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Introduction 

Brain-computer interfaces (BCIs) provide alternative methods for 

communicating and acting on the world, by allowing the acquisition and 

transformation of brain activity to convey messages and commands, therefore 

not involving the normal paths of peripheral nerves and muscles. 

Patients with Alzheimer’s disease may benefit from a BCI aimed at conveying 

basic thoughts (e.g., “yes” and “no”) and emotions. There is currently no 

report of research in this direction, mostly because cognitive deficits in 

patients with dementia pose serious limitations to the use of traditional BCIs, 

which normally require users to self-regulate their brain activity, and are 

based on operant learning.  

In the present thesis, we propose a paradigm shift from operant learning to 

classical conditioning, with the aim of discriminating affirmative and negative 

thoughts (associated to congruent and incongruent semantic stimuli 

respectively) within an fMRI-BCI setting. This represents a basic step in the 

development of a BCI that could be used by Alzheimer patients, lending a 

new direction not only for communication, but also for rehabilitation and 

diagnosis. The proposed paradigm is here validated with healthy subjects, in 

view of a future application with a clinical population.  

 

The thesis is structured in six chapters. Chapter 1 describes the development 

of BCIs as technologies for machine control and communication. Several 

kinds of BCIs based on different methodologies, such as 

electroencephalography (EEG), magnetoencephalography (MEG), near-

infrared spectroscopy (NIRS) and functional magnetic resonance imaging 

(fMRI) are presented. Particular attention is given to brain state detection and 

classification with fMRI, stressing the remarkable advances in data acquisition 
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and processing techniques that have lead to consider this methodology as 

elective for mental state detection and BCI-based neurorehabilitation. Most of 

the BCIs that have been developed so far require an active participation of the 

user, who has to learn to self-regulate brain signals, often following 

demanding and time-consuming trainings. For this reason, most existing BCI 

cannot be used with patients with cognitive impairment, such as patients with 

mental retardation or dementia. To this end, Chapter 2 introduces new 

possibilities for BCI applications, focusing particularly on the idea of 

developing a so-called “passive” brain computer interface, based on classical 

conditioning instead of the more traditionally adopted operant conditioning 

paradigm. Such a paradigm could be applied for mental state detection and 

basic yes/no communication with Alzheimer patients. In fact, several 

researchers have shown how, even in the most advanced stages of this 

neuropathology, when the communication deficit is pervasive and often leads 

to mutism, patients still seek for social contact. Three main aspects of 

Alzheimer’s disease that are particularly important for the development of our 

paradigm will be tackled, namely communication deficits, recognition of 

emotions, and the ability to develop a conditioned response within a classical 

conditioning paradigm. In Chapter 3, the challenge of developing a paradigm 

based on classical conditioning of the BOLD signal within a BCI-setting was 

taken up. The chapter presents a paradigm validation with healthy subjects, 

with the aim of discriminating between brain responses related to congruent 

and incongruent word-pairs (the conditioned stimuli, CS), respectively eliciting 

“affirmative” and “negative” thinking, after associating them to a positive and a 

negative emotional sound (the unconditioned stimuli, US). Since the analysis 

and classification of the BOLD signal was developed with two distinct 

procedures (univariate and multivariate), such methods are described in two 

separate chapters, together with the provided results. Chapter 4 describes 

univariate analysis of the fMRI data, considering response variations at the 

level of individual voxels. This analysis was performed with the Statistical 

Parametric Mapping method, which is based on the General Linear Model and 

the Gaussian Random Field theory. Results from this method indicate that a 

classical conditioning paradigm, in which congruent and incongruent semantic 

stimuli are associated with positive and negative emotional stimuli, allows the 
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discrimination between affirmative and negative thinking. The differential 

activation was interestingly found in areas that are mostly involved in 

emotional processing, such as the insula and the anterior cingulate cortex 

(ACC). Given the encouraging results obtained at voxel-level, multivariate 

analysis of the fMRI data were also performed, as described in Chapter 5. In 

contrast to conventional univariate analyses, which are strictly location-based, 

multivariate analyses take into account the global spatial pattern of brain 

activity. In this study, the multivariate approach was embraced by focusing on 

machine learning and developing a Support Vector Machine (SVM), a 

supervised learning method used for the classification and prediction of novel 

data. Results following this method indicate that, while prior to the classical 

conditioning procedure the classification accuracy relative to affirmative and 

negative thinking was around chance-level, percentages of accuracy 

increased significantly with the acquisition of the conditioned response. 

Chapter 6 presents the possible conclusions that can be drawn from this 

investigation, and the future directions in this research field, which include 

primarily experimentation with Alzheimer patients, an online implementation of 

the SVM for real-time basic communication, and the validation of the 

paradigm with more portable neuroimaging techniques, such as NIRS. 

 

Part of this thesis is drawn from published and submitted articles. The first 

three chapters are based on the articles: “Toward a Brain-Computer Interface 

for Alzheimer’s disease patients by combining classical conditioning and brain 

state classification”, written for the “Journal of Alzheimer’s Disease” (Liberati, 

Dalboni da Rocha, van der Heiden, Raffone, Birbaumer, Olivetti Belardinelli & 

Sitaram, 2012); “Classical conditioning of the BOLD signal as a paradigm for 
basic BCI communication in Alzheimer patients”, published in the journal 
“Alzheimerʼs and Dementia” (Liberati, van der Heiden, Sitaram, Kim, Rana, 
Raffone, Birbaumer & Olivetti Belardinelli, 2011); “Cognitive reserve and its 
implications for rehabilitation and Alzheimerʼs Disease”, written for the journal 
“Cognitive Processing” (Liberati, Raffone & Olivetti Belardinelli, 2012). The 

fourth chapter is based on the submitted article “Semantic classical 

conditioning of two brain responses using emotional sounds as unconditioned 
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stimuli” (Liberati, van der Heiden, Sitaram, Kim, Ja!kowski, Raffone, Olivetti 

Belardinelli, Birbaumer & Veit, 2012). The fifth chapter is based on the article 

in preparation “Double semantic conditioning with emotional stimuli for the 

development of a SVM-based binary fMRI-BCI” (Liberati, van der Heiden, 

Dalboni da Rocha, Veit, Rana, Kim, Ja!kowski, Raffone, Olivetti Belardinelli, 

Braymer & Sitaram, 2012). 

 

The present research was carried out in collaboration with the Institute of 

Medical Psychology and Behavioral Neurobiology of Tübingen, Germany, 

directed by Prof. Niels Birbaumer. All fMRI measurements were performed at 

the Max Planck Institute for Biological Cybernetics of Tübingen. 



!

1. Brain Computer Interfaces (BCIs) 

and mental state detection 

1.1 Introduction 

The present chapter describes the development of Brain-Computer Interfaces 

(BCIs) as technologies for machine control and communication, focusing 

mostly on functional magnetic resonance BCIs (fMRI-BCIs) and mental state 

detection and classification.  

In the first section, BCIs based on electroencephalography (EEG), 

magnetoencephalography (MEG), near-infrared spectroscopy (NIRS) and 

fMRI are introduced. Such interfaces have been developed especially to allow 

communication and environmental control in patients with severe motor 

disabilities, and have seen a great development in the last decades. 

In the second section, particular attention will be given to fMRI signal 

classification, since the experimental paradigm that we propose in our 

research, and which will be presented in the next chapters, involves the 

classification of different mental states in an fMRI-BCI setting. Pattern 

classification literature is reviewed relatively to methodological studies based 

on machine learning, mental state discrimination, and BCIs and 

neurorehabilitation. 

1.2. Brain-Computer Interfaces for communication and control 

Research on BCIs originates from studies on biofeedback and 

neurofeedback. Biofeedback can be defined as the process of becoming 
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aware of various physiological functions, such as heart function, breathing, 

muscle activity, skin temperature and brainwaves, by using instruments that 

provide information on the activity of those same systems, with the aim of 

manipulating them at will. According to the Association for Applied 

Psychophysiology and Biofeedback, it is “a process that enables an individual 

to learn how to change physiological activity for the purposes of improving 

health and performance” ("The Association for Applied Psychophysiology and 

Biofeedback," 2008). By allowing a person to control physiological functions, 

biofeedback has been found to be effective in the regulation of pain 

perception and in the treatment of headaches and migraines (deCharms et 

al., 2005; Nestoriuc & Martin, 2007; Nestoriuc, Martin, Rief & Andrasik, 2008).  

Neurofeedback, sometimes also called EEG-biofeedback, uses real-time 

visual or auditory displays of EEG brain activity, which is measured by placing 

sensors on the scalp (Masterpasqual & Healey, 2003). Starting from the 

1970s, thanks to the technological achievements in rapid computer analysis of 

EEG patterns, which allowed online feedback of different kinds of 

neuroelectric activity, a large number of studies on neurofeedback training 

were published, showing solid evidence of positive effects in patients with 

pharmacologically intractable epilepsy and attention disorder deficit 

(Birbaumer, Ramos Murguialday, Weber & Montoya, 2009). BCIs traditionally 

exploit neurofeedback principles to train users to self-regulate their brain 

activity, in order to control computers or machines. It is important to note, 

however, that not all BCIs developed up to now require an active involvement 

of users in the regulation of brain signals.  

BCIs can be considered as direct communication pathways between the brain 

and an external device (Fig. 1). They measure brain signals, extract certain 

features from these signals, and translate such features into output signals, 

which are fed back to the user and/or serve as commands to control 

computers or machines (Birbaumer, 2006; Birbaumer et al., 1999; Daly & 

Wolpaw, 2008; McFarland & Wolpaw, 2011; Pasqualotto, Federici & Olivetti 

Belardinelli, 2012; Wolpaw, Birbaumer, McFarland, Pfurtscheller & Vaughan, 

2002). In the first international meeting of BCI technology in 1999, at the 

Rensselarville Institute of Albany, New York, Jonathan R. Wolpaw proposed 

the first formalized definition of BCI system: “A brain-computer interface is a 
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communication or control system in which the user’s messages or commands 

do not depend on the brain’s normal output channels. That is, the message is 

not carried by nerves and muscles, and, furthermore, neuromuscular activity 

is not needed to produce the activity that does carry the message” (Wolpaw et 

al., 2000).  

Two major clinical applications of BCIs are movement restoration in patients 

affected by spinal lesions or stroke (Belda-Lois et al., 2011; Birbaumer & 

Cohen, 2007; Birbaumer, Ramos Murguialday & Cohen, 2008; Daly & 

Wolpaw, 2008; Daly et al., 2009; Kaiser, Kreilinger, Müller-Putz & Neuper, 

2011), and the development of communication systems for patients with 

motor disability (Cecotti, 2011; Escolano, Ramos Murguialday, Matuz, 

Birbaumer & Minguez, 2010; Kübler et al., 2009; Kübler et al., 2005; Nijboer et 

al., 2008; Ramos Murguialday et al., 2011). Recently, several studies aimed 

at assessing the possibility to use BCIs for allowing patients with motor 

impairment to control electronic devices in a home environment (Babiloni et 

al., 2007; Cincotti et al., 2008).  

!
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It is possible to identify two main BCI approaches, namely invasive and non-

invasive (Lebedev & Nicolelis, 2006; Pasqualotto et al., 2012). While invasive 

BCIs imply the intracranial recording of electrical activity performed directly on 

single neurons or on neural assemblies by implanting electrodes in the skull, 

non-invasive BCIs do not expose patients to surgical operations, and usually 

exploit brain activity recorded using EEG. Although the quality of data 

transmission may have some limitations, non-invasive BCIs overcome the 

ethical and technical problems related to the implant of electrodes in patients 

(Lebedev & Nicolelis, 2006). 

In the following sections, we will describe different kinds of BCIs that are 

based on distinct non-invasive techniques. 

1.2.1. Electroencephalography-BCIs 

Most non-invasive BCIs developed so far are based on the recording of slow 

cortical potentials (SCP), sensory-motor rhythms (SMR), and the P300 event-

related potential (Pasqualotto et al., 2012).  

The first report on EEG, a system able to measure synaptic potential 

differences from the scalp, was published by Hans Berger in 1929 (Swartz & 

Goldensohn, 1998), but the intuition that EEG could be used to control 

machines with the modulation of brain impulses only spread in the early 

1970s, with the article published by Jacques J. Vidal, which first introduced 

the concept of brain-computer communication (Vidal, 1973).  

Pasqualotto and collaborators (2012) have proposed a classification of EEG-

BCIs based on the dependence of the user on the conscious regulation of the 

brain activity exploited. More specifically, while some systems require users to 

intentionally modulate some aspects of their EEG activity and are based on 

voluntary learning of biofeedback procedures, other systems exploit 

spontaneous occurrences of brain electrical activity that do not require any 

intentional learning. Systems depending on voluntary modulation mostly 

exploit SCPs (Birbaumer, 1999; Kübler et al., 2001; Neumann, Kübler, Kaiser, 

Hinterberger & Birbaumer, 2003) and SMRs (McFarland, Krusienski & 

Wolpaw, 2006; Pfurtscheller et al., 2000; Wolpaw, McFarland, Vaughan & 

Schalk, 2003). Systems depending on non-voluntary modulation exploit 
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visually evoked potentials (VEPs, Sutter, 1992), steady-state visual evoked 

potentials (SSVEPs) (Allison et al., 2008; Bin, Gao, Yan, Hong & Gao, 2009; 

Gao, Xu, Cheng & Gao, 2003; Lin, Zhang, Wu & Gao, 2007; Middendorf, 

McMillan, Calhoun & Jones, 2000; Müller-Putz, Eder, Wriessnegger & 

Pfurtscheller, 2008; Vialatte, Maurice, Dauwels & Cichocki, 2010; Wang, 

Wang, Gao, Hong & Gao, 2006; Zhang et al., 2010), and P300 (Bayliss, 

Inverso & Tentler, 2004; Brunner et al., 2010; Furdea et al., 2009; Guger et 

al., 2009; Halder et al., 2010; Kleih, Nijboer, Halder & Kübler, 2010; Klobassa 

et al., 2009; Krusienski, Sellers, McFarland, Vaughan & Wolpaw, 2008; Kübler 

et al., 2009; Lenhardt, Kaper & Ritter, 2008; Mugler, Ruf, Halder, Bensch & 

Kubler, 2010; Nijboer, Birbaumer & Kübler, 2010; Piccione et al., 2008; 

Sellers, Kübler & Donchin, 2006; Zhang, Guan & Wang, 2008).  

EEG has several advantages: it is widely available at low cost, has a long 

history of usage, and its mechanisms are therefore very well known. However, 

it also has remarkable disadvantages, such as artifacts, low spatial resolution, 

and difficulty in the application and fixation of electrodes, which can require a 

long time, especially with patients with motor deficits (Sitaram et al., 2007). 

1.2.2. Magnetoencephalography-BCIs 

By recording the magnetic fields that are produced by electrical currents in the 

brain, MEG is closely related to EEG (Hämäläinen, Hari, Ilmoniemi & 

Lounasmaa, 1993), but has a higher spatiotemporal resolution (Mellinger et 

al., 2007). Although EEG-BCIs can allow communication in healthy and 

paralyzed patients in a relative safe and inexpensive way, such 

communication is usually very slow. To overcome this issue, MEG-BCIs were 

developed. Mellinger and colleagues (2007) presented a MEG-BCI based on 

the µ rhythm, showing that participants were able to efficiently control their 

own brain activity within 32 minutes of feedback training. Buch et al. (2008) 

used a MEG-BCI to train chronic stroke patients to modulate the µ rhythm 

amplitude originating in sensorimotor areas of the cortex, which served to 

move a screen cursor that allowed controlling an orthosis attached to the 

paralyzed hand. Spüler and collaborators (Spüler, Rosenstiel & Bogdan, 

2011) have recently developed a fast feature selection method to increase 
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accuracy and reduce classification time in the analysis of high dimensional 

MEG-BCI data. 

1.2.3. Near-infrared spectroscopy-BCIs 

NIRS is a non-invasive optical method that utilizes light in the near-infrared 

range (700-1000 nm) to determine brain oxygenation, blood flow and 

metabolic status of specific brain areas (Sitaram et al., 2007). Regional brain 

activation is accompanied by increases in the cerebral blood flow (rCBF) and 

in the regional cerebral oxygen metabolic rate (rCMRO2), but since the degree 

of increases in rCBF exceeds that of increases in rCMRO2, the result is a 

decrease in deoxygenated hemoglobin in venous blood. As a consequence, 

an increase in total hemoglobin and oxygenated hemoglobin, accompanied by 

a decrease in deoxygenated hemoglobin in a specific region, indicates that 

such region is activated during the measurement (Sitaram et al., 2007).  

Although NIRS is still relatively new, it promises flexibility of use, portability, 

good spatial resolution and affordability (Sitaram et al., 2007; Villringer & 

Obrig, 2002). Sitaram et al. (2007) observe that NIRS also presents several 

disadvantages, such as slowness due to the inherent latency of the 

hemodynamic response and motion artifacts. However, the ability of this 

technique to record localized brain activity with a relatively high spatial 

resolution (in the order of a centimeter) provides an opportunity to control 

several motor and cognitive activities in a BCI. The use of NIRS in several 

cognitive and motor tasks has been shown to be particularly suitable for BCI 

development (Coyle, Ward & Markham, 2007; Coyle, Ward, Markham & 

McDarby, 2004; Power, Kushki & Chau, 2011; Sitaram et al., 2007; Villringer, 

Planck, Hock, Schleinkofer & Dirnagl, 1993). 

1.2.4. Functional Magnetic Resonance Imaging-BCIs  

fMRI is a procedure that, similarly to NIRS, measures brain activity by 

detecting associated changes in blood flow. Typically, fMRI measures the 

blood oxygenation level-dependent (BOLD) signal, which is correlated with 

blood flow increases (Uludag, Dubowitz & Buxton, 2006). 
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By using fMRI, it is possible to measure brain activity repeatedly every few 

seconds in a large number of voxels, each of a few millimeters (Haynes & 

Rees, 2006). The signal that is measured in each voxel reflects local changes 

in oxygenated and deoxygenated hemoglobin, elicited by neural activity 

(Logothetis & Pfeuffer, 2004).  

In the last years, fMRI data acquisition and processing techniques have seen 

remarkable improvement. The increase in image-encoding gradient power 

and the possibility to use stronger magnetic fields allow encoding images with 

an adequate signal-to-noise ratio (SNR). Moreover, faster computers and 

more advanced data processing software allow online image reconstruction 

and statistical analyses (Weiskopf et al., 2003). 

Due to the low spatial resolution of EEG, fMRI-BCIs have been developed in 

the last years. Such systems allow the recording of neuronal activity from the 

entire brain with a relatively high spatial resolution, so that brain activity from 

very specific cortical and subcortical regions can be extracted (Caria, Sitaram 

& Birbaumer, 2011; deCharms, 2008; Sitaram, Caria & Birbaumer, 2009; 

Sitaram et al., 2007; Weiskopf, 2011; Weiskopf et al., 2004). 

We will discuss fMRI-BCIs more thoroughly in the following section, 

describing mental state detection with magnetic resonance imaging, and 

focusing also on the use of these kinds of systems in rehabilitation contexts. 

1.3. Mental state detection with functional magnetic resonance imaging 

fMRI is an important tool to address what Norman and colleagues (2006) 

have defined as the three main questions in cognitive neuroscience: 1) What 

information is represented in which brain structures? 2) How is such 

information represented? 3) How is that information transformed during 

different processing stages? Several human neuroimaging studies have 

provided strong evidence of the possibility to decode mental states from brain 

activity (Haynes & Rees, 2006). The prediction of mental states from brain 

activity is a major aim of neuroscience and could be applied to many different 

fields, such as the assessment of affect in verbally incompetent people with 

dementia, minimally conscious state (MCS) and locked-in syndrome (LIS), the 
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development of BCIs for the control of artificial limbs or computers, and lie 

detection (Haynes & Rees, 2006; Sitaram et al., 2011). 

In the last years, the development of new acquisition techniques, the increase 

of computational power, and the development of more advanced algorithms 

have increased the possibility to perform a mental state classification based 

on the analysis of the BOLD signal (Norman et al., 2006). These 

improvements include linear classifiers, such as correlation-based classifiers 

(Haxby et al., 2001; Spiridon & Kanwisher, 2002), neural networks (Polyn, 

Natu, Cohen & Norman, 2005), linear discriminant analysis (Carlson, Schrater 

& He, 2003; Davatzikos et al., 2005; Haynes & Rees, 2005a; Haynes & Rees, 

2005b; Kamitani & Tong, 2005; O'Toole, Jiang, Abdi & Haxby, 2005) 

Gaussian Naive Bayes classifiers (Mitchell et al., 2004), and Support Vector 

Machines (SVMs, described more in detail in Chapter 5, (Cox & Savoy, 2003; 

LaConte, Strother, Cherkassky, Anderson & Hu, 2005; Lee, Halder, Kübler, 

Birbaumer & Sitaram, 2010; Mourão-Miranda, Bokde, Born, Hampel & Stetter, 

2005; Mourão-Miranda, Friston & Brammer, 2007; Mourão-Miranda, Reynaud, 

McGlone, Calvert & Brammer, 2006; Sitaram et al., 2011; Vapnik, Golowich & 

Smola, 1997). 

Although most of the research in the field of mental state detection focused on 

offline pattern classification, using techniques that allow the classifier to learn, 

new approaches attempt to obtain online or quasi-online classification of 

mental states (Carlson et al., 2003; Davatzikos et al., 2005; Hasson, Nir, 

Levy, Fuhrmann & Malach, 2004; Haxby et al., 2001; Haynes & Rees, 2005a; 

Haynes & Rees, 2005b; Haynes & Rees, 2006; Lee et al., 2010; Lee, Ruiz, 

Caria, Birbaumer & Sitaram, 2010; Logothetis & Pfeuffer, 2004; Mitchell et al., 

2004; O'Toole et al., 2005; Polyn et al., 2005; Sitaram et al., 2005; Sitaram et 

al., 2007; Sitaram et al., 2011; Spiridon & Kanwisher, 2002; Tsao, Freiwald, 

Tootell & Livingstone, 2006). This way, users do not need to be trained to self-

regulate their brain activity, since the system learns to recognize the activation 

patterns that occur spontaneously in the brain. 

Sitaram et al. (2011) distinguish between three major themes in the study of 

pattern classification of brain signals. The first theme includes several 

methodological studies aiming at incorporating and adapting existing methods 

in the field of machine learning to fMRI data classification (LaConte et al., 
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2003; LaConte et al., 2005; Martínez-Ramón, Koltchinskii, Heileman & Posse, 

2006; Shaw et al., 2003; Strother et al., 2004). A second research topic 

focuses on the application of pattern classification to obtain greater 

knowledge of spatial and temporal patterns of brain activity during cognitive, 

affective and perceptual states, represented by studies on the neural 

antecedents of voluntary movement (Soon, Brass, Heinze & Haynes, 2008), 

visual processing (Kamitani & Tong, 2005), memory recall (Polyn et al., 2005), 

lie detection (Davatzikos et al., 2005), and emotion perception (Pessoa, 

Padmala & Morland, 2005). Finally, a third class of studies is related to the 

field of BCIs and neurorehabilitation (Caria et al., 2006; deCharms et al., 

2004; deCharms et al., 2005; Posse et al., 2003; Rota et al., 2006; Ruiz et al., 

2008; Sitaram et al., 2005; Veit et al., 2006; Weiskopf et al., 2004; Weiskopf 

et al., 2003; Yoo & Jolesz, 2002; Yoo et al., 2004). For our aims, it is 

particularly important to review the main aspects of mental state 

discrimination with fMRI, together with possible applications in 

neurorehabilitation. 

1.3.1. Mental state discrimination and neurorehabilitation with fMRI 

BOLD fMRI signals measure neural responses indirectly (Logothetis & 

Pfeuffer, 2004), and the relationship between mental state detection and the 

underlying neural activity can be extremely complex.  

In order to decode a mental state (i.e. a cognitive or emotional state), it is 

necessary that the brain activity corresponding to a particular state can be 

separated and distinguished from other possible mental states (Haynes & 

Rees, 2006). In an ideal situation, such distinction is given when different 

mental states are encoded in spatially separated brain areas. This kind of 

approach has been most commonly examined concerning the human visual 

field and in the perception of objects and visual images. It is known that it is 

possible to distinguish separable cortical modules, which represent specific 

kinds of visual information. For example, the fusiform face area (FFA) is a 

region of the human ventral visual stream that responds more strongly to 

faces than to other kinds of objects, while the parahippocampal place area 

(PPA) is a region of the parahippocampal gyrus that responds more strongly 
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to visual scenes and views of buildings (Allison et al., 1994; Epstein & 

Kanwisher, 1999; Kanwisher, McDermott & Chun, 1997; O'Craven & 

Kanwisher, 2000). Since these cortical representations are separated from a 

certain distance in the brain, it is possible to determine whether a person is 

thinking about faces or visual scenes on the basis of the levels of activation in 

these two brain areas (Haynes & Rees, 2006). Similar separable neural 

representations are also present in the visual field maps of the early visual 

cortex (Engel et al., 1994). Distinct modular processing regions in the visual 

pathway have been proposed for many different other object categories, such 

as body parts (Downing, Jiang, Shuman & Kanwisher, 2001) and letters 

(Cohen et al., 2000). Moreover, the activity in separate brain areas can be 

used to infer behavior. Dehaene and colleagues (1998) demonstrated the 

possibility to discriminate whether participants were moving their right or their 

left thumb, according to the difference between left and right primary motor 

cortex activations.  

Haxby and colleagues (2001) showed that not only location-based 

approaches, but also multi-voxel approaches could be used to distinguish 

between cognitive states. In this study, participants were presented with 

different visual stimuli such as faces, buildings, and different kinds of objects. 

The data were then split in half, and the multi-voxel response pattern to each 

category was characterized separately for each half. By doing a within-subject 

correlation of the first-half patterns with the second-half patterns, the Authors 

showed that each category was associated to a distinct activity pattern, since 

each first-half pattern matched its relative second-half pattern more than the 

patterns associated with other categories. Similar findings are reported in 

other studies (Carlson et al., 2003; Cox & Savoy, 2003; Hanson, Matsuka & 

Haxby, 2004; O'Toole et al., 2005; Spiridon & Kanwisher, 2002; Tsao, 

Freiwald, Knutsen, Mandeville & Tootell, 2003). Mitchell and colleagues 

(2004) report that multivariate pattern analysis methods are effective in 

discriminating whether a subject is looking at a picture or a sentence, whether 

the subject is reading an ambiguous or a non-ambiguous sentence, and the 

semantic category of a read word. Other multivariate pattern analysis studies 

focused on mental states that cannot be inferred directly from the stimulus, 

such as lying during a card game (Davatzikos et al., 2005), or which of three 
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categories the subject is thinking about during a memory retrieval task (Polyn 

et al., 2005). 

If the mental states that have to be discriminated are distinct enough from one 

another, multivariate pattern analysis techniques allow having a reliable 

discrimination based on single brain scans acquired over a period of circa 2-4 

seconds (Carlson et al., 2003; LaConte et al., 2003; LaConte et al., 2005; 

Mitchell et al., 2004; Mourão-Miranda et al., 2005; O'Toole et al., 2005; Polyn 

et al., 2005; Strother et al., 2004). Such increase in temporal resolution allows 

the definition of a temporal trace of a particular mental state over the course 

of the experimental task, which could subsequently be related to the subject’s 

ongoing behavior (Norman et al., 2006). Despite the intrinsic limitations in the 

temporal resolution of multivariate pattern analysis, due to the temporal 

dispersion in the hemodynamic response measured by fMRI, several studies 

used these methods to trace cognitive variations occurring in the order of 

seconds, for example in predicting the time course of recall behavior in a 

memory task (Polyn et al., 2005) or second-by-second changes in perceived 

stimulus dominance during a binocular rivalry task (Haynes & Rees, 2005b). 

Unconscious mental states, such as the perceptual representation of invisible 

stimuli (Reingold & Merikle, 1988) or unconscious motor preparation, are a 

specific kind of covert information. Research on decoding unconscious states 

seems to be promising, also for tracking their temporal dynamics (Haynes & 

Rees, 2005b), leading to important implications for theoretical models of 

human consciousness (Haynes & Rees, 2006). These approaches can also 

be used to decode more complex cognitive states, such as unconscious racial 

biases (Golby, Gabrieli, Chiao & Eberhardt, 2001; Hart et al., 2000; Phelps et 

al., 2000), or unconscious motor intentions immediately preceding a voluntary 

action (Blankertz et al., 2003; Haggard & Eimer, 1999). Since these studies 

have demonstrated the possibility to access neural information about 

intentions before they become conscious, they raise the issue of whether they 

could also reveal unconscious determinants of human behavior (Haynes & 

Rees, 2006). 

 

Affective neuroscience has seen a huge proliferation in the last years thanks 

to modern neuroimaging approaches such as positron emission tomography 
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(PET) and fMRI, aiming at revealing the neural basis of emotion and 

personality by investigating emotional recognition, experience, memory, 

regulation, and individual differences in the human brain (Allman, Hakeem, 

Erwin, Nimchinsky & Hof, 2001; Canli & Amin, 2002; Davidson, Pizzagalli, 

Nitschke & Putnam, 2002; Davis & Whalen, 2001; Drevets, 2000; LeDoux, 

2000). A consequence of these approaches is the growing interest in “social 

neuroscience” (Cacioppo, Berntson, Sheridan & McClintock, 2000; Ochsner & 

Lieberman, 2001) and in “forensic neuroimaging” (Abbott, 2001; Aggarwal, 

2009; Greene, Sommerville, Nystrom, Darley & Cohen, 2001; Kiehl, 2004; 

Moll, de Oliveira-Souza, Bramati & Grafman, 2002), with the aim of predicting 

violent behavior and psychopathy. 

The assumption that emotional processing involves the limbic system 

(LeDoux, 1996; Papez, 1937) has been recently verified with fMRI and PET, 

which have shown emotion-related increases in cerebral blood flow or BOLD 

signal in cortical, limbic, and paralimbic regions (Phan, Wager, Taylor & 

Liberzon, 2002). Several researchers have hypothesized that specific regions 

are specialized in different emotional processes (Davidson & Irwin, 1999; 

LeDoux, 2000; Maddock, 1999). However, imaging studies taken individually 

cannot completely define which brain regions are responsible for emotional 

processing due to low statistical power, and heterogeneity of experimental 

design, imaging methods and analyses. For this reason, Phan and colleagues 

(2002) performed a meta-analysis of 55 activation studies (43 PET and 12 

fMRI), with the goal of determining the common or distinct patterns of 

activation across different emotional tasks. The first result of this research 

was that no specific brain region was consistently activated across studies, 

emotions, and induction methods, indicating that no single brain area is 

commonly activated by all emotional tasks. However, the Authors did find that 

the medial prefrontal cortex (MPFC) was commonly activated in four out of 

five specific emotions, in at least 40% of the studies. These results are 

consistent with the ones reported by Lane and collaborators (Lane, Fink, 

Chau & Dolan, 1997; Lane, Reiman, Ahern, Schwartz & Davidson, 1997; 

Lane et al., 1997) and Reiman et al. (1997), which indicate that the MPFC is 

involved in the processing of emotional films and pictures, and in both 

negative and positive emotions. This can be explained by the assumption that 



Classical conditioning of the BOLD signal for mental state classification 
!

-""
!

several processes, such as emotional appraisal, regulation, and decision-

making, should be common to different emotional tasks, and the MPFC could 

be involved in the more cognitive aspects of emotional processing (Drevets & 

Raichle, 1998), although the literature shows controversial results (Cabeza & 

Nyberg, 2000; Duncan & Owen, 2000). 

Phan and colleagues (2002) also report that fear induction is strongly 

associated with the amygdala. More specifically, the amygdala appears to be 

involved in the recognition of fearful facial expressions (Calder, 1996), 

aversive pictures (Irwin et al., 1996; Simpson et al., 2000; Taylor et al., 1998), 

fear conditioning (Bechara et al., 1995; LaBar, Gatenby, Gore, LeDoux & 

Phelps, 1998; LeDoux, 1993; Morris et al., 1998; Morris, Ohman & Dolan, 

1998), fearful emotional responses from direct stimulation (Halgren, Walter, 

Cherlow & Crandall, 1978) and detection of environment threat (Isenberg et 

al., 1999; Scott et al., 1997). An alternative interpretation for the role of the 

amygdala is its involvement in vigilance and salience processing (Davis & 

Whalen, 2001; Whalen et al., 1998).  

The meta-analysis performed by Phan et al. (2002) also showed that sadness 

was significantly associated with the activation of the subcallosal cingulated 

cortex (SCC), localized to the ventral/subgenual anterior cingulated, more 

than twice as frequently as any other emotion. Consistently with this finding, 

SCC hypometabolism and hypoperfusion was found in resting state studies of 

patients with clinical depression (Drevets et al., 1997; Mayberg, Lewis, 

Regenold & Wagner, 1994). Phan and colleagues (2002) report that almost 

70% of happiness induction studies show activation in the basal ganglia (BG), 

in agreement with several studies on positive emotions, regarding the use of 

addictive substances (Stein et al., 1998), pleasant activities like playing 

videogames (Koepp et al., 1998), reward processing (Rolls, 1999), sexual 

pleasure and competitive arousal (Rauch et al., 1999). Other interesting 

findings described by Phan et al. (2002) concern activations associated with 

the induction method. Emotional induction via visual stimuli activated the 

amygdala and the occipital cortex; induction by emotional recall or imagery as 

well as emotional tasks with cognitive demand activated the anterior 

cingulated cortex (ACC) and the insula. 
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Given the encouraging results, the emerging field of fMRI-BCIs can be 

considered as a promising tool for affective neuroscience and 

neurorehabilitation, with the aim of treating emotional disorders such as 

anxiety, sociopathy, chronic pain and schizophrenia (Sitaram et al., 2011). 

Both healthy individuals and patients can learn to voluntarily self-regulate their 

brain activation in specific regions. This self-regulation training can be 

exploited in order to obtain behavioral modifications, which can be useful for 

neurorehabilitation (Caria et al., 2006; deCharms et al., 2004; deCharms et 

al., 2005; Posse et al., 2003; Rota et al., 2006; Sitaram et al., 2005; Sitaram 

et al., 2011; Veit et al., 2006; Weiskopf et al., 2004; Weiskopf et al., 2003; Yoo 

& Jolesz, 2002; Yoo et al., 2004). When the neurobiological basis of a 

disorder are known in terms of abnormal activations in specific brain areas, 

fMRI-BCIs can be developed with the aim of modifying such activations 

(Sitaram et al., 2011). 

Weiskopf and colleagues (2003) presented an fMRI-BCI that allowed a 

volunteer to control the activation in the rostral-ventral and dorsal portion of 

the ACC. DeCharms et al. (2005) used real-time fMRI to train subjects to self-

regulate activation in the rostral ACC (rACC), which is associated to pain 

perception and regulation. The authors showed that when participants 

voluntarily increased or decreased the activation in the rACC, there was a 

variation in pain perception. Chronic pain patients benefited from this 

treatment, reporting a decrease in the ongoing level of pain. 

Posse and collaborators (2003) reported that real-time fMRI analyses of 

activations in temporolimbic regions, which play an important role in the 

regulation of emotions, could be used to detect amygdala activity during self-

induced sadness. This kind of fMRI-BCI could be helpful in the treatment of 

several neuropsychiatric conditions that are related to the regulation of 

amygdala activations, such as depression. 

Ruiz et al. (2011) recently exploited the possibility for subjects to achieve self-

regulation of circumscribed brain regions to train schizophrenic patients to 

voluntarily control the bilateral anterior insula with contingent real-time fMRI 

neurofeedback, through a two-week training. Following self-regulation, 

patients improved the ability to discriminate between different facial emotions, 

which is severely compromised in schizophrenia. These results open the path 
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for further real-time fMRI studies in psychiatric populations, with consequent 

rehabilitative applications. 
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1.4. Conclusions and future directions 

The last years have seen a remarkable development in the field of mental 

state classification and the consequent application on BCIs. Not only EEG-

BCIs based on both voluntary and non-voluntary regulation, but also systems 

based on MEG, NIRS and fMRI have been developed. So far, most BCIs 

have been tested on patients with communication difficulties due to motor 

impairment. Often, these BCIs require an active involvement of the user, who 

needs to learn to voluntarily self-regulate brain signals. For this reason, it is 

very difficult to utilize existing BCIs with patients with cognitive impairment, 

such as mental retardation or dementia. The basic principle of BCIs, namely 

inferring different states of the user from brain activity, could be however 

exploited to design new BCIs that may be used also in presence of cognitive 

impairment. Such BCIs could rely on involuntary signals, such as the ones 

related to emotions.  

Particularly interesting for our aims is the differentiation of mental states using 

fMRI, in order to develop a basic communication system based on differential 

brain activations, which do not necessarily require the user to learn a new 

task or to self-regulate brain activity. The possibility to perform a classification 

of different mental states by using different kinds of algorithms is evident from 

the literature. So far, most research focused on offline pattern classification, 

although the need to apply this methodology for instant communication urges 

to develop more complex algorithms to obtain online classification of mental 

states.  

Although it is possible to decode some aspects of mental states by extracting 

neuroimaging signals, there are still some technical limitations related to 

spatial and temporal resolution (Haynes & Rees, 2006), and regarding the 

complete understanding of the BOLD signal (Logothetis & Pfeuffer, 2004). 

Another obstacle is given by the high costs and the lack of transportability of 

the current methodologies that are mostly used in neuroimaging, such as 

fMRI and MEG. At this time, only EEG and NIRS can be considered 

transportable and relatively affordable technologies, but these advantages are 
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counterbalanced by a lower resolution. It is obviously misleading to imagine 

that fMRI-based BCIs could one day be used by a patient with communication 

problems in everyday life. Nevertheless, fMRI represents an extremely 

powerful methodology to identify with a good spatial resolution the areas and 

the brain patterns that could be exploited in BCI communication, constituting a 

preliminary and fundamental step towards the development of an efficient and 

more portable system (e.g. based on NIRS). 

Besides the hindrances given by the high costs and the low portability of the 

techniques that are actually used in mental state decoding, there are several 

issues that need to be considered. Most prominently, there is the issue of 

generalization of the findings. In most of the decoding studies, an algorithm 

was trained individually for each subject for a given set of mental states, 

based on data recorded in a single session. It is still questionable whether this 

extremely simplified situation may be generalized to more practical 

applications, over time, across subjects, and in different situations (Haynes & 

Rees, 2006).  

Another complex issue concerns the generalization across the same 

instances of the same mental state, given the impossibility to train the 

classifier on an infinite series of exemplars (e.g., different stimuli that aim at 

eliciting “happiness”). Consequently, the classification algorithm should be 

flexible enough to ignore the differences that are not relevant for the mental 

state classification. It has been shown that pattern classifiers can generalize 

to new features (Kamitani & Tong, 2005), new stimulation conditions (Haynes 

& Rees, 2005b), and new exemplars (Cox & Savoy, 2003). Notwithstanding, 

the identification of a unique brain pattern associated with an invariant feature 

of different exemplars is strongly dependent on the grouping of different 

mental states as belonging to one class. If a class of mental states is very 

heterogeneous, it might not be possible to map them to a univocal neural 

pattern. For this reason, it is very important to categorize mental states 

carefully, also considering that generalization can often be obtained with the 

compromise of having a reduced discrimination of individual exemplars 

(Haynes & Rees, 2006). 

Ideally, it should be possible to generalize the classification of mental states 

across different individuals, requiring little or no calibration at all for new 
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subjects. Several algorithms for data pre-processing, such as spatial 

alignment and warping of individual structural brain images to stereotactic 

templates (as in the Statistical Parametric Mapping software, SPM) are well 

established (Friston et al., 1995), but the spatial correspondence between 

analogous functional locations in different brains is not always perfect, 

especially when considering old individuals, or patients affected by 

neuropathology.  

Another issue that arises in the decoding of mental states is the measurement 

of concurrent mental states, since the spatial patterns corresponding to the 

different states might overlap. Some degree of separation can be achieved by 

assuming (as a simplification) that the patterns are linearly superimposed 

(Mitchell et al., 2004), but difficulties stand out when different mental states 

are encoded in the same neuronal populations. 

As observed by Haynes & Rees (2006), the main challenge to mental state 

detection is that the number of possible mental states is infinite, while the 

number of training exemplars or categories is obviously limited. For this 

reason, mental state decoding is restricted to simple situations, with a fixed 

number of alternatives with available training data. The generalization from a 

sampled set of categories to new categories requires an extrapolation, which 

is only possible if an underlying representational space is determined, in 

which different mental states are encoded. This seems to be obtainable for at 

least some kinds of mental content. 

Overall, classification of fMRI data, and more specifically, of the BOLD signal, 

is a promising methodology that could be used in the field of BCIs. As we will 

see more in detail in the following chapters, our aim is to combine mental 

state classification with classical conditioning, in order to obtain a paradigm in 

which different mental states can be detected without requiring subjects to 

learn to actively self-regulate their brain signals. Such paradigm could be 

used more feasibly with patients with cognitive impairment, such as patients 

with Alzheimer’s disease (AD).  

In the following chapter, we will describe how BCIs could be adapted to be 

used with AD patients, by exploiting a so-called “passive” BCI paradigm, in 

order to allow basic yes/no communication. 



!

2. Can we apply brain-computer 

interfaces with Alzheimer patients? 

2.1. Introduction 

In the present chapter we will introduce the possibility to apply BCIs for basic 

communication with individuals with Alzheimer’s disease (AD, Liberati et al., 

2012; Liberati et al., 2011a; Liberati et al., 2011b). Most BCIs realized for 

communication that have been developed in the last years are based on 

operant conditioning and intentionally learned responses, thus requiring users 

to actively learn to self-regulate their own brain activity. These kinds of BCIs, 

however, are not suitable for patients with an impaired cognitive system. We 

decided to realize a paradigm based on classical conditioning instead of 

operant conditioning, focusing particularly on the idea of developing a 

“passive” brain computer interface for mental state detection and basic yes/no 

communication with Alzheimer patients in the most advanced stages of the 

disease. 

Our aim was to introduce a system able to convey information related to the 

patients’ mental states, such as their emotions (e.g. happiness or sadness) 

and cognitive states (e.g. “yes” or “no” thinking), since the ability to have such 

mental states is preserved in the course of the neuropathology (Woods, 

2001). 

The main characteristics of AD, and particularly communication deficits and 

emotional recognition within this neuropathology, will be reviewed in the 

following sections. 
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2.2. Alzheimer’s Disease  

AD, first described by Emil Kraeplin and Alois Alzheimer in 1906 (Berchtold & 

Cotman, 1998; Weber, 1997), is the most common kind of dementia. It can be 

defined as a fatal, progressive and neurodegenerative disorder, clinically 

manifested by cognitive deterioration, impairment of activities of daily living, 

and a variety of neuropsychiatric symptoms and behavioral disturbances 

(Cummings, 2004). Although AD mostly affects memory, other symptoms, 

such as the occurrence of confusional states, time and space disorientation, 

mood and personality changes, apathy, and language disorders, can 

influence patients’ functioning pervasively (Alzheimer's Association, 2011).  

According to the “World Alzheimer Report”, commissioned by Alzheimer’s 

Disease International (ADI) and based on research data available in 2009, the 

number of people living with dementia worldwide in 2010 was estimated to be 

35.6 millions (Alzheimer's Disease International, 2009). Moreover, this 

number is estimated to nearly double every 20 years, reaching 65.7 millions in 

2030, and 115.4 millions in 2050. It is clear that demographic aging, which on 

one side reflects the successes of improved health care over the last century, 

is on the other side inevitably leading to an alarming growth of AD and related 

dementias. AD has been identified in all countries and cultures in which 

systematic research has been carried out (Alzheimer’s Disease International, 

2011). Especially in low and middle income countries, the disturbed behavior 

that characterizes people with dementia is poorly understood, and can lead to 

stigma, blame, and distress for caregivers (Ferri, Ames & Prince, 2004). 

Several studies have reported high levels of psychological morbidity among 

caregivers of people with dementia, especially concerning major depression 

(Cuijpers, 2005; Murray, Schneider, Banerjee & Mann, 1999; Prince & 10/66 

Dementia Research Group, 2004; Thompson et al., 2007). 

The main cause of AD is mostly unknown, but there are several competing 

hypotheses that involve a reduced synthesis of acetylcholine (cholinergic 

hypothesis, Francis, Palmer, Snape & Wilcock, 1999; Shen, 2004; Wenk, 

2003), amyloid beta (A") deposits (amyloid hypothesis, Games, 1995; Hardy 

& Allsop, 1991; Hsiao et al., 1996; Lott & Head, 2005; Masliah et al., 1996; 

Polvikoski, 1995), abnormalities in the tau protein (tau hypothesis, Chun & 
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Johnson, 2007; Goedert, Spillantini & Crowther, 1991; Iqbal, 2005; Mudher & 

Lovestone, 2002), herpes simplex virus type 1 (Itzhaki & Wozniak, 2008), 

age-related myelin breakdown (Bartzokis, 2011), and oxidative stress 

(Butterfield & Sultana, 2011; Lee et al., 2012; Su et al., 2008). 

AD is characterized by a substantial loss of neurons and of the synapses that 

connect them throughout the neocortex. Plaques and tangles first develop in 

the enthorinal cortex, spread over time, and finally reach the neocortex. The 

degeneration in the basal forebrain reduces the supply of some brain 

chemicals, including neurotransmitter acethylcohline, which has a very 

important role in memory (Whitehouse et al., 1982). Over time, neuronal 

death and tissue loss lead the brain to shrink dramatically, affecting many of 

its functions (Double et al., 1996). 

AD is often diagnosed in people over 65 years of age. The onset can be 

earlier, however, in 5-10% of the cases (Brookmeyer, Gray & Kawas, 1998). 

Early symptoms are often misconceived and considered as normal age-

related concerns. The difficulty in remembering recent events and the inability 

to acquire new information are often the first indicators of AD (Hort et al., 

2010; Salmon, 2011). Not all memory abilities are equally compromised. 

Episodic, semantic and implicit memory are normally not affected as much as 

the acquisition of new information (Carlesimo & Oscar-Berman, 1992; Jelicic, 

Bonebakker & Bonke, 1995).  

The progression of the illness from a subclinical to a severe stage is relatively 

slow, and it is possible to distinguish between four main stages: pre-dementia, 

mild dementia, moderate dementia, and severe dementia (Förtsl & Kurz, 

1999). The main aspects of these stages will be described in the following 

paragraphs. 

Pre-dementia 

Neuropsychological investigation can reveal very mild cognitive impairment, 

regarding mostly difficulties in acquiring new information, around five years 

before the clinical diagnosis of dementia (Förtsl & Kurz, 1999; Linn et al., 

1995).  

The ability to plan or to access the semantic memory store may also be mildly 

affected, but with no deterioration in the Activities of Daily Living (ADL), since 
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at this stage individuals are able to use memory aids and different supportive 

strategies to compensate their impairment (Förtsl & Kurz, 1999). Non-

cognitive alterations of behavior, such as social withdrawal and depressive 

dysphoria, may also emerge during this first stage (Jost & Grossberg, 1995). 

Mild dementia 

In mild dementia, declarative recent memory starts to be evidently affected, 

while short-term memory, old declarative memory and implicit/procedural 

memory are usually relatively preserved. ADL can be affected due to the 

reduced ability to plan, judge, and organize (Förtsl & Kurz, 1999). Spatial 

disorientation, together with a decreased ability in estimating distances and 

speed, lead to an increased risk of having accidents, especially when driving 

(Trobe, Waller, Cook-Flannagan, Teshima & Bieliauskas, 1996). Patients can, 

however, still live independently for most of the time (Förtsl & Kurz, 1999), 

and complex motor tasks do not show significant impairment on standard 

neurological examination (Kluger et al., 1997). Symptoms of depression and 

apathy may also be evident at this stage of the neuropathology (Burns, Lewis, 

Jacoby & Levy, 1991; Craig et al., 1996; Zubenko et al., 1989).  

Moderate dementia 

Beatty and colleagues (Beatty, Salmon, Butters, Heindel & Granholm, 1988) 

observed how, due to their severe retrograde amnesia, patients in the 

moderate state of dementia could appear to be “living in the past”, therefore 

not understanding part of their present. Patients become also more 

distractible and lose insight in their condition, so that the use of supportive 

memory strategies is highly compromised. Spatial disorientation increases, 

together with cortical visual agnosia and prosopagnosia (Förtsl & Kurz, 1999). 

Patients can suffer from mood disorders, which may be accompanied by 

aggressive and assaultive behavior (Devanand et al., 1997; Eastley & 

Wilcock, 1997). Aimless activities, such as wandering and hoarding, are also 

common (Devanand et al., 1997), and the burden for partners and caregivers 

is often very high due to the patients’ loss of independence (Cuijpers, 2005; 

Murray et al., 1999; Prince & 10/66 Dementia Research Group, 2004; 

Thompson et al., 2007; Varela, Varona, Anderson & Sansoni, 2011). 
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Severe dementia 

In the latest stages of dementia, almost all cognitive functions are severely 

impaired, and even early biographical memories can be lost. Patients may fail 

to recognize not only close relatives, but also their own reflection in the mirror 

(Grewal, 1994). They can manifest several behavioral disturbances, such as 

restlessness, aggression, a disturbed circadian rhythm, apathy, and 

exhaustion (Förtsl & Kurz, 1999). Motor abilities can also be compromised, 

leading to difficulties in chewing and swallowing (Förtsl & Kurz, 1999), 

incontinence (Franssen, Kluger, Torossian & Reisberg, 1993), rigidity and 

primitive reflexes (Förstl et al., 1992; Förtsl & Kurz, 1999). 

 

The most common instrument used to screen dementia and to evaluate the 

severity of cognitive impairment is the Mini Mental State Examination (MMSE, 

(Folstein, Folstein & McHugh, 1975), a 30-point test that can be administered 

in circa 10 minutes. The MMSE can also be used longitudinally, to assess the 

course of individual cognitive changes over time. The main categories that are 

evaluated are place and time orientation, name registration (repeating name 

prompts), attention and calculation, name recall, language (naming some 

objects), repetition of a phrase, and the ability to follow complex commands. 

Scores equal or higher than 25 indicate intact cognitive function; scores 

between 21 and 24 indicate mild cognitive impairment; scores between 10 

and 20 and indicate moderate cognitive impairment; scores lower than 9 

indicate severe cognitive impairment. 

 

In the following paragraphs, we will describe in more detail two aspects of AD 

that give grounds for the development of our experimental paradigm 

(described in Chapter 3), namely communication and recognition of emotions.  

2.2.1. Communication deficits in Alzheimer’s disease 

Communication impairment can be pervasive in AD, and is believed to occur 

in 88-95% of the individuals with the disease (Förtsl & Kurz, 1999; Frank, 

1994; Thompson, 1987). The presence of a language disorder is one of the 

accepted criteria for its diagnosis (Alzheimer's Association, 2011). Such 
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impairment begins early in the course of AD and may precipitate the transfer 

of patients from their homes to long-term care facilities, further enhancing 

interaction difficulties (Kaakinen, 1995). 

Language disorders can be an early indicator of AD (Taler, Baum, Chertkow & 

Saumier, 2008), and according to some researchers, may be prior to memory 

problems (Bayles & Tomoeda, 1991). Difficulties in starting or following an 

extended conversation, together with anomia, circumlocutions, repetitions and 

digressions, are among the first discernable symptoms at the beginning of the 

disease (Kemper, Marquis & Thompson, 2001). In this first phase, discourse 

can be characterized by so-called “empty speech”, with high fluency but low 

propositional content (Kemper, LaBarge, Ferraro, Cheung & Storandt, 1993; 

Nicholas, Obler, Albert & Helm-Estabrooks, 1985). 

In mild dementia, communication can be characterized by shrinking 

vocabulary and decreased word fluency (Förtsl & Kurz, 1999). 

Neuropsychological tests can show an impairment of object naming and word 

generation (Chobor & Brown, 1990; Locascio, Growdon & Corkin, 1995). 

The ability to understand complex or abstract speech gradually diminishes 

with the progressing of the dementia (Goldfein, 2007), showing a reduction in 

grammatical complexity (Bates, Harris, Marchman & Wulfeck, 1995), an 

exacerbation of anomia (Kemper, 1991), and the deterioration in the ability to 

self-monitor linguistic errors (McNamara, Obler, Au, Durso & Albert, 1992). In 

the moderate stage of the disease, the abilities to read and write also 

deteriorate (Cummings, Houlihan & Hill, 1986; Harnish & Neils-Strunjas, 2008; 

Neils, Boller, Gerdeman & Cole, 1989). 

In the most advanced stages of AD, short and repetitive high-frequency 

fragments mostly characterize patients’ speech. As the disease progresses, 

patients may be left with the ability to utter only a word or two (Förtsl & Kurz, 

1999; Miller, 1989) or regress to mutism (Au, Albert & Obler, 1988). Despite 

these symptoms, even in the latest stages of the disease patients may seek 

for social contact and attempt to respond to conversational stimuli (Kim & 

Bayles, 2007; Mayhew, Acton, Yauk & Hopkins, 2001). By video-recording AD 

patients at different times of the day, Mayhew and colleagues (2001) showed 

that even when they were in the most advanced stage of the disease (MMSE 

score < 4), they sought for social contact through gestures, body language 
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and eye gaze. Such behaviors indicate that, despite the cognitive decline and 

the remarkable difficulties in articulating words and sentences, the will to 

communicate persists in the most severe stages of AD. Förstl and Kurz 

(1999) observed that even when patients are unable to articulate their 

simplest needs, they can receive and return emotional signals. This 

receptiveness should be taken into consideration, and should exploited for an 

emotional-based kind of communication. 

2.2.2. Recognition of emotions in Alzheimer’s disease 

Affectivity, as well as the ability to recognize and identify affective non-verbal 

stimuli (e.g. images and sounds), can be preserved in the course of AD, 

(Zaitchik, Koff, Brownell, Winner & Albert, 2006). Roudier and colleagues 

(Roudier et al., 1998) observed that although a deficit in facial identity 

discrimination is present in AD, patients are still able to discriminate between 

emotional expressions, showing that there is a dissociation between 

processing identity and processing emotions. Moreover, in their study, the 

ability to discriminate between emotions did not correlate with measures of 

cognitive impairment, such as the MMSE or the Raven Progressive Matrices 

scores. Similar results regarding facial emotion recognition were obtained in 

further studies (Fernandez-Duque & Black, 2005; Lavenu, Pasquier, Lebert, 

Petit & Van der Linden, 1999; Luzzi, Piccirilli & Provinciali, 2007; Shimokawa 

et al., 2000). 

Koff et al. (Koff, Zaitchik, Montepare & Albert, 1999) studied the ability to 

process emotional information both in AD and healthy controls, by using 

auditory stimuli, pictures of emotional situations, and videos representing 

facial expressions, gestures, and body movements. Results indicated that 

there were no significant differences between patients and controls relatively 

to the ability to process emotions presented through the auditory domain, 

such as non-verbal sounds like crying or screams. The control group, 

however, was better compared to the AD group in identifying emotions 

depicted in the drawings or presented in the videos, suggesting that the 

difficulties of patients in perceiving emotions could be secondary to the visuo-

spatial deficits associated with the neuropathology, and not depending on a 
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general processing deficit. This perspective was also supported by Bowers 

and colleagues (Bowers, Bauer & Heilman, 1993). Moreover, studies focusing 

on the perception of auditory emotional stimuli, prosody, and music, confirmed 

the ability of AD patients to discriminate between different emotions (Drapeau, 

Gosselin, Gagnon, Peretz & Lorrain, 2009; Gagnon, Peretz & Fülöp, 2009).  

We believe that the preserved ability to process and discriminate between 

emotional stimuli could allow the use of an emotion-based communication 

system. Moreover, exploiting emotion processing in AD patients may have a 

relevant effect on the quality of life of both sufferers and families (Bucks & 

Radford, 2004). 

2.3. Adapting BCI-systems to allow basic communication in Alzheimer 

patients 

BCI systems could be implemented to allow basic communication with AD 

patients in the advanced stages of the disease. So far, no research exists in 

this direction, due to the fact that, traditionally, BCIs were considered to 

require an intact cognitive system in order to function as a communication 

method. Moreover, most of the BCIs developed so far require active 

participation of the users, and long trainings to allow them to learn to self-

regulate their brain activity. Since BCIs based on operant training are 

obviously problematic for patients with cognitive deficits, we propose to adopt 

a paradigm shift from instrumental-operant learning to classical conditioning 

(Birbaumer, 2006).  

It has been recently suggested that not only voluntary auto-regulated brain 

signals that have been commonly used for BCI control, but also involuntary 

signals, independent from the user’s effort, may provide important information 

related to the user’s cognitive or emotional state (Nijboer et al., 2009). In the 

last years, so-called “affective” BCIs based on emotion-related brain signals 

have been introduced. The advantages of these interfaces is that, being 

emotion-based, they do not necessarily require users to actively perform a 

cognitive task, and can therefore be considered as “passive” BCIs (Fig. 2). 

These kinds of interfaces can be particularly useful with users that are not 
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able to accurately perform active tasks, such as persons with mental 

retardation or patients of dementia. As stated by Nijboer and colleagues 

(2009), affective BCIs could enable simultaneous expression of affect and 

content, hence providing a greater quality of life, not only for the patient, but 

also for the caregiver. For instance, the Authors point out that an emotion 

detection system could even serve as an alarm to inform the caregiver to 

check on the patient, e.g. in situations of psychological distress. 

One of the benefits of using a BCI for AD patients is that, besides allowing 

basic communication, its usage could promote neuroplasticity, opening up 

new opportunities for cognitive rehabilitation (Liberati, Raffone & Olivetti 

Belardinelli, 2012). In addition, patients’ capability to use the BCI, a faculty 

that may potentially be related to different stages or severity of the disease, 

may also serve in the future as useful diagnostic information. 
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2.3.1. Classical conditioning in Alzheimer’s disease 

One possible way to develop a passive BCI that could be used for basic 

communication with AD patients is to modulate brain responses through a 

semantic classical conditioning paradigm (Furdea et al., 2012; Montoya, 

Larbig, Pulvermüller, Flor & Birbaumer, 1996), thus moving away from the 

operant conditioning paradigm, which requires subjects to voluntarily modify a 

behavior (Domjan, 2009). Classical conditioning, which was first described by 

the Russian physiologist Ivan Pavlov in 1927 on the basis of his observations 

of salivation in dogs (Pavlov, 1927), is a simple kind of learning, which does 

not imply an active effort from the subjects. To obtain a conditioning effect, it 

is necessary to associate a specific so-called “neutral” stimulus (that is, a 

stimulus that does not elicit an evident response) to a “significant” stimulus, 

defined as unconditioned stimulus (US), which elicits a response (sometimes 

as a reflex). If the neutral stimulus is repeatedly presented with the US, it can 

become a conditioned stimulus (CS), producing a conditioned response (CR). 

From a neurobiological perspective, conditioning leads to the reinforcement of 

neural connections between neuronal pools and to the creation of cell 

assemblies (Hebb, 1949), distributed on different cortical areas, which are 

observable through fMRI.  

A classical conditioning paradigm could allow, for instance, associating an 

affirmative response (“yes”) to a positive emotion, and a negative response 

(“no”) to a negative emotion. A similar classical conditioning paradigm has 

been already used for the development of an EEG-BCI for the communication 

of paralyzed patients, indicating the possibility to discriminate between 

affirmative and negative thinking (Furdea et al., 2012). 

Classical conditioning may be partially compromised in AD, as shown in some 

studies on eye-blinking conditioning (Moore, Bondi, Salmon & Murphy, 2005; 

Solomon, Levine, Bein & Pendlebury, 1991; Woodruff-Pak & Papka, 1996; 

Woodruff-Pak, Logan & Thompson, 1990; Woodruff-Pak, Papka, Romano & 

Li, 1996). Moore et al. (Moore et al., 2005) showed that AD patients are able 

to acquire a conditioned response, although more slowly than healthy 

subjects. The study, however, does not clarify how early in the course of the 
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neuropathology is the possibility to obtain classical conditioning compromised.  

For our aims, it is important to consider that classical conditioning has been 

conceptualized as a form of implicit or procedural memory (Squire, 1987). The 

neural substrates of implicit memory are the circuits that connect the nucleus 

profundus of the cerebellum to the pons and to the red nucleus (Thompson & 

Krupa, 1994), which are regions that are usually not primarily affected by 

Alzheimer neurodegeneration. Therefore, it is reasonable to expect the 

acquisition of a conditioned response also in AD patients. Several studies 

have demonstrated that the acquisition of the cognitive response is possible in 

AD patients, if they have a prolonged exposition to the stimuli (Solomon et al., 

1995; Woodruff-Pak & Papka, 1996; Woodruff-Pak et al., 1996). 
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2.4. Conclusions 

In the present chapter, the idea of developing a BCI that could be used with 

AD patients is presented. 

BCIs provide alternative methods for communicating and acting on the world, 

since messages or commands are conveyed from the brain to an external 

device without using the normal output pathways of peripheral nerves and 

muscles. AD patients in the most advanced stages, who have lost the ability 

to communicate verbally, could benefit from a BCI that may allow them to 

convey basic thoughts (e.g. “yes” and “no”) and emotions. There is currently 

no research in this direction, mostly because the cognitive impairment that 

characterizes AD poses serious limitations to the use of traditional BCIs, 

which are normally based on instrumental learning and require users to self-

regulate their brain activation. However, it would be useful to develop a BCI 

for basic communication with AD patients, since their will to communicate 

appears to be preserved even in the most advanced stages of the disease, 

and understanding patients’ basic mental states could relieve caregivers at 

least partially from their burden. 

We propose a paradigm shift from instrumental learning to classical 

conditioning, with the aim of discriminating “yes” and “no” thoughts after 

associating them to positive and negative emotional stimuli respectively. This 

would represent a first step in the development of a BCI that could be used by 

AD patients, lending a new direction not only for communication, but also for 

rehabilitation and diagnosis.  

As for rehabilitation, it could be interesting to link the possibility to establish 

some kind of communication with AD patients with new cognitive training 

strategies. AD has been widely studied in relation to the cognitive reserve 

model (Liberati et al., 2012), according to which, patients with the same 

degree of neural degeneration may have different individual abilities in using 

cognitive strategies, due to life experiences such as a high educational 

attainment and a mentally engaging occupation (Stern, 2009). A challenge 

that has been raised in the last years is the possibility to exploit cognitive 
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reserve in the rehabilitation of AD patients (Liberati et al., 2012; Vance & 

Crowe, 2006; Vance, Roberson, McGuinness & Fazeli, 2010). Such 

perspective emphasizes how cognitive reserve should not be considered as a 

fixed factor, but rather as the result of a combination of experiences and 

environmental expositions that can take place during the entire life course. 

From a detailed examination of the literature, what emerges is that most 

efforts directed to AD rehabilitation were performed in the earliest stages of 

the disease (Liberati et al., 2012). One of the main problems in the more 

advanced stages of AD is represented by the huge communication difficulties 

with the patient, which render the interaction burdensome and unsuccessful. 

Restoring basic communication could represent a valid strategy to trigger 

neuroplasticity phenomena, following the “use it or lose it” perspective 

supported by Hultsch et al. (Hultsch, Hertzog, Small & Dixon, 1999), 

according to which, cognitive processes can be modified by exercise and 

experience, since the traffic of impulses strengthens synaptic connections. 

It is extremely important to point out that, since cognitive deterioration in AD 

strongly affects memory and reasoning abilities, it is necessary to exploit 

communication paths that are different from the ones that are normally used 

with subjects that have an intact cognitive system (e.g. answering complex 

questions). Such a system would also be useful in other situations of cognitive 

impairment, such as other types of dementia or mental retardation. 

A BCI based on classical conditioning could also serve for diagnostic 

purposes, for instance allowing the observation of the variations and the 

delays in the acquisition of the CR during the course of the neuropathology. 

The importance of developing a BCI system that could also be used by 

patients with cognitive impairment, such as in the case of Alzheimer’s 

disease, explains the need of testing such a system on healthy subjects and 

therefore validating our new paradigm, which will be described hereafter in 

Chapter 3.  





!

3. Classical Conditioning of the 

BOLD signal as a paradigm for 

basic yes/no discrimination 

3.1. Introduction 

The present chapter introduces a paradigm validation study on healthy 

subjects, based on classical conditioning of the BOLD signal within a BCI-

setting, with the aim of discriminating affirmative and negative thinking, after 

associating the relative responses to positive and negative emotional stimuli 

respectively. 

As explained in the previous chapters, the reason why we decided to develop 

a paradigm that diverges from the more traditional operant conditioning 

paradigm, which is commonly used in the BCI field, is the need to acquire a 

system that could be also used with individuals with cognitive impairment, 

who are not able to learn a new task or to actively self-regulate their own brain 

signals. In particular, the final aim of this new BCI system would be the 

application with AD patients in the more advanced stages of the disease, who 

have lost their ability to communicate, but still manifest some kind of 

communicative intention. 

Differential conditioning has been well studied over the last century. The basic 

principle of this learning mechanism is that one conditioned stimulus (CS+) is 

paired with an unconditioned stimulus (US), while another CS remains 

unpaired (CS-). The pairing of CS with US results in a conditioned response 

(CR) (Pavlov, 1927). Traditionally, three main phases can be identified in a 

classical conditioning paradigm, namely habituation, acquisition and 
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extinction. Habituation consists in presenting a series of unpaired CS and US, 

mostly to verify that the CS does not originate an evident CR before being 

paired with the US. Acquisition refers to the process of CR development, and 

has become a synonym for the term conditioning itself. Extinction is the 

gradual diminution of a CR that takes place when the US no longer occurs 

with the CS (Moore, 2002). Many variations on this model have been tested, 

such as different CS modalities, using pleasant/reward or 

aversive/punishment US and conditioning behavior or brain responses.  

In the present fMRI study, we introduce a semantic double conditioning 

paradigm with emotional sounds, in which incongruent and congruent word-

pairs are associated with a negative and a positive emotional sound 

respectively. Differently from previous conditioning studies, we try to condition 

two different responses, since once validated, this paradigm should be 

applied for communication, namely conditioning an affirmative (“yes”) and a 

negative (“no”) response. 

Classical semantic conditioning refers to the conditioning of responses to 

meaningful words or sentences, irrespective of the specific letters or sounds 

that constitute the words (Razran, 1939; Razran, 1961). The repeated 

association of words or sentences with a significant stimulus (the US) results 

in conditioning and produces a CR, measured at the level of cortical evoked 

responses (Montoya et al., 1996).  

Biconditional discrimination is a design in which multiple CSs are paired with 

one US (Saavedra, 1975). This design was first tested with humans in 2002 

(Lober & Lachnit, 2002) by pairing visual stimuli (different types of letter 

combinations) with one type of US (electrical shock), while other visual stimuli 

remained unpaired. With the term “double conditioning” we describe here a 

form of conditioning in which different CSs are paired with different USs 

(Lachnit, 1991). Lachnit (1991) showed that combining two USs in one 

experiment changes the properties of each US. In 1997, Watt and Honey 

performed conditioning experiments with rats using two auditory and two 

visual CS, which were cross-paired with 2 US (food or sucrose) (Watt & 

Honey, 1997). They concluded that rats do not simply encode the general 

affective properties of appetitive reinforcers during a Pavlovian conditioning 
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procedure, but rather have a more elaborate encoding, which influences 

performance.  

fMRI represents a privileged technique for studying classical conditioning of 

brain responses (Büchel & Dolan, 2000). Most reported studies concern 

conditioning with aversive stimuli (Büchel, Morris, Dolan & Friston, 1998; 

Klucken et al., 2012; LaBar et al., 1998; Ploghaus et al., 1999; Schneider et 

al., 1999). LaBar and colleagues (1998) performed a single-trial fMRI study of 

differential fear conditioning, using different geometric shapes as CS and an 

electric shock as US, showing that amygdala was activated during acquisition 

and extinction. Additional activation was also found in the ACC. The elicited 

responses were stronger during the early phase of each trial (early acquisition 

and early extinction), suggesting an interaction between time and condition. In 

another fear conditioning paradigm performed with fMRI, Büchel et al. (1998) 

found a greater response to the CS+ compared to the CS- not only in the 

ACC and in the amygdala, but also in motor-related areas such as the 

premotor cortex, which could be an expression of the readiness to escape an 

aversive situation. Also in this study, the evoked responses decreased over 

time. An fMRI study involving pain conditioning (Ploghaus et al., 1999), where 

a thermal pain (US) was associated to a color (CS) indicated the involvement 

of the ACC and the insula. 

Regions that are involved in classical conditioning, language and emotion 

processing are often located deep in the brain. For this reason, fMRI, with its 

relatively high spatial resolution that allows recording brain activity from very 

specific cortical and subcortical regions, represents a reasonable choice for 

studying a classical conditioning process involving semantic and emotional 

stimuli. 

The aim, the methods and the procedure adopted in our study will be 

described in detail in the following sections. 
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3.2. Aim and hypothesis 

The present study investigated the possibility to develop an auditory classical 

conditioning paradigm in a fMRI-BCI setting. Such paradigm was conceived to 

condition subjects to associate unconditioned emotional stimuli (US1 and 

US2, respectively an emotionally negative and an emotionally positive 

stimulus,) to incongruent (CS1) and congruent (CS2) word-pairs, eliciting a 

negative (“no”) and affirmative (“yes”) response respectively, in view of an 

application for communication with AD patients. More specifically, we 

investigated the possibility to discriminate a negative response from an 

affirmative response by means of a classification of the BOLD signal, 

following classical conditioning with emotional stimuli (Fig. 3). The advantage 

of this procedure is that it should be easier to classify emotional states (e.g. 

with a SVM, as in the study performed by Sitaram et al. (2011), than to 

discriminate the mental states related to “yes” and “no” thinking.  

In agreement with Sitaram and collaborators (2011) and with Anders and 

collaborators (Anders, Eippert, Weiskopf & Veit, 2008), we hypothesized 

obtaining, following the conditioning, a greater differentiation between 

negative and affirmative responses in areas that are mostly involved in 

emotional processing, such as the insula and some portions of the superior 

temporal gyrus (STG) and superior frontal gyrus (SFG). We also hypothesized 

the activation of areas directly involved in classical conditioning, such as the 

hippocampus (Berger & Thompson, 1978; Berger, Alger & Thompson, 1976; 

Clark, Manns & Squire, 2002; Holland & Bouton, 1999; Phillips & LeDoux, 

1992; Schneider et al., 1999; Solomon, Solomon, Schaaf & Perry, 1983; 

Thompson, 1990) and the amygdala (Büchel et al., 1998; LaBar et al., 1998). 
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3.3. Methods  

3.3.1. Subjects 

Ten subjects (five women, five men), aged between 21 and 28 (mean = 25.3, 

SD = 1.77), recruited at the University of Tübingen, participated to the study, 

receiving reimburse of 12#. All participants were right-handed native German 

speakers. 

All subjects received an informative document regarding the properties and 

risks of fMRI, and signed the informed consent for data handling. Before 

entering the scanner, subjects filled in a form to ascertain their suitability for 

participation in the study (e.g. absence of metal in the body, no epilepsy, no 

pregnancy, no claustrophobia). The study was approved by the Ethics 

Committee of the Medical Faculty of the University of Tübingen.  

3.3.2. Stimuli 

We decided to use auditory stimuli, considering that the final aim of the 

development of this BCI would be to allow basic communication with AD 

patients. It has been demonstrated that although AD patients differ 
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significantly from healthy controls in emotional processing of visual stimuli, 

there are no consistent differences in processing emotions via the auditory 

domain (Koff et al., 1999). Moreover, an interview with Alzheimer’s and 

dementia specialists shed light on the difficulty of patients in focusing on 

visual images, since their gaze often directs elsewhere. In addition, the 

volume of the stimuli may be adjusted according to the patients’ hearing 

acuity. We decided to use word-pairs, which can include very simple terms 

belonging to common categories (such as animals or countries), so that the 

recognition of their congruence or incongruence may be detectable, at least 

implicitly, even by AD patients. In fact, several authors have claimed that 

semantic information that may not be explicitly accessible to AD patients 

could be relatively intact at an implicit level (Hartman, 1991; Laisney et al., 

2011; Nebes, 1994; Nebes, Brady & Huff, 1989; Ober & Shenaut, 1988). For 

this reason, one of the methods that are frequently used in the assessment of 

dementia is the word semantic priming paradigm, which allows semantic 

memory to be evaluated implicitly, minimizing the influence of non-semantic 

cognitive processes. In a typical word semantic priming paradigm, the priming 

effect is demonstrated by a shorter reaction time and/or greater accuracy 

when the target word is associated to a semantically related prime rather than 

an unrelated one (Laisney et al., 2011). In a study by Rogers and Friedman 

(2008), AD patients exhibited normal priming for category superordinates (e.g. 

“Bomb-Weapon”), indicating that their semantic network was at least partially 

intact. 

 

The stimuli in our paradigm consisted of: 

- 300 German word-pairs, half congruent (e.g. “Obst-Apfel”, “fruit-apple”) and 

half incongruent (e.g. “Obst-Hund”, ”fruit-dog”), read aloud by a native 

speaker, recorded using a SpeedLink USB microphone and QuickTime Player 

7 program for Macintosh. The duration of each word-pair was 1.5 s. The word-

pairs constituted the CS. 

- Two standardized emotional sounds drawn from the International Affective 

Digitized Sounds (IADS, (Bradley & Lang, 1999) , which represented the US: 

a positive emotional stimulus (a baby-laugh) and a negative emotional 

stimulus (a scream). Information on the characterization of the IADS sounds 
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by discrete emotional categories can be found in Stevenson & James 

(Stevenson & James, 2008). The duration of each sound was 1.5 s. 

 

The volume of the stimuli was standardized using an ad hoc Matlab script. To 

ascertain that all the stimuli (word-pairs and emotional sounds) had the exact 

length, their duration was adjusted using Audacity software.  

Stimuli presentation in the fMRI scanner was performed with interfaces 

developed using Matlab v. 6.5 (Mathworks, Inc., Sherbon, MA). Participants 

heard all auditory stimuli through MRI-compatible headphones with efficient 

gradient noise suppression (up to 45 dB) and a filter system with more than 

90 dB RF-suppression (MR confon System, Leibniz Institute for Neurobiology 

at Magdeburg, Germany). 

 

3.3.3. Procedure 

Behavioral measures 

The Self-Assessment Manikin (SAM, (Bradley & Lang, 1994)  was used to ask 

the participants to rate the pleasantness/unpleasantness and the arousal 

related to the two emotional US (scream and laugh) at the end of the first 

block and at the end of the fifth block. The SAM comprises two 9–point scales 

ranging from ‘pleasant’ to ‘unpleasant’ and from ‘not arousing at all’ to ‘very 

arousing’, respectively (Fig. 4).  
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Experimental paradigm  

To test our hypothesis, we used a paradigm comprising all three stages of 

conditioning (habituation, acquisition and extinction). The habituation phase, 

as in standard conditioning protocols, was included to detect the activations 

for all types of stimuli (congruent and incongruent word-pairs, laugh, and 

scream), independently from their association. The early acquisition phase 

was necessary to condition the negative and the affirmative responses 

(associated to the incongruent and congruent word-pairs respectively) with 

the emotional stimuli (the scream and the laugh respectively). The late 

acquisition phase included both paired and unpaired word-pairs, in order to 

reinforce the conditioning, while observing the first conditioned responses. 

The extinction phase, as in the standard conditioning protocols, was included 

to assess the classical conditioning effect.  

The acquisition of fMRI data took place in one single session, divided into six 

blocks, using an image acquisition system based on an Echo-Planar Imaging 

(EPI) sequence, developed on a Siemens Tim Magnetic Trio 3.0 tesla 

scanner (Erdingen, Germany). A standard EPI was used (TR = 1.5 s., matrix 

size = 64 x 64, TE = 30 ms., flip angle $ = 70°). Sixteen oblique slices (voxel 

size = 3.3 x 3.3 x 5.0 mm3, slice gap = 1 mm), AC/PC aligned in axial 

orientation were acquired. For superposition of functional maps upon brain 

anatomy a high-resolution T1-weighted structural scan of the whole brain was 

collected from each participant (MPRAGE, matrix size = 256 x 256, 160 

partitions, 1 mm3 isotropic voxels, TR = 2300 ms., TE = 3.93 ms., TI = 1100 

ms, $ = 8°). 
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Block 1 – Habituation 

In the first block, 25 incongruent word-pairs (CS1) and 25 congruent word-

pairs (CS2), 25 negative emotional stimuli (scream, US1) and 25 positive 

emotional stimuli (laugh, US2) were presented to the subject in a random 

order (Fig. 5). The inter-stimulus interval (ISI) was also randomized to 

optimize statistical efficiency, and could last either 4.5, 6, or 7.5 s. The total 

block duration was 15 min. The total number of acquired slices was 600. 

This block was useful to detect the activations for each of the four types of 

stimuli independently from their association, and to verify that there was no 

differentiation between affirmative response (associated to congruent word-

pairs) and negative response (associated to incongruent word-pairs).  

At the end of this block, participants were asked to rate the unpleasantness 

and the arousal related to the two emotional stimuli (scream and laughter) that 

constituted the US through the SAM. 
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Blocks 2 and 3 – Early acquisition 

In the second and third blocks (which were structured identically), 25 

incongruent word-pairs (CS1) and 25 congruent word-pairs (CS2) were 

presented in a random order (Fig. 6). Each word-pair was immediately 

followed by an emotional sound (100% pairing): negative (scream, US1) after 

incongruent word-pairs, and positive (laugh, US2) after congruent word-pairs. 

As in block 1, the ISI was randomized (4.5, 6, or 7.5 s.). The total duration of 

each block was 7.5 min. The total number of acquired slices was 350. 

The aim of this block was to condition the negative and the affirmative 

response (associated to the incongruent and congruent word-pairs 

respectively) with the emotional stimuli (the scream and the laugh 

respectively), in order to discriminate between the two responses. 
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Block 4 – Late acquisition 

In the fourth block, 25 incongruent word-pairs and 25 congruent word-pairs 

were presented in a random order (Fig. 7). In this block, only 10 incongruent 

word-pairs were followed by the negative emotional stimulus, and only 10 

congruent word-pairs were followed by the positive emotional stimulus (40% 

pairing). As in the former blocks, the ISI was randomized (4.5, 6, or 7.5 s.). 

The total duration of the block was 7.5 min. The total number of acquired 

slices was 330. 

The aim of this block was to verify whether classical conditioning had taken 

place, looking at the differentiation between incongruent and congruent word-

pairs that were not followed by stimulation. 
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Block 5 – Late acquisition 

In the fifth block, 25 incongruent and 25 congruent word-pairs were presented 

in a random order (Fig. 8). This time, only 5 of the incongruent word-pairs and 

5 of the congruent word-pairs were followed by the emotional stimulation 

(20% pairing). As in the other blocks, the ISI was randomized (4.5, 6, or 7.5 

s). The total duration of the block was 7.5 min. The total number of acquired 

slices was 320. 

The aim of this block, as in block 4, was to verify the classical conditioning 

effect in the word-pairs that were not associated to emotional stimuli. 

At the end of this block, subjects were asked once more to rate the 

unpleasantness and the arousal associated to the emotional stimuli using the 

SAM. 
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Block 6 – Extinction 

In the sixth block, 25 incongruent and 25 congruent word-pairs were 

presented in a random order (Fig. 9). This time, none of the word-pairs were 

followed by emotional stimuli (0% pairing). The ISI varied randomly (4.5, 6, or 

7.5 s). The total duration of the block was 7.5 min. The total number of 

acquired slices was 310. 

The aim of this block was to assess the classical conditioning effect, this time 

removing completely the US.  
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The complete experimental session lasted around one hour. A global 

overview of the procedure can be seen in Fig. 10 and Fig. 11. 
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3.4. Behavioral results and discussion 

A two-tailed t-test indicated that participants rated the scream as significantly 

more unpleasant (block 1: t(20) = 10.62, block 5: t(20) = 3.09, p<0.01) and 

more arousing (block 1: t(20) = 5.87, block 5: t(20) = 2.66, p<0.02) than the 

laugh, both at the beginning and at the end of the measurement. The arousal 

associated to the scream was significantly less at the end of block 5 

compared to the end of block 1 (t(20) = 2.96, p<0.01), although no significant 

difference was found for the laugh. The valence associated to the scream and 

laugh did not change significantly during the experiment. 

These results confirm that the scream can be considered as a negative sound 

and that the baby-laugh can be considered as a positive sound, justifying their 

association respectively with the negative response related to incongruent 

word-pairs (“no thinking”) and with the affirmative response related to the 

congruent word-pairs (“yes thinking”). The fact that the arousal associated to 

the scream decreased may indicate a habituation of the subjects to the sound, 

which however, was not reflected in the pleasantness/unpleasantness rating, 

since the scream was always rated as very unpleasant. 

 

In the following chapters we will describe two different types of fMRI data 

analyses performed on the data obtained in the present experiment: 

univariate with Statistical Parametric Mapping (Chapter 4) and multivariate 

with a Support Vector Machine (Chapter 5). 





!

4. Univariate data analysis using 

Statistical Parametric Mapping 

(SPM) 

4.1. Introduction 

Traditional neuroimaging approaches aim to determine how a specific 

perceptual, cognitive or emotional state is encoded in brain activity, by 

considering which brain areas are involved in a particular task. This is 

achieved by repeatedly measuring the activity from different locations in the 

brain, but analyzing each location in isolation (Norman et al., 2006). 

Therefore, the measure of any difference in the activity is gained by 

comparing two or more mental states at each individual sampled location. 

Theoretically, if the responses at any brain location differ between two mental 

states, it should be possible to determine which of the mental states reflects 

what the subject is thinking. Brain imaging statistical analyses that consider 

how responses vary at many single voxels, but considering each individual 

voxel separately, are defined as univariate analyses. Differently from 

multivariate approaches, univariate analyses support inferences about 

regionally specific effects and are more sensitive to focal effects (Friston, 

2003). 

Statistical parametric mapping (SPM) is a kind of univariate analysis, which 

considers only single-decision variables at any time (Haynes & Rees, 2006). 

This procedure is based on the General Linear Model (GLM) and on the 

Gaussian Random Field (GRF) theory (Friston, 2003). In the present chapter, 
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after describing the main aspects of SPM analyses, we will show the results 

obtained by analyzing the data from our semantic classical conditioning study.  

4.1.1. Statistical Parametric Mapping 

SPM is commonly used for the identification of functionally specialized brain 

responses. It is a voxel-based approach, which utilizes classical inference to 

relate regionally specific responses to experimental factors. Friston (2003) 

described two main principles of brain functional organization, namely 

functional integration and functional specification, where the integration within 

and among specialized areas is mediated by effective connectivity. While 

functional localization implies that a function can be localized in a specific 

brain region, specialization suggests that a particular area is specialized for 

some aspects of a function, and this specialization is anatomically segregated 

within the cortex. The neural basis of a single function, therefore, may involve 

several specialized and functionally integrated areas (Friston, 2003; Zeki, 

1990).  

SPM implies the design of spatially extended statistical processes to test 

hypotheses about regionally specific effects (Friston, Frith, Liddle & 

Frackowiak, 1991). Statistical parametric maps are image processes, with 

voxel values that are, under the null hypothesis, distributed on the basis of a 

known probability density function, usually Student’s T or F distributions (T-

maps or F-maps). More precisely, SPM consists in analyzing each and every 

voxel by using a standard univariate statistical test. Statistical parametric 

maps refer to the probabilistic behavior of Gaussian fields (Friston, Worsley, 

Frackowiak, Mazziotta & Evans, 1994; Friston, 2003). Unexpected excursions 

of the statistical parametric map are interpreted as regionally specific effects, 

due to the process that has been experimentally manipulated (Friston, 2003). 

SPM implies the joint use of the GLM and the GRF theory. The GLM is used 

to estimate some parameters that could explain the spatially continuous data, 

identically as in conventional analyses of discrete data. With few exceptions, 

every analysis of fMRI time-series is a variant of the GLM and can be 

implemented with the same equations and algorithms, including t-tests on 

scans assigned to different conditions, correlation coefficients between 
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observed responses and stimulus functions, inferences using multiple linear 

regression, evoked responses estimated with linear time invariant models, 

and selective averaging to estimate event-related responses. What 

distinguishes the different types of analysis is the design matrix encoding the 

experimental design (Friston, 2003).  

In the next paragraph, data analyses performed with SPM on the data from 

our semantic double classical conditioning study will be described. 

4.2. Methods 

4.2.1. Pre-processing 

Before starting the data analysis, a series of spatial transformations were 

performed, in order to reduce unsought variances induced by movement or 

shape differences among scans. Since voxel-based analyses are based on 

the assumption that the data obtained from a specific voxel all derive from the 

same part of the brain, violations of such assumption will obviously introduce 

artifacts in the voxel values that can obscure the effects of interest (Friston, 

2003). Image pre-processing was carried out using SPM-8 software package 

(Wellcome Department of Cognitive Neurology, London, England, UK) 

running under a Matlab 7.7 environment (Mathworks Inc., Sherborn, 

Massachusetts, USA). The images from each subject were realigned and 

unwarped to correct for head movement, and were normalized to a standard 

EPI (echo-planar image) template in MNI (Montreal Neurological Institute) 

space. Functional images were spatially smoothed using a 9 mm full-width 

half maximum isotropic Gaussian kernel.  

4.2.2. SPM data analysis 

Statistical analysis was carried out using the general linear model (GLM) with 

the canonical hemodynamic response function (HRF) as a basis set. In a first 

level analysis, regressors were defined to allow the investigation of the 

experimental conditions, especially to discriminate between paired (CS+) and 

unpaired (CS) word-pairs. The defined regressors were CS1+ (paired 
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incongruent word-pairs), CS2+ (paired congruent word-pairs), CS1 (unpaired 

incongruent word-pairs), CS2 (unpaired congruent word-pairs), US1 (scream) 

and US2 (laughter), separately for each condition phase. The six movement 

regressors for each block were included as confounds in the design matrix to 

capture residual movement-related variance. The following contrasts were 

tested: US1, US2, and US1 vs. US2 for block 1 (habituation); CS1+, CS2+, 

CS1+ vs. CS2+ for blocks 2-5 (acquisition); CS1, CS2, CS1 vs. CS2 for 

blocks 4-6 (extinction). In a second level analysis, contrast images of all 

subjects were used to assess the main effects of the conditioning. A two-

sample t-test including the individual contrast images for US1 and US2 from 

block 1 was computed in order to detect significant activated brain regions 

related to these emotional unconditioned stimuli during habituation. One-

sample t-tests were performed to detect differences in brain regions involved 

in the US1 vs. US2, and CS1(+) vs. CS2(+) contrasts, in the habituation and 

extinction phases. To investigate the different brain regions activated by 

congruent and incongruent word-pairs, a full 2 x 2 factorial model with the 

factors Congruence (congruence/incongruence) and Block (2 and 3) was 

performed for the early acquisition phase, and a full 2 x 2 x 2 factorial model 

with the factors Congruence (congruence/incongruence), Block (4 and 5) and 

Paired/unpaired for the late acquisition phase. For all group statistics a voxel-

level threshold of p<0.001 and an extent threshold of 10 contiguous voxels 

were used to identify clusters of activation within regions of interest, giving a 

reasonable balance between sensitivity and specificity. 
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4.3. Results 

4.3.1. Habituation phase 

The complete list of activations obtained during the habituation phase is 

presented in Table 1. Activations for US1 and US2 mostly differed in the 

cingulate gyrus, the superior frontal gyrus (STG) and the inferior frontal 

triangularis (IFT). The latter, together with the inferior parietal lobule (IPL), 

was also more active after listening to incongruent compared to congruent 

word-pairs. 
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4.3.2. Early acquisition phase 

 

The complete list of activations found during the early acquisition phase 

(blocks 2 and 3) can be seen in Table 2. Particularly, comparing CS1 and 

CS2, a higher activation was found in the insula, in the inferior frontal 

operculum, and in the ACC (Fig. 12 and Fig 13). 
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4.3.3. Late acquisition phase 

 

The activations for the late acquisition phase (blocks 4 and 5) are summarized 

in Table 3. In the late acquisition phase, the STG and the left insula were 

significantly more activated when comparing CS1+ and CS2+. For the 

unpaired trials, activation was also found in the right STG for CS1 vs. CS2, 

and in the inferior frontal orbitalis for CS2 vs. CS1 (Fig. 14).  
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4.3.4. Extinction phase 

Comparing CS1 and CS2 in the extinction phase (block 6), activations in the 

right insula, bilateral temporal and frontal lobe were found (listed in Table 4). 

These activations can be seen in Fig. 15. 
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4.4. Discussion 

4.4.1. Brain activations during classical conditioning 

The activation of the ACC during the acquisition phase may indicate that the 

association process was taking place, in agreement with studies showing that 

this structure is crucial for conditioning (Sehlmeyer et al., 2009). Consistently 

with this finding, the putamen, which is a region related to implicit learning 

(Packard & Knowlton, 2002), was activated in the late acquisition phase. 

Lesion studies suggest a critical role for medial temporal lobe structures, 

especially the amygdala, in the acquisition of conditioned emotional 

responses (Büchel et al., 1998; LaBar et al., 1998; LeDoux, 1996). It is 

relevant to point out that although the amygdala is often activated in studies 

focusing on fear conditioning (LaBar et al., 1998; Phillips & LeDoux, 1992; 

Rogan, Stäubli & LeDoux, 1997), we did not detect activation in this area. In 

fact, although the scream was a remarkably aversive sound, and was rated as 

both arousing and unpleasant by the subjects, they presumably did not 

perceive it as a fearful stimulus. Moreover, it has been shown that amygdala 

activation is subject to habituation during conditioning (Büchel et al., 1998).  

The activation of emotion-related regions such as the STG and the insula 

(Phan et al., 2002; Phillips et al., 1998a; Phillips et al., 1998b; Radua et al., 

2010; Sitaram et al., 2011) during the late acquisition and extinction phases, 

when the emotional US were no more presented, but not during the 

habituation phase, indicates that classical conditioning has taken place, and 

that the conditioned response to incongruent and congruent word-pairs was 

affected by the association with the scream and the laugh. 
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4.4.2. Language and semantic related brain activations 

Several areas related to language processing were activated. In the 

habituation phase, when the word-pairs were presented separately, the left 

IFT, known to be involved in the decoding of word meaning (Demb et al., 

1995; Mainy et al., 2008), and the left IPL, which has been correlated with 

language ability (Simon, Mangin, Cohen, Le Bihan & Dehaene, 2002), were 

more active after listening to incongruent compared to congruent word-pairs. 

These results are similar to the ones found in studies that used semantically 

correct and incorrect sentences (Baumgaertner, Weiller & Büchel, 2002; 

Friederici, Rüschemeyer, Hahne & Fiebach, 2003; Yu, Lang, Birbaumer & 

Kotchoubey, 2011), which showed higher activation for the latter. Such 

findings could be explained with a quantitative difference in the processing of 

congruent and incongruent semantic material (Yu et al., 2011), leading to an 

increase of metabolic activity in core language areas, due to a higher 

complexity in the information of incongruent sentences or word-pairs 

(Baumgaertner et al., 2002). 

The early acquisition phase revealed the involvement of the right inferior 

frontal operculum, part of Broca’s area, which was found to be involved in 

language comprehension (Grewe et al., 2005). Further, late acquisition 

revealed the involvement of the middle temporal gyrus (MTG), known to be 

activated when listening to auditory stimuli, particularly during language and 

comprehension tasks!(Binder, Desai, Graves & Conant, 2009), for the paired 

and unpaired trials comparing the incongruent with the congruent word-pairs. 

For the same contrast, activation in the STG was found during the late 

acquisition for paired and unpaired word-pairs, and during extinction. The 

STG was shown to be involved in both speech processing {SenteCitation 

(Buchsbaum, Hickok & Humphries, 2001; Zatorre, Evans, Meyer & Gjedde, 

1992)  and production (Hickok et al., 2000), and in auditory processing (Boly 

et al., 2004; Galuske, Schlote, Bratzke & Singer, 2000; Howard et al., 2000). 

For the paired word-pairs, the activation was more specific in the BA 22 of the 

STG, which also comprises Wernicke’s area, involved in language 

comprehension (Dronkers, Wilkins, Van Valin, Redfern & Jaeger, 2004; Just, 

Carpenter, Keller, Eddy & Thulborn, 1996; Lesser et al., 1986). The STG is 



Giulia Liberati 
!

#$" "
!

also known to be important for the perception of emotional stimuli (Phillips et 

al., 1998a; Radua et al., 2010; Sitaram et al., 2011). The angular gyrus was 

activated more for the unpaired congruent word-pairs compared to the 

incongruent word-pairs in the late acquisition phase. This area was shown to 

be activated during language comprehension tasks at a linguistic-semantic 

level!(Binder et al., 1997; Ramachandran, 2004).  

4.4.3. Brain activations related to the emotional US 

Both US stimuli, considered independently, elicited activations in the left STG, 

the rolandic operculum and the supplementary motor area (SMA, BA 6). An 

explanation for the SMA activity could come from the theory proposed by 

Büchel and coworkers (1998). Bodily movement, such as withdrawal of a 

body part or lid closure, could be a defensive mechanism to avoid the impact 

of a US (e.g. pain or air puff). Although subjects were instructed not to move, 

it is likely that generating a preparatory motor response was plausible in our 

setting, where they had to listen to segments of screaming and laughter. The 

activation of the left STG relative to the US is more intuitive (Fig. 12), as this 

area is not only involved in auditory processing (Boly et al., 2004; Galuske et 

al., 2000; Howard et al., 2000) but is also important for the perception of 

emotional stimuli (Phillips et al., 1998a; Phillips et al., 1998b; Radua et al., 

2010; Sitaram et al., 2011). The posterior portion of the ACC (BA 24), the right 

IFT and the right SFG (BA 9) were more activated after listening to the 

scream compared to the laughter, and could be considered as a consequence 

of their relation to unpleasant stimuli. ACC (BA 24) is associated to the 

perception of unpleasant stimuli (Hsieh et al., 1994) and to pain (Jones, 

Brown, Friston, Qi & Frackowiak, 1991; Talbot et al., 1991) and SFG (BA 9) is 

involved in the processing of pleasant and unpleasant emotions (Lane et al., 

1997). The right IFT was found to be activated for negative but not positive 

arousing stimuli (Anders et al., 2008), in accordance with our study. A higher 

activation for the scream compared to the laughter was found, consistently 

with the SAM ratings, which revealed that the scream was subjectively more 

arousing then the laughter.  
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In the early and late acquisition phases, the following areas related to emotion 

processing were activated: the ACC, the insula and the STG. These 

activations were greater for the paired incongruent word-pairs compared to 

the congruent ones. The ACC activation is probably related to the US, while it 

is known to be associated to the perception of unpleasant stimuli (Hsieh et al., 

1994). The insula has been shown to be involved in emotional processing 

(Phan et al., 2002; Sitaram et al., 2011) and was associated to empathy 

(Singer et al., 2004). More importantly, in the unpaired word-pairs of the late 

acquisition and extinction phases, when the emotional US were not presented 

anymore, the STG and the insula were still activated, showing an effect of 

classical conditioning. 

4.4.4. Potential applications 

The results obtained with the univariate (SPM) analysis indicate that 

emotional stimuli are a valid means for classical conditioning, allowing a 

differentiation between incongruent and congruent word-pairs, and therefore 

between negative and affirmative thinking. Interestingly, the differential 

activations take place in brain areas such as the insula, the STG and the 

ACC, which are recognized to be involved in emotional processing. The 

advantage of using this kind of paradigm is that, being emotion-based, it does 

not require subjects to actively engage in a task, and could therefore be used 

for basic communication with patients affected by dementia. 

Given the encouraging results obtained with the univariate analysis, the data 

from the present classical conditioning study was also analyzed with a 

Support Vector Machine-based multivariate approach (presented in Chapter 

5). 





!

5. Multivariate data analysis using a 

Support Vector Machine 

5.1. Introduction 

In contrast to the conventional univariate neuroimaging approach, which is 

strictly location-based, recent studies have shown that the efficiency of 

statistical analyses may be significantly increased by taking into account the 

whole spatial pattern of brain activity, which can be measured simultaneously 

at different locations (Haynes & Rees, 2005a). In fact, it is possible that two 

brain regions do not carry information about a cognitive state individually, but 

may nevertheless do so when analyzed jointly (Sidtis, Strother & Rottenberg, 

2003). An analytical method that considers multiple decision variables, taking 

into account patterns of information that might be present across multiple 

voxels, is defined as a multivariate analysis, and is based on the intuition that 

multiple and spatially distributed regions act in consort during a task (Lee et 

al., 2010). In this way, information available at each voxel can be efficiently 

accumulated across many spatial locations (Haynes & Rees, 2005a).  

Numerous research groups have used multivariate analyses to study 

functional relationships between brain areas (Calhoun, Adali, Pearlson & 

Pekar, 2001; Friston, Harrison & Penny, 2003; McIntosh & Lobaugh, 2004; 

McIntosh, Bookstein, Haxby & Grady, 1996). The last few years have seen 

the development of the concept that fMRI analyses can be performed as a 

pattern-classification problem, therefore recognizing patterns of brain activity 

as associated with specific mental states (Norman et al., 2006). Multivariate 

analyses have also been applied to EEG data (Müller-Putz, Scherer, 

Pfurtscheller & Rupp, 2005; Parra et al., 2002; Peters, Pfurtscheller & 

Flyvbjerg, 1998; Vallabhaneni & He, 2004; Wang, Deng & He, 2004). 
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Traditional fMRI analyses aim at finding voxels that show a significant 

response to experimental stimuli. In order to increase sensitivity to a given 

stimulus or condition, these methods require a spatial averaging across the 

voxels that respond significantly to the condition. While reducing noise, this 

approach also reduces signal, firstly because even voxels with weaker 

responses may provide some information about the presence or absence of 

the condition, and secondly because spatial averaging blurs out fine-grained 

spatial patterns that may discriminate between conditions (Kriegeskorte, 

Goebel & Bandettini, 2006). Multi-voxel pattern analysis, on the contrary, does 

not involve spatial averaging of voxel responses, but uses pattern 

classification techniques to extract the signal present in the response pattern 

across multiple voxels, even when the individual voxels are not significantly 

responsive to any of the conditions. Hence, the multi-voxel response pattern 

can be considered as a high-capacity combinatorial code for the 

representation of distinction between mental states (Haynes & Rees, 2006; 

Norman et al., 2006; Polyn et al., 2005).  

In the standard multi-voxel pattern analysis method, the patterns that have to 

be classified are vectors of voxel activity values. Norman et al. (2006) 

explicated the basic phases of multivariate pattern analysis defining four main 

steps. The first step, defined as feature selection, involves deciding which 

voxels will be included in the classification analysis, allowing the rejection of 

noisy and uninformative voxels before classification. One possibility to 

perform feature selection is to limit the analysis to specific brain areas (Haxby 

et al., 2001). Another way is to perform univariate voxel-wise statistics to 

select the voxels that individually work better for discriminating between the 

considered conditions (Haxby et al., 2001; Mitchell et al., 2004; Polyn et al., 

2005). The second step, defined as pattern assembly, involves separating the 

data into discrete brain patterns corresponding to the pattern of activity across 

the selected voxels at a given point of time during the experiment. Each brain 

pattern is then labeled according to the corresponding experimental condition. 

The patterns are then divided into a training set and a testing set. The third 

step is the classifier training, which consists of feeding a subset of labeled 

patterns into a multivariate pattern classification algorithm. Patterns from the 

training set are used to train a function that maps between voxel activity 
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patterns and experimental conditions. The fourth step is the generalization 

testing, where the classifier is used to predict a category membership for 

patterns from the test set (not presented to the classifier previously). 

The joint activity of a set of voxels forms a spatial pattern, which can be 

expressed as a pattern vector. Therefore, different pattern vectors should 

correspond to different mental states. Each pattern vector can be considered 

as a point in an N-dimensional space, and each measurement of activity 

corresponds to a single point. To be successful, a classifier should learn to 

discriminate between pattern vectors elicited by distinct mental states. 

When the response distributions are separable within individual voxels, it is 

possible for the classifier to work on single voxels. When two distributions are 

widely overlapping, and the corresponding categories cannot be separable in 

individual voxels, it is possible to separate the response distributions by taking 

into account the combination of responses and using a linear decision 

boundary. In some circumstances, however, a linear decision boundary is not 

sufficient to separate the response distributions, so a curved decision 

boundary (which corresponds to a non-linear classifier) is required (Haynes & 

Rees, 2006). A schematic description of how pattern recognition is performed 

by a classifier is presented in Fig. 16. 

In order to test the predictive power of a classifier, the data is divided into two 

datasets, one for the training and the other for the test. The proportion of the 

test data that is correctly classified gives a measure of the classification 

performance. 

Linear classifiers work by computing a weighted sum of voxel activity values, 

which is subsequently passed through a decision function that creates a 

threshold for deciding whether a category is present or not (Norman et al., 

2006). Other multi-voxel pattern analyses use nonlinear classifiers, such as 

nonlinear SVMs (Cox & Savoy, 2003; Davatzikos et al., 2005) and neural 

networks (Hanson et al., 2004). Differently from linear classifiers, nonlinear 

classifiers can respond to high-level feature conjunction, for instance learning 

that the coactivity of two voxels indicates a specific mental state, although 

neither voxel considered individually conveys information about that state 

(Norman et al., 2006). Cox & Savoy (2003) report that although nonlinear 

classifiers are more powerful than linear classifiers for what concerns the 



Giulia Liberati 
!

*!" "
!

kinds of maps they can learn, there is no clear performance advantage for 

using nonlinear classifiers. Kamitani & Tong (2005) also observed that a good 

performance is more difficult to interpret in a nonlinear classifier compared to 

a linear one. 

!
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Several methods have been developed to determine which voxels are 

contributing the most to the performance of a classifier (Norman et al., 2006). 

When using linear classifiers, it is possible to discriminate the contribution of 

voxel i to the detection of category j by looking at the weight between voxel i 

and category j (Kamitani & Tong, 2005; LaConte et al., 2005; Polyn et al., 

2005). For nonlinear classifiers this operation in more complex, since each 

voxel’s contribution to the recognition of a category is a function of multiple 

learned weights (Davatzikos et al., 2005).  

 

Given the encouraging results obtained from our fMRI classical conditioning 

study using a Statistical Parametric Mapping univariate analysis (presented in 

Chapter 4), we performed a multivariate procedure, taking into account the 

whole spatial pattern of brain activity. This multivariate analysis was 

performed developing a linear Support Vector Machine (SVM). In the present 

chapter, after describing the functioning of a SVM, we will show the results 

obtained by applying SVM classification to the data from our fMRI classical 

conditioning study. 

5.2. Support Vector Machines (SVMs) 

SVMs can be defined as a set of supervised learning methods used for 

classification and regression (Lee et al., 2010). A SVM is an abstract learning 

machine, which learns from a training dataset and attempts to generalize and 

make correct classifications and predictions on novel data (Campbell & Ying, 

2011). 

It is interesting to point out that the first publications about SVMs went largely 

unnoticed till the beginning of the Nineties, due to the widespread belief in the 

statistical and machine learning community that SVMs were neither suitable 

nor relevant for practical applications. SVM classifiers started to be taken 

seriously into consideration only when remarkable outcomes on practical 

learning benchmarks were achieved (Wang, 2005). Up to now, SVMs have 

been used to classify spatial, temporal and spectral patterns, and have been 

applied successfully in character recognition, speech recognition, and image 
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recognition applications (Hamel, 2009; Jain, Duin & Jianchang, 2002; Lee et 

al., 2010).  

Data mining and statistical techniques have seen a remarkable progress in 

the last years, together with the increase of computing power, allowing the 

manipulation of huge amounts of neuroimaging data for multivariate pattern 

analysis (Haynes & Rees, 2006; LaConte et al., 2005; Mourão-Miranda et al., 

2005; Mourão-Miranda et al., 2007; Mourão-Miranda et al., 2006; Norman et 

al., 2006). The advantage of using SVMs is that they have strong 

classification accuracy with small sample sizes and high dimensional inputs 

(Abe, 2005; Lee et al., 2010). Today, SVMs show better results compared to 

neural networks and other statistical models concerning several classification 

problems (Cherkassky & Mulier, 1998; Meyer, Leisch & Hornik, 2003; Wang, 

2005). 

SVMs are recognized as being universal approximators of any multivariate 

function to any desired degree of accuracy, and are therefore particularly 

interesting for modeling the unknown, highly nonlinear, complex systems or 

processes (Wang, 2005). SVMs, just like neural networks and fuzzy systems, 

are typical non-parametric classifiers, which means that no a priori knowledge 

of data distribution is assumed (Abe, 2005; Cristianini & Shawe-Taylor, 2000). 

“Non-parametric” does not mean that SVMs have no parameters at all, but on 

the contrary, the crucial issue is their “learning”. The parameters are not 

predefined, and their number is dependent on the training data used (Wang, 

2005). This means that the parameters that define the capacity of the model 

are data-driven, so that they match the model capacity to data complexity. 

After training with input-output pairs, classifiers acquire decision functions, 

which classify the input data into one of the given classes. In a SVM, we 

determine the optimal decision function that separates a class i from the 

remaining classes. Assuming that the training data of different classes are not 

overlapping, the decision function is determined so that the distance from the 

training data is maximized. This is defined as an “optimal decision function”. If 

one of the n decision functions classifies unknown datum into a definite class, 

the datum is classified into that class. In case more than one decision 

functions classify a datum into definite classes, or if no decision functions 
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classify the datum into a definite class, the datum is considered as 

unclassifiable (Abe, 2005).  

In training SVMs, the decision boundaries are determined directly from the 

training data, so that the separating margins of decision boundaries are 

maximized in the high-dimensional space defined as feature space (Abe, 

2005). Such learning strategy, which minimizes the classification errors of the 

training data and the unknown data, is based on statistical learning theory 

(Abe, 2005; Vapnik, 1995; Vapnik, 1998). To determine a decision function, 

the original input space is mapped into a high-dimensional space defined as 

feature space, where the optimal decision function (or “hyperplane”) is 

determined (Abe, 2005). 

By considering input data as two sets of vectors in an M-dimensional space, a 

linear SVM will build a separating hyperplane in that space (Lee et al., 2010). 

A good space separation is obtained by maximizing the margin, whose 

boundary is the distance from the closest input vectors to the separating 

hyperplane (Schölkopf & Smola, 2002; Schölkopf, Burges & Smola, 1999; 

Vapnik et al., 1997). This represents a quadratic optimization problem, and 

the best solution can be found by applying optimization theory (Strang, 1986).  

In some circumstances (e.g. when the training set is too small), the classifier 

may adapt only to very specific characteristics of the training set and not 

generalize to the rest of the data. This phenomenon is defined as overfitting. 

A tradeoff between fitting to the training data and the generalization ability is 

therefore required (Abe, 2005).  

The classifier that realizes the best generalization ability for the given input-

output training pairs is defined as optimal classifier. The process of 

determining the optimal classifier is called model selection, and is performed 

by selecting the classifier that gains the highest generalization ability (Abe, 

2005). The most reliable - although time-consuming - method of estimating 

the generalization ability is cross-validation, based on the repetitive training of 

SVMs (Abe, 2005; Kohavi, 1995). In cross-validation, the M data are divided 

into two datasets: the training set, which includes l training data, and the test 

set, which includes M-l test data. For the training dataset, the classifier is 

trained and tested for the test dataset. This is iterated for all the combinations 

of the partitioned training and test datasets. The total classification rate for all 
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the test datasets is an estimation of the classifier’s performance (Abe, 2005). 

Since this task can be extremely time-consuming, a k-fold cross-validation is 

often adopted. In this kind of cross-validation, training data are randomly split 

into approximately equal-sized k subsets, and the classifier is trained using k 

– 1 subsets and tested using the remaining subset. The training is repeated 

for k times and the total recognition rate for all the k subsets that are not 

included in the training data is estimated (Abe, 2005). 

5.2.1. SVM classification of fMRI data 

In a typical analysis of fMRI signals with SVMs, as described by Lee and 

colleagues (2010), BOLD values from all brain voxels of each repetition time 

(TR) are contained in an M-dimensional input vector xi, where M is the 

number of all the brain voxels. The SVM determines a scalar class label Li 

from xi, as follows: 

 

, 

 

(1) 

 

where the weight vector w and the constant value b, estimated by a SVM 

training algorithm from the training dataset, define a linear decision boundary, 

T is transpose of a vector, sgn(.) is a sign function, sgn(x) = +1, 0, -1 if x > 0, x 

= 0, x < 0, respectively, N is the number of input vectors. 

When the input vectors xi and the design labels Li
D are drawn from the training 

dataset, the linear SVM algorithm attempts to find a separating hyperplane y = 

wTxi + b = 0 in the feature space. If the input vector comes from a condition of 

interest, then Li
D = 1, while if the input vector comes from a rest condition or a 

control condition, Li
D = -1. 

The weight vector w of a linear SVM is computed by minimizing the function of 

equation (2) with constraints equations (3) and (4), introducing a slack 

variable % to describe a non-separable case, that is, data that cannot be 

separated without classification error. C, which is defined as “regularization 
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parameter”, indicates the weighting on the slack variable, reflecting the extent 

to which misclassification is allowed. 

 

 
(2) 

with 

 
 (3) 

and 

 

 
(4) 

 

The minimization of equation (2) derives from the concept of margin 

maximization (margin length = 2 || w ||2), whose boundaries are defined as y = 

wTxi + b = +-1 built from support vectors in each class. 

Equation (2) and constraint terms (3) and (4) can be combined into a non-

constraint form by introducing a Lagrange multiplier: 

 

 
(5) 

 

where $i is the Lagrange multiplier, and its value determines whether the input 

vector xi is a support vector or not. When the Lagrange multiplier is different 

from zero, the corresponding input vector is the support vector. 

 

Some SVM analyses of fMRI signals generate functional maps by displaying 

the weight value at each voxel, assuming that this can identify the most 

discriminating voxels by multivariate analysis, given that the weight vector is 

the direction along which the input vectors from two conditions differ most 
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(Mourão-Miranda et al., 2005; Mourão-Miranda et al., 2007; Mourão-Miranda 

et al., 2006). Lee and collaborators (2010) observed that these analyses 

consider only the weight vector, but not the input vector, which is the second 

factor determining the SVM output. SVMs are normally trained on the input 

samples to minimize classification error rates by computing the weight vector 

only from support vectors that are close to the border of the hyperplane. As a 

consequence, the weight vector is not completely influenced by the statistical 

distribution of input vectors, which means that only part of the information is 

presented. To solve this issue, Lee et al. (2010) proposed a new functional-

mapping method to overcome the limitations of previous SVM analysis. This 

new functional mapping method, defined as Effect Mapping (EM), allows the 

identification of the voxels that are more important for the classification by 

utilizing information from both the weight vector and the input vector, which 

represent, as described above, the SVM output. The Authors derived a new 

quantity defined as Effect Value (EV). The EV for a single voxel is defined as 

the statistical relation, or mutual information (MI), between the voxel and the 

SVM output, multiplied by the corresponding weight value of the SVM.  

5.3. Methods 

Following the same pre-processing procedures described in Chapter 4, we 

implemented a linear SVM in Matlab 7.7, in order to classify the signals 

corresponding to the different conditions of our paradigm, namely congruent 

and incongruent word-pairs. A fixed regularization parameter C=1 was used 

to control the trade-offs between the classifier complexity and the number of 

non-separable points (Reeves & Jacyna, 2011).  

Since the haemodynamic response to a neural stimulus has a considerable 

delay (Huettel, Song & McCarthy, 2004), the raw features were extracted from 

voxels of the third, fourth and fifth image after each word-pair (without 

combining them). The temporal-spatial voxel selection was based on the 

Fisher Criterion Score due to its general good performance in feature 

selection (Gu, Li & Han, 2012; He, Cai & Niyogi, 2005).  
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A “searchlight” approach (Kriegeskorte et al., 2006) was used, meaning that 

the imaged volume was scanned, and contents were analyzed multivariately 

at each location in the brain. More specifically, a spherical multivariate 

“searchlight” moved through the volume, centered on each voxel in turn, 

comprising the surrounding voxels. To combine the signals from all voxels 

falling into the searchlight, multivariate effect statistics were computed at each 

location. The EM approach developed by Lee and collaborators (2010) was 

applied to measure the effect of each voxel by considering both the input 

vector and the weight vector to determine the SVM output. For each voxel, the 

resulting map showed how well the multivariate signal in the local spherical 

neighborhood differentiated between the different conditions.  

Classification performance obtained with the data from each subject within 

each block was evaluated through 25-fold cross-validations, meaning that the 

total dataset was divided into 25 subsets, and at each step one subset 

represented the validation dataset, while the remainder constituted the 

training dataset. The process was repeated for all the 25 folds. Training the 

SVM for each of the 25 subsets served to avoid overfitting issues and biases 

due to unbalanced sampling. 

5.4. Results 

We assessed whether our SVM was consistently able to classify, for each 

subject and in each block, the fMRI data for congruent and incongruent word-

pairs (and therefore “affirmative” and “negative” thinking). The percentages of 

classification accuracy for each subject and the average classification 

accuracies for each of the blocks can be seen in Table 5. 
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The mean classification accuracy for the habituation phase (block 1), when 

the word-pairs (incongruent and congruent), scream and laughter were 

presented randomly with no association was 53%. In the early acquisition 

blocks (2 and 3), when all incongruent word-pairs were associated with the 

scream and all congruent word-pairs were associated with the laughter, the 

mean classification accuracies were 61.8% and 60.6%, respectively. In the 

late acquisition blocks (4 and 5), when the number of word-pairs followed by 

the emotional stimuli gradually decreased, the mean classification accuracies 

were 64.9% and 64.3% respectively, with peaks of 82% and 85% of accuracy. 

Finally, in the extinction phase (block 6), the mean classification accuracy was 

74.6%, with a peak of 86% of accuracy. 

 

A repeated-measures ANOVA showed that the difference in mean 

classification accuracy was significant between the blocks, F(5,45)=9.79, 

p<0.001.  

 

One-tail paired samples t-tests were performed between block 1 (habituation) 

and all the other blocks (acquisition and extinction blocks), in order to verify 

the changes in classification accuracies following the classical conditioning 

procedure (Table 6). The difference between classification accuracy in block 1 

and in all the other blocks was always significant. 
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5.5. Discussion 

In the present chapter, data from our classical conditioning study was 

analyzed through a SVM-based multivariate procedure, in order to verify the 

possibility to discriminate between brain states related to incongruent and 

congruent word-pairs, and therefore between “negative” and “affirmative” 

thinking, respectively.  

The classification results obtained with our SVM show that although before 

the conditioning, during the habituation phase, the discrimination between 

“yes” and “no” responses was around chance-level (53.5%), after the 

conditioning the classification accuracy was above chance-level, reaching a 

mean classification accuracy of 74.6% in block 6, with a peak of 86% of 

accuracy in one of the subjects. The t-tests between block 1 and each of the 

following blocks confirmed significant differences in classification accuracy in 

acquisition (blocks 2-5) and extinction (block 6). The fact that the average 

classification accuracy increased through the blocks may indicate a 

consolidation of the conditioning process, even when the percentage of word-

pairs followed by emotional stimuli was reduced. Quite unexpectedly, the 

highest classification accuracy scores were obtained during the extinction 

phase, when none of the word-pairs were followed by emotional stimuli. This 

could possibly indicate that the consolidation of the conditioned response 

mostly took place after the very late acquisition phase (at the end of block 5). 

This should lead to consider using a more extended acquisition phase, with a 

slower reduction of the US, in order to obtain a faster and stronger acquisition 

of the conditioned response.  

Although the classification results obtained after only one session of classical 

conditioning are encouraging, several improvements could be applied to the 

classification method. First of all, specific brain masks could be used to 

enhance the classification accuracy, allowing focusing only on those brain 

regions where the distinction between responses is more evident (e.g. based 

on the results of the univariate analysis). This could also be useful to avoid 

that areas that are not relevant for the procedure, such as the eye area or 
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white matter, are selected for classification. Adopting brain masks could 

therefore increase the classification accuracy by avoiding taking into 

consideration irrelevant regions. 

Another considerable issue is the high variability in the classification between 

subjects. Unfortunately, high classification accuracy was not obtained with all 

of the subjects, posing a limitation to the possibility to use this paradigm for 

communication on individual-basis. It is possible that some subjects acquire 

the conditioned response more slowly than others, and therefore require more 

extended classical conditioning sessions. If this method will be used for basic 

communication of mental states, it is advisable to optimize the existing 

procedure individually for each subject. Personalized emotional stimuli that 

are more familiar for the participant could also be adopted, as a replacement 

of the already existing standardized IADS stimuli. 

 

Future directions in the research with SVM classification comprehend an 

online implementation of the SVM, in order to allow basic communication of 

mental states in real-time. Therefore, signal pre-processing should be 

performed on each volume of brain images as soon as they arrive from the 

scanner, and feature selection, training and testing of the SVM should be 

performed right away. The disadvantage of existing online SVMs is that they 

need to be adapted to each subject, since the training is performed on 

individual-specific data. Therefore, it is necessary to collect preliminary data 

for the SVM training, possibly leading to a very time-consuming procedure. As 

suggested by Sitaram and colleagues (2011), a so-called adaptive classifier 

could be developed, similarly to the ones that exist in the pattern-recognition 

field, applicable to new subject data without prior classifier training. Moreover, 

this classifier could be adapted to the idiosyncrasies of each person’s brain 

size, shape and activation patterns. The main technical improvement in order 

to achieve this goal would be to obtain real-time co-registration and 

normalization of functional images. A SVM able to discriminate online 

between mental states would represent an incredibly valuable tool for basic 

communication not only for patients with Alzheimer and related dementias, 

but also for severely paralyzed patients (such as ALS patients). 
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6. General conclusion and future 

directions 

From a detailed analysis of BCI literature, it is evident that one of the most 

relevant issues regarding the use of BCI systems is the difficulty in learning to 

self-regulate brain activity, a process that may require very long and 

burdensome trainings. These systems can provide alternative methods for 

communicating and acting on the environment, but may not be easily used 

with patients with cognitive impairment, such as Alzheimer patients (AD), who 

have more difficulty in learning and actively engaging in a new task.  

We suggested that AD patients could benefit from a BCI able to convey their 

emotions and basic mental states (e.g. “yes” and “no”). So far, no research 

existed in this direction, presumably due to the remarkable difficulties in using 

operant conditioning with patients with cognitive deficits. 

We proposed that so-called “affective” or “passive” BCIs, designed to extract 

information from signals that are not voluntarily modified by the brain (e.g. 

signals related to emotional states), could be used for basic yes/no 

communication. In addition, we presented a new paradigm characterized by a 

shift from operant learning to classical conditioning in a fMRI setting, with the 

aim of discriminating affirmative and negative thinking. fMRI represents a 

privileged method to investigate the changes in mental states, since it allows 

measuring brain activity repeatedly every few seconds at a large number of 

voxels, both in cortical and subcortical regions. The increase in image-

encoding gradient power and the development of more advanced acquisition 

and processing techniques in the last year indicate that fMRI is particularly 

promising in the BCI field. Although fMRI is not a portable system that could 

be practically used for communication with patients in everyday life, studies 
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involving this technique provide the basis for the development of more 

portable systems, e.g. NIRS-BCIs. 

In order to develop a paradigm that could be optimal for AD patients, several 

aspects of the neuropathology, such as language abilities, emotion 

recognition and the ability to acquire a conditioned response were taken into 

consideration. AD patients usually have a remarkable decline in their 

language abilities, which worsens with the progression of the neuropathology. 

However, their ability to process and discriminate emotional stimuli, especially 

from the auditory domain, is comparable to the one of healthy controls. For 

this reason, auditory emotional stimuli were selected for the paradigm. 

Studies on classical conditioning of AD patients show that it is possible for 

them to acquire a conditioned response, even though more slowly than 

healthy subjects. Moreover, the brain regions that are typically involved in 

classical conditioning and implicit learning are not primarily affected by the 

neurodegeneration related to the pathology. As a consequence, developing a 

classical conditioning paradigm using emotional sounds as unconditioned 

stimuli represented a reasonable choice. As conditioned stimuli, congruent 

and incongruent word-pairs constituted by a general category term (e.g. 

“animal”) and a specific member of a category (e.g. “elephant”) were chosen. 

The words were extremely simple and of easy comprehension. Several 

studies indicate that even if semantic memory may not be explicitly accessible 

to AD patients, it can be nevertheless relatively intact at an implicit level. 

Two poles apart techniques were used to analyze the fMRI data: univariate 

analysis with Statistical Parametric mapping (SPM), and multivariate analysis 

with a linear Support Vector Machine (SVM), which was developed 

specifically for this study. Both methods indicated that a classical conditioning 

effect took place. The SPM analysis showed that it was possible to 

discriminate between incongruent and congruent word-pairs, and therefore 

between “affirmative” and “negative” thinking, in the acquisition and extinction 

phases. Interestingly, differential activation was found in regions that are 

specifically related to emotional processing, such as the insula and the ACC, 

which were not active during the habituation phase, confirming that the 

conditioning process had taken place.  
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The analysis performed with the SVM showed that classification accuracy, 

which was around chance-level before classical conditioning, significantly 

increased in the course of the blocks. Differently from SPM analysis, SVM 

analysis allowed to individuate brain patterns for the classification of 

affirmative and negative thinking, but not of specific brain regions for their 

discrimination. The advantage of using a SVM is that it can be more easily 

implemented in an online BCI, with the aim of achieving real-time 

classification. A combination of univariate and multivariate methods could 

represent an optimal choice for this purpose. The classification ability of the 

SVM could be improved through a greater focus on regions of interest (e.g. 

the insula and the ACC), suggested by the results obtained with the univariate 

analyses. The application of specific 3D masks would improve the feature 

selection process and increase the classification accuracy. A further step 

towards the realization of a BCI for basic communication is also the 

development of more precise online classification algorithms. 

Overall, the present study shows that a classical conditioning paradigm allows 

the discrimination of “yes” and “no” thinking, which would not be possible a 

priori. Moreover, such discrimination may be obtained using a “passive” 

procedure, which does not require the subjects to be actively involved in a 

task. The only effort required is to listen to the stimuli, without having to 

provide an overt response. Differently from operant conditioning, classical 

conditioning could be used to develop a BCI for patients with dementia.  

This novel paradigm was tested for the first time on healthy subjects, in view 

of a future application with AD patients. It is true that many differences can be 

found between the brain activation of healthy individuals and patients affected 

by dementia. There are several remarkable challenges in the implementation 

of a classical conditioning paradigm for a communication application in AD. 

First of all, the duration of the acquisition phase may not be enough to elicit a 

conditioning effect in AD patients. In this case, either prolonging the 

acquisition phase or performing a more gradual extinction should be 

considered. Secondly, the conditioning effect may extinguish very quickly, so 

that more acquisition sessions could be required to maintain it. Furthermore, 

different patients at different stages of the disease may have different timings 

related to the acquisition and extinction of the conditioned response. We 
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suggest that, in the future, such differences may be exploited also for 

diagnostic aims, e.g. by measuring the conditioned response in patients in the 

first stages of AD, or subjects with mild cognitive impairment who have not yet 

developed dementia. 

Being able to successfully condition brain responses could be exploited in 

several clinical fields, such as the treatment of psychopathy, drugs and 

alcohol addiction, eating disorders, anxiety and phobias. Further research 

should be conducted with different clinical populations and varying the US and 

CS. 
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