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CHAPTER I 

 

GENERAL INTRODUCTION  

 

ANANDAMIDE AND ITS ANALOGUE, OLEOYLETHANOLAMIDE: 

In December 1992 Devane and his collaborators (Devane et al., 1992) reported 

the isolation and structure elucidation of a porcine brain lipid component that se-

lectively displaced the binding of a high-affinity cannabinoid receptor ligand to 

brain membrane preparations. This compound was the ethanolamide of arachi-

donic acid (20:4, n-6) and was named anandamide (AEA) (Figure 1), after the 

Sanskrit word for “bliss”, ananda. AEA was shown to be active in the tetrade of 

mouse behavioral tests suggestive of cannabinoid-like activity, i.e. inhibition of 

locomotor and rearing activity, hypothermy, catalepsy, and analgesia (Fride and 

Mechoulam, 1993; Crawley et al., 1993). Another derivative of arachidonic acid 

that activates cannabinoid receptors, 2-arachidonoylglycerol (2-AG), was discov-

ered in 1995 (Mechoulam et al., 1995; Sugiura et al., 1995). Although structurally 

different from plant-derived cannabinoids, these compounds, in analogy with the 

“endorphins” (i.e. the endogenous ligands of opiate receptors), were named “en-

docannabinoids”.  

Additional natural fatty acid ethanolamides (FAEs) have been detected in virtu-

ally all mammalian cells, tissues and certain body fluids (Bachur et al., 1965; Na-
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tarajan et al., 1985). They have also been identified in fish, invertebrates (Bi-

sogno et al., 1997; Sepe et al., 1998), plants (Chapman et al., 2000) and some mi-

croorganisms (Clarke et al., 1976; Ellingson, 1980). In most mammalian cells and 

tissues FAEs consist primarly of saturated and monounsaturated species, such as 

palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and stearoylethanola-

mide (SEA) (Figure 1). AEA is generally a minor component of cellular FAEs, 

with some exceptions, such as in the periimplantation mouse uterus (Schmid et 

al., 1997).  

It has been shown that FAEs are synthesized in response to a variety of physio-

logical and pathological stimuli, including activation of neurotransmitter recep-

tors in rat brain neurons (Di Marzo et al., 1994; Giuffrida et al., 1999), and expo-

sure to metabolic stressors in mouse epidermal cells (Berdyshev et al., 2000). 

That animal cells release FAEs in a stimuls-dependent manner suggests that these 

compounds may participate in cell-to-cell communication. Further support for 

this idea came from the discovery that AEA serves as an endogenous ligand for 

cannabinoid receptors. PEA, OEA and SEA cannot be considered endocannabi-

noids, since they have very low affinity for the cannabinoid receptors. Research 

on FAEs mediated signaling has been largely confined to the endocannabinoid 

AEA, however it is now becoming apparent that the cannabinoid receptor-

inactive, saturated and monounsaturated FAEs are of physiological and patho-



 

 
3 

logical interest as well.  

 

HOW IS OEA SYNTHESIZED? 

A model for OEA biosynthesis is illustrated schematically in Figure 2. Its first 

step is the transfer of a fatty acid residue from the sn-1 position of phosphatidyl-

choline to the free amine group of phosphatidylethanolamine. This reaction is 

catalyzed by an N-acyltransferase, which remains to be molecularly identified, 

and yields a heterogeneous family of N-acyl phosphatidylethanolamine (NAPE) 

species. The second step is the cleavage of NAPEs to produce other fatty acid 

ethanolamides (FAEs), including OEA, a step catalyzed by NAPE-specific phos-

pholipaseD (NAPE-PLD) (Okamoto et al., 2004). 

 

HOW IS OEA INACTIVATED? 

Once released, polyunsaturated FAEs are transported back into cells (Beltramo et 

al., 1997; Cravatt et al., 1996; Désarnaud et al., 1995) and eventually broken 

down to fatty acid and ethanolamine by an intracellular fatty acid amide hydro-

lase (FAAH) (Figure 3) and/or N-acylethanolamine-hydrolyzing acid amidase 

(NAAA), a lysosomal cysteine hydrolase (Tsuboi et al., 2005). 

It has been shown that AEA transport meets four key criteria of a carrier-

mediated process: saturability, fast rate, temperature-dependence, and substrate 
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selectivity (Di Marzo et al., 1994 ; Beltramo et al., 1997; Hillard et al., 1997). 

AEA transport differs from that of amine and amino acid transmitters in that it 

does not require cellular energy or external Na+, implying that it may be mediated 

through facilitated diffusion (Beltramo et al., 1997; Hillard et al., 1997; Piomelli 

et al., 1999; Rakhshan et al., 2000). As far as OEA is concerned it is not clear yet 

if a specific transporter is responsible for its uptake into the cells.  

FAAH (previously called ‘anandamide amidohydrolase’ and ‘oleamide hydro-

lase’) is an intracellular membrane-bound protein whose primary structure dis-

plays significant homology with the ‘amidase signature family’ of enzymes (Cra-

vatt et al., 1996; Giang and Cravatt, 1997). It acts as a hydrolytic enzyme for fatty 

acid ethanolamides such as AEA, but also for esters such as 2-AG (Goparaju et 

al., 1998, Lang et al., 1999) and primary amides such as oleamide (Cravatt et al., 

1995). Site-directed mutagenesis experiments indicate that this unusually wide 

substrate preference may be due to a novel catalytic mechanism involving the 

amino acid residue lysine 142. This residue may act as a general acid catalyst, fa-

voring the protonation and consequent detachment of reaction products from the 

enzyme’s active site (Patricelli et al., 1999). Three serine residues that are con-

served in all amidase signature enzymes (S241, S217 and S218 in FAAH) may 

also be essential for enzymatic activity: serine 241 may serve as the enzyme’s 
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catalytic nucleophile, while serine 217 and 218 may modulate catalysis (Patricelli 

et al., 1999). 

 

OEA BIOLOGICAL ROLE 

Although FAEs were first described four decades ago (Colodzin et al., 1963), 

they did not attract much attention until the discovery that AEA is an endogenous 

ligand for cannabinoid receptors, G protein-coupled receptors targeted by the 

marijuana constituent delta-9-tetrahydrocannabinol (THC) (Devane et al., 1992). 

AEA is now established as a brain endocannabinoid messenger (Piomelli, 2003) 

and multiple roles for other FAE have also been proposed (Mazzari et al., 1996; 

Calignano et al., 1998; Rodriguez de Fonseca et al., 2001). One emerging func-

tion of these lipid mediators is the regulation of feeding behavior. AEA causes 

overeating in rats because of its ability to activate cannabinoid receptors (Berry et 

al., 2002). This action is of therapeutic relevance: cannabinoid agonists such as 

THC are currently used to alleviate anorexia and nausea in AIDS patients, 

whereas the CB1 antagonist rimonabant (SR141716A) was recently found to be 

effective in the treatment of obesity (Berry et al., 2002).  

In contrast to AEA, OEA decreases food intake and body weight gain through a 

cannabinoid receptor-independent mechanism (Fu et al., 2003; Guzman et al., 

2004; Lo Verme et al., 2005). Despite its similarities with AEA, OEA does not 
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bind, indeed, to cannabinoid receptors and its functional roles have remained elu-

sive for many years, until it was demonstrated that OEA may serve as physiologi-

cal regulator of satiety and energy balance (Rodriguez de Fonseca et al., 2001; 

Gaetani et al., 2003; Oveisi et al., 2004; Nielsen et al., 2004). In the rat proximal 

small intestine, endogenous OEA levels decrease during fasting and increase 

upon refeeding, likely as a result of local alterations in OEA biosynthesis and/or 

hydrolysis (Rodriguez de Fonseca et al., 2001). Dietary fat intake represents the 

main stimulus for OEA synthesis in enterocytes (Schwartz et al., 2008). These pe-

riprandial fluctuations in OEA mobilization may represent a previously unde-

scribed signal that modulates between-meal satiety. Pharmacological studies have 

shown, indeed, that, when administered as a drug, OEA produces profound 

anorexiant effects in rats and mice (Rodriguez de Fonseca et al., 2001; Nielsen et 

al., 2004; Proulx et al., 2005), which are due to selective prolongation of feeding 

latency and post meal interval (Rodriguez de Fonseca et al., 2001; Oveisi et al., 

2004). The behavioral selectivity of OEA is further underscored by the fact that 

this lipid amide does not induce visceral malaise, anxiety-like behaviors or stress 

hormone release (Rodriguez de Fonseca et al., 2001; Proulx et al., 2005).  

 

OEA PHARMACOLOGICAL TARGET 

The nuclear receptor peroxisome proliferator-activated receptor-(PPAR-alpha) 
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Figure 4 is a key regulator of lipid metabolism and energy balance in mammals 

(Desvergne et al., 1999). Although OEA may bind to multiple receptors (Wang et 

al., 2005; Overton et al., 2006), three distinct lines of evidence indicate that 

PPAR-alpha mediates the satiety-inducing effects of this compound. Firstly, OEA 

binds with high affinity to the purified ligand-binding domain of mouse and hu-

man PPAR-alpha (KD 37 and 40 nM, respectively) and activates with high po-

tency PPAR-alpha-driven transactivation in a heterologous expression system 

EC50 = 120 nM (Fu et al., 2003). Secondly, synthetic PPAR-alpha agonists, such 

as the compounds GW7647 and Wy-14643, exert anorexiant effects that are due 

to a selective increase in feeding latency and, thus, are behaviorally identical to 

those produced by OEA (Fu et al., 2003). Thirdly, mutant mice in which the 

PPAR-alpha gene has been deleted by homologous recombination (PPAR-alpha-/- 

mice) do not respond to OEA or synthetic PPAR-alpha agonists, although they re-

tain normal responses to two mechanistically different anorexiants, CCK-

octapeptide (CCK-8) and fenfluramine (Fu et al., 2003). Together, the findings 

outlined above suggest that endogenous OEA, produced in the proximal small in-

testine during feeding, regulates between-meal satiety by activating PPAR-alpha. 

Although PPAR-alpha receptor are expressed also in the CNS, some evidences 

suggest that the anorexiant effect of OEA is mainly peripheral, rather than attrib-

utable to direct activation of central PPAR-alpha. In fact, OEA does not affect 
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food intake when injected into the brain ventricles, and its anorexic actions are 

prevented when peripheral sensory fibers are removed (Rodriguez de Fonseca et 

al., 2001; Fu et al., 2003). Moreover, both sistemic and oral administration of the 

compound cause a sustained decrease of food intake in free-feeding rats, which is 

accompanied by an increase in OEA levels in the gastrointestinal tract and in 

plasma, but not in the brain (Oveisi et al., 2004).  

Since the anorexiant effect of OEA appears to be selective and, in particular, not 

related to malaise and nausea, the question arises of which, if any, are the central 

nervous system (CNS) structures recruited downstream to OEA peripheral recep-

tor activation and that are responsible for the behavioral effects of this lipid on 

feeding. 
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CHAPTER II 

 

STANDARDIZED ANALYSIS OF c-fos mRNA EXPRESSION 

PATTERN IN RAT BRAIN AUTORADIOGRAPHY USING 

FREEWARE IMAGING SOFTWARE: 

 

INTRODUCTION: 

The immediate early gene c-fos is one of the most studied genes in the CNS as a 

marker for neuronal activation (Edwards et al., 1999; Abraham and Kovacs, 

2000; Konkle and Bielajew, 2004). The c-fos belongs to the family of immediate-

early transcription factor genes that are believed to function in coupling short-

term signals to long-term changes in cellular phenotype by orchestrating changes 

in target gene expression (Curran and Morgan, 1995). 

The expression of c-fos, which is normally low, can be increased by a number of 

pharmacological, physiological, and behavioral manipulations (Morgan and Cur-

ran, 1989; Herrera and Robertson, 1996). Therefore, the measurement of c-Fos 

protein levels, the product of c-fos gene, has been used as a marker for activated 

neurons (Hoffman et al., 1993; Edwards et al., 1999; Abraham and Kovacs, 
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2000). In recent years, c-Fos protein and c-fos mRNA have been widely used as 

markers for the impact of drug treatments (Young et al., 1991; Kreuter et al., 

2004), experimental procedures (Worley et al., 1993; Del Bel et al., 1998), and 

environmental changes such as light (Rusak et al., 1992), temperature (Bratincsak 

and Palkovits, 2004), and novelty/stress (Emmert and Herman, 1999; Amico et 

al., 2004). 

It is clear that c-fos gene expression is one of the most important CNS parameters 

in the field of neuroscience research. However, the traditional method of studying 

c-fos gene expression by examining c-Fos-positive neurons is a labor intensive 

task (Snowball et al., 2000; Nakagawa et al., 2003; Sinniger et al., 2004). A more 

rapid way to analyze activated brain areas is to investigate the expression of c-fos 

mRNA by in situ hybridization with a radiolabeled probe that allows the detection 

of hybridized areas by autoradiography. However, c-fos mRNA expression is 

relatively low in basal conditions, therefore autoradiography of c-fos hybridized 

brain does not show a strong signal. As a consequence, the identification of brain 

areas activated after an experimental treatment can often be very difficult and 

usually relies upon the anatomical skills of the experimenter. The identification 

step is usually followed by the quantification procedure consisting of measuring 

the optical density of a sampling area of standard size for each hybridized brain 

region. 
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The aim of the study was to develop and validate a novel method for fast quanti-

tative analysis of the optical density in the autoradiographic signal of hybridized 

slides. 
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METHODS 

Animals and Experimental Conditions 

Adult male Wistar rats were housed in groups of 6 rats per cage and kept at con-

stant ambient temperature and humidity under a steady light/dark cycle with free 

access to food and water. 

The day of the experiment the rats were divided in two experimental groups. In 

the first group, each rat was left undisturbed in its own cage and represented our 

control group; in the second group, each rat was individually transferred to an 

empty cage containing fresh sawdast, where it was kept for one hour, before be-

ing sacrificed and represented our treated group (called manipulated group). Rats 

were sacrificed with CO2 and decapitated. Their brains were rapidly excised, 

snap frozen in 2-methylbutane (-50°C) and stored at -80°C. Even though it takes 

several seconds for the animal to succumb after CO2 inhalation, this method of 

sacrifice does not influence the level of expression of our gene of interest (Miller, 

1991). 

Tissue preparation  

Brains were cut on a cryostat set at -20°C into four series of serial coronal sec-

tions at 20 µm thickness. Sections were thaw-mounted on Superfrost plus slides 
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(Menzel Glaser, Germany), three sections per slides, and immediately fixed in 

phosphate-buffered 4% paraformaldehyde for 1 hour. Sections were washed three 

times in 50 mM PBS, pH 7.4, for 10 min each before the slides were transferred 

for 10 min to 0.4% Triton X-100. The slides were rinsed in double distilled water 

(ddH2O) and transferred to 0.1 M triethanolamine, pH 8.0. Acetic anhydride was 

added under stirring to a final concentration of 0.25% (v/v), and sections were 

further incubated for 10 min. The slides were rinsed twice in 50mM PBS, pH 7.4, 

for 10 min each before dehydration in 50 and 70% 2-propanol. The air-dried sec-

tions were stored at -20°C until the hybridization. Slides can be stored this way 

for several months with no apparent reduction in hybridization signal intensity. 

In all these pre-hybridization steps common RNAse-free procedures were adopted 

to minimize degradation of mRNAs within the tissue sample and to ensure a 

strong hybridization signal. 

Radiolabeled cRNA probe 

Antisense c-fos riboprobe was transcribed from 1 µg Pst I-linearized recombinant 

clone pBS/rfos with T7 RNA polymerase in the presence of both uridine-5'-[!-

35S]thio]triphosphate and cytidine-5'-[!-35S]thio]triphosphate. The resulting 

cRNA was complementary to positions 583-1250 of clone pc-fos(rat)-1 (Curran 

et al., 1987). The sense RNA sequence was generated from the same template us-

ing T3 RNA polymerase after linearization with Pvu II.  
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After transcription, the probes were subjected to mild alkaline hydrolysis as de-

scribed previously (Angerer et al., 1987) and purified on G-50 column (Bio-rad), 

according to the manufacturer’s instructions. 

Hybridization with radioprobes  

The radioprobes were diluted in hybridization buffer (3X SSC, 50 mM NaPO4, 

10 mM DTT, 1X Denhardt’s solution, 20 mg/ml yeast tRNA, 10% dextran sul-

fate, and 50% formamide) to yield concentrations of 75,000 dpm/µl. Brain sec-

tions were coated with 55 µl of hybridization solution, slides were coverslipped 

and incubated for 16 h at 60°C in a humid chamber. Coverslips were removed, 

and slides were washed in 2X SSC and 1X SSC (20 min each), followed by incu-

bation for 30 min at 37°C in RNase buffer (10 mM Tris, pH 8.0, 0.5 M NaCl, and 

1 mM EDTA) containing 1 U/ml RNase T1 and 20 µg/ml RNase A, to reduce 

background. The slides were washed at room temperature in 1X and 0.2X SSC 

(20 min each), then under high stringency conditions at 60°C in 0.2X SSC (60 

min), and at room temperature in 0.2X SSC (10 min). Finally, they were dehy-

drated in ascending alcohols series and air dried for about 2 hours. 

Slides were exposed to Kodak Biomax film (Sigma Aldrich) for 3 days. The films 

were developed according to the manifacturer’s protocol. Coexposure with two 

calibrated microscales (0.13-35.0 µCi/g and 4.47-400 µCi/g, respectively) of 14C-

labeled plastic standards (American Radiolabeled Chemicals Inc.) permitted 
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quantification of the 35S radioisotope (Miller, 1991). The specificity of the hy-

bridization signal was ascertained by hybridization of adjacent sections labeled 

with the corrensponding sense probe. 

For emulsion autoradiography, selected sets of slides were dipped into NTB Ko-

dak autoradiography emulsion (Integra Biosciences, Fernwald, Germany) and ex-

posed for 18 days (c-fos hybridization) at 4°C. Autoradiograms were developed 

according to manifacturer’s instructions. Finally slides were stained with cresyl 

violet staining. In particular, sections were incubated with warm 1% cresyl violet 

acetate (Sigma Aldrich) for 10 min. Stained slides were rinsed in ethanol, cleared 

in xylene, and coverslipped. Slices were examined in bright-field under a NIKON 

80i ECLIPSE microscope. 

Autoradigraphic quantitative analysis 

Three different procedures were followed, being the first one our new procedure 

and the other two classic procedures that we used to validate the new protocol: 1) 

Whole area procedure; 2) Sampling area procedure; 3) Grain counting procedure. 

Quantitative analysis of the autoradiographic film was performed using the 

freeware software from the National Institutes of Health (Scion Image software). 

Autoradiography films were first scanned (Epson perfection 3200 PHOTO) at 

high resolution (900 dpi). Resulting images were divided into single slice crops 

for quantification. Optical densities were converted into radioactivity concentra-
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tions by densitometric analysis of 14C-miscoscale standards that were used to cre-

ate a calibration curve.  

Whole area procedure 

To analyze the optical density of the regions of interest (ROI) from each slice in-

cubated with the antisense probe, a crop template was created from the brain ta-

bles illustrated on the “The Rat Brain Atlas” by Paxinos & Watson (1998). In par-

ticular, a proper plate was chosen that could correspond to the brain slice to ana-

lyze. Then, the pdf file from the atlas CD-ROM was transformed into a tiff file, 

calculating the proper pixel to mm ratio that reproduced the same resolution and 

the same size of the brain crop to analyze (Figure 1). 

The tiff file containing the drawing from the atlas was opened with the IMAGE J 

software. The wand tool was used to create the selection of each ROI from the at-

las template by simply clicking inside near the right edge, or outside to the left of 

the ROI on the template (Figure 2).  The drawing of the atlas was then superim-

posed on the slice crop. All the ROIs created from the template were then applied 

to the new image containing the brain crop and the atlas drawing, and the optical 

density of each ROI was measured in one click (Figure 2). The template obtained 

from the atlas was also superimposed to the image of the Nissl stained slices 

taken with microscope. 
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Sampling area procedure 

Initial quantification of c-fos mRNA hybridization signal was conducted on 

autoradiographs in sampled regions of the secondary motor cortex (M2) (Figure 

3). This method was performed by arbitrarily circling an area on the region of 

interest and measuring its optical density with the calibration curve created with 

14C-miscoscale standards (Ferguson et al., 2004). 

Grain counting procedure 

Assessment of grain density over neurons of secondary motor cortex was per-

formed by a semiautomated computerized grain-counting protocol. Images of 

lightly counterstained neurons of secondary motor cortex (M2) were captured at 

2X in bright-field under a NIKON 80i ECLIPSE microscope (Figure 4). Square 

areas were manually sampled, and area determinations were made within Image 

Software. Images were then thresholde to visualize grains only, and area determi-

nations were repeated. The sampling template was then moved to an unhybridized 

region of tissue to establish background grain area. Results were expressed as the 

percent of area occupied by grains (Bowers et al., 1998), calculated as: 

                           (sampled area occupied by grains) 

% area  =       – (background area occupied by grains)          X 100      

                            Total area of sampling template  
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RESULTS AND DISCUSSION  

Analysis of c-fos hybridizated slices showed that the manipulation treatment 

evokes a significant increase in c-fos mRNA level in secondary motor cortex 

(M2). Here, we compared the induction of c-fos mRNA in brain of rats exposed 

to manipulation with three different method of quantification: whole area, sam-

pling area, and grain counting procedure. The purpose of this experiment was to 

develop and validate a rapid way for quantification of the optical density of hy-

bridized areas that does not involve either sampling or manually encircling the 

entire region of interest.  

Results obtained from the analysis of optical density and of grain counting are re-

ported in Figure 5. For each set of data we used a two-tailed t-test to compare data 

obtained from manipulated rats to data obtained from control rats.  

The results shown in Figure 5 revealed that the accurancy of the anatomical refer-

ence from the atlas that was the basis of the whole area procedure improved the 

results of the statistical analysis with respect to both the sampling area method 

and the grain counting method. 

The statistical analysis of the optical density measured with the sampling area 

procedure (Figure 5, panel B) gave the following results: t= 30; df = 2, p <0.01  
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The t-test of the integrated optical density obtained with the whole area procedure 

gave the following results t = 86,65; df = 2, p <0.0001  

Finally, the statistical analysis of the percentage area of c-fos+ cells in the motor 

secondary gave the following results t-test: t =4.943; df =2 p < 0.05 

This study illustrates a novel method to identify the brain areas hybridized with c-

fos mRNA probe by using an unbiased template from “The Rat Brain Atlas” by 

Paxinos and Watson (1998). It describes a rapid way for quantification of the op-

tical density of hybridized areas that does not involve either sampling or manually 

encircling the entire region of interest. 
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CHAPTER III 

 

INVOLVEMENT OF CENTRAL NEUROPEPTIDERGIC 

PATHWAYS IN THE ANOREXIC EFFECT OF 

OLEOYLETHANOLAMIDE 

 

INTRODUCTION: 

Initial data obtained mapping mRNA levels for the activity regulated gene c-fos 

by in situ hybridization showed that, after systemic administration, OEA evokes a 

highly localized increase in c-fos mRNA levels in the nucleus of the solitary tract 

(NTS), the paraventricular nucleus (PVN) and the sopraoptic nucleus (SO) (Rod-

riguez de Fonseca et al., 2001).  

These areas are crucially involved in the regulation of feeding behavior and en-

ergy balance and the stimulation of c-fos expression at these levels after intraperi-

toneal injection of OEA is consistent with the role of this compound as a periph-

eral regulator of satiety.  
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The NTS is the site where vagal afferents from the gastrointestinal tract predomi-

nantly terminate, together with sensory fibres from gustatory receptors and vis-

ceral fibres from the cardiovascular and respiratory systems. NTS neurons are ac-

tivated after feeding, gut distension, intragastric infusion of nutrients or peripheral 

CCK administration.  

Most of the NTS neurons that are activated by CCK or feeding project to the hy-

pothalamus, including PVN and SO (Hillebrand et al., 2002; Moore and Black 

1991). 

The PV and the SO nuclei are both part of the supraoptic region of the hypo-

thalamus. The PVN consists of several distinct cell groups that define the dorsal, 

the ventral and the medial parvocellular sub-nuclei, and the lateral magnocellular 

subnucleus. The SO nucleus consists mainly of large neurons. The magnocellular 

components of both nuclei release two hormones, namely oxytocin (oxy) and 

vasopressin (avp). Increasing evidence suggests that the involvement of oxy and 

avp in a number of homeostatic systems may include appetite control (Hillebrand 

et al., 2002). 

The magnocellular oxy neurons of the SON and PVN project their axons to the 

posterior pituitary where they secrete oxy into the periphery. These neurons also 

release very large amounts of oxy from their dendrites and cell bodies within the 

SON and PVN. Dendritic oxy acts locally to facilitate neuron activity, but is also 
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thought to diffuse to distant sites within the brain; for example, the amygdale 

(Ludwig and Leng, 2006). Parvocellular oxy neurons of the PVN project centrally 

to various hypothalamic, limbic and brainstem regions. In particular, it has been 

reported that these neurons project to the NTS and that this neuronal pathway is 

related to inhibition of food intake (Blevins et al., 2004; Sabatier et al., 2006). 

So central oxytocin systems can provide a multi-level controlling influence on 

other brain regions and, there is growing appreciation that oxy has an important 

role in the regulatory neuronal network mediating satiety (Amico et al., 2005; Ri-

naman et al., 2005; Mantella et al., 2004).Based on these evidence, we hypothe-

sized that oxy neurons, might play a key role in regulating food intake after OEA 

administration. 

We explored such hypothesis by using two complementary approaches: anatomi-

cal/functional and pharmacological/behavioral. First we determined the effects of 

OEA (10 mg kg-1 i.p.) administration on the expression of oxy and avp mRNA in 

both PVN and SON by using in situ hybridization histochemistry. In particular, 

we performed a time-course study, to assess the time-dependent effects of OEA 

and its possible specificity toward one of the two neuropeptides. Second, we ad-

ministered OEA at different doses (5, 10 and 20 mg kg-1, i.p.), and sacrificed rats 

at the time that corresponded to the strongest effect, in order to determine the 

dose-dependent effects of OEA. Third, we determined if OEA causes any altera-
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tion on oxy mRNA expression in the same neurons expressing c-fos. In this case 

we performed a dual in situ hybridization in brain slices obtained from rats treated 

with OEA at the most effective dose and time. Finally, we investigated whether 

the effects observed after OEA administration can be still detected in mice lack-

ing the molecular target of the compound, namely the PPAR-alpha receptors. 

The role of oxy in mediating OEA effects was further investigated by pharmacol-

ogical/behavioral experiments, in which the systemically effective oxy antagonist, 

Atosiban (ATO, 1 mg kg-1 i.p.), was administered prior to OEA treatment, to 

evaluate its effects on preventing OEA-induced anorexia.  
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METHODS 

Animals and experimental conditions 

Adult male Wistar rats (Harlan, Italy) 250-300 g male PPAR-!-/- mice (B6.129S4-

PparatmtGonzN12), and wild-type controls (C57/Bl6) (Germantown, NY) were 

housed in groups of three-four in standard plexiglas cages at a room temperature 

of 22°C. A 12 h light/dark cycle was set with the light on at 6:30 pm. Water and 

standard chow pellets were available ad libitum.  

For in situ hybridization experiments, we accustomed rats to handling and injec-

tion procedures for 7 days. On day 8, we administered vehicle or OEA about 10 

minutes before the dark phase of the light cycle and killed rats with CO2 and de-

capitation 30 min, 1, 2 and 4 hours after treatment. Both a dose-response experi-

ments and a time-course experiment were performed. Mice were treated at the 

same time of the light/dark cycle and were sacrificed 1 hour after treatment. The 

brains were rapidly excised, snap frozen in 2-methylbutane (-50°C) and stored at 

-80°C.  

For behavioral experiments rats were moved to individual cages two days prior to 

test with food pellets and water available ad libitum. On test day they were treated 

before dark onset and left undisturbed for 18 hours.  
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All procedures met the guidelines from the Italian Ministry of Health as well as 

from the US National Institutes of Health for the care and use of laboratory ani-

mals. 

Treatments 

OEA was synthesized in the laboratory (Giuffrida et al., 2000), dissolved in sa-

line/polyethylene glycol/Tween 80 (90/5/5, v/v/v; 2 ml Kg-1) and administered, 10 

min before dark onset, by intraperitoneal (i.p.) injection at dose of 5, 10 or 20 mg 

Kg-1  to free-feeding rats (FFO). Control animals (FFV) received an i.p. injection 

of vehicle. OEA was administered also to free-feeding wild type and PPAR-!-/-  

mice (W-type O and K-out O, respectively) at the dose of 10 mg Kg-1. Control 

mice (W-type V and K-out V, respectively) received injection of vehicle. 

The oxy receptor antagonist atosiban (ATO) 1mg kg-1 was dissolved in saline and 

administered to rats 30 min before OEA or vehicle administration. Control ani-

mals received a saline injection instead of ATO 

Tissue preparation  

Brains were cut on a cryostat set at -20°C into four series of serial coronal sec-

tions at 20 µm thickness. Sections were thaw-mounted on Superfrost plus slides 

(Menzel Glaser, Germany), three sections per slides in the case of rat sections or 

four sections per slides in the case of mouse sections, and immediately fixed in 

phosphate-buffered 4% paraformaldehyde for 1 hour. Sections were washed three 
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times in 50 mM PBS, pH 7.4, for 10 min each before the slides were transferred 

for 10 min to 0.4% Triton X-100. The slides were rinsed in double distilled water 

(ddH2O) and transferred to 0.1 M triethanolamine, pH 8.0. Acetic anhydride was 

added under stirring to a final concentration of 0.25% (v/v), and sections were 

further incubated for 10 min. The slides were rinsed twice in 50mM PBS, pH 7.4, 

for 10 min each before dehydration in 50 and 70% 2-propanol. The air-dried sec-

tions were stored at -20°C until the hybridization. In all these pre-hybridization 

steps common RNAse-free procedures were adopted to minimize degradation of 

mRNAs within the tissue sample and to ensure a strong hybridization signal. 

Radiolabeled cRNA probes 

Levels of c-fos mRNA, oxy mRNA and avp mRNA were examined in the brain 

sections using in situ hybridization of 35S-labeled RNA probes. 

Antisense c-fos riboprobe was transcribed from 1 µg Pst I-linearized recombinant 

clone pBS/rfos with T7 RNA polymerase in the presence of both uridine-5'-[!-

35S]thio]triphosphate and cytidine-5'-[!-35S]thio]triphosphate. The resulting 

cRNA was complementary to positions 583-1250 of clone pc-fos(rat)-1 (Curran 

et al., 1987). The sense RNA sequence was generated from the same template us-

ing T3 RNA polymerase after linearization with Pvu II.   

Both antisense oxy-riboprobe and antisense avp-riboprobe were generated from 

Xho I-linearized recombinant clone pCRII/OX and pCRII/AVP, respectively, us-
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ing Sp6 RNA polymerase. Both sense riboprobes were transcribed from BamH I-

linearized templates with T7 RNA polymerase. 

After transcription, the probes were subjected to mild alkaline hydrolysis as de-

scribed previously (Angerer et al., 1987) and purified on G-50 column (Bio-rad), 

according to the manufacturer’s instructions. 

Digoxigenin-labeled cRNA probes 

Digoxigenin-labeled probes were synthesized in an in vitro transcription reaction 

(20 µl) containing 1 µg linearized DNA, 0.1 mM digoxigenin-labeled rUTP 

(Roche Diagnostic Lab), 10 mM unlabeled rGTP, rATP and rCTP, 20 U RNAse 

inhibitor  and 20 U appropriate RNA polymerase (the same used for radioprobe 

synthesis). The transcription reaction was run at 37 °C for 3 hours , and DNAse I 

was added and incubated at 37 °C for an additional 15 min. The DNAse reaction 

was terminated by adding 2 µl of 0.2 M EDTA and the digoxigenin-labeled 

probes were then purified on a G-50 column (Bio-rad). After purification, the op-

tical density of the stock labeled probe was determined with spectrophotometer, 

considering that a reading of 1 at 260 nm wavelength corresponds to approxi-

mately 40 µg/ml for single-stranded RNA (Miller et al., 1993). Probe was diluted 

in RNAse-free distilled water to a final concentration of 200 ng/ml in the hybridi-

zation cocktail.  
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Hybridization with radioprobes and autoradiography 

The radioprobes were diluted in hybridization buffer (50% deionized formamide, 

10% dextran sulfate, 600 mM sodium chloride, 10 mM Tris, pH 7.5, 1 mM Na+-

EDTA, 1X Denhardt’s solution, 20 mg/ml yeast tRNA, 10% dextran sulfate, and 

50% formamide, 100 µg/ml sonicated selmone sperm) to yield concentrations of 

75,000 dpm/µl. Brain sections were coated with 55 µl of hybridization solution, 

slides were coverslipped and incubated for 16 h at 60°C in a humid chamber. 

Coverslips were removed, and slides were washed in 2X SSC and 1X SSC (20 

min each), followed by incubation for 30 min at 37°C in RNase buffer (10 mM 

Tris, pH 8.0, 0.5 M NaCl, and 1 mM EDTA) containing 1 U/ml RNase T1 and 20 

µg/ml RNase A, to reduce background. The slides were washed at room tempera-

ture for 5 min in 1X SSC  and for 30 min 0.2X SSC , then under high stringency 

conditions at 60°C in 0.2X SSC (60 min), and at room temperature in 0.2X SSC 

(30 min). Finally, they were dehydrated in ascending alcohols series and air dried 

for about 30 min. 

Slides were exposed to Kodak Biomax film (Sigma Aldrich) either for 8 hours (in 

the case of oxy or avp hybridization) or for 3 days (in the case of c-fos hybridiza-

tion). The films were developed according to the manifacturer’s protocol. Coex-

posure with two calibrated microscales (0.13-35.0 µCi/g and 4.47-400 µCi/g, re-

spectively) of 14C-labeled plastic standards (American Radiolabeled Chemicals 
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Inc.) permitted quantification of the  autoradiographic signal of hybridized brain 

regions (Miller, 1991). The specificity of the hybridization signal was ascertained 

by hybridization of adjacent sections labeled with the corrensponding sense 

probe. 

For emulsion autoradiography, selected sets of slides hybridized with c-fos ribo-

probe were dipped into NTB Kodak autoradiography emulsion (Integra Bio-

sciences, Fernwald, Germany) and exposed for 18 days at 4°C. Autoradiograms 

were developed according to manifacturer’s instructions. 

Data analysis 

Autoradiography films were scanned (Epson perfection 3200 PHOTO) at high 

resolution (900 dpi). The Atlas of Paxinos and Watson (1998) was used to define 

the locations and boundaries of the brain structures of interest (PVN and SON). 

Quantitative analysis of hybridized signals on the autoradiographic film was per-

formed using Scion Image software (NIH, USA). Optical densities were con-

verted into radioactivity concentrations by densitometric analysis of 14C-

miscoscale standards, so as to create a calibration curve. The film exposure times 

(i.e. 8 hours or 3 days) were optimized to obtain linear calibration curves with 

ranges of optical densities that included the optical densities of hybridization sig-

nals for each brain area of interest. For each calibration curve we tested the linear-

ity by linear regression and statistical analysis and in all cases we obtained a lin-
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ear coefficient r2>0.9 and a non significant (p>0.05) departure from linearity. In 

every brain section, background levels of hybridization were obtained from read-

ings in white matter structures such as the corpus callosum, where minimal bind-

ing would be expected to occur and subtracted from the mean reading of the area 

of interest. Integrated optical density (O.D.) values (radioactivity x area) of hy-

bridized area were measured considering the right and left areas of interest to-

gether. Measurements were obtained in at least four consecutive tissue sections 

containing the desired structure (Lee et al., 2005). Tissue sections were chosen, 

among those hybridized, to be similar in each experimental group. To chose the 

proper sections each slide used for the in situ hybridization was examined in 

phase contrast under a NIKON 80i ECLIPSE microscope equipped with a DS-U1 

digital camera. Only those brain slices corresponding to the selected set of sec-

tions were considered for the quantitative analysis and were selected for emulsion 

autoradiography. The same microscope was used to visualize autoradiograms un-

der dark-field illumination. For each slice a large image was obtained by stitching 

separately captured images from the same brain slice acquired at 10X magnifica-

tion (0.25mm/px at 2560x1920 format quality), by using NIS-elements BR soft-

ware (NIKON).  

Data from quantitative analysis of autoradiography films are reported as the mean 

percent of the appropriate control subjects’ relative integrated density readings ± 
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SEM. In particular, for purposes of relative comparisons, we established as 100% 

the average reading from subjects of the FFV-60 min in the time-course experi-

ments, the average reading from subjects of the FFV in the dose-response ex-

periment and average reading obtained from the W-Type V subjects in the ex-

periments on mice. Statistical significance for mRNA expression was determined 

by two-way or one-way ANOVA, depending from the experimental setting, and 

multiple comparisons were performed by Tukey’s post hoc test. In all instances, 

statistical significance threshold was set at p<0.05. 

Hybridization with digoxigenin probes and staining 

Hybridization with digoxigenin probes was based on a protocol slightly modified 

from that described by Miller and colleagues in 1993 (Miller et al., 1993). Di-

goxigenin probes were diluted in hybridization buffer (50% deionized formamide, 

10% dextran sulfate, 600 mM sodium chloride, 10 mM Tris, pH 7.5, 1 mM Na+-

EDTA, 1X Denhardt’s solution, 20 mg/ml yeast tRNA, 10% dextran sulfate, and 

50% formamide, 100 µg/ml sonicated selmone sperm) using 200 ng/ml and fur-

ther steps were similar to does followed in the radioactive hybridization. For 

blocking step, the slides were treated with 2% normal goat serium (NGS) and 

0,05 % Triton X-100 in 2X SSC 4°C overnight. After the blocking step, slides 

were washed twice (10 min) in Buffer 1 (0.1 M Tris-HCl, 0.15 M NaCl, pH 7.5) 

and then incubated for 3 hr at 30°C with the antidigoxigenin antibody, conjugated 
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to alkaline phosphatase (Roche Diagnostic Lab.), which was diluited (1:500) in 

buffer 1 containing 1% NGS and 0,3% Triton X-100. Slides were, then, washed 

in Buffer 1 (10 min), and then washed in Buffer 2 (100 mM Tris-HCl, 100 mM 

NaCl, 50 mM MgCl2, pH 9.2, 10 min). Digoxigenin-labeled probes were visual-

ized by incubating the slides in a chromogen solution with 340 µg/ml nitroblue 

tetrazolium chloride, and 175 µg/ml 5-bromo-4-chloro-3-indolyl-phoshate in 

Buffer 2 overnight at 4 °C. The reaction was blocked by incubating the slides in 

10 mM tris-HCl (pH 8) and 1mM EDTA (Buffer 3) at room temperature for at 

least 2 hours. The slides were dehydrated in ascending alcohols series and air 

dried for about 30 min. Finally slides were stained with Nissl staining. In particu-

lar, sections were incubated with warm 1% cresyl violet acetate (Sigma Aldrich) 

for 10 min. Stained slides were rinsed in ethanol, cleared in xylene, and cover-

slipped. Slices were examined in bright-field under a NIKON 80i ECLIPSE mi-

croscope. 

Dual in situ hybridization 

Slides were hybridized with a mixture of digoxigenin-oxy-riboprobe and radiola-

beled c-fos riboprobe both diluted in the same hybridization buffer (50% deion-

ized formamide, 10% dextran sulfate, 600 mM sodium chloride, 10 mM Tris, pH 

7.5, 1 mM Na+-EDTA, 1X Denhardt’s solution, 20 mg/ml yeast tRNA, 10% dex-

tran sulfate, and 50% formamide, 100 µg/ml sonicated selmone sperm) at the 
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same final concentration used in the single hybridization. This probe cocktail was 

applied to the tissue (60 µl) and sections were coverslipped. Slides were placed in 

a moist chamber and incubated overnight at 60 °C. After incubation the colocali-

zation of signals were reveled with immunocytochemical detection of digoxigenin 

–labeled probe as described above and with autoradiographic emulsion for radio-

labeled probe into the same slides. Each slide used for the dual in situ hybridiza-

tion was stained with Nissl staining. For detection of radiolabeled probes with 

autoradiographic emulsion we capturred an image of each section in dark field 

while digoxigenin probes were visualized in brightfield microscopy. A merge of 

the two images of the same section was obtained to evaluate co-localization of the 

two hybridized probes.  

Analysis of feeding behavior  

Food intake was recorded with an automated system (PRS Italia), consisting of 6 

cages equipped with food trays connected to weight sensors, with lickometers and 

with sensors for food access. The food trays contained standard chow pellets and 

were accessible to the rats through a square window in the wall of the cage 

crossed by an infrared beam (sensor for food access). Each time food was re-

moved from the tray, the computer recorded the episode, as an event of food ac-

cess and the amount of food retrieved, corrected from the food spillage left in the 

tray. Food access was detected each time the head of the animal interrupted the 
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infrared beam of the window, also when no food was taken from the tray. The 

lickometer counted the licks each time the animal consumed water.  

Rats were habituated to the test cages for 2 days prior to trials and had free access 

to food and water. Experiments with free-feeding rats began at onset of the  

dark phase and lasted 18 hours. Total food intake was measured and expressed as 

g Kg-1. Total number of food acces and total number of licks were also measured. 

Data were analyzed by one way ANOVA and by Tuckey’s post hoc test for mul-

tiple comparisons. 
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RESULTS 

 

C-fos hybridization 

Representative c-fos mRNA-autoradiography of brain sections obtained from a 

rat treated with vehicle (panel A) and a rat treated with OEA (10 mg kg-1) (panel 

B), 60 min before being killed is showed in Figure1. The lack of autoradiographic 

signal in sections hybridized with c-fos sense probe (representative section in 

panel C) demonstrates the good quality of c-fos riboprobe.  

Analysis of c-fos hybridizated slices showed that the systemic administration of 

OEA evokes an increase of c-fos mRNA levels in two hypothalamic nuclei: the 

Paraventricular nucleus (PVN) and the Supraoptic nucleus(SO). For each nucleus 

the results from densitometric analysis of autoradiography signal were expressed 

as percentage integrated optical density and analyzed by two-way ANOVA, con-

sidering the following factors: treatment and time.  

 

C-fos hybridization in PVN: time course experiment  

The results are shown in Figure 1, (panel D). The two-way ANOVA of integrated 

optical density in the PVN revealed the following results:  

F (treatment) = 82,965; df = 1 / 91, p <0.001  
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F (time) = 10,028; df = 1 / 91, p <0.01  

F (treatment x time) = 9,120 df = 1 / 91, p <0.01  

The multiple comparisons performed by  Tukey’s post hoc test showed that the 

treatment with OEA produces a statistically significant increase in c-fos inte-

grated optical density, 30 minutes (p <0.001) and 1 hour after OEA administra-

tion (p <0.001). 

 

C-fos hybridization in SO: time course experiment 

The results are shown in Figure 1, (panel E). The two-way ANOVA of integrated 

optical density in SO provided the following results:  

F (treatment) = 14,382; df = 1 / 47, p <0.001  

F (time) = 1,195, df = 1 / 47; n.s.  

F (treatment x time) = 4,838 df = 1 / 47, p <0.05 

The multiple comparisons performed by the Tukey’s test showed that the OEA 

treatment produces a statistically significant increase in c-fos integrated optical 

density 1h (but not 30 minutes) after the administration (p <0.001). 
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Oxytocin hybridization 

Representative oxy mRNA-autoradiography of brain sections obtained from a rat 

treated with vehicle (panel A) and a rat treated with OEA (10 mg kg-1) (panel B), 

60 min before being killed is showed in Figure 2. The hybridization with the an-

tisense oxy mRNA probe has shown a highly specific strong hybridization in the 

PVN and SO nuclei. The lack of autoradiographic signal in sections hybridized 

with oxy sense probe (representative section in panel C) demonstrates the good 

quality of oxy riboprobe.  

For each nucleus the results from densitometric analysis of autoradiography sig-

nal were expressed as percentage integrated optical density and analyzed by two-

way ANOVA, considering the following factors: treatment and time.  

 

OXY Hybridization in the PVN: time course experiment 

The results are shown in Figure 2, (panel D). The two-way ANOVA of integrated 

optical density in the PVN provided the following results:  

F (treatment) = 4,650, df = 1 / 230, p <0.05  

F (time) = 4,289, df = 2 / 230, p <0.05.  

F (treatment x time) = 2,353 df = 2 / 230; n.s.  



 

 
59 

The multiple comparisons performed by the Tukey’s test showed that OEA treat-

ment produces a statistically significant increase of integrated optical density (p 

<0.05) 1h after OEA administration.  No alteration has been observed 2 hours and 

4 hours after OEA administration. 

 

OXY Hybridization in the  SO: time course experiment 

The results are shown in Figure 2, (panel E). The two-way ANOVA of integrated 

optical density in the SO revealed the following results:  

F (treatment) = 14,505; df = 1 / 198, p <0.001  

F (time) = 0,094, df = 2 / 198; n.s.  

F (treatment x time) = 1,098 df = 2 / 198; n.s.  

The multiple comparisons performed by Tukey’s test showed that OEA admini-

stration produces a statistically significant increase of integrated optical density  1 

hour (p <0.05) and 2 hours (p <0.05) after  treatment, while no alteration has been 

observed after 4 hours. 

 

AVP hybridization 

Representative avp mRNA-autoradiography of brain sections obtained from a rat 

treated with vehicle (panel A) and a rat treated with OEA (10 mg kg-1) (panel B), 
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60 min before being killed is showed in Figure 3. The hybridization with the an-

tisense avp mRNA probe has shown a highly specific strong hybridization in the 

PVN and SO nuclei. The lack of autoradiographic signal in sections hybridized 

with avp sense probe (representative section in panel C) demonstrates the good 

quality of avp riboprobe.  

For each nucleus the results from densitometric analysis of autoradiography sig-

nal were expressed as percentage integrated optical density and analyzed by two-

way ANOVA, considering the following factors: treatment and time.  

 

AVP hybridization in the PVN: time course experiment 

The results are shown in Figure 3, (panel D). The two-way ANOVA of integrated 

optical density in the PVN revealed the following results:  

F (treatment) = 0,004, df = 1 / 148; n.s.  

F (time) = 5,563, df = 2 / 148, p <0.01  

F (treatment x time) = 1,349 df = 2 / 148; n.s. 

These results indicate that OEA treatment does not affect the avp mRNA expres-

sion in the PVN nucleus. 
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AVP hybridization in the SO: time course experiment 

The results are shown in Figure 3, (panel E). The two-way ANOVA of integrated 

optical density in the SO provided the following results:  

F (treatment) = 0,821, df = 1 / 184; n.s.  

F (time) = 5,968, df = 2 / 184, p <0.01  

F (treatment x time) = 0,208 df = 2 / 184; n.s.  

These results indicate that OEA treatment does not affect the mRNA expression 

of avp in the SO nucleus. 

 

OXY Hybridization in the PVN: dose-response experiment  

The results are shown in Figure 4, (panel A). The one-way ANOVA of integrated 

optical density in the PVN revealed the following results: F = 11,83, df = 3 / 127, 

p <0.01.  

The multiple comparisons performed by Tukey’s test showed that the treatment 

with OEA 10 mg/kg, produces a statistically significant increase of integrated op-

tical density (p <0.01). No significant increase of the integrated optical density 

was found following the administration of OEA at either 5 mg/kg or 20 mg/kg . 
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OXY Hybridization in the SO: dose-response experiment 

The results are shown Figure 4, (panel B). The one-way ANOVA of integrated 

optical density in SO revealed the following results: F = 6,417, df = 3 / 153, p 

<0.001 The multiple comparisons performed by the Tukey’s test showed that 

OEA treatment produces a statistically significant increase of integrated optical 

density when administered at the dose of 10 mg/kg (p<0.01). No significant in-

crease of the integrated optical density was found after 5 mg/kg and 20 mg/kg 

OEA injection. 

 

Dual in situ hybridization 

The analysis of brain slices hybridized with both c-fos and oxy probes has shown 

that >90% of c-fos hybridization coincides with the oxy hybridization in animals 

treated with OEA (10 mg kg-1), 60 min before being killed (Figure 5).  

 

Oxytocin hybridization in PPAR-! -/-  and wild type mice  

Representative oxy mRNA-autoradiography of brain sections obtained from: free-

feeding wild type mice treated either with vehicle (panel A) or OEA (10 mg kg-1) 

(panel B) and free-feeding PPAR-alpha -/- mice treated either with vehicle (panel 

E) or OEA (10 mg kg-1) (panel F), 60 min before being killed is showed in Fig-
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ure 6. The hybridization with the antisense oxy mRNA probe has shown a highly 

specific strong hybridization in the PV and SO nuclei.  

For each nucleus the results from densitometric analysis of autoradiography sig-

nal were expressed as percentage integrated optical density and analyzed by two-

way ANOVA, considering the following factors: strain and treatment. 

 

OXY Hybridization in the PVN of PPAR-! -/-  and wild type mice  

The results are shown in Figure 6, (panel C and panel G). The two-way ANOVA 

of integrated optical density in the PVN of PPAR-!-/-  and wild type mice revealed 

the following results:  

F (strain) = 0.263, df = 1 / 69, n.s.  

F (treatment) = 4.638, df = 1 / 69, p <0.05  

F (strain x treatment) = 2,313 df = 1 / 69, n.s.  

The multiple comparisons performed by Tukey’s test showed that OEA admini-

stration produces a statistically significant increase of integrated optical density in 

the PVN of wild type mice (p <0.05, panel C), while no alteration has been ob-

served in PPAR-!-/-  mice (panel G). 
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OXY Hybridization in the SO of PPAR-! -/-  and wild type mice  

The results are shown in Figure 6, (panel D and panel H). The two-way ANOVA 

of integrated optical density in the SO of PPAR-!-/-  and wild type mice revealed 

the following results:  

F (strain) = 0.001, df = 1 / 66, n.s.  

F (treatment) = 2.845, df = 1 / 66, n.s 

F (strain x treatment) = 0.535 df = 1 / 66, p <0.05 

The multiple comparisons performed by Tukey’s test showed that OEA admini-

stration produces a statistically significant increase of integrated optical density in 

the SO of wild type mice (p <0.05, panel D), while no alteration has been ob-

served in PPAR-!-/-  mice (panel H). 

 

Feeding behavior analysis 

The results are shown in Figure 7. The statistical analysis of 18-hour cumulative 

food intake provided the following results: F = 6,093, df = 3 / 31, p <0.01. The 

multiple comparison test showed that OEA significantly inhibited food consump-

tion in rats (p <0.01), while the administration of atosiban 30 minutes before 
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OEA, completely reverted its effects, without producing per se any alteration of 

cumulative food intake. 

OEA treatment did not affect drinking or food access (data not shown). 
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DISCUSSION  

A large body of evidence indicate that the anorexiant effects of OEA are mediated 

by the activation of peripheral PPAR-alpha receptors, but the central mechanisms 

downstream to this activation are still unclear. Brain regions that area activated in 

rats after OEA treatment have been mapped on the basis of neuronal expression 

of c-fos mRNA, a mRNA product of the early response gene c-fos. OEA treat-

ment increased mRNA c-fos expression in two important hypothalamic nuclei in-

volved in the energy balance: the paraventricular nucleus (PVN) and the sopraop-

tic nucleus (SO) (Rodriguez de Fonseca et al., 2001). In agreement with these 

previous observations we found an increase of c-fos mRNA in both nuclei that is 

evident 30 min after OEA systemic administration, but reaches its maximum at 60 

min, decreasing at 120 and 240 minutes (data not shown).  The magnocellular 

components of both nuclei release oxy and avp, two of the anorectic hypotha-

lamic neuropeptides and project their axons to the posterior pituitary where they 

secrete oxy and avp into the periphery. Dendritic oxy acts locally to facilitate oxy 

neuron activity but also diffuse to distant sites as the amygdala. Smaller oxy neu-

rons of the PVN project centrally to various hypothalamic, limbic and brainstem 

regions. So central oxy system can provide a multi-level controlling influence on 

other brain regions and has an important role in the regulatory neuronal network 
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mediating satiety. Our hypothesis was that the increased c-fos mRNA in the PVN 

and SON might be paralleled by increase of oxy mRNA levels in the same neu-

rons. To test such hypothesis we performed a time-course and a dose response 

study in rats, systemically administered with OEA. We found that OEA treatment 

does cause an increase of oxy mRNA in the PVN and SO nuclei, and such in-

crease is highest at 60 minutes after treatment and is maximal at the dose of 10 

mg kg-1. The lack of effects at the highest dose of OEA (20 mg kg-1) is accompa-

nied by the lack of behavioral selectivity of the drug at this dose. In fact, while no 

effects of OEA on motor behavior and drinking activity are observed at both 5 

and 10 mg doses, a slight motor inhibition and a decrease of water consumption 

can be observed in rats treated with the highest dose of the compound (Rodriguez 

de Fonseca et al., 2001). We therefore, hypothesize that at this dosage other neu-

ronal signals might be modulated that could differently affect oxy mRNA levels 

in the PVN and SO. OEA effects on oxy mRNA appears highly selective, as we 

did not detect any alteration of avp mRNA in the same brain regions where the 

increase of oxy mRNA was observed. Moreover, by dual in situ hybridization we 

verified that OEA causes an increase of oxy mRNA expression in the same neu-

rons expressing higher levels of c-fos mRNA, thus suggesting that the activation 

of these neurons is accompanied to increased oxytocinergic tone.  
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Although OEA may bind to multiple receptors (Ahern et al., 2003; Overton et al., 

2006), different lines of evidence indicate that PPAR-! mediates the effects of 

this compound on energy homeostasis (Fu et al., 2003). PPAR-! knockout mice 

do not respond to OEA or synthetic PPAR-! agonists (Fu et al., 2003). Long-

term OEA administration causes metabolic changes similar to those produced by 

PPAR-! agonists, consisting of decreased serum cholesterol and triglyceride lev-

els in genetically obese rats (Fu et al., 2005). PPAR-! receptors are expressed 

also in the central nervous system, however some indications suggest that the 

anorexiant effect of OEA is mainly peripheral. In fact, OEA does not affect food 

intake when injected into the rat brain ventricles, and its anorexic actions are pre-

vented when peripheral sensory fibers are removed (Rodriguez de Fonseca, et al., 

2001). Interestingly, we found that a significantly increase of oxy mRNA in the 

PVN and SO nuclei can be observed in wild-type mice treated with OEA, 

whereas any alteration of oxy mRNA levels can be detected in PPAR-alpha-/- 

mice, following OEA administration. These observation highlight the correlation 

between oxy mRNA increase in the hypothalamus and the anorexiant effects of 

OEA, since they are both absent in PPAR-alpha-/- mice.  

To further test the occurrence of any relationship between oxytocinergic signal-

ling and the inhibition of food intake induced by OEA administration, we tested 

whether the oxy antagonist atosiban could block OEA effects on feeding. The re-
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sults of the behavioral experiment in rats confirmed our hypothesis, showing how 

a systemic dose of atosiban that per se does not produce any effect on feeding, 

can completely reverse the effects of OEA when it is pre-administered to rats re-

ceiving OEA. 

Similar findings on food intake and oxy involvement in the hypothalamus were 

observed also in the case of the anorexiant action of the CB1 antagonist rimona-

bant (SR141716A) (Verty et al., 2004). The study by Verty suggested an inter-

play between the endocannabinoid system and the oxytocinergic system in the 

hypothalamus. In fact, rimonabant and oxy administration in the hypothalamus 

were found to synergictically interact in reducing eating and CB1 receptor signal-

ing resulted necessary to prevent oxy from altering food intake. 

As mentioned before, OEA does not activate CB1 receptors, nor it can be consid-

ered an endocannabinoid, since its actions in vivo are drastically different from 

those produced by cannabinoid agonists. However, OEA can be synthetized and 

released, as well as hydrolyzed, together with anandamide, since they share sev-

eral metabolic pathways. Anandamide has opposite effects on feeding behavior, 

as, similarly to THC and other cannabinomimetic compounds, it can stimulate 

food intake.  

Rimonabant shares with OEA several effects on energy balance and food intake. 

However, although rimonabant acts on eating behavior predominantly blocking 
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central CB1 receptors, the actions of OEA on feeding are mostly peripheral. This 

difference is of crucial importance since the central effects of CB1 blockade are 

also responsible for the psychiatric side effects of rimonabant that caused its 

withdrawal from the market.  

OEA effects on oxy release in the PVN and SO are likely due to indirect activa-

tion on the hypothalamic nuclei, as suggested by previous findings showing an 

increase of c-fos mRNA in the NTS after OEA administration (Rodriguez de 

Fonseca et al., 2001). Thus, OEA might represent a novel pharmacological tool 

that simulates the effects of rimonabant on energy homeostasis, without blocking 

CB1 receptors directly but probably counterbalancing the effects of endogenous 

anandamide. Oxy release in the PVN and SO might represent one of the possible 

common target where such balance occurs and that is involved in the effects on 

feeding.  
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CHAPTER IV 

 

OEA AND BEHAVIOURAL SEQUENCY OF SATIETY 

 

 

INTRODUCTION: 

A plethora of drugs exist that inhibit food intake when administered to experi-

mental animals. One of the most contentious issues in the psychopharmacology of 

appetite concerns the identification of mechanism underlying an observed reduc-

tion of eating. It cannot be denied that many chemicals could suppress eating by 

producing adverse physiological effects such as pain, or illness, or by altering 

neurochemical systems or behavioral dispositions so as to prevent the normal e-

xpression of appetite. Because animals cannot report their aversive side effects to 

the experimenter, the maintenance of a normal structure in strings of behavioral 

acts may be used as a means  of verifying normal physiology. For over 20 years 

researchers have argued that the structure of behavior can be used as a marker of 

the nonphysiological effects of drugs on food intake. The utility of the behaviou-

ral sequence of satiety (BSS) rests initially on the validity of behavior as an indi-

cator of toxic, pathologic, or nonphysiological events. Monitoring animal beha-
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vior, inducing feeding, and nonfeeding activities could provide a powerful biobe-

havioral assay of drug action on appetite. Using this biobehavioral assay of fee-

ding avoids problems of model validity, as it does not rely on modeling the hu-

man condition, but uses the animal’s natural behavioral register as the yardstick 

of relevance (Halford et al., 1998). 

The commonest dependent variable recorded in animal studies aimed at under-

standing drug effects on feeding is amount of food eaten by the subjects. Food in-

take is the result of the interplay between internal and external variables (Ber-

thoud et al., 2002) and therefore, per se, not helpful to explain the mechanism af-

fecting food consumption. It has been suggested that important information on the 

action of compounds inducing changes in appetite can be obtained through a mo-

re detailed analysis of feeding behavior. In rodents, the BSS represents the natural 

progression from eating to resting, through active grooming, in its formal and o-

perational definition (Antin et al., 1975). 

Cannabinoid CB1 inverse agonist such as rimonabant SR141716A (Rinaldi et al., 

1994) hold therapeutic promise as appetite suppressants, but the extent to which 

non-motivational factors contribute to their anorectic effects is not fully known. 

Examination of the BSS in rats, the orderly progression from eating to post-

prandial grooming and then resting, has revealed that this compounds preserves 

the order of events but differ markedly from natural satiation . The most notable 
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difference is that grooming (particularly scratching) is profoundly enhanced at 

anoretic doses, while eating and resting are diminished, raising the possibility that 

anorectic effect is simply secondary to the grooming effect (Hodge et al., 2008).  

Acomplia is a medicine containing the active substance rimonabant. Acomplia 

was authorised in the European Union since June 2006 and was marketed in 18 

EU Member States. Rimonabant was also authorised as Zimulti, but this product 

was not marketed in the EU. Acomplia can cause psychiatric side effects, espe-

cially depression, since its initial assessment. Because patients at an elevated risk 

of developing psychiatric disorders could not be identified, the Committee con-

cluded that introducing further restrictions to the use of the medicine would be 

unlikely to reduce the risk to an acceptable level. Therefore, the Committee con-

cluded that the benefits of Acomplia no longer outweigh its risks, and recommen-

ded that the marketing authorisation for the medicine should be suspended across 

the EU (EMEA London 23 October). 

In this scenario, several researcher are actually focusing on the development of 

novel CB1 antagonists that could not cross the blood brain barrier, thus avoiding 

the central effects displayed by rimonabant and possibly responsible of the adver-

se side effects. Although several metabolic positive effects of accomplia are rale-

ted to CB1 antagonism at the periphery, the main effects on food intake appears 

to be centrally mediated. Thus, the question arises to whether a novel CB1 anta-
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gonist that cannot block central CB1 receptors might still modulate eating beha-

vior in laboratory animals as well as in humans. In this respect OEA might repre-

sent a better candidate for the development of novel therapeutic tools for obesity 

and over-eating. In fact, the effects of OEA appear to be mostly peripheral, while 

clearly influencing feeding behavior. 

In this study we compared the behavioral effects of OEA to those of rimonabant 

in mice subjected to the analysis of BSS. 
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METHODS 

Animals and experimental conditions 

Animals were housed under controlled 12-h light–dark cycle (7:00 A.M.–7:00 

P.M.), and allowed free access to food and water in their home cage. The basic 

diet consisted of standard laboratory dry food pellets (Mucedola s.r.l.). All ex-

periments took place during the dark cicle in a soundproof enviroment. Thirty-

eight male (C57/Bl6) mice were used for the study. The animals, weighing 

28±0.5 g on arrival, were purchased at approximately 10 weeks of age from Char-

les River (Como, Italy). All animals used were maintained in accordance with the 

regulations of the European Communities Council Directive (86/EEC) and ap-

proved by the Italian Government (Coccurello et al., 2008). 

Treatments 

Oleyolethanolamide (OEA) was synthesized in the laboratory (Giuffrida et al., 

2000), dissolved in saline/polyethylene glycol/Tween 80 (90/5/5, v/v; 2 ml Kg-1) 

and administered, 10 min before dark onset, by intraperitoneal (i.p.) injection at 

dose of 5 and 10 mg Kg-1  to free-feeding mice. Rimonabant (SR141716A), dis-

solved in the same vehicle of OEA, was administered (i.p.) at the same doses (5 

and 10 mg Kg-1 )  to free-feeding mice. Control animals received an i.p. injection 

of vehicle. 
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Experimental procedure 

Before starting the pharmacological study, mice were habituated to a semi-liquid 

diet (wet mash). The diet was made up of a mix of one part ground standard dry 

powdered food pellets and water (Coccurello et al., 2008). Furthermore, the con-

sistency of mash virtually eliminates spillage and prevents animals from remov-

ing food to hoard or eat elsewhere (Halford et al., 1998). The food pot, weighed 

immediately prior testing, was positionated in the opposite side of the bottle of 

water in the cage. To familiarize the animals to the new diet, fresh meals were 

prepared and offered for one week before administration of OEA and 

SR141716A. The experimental phase started at the end of final habituation trials 

and was conducted according to a within-subjects (crossover) design. The treat-

ment condition was determined by Latin Square. One hour before each recording 

session, mice were food deprived while water remained available. To analyze 

feeding behavior, subjects were individually placed in a new test cage strewn with 

the home cage bedding and freely allowed to access the diet up to 45 min. Each 

food container was preweighed, and the difference between initial and final food 

container weights was the measure of wet mash intake. 
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Behavioral satiety sequence analysis 

Data were collected between 19:00 and 20:00 p.m. in a soundproof cubicle 

equipped with a video-recording camera. Test DVDs recorded were scored blind 

by a highly trained observer using software OBSERVER. 

After presentation of wet mash, the behavioural sequence was recorded by ob-

serving each mouse for 45 min and allocating its current behaviour to one of five 

categories. The behavioural categories were: ‘duration of eating’: holding or in-

gesting of food; ‘active’: moving, rearing and other behaviour patterns not de-

fined elsewhere; ‘groom’: body care movements using mouth or forelimbs; and 

‘inactive’: characterized as an absence of movement with a resting posture, with 

or without eye closure (Somerville et al., 2007). ‘Eating latency’: time to begin 

eating measured from initial contact with food. 

Data analysis 

One way ANOVA was used to analyze duration of eating of observed behavior 

with drugs (2 different doses) during the 45 min test session, multiple comparison 

were performed by Tukey’s post hoc test. In all instances, statistical significance 

threshold was set at p<0.0001.  

 



 

 
89 

RESULTS AND DISCUSSION  

Analysis of the behavioral patterns over the course of the 45 min session showed 

a significant decrease in eating time of the 5 mg/kg and 10 mg/kg OEA group in 

comparison to vehicle mice (Figure 1 panel A, B and C). Eating time decrease 

was similar to 5 mg/kg and 10 mg/kg SR141716A group in comparison to vehicle 

mice (Figure 2 panel A, B and C).  

Food intake was significantly affected by drug treatment: the one-way ANOVA 

revealed the following results: F=9.723; df= 4 / 36; p<0.0001  

The multiple comparisons performed by Tukey’s post hoc test showed that the 

treatment with OEA 5 mg/kg and OEA 10 mg/kg produced a statistically signifi-

cant decrease in eating time (respectively p <0.01 and p< 0.001 vs vehicle). Also 

SR171416A 5 mg/kg and 10 mg/kg confirmed a statistically significant decrease 

in eating time respectively p<0.001 and p<0.001 vs vehicle; no differences in the 

amount of the food eaten were found between 5 mg/kg and 10 mg/kg of OEA or 

SR141716A administered mice (Figure 3). 

The BSS has been extensively used to characterize the influence of pharmacol-

ogical and non pharmacological manipulation on the normal pattern of behaviours 

associated with feeding ( Halford et al., 1998). Throughout its study it is possible 

to accurately monitor the development and the behavioural structure of the satia-

tion process. Indeed, in basal conditions, the ingestion of food gradually induces 
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satiation, a process demonstrated by the replacement of feeding with other non-

feeding activities (such as grooming), ending in a long-lasting resting period 

(Coccurello et al., 2008). To our knowledge, this is the first study analyzing the 

structure of BSS after OEA administration.  

OEA caused a marked increased of the latency to the first food approach. This ef-

fect was similar to those produced by rimonabant and is in accordance with pre-

vious studies (Gaetani et al., 2003). Interestingly, while OEA did not affect 

grooming behaviour, rimonabant caused an increase of it, as previously reported. 

On the other hand, the decrease of food intake elicited by OEA and rimonabant 

was similar, thus suggesting that OEA might simulate the positive effects of Ri-

monabant on feeding, avoiding its ambiguous effects on other aspects of animal 

behaviour that might be predictive of adverse side effects in humans. 

We, theefore suggest that OEA might represent a valid alternative approach to pe-

ripherally acting novel CB1 antagonists. 
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