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And then the harder they come

the harder they’ll fall,

one and all.

Jimmy Cliff

The ice age is coming, the sun’s zooming in

Engines stop running, the wheat is growing thin

A nuclear error but I have no fear,

’Cause London is drowning and I live by the river

The Clash
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Introduction

A major challenge in mathematical finance is pricing derivatives with an increasing degree of

complexity. A huge theoretical effort has been made in the last forty years to provide suitable tools

for this purpose. The volume of traded options and the wide variety of their structures require

a deep analysis of both theoretical and numerical methods. Since the seminal paper by F. Black

and M.S. Scholes [5] the connection between the pricing procedure and the solution of Partial

Differential Equations (PDEs) has become more and more appearent.

An important class of traded options is that ofAmerican options. The basic idea behind these

options is the holder’s the right to buy/sell a security at any time prior to a given maturity at a fixed

price which is specified in the contract. The mathematical formulation of this problem was given

in the eighties by A. Bensoussan [3] and I. Karatzas [39] among others. In mathematical terms the

pricing problem for an American option corresponds to anoptimal stoppingproblem (for a good

survey cf. [50]); that is, a problem in which a finite dimensional stochastic process is optimally

stopped in order to maximize/minimize a given reward function. This problem, as many others in

Mathematical Finance, is a stochastic control problem in which the controls are stopping times.

When the underlying process is a diffusion one may find a variational formulation for the value

function of the optimal stopping problem which correspondsto a free-boundary problem, in the

language of PDE. To study this problems one must analyze the properties of the value function,

characterize the optimal stopping time, i.e. the optimal exercise time, and the free-boundary. For

a survey on variational inequalities see [30], [40]; for applications of variational inequalities to

stochastic control problems see [4]. In the context of American options the security underlying
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the contract is usually a diffusion process. For example Jacka [36] studies the case of a geometric

Brownian motion; more general diffusions are considered in[37]).

In this Thesis we study the optimal stopping problem corresponding to the American option on

a Bond having the forward interest rate process as underlying. The forward rate is the instantaneous

interest rate agreed at timet for a loan which will take place at a future timeT ≥ t. It is often

denoted byf(t, T ) and takingT = t one recovers the “so called” spot rateR(t) = f(t, t). The

price of the Bond,B(t, T ), is linked to the forward rate by the ordinary differential equation

f(t, T ) = − ∂

∂T
ln (B(t, T )) . (1)

There exists a vast literature on interest rate models concerning both theoretical and numerical

aspects (for good surveys cf. for instance [6], [12], [48]).One of the most reliable models of

forward rates is the famous HJM model, introduced in 1992 by D. Heath, R. Jarrow and A. Morton,

[35]. We choose this framework for the present work. The peculiarity of the stochastic process

representing the forward interest rate is its infinite dimensional character. In essence the HJM

model describes the stochastic dynamics of the whole term structure of forward rates; in fact,

at each timet the model’s output is the family of ratesf(t, T ), with T ∈ [t, Tmax]. It follows

that a suitable parametrization off(t, T ) may be modeled by an infinite dimensional stochastic

differential equation, as pointed out by M. Musiela [47] in 1993. A complete description of the

HJM model in the context of infinite dimensional diffusion processes can be found in [26] and [27].

Notice however that a connection between PDE’s in Hilbert spaces (cf. [17], [22]) and American

options with infinite dimensional underlying is not straightforward. Such connection is known in

the case ofEuropean optionsand forward rates. In fact, in this case the value function may be

characterized as the unique smooth solution of the Kolmogorov equation (cf. [33]). In some sense

that is the natural extension of the Black and Scholes pricing formula to the infinite dimensional

setting.

Here we consider anAmerican Bond option; specifically an AmericanPutoption on a stochas-

tic Zero Coupon Bond (ZCB). This option gives the holder the right to sell the ZCB for a fixed
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priceK at any time prior to the maturityT . The payoff at timet is given by(K − B(t, T̂ ))+ for

T ≤ T̂ ≤ Tmax, where( · )+ denotes the positive part. In terms of the forward rate (1) the optimal

stopping problem associated to the pricing of the American Bond option may be written as

sup
t≤τ≤T

E

[

e−
∫ τ

t
f(u,u)du

(

K − e−
∫ T̂

τ
f(τ,u)du

)+
]

. (2)

The theory of infinite dimensional stochastic analysis (cf.[19]) guarantees that (2) is Markovian

in the sense that it only depends on the starting timet and on the initial data{f(t, u), u ∈ [t, T̂ ]}.

The dependence on the entire forward curve is typical of infinite dimensional processes, however

for such processes the theory of optimal stopping is not as developed as its finite dimensional

counterpart. A first attempt in this direction was made by J. Zabczyk [55] in 1997 from a purely

probabilistic point of view. The variational approach was introduced by Zabczyk himself in 2001

(cf. [56]) and further contributions by Barbu and Marinelli[2] followed several years later. These

Authors considered a diffusion process on functional spaceH (usually a Hilbert space) and solved

the variational problem in a suitableL2-space with respect to a measure onH. The solution was

characterized in a mild sense, adopting the general theory of monotone operators and the associated

semigroups, cf. [13]. Optimal stopping and variational inequalities in infinite dimensions were also

considered by Chow and Menaldi [15] in a particular case. In principle the results by Zabczyk and

Barbu-Marinelli might be applied to the pricing of AmericanBond options on forward rates but

these Authors outline the arguments. On the other hand D. Ga̧tarek and A.Świȩch [31] study

the problem by means of viscosity theory in infinite dimensions. They characterize the value

function and the optimal stopping time under suitable assumptions on the dynamics of the forward

rate. In particular they make use of the Goldys-Musiela-Sondermann parametrization (cf. [34])

and that completely determines the volatility structure ofthe dynamics. The adoption of this

scheme simplifies the stochastic differential equation (SDE) in infinite dimensions removing an

unbounded term from the drift. A possible drawback of this model is the lack of consistency with

the observations on the market. This fact is discussed in details by D. Filipovic [26].
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Given a probability space(Ω,F ,P), a SDE on a Hilbert spaceH is formally written as

{
dXt = (AXt + F (Xt))dt+ σ(Xt)dWt, t ∈ [0, T ]
X0 = x.

(3)

UsuallyW represents aH-valued Brownian motion but full generality may be obtainedby in-

troducing the concept of cylindrical Brownian motion (cf. [19]). The coefficientsF andσ are

suitable functions onH, taking values respectively onH and on the space of bounded linear op-

erators fromH to itself;A is an unbounded linear operator with domainD(A) dense inH. There

are three different notions of solution:strong, weakandmild. The last one relies on the theory

of semigroups (cf. [49]) and it is the most widely adopted. Notice that the forward rate in the

Musiela’s parametrization is indeed a mild solution of (3) with suitable coefficients.

In this Thesis we show that the price of an American Bond option in the HJM framework is

a solution (in some sense) of a suitable infinite dimensionalvariational inequality. Our results

generalize Bensoussan and Lions’ theory [4] of optimal stopping in finite dimensions to the in-

finite dimensional case by exploiting both probabilistic and analytical results. We also obtain a

higher degree of regularity as compared to the results in [2], [31], [55], [56]. Our infinite dimen-

sional variational inequality is highly degenerate, parabolic, on an unbounded domain. This kind

of problems is non standard in the context of PDE’s theory (cf. [53]) even at the finite dimensional

level. Optimal stopping of degenerate diffusions onR
n was mostly studied by J.L. Menaldi in the

early eighties (cf. [43], [44]). We solve the variational inequality in a suitable Banach space; the

regularity of the solution turns out to be the infinite dimensional counterpart of the finite dimen-

sional results. We also characterize the optimal stopping time and give some intuitive results about

the shape of the continuation and stopping regions.

The whole analysis is based on a preliminary finite dimensional reduction of the diffusion

process, which we associate a suitable optimal stopping problem to. Then we localize this problem

to a bounded regular subset of[0, T ]×R
n so to exploit standard results on variational inequalities

and optimal stopping. We prove that the value function of thelocalized finite dimensional optimal

stopping problem solves a specific variational inequality and we characterize its optimal stopping
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time. Next, we obtain a number of a priori estimates which allow us to move to the infinite

dimensional case and we manage to keep the connection between the value function of the optimal

stopping problem and the variational inequality by exploiting the probabilistic representation of

the solution. Similarly we characterize the optimal stopping time for the infinite dimensional case.

It is worth mentioning that there exists a large literature about finite dimensional realizations

of the forward rate curve’s dynamics, see for instance [7], [8], [9], [10], [28], [29]. These Authors

show that, in some cases, for each initial condition there exists a suitable random time interval on

which the solution of (3) has a representation in terms of a finite dimensional diffusion, whose

coefficients depend on the initial datax.

This Thesis is organized as follows. In Chapter 1 we set the problem and we describe the con-

nection between the dynamics of the forward interest rate and the theory of stochastic differential

equations in infinite dimensions. In particular, we recall the Musiela’s parametrization and the

Filipovic’s space of functions. In fact we consider the forward curve as an element of the Hilbert

spaceHw introduced in [26]. We characterize the value function of the option by writing explicitly

the optimal stopping problem inHw and afterwards we analyze some of its regularity properties.

This is done by means of purely probabilistic considerations which however rely on the particular

choice of the spaceHw.

In Chapter 2 we embed our problem in a more general class of optimal stopping problems for

Hilbert space-valued diffusion processes. In particular we consider a diffusionX with features

analogous to those of the forward rate and define the optimal stopping problem

V (t, x) := sup
t≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
, (4)

where the gain functionΨ has the same regularity of the discounted payoff of the original Put

option. The regularity ofX allows us to obtain the Lipschitz property of the value function V in

the initial datax.

In Chapter 3 we introduce a finite dimensional reduction of the diffusion processX. First we

take the Yosida approximation of the unbounded operatorA (cf. eq. (3)). This leads to an approx-
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imating diffusionX(α). Next, we adopt a Galerkin scheme for the finite dimensional reduction.

The approximating diffusion is denoted byX(α,n). To each approximation we associate an optimal

stopping problem. In particularVα is the value function in (4) corresponding toX(α) and similarly

for V (n)
α . Then we prove convergences of different kinds forn→ ∞ and forα → ∞.

In Chapter 4 we shortly recall some results about variational inequalities inRn. Hence we

localize the value functionV (n)
α and we show that it is the unique solution of a suitable variational

problem. Then we characterize the optimal stopping time ofV
(n)
α as the first time the value function

equals the gain function.

Chapter 5 is mostly devoted to a priori estimates needed to take limits asn andα go to infinity.

In particular, as a first step, we extend the variational inequality from the bounded domain to the

wholeRn. In order to do so we introduce a Gaussian measure onR
n. Then we restrict the varia-

tional inequality to a closed convex subset of a suitable Banach space, denoted byVn. We provide

a number of a priori estimates both on the solution of the localized variational inequality and on

the bilinear form appearing in the variational inequality itself. The relevance of these estimates

is in their independence on the order of the approximation procedure. In fact the estimates turn

out to beuniversal, i.e. they are uniform with respect to all the indexes characterizing the finite

dimensional approximation and the localization. Finally,we prove thatV (n)
α is a solution in a weak

sense of a suitable variational inequality onR
n.

In Chapter 6 we extend our results to infinite dimensions; that is we analyze what happens

to the sequence of variational inequalities in the limit asn → ∞. First, we provide a natural

extension of the Gaussian measure to infinite dimensions (cf. [11]) that allows us to extend the

Banach spaceVn to its infinite dimensional counterpart, denoted byV. We show that the finite

dimensional optimal stopping problems and their related variational inequalities are special cases

of a general infinite dimensional theory.

We start by providing some preliminary results about coefficients’ convergence in the bilinear

forms found in the variational inequalities. The PDE approach relies on a weak formulation which

makes use of test functions from a convex set at each finite dimensional step. We then select
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a test function from each convex set so to obtain a sequence converging to agood test function

in the corresponding infinite dimensional convex subset. Weare then able to take the limit and

prove that the value functionVα is a solution of an infinite dimensional variational inequality.

Again the optimal stopping time is characterized as the firsttime the value function equals the gain

function. The proof is based on both the dynamic programmingprinciple at the finite dimensional

level and probabilistic arguments. By passing to the limit in the Yosida approximation, i.e. as

α→ ∞, we prove that the original value functionV is a solution of a variational inequality which

no longer depends on the parameterα. The arguments of the proof are similar to those adopted

in the limit asn → ∞. However, when we try to explicitly characterize the bilinear form in

the infinite dimensional variational inequality, we end up dealing with the unbounded operatorA.

The universal estimate found in Chapter 5 allows us to control the rate of growth of the Yosida

approximationAα and henceA itself. The bilinear form, well defined on a domain containedin V,

is then extended to the wholeV in a suitable way.

In Chapter 7 we consider a simpler case that does not require the Yosida approximation. In such

case we are able to characterize the asymptotic properties of the sequence of finite dimensional

continuation regions and show how that sequence relates to the continuation region in infinite

dimensions.

The Thesis is completed by several technical appendixes. Inparticular Appendix A contains a

smoothing method used to take limits from the finite dimensional setting to the infinite dimensional

one.

In conclusion, we study the problem of pricing an American Bond option when the underlying

process is the whole forward rate curve under the HJM model. From the mathematical point of

view, this problem gives rise to a parabolic degenerate variational inequality in a Hilbert space

which, formally, is the analogue of what one would expect inR
n. We provide a solution of the

infinite dimensional variational inequality. Our existence result is new in the literature and con-

tributes an original method of solution. Finally we characterize the solution as the value function

of a suitable optimal stopping problem for a Hilbert space-valued diffusion process.
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Chapter 1

The HJM model for forward interest rates.

In this chapter we describe the financial setting of our problem. In particular we introduce the

mathematical tools needed to catch some fundamental features of the forward rate dynamics. We

describe the Heath-Jarrow-Morton model in both its original formulation and in the Musiela’s

once. Afterwards we recall the well known connection of thismodel with the theory of SDE’s in

infinite dimensions. We introduce the suitable space of functions where the whole forward curve

can be considered. Once the mathematical setting is determined we present the pricing problem as

an optimal stopping problem. Some regularity properties ofthe gain function are discussed in the

concluding section.

1.1 Standard formulation

The forward rate at timet for a loan taking place at a future timev ≥ t and returned one instant

later, i.e. atv + dv, is commonly denoted byf(t, v). When we setv = t we recover the in-

stantaneous interest rate (spot rate) and we denote it byR(t) = f(t, t). For any fixed maturityv,

the time evolution of the forward rate is described by a mapt 7→ f(t, v), t ≤ v. We are partic-

ularly interested in a stochastic model for this dynamics and hence the natural framework is the

Heath-Jarrow-Morton model (HJM), [35].

Let us introduce a probability space(Ω,F ,P) and a filtration{Ft}0≤t≤T generated by ad-

dimensional Brownian motion{Wt}0≤t≤T . For simplicity we assumed = 1 and the filtration is



16 The HJM model for forward interest rates.

taken continuous and augmented with sets of null measure. Let σ̃ : R+ × R+ × R → R be a non

negative, bounded and continuous function. Let us assumeσ̃ is Lipschitz continuous w.r.t. the last

variable. For anŷT > 0 and any maturityv ∈ [0, T̂ ], the dynamic of the forward rate under the

risk-neutral probability measureP is described, according to HJM, by the SDE

f(t, v) = f(0, v) +

∫ t

0

σ̃(u, v, f(u, v))

∫ v

u

σ̃(u, s, f(u, s))dsdu

+

∫ t

0

σ̃(u, v, f(u, v))dWu . (1.1)

Heref(0, v) is deterministic and denotes the initial data at time0. This representation can be

understood as an infinite family of SDEs depending on the continuous time parameterv. When

σ̃(u, v, f(u, v)) is bounded, non negative and Lipschitz there exists a uniquestrong solutionf(·, ·)

continuous in both variables [46]. It was shown in [35] that the boundedness of the volatility

cannot be substantially weakened. Doing so would produce the unpleasant fact that the forward

rate process explodes in a finite timeP-a.s.

The particular form of the drift coefficient in the SDE is the key feature of the HJM model.

This expression is in fact necessary and sufficient condition for the existence of a risk neutral

probability measure and hence for the absence of arbitrage condition. One of the most striking

features is that for anyv ≤ T̂ fixed, the process{f(t, v), 0 ≤ t ≤ v} is not Markovian. If we look

at the drift term in the SDE, we see that the dynamics depends on the evolution of the whole curve.

This fact remains true even though we consider a deterministic coefficientσ̃, as long as it explicitly

depends on the process. Nevertheless the Markovian featureis recovered if we consider the infinite

dimensional processt 7→ {f(t, v), t ≤ v ≤ T̂} and it substantially changes our perspective. From

now on, for any givenω ∈ Ω, we consider the map that associates at each timet the whole forward

curve with maturities between timet and T̂ , i.e. t 7→ {f(t, v, ω), t ≤ v ≤ T̂}. The price of a

stochastic Zero Coupon Bond with maturitŷT is expressed in terms of the forward rate curve as

B(t, T̂ , ω) = exp

(

−
∫ T̂

t

f(t, v, ω)dv

)

. (1.2)
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It follows the Itô dynamics

dB(t, T̂ ) = B(t, T̂ )R(t)dt+B(t, T̂ )a(t, T̂ )dWt, (1.3)

where

a(t, T̂ ) = −
∫ T̂

t

σ̃(t, v, f(t, v))dv. (1.4)

The stochastic discount factor processD is obtained as usual as the exponential of minus the

cumulated spot rate up to timet, i.e.

D(t, ω) = exp

(

−
∫ t

0

f(s, s, ω)ds

)

. (1.5)

Our aim is to characterize the price function of an American Put Option on a Zero Coupon

Bond. We consider the option with a fixed maturityT ≤ T̂ and a strike priceK < 1. The

discounted payoff clearly holds in the form

D(t, ω)
(

K − B(t, T̂ , ω)
)+

= e−
∫ t

0 f(u,u,ω)du
(

K − e−
∫ T̂

t
f(t,v,ω)dv

)+

.

When we evaluate the price of the option at a generic timet, we denote the forward rate curve at

that time asft := {f(t, v), t ≤ v ≤ T̂}. The no-arbitrage condition enables us to express the price

of the option under the risk neutral probability measure,P, as

V (t, ft) = sup
t≤τ≤T

Et,ft

[

e−
∫ τ

t
f(u,u)du

(

K − e−
∫ T̂

τ
f(τ,v)dv

)+
]

. (1.6)

The main feature of this valuation formula is that the price of the option depends on the whole

structure of the forward rates between timet andT̂ . As we mentioned above, fort ∈ [0, T̂ ] fixed,

the mapv 7→ f(t, v) is a real valued continuous function on[t, T̂ ]. This fact can be expressed as

f(t, · ) ∈ C([t, T̂ ];R). It then turns out that at any given timet ∈ [0, T ] the value function can be

understood as a mapV (t, · ) : C([t, T̂ ];R) → R. As we see there is a quite complicated functional

dependence which connects the time of evaluation to the set where the value function is defined.

In particular the value function is defined on a time dependent infinite dimensional space.



18 The HJM model for forward interest rates.

For the problem being meaningful we requireK < 1, otherwise the payoff would be always

strictly positive becauseB(t, T̂ ) ≤ 1 for all t ≤ T̂ . The basic conditionT ≤ T̂ cannot be

substantially weakened. In principle one could study the infinite horizon problem but, in order for

the problem to be well posed from the financial angle, we must remember thatB(T̂ , T̂ ) = 1. Then,

if we try to extend the ZCB dynamics over an infinite time interval, we must consider the original

dynamics up to the maturity and then paste the ZCB process with a process greater or equal to one.

It then implies that the optimal stopping time can only be before the ZCB’s maturitŷT .

1.2 The Musiela parametrization.

In order to overcome the formal difficulties arising in the definition of the value function, it is useful

to rely on the theory of Infinite Dimensional Stochastic Differential Equations, cf. [19]. The first

one to adopt this perspective was Marek Musiela, [47]. The socalled Musiela’s parametrization

describes the forward rate curvef(t, v) in terms of the time to maturityx = v − t instead of

the maturityv. This is simply done defining the forward rate curve by means of a new function

(t, x) 7→ rt(x). In terms of the original forward curve we havef(t, v) = f(t, t + x) =: rt(x). At

any given timet the model input is the forward rate curve as a functionx 7→ rt(x). One can hence

assume that the curvert(·) belongs to a suitable space of functions. The main features of this space

will be explained in the next section. For the short rate we have the notationR(t) = f(t, t) = rt(0),

which explicitly denotes the fact that it is the instantaneous rate, i.e.x = 0.

In order to rewrite the forward rate dynamics in the new parametrization we introduce the

semigroup of bounded linear operators{S(t) | t ∈ R+}. It denotes the semigroup of right shifts

which is defined asS(t)h(x) = h(t + x) for any functionh : R+ → R. Starting from equation

(1.1) we can write

rt(x) = f(t, t+ x) = f(0, t+ x)

+

∫ t

0

σ̃(u, u+ x+ t− u, f(u, u+ x+ t− u))

∫ v

u

σ̃(u, u+ s− u, f(u, u+ s− u))ds du



1.2 The Musiela parametrization. 19

+

∫ t

0

σ̃(u, u+ t− u+ x, f(u, u+ t− u+ x))dWu

= S(t)r0(x) +

∫ t

0

σ̃(u, u+ x+ t− u, ru(x+ t− u))

∫ t−u+x

0

σ̃(u, u+ y, ru(y))dy du

+

∫ t

0

σ̃(u, u+ t− u+ x, ru(t− u+ x))dWu

= S(t)r0(x) +

∫ t

0

S(t− u)σ(u, x, ru(x))

∫ x

0

σ(u, y, ru(y))dy du

+

∫ t

0

S(t− u)σ(u, x, ru(x))dWu,

whereσ(t, x, rt(x)) = σ̃(t, t + x, f(t, t + x)). There is no substantial loss in generality if we

assume time homogeneous volatility, i.e. if we setσ(t, x, rt(x)) = σ(rt)(x).

For simplicity we denote

Fσ(rt)(x) := σ(rt)(x)

∫ x

0

σ(rt)(y)dy, x ∈ R+. (1.7)

The dynamic of the forward rate curve is completely characterized by the integral equation

rt(x) = S(t)r0(x) +

∫ t

0

S(t− u)Fσ(ru)(x)du+

∫ t

0

S(t− u)σ(ru)(x)dWu. (1.8)

The connection with the theory of infinite dimensional SDEs is then rather natural (cf. [19]). Set

S > T̂ , then under appropriate conditions (1.8) represents the socalledmild solution to the SDE






drt = [Art + Fσ(rt)] dt+ σ(rt)dWt, t ∈ [0, S],

r0 = r ∈ H.
(1.9)

HereH is a suitable function space wherein the semigroupS(t) is strongly continuous andA

represents its infinitesimal generator (cf. [49]). From nowon we assumeH to be a Hilbert space,

with norm ‖ · ‖H and scalar product〈·, ·〉H. The infinitesimal generator of the semigroup is an

unbounded linear operatorA : D(A) ⊂ H → H. The choice of the Hilbert space has to be

coherent with this formulation. The time horizon[0, S] is arbitrary but it has to be large enough in

order to satisfyT ≤ T̂ ≤ S. An exhaustive study in this sense has been carried out by Filipovic

[26]. Here we follow his approach and provide a short summaryof the essential facts.
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Since (1.8) holds pointwisely the Hilbert spaceH has to be such that the pointwise evaluation

is well defined on it. In order for the ZCB price to be meaningful it must also beH ⊂ L1
loc(R+).

The semigroup{S(t) | t ∈ R+} has to be strongly continuous onH and the drift term has to fulfill

some integrability conditions. Filipovic summarizes these hypothesis as follows

(H1) Each functionh ∈ H has a continuous representative and the pointwise evaluationJx(h) :=

h(x) is a continuous linear functional onH, for all x ∈ R+.

(H2) The semigroup{S(t) | t ∈ R+} is strongly continuous inH with infinitesimal generator de-

noted byA.

(H3) There exists a constantK such that

‖Fσ(h)‖H ≤ K‖h‖2H,

for all h ∈ H with Fσ(h) ∈ H.

In the next section we will shortly introduce the Hilbert space proposed by Filipovic and we will

see how it satisfies all these hypotheses.

Before characterizing the Hilbert space it is worth mentioning the standard measurability con-

ditions on the coefficients of (1.8) (cf. [19], Chapter 7). Inparticular it is required thatσ : H →

L0
2(H) is measurable as a map from(H,B(H)) to (L0

2(H),B(L0
2(H))). HereL0

2(H) represents the

space of Hilbert-Schmidt operators inH. Since we deal with a one dimensional Brownian motion,

σ(h) ∈ L(R,H) for h ∈ H. Forσ(h) to be Hilbert-Schmidt it is enoughσ(h) ∈ H.

We recall now the precise notions ofmild andweaksolution for (1.9), cf. [19].

Definition 1.2.1 Let us consider a predictableH-valued process{rt, t ∈ [0, S]} such that

P

(∫ S

0

‖rt‖2Hdt <∞
)

= 1,

then



1.3 Hilbert space characterization 21

i) rt is said to be a mild solution to (1.9) if for arbitraryt ∈ [0, S] we have

rt = S(t)r0 +

∫ t

0

S(t− u)Fσ(ru)du+

∫ t

0

S(t− u)σ(ru)dWu.

ii) rt is said to be a weak solution to (1.9) if

P

(∫ T

0

‖σ(rs)‖2L0
2
ds <∞

)

= 1

and, for arbitraryt ∈ [0, S] andζ ∈ D(A∗) we have

〈rt, ζ〉 = 〈r0, ζ〉+
∫ t

0

(

〈rs, A∗ζ〉H + 〈Fσ(rs), ζ〉H
)

ds+

∫ t

0

〈ζ, σ(rs)dWs〉H.

We can finally introduce the Hilbert space where it is naturalto set the whole problem.

1.3 Hilbert space characterization

The results contained here represent a short survey of [26],Chapter 5. It is reasonable to assume

the integrability of the forward curve in the following sense

∫

R+

|rt(x)|2dx <∞.

This is coherent with the bootstrapping and smoothing algorithms adopted by the practitioners

when estimating the forward curve by data points. We also expect the forward curve to flatten

for large maturities since it seems reasonable that the prices of loans with large maturities cannot

substantially differ one from another. This can be modeled by adopting some increasing weighting

functionw(x) in order to get
∫

R+

|rt(x)|2w(x)dx <∞.

It does not provide a norm yet. In fact all the flat curves are indistinguishable. To avoid this

unpleasant feature we add the square of the short rate|rt(0)|2. We then define the spaceHw as

follows:
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Definition 1.3.1 Letw : R+ → [1,+∞) be a non decreasingC1-function such that

w− 1
3 ∈ L1(R+).

We write

‖h‖w := |h(0)|2 +
∫

R+

|h′(x)|2w(x)dx

and define

Hw := {h ∈ L1
loc(R+) | ∃h′ ∈ L1

loc(R+) and ‖h‖w <∞}.

The derivative is understood in the weak sense. It is known from real analysis that ifh has a weak

derivativeh′ then there exists an absolutely continuous representativeof h, which we still denote

by h, such that

h(x) = h(0) +

∫ x

0

h′(y)dy.

The choice of the spaceHw is the right one according to the hypotheses (H1)-(H2) as stated in the

following theorem:

Theorem 1.3.1 The setHw equipped with the norm‖·‖w forms a separable Hilbert space meeting

(H1)-(H2).

The proof of the theorem is given in [26], Theorem 5.1.1. It isanyway interesting to state some

intermediate results which better clarify the role of the Hilbert space. An important property for

our purposes is the following continuous embedding (cf. [26], Chapter 5, equation 5.4):

sup
x∈R+

|h(x)| ≤ C‖h‖w, h ∈ Hw. (1.10)

The choice of the Hilbert space sets some constraints on the possible candidate functions describing

the volatility structure. We summarize it in the next proposition.

Proposition 1.3.1 Let us denote byH0
w the set

H0
w := {h ∈ Hw | h(∞) = 0}.

ThenH0
w is a closed subspace ofHw andFσ takes values inHw if and only ifσ takes values in

H0
w.
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The proof of this fact is in [26], Chapter 5, equation (5.13).This result basically gives a condi-

tion on the allowed volatility structures. We are supposed to chose volatility structures such that

σ(h)(x) → 0 whenx → ∞ for any h ∈ Hw. A simple extension of Corollary 5.1.2 in [26],

Chapter 5, guarantees that the following proposition holds.

Proposition 1.3.2 Letσ : Hw → H0
w be bounded and uniformly Lipschitz. Then

‖Fσ(f)− Fσ(h)‖w ≤ L‖f − h‖w, ∀f, h ∈ H.

The next result identifies the infinitesimal generatorA of S(t) onHw.

Proposition 1.3.3 We haveD(A) = {h ∈ Hw | h′ ∈ Hw} andAh = h′.

Let us now state the existence and uniqueness theorem for thesolution of the∞−dimensional

SDE (1.9).

Theorem 1.3.2 Letσ : Hw → H0
w be bounded and uniformly Lipschitz. Then there exists a unique

mild solution to the stochastic differential equation (1.9). Moreover for anyT ∈ R+ andp ≥ 2

there exists a constantCT such that

E

[

sup
t∈[0,T ]

‖rt‖pw

]

≤ CT (1 + ‖r0‖pw) . (1.11)

The unique mild solution also coincides with the unique weaksolution.

PROOF: We know from Proposition (1.3.2) that under the hypotheses of the theorem,Fσ is

bounded and uniformly Lipschitz. Existence and uniquenessfor a mild solution and the coin-

cidence of mild and weak solutions hold as a consequence of [19], Theorem 7.4 and Theorem 6.5,

or [26], Theorem 2.4.1.

Remark 1.3.1 It is worth clarifying that [19], Theorem 7.4 provides the estimate

E

[

sup
t∈[0,T ]

‖rt‖pw

]

≤ CT,p (1 + ‖r0‖pw) , (1.12)
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only for all p > 2 and [26], Theorem 2.4.1 provides an estimate forp = 2 but with an arbitrary

positive constantCT independent ofp. This two notations can be connected adopting a simple

argument relying on Jensen’s inequality. For anyp > 2

E

[

sup
t∈[0,T ]

‖rt‖2w

]

≤
(

E

[

sup
t∈[0,T ]

‖rt‖pw

]) 2
p

≤ CT
(
1 + ‖r0‖2w

)
,

and the dependency onp can be suppressed because of the arbitrariness ofp itself. For instance

by taking the infimum over allp > 2 in the family(CT,p)p>2 of expression(1.12), provided that it

is strictly positive.

A very important feature of the HJM model is that it can describe positive rates. More precisely

in [35], Proposition 5, it is shown that the HJM model is compatible with non-negative forward

curves. In particular, for̂T > 0, λ > 0, C > 0, the choicẽσ(t, T̂ , f(t, T̂ )) = Cmin{λ, f(t, T̂ )}

guarantees existence and uniqueness of a non-negative solution to the SDE (1.1) for any non-

negative initial dataf(0, T̂ ). In our framework the equivalent choice isσ(r)(x) = γ(x)min{λ, r(x)},

r ∈ Hw andγ ∈ H0
w. In this case the non negativity is granted for anyt ∈ [0, T ] in the portion of

curve{rt(x), x ∈ [0, T − t]}. Therefore this is enough to guarantee positivity of the rates in the

pricing formula that we will introduce below.

1.4 The pricing problem in Musiela’s parametrization

When adopting the Musiela’s parametrization one has to rewrite the price function according to

the new notation. In particular the ZCB price is described interms of the processr, as

B(t, T̂ ) = exp

(

−
∫ T̂−t

0

rt(x)dx

)

. (1.13)

It easily follows, for the stochastic discount factorD, the notation

D(t) = exp

(

−
∫ t

0

rs(0)ds

)

. (1.14)

The discounted payoff is then written as

e−
∫ t

0 ru(0)du
(

K − e−
∫ T̂−t

0 rt(x)dx
)+

.



1.4 The pricing problem in Musiela’s parametrization 25

As we mentioned above, it is not restrictive to assume a non negative rate in the HJM model.

Thanks to this fact there is no loss of generality in considering a different definition of the dis-

counted payoff, namely

e−
∫ t

0 (ru(0))+du
(

K − e−
∫ T̂−t

0 rt(x)dx
)+

.

It does not introduce any modification of the original problem but it will turn out to be a useful

trick in the finite dimensional analysis that we are going to perform in the next sections of this

thesis. In practice we just strengthen the uniform boundedness of the discount factor. It is now

natural to write the price function as

V (t, rt) = sup
t≤τ≤T

Et,rt

[

e−
∫ τ

t
(ru(0))+du

(

K − e−
∫ T̂−τ

0 rτ (x)dx
)+
]

. (1.15)

It is worth noticing that as long as we pick initial datas fromthe set of functions inr ∈ Hw such

that r(x) ≥ 0, x ∈ [0, T̂ − t], the value function defined above coincides with the original one.

Roughly speaking, ifV (t, rt) ∈ C([0, T ]×H), we can consider this modification as a continuous

extension of the original value function outside the set of positive forward curves.

We are mostly interested in the regularity properties of thediscounted payoff. We first denote

the undiscounted payoff by

Ψ(t, rt) =
(

K − e−
∫ T̂−t

0
rt(x)dx

)+

,

and prove some regularity properties. We can state the following results:

Proposition 1.4.1 There existC1, C2 > 0 such that the payoffΨ has the following properties

sup
(t,h)∈[0,T ]×Hw

|Ψ(t, h)| ≤ K,

sup
t∈[0,T ]

|Ψ(t, h)−Ψ(t, g)| ≤ C1‖h− g‖w, ∀g, h ∈ Hw,

|Ψ(s, h)−Ψ(t, h)| ≤ C2‖h‖w |t− s|, h ∈ Hw.
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PROOF: The first assertion is obvious. In order to prove the second one we rely on the continuous

injectionHw →֒ L∞(R+). In particular we have

∣
∣Ψ(t, h)−Ψ(t, g)

∣
∣ =

∣
∣

(

K − e−
∫ T̂−t

0 h(x)dx
)+

−
(

K − e−
∫ T̂−t

0 g(x)dx
)+ ∣
∣.

It is easy to verify that the weak derivative of the functionζ : R → R,

ζ(x) := (K − ex)+

is

ζ ′(x) =

{
0 x ≥ lnK,
−ex x < lnK.

It implies that‖ζ ′‖L∞(R) ≤ K < 1 and hence (cf. for instance [14], Ch. 8, Prop 8.4)

|ζ(x)− ζ(y)| ≤ ‖ζ ′‖L∞(R)|x− y| ≤ |x− y|. (1.16)

Now, if we denoteX = −
∫ T̂−t

0
h(x)dx andY = −

∫ T̂−t

0
g(x)dx, then clearly

∣
∣
(
K − eX

)+ −
(
K − eY

)+ ∣
∣ ≤ |X − Y |.

Hence we can conclude

|Ψ(t, h)−Ψ(t, g)| ≤
∣
∣
∣
∣
∣

∫ T̂−t

0

h(x)dx−
∫ T̂−t

0

g(x)dx

∣
∣
∣
∣
∣
≤
∫ T̂−t

0

|h(x)− g(x)|dx

≤ T̂ sup
x∈R+

|h(x)− g(x)| ≤ C T̂ ‖h− g‖w.

The second claim is proved. For the third one we proceed in thesame way as above and we get

|Ψ(t, h)−Ψ(s, h)| ≤
∣
∣

∫ T̂−t

0

h(x)dx−
∫ T̂−s

0

h(x)dx
∣
∣.

With no loss in generality we assumes ≤ t and obtain

|Ψ(t, h)−Ψ(s, h)| ≤
∫ T̂−s

T̂−t

|h(x)|dx ≤ sup
x∈R+

|h(x)| |t− s| ≤ C‖h‖w |t− s|.

The proof is now complete.

This regularity is substantially preserved when considering the discounted payoff. Nevertheless

the regularity which will play a crucial role in the analysisof the next sections is the one w.r.t. the

space variable.
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Corollary 1.4.1 LetX andY be twoHw-valued stochastic processes. Then

sup
t∈[0,T ]

∣
∣
∣e−

∫ t

0
(Xu(0)(ω))+duΨ(t, Xt(ω))− e−

∫ t

0
(Yu(0)(ω))+duΨ(t, Yt(ω))

∣
∣
∣

≤ (C1 +K C T ) sup
t∈[0,T ]

‖Xt(ω)− Yt(ω)‖w, P-a.e.ω ∈ Ω,

∣
∣
∣e−

∫ s

0 (Xu(0)(ω))+duΨ(s,Xs(ω))− e−
∫ t

0 (Xu(0)(ω))+duΨ(t, Xt(ω))
∣
∣
∣

≤ (K + C2) sup
t∈[0,T ]

‖Xt‖w |t− s|+ C1‖Xt(ω)−Xs(ω)‖w, P-a.e.ω ∈ Ω.

PROOF: The proof follows the same lines as above, in fact

sup
t∈[0,T ]

∣
∣
∣e−

∫ t

0 (Xu(0)(ω))+duΨ(t, Xt(ω))− e−
∫ t

0 (Yu(0)(ω))+duΨ(t, Yt(ω))
∣
∣
∣

≤ K sup
t∈[0,T ]

∣
∣
∣e−

∫ t

0 (Xu(0)(ω))+du − e−
∫ t

0 (Yu(0)(ω))+du
∣
∣
∣

+ sup
t∈[0,T ]

|Ψ(t, Xt(ω))−Ψ(t, Yt(ω))|

≤ K sup
t∈[0,T ]

∫ t

0

∣
∣(Xu(0)(ω))

+ − (Yu(0)(ω))
+
∣
∣ du

+C1 sup
t∈[0,T ]

‖Xt(ω)− Yt(ω)‖w.

Here we use the fact that

∣
∣(Xu(0)(ω))

+ − (Yu(0)(ω))
+
∣
∣ ≤ |Xu(0)(ω)− Yu(0)(ω)|

≤ ‖Xu(ω)− Yu(ω)‖L∞(R+) ≤ C‖Xu(ω)− Yu(ω)‖w,

and conclude

sup
t∈[0,T ]

∣
∣
∣e−

∫ t

0 (Xu(0)(ω))+duΨ(t, Xt(ω))− e−
∫ t

0 (Yu(0)(ω))+duΨ(t, Yt(ω))
∣
∣
∣

≤ (C1 +K C T ) sup
t∈[0,T ]

‖Xt(ω)− Yt(ω)‖w.

The proof is the same for the second inequality.
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Chapter 2

The optimal stopping problem

In this chapter we simplify the notation of the original problem. In order to do so we consider a

simplified SDE which is indeed equivalent to the original one. Moreover, we get rid of the stochas-

tic discount factor in the optimal stopping problem. Since the discount rate is non negative, this

simplification does not affect the rationale in the variational inequality approach. Some regularities

of the value function are pointed out and they hold in the original problem as well.

2.1 Simplified setting

In order to study the variatonal inequality associated to the pricing problem we prefer to simplify

the setting and without loss in generality we can consider a problem of the following form. Let

H represent a separable Hilbert space with scalar product denoted by〈·, ·〉H and induced norm

‖ · ‖H. LetA : D(A) ⊂ H → H be the infinitesimal generator of a strongly continuous semigroup

of operators{S(t), t ≥ 0} on H, cf. [49]. Let us now consider a complete probability space

(Ω,F ,P) and letW := (W 0,W 1,W 2 . . .) be an infinite dimensional standard Brownian motion

on the probability space. The filtration generated by the Brownian motion is{Ft, t ∈ [0, S]} and

is augmented with the sets of null measure. We consider a particular SDE in the Hilbert space and

denote byX its unique mild solution, cf. [19]. As before we considerS ≥ T̂ ≥ T . Let the SDE
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hold in the form 





dXt = AXtdt+ σ(Xt)dW
0
t , t ∈ [0, S],

X0 = x.
(2.1)

We are interested in the case of SDEs driven by a finite dimensional Brownian motion. There is

no loss in generality assuming for simplicity a one dimensional case. The diffusion coefficient

σ : H → H is a continuous map and satisfies Lipschitz condition and sublinear growth condition.

Some other assumption onσ will be needed and we will discuss them later.

We introduce now the functionΨ : [0, S] × H → R representing the gain function of the

optimal stopping problem. Coherently with the observations of the previous section, we make the

following assumptions

Assumption 2.1.1 The functionΨ is uniformly bounded onH by a constantΨ ∈ R, i.e.

sup
(t,x)∈[0,S]×H

|Ψ(t, x)| ≤ Ψ. (2.2)

Moreover, the following regularities hold:

|Ψ(t, x)−Ψ(t, y)| ≤ L1‖x− y‖H ∀t ∈ [0, S], x, y ∈ H, (2.3)

and

|Ψ(t, x)−Ψ(s, x)| ≤ L2η(‖x‖H) |t− s| ∀x ∈ H, 0 ≤ s ≤ t ≤ S. (2.4)

Hereη : H → R satisfies a polynomial growth condition|η(x)| ≤ C(1 + ‖x‖pH), for somep ≥ 1.

The Optimal Stopping problem we are going to analyze has the following form: givenT ≤ S let

the value functionV be defined as

V (t, x) := sup
0≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
, (2.5)

where the supremum is taken over the class of all stopping times of the filtration{Ft, t ∈ [0, S]}.

This class of problems was previously studied in [2, 55, 56] but we now propose a completely new

algorithm for the characterization of the solution.
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2.2 Regularity of the value function

In this section we will prove some regularity results about the value function. We first need an

auxiliary result on our SDE.

Proposition 2.2.1 Let Xx andXy be two mild solutions of (2.1) with initial data respectively

equal tox andy. Then forp > 2

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ C(p, S,M, Lσ)‖x− y‖pH. (2.6)

PROOF: From the definition of mild solution we have

Xx
t = S(t)x+

∫ t

0

S(t− u)σ(Xx
u)dW

0
u ,

and

Xy
t = S(t)y +

∫ t

0

S(t− u)σ(Xy
u)dW

0
u .

Hence

‖Xx
t −Xy

t ‖pH = ‖S(t)(x− y) +

∫ t

0

S(t− u) [σ(Xx
u)− σ(Xy

u)] dW
0
u‖pH

≤ 2p−1

(

‖S(t)(x− y)‖pH + ‖
∫ t

0

S(t− u) [σ(Xx
u)− σ(Xy

u)] dW
0
u‖pH

)

.

We now take the supremum over all times and the average value,

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ 2p−1

(

sup
0≤t≤S

‖S(t)(x− y)‖pH

+E

[

sup
0≤t≤S

‖
∫ t

0

S(t− u) [σ(Xx
u)− σ(Xy

u)] dW
0
u‖pH

])

.

We know from semigroup theory [49] that theC0-semigroup is uniformly bounded on[0, S], i.e.

sup0≤t≤S ‖S(t)‖H ≤ M . Moreover for the stochastic convolution we can rely on [20], which

guarantees

E

[

sup
0≤t≤S

‖
∫ t

0

S(t− u) [σ(Xx
u)− σ(Xy

u)] dW
0
u‖pH

]

≤ cpM
pS

p

2
−1
E

[∫ S

0

‖σ(Xx
u)− σ(Xy

u)‖pHdu
]

. (2.7)
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Summarizing, for a suitable constantĉ(p, S,M) > 0, we get

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ ĉ(p, S,M)

(

‖x− y‖pH

+E

[∫ S

0

‖σ(Xx
u)− σ(Xy

u)‖pHdu
])

.

From the Lipschitz property ofσ with constantLσ

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ ĉ(p, S,M, Lσ)

(

‖x− y‖pH

+E

[∫ S

0

sup
0≤s≤u

‖Xx
s −Xy

s ‖pHdu
])

Now we apply Gronwall’s lemma tof(S) := E
[
sup0≤t≤S ‖Xx

t −Xy
t ‖pH

]
and then obtain the

estimate

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ ĉ(p, S,M, Lσ)‖x− y‖pH · eĉ(p,S,M,Lσ)·S.

The proof is complete withC(p, S,M, Lσ) = ĉ(p, S,M, Lσ)e
ĉ(p,S,M,Lσ)·S.

Even though the inequality (2.7) does not apply forp = 1, 2 (cf. [20]), if we setp̄ > 2 we can

deduce another inequality.

Corollary 2.2.1 LetXx andXy be respectively two mild solutions of (2.1) with initial data x and

y. For p > 2, the following holds

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖H
]

≤ p̄
√

C(p, S,M, Lσ)‖x− y‖H. (2.8)

PROOF: Sincep > 2, the mapx 7→ p
√
x is concave and monotone onx ≥ 0. Then

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖H
]

= E

[

p

√

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH

]

,

and from Jensen’s inequality

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖H
]

≤ p

√

E

[

sup
0≤t≤S

‖Xx
t −Xy

t ‖pH
]

≤ p
√

C(p, S,M, Lσ)‖x− y‖H.
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In general we might set̂C(S,M,Lσ) := infp>2
p
√

C(p, S,M, Lσ) and obtain a universal con-

stant.

We can now state the regularity properties of the value function.

Proposition 2.2.2 The value functionV (t, x) is such that

sup
(t,x)∈[0,T ]×H

|V (t, x)| ≤ Ψ, (2.9)

moreover there existsLV > 0 such that

|V (t, x)− V (t, y)| ≤ LV ‖x− y‖H, ∀t ∈ [0, S], x, y ∈ H. (2.10)

PROOF: The first claim is an obvious consequence of the uniform boundedness of the gain function

Ψ. Let us verify the second claim. Let us consider

V (t, x)− V (t, y) = sup
t≤τ1≤T

E
[
Ψ(τ1, X

t,x
τ1
)
]
− sup

t≤τ2≤T
E
[
Ψ(τ2, X

t,y
τ2
)
]

= sup
t≤τ1≤T

inf
t≤τ2≤T

E
[
Ψ(τ1, X

t,x
τ1
)−Ψ(τ2, X

t,y
τ2
)
]

≤ sup
t≤τ1≤T

E
[
Ψ(τ1, X

t,x
τ1
)−Ψ(τ1, X

t,y
τ1
)
]

≤ E

[

sup
t≤s≤T

|Ψ(s,X t,x
s )−Ψ(s,X t,y

s )|
]

≤ L1E

[

sup
t≤s≤T

‖X t,x
s −X t,y

s ‖H
]

.

The same estimate holds forV (t, y)− V (t, x) and hence

|V (t, x)− V (t, y)| ≤ L1E

[

sup
t≤s≤T

‖X t,x
s −X t,y

s ‖H
]

.
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Notice that the coefficients in (2.1) are time homogeneous, hence

E

[

sup
t≤s≤T

‖X t,x
s −X t,y

s ‖H
]

= E

[

sup
0≤s≤T−t

‖X0,x
s −X0,y

s ‖H
]

≤ E

[

sup
0≤s≤S

‖X0,x
s −X0,y

s ‖H
]

≤ Ĉ(S,M,Lσ)‖x− y‖H.

We get the last inequality from Corollary 2.2.1. Hence, setting LV := L1 Ĉ(S,M,Lσ), the proof

is complete.



Chapter 3

Approximation scheme

In this chapter we reduce the infinite dimensional SDE to a sequence of suitable finite dimensional

SDEs. In order to do so we rely first on the Yosida approximation of the unbounded operator

appearing in the infinite dimensional SDE. Later on we perform a Galerkin scheme for the finite

dimensional reduction. We prove numerous convergence results for the approximating processes

and the respective approximating optimal stopping problems.

3.1 Yosida approximation

It is often unpleasant to deal with unbounded linear operators. Our aim is to provide an approxima-

tion scheme as easy as possible. Then without further assumptions about the operatorA a simple

natural step is to introduce its Yosida approximationAα (cf. Appendix B). Forα > 0 given, we

introduce the diffusion processX(α) as the unique solution of the SDE







dX
(α)
t = AαX

(α)
t dt+ σ(X

(α)
t )dW 0

t , t ∈ [0, S],

X
(α)
0 = x.

(3.1)

It is important now to stress that sinceAα is a bounded linear operator onH, thenX(α) is the

uniquestrongsolution for the SDE, i.e. the integral representation holds

X
(α)
t = x+

∫ t

0

AαX
(α)
s ds+

∫ t

0

σ(X(α)
s )dW 0

s , t ∈ [0, S], P-a.s.
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Every strong solution is also a mild solution and thenX(α) might be interpreted equivalently as

X
(α)
t = etAαx+

∫ t

0

e(t−s)Aασ(X(α)
s )dW 0

s , t ∈ [0, S], P-a.s.

The latter expression is useful to understand the followingproposition which is proven in [19],

Proposition 7.5, Chapter 7.

Proposition 3.1.1 Let Xx be the unique mild solution of equation (2.1) andX(α)x the unique

strong solution of equation (3.1). Forp ≥ 1, the following convergence holds

lim
α→∞

E

[

sup
0≤t≤S

‖X(α) x
t −Xx

t ‖pH
]

= 0, ∀x ∈ H.

We can simply define an approximating optimal stopping problem substitutingX(α) to X, i.e.

definingVα as

Vα(t, x) = sup
t≤τ≤T

E
[
Ψ(τ,X(α) t,x

τ )
]
.

The convergence shown above extends to the value function and we have the following theorem

Theorem 3.1.1 For anyx ∈ H given and fixed the pointwise convergence holds

lim
α→∞

sup
0≤t≤T

|Vα(t, x)− V (t, x)| = 0. (3.2)

PROOF: From the Lipschitz property of the gain function we simply argue as in Proposition 2.2.2

and obtain

|Vα(t, x)− V (t, x)| ≤ E

[

sup
t≤s≤T

∣
∣Ψ(s,X(α) t,x

s )−Ψ(s,X t,x
s )
∣
∣

]

≤ E

[

sup
t≤s≤T

∥
∥X(α) t,x

s −X t,x
s

∥
∥
H

]

.

Since the coefficients in (3.1) are time homogeneous we get

E

[

sup
t≤s≤T

∥
∥X(α) t,x

s −X t,x
s

∥
∥
H

]

= E

[

sup
0≤s≤T−t

∥
∥X(α) 0,x

s −X0,x
s

∥
∥
H

]

≤ E

[

sup
0≤s≤S

∥
∥X(α) 0,x

s −X0,x
s

∥
∥
H

]

.
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The last expression is independent of time and hence the estimate on the value functions is uniform

with respect tot ∈ [0, T ]. Now we apply the convergence of Proposition 3.1.1 and get the result. A

similar result holds in the case in which we only have local Lipschitz property of the gain function

with respect to the space variable. Nevertheless the proof in that case is much more delicate and

requires some localization arguments.

From dominated convergence theorem we can state the following corollary.

Corollary 3.1.1 If µ is a finite measure on the Hilbert space then the following convergence result

holds

lim
α→∞

∫ T

0

∫

H

|Vα(t, x)− V (t, x)|pµ(dx)dt = 0, ∀1 ≤ p <∞. (3.3)

There are few crucial properties of the convergence which weobtain as a consequence of the

Theorem C.0.5.

Theorem 3.1.2 Let us assume thatVα ∈ Cb([0, T ] × H) for all α > 0. ThenVα → V uniformly

on any compact subset[0, T ]×K ⊂ [0, T ]×H. Moreover the map(t, x) 7→ V (t, x) is continuous

on the whole space[0, T ]×H.

PROOF: Since forx ∈ H fixed, Vα( · , x) → V ( · , x) uniformly on t ∈ [0, T ], thent 7→ V (t, x)

has to be continuous on[0, T ] as well, i.e.V ( · , x) ∈ Cb([0, T ];R). We can define the function

Fα(x) := sup
t∈[0,T ]

|Vα(t, x)− V (t, x)|.

Clearly{Fα}α≥0 is a equibounded family of real valued functions. Moreover,we have the follow-

ing estimate for equi-Lipschitz property:

∣
∣Fα(x)− Fα(y)

∣
∣ =

∣
∣
∣
∣
sup
t∈[0,T ]

|Vα(t, x)− V (t, x)| − sup
t∈[0,T ]

|Vα(t, y)− V (t, y)|
∣
∣
∣
∣

≤ sup
t∈[0,T ]

∣
∣Vα(t, x)− Vα(t, y) + V (t, y)− V (t, x)

∣
∣

≤ sup
t∈[0,T ]

∣
∣Vα(t, x)− Vα(t, y)

∣
∣+ sup

t∈[0,T ]

∣
∣V (t, y)− V (t, x)

∣
∣ ≤ 2LV ‖x− y‖H.
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Then{Fα}α≥0 is a family of equibounded and equicontinuous functions andFα(x) → 0, asα →

∞ for all x ∈ H. Then Theorem C.0.5 guarantees that{Vα}α≥0 converges uniformly to zero on

any compact subset[0, T ]×K. This means that for arbitraryK it holds

lim
α→∞

sup
(t,x)∈[0,T ]×K

|Vα(t, x)− V (t, x)| = 0.

ThenV is continuous on every compact subset[0, T ]×K as uniform limit of bounded continuous

functions (cf. Theorem C.0.4).

We want to prove that this is enough for global continuity. Let (tn, xn) be a sequence in[0, T ]×H

converging to a point(t, x) ∈ [0, T ]×H. We now show the continuity in(t, x). Indeed we have

|V (tn, xn)− V (t, x)| ≤ |V (tn, xn)− V (tn, x)|+ |V (tn, x)− V (t, x)|.

We get the continuity of the first term from Proposition 2.2.2, indeed for a suitable constantLV > 0

|V (tn, xn)− V (tn, x)| ≤ LV ‖xn − x‖H → 0, asn→ ∞.

For the second term we can always assume that the sequence{tn}∞n=1 belongs to the compact

[0, T ]. Hence clearly[0, T ]× {x} is a compact subset of[0, T ]×H. Then from the continuity on

compact sets we have

|V (tn, x)− V (t, x)| → 0, asn→ ∞.

Since(t, x) is an arbitrary point in[0, T ]×H, the proof is complete.

We will see below thatVα is continuous on[0, T ] × H as a consequence of Theorem 3.2.2.

The next step will be to reduce the Yosida approximating problem to a finite-dimensional Yosida

approximating problem.

3.2 Finite dimensional reduction

Let {ϕ1, ϕ2, . . .} be an orthonormal basis ofH made of all elements in the domain of the un-

bounded operatorA, i.e. ϕi ∈ D(A), i = 1, 2, . . .. Such a set exists becauseH is separable and
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D(A) is dense inH. We introduce now a trace class operator which will be crucial in the following

analysis.

Definition 3.2.1 LetQ : H → H be a positive, linear operator onH defined as

Qϕi = λiϕi, λi > 0, i = 1, 2, . . . ,

and such that
∑∞

i=1 λi <∞, i.e. it is of trace class.

In the remainder of this thesis we will characterize a suitable connection betweenQ andA. We

now state some technical assumptions on the diffusion coefficient.

Assumption 3.2.1 The diffusion coefficient has the following properties

(D1) σ(x) ∈ Q(H), ∀x ∈ H, i.e. there existsγ : H → H such thatσ(x) = Qγ(x)

(D2) γ ∈ C2
b (H;H)

We are going now to perform a finite dimensional approximation of the diffusion process and of

the associated optimal stopping problem. Let us consider the finite dimensional subsetH(n) :=

span{ϕ1, ϕ2, . . . , ϕn} and the orthogonal projection operatorPn : H → H(n). We approximate

the diffusion coefficient by means ofσ(n) := (Pnσ) ◦ Pn, more preciselyσ(n) is given by the map

x 7→ Pnσ(Pnx), x ∈ H. Similarly we considerAα,n := PnAαPn, which represents a bounded

linear operator onH(n). Let {ǫn}∞n=1 be a sequence such thatǫn > 0 andǫn → 0 asn → ∞. We

define the processX(α,n)
· (ω) :=

∑n
i=1 z

(α,n)
i ( · , ω)ϕi as the unique strong solution of the SDE on

H(n) given by







dX
(α,n)x
t = Aα,nX

(α,n)x
t dt+ σ(n)(X

(α,n)x
t )dW 0

t + ǫn
∑n

i=1 ϕi dW
i
t , t ∈ [0, S],

X
(α,n)x
0 = Pnx.

(3.4)

Some comments are required in order to fully understand sucha choice for the approximating SDE.

The strong solutionX(α,n) can be interpreted as a solution of a SDE inH but living in the finite

dimensional subspace ofH(n). It is worth noticing that at each timet ∈ [0, S], X(α,n)
t does not
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represent the projection of the processX
(α)
t on the finite dimensional subspace. Indeed a process

with that property would not be markovian. HenceX(α,n) has to be considered as an auxiliary

diffusion process which turns out to be a good approximationof the original one. In particular the

following convergence result holds

Proposition 3.2.1 If the sequence{ǫn}∞n=1 is such thatn ǫn → 0 asn→ ∞ then

lim
n→∞

E

[

sup
t∈[0,S]

∥
∥
∥X

(α,n)x
t −X

(α) x
t

∥
∥
∥

2
]

= 0. (3.5)

Moreover, the convergence is uniform with respect tox varying on compact subsets ofH.

PROOF: Since we are dealing with the Yosida approximation ofthe original diffusion process, we

have unique strong solutions of both the finite dimensional SDE and the infinite dimensional one.

Then the solutions are

X(α,n)x = Pnx+

∫ t

0

Aα,nX
(α,n)x
s ds+

∫ t

0

Pnσ(X
(α,n)x
s )dW 0

s + ǫn

n∑

i=1

ϕiW
i
t ,

and

X(α) x = x+

∫ t

0

AαX
(α) x
s ds+

∫ t

0

σ(X(α) x
s )dW 0

s .

From direct computations, using the fact thatAα,nX
(α,n)x = PnAαX

(α,n)x, we obtain

‖X(α,n)x
t −X

(α) x
t ‖2H ≤6

[

‖Pnx− x‖2H +
∥
∥

∫ t

0

PnAα(X
(α,n)x
s −X(α) x

s )ds
∥
∥
2

H

+
∥
∥

∫ t

0

(I − Pn)AαX
(α) x
s ds

∥
∥
2

H

+
∥
∥

∫ t

0

Pn[σ(X
(α,n)x
s )− σ(X(α) x

s )]dW 0
s

∥
∥2

H

+
∥
∥

∫ t

0

(I − Pn)σ(X
(α)x
s )dW 0

s

∥
∥2

H
+ ǫ2n

n∑

i=1

|W i
t |2
]

.

We use Hölder inequality and take the supremum overt ∈ [0, S] so to obtain

sup
0≤t≤S

‖X(α,n)x
t −X

(α) x
t ‖2H6

[

‖Pnx− x‖2H + S‖Aα‖H
∫ S

0

sup
0≤u≤s

‖X(α,n)x
u −X(α)x

u ‖2Hds

+ S

∫ S

0

‖(I − Pn)AαX
(α) x
s ‖2Hds
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+ sup
0≤t≤S

∥
∥

∫ t

0

Pn[σ(X
(α,n)x
s )− σ(X(α)x

s )]dW 0
s

∥
∥2

H

+ sup
0≤t≤S

∥
∥

∫ t

0

(I − Pn)σ(X
(α) x
s )dW 0

s

∥
∥2

H
+ ǫ2n

n∑

i=1

sup
0≤t≤S

|W i
t |2
]

.

We take the expectation and use the properties of the stochastic integral on Hilbert space, cf. [19],

Chapter 4. We get

E

[

sup
0≤t≤S

‖X(α,n)x
t −X

(α)x
t ‖2H

]

≤6

[

‖Pnx− x‖2H

+ S‖Aα‖H
∫ S

0

E

[

sup
0≤u≤s

‖X(α,n)x
u −X(α)x

u ‖2H
]

ds

+ S

∫ S

0

E
[
‖(I − Pn)AαX

(α)x
s ‖2H

]
ds

+

∫ S

0

E
[
‖σ(X(α,n)x

s )− σ(X(α) x
s )‖2H

]
ds

+

∫ S

0

E
[
‖(I − Pn)σ(X

(α) x
s )‖2H

]
ds

+ ǫ2n

n∑

i=1

E[ sup
0≤t≤S

|W i
t |2]
]

.

We exploit the Lipschitz property of the diffusion coefficient and finally get

E

[

sup
0≤t≤S

‖X(α,n)x
t −X

(α) x
t ‖2H

]

≤6

[

‖Pnx− x‖2H

+ S

∫ S

0

E
[
‖(I − Pn)AαX

(α) x
s ‖2H

]
ds

+

∫ S

0

E
[
‖(I − Pn)σ(X

(α)x
s )‖2H

]
ds+ ǫ2n nS

+ S ‖Aα‖H
∫ S

0

E

[

sup
0≤u≤s

‖X(α,n)x
u −X(α) x

u ‖2H
]

ds

+ L2
σ

∫ S

0

E

[

sup
0≤u≤s

‖X(α,n)x
u −X(α) x

u ‖2H
]

ds

]

.



42 Approximation scheme

A straightforward application of Gronwall’s lemma and the choice of a suitable constant give us

the final expression

E

[

sup
0≤t≤S

‖X(α,n)x
t −X

(α) x
t ‖2H

]

≤ CS

[

‖Pnx− x‖2H +

∫ S

0

E
[
‖(I − Pn)AαX

(α) x
s ‖2H + ‖(I − Pn)σ(X

(α) x
s )‖2H

]
ds

+ǫ2nnS

]

exp
(
S2‖Aα‖L(H) + SL2

σ

)
.

We can use dominated convergence and the hypothesis aboutǫn to show that the limit asn → ∞

tends to zero. We want to prove that the limit is uniform on compact subsets ofH. For eachn we

define the real functionMn(x) as

Mn(x) := ‖Pnx− x‖2H +

∫ S

0

E
[
‖(I − Pn)AαX

(α) x
s ‖2H + ‖(I − Pn)σ(X

(α) x
s )‖2H

]
ds+ ǫ2nnS.

Notice that
∣
∣
∣
∣

∫ S

0

E
[
‖(I − Pn)AαX

(α)x
s ‖2H − ‖(I − Pn)AαX

y (α)
s ‖2H

]
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ S

0

E
[
‖(I − Pn)σ(X

(α)x
s )‖2H − ‖(I − Pn)σ(X

y (α)
s )‖2H

]
ds

∣
∣
∣
∣

≤ (‖Aα‖2L(H) + L2
σ)S E

[

sup
0≤u≤S

‖X(α)x
u −Xy (α)

u ‖2H
]

.

From Corollary 2.2.1 we obtain the continuity of this term with respect tox ∈ H. We might have

obtained this result from [19], Chapter 9, Theorem 9.1, as well. This implies thatx 7→ Mn(x) is

continuous for alln ≥ 1. MoreoverMn(x) → 0, asn → ∞ for all x ∈ H and the convergence

is monotone, i.e.Mn(x) ≥ Mn+1(x) ≥ . . . for all x ∈ H. The Dini’s theorem guarantees that the

convergence is uniform on any compact subsetK ⊂ H, cf. Appendix C.

From a simple application of Jensen’s inequality one obtainthe following corollary

Corollary 3.2.1 If the sequence{ǫn}∞n=1 is such thatn ǫn → 0 asn→ ∞ then

lim
n→∞

E

[

sup
t∈[0,S]

∥
∥
∥X

(α,n)x
t −X

(α) x
t

∥
∥
∥

]

= 0. (3.6)

The convergence is uniform with respect tox varying on compact subsets ofH.
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The following remark clarifies a useful extension.

Remark 3.2.1 When considering diffusions starting at arbitrary initialtimet ∈ [0, S] the previous

estimate holds in the same form thanks to the time homogeneous coefficients of the processes. In

fact

E

[

sup
u∈[t,S]

∥
∥X(α,n) t,x

u −X(α) t,x
u

∥
∥

]

= E

[

sup
u∈[0,S−t]

∥
∥X(α,n) 0,x

u −X(α) 0,x
u

∥
∥

]

≤Mn(x) exp (S
2‖Aα‖L(H) + SL2

σ).

This implies that the convergence is uniform with respect tothe initial timet ∈ [0, S].

The interest toward this finite dimensional reduction arises from the fact that now we can write

a SDE inRn for the vector processZ(α,n)
· (ω) := (z

(α,n)
1 ( · , ω), . . . , z(α,n)n ( · , ω)). We recall that

X
(α,n)
· (ω) =

∑n
i=1 z

(α,n)
i ( · , ω)ϕi and the SDE holds







dZ
(α,n)
t = b(α,n)(Z

(α,n)
t )dt+ g(α,n)(Z

(α,n)
t )dW

(n)
t , t ∈ [0, S],

Z
(α,n)
0 = (〈x, ϕ1〉H, . . . , 〈x, ϕn〉H).

(3.7)

Here the Brownian motion is an+1-dimensional projection of the infinite dimensional one defined

above, i.e.W (n) = (W 0,W 1, . . . ,W n). Adopting now the notation of the spaceRn the drift

coefficient is a vectorb(α,n)(z) = (b
(α,n)
1 (z), . . . , b

(α,n)
n (z)) for z ∈ R

n and each component is

given by

b
(α,n)
i (z) =

n∑

j=1

zj〈Aαϕj, ϕi〉H.

The diffusion matrix turns out to be an× (n+ 1)-rectangualr matrix

g(α,n)(z) =














〈σ(n)(z), ϕ1〉H ǫn 0 0 . . . 0 0

〈σ(n)(z), ϕ2〉H 0 ǫn 0 . . . 0 0

...
. . .

〈σ(n)(z), ϕn〉H 0 0 0 . . . 0 ǫn














.
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What is relevant for the approximation scheme is that the diffusionZ(α,n) is non-degenerate, i.e.

(g(α,n)(z)g(α,n)∗(z)y, y)Rn ≥ ǫ2n|y|2Rn for all y, z ∈ R
n. It is also worth recalling that there is an

isometry between the finite dimensional subspace
(
H(n), 〈 · , · 〉H, ‖ · ‖H

)
and then-dimensional

Euclidean space(Rn, ( · , · )Rn, | · |Rn). It is now possible to define an approximated version of the

optimal stopping problem. LetΨ(n)(t, ·) := Ψ(t, ·) ◦ Pn be the approximating gain function, then

let x(n) ∈ H(n) represent the finite dimensional projection of the initial datax ∈ H. We define the

value function,V (n)
α , as:

V (n)
α (t, x(n)) := sup

t≤τ≤T
E
[
Ψ(n)(τ,X(α,n) t,x

τ )
]

(3.8)

Notice thatV (n)
α can equivalently be understood as a function defined on the subspace[0, T ]×H(n)

or by isometry as a function defined on[0, T ] × R
n. In order for this fact to be more explicit we

simply setΨ̂(n)(t, z
(n)
1 , . . . , z

(n)
n ) := Ψ(n)(t, x(n)) and define

U (n)
α (t, z(n)) = sup

t≤τ≤T
E

[

Ψ̂(n)(τ, Zt,z (α,n)
τ )

]

, (3.9)

wherez(n) ∈ R
n. An important convergence result is summarized in the following theorem

Theorem 3.2.1 For anyx ∈ H given and fixed the pointwise convergence holds

lim
n→∞

|V (n)
α (t, x(n))− Vα(t, x)| = 0. (3.10)

Moreover, this convergence is uniform on[0, T ]×K, for anyK compact subset ofH.

PROOF: We observe thatPnX(α,n) t,x = X(α,n) t,x. From the Lipschitz property of the gain function

we simply get

|V (n)
α (t, x(n))− Vα(t, x)| ≤ E

[

sup
t≤s≤T

∣
∣Ψ(n)(s,X(α,n) t,x

s )−Ψ(s,X(α) t,x
s )

∣
∣

]

= E

[

sup
t≤s≤T

∣
∣Ψ(s,X(α,n) t,x

s )−Ψ(s,X(α) t,x
s )

∣
∣

]

≤ L1E

[

sup
t≤s≤T

∥
∥X(α,n) t,x

s −X(α) t,x
s

∥
∥
H

]

.
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We know from Remark 3.2.1 and Corollary 3.2.1 that the right hand side converges uniformly on

compact sets of the form[0, T ]×K. Then

lim
n→∞

sup
(t,x)∈[0,T ]×K

|V (n)
α (t, x(n))− Vα(t, x)| = 0.

A similar result holds in the case in which we only have local Lipschitz property of the gain

function with respect to the space variable. Though the proof in that case is much more delicate

and requires some localization arguments.

Dominated convergence theorem or monotone convergence imply the following corollary.

Corollary 3.2.2 If µ is a finite measure on the Hilbert space then the following convergence result

holds

lim
n→∞

∫ T

0

∫

H

|V (n)
α (t, x(n))− Vα(t, x)|pµ(dx)dt = 0, ∀1 ≤ p <∞. (3.11)

A useful continuity result is now derived from the previous considerations.

Theorem 3.2.2 Let us assumeV (n)
α ∈ C([0, T ] × H(n)) for all n ≥ 1. Then the Yosida approxi-

mated value functionVα is continuous on the whole space[0, T ]×H.

PROOF: In the first place we notice that{V (n)
α (t, x(n))}∞n=1 is a uniformly bounded sequence, i.e.

sup
n≥1

sup
(t,x)∈[0,T ]×H

|V (n)
α (t, x(n))| ≤ Ψ.

Moreover, we know thatV (n)
α (t, x(n)) → Vα(t, x), asn → ∞, uniformly on any compact subset

[0, T ] × K. These facts together with the continuity ofV (n)
α and Theorem C.0.4 guarantee that

Vα(t, x) is continuous on[0, T ]×K. Let now(tn, xn) be a sequence in[0, T ]×H converging to a

point (t, x). It is easy to show the continuity from the same arguments as in Theorem 3.1.2.

The continuity ofV (n)
α is proved in Proposition 5.2.2 below and in the following remark. It is

worth noticing that the uniform Lipschitz condition with respect to the space variable is crucial. In

fact in Hilbert spaces one cannot assume that the sequence{xn}∞n=1 always belongs to a compact

subset ofH.

We are now interested in giving an analytical characterization of the approximating value func-

tion in terms of a suitable variational inequality.
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3.3 A short remark on the approximating scheme

From the results above it turns out that one can approximate the original value functionV (t, x)

through a two indexes sequence of functions{V (n)
α }α∈R+,n∈N. The slightly unpleasant fact is that

when taking the limit one has to take care of the order of theselimits. Indeed we first take the limit

with respect to the finite dimensional scheme and only afterwards we can perform the limit with

respect to the Yosida approximation. In formulae it means that for anyt ∈ [0, T ]

lim
α→∞

[

lim
n→∞

|V (n)
α (t, x(n))− V (t, x)|

]

= 0, x ∈ H.

Nevertheless this fact does not really matter because our final aim would be to characterize the orig-

inal value function in terms of a suitable Evolutionary Variational Inequality (EVI) onH. Hence

we will be mostly interested in showing existence of a solution to such a problem and the connec-

tion with the optimal stopping problem. Nevertheless in some cases the Yosida approximation can

be avoided. Let us assume the following:

Assumption 3.3.1 Let{S(t), t ≥ 0} be theC0-semigroup associated to the infinitesimal generator

A. Let then{etAn , t ≥ 0} be the uniformly continuous semigroup associated to the bounded

operatorAn = PnAPn. Then the following convergence holds

lim
n→∞

etAnx = S(t)x, x ∈ H. (3.12)

Under this assumption one can consider the Galerkin approximation directly on the original SDE,

i.e.X(n) will be the unique strong solution (and hence mild solution)to the following SDE







dX
(n)
t = AnX

(n)
t dt+ σ(X

(n)
t )dW 0

t + ǫn
∑n

i=1 ϕi dW
i
t , t ∈ [0, S],

X
(n)
0 = x.

(3.13)

It is then easy to show that

lim
n→∞

E

[

sup
t∈[0,S]

∥
∥
∥X

(n)x
t −Xx

t

∥
∥
∥

p

]

= 0, 1 ≤ p <∞. (3.14)
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This would not hold without the assumption about the semigroup. All the analysis about the

approximating value function can be derived as above. It then turns out that this assumption sim-

plifies the whole algorithm to a single approximation scheme. Yet for the application that we have

in mind it is not clear whether the assumption holds or not. For this reason we wish to study the

problem in full generality.

Another detail which deserves some attentions is the one concerning the universal Lipschitz

regularity with respect to the space variable.

Remark 3.3.1 It is easy to check that the Lipschitz condition in Proposition 2.2.2 holds forVα and

V
(n)
α as well. Moreover from Appendix B, Remark B.0.2, one derivesthat the Lipschitz constant

LV can be taken to be independent ofn andα.
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Chapter 4

The finite dimensional variational
inequality on bounded domains

Throughout this chapter we deal with a localized version of the finite dimensional optimal stop-

ping problem. We fix the orderα of the Yosida approximation and the ordern of the Galerkin

scheme; then we introduce the obstacle problem associated with the optimal stopping one. We

provide a short survey about variational inequalities and their connection with obstacle problems

and we focus on two different concepts of solution:strongsolutions andweaksolutions. We prove

existence and uniqueness of a weak solution to our variational problem and its connection with

the value function of the localized optimal stopping problem. We also prove the existence of an

optimal stopping time and give its formal characterization.

4.1 The optimal stopping problem inRn

We will analyze the sequence of finite dimensional problems when the order of the Yosida ap-

proximationα > 0 and the dimensionn > 0 are fixed. In order to simplify the notation we skip

the superscript and from now on we denoteU(t, z) := U
(n)
α (t, z(n)), where it should be clear that

U : [0, T ]× R
n → R. Similarly the diffusion will be denoted byZt,z

· := Z
(α,n) t,z
· and will be the

unique strong solution of the SDE inRn







dZt = b(Zt)dt+ g(Zt)dWt, t ∈ [0, S],

Z0 = z.
(4.1)
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All the coefficients are the same as in Section 3.2 and the Brownian motion is inRn+1. Now it is

useful to notice that forx ∈ H(n) the gain function has the same form of his approximated version,

i.e. Ψ(n)(t, x) = Ψ(t, x). As a consequence, since we are now dealing only with vectorsin R
n for

the value function we have the expression

U(t, z) = sup
t≤τ≤T

E

[

Ψ̂(τ, Zt,z
τ )
]

. (4.2)

There are many well known results about the connection between variational inequalities and op-

timal stopping problems in finite dimensional spaces, cf. [4]. We are going to rely on some of

them but the main aim of this paper is to characterize the infinite dimensional variational inequal-

ity. It is then clear that at some point we will be expected to carry a limit on a sequence of finite

dimensional variational inequalities in order to get an analogue in infinite dimensions. The main

problem in doing so is that one cannot extend the Lebesgue measure to a Hilbert space. It is then

clear that we have to adopt a suitable sequence of measures inorder to give a meaning to this limit.

For this reason we will carry out explicitly some crucial steps in the variational analysis. Not all

of them represent a novelty but they are strictly necessary in order to produce a rigorous result at

the infinite dimensional level.

In the first place we considerµn to be a finite measure onRn. As usual we introduce the

L2-norm with respect to such a measure

‖u‖L2
µ(R

n) :=

(∫

Rn

|u(z)|2µn(dz)
) 1

2

.

This characterizes the Hilbert spaceL2
µ(R

n) := {u : Rn → R | ‖u‖L2
µ(R

n) < ∞}. We can now

introduce a weighted Sobolev space and we denote it byW 1,2(Rn, µn). In particular

W 1,2(Rn, µn) := {u ∈ L2
µ(R

n) : ‖∇u‖L2
µ(R

n) <∞}, (4.3)

where

‖∇u‖2L2
µ(R

n) :=
n∑

i=1

∫

Rn

∣
∣
∣
∣

∂u(z)

∂zi

∣
∣
∣
∣

2

µn(dz).

We want now to point out a regularity property for the gain function.
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Proposition 4.1.1 For the gain function̂Ψ there exists a constantC > 0 such that it holds

sup
t∈[0,T ]

‖Ψ̂(t)‖W 1,2(Rn,µn) < C. (4.4)

Moreover, for1 ≤ p <∞ as in Assumption 2.1.1, if the measureµ is such that
∫

Rn

|z|2pµ(dz) <∞, (4.5)

then there existsCp > 0 such that
∫ T

0

∥
∥
∥
∥

∂Ψ̂

∂t
(t)

∥
∥
∥
∥

2

L2
µ(R

n)

dt < Cp. (4.6)

PROOF: Let us begin with the first claim (the infinite dimensional anologue of this result is in [18],

Ch. 10). Let us recall that fort ∈ [0, T ],Ψ(t, ·) is bounded and Lipschitz, uniformly with respect to

t, on the whole space. Sincesup(t,x)∈[0,T ]×H |Ψ(t, x)| ≤ Ψ, then clearlysupt∈[0,T ] ‖Ψ(n)(t)‖L∞(Rn) ≤

Ψ. In particular this bound does not depend on the dimensionn of the space. We can conclude that

supt∈[0,T ] ‖Ψ̂(t)‖L2
µ(R

n) ≤ Ψµ(Rn). We have now to discuss the bound on the derivative.

We may mollify the gain function by means of the standard mollifiers {ρk}∞k=1. For t ∈ [0, T ]

given and fixed we definêΨk(t, ·) := ρk ⋆ Ψ̂(t, ·). Clearly the pointwise convergence holds

Ψ̂k(t, z) → Ψ̂(t, z), z ∈ R
n, cf. [14], Chapter 4, Proposition 4.21. From uniform boundedness we

obtain

|Ψ̂k(t, z)| =
∣
∣

∫

Rn

ρk(y)Ψ̂(t, z − y)dy
∣
∣ ≤

∥
∥Ψ̂(t)

∥
∥
L∞(Rn)

,

and hence clearly‖Ψ̂k(t)‖L∞(Rn) ≤
∥
∥Ψ̂(t)

∥
∥
L∞(Rn)

. We can then use dominated convergence to

prove thatΨ̂k(t, ·) → Ψ̂(t, ·) in L2
µ(R

n) ask → ∞ (this is also a very well known fact, cf. [14],

Chapter 4, Theorem 4.22). It is easy to verify that the mollified functions are equilipschitz and

hence have uniformly bounded first derivatives. In fact fort given and fixed and everyz ∈ R
n the

gradient∇Ψ̂k(t, z) is linear functional onRn. We have for the directional derivative in the generic

directiony,

|(∇Ψ̂k(t, z), y)Rn| =
∣
∣
∣
∣
∣
lim
ε→0

Ψ̂k(t, z + εy)− Ψ̂k(t, z)

ε

∣
∣
∣
∣
∣
≤ L1|y|Rn,
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where now| · |Rn is the Euclidean norm. This fact clearly implies|∇Ψ̂k(t, z)|Rn ≤ L1 uniformly

with respect to tot andz. Hence‖∇Ψ̂k(t)‖L2
µ(R

n) ≤ L1µ(R
n). This implies that

‖Ψ̂k(t)‖L2
µ(R

n) + ‖∇Ψ̂k(t)‖L2
µ(R

n) ≤ (Ψ + L1)µn(R
n). (4.7)

Then there exists a functionφ(t, ·) ∈ W 1,2(Rn, µ) and a subsequence such thatΨ̂kj(t) ⇀ φ(t)

in W 1,2(Rn, µ). From the uniqueness of the limit we havêΨ(t) = φ(t) and henceΨ̂(t) ∈

W 1,2(Rn, µ). This fact guarantees that∇Ψ̂ is well defined inL2
µ(R

n) and enables us to strenghten

the convergence. In fact from standard results about mollifiers we can now say that poinwise con-

vergence∇Ψ̂k(t, z) → ∇Ψ̂(t, z) holds. From dominated convergence we obtain thatΨ̂k(t) →

Ψ̂(t) in W 1,2(Rn, µ). This implies that

‖∇Ψ̂k(t)‖L2
µ(R

n) → ‖∇Ψ̂(t)‖L2
µ(R

n) ≤ L1µ(R
n).

Putting these results together and settingCΨ = Ψ
2
+ L2

1 we obtain the uniform bound

sup
0≤t≤T

‖Ψ̂(t)‖2W 1,2(Rn,µn)
≤ CΨ µn(R

n). (4.8)

It is quite relevant that the bound (4.8) depends on the dimension of the space only through the

measureµn(Rn). We anticipate than whenµn is a probability measure andµn(Rn) = 1, n ∈ N, the

estimate becomes independent of the dimension of the space.We will discuss it in further details

later. For the second claim we can adapt the same rationale. For z ∈ R
n fixed, Ψ̂(·, z) is a locally

Lipschitz function. Then the same arguments as before hold except for the fact that now the bound

will depend on the space variable and in particular from the hypothesis on̂Ψ we obtain

‖Ψ̂k(z)‖2L2([0,T ]) + ‖∂Ψ̂k

∂t
(z)‖2L2([0,T ]) ≤ C(1 + |z|2p). (4.9)

The idea is that the setχ := {v ∈ L2(0, T ;L2
µ(R

n)) : ∂v
∂t

∈ L2(0, T ;L2
µ(R

n))} is a separable

Hilbert space when equipped with the obvious scalar product. Then we take the integral in (4.9)

with respect to the measureµ and apply the Fubini’s theorem to exchange the order of the integrals.

If the hypothesis holds, we have a uniform bound forΨ̂k in the Hilbert spaceχ. Hence as before

there exists a subsequence weakly convergent to an element of χ and the whole sequence converges

strongly inL2(0, T ;L2
µ(R

n)). From the uniqueness of the limit we have the thesis.
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4.2 Regularity of the coefficients

It is worth now discussing in some details the properties of the coefficients of the SDE inRn. It is

reasonable to expect that these coefficients, being a projected version of the original ones, inherit

the same regularity properties as their infinite dimensional counterparts. For the drift term we have

the expressionb(z) = b(α,n)(z) := (b
(α,n)
1 (z), . . . , b

(α,n)
n (z)) and for each component

b
(α,n)
i (z) =

n∑

j=1

zj〈Aϕj , ϕi〉H.

It is clear that|b(α,n)(z)|Rn ≤ Cα,n(1 + |z|Rn). Then in particularb(α,n)(z) is bounded on bounded

subsets ofRn along with its derivatives of all orders . For our purposes itis fundamental to notice

that all the bounds on the drift coefficient actually depend on α andn, i.e. on the order of the

Yosida approximation and on the number of dimensions of the space.

We consider now the diffusion matrix and in particular we focus on the generic element

g
(α,n)
i,1 (z) = 〈σ(n)(z), ϕi〉H. From Assumption 3.2.1,σ(x) ∈ C2

b (H;H). Then there exists a family

{Dσ(x)}x∈H of bounded linear operatorsDσ(x) : H → H defined through

lim
‖h‖H→0

‖σ(x+ h)− σ(x)−Dσ(x)h‖H
‖h‖H

= 0, ∀h ∈ H. (4.10)

This operator is unique andDσ(x)h represents the Fréchet derivative ofσ in the direction ofh, cf.

[24], Chapter 8. Notice that the Fréchet differentiability is the strongest concept of differentiability

in general metric spaces.

We define the directional derivative along the directionϕk asDσk(x) := Dσ(x)ϕk. We want

to show that

∂g
(α,n)
i,1

∂zk
(z) = 〈PnDσk(z), ϕi〉H = 〈Dσk(z), ϕi〉H. (4.11)

Clearly we can always think ofz ∈ R
n as an element inH with only n components. Now let

z ∈ R
n be given and fixed. If we keep in mind the isometry betweenH(n) andRn, with a slight

abuse in the notation we will say thatPnz = z. For anyϕk ∈ H(n), we can evaluate the limit
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representing the Gateaux derivative along the directionϕk,

lim
ε→0

∣
∣
∣
∣

g
(α,n)
i,1 (z + εϕk)− g

(α,n)
i,1 (z)

ε
− 〈PnDσk(z), ϕi〉H

∣
∣
∣
∣

= lim
ε→0

∣
∣
∣
∣

〈σ(n)(z + εϕk), ϕi〉H − 〈σ(n)(z), ϕi〉H
ε

− 〈PnDσk(z), ϕi〉H
∣
∣
∣
∣

= lim
ε→0

∣
∣
∣
∣

〈Pnσ(z + εϕk)− Pnσ(z)− εPnDσk(z), ϕi〉H
ε

∣
∣
∣
∣

≤ lim
ε→0

∥
∥
∥
∥

σ(z + εϕk)− σ(z)− εDσk(z)

ε

∥
∥
∥
∥
H

‖ϕi‖H

≤ lim
ε→0

∥
∥
∥
∥

σ(z + εϕk)− σ(z)

ε
−Dσ(z)ϕk

∥
∥
∥
∥
H

= 0.

The last equality is due to the definition of the Frechét derivative and to the fact that along the

directionϕk it is equivalent to the Gateaux derivative. From the uniqueness of such a derivative

we deduce (4.11). Given thatg(α,n)i,j (z) = δi,j+1ǫn whenj > 1 theng(α,n)i,j (z) ∈ C1
b (R

n) and it is

easy to prove that actuallyg(α,n)i,j (z) ∈ C2
b (R

n).

Even though the notation might be misleading to some extent,it is worth to remark that what

the previous relation is telling to us in terms of the original Hilbert spaceH, is the following

Dσ(n)(x)ϕk = PnDσ(Pnx)ϕk, for x ∈ H and k = 1, . . . , n. (4.12)

A matrix which will play a crucial role in what follows isg(α,n)g(α,n) ∗(z) which for ease of notation

we dnote byg g ∗(z) sinceα, n are fixed now. The generic element is of the form

(g g ∗)i,j(z) = 〈σ(n)(z), ϕi〉H〈σ(n)(z), ϕj〉H + δi,jǫ
2
n. (4.13)

We can now evaluate the derivative

∂

∂zj
(g g ∗)i,j(z) = 〈PnDσj(z), ϕi〉H〈σ(n)(z), ϕj〉H

+ 〈PnDσj(z), ϕj〉H〈σ(n)(z), ϕi〉H

= 〈PnDσ(z)ϕj , ϕi〉H〈σ(n)(z), ϕj〉H

+ 〈PnDσ(z)ϕj , ϕj〉H〈σ(n)(z), ϕi〉H.
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This will be recalled when we analyze the limit asn→ ∞ in the sequence of variational inequali-

ties. What is important here is that we have verified(g g ∗)i,j(z) ∈ C1
b (R

n) for all i, j = 1, 2, . . . , n.

Actually we also haveC2
b (R

n)-regularity.

4.3 Variational inequalities on bounded domains

Now we will analyze the optimal stopping on a bounded open regular domainO ⊂ R
n. Let us

denote the first exit time of the diffusionZt,z from O as

τ t,zO := inf{s ≥ t : Zt,z
s /∈ O}. (4.14)

We have a early stopped version of the original optimal stopping problem when we define

UO(t, z) := sup
t≤τ≤T

E

[

Ψ̂(τ ∧ τO, Zt,z
τ∧τO

)
]

, (4.15)

Since in this section the domainO is given and fixed we can simplify the notation definingv :=

UO. We can associate a second order differential operator, namely L, to the diffusionZt,z. In

particular for anyf ∈ C2
c (R

n), the infinitesimal generator of the diffusion reads

Lf(z) = 1

2

n∑

i,j=1

(g g∗)i,j(z)
∂2f

∂zi∂zj
(z) +

n∑

i=1

bi(z)
∂f

∂zi
(z). (4.16)

From standard heuristic arguments about dynamic programming one would expect the value func-

tion v(t, z) to fulfill the following variational inequality






max
{
∂v
∂t

+ Lv , Ψ̂− v
}

= 0, (t, z) ∈ (0, T )×O,

v(T, z) = Ψ̂(T, z), z ∈ O,

v(t, z) = Ψ̂(t, z), (t, z) ∈ (0, T )× ∂O,

v(t, z) ≥ Ψ̂(t, z), (t, z) ∈ [0, T ]× Ō.

(4.17)

It is worth recalling that there are several concepts of solution to this formal equation and we are

going to introduce some of them in what follows. Yet, before going on, it is fundamental to remark

a critical issue.
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Remark 4.3.1 Let us assume thatv is a solution “in some sense” of problem (4.17). Then for

λ > 0 given and fixed this is equivalent to claim thatṽ(t, z) = eλtv(t, z) is a solution “in the same

sense” of the variational inequality in which we replaceL byL− λ and the boundary conditonΦ

readsΦ = eλtΨ̂.

For this reason in the following we will be quite relaxed in switching back and forth between the

equivalent problems. We adopt the approach of [4], taking into account the fact that the function̂Ψ

represents at the same time the boundary condition and the obstacle in our variational formulation.

It is remarkable that the lack of regularity of the payoff function Ψ̂, and then of the obstacle,

prevents us from adopting standard penalization techniques to prove existence and uniqueness of

astrongsolution to the variational problem (cf. [30], Chapter 1, Theorem 3.2). We will proceed to

an approximation of the payoff function and then we will provide a characterization of the value

function as an appropriateweaksolution of the variational inequality. Before going into details it

is worth reformulating the problem in terms of homogeneous boundary condition, i.e. we define

u = v − Ψ̂ and formally rewrite the problem as






max
{
∂u
∂t

+ Lu+ f , −u
}
= 0, (t, z) ∈ (0, T )×O,

u(T, z) = 0, z ∈ O,

u(t, z) = 0, (t, z) ∈ (0, T )× ∂O,

u(t, z) ≥ 0, (t, z) ∈ [0, T ]× Ō.

(4.18)

We have formally set

f(t, z) =
∂Ψ̂

∂t
(t, z) + LΨ̂(t, z). (4.19)

Now we have to tackle a variational inequality with homogeneous (zero) boundary condition on

the parabolic boundary∂O × (0, T ]. It is worth noticing that the obstacle is now represented by

the constant functionϕ ≡ 0. In order for the previous expression to be rigorous we introduce the

following Hilbert spaces [14]:

• L2(O) as usual represents the set of the square integrable real functions defined onO. Let

( · , · ) be the scalar product in this space and| · |L2 the induced norm.
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• L2 ∗(O) is the dual ofL2(O).

• H1(O) represents the subset ofL2(O) of functions having square integrable partial weak

derivatives of first order, namelyH1(O) := {w ∈ L2(O) : ∂w
∂zj

∈ L2(O), j = 1, . . . , n}.

This space is a Banach space when equipped with the norm

‖w‖H1 = |w|L2 + |∇w|L2.

• H2(O) represents the subset ofH1(O) of functions having square integrable partial weak

derivatives of second order, namelyH2(O) := {w ∈ H1(O) : ∂2w
∂zi∂zj

∈ L2(O), i, j =

1, . . . , n}. This space is a Banach space when equipped with the norm

‖w‖H1 = |w|L2 + |∇w|L2 + |D2w|L2.

• H1
0 (O) is the closure ofC∞

c (O) with respect to the norm ofH1(O).

• H−1(O) is the dual ofH1
0 (O) and‖ · ‖H−1 is its norm.

IdentifyingL2(O) with its dual we get the usual Gelfand triple

H1
0 (O) →֒ L2(O) ≃ L2 ∗(O) →֒ H−1(O). (4.20)

The injections are all compact. It is worth noticing that since ∂O is a C2-boundary the trace

operatorw|∂O is well defined (cf. [4], Chapter 2, Sec. 5) andw ∈ H1
0 (O) if and only ifw|∂O = 0.

Moreover the Poincare’s inequality (cf. [14], Corollary 9.19, pag. 290)

|w|L2 ≤ C|∇w|L2, ∀w ∈ H1
0 (O),

holds and hence the norm‖w‖H1 and|∇w|L2 are equivalent. Before proceeding we introduce, for

anyt ∈ [0, T ] given, the bilinear forma(t; · , · ) : H1(O)×H1(O) → R defined as

a(t; u, w) :=
1

2

n∑

i,j=1

∫

O

(g g∗)i,j(z)
∂u

∂zi

∂w

∂zj
(t, z)dz

+

n∑

i=1

∫

O

(

1

2

n∑

j=1

∂(g g∗)i,j
∂zj

(z)− bi(z)

)

∂u

∂zi
w(t, z)dz,
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The derivatives∂(g g
∗)i,j

∂zj
, i, j = 1, . . . , n make sense in light of our previous discussion about the

regularity of coefficients.

We want now to clarify the role of the bilinear form in our variational inequality. Let us

multiply the first expression in (4.18) byw ∈ H1
0 (O), then integrate overO. It holds

∫

O

∂u

∂t
(t, x)w(x)dx+

∫

O

Lu(t, x)w(x)dx ≤ −
∫

O

f(t, x)w(x)dx.

Thanks to the regularity of∂O we can adopt the Green’s formula, [4], Chapter 2, Sec. 5, to perform

integration by parts. Taking into account thatw|∂O = 0, some simple computations produce the

final expression

−(
∂u

∂t
(t), w) + a(t; u(t), w) ≥ (f(t), w).

The drift coefficient in the SDE (4.1) has sublinear growth and then is bounded onO. The diffusion

term is bounded by hypothesis and hence it is easy to verify that the bilinear form is bounded in

H1(O) uniformly with respect tot ∈ [0, T ], i.e.

|a(t; u, w)| ≤ CO‖u‖H1 ‖w‖H1, ∀u, w ∈ H1(O). (4.21)

It is worth noticing thatCO > 0 does not depend onT because all the coefficients are time

homogeneous, yet it depends on the size of the setO. We still have to clarify the meaning of the

term(f(t), w), in fact forf(t) to be an element ofL2(O) we needΨ̂(t, ·) to admit a second order

weak derivative with respect to the space variables. As we pointed out in Proposition 4.1.1 the best

we can hope for iŝΨ ∈ W 1,p((0, T )×O), 1 ≤ p ≤ ∞. Given the expression

(f(t), w) =

∫

O

∂Ψ̂

∂t
(t, z)w(z)dz +

∫

O

LΨ̂(t, z)w(z)dz,

we can adopt the Green’s formula in order to give a meaning to the term involvingLP̂ si. Indeed

it holds

(f(t), w) = (
∂Ψ̂

∂t
(t), w)− a(t; Ψ̂(t), w). (4.22)
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For Ψ̂ given, the right hand side of the last expression can be interpreted as a continuous linear

functional acting on elements ofH1
0 (O). Then fort ∈ [0, T ] fixed we introduceTψ(t) ∈ H−1(O)

defined through the dual pairing〈·, ·〉H1
0 ,H

−1 betweenH1
0 (O) andH−1(O) as

〈Tψ(t), w〉H1
0 ,H

−1 := (
∂Ψ̂

∂t
(t), w)− a(t; Ψ̂(t), w), ∀w ∈ H1

0 (O). (4.23)

From previous considerations one easily verifies that the norm ‖Tψ(t)‖H−1 is well defined and

finite for all t ∈ [0, T ]. It is useful in what follows to explicitly evaluate such a norm. For any

w ∈ H1
0 (O)

|〈Tψ(t), w〉H1
0 ,H

−1 | ≤
∣
∣(
∂Ψ̂

∂t
(t), w)

∣
∣+ |a(t; Ψ̂(t), w)|,

then by continuity of the bilinear form one gets

|〈Tψ(t), w〉H1
0 ,H

−1| ≤
(

∣
∣
∂Ψ̂

∂t
(t)
∣
∣
L2(O)

+ CO‖Ψ̂(t)‖H1(O)

)

‖w‖H1
0 (O).

It then implies that

‖Tψ(t)‖H−1 =

(

∣
∣
∂Ψ̂

∂t
(t)
∣
∣
L2(O)

+ CO‖Ψ̂(t)‖H1(O)

)

. (4.24)

The VI is well defined in the form

−(
∂u

∂t
(t), w) + a(t; u(t), w) ≥ 〈Tψ(t), w〉H1

0 ,H
−1. (4.25)

4.4 On the concept of solution

We can now introduce the concept ofstrongand weaksolution of the evolutionary variational

inequality as in [4], Chapter 3, Sec. 2. From now on we refer tothe problem (4.18), because it

is equivalent to the original problem up to the transformation u = v − Ψ̂. As mentioned above

we are tackling a very particular case ofobstacle problem. In our case the obstacle is the constant

functionϕ = 0 and then things get to be relatively simplified.
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4.4.1 Strong solutions

At first we analyze what we consider the “best case”, i.e. the case of strong solutions.

Definition 4.4.1 We sayu(t, z) is a strong solution to the evolutionary variational inequality

(4.18) if

u ∈ L2(0, T ;H1
0(O)),

du

dt
∈ L2(0, T ;L2(O)), u(T ) = 0, u ≥ 0 a.e. in(0, T )×O,

and satisfies

−(
∂u

∂t
(t), w − u(t)) + a(t; u(t), w − u(t)) ≥ 〈Tψ(t), w − u(t)〉H1

0 ,H
−1 , a.e.t ∈ [0, T ],

for all w ∈ H1
0 (O) such thatw ≥ 0 a.e. inO.

It is worth noticing that from [23], Theorem 1, Chapter VIII,we know that the continuous injection

W (0, T ;H1
0(O), H−1(O)) →֒ C(0, T ;L2(O)) (4.26)

holds (cf. Appendix D). It is then clear that considering thecontinuous version ofu(t, z) it makes

sense to interpret the boundary conditionu(T ) = 0 pointwisely.

Remark 4.4.1 WhenΨ̂ is regular enough we havef := ∂tΨ̂ + LΨ̂ ∈ L2(O). Hence on the right

hand side of the inequality we find the scalar product(f, w−u) instead of the dual pairing. In some

cases there is a substantial difference in the arguments needed to prove existence and uniqueness

of solutions to this kind of problems.

It is now interesting to point out the connection between thestrong solution and the heuristic

variational inequality (4.17). This can be achieved if we manage somehow to add some regularity

to the solutionu. Let us assume for a moment thatv = u+ Ψ̂ is in the classW 12,2((0, T )×O) so

that the derivatives in (4.17) hold in the sense almost everywhere. We will show in the remainder

that under suitable regularity conditions for the coefficients and for the boundary value, such a

regularity can be obtained.
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In terms ofv = u+ Ψ̂ the strong solution of definition above solves the inequality

−(
∂v

∂t
(t), w(t)− v(t)) + a(t; v(t), w(t)− v(t)) ≥ 0, a.e.t ∈ [0, T ],

for all w ∈ L2(0, T ;H1(O)) such thatw(t) ∈ H1(O), w(t) − Ψ̂(t) ∈ H1
0 (O) a.e. t ∈ [0, T ] and

w ≥ Ψ̂ a.e. in[0, T ]×O. It can be rewritten in terms of the infinitesimal generatorL as

(
∂v

∂t
(t) + Lv(t), w(t)− v(t)) ≤ 0, a.e.t ∈ [0, T ].

If we choosew(t) = v(t) + ζ , for ζ ∈ C∞
0 (O) andζ ≥ 0 we obtain

(
∂v

∂t
(t) + Lv(t), ζ) ≤ 0, a.e.t ∈ [0, T ],

and it clearly implies

∂v

∂t
+ Lv ≤ 0, a.e.∈ (0, T )×O.

If we now choosew = Ψ̂(t) we get

(
∂v

∂t
+ Lv, Ψ̂− v) ≤ 0, a.e.t ∈ [0, T ],

so that sincêΨ− v ≤ 0, we should have

∂v

∂t
+ Lv ≥ 0, a.e.∈ (0, T )×O.

This fact is in contradiction with the previous observation, hence we conclude that

max

{(
∂v

∂t
+ Lv

)

, (Ψ̂− v)

}

= 0, a.e.∈ (0, T )×O.

We have then established the connection between the formal variational inequality and the concept

of strong solution. Besides that the concept of strong solution is sometimes too tight in order to

precisely characterize the solution of our variational inequality and hence we introduce a weaker

concept of solution.
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4.4.2 Weak solutions

The basic idea behind the concept of weak solution is to relaxthe regularity with respect to the

time variable. First we introduce a convex set

K := {w : w ∈ L2(0, T ;H1
0(O)),

∂w

∂t
∈ L2(0, T ;L2(O)), w(t, z) ≥ 0 a.e. in(0, T )×O}. (4.27)

This set is not empty. Let us assume for a moment thatu is a strong solution as in Definition

(4.4.1), then let us consider the expression

Y :=

∫ T

0

[

−(
∂w

∂t
(t), w(t)− u(t)) + a(t; u(t), w(t)− u(t))− 〈Tψ(t), w(t)− u(t)〉H1

0 ,H
−1

]

dt.

Let us skip the explicit time dependence and the indexes in the dual pairing, since there is no

ambiguity. We have

Y =

∫ T

0

[

−(
∂u

∂t
, w − u) + a(t; u, w − u)− 〈Tψ, w − u〉

]

dt

+

∫ T

0

[

−(
∂

∂t
w − u, w − u)

]

dt ≥
∫ T

0

[

−1

2

d

dt
|w − u|2L2

]

dt

From the definition ofu we get

Y ≥
∫ T

0

[

−1

2

d

dt
|w − u|2L2

]

dt =
1

2

(
|w(0)− u(0)|2L2 − |w(T )− u(T )|2L2

)
.

It is then clear that

Y +
1

2
|w(T )− u(T )|2L2 ≥ 0.

From this arguments we see that the following definition makes sense and in particular that any

strongsolution is also aweaksolution.

Definition 4.4.2 We sayu(t, z) is a weak solution to the evolutionary variational inequality (4.18)

if

u ∈ L2(0, T ;H1
0(O)), u ≥ 0 a.e. in(0, T )×O,
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and satisfies

∫ T

0

[

−(
∂w

∂t
, w − u) + a(t; u, w − u)− 〈Tψ, w − u〉

]

dt+
1

2
|w(T )|2L2 ≥ 0, (4.28)

for all w ∈ K.

It is worth remarking that the boundary conditionu(T ) = 0 is embedded in the last term of

expression (4.28). Indeed the full formal expression of thelast term would be|w(T ) − u(T )|L2.

Then by replacing it with|w(T )|L2 necessarily impliesu(T ) = 0, a.e.z ∈ O.

4.5 General results about strong solutions

We give now a short survey about results of existence and uniqueness of strong solutions to Evo-

lutionary Variational Inequalities (EVI). The standing assumptions are

(g g ∗)i,j(z), bi(z) ∈ L∞((0, T )×O), i, j = 1, . . . , n,

∂

∂zk
(g g ∗)i,j(z) ∈ L∞((0, T )×O), i, j, k = 1, . . . , n,

(4.29)

∂

∂t
(g g ∗)i,j(z) ∈ L∞((0, T )×O), i, j = 1, . . . , n,

(g g ∗)i,j(z) = (g g ∗)j,i(z).

Notice that from the discussion in Section 4.2 we know that these assumptions are fulfilled in our

case.

The finite dimensional approximation algorithm is such thatthe diffusion (4.1) is non degener-

ate. This in turn guarantees the uniform ellipticity condition, indeed at then-th step we have

n∑

i,j=1

(g g ∗)i,j(z)yiyj ≥ ǫn|y|2Rn, a.e. inO, ∀y ∈ R
n. (4.30)
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Unfortunately in our caseǫn → 0, then the uniform ellipticity tends to vanish when we pass to

the limit and we definitely have to deal with a degenerate diffusion. This fact is rather clear if we

remember that the infinite dimensional diffusion is driven by a one dimensional Brownian motion.

Nevertheless, thanks to the standing assumptions we obtainthe continuity and the coerciveness of

the bilinear forma(t; ·, ·), namely there existCO, λO, λ̂O > 0 independent on time such that

|a(t; u, w)| ≤ CO‖u‖H1
0
‖w‖H1

0
, ∀u, w ∈ H1

0 (O), (4.31)

and

a(t;w,w) + λO‖w‖2L2 ≥ λ̂O‖w‖2H1
0
, ∀w ∈ H1

0 (O). (4.32)

From Remark 4.3.1 we can swicth to the equivalent problem andwe simply assume

a(t;w,w) ≥ λ̂O‖w‖2H1
0
, ∀w ∈ H1

0 (O). (4.33)

The obstacle in our problem is represented by the functionϕ = 0 and then is smooth in both

time and space variables. The crucial fact is that the regularity of the payoff function affects the

formulation of the whole problem. As stated earlier we haveΨ̂ ∈ C([0, T ] × Ō) and for all

1 ≤ p <∞

∂Ψ̂(t, z)

∂t
,
∂Ψ̂(t, z)

∂zj
∈ Lp((0, T )×O), j = 1, . . . , n.

As we will see this is not enough in order to guarantee the existence of a strong solution. We state

now the existence and uniqueness theorem for strong solutions of variational inequalities. The

statement is almost the same as in [4] and summarizes Theorem2.2 and Corollary 2.2, Chapter

3, Section 2 therein. The proof here is omitted. The obstacleis denoted byϕ and the boundary

condition byū.

Theorem 4.5.1 Let us consider the following general variational problem in the strong formula-
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tion:






Find u(t, z) such that:

u ∈ L2(0, T ;H1
0(O)), du

dt
∈ L2(0, T ;L2(O)),

u(T ) = ū, u ≥ ϕ a.e. in(0, T )×O,

−(∂u
∂t
(t), w − u(t)) + a(t; u(t), w − u(t)) ≥ (f, w − u(t)), a.e.t ∈ [0, T ],

∀w ∈ H1
0 (O) such thatw ≥ ϕ a.e. inO.

(4.34)

Let conditions (4.29), (4.31) and (4.33) hold and letf ∈ L2(0, T ;L2(O)). Let us also assume

ϕ,
∂ϕ

∂t
∈ L2(0, T ;H1(O)), (4.35)

ϕ ≥ 0,
∂ϕ

∂t
= 0, on(0, T )× ∂O.

For the boundary condition let us assumeū = u(T, z) ∈ H1
0 (O) and ū ≥ 0. Then there exists a

unique solution,u(t, z), to problem (4.34) andu ∈ L2(0, T ;H2(O)) ∩ L∞(0, T ;H1
0(O)).

We present now another result that refines the previous theorem. The statement we will make

summarizes [4], Theorem 2.13 and Corollary 2.3, Chapter 3, Section 2. The basic idea is that,

given the hypotheses of the previous theorem, the regularity of the solution only depends on the

regularity off andϕ.

Theorem 4.5.2 Let us assume the same hypotheses as in Theorem 4.5.1. Let also the following

regularity conditions hold

f ∈ Lp((0, T )×O), ϕ ∈ Lp((0, T )×O),

−∂ϕ
∂t

(t, z) + Lϕ(t, z) ∈ Lp((0, T )×O),

ū ∈ W 2,p(O) ∩W 1,p
0 (O).
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Then the regularity of the unique strong solution is

u ∈ Lp(0, T ;W 2,p(O)),
du

dt
∈ Lp((0, T )×O).

We can now discuss about the solution of our specific problem.In our case the hypothesisf ∈

L2(0, T ;L2(O)) fails to be true in the homogeneized formulation of the EVI. Moreover the payoff

functionΨ̂ plays, in the non-homogeneous formulation, the role of the obstacle in problem (4.5.1).

It would be then desirable to have forΨ̂ the same regularity as in (4.35) but this fact fails to be

true as well. These two difficulties represent two ways of analyzing the lack of regularity of our

problem. It turns out to be impossible to carry out the arguments as in [4] to prove existence for

the strong solution to our variational inequality.

4.6 Existence and uniqueness of a weak solution

The rationale adopted in [4], Chapter 3, Section 2, to find a unique strong solution for EVI cannot

be applied straightforwardly in the present case. This factis mainly due to the impossibility to

rewrite rigorously the dual pairing as a scalar product inL2(O). Moreover, specific difficulties

arise in proving the existence of the distributional time derivative of u. This happens becausêΨ

not being regular makes impossible to prove some estimates in the penalization procedure that

usually one tries to carry out (cf. [4], eq. 255-258, pag. 244-245). On the other hand the regularity

of the data in the variational problem is good enough to guarantee the existence of a maximum

weak solution as in [4], Section 2, Theorem 2.6. Nevertheless it is worth to remark that the set of

weak solutions does not in general reduce to a single element, (for examples of non uniqueness cf.

[45]). Motivated by this remark we prefer to rely on the results of Appendix A. We then need the

following additional assumption about the gain function.

Assumption 4.6.1 LetΨ : [0, T ]×H → R be such that it is possible to find a sequence{Ψk}k≥1 ⊂

C∞([0, T ]×H) and for any finite measureµ it holds

lim
k→∞

∫ T

0

∫

H

|Ψk(t, x)−Ψ(t, x)|2µ(dx)dt = 0,
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and

lim
k→∞

∫ T

0

∫

H

‖DΨk(t, x)−DΨ(t, x)‖2Hµ(dx)dt = 0.

Let moreover the convergence be uniform, i.e.

lim
k→∞

sup
(t,x)∈[0,T ]×H

|Ψk(t, x)−Ψ(t, x)| = 0.

It is clear that under this assumption the regularity of the gain function keep being true at the finite

dimensional level and hence we shall replaceΨ̂ by Ψ̂k ∈ C∞([0, T ] × R
n). Then we know that

we have a unique strong solution for the variational inequality with such a regular obstacle. Nev-

ertheless this regularity vanishes when the order of the approximation increases. For this reason

we will set the whole problem into the framework of the weak formulation and try to characterize

the solution in this context. This will turn out to be the natural setting of our variational problem

at the infinite dimensional level. At this point it may seem that the adoption of the regularized gain

function is useless, yet it will play a crucial role when taking the limit to infinite dimensions. This

fact will be discussed in more details later on.

4.6.1 Regularized variational inequality

As a first step we turn our problem into the framework of Theorem 4.5.1. As a consequence of our

regularization we can define a sequence{Tψ,k}∞k=1 in L2(0, T ;H−1(O)), through the dual pairing

〈Tψ,k(t), w〉 := (
∂Ψ̂k

∂t
(t), w)− a(t; Ψ̂k(t), w), ∀w ∈ H1

0 (O). (4.36)

It is rather simple to verify thatTψ,k → Tψ in L2(0, T ;H−1(O)) ask → ∞. At the end of our

analysis we will see how the same limit holds in a suitable infinite dimensional setting. Fork ∈ N

given and fixed, the regularity of̂Ψk enables us to definef (k) ∈ Lp((0, T )×O), for all 1 ≤ p <∞

as

f (k)(t, z) :=
∂Ψ̂k

∂t
(t, z) + LΨ̂k(t, z).
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We can now write down a regularized version of our EVI in termsof Ψ̂k andf (k), i.e.







Findu(k)(t, z) such that:

u(k) ∈ L2(0, T ;H1
0(O)), du(k)

dt
∈ L2(0, T ;L2(O)),

u(k)(T ) = 0, u(k) ≥ 0 a.e. in(0, T )×O,

−(∂u
(k)

∂t
(t), w − u(k)(t)) + a(t; u(k)(t), w − u(k)(t)) ≥ (f (k), w − u(k)(t)), a.e.t ∈ [0, T ],

∀w ∈ H1
0 (O) such thatw ≥ 0 a.e. inO.

(4.37)

From Theorem 4.5.1 and Theorem 4.5.2 we know that there exists a unique strong solutionu(k)

such that

u(k) ∈ Lp(0, T ;W 1,p
0 (O)) ∩ Lp(0, T ;W 2,p(O)),

du(k)

dt
∈ Lp(0, T ;Lp(O)),

for all 1 ≤ p <∞. Moreover, the regularity of this solution allows us to understand the EVI in the

almost everywhere sense. In particular it holds







max
{
∂u(k)

∂t
+ Lu(k) + f (k) , −u(k)

}

= 0, a.e.(t, z) ∈ (0, T )×O,

u(k)(T, z) = 0, a.e.z ∈ O,

u(k)(t, z) = 0, a.e.(t, z) ∈ (0, T )× ∂O,

u(k)(t, z) ≥ 0, a.e.(t, z) ∈ [0, T ]× Ō.

(4.38)

It is worth to stress the connection with the non homogeneousEVI. If we go back to the original

problem, i.e. we considerv(k) = u(k) + Ψ̂k, we obtain

v(k) ∈ Lp(0, T ;W 2,p(O)),
dv(k)

dt
∈ Lp(0, T ;Lp(O)),

and

v(k) − Ψ̂k ∈ Lp(0, T ;W 1,p
0 (O)).
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Moreoverv(k) is the unique solution of







max
{
∂v(k)

∂t
+ Lv(k) , Ψ̂k − v(k)

}

= 0, a.e.(t, z) ∈ (0, T )×O,

v(k)(T, z) = Ψ̂k(T, z), a.e.z ∈ O,

v(k)(t, z) = Ψ̂k(t, z), a.e.(t, z) ∈ (0, T )× ∂O,

v(k)(t, z) ≥ Ψ̂k(t, z), a.e.(t, z) ∈ [0, T ]× Ō.

(4.39)

This formulation will be useful later to clarify the connection between the optimal stopping prob-

lem and the variational formulation. As we already mentioned we wish to set our variational

problem in a weaker form. We give a simple result

Theorem 4.6.1 The unique strong solution of (4.37),u(k), is also the unique solution of:

findu ∈ L2(0, T ;H1
0(O)) such that

u(T ) = 0, u ≥ 0 a.e. in(0, T )×O,

and satisfies

∫ T

0

[
− (

∂w

∂t
, w − u) + a(t; u, w − u)− 〈Tψ,k, w − u〉

]
dt+

1

2
|w(T )|2L2 ≥ 0, (4.40)

for all w ∈ K.

PROOF: The fact that the strong solutionu(k) is also a weak solution was previously discussed.

The only thing that still needs to be proven is the uniqueness. First of all notice the obvious fact

that

∫ T

0

[

−(
∂u(k)

∂t
, w − u(k)) + a(t; u(k), w − u(k))− 〈Tψ,k, w − u(k)〉

]

dt ≥ 0, (4.41)

for all w ∈ L2(0, T ;H1
0(O)) andw ≥ 0. Let v be another solution of (4.40). Sinceu(k) ∈ K we

can setw = u(k) in expression (4.40) and obtain

∫ T

0

[

−(
∂u(k)

∂t
, u(k) − v) + a(t; v, u(k) − v)− 〈Tψ,k, u(k) − v〉

]

dt+
1

2
|u(k)(T )|2L2 ≥ 0,
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and clearly, sinceu(k)(T ) = 0 a.e. onO the expression simplifies to

∫ T

0

[

−(
∂u(k)

∂t
, u(k) − v) + a(t; v, u(k) − v)− 〈Tψ,k, u(k) − v〉

]

dt ≥ 0. (4.42)

We substitutew = v in the expression (4.41) and sum it with (4.42). We then obtain

∫ T

0

[
a(t; u(k), v − u(k)) + a(t; v, u(k) − v)

]
dt ≥ 0,

and hence

∫ T

0

a(t; u(k) − v, v − u(k))dt ≥ 0.

It implies

∫ T

0

a(t; v − u(k), v − u(k))dt ≤ 0,

and now by coerciveness (4.33) we obtain the uniqueness,

λ̂O

∫ T

0

‖v − u(k)‖2H1
0
dt ≤ 0.

Hence we are now in the setting of weak solutions and our aim isto point out the connection

between this variational problem and the optimal stopping problem restricted to a bounded domain

inR
n. Before doing so it is worth noticing that the same formulation holds for the non-homogenous

problem. We need to define the following closed convex set

Definition 4.6.1 LetK(k)
Ψ be the closed convex set of functionsw ∈ L2(0, T ;H1(O)) such that







∂w
∂t

∈ L2(0, T ;L2(O)),

w(t)− Ψ̂k(t) ∈ H1
0 (O) a.e.t ∈ [0, T ],

w ≥ Ψ̂k a.e.[0, T ]×O

(4.43)
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From the definition we have that ifw ∈ K(k)
Ψ thenw(t, z) ≥ Ψ̂k(t, z) a.e. in(0, T ) × O. Now

we see that substitutingu(k) = v(k) − Ψ̂k in equation (4.40), the result in the previous theorem is

equivalent to say that there exists a unique functionv such that

v ∈ L2(0, T ;H1(O)), v − Ψ̂k ∈ L2(0, T ;H1
0(O)),

v ≥ Ψ̂k a.e. in(0, T )×O,

and satisfies

∫ T

0

[

−(
∂w

∂t
, w − v) + a(t; v, w − v)

]

dt+
1

2
|w(T )− Ψ̂k(T )|2L2(O) ≥ 0, (4.44)

for all w ∈ K(k)
Ψ .

We have proved that there exists a unique strong (weak) solution v to the regularized version

of the problem (4.17). We want now to prove that such a solution is actually a suitable optimal

stopping functional, namely a regularized version of (4.15).

4.7 Connection with the optimal stopping problem

Before starting our analysis we remind some results about the Sobolev spaces we are dealing with.

In particular we recall the concept ofsegment propertyfor a domain.

Definition 4.7.1 A domainΩ ⊂ R
n has the segment property if∀x ∈ ∂Ω there exists an open set

Ux and a non-zero vectoryx ∈ R
n such thatx ∈ Ux and if z ∈ Ω̄ ∩ Ux, thenz + tyx ∈ Ω for

0 < t < 1.

It is worth noticing that such a domain must have an − 1-dimensional boundary and cannot

simultaneously lie on both sides of any given part of its boundary. Clearly the domain(0, T )× O

has this property and moreover it is Lipschitzian. Now we canstate a useful result from [1],

Theorem 3.22.
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Theorem 4.7.1 Given an arbitrary domainΩ ⊂ R
n, if it has the segment property, then the set of

restrictions toΩ of functionsC∞
c (Rn) is dense inWm,p(Ω) for 1 ≤ p <∞.

We can now proceed with our connection with the optimal stopping problem. Fork ∈ N given, we

takev(k) to be as in (4.39). Then in particular one has

v(k) ∈ W 1 2,p((0, T )×O),

for arbitrary1 ≤ p < ∞. Hence it also holds forp > n. The Sobolev embedding theorem holds.

ClearlyW 1 2,p((0, T ) × O) ⊂ W 1 1,p((0, T ) × O). The bounded set(0, T ) × O, understood as a

domain inRn+1, has thecone property1. If we now denoteO′ = (0, T )×O, we can write

v(k) ∈ W 1,p(O′), p > n,

and then for the Sobolev embedding theorem (cf. [1], ChapterV) we have thatW 1,p(O′) →֒

C(O′). From now on we considerv(k) to be the continuous version in the equivalence class

W 1,p(O′).

From the result of Theorem 4.7.1 we can choose a sequence{v(k)j }∞j=1, such thatv(k)j ∈

C∞
c (Rn+1) for all j ∈ N and

‖v(k)j − v(k)‖W 1 2,p((0,T )×O) → 0, asj → ∞. (4.45)

This is due to the fact that the approximation is obtained by partitioning the domain and then

on each element of the partition one adopts the standard mollification. The usual properties of

the mollifiers and the fact that∂t, ∇ and∇2 are closed operators inLp guarantees that the limit

holds. Moreover, for the continuity ofv(k) up to a suitable extension toRn+1, one also has uniform

convergence on any compactO′′ such that[0, T ]× Ō ⊂ O′′, i.e.

‖v(k)j − v(k)‖L∞ → 0, onO′′, asj → ∞.

1There exists a finite coneC, such that each point(t, x) ∈ (0, T )×O is the vertex of a finite coneCt,x contained
in (0, T )×O and congruent toC.



4.7 Connection with the optimal stopping problem 73

This fact obviously implies thatsupj∈N ‖v(k)j ‖L∞ < ∞. We now show that the solutionv(k) of the

regularized problem coincides with an appropriate optimalstopping functional. In order to do so

we recall [4], Lemma 8.1, Chapter 2, Section 8

Lemma 4.7.1 Given the SDE (4.1), ifg (t, z) ∈ L2((0, T )×O) then for any stopping timeτ ≤ τO,

P-a.s. there existsCT,O > 0 only depending onT and on the size of the domain, such that
∣
∣
∣
∣
E

[∫ τ

t

g (s, Zt,z
s )ds

]∣
∣
∣
∣
≤ CT,O‖g ‖L2((0,T )×O). (4.46)

PROOF: The proof follows standard arguments in [4],
∣
∣
∣
∣
E

[∫ τ

t

g (s, Zt,z
s )ds

]∣
∣
∣
∣
=

∣
∣
∣
∣
E

[∫ τ∧T

t

I(s ≤ τO)g (s, Z
t,z
s )ds

]∣
∣
∣
∣

=

∣
∣
∣
∣
E

[∫ τ∧T

t

I(Zt,z
s ∈ O)g (s, Zt,z

s )ds

]∣
∣
∣
∣
≤ E

[∫ T

t

I(Zt,z
s ∈ O)|g (s, Zt,z

s )|ds
]

=

∫

Rn

∫ T

t

I(y ∈ O)|g (s, y)|P(Zt,z
s ∈ dy)ds

≤
(∫

O

∫ T

t

|g (s, y)|2dy ds
) 1

2
(∫

O

∫ T

t

P(Zt,z
s ∈ dy)ds

) 1
2

≤ CT,O‖g ‖L2((0,T )×O).

We can now state the verification theorem

Theorem 4.7.2 Let v(k)(t, z) be the unique strong solution of (4.39). Then

v(k)(t, z) = sup
t≤τ≤T

E

[

Ψ̂k(τ ∧ τO, Zt,z
τ∧τO

)
]

. (4.47)

Moreover, the optimal stopping time is characterized as:

τ ∗k := inf{s ≥ t : v(k)(s, Zt,z
s ) = Ψ̂k(s, Z

t,z
s )} ∧ T.
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PROOF: The proof develops along the lines of [4], Chapter 3, Section 4. If we now consider

v
(k)
j (s, Zt,z

s ), for s ≥ t andZt,z the solution of (4.1), we can apply the Itô’s formula in the random

time interval[0, τ ∧ τO] for τ a stopping time in[0, T ]:

v
(k)
j (τ ∧ τO, Zt,z

τ∧τO
) = v

(k)
j (t, z) +

∫ τ∧τO

t

[

∂v
(k)
j

∂s
(s, Zt,z

s ) + Lv(k)j (s, Zt,z
s )

]

ds

+

n∑

i,l=1

∫ τ∧τO

t

∂v
(k)
j

∂zi
(s, Zt,z

s )g i,l(Z
t,z
s )dW l

s.

If we take into account that
∂v

(k)
j

∂zi
andg(z) are bounded in[0, T ] × O, we can take the average of

both left and right side and the stochastic integral part will vanish. Then

E

[

v
(k)
j (τ ∧ τO, Zt,z

τ∧τO
)
]

= v
(k)
j (t, z) + E

[
∫ τ∧τO

t

(

∂v
(k)
j

∂s
+ Lv(k)j

)

(s, Zt,z
s )ds

]

. (4.48)

We want now to take the limit asj → ∞. For the term on the left hand side and for the first term on

the right hand side we can exploit the uniform convergence stated above together with dominated

convergence. For the term involving the integral we rely on the previous lemma. This fact implies

that
∣
∣
∣
∣
∣
E

[
∫ τ∧τO

t

(

∂v
(k)
j

∂s
+ Lv(k)j

)

(s, Zt,z
s )ds

]

− E

[∫ τ∧τO

t

(
∂v(k)

∂s
+ Lv(k)

)

(s, Zt,z
s )ds

]
∣
∣
∣
∣
∣

≤ CT,O

∥
∥
∥
∥
∥

∂v
(k)
j

∂t
− ∂v(k)

∂t
+ Lv(k)j −Lv(k)

∥
∥
∥
∥
∥
L2((0,T )×O)

.

Now conditions (4.29) on the coefficients and the convergence result (4.45) allow us to take the

limit as j → ∞ and conclude that

E

[
∫ τ∧τO

t

(

∂v
(k)
j

∂s
+ Lv(k)j

)

(s, Zt,z
s )ds

]

→ E

[∫ τ∧τO

t

(
∂v(k)

∂s
+ Lv(k)

)

(s, Zt,z
s )ds

]

So we can take the limit in (4.48) and obtain that

E
[
v(k)(τ ∧ τO, Zt,z

τ∧τO
)
]
= v(k)(t, z) + E

[∫ τ∧τO

t

(
∂v(k)

∂s
+ Lv(k)

)

(s, Zt,z
s )ds

]

. (4.49)
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Given that the diffusion matrixg (z) is uniformly elliptic (4.30) we have that the law ofZt,z is

absolutely continuous with respect to the Lebesgue measureon (0, T )×O. Since from (4.39) we

have
(
∂v(k)

∂s
+ Lv(k)

)

(t, z) ≤ 0, a.e on(0, T )×O,

and

v(k)(t, z) ≥ Ψ̂k(t, z), a.e on(0, T )×O,

then

v(k)(t, z) ≥ E
[
v(k)(τ ∧ τO, Zt,z

τ∧τO
)
]
≥ E

[

Ψ̂k(τ ∧ τO, Zt,z
τ∧τO

)
]

.

We can now prove the optimality of the stopping timeτ ∗k . Indeed choosingτ = τ ∗k in expression

(4.49) and taking into account the fact that

max

{
∂v(k)

∂t
+ Lv(k) , Ψ̂k − v(k)

}

= 0,

holds almost everywhere, we conclude that the integral termin (4.49) is equal to zero fors ≤ τ ∗k .

Hence

v(k)(t, z) = E

[

v(k)(τ ∗k ∧ τO, Zt,z
τ∗
k
∧τO

)
]

= E

[

Ψ̂k(τ
∗
k ∧ τO, Zt,z

τ∗
k
∧τO

)
]

. (4.50)

The last term derives from the definition ofτ ∗k if τ ∗k ≤ τO and from the boundary condition in the

variational inequality ifτ ∗k > τO. It then concludes the proof since the maximum is attainted at τ ∗k

and then this stopping time is the optimal stopping time in the problem (4.47).

As a straightforward consequence of setting the variational problem in the weak sense we

obtain the following Corollary.

Corollary 4.7.1 Let v(k)(t, z) denote the unique weak solution of (4.39), interpreted in terms of

(4.44). Then

v(k)(t, z) = sup
t≤τ≤T

E

[

Ψ̂k(τ ∧ τO, Zt,z
τ∧τO

)
]

. (4.51)

Moreover, the following regularity holds

v(k) ∈ L2(0, T ;H1(O)) ∩ C((0, T )×O), (4.52)
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and

v(k)(T ) = Ψ̂k(T ), onO

v(k) = Ψ̂k on(0, T )× ∂O.

The optimal stopping time is

τ ∗k := inf{s ≥ t : v(k)(s, Zt,z
s ) = Ψ̂k(s, Z

t,z
s )} ∧ T. (4.53)

Our next step will be to extend the variatonal inequality to the whole spaceRn. In what follows the

order of regularization of the gain function is fixed. Hence sincek ∈ N is always the same we can

simplify the notation and replacêΨk = Θ̂ andv(k) = v. For the closed convex set we adopt the

same simplification and henceK(k)
Ψ = KΘ. Moreover we also denoteTψ,k = Tθ. All the indexes

will be recovered in the final steps of our infinite dimensional analysis.



Chapter 5

Variational inequality on an unbounded
domain

In this Chapter we extend the previous results to the finite dimensional unbounded domainRn. In

order to do so we introduce a suitable Gaussian measure that turns out to be a good one when we

consider the problem at its original infinite dimensional level. We provide a number of estimates

about the solution of the variational inequality on boundeddomain. The main issue throughout this

chapter is to prove auniversalestimate for the bilinear form appearing in the variationalinequality

on unbounded domain. This estimate does not depend on the order of the Yosida approximation

nor on the finite dimensional approximation. Thanks to this estimate and to the ones about the

value function we can pass to the limit and prove existence (and uniqueness) of a weak solution

of the variational problem on unbounded domain. We also showthe connection with the optimal

stopping problem and the characterization of the optimal stopping time.

5.1 Finite dimensional unbounded domain

In order to extend the EVI we have solved in the previous chapter we are supposed to set a measure

µn(dz) onR
n. This is quite a delicate issue, because our aim is to pass to infinite dimensions in

the last step. Looking forward to that, the first problem thatwe have to tackle is the lack of

any analogue of the Lebesgue measure onH. To our knowledge the natural choice to extend the

concept of weak derivative to the infinite dimensional framework is the one of Gaussian measures,
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cf. [11, 18, 22].

We start defining a gaussian weightµn(dz) which will play a fundamental role in setting a

proper Gauss measure onH. We denote byλi, i = 1, 2, . . . , n a sequence of positive real numbers.

They will represent the firstn eigenvalues of the operatorQ of Definition 3.2.1. We define the

Gaussian weight as

µn(dz) :=
1

√

(2π)nλ1λ2 · · ·λn
exp

(

−
n∑

i=1

z2i
λi

)

dz. (5.1)

As usual we introduce the weightedL2-norm

‖u‖L2
µ(R

n) :=

∫

Rn

|u(z)|2µn(dx),

and the Hilbert spaceL2
µ(R

n) := {u : R
n → R | ‖u‖L2

µ(R
n) < ∞}. We can now introduce a

weighted Sobolev space which has an infinite dimensional analogue under suitable conditions for

the sequence of parametersλi. Some authors refer to this space as to Gauss-Sobolev space [11, 16]

and we denote it byW 1,2(Rn, µn). In particular

W 1,2(Rn, µn) := {u ∈ L2
µ(R

n) : ‖∇u‖L2
µ(R

n) <∞}, (5.2)

where

‖∇u‖2L2
µ(R

n) :=
n∑

i=1

∫

Rn

∣
∣
∣
∣

∂u(z)

∂zi

∣
∣
∣
∣

2

µn(dz).

It is now clear that the sets inclusionH1(Rn) ⊂ W 1,2(Rn, µn) holds. We can consider the zero

extension outsideO of our solutionu(t) to equation (4.40), for allt ∈ [0, T ]. We denote the

zero extension again byu(t), and then it is an element ofW 1,2(Rn, µn). We would like to set the

problem in Theorem 4.6.1 into the framework of this weightedSobolev space. We will partially

rely on the approach of [4], Chapter 3, Section 1.11. In orderto do so we simply redefine the test

functionw ∈ K. Let us denote bỹw the original test function of our EVI and let us define a new

class of functions through

w̃(z)− u(z) :=
1

√

(2π)nλ1λ2 · · ·λn
exp

(

−
n∑

i=1

z2i
λi

)

(w − u)(z).
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It is easy to check that if̃w ∈ K then alsow ∈ K.

We have now to adapt all the terms of our EVI to this new setting. If we simply substitutẽw

into the definition of weak solution as given in Section 4.4.2, equation (4.28), we see that we can

replace
∫ T

0

[

−(
∂w̃

∂t
, w̃ − u)

]

dt+
1

2
|w̃(T )|2L2 =

∫ T

0

[

−(
∂w

∂t
, w − u)L2

µ(O)

]

dt+
1

2
|w(T )|2L2

µ(O).

Notice that althoughu andw are now extended toRn we still keep memory of the fact that the

scalar product is overO. We will get rid of it shortly. Plugingw into the bilinear forma(t; u, w̃−u)

and performing all the derivatives we obtain a new bilinear form,

aµ(t; u, w − u)|O :=
1

2

n∑

i,j=1

∫

O

(g g∗)i,j(z)
∂u

∂zi

∂

∂zj
(w − u)(t, z)µn(dz)

+
n∑

i=1

∫

O

(

1

2

n∑

j=1

∂(g g∗)i,j
∂zj

(z)− bi(z)

)

∂u

∂zi
(w − u)(t, z)µn(dz)

−
n∑

i,j=1

1

2

∫

O

(g g∗)i,j(z)
zj
λj

∂u

∂zi
(t, z)(w − u)(t, z)µn(dz)

By analogy we also have a new dual pairing

〈Tθ(t), w − u〉O
W

1,2
µ ,W

1,2 ∗
µ

:= (
∂Θ̂

∂t
(t), w − u)L2

µ(O) − aµ(t; Θ̂(t), w − u)|O, (5.3)

and we denote it for simplicity as〈Tθ(t), w− u〉µ|O. We also consider a new convex set relative to

the weighted space,

Kµ := {w : w ∈ L2(0, T ;W 1,2(Rn, µn)),
∂w

∂t
∈ L2(0, T ;L2

µ(R
n)), w(t, z) ≥ 0 a.e. in(0, T )×R

n}.

(5.4)

Now we can restate our variational inequality saying thatu ∈ L2(0, T ;W 1,2(Rn, µn)) is the unique

solution of
∫ T

0

[

−(
∂w

∂t
, w − u)L2

µ(O) + aµ(t; u, w − u)|O − 〈Tθ(t), w − u〉µ|O
]

dt

+
1

2
|w(T )|2L2

µ(O) ≥ 0,
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for all w ∈ Kµ.

It is worth noticing that the restriction toO in some sense keeps the memory of the zero

boundary condition. If we now defineOl = {z ∈ R
n : |z| < l} we can denote asu(l) the

zero extension overRn of the unique weak solution of the EVI onOl. If moreover we setw(l) ∈

Kµ ∩ {w : w|Ol
= 0} then we have

∫ T

0

[

−(
∂w(l)

∂t
, w(l) − u(l))L2

µ(R
n) + aµ(t; u

(l), w(l) − u(l))− 〈Tθ(t), w(l) − u(l)〉µ
]

dt

+
1

2
|w(l)(T )|2L2

µ(R
n) ≥ 0.

Here we have extended all the integrals overR
n. Our aim is now to provide some a priori estimates

onu(l) and on each term of the EVI in order to consider the limit asl → ∞.

5.2 Uniform estimates for the solution of the variational in-
equality

We derive the estimates on‖u(l)‖L2(0,T ;W 1,2(Rn,µn)) from its probabilistic representation. This is

mainly due to the fact that our main aim is to take the limit to infinite dimensions. For such a

reason we cannot rely on the coerciveness of the bilinear form. It prevents us from providing

standard estimates on the gradient, uniformly with respectto the number of dimensions. Moreover

the probabilistic representation gives some insights thatwill enable us to set the EVI in a suitable

smaller closed convex set.

We recall Proposition 4.1.1 and refine a bit the results therein. It is clear that all the properties

which hold forΨ, hold for Ψ̂k = Θ̂ as well. Our first observation is that sinceµ(Rn) = 1, n ∈ N,

the Lipschitz constantL1 provides a uniform bound on∇Θ̂ in L2
µ(R

n). Even though the result

that we are presenting holds in wider generality, we specialize our study to the case in which the

following holds

Assumption 5.2.1 For 0 ≤ s ≤ t ≤ S we have

|Ψ(t, x)−Ψ(s, x)| ≤ L2‖x‖H |t− s|, ∀x ∈ H,
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or analogously

|Ψ̂(t, z)− Ψ̂(s, z)| ≤ L2|z|Rn |t− s|, ∀z ∈ R
n.

The same holds for̂Θ, as well. Now from analogous rationale as before and from Proposition 4.1.1

we also obtain that
∫ T

0

∥
∥
∂Θ̂

∂t
(t)
∥
∥2

L2
µ(R

n)
dt ≤ L2

2

∫

Rn

|z|2
Rnµn(dz) · T.

We now recognize the necessity of the hypothesis aboutQ. Indeed

∫

Rn

|z|2
Rnµn(dz) =

n∑

i=1

λi ≤
∞∑

i=1

λi = Tr(Q) <∞.

We recall the estimate (4.8) and setĈΘ = CΨ + L2
2Tr(Q). Hence we obtain

∫ T

0

[

∥
∥
∂Θ̂

∂t
(t)
∥
∥2

L2
µ(R

n)
+ ‖Θ̂(t)‖2W 1,2(Rn,µn)

]

dt ≤ ĈΘ T. (5.5)

We can now exploit these regularity to infer about the regularity of our solutionu(l). We know in

fact thatu(l) is the zero extension outsideOl of v(l) − Θ̂, where now

v(l)(t, z) = UOl

Θ (t, z) = sup
t≤τ≤T

E

[

Θ̂(τ ∧ τOl
, Zt,z

τ∧τOl
)
]

. (5.6)

We simplify the notation once more and setUOl

Θ = UOl . We can discuss the regularity ofUOl and

then deduce the regularity ofu(l) from it. We summarize the results in the following proposition.

Proposition 5.2.1 For UOl(t, z) there exists a uniform boundCU > 0 such that:

∫ T

0

‖UOl(t)‖2W 1,2(Rn,µn)
dt < CU T. (5.7)

The bound does not depend on the size of the domain neither on the dimensions of the space or on

the order of the Yosida approximation.

PROOF: We know from Proposition 2.2.2 that the value function of the original problem is uni-

formly bounded byΨ and Lipschitz with respect to the space variable with Lipschitz constantLV1 .

From Remark 3.3.1 we know that the same properties hold for the approximating finite dimensional
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value function. Then they also hold forUOl(t, z) when(t, z) ∈ [0, T ] × Ol. OutsideOl we have

UOl = Θ̂ and hence uniform boundedness and Lipschitz property hold.From the same arguments

as in Proposition 4.1.1, sinceUOl(t) ∈ W 1,2(Rn, µn) for all t ∈ [0, T ], then we can approximate it

with a sequence of smooth functions{UOl

j (t)}∞j=1. Clearly we obtain‖∇UOl

j (t)‖L2
µ(R

n) ≤ L1∨LV1
and hence passing to the limit‖∇UOl(t)‖L2

µ(R
n) ≤ L1 ∨ LV1 . SettingCU = Ψ

2
+ (L1 ∨ LV1 )2 we

easily obtain the thesis.

These results give us a uniform bound onu(l), indeed we have

∫ T

0

‖u(l)(t)‖2W 1,2(Rn,µn)
dt ≤ (CΨ + CU) T. (5.8)

SinceL2(0, T ;W 1,2(Rn, µn)) is a Hilbert space, there exists a subsequence which we will denote

again byu(l) such that

u(l) ⇀ ū, in L(0, T ;W 1,2(Rn, µn)). (5.9)

We notice that sinceτ is a stopping time bounded byT , thenτ ∧ τOl
→ τ , P-a.s. asl → ∞.

Moreover from continuity of the process and of the gain function we have

Θ̂(τ ∧ τOl
, Zt,z

τ∧τOl
) → Θ̂(τ, Zt,z

τ ), asl → ∞, P-a.s.

We prove now a technical lemma about the solution of the SDE (4.1) which will be useful in what

follows.

Lemma 5.2.1 Let Zt,z be the unique strong solution for equation (4.1). Then for any stopping

timeτ such thatτ ∈ [t, T ], it holds

E

[

sup
t≤s≤T

‖Zt,z
s − Zt,z

τ ‖2I(s > τ)

]

≤ CT (1 + ‖z‖2)E
[
(T − τ)+

] 1
2 .

PROOF: On the set{s > τ} we have

‖Zt,z
s − Zt,z

τ ‖2 =
∥
∥
∥
∥

∫ s

τ

b(Zt,z
u )du+

∫ s

τ

g(Zt,z
u )dWu

∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥

∫ s

τ

b(Zt,z
u )du

∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥

∫ s

τ

g(Zt,z
u )dWu

∥
∥
∥
∥

2

.
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Sinceτ is a stopping time we can pass to the indicator variables and use Hölder inequality in the

first term. Then

‖Zt,z
s − Zt,z

τ ‖2 ≤ 2(T − t)

∫ s

t

I(τ ≤ u)
∥
∥b(Zt,z

u )
∥
∥
2
du+ 2

∥
∥
∥
∥

∫ s

t

I(τ ≤ u)g(Zt,z
u )dWu

∥
∥
∥
∥

2

.

Hence we have

‖Zt,z
s − Zt,z

τ ‖2I(s > τ)

≤ 2

(

T

∫ s

t

I(τ ≤ u)
∥
∥b(Zt,z

u )
∥
∥
2
du+ 2

∥
∥
∥
∥

∫ s

t

I(τ ≤ u)g(Zt,z
u )dWu

∥
∥
∥
∥

2
)

I(s > τ)

≤ 2T

∫ s

t

I(τ ≤ u)
∥
∥b(Zt,z

u )
∥
∥2 du+ 2

∥
∥
∥
∥

∫ s

t

I(τ ≤ u)g(Zt,z
u )dWu

∥
∥
∥
∥

2

.

We can take the supremum over alls ∈ [t, T ] and take into account that the integrand in the

stochastic integral is bounded. So for a suitable constantγT > 0 we obtain

E

[

sup
t≤s≤T

‖Zt,z
s − Zt,z

τ ‖2I(s > τ)

]

≤ 2TE

[∫ T

t

I(τ ≤ u)
∥
∥b(Zt,z

u )
∥
∥2 du

]

+ 8E

[∫ T

t

I(τ ≤ u)
∥
∥g(Zt,z

u )
∥
∥2 du

]

≤ γTE

[∫ T

t

I(τ ≤ u)(1 + ‖Zt,z
u ‖2)du

]

≤
√
2γTE

[(∫ T

t

I(τ ≤ u)du

) 1
2
(∫ T

t

(1 + ‖Zt,z
u ‖4)du

) 1
2

]

≤ γT
√
2T E

[
√

(T − τ)+
(

1 + sup
t≤u≤T

‖Zt,z
u ‖4

) 1
2

]

≤ γT
√
2T E

[
(T − τ)+

] 1
2 E

[

1 + sup
t≤u≤T

‖Zt,z
u ‖4

] 1
2

.

Once again, choosing a suitable constantCT > 0 we get

E

[

sup
t≤s≤T

‖Zt,z
s − Zt,z

τ ‖2I(s > τ)

]

≤ CT (1 + ‖z‖2)E
[
(T − τ)+

] 1
2 .

Notice that this lemma is a bit different from the usual a priori estimates for solutions of SDEs

because it is adapted for stopping times.
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We can now state the convergence of the sequence of value functions on bounded domains.

Proposition 5.2.2 Let

UΘ(t, z) = sup
t≤τ≤T

E

[

Θ̂(τ, Zt,z
τ )
]

.

The pointwise convergenceUOl(t, z) → UΘ(t, z) holds for(t, z) ∈ [0, T ] × R
n. Moreover the

convergence is uniform on every compact subset[0, T ]×K ⊂ [0, T ]×R
n andUΘ ∈ C([0, T ]×R

n).

PROOF: Notice that for any(t, z) ∈ [0, T ]× R
n there existsL > 0 such that(t, z) ∈ [0, T ]× Ol

for all l ≥ L. Then it makes sense to computeUOl(t, z)− UΘ(t, z) for l ≥ L. We obtain

sup
t≤τ≤T

E

[

Θ̂(τ ∧ τOl
, Zt,z

τ∧τOl
)
]

− sup
t≤σ≤T

E

[

Θ̂(σ, Zt,z
σ )
]

≤ 0,

because stopping atτ ∧ τOl
is sub-optimal in the second term. The reverse estimate produces

sup
t≤σ≤T

E

[

Θ̂(σ, Zt,z
σ )
]

− sup
t≤τ≤T

[

Θ̂(τ ∧ τOl
, Zt,z

τ∧τOl
)
]

= sup
t≤σ≤T

inf
t≤τ≤T

E

[

Θ̂(σ, Zt,z
σ )− Θ̂(τ ∧ τOl

, Zt,z
τ∧τOl

)
]

≤ sup
t≤σ≤T

E

[

Θ̂(σ, Zt,z
σ )− Θ̂(σ ∧ τOl

, Zt,z
σ∧τOl

)
]

= sup
t≤σ≤T

E

[(

Θ̂(σ, Zt,z
σ )− Θ̂(σ ∧ τOl

, Zt,z
σ∧τOl

)
)

I(σ > τOl
)
]

= sup
t≤σ≤T

E

[(

Θ̂(σ, Zt,z
σ )− Θ̂(τOl

, Zt,z
τOl

)
)

I(σ > τOl
)
]

≤ sup
t≤σ≤T

E

[∣
∣
∣Θ̂(σ, Zt,z

σ )− Θ̂(τOl
, Zt,z

σ )
∣
∣
∣ I(σ > τOl

)
]

+ sup
t≤σ≤T

E

[∣
∣
∣Θ̂(τOl

, Zt,z
σ )− Θ̂(τOl

, Zt,z
τOl

)
∣
∣
∣ I(σ > τOl

)
]

≤ L2 sup
t≤σ≤T

E
[
‖Zt,z

σ ‖ |σ − τOl
|I(σ > τOl

)
]

+L1 sup
t≤σ≤T

E

[

‖Zt,z
σ − Zt,z

τOl
‖I(σ > τOl

)
]

≤ L2E

[

sup
t≤s≤T

‖Zt,z
s ‖ (T − τOl

)+
]

+ L1E

[

sup
t≤s≤T

‖Zt,z
s − Zt,z

τOl
‖I(s > τOl

)

]

.
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Now from Lemma 5.2.1 and from Hölder inequality we obtain

sup
t≤σ≤T

E

[

Θ̂(σ, Zt,z
σ )
]

− sup
t≤τ≤T

[

Θ̂(τ ∧ τOl
, Zt,z

τ∧τOl
)
]

≤ L2E

[

sup
t≤s≤T

‖Zt,z
s ‖2

] 1
2

E
[
(T − τOl

)+ 2
] 1

2 + CT (1 + ‖z‖2)E
[
(T − τOl

)+
] 1

2 .

From this and from the previous estimate we can conclude for asuitable constantKT > 0

|UOl(t, z)− UΘ(t, z)| ≤ KT (1 + ‖z‖)(1 + ‖z‖2)
(

E
[
(T − τOl

)+ 2
] 1

2 + E
[
(T − τOl

)+
] 1

2

)

.

From dominated convergence and from the fact that(T−τOl
)+ → 0 asl → ∞we obtain pointwise

convergence. We can prove uniform convergence for example by similar equicontinuity arguments

as in Theorem 3.1.2. Yet, notice that from the time-homogeneity of the process we haveτ t,xOl
=

t + τ 0,xOl
. Moreover, sinceZz is a non degenerate diffusion inRn and {Ol}l≥1 is a sequence

of spherical domains, the first exit time fromOl is a continuous function of the initial data, i.e.

z 7→ τ 0,zOl
is P-a.s. continuous (cf. [4], Lemma 3.2, p.332). Hence if we define

Ml(t, z) := KT (1 + ‖z‖)(1 + ‖z‖2)
(

E
[
(T − τOl

)+2
] 1

2 + E
[
(T − τOl

)+
] 1

2

)

,

the sequence{Ml}l≥1 is a decreasing sequence of continuous functions converging to zero. From

Theorem C.0.3 we get uniform convergence on compact sets andin particular, for anyK ⊂ R
n we

have

lim
l→∞

sup
(t,z)∈[0,T ]×K

|UOl(t, z)− UΘ(t, z)| = 0.

Since all theUOl are continuous thenUΘ has to be continuous on every compact subset[0, T ]×K.

Given that we are now in finite dimensional space this is enough for global continuity.

Remark 5.2.1 It is worth noticing that this result holds at any step of the finite dimensional ap-

proximating optimal stopping problem, i.e.U (n)
Θ ∈ C([0, T ]×R

n) for all n ≥ 1. This fact together

with the uniform convergence of Assumption 4.6.1 and other considerations allowed us to prove

the continuity also at the infinite dimensional level, cf. Theorem 3.2.2.
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From dominated convergence we have for1 ≤ p <∞

UOl → UΘ in L2(0, T ;Lpµ(R
n)) asl → ∞. (5.10)

Since the limit has to be unique we have from (5.9) thatū = UΘ − Θ̂. Given that the sequenceu(l)

is uniformly bounded then clearlyu(l) ∈ L2(0, T ;Lpµ(R
n)) for all l ≥ 1. We can introduce a subset

K̂p
µ ⊂ Kµ of our convex set, namely for2 < p <∞

K̂p
µ := {w : w ∈ Kµ andw ∈ L2(0, T ;Lpµ(R

n))}. (5.11)

This is a closex convex set and̂Kp
µ 6= ∅. Our EVI holds in the form:

u(l) ∈ L2(0, T ;W 1,2(Rn, µn) ∩ Lpµ(Rn)) ∩ C([0, T ]× R
n) is the unique solution to

∫ T

0

[

−(
∂w(l)

∂t
, w(l) − u(l))L2

µ(R
n) + aµ(t; u

(l), w(l) − u(l))− 〈Tθ(t), w(l) − u(l)〉µ
]

dt

+
1

2
|w(l)(T )|2L2

µ(R
n) ≥ 0,

for all w(l) ∈ K̂p
µ ∩ {w : w|∂Ol

= 0}. We can now pass to the estimates on the bilinear form and it

will be clear why the setting in theLp-space is the natural one for our problem.

5.3 Estimates for the bilinear form

Let 2 < p < ∞ and let us denoteVpn := W 1,2(Rn, µn) ∩ Lpµ(Rn). Consideru(t), w(t) ∈ Vpn, a.e.

t ∈ [0, T ]. We study in some detail the expression

aµ(t; u, w) =
1

2

n∑

i,j=1

∫

Rn

(g g∗)i,j(z)
∂u

∂zi

∂w

∂zj
(t, z)µn(dz)

︸ ︷︷ ︸

I

+

n∑

i=1

∫

Rn

(

1

2

n∑

j=1

∂(g g∗)i,j
∂zj

(z)− bi(z)

)

∂u

∂zi
w(t, z)µn(dz)

︸ ︷︷ ︸

II

−
n∑

i,j=1

1

2

∫

Rn

(g g∗)i,j(z)
zj
λj

∂u

∂zi
(t, z)w(t, z)µn(dz)

︸ ︷︷ ︸

III

.
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It is usefull to rewrite all the terms in a more compact form, recalling the notation of the infinite

dimensional setting. We recall from Section 4.2 that the first term(I) can be written as

(I) =
1

2

∫

Rn

n∑

i,j=1

(
〈σ(n)(z), ϕi〉H〈σ(n)(z), ϕj〉H + δi,jǫ

2
n

) ∂u

∂zi

∂w

∂zj
(t, z)µn(dz)

=
1

2

∫

Rn

〈σ(n)(z), Dzu(t, z)〉H〈σ(n)(z), Dzw(t, z)〉Hµn(dz)

+
1

2

∫

Rn

ǫ2n〈Dzu(t, z), Dzw(t, z)〉Hµn(dz),

or equivalently, for more general volatilities, as

(I) =
1

2

∫

Rn

〈σ(n)σ(n)∗(z)Dzu(t, z), Dzw(t, z)〉Hµn(dz) +
1

2

∫

Rn

ǫ2n〈Dzu(t, z), Dzw(t, z)〉Hµn(dz).

We have setDzu = ( ∂u
∂z1
, . . . , ∂u

∂zn
). For the second term a bit more care is needed, in particular we

split it in two terms

(II) =

∫

Rn

n∑

i,j=1

1

2

∂(g g∗)i,j
∂zj

(z)
∂u

∂zi
w(t, z)µn(dz)

︸ ︷︷ ︸

IIa

−
∫

Rn

n∑

i=1

bi(z)
∂u

∂zi
w(t, z)µn(dz)

︸ ︷︷ ︸

IIb

.

Then again from results in Section 4.2,

(IIa) =

∫

Rn

n∑

i,j=1

1

2
〈PnDσ(n)(z)ϕj , ϕi〉H〈σ(n)(z), ϕj〉H

∂u

∂zi
w(t, z)µn(dz)

+

∫

Rn

n∑

i,j=1

1

2
〈PnDσ(n)(z)ϕj , ϕj〉H〈σ(n)(z), ϕi〉H(z)

∂u

∂zi
w(t, z)µn(dz)

=
1

2

∫

Rn

〈PnDσ(n)(z)
n∑

j=1

〈σ(n)(z), ϕj〉Hϕj, Dzu(t, z)〉Hw(t, z)µn(dz)

+
1

2

∫

Rn

Tr[PnDσ
(n)(z)]H〈σ(n)(z), Dzu(t, z)〉Hw(t, z)µn(dz)

We now recognize that

PnDσ
(n)(z)

n∑

j=1

〈σ(n)(z), ϕj〉Hϕj = PnDσ
(n)(z) · σ(n)(z),
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denotes the action of the linear operatorPnDσ
(n)(z) ∈ L(H,H) on the elementσ(n)(z) and hence

we conclude

(IIa) =
1

2

∫

Rn

〈PnDσ(n)(z) · σ(n)(z), Dzu(t, z)〉Hw(t, z)µn(dz)

+
1

2

∫

Rn

Tr[PnDσ
(n)(z)]H〈σ(n)(z), Dzu(t, z)〉Hw(t, z)µn(dz).

For the next term we have to take care of the action of the unbounded operatorA. Even though at

this stage of our algorithm we are dealing with the Yosida approximationAα we want to remove

any dependency onα from our estimates. This will enable us, in Chapter 6, to takethe limit as

α→ ∞. It is convenient to write the term in this form

(IIb) =

∫

Rn

n∑

i,j=1

zj〈Aαϕj, ϕi〉H
∂u

∂zi
w(t, z)µn(dz)

=
n∑

j=1

∫

Rn

〈Aαϕj , Dzu(t, z)〉Hzjw(t, z)µn(dz).

Concluding we rewrite the last term following the same rationale as in(I). In particular we notice

that forz ∈ R
n we haveQ−1

n z = ( z1
λ1
, z2
λ2
, . . . , zn

λn
). So we obtain

(III) =
n∑

i,j=1

1

2

∫

Rn

(
〈σ(n)(z), ϕi〉H〈σ(n)(z), ϕj〉H + δi,jǫ

2
n

) zj
λj

∂u

∂zi
(t, z)w(t, z)µn(dz)

=
1

2

∫

Rn

〈σ(n)(z), Dzu(t, z)〉H〈σ(n)(z), Q−1
n z〉Hw(t, z)µn(dz)

+ǫ2n
1

2

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz),

or equivalently for more general volatility structures

(III) =
1

2

∫

Rn

〈σ(n)σ(n)∗(z)Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

+ǫ2n
1

2

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz).
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The estimates we are going to provide now are important not only in order to extend the finite

dimensional EVI to unbounded domains but they will be usefulalso when taking the limit as the

dimensions of the spacen and the Yosida parameterα go to infinity. Having this perspective in

mind it turns out that the most delicate term is(IIb) because it involves the unbounded linear

operatorA.

We will adopt the following notation: letf : H(n) → R be a generic function onH(n) ∼ R
n.

We always think in terms of the isometry between the Euclidean norm and theH-norm, i.e. we

will equivalently write‖ · ‖Rn or ‖ · ‖H. Then

‖f‖Lp
µ(Rn) =

(∫

Rn

|f(z)|pµn(dz)
) 1

p

,

‖Df‖Lp
µ(Rn) =

(∫

Rn

‖Df(z)‖pH µn(dz)
) 1

p

.

5.3.1 Estimates - part 1

The necessity to control the action of the operatorA on the basis functions will determine the

choice of the operatorQ. We start with the following estimate

|(IIb)| =

∣
∣
∣
∣
∣

n∑

j=1

∫

Rn

〈Aαϕj , Dzu(t, z)〉Hzjw(t, z)µn(dz)
∣
∣
∣
∣
∣

≤
n∑

j=1

∫

Rn

|〈Aαϕj , Dzu(t, z)〉H| |zj| |w(t, z)|µn(dz)

≤
n∑

j=1

‖Aαϕj‖H
∫

Rn

‖Dzu(t, z)‖H |zj | |w(t, z)|µn(dz).

From Appendix B we know that since the semigroup{S(t), t ≥ 0} is uniformly bounded byM ,

we get

‖Aαϕj‖H = α‖R(α;A)Aϕj‖H ≤ α‖R(α;A)‖L ‖Aϕj‖H ≤M · ‖Aϕj‖H.
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Then we obtain an estimate which does not depend on the order of approximation with respect to

to the Yosida parameter, i.e.

|(IIb)| ≤M
n∑

j=1

‖Aϕj‖H
∫

Rn

‖Dzu(t, z)‖H |zj| |w(t, z)|µn(dz).

We use Hölder inequality twice. In particular we considerq, r > 1 such that1
q
+ 1

r
= 1 and get

|(IIb)| ≤ M‖Dzu(t)‖L2
µ(R

n)‖w(t)‖L2q
µ (Rn)

n∑

j=1

‖Aϕj‖H
(∫

Rn

|zj |2rµn(dz)
) 1

2r

= CrM‖Dzu(t)‖L2
µ(R

n)‖w(t)‖L2q
µ (Rn)

n∑

j=1

‖Aϕj‖H
√

λj.

HereCr > 0 is the constant that we obtain calculating the2r-th moment of a centered gaussian

distribution. Now we recall thatu, w ∈ Vpn for 2 < p < ∞. Hence it makes sense to takeq = p

2

andr = p

p−2
. So relabellingCr =: Cp we obtain

|(IIb)| ≤ CpM‖Dzu(t)‖L2
µ(R

n)‖w(t)‖Lp
µ(Rn)

n∑

j=1

‖Aϕj‖H
√

λj .

The choice of the Banach spaceVpn is now justified. It is also clear that looking forward to the

infinite dimensional limit, we choose{λj}∞j=1 such that

∞∑

j=1

‖Aϕj‖H
√

λj <∞.

For instance it means
√
λj ∼ 1/(j2 ∨ ‖Aϕj‖H). This constraint deserves some qualitative dis-

cussions. It is indeed not surprising at all that we explicitly obtain this rate of decrease for the

eigenvalues of theQ matrix. We can compare this result with the one in [18], Chapter 10, Section

4, where the appropriate matrixQ is related to the unbounded operator throughA := −1
2
Q−1. We

see that in our caseQ
1
2 (H) ⊂ D(A) 1, but our bilinear form (Dirichlet Form) is quite more com-

plicated than the one in [18]. Moreover in that book the author starts with a simple Dirichlet Form

1Let h ∈ H be given,vn := Q
1

2Pnh =
∑n

i=1

√
λihiϕi. Thenvn → v := Q

1

2 h asn → ∞. Moreovervn ∈ D(A)

and, forn > m, we get‖Avn − Avm‖H ≤
(∑n

i=m+1 λi‖Aϕi‖2
) 1

2 ‖h‖H. Hence the sequence is Cauchy and

Avn → f for somef ∈ H. From closedness ofA we getf = Av = AQ
1

2h and henceQ
1

2 (H) ⊂ D(A).
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on a given Gauss-Sobolev space and then associates to it a diffusion process. It means that he has

no constraints on the form ofA and hence he defines it starting from the matrixQ. In the present

case, things are somehow reversed. We can also discuss this result in terms of the Assumption

3.2.1 about the regularity of the volatility structure. We remark that the assumptionσ(x) = Qγ(x)

means thatσ : H → Q(H) ⊂ D(A2). It is interesting to stress that sinceker{Q} = 0, thenQ(H)

is dense inH. There are in literature assumptions about the volatility structure which seems com-

parable with ours. In the framework of finite dimensional realizations of the forward rate curves,

cf. for instance [10, 28], they often assumeσ(x) ∈ D(A∞). Nevertheless it is worth stressing that

the aim of those papers is completely different from ours.

Summarizing from now on we assume

Assumption 5.3.1 LetQ be such that

∞∑

j=1

‖Aϕj‖H
√

λj <∞,

holds.

It is worth to remark that an important consequence of this assumption is that the operatorQ
1
2 is

trace class itself.

5.3.2 Estimates - part 2

We want to estimate now the term(IIa). First of all it is worth remarking that by adopting the

same rationale as in Section 4.2 we deduce thatDσ(x) = QDγ(x) for x ∈ H. At the finite

dimensional level we haveDσ(n)(x) = PnQPnDγ
(n)(x), where clearlyγ(n) = Pn(γ ◦ Pn). In

order to carry out our estimates we will make use of [22], Proposition 1.1.1, which guarantees that

for x ∈ H if Q is trace class andDγ(x) is bounded linear operator onH, thenQDγ(x) is also a

trace class operator. Moreover if we denote by‖ · ‖tc the operatorial norm of trace class operators

and by‖ · ‖L the operatorial norm onL(H;H) it holds

‖QDγ(x)‖tc ≤ ‖Q‖tc‖Dγ(x)‖L.
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In the general case one has|TrQDγ(x)| ≤ ‖QDγ(x)‖tc. We also notice that sinceQ diagonal and

positive we also have‖Q‖tc = TrQ. We have now all the tools we need to perform our estimate.

|(IIa)| ≤
∣
∣
∣
∣

1

2

∫

Rn

〈PnDσ(n)(z) · σ(n)(z), Dzu(t, z)〉Hw(t, z)µn(dz)
∣
∣
∣
∣

+

∣
∣
∣
∣

1

2

∫

Rn

Tr[PnDσ
(n)(z)]H〈σ(n)(z), Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

≤ 1

2

∫

Rn

|〈PnDσ(n)(z) · σ(n)(z), Dzu(t, z)〉H| |w(t, z)|µn(dz)

+
1

2

∫

Rn

|Tr[PnDσ(n)(z)]H| |〈σ(n)(z), Dzu(t, z)〉H| |w(t, z)|µn(dz)

≤ 1

2

∫

Rn

‖PnDσ(n)(z)‖L ‖σ(n)(z)‖H ‖Dzu(t, z)‖H |w(t, z)|µn(dz)

+
1

2

∫

Rn

‖PnDσ(n)(z)‖tc ‖σ(n)(z)‖H ‖Dzu(t, z)‖H |w(t, z)|µn(dz).

We now rely on our assumptions aboutσ ∈ C2
b (H,H). We know indeed the following

i) ‖σ(n)(z)‖H ≤ supx∈H ‖σ(x)‖H ≤ bσ,

ii) ‖PnDσ(n)(z)‖L ≤ supx∈H ‖Dσ(x)‖L ≤ Bσ,

iii) ‖PnDσ(n)(z)‖tc ≤ supx∈H ‖Dσ(x)‖tc ≤ ‖Q‖tc supx∈H ‖Dγ(x)‖L ≤ Bγ‖Q‖tc.

We then obtain

|(IIa)| ≤ 1

2
Bσ · bσ‖Dzu(t)‖L2

µ(R
n) ‖w(t)‖L2

µ(R
n)

+
1

2
Bγ · bσ · ‖Q‖tc ‖Dzu(t)‖L2

µ(R
n) ‖w(t)‖L2

µ(R
n).

We can now pass to another term
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5.3.3 Estimates - part 3

The estimate of the term(I) is quite simple and proceeds as follows

|(I)| ≤
∣
∣
∣
∣

1

2

∫

Rn

〈σ(n)σ(n)∗(z)Dzu(t, z), Dzw(t, z)〉Hµn(dz)
∣
∣
∣
∣

+

∣
∣
∣
∣

1

2

∫

Rn

ǫ2n〈Dzu(t, z), Dzw(t, z)〉Hµn(dz)
∣
∣
∣
∣

≤ 1

2

∫

Rn

|〈σ(n)σ(n)∗(z)Dzu(t, z), Dzw(t, z)〉H|µn(dz)

+
1

2

∫

Rn

ǫ2n|〈Dzu(t, z), Dzw(t, z)〉H|µn(dz)

≤ 1

2

∫

Rn

‖σ(n)σ(n)∗(z)‖L ‖Dzu(t, z)‖H ‖Dzw(t, z)‖H µn(dz)

+
1

2

∫

Rn

ǫ2n‖Dzu(t, z)‖H ‖Dzw(t, z)‖H µn(dz).

We now notice that2 ‖σ(n)σ(n)∗(z)‖L ≤ supx∈H ‖σσ∗(x)‖L ≤ b2σ and hence

|(I)| ≤ 1

2

(
b2σ + ǫ2n

)
‖Dzu(t)‖L2

µ(R
n) ‖Dzw(t)‖L2

µ(R
n).

The dependence onn is of course irrelevant, sinceǫn → 0, then without losing in generality we

can simply write

|(I)| ≤ 1

2

(
1 + b2σ

)
‖Dzu(t)‖L2

µ(R
n) ‖Dzw(t)‖L2

µ(R
n).

5.3.4 Estimates - part 4

In this last section we estimate(III) and doing so we will clarify the importance about the assump-

tions on the volatility structure. As an auxiliary result wewill also obtain the rate of convergence

2Forx ∈ H given and fixed, the adjointσ∗(x) is a bounded linear functional onH, i.e.σ∗(x) : H → R. Moreover
it is easy to verify that for anyh ∈ H the dual pairing satisfies〈σ∗(x), h〉H,H∗ = 〈σ(x), h〉H.
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needed by{ǫn}∞n=1 for the whole approximating process to be well posed. We exploit the fact that

σ(n)σ(n)∗(z)Q−1
n is selfadjoint and we obtain

|(III)| ≤ 1

2

∣
∣
∣
∣

∫

Rn

〈σ(n)σ(n)∗(z)Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

+ǫ2n
1

2

∣
∣
∣
∣

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

=
1

2

∣
∣
∣
∣

∫

Rn

〈z, Q−1
n σ(n)σ(n)∗(z)Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

+ǫ2n
1

2

∣
∣
∣
∣

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣
.

We consider separately the two terms. First we focus on the term involving ǫn, this will give us a

suitable rate of convergence for the removal of degeneracy.We obtain

ǫ2n
1

2

∣
∣
∣
∣

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

= ǫ2n
1

2

∣
∣
∣
∣
∣

n∑

i=1

∫

Rn

zi
λi
〈ϕi, Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣
∣

≤ ǫ2n
1

2

n∑

i=1

1

λi

∫

Rn

|zi| |〈ϕi, Dzu(t, z)〉H| |w(t, z)|µn(dz)

Again we remember that2 < p < ∞ and proceed as above using Hölder inequality twice. In

particular the second time we considerq = p

2
andq = p

p−2
. Hence

ǫ2n
1

2

∣
∣
∣
∣

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

≤ ǫ2n
1

2
‖Dzu(t)‖L2

µ(R
n)‖w(t)‖Lp

µ(Rn)

n∑

i=1

1

λi

(∫

Rn

|zi|2
p−2
p µn(dz)

) p

2(p−2)

= Cp ǫ
2
n

1

2
‖Dzu(t)‖L2

µ(R
n)‖w(t)‖Lp

µ(Rn)

n∑

i=1

1√
λi
.
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It is clear thatǫn controls the term involvingTr[Q
− 1

2
n ]H whenn → ∞. Sinceλ1 ≥ λ2 ≥ . . . we

have the estimate

ǫ2n

n∑

i=1

1√
λi

≤ ǫ2n
1√
λn

· n.

One possible choice would beǫn = λ
1
4
n/n. We then obtain

ǫ2n
1

2

∣
∣
∣
∣

∫

Rn

〈Q−1
n z,Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣
≤ 1

2n
Cp ‖Dzu(t)‖L2

µ(R
n)‖w(t)‖Lp

µ(Rn).

It is worth noticing that for the finite dimensional approximation to be convergent we also require

n ǫn → 0 asn→ ∞ and it is verified with our choice ofǫn.

We now analyze the last term remaining and conclude our estimates. It is worth recalling that

sinceQ is continuous then

σ(n)(x) = PnQγ(Pnx) = Pn(

∞∑

i=1

λi〈γ(Pnx), ϕi〉Hϕi) = PnQPnγ(Pnx) = Qnγ
(n)(x).

We can provide the following estimate

1

2

∣
∣
∣
∣

∫

Rn

〈z, Q−1
n σ(n)σ(n)∗(z)Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

≤
n∑

i=1

1

2

∣
∣
∣
∣

∫

Rn

〈z, ϕi〉H〈ϕi, Q−1
n σ(n)σ(n)∗(z)Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

≤
n∑

i=1

1

2

∫

Rn

|〈z, ϕi〉H| |〈ϕi, Q−1
n σ(n)σ(n)∗(z)Dzu(t, z)〉H| |w(t, z)|µn(dz)

=

n∑

i=1

1

2

∫

Rn

|〈z, ϕi〉H| |〈ϕi, Q−1
n σ(n)(z)〉H| |〈σ(n)(z), Dzu(t, z)〉H| |w(t, z)|µn(dz)

=
n∑

i=1

1

2

∫

Rn

|〈z, ϕi〉H| |〈ϕi, γ(n)(z)〉H| |〈σ(n)(z), Dzu(t, z)〉H| |w(t, z)|µn(dz).
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Now the estimate is straightforward, indeed denotingbγ := supx∈H ‖γ(x)‖H, we obtain

1

2

∣
∣
∣
∣

∫

Rn

〈z, Q−1
n σ(n)σ(n)∗(z)Dzu(t, z)〉Hw(t, z)µn(dz)

∣
∣
∣
∣

≤ bγbσ

n∑

i=1

1

2

∫

Rn

|zi| ‖Dzu(t, z)‖H |w(t, z)|µn(dz)

≤ 1

2
Cp bγ bσ

(
∞∑

i=1

√

λi

)

‖Dzu(t)‖L2
µ(R

n) ‖w(t)‖Lp
µ(Rn).

This concludes all the estimates on our bilinear form. We cannow draw some further observations.

5.4 The variational inequality on unbounded domain

We endoweVpn = W 1,2(Rn, µn) ∩ Lpµ(Rn) with the norm|||·|||n,p defined as

|||f |||n,p := ‖f‖Lp
µ(Rn) + ‖Df‖L2

µ(R
n). (5.12)

The spaceVpn is a Banach space with respect to this norm. The estimates that we have carried out

above can be summarized as follows

Proposition 5.4.1 Let u(t), w(t) ∈ Vpn, a.e. t ∈ [0, T ]. There exists a constantCµ > 0 only

depending on the choice of the Gaussian measure overH and on the bounds on the coefficients of

the bilinear form, such that

∫ T

0

|aµ(t; u(t), w(t))|dt ≤ Cµ

(∫ T

0

|||u(t)|||2n,pdt
) 1

2
(∫ T

0

|||w(t)|||2n,pdt
) 1

2

(5.13)

As a consequence of this proposition and of Proposition 4.1.1 we obtain the following

Corollary 5.4.1 The mapTθ(t) : Vpn → R is a continuous linear functional, i.e., if we denote

again by〈 · , · 〉µ the dual pairing betweenVpn andVp ∗n we have

|〈Tθ(t), w〉µ| ≤
(

∥
∥
∂Θ̂

∂t
(t)
∥
∥
2

L2
µ(R

n)
+ Cµ

∣
∣
∣

∣
∣
∣

∣
∣
∣Θ̂(t)

∣
∣
∣

∣
∣
∣

∣
∣
∣
n,p

)

|||w|||n,p .

It then implies that

‖Tθ(t)‖Vp ∗
n

=

(

∥
∥
∂Θ̂

∂t
(t)
∥
∥2

L2
µ(R

n)
+ Cµ

∣
∣
∣

∣
∣
∣

∣
∣
∣Θ̂(t)

∣
∣
∣

∣
∣
∣

∣
∣
∣
n,p

)

. (5.14)
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We have a sequence of EVI indexed byl each of which refers to an increasing sequence of domains

overRn. We recall thatu(l) ∈ L2(0, T ;Vpn) ∩ C([0, T ]× R
n) is the unique solution of

∫ T

0

[

−(
∂w(l)

∂t
, w(l) − u(l))L2

µ(R
n) + aµ(t; u

(l), w(l) − u(l))− 〈Tθ(t), w(l) − u(l)〉µ
]

dt

+
1

2
|w(l)(T )|2L2

µ(R
n) ≥ 0,

for allw(l) ∈ K̂p
µ∩{w : w|∂Ol

= 0}. For eachw ∈ K̂p
µ we can choose a sequencew(l) ∈ K̂p

µ∩{w :

w|∂Ol
= 0} such that

∫ T

0

∥
∥
∂w(l)

∂t
(t)− ∂w

∂t
(t)
∥
∥
2

L2
µ(R

n)
dt +

∫ T

0

∣
∣
∣
∣
∣
∣w(l)(t)− w(t)

∣
∣
∣
∣
∣
∣
2

n,p
dt→ 0, asn→ ∞.

For instance at eachl we associate an open regular setO′
l ⊂⊂ Ol and assume the sequence{O′

l}l
to be increasing. Following for instance [1], Chapter 3, Theorem 3.22 we can define a sequence of

non-negative functions{fl}l≥1 ⊂ C1([0, T ];C∞
c (Rn)), fl ≥ 0, such that forM > 0 independent

of l we obtain

fl(t, z) = 1, on [0, T ]× {z ∈ O′
l },

fl(t, z) = 0, on [0, T ]× {z ∈ ∂Ol},
∣
∣∂fl
∂t

∣
∣+
∑n

i=1

∣
∣∂fl
∂zi

∣
∣ ≤M on [0, T ]× R

n.

For eachl we takew(l) := fl w and hencew(l) = w on [0, T ]× O′
l, w

(l)(t)|∂O = 0, a.e.t ∈ [0, T ]

andw(l) ≥ 0.

We recall from Proposition 5.2.1 and the following observations, thatu(l) ⇀ ū in L2(0, T ;

W 1,2(Rn, µn)) andu(l) → ū in L2(0, T ;Lpµ(R
n)). This is the same as saying thatu(l) ⇀ ū in

L2(0, T ;Vpn) and strongly inL2(0, T ;Lpµ(R
n)). Whenl → ∞ the following are then straightfor-
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ward from [14], Chapter 3, Proposition 3.5 (iv):

∫ T

0

(
∂w(l)

∂t
, w(l) − u(l))L2

µ(R
n)dt →

∫ T

0

(
∂w

∂t
, w − ū)L2

µ(R
n)dt,

∫ T

0

〈Tθ(t), w(l) − u(l)〉µdt →
∫ T

0

〈Tθ(t), w − ū〉µdt,

|w(l)(T )|2L2
µ(R

n) → |w(T )|2L2
µ(R

n).

A bit more explanations are needed for the term involving thebilinear form. In what follows

we denote by(I)(u(l)) the term(I) of the bilinear form whenw = u(l). The same notation is

considered for all the other terms. Let us first notice that collecting all the previous estimates we

obtain

aµ(t; u
(l), u(l)) = (I)(u(l)) + (IIa)(u(l)) + (IIb)(u(l)) + (III)(u(l))

We can considerΛ > 0 large enough and such that

(I)(u(l)) ≥ 0,

(IIa)(u(l)) + (IIb)(u(l)) + (III)(u(l)) ≥ −(|(IIa)(u(l))|+ |(IIb)(u(l))|+ |(III)(u(l))|) ≥

≥ −Λ‖Dzu
(l)‖L2

µ(R
n) ‖u(l)‖Lp

µ(Rn).

We exploit now the uniform bound on the gradient and we obtain

aµ(t; u
(l), u(l)) ≥ −Λ̂ ‖u(l)(t)‖Lp

µ(Rn), (5.15)

where nowΛ̂ := Λ(CΨ + CU). We have then

aµ(t; u
(l), w(l) − u(l)) = aµ(t; u

(l), w(l))− aµ(t; u
(l), u(l)).
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The first term converges for the same arguments as above
∫ T

0

aµ(t; u
(l)(t), w(l)(t))dt→

∫ T

0

aµ(t; ū(t), w(t))dt.

For the second term we carry out some calculations. We easilyobtain the following expression.
∫ T

0

aµ(t; u
(l)(t), u(l)(t))dt =

∫ T

0

aµ(t; u
(l)(t)− ū(t), u(l)(t)− ū(t))dt+

+

∫ T

0

aµ(t; ū(t), u
(l)(t))dt+

∫ T

0

aµ(t; u
(l)(t)− ū(t), ū(t))dt.

From the same arguments as above, the second and third term converge respectively to
∫ T

0

aµ(t; ū(t), u
(l)(t))dt →

∫ T

0

aµ(t; ū(t), ū(t))dt,

and
∫ T

0

aµ(t; u
(l)(t)− ū(t), ū(t))dt → 0.

For the first term, from equation (5.15), it holds
∫ T

0

aµ(t; u
(l)(t)− ū(t), u(l)(t)− ū(t))dt ≥ −Λ̂

∫ T

0

‖u(l)(t)− ū(t)‖Lp
µ(Rn)dt→ 0.

It is worth noticing that in the last expression we are implicitly using the fact that‖ū‖ ≤
√
CΨ + CU

which we know, both from the probabilistic representation and from the lower semicontinuity of

the weak convergence, that is

‖ū‖W 1,2(Rn,µn) ≤ lim inf
l→∞

‖u(l)‖W 1,2(Rn,µn) ≤
√

CΨ + CU .

Now summarizing the last few rows we have

lim
l→∞

∫ T

0

aµ(t; u
(l)(t), u(l)(t))dt ≥

∫ T

0

aµ(t; ū(t), ū(t))dt.

When taking the limit in the sequence of EVI’s and from the limit in equation (5.10), given the

uniqueness of the limit we obtain the following theorem
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Theorem 5.4.1 There exists at least a solution̄u ∈ L2(0, T ;Vpn) to the EVI

∫ T

0

[

−(
∂w

∂t
, w − ū)L2

µ(R
n) + aµ(t; ū, w − ū)− 〈Tθ(t), w − ū〉µ

]

dt

+
1

2
|w(T )|2L2

µ(R
n) ≥ 0,

for all w ∈ K̂p
µ. Moreover, such a solution can be represented in terms of thevalue function of the

optimal stopping problem as:

ū(t, z) = UΘ(t, z)− Θ̂(t, z), (5.16)

where

UΘ(t, z) = sup
t≤τ≤T

E

[

Θ̂(τ, Zt,z
τ )
]

. (5.17)

It impliesū ∈ L2(0, T ;Vpn) ∩ C([0, T ]× R
n).

It follows a straightforward corollary which characterizes the value function of the finite dimen-

sional Optimal Stopping problem on the unbounded domain. Itis simply derived removing the

homogeneization with respect to the obstacle. In order to properly set the non homogeneous prob-

lem we introduce the convex set

K̂Θ,p
µ := {w : w(t) ∈ L2(0, T ;Vpn),

∂w

∂t
(t) ∈ L2(0, T ;L2

µ(R
n)), w ≥ Θ̂a.e.[0, T ]× R

n}.

Corollary 5.4.2 There exists at least a solution̄v ∈ L2(0, T ;Vpn) to the EVI

∫ T

0

[

−(
∂w

∂t
, w − v̄)L2

µ(R
n) + aµ(t; v̄, w − v̄)

]

dt

+
1

2
|w(T )− Ψ̂(T )|2L2

µ(R
n) ≥ 0,

for all w ∈ K̂Θ,p
µ . Moreover, such a solution can be represented in terms of thevalue function of

the optimal stopping problem as:

v̄(t, z) = UΘ(t, z) = sup
t≤τ≤T

E

[

Θ̂(τ, Zt,z
τ )
]

. (5.18)

It impliesv̄ ∈ L2(0, T ;Vpn) ∩ C([0, T ]× R
n).
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We separately state the existence of the optimal stopping time.

Theorem 5.4.2 The optimal stopping time for the problem(5.18)is defined as

τ ∗t,z := inf{s ≥ t : UΘ(s, Z
t,z
s ) = Θ(s, Zt,z

s )} ∧ T (5.19)

and for all stopping timesτ ≤ τ ∗t,z the following holds

UΘ(t, z) = E
[
UΘ(τ, Z

t,z
τ )
]
. (5.20)

PROOF: If we denote byτ ∗t,z,l the optimal stopping time (4.53) associated to the regionOl, then

the sequence{τ ∗t,z,l}l≥0 is optimal with respect to the sequence of optimal stopping problems on

bounded domains. Thanks to this optimality and to Proposition 5.2.2 we can prove thatτ ∗t,z,l ∧

τ ∗t,z → τ ∗t,z P-a.s., asl → ∞. The proof is a simpler version of the one we will produce for Lemma

6.4.1. Moreover, equation (5.20) is a simple application ofthe dynamic programming principle

and can be explicitly obtained. In fact if we replaceτ ∗k in (4.50) byτ ∗t,z,l ∧ τ ∗t,z the first equality still

holds, i.e. we have

UOl(t, z) = E

[

UOl(τ ∗t,z,l ∧ τ ∗t,z, Zt,z
τ∗
t,z,l

∧τ∗t,z
)
]

.

We take the limit asl → ∞ and exploit the convergence of Proposition 5.2.2. Following the

rationale in the proof of Theorem 6.4.1 we obtain (5.19). Thewhole algorithm would clearly hold

for τ ≤ τ ∗t,z,l and hence (5.20) is verified.

This concludes the extension of our EVI to the whole domainR
n. The next step will be to take

the limit when the number of dimensions goes to infinity.

Remark 5.4.1 It is worth to stress that here the uniqueness might be recovered through the same

rationale as on the bounded domain. Nevertheless we would lose it when taking the limit to infinite

dimensions. Then it seems more interesting at this stage to find the infinite dimensional represen-

tation of our EVI and later to discuss the uniqueness.
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Chapter 6

Variational inequality on a Hilbert space

In this Chapter we achieve the main result of this Thesis. We extend the variational inequality in

finite dimensions to the infinite dimensional setting. In particular, we prove the existence of a weak

solution to the infinite dimensional variational inequality that is obtained as the limit forn → ∞

andα → ∞. This solution turns out to be the value function of the infinite dimensional optimal

stopping problem that was introduced in Chapter 2. The optimal stopping time is characterized

and some regularity results are provided. First we considerthe limit as the number of dimensions

n goes to infinity and then the one as the Yosida parameterα goes to infinity.

6.1 Extending the Gaussian measure

We are going to show that the results obtained in the finite dimensional setting can be extended

to the infinite dimensional one. In order to do so, some preliminary considerations are needed. In

this and the next sections the notation will get a bit cumbersome. Hence in order to reduce the

difficulties we suppress theΘ index in the value function, i.e.UΘ = U . We will recover this

notation later when we analyze the limiting behaviour of thesmoothing procedure for the gain

function.

First of all we shall reintroduce the indexn denoting the order of the finite dimensional ap-

proximation. Yet we keepα > 0 fixed and then we recall the notationU (n)
α (t, z) := U(t, z),
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where

U (n)
α (t, z) := sup

t≤τ≤T
E

[

Θ̂(n)(τ, Z(α,n) t,z
τ )

]

.

We recall that forx ∈ H andx(n) = Pnx ∈ H(n) we have defined the isometryx(n) ∼ z, where

z ∈ R
n. ThenΘ̂(n)(t, z) = Ψ̂

(n)
k (t, z) = Ψ

(n)
k (t, x(n)) =: Θ(n)(t, x(n)) and as a matter of fact

Θ(n)(t, x(n)) = Θ(t, Pnx). For the value function we adopt the notationVΘ = V . Then we have

U (n)
α (t, z) = V (n)

α (t, x(n)) := sup
t≤τ≤T

E
[
Θ(τ,X(α,n) t,x

τ )
]
.

Although this different notations can look a bit clumsy, it is worth to understand that they simply

represent the same mathematical object from different perspectives. In particular it is equivalent to

think of U (n)
α as a functionU (n)

α : [0, T ]× R
n → R, as we used to do, or asU (n)

α : [0, T ] × H →

R. When considering the second notation we implicitly meanU
(n)
α (t)(·) = U

(n)
α (t) ◦ Pn(·), i.e.

the input ofU (n)
α (t)(·) is an element ofH and the function considers only its finite dimensional

projection on the subset spanned by{ϕ1, . . . , ϕn}.

The value function obtained in Corollary 5.4.2 can hence be renamed as̄v = v̄
(n)
α and accord-

ing to our discussion can be understood as a functionv̄
(n)
α : [0, T ] × H → R in the sense that

v̄
(n)
α (t)(·) = v̄

(n)
α (t) ◦ Pn(·). This notation is helpful to embed the finite dimensional EVI’s into an

infinite dimensional framework.

Let us consider now a generic functionf : H → R, and let us assume∃f̂ : Rn → R such that

f = f̂ ◦ Pn. These functions are often referred to ascylindrical functionsin R
n. We again denote

by z ∈ R
n the isometric vector tox(n) ∈ H(n) ⊂ H. Let us assumef regular enough, in particular

f ∈ L2(Rn, µn). We have (cf. [22], Remark 9.2.6) that

∫

Rn

|f̂(z)|2µn(dz) =
∫

H

|f(x)|2µ(dx),

whereµ is the Gaussian measure over the Hilbert spaceH. A detailed exposition about Gaussian

measures over Hilbert spaces can be found in [11, 18, 22], butthe rough idea is the following. A

possible way of defining the Gaussian measure overH is to obtain it as the limit forn→ ∞ of the
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measure

µn(dx) =

n∏

i=1

1√
2πλi

e
−

x2i
2λi dxi,

where as usualxi = 〈x, ϕi〉H. The infinite product measure is restricted to the set of vectors

x ∈ R
∞ such that

∑∞
i=1 x

2
i <∞. Now if we think of this measure as

µ(dx) =

∞∏

i=1

1√
2πλi

e
−

x2i
2λi dxi,

it is clear that
∫

H

|f(x)|2µ(dx) =
∫

Rn

|f̂(x1, . . . , xn)|2µn(dx),

since all the integrals not involving the functionf sum to one.

The importance of adopting the Gaussian measureµ overH stems from the fact that it repre-

sents the natural substitute of the Lebesgue measure on finite dimensional spaces. Moreover one

can prove (cf. Appendix E) that the operator of directional derivative (Friedrichs derivative) is

closable under this measure. Hence a suitable analogue of the weak derivative can be found in

Hilbert spaces and furthermore a concept of Sobolev space ismeaningful. In particular for a func-

tion g : H → R we denote byDg(x), x ∈ H, the closure of the directional derivative evaluated at

the pointx. ObviouslyDg(x) ∈ H∗ and hence after indentifyingH ≈ H∗, we haveDg(x) ∈ H.

We now define the Gauss Sobolev spaceW 1,2(H, µ) as

W 1,2(H, µ) := {g : H → R : ‖g‖L2(H,µ) <∞ and‖Dg‖L2(H,µ;H) <∞},

where

‖g‖2L2(H,µ) =

∫

H

|g(x)|2µ(dx),

and

‖Dg‖2L2(H,µ;H) =

∫

H

‖Dg(x)‖2Hµ(dx).

In the present analysis it is rather natural to introduce thespaceVp := W 1,2(H, µ) ∩ Lp(H, µ)

endowed with the norm

|||g|||p := ‖g‖Lp(H,µ) + ‖Dg‖L2(H,µ;H).
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Here the main idea is that for a cylindrical function inRn, namelyf , there is a complete equiva-

lence between the spacesVp andVpn. In particular the following hold

‖f‖Lp
µ(Rn) = ‖f‖Lp(H,µ), 1 ≤ p <∞,

‖f‖W 1,2(Rn,µ) = ‖f‖W 1,2(H,µ),

and eventually

|||f |||n,p = |||f |||p .

It is then clear thatVpn ⊂ Vp and in particularVpn is the subset ofVp of cylindrical functions in

R
n. This fact will allow us to establish a clear relation between the finite dimensional EVI and its

infinite dimensional counterpart.

Before discussing this relations we need to pay some attention to the convergence of the diffu-

sion coefficients and of its derivatives.

6.1.1 Some basic convergence results

The aim of this section is to prove some convergence results for the diffusion coefficients. We

summarize them in the next proposition.

Proposition 6.1.1 Let Assumptions 3.2.1 hold, then for1 ≤ p < ∞ the following convergence

results are verified

i)
∫

H
‖σ(n)(x)− σ(x)‖pHµ(dx) → 0 asn→ ∞,

ii)
∫

H
‖σ(n)σ(n)∗(x)− σσ∗(x)‖pLµ(dx) → 0 asn→ ∞,

iii)
∫

H
‖Dσ(n)(x)−Dσ(x)‖pLµ(dx) → 0 asn→ ∞,

iv)
∫

H
‖Dσ(n)(x) · σ(n)(x)−Dσ(x) · σ(x)‖pHµ(dx) → 0 asn→ ∞,

v)
∫

H

∣
∣Tr[PnDσ

(n)(x)]H − Tr[Dσ(x)]H
∣
∣
p
µ(dx) → 0 asn→ ∞.
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Moreover, all the above results hold pointwisely as well.

PROOF: We can easily prove the pointwise convergence of the approximating coefficientσ(n)(x)

for x ∈ H. If indeedσ ∈ C2
b (H;H) we then have

‖σ(n)(x)− σ(x)‖H ≤ ‖Pnσ(Pnx)− Pnσ(x)‖H + ‖(1− Pn)σ(x)‖H ≤

≤ ‖σ(Pnx)− σ(x)‖H + ‖(1− Pn)σ(x)‖H → 0, as n→ ∞.

The first term converges for the continuity ofσ and the second by definition of ortoghonal projec-

tion. This result can be extended by means of dominated convergence (or also monotone conver-

gence) for1 ≤ p <∞ to

∫

H

‖σ(n)(x)− σ(x)‖pHµ(dx) → 0 as n→ ∞.

As a consequence of this result we obtain pointwise convergence

‖σ(n)σ(n)∗(x)− σσ∗(x)‖L → 0, x ∈ H. (6.1)

Indeed for anyh ∈ H andx given and fixed, it holds

‖σ(n)σ(n)∗(x)h− σσ∗(x)h‖H = ‖σ(n)(x)〈σ(n)(x), h〉H − σ(x)〈σ(x), h〉H‖H

≤ |〈σ(n)(x)− σ(x), h〉H| ‖σ(n)(x)‖H − |〈σ(x), h〉H| ‖σ(n)(x)− σ(x)‖H

≤ ‖σ(n)(x)− σ(x)‖H
(
‖σ(n)(x)‖H − ‖σ(x)‖H

)
‖h‖H.

Then

‖σ(n)σ(n)∗(x)− σσ∗(x)‖L = ‖σ(n)(x)− σ(x)‖H
(
‖σ(n)(x)‖H − ‖σ(x)‖H

)
,

and hence the limit (6.1) holds. Again from dominated convergence we get, for1 ≤ p <∞
∫

H

‖σ(n)σ(n)∗(x)− σσ∗(x)‖pLµ(dx) → 0 as n→ ∞.
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Similar results hold for the derivative, i.e. recalling that Dσ(n)(x) = PnDσ(Pnx)

‖Dσ(n)(x)−Dσ(x)‖L ≤ ‖Dσ(Pnx)−Dσ(x)‖L + ‖(1− Pn)Dσ(x)‖L.

Then pointwise convergence‖Dσ(n)(x)−Dσ(x)‖H → 0 holds because the derivative is continu-

ous inL(H;H) and again from dominated convergence we obtain
∫

H

‖Dσ(n)(x)−Dσ(x)‖pLµ(dx) → 0 as n→ ∞, 1 ≤ p <∞.

The previous results allow us to prove the next one:

‖Dσ(n)(x) · σ(n)(x)−Dσ(x) · σ(x)‖H

≤ ‖Dσ(n)(x) · (σ(n)(x)− σ(x))‖H + ‖(Dσ(n)(x)−Dσ(x)) · σ(x)‖H

≤ ‖Dσ(n)(x)‖L · ‖σ(n)(x)− σ(x)‖H + ‖Dσ(n)(x)−Dσ(x)‖L · ‖σ(x)‖H.

Now the pointwise convergence holds for the previous results and also by dominated convergence

we have
∫

H

‖Dσ(n)(x) · σ(n)(x)−Dσ(x) · σ(x)‖pHµ(dx) → 0 as n→ ∞, 1 ≤ p <∞.

The result(v) relies on the trace class property of the derivative of the diffusion coefficient. Indeed

∣
∣Tr[PnDσ

(n)(x)]H − Tr[Dσ(x)]H
∣
∣ ≤
∣
∣Tr[Pn(Dσ(Pnx)−Dσ(x))]H

∣
∣

+
∣
∣Tr[(1− Pn)Dσ(x)]H

∣
∣,

and the second term goes to zero as usual. For the first term we have the esimate

‖Pn(Dσ(Pnx)−Dσ(x))‖tc ≤ ‖Dσ(Pnx)−Dσ(x)‖tc

≤ ‖Q‖tc · ‖Dγ(Pnx)−Dγ(x)‖L,

and then forx ∈ H given and fixed,

∣
∣Tr[PnDσ

(n)(x)]H − Tr[Dσ(x)]H
∣
∣→ 0, asn→ ∞.

We can now conclude that since|Tr[PnDσ(n)(x)]H| ≤ Bγ‖Q‖tc, also
∫

H

∣
∣Tr[PnDσ

(n)(x)]H − Tr[Dσ(x)]H
∣
∣
p
µ(dx) → 0 as n→ ∞, 1 ≤ p <∞.
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6.2 Extending the bilinear form

The very first step we have to make in order to properly set our problem in an infinite dimensional

setting is to redefine the convex set of test functions. We nowrename the convex set inRn by

K̂Θ,p
µ,n := {w : w ∈ L2(0, T ;Vpn),

∂w

∂t
∈ L2(0, T ;L2

µ(R
n)), w ≥ Θ(n) a.e.[0, T ]× R

n}.

The natural extension to the infinite dimensional setting is

K̂Θ,p
µ,∞ := {w : w ∈ L2(0, T ; Vp ), ∂w

∂t
∈ L2(0, T ;L2(H, µ)), w ≥ Θ a.e.[0, T ]×H}.

We adopt the same rationale to embed the solution of our EVI into the infinite dimensional frame-

work. In particular we havēv = v̄(n) ∈ L2(0, T ;Vpn) ⊂ L2(0, T ; Vp ). We also rename the bilinear

form. Let u(n)(t), w(n)(t) be generic functions inVpn ⊂ Vp, then it is easy to verify from the

arguments above that our bilinear form reads

a(n)µ (t; u(n)(t), w(n)(t)) =
1

2

∫

H

〈σ(n)σ(n)∗(x)Dxu
(n)(t, x), Dxw

(n)(t, x)〉Hµ(dx)
︸ ︷︷ ︸

A

+
1

2
ǫ2n

∫

H

〈Dxu
(n)(t, x), Dxw

(n)(t, x)〉Hµ(dx)

+
1

2

∫

H

〈PnDxσ
(n)(x) · σ(n)(x), Dxu

(n)(t, x)〉Hw(n)(t, x)µ(dx)

︸ ︷︷ ︸

B

+
1

2

∫

H

Tr[PnDxσ
(n)(x)]H〈σ(n)(x), Dxu

(n)(t, x)〉Hw(n)(t, x)µ(dx)

︸ ︷︷ ︸

C

−
∫

H

〈Aα,nx,Dxu
(n)(t, x)〉Hw(n)(t, x)µ(dx)

︸ ︷︷ ︸

D



110 Variational inequality on a Hilbert space

+
1

2

∫

H

〈σ(n)σ(n)∗(x)Q−1
n x,Dxu

(n)(t, x)〉Hw(n)(t, x)µ(dx)

︸ ︷︷ ︸

E

+ǫ2n
1

2

∫

H

〈Q−1
n x,Dxu

(n)(t, x)〉Hw(n)(t, x)µ(dx).

Our aim of course would be to give a meaning to “limn→∞ a
(n)
µ (t; u(n), w(n))”.

6.2.1 Convergence of the bilinear form

The first crucial observation is that all the estimates we carried out in the previous section re-

garding the bilinear form were independent ofn andα. In this sense we can say that they are

universalesimates. In particular it means that even for functionsu(t), w(t) ∈ Vp the bilinear form

a
(n)
µ (t; u(t), w(t)) is completely well defined. Indeed we have

|a(n)µ (t; u(t), w(t))| ≤ Cµ |||u(t)|||p · |||w(t)|||p .

We disregard of the time dependence for a while and considert ∈ [0, T ] given and fixed. Let

now u ∈ Vp be given. Let then{w(n)}∞n=1 be a sequence of functions such thatw(n) ∈ Vpn and

w(n) → w in Vp. Clearly the mapsu 7→ a
(n)
µ (t; u, w(n)), n ≥ 1 represent a sequence of bounded

linear functionals onVp.

We will analyze term by term the bilinear form. We can disregard of the terms depending on

ǫn because they will vanish asn → ∞. We start with the term(A) and in particular we want to

estimate

∣
∣
∣
∣

∫

H

〈σ(n)σ(n)∗(x)Dxu(x), Dxw
(n)(x)〉Hµ(dx)−

∫

H

〈σσ∗(x)Dxu(x), Dxw(x)〉Hµ(dx)
∣
∣
∣
∣

≤
∫

H

∣
∣〈σ(n)σ(n)∗(x)Dxu(x), Dxw

(n)(x)−Dxw(x)〉H
∣
∣µ(dx)
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+

∫

H

∣
∣〈(σ(n)σ(n)∗(x)− σσ∗(x))Dxu(x), Dxw(x)〉H

∣
∣µ(dx)

≤
∫

H

‖σ(n)σ(n)∗(x)‖L ‖Dxu(x)‖H ‖Dxw
(n)(x)−Dxw(x)‖Hµ(dx)

+

∫

H

‖σ(n)σ(n)∗(x)− σσ∗(x)‖L ‖Dxu(x)‖H ‖Dxw(x)‖Hµ(dx)

≤ b2σ

(∫

H

‖Dxu(x)‖2Hµ(dx)
) 1

2
(∫

H

‖Dxw
(n)(x)−Dxw(x)‖2Hµ(dx)

) 1
2

+

(∫

H

‖σ(n)σ(n)∗(x)− σσ∗(x)‖2L ‖Dxw(x)‖2Hµ(dx)
) 1

2
(∫

H

‖Dxu(x)‖2Hµ(dx)
) 1

2

.

Notice that all the integrals are well defined since‖σ(n)σ(n)∗(x) − σσ∗(x)‖2L ≤ 2b2σ. Then from

dominated convergence and the convergence results discussed in Proposition 6.1.1 we obtain
∫

H

〈σ(n)σ(n)∗(x)Dxu(x), Dxw
(n)(x)〉Hµ(dx) →

→
∫

H

〈σσ∗(x)Dxu(x), Dxw(x)〉Hµ(dx),

asn→ ∞.

We deal now with the(B) term in our bilinear form. Notice that from equation (4.12) we know

that

PnDxσ
(n)(x) · σ(n)(x) = Dxσ

(n)(x) · σ(n)(x).

So we also have
∣
∣
∣
∣

∫

H

〈Dxσ
(n)(x) · σ(n)(x), Dxu(x)〉Hw(n)(x)µ(dx)

−
∫

H

〈Dxσ(x) · σ(x), Dxu(x)〉Hw(x)µ(dx)
∣
∣
∣
∣
≤

≤
∫

H

∣
∣
∣
∣
〈Dxσ

(n)(x) · σ(n)(x), Dxu(x)〉H(w(n) − w)(x)

∣
∣
∣
∣
µ(dx)

+

∫

H

∣
∣
∣
∣
〈(Dxσ

(n)(x) · σ(n)(x)−Dxσ(x) · σ(x)), Dxu(x)〉Hw(x)
∣
∣
∣
∣
µ(dx)
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≤
∫

H

‖Dxσ
(n)(x) · σ(n)(x)‖H ‖Dxu(x)‖H |w(n)(x)− w(x)|µ(dx)

+

∫

H

‖Dxσ
(n)(x) · σ(n)(x)−Dxσ(x) · σ(x)‖H ‖Dxu(x)‖H |w(x)|µ(dx).

In light of this estimate and from the same arguments as for the (A) term we conclude that

∫

H

〈Dxσ
(n)(x) · σ(n)(x), Dxu(x)〉Hw(n)(x)µ(dx) →

→
∫

H

〈Dxσ(x) · σ(x), Dxu(x)〉Hw(x)µ(dx).

Similarly for the(C) term we obtain the estimate

∣
∣
∣
∣

∫

H

Tr[PnDxσ
(n)(x)]H〈σ(n)(x), Dxu(x)〉Hw(n)(x)µ(dx)

−
∫

H

Tr[Dxσ(x)]H〈σ(x), Dxu(x)〉Hw(x)µ(dx)
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

H

Tr[PnDxσ
(n)(x)]H〈σ(n)(x), Dxu(x)〉H(w(n) − w)(x)µ(dx)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

H

Tr[PnDxσ
(n)(x)]H〈σ(n)(x)− σ(x), Dxu(x)〉Hw(x)µ(dx)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

H

Tr[PnDxσ
(n)(x)−Dxσ(x)]H〈σ(x), Dxu(x)〉Hw(x)µ(dx)

∣
∣
∣
∣

≤ bσ Bγ ‖Q‖tc
∫

H

‖Dxu(x)‖H|w(n) − w|(x)µ(dx)

+Bγ ‖Q‖tc
∫

H

‖σ(n)(x)− σ(x)‖H ‖Dxu(x)‖H|w(x)|µ(dx)

+bσ

∫

H

∣
∣Tr[PnDxσ

(n)(x)−Dxσ(x)]H
∣
∣ ‖Dxu(x)‖H|w(x)|µ(dx),

and hence from the same arguments as above we obtain the convergence

∫

H

Tr[PnDxσ
(n)(x)]H〈σ(n)(x), Dxu(x)〉Hw(n)(x)µ(dx) →

→
∫

H

Tr[Dxσ(x)]H〈σ(x), Dxu(x)〉Hw(x)µ(dx)

The analysis of the(D) term is quite simple at this stage, since we are dealing with the bounded

linear operatorAα. More sophisticated issues will arise when taking the limitasα → ∞. We have
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the following estimate
∣
∣
∣
∣

∫

H

〈An,αx,Dxu(x)〉Hw(n)(x)µ(dx)−
∫

H

〈Aαx,Dxu(x)〉Hw(x)µ(dx)
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

H

〈An,αx,Dxu(x)〉H(w(n) − w)(x)µ(dx)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

H

〈(An,α − Aα)x,Dxu(x)〉Hw(x)µ(dx)
∣
∣
∣
∣

≤ ‖Aα‖L
(∫

H

‖x‖4Hµ(dx)
) 1

4

‖w(n) − w‖Lp(H,µ)‖Dxu‖L2(H,µ)

+‖(An,α − Aα)‖L
(∫

H

‖x‖4Hµ(dx)
) 1

4

‖w‖Lp(H,µ)‖Dxu‖L2(H,µ)

From identical arguments as above and from the convergence‖An,α − Aα‖L → 0 asn → ∞ we

simply get the result

∫

H

〈An,αx,Dxu(x)〉Hw(n)(x)µ(dx) →
∫

H

〈Aαx,Dxu(x)〉Hw(x)µ(dx),

asn→ ∞. It is worth noticing that from monotone convergence we have

∫

H

‖x‖4Hµ(dx) =
∫

H

∞∑

i,j=1

|xi|2 |xj |2µ(dx) =
∞∑

i,j=1

∫

H

|xi|2 |xj|2µ(dx) = [TrQ]2.

The estimates on the(E) term rely on the same arguments as above. We have
∣
∣
∣
∣

∫

H

〈σ(n)σ(n)∗(x)Q−1
n x,Dxu(x)〉Hw(n)(x)µ(dx)

−
∫

H

〈σσ∗(x)Q−1x,Dxu(x)〉Hw(x)µ(dx)
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

H

〈σ(n)(x), Dxu(x)〉H〈γ(n)(x), x〉Hw(n)(x)µ(dx)

−
∫

H

〈σ(x), Dxu(x)〉H〈γ(x), x〉Hw(x)µ(dx)
∣
∣
∣
∣

≤
∫

H

∣
∣〈σ(n)(x), Dxu(x)〉H〈γ(n)(x), x〉H(w(n) − w)(x)

∣
∣µ(dx)

+

∫

H

∣
∣〈σ(n)(x)− σ(x), Dxu(x)〉H〈γ(n)(x), x〉Hw(x)

∣
∣µ(dx)

+

∫

H

∣
∣〈σ(x), Dxu(x)〉H〈γ(n)(x)− γ(x), x〉Hw(x)

∣
∣µ(dx).
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All the terms converge to zero from the same arguments used above. Then we have

∫

H

〈σ(n)σ(n)∗(x)Q−1
n x,Dxu(x)〉Hw(n)(x)µ(dx) →

→
∫

H

〈σσ∗(x)Q−1x,Dxu(x)〉Hw(x)µ(dx).

For t ∈ [0, T ] given and for anyw ∈ Vp, we defineAw
t,n ∈ Vp ∗ asAw

t,n(·) := a
(n)
µ (t; · , w(n)).

Moreover we defineAw
t ∈ Vp ∗ asAw

t (·) := aµ(t; · , w), where

aµ(t; u, w) =
1

2

∫

H

〈σσ∗(x)Dxu(t, x), Dxw(t, x)〉Hµ(dx)

+
1

2

∫

H

〈Dxσ(x) · σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)

+
1

2

∫

H

Tr[Dxσ(x)]H〈σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)

−
∫

H

〈Aαx,Dxu(t, x)〉Hw(t, x)µ(dx)

+
1

2

∫

H

〈σσ∗(x)Q−1x,Dxu(t, x)〉Hw(t, x)µ(dx).

We can state the following proposition,

Proposition 6.2.1 For anyw ∈ Vp given, and forAw
t ∈ Vp ∗ defined asAw

t (·) := aµ(t; · , w), the

sequence{Aw
t,n}∞n=1 converges in the following sense

lim
n→∞

‖Aw
t,n −Aw

t ‖Vp∗ = 0 ∀t ∈ [0, T ].

PROOF: Foru ∈ Vp, if we take into account also the terms involvingǫn, we can summarize the

previous estimates as follows

|Aw
t,n(u)−Aw

t (u)| ≤ (ηn + o(ǫn)) |||u|||p .
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whereηn → 0 asn→ ∞. In fact we have

ηn = (bσ + 2bσ ·Bγ · ‖Q‖tc + ‖Aα‖L‖Q‖
1
2
tc + bσ · bγ · ‖Q‖

1
2
tc)
∣
∣
∣
∣
∣
∣w(n) − w

∣
∣
∣
∣
∣
∣
p

+

(∫

H

‖σ(n)σ(n)∗(x)− σσ∗(x)‖4Lµ(dx)
) 1

4

|||w|||p

+

(∫

H

‖Dxσ
(n)(x) · σ(n)(x)−Dxσ(x) · σ(x)‖4Hµ(dx)

) 1
4

|||w|||p

+Bγ · ‖Q‖tc
(∫

H

‖σ(n)(x)− σ(x)‖4Hµ(dx)
) 1

4

|||w|||p

+bσ

(∫

H

∣
∣Tr[PnDxσ

(n)(x)−Dxσ(x)]H
∣
∣
4
µ(dx)

) 1
4

|||w|||p

+‖(An,α −Aα)‖L‖Q‖
1
2
tc |||w|||p

+bγ

(∫

H

‖σ(n)(x)− σ(x)‖2H ‖x‖2H |w(x)|2µ(dx)
) 1

2

+bσ

(∫

H

‖γ(n)(x)− γ(x)‖2H ‖x‖2H |w(x)|2µ(dx)
) 1

2

.

This concludes the proof.

If we reintroduce the time dependence again, we obtain the same results as above provided

that for anyw ∈ L2(0, T ;Vp) and ∂w
∂t

∈ L2(0, T ;L2(H, µ)) there exists a sequence{wn}∞n=1,

wn ∈ L2(0, T ;Vpn) and ∂wn

∂t
∈ L2(0, T ;L2

µ(R
n)) such that

wn → w, in L2(0, T ;Vpn)

and

∂wn
∂t

→ ∂w

∂t
in L2(0, T ;L2

µ(R
n)),

cf. Section 6.3.1. Then from natural extension of the previous results we obtain the following

propositions.

Proposition 6.2.2 For anyw ∈ L2(0, T ;Vp) and ∂w
∂t

∈ L2(0, T ;L2(H, µ)) given, and forAw ∈

L2(0, T ;Vp∗) defined as

Aw(·) :=
∫ T

0

aµ(t; · , w(t))dt,
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the sequence{Aw
n}∞n=1 defined as

Aw
n (·) :=

∫ T

0

a(n)µ (t; · , w(n)(t))dt,

converges in the strong sense

lim
n→∞

‖Aw
n −Aw‖L2(0,T ;Vp∗) = 0.

An analogous result holds for the dual pairing term.

Proposition 6.2.3 LetAΘ ∈ L2(0, T ;Vp ∗) be defined as

AΘ(·) :=
∫ T

0

[

(
∂Θ

∂t
(t), · )L2(H,µ) − aµ(t; Θ(t), · )

]

dt.

The sequence{AΘ
n }∞n=1 defined as

AΘ
n (·) :=

∫ T

0

[

(
∂Θ(n)

∂t
(t), · )L2(H,µ) − a(n)µ (t; Θ(n)(t), · )

]

dt,

converges in the strong sense

lim
n→∞

‖AΘ
n −AΘ‖L2(0,T ;Vp ∗) = 0.

PROOF: In light of the results of Proposition 6.2.2 it is enough to prove thatΘ(n) → Θ in

L2(0, T ;Vp) and ∂Θ(n)

∂t
→ ∂Θ

∂t
in L2(0, T ;L2(H, µ)). At this point we realize the importance

of the smoothing procedure for the gain function. Indeed we exploit the fact that for some

k ∈ N fixed earlier we haveΘ = Ψk ∈ C1([0, T ] × H). Then at the final dimensional level

we haveΘ(n)(t, x) = Ψ
(n)
k (t, x) = Ψk(t, Pnx) ∈ C1([0, T ] × R

n) ⊂ C1([0, T ] × H). We de-

note the linear operator of first derivative asDt,x := ( ∂
∂t
, D). The continuity ofΨk and of its

first derivatives guarantee the pointwise convergencesΨk(t, Pnx) → Ψk(t, x) = Θ(t, x) and

Dt,xΨk(t, Pnx) → Dt,xΨk(t, x) = Dt,xΘ(t, x), asn → ∞. The uniform estimates obtained in

the proof of Proposition 4.1.1 enable us to use dominated convergence to obtainΘ(n) → Θ in

L2(0, T ;Vp) and ∂Θ(n)

∂t
→ ∂Θ

∂t
in L2(0, T ;L2(H, µ)).
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6.3 Infinite dimensional variational inequality - part 1

Before stating the main result of this section we recall the properties of the value function̄v(n)α

which we characterized as a weak solution of then-th finite dimensional EVI. From both analytical

and probabilistic results we know thatv̄(n)α ∈ L2(0, T ;Vp) and in particular that{v̄(n)α }∞n=1 is a

uniformly bounded sequence in the setL2(0, T ;W 1,2(H, µ)). In fact from analogous rationale

as in Proposition 2.2.2 we get uniform Lipschitz property and then the same arguments as in

Proposition 5.2.1 guarantee
∫ T

0

∫

H

|v̄(n)α (t, x)|2µ+

∫ T

0

∫

H

‖Dv̄(n)α (t, x)‖2Hµ(dx)dt ≤ (Ψ
2
+ L2

V )T.

Then there exists̄vα ∈ L2(0, T ;W 1,2(H, µ)) such that there exists a subsequencev̄
(nj)
α ⇀ v̄α

in L2(0, T ;W 1,2(H, µ)) as j → ∞. From Corollary 3.2.2 we also know thatv̄(n)α → Vα in

L2(0, T ;Lp(H, µ)), 1 ≤ p <∞ and hence from uniqueness of the limit

v̄α(t, x) = Vα(t, x) = sup
t≤τ≤T

E
[
Θ(τ,X(α) t,x

τ )
]
, ∀(t, x) ∈ [0, T ]×H.

Another important issue that we obtain from the probabilistic analysis (cf. Theorem 3.2.1) is that

any sequence{v̄(nj)
α }∞j=1 is uniformly converging on any compact subset[0, T ] × K of the whole

space. From now on we will denote such a subsequence simply by{v̄(n)α }∞n=1. It is straightforward

to see that in the homogenized problem we haveū
(n)
α = v̄

(n)
α − Θ(n) and the same convergence

results stated above hold.

We rename the convex sets for the homogeneous obstacle problems as

K̂p
µ,n := {w : w ∈ L2(0, T ;Vpn ),

∂w

∂t
∈ L2(0, T ;L2

µ(R
n)), w ≥ 0 a.e.[0, T ]× R

n}

and

K̂p
µ,∞ := {w : w ∈ L2(0, T ;Vp ), ∂w

∂t
∈ L2(0, T ;L2(H, µ)), w ≥ 0 a.e.[0, T ]×H}.

From the results of Proposition 6.2.2 and 6.2.3, in order to pass to the limit in the homogenized

variational inequality, it is fundamental to provide a suitable sequence of test functionsw(n). Each

of these functions has to be in then-th convex set̂Kp
µ,n.
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6.3.1 Sequence of test functions

Let w be an arbitrary element of the convex setK̂p
µ,∞. From the discussion in Appendix E and

adopting the notation therein we know thatK̂p
µ,∞ ⊂W 1,2([0, T ]×H, λ(dt)×µ(dx)). We introduce

the set

E([0, T ]×H) := span{Re(φη,h), Im(φη,h), φη,h(t, x) = eiηt+i〈h,x〉H , (η, h) ∈ R×H}.

Such a set is dense inW 1,2([0, T ]×H, λ(dt)×µ(dx)) and inL2(0, T ;Lp(H, µ)), cf. Appendix E.

Hence we know that there exists a sequence{φ(k)}∞k=1, φ
(k) ∈ E([0, T ]×H), such that

∫ T

0

‖φ(k)(t)− w(t)‖2Vpdt→ 0,

(6.2)
∫ T

0

‖∂φ
(k)

∂t
(t)− ∂w

∂t
(t)‖2L2(H,µ)dt→ 0,

ask → ∞. Moreover, up to a subsequence, the convergence holds in thea.e. sense.

Let us now fixk ∈ N, then there existNk ∈ N, a, b, η ∈ R
Nk and a sequence{hi}Nk

i=1 ⊂ H,

such that

φ(k)(t, x) =

Nk∑

i=1

[ai cos(ηit+ 〈hi, x〉H) + bi sin(ηit+ 〈hi, x〉H)].

We can take a finite dimensional projection. Letn ∈ N, then let us defineφ(k)
n (t, x) := φ(k)(t, Pnx)

as

φ(k)(t, Pnx) =

Nk∑

i=1

[ai cos(ηit+ 〈hi, Pnx〉H) + bi sin(ηit + 〈hi, Pnx〉H)].

If | · |k represents the Euclidean norm inRNk , the uniform boundedness holds

sup
(t,x)∈[0,T ]×H

|φ(k)(t, Pnx)| ≤ C(k, |a|k, |b|k),

independent of the ordern. It is worth noticing also that, if we defineDt,x := ( ∂
∂t
, Dx) and

‖ · ‖R×H := | · |+ ‖ · ‖H, then it is easy to prove

sup
(t,x)∈[0,T ]×H

‖Dt,x cos(ηit + 〈hi, Pnx〉H)‖R×H ≤ C(k, |ηi|, ‖hi‖H).
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The bound does not depend onn. It clearly extends to finite linear combinations and hence for

‖h‖k :=
∑Nk

i=1 ‖hi‖H, we have

sup
(t,x)∈[0,T ]×H

‖Dt,xφ
(k)(t, Pnx)‖R×H ≤ C(k, |a|k, |b|k, |η|k, ‖h‖k).

Now from dominated convergence and continuity ofφ(k) andDt,xφ
(k) we obtain

∫ T

0

‖φ(k)
n (t)− φ(k)(t)‖2Vpdt (6.3)

+

∫ T

0

‖∂φ
(k)
n

∂t
(t)− ∂φ(k)

∂t
(t)‖2L2(H,µ)dt→ 0, asn→ ∞.

We defineφ(k)
n,0 := 0 ∨ φ

(k)
n = (φ

(k)
n )+. The importance of this sequence of functions is clear if

we notice that fork fixed the functionφ(k)
n,0 belongs to the convex setŝKp

µ,n, for all n ∈ N and

1 ≤ p < ∞. Actually we have got an even nicer property; in fact fork, n ∈ N both fixed,

φ
(k)
n,0 ∈ K̂p

µ,d for all d ≥ n. We want to study now the convergence properties with respect to both

the indexes.

We easily get

|φ(k)
n,0(t, x)| ≤ |φ(k)

n (t, x)| ≤ C(k, |a|k, |b|k), (t, x) ∈ [0, T ]×H, (6.4)

and

sup
(t,x)∈[0,T ]×H

|φ(k)
n,0(t, x)| ≤ sup

(t,x)∈[0,T ]×H

|φ(k)(t, x)| ≤ C(k, |a|k, |b|k). (6.5)

From general results about weighted Sobolev spaces inR
n (cf. [54], Corollary 2.1.8, Chapter 2)

we also know that

Dt,xφ
(k)
n,0 =







Dt,xφ
(k)
n on {φ(k)

n ≥ 0},

0 elsewhere.

Equation (6.4) guarantees that

∫ T

0

∥
∥φ

(k)
n,0(t)

∥
∥
2

Lp(H,µ)
dt ≤ 2‖φ(k)

n ‖L2(0,T ;Lp(H,µ)).



120 Variational inequality on a Hilbert space

From the convergence (6.3), fork ∈ N fixed, we can provide the bound

∫ T

0

‖φ(k)
n (t)‖2Vpdt+

∫ T

0

∥
∥
∂φ

(k)
n

∂t
(t)
∥
∥2

L2(H,µ)
dt ≤ C(k).

As usual we use the isometry‖ · ‖Rn = ‖ · ‖H.

∫

[0,T ]×Rn

[

∣
∣
∂φ

(k)
n,0

∂t
(t, x)

∣
∣
2
+ ‖Dxφ

(k)
n,0(t, x)‖2Rn

]

µ(dx)dt

=

∫

[0,T ]×Rn

[

∣
∣
∂φ

(k)
n,0

∂t
(t, x)

∣
∣
2
+ ‖Dxφ

(k)
n,0(t, x)‖2H

]

µ(dx)dt

=

∫

{[0,T ]×Rn}∩{φ
(k)
n ≥0}

[

∣
∣
∂φ

(k)
n

∂t
(t, x)

∣
∣
2
+ ‖Dxφ

(k)
n (t, x)‖2H

]

µ(dx)dt

≤
∫ T

0

‖φ(k)
n (t)‖2Vpdt +

∫ T

0

∥
∥
∂φ

(k)
n

∂t
(t)
∥
∥
2

L2(H,µ)
dt ≤ C(k).

From equation (6.5) and pointwise convergence we also get

lim
n→∞

∫ T

0

‖φ(k)
n,0(t)− 0 ∨ φ(k)(t)‖2Lp(H,µ)dt = 0.

Then summarizing we have

‖φ(k)
n,0‖2W 1,2([0,T ]×H,λ×µ) ≤ C(k),

hence there existsf ∈ W 1,2([0, T ]×H, λ×µ) and a subsequence{φ(k)
nj ,0

}∞j=1, such thatφ(k)
nj ,0

⇀ f

in W 1,2([0, T ] × H, λ × µ), asj → ∞. Moreoverφ(k)
n,0 → 0 ∨ φ(k) in Lp([0, T ] × H, λ × µ)

asn → ∞ and hencef = 0 ∨ φ(k). It is worth stressing that the subsequence{nj}j∈N depends

on the indexk, i.e. to be more precise we should write{nkj}j∈N. Yet, since the dependence on

k is explicitly taken into account in the upper index of the approximating function, we denoted

nj := nkj and consequentlyφ(k)

nk
j ,0

:= φ
(k)
nj ,0

.

From the same arguments as in Appendix A and [42] we know that the following representation

holds

Dt,x(φ
(k))+(t, x) = I{φ(k)≥0}(t, x)Dt,xφ

(k)(t, x), λ× µ-a.e.(t, x) ∈ [0, T ]×H.
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Hence from the same arguments as above and convergence (6.2)we obtain

∫

[0,T ]×H

[
∣
∣
∂(φ(k))+

∂t
(t, x)

∣
∣2 + ‖Dx(φ

(k))+(t, x)‖2H
]

µ(dx)dt

=

∫

[0,T ]×H

I{φ(k)≥0}(t, x)

[
∣
∣
∂φ(k)

∂t
(t, x)

∣
∣
2
+ ‖Dxφ

(k)(t, x)‖2H
]

µ(dx)dt

≤
∫ T

0

‖φ(k)(t)‖2Vpdt+

∫ T

0

∥
∥
∂φ(k)

∂t
(t)
∥
∥
2

L2(H,µ)
dt ≤ C.

It then implies that there existsg ∈ W 1,2([0, T ] × H, λ × µ) and a subsequence{φ(kj)}∞j=1 such

that0 ∨ φ(kj) ⇀ g asj → ∞ in W 1,2([0, T ]×H, λ× µ). We also have that0 ∨ φ(kj) → 0 ∨ w, as

j → ∞ in L2(0, T ;Lp(H, µ)). So we conclude thatg = 0 ∨ w = w.

Summarizing, we have that, up to suitable subsequences, taking the limit with respect ton first

and with respect tok later, we get

φ
(k)
n,0 ⇀ w, inW 1,2([0, T ]×H, λ× µ),

φ
(k)
n,0 → w, in L2(0, T ;Lp(H, µ)),

φ
(k)
n,0(t) → w(t), in Lp(H, µ), a.e.t ∈ [0, T ].

6.3.2 The limit to infinite dimensions

We are now ready to present the main theorem of this section. We recall the explicit expression for

the bilinear form

a(α)µ (t; u, w) =
1

2

∫

H

〈σσ∗(x)Dxu(t, x), Dxw(t, x)〉Hµ(dx)

+
1

2

∫

H

〈Dxσ(x) · σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)

+
1

2

∫

H

Tr[Dxσ(x)]H〈σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)
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−
∫

H

〈Aαx,Dxu(t, x)〉Hw(t, x)µ(dx)

+
1

2

∫

H

〈σσ∗(x)Q−1x,Dxu(t, x)〉Hw(t, x)µ(dx).

The theorem is as follows:

Theorem 6.3.1 The value function of the optimal stopping problem

Vα(t, x) = sup
t≤τ≤T

E
[
Θ(τ,X(α) t,x

τ )
]
,

is a weak solution of the variational problem: findv ∈ L2(0, T ;Vp), v ≥ Θ such that

−
∫ T

0

(∂w

∂t
, w − v

)

L2(H,µ)
dt+

∫ T

0

a(α)µ (t; v, w − v)dt+
1

2
‖w(T )−Θ(T )‖2L2(H,µ) ≥ 0,

for all w ∈ K̂Θ,p
µ,∞, 1 ≤ p <∞.

PROOF: We prove the convergence of the variational inequality for the homogenized case and then

pass to the non homogeneous one. For arbitraryw ∈ K̂p
µ,∞, we take the approximating sequence

{φ(k)
n,0}k,n introduced above. Fork, n fixed the functionφ(k)

n,0 belongs toK̂p
µ,d for all d ≥ n. As usual

we denoteΘ(d)(t) := Θ(t) ◦ Pd, for the gain function of thed-dimensional problem. Hence for

anyd ≥ n we have

−
∫ T

0

(∂φ
(k)
n,0

∂t
, φ

(k)
n,0 − ū(d)α

)

L2(H,µ)
dt+

∫ T

0

a(α,d)µ (t; ū(d)α , φ
(k)
n,0 − ū(d)α )dt

−AΘ
d (φ

(k)
n,0 − ū(d)α ) +

1

2
‖φ(k)

n,0(T )‖2L2(H,µ) ≥ 0.

HereAΘ
d is the one introduced in Proposition 6.2.3. We keepk andn fixed and take the limit as

d → ∞. We exploit the results of Propositions 6.2.2 and 6.2.3 and similar arguments to those

adopted to prove Theorem 5.4.1. We are allowed to do so because all of our estimates on the

bilinear form and on the bounds for the solutions are independent of the number of dimensions in

space. It is worth noticing that in particular

a(α,d)µ (t; ū(d)α , ū(d)α ) = a(α,d)µ (t; ū(d)α − ūα, ū
(d)
α − ūα) + a(α,d)µ (t; ūα, ū

(d)
α ) + a(α,d)µ (t; ū(d)α − ūα, ūα).
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Since from lower semicontinuity of the weak limitDūα is bounded inL2(H, µ;H), recalling

equation (5.15), we obtain

a(α,d)µ (t; ū(d)α , ū(d)α ) ≥ −Λ‖ū(d)α − ūα‖Lp(H,µ) + a(α,d)µ (t; ūα, ū
(d)
α ) + a(α,d)µ (t; ū(d)α − ūα, ūα).

Hence from weak convergence of solutionsū
(d)
α we obtain, up to a subsequence, that

∫ T

0

(∂φ
(k)
n,0

∂t
, φ

(k)
n,0 − ū(d)α

)

L2(H,µ)
dt →

∫ T

0

(∂φ
(k)
n,0

∂t
, φ

(k)
n,0 − ūα

)

L2(H,µ)
dt,

∫ T

0

a(α,d)µ (t; ū(d)α , φ
(k)
n,0)dt →

∫ T

0

a(α)µ (t; ūα, φ
(k)
n,0)dt,

AΘ
d (φ

(k)
n,0 − ū(d)α ) → AΘ(φ

(k)
n,0 − ūα),

lim
d→∞

∫ T

0

a(α,d)µ (t; ū(d)α , ū(d)α )dt ≥
∫ T

0

a(α)µ (t; ūα, ūα)dt.

Then in summary we have

−
∫ T

0

(∂φ
(k)
n,0

∂t
, φ

(k)
n,0 − ūα

)

L2(H,µ)
dt+

∫ T

0

a(α)µ (t; ūα, φ
(k)
n,0 − ūα)dt

−AΘ(φ
(k)
n,0 − ūα) +

1

2
‖φ(k)

n,0(T )‖2L2(H,µ) ≥ 0.

Now we take the limits in the order

lim
k→∞

lim
n→∞

along the subsequences discussed in Section 6.3.1. Exploiting the results therein, we obtain

−
∫ T

0

(∂w

∂t
, w − ūα

)

L2(H,µ)
dt+

∫ T

0

a(α)µ (t; ūα, w − ūα)dt

−AΘ(w − ūα) +
1

2
‖w(T )‖2L2(H,µ) ≥ 0.

We now substitutēuα = v̄α −Θ and obtain the non homogeneous variational inequality

−
∫ T

0

(∂w

∂t
, w − v̄α

)

L2(H,µ)
dt+

∫ T

0

a(α)µ (t; v̄α, w − v̄α)dt

+
1

2
‖w(T )−Θ(T )‖2L2(H,µ) ≥ 0,
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for all w ∈ K̂Θ,p
µ,∞. From the probabilistic representation we already know that v̄α = Vα and the the

proof is complete.

It is worth noticing that the pointwise evaluationw(T ) still makes sense. In fact for a general

Banach spaceB the inclusionW 1,2(0, T ;B) ⊂ C([0, T ];B) holds (cf. [25], Section 5.9.2).

6.4 Connection with the optimal stopping in infinite dimen-
sions

The main aim of this section is to characterize the optimal stopping time for the infinite dimensional

problem. The main idea of the proof is quite similar to the onein Section 4.7, but we also exploit

some complementary results. Let us state the theorem.

Theorem 6.4.1 The optimal stopping time for the problem

Vα(t, x) = sup
t≤τ≤T

E
[
Θ(τ,X(α) t,x

τ )
]
, (6.6)

is τ ∗α,t,x defined as

τ ∗α,t,x := inf{s ≥ t : Vα(s,X
(α) t,x
s ) = Θ(s,X(α) t,x

s )} ∧ T. (6.7)

In order to prove this theorem we need to prove the following lemma.

Lemma 6.4.1 Let (t, x) ∈ [0, T ]×H be given. Letτ ∗α,n,t,x be the stopping time

τ ∗α,n,t,x := inf{s ≥ t : V (n)
α (s,X(α,n) t,x

s ) = Θ(n)(s,X(α,n) t,x
s )} ∧ T. (6.8)

Then there exists a subsequence{τ ∗α,nj ,t,x
}∞j=1 such that the following convergence holds

lim
j→∞

(τ ∗α,t,x ∧ τ ∗α,nj ,t,x
)(ω) = τ ∗α,t,x(ω), P-a.e.ω ∈ Ω. (6.9)

PROOF: The proof of this Lemma is adapted from [4], Chapter 3,Section 3, Theorem 3.7 (cf.

in particular p. 322). First we notice that from Proposition3.2.1 there existsΩ0 ⊂ Ω such that

P(Ω \ Ω0) = 0 and a subsequence{nj}∞j=1 such that

lim
j→∞

sup
0≤t≤T

∥
∥
∥X

(α,nj) x
t (ω)−X

(α) x
t (ω)

∥
∥
∥
H
→ 0, ∀ω ∈ Ω0. (6.10)
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It is enough to prove the Lemma in the case of a diffusion starting at time zero. Let us consider a

fixed initial data and let us simplify the notation without losing in generality, i.e. let us define

τ ∗α := inf{t ≥ 0 : Vα(t, X
(α) x
t ) = Θ(t, X

(α) x
t )}.

We know from Theorem 5.4.2 that the stopping time

τ ∗α,n := inf{t ≥ 0 : V (n)
α (t, X

(α,n)x
t ) = Θ(n)(t, X

(α,n)x
t )},

is optimal for then-th approximating problem. For thoseω ∈ Ω0 s.t. τ ∗α(ω) = 0 there is nothing

to prove. Let us now takeω ∈ Ω0 such thatτ ∗α(ω) > δ for someδ > 0. Then as usual

Vα(t, X
(α) x
t (ω)) > Θ(t, X

(α)x
t (ω)), t ∈ [0, τ ∗α(ω)− δ].

The mapt 7→ X
(α) x
t (ω) is continuous and[0, τ ∗α(ω)− δ] is a compact set. Hence the range of the

process, denoted byχδω := {y ∈ H : y = X
(α) x
t (ω) , t ∈ [0, τ ∗α(ω)− δ]}, is a compact subset of

H. From Theorem 3.2.2 we know that the map(t, x) 7→ Vα(t, x)−Θ(t, x) is continuous and then

it attains a minimum on[0, τ ∗α(ω)− δ]× χδω, i.e. there existsη(δ, ω) > 0 such that

η(δ, ω) := min{Vα(t, X(α) x
t (ω))−Θ(t, X

(α) x
t (ω)), t ∈ [0, τ ∗α(ω)− δ]},

and

Vα(t, X
(α)x
t (ω)) ≥ Θ(t, X

(α) x
t (ω)) + η(δ, ω), t ∈ [0, τ ∗α(ω)− δ].

Our analysis is only concerned with the convergence of the approximation scheme on the compact

set[0, τ ∗α(ω)−δ]×χδω. We have uniform convergence of both{V (n)
α }∞n=1 and{Θ(n)}∞n=1 on compact

subsets. Hence there existsN(δ, ω; x) > 0, such that for alln ≥ N(δ, ω; x) it simultaneously holds

V (n)
α (t, x(n)) ≥ Vα(t, x)−

η

4
(δ, ω),

Θ(n)(t, x(n)) ≤ Θ(t, x) +
η

4
(δ, ω),

for all (t, x) ∈ [0, τ ∗α(ω)− δ]× χδω. This implies

V (n)
α (t, x(n)) ≥ Θ(n)(t, x(n)) +

η

2
(δ, ω), (t, x) ∈ [0, τ ∗α(ω)− δ]× χδω.
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In terms of our diffusion it reads

V (n)
α (t, PnX

(α)x
t (ω)) ≥ Θ(n)(t, PnX

(α)x
t (ω)) +

η

2
(δ, ω), t ∈ [0, τ ∗α(ω)− δ].

This is not exactly what we are looking for. In fact we would like to haveX(α,n)x as the argument

of the functions above rather thanX(α)x. We restrict our attention to the subsequence in equation

(6.10). We use the Lipschitz property of the value function (cf. Proposition 2.2.2) and the fact that

PnX
(α,n)x = X(α,n)x to obtain the estimates

sup
0≤t≤T

∣
∣
∣V (nj)
α (t, Pnj

X
(α) x
t (ω))− V (nj)

α (t, X
(α,nj)x
t (ω))

∣
∣
∣

≤ L1
V sup

0≤t≤T

∥
∥
∥X

(α,nj)x
t (ω)−X

(α)x
t (ω)

∥
∥
∥
H
,

sup
0≤t≤T

∣
∣
∣Θ(nj)(t, Pnj

X
(α) x
t (ω))−Θ(nj)(t, X

(α,nj)x
t (ω))

∣
∣
∣

≤ L1 sup
0≤t≤T

∥
∥
∥X

(α,nj)x
t (ω)−X

(α) x
t (ω)

∥
∥
∥
H
.

Then from equation (6.10), fornj ≥ N(δ, ω; x) large enough, we obtain

V (nj)
α (t, X

(α,nj)x
t (ω)) > Θ(nj)(t, X

(α,nj)x
t (ω)), t ∈ [0, τ ∗α(ω)− δ].

In other words for anyδ, ω, x given there exists a numberN(δ, ω; x) > 0 such thatτ ∗α,nj
(ω) >

τ ∗α(ω)−δ for all nj ≥ N(δ, ω; x) belonging to the subsequence such that (6.10) holds. Sinceδ > 0

is arbitrarily small we have(τ ∗α,nj
∧ τ ∗α)(ω) → τ ∗α(ω). Notice that the subsequence is independent

of δ, ω, hence the convergence holds for allω ∈ Ω0, asj → ∞.

Before giving the proof of the main theorem we also recall a simple consequence of the prob-

abilistic representation ofV (n)
α andVα.

Lemma 6.4.2 LetX andY beFs-measurable random variables onH. Then

sup
t≤s≤T

|V (n)
α (s,X)− Vα(s, Y )| ≤ L1 sup

t≤s≤T
E

[

sup
s≤u≤T

‖X(α,n) s,X
u −X(α) s,Y

u ‖H
∣
∣
∣
∣
Fs

]

, P-a.s.
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PROOF: We analyze the term in the left hand side of the inequality, i.e. we consider

V (n)
α (s,X)− Vα(s, Y )

= ess sup
s≤τ≤T

E

[

Θ(n)(τ,X(α,n) s,X
τ )

∣
∣
∣
∣
Fs

]

− ess sup
s≤σ≤T

E

[

Θ(σ,X(α) s,Y
σ )

∣
∣
∣
∣
Fs

]

≤ ess sup
s≤τ≤T

E

[

|Θ(n)(τ,X(α,n) s,X
τ )−Θ(τ,X(α) s,Y

τ )|
∣
∣
∣
∣
Fs

]

.

We obtain the same estimate if we reverse the first expression. Then we have

sup
t≤s≤T

|V (n)
α (s,X)− Vα(s, Y )|

≤ sup
t≤s≤T

{

ess sup
s≤τ≤T

E

[

|Θ(n)(τ,X(α,n) s,X
τ )−Θ(τ,X(α) s,Y

τ )|
∣
∣
∣
∣
Fs

]}

≤ L1 sup
t≤s≤T

{

ess sup
s≤τ≤T

E

[

‖X(α,n) s,X
τ −X(α) s,Y

τ ‖H
∣
∣
∣
∣
Fs

]}

≤ L1 sup
t≤s≤T

E

[

sup
s≤u≤T

‖X(α,n) s,X
u −X(α) s,Y

u ‖H
∣
∣
∣
∣
Fs

]

.

We now have all the ingredients that we need to carry out the proof of the theorem.

PROOF: For the optimality ofτ ∗α we start from Theorem 5.4.2 and in particular from equation

(5.20). In fact we simply setτ = τ ∗α ∧ τ ∗α,n in that equation and obtain

V (n)
α (t, x(n)) = E

[

V (n)
α (τ ∗α ∧ τ ∗α,n, X

(α,n) t,x
τ∗α∧τ

∗
α,n

)
]

. (6.11)

We can consider the subsequence{V (nj)
α }∞j=1 such thatτ ∗α∧τ ∗α,nj

→ τ ∗α. The aim now is to take the

limit when j → ∞. We have pointwise convergence for the left hand side, i.e.V
(nj)
α (t, x(nj )) →

Vα(t, x). We can make the following estimates on the right hand side

∣
∣
∣E

[

V (nj)
α (τ ∗α ∧ τ ∗α,nj

, X
(α,nj) t,x
τ∗α∧τ

∗
α,nj

)− Vα(τ
∗
α, X

(α) t,x
τ∗α

)
]∣
∣
∣

≤ E

[

|V (nj)
α (τ ∗α ∧ τ ∗α,nj

, X
(α,nj) t,x
τ∗α∧τ

∗
α,nj

)− V (nj)
α (τ ∗α ∧ τ ∗α,nj

, Pnj
X

(α) t,x
τ∗α∧τ

∗
α,nj

)|
]

+E

[

|V (nj)
α (τ ∗α ∧ τ ∗α,nj

, Pnj
X

(α) t,x
τ∗α∧τ

∗
α,nj

)− Vα(τ
∗
α ∧ τ ∗α,nj

, X
(α) t,x
τ∗α∧τ

∗
α,nj

)|
]

+E

[

|Vα(τ ∗α ∧ τ ∗α,nj
, X

(α) t,x
τ∗α∧τ

∗
α,nj

)− Vα(τ
∗
α, X

(α) t,x
τ∗α

)|
]
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≤ E

[

sup
t≤s≤T

|V (nj)
α (s,X(α,nj) t,x

s )− V (nj)
α (s, Pnj

X(α) t,x
s )|

]

+E

[

sup
t≤s≤T

|V (nj)
α (s, Pnj

X(α) t,x
s )− Vα(s,X

(α) t,x
s )|

]

+E

[

|Vα(τ ∗α ∧ τ ∗α,nj
, X

(α) t,x
τ∗α∧τ

∗
α,nj

)− Vα(τ
∗
α, X

(α) t,x
τ∗α

)|
]

.

For the first term in the last expression we can adopt the estimate

E

[

sup
t≤s≤T

|V (nj)
α (s,X(α,nj) t,x

s )− V (nj)
α (s, Pnj

X(α) t,x
s )|

]

≤ L1E

[

sup
t≤s≤T

‖X(α,nj) t,x
s − Pnj

X(α) t,x
s ‖H

]

≤ L1E

[

sup
t≤s≤T

‖X(α,nj) t,x
s −X(α) t,x

s ‖H
]

.

This term goes to zero asj → ∞. For the second term we recall the result from Lemma 6.4.2 and

obtain

E

[

sup
t≤s≤T

|V (nj)
α (s, Pnj

X(α) t,x
s )− Vα(s,X

(α) t,x
s )|

]

≤ L1E

[

sup
t≤s≤T

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖H
∣
∣
∣
∣
Fs

]]

.

Let us concentrate on the inner expectation. We have

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖H
∣
∣
∣
∣
Fs

]

≤
(

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖2H
∣
∣
∣
∣
Fs

]) 1
2

.

Notice thatX(α,n) s,Pnj
X

(α) t,x
s = X(α,n) s,X

(α) t,x
s from the definition of the finite dimensional SDE.

We know from natural generalization of the arguments in the proof of Proposition 3.2.1, that there

exists a suitable constantC > 0 such that

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖2H
∣
∣
∣
∣
Fs

]

≤ C2

{

‖Pnj
X(α) t,x
s −X(α) t,x

s ‖2H

+

∫ T

s

E

[

‖(I − Pnj
)AαX

(α) s,X
(α) t,x
s

u ‖2H
∣
∣Fs

]

du

+

∫ T

s

E

[

‖(I − Pnj
)σ(X(α) s,X

(α) t,x
s

u )‖2H
∣
∣Fs

]

du+ n2
jǫ

2
nj
T

}
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= C2

{

‖Pnj
X(α) t,x
s −X(α) t,x

s ‖2H + E

[∫ T

s

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣Fs

]

+E

[∫ T

s

‖(I − Pnj
)σ(X(α) t,x

u )‖2Hdu
∣
∣Fs

]

+ n2
jǫ

2
nj
T

}

≤ C2

{

‖Pnj
X(α) t,x
s −X(α) t,x

s ‖2H + E

[∫ T

t

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣Fs

]

+E

[∫ T

t

‖(I − Pnj
)σ(X(α) t,x

u )‖2Hdu
∣
∣Fs

]

+ n2
jǫ

2
nj
T

}

.

We take now the supremum and the expectation and obtain

E

[

sup
t≤s≤T

|V (nj)
α (s, Pnj

X(α) t,x
s )− Vα(s,X

(α) t,x
s )|

]

≤ L1E

[

sup
t≤s≤T

(

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖2H
∣
∣
∣
∣
Fs

]) 1
2

]

≤ L1

(

E

[

sup
t≤s≤T

E

[

sup
s≤u≤T

‖X(α,nj) s,Pnj
X

(α) t,x
s

u −X(α) s,X
(α) t,x
s

u ‖2H
∣
∣
∣
∣
Fs

]]) 1
2

≤ L1

(

E

[

sup
t≤s≤T

C

{

‖Pnj
X(α) t,x
s −X(α) t,x

s ‖2H + E

[∫ T

t

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣Fs

]

+E

[∫ T

t

‖(I − Pnj
)σ(X(α) t,x

u )‖2Hdu
∣
∣Fs

]

+ n2
jǫ

2
nj
T

}]) 1
2

≤ L1 · C
(

E

[

sup
t≤s≤T

‖Pnj
X(α) t,x
s −X(α) t,x

s ‖2H
]

+E

[

sup
t≤s≤T

E

[∫ T

t

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣Fs

] ]

+E

[

sup
t≤s≤T

E

[∫ T

t

‖(I − Pnj
)σ(X(α) t,x

u )‖2Hdu
∣
∣Fs

] ]

+ n2
jǫ

2
nj
T

) 1
2

From dominated convergence and Dini’s Theorem the first termclearly converges to zero. The last

term is not even stochastic and goes to zero. We then recognize that the terms

Ms := E

[∫ T

t

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣Fs

]

and

Ns := E

[∫ T

t

‖(I − Pnj
)σ(X(α) t,x

u )‖2Hdu
∣
∣Fs

]
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are square integrable non-negative martingales. Hence from Doob inequality

E

[

sup
t≤s≤T

|Ms|
]

≤ E

[

sup
t≤s≤T

|Ms|2
] 1

2

≤ 2
(
E
[
|MT |2

]) 1
2

= 2

(

E

[∣
∣
∣
∣

∫ T

t

‖(I − Pnj
)AαX

(α) t,x
u ‖2Hdu

∣
∣
∣
∣

2
]) 1

2

.

From dominated convergence this term and the other involving Ns go to zero asj → ∞. We

use dominated convergence also in the last term. It goes to zero because of the results about the

limiting behaviour of the stopping time, Lemma 6.4.1, and the continuity of the value functionVα,

i.e.

lim
j→∞

E

[

|Vα(τ ∗α ∧ τ ∗α,nj
, X

(α) t,x
τ∗α∧τ

∗
α,nj

)− Vα(τ
∗
α, X

(α) t,x
τ∗α

)|
]

= 0.

We take the limit asnj → ∞ in equation (6.11) and get

Vα(t, x) = E

[

Vα(τ
∗
α, X

(α) t,x
τ∗α

)
]

= E

[

Θ(τ ∗α, X
(α) t,x
τ∗α

)
]

. (6.12)

This shows the optimality ofτ ∗α and concludes the proof.

It is worth noticing that passing through the subsequencenj allows us to use the particular con-

vergence of the stopping times but the result we get at the does not keep any memories of this

algorithm.

6.5 Infinite dimensional variational inequality - part 2

In order to complete the characterization of our value function in terms of an infinite dimensional

EVI, we are now interested in taking the limit asα → ∞. From both probabilistic and analytic

results we know that{v̄α}α≥0 forms a uniformly bounded sequence inL2(0, T ;W 1,2(H, µ)). In

fact we can exploit once more the same arguments as in Proposition 2.2.2 and Proposition 5.2.1 to

prove that

∫ T

0

∫

H

|v̄α(t, x)|2µ+

∫ T

0

∫

H

‖Dv̄α(t, x)‖2Hµ(dx)dt ≤ (Ψ
2
+ L2

V )T.
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Then there exists a function̄v ∈ L2(0, T ;Vp) and a subsequence{v̄αj
}∞j=1 such that̄vαj

⇀ v̄ in

L2(0, T ;W 1,2(H, µ)). We also know from Corollary 3.1.1 thatv̄α → V in L2(0, T ;Lp(H, µ)) and

hence from the uniqueness of the limit

v̄(t, x) = V (t, x) = sup
t≤τ≤T

E
[
Θ(τ,X t,x

τ )
]
.

Another important result is thatV is continuous on the whole space (cf. Theorem 3.1.2) and that

v̄α → V uniformly on compact subsets of[0, T ]×H.

In the EVI of Theorem 6.3.1 the only term depending onα is the bilinear forma(α)µ (t; u, w).

The first question we want to address is how to characterize the limiting behaviour of this term.

In particular we notice that there is actually only one term of the bilinear form which needs to be

discussed, namely the one involving the unbounded operatorA.

6.5.1 The limit in the Yosida approximation

Let w ∈ L2(0, T ;Vp) be given. For anyu ∈ L2(0, T ;Vp) we define the linear functionalT (n)
A,w ∈

L2(0, T ;Vp∗) as

T
(n)
A,w(u) :=

∫ T

0

∫

H

〈APnx,Dxu(t, x)〉Hw(t, x)µ(dx)dt.

If we denoteCA :=
∑∞

j=1 ‖Aϕj‖H
√
λj we know from the estimates of Section 5.3.1 above that

|T (n)
A,w(u)| ≤ T CA

(∫ T

0

|||w(t)|||2p dt
) 1

2
(∫ T

0

|||u(t)|||2p dt
) 1

2

. (6.13)

We prove now that the sequence{T (n)
A,w}n∈N is Cauchy inL2(0, T ;Vp∗). Letn > m, then

|T (n)
A,w(u)− T

(m)
A,w (u)| =

∣
∣
∣
∣

∫ T

0

∫

H

〈A(Pn − Pm)x,Dxu(t, x)〉Hw(t, x)µ(dx)dt
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

j=m+1

∫ T

0

∫

H

〈Aϕj, Dxu(t, x)〉Hxjw(t, x)µ(dx)dt
∣
∣
∣
∣
∣

≤ T

(∫ T

0

|||u(t)|||2p dt
) 1

2
(∫ T

0

|||w(t)|||2p dt
) 1

2 n∑

j=m+1

‖Aϕj‖H
√

λj .
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Since
∑n

j=1 ‖Aϕj‖H
√
λj converges asn → ∞, this term is clearly Cauchy. Moreover this esti-

mate proves that

‖T (n)
A,w − T

(m)
A,w‖L2(0,T ;Vp ∗) ≤ T

(∫ T

0

|||w|||2p dt
) 1

2 n∑

j=m+1

‖Aϕj‖H
√

λj,

and hence the sequence is Cauchy inL2(0, T ;Vp ∗). From completeness we know that there exists

T̂A,w ∈ L2(0, T ;Vp∗) such thatT (n)
A,w → T̂A,w asn→ ∞.

The second question we address is the explicit form ofT̂A,w. Let us restrict our analysis for a

moment to the setEA([0, T ] × H), which is a dense subset ofL2(0, T ;Vp), cf. Appendix E. It is

enough to perform our analysis on elements from this set. Foranyu ∈ EA([0, T ]×H) it is easily

verified thatA∗Du ∈ L2(0, T ;L2(H, µ)) and so we can write

∫ T

0

∫

H

〈APnx,Dxu(t, x)〉Hw(t, x)µ(dx)dt =
∫ T

0

∫

H

〈Pnx,A∗Dxu(t, x)〉Hw(t, x)µ(dx)dt.

We can use dominated convergence to obtain

T
(n)
A,w(u) →

∫ T

0

∫

H

〈x,A∗Dxu(t, x)〉Hw(t, x)µ(dx)dt, asn→ ∞,

for u ∈ EA([0, T ]×H). Moreover, we know from (6.13) that

∣
∣
∣
∣

∫ T

0

∫

H

〈x,A∗Dxu(t, x)〉Hw(t, x)µ(dx)dt
∣
∣
∣
∣

≤ T CA

(∫ T

0

|||w(t)|||2p dt
) 1

2
(∫ T

0

|||u(t)|||2p dt
) 1

2

, u ∈ EA([0, T ]×H). (6.14)

Hence we have a linear fuctional(TA,w, D(TA,w)) defined as

TA,w(u) :=

∫ T

0

∫

H

〈x,A∗Dxu(t, x)〉Hw(t, x)µ(dx)dt.

The domainD(TA,w) ⊂ L2(0, T ;Vp) is dense inL2(0, T ;Vp) andT (n)
A,w(u) → TA,w(u), u ∈

D(TA,w). Moreover, given equation (6.14) and the fact thatD(TA,w) is dense inL2(0, T ;Vp), we

can extendTA,w to the whole spaceL2(0, T ;Vp). In particular we denote this extension byT̄A,w.
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The last question we want to address is whetherT̂A,w = T̄A,w. Let u ∈ L2(0, T ;Vp) and let

{uj}∞j=1 be an approximating sequence inEA([0, T ]×H). We then have

(∫ T

0

|||uj(t)− u(t)|||2
p
dt

) 1
2
(∫ T

0

|||w(t)|||2p dt
) 1

2

CA T ≥ |T (n)
A,w(uj − u)|

= |T (n)
A,w(uj)− T

(n)
A,w(u)|.

Taking the limit asn→ ∞ we obtain

(∫ T

0

|||uj(t)− u(t)|||2
p
dt

) 1
2
(∫ T

0

|||w(t)|||2p dt
) 1

2

CA T ≥ |TA,w(uj)− T̂A,w(u)|

= |T̄A,w(uj)− T̂A,w(u)|.

If we now take the limit asj → ∞ we obtain|T̄A,w(u) − T̂A,w(u)| ≤ 0, and then from the

arbitrariness ofu we haveT̄A,w = T̂A,w. We can then conclude that

lim
n→∞

T
(n)
A = T̄A, in L2(0, T ;Vp ∗). (6.15)

In a similar way we defineT (α)
A,w ∈ L2(0, T ;Vp∗) as

T
(α)
A,w(u) :=

∫ T

0

∫

H

〈Aα x,Dxu(t, x)〉Hw(t, x)µ(dx)dt,

for u ∈ L2(0, T ;Vp). We also define the sequence{T (α,n)
A,w }n∈N as

T
(α,n)
A,w (u) :=

∫ T

0

∫

H

〈Aα Pnx,Dxu(t, x)〉Hw(t, x)µ(dx)dt.

From the same arguments as above it is easily verified that

‖T (α,n)
A,w − T

(α)
A,w‖L2(0,T ;Vp∗) ≤ T

∞∑

j=n+1

‖Aϕj‖H
√

λj

(∫ T

0

|||w(t)|||2p dt
) 1

2

.

This clearly implies the uniform convergence

lim
n→∞

sup
α≥0

‖T (α,n)
A,w − T

(α)
A,w‖L2(0,T ;Vp ∗) = 0. (6.16)

We can now prove an important convergence result.
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Proposition 6.5.1 For T (α)
A,w andT̄A,w defined as above the following holds

lim
α→∞

‖T (α)
A,w − T̄A,w‖L2(0,T ;Vp∗) = 0. (6.17)

PROOF: Letε > 0 be an arbitrary constant. From (6.15) and (6.16) that there existsnε ∈ N such

that

‖T (α)
A,w − T̄A,w‖L2(0,T ;Vp ∗) ≤‖T (α)

A,w − T
(α,nε)
A,w ‖L2(0,T ;Vp ∗) + ‖T (α,nε)

A,w − T
(nε)
A,w ‖L2(0,T ;Vp ∗)

+ ‖T (nε)
A,w − T̄A,w‖L2(0,T ;Vp∗)

<ε+ ‖T (α,nε)
A,w − T

(nε)
A,w ‖L2(0,T ;Vp∗).

From the same calculations as above it is easy to verify that

‖T (α,nε)
A,w − T

(nε)
A,w ‖L2(0,T ;Vp ∗) ≤ T

∞∑

j=1

‖(Aα − A)ϕj‖H
√

λj

(∫ T

0

|||w(t)|||2p dt
) 1

2

.

Clearly the sum is well definite and moreover

sup
α≥0

∣
∣
∣
∣
∣

k∑

j=1

‖(Aα − A)ϕj‖
√

λj −
∞∑

j=1

‖(Aα − A)ϕj‖H
√

λj

∣
∣
∣
∣
∣
≤ 2

∞∑

j=k+1

‖Aϕj‖H
√

λj .

Then the series is convergent uniformly with respect toα. We also know from [49] that

lim
α→∞

Aαϕj = Aϕj, j ∈ N.

A well known result from analysis tells us that

lim
α→∞

∞∑

j=1

‖(Aα − A)ϕj‖H
√

λj = 0.

This implies that

lim
α→∞

‖T (α)
A,w − T̄A,w‖L2(0,T ;Vp∗) < ε. (6.18)

Given thatε is arbitrary this concludes the proof.
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This fact allows us to state the final result about our variational inequality in infinite dimensions.

We are able indeed to characterize the final bilinear form as
∫ T

0

aµ(t; u(t) , w(t))dt =
1

2

∫ T

0

∫

H

〈σσ∗(x)Dxu(t, x), Dxw(t, x)〉Hµ(dx)dt

+
1

2

∫ T

0

∫

H

〈Dxσ(x) · σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)dt

+
1

2

∫ T

0

∫

H

Tr[Dxσ(x)]H〈σ(x), Dxu(t, x)〉Hw(t, x)µ(dx)dt

−T̄A,w(u)

+
1

2

∫ T

0

∫

H

〈σσ∗(x)Q−1x,Dxu(t, x)〉Hw(t, x)µ(dx)dt.

Theorem 6.5.1 The value function of the optimal stopping problem

V (t, x) = sup
t≤τ≤T

E
[
Θ(τ,X t,x

τ )
]
,

is a weak solution of the variational problem: findv ∈ L2(0, T ;Vp), v ≥ Θ such that

−
∫ T

0

(∂w

∂t
, w − v

)

L2(H,µ)
dt+

∫ T

0

aµ(t; v, w − v)dt+
1

2
‖w(T )−Θ(T )‖2L2(H,µ) ≥ 0,

for all w ∈ K̂Θ,p
µ,∞.

PROOF: We simply take the limit in the EVI of Theorem 6.3.1 asα → ∞ (up to a suitable

subsequence) and exploit the results above.

6.6 The optimal stopping time for the infinite dimensional prob-
lem

The proof of the optimality of the stopping time follows exactly the same arguments as in the

previous section. For this reason we will only sketch the proofs. We first state the analogue of

Lemma 6.4.1.
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Lemma 6.6.1 For (t, x) ∈ [0, T ]×H given and fixed, we denote byτ ∗t,x the stopping time

τ ∗t,x := inf{s ≥ t : V (s,X t,x
s ) = Θ(s,X t,x

s )} ∧ T. (6.19)

Then there exists a subsequence{τ ∗αj ,t,x
}∞j=1 such that the following convergence holds

lim
j→∞

(τ ∗t,x ∧ τ ∗αj ,t,x
)(ω) = τ ∗t,x(ω), P-a.e.ω ∈ Ω. (6.20)

PROOF: The rationale of the proof is exactly the same as in Lemma 6.4.1, provided that the

fundamental properties of the value functions involved still hold. From Theorem 3.1.2 we know

thatV ∈ Cb([0, T ] × H) and moreoverVα → V uniformly on every compact subset[0, T ] × K.

From Proposition 3.1.1 we know that there exists a subsequence{αj}∞j=1 such that

lim
αj→∞

sup
0≤t≤T

∥
∥
∥X

(α) x
t −Xx

t

∥
∥
∥
H
= 0, P-a.s.

Finally the Lipschitz continuity of the value function and of the obstacle hold in the form

sup
0≤t≤T

∣
∣
∣Vα(t, X

x
t )− Vα(t, X

(α) x
t )

∣
∣
∣ ≤ L1

V sup
0≤t≤T

∥
∥
∥Xx

t −X
(α) x
t

∥
∥
∥
H
, P-a.s.

sup
0≤t≤T

∣
∣
∣Θ(t, Xx

t )−Θ(t, X
(α) x
t )

∣
∣
∣ ≤ L1 sup

0≤t≤T

∥
∥
∥Xx

t −X
(α) x
t

∥
∥
∥
H
, P-a.s..

Hence the proof can be carried out by means of the same arguments as in Lemma 6.4.1.

Theorem 6.6.1 The optimal stopping time for the problem

V (t, x) = sup
t≤τ≤T

E
[
Θ(τ,X t,x

τ )
]
, (6.21)

is τ ∗t,x defined as

τ ∗t,x := inf{s ≥ t : V (s,X t,x
s ) = Θ(s,X t,x

s )} ∧ T. (6.22)

PROOF: The whole analysis might start from equation (6.12).Again we simplify the notation

τ ∗ = τ ∗t,x. Indeed in the analysis of the previous section we might substitute τ ∗α by τ ∗ ∧ τ ∗α and

carry out the same arguments in order to obtain

Vα(t, x) = E

[

Vα(τ
∗ ∧ τ ∗α, X

(α) t,x
τ∗∧τ∗α

)
]

. (6.23)
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We can restrict our analysis to the subsequence{Vαj
}∞j=1 which guarantees the convergence of

the stopping times in Lemma 6.6.1. Then taking the limit in the left hand side of the previous

equation, we getVαj
(t, x) → V (t, x) pointwisely. For the right hand side we can perform the

following estimates

∣
∣
∣E

[

Vαj
(τ ∗ ∧ τ ∗αj

, X
(αj) t,x
τ∗∧τ∗αj

)− V (τ ∗, X t,x
τ∗ )
]∣
∣
∣

≤ E

[∣
∣
∣Vαj

(τ ∗ ∧ τ ∗αj
, X

(αj) t,x
τ∗∧τ∗αj

)− Vαj
(τ ∗ ∧ τ ∗αj

, X t,x
τ∗∧τ∗αj

)
∣
∣
∣

]

+ ≤ E

[∣
∣
∣Vαj

(τ ∗ ∧ τ ∗αj
, X t,x

τ∗∧τ∗αj
)− V (τ ∗ ∧ τ ∗αj

, X t,x
τ∗∧τ∗αj

)
∣
∣
∣

]

+ ≤ E

[∣
∣
∣V (τ ∗ ∧ τ ∗αj

, X t,x
τ∗∧τ∗αj

)− V (τ ∗, X t,x
τ∗ )
∣
∣
∣

]

.

For the first term on the right hand side we have

E

[∣
∣
∣Vαj

(τ ∗ ∧ τ ∗αj
, X

(αj) t,x
τ∗∧τ∗αj

)− Vαj
(τ ∗ ∧ τ ∗αj

, X t,x
τ∗∧τ∗αj

)
∣
∣
∣

]

≤ LV E

[

sup
t≤s≤T

∥
∥X(αj) t,x

s −X t,x
s

∥
∥
H

]

,

hence this converges to zero. For the second term explicit calculations can get very cumbersome

so we adopt a different rationale in order to prove convergence. We have

E

[∣
∣
∣Vαj

(τ ∗ ∧ τ ∗αj
, X t,x

τ∗∧τ∗αj
)− V (τ ∗ ∧ τ ∗αj

, X t,x
τ∗∧τ∗αj

)
∣
∣
∣

]

≤ E

[

sup
t≤s≤T

∣
∣Vαj

(s,X t,x
s )− V (s,X t,x

s )
∣
∣

]

.

In the time intervals ∈ [t, T ] the processs 7→ X t,x
s (ω) ranges in a compact subset ofH. We define

such a subset asKx
t,T (ω) := {y : X t,x

s (ω) = y, s ∈ [t, T ]} and then we can write

E

[

sup
t≤s≤T

∣
∣Vαj

(s,X t,x
s )− V (s,X t,x

s )
∣
∣

]

≤ E

[

sup
{ ∣
∣Vαj

(s, y)− V (s, y)
∣
∣ , (s, y) ∈ [t, T ]×Kx

t,T (ω)
}
]

.

For dominated convergence we can carry the limit under the expectation and then use the uniform

convergence of the value functions on compact subsets, cf. Theorem 3.1.2. Hence this term also
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goes to zero asj → ∞. The last term simply converges to zero for dominated convergence and

the continuity of the value function.

Summarizing, we obtain

V (t, x) = E
[
V (τ ∗, X t,x

τ∗ )
]
= E

[
Θ(τ ∗, X t,x

τ∗ )
]
, (6.24)

and hence the optimality ofτ ∗ is proven.

The very last thing that we discuss in order to conclude our analysis is the removal of the

smoothing on the gain function.

6.7 Removal of the regularization on the gain function

We recall thatΘ = Ψk for somek ∈ N. In particularΨk ∈ C∞([0, T ]×H) and from Assumption

4.6.1 we know thatΨk → Ψ in W 1,2([0, T ] × H, λ × µ) and uniformly. Hence we have to

reintroduce the indexk and in particular for the value function we haveV = VΘ = Vk, where

clearly

Vk(t, x) = sup
t≤τ≤T

E
[
Ψk(τ,X

t,x
τ )
]
.

Here we can fully understand the importance of having set ourwhole analysis in the frame-

work of weak solutions for the variational inequality. We know, from Proposition 5.2.1 and

from the analysis we carried out to this point, that{Vk}k∈N forms an equibounded sequence in

L2(0, T ;W 1,2(H, µ)) andL2(0, T ;Lp(H, µ)), 1 ≤ p < ∞. This clearly implies that there exists

V̄ ∈ L2(0, T ;W 1,2(H, µ)) and a subsequence{Vkj}j∈N such that we have the weak convergence

Vkj ⇀ V̄ in L2(0, T ;W 1,2(H, µ)). Moreover from the uniform convergence ofΨk and from

Proposition A.0.3 we also have the uniform convergenceVk → V , where

V (t, x) = sup
t≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
.

This fact, the continuity and boundedness of allVk and the Theorem C.0.4 guarantee the following

result
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Proposition 6.7.1 The value functionV is bounded and continuous, that isV ∈ Cb([0, T ]×H).

From dominated convergence we conclude thatVk → V in L2(0, T ;Lp(H, µ)), 1 ≤ p < ∞ and

hence from uniqueness of the limit thatV̄ = V . We can now prove the theorem connecting the

optimal stopping functional with the variational inequality in infinite dimensions.

Theorem 6.7.1 The value function of the optimal stopping problem

V (t, x) = sup
t≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
,

is a weak solution of the variational problem: findv ∈ L2(0, T ;Vp), v ≥ Ψ such that

−
∫ T

0

(∂w

∂t
, w − v

)

L2(H,µ)
dt+

∫ T

0

aµ(t; v, w − v)dt+
1

2
‖w(T )−Ψ(T )‖2L2(H,µ) ≥ 0,

for all w ∈ K̂Ψ,p
µ,∞.

PROOF: We first prove the result for the homogenized variational inequality. The advantage in

doing so is that the closed convex setK̂p
µ,∞ does not vary when taking the limit ask → ∞. For

anyk ∈ N we set̄vk := Vk and

Ak( · ) :=
∫ T

0

[

(
∂Ψk

∂t
(t), · )L2(H,µ) − aµ(t; Ψk(t), · )

]

dt.

From the strong convergenceΨk → Ψ in W 1,2([0, T ]×H, λ× µ) and inL2(0, T ;Lp(H, µ)), and

from the same arguments as in Proposition 6.2.3 we can easilyprove

lim
k→∞

‖Ak −A‖L2(0,T ;Vp ∗) = 0,

where

A( · ) :=
∫ T

0

[

(
∂Ψ

∂t
(t), · )L2(H,µ) − aµ(t; Ψ(t), · )

]

dt.

We have that̄uk = v̄k −Ψk solves

−
∫ T

0

(∂w

∂t
, w − ūk

)

L2(H,µ)
dt+

∫ T

0

aµ(t; ūk, w − ūk)dt

−Ak(w − ūk) +
1

2
‖w(T )‖2L2(H,µ) ≥ 0,
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for all w ∈ K̂p
µ,∞. We fix w ∈ K̂p

µ,∞ and take the limit ask → ∞. The same arguments as in

Theorem 6.3.1 and Theorem 5.4.1 allow us to conclude that
∫ T

0

(∂w

∂t
, ūk
)

L2(H,µ)
dt →

∫ T

0

(∂w

∂t
, ū
)

L2(H,µ)
dt,

∫ T

0

aµ(t; ūk, w)dt →
∫ T

0

aµ(t; ū, w)dt,

Ak(ūk) → A(ū),

lim
k→∞

∫ T

0

aµ(t; ūk, ūk)dt ≥
∫ T

0

aµ(t; ū, ū)dt

Hence we have

−
∫ T

0

(∂w

∂t
, w − ū

)

L2(H,µ)
dt+

∫ T

0

aµ(t; ū, w − ū)dt

−A(w − ū) +
1

2
‖w(T )‖2L2(H,µ) ≥ 0,

where clearlȳu = v̄−Ψ. Moreover the inequality holds for allw ∈ K̂p
µ,∞. We substitutēu = v̄−Ψ

in the variational inequality and obtain

−
∫ T

0

(∂w

∂t
, w − v

)

L2(H,µ)
dt+

∫ T

0

aµ(t; v, w − v)dt+
1

2
‖w(T )−Ψ(T )‖2L2(H,µ) ≥ 0,

for all w ∈ K̂Ψ,p
µ,∞. From the probabilistic results we know thatv̄ = V and

V (t, x) = sup
t≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
,

This concludes the proof.

We can now proceed in the characterization of the optimal stopping time. We have the follow-

ing lemma

Lemma 6.7.1 Let τ ∗t,x,k be the stopping time defined as

τ ∗t,x,k := inf{s ≥ t : Vk(s,X
t,x
s ) = Ψk(s,X

t,x
s )} ∧ T.

Similarly letτ ∗t,x be the stopping time

τ ∗t,x := inf{s ≥ t : V (s,X t,x
s ) = Ψ(s,X t,x

s )} ∧ T.
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Then

lim
k→∞

(τ ∗t,x,k ∧ τ ∗t,x)(ω) = τ ∗t,x(ω), P-a.e.ω ∈ Ω.

PROOF: The proof in this case is a simpler version of those carried out previously. It is worth

analyzing why in this case we do not rely on a subsequence. As usual let us prove this result in the

case of diffusions starting at time zero. We consider the initial data given and fixed and simplify

the notation without losing in generality, i.e.

τ ∗ := inf{t ≥ 0 : V (t, Xx) = Ψ(t, Xx)}.

We know from the previous section thatτ ∗k is optimal for thek-th regularized problem. . For those

ω ∈ Ω s.t. τ ∗(ω) = 0 there is nothing to prove. Let us now takeω ∈ Ω such thatτ ∗(ω) > δ for

someδ > 0. Then as usual

V (t, Xx
t (ω)) > Ψ(t, Xx

t (ω)), t ∈ [0, τ ∗(ω)− δ].

The mapt 7→ Xx
t (ω) is continuous,[0, τ ∗(ω)− δ] is a compact set and(t, x) 7→ V (t, x)−Ψ(t, x)

is continuous as well. There existsη(δ, ω) > 0 such that

η(δ, ω) := min{V (t, Xx
t (ω))−Ψ(t, Xx

t (ω)), t ∈ [0, τ ∗(ω)− δ]},

and

V (t, Xx
t (ω)) ≥ Ψ(t, Xx

t (ω)) + η(δ, ω), t ∈ [0, τ ∗(ω)− δ].

From the uniform convergencesΨk → Ψ andVk → V we can conclude that forK(δ, ω; x) ∈ N

large enough and for allk ≥ K(δ, ω; x) we have

Vk(t, X
x
t (ω)) > Ψk(t, X

x
t (ω)), t ∈ [0, τ ∗(ω)− δ].

This clearly implies that for anyδ, ω, x given there exists a numberK(δ, ω; x) > 0 such that

τ ∗k (ω) > τ ∗(ω)− δ for all k ≥ K(δ, ω; x). We then have(τ ∗k ∧ τ ∗)(ω) → τ ∗(ω). The convergence

holdsP-a.e.ω ∈ Ω, asj → ∞.

We can conclude our analysis proving the optimality of the stopping time.
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Theorem 6.7.2 The stopping time

τ ∗t,x := inf{s ≥ t : V (s,X t,x
s ) = Ψ(s,X t,x

s )} ∧ T,

is optimal for the optimal stopping problem

V (t, x) = sup
t≤τ≤T

E
[
Ψ(τ,X t,x

τ )
]
.

PROOF: Once more we start from equation (6.24) which now reads

Vk(t, x) = E

[

Vk(τ
∗
k , X

t,x
τ∗
k
)
]

.

The same clearly holds when we substituteτ ∗k ∧ τ ∗ in it, i.e.

Vk(t, x) = E

[

Vk(τ
∗
k ∧ τ ∗, X t,x

τ∗
k
∧τ∗)

]

.

We are interested in taking the limit ask → ∞. The left hand side converges toV (t, x) by uniform

convergence. The right hand side can be treated as follows

∣
∣E

[

Vk(τ
∗
k ∧ τ ∗, X t,x

τ∗
k
∧τ∗)− V (τ ∗, X t,x

τ∗ )
] ∣
∣

≤ E

[∣
∣Vk(τ

∗
k ∧ τ ∗, X t,x

τ∗
k
∧τ∗)− V (τ ∗k ∧ τ ∗, X t,x

τ∗
k
∧τ∗)

∣
∣

]

+E

[∣
∣V (τ ∗k ∧ τ ∗, X t,x

τ∗
k
∧τ∗)− V (τ ∗, X t,x

τ∗ )
∣
∣

]

.

The first term converges to zero from uniform convegrence. The second one converges to zero

because of the continuity ofV and the result in Lemma 6.7.1. Hence we get

V (t, x) = E
[
V (τ ∗, X t,x

τ∗ )
]
= E

[
Ψ(τ ∗, X t,x

τ∗ )
]
.

This proves the optimality ofτ ∗ and concludes the proof.

In the next section we will shortly discuss the uniqueness ofthe solution.

6.8 Some remarks about uniqueness

It is worth noticing that all the results in this chapter and in the previous ones hold in the case of the

diffusion (1.9) and with stochastic discount factor as in (1.15). This is due to the fact that, as long
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as the non-linear drift term has the form (1.7), all the important regularity properties are preserved.

Moreover, as long as the discount factor is bounded from below, the algorithm implemented in

solving the variational inequality remains the same. Notice also that foru, v ∈ V it holds

∫

H

(x)+u(x)v(x)µ(dx) < C |||u||| |||v||| .

Hence the variational inequality is well posed, because thebilinear form is still continuous.

We were able to prove a new existence result for the solution of the infinite dimensional vari-

ational inequality. Yet, it was not possible to prove uniqueness of the solution or at least maxi-

mality/minimality. Similarly, in [56], Theorem 9, the Author does not claim the uniqueness when

he introduces the application of his results to the AmericanBond option problem, although he

considers a simpler model with deterministic diffusion coefficient. In [2] the explicit results for

the American Bond option are not even discussed. Hence, our results are compatible with the ones

in [2] and [56] and indeed provide new insights for the theoryof infinite dimensional variational

inequalities.

In our case the main problem in proving the uniqueness or the maximality/minimality is due to

the degeneracy of the bilinear form. In some finite dimensional cases (cf. [43, 44]) it is possible

to recover the coerciveness of the bilinear form even thoughthe diffusion is degenerate. In our

case this seems to be impossible due to several problems arising from the unbounded terms of the

bilinear form. The key ingredient for the uniqueness in someinfinite dimensional cases (see [2]

and [56]) is the fact thatµ is assumed to be an excessive measure for the semigroup generated

by the process. This fact is the infinite dimensional analogue of the recovery of coerciveness in

[43, 44].

Even though an excessive measure always exists for any diffusion process, unfortunately the

Gaussian measure we need seems not to fulfill this requirement. Notice that the excessive measure

can be written explicitly in rather few cases while we are able to give a precise notion of our

measureµ. In some sense, the non-uniqueness can be considered as the drawback when writing the

measure explicitly. If we simplify the SDE and choose deterministic constant volatilityσ(Xt) =
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σ ∈ H then a Gaussian invariant measure for the HJM dynamics exists (cf. [21], Chapter 9,

Theorem 9.3.1). Hence, it seems natural to choose such Gaussian measure to perform our analysis.

Since an invariant measure is also excessive we might be ableto recover uniqueness of our solution

by means of a suitable modification of the proof in [4]. This issue remains rather delicate and

deserves further investigations.

In the general case of non-constant diffusion coefficient the problem gets far more complicated

and the issue of uniqueness represents an extremely hard task. Maximality/minimality of the so-

lution cannot be recovered approaching the problem via the penalization techniques described in

[4]. In fact even in finite dimensions the coerciveness is a necessary condition for the proof (cf.

[45, 51]). Only in very special cases the uniqueness might berecovered. For instance, considering

the Goldys-Musiela-Sondermann model [34], it should be possible to remove the unbounded term

in the SDE of the forward rate (cf. [31]). Then, the variational inequality might be solved in a

different convex set in which uniqueness would be recovered.

In general we expect that further characterizations of the solution of the variational inequality

(if available) arise choosing a proper convex set which has to be determined on a case by case

basis.



Chapter 7

Asymptotic properties of the continuation
region

In this chapter we show the connection between the continuation/stopping regions of the sequence

of finite dimensional optimal stopping problems and the one in infinite dimensions. In particular,

we prove that in a simple case, when the Yosida approximationis not required, it is possible to

fully characterize the shape of the infinite dimensional continuation/stopping region as the limit,

in a proper sense, of the continuation/stopping regions at the finite dimensional level.

7.1 A simplified setting

The aim of the analysis we carry out here is to find a connectionbetween the optimality regions of

the approximating stopping problems and the original one. The simplest case is the one in which

the approximating procedure can be reduced to a single indexapproximation. In practice we can

obtain rather explicit results when Assumption 3.3.1 is fulfilled. It is clear from the analysis of

the previous sections that, under this assumption, the approximating algorithm can be obtained by

means of the finite dimensional reduction only. Hence

lim
n→∞

sup
t∈[0,T ]

|V (n)(t, x(n))− V (t, x)| = 0, x ∈ H.

Moreover the convergence is uniform on compact subsets ofH and it also holds inLp(H, µ)-

norms. It is worth noticing that the regularization of the gain function is not being taken into
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account. We only attempt to analyze how the behaviour of the continuation and stopping regions

at the finite dimensional level affects the one at the infinitedimensional level. Clearly we are

restricting our attention to the simplest case.

We now denote byC andS respectively the continuation and the stopping regions forthe

original problem. Then we can set

C := {(t, x) ∈ [0, T ]×H : V (t, x) > Ψ(t, x)},

S := {(t, x) ∈ [0, T ]×H : V (t, x) = Ψ(t, x)}.

In particular we focus on thet-section of the continuation regionCt defined as

Ct := {x ∈ H : V (t, x) > Ψ(t, x)},

for t ∈ [0, T ] given. We now setε > 0 arbitrary and fixed and define theε-optimal stopping

strategy by characterizing the setsC(ε)
t andS(ε)

t as

C(ε)
t := {x ∈ H : V (t, x) > Ψ(t, x) + ε},

S(ε)
t := {h ∈ H : V (t, x) ≤ Ψ(t, x) + ε}.

For ε > 0 given, it is easy to verify the sets inclusionsC(ε)
t ⊂ Ct andSt ⊂ S(ε)

t , moreoverC(ε)
t ↑ Ct

andS(ε)
t ↓ St asε → 0. Similarly, we can define a continuation and a stopping region for the

approximating optimal stopping problemC(n) andS(n) as

C(n) := {(t, y) ∈ [0, T ]×H(n) : V (n)(t, y) > Ψ(n)(t, y)},

S(n) := {(t, y) ∈ [0, T ]×H(n) : V (n)(t, y) = Ψ(n)(t, y)}.

For t ∈ [0, T ] given thet-section of the continuation region then holds to be

C(n)
t := {y ∈ H(n) : V (n)(t, y) > Ψ(n)(t, y)},



7.1 A simplified setting 147

and adopting the same rationale as before we can prove the following sets inclusionsC(n,ε)
t ⊂ C(n)

t

andS(n)
t ⊂ S(n,ε)

t . Here clearly

C(n,ε)
t := {y ∈ H(n) : V (n)(t, y) > Ψ(n)(t, y) + ε},

S(n,ε)
t := {y ∈ H(n) : V (n)(t, y) ≤ Ψ(n)(t, y) + ε}.

Remark 7.1.1 By the continuity property of the gain function and of the value function, both in

the original optimal stopping problem and in the approximating problems, we know that the sets

Ct, C(ε)
t , C(n)

t andC(n , ε)
t are open sets whilstSt, S(ε)

t , S(n)
t andS(n , ε)

t are closed sets

We are now ready to prove a result which is intuitively reasonable but not completely obvious and

constitutes a technical lemma useful to prove the convergence of the approximating continuation

regions.

Lemma 7.1.1 Let us assume that forε > 0 given and fixedC(ε)
t 6= ∅, then for anyx ∈ C(ε)

t there

existsn ≥ 0 large enough and such thatx(n) ∈ C(ε)
t .

PROOF: The crucial fact is that for anyt ∈ [0, T ] the mapx 7→ (V (t, x)−Ψ(t, x)) is continuous.

The subset(ε,∞) is an open subset of the real axis and thenC(ε)
t has to be an open set inH because

it is the inverse image of(ε,∞) through(V (t, x) − Ψ(t, x)). Then for anyx ∈ C(ε)
t there exists a

δε > 0 and an open sphereBδε(x) of radiusδε such thaty ∈ C(ε)
t for all y ∈ Bδε(x). Sincex(n)

represents a polynomial expansion ofx, there must existsNδε ≥ 0 such that‖x− x(n)‖H < δε for

all n ≥ Nδε. It then concludes the proof.

This fact in particular implies that ifC(ε)
t 6= ∅ then we can choosen ≥ 0 to be large enough in

order forC(ε)
t ∩H(n) 6= ∅ to be granted. We can now prove that thet-sections of the approximating

continuation regions converge in some appropriate sense tothet-section of the continuation region
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for the original problem. In order to do so we introduce the sets

Dt :=
⋃

n≥1

(
Ct ∩ H(n)

)
, (7.1)

D(ε)
t :=

⋃

n≥1

(

C(ε)
t ∩H(n)

)

. (7.2)

ClearlyDt ⊂ Ct, D(ε)
t ⊂ C(ε)

t andD(ε)
t ↑ Dt asε ↓ 0 given thatC(ε)

t ↑ Ct. Our interest for these sets

is motivated by the following lemma

Lemma 7.1.2 The set inclusionCt ⊂ Dt holds.

PROOF: Letε > 0 be given and letx ∈ C(ε)
t . Then there exists a sequence{x(n)}∞n=1 with

x(n) := Pnx and hencex(n) ∈ H(n), such that‖x(n) − x‖H → 0 asn → ∞. Then for the

continuity ofV andΨ there existsN(ε, x) ∈ N such that

|V (t, x)− V (t, x(n))| < ε

2
,

|Ψ(t, x)−Ψ(t, x(n))| < ε

2
,

for all n ≥ N(ε, x). We have implicitly used the fact thatΨ(n)(t, x(n)) = Ψ(t, x(n)). These two

inequalities imply that

V (t, x(n)) > V (t, x)− ε

2
> Ψ(t, x) + ε− ε

2
> Ψ(t, x(n))− ε

2
+ ε− ε

2
= Ψ(t, x(n)),

for all n ≥ N(ε, x). It means thatV (t, x(n)) > Ψ(t, x(n)) for all but finitely manyx(n). This

also implies thatx(n) ∈ Ct ∩ H(n) for all n ≥ N(ε, x) and hencex(n) ∈
⋃

k≥1

(
Ct ∩H(n)

)
for all

n ≥ N(ε, x). In summary forε > 0 given and fixed and for anyx ∈ C(ε)
t , the elements of the

convergent sequence{x(n)}∞n=1, stay definitely inDt. One can then conclude thatx ∈ Dt. It then

implies that

C(ε)
t ⊂ Dt.
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The set inclusion does not depend onε. Hence taking the limit asε → 0 it turns out thatCt ⊂ Dt.

By definition we also haveDt ⊂ Ct and thanks to the lemma we conclude thats

Dt ⊂ Ct ⊂ Dt.

We want now characterizeDt in terms of the setsC(n). We will make it through two popositions.

Proposition 7.1.1 The following set inclusion holds

Dt ⊂
⋃

n≥1

⋂

p≥n

C(p)
t . (7.3)

PROOF: Letε > 0 be given and letx ∈ D(ε)
t . There existsN ∈ N such thatx ∈ C(ε)

t ∩ H(N).

This implies thatx ∈
⋂

n≥N

(

C(ε)
t ∩ H(n)

)

. Moreover by the convergence results there exists

M(ε, x) ∈ N such that

|V (n)(t, x(n))− V (t, x)| < ε, ∀n ≥M(ε, x).

Denoting byN(ε, x) = N ∨M(ε, x), we obtain

V (n)(t, x) > V (t, x)− ε > Ψ(t, x) + ε− ε, ∀n ≥ N(ε, x),

i.e. V (n)(t, x) > Ψ(t, x) andx ∈ H(n), ∀n ≥ N(ε, x). This fact implies that

x ∈
⋂

k≥N(ε,x)

C(k)
t ⊂

⋃

n≥1

⋂

p≥n

C(p)
t .

Since it holds for anyx ∈ D(ε)
t we have

D(ε)
t ⊂

⋃

n≥1

⋂

p≥n

C(p)
t ,

and since the inclusion is uniform with respect toε the proof is completed taking the limit as

ε→ 0.

A similar estimate is provided in the following proposition.
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Proposition 7.1.2 The following set inclusion holds

⋂

n≥1

⋃

p≥n

C(p)
t ⊂ Dt. (7.4)

PROOF: Letε > 0 be given and letx ∈
⋂

n≥1

⋃

p≥n C
(p,ε)
t . Thenx belongs to infinitely many of

C(p,ε)
t . It follows that there existsN(ε, x) ∈ N such that

|V (n)(t, x(n))− V (t, x)| < ε, ∀n ≥ N(ε, x),

andx ∈ C(p,ε)
t for infinitely many indexesp > N(ε, x). The latter consideration implies that

x ∈ H(n) for n ≥ N(ε, x). We can then consider̄p > N(ε, x) andx ∈ C(p̄,ε)
t . Recalling that

x(p̄) = Pp̄x = x we obtain

V (t, x) > V (p̄)(t, x)− ε > Ψ(t, x) + ε− ε = Ψ(t, x).

We then have thatx ∈ Ct andx ∈ H(p̄), i.e.

x ∈ Ct ∩H(p̄) ⊂
⋃

n≥1

(
Ct ∩ H(n)

)
.

For the arbitrariness ofx, this implies that

⋂

n≥1

⋃

p≥n

C(p,ε)
t ⊂ Dt,

and then taking the limit asε→ 0 we conclude the proof.

We have shown that

lim sup
n→∞

C(n)
t =

⋂

n≥1

⋃

p≥n

C(p)
t ⊂ Dt ⊂

⋃

n≥1

⋂

p≥n

C(p)
t = lim inf

n→∞
C(n)
t .

It is now clear that

Dt =
⋂

n≥1

⋃

p≥n

C(p)
t =

⋃

n≥1

⋂

p≥n

C(p)
t .

We have proved the following theorem
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Theorem 7.1.1 The limiting behavior of the continuation regions can be characterized as follows

Dt ⊂ Ct ⊂ Dt, (7.5)

where

Dt =
⋂

n≥1

⋃

p≥n

C(p)
t =

⋃

n≥1

⋂

p≥n

C(p)
t . (7.6)

When we remove the Assumption 3.3.1, then the same argumentshold if instead ofC we

consider the continuation region of the Yosida approximating stopping problem, i.e.

Cα := {(t, x) ∈ [0, T ]×H : Vα(t, x) > Ψ(t, x)}.

The connection between the finite dimensional problems and the original one should pass through

an intermediate relation between the latter and the Yosida approximation. At this stage it is not

completely clear whether such a connection can be explicitly established and if it would provide a

meaningful description of the final optimality regions.
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Appendix A

Regularization of the gain function

Here we introduce a smoothing procedure that represents a generalization of the results proven

in [42], Chapter 4, Lemma 4.1. We first focus on the particularproblem of regularizing the gain

function of the Put option on a Bond and then we shortly discuss some further extensions.

We can define a family{Φt}t∈[0,T̂ ] ⊂ H∗, as

Φt(h) := −
∫ T̂−t

0

h(x)dx (A-1)

It is easy to see that

|Φt(h)| ≤ CT̂‖h‖H, h ∈ H∗,

and hence the family{Φt}t∈[0,T̂ ] ⊂ H∗ is uniformly bounded by the constantCT̂ . Notice that

Ψ(t, h) = (K − eΦt(h))+,

can be understood as the composition off : [0, T ]×Hw → R,

f(t, h) := K − eΦt(h),

andg : R → R+, whereg(z) := (z)+. In practiceΨ(t, h) = g ◦ f (t, h). We also remark that

Im(f) = (−∞, K) and henceg : (−∞, K) → [0, K).We denoteI := (−∞, K) and it is easy

to verify thatg ∈ W 1,p(I) for all 1 ≤ p ≤ ∞. We mollify g by means of standard mollifiers (cf.

[14], Chapter 4) and define the sequence{gk}k≥1 ⊂ C∞
c (I), asgk := ρk ⋆g. Then the convergence
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gk → g in W 1,p(I), 1 ≤ p <∞ holds. It is easy to prove thatg′k = ρk ⋆ g
′, whereg′ represents the

weak derivative of g. Notice thatgk → g andg′k → g′ pointwise. If we considerg on the whole

R the convergence is also locally uniform, i.e.‖gk − g‖L∞(Î) → 0, ask → ∞ for any compact

Î ⊂ R. Sinceg and its weak derivativeg′ are both uniformly bounded onI, we can easily verify

that‖gk‖L∞(I) ≤ ‖g‖L∞(I) and‖g′k‖L∞(I) ≤ ‖g′‖L∞(I).

We see thatf ∈ C∞([0, T̂ ] ×Hw). Let µ be a finite measure onHw and letD be the closure

in L2(Hw, µ) of the directional derivative onHw (cf. Appendix E). Hence we have

D(gk ◦ f)(t, h) = g′k(f(t, h))Df(t, h).

From pointwise convergence and dominated convergence theorem we can conclude that

gk ◦ f → g ◦ f, in L2(0, T̂ ;L2(Hw, µ)),

D(gk ◦ f) → g′(f)Df, in L2(0, T̂ ;L2(Hw, µ;Hw)),

and from the closedness ofD we haveD(g ◦ f) = g′(f)Df . We have implicitly exploited the fact

that when we integrate over[0, T̂ ] × Hw the functionf ranges overI ⊂ R and hencegk andg′k

remain uniformly bounded.

We now have a smooth approximation of our gain function, in factΨk := gk◦f is inC∞
b ([0, T̂ ]×

Bw) for anyBw bounded subset ofHw
1. MoreoverΨk inherits the Lipschitz properties ofΨ dis-

cussed above. In particular we can exploit the uniform Lipschitz continuity with respect to the

space variable to obtain a stronger convergence. In fact

|gk(f(t, h))− g(f(t, h))| =
∣
∣
∣
∣

∫

R

ρk(f(t, h)− z)g(z)dz − g(f(t, h))

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

ρk(y) [g(f(t, h)− y)− g(f(t, h))]dy

∣
∣
∣
∣
≤
∫

R

ρk(y) |g(f(t, h)− y)− g(f(t, h))| dy.

1Identifying Hw and its dual we have thatΦt = (Φ1
t ,Φ

2
t , . . .) and ‖Φt‖2Hw

=
∑∞

i=1 (Φ
i
t)

2. Hence
‖Df(t, h)‖2

Hw
=
∑∞

i=1 (Dif(t, h))
2 = e2Φt(h)

∑∞

i=1 (Φ
i
t)

2 = e2Φt(h)‖Φt‖Hw
. Similarly 〈D2f(t, h)u, v〉 ≤

eΦt(h)‖Φt‖2Hw
‖u‖Hw

‖v‖Hw
. With the same rationale one proves infinite differentiability.
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We simply use the fact that|(t − y)+ − (t)+| ≤ |y|, which is indeed a weaker property than the

one pointed out in Proposition 1.4.1. We also exploit the fact that supp{ρk} = [− 1
k
, 1
k
]. Hence

|gk(f(t, h))− g(f(t, h))| ≤
∫

R

ρk(y) |y| dy =

∫

[− 1
k
, 1
k
]

ρk(y) |y| dy ≤ 1

k
.

This result implies that

sup
(t,h)∈[0,T̂ ]×Hw

|Ψk(t, h)−Ψ(t, h)| ≤ 1

k
,

and hence the convergence is also uniform over the whole space [0, T̂ ] × Hw. The fundamental

consequence of this fact is summarized in the next proposition.

Proposition A.0.3 The sequence of value functions{Vk}k≥1, associated to the mollified gain func-

tions{Ψk}k≥1, converges uniformly toV , i.e.

lim
k→∞

sup
(t,r)∈[0,T ]×Hw

∣
∣Vk(t, r)− V (t, r)

∣
∣ = 0.

PROOF: We provide an estimate for the difference

Vk(t, r)− V (t, r)

= sup
t≤τ≤T

E

[

e−
∫ τ

t
(rt,rs (0))+dsΨk(τ, r

t,r
τ )
]

− sup
t≤σ≤T

E

[

e−
∫ σ

t
(rt,rs (0))+dsΨ(σ, rt,rσ )

]

= sup
t≤τ≤T

inf
t≤σ≤T

E

[

e−
∫ τ

t
(rt,rs (0))+dsΨk(τ, r

t,r
τ )− e−

∫ σ

t
(rt,rs (0))+dsΨ(σ, rt,rσ )

]

≤ sup
t≤τ≤T

E

[

e−
∫ τ

t
(rt,rs (0))+ds

(
Ψk(τ, r

t,r
τ )−Ψ(τ, rt,rτ )

)]

≤ E

[

sup
t≤u≤T̂

∣
∣Ψk(u, r

t,r
u )−Ψ(u, rt,ru )

∣
∣

]

≤ 1

k
.

The same holds forV (t, r)− Vk(t, r) and hence we conclude the proof by observing that

sup
(t,r)∈[0,T ]×Hw

∣
∣Vk(t, r)− V (t, r)

∣
∣ ≤ 1

k
.

A crucial feature of this regularization algorithm is that the bounds of Proposition 1.4.1 holds

independently of the order of the approximation.
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It is worth noticing that the whole procedure holds in a number of different cases. Whenever

we deal with a functionΨ : [0, T ] × H → R that may be written as a compositionΨ := g ◦ f ,

the feasibility of the regularization depends clearly on the properties ofg : R → R and f :

[0, T ] × H → R. A feasible case, simpler than the one discussed above but still quite general, is

the one in whichg is Lipschitz and bounded. For the Put option on a Bond,g is not bounded from

above but indeedf does and hence, globally, the compositionΨ is bounded and Lipschitz.



Appendix B

Properties ofC0-semigroups

Here we summarize some fundamental results in semigroup theory which can be found in [49],

Chapter 1, or in a shorter form in [19], Appendix A. For simplicity we refer to a generic Hilbert

spaceH, but the same results hold in wider generality.

First we recall that by definition theresolventsetρ(A) of the operatorA is the set of all complex

numbersα for which (αI − A) is invertible, i.e. (αI − A)−1 is a bounded operator inH. The

family of bounded linear operatorsR(α;A) := (αI −A)−1, α ∈ ρ(A) is called resolvent ofA.

We recall a fundamental theorem (cf. [49], Chapter 1, Sec. 5).

Theorem B.0.2 LetA : D(A) ⊂ H → H be a linear closed operator1. Then the following are

equivalent

i) A is the infinitesimal generator of aC0-semigroup{S(t), t ≥ 0} such that

‖S(t)‖L(H) ≤Meωt, ∀t ≥ 0,

ii) D(A) is dense inH, the resolvent setρ(A) contains the interval(ω,+∞) and the following

estimates hold

‖Rk(α;A)‖L(H) ≤
M

(α− ω)k
, k = 1, 2, . . .

1A is closed if its graphGA := {(x, y) ∈ H×H : x ∈ D(A), y = Ax} is closed inH×H. For closed operators
one usually endowes the domainD(A) with the graph norm‖x‖D(A) = ‖x‖H + ‖Ax‖H for x ∈ D(A) .
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Moreover, if either(i) or (ii) holds then we have an explicit representation of the resolvent, i.e.

R(α;A)x =

∫ ∞

0

e−αtS(t)xdt, x ∈ H, α > ω.

Finally

S(t)x = lim
α→∞

etAαx, ∀x ∈ H,

whereAα = αAR(α;A) and the estimate holds

‖etAα‖L ≤Me
αωt
α−ω , ∀t ≥ 0, α > ω.

As a definition the operatorAα = αAR(α;A) is the Yosida approximation ofA. It is a bounded

linear operator onH and then generates a uniformly continuous semigroup which is indeedetAα .

We also mention thatt 7→ S(t)x is a continuous map and hence the integral definingR(α;A) is

an improper Riemann integral. Thanks to this fact and to the fact thatA is a closed operator it

is possible to prove thatAR(α;A)x = R(α;A)Ax for x ∈ D(A). It is then easy to see that the

following inequality holds

‖Aαx‖H = ‖R(α;A)Ax‖H ≤ M

α
‖Ax‖H, x ∈ D(A).

Since we are interested in the cases whenα→ ∞ there is no loss in generality consideringα > M .

Hence we get‖Aαx‖H < ‖Ax‖H for x ∈ D(A) andα > M .

The fundamental properties of the Yosida approximant are summarized in the next proposition.

Proposition B.0.4 Let A : D(A) ⊂ H → H be the infinitesimal generator of aC0-semigroup.

Then

lim
α→∞

αR(α;A)x = x, ∀x ∈ H,

lim
α→∞

Aαx = Ax, ∀x ∈ D(A).
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A remark which turns out to be crucial at some point of our analysis is the following:

Remark B.0.2 Notice that ifsupt∈[0,S] ‖S(t)‖L ≤ M thensupt∈[0,S] ‖etAα‖L ≤ M . Moreover if

we defineAα,n = PnAαPn then alsosupt∈[0,S] ‖etAα,n‖L ≤ M . In particular the latter can be

proved defining the equivalent norm

|x| := sup
t∈[0,T ]

‖S(t)x‖H.

It is easy to verify that‖x‖H ≤ |x| ≤ M‖x‖H and |S(t)| := sup|x|≤1 |S(t)x| ≤ 1. This also

implies|R(α;A)| := sup|x|≤1 |R(α;A)x| ≤ 1/α. Then in terms of the new norm we obtain

∥
∥etAα,nx

∥
∥
H
≤
∣
∣etAα,nx

∣
∣ = e−t α

∣
∣et α

2PnR(α;A)Pnx
∣
∣ ≤ e−t α

∞∑

k=1

1

k!
α2ktk|(PnR(α;A)Pn)kx|

≤ e−t α
∞∑

k=1

1

k!
α2ktk|PnR(α;A)Pn|k|x| ≤ e−t α

∞∑

k=1

1

k!
αktk|x| = |x| ≤M‖x‖.

This simply implies

sup
t∈[0,T ]

∥
∥etAα,n

∥
∥
L(H)

≤M.
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Appendix C

Basic convergence theorems

We recall here three useful results about convergence of bounded continuous functions. In this

section we always consider real valued functions defined on ageneric metric space. Yet some of

these results hold in wider generality, cf. [24], Chapter 7.

The first theorem is the so called Dini’s theorem (cf. [24], Chapter 7, Sec.2, Th. 7.2.2).

Theorem C.0.3 LetE be a compact metric space. If an increasing (resp. dercreasing) sequence

{fn}∞n=1 of real valued continuous functions converges simply1 to a continuous functiong, it con-

verges uniformly tog.

The second theorem is about uniform limit of continuous functions (cf. [24], Chapter 7, Sec. 2,

Th. 7.2.1).

Theorem C.0.4 LetE be a metric space. A uniform limit of bounded continuous functions onE

is continuous.

The last theorem connects pointwise and uniform convergences for the class of equicontinuous

functions (cf. [24], Chapter 7, Sec. 5, Th. 7.5.6)

Theorem C.0.5 LetE be a compact metric space,(fn)n≥1 an equicontinuous sequence inC(E;R).

If (fn)n≥1 converges simply tog in E, it converges uniformly tog.

1Pointwise convergence.
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Appendix D

Vector valued distributions

The solution to the variational inequalityu(t, x) can be understood as a function of time taking

values in the Sobolev spaceH1
0 (O), it is then useful to rely on the theory of vector valued dis-

tributions. For a complete treatment about this subject onecan refer to [23], Chapter VIII. In

particular if we denote byY a Banach space then we denote byL1
loc(0, T ; Y ) the equivalence class

of functionst→ u(t), u : (0, T ) → Y such that,u is λ(dt)-measurable and

‖u‖Lp(0,T ;Y ) =

(∫ T

0

‖u(t)‖pY dt
) 1

p

<∞.

In order to give a meaning to the derivative of such a functionu, we introduce the setD′(0, T ; Y )

of Y -valued distributions over the set of test functionsϕ ∈ C∞
c (0, T ), i.e. of the linear continuous

mappingsf : C∞
c (0, T ) → Y . For anyf ∈ D′(0, T ; Y ), we define them-th derivative off as the

distribution

ϕ→ (−1)mf

(
dmϕ

dtm

)

, ϕ ∈ C∞
c (0, T ).

We therefore have
dmf

dtm
∈ D′(0, T ; Y ),

and
dmf

dtm
(ϕ) = (−1)mf

(
dmϕ

dtm

)

, ∀ϕ ∈ C∞
c (0, T ).

In particular ifu ∈ L2(0, T ; Y ), then first derivative is the distribution defined as

du

dt
(ϕ) = −

∫ T

0

u(t)ϕ′(t)dt,
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for all ϕ ∈ C∞
c (0, T ). In conclusion we say thatdu

dt
∈ L2(0, T ; Y ) if there existsv ∈ L2(0, T ; Y )

such that for allϕ ∈ C∞
c (0, T ), one hasv(ϕ) = −u(ϕ′), i.e.

∫ T

0

v(t)ϕ(t)dt = −
∫ T

0

u(t)ϕ′(t)dt.

We introduce now the setW (0, T ;H1
0(O), H−1((O))) which turns out to be the right set to look

for a solution to our variational problem:

W (0, T ;H1
0(O), H−1(O)) = {u : u ∈ L2(0, T ;H1

0(O)),
du

dt
∈ L2(0, T ;H−1(O))}.

It is worth noticing that in the caseu = u(t, x) ∈ L1
loc(0, T ;L

p(O)) the distributional derivative

presented above is equivalent to the partial distributional derivative∂u
∂t

of u in D′((0, T )×O).
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Dense subsets inW 1,2(H, µ)

The construction of the Gauss-Sobolev Space can rely on different approaches. A very general

survey of this topic can be found in [11], Chapter 5. Nevertheless in this thesis we mostly refer to

the approach of [18], Chapter 10 and [22], Chapter 9, which are substantially the same. LetH be

a Hilbert space and letE(H) be defined as

E(H) := span{Re(φh), Im(φh), φh(x) = ei〈h,x〉H , h ∈ H}.

By applying the rationale of [22], Proposition 1.2.5, and the simple results in [18], Propositions

1.6 and 1.7, it is easy to prove thatE(H) ⊂ L2(H, µ) and in particularE(H) is dense in this space.

Similarly one defines the subsetEA(H) ⊂ E(H) as

EA(H) := span{Re(φh), Im(φh), φh(x) = ei〈h,x〉H , h ∈ D(A∗)}.

This set has the same properties asE(H) (cf. [22] pag.205). Moreover it is easy to prove that

Dφh(x) ∈ D(A∗) for all φh ∈ EA(H).

These results might be improved recalling a general fact from measure theory, cf.[38], Lemma

1.35, Chapter 1.

Lemma E.0.3 Given a metric spaceH with Borelσ-fieldB, a bounded measureµ on (H,B) and

a constantp > 0, the set of bounded continuous functions onH is dense inLp(H, µ).

AlthoughE(H) is not dense inCb(H) the following theorem holds, cf. [18], Lemma 8.1, Chapter

8.
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Lemma E.0.4 For all ϕ ∈ Cb(H), there exists a two-index sequence(φk,n) ⊂ E(H) such that

lim
k→∞

lim
n→∞

φk,n(x) = ϕ(x), ∀x ∈ H,

sup
x∈H

|φk,n(x)| ≤ sup
x∈H

|ϕ(x)|+ 1

n
, ∀n, k ∈ N.

The setW 1,2(H, µ) is obtained by proving that the gradient operator(D, dom(D)) is closable in

L2(H, µ). As a matter of factW 1,2(H, µ) is built as the closure ofE(H) (or equivalently ofEA(H))

in the norm ofW 1,2(H, µ), cf. [18], Proposition 10.3, Chapter 10. Sometimes it is useful to denote

byD the closure ofD. From this definition, the domain ofD isW 1,2(H, µ).

Then as an obvious consequence we know that for anyψ ∈ W 1,2(H, µ) there exists a sequence

{φk}∞k=1 made of elements ofEA(H) such thatφk → ψ in W 1,2(H, µ) ask → ∞.

This construction might be extended to time dependent functions, indeed, if we consider the prod-

uct space[0, T ]×H equipped with the product measureλ(dt)× µ(dx) we can define

E([0, T ]×H) := span{Re(φα,h), Im(φα,h), φα,h(t, x) = eiαt+i〈h,x〉H , (α, h) ∈ R×H}.

This set is dense inL2([0, T ]×H, λ(dt)×µ(dx)) from the same arguments as above and moreover

one can deduceW 1,2([0, T ]×H, λ(dt)× µ(dx)) with the same rationale as in the stationary case.

It is remarkable that, thanks to Lemmas E.0.4 and E.0.3, we might repeat all the arguments above

to prove that the derivative, as a linear mapping,

D : E(H) ⊂ Lp(H, µ) → L2(H, µ;H), ϕ 7→ Dϕ,

is closable. Hence for anyψ ∈ W 1,2(H, µ) ∩ Lp(H, µ) there exists a sequence(φk) ⊂ E(H) such

thatφk → ψ in W 1,2(H, µ) ∩ Lp(H, µ).
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[18] G. Da Prato,An Introduction to Infinite-Dimensional Analysis, Springer-Verlag Berlin Hei-

delberg (2006).

[19] G. Da Prato, J. Zabczyk,Stochastic Equations in Infinite Dimensions, Cambridge University

Press (1992).

[20] G. Da Prato, J. Zabczyk,A Note on Stochastic Convolution, Stochastic Analysis and Appli-

cations,10 (2), 143-153 (1992).

[21] G. Da Prato, J. Zabczyk,Ergodicity for infinite dimensional systems, Cambridge University

Press (1996).



BIBLIOGRAPHY 169

[22] G. Da Prato, J. Zabczyk,Second Order Partial Differential Equations in Hilbert Spaces,

Cambridge University Press (2004).

[23] R. Dautray, J.J. Lions,Mathematical Analysis and Numerical methods for Science and Tech-

nology, vol. 5, Berlin Heidelberg (1992).
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