt®mpute the expectation in the right-hand side o
Equation (1), so thalK(d) can be written in a closed form (Dixon, 2002). Air process

generating a spatial distribution of events conghjeat random (that is, points are distributed
uniformly and independently on space) is the stedahomogeneous Poisson process. It can be
shown that if a point pattern is a realisation ¢fomogeneous Poisson procéisen K (d) tends to

be equal tord® (see Diggle, 2003). Therefore:
K(d)=72,d>0

represents the null hypothesis of random locatibrevents. Significant departures from this
benchmarking value represent the alternative hygsihof spatial dependence. More precisely, for

K(d)> 7d® we have positive dependence and hetlustering (where points tend to attract each
other), for K(d)<7112 we have negative dependence and henbiition (where points tend
conversely to repulse each other). Therefore, tmddly test whether the observed points tend to
cluster in space we can verify if, for souheK (d) is significantly greater thamd?. Critical values
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can be computed by Monte Carlo simulations of hoenegus Poisson processes (see Besag and
Diggle, 1977).

The test for the presence of absolute concentréiamed on Ripley’&-function, however, can be
used to detect industrial agglomeration only inisrcan be considered to have the same dimension.
Indeed, in a context where economic activitiesdafferent in terms of dimension with the presence
of small, medium and large firms, a point pattermat a good representation of the location pattern
of economic activities and, as a result, Kxunction is no more a proper tool to summarize the
spatial distribution. For instance, the simpldunction cannot recognize a situation like the one
reported in Figure 1 asCase 2 as a cluster. In other words, the test do mairitrol for the overall
agglomeration of manufacturiigDuranton and Overman, 2005).

In such a context, in order to define a proper, t@stneed to refer to the concepts and methods of
themarked point processtatistics, which is a branch of spatial statsstievoted to analyse sets of
events scattered in space, where each event mnhotlefined by its spatial location, but also by a
mark, that is a supplementary set of information whidighthbe either quantitative or qualitative
(llian et al, 2008).

3 Measuring the spatial concentration of firms conslering size: the mark-weighted K-
function

3.1 The mark-weighted K-function

The mark-weighted-function, indicated asKmm(d), is an explorative tool proposed by Penttinen

(2006) to summarize the cumulative characteristica homogeneous quantitative marked point
pattern (that is a pattern where a quantitativeknsattached on each point). It has been proposed
as a natural generalization of RipleKsfunction. In order to introduce it let us first retg the
classicaK-function as:

K(d)= E{Zn:ZI (g, < d)}//l

izl j#i

where the ternd; is the Euclidean distance between itheandjth arbitrary pointsn is the total
number of points and(dij < d) represents the indicator function such thatl if d, <d and 0

otherwise. Following this notation, the mark-wegghK-function has a similar form but the marks
are now taken into account:

K () = E{ime,— 1, < d)} /A pe. )

izl j#i

In Equation (2)m and m; are the marks attached to flie andjth points, respectively, angd is

the mean of the marks. Thus the teim’K __(d) can be interpreted as the mean of the sum of the
products formed by the mark of tite arbitrary point and the marks of all other psiint the circle

d centred in it (lllianet al, 2008). Therefore, the mark-weight&dfunction measures the joint
cumulative distribution of marks and points at edistanced.

Turning now to the estimation aspects, followingtieen (2006), a proper approximately edge-
corrected unbiased estimator i§f, (d) is
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where A = n/|A is the estimated spatial intensity is the area of the study region ajdis the

mean of the observed marks. Due to the presenedgs effects arising from the arbitrariness of
the boundaries of the study region, the adjustrfestor w; is introduced thus avoiding potential

biases in the estimates in proximity to the boumrdaof the study region. More precisely, the
weight functionw; expresses the reciprocal of the proportion ofaifea of a circle centred on the

ith point, passing through théh point, which lies within the study regioh (Boots and Getis,
1988).

In an economic context, in which the marks arevéilaes of a quantitative variable representing the
firms size, the mark-weightel-function might be used to develop a test for thhesence of
absolute spatial concentration. However, we needetove the benchmark value of the function
representing the null hypothesis of spatial randesan For this reason the next paragraph is
devoted to derive a stochastic model to generaté&adagpoint patterns of firms which is able to
represent the stylized situations of spatial ranuess and concentration in the meaningQdse 1

(i.e. many small firms clustering in space) adhse 2 (i.e. few large firms clustering in space).

3.2 A model for the null hypothesis of spatial ramehess

The basic idea we follow is that the spatial cotragion of economic activities (in the sense of
“Case I and “Case 2) can be originated by some form of correlationwsen the spatial point
intensity and the marks. This would imply, for gxste, that in regions characterized by high spatial
point intensity the marks tend to be systematic#dirge if such a correlation is positive or,
conversely, small if such correlation is negative.

To define a model which incorporates such a cdioglastructure we refer to the design, already
explored by Ho and Stoyan (2008), of iatensity-marked Cox proceswhere the spatial point
intensity is driven by a Cox process and the marksrealizations of a process whose parameters
are conditioned by the values of the spatial poit@nsity.

3.2.1 The log Gaussian Cox process for the sppuait intensity

To start with we assume that the spatial pointnsity can be modelled as a log Gaussian Cox
process (a specific kind of Cox process proposeipifer et al, 1998). According to this model
each generated point pattern represents a pagtkation of an inhomogeneous Poisson process
characterized by a spatial intensity functiﬂ(x), with x representing the spatial coordinates of an
arbitrary point (see Diggle, 2003). The values)lcﬁf() constitute, in turn, a realization of a positive
random field{A(x}} such thatA(x) = exdS(x}}, where{S(x} is a Gaussian random field with
mean x, varianceg? and correlation functionog(d). {A(x)} is known as a log Gaussian Cox

process.
The log Gaussian assumption is particularly uskédause explicit expressions can be derived for
the intensity and covariance structure of the pgrdcess. Indeed, according to the moment
generating function of a log Gaussian distributithe intensityA of a log Gaussian Cox process

{A(x)} can be written as:
A = E[A(x)] = E[exdS(x))] = exp{,uS +%J§} :
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Concerning to the covariance structure, for anyitray pairs of points (sayx and x'),

AN (x') = exdS(x)+ S(x')}, and S(x) + S(x') is also Gaussian with mean= 2y, and variance
v=20%1+pg(d)] where d is the Euclidean distance between and x'. As a result,
E[A(X)A(X)] = exdm+v/2), and hence:

E[AA()] = exi{oZ s (d).
3.2.2 The marks process

Our model assumes that the ma‘d(xn) attached to the point, generated by the log Gaussian
Cox process depends on the intensity of the pratssds More formally we have:

m(x,) = aA(x, )+ bE(x,) 3

where A(x, ) is the value of the spatial intensity at poigtand E(x,) is due to a residual process

such thatE(x) = exdR(x)} , whereR(x) is a Gaussian random field with meag, varianceg? and
correlation function p.(d). Thus, the expected value of proceBfx), indicated with £, is

¢ = ElexdR()] = exp{ " +%0§}6.

The two constanta andb appearing in Equation (3) are the model paramelers important to
understand the role of these two parameters igéheration of the patterns of firms and the way in
which they can model the relationship between tiensity with which firms are distributed in
space and their dimension. More specificadlys the parameter driving the correlation betwden t
spatial point intensity process and the marks macé/hera = 0 the marks are independent of the
spatial intensity. Conversely when> 0 the marks process generates marks that tehd targer
(that is larger firms) in regions characterizedablyigh spatial point intensity. Finally, in thossses
wherea < 0 the marks tend to be smaller (and hence thesfof smaller dimension) in regions
characterized by a high spatial point intensity. tba other hand the parameterepresents the
perturbation effect of the residual process on dbeelation between marks and intensity. The
larger isb in absolute value, the more the residual processrtds the phenomenon of correlation
controlled bya.

The log Gaussian assumption makes the computatitimecexpected value of the marks process
mathematically tractable, indeed we have:

= E[m(x)] = alexdo?} +be.

It is easy to show that the expected value of tteeken process would beA +bs. However,
following Ho and Stoyan (2008), the true unbiasegeeted value ig/ = al exda§}+ be, which is

larger thanad + bse whena > 0, and smaller whea < 0. For a detailed explanation of this bias
correction see Ho and Stoyan (2008).

The model proposed here is particularly interestiaying in mind economic application and
specifically the study of firm location. In fact e application of the present methodological
framework to the problem of assessing industriafjl@geration, the marked point patterns
generated whea = 0 represent the null hypothesis of spatial ramuess of firms. Similarlya > 0

® In order to avoid any misunderstanding, note thatgreek letterE , used to indicate the residual process, and the
expectation operatdt are different symbols.
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anda < 0 refer to the alternative hypothesis of spat@icentration of economic activities in the
sense expressed i€ase I and “Case 2, respectively, in Section 1.

To better illustrate how the model works, in thenmeder of this section we will show some
realizations of a marked point process. In whdbWws all the generated patterns are obtained using
the same random seed so that all realizationsiegetlg comparable and the differences between
the patterns can be ascribed only to differencethé model parameters. Figure 2 shows the
realization of the underlying spatial point intepgirocess given a#\(x) = esgS(x)} on the unit

square, with meanu = ,5variancec? =0.25 and correlation functionpg(d) = exd-d/0.25 "

As we can see, in this particular realisation,gpatial point intensity tends to be higher (light\g
colours) towards the centre of the unitary area.

In order to illustrate the role of parametein driving the correlation between the spatialnpoi
intensity and the marks, Figure 3 displays diffenealizations of the marked point process with
different values fora. The six simulated marked point patterns appedrrggure 3 show the net
effect of parametea sinceb is always set to zero. In each pattern the marksescaled to the unit
interval and each point is represented by a cwdte radius proportional to its rescaled mark.
Figure 3 shows quite clearly that, for positiveued ofa, the marks tend to be larger where the
spatial point intensity is higher, that is approately at the centre of the unitary area (see puaiter
iii andv). On the other hand, for negative values,ahe marks tend to be smaller where the spatial
point intensity is higher (see patteaipiv andvi). The two kind of clustering situation — namely,
“Case 1 and “Case 2 — tend to be more evident wharnncreases in absolute value.

Figure 4 shows six simulated marked point pattevitls different values fob which illustrate the
role of this parameter in disturbing the correlatieetween the spatial point intensity and the marks

In all six cases the residual proceﬁx) is characterised byu, =5, o2 =0.25 and
0x(d) = exd-d/0.25 anda is set to be equal to 0.25. To understand hovpénemeteb disturbs

the effect of the parametar we can compare the patterns of Figure 4 wittptiteern of Figure 3)
wherea = 0.25. Asb increases in absolute terms, the residual prosessmes relatively more
important in generating the marked point patteinsthis situation the correlation between the
spatial point intensity and the marks depicted hwy pattern reported in FigureiRbecomes less
strong.

Figure 2: A realization of the underlying spatial point insély (grey-scale image).

" This specific form of the correlation functionksown as thexponential functionsee Diggle and Ribeiro (2007) for
details.
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Figure 3. Simulated patterns of marks according to model B figure illustrates the role of
parametea whenb = constant = 0.
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Figure 4. Simulated patterns of marks according to model B figure illustrates the role of
parameteb whena = constant = 0.25.
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3.2.3 The benchmark valoéthe mark-weighted K-function

Because of the mathematical tractability of the elatkfined above, the corresponding theoretical
mark-weightedK-function can be derived in a closed form. Inddedsuch a marked log-Gaussian
Cox process (fod >0), the mark-weightel-function assumes the form:

a2 exf20? + 302 p ()} + 2ab) exp{aé + 2 o2ps(d )}5 +b2e? exfo?pg(d)}
du

K,m(d)= ZITE u

m

[aA exo?}+ bg]2
(4)

The formal derivation of Equation (4) is reportedhe Appendix. Equation (4) above allows us to
develop a test for the presence of absolute coratemt of economic activities using the mark-
weightedK-function, in which the null hypothesis of spatiahdomness of firms is represented by
the values oK, (d) whena = 0. In fact, whem = 0, then we have:

K,.(d)= ZITIOd uexfo?px (d)jdu. (5)

To help the visualization, Figure 5 shows the mehrkmm(d) for 1000 marked point patterns
generated in the unit square from model (3) withrapeters y, = 5 o2 =0.25,
ps(d) =exd-d/0.28, u, =0, 02 =0.25, p.(d)=exd-d/0.25, a =0 and b = 1. Since the
theoretical function (dashed line), given by Eoqomati5), lies within the confidence envelopes
(resulting from the highest and lowest valueézqu(d) calculated from the 1000 simulations) and

very close to the mean dﬁmm(d) (solid line), the graph confirms that Equation (Bay well

represent the proper benchmark to verify the piasenst spatial concentration of economic
activities.

Figure 5: Mean of Rmm(d) estimated from 1000 simulations of the marked fppincess following

model (3) with parametes= 0 andb = 1. The behaviour of the empirical mean is regmésd by
the solid line. The theoretical function given By {s reported in the graph as a dashed line.
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4. Discussion and conclusions

The spatial concentration of firms has long beeceatral issue in economics both under the
theoretical and the applied point of view due maitd the important policy implications. An
approach to its measurement, that became recesmyypopular, makes use of micro data and looks
at the firms as if they were dimensionless poimgituted in the economic space. This approach is
very attractive because it does not suffer fromgrablem of choosing an arbitrary partition of the
economic space (such as e.g. regions, countiesiwontries). However in practical circumstances
this is an excessive simplification since the poifiirms) observed in the economic space are far
from being dimensionless and are conversely cheniaed by different dimension measured in
terms of the number of employees, the productctptal and so on. In the literature, the papers
that introduced such an approach (e.g. Arbia ammh EE996; Marcon and Puech, 2003) disregard
the aspect of the different firm dimension and mgnohe fact that a high degree of spatial
concentration may result from the case of many lspaéhts clustering in definite portions of space
(as it is usually considered in the literature)t &lso from only few large points clustering togeth
(e.g. few large firms). In other words they are abte to distinguish between two very different
issues, namely thelustering of firmsand theclustering of economic activitie$he aim of this
paper was to introduce absolute measures of sgataentration of firms based on an extension of
Ripley's K-function that accounts for the different firm dinsean. In order to derive the null
hypothesis of spatial randomness in this more cermphvironment, we developed a new stochastic
model that generates marked point patterns of fan is able to describe the various situations
that could arise in empirical cases. In our molelfirm dimension is expressed as a function of the
spatial intensity of the point process. Accordingthe different values assumed by the model
parameters, this could result either in larger {®ilocated in areas with high intensity or,
conversely, smaller points located in areas charaed by high intensity. The first case is more
grounded under the economic point view where wepamtulate that the same conditions that lead
to a higher clustering of firms in some portions space may also lead to the growth of the
dimension of the existing firms. A good example canstituted by the action of the three
Marshallian forces fostering agglomeration (MarkhdP20). In his seminal work Marshall
emphasized that industrial agglomeration can béaegd by the fact that firms try to locate near
suppliers to save shipping costs, by the theoryabbr market pooling and by the theory of
knowledge spillovers. If some of the services aternalized in one leading big company than the
same forces could produce a growth of the firmeiahsion rather than an increase in the number
of firms located in the area. We would expect tf@eethat in most practical cases the parameeter
in Equation (3) will be positive and large in ahgel value. Similar arguments reinforcing this
empirical expectation may be found in Krugman (9991

On the basis of the stochastic model introduceed er derived the corresponding mark-weighted
K-function and, by making use of some simulated pattewe presented evidence that this tool
represents a proper mean to detect the presenabsofute concentration of firms keeping their
dimension into account.

The problem of calibrating the values of the maglplarameters in practical cases is complex and it
is not undertaken here where we restricted ourselgeonly the presentation of the stochastic
mechanism. The inferential aspects would involve dstimation of the parametesisand b in
Equation (3) and also of the parameters charantgrithe two log Gaussian processes
A(x) = esgS(x)}} and E(x) = exdR(x)} introduced in Section 3.2. A closed form for theslihood

of the model is not yet available at current stitehe literature and currently the only viable
possibility appears to be to exploit (as it is dguactice in such instances) a pseudo-likelihood
approach as indicated in Besag (1974). We will uiafte such an approach in some future work.
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Appendix: Analytical derivation of the theoretical mark-weighted K-function

The mark-weighted-function K . (d) can be conceived as the integral of the mark [zie
function k... (d) (lllian et al.,2008), i.e.

K,.(d)= ZITJ';ukmm(u)du. 6) (
The mark correlation function can be given by:

K, (d)= Eq [m(cz)m(t)] 7)

U

where E, [m(o)m(t)] denotes the conditional mean under the conditia there are points in two

arbitrary locations separated by a distamgewhich are considered as the origitnand the
destinatiornt. m(o) andm(t) are the marks attached to the points locatemandt respectively. The
term in the denominator: represents the mean of the marks. Therekyr€d) can be interpreted
as the normalized mean of the product of the maflaspair of points separated by a distadce
According to Stoyan and Ho (2008), the numeratok 0f(d) satisfies the condition that:
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e, mlom) = SN, ®

If A(x) is defined as in section 3.2.1 amfx) is given by equation (3) then

E[mom(t)A(0)A(t)] = El[aexds(o)} +bexdR(o)}[aexd{ S(t)} + bexd Rt} exd S(o)s(t}]
= a2E[exd2S(0) + 25(t)}] + abHexd 2S(o) + S(t) + R(t}]
+ abE[ext{S(o) + 2S(t) + R(o}}] + b?E[R(0) + R(t) + S(0) + S(t)]

= a2\ exf202 + 402 p, ()} + 2ab¥° exp{aé +gaé os(d )}5
+02 A exflo? ps (d)}e2 exdo? o (d)}
and
EINON ()] = 1 exlozos(a)

Therefore Equation (8) can be written as

E, [m{o)m(t)] = a2 exdf202 + 302 pg (d )} + 214 exp{o—é +2atp,(d )}s +b%s? extfos o (d)}

As a result, sincgs = aA exp{aé}+ be, the mark correlation function has the followirgrh:

a2 exf20? + 302 p ()} + 2ab) exp{aé + 2 o2ps(d )}5 +b2e? exflo?pq(d)}
,d>0.

om4)= [a)l exo?}+ bts]2

9)

Finally, by substituting Equation (9) in Equatid) (ve obtain, ford > 0, the explicit form of the
mark-weightedK-function:

a2 exf20? + 302, (d)} + 2ab) exp{aé + 2 o2ps(d )}5 +b2e? exfo?pg(d)}

K m(d)=2nj;u du

m

[aA exo?}+ bg]2
(10)
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