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Chapter 1

Introduction

1.1 Service Oriented Computing

Service Oriented Computing (SOC [121, 69]) is a computing paradigm aiming
at realizing distributed applications by reusing existing services as basic build-
ing blocks. Intuitively, services (or Web Services or e-Services)1 are software
platform-independent applications that export a description of their function-
alities and make it available using standard network technologies. Services are
able to perform a wide spectrum of activities, from simple requests to com-
plicated business processes. In other words, they represent a new way in the
utilization of the web, by supporting rapid, low-cost and easy interoperation
of loosely coupled heterogeneous distributed applications. One of the most
important sectors that can benefit from the application of SOC paradigm is
the e-Business sector, e.g., e-Business solutions and on-line service provision.
SOC provides the key enabling infrastructure required to integrate supply
chains and end-to-end e-Business applications at a variety of different levels,
from applications and data, to business processes, and across (and within)
organizations. In other words, the SOC paradigm envisions to wrap existing
applications and expose them as services. Indeed, it allows organizations to
expose their core competencies declaratively over the Internet or a variety of
networks, e.g., cable, UMTS, xDSL, Bluetooth, etc., using (open) standard
(XML-based) languages and protocols. Such standards allow developers to
access applications deployed over the network based on what they do, rather
than on how they do it, or how they have been implemented. Thus, services
help integrate applications that were not written with the intent to be easily

1The term “Web Service” refers to those services that use the Internet and open Internet-
based standards for communication. The term “e-Service” is used to denote programs in-
teracting over a general electronic medium. In this thesis we use the term “service” since we
address them from a semantic and conceptual perspective.

1



2 CHAPTER 1. INTRODUCTION

integrated with other applications and define architectures and techniques to
build new functionalities while integrating existing application functionalities.
This is possible since they are independent of specific programming languages
or operating systems.

Services are meant to be used by other applications (and possibly other
services), and not only by humans. In other words, there is a clear distinction
between a service and a web portal or a service over the web, the latter ones
being applications invoked by humans only, through web pages. Currently, the
web is populated primarily by applications targeted towards humans. How-
ever, there is a common understanding that to make a leap from services
being recognized and used through human intervention, to services being rec-
ognized and used also by autonomous software applications, services must ex-
port their “semantics”. Services should provide semantically-rich, application-
targeted descriptions, including dynamic behavioral features, complex forms
of dataflow, transactional attitudes, adaptability to varying circumstances,
security and so on.

From the above discussion, it stems that the SOC paradigm poses many
challenging research issues, both from a conceptual and from a technological
perspective. In this thesis we concentrate on the former ones.

1.2 Services and Service Composition

In this section we define the basic notions which are addressed and studied in
this thesis, namely, services and the problem of service composition.

1.2.1 What is a Service?

In the literature there is no common understanding of what services are, since
the term “service” not always is used with the same meaning. In [69] an in-
teresting and detailed discussion is provided on existing definitions, on top
of which we base what follows. Current definitions of the term “service”
range from very generic and somewhat ambiguous, to very restrictive and too
technology-dependent. On one end of the spectrum, there is the generic idea
that every application that is characterized by an URL is a service, thus fo-
cusing on the fact that a service is an application that can be invoked over
the Web. On the other end of the spectrum, there are very specific definitions
such as for example, the one provided by the technical dictionary Webope-
dia [51], according to which a service is “a standardized way of integrating
Web-based applications using the XML, SOAP, WSDL, and UDDI open stan-
dards over an Interned protocol backbone. XML is used to tag the data,
SOAP is used to transfer the data, WSDL is used for describing the services
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available, and UDDI is used for listing what services are available.” This defi-
nition tightly relates services to today state-of-the-art web standards, such as
Web Service Description Language (WSDL [6]), Simple Object Access Proto-
col (SOAP [147]), Universal Description, Discovery and Integration repository
(UDDI [142]), which are, respectively, the description language for service, the
protocol supporting interactions among services and the distributed repository
where services are published.2 However, such standards evolve continuously
and may be subject to revisions and extensions, due to new requirements and
possible changes/refinements in the vision of SOC. Other definitions, which
lie in the middle of the spectrum are the following ones, provided by two stan-
dardization consortia, respectively, UDDI and World Wide Web (W3C [148]).
According to the former, services are “self-contained, modular business ap-
plications that have open, Internet-oriented, standard-based interfaces”. The
latter envisions a service as a “software application identified by a URL, whose
interfaces and bindings are capable of being defined, described and discovered
as XML artifacts. A service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols.”

It is not our intention to discuss here and provide the right definition of
service, rather, we want to observe that all the above definitions agree on the
fact that
a service is a distributed application that exports a view of its functionalities.
In general, such a view can be described either from an input/output (I/O)
perspective only, or, in addition, also in terms of a behavioral description. The
I/O perspective is taken by standards such as WSDL [6] (see Section 2.1.1), by
the Semantic Web Service community [5] (see Section 2.1.2), and it consists in
describing a service in terms of the exported operations, with no or very lim-
ited specification of constraints on the execution order of operations. Consider
Figure 1.1(a): it represents a service described from an I/O perspective that
allows for buying CDs online, through the shown operations, which have intu-
itive meaning (for simplicity the input and output parameters are not shown in
the figure). A client that interacts with it could in principle execute the offered
operations in any order. For instance, a client could buy a song before adding
it to the cart. Additionally, there are services in which the client needs to be
authenticated before executing any other action (as in the leftmost service of
Figure 1.1(b)), in other the authentication takes place before buying the CD
or before adding it to the cart (as in the rightmost service of Figure 1.1(b)):
such services export the same set of functionalities, but they do not support
the same interactions with their clients. Therefore, they seem to be “equal”
when considering the I/O perspective only, but actually they are not, since
they have different behavioral descriptions. This example shows that (i) in

2WSDL and UDDI will be further addressed in Chapter 2.
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Figure 1.1: Different views of a service functionalities

order to completely describe a service, ordering constraints on operations need
to be defined, and that (ii) such ordering constraints can be either intrinsic on
the operations (add to cart must happen before buying a CD) or depend on
the implementation logic of the service itself (authentication before search,
or after search but before add to cart). For this reason, recently it is ad-
vocated [69, 89, 17] that services should also be described in terms of their
behavioral description, that is, all the possible sequences of operations that the
service supports for execution. Such behavioral descriptions are often called
conversations. Therefore, in the rest of this thesis, we consider a service as
a distributed application that exports a view of its functionalities in terms of
its behavioral description.

1.2.2 Research Issues on Services and Service Composition

The commonly accepted and minimal framework for Service Oriented Com-
puting is the Service Oriented Architecture (SOA) [87]. It consists of the
following basic roles: (i) the service provider is the “owner” of a service, i.e.,
the subject (e.g., an organization) providing services; (ii) the service requestor,
also referred to as client is the subject looking for and invoking the service in
order to fulfill some goals, e.g., to obtain desired information or to perform
some actions; and (iii) the service directory is the subject providing a repos-
itory/registry of service descriptions, where providers publish their services
and requestors find services.

When a provider wants to make available a service, he publishes its inter-
face (input/output parameters, message types, set of operations, etc.) in the
directory, by specifying information on himself (name, contacts, URL, etc.),
about the service invocation (natural language description, a possible list of
authorized clients, on how the service should be invoked, etc.) and so on. A
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requestor that wants to reach a goal by exploiting service functionalities, finds
(i.e., discovers) a suitable service in the directory, and then binds (i.e., con-
nects) to the specific service provider in order to invoke the service, by using
the information that comes along with the service. Note that this framework
is quite limited, for instance, a service is characterized only in terms of its in-
terface: no support for behavioral description of services is considered. Also,
SOA conceives only the case when the client request matches with just one
service, while in general it may happen that several services collaborate to its
achievement. Despite this, SOA clearly highlights the main research challenges
that SOC gives rise to.

Research on services wrt SOA and SOC spans over many interesting is-
sues. Service description is concerned with deciding which services are only
needed for implementation purposes and which ones are publicly invocable;
additionally, it deals with how to describe the latter class of services, in order
to associate to each service precise syntax and semantics. Service discovery,
selection and invocation considers how customers can find the services that
best fulfill their needs, how such services, and, consequently, the providers
that offer them, can be selected, how the clients can invoke and execute the
services. Other interesting areas are: service advertisement, which focuses on
how providers can advertise their services, so that clients can easily discover
them; service integration, that tackles the problem of how services can be inte-
grated with resources such as files, databases, legacy applications, and so on;
service negotiation, dealing with how the entities involved negotiate their role
and activities in providing services. The notions of reusability and extensibil-
ity are key to the SOC paradigm: they consider how more complex or more
customized services can be built, by starting from other existing services, thus
saving time and resources. Security and privacy issues are of course impor-
tant, since a service should be securely delivered only to authorized clients
and private information should not be divulged. Last but not least quality of
services (QoS) should be guaranteed. It can be studied according to differ-
ent directions, i.e., by satisfying reasonable time or resource constraints; by
reaching a high-level of data quality, since data of low quality can seriously
compromise results of services. Guaranteeing a high quality of services, in
terms of service metering and cost, performance metrics (e.g., response time),
security attributes, (transactional) integrity, reliability, scalability, availability,
etc. allows clients to trust and completely depend upon services, thus achiev-
ing a high degree of dependability, property that Information Systems should
have [150]. Note that all the research areas highlighted above are tightly re-
lated one with the other. For instance, discovery, selection and invocation of
services requires correctly describing services.

In this thesis, we focus on another very interesting research topic, service
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composition. Service composition addresses the situation when a client request
cannot be satisfied by any available service, but a composite service, obtained
by combining “parts of” available component services, might be used. The
composite service can be regarded as a kind of client wrt its components,
since it (indirectly) looks for and invokes them.

Example 1 A researcher wants to arrange for a participation to a conference:
he would like to register to a conference, book for a hotel room and arrange for
the travel; in particular, the researcher wants to buy either a train ticket or a
plane ticket, making the decision according to some information that he gath-
ers during the service execution. Therefore, he connects to a publicly accessi-
ble (advanced) repository of services, where he specifies his request and in his
turn he receives a service that realizes it (if one exists). Such returned service
should interact with the researcher, and allow him to make some choices, which
may depend on the results of previously executed interactions. Note that, in
general, it is likely to happen that the researcher request cannot be realized
by any single available service, but by a new composite service, obtained by
coordinating a set of available services: however the researcher is unaware of
how many services are involved in the fulfillment of his request. Consider the
situation when (a software module of the advanced service repository finds out
that) the reseacher request can be realized by coordinating the following set of
component services: Conference Registration service that allows first for
registering to the conference, then for booking a hotel, and finally for charg-
ing the researcher credit card with a suitable amount; Travel Information

service that gives information about a specific location (i.e., weather in spe-
cific period, distance from given location, etc.); Travel Arrangement service
that allows for buying either a plane or a train ticket. Note that a correct
execution of the Conference Registration service consists of all the three
operations, performed in the specified order. The researcher request can be
realized by a new composite service, obtained by coordination of the available
component services as follows: first it allows the reseacher for registering to
the conference, by executing the first operation of Conference Registration

service, then it lets him invoking Travel Information: on the basis of the
information returned, the new service lets him to choose whether to buy a
plane or a train a ticket with Travel Arrangement service. Finally, having
decided the dates for travel, he is allowed to book the hotel room and to give
his credit card for being charged, by executing the remaining operations of
Conference Registration service.

Service composition involves two different issues, namely composition syn-
thesis and orchestration:
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1. Given a set of available services and a client request, the problem of
composition synthesis, or simply composition, is concerned with synthe-
sizing a new composite service, thus producing a specification of how
to coordinate the available services to realize the client request. Such a
specification can be obtained either automatically, i.e., using a tool that
implements a composition algorithm, or manually by a human.

2. Given the specification of the composite service synthesized in the previ-
ous phase, the problem of orchestration deals with coordinating the var-
ious component services, and monitoring control and data flow among
them, in order to guarantee the correct execution of the composite ser-
vice.

Our main focus in this thesis is on automatic service composition synthesis.
Orchestration has been addressed in other research areas (e.g., workflow)

and many issues have already been studied (e.g., transaction, exception han-
dling, etc.), therefore we rely on results of other fields. In Chapter 2 we discuss
some of such results. Note also that orchestration is modular to composition
synthesis, since it takes in input the composite service produced by the com-
position synthesis.

Finally, it is clear that service composition is tightly related with all the
previously mentioned research areas on services, especially with reusability
and extensibility. In addition, it makes all of them more compelling. It is
interesting, for example, to study (i) how to discover the (possibly minimal)
set of available services to be used in the composition, (ii) whether and how to
advertise component services which constitute part of the composite one, (iii)
how to define the quality of the composite service in terms of the component
service and wrt the client request, (iv) how to set security and privacy policies
of the composite service based on those of the component ones. Service com-
position also involves new issues, namely compatibility and substitution. They
came into play in the following situation. A service S1 that constitutes part
of a composed service Sc becomes unavailable: in order to continue exploiting
Sc, another service S2 that offers at least the same functionalities of S1 should
be found, so that the service S′

c, obtained from Sc by substituting S1 with
S2, behaves as Sc. We will discuss some preliminary result on such issues in
Chapter 2.

Service composition leads to enhancements of the SOA (Extended
SOA [121]), by adding new elements and roles, such as brokers and inte-
gration systems, which are able to satisfy client needs by combining available
services. For example, it is advocated in [121] that a service should not only be
described and discovered on the basis of its interface, as it is now, but by con-
sidering also its behavioral description and quality, i.e., both functional and
non-functional aspects. The Extended SOA provides also support for service
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management, i.e., functionalities to monitor and verify the correct execution
and coordination of composite services, in order to guarantee a certain quality.

From the above discussion, it emerges that it is common agreement that in
order to achieve the SOC vision and have autonomous software applications to
recognize and use services, services must export their behavioral description.

As we will see more in detail in Chapter 2, there are several research
efforts towards the study of automatic composition of services. However, such
efforts are concentrating on “static” aspects, such as ontologies of services,
descriptions of the information the services are dealing with, and descriptions
of the required inputs and produced outputs. As discussed in Section 1.2.1,
we believe that, static aspects alone are not enough to precisely describe a
service. On the contrary, the behavior exported by a service must also include
descriptions of the process the service carries out. Such “dynamic” aspects of
the behavior are crucial in fully understanding what a service does in order to
be recognized and used by autonomous software applications.

1.3 Goals and main results of the thesis

Although an enormous interest is moving around services, several aspects re-
lated to service composition, and as an aside, to service description, including
foundational ones, still remain to be clarified (see [89, 69] for a survey on
different approaches to Service Oriented Computing).

• An agreed comprehension of what a service is, in an abstract and general
fashion, is still lacking. Therefore, no general and common framework
exists that contextualizes services and service composition.

• No consolidated formal definition of service composition currently exists.

• Due to the absence of a common vision, it is extremely difficult to com-
pare the various approaches to composition. As a notable example,
results on computational complexity of both the problem of service com-
position, and the algorithms for composition synthesis are still lacking,
and this inhibits practical and commercial developments of tools for
composition.

• A clear and consolidated awareness of the relations between languages
and tools for describing services and composition techniques is not
present.

• A consolidated characterization of an adequate set of operators for ser-
vice composition is lacking, as well as, a definition and classification of
possible languages for composition.
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• No deep analysis of the possible types of composition, and their proper-
ties currently exists.

The aim of this thesis is to define a formal and comprehensive framework
for the characterization and the theoretical investigation of the problem of ser-
vice composition.

Although several papers have been already published that discuss either a
formal model of services (see e.g., [40]), or propose algorithms for computing
composition (e.g., [118]), to the best of our knowledge, the research done till
now and reported here is the first one tackling simultaneously the following
issues:

• Presenting a formal framework where services are clearly defined and the
problem of automatic service composition is precisely characterized. In
particular, we characterize services in terms of their behavioral descrip-
tion, modeled as execution trees, whose nodes correspond to sequences of
actions executed so far and whose successor nodes represent the choices
available to the client about which actions to do next. The problem of
service composition amounts to find a new composite service (again rep-
resented as an execution tree), that realizes the client request, such that
each action of the composite service is labeled with at least one avail-
able component service, in accordance with the behavior of such service.
Intuitively, such labeling denotes the available service(s) an action can
be delegated to. Although simplified in several aspects, our framework
is general, comprehensive and coherent enough to accommodate various
visions on services and service composition. Additionally, it is flexible
and robust, so that changes in the vision on service composition can be
reflected on it with few adjustments.

• Providing sound, complete and terminating techniques for computing ser-
vice composition in special but quite significant cases (both composite and
component services modeled as finite state machines), and providing a
computational complexity characterization of the algorithms for auto-
matic composition. The basic idea is to encode the composition problem
(i.e., services, the client request, and some domain independent con-
ditions) in a formula Φ expressed in specific logics, and to reduce the
problem of service composition to satisfiability of Φ. Among the avail-
able logics, we resort to Propositional Dynamic Logics (PDLs), which are
a family of logics used to represent and reason upon program schemas.
We formally prove that a composite service exists if and only if Φ is
satisfiable and the model of Φ is exactly the composite service. In other
words, exploiting several properties of PDLs, we are able to compute in
EXPTIME a composite service which is a finite state machine. We also
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tackle the service composition problem in various frameworks, obtained
by enriching the behavioral description of services and the client speci-
fication with various features. To the best of our knowledge, these are
the first algorithms for automatic service composition, where services
are modeled as finite state machines and the client’s needs are explicitly
taken into account.

• Implementing our service composition techniques in an open source pro-
totype tool. From a practical point of view, standard tableau algorithms
used to check satisfiability of a PDL formula are quite complex to im-
plement. Therefore, in order to implement our service composition algo-
rithms in a prototype tool, we resort to another family of logics, namely
Description Logics (DLs). Indeed, there is a one-to-one correspondence
between PDL formulas and DL knowledge bases (and therefore, between
PDL models and DL models). Additionally, DL based tableau algo-
rithms have been widely studied in the literature and several optimiza-
tions for effective and efficient implementations have been developed.
However, we want to remark that we use DLs only for implementation
purposes, since DLs are a family of logic used to represent static knowl-
edge, i.e., that can be expressed in terms of classes and relationships
between them.

Finally, note that several open issues remain to be solved and many possible
extensions to our framework may be taken into account. Additionally, not
all aspects highlighted above have been tackled yet. Doubtless, the research
presented in this thesis constitutes a first step towards the definition of a
theoretical framework for services and service composition.

The results of this thesis have been published in international journals,
conference and workshop proceedings, [30, 28, 22, 21, 31, 25, 24, 32, 23, 19].

1.4 Structure of the thesis

The rest of this thesis is structured as follows. In Chapter 2 we discuss the
state of the art in Service Oriented Computing and in particular wrt ser-
vice composition. In Chapter 3 we first discuss our general framework where
services are characterized in terms of their behavior, expressed as (possibly
infinite) execution tree. Then, we provide a formal definition of the problem
of service composition in such a framework. In Chapter 4 we restrict our
attention to the class of services that can be represented using finite state
formalisms. Then, we discuss a sound, complete and terminating algorithm
for automatically computing service composition. Finally, we provide a com-
putational complexity characterization of the algorithm. In Chapters 5 and 6
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we extend the framework of Chapter 4 by considering client requests which
present various forms of underspecification, and by specifying the role that a
service has wrt an action, namely whether it delegates the action to other ser-
vices (because it is not able to execute it) or it is delegated an action (because
it is able to execute it). Then, we discuss sound, complete and terminating
algorithms for automatically computing service composition, and characterize
their computational complexity. In Chapter 7 we present the prototype tool
we developed that implements our service composition algorithms. In Chap-
ter 8 we summarize our work and discuss future research directions. Finally, in
Appendix A we discuss an encoding of finitely representable services, which is
based on Situation Calculus and is alternative to the one of Chapter 4; finally,
we discuss a sound, complete and terminating technique for automatic service
composition.





Chapter 2

Related Work

In this chapter we analyze the main works published in the literature that
are relevant to the results presented this thesis, and that constitute the state
of the art on services. First, we concentrate on service description and com-
position. Then, we show that several research areas (e.g., data integration,
planning and reasoning about actions, workflow, software components, pro-
gram and verification synthesis) present issues that are somehow related to
those of services, therefore, solutions or approaches proposed in these fields
can be suitably applied to help solving open issues regarding services, and in
particular, service composition, from a conceptual point of view. We compare
and classify all the results about service description and composition wrt a
set of dimensions highlighting what has been done, which issues need to be
solved, and how results from other fields can help in tackling them. Finally,
we discuss the results in service discovery and orchestration, which are related
to service description and composition, and on top of which the results of this
thesis can be built; we also analyze the open issues they presents.

Observe that many industrial efforts have concentrated on services, there-
fore, we will discuss contributions from both the industry and the academia.
This allows us to show that service oriented computing is supported by a rich
technological substrate, that however is not suitable for service oriented com-
puting at a conceptual level. Indeed, we argue that service oriented computing
should be based on a conceptual representation of services from an external
point of view, thus abstracting from internal (i.e., implementation) details;
such an external point of view is the one to be considered in particular when
composing services.

13
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2.1 Service Description and Modeling

There are several ways in which a service can be described. This is especially
clear when considering the enormous quantity of languages that are being
proposed as standard by industrial consortia. In order to clarify the current
approaches to service description and highlight the open issues, we compare
them wrt the following properties, namely, their proposed interaction model
between the service and the client, their degree of completeness in the speci-
fication of the service description, their degree of observability (of the current
state), and how they model data, if present.

As fas as its interaction model, a service can be classified as (i) atomic,
(ii) run based, (iii) tree based. An atomic service is described in terms of its
operation(s), i.e., as a (possibly singleton) set of signatures with input and
output parameters, and possibly preconditions and effects1. Atomic services
are considered as “black box” entities, since they are characterized from an
input/output perspective. Conversely, run based or tree based services are
characterized by a non-atomic behavioral description, therefore, they are of-
ten referred to as “gray box”. The difference between run based and tree
based systems depends on the (conceptual) model of behavior they assume.
Specifically, it is analogous to difference that exists between the model of time
that is assumed by a Linear Temporal Logic (LTL) formula, and the model of
time assumed by a branching temporal logic (CTL) formula, respectively. A
service is characterized by a run based model, when its behavior is described
by linear sequences of actions, each one describing a single run (i.e. compu-
tation). Therefore, in such case, each time point has a single successor time
point. Finite state automata are an example of a run based model: they rep-
resent sets of runs (or of traces or of strings), i.e., finite length sequences of
actions. Therefore a run based model could be also referred to as language
based. On the contrary, tree based services are typical of a branching setting :
each time point may have several successor time points, all equally plausible
during execution. Therefore, such services are captured by structures which
have the form of (possibly infinite) trees, each describing the behavior of a
possible computation. Transition systems are an example of tree based model:
they focus on alternatives encountered during runs, as each transition repre-
sents a choice point on what to do next. Therefore a tree based model could
be also referred to as transition system based.

The behavior of a service can be captured by a complete or partially spec-
ified description. Each complete specification denotes the behavior of a single
service. The presence of incompleteness in the description determine a set of
services whose behavior is completely specified, in such a way to be coherent

1Effects can be also conditional.
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with the partial description. For example, the incompleteness may regard the
initial situation and/or the effects of actions: this means that after performing
an action, the successor state is not always known. In other words, the knowl-
edge (i.e., observation) of the current state is only partial: at each step of the
computation, the (partially described) service is in a set of possible current
states, characterized by common observable properties. Therefore, it is also
interesting to study the implications due to a partial state observability.

Finally, since services handle data, in the form of input and output param-
eters, it is necessary to model the data (types) that a service can handle, and
the flow of data (values) and control within a service.

The classification done in this section is reported in Table 2.4 in Section 2.4.

2.1.1 Industry

Recently, a plethora of languages for modeling and specifying different facets
of service oriented computing have been proposed. In this section, we discuss
some of them, with respect to the Service Oriented Architecture (SOA) (cf.
Section 1.2.2), in order to correctly compare all such works.

First of all, note that since the transport medium is a parameter of SOA,
such an architecture is easily integrable on top of different technologies. As
briefly mentioned in Section 1.1, an architecture for services is generically
based on an electronic transport medium, whereas for a Web Service architec-
ture the transport medium consists of Web based technologies such as HTTP,
SOAP and XML Protocol [146]. All emerging proposals consider the last
scenario, in which services “live” over the Web, and address some basic tech-
nological issues of SOA, that is (i) the definition of the Web Service description
language, possibly expressed in terms of the interactions a Web Service can be
involved in (i.e., its behavior or conversations2), (ii) the definition of the Web
Service directory, and (iii) the definition of how to compose and coordinate
different Web Services, to be assembled together in order to support complex
processes (i.e., the orchestration). In what follows, we concentrate on the first
point. The remaining ones will be tackled in the next sections.

In the context of the W3C, many Web Service description languages are
being proposed for specific purposes:

• Web Service Description Language (WSDL, [6]) for describing Web Ser-
vices, in terms of their static interface;

• Web Service Conversation Language (WSCL, [77]) for describing the
conversations a Web Service supports; its underlying model are the ac-
tivity diagrams;

2Usually, the term conversation is used when the behavior is expressed as sequences of
message exchanges.
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• Web Service Choreography Interface (WSCI, [12]) for describing the ob-
servable behavior of a Web Service, i.e., as seen by its clients, in terms
of temporal and logical dependencies among the exchanged messages.

With respect to the SOA, the languages WSDL, WSCL and WSCI concern
the service provider, since he exploits them to describe the Web Service he
wants to publish.

WSDL, analogously to an interface definition language (e.g., CORBA
IDL), describes (the set of) operations it offers, ingoing and outgoing mes-
sages, and data types used by the Web Service which are defined in terms
of XML Schemas. Moreover, it supplies a mechanism to locate the Web Ser-
vice (e.g., using a URI), a protocol to exchange messages and the concrete
mapping between the abstract method definition and the real protocol and
data format. WSDL defines what the Web Service does, not how it does it.
Finally, as briefly mentioned in Section 1.2.1, WSDL (Version 1.1) does not
express the semantics of exchanged messages, neither their correct order. Ad-
ditionally, WSDL does not currently support operations for monitoring Web
Services such as checking the availability of an operation or the status of a
submitted request. Recently, a first working draft of WSDL Version 2.0 has
been published [48]. The most important changes concern (i) the definition
of message patterns for the exchange of messages, which can be seen as a first
step towards the association of semantics to message exchanges, and (ii) the
support of inheritance (but not of overloading) between operations. It is very
likely that other constructs will be added in future working drafts, for example
for supporting composition.

WSCL models the conversations supported by a Web Service: it specifies
the XML documents being exchanged, and the allowed sequence(s), in a fash-
ion similar to an activity diagram. A WSCL document is composed of four
main elements: (i) document type descriptions specifying the types (schemas)
of XML documents the Web Service can accept and send during the conversa-
tion, (ii) interactions modeling document exchanges between two participants
(i.e., the Web Service and its client), during the conversation, (iii) transitions
specifying the order relationships between interactions, and (iv) conversations,
listing all the interactions and transitions that make up the conversation.

WSCI can be considered as a evolution of WSCL: it describes the ob-
servable behavior of a Web Service and how operations can be choreographed
in the context of message exchanges in which the Web Service participates.
WSCI allows to describe the correct order of the exchanged messages and per-
mits to define multiple behaviors for the same Web Service on the basis of
the context in which is used. Furthermore, it provides methods to manage
exceptional situations, such as timeouts and fault messages. WSCI, finally,
allows to define the abstract behavior of a process that involves more Web
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Services in term of interfaces and links between operations, thus giving a view
of the process in terms of message exchanges; with such a respect, WSCI is
also an orchestration language.

From the above discussion, it is clear that WSDL addresses only static
interface specifications, whereas WSCL and WSCI consider also behavioral
issues. Therefore, according to our classification, WSDL considers an atomic
interaction model for Web Services, while WSCL and WSCI consider a tree
based model, since they describe the Web Service behavior as the tree of all
possible computations. Additionally, since WSCL and WSCI are industrial
languages, they allow only for completely specified description of Web Services,
and therefore, at each point of execution of WSCL and WSCI file, the current
state is completely known. Finally, all of them explicitly handle data, in the
form of ingoing and outgoing messages, that define the schemas of the XML
documents being exchanged.

Also Business Process Execution Language for Web Services
(BPEL4WS, [4]) and Web Service - Choreography Description Language
(WS-CDL [90]) are languages for describing services. However, they are more
targeted towards specifying how multiple services are coordinated and the
state and logic needed for such coordination, therefore, we will address them
in Section 2.5.2.

2.1.2 Academia

The OWL-S (formerly DAML-S) Coalition [5] defines a specific ontology and
a related language for Semantic Web Services (SWS3), called OWL-S. Specifi-
cally, the ontology enables the definition of SWS content vocabulary in terms
of objects and complex relationships between them, including class, subclass
relations, cardinality restrictions, etc., and including all XML typing informa-
tion. More in details, the SWS Ontology comprises:

• Service Profile. It focuses on what a SWS does, since it describes proper-
ties of a SWS necessary for automatic discovery, such as its capabilities,
and its inputs, outputs, its preconditions and (possibly conditional) ef-
fects.

• Service Model. It focuses on how a SWS works, since it describes the
SWS process model, i.e., the control flow and data-flow involved in using
the SWS. It is designed to enable automated composition and execution
of SWSs.

• Service Grounding. It focuses on how to access a SWS, in terms of
communication protocol, marshalling and serialization. In particular, it

3They are Web Services equipped with machine-interpretable semantics.
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connects the process model description to communication-level protocols
and message descriptions in WSDL. Up to now, the Service Grounding
has not been addressed yet.

Although the specifications of the SWS ontology are continually evolving,
the tendency is to adopt a rule-based language for expressing Profile; as far
the Service Model, two competing approaches, namely FLOWS and SWSL-
Rule, that propose a Situation Calculus based language and a first-order rule
based language, respectively. Such models have a quite high expressive power,
therefore, they are not suitable for automatic synthesis: however, this is in
line with their aim, which is only to fully characterize a SWS [74].

Several interesting works build upon SWS architecture (see, e.g. [85, 63]).
In particular, in the Semantic Web Service literature, we want to mention
the results in [118], where the authors provide a Situation Calculus based
axiomatization of the Service Profile and provide an operational semantics
characterization of SWS execution using Petri Nets. In [108, 107] McIlraith
and her group propose a Situation Calculus based framework for services,
where a SWS is described as a Golog/ConGolog [73] procedure, seen that the
client sees as an atomic action presenting an input/output behavior, which is
expressed in OWL-S in terms of its Service Profile. Services are stored in an
OWL-S ontology of services.

According to our classification, SWSs provide an interaction model which
is both atomic (according to the Service Profile) and based on a behavioral
description (according to the Service Model). Due to the continuous evolution
of the Service Model, it cannot be stated whether it is run or tree based, at the
moment in which this thesis is being written, neither whether SWS exports a
complete specification, or an incomplete one.

Note also that, to the best of our knowledge, all the works on SWS descrip-
tion, discovery and composition of SWSs focus on the Service Profile, without
considering the process model. Therefore, it is not clear whether the process
model is somehow exported to the SWS client, i.e., it can be accessed directly
by him, or instead, it is internal to the SWS.

Many works in the literature consider an atomic interaction model to de-
scribe services [89, 122, 112, 57], that export a complete specification.

In [153, 120, 119] Papazoglou and his group propose to wrap (simple
or complex) pre-existing services into a web component, so that their opera-
tions can be offered through a uniform interface. The authors consider a web
component as a class of an object oriented language, that can be extended, re-
used, and specialized. These components are specified in the language SCSL
(Service Composition Specification Language) and are stored in a common
library.
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Several works focus on information gathering services, whose execution is
based on an underlying database. In particular, we focus on the following
ones, that we consider significative.

In [54] Vianu and his group consider a service as a data-driven entity
characterized by a database and a set of web pages. At each step of the
computation, i.e., when the client is on a specific web page, a set of input
choices are presented to him: some of them are generated as queries over the
database; a fixed set (of input choices), representing specific client data, are
treated as constants, whose interpretation is provided by the client during
the run of the service, i.e., it is not fixed a priori. The client chooses one of
such inputs, and in response, the service produces as output updates over the
service database and/or performs some actions, and makes a state transition,
which is seen by the client as a transition from a web page to another. Initially,
the client starts from the home page. A service is therefore seen by the client
as a tree of web pages, whose structure is completely specified in terms of
a relational schema, constituted by a set of tuples that dynamically depend
on the service database, the current state, the available actions and input
choices. Also the service database, states, inputs, and actions are modeled as
relational schema. The proposed model of services is based on Spielmann’s
work on Abstract State Machine (ASM) transducers [136, 137].

In [139, 141, 140] Ambite, Knoblock and Takkar consider services as
views over data sources. They build on the idea that heterogeneity of data
sources may be overcome by exploiting services as wrappers of different infor-
mation sources, thus providing uniform access to them, exploiting standard
protocols such as SOAP and XML. Each data source, i.e., service, is described
in terms of input and output parameters (the latter provided by the source),
binding patterns and additional constraints on the source. The latter allow to
characterize the output data, e.g., that a certain data source returns restaurant
in a given area.

Recently, it is advocated the need to characterize services in terms of their
behavioral description [69]. From the survey in [89], it stems that most prac-
tical and currently adopted approaches for modeling behavioral descriptions
of services, especially those targeted towards composition, are based on finite
automata/state machines.

In [40], Hull and his group model a (completely specified) service (called
peer) is as a Mealy machine, that exchange messages with other peers accord-
ing to a predefined communication topology. Each peer receives messages
belonging to its set of input messages and sends messages belonging to its set
of output messages. In general, communication is asynchronous, since each
peer is equipped with a bounded queue which is used to buffer messages that
are received but not yet processed. Possibly, the queue of each peer may have
length zero: in this case messages are exchanged in a synchronous way. At
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each step, a peer can either (i) send a message, or (ii) receive a message, or
(iii) consume a message from the queue, or (iv) perform an empty move, by
just changing state. Therefore, the first set of results focus on a run-based
perspective.

In [123] Traverso and his group define a framework where available
services are partially specified, and the degree of observability on the current
state varies from full observability (i.e., the current state is completely spec-
ified), to null observability (no information on the current state is available),
to partial observability (only partial information is available). Each service
is represented as a non-deterministic finite state machines, characterized by a
set of initial states and by a transition relations that defines how the execution
of each action leads from one state to a set of states. Because of incomplete
knowledge on the initial states and on the outcome of actions, at each com-
putation step, each service could be in a set of states, each equally plausible
given the initial knowledge and the observed behavior.

In [17, 10, 15, 16], Benatallah, Casati, Toumani and their group
model the behavior of a service in terms of its conversations with the clients,
i.e., as the tree of message exchanges, on which order constraints among mes-
sages are imposed. In [17, 10] the (completely specified) behavior of a service
is represented as a deterministic finite state machine, where transitions are la-
beled by operations, and states with the status of the conversation, for example
the effect of the operation leading to it (if clearly defined). The initial state
is labeled by “Start”. Some transitions are not labeled with operations since
they model situations when the evolution of conversations from one state to an-
other is not caused by an (explicitly invoked) operation, but by a (predefined)
event, e.g., by time elapsing. The authors denote by conversation schema the
specification of a conversation, and by conversation instance a particular ex-
ecution of a conversation. Additionally, the authors further characterize the
transitions, by specifying with human readable description (e.g., XML based)
when they occurs and their implications (e.g., transactional semantics). In
this way, one can easily denote precondition, effects of a transition, tempo-
ral constraints, policies for transition compensation, etc. In [10] the authors
show how to automatically generate the skeleton of a BPEL4WS specification
starting from the finite state machine modeling the service conversation, thus
guaranteeing that the service implementation conforms to a given conversa-
tion specification. Note that the authors focus on producing a BPEL4WS
skeleton containing the service implementation logic, rather than information
on which services are actually invoked: such bindings will be manually defined
by the service designer in a second moment. In [16] the same authors present
a slightly different model for the service behavior (again considered in terms of
its allowed conversations), that is represented as a possibly non-deterministic
finite state machine, where transitions are labeled with either an input or an
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output message. Non-determinism is due to the fact that the service may be-
have differently in different situations, on the basis of internal business logic
which is not exposed to the clients. Therefore, non-determinism is caused by
partial specification of the exported behavior. By unfolding in all possible way
the finite state machine associated with a service, one obtains a conversation
tree, which defines the set of all possible conversations that service is involved
in. In other words, the authors propose a branching structure as the underly-
ing model for conversations: at each step, the client has to make a choice on
which message to send (if any).

In [128, 35] Bordeaux and Salaün propose to describe tree based service
behavior using Process Algebras, which are formal languages used to model
dynamic entities, using an approach based on transition systems. In this way,
they associate clear operational semantics to behavior of services and are able
to automatically verify desired properties of them, such as absence of dead-
locks and starvations between interacting services. Several Process Algebras
have been proposed, each one addressing specific features of processes: LO-
TOS [34] can be used to model data, Timed CSP [134] captures temporal
constraints, π-calculus allows to model mobile processes, i.e. processes that
communicate with other processes that change dynamically. The Process Al-
gebra they focus on is CCS [116], which is the simplest one, yet equipped with
all the operators needed to represent services, and on top of which all other
process algebra have originated. In particular, they show how to model both
a choreography and an orchestration scenario in CCS. The authors also show
how to map a CCS specification of a (composite) service into a BPEL4WS file
(skeleton). In [129] the authors continue to show the usefulness of applying
process algebras to services by showing how to capture in LOTOS a framework
for service negotiation.

In the framework we develop in this thesis, we study services exporting a
complete4 specification of their behavior, represented as the tree of all possible
actions that each service can execute. At each step of its execution, the service
presents its client with a choice on the next action to perform: the client selects
one, according to its goal, and the service executes (the computation associated
to) it. Then, it presents again the client with a new set of actions. We do not
explicitly model data in our framework, even if it can be easily and naively
encoded e.g., in the state (see Section 3.3.2)

4Note that, in general, the notion of ”complete” is relative to the abstractions taken in
the model. Specifically, the model in this thesis is ”complete” wrt to actions.
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2.2 Service Composition Synthesis

In this section we consider again the works presented in the previous section,
which are targeted towards the problem of service composition synthesis. We
recall that given a set of available services and a client request, the problem of
service composition synthesis is concerned with synthesizing a new composite
service that realizes the client request, by suitably coordinating the available
services. For each of the works, we discuss how they tackle such problem by
focusing in particular on (i) how the client request is modeled, (ii) the kind
of composition, (iii) the referred architecture for orchestration.

The client5 request denotes somehow the specification of the composite
service he desires to interact with in order to achieve his goal. Therefore, a
client request presents the same features of a service specification, i.e., it can
be characterized according to its interaction model wrt the service, its degree
of completeness, its degree of observability (of the current state), analogously
to what discussed in Section 2.1. The client request is atomic if it specifies
the signature of the service he would like to have realized, expressed in terms
of input (values), output (data types), possibly preconditions and effects. The
client request can also be expressed in terms of the actions that the composite
service should execute, by specifying them in terms of properties over either its
runs or its tree. In the first case, the client specifies (a set of) linear sequences
of actions: at each point of the computation the future is uniquely deter-
mined on the basis of the properties expressed in the client request, therefore
the composite service is executed with no intervention from the client, since
the client is guaranteed that the service computation that will be executed
achieves his request. If the client request denotes the (execution) tree of the
service, it is actually specifying a set of possible futures for each point of the
computation. Therefore, the composite service must behave correctly for any
such possible future. Note that during execution, the client chooses which is
the unique possible future, among those possible. Run based and tree based
client specifications are expressed, respectively, using linear based and branch-
ing based formalisms, whose expressive power is not comparable: for example,
branching based formalisms, such as branching temporal logics, cannot express
properties over runs and linear based formalisms, such as linear temporal log-
ics, cannot state features of trees. Finally, note that, in general, client request
and composite service do not necessarily share the same interaction model,
neither do composite and component services for example, an atomic client
request can be realized by a run based composite service, however, the client
is not aware of it, since the coordination of component services is completely
hidden to the client.

5In general, the client can either be a human user or another service. Here, for simplicity,
we refer to the client with the pronoun “he”.
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The client request can be either a complete or a partial specification. As
usual, a complete specification denotes the single service the client would like
to have realized, while the partial specification expresses a set of possible
services, any of which realizes the client request. Note that from a practical
point of view, it is more common to find client requests which are partially
specified rather than complete specifications: therefore, it is interesting to
consider how a partial client specification impacts the algorithm for automatic
service composition synthesis. Again, in the latter case, it is also worthwhile
analyzing the consequences of having a partial knowledge (i.e., observation)
of the current state.

Now we consider the various ways in which component services can be
arranged in a composite service, and therefore, are coordinated in the or-
chestration phase. The simplest case is when services are sequential ized: the
execution of one component service can start only after the previous one has
completed. Note that also data and control flow present a linear structure:
the input of a service may depend on (either coincide with or be some aggre-
gation of) the output returned by previous services. More challenging it is the
case when component services are interleaved and concurrent ly executed, i.e.,
action a of service E is executed, followed by action b of service F , followed
by action c of E, etc. Of course, also data and control flows are more com-
plex, since several services are simultaneously active and concurrently running.
Typically, a sequential composition is associated to atomic services, while con-
currency is a characteristic of run-based or tree based services. However, it
may happen that services whose description is atomic but whose execution
is not (i.e., its execution consists of several actions, which are hidden to the
client) are coordinated in a concurrent way while run or tree based services
are sequentially coordinated.6

When component services are partially specified, two other forms of com-
position can be identified, namely conformant and conditional. A conformant
composite service is constituted by a set of action sequences or a tree of actions
that realizes the client request regardless the partially specified component ser-
vices. In other words, the composite service realizes the client request, for all
possible ways the component service actually behave during the coordination,
i.e., for all possible initial states in which the composite service can be, and
for all possible effects of actions. Conversely, a conditional composite service
deals with partial specification of component services by gathering informa-
tion on them at run-time, i.e., by performing some sensing activities. It is
also characterized by a structure of the form “if-then-else” (i.e., if it is repre-
sented as a FSM, this is equivalent to have guard conditions on transitions):

6Another interesting issue that is worth mentioning, and that has not been tackled yet
in the service literature, is the spawning (see, e.g., [88]) of services, i.e., the situation when
several instances of a service are activated and executed by interacting one with the other.
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at run-time, it is sensed the value of the “if-condition”: if it is true the “then”
path is followed, the “else” otherwise. The composition can be obtained either
manually by a human, or automatically, by exploiting a tool that implements
an algorithm, in our survey we consider also this aspect.

Since the specification of the composite service is then orchestrated by some
engine, such a specification should also consider whether the architecture for
orchestration, is peer-to-peer, i.e., distributed, or mediated, i.e., centralized, as
identified in [89]: in the first approach the individual services interact among
themselves and with the client directly, while in the second the control over
the available services is centralized. In Section 2.5.2 we will further tackle such
aspect wrt orchestration engines.

Finally, in order to achieve correct coordination among component services,
the composite service should handle the flow of data (values) and control.
Therefore, we will analyze how the various proposals address this point.

The classification done in this section is reported in Table 2.4 in Section 2.4.

2.2.1 Industry

Interestingly, to the best of our knowledge, very few efforts from the indus-
try address the problem of composition synthesis, and all of them have in
common the development of tools for manual composition of services where
all component services are represented as WSDL, and therefore assume an
atomic interaction mode. Indeed, the industry focuses more on how to or-
chestrate (manually obtained) specification of composite services, expressed
in languages such as Business Process Execution Language for Web Services
and Choreography Description Language, as it will be clear in Section 2.5.2.

2.2.2 Academia

In this section, we describe the various approaches to service composition from
academia. We focus first on those works considering atomic services, and then
on those addressing services that export behavioral descriptions.

In [112] Bouguettaya, Elmagarmid and Medjahed present a frame-
work for composing atomic services, which are semantically described in terms
of non-functional properties such as their purpose, their category and their
quality. Such properties define a taxonomy of services. Then, the authors de-
fine a composability model, for comparing syntactic and semantic features of
services, in order to check if they can be composed. Syntactic features depend
on (i) the interaction protocol supported by each service, and on (ii) their
binding protocols; semantic features depend on (i) comparison of the number
of message parameters, their data types, etc., (ii) the semantics of service op-
erations, i.e., their purpose and category; (iii) qualitative properties, and (iv)
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composition soundness, which checks if combining services actually provides
an added value service. On top of these notions the authors develop their
algorithm for composition. The the client request is expressed in the Com-
posite Service Specification Language, and (completely) specifies the sequence
of desired operations (including their input/output parameters and seman-
tic description) that the composite service should perform. The client may
also specify the control flow between operations, but cannot impose which is
the composite service(s) that will execute the operations. Thus, given the
client request and a set of available atomic services, they develop a technique
for (semi-)automatic composition, and show a prototype implementation of
it. Note that the composite service, which is a sequence of operations, is
obtained from the client specification by identifying, for each operation, the
operation(s) of component services that matches it, on the basis of their syn-
tax and semantic features. In general, several composite services exist, that
realize a client request by coordination of a set of component services, which
are ranked according some defined quality criteria. Finally, the composite ser-
vice is translated into an orchestration language that is based on a mediated
architecture.

In [153, 120, 119], Papazoglou and his group address the issue of service
composition, where services are atomically represented as web components. As
a composite service is constituted by a set of (possibly composite) services,
also a web component can be constituted by other web components, manually
“glued” together by the so-called composition logics. The authors have also
developed the language SCPL (Service Composition Planning Language), for
representing a composite service, by specifying relations among web compo-
nents, in terms of execution order (either sequential or concurrent) of web
components within composition, or dependencies among input and output pa-
rameters. In [154] a methodological framework for service composition and
life-cycle management is also proposed, in which composite services are cre-
ated by re-using, specializing and extending existing ones.

In [139, 141, 140] Ambite, Knoblock and Takkar propose data integra-
tion techniques to dynamically compose information retrieval, atomic services.
The composition algorithm takes in input the set of available services mod-
eled as data-sources, and a user query, expressed in terms of inputs provided
by the user and requested outputs. The output is a new, composite service
that can execute an integration plan for a template query, so that all the user
queries that differ only for intensional input values can be answered by the
same (composite) service. They adopt a mediator based framework. First, the
specific user query is generalized, associating each specific user input (parame-
ter) with its class: this is done by exploiting attribute level ontologies. In order
to reformulate the generalized user query into the source queries, the mediator
constructs an integration plan consisting of a sequence of source queries and
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taking binding pattern into account. In [141] the integration plan is generated
with a forward chaining algorithm; in [140] the authors implement an exten-
sion of the Inverse Rule Algorithm and map the produced datalog program
into the integration plan. Then, the mediator optimizes the integration plan
using a data flow analysis algorithm, to remove unnecessary source queries
from the generated plan. Finally, the mediator utilizes source constraints and
other services providing sensing functionalities to filter out the data at the
tuple level, that do not meet the source constraints.

In [108, 107], McIlraith and her group present a tool for automatic
composition of services represented as Situation Calculus actions, and encoded
in OWL-S. Such tool works as follows: a user presents his request to the
system, expressed as a kind of generic (i.e., skeleton) ConGolog [73] procedure
with user constraints and preferences. Such a user specification cannot be
executed “as is”: it should be made executable by an agent that, exploiting an
OWL-S ontology of services, automatically instantiates the user specification
with services contained in such an ontology, by possibly pruning the situation
tree corresponding to the generic procedure in order to take user preferences
and constraints into account. Note that the ConGolog generic procedure is
actually associated with a situation tree (i.e., a kind of process flow in the
theory of Situation Calculus), which denotes a partial specification of the
behavior of the desired composite service. Each node of the situation tree
denotes a situation, i.e., a snapshot of the (desired) service configuration at
each point of its execution. When a component service is executed, due to
incomplete knowledge on its effects, it is not known the resulting new situation,
since several situations can equally be possible. The actual (single) successor
situation is defined by executing knowledge-gathering services. Therefore, the
instantiated user specification is a (linear) sequence of atomic (world altering
and information gathering) services which are then executed by a ConGolog
interpreter. Note that in [107, 108] the user request is specified once and for
all before the composition and during the execution of the composite services
he has no control on the executed sequences of actions. Finally, in [108] the
outcome of the composition is not an OWL-S service, and it cannot be re-used
by another user, since it is an instantiated sequence of services satisfying the
goal of a particular user.

In [40], Hull and his group present a framework for modeling and ana-
lyzing the global behavior of service compositions. Services exchange messages
according to a predefined communication topology, expressed as a set of chan-
nels among services: a sequence of exchanged messages (as seen by an external
virtual watcher) is referred to as conversation. In this framework properties
of conversations are studied, in order to characterize the behavior of services,
modeled as Mealy machines. Then, the authors tackle the problem of service
composition synthesis as follows. The input to the synthesis problem are (i)
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a desired global behavior (i.e., the set of all possible desired conversations)
specified as a regular language7, and (ii) a composition infrastructure, that is
a set of channels, a set of (name of) services and a set of messages. The out-
put of the synthesis is the specification of the Mealy machines of the services
such that their conversations are compliant with the specification expressed by
the regular language. Note that the conceptual model underlying the desired
composition specification: a linear setting is taken, since composition focuses
on linear sequences (i.e., paths) of actions.

In [2, 123, 100], service composition is addressed by using planning under
uncertainty, model checking and constraint satisfaction techniques. In [2, 100]
Aiello, Traverso and their group propose a request language, to be used for
specifying client goals. The client request is modeled as a branching temporal
formula, expressed in the EaGLe goal language [99]: it is an extension of CTL,
that allows to express goals of the form “Try to achieve condition c and, in
case of failure do achieve condition d” [99]. Therefore, the client request ex-
presses a complete specification of his requirements, essentially by specifying
a main execution to follow, plus some side paths that are typically used to re-
solve exceptional circumstances. In [123], Traverso and his group propose
a composition algorithm, that takes in input a set of partially specified ser-
vices, modeled as non-deterministic finite state machines, and the client goal
expressed in EaGLe, and returns a plan that specifies how to coordinate the
execution of concurrent services in order to realize the client goal. The plan
can then be encoded in standard coordination languages and executed by or-
chestration engines. Note that once the plan is synthesized, the client does not
further interact with it in order to choose what to do next, therefore, the inter-
action model is run based. The plan is also able to monitor the composition, in
particular that the available services behave consistently with their (partial)
specifications. The authors do not provide any complexity characterization
of their approach, however, due to the presence of non-determinism and par-
tial state observability, the search space explodes with very simple available
services (i.e., with few states). In order to overcome this problem, symbolic
model checking techniques are used to generate a plan, since they compactly
represent the search space, and efficient heuristics are implemented to avoid
generating the whole search space. Additionally, in [100] Aiello and his group
propose an approach to service composition based on interleaving planning,
monitoring and execution: in this way, the authors are able to adapt at run-
time the composite service generated during the planning phase, to cope with
possible changes in the service environment.

In this thesis, in order to address composition in an automatic way, we

7In [89] the authors mentions that it would be natural also to use LTL (or other temporal
logics) to specify the desired global behavior.
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specify our framework where services are modeled as (possibly infinite) exe-
cution trees, to the case where they admit a compact representation as deter-
ministic finite state machines. The client request denotes the desired service
he would like to interact with, i.e., as a tree of actions, finitely represented
as finite state machine. Our composition algorithm works as follows. Given
a set of available services and the client request (all of them represented as
finite state machine), our algorithm finds a labeling of the tree associated to
the client request, such that (i) each action is labeled with (i.e., delegated to)
available services and (ii) each possible sequence of actions on the labeled tree
corresponds to possible sequences of actions of the available services, suitably
interleaved. We addressed and solved the problem of composition when the
client request is either completely or partially specified. We also developed a
tool that implements our algorithm. The works in the literature that present
some similarity with ours are those in [107, 108, 89, 40, 2, 123]. The main
difference between the work in [107, 108], and our technique is that services
are atomic actions, therefore the client can not specify the interleaved execu-
tion of “pieces of” services (i.e., parts of atomic actions/procedures). Another
difference is that in [107, 108], the client specifies his goal once and for all
before the composition and during the execution of the composite services he
has no control on the executed sequences of actions. Conversely, in our work
the client has such control, since at each step of the execution he chooses
the next action to perform. Finally, in [108] the outcome of the composition,
which is a linear sequence of atomic services, is not a service, in the sense that
it cannot be re-used by another client, whereas in our work the composition
produces a reusable specification. The main difference between the approach
in [89, 40] and our technique is that their approach to the synthesis is “top-
down”: a desired global behavior is specified, and it is assumed that services
can be designed during the synthesis phase without constraints. Conversely,
our technique is “bottom/up”: the behavior of the services is also given, and
the synthesis phase tries to assemble such behaviors in order to provide the
desired behavior. Another difference consists in the conceptual model underly-
ing the desired composition specification: in [40] a linear setting is taken, since
composition focuses on linear sequences (i.e., paths) of actions; conversely, in
our approach the client specification is based on a branching model: com-
position focuses on a tree-based structure, where each node denotes a choice
point on what to do next. We recall that the expressive power of linear and
branching temporal formulas is not comparable. In [123, 2] the client goal
essentially specifies a main execution to follow, plus some side paths that are
typically used to resolve exceptional circumstances, whereas in our approach
all possible executions are (equally) considered.

Tightly related to service composition there are the issues of compatibility
and substitutability. Actually, they can be seen as simplified variants of the
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problem of service composition synthesis.
In [36] the authors propose various notions of compatibility and of substi-

tutability of two services, represented by their behavioral descriptions. They
start from the basic intuition that two services are compatible if they can inter-
act properly. A first, strong notion tightly relates compatibility to behavioral
equivalence: two services are compatible if they have “mirroring” behavior,
i.e., at each step, whenever a service can send a message, the other can receive
it and vice-versa. A slightly relaxed definition of compatibility requires that
each service is ready to receive at least all the messages that its mate can
choose to send, and possibly more. Finally, according to the weaker notions
two services are compatible if there is at least one possible way in which the
two services can interact, starting from their initial state and ending in their
final states.

In [16] Benatallah, Casati and Toumani analyze when two services, mod-
eled as transition systems that exchange messages, can correctly interact.
First, they formally define several operations between the protocol (i.e., the
behavior) of two services, say S1 and S2: (i) compatible composition, that
defines the tree of all possible message exchanges (i.e., sent by S1 and received
by S2 and vice-versa) between them; (ii) intersection, that defines the tree
of all messages that can be either sent or received by both S1 and S2; (iii)
difference, that defines the tree of all messages that can be exchanged by S1,
but not by S2; (iv) projection over one service, say S1, which identifies the be-
havior of S1 wrt the protocol defined in terms of previous operations, e.g., the
projection over S1 of the compatible composition between S1 and S2 identifies
the tree of messages of S1 that are correctly exchanged with S2. Then, making
use of such operations, the authors define several classes of compatibility and
substitutability, which are similar to those reported in [36] and independently
obtained.

Related to service composition is also the analysis and verification of com-
posite services, motivated by the dynamic flavor of composition, the conse-
quent difficulties in testing and immaturity of service oriented development
environments and methods. Preliminary results can be found in [68], where
verification of BPEL4WS specifications is carried out exploiting model check-
ing techniques, in [118], where OWL-S services are analyzed exploiting Petri
Nets. In [54] Vianu and his group study how to automatically verifiy proper-
ties of inputs, actions, and states, of data-driven services, that are defined both
over runs, i.e., that all runs satisfy certain conditions, and over sets of runs,
i.e., that for every run with certain properties, some conditions hold. In the
first case, the authors express the properties to be checked as variants of linear-
time temporal logic, in the second case they use variants of branching-time log-
ics. They characterize the complexity of verifying such properties for various
classes of service with different expressive power. We want also to remark that
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analysis and verification are more effective when composite services are man-
ually synthesized; our technique automatically synthesize a composite service
that is correct by construction, as proven in Sections 4.3, 5.3, 6.4, and 7.3.2.

Finally, it is worth mentioning the work in [44], where the authors show
that service composition can be exploited to easily solve the task of record
linking. Record linking, also referred to as object consolidation, is a data and
computationally intensive task aiming at quickly and accurately identifying
common entities in disparate data sources. Conceptually, they extend a stan-
dard data integration system with service operations and abstract representa-
tion of processes. On top of it, they develop a prototype tool that executes a
workflow containing suitable calls to (atomic) services, thus implementing an
algorithm for record linking.

2.3 Related Research Areas

The theoretical investigation of service composition synthesis has been explic-
itly or implicitly addressed in various forms by several research areas, specifi-
cally: (i) Data Integration, (iv) Artificial Intelligence, and in particular, Plan-
ning and Reasoning About Actions, (v) Theoretical Computer Science, and
in particular, Program Synthesis and Verification, (iii) Software Engineering,
and in particular, Software Components.

In the following subsections, we show interesting bridges between each of
the mentioned research fields and services.

Finally, for sake of completeness, we want to mention that also the research
field of Workflows has produced several results (and tools) on which service
orchestration is founded (see Section 2.5.2).

The classification done in this section is reported in Tables 2.4 and 2.4 in
Section 2.4.

2.3.1 Data Integration

Several works in the literature address services and service composition from
a data integration perspective, since they claim services mainly produce data.
Data integration aims at providing a uniform access to a set of autonomous
and heterogeneous data sources, thus freeing the user from having to (man-
ually) locate sources which are relevant to a query, interact with each one in
isolation, and (manually) combine data from multiple sources. By substituting
the term “(data) source” with service, one can understand how in fact service
composition and Data Integration have much in common.

The basic idea is therefore to consider a service (for gathering informa-
tion) as a query over a data source. Specifically, each service is modeled as
an atomic operation with query/results as input/output parameters. As for
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data integration systems, users pose queries in terms of a mediated (or global)
schema, that contain (virtual) services. Service composition can be thus refor-
mulated as a query rewriting problem (see [80] for a survey), where the query
encoding the client request, which is posed over the mediated schema, has to
be re-expressed in terms of (the query associated to) the component, available
services. In order to solve the problem, one may take a query optimization
approach, and focus on producing a query execution plan that involves the
services (as in [139, 141, 140]): in this case, it is necessary that rewriting the
query using the services is an equivalent rewriting, to guarantee correctness
of the query execution plan. Alternatively, one could take a data integration
approach, and focus on translating user queries formulated in terms of the
virtual services of the mediated schema into available services. In the first
case, the outcome of composition is the specification of how to orchestrate
the component services, in order to answer the user query, in the second case,
the outcome is a composite service, again represented as a query. In the lat-
ter case, where instead of services one deals with queries over data sources,
the data sources may not entirely cover the domain, therefore, sometimes a
contained query rewriting is looked for, rather than an equivalent one. Addi-
tionally, the work on data integration consider both the case in which the local
views are complete (i.e., contain all the tuples in their definition) and the case
where they are incomplete (as is common when modeling autonomous data
sources). It is interesting to study how to apply such notions, typical of data
integration, to the service setting.

Finally, a mapping should be defined between each available service and
the virtual services in the global schema. Several approaches can be con-
sidered, depending on whether: (i) the virtual services of the global schema
are expressed in terms of the available services; (ii) the available service is
expressed in terms of the (virtual services of the) global schema; (iii) both
points (i) and (ii). Note that all of them denote well known approaches to
mapping [101] in Data Integration (i) is called global as view (GAV), (ii) is
called local-as-view (LAV) and (iii) is called GLAV, since it combines the two.
Note that, in general, a GAV mapping should be adopted in a fairly static en-
vironment, since whenever a local source or component services is modified or
a new one is added, the global schema needs to be re-designed. However, query
rewriting (and therefore service composition) is in general easier since can be
based on some sort of unfolding (the views over the global schema into the
views over the sources). Conversely, a LAV mapping provides a highly modu-
lar and extensible approach to query rewriting, since (if the global schema is
well designed) whenever a source or a component service is modified, only its
definition is affected, therefore it is suitable for highly dynamic environments.
However, the process of query rewriting (and therefore of service composition)
is complex. In [101] another approach to map component services and the



32 CHAPTER 2. RELATED WORK

services in the global schema is presented, namely P2P: it deals with the sit-
uation where no global schema is present and mappings are defined between
each pair of local sources. In the service context, it means that mapping is
defined a between two services. This leads towards a distributed approach to
service composition, which is very interesting to investigate.

Finally, note that from the discussion of Sections 2.1 and 2.2 all proposals
that focus on services that export run based or tree based behavioral descrip-
tions, do not explicitly model data. We argue that one can fruitfully exploit
data integration techniques to take data into account when modeling services,
and therefore, to automatically generate the specification of data flow among
component services when (automatically) computing composition.

2.3.2 Program Synthesis

The area of program (or process) synthesis deals with synthesizing (the model
of) a program P such that it satisfies a certain specification S, where both
P and S are expressed in a suitable formalism. Tightly related to it, is the
problem of program verification, that given P and S, deals with verifying if P
satisfies S. In a framework for service composition, S may correspond to the
client request and P to the composite service that should be synthesized.

Such problems have been widely studied in the literature (see, e.g. [82,
95, 94, 96, 93, 97, 60]), and several variants exist. A first variant depends on
whether the model of P denotes a complete or partial specification: in the first
case, the sets of input and output to P are known, in the second case, the input
is (possibly partially) unknown. Therefore, P has to behave correctly wrt S
independently of such events. The presence of unknown input corresponds,
for example, to unpredictable events that the environment can generate, such
as, in a service setting, to network failure, or exceptions resulting from the
execution of component services. A second variant depends on whether the
behavior of P depends only on the set of its states, or also on the set of
interactions with the environment, which in general is not known. The first
case is denoted as “closed world”, the second as “open world”. The latter
situation is typical of services, that live in a dynamic and highly interacting
environment. Finally, a third variant depends on whether underlying model
of execution is linear or branching time, as already discussed at the beginning
of Sections 2.1 and 2.2. In the first case, S is described by linear temporal
logic formulas (LTL), in the second case by branching temporal logic formulas
(CTL, CTL∗). Note that when a program P is synthesized starting from an
LTL formula ψ, it is required that all paths of P satisfy ψ. Therefore, it is
not possible to express the possibility that ψ holds in some paths only (and
does not hold in other): only branching time temporal logic can state such
requirements.



2.3. RELATED RESEARCH AREAS 33

Several results exist in the program synthesis (and verification) literature
that address situations obtained by combination of the above features, making
use both of finite state machines and model checking techniques (among the
above citations, see, in particular [95, 94, 93, 60]).

With respect to this classification, we have tackled a setting for service
composition which is complete, branching time and open, where the environ-
ment is represented by the client, since we don’t know the choices that the
client will make at execution time.

2.3.3 Planning and Reasoning About Actions

Interestingly, most approaches to service composition comes from AI commu-
nity (e.g., [107, 3, 1]), where services are considered as atomic actions with
input/output parameters, and agent-based technologies and planning tech-
niques, supported by domain ontologies, have been advocated as basic tools
for action and process composition.

Indeed, service composition can be seen as an advanced form of Planning.
In fact, as in Planning, the problem we are solving is the synthesis of

a program of a specific form, which however is not a simple sequences of
actions as in traditional planning, but more general execution trees obtained
by reusing in a suitable way fragments, which in general are not atomic, but
are themselves sequences or trees of actions. Also, as in Planning, we have
a goal that we want to realize, which, however, is not a reachability goal,
but the realization of a (linear or branching) behavior as specified by the
client. Note that in classical planning goals expressed a condition over a
single state, however, recently, many works are addressing temporally extended
goals [9], i.e., that are satisfied over sequences of states. As in Planning,
we have constraints on the object that we synthesize, that, however are not
operators over actions, but are (component) transition systems that, suitably
orchestrated, realize the goal. It is interesting to notice that the notion of
plan composition has also arisen in planning, e.g., in [65], where a planning
approach is presented, based on fulfilling the goal by suitably selecting the
right plan from a plan library. There, the plan was only selected from those
in the plan library, and possibly customized to achieve the current goal.

Recently, many works on planning and reasoning about actions have stud-
ied how to generate (either conditional or conformant) plans in presence
of incomplete information in the initial situation and on the effects of ac-
tions [72, 124, 126, 43], possibly also dealing with partial state observabil-
ity [33]. Such techniques can therefore be profitably applied to synthesize
composite (conditional or conformant) services when only a partial descrip-
tion of the component services is available, and to analyze the implications of
partial state observability.
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2.3.4 Software Engineering

The idea of distributed computing over public networks, on top of which
the service oriented computing paradigm builds, has been around for some
decades, giving rise to the research area of software components.

Components are program modules that can be independently developed
and delivered [138]. They allow for syntactic integration of existing hetero-
geneous applications, hiding all implementation details to their clients. No
support for semantic integration is provided. Usually, components are dis-
tributed entities, supported by communication middleware frameworks, such
as CORBA(Common Object Request Broker Architecture) [83], Microsoft’s
DCOM ((Distributed Component Object Model) [115]) and Sun’s EJB (En-
terprise Java Beans [117]). They export a well defined and agreed upon inter-
face, consisting of a set of methods, that can easily be invoked over a network.
Therefore, components enable tightly coupled interaction among partners, and
assume a quite static environment, since no or very little support is provided
for example in establishing dynamic relationships among components, or to
cope with change in the interface definition of existing components. Finally,
little support is provided to data, since interactions among components takes
place at the communication layer, and consists in invoking methods (i.e., ex-
changing messages) using standard protocols such as HTTP. Several works on
architecture design based on components and objects have addressed theoret-
ical issues related to software composition [156, 70, 47]. Among the works on
software components from a conceptual perspective [155, 38, 37, 45], we to fo-
cus on [155], which provides an interesting conceptual bridge (though implicit)
between components and services. The authors propose to extend the inter-
face of components with constraints defining the order in which methods (of
the interface) can be invoked. They call protocol such sequencing constraints.
Then, they give algorithms to check whether two protocols are compatible,
i.e., the software components they are associated to, can communicate by cor-
rectly exchanging messages. If this is not the case, they introduce the notion
of software adaptors, i.e., mediators that seats between two incompatible pro-
tocols and allow them to communicate. Finally, they present a tool that given
two interfaces with incompatible protocols and a high-level description of the
mapping between the two (i.e., defining rules that relate messages and pa-
rameters in the interfaces) automatically builds a software adaptor between
them. Note that the results of this work can be easily applied in particular to
compatibility checking between services that export a behavioral descriptions.

We argue that results in software components from a conceptual perspec-
tive can be fruitfully applied to service composition.
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2.4 Comparison of Current Approaches

Tables 2.4 and 2.4 summarize the results about current or possible approaches
to service description and composition, respectively, discussed in previous sec-
tions.

The tables are self-explanatory, however, we want to remark what follows.

• The tables do not contain dimensions referring to the degree of observ-
ability in the current state. In the approaches we analyzed, whenever
the “Completeness of Exported Behavioral Description” is partial, so
is the observability of the current state. As far as “Completeness in
Client Request” dimension, since it is always full, so it is the observabil-
ity of the current state. However, planning and reasoning about actions
techniques can be profitably exploited to study this situation.

• Of course, even if it is not explicit in the tables, automatic composition
of (possibly infinite) tree based or run based services and client request
is possible when they admit some finite representation.

• Only two approaches to service composition, dealing with partial speci-
fications (either of available services behavioral descriptions or of client
request), produce conditional composition: both of them are based on
planning and reasoning about actions techniques. Interestingly, to the
best of our knowledge, no approach produces conformant composite ser-
vices: again, techniques from AI can be used. Note also that usually
standard AI planning techniques deal with atomic services, however,
by mitigating them with approaches from Program Synthesis, one can
fruitfully develop algorithms for conformant and conditional composite
services that export both a run and a tree based behavioral description.

• As far as “Kind of Composition” dimension in Table 2.4, a sequential
composition can be seen as a special case of concurrent composition.
Therefore, the table implicitly expresses that each approach addressing
sequential composition is able in general to tackle also the concurrent
one.

• Only one approach proposes a peer to peer architecture for composi-
tion (and therefore orchestration). However, a mediated and therefore
centralized architecture might result in bottleneck for invoking services.
Therefore, peer to peer approaches, possibly derived from Data Integra-
tion (and Distributed Systems) are more than welcome.

• As far the “Support for Data” and “Data Flow”dimensions, we consider
as “data”, those input and output parameters of operations, or ingo-
ing and outgoing messages, whose description is richer than a simple
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name, e.g., on which constraints can be imposed. Therefore, parame-
ters of Situation Calculus actions are treated as (albeit limited) data,
while message names are not. Note that according to the tables, no
approach exist to service composition where simultaneously services ex-
port a behavioral description (either run or tree based) and data flow
issues are tackled. However, as also stated in [113], services require the
integration and interoperation of both applications and data. Moreover
heterogeneous data between all services involved in a composition must
be dealt with. We argue that Data Integration based techniques should
be suitably devised in order to tackle this point.

We want to conclude this section by pointing out the contributions of this
thesis wrt the state of the art. The novelty and uniqueness of our approach
consists in the fact that (i) we are able to automatically compute service
composition in a framework where (ii) both the available services and the
client request are based on a tree interaction model, (ii) the client request is
either completely or partially specified, (iii) the composition is obtained by
a concurrent coordination of the available services. In no other approaches
those points simultaneously hold. In the following sections, we will explain in
detail such statement.
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2.5 Results related to Service Description and
Composition

In this section we present the main results in the areas of service discovery (i.e.,
how to efficiently query against service descriptions), and orchestration (i.e.,
invocation, enactment and monitoring of both simple and composite services).
These are tightly related to the areas of service modeling and composition.

2.5.1 Service Discovery

Industry Currently, the leading industry standard for service discovery [59]
is UDDI (Universal Description, Discovery and Integration). UDDI8 [142] is
a registry specification proposed by an industry consortium lead by IBM, Mi-
crosoft and Ariba. The repository, referred to as UDDI Business Registry is
logically centralized and physically distributed: each partner of the consor-
tium “owns” a UDDI Registry, but the information of each UDDI Registry is
replicated in all the others. In other words, a service provider can publish a
service to the UDDI Registry of any partner; this service is then duplicated
to the UDDI Registry of all other partners, so that a user can invoke it from
any UDDI Registry. The core of Business Registry consists of three concep-
tual components: the “white pages” that contain business information about
the service provider; the “yellow pages”, containing classifications of services
in various taxonomies, as yellow pages do; the “green pages”, that provide
technical informations about published services. A (human) client that wants
to exploit a given service, performs a search based on the service name and,
if he finds it, the service description and a link to the service provider home
page are returned. Following this link, the user can invoke the service. UDDI
supports description of services in WSDL.

Academia In [57] the authors present algorithms to discovery services, mod-
eled as WSDL files, based on similarity matching. In particular, similarity
search is done both on input and output parameters of operations or on op-
erations themselves. The similarity algorithms are based on clusters of in-
put/output parameter names which co-occur in a certain set of services. Such
clusters are computed by heuristics, validated in practice, based on the condi-
tional probabilities of parameter occurrence in inputs and outputs of service
operations, i.e., capturing the property that parameters expressing the same
concept usually occur together.

In [143], services are considered as constituted by sub-services, thus mod-
eled as a hierarchy of parts (expressing capabilities of services), based on a

8http://www.uddi.org.
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common ontology. On the assumption that all descriptions of available ser-
vices are stored in a common repository, an algorithm that select the service
that best fits a given description (i.e., the request for specific capabilities) is
presented, based on similarity notions. Such selection is currently carried out
only on the basis of static features similarity. Other works on service discovery
propose information retrieval techniques [149], peer-to-peer scenarios [133] and
graph-based techniques in the context of Semantic Web Services [18]. Finally,
in [56] the authors address the problem of discovering services in the UDDI
Registry, and propose a framework that integrates the semantics of services
into the UDDI Registry, by providing an extension of SWS ontologies.

Discussion and Open Issues UDDI supports a quite limited search of a
service: if the client does not know the name of the service he wants to exploit,
but knows only its functionality, he is not able to discover and invoke it. In
other words, UDDI does not take into account search based on the semantics
of services. The basic idea of the Semantic Web Service initiative is overcome
such problem by providing a semantic structure to the web. The Internet
contains a wide quantity of data, with no associated semantics: for instance,
the search engines return information based only on the match between the
user query and the words contained in the web pages, completely ignoring the
semantic context. Therefore, contributions such as the one in [56] are needed,
since they provide a bridge between the industry and academia efforts, by
filling the gap between technological substrate and conceptual models.

We would like to remark that all such approaches tackle into account only
“static” service signatures, whereas considering behavioral descriptions could
improve the quality of the discovery process. Our work is orthogonal to ser-
vice discovery issues: we assume that the set of services that can be used
in the composition has already been assembled, therefore, service discovery
techniques play an important role in the construction phase of such a set.
However, until now all works addressing service discovery have tackled the
situation when the client request is matched by one service only: instead, it
would be interesting to consider also the case when a set of services matches
the client request.

2.5.2 Service Orchestration

Most of the work on service orchestration is based on research in workflows,
which model business processes as sequences of (possibly partially) automated
activities, focusing on both data and control flow among them. Traditional
workflow technology assumed intra-organization cooperation and tightly cou-
pling of business processes participating in the workflow. Current efforts, such
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as the Business Process Initiative9, address the interconnection and interaction
of heterogeneous business processes across different organizations [152].

Orchestration requires that the composite service is completely specified, in
terms of both the specification of how various component services are linked,
and the internal process flow of the composite one. In [89], different tech-
nologies, standards and approaches for specification of composite services are
considered. In particular, in [89] two main kinds of (composition and) orches-
tration are identified: (i) the mediated approach, based on a hub-and-spoke
topology, in which one service is given the role of process mediator/delegator,
and all the interactions pass through such a service, and (ii) the peer-to-peer
approach, in which the services directly interact among them, without any
centralized control.

Industry The standard language for specifying orchestration and coordi-
nation of services is Business Process Execution Language for Web Services
(BPEL4WS, [4]). It is an XML-based language able to express how multi-
ple services are coordinated and the state and the logic needed for such a
coordination. In other words, a BPEL4WS file denotes the specification of a
composite service to be orchestrated. BPEL4WS constructs allows to specify
composite services whose underlying conceptual model is based on trees: in
particular, there are constructs (i) expressing branching in the form of “case”
like statements, (ii) allowing to execute of one of several alternative paths,
and (iii) indicating that a collection of steps should be executed concurrently.
The coordination among component services is expressed in terms of allowed
interactions between them, specified as sequences of operations and of message
exchanges. Finally, BPEL4WS is also equipped with constructs for correlation
of service instances, for exception management, and for limited time modeling.
Note that BPEL4WS has no underlying conceptual model.

BPEL4WS has been developed with the aim of merging two competing
proposals of standard languages, Web Service Flow Language (WSFL [102]),
proposed mainly by IBM, and XLANG [130], proposed mainly by Microsoft.
WSFL proposed to design composite Web Services starting from simple ones,
taking Petri Nets as underlying conceptual model. XLANG specified both the
behavior of services and their orchestration; in [114], it has been pointed out
that this language is complete, it owns the property of composability and that
the underlying theoretical model is the one of process algebra.

Recently, the W3C consortium has proposed a new language for speci-
fying the coordination among services, namely Web Service - Choreography
Description Language (WS-CDL [90]). A WS-CDL specification is “a multi-
participant contract that describes the common observable behavior of the

9Cf. http://www.bpmi.org
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collaborating WS participants” [127], from an external global point of view.
WS-CDL is an XML-based language whose conceptual model is based on π-
calculus: each participant service, whose behavior is described through a se-
quential finite state transition system, interacts with the others and shares
resources through predefined channels. WS-CDL provides constructs for com-
munication, choices, concurrency and iteration, having a clear formal seman-
tics based on analogous π calculus constructs. Also, thanks to the clear formal
conceptual model, it is possible to formally verify properties such as livelock
or deadlock, on a WS-CDL specification.

Finally, note that BPL4WS assumes a mediated model for orchestration:
a BPL4WS orchestration engine executes a BPL4WS specification by coor-
dinates the component services on the basis such a specification. Instead,
WS-CDL is based on a peer-to-peer architecture: the various services coordi-
nates one with the other on the basis of the WS-CDL specification (which is
not executable), with no centralized controller.

Academia Many orchestration platforms have been designed and proposed
in the literature. In [46], a service that performs coordination of services is
considered as a (meta) service, referred to as Composite service (CES). A
provider can offer a value added service as coordination of different services:
it registers the new service to the CES and let the CES enacting its execution.
In [135], coordination of services is obtained by an enactment engine interpret-
ing process schemas modeled as statecharts [151]. In [49] the orchestration of
session-oriented, long running telecommunication services is studied. Finally,
in [109], orchestration of services is addressed by means of Petri Nets. All
these approaches can be classified into the mediated approach to composition.

The peer-to-peer architecture is considered in [62, 14], where a composite
service is modeled as an activity diagram, and its enactment is carried out
through the coordination of different state coordinators (one for each com-
ponent service and one for the composite service itself), in a decentralized
way.

Finally, we would like to remark that our results are orthogonal to service
orchestration; once we obtain a composition, using with our technique, it
is possible to translate it into a specific orchestration language, so that it
can be orchestrated by any orchestration platform, supporting a mediated
architecture. In this way, we get all system-level guarantees needed in complex
distributed applications.



Chapter 3

Services and Service
Composition: General
Characterization

In this chapter, we present a general formal framework where services are
characterized in terms of their behavioral descriptions. In other words, we
clearly define, in the general case, the process semantics of services in terms
of their service behavioral description. Then, on top of this, we formally
characterize the problem of service composition.

3.1 Basics on Services

Generally speaking, a service is a software artifact (delivered over the Internet)
that interacts with its clients in order to perform a specified task. A client
can be either a human user, or another service1. When executed, a service
performs its tasks by directly executing certain actions, possibly interacting
with other services to delegate to them the execution of other actions. In
order to address the Service Oriented Computing paradigm from an abstract
and conceptual point of view, we start by identifying several facets, each one
reflecting a particular aspect of a service during its life time.

• The service schema specifies the features of a service, in terms of func-
tional and non-functional requirements. Functional requirements repre-
sent what a service does. All other characteristics of services, such as
those related to quality, privacy and security, performance, transactions,

1In what follows, we refer to the client with the “he” pronoun, in order to avoid confusion
when referring to the services and the clients using the pronouns. However, the reader should
remember that we could as well as use the “it” pronoun for the client.
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CHARACTERIZATION

etc. constitute the non-functional requirements. In what follows, we do
not deal with non-functional requirements, and hence we use the term
“service schema” to denote the specification of functional requirements
only.

• The service implementation and deployment indicate how a service is
realized, in terms of software applications corresponding to the service
schema, deployed on specific platforms (e.g., .NET, J2EE). This aspect
regards the technology underlying the service implementation, and it
goes beyond the scope of this thesis. Therefore, although implementation
issues and other related characteristics such as recovery mechanisms or
exception handling, are important issues in Service Oriented Computing,
in what follows we abstract from these properties.

• A service instance is an occurrence of a service effectively running and
interacting with a client. In general, several running instances corre-
sponding to the same service schema may co-exist, each one executing
independently from the others.

In order to execute a service, the client needs to activate an instance of
a deployed service. In our abstract model, the client can then interact with
the service instance by repeatedly choosing an action and waiting for either
the fulfillment of the specific task, or the return of some information. On the
basis of the returned information the client chooses the next action to invoke.
In turn, the activated service instance executes (the computation associated
to) the invoked action; after that, it is ready to execute new actions. Under
certain circumstances, i.e., when the client has reached his goal, he may explic-
itly end (i.e., terminate) the service instance. However, in principle, a given
service instance may need to interact with a client for an unbounded, or even
infinite, number of steps, thus providing the client with a continuous service.
In this case, no operation for ending the service instance is ever executed. In
Section 3.4.1, we discuss in detail the interaction protocol between a service
(instance) and its client wrt our framework. Here, we give an intuition of it
in the following example.

Example 2 A client wants to search and listen to mp3 files. Hence, he ac-
tivates an instance of a deployed service that can fulfill his needs. Once the
service instance is activated and all the necessary resources for its execution
are allocated, it presents the client with the set of actions that can be exe-
cuted next, namely (i) search by author, for searching a song by specifying
its author(s), (ii) search by title, for searching a song by specifying its title,
and (iii) end, for ending the interactions. The client chooses the first action
and the service executes it. Again, the service presents the client with a new
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set of actions: let it be a singleton set, constituted by the action listen, for
selecting and listening to a song2 Thus, the client chooses that action and the
service executes it. At this point the service offers the client with another set
of actions, that can be (i), (ii), and (iii) above. The client makes his choice,
for example search by title, and the interactions continue. When the client
has reached his goal, he selects the action end, the service instance de-allocates
all the resources associated to it and its execution ends.

Note the difference between this approach, in which the focus is on actions,
and the approach that can be found in languages such as WSDL, BPEL4WS,
etc., where the focus is on messages (and parameters). For example, in WSDL,
an interaction between the service and the client is not modeled by an action,
say search by author, but by (i) a message that the client sends to the service
for requesting a search, say search by author request, and (ii) a message
that the service sends to the client (and, in his turn, the client receives) for
responding to a search, say search by author response. In other words,
the actions in our framework can be seen as the abstractions of the effective
input/output messages and operations offered by the service. In Section 7.4
we will investigate this aspect in detail.

3.2 Service Community

In general, when a client invokes an instance e, activated of a service with
a schema E, it may happen that e does not execute all of its actions on
its own, but instead it delegates some or all of them to other (instances of)
services, according to its schema. All this is completely hidden to the client.
To precisely capture the situations when the execution of certain actions can
be delegated to (instances of) other services, we introduce the notion of service
community :

Definition 1 (Service Community) Let E = {E1, . . . , En} be a set of ab-
stract names. A service community is formally characterized by:

• a finite common set of actions Σ, called the action alphabet, or simply
the alphabet of the community,

• a finite set of services specified in terms of the common set of actions,
and referred to using the abstract names in E.

�
2We assume for simplicity that the list of songs returned by search by author and

search by title is non-empty.



46
CHAPTER 3. SERVICES AND SERVICE COMPOSITION: GENERAL

CHARACTERIZATION

In other words, all the services in a community share a common understanding
over the actions in the alphabet Σ. Hence, to join a community C, a service
needs to expose its behavior in terms of the alphabet of C. Also the clients
interact with services in C using Σ. Note that the set E denotes simply the
names of services in C. Additional structure will be associated to these names
later on.

From a more practical point of view, a community can be seen as the
set of all services whose descriptions are stored in a repository. We assume
that all such service descriptions have been produced on the basis of a com-
mon and agreed upon reference alphabet/semantics. This is not a restrictive
hypothesis, as many scenarios of Cooperative Information Systems, e.g., e-
Government [11] or e-Business [50] ones, consider preliminary agreements on
underlying ontologies, yet yielding a high degree of dynamism and flexibility.
Therefore, the repository where services are published may be seen as an ad-
vanced version of UDDI [142], that offers to its clients functionalities which
do not regard only service discovery, selection and invocation, but also service
composition, personalization, (some aspects of) negotiation, etc.

The added value of a community is the fact that a service of the community
may delegate the execution of some or all of its actions to other services in
the community. We call composite such a service. If this is not the case,
a service is called simple. Simple services realize offered actions directly in
the software artifacts implementing them, whereas composite services, when
receiving requests from clients, can (activate and) invoke other services in
order to fulfill the client’s needs.

This function of composing existing services on the basis of a target service
is known as service composition, and is the main subject of the research in
this thesis.

3.3 Service Schema

From the external point of view, i.e., that of a client, a service E, belonging to
a community C, exhibits a certain exported behavior represented as sequences
of atomic actions of C with constraints on their invocation order. From the
internal point of view, i.e., that of an application deploying E and activating
and running an instance of it, it is also of interest how the actions that are
part of the behavior of E are effectively executed. Specifically, it is relevant to
specify whether each action is executed by E itself or whether its execution is
delegated to another service belonging to the community C, in a way which is
hidden to the client of E. To capture these two points of view we introduce the
notion of service schema, as constituted by two different parts, called external
schema and internal schema, respectively. Before this, we introduce the notion
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Figure 3.1: Labeled Tree

of labeled trees, that we will use throughout the chapter.

3.3.1 Labeled Trees

A tree T over an alphabet Σ is a prefix closed (possibly infinite) set of finite
words over Σ, i.e., a set of words T ⊆ Σ∗, called nodes, such that if x·c ∈ T ,
with x ∈ Σ∗ and c ∈ Σ, then also x ∈ T . The empty word ε is called the root
of T , and for every x ∈ T , the node x·c, with c ∈ Σ, is called the successor of
x. The pair (x, x·c) is called edge of the tree. A labeled tree is a pair (T , f),
where T is a tree and f is a labeling function assigning to each node of T an
element of a given labeling domain.

Example 3 Figure 3.1 shows a (portion of an infinite) labeled tree (T , f)
over the alphabet Σ = {a, t, l}. f is a boolean labeling function: it labels with
true the root ε and the nodes a·l, t·l, a·l·a·l, a·l·t·l, t·l·a·l, t·l·a·l (i.e., all the
nodes ending with l); it labels with false the nodes a, t, a·l·a, a·l·t, t·l·a, t·l·t
(i.e., all the nodes ending with a or t).

3.3.2 External Schema

The aim of the external schema is to specify the exported behavior of a service.
For now, in order to guarantee a general applicability of our framework, we do
not refer to any particular specification formalism, rather we only assume that,
whatever formalism is used, the external schema specifies the behavior in terms
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of a tree of actions, called external execution tree. The external execution tree
abstractly represents all possible executions of a generic instance of a service.
Therefore, when activated, an instance of a service executes a path of such a
tree.

Definition 2 (External Execution Tree) Let Eext be the external schema
of a service E. Let Σ be the alphabet of the service community C, to which
E belongs. The external execution tree specified by Eext is a labeled tree
T (Eext) = (T ,fin), where T is a tree over Σ and fin is a boolean labeling
function, where:

• Each node x of T (Eext) represents the history of the sequence of actions
of each service instance3, that has executed the path to x.

• For every action a belonging to the alphabet Σ of the community, and
that can be executed at the point represented by x, there is a (single)
successor node x·a. We say that each each edge (x, x·a) is labeled with
action a.

• The root ε of the tree represents the fact that the service has not yet
executed any action.

• The nodes of the execution tree labeled true by fin are final : when a
node is final, and only then, the client can stop the execution of the
service. In other words, the execution of a service can legally terminate
only at these points4.

�

Note that each node x·a represents the fact that, after performing the
sequence of actions leading to x, the client chooses to execute action a, among
those possible, thus getting to x·a. Therefore, each node represents a choice
point at which the client makes a decision on the next action the service should
perform.

In what follows, for sake of readability, we denote the external execution
tree of a service in C by means of a mapping T ext from E to T (Eext), where
E is the set of abstract names of the services in the community C (so, in what
follows, instead of writing T (Eext), we will write T ext(E), where E ∈ E). We
use the mapping as a means of associating additional formal structure to the
(names of) services in C, or, equivalently, as a way to enforce the fact that
the external execution tree is associated to the service E.

3In what follows, we omit the terms “schema” and “instance” when clear from the context.
4Typically, in a service, the root is final, to model that the computation of the service

may not be started at all by the client.
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Notably, in our framework, an execution tree does not represent the in-
formation returned to the client by the service instance execution, since the
purpose of such information is to let the client choose the next action, and the
rationale behind this choice depends entirely on the client.

Consider the above assumption that for every action a there is (at most)
one single successor node x·a: we argue that this assumption here is perfectly
valid and coherent with our framework since our focus is on actions that a
service performs. Therefore, at the level of abstraction taken here one has to
pay careful attention on the meaning of having two a labeled edges originating
from the same node. Such a situation, indeed, in our framework, means that
the effects of an action are partially specified, i.e., they are not completely
known, as in the situation when, if a client deposits a certain amount of money
on his bank account, he is not sure whether after executing such operation the
money are actually in his account or have been deposited on another account,
unknown to him. The case when services export a partial description of their
behavior is, of course, very compelling: it gives rise to many interesting issues,
in order to avoid using services whose effects may be undesirable. However,
it goes beyond the scope of this thesis and it is left for future research (see
Sections 5.4 and 8.2).

Finally, observe that we avoid introducing data at the level of abstraction
taken here: in this way the complexity which is intrinsic in the data does not
have a disruptive impact on the complexity which is intrinsic in the process.
In fact, introducing data in a naive way is possible in our setting (e.g., by
encoding data within the state) but it would make composition exponential in
the data. This is considered unacceptable: the size of data is typically huge
(wrt the size of the services) and therefore the composition should be kept
polynomial in the data. The issues on how to introduce data in a “smart”
way is left for future work (see Section 8.2).

Example 4 Figure 3.2 shows (a portion of) an (infinite) external execu-
tion tree characterizing the behavior of service E0, that allows for searching
and listening to mp3 files. The client starts by choosing whether to stop,
or to search for a song by specifying either its author(s) or its title (action
search by author and search by title, respectively). Then, the client se-
lects and listens to a song (action listen). Finally, the client chooses whether
to perform those actions again.

Note that the tree in Figure 3.2 is actually the same tree of Figure 3.1, with
the following differences, introduced to increase readability: (i) final nodes are
represented by two concentric circles, instead of being labeled by true, and
(ii) each edge (x, x·a) is labeled with the last executed action a, instead of
having nodes labeled by prefix closed words over Σ.
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Figure 3.2: External execution tree of service E0

3.3.3 Internal Schema

The internal schema specifies, besides the tree of actions representing the
external behavior of the service, the information on which service instances
in the community execute each given action. As before, for now we abstract
from the specific formalism chosen for giving such a specification, instead we
concentrate on the notion of internal execution tree.

Definition 3 (Internal Execution Tree) Let Eint be the internal schema
of a service E. Let Σ be the alphabet of the service community C to which
E belongs. The internal execution tree specified by Eint is a labeled tree
T (Eint) = (T ,fin), where:

• T and fin are defined as in Definition 2.

• In addition, each edge of T is labeled by the pair (a, I), where a is the
executed action and I is a nonempty set denoting the service instances
executing a. Every element of I is a pair (E′, e′), where E′ is a service and
e′ is the identifier of an instance of E′. The identifier e′ unambiguously
identifies the instance of E′ within the service community, and, therefore,
within the internal execution tree.

�

In what follows, for sake of readability, we denote the internal execution
tree of a service in C by means of a mapping T int from E to T (Eint), where E
is the set of abstract names of the services in the community C (so, in what
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follows, instead of writing T (Eint), we will write T int(E), where E ∈ E). We
use the mapping as a means of associating additional formal structure to the
(names of) services in C, i.e., as a way to enforce the fact that the internal
execution tree is associated to the service E.

In general, in the internal execution tree of a service E, some actions may
be executed also by the running instance of E itself. In this case we use the
special instance identifier this. Note that, since I is in general not a singleton,
the execution of each action can be delegated to more than one other service
instance.

An internal execution tree induces an external execution tree: given an
internal execution tree Tint we call offered external execution tree the external
execution tree Text obtained from Tint by dropping the part of the labeling
denoting the service instances, and therefore keeping only the information on
the actions. An internal execution tree Tint conforms to an external execution
tree Text if Text is equal to the offered external execution tree of Tint .

Definition 4 (Well-formed Service) A service E is well-formed, if T int(E)
conforms to T ext(E), i.e., its internal execution tree conforms to its external
execution tree. �

We now formally define when a service of a community correctly delegates
actions to other services of the community. We need a preliminary definition:
given the internal execution tree T int(E) of a service E, and a path p in
T int(E) starting from the root, we call the projection of p on an instance e′

of a service E′ the path obtained from p by removing each edge whose label
(a, I) is such that I does not contain e′, and collapsing start and end node of
each removed edge.

Definition 5 (Coherency) The internal execution tree T int(E) of a service
E is coherent with a community C if:

• for each edge labeled with (a, I), the action a is in the alphabet of C,
and for each pair (E′, e′) in I, E′ is a member of the community C;

• for each path p in T int(E) from the root of T int(E) to a node x, and
for each pair (E′, e′) appearing in p, with e′ different from this, the
projection of p on e′ is a path in the external execution tree T ext(E′) of
E′ from the root of T ext(E′) to a node y, and moreover, if x is final in
T int(E), then y is final in T ext(E′).

�

Definition 6 (Delegation) A service E of a community C correctly dele-
gates actions to other services of C if the internal execution tree T int(E) of E
is coherent with C. �
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Figure 3.3: Internal execution tree

Observe that, if a service of a community C is simple, i.e., it does not
delegate actions to other service instances, then it is trivially coherent with
C. Otherwise, it is composite and hence delegates actions to other service
instances. Intuitively, in the latter case, as expressed by the second bullet of
Definition 5, the behavior that the composite service entails on each compo-
nent service (instance) must be “correct” according to the external schema of
the component service (instance) itself.

Definition 7 (Well-formed Community) A service community is well-
formed if each service in the community is well-formed, and the internal exe-
cution tree of each service in the community is coherent with the community.
�

Example 5 Figure 3.3(a) shows (a portion of) an (infinite) internal execution
tree5, conforming to the external execution tree of service E0 shown in Fig-
ure 3.2, where all the actions are delegated to services of the community, specif-
ically to E1 and E2, whose (infinite) external execution trees are (partially)
shown in Figure 3.3(b). In particular, the execution of search by author

5In the figure, each action is delegated to exactly one instance of a service schema. Hence,
for simplicity, we have denoted a label (a, {(Ei, ei)}) simply by (a, Ei, ei), for i = 1, 2.
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action and of its subsequent listen action are delegated to instance e1 of ser-
vice E1, and the execution of search by title action and of its subsequent
listen action to instance e2 of service E2.

3.4 Service Instances

In order to be executed, a deployed service has to be activated, i.e., necessary
resources need to be allocated. A service instance represents a service running
and interacting with its client.

From an abstract point of view, a running instance corresponds to an
execution tree with a highlighted node, representing the current node, i.e., the
point reached by the execution at a certain moment.

Definition 8 (Service instance)
A service instance is characterized by:

• an instance identifier,

• an external view of the instance, which is an external execution tree with
a current node,

• an internal view of the instance, which is an internal execution tree with
a current node,

• the current node on the tree which denotes the state of the service.

�

Note that the path from the root of the tree to the current node is the run
of the service so far, while the execution (sub-)tree having as root the current
node describes the remaining behavior once the current node is reached. Ob-
serve also that the current node on the external view of the instance coincides
with the current node on the internal view.

Example 6 Figure 3.4 shows an external view of instance e of the service
E0 of Figure 3.2. The current node and the sequence of actions executed
up to it on the execution tree are shown in thick lines. It represents an
execution by a client that has searched for an mp3 file by specifying the author
of the song, and has selected and listened to a returned song. The client has
reached a node where it is necessary to choose whether (i) performing another
search by author, (ii) performing a search by title, or (iii) terminating
the service (since the current node is final).
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Figure 3.4: External view of a service instance.

The internal view of a service instance additionally maintains information
on which service instances execute which actions. At each point of the exe-
cution there may be several other active instances of services that cooperate
with the current one, each identified by its instance identifier.

3.4.1 Running a Service Instance

In Section 3.1 we have briefly discussed the steps that a client should perform
in order to execute a service, namely:

1. activation of the service instance,

2. choice of the invokable actions

3. termination of the service instance,

where step (2 ) can be performed zero or more times, and steps (1 ) and (3 ) only
once. Each of these steps is constituted by sub-steps, consisting in executing
commands and in sending acknowledgments, each of them being executed by
a different entity (either the client or the service).

In what follows we describe the correct sequence of interactions between
a client and a service in our framework. As already stated, in general the
client may be either a human user or another service, however, for the sake of
simplicity, in what follows we refer to the client using the “he” pronoun.
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Figure 3.5: Conceptual Interaction Protocol

Figure 3.5 shows the conceptual interaction protocol: in particular, Fig-
ure 3.5(a) displays the behavior of each entity, represented as a UML State Di-
agram [67]; Figure 3.5(b) presents the interaction among the entities captured
as UML Sequence Diagram [67]. We briefly recall that a sequence diagram
shows the explicit sequence of communications between interacting entities,
where the vertical bar represents the time proceeding down the page.

Activation. This step is needed to create the service instance. The client
invokes the activation command, specifying the service to interact with. The
syntax of this command is:

activate Ej

where Ej is the service being activated. When this command is invoked, a
new instance ek of service Ej is created and all the necessary resources for the
execution of ek are allocated. Additionally, each service instance creates a copy
of both the internal and the external execution tree characterizing the service
schema it belongs to. The current node on the execution tree associated to ek

is the root.
As soon as ek is ready to execute, it responds to the client with the message
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ek started: choose a1|| . . . ||ai|| . . . ||an

The purpose of this message is threefold. First, the client has an acknowl-
edgment that the invoked service has been activated and that the interactions
may correctly start. Second, the client is informed about the instance iden-
tifier he will interact with (e.g., ek). Third, the client is asked to choose the
action to execute among a1, . . . , an.

Choice. This step represents the interactions carried on between the client
and the service instance. Each service instance is characterized, wrt the client,
by its external execution tree, and all the actions are offered according to
the information encoded in such a tree. Therefore, according to its external
execution tree, the service instance ek proposes to its client a set of possible
actions, e.g., a1, . . . , an, and asks the client to choose the action to execute
next among a1, . . . , an. The syntax of this command is:

ek: choose a1||a2|| . . . ||ai|| . . . ||an

where || is the choice symbol.
According to his goal, the client makes his choice by sending the message

do ai, Ej , ek

In this way, the client informs the instance ek of service Ej that he wants to
execute next the action ai. Once ek has received this message, it executes
action ai. The client is completely unaware about how the execution of ai

is achieved: he only knows when it ends, i.e., when the service asks him to
make another choice. This lack of observability is shown in Figure 3.5 (a) by
the composite state that contains a State Diagram modeling the execution
of ai (action execute ai, performed by ek). The role of Ej and ek becomes
especially clear if we consider that the client could be a composite service.
When a composite service E delegates an action to a component service (e.g.,
Ej), it needs to activate a new service instance (e.g., ek). Therefore, on one
side, E acts as “server” towards its client; on the the other side, E interacts
with the external view of the instance of the component service, since E is
a client of the latter, and E chooses which action is to be invoked on which
service (either itself or a component service) according to its internal execution
tree.

Termination. Among the set of invokable actions there is a particular ac-
tion, end, which, if chosen, allows for terminating the interactions. Therefore,
if the current node on the external execution tree is a final node, the service
proposes a choice as:
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ek: choose end||a1||a2|| . . . ||ai|| . . . ||an

and if the client has reached his goal, he sends the message:

do end, Ej , ek

The purpose of this action is to de-allocate all the resources associated with
the instance ek of service Ej . As soon as this is done, the service informs its
client of it with the message:

ek: ended

Further examples of interactions can be found in [26].

3.5 Client Specification as Target Service

In our framework, a client willing to achieve a certain goal exploiting the ser-
vice technology, specifies his request to (a system offering the functionalities
of) the service community in terms of the service he would like to use (i.e., ac-
tivate and interact with). In general, of this service he may indicate functional
and non-functional properties of its schema, features regarding implementa-
tion and deployment aspects, such as preferred platform, desired transport
layer, transaction policies, etc. As remarked in Section 3.1, in this thesis we
deal only with the functional aspects of a service schema, therefore, we require
that the client specifies (at least) the external schema of the service he desires
to use.

Definition 9 (Target Service) A target service E is any client request that
specifies (at least) the external schema Text of the service the client would like
to activate and interact with. �

Note that the target service is virtual, in the sense that it represents only
a specification of the client’s need. Indeed, a target service cannot be exe-
cuted as it is, i.e., by activating an instance of it, since there is no underlying
implementation of it: in order to be executed, a target service should be “re-
alized”. Thus, the community can be used to realize a virtual service as a new
service whose execution completely delegates actions to other members of the
community. The target service is realized not simply by selecting a member
(i.e., a schema from which to activate an instance) of the community, to which
delegate target service actions, but more generally by suitably “composing”
parts of services in the community.

Finally, note that not all client requests are target services: in Chapter 6 we
will see examples of client specifications that do not specify external schemas,
since they contain “empty spots”, that the composition synthesis process is
left free to “fill in”.
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3.6 Composition Synthesis

When a client requests a target service from a service community, there may
be no service in the community that can deliver it directly. However, it may
still be possible to synthesize a new composite service, which suitably dele-
gates action execution to the services of the community, and when suitably
orchestrated, provides the user with the service he requested.

Definition 10 (Composition) Let C be a well-formed service community
and let Text be the external schema of a target service E expressed in terms
of the alphabet Σ of C. A composition of E wrt C is an internal schema Eint

such that:

1. T (Eint) conforms to Text,

2. T (Eint) delegates all actions to the services of C (i.e., this does not
appear in T (Eint)), and

3. T (Eint) is coherent with C.

�

Definition 11 (Composition Existence) Given the service community C
and the external execution tree Text of a target service E, as in Definition 10,
the problem of composition existence is the problem of checking whether there
exists a composition of E wrt C. �

Observe that, since for now we are not placing any restriction of the form
of Eint , the problem of composition existence corresponds to check if there
exists an internal execution tree Tint for E such that (i) Tint conforms to Text,
(ii) Tint delegates all actions to the services of C, and (iii) Tint is coherent
with C.

Definition 12 (Composition Synthesis) Given the service community C
and the external execution tree Text of a target service E, as in Definition
10, the problem of composition synthesis is the problem of synthesizing an
internal schema Eint for E that is a composition of E wrt C. �

Intuitively, the composition synthesis produces a new, composite service,
which can be possibly stored in the service community for re-use by other
clients. It is characterized by:

• an external schema, which is the external execution tree Text of the target
service E, and
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Figure 3.6: Conceptual model for a Service Composition System

• an internal schema, which is the composition Tint of E wrt the service
community C.

Figure 3.6 shows the abstract, conceptual model of a Service Composition
System which returns possibly composite services realizing the client requests,
exploiting the available services of a community C. Note that all services in
C are characterized in terms of both an internal and an external schema (i.e.,
execution tree). In Section 7.4 we will discuss the actual architecture of the
composition tool that we implemented, and which is based on the architecture
in Figure 3.6. According to Figure 3.6, a client requests a target service E to
a Service Composition System, by providing the specification of its external
schema Text, and expects to execute an instance of E. To do so, first the
Composer module takes in input the external execution tree Text contained
in the client specification and synthesizes an internal schema Tint which is a
composition of E wrt C, according to Definition 10. Then, the composition
Tint is (expressed in a suitable formalism/language and) orchestrated by an
orchestration engine that activates and interacts with the (instances of the)
services in the community, so as to fulfill the client’s needs.

The orchestration engine is also in charge of (i) offering the correct set of
actions to the client, according to the external schema of the target service,
(ii) delegating the action chosen by the client to the service that offers it, and
(iii) terminating the execution of (instances of) services in the community.

All this is hidden to the client, who interacts only with the service Com-
position System and is not aware that a composite service is being executed
instead of a simple one.

In the figure we denote as request-time the moment in which the client
presents his specification to the system and the target service is realized. In-
deed, it is more natural to denote with the term design-time the moment in
which the services in the community are designed. Therefore, the design time
is conceptually different from the request time. However, this does not imply
that the design time is antecedent to the request time since also the realized
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target service can join (i.e., can be stored in) the community. Finally, we call
interaction-time the moment in which the client interacts with an instance of
the realized target service, orchestrated by the orchestration engine.

3.7 Discussion

In this chapter we have presented a general formal framework where services
are characterized in terms of their behavioral description, abstractly repre-
sented as an (execution) tree. Services are, basically, programs, i.e., processes:
trees have been used in the years in the research areas of process verification,
and of process synthesis to abstractly denote programs and to study their
properties (see the discussion in Section 2.3.2).

We identify two points of view for representing service behavior, i.e., in-
ternal and external to the services. A similar approach can be found in [69],
where the authors talk about (i) internal middleware (of a service) to de-
note the middleware supporting the internal operations that allow message
exchanges, and about (ii) external middleware to denote the middleware sup-
porting the operations provided to the clients, such as those supported by
SOA (see Section 1.2.2), to find a service and invoke it. Therefore, they take
a perspective which is less abstract than ours and more oriented towards the
practical applications. The two approaches are therefore complementary: we
provide their approach with a conceptual substrate and they “justify” ours
with an applicability perspective.

In the framework presented in this thesis, the service community is fixed,
during both request-time and interaction-time, i.e., the services that are avail-
able during the synthesis of the composite service are also available during the
execution of it. However, the service environment is highly dynamic: existing
services may become obsolete very often and new services become available
on a daily basis, especially in very dynamic e-market places, or in e-Business
applications. Therefore, it may happen that a component service involved
in the composition becomes unavailable, and new services become available,
during the composite service execution. It is interesting to analyze and tackle
the issues presented by a dynamic service community, which lead to the need
of on-the-fly dynamic re-configuration, i.e., how to automatically re-configure
the composite, running service by “substituting” a new component service,
which is “compatible” (i.e., it exports at least the same behavior of the obso-
lete service) with the obsolete component one, and such that the behavior of
the composite service is unaffected by this substitution. Open issues regard
the notions of substitutability, adaptivity, compatibility which have not been
deeply addressed in the service literature (see Section 2.2) and for which no
agreed understanding and definition exist. Also, no techniques for automati-
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cally achieving them have been developed. However, results from other areas,
such as software component [155, 37] or Petri Nets [104] can be applied.

Finally, note that in this chapter we have introduced the concept of service
instance, as an active occurrence of a service. In the rest of the thesis, wlog,
we will assume that at most one active instance exists at a time, for each
service; if more active instances correspond to the same external schema, we
duplicate the external schema for each instance. We can do this because in our
framework, the various active instances of a same schema run independently
from the others. However, it could be of interest the case when more active
instances corresponding to the same schema exist, and interact one with the
other.





Chapter 4

Service Behavioral
Description as FSM and
Automatic Composition

In this chapter, we study and analyze the general framework presented in
Chapter 3 in the case where behavioral descriptions (i.e., execution trees) of
services admit a concise representation using a finite number of states. In
this specific setting, we devise sound, complete and terminating techniques
both to check for the existence of a composition, and to return a composition.
The composition produced is finite state, and hence, as a collateral result
of our synthesis technique, we show that if a composition exists then there
exists one which is indeed finite state. The synthesis technique is based on
reducing the problem of checking the existence of a composition into checking
satisfiability of a formula expressed in Deterministic Propositional Dynamic
Logic (DPDL), a well-known logic of programs developed to verify properties
of program schemas [92]. We also analyze the computational complexity of the
proposed algorithms. Specifically, our technique gives us an EXPTIME upper
bound in worst-case computational complexity for the composition synthesis
problem. While assessing that such bound is in fact tight is still open, we
conjecture that the problem is indeed EXPTIME-hard. From a more practi-
cal point of view, it is easy to find cases in which the composition must be
exponential in the size of the component services and the client specification,
hence exponentiality is inherent to the problem. To the best of our knowledge,
our work is the first attempt to provide a provably correct technique for the
automatic synthesis of service composition, in a framework where the behavior
of services is explicitly specified.

In Appendix A, we present an alternative representation of finitely repre-
sentable services, using Situation Calculus [124], and discuss a (sound, com-
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plete and terminating) technique for checking the existence and synthesizing
a composition.

4.1 Services with Behavioral Description as Finite
State Machines

In the previous chapter, we have not referred to any specific formalism for
expressing service schemas. In what follows, we consider services whose schema
(both internal and external) can be represented using only a finite number of
states, i.e., using (deterministic) Finite State Machines (FSMs).

Several papers in the service literature adopt FSMs as the basic model of
exported behavior of services [40, 30, 89, 69, 17]. Also, FSMs constitute the
core of State Diagrams, which are one of the main components of UML [67]
and are becoming a widely used formalism for specifying the dynamic behavior
of entities.

Observe that the class of services that can be captured by FSMs represent
an interesting set of services, that are able to carry on rather complex inter-
actions with their clients, performing useful tasks. Indeed, many concrete,
existing services can be abstractly represented as FSM. In order to show the
usefulness and applicability of our approach, we discuss an abstract represen-
tation of a service already deployed and running as FSM.

Example 7 Figure 4.1 shows an abstract representation as FSM of the ser-
vice Orbitz1, that allows for arranging a travel. It offers a lot of functionalities,
such as booking a car, a cruise, a flight, a hotel room. It also allows to choose
among a large variety of customizable vacancies packages, i.e., combinations
of hotel and car, hotel and flight, etc. Note, that the FSM in the figure shows
only a part of Orbitz functionalities. Indeed, the purpose of this example is
not to provide a detailed, and possibly difficult to read, abstract representa-
tion of the Orbitz service, but to make clear the applicability of our approach
and in particular the use of (deterministic) finite state machines as a valid
formal tool to abstractly represent existing services.

In the initial state, the various functionalities that Orbitz provides are
presented to the client, so, depending on his needs, he chooses among:
find hotel&car, find hotel, find hotel&flight, find car, find cruise,
sign in if a member and register if not a member.

1Strictly speaking, Orbitz is not a service, but a web portal (http://www.orbitz.com).
The main difference between them is that web portals are oriented to humans, while services
are oriented to applications. However, we agree with [17], on the fact that by understanding
the behavior of web portals (i.e., the operations it provides through a browser and their
semantics), it is possible to extrapolate the behavior of an “equivalent” service. This was
exactly our approach in deriving the behavioral description of Orbitz as FSM.
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Figure 4.1: The Orbitz service modeled as Finite State Machine.



66
CHAPTER 4. SERVICE BEHAVIORAL DESCRIPTION AS FSM AND

AUTOMATIC COMPOSITION

Note that at each step the client may always choose to end the current
booking and to start another one. This corresponds to have, from almost2 each
state, an arrow pointing to states s1, . . . , s5, s13, s19 labeled with the suitable
operation (e.g., find hotel&car for the arrow pointing to s1, find hotel for
the arrow pointing to s13, etc.). For sake of readability, such arrows are not
shown in the figure. Also, from each state that follows a register or sign in

action it is possible to execute action sign out, leading the computation back
to state s0.

Assume that a client of such service wants to buy a plane ticket. Thus, he
chooses to execute action find flight. Then, he has a set of choices: he can
(i) execute action find flight again, (ii) select a flight and view the various
seats, in order to book later a precise seats on the plane (view seats), (iii)
sign in if a member and register if not a member, (iv) book the selected
flight (book flight). Note that the service allows a client to perform first
either the (book flight) or the operations sign in or register , but when
execution arrives at the point represented by state s8, the client must be
logged in. At this point, the service offers the client with a list of hotels near
the client destination: the client may choose and select one (possibly making
several choices) (select hotel action) and book a room (book room action).
Then, the client chooses one or more services (select services action) such
as booking a slot in the parking near the airport, booking a ticket on the city
tour bus, etc. Finally, the client accepts Orbits conditions and buys what he
booked.

In the study we report here, we make the simplifying assumption that the
number of instances of a service in the community that can be involved in the
internal execution tree of another service is bounded and fixed a priori. In
fact, wlog we assume that it is equal to one. If more instances correspond to
the same external schema, we simply duplicate the external schema for each
instance. Considering that the number of services in a community is finite,
this implies that the overall number of instances orchestrated in executing a
service is finite and bounded by the number of services belonging to the com-
munity. Within this setting, we show how to solve the problem of composition
existence, and how to synthesize a composition that is a FSM. Instead, how to
deal with an unbounded number of instances remains open for future work3.

The fact that external schemas can be represented with a finite number of
states means that we can factorize the sequence of actions executed up to a
certain point into a finite number of states, which are sufficient to determine
the future behavior of the service.

2The FSM is deterministic.
3Intuitively, it is very likely that the problems of composition existence and synthesis are

undecidable in this case.
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Definition 13 ((FSM) External Schema) Let C be a service community,
whose alphabet of actions is Σ. Let E be a service in C. The external schema
of E is a FSM Aext

E = (Σ, SE , s0
E , δE , FE), where:

• Σ is the alphabet of the FSM, which is the alphabet of the community;

• SE is the set of states of the FSM, representing the finite set of states of
the service E;

• s0
E is the initial state of the FSM, representing the initial state of the

service;

• δE : SE × Σ → SE is the (partial) transition function of the FSM, that
given a state s and an action a returns the state resulting from executing
a in s;

• FE ⊆ SE is the set of final states of the FSM, i.e., the states where the
interactions with E can be legally terminated.

�

In what follows, for sake of clarity, we denote the FSM external schema
of a service in C by means of a mapping Aext from E to Aext

E , where E is the
set of abstract names of the services in the community C (so, in what follows,
instead of writing Aext

E , we will write Aext(E), where E ∈ E). We use the
mapping as a means of associating additional formal structure to the (names
of) services in C, i.e., as a way to enforce the fact that the FSM external
schema is associated to the service E.

Example 8 Figure 4.2(a) shows the external schema of the target service E0

described in Example 4, specified by the client as a FSM A0. Figures 4.2(b)
and 4.2(c) show the external schemas, represented as FSMs A1 and A2, re-
spectively associated to component services E1 and E2. In other words, A1

and A2 are the external schemas of the services that should be composed in
order to obtain a new service that behaves like E0. In particular, E1 allows
for searching for a song by specifying its author(s) (action search by author)
and for listening to the song selected by the client (action listen). Then, it
allows for executing these actions again. E2 behaves like E1, but it allows for
retrieving a song by specifying its title (action search by title).
E1 and E2 belong to the same community of services C. For sake of simplicity,
we assume that C is composed by E1 and E2 only, and therefore, the alpha-
bet of actions of C is Σ = {search by author, search by title, listen}.
According to our setting, also the actions in A0 belong to Σ.
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(a) External schema A0 of the target service E0
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(c) External schema A2 of the
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Figure 4.2: Composition of services

The FSM Aext(E) is an external schema in the sense that it specifies an
external execution tree T ext(E). Specifically, given Aext(E), we can define the
tree T (Aext(E)) inductively on the level of nodes in the tree, by making use
of an auxiliary function σ(·) that associates to each node of the tree a state in
the FSM. We proceed as follows:

• ε, as usual, is the root of T (Aext(E)) and σ(ε) = s0
E ;

• if x is a node of T (Aext(E)), and σ(x) = s, for some s ∈ SE , then for
each a such that s′ = δE(s, a) is defined, x · a is a node of T (Aext(E))
and σ(x · a) = s′;

• x is final iff σ(x) ∈ FE .

It is easy to see that with the above construction one can derive a map-
ping T ext(E) from Aext(E). This is equivalent to say that the tree T (Aext(E))
obtained by unfolding Aext(E) coincides with the external execution tree
T ext(E), since T ext(E) = T (Eext) = T (Aext

E ) = T (Aext(E)).

Example 9 Figure 4.3 shows (a portion of) the external execution tree T (A0)
defined from A0 by the mapping σ: each node of the tree is labeled with the
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Figure 4.3: External execution tree T (A0) for the target service E0

state of A0 that σ associates to it. The mapping σ is defined as follows.

σ(ε) = s0
0

σ(a) = σ(t) = s1
0

σ(a·l) = σ(t·l) = s0
0

σ(a·l·a) = σ(a·l·t) = σ(t·l·a) = σ(t·l·t) = s1
0

σ(a·l·a·l) = σ(a·l·t·l) = σ(t·l·a·l) = σ(t·l·t·l) = s0
0

. . .

σ maps over s1
0 the nodes of the tree that represent strings ending either by

a or by t; it maps over s0
0 the root and the nodes of the tree associated to

strings ending by l. Note that T (A0) coincides with the external execution
tree T ext(E0) of Figure 3.2. That is, T ext(E0) has a finite representation as a
FSM.
The external execution trees T (A1) and T (A2) for the FSMs A1 and A2,
respectively, can be defined similarly and coincide with the external execution
trees of Figure 3.3(b). Finally, note that in general there may be several
(equivalent) FSMs that specify the same execution tree.

Since we have assumed that each service in the community can contribute
to the internal execution tree of another service with at most one instance,
in specifying internal execution trees we do not need to distinguish between
services and service instances. Hence, when the community C is formed by n
services E1, . . . , En, it suffices to label the internal execution tree of a service
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Figure 4.4: MFSM M0 internal schema for the target service E0

E by the action that caused the transition and a subset of [n] = {1, . . . , n}
that identifies which services in the community have contributed in executing
the action. The empty set ∅ is used to (implicitly) denote this. We define
internal schemas that have a finite number of states as follows.

Definition 14 ((MFSM) Internal Schema) Let C be a service community,
whose alphabet of actions is Σ. Let E be a service in C. Its internal schema
is a Mealy FSM (MFSM) Aint

E = (Σ, 2[n], Sint
E , s0

E
int

, δint
E , ωint

E , F int
E ), where:

• Σ, Sint
E , s0

E
int

, δint
E , F int

E , have the same meaning as in Definition 13;

• 2[n] is the output alphabet of the MFSM, which is used to denote which
service(s) executes each action;

• ωint
E : Sint

E ×Σ → 2[n] is the output function of the MFSM, that, given a
state s and an action a, returns the subset of services in C that executes
action a when service E is in state s; if such a set is empty then this
is implied; we assume that the output function ωint

E is defined exactly
when δint

E is so.

�

In what follows, for sake of clarity, we denote the MFSM internal schema
of a service in C by means of a mapping Aint from E to Aint

E , where E is the
set of abstract names of the services in the community C (so, in what follows,
instead of writing Aint

E , we will write Aint(E), where E ∈ E). We use the
mapping as a means of associating additional formal structure to the (names
of) services in C, i.e., as a way to enforce the fact that the MFSM internal
schema is associated to the service E.

Example 10 Figure 4.4 shows a possible internal schema for the target ser-
vice E0. It is represented as a MFSM M0. The output function ωint is defined
as follows:
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ωint(t0, a) = {1}
ωint(t1, l) = {1}

ωint(t0, t) = {2}
ωint(t2, l) = {2}

The MFSM Aint(E) is an internal schema in the sense that it specifies an
internal execution tree T int(E). Given Aint(E) we, again, define the internal
execution tree T (Aint(E)) by induction on the level of the nodes, by making
use of an auxiliary function σint(·) that associates each node of the tree with
a state in the MFSM, as follows:

• ε is, as usual, the root of T (Aint(E)) and σint(ε) = s0
E

int ;

• if x is a node of T (Aint(E)), and σint(x) = s, for some s ∈ Sint
E , then for

each a such that s′ = δint
E (s, a) is defined, x · a is a node of T (Aint(E))

and σint(x · a) = s′;

• if x is a node of T (Aint(E)), and σint(x) = s, for some s ∈ Sint
E , then for

each a such that ωint
E (s, a) is defined (i.e., δint

E (s, a) is defined), the edge
(x, x · a) of the tree is labeled by ωint

E (s, a);

• x is final iff σint(x) ∈ F int
E .

It is easy to see that with the above construction one can derive a mapping
T int(E) from Aint(E). This is equivalent to say that the tree T (Aint(E)) ob-
tained by unfolding Aint(E) coincides with the internal execution tree T int(E),
since T int(E) = T (Eint) = T (Aint

E ) = T (Aint(E)).

Example 11 Figure 4.5 shows a portion of the internal execution tree T (M0)
defined from M0, shown in Figure 4.4. Each node of the tree is labeled with
the state of M0 that σint associates to it. The mapping σint is defined as
follows.

σint(ε) = t0
σint(a) = t1
σint(t) = t2
σint(a·l) = σint(t·l) = t0
σint(a·l·a) = σint(t·l·a) = t1
σint(a·l·t) = σint(t·l·t) = t2
σint(a·l·a·l) = σint(a·l·t·l) = σint(t·l·a·l) = σint(t·l·t·l) = t0
. . .

σint maps over t1 the nodes of the tree that represent strings ending by a, and
over t2 the nodes that represent strings ending by t; it maps over t0 the root
and the nodes of the tree associated to strings ending by l.
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Figure 4.5: Internal execution tree T (M0) for the target service E0

Note that T (M0) is equal to the internal execution tree T int(E) of Figure 3.3(a)
(up to renaming the labels (Ei, ei) with i). That is, T int(E) has a finite repre-
sentation as a MFSM. Therefore, M0 is a specification of an internal execution
tree that conforms to the external execution tree specified by the FSM A0 of
Figure 4.2(a). Finally, note that in general, an external FSM and its corre-
sponding internal MFSM may have different structures, i.e., the MFSM inter-
nal schema cannot be obtained by simply labeling the FSM external schema
with services in the community.

Given a service E whose external schema is an FSM and whose internal
schema is an MFSM, checking whether E is well formed, i.e., whether the
internal execution tree conforms to the external execution tree, can be done
using standard finite state machine techniques. Similarly for checking the
coherency of E wrt a community of services whose external schemas are FSMs.
In this thesis, we do not go into the details of these problems, and instead we
concentrate on composition.

4.2 Preliminaries on Deterministic Propositional
Dynamic Logic

Propositional Dynamic Logics (PDLs) are a family of modal logics specifically
developed for representing and reasoning about computer programs [66, 92].
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They capture the properties of the interaction between programs and proposi-
tions that are independent of the domain of computation. In this section, we
provide a brief overview of a logic of this family, namely Deterministic Propo-
sitional Dynamic Logic (DPDL), which we will use in the rest of the thesis.
More details can be found in [81].

Syntactically, a DPDL formula is constituted by expressions of two sorts:
actions, also called programs, and propositions. Arbitrary propositions, also
called formulas, and programs, denoted by φ and r respectively, are built by
starting from a set P of atomic propositions and a set A of deterministic
atomic actions as follows:

φ −→ true | false | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

where P is an atomic proposition in P, a is an atomic action in A. We also
use the abbreviation

φ1 → φ2 for ¬φ1 ∨ φ2

Intuitively, DPDL formulas are composed from atomic propositions by apply-
ing arbitrary propositional connectives (¬,∧,∨) and the modal operators 〈r〉φ
and [r]φ. The meaning of the latter two is, respectively, that there exists an
execution of r reaching a state where φ holds, and that all terminating execu-
tions of r reach a state where φ holds. As far as arbitrary programs, r1 ∪ r2

means “choose non deterministically between r1 and r2”; r1; r2 means “first
execute r1 then execute r2”; r∗ means “execute r a non deterministically cho-
sen number of times (zero or more)”; φ? means “test φ: if it is true proceed
else fail”.

The main difference between DPDL (and modal logics in general) and
classical logics relies on the use of modalities. A modality is a connective
which takes a formula (or a set of formulas) and produces a new formula
with a new meaning. Examples of modalities are 〈r〉 and [r]. For instance, the
classical logic operator ¬ is a connective, which takes a formula p and produces
a new formula ¬p. The only difference is that in classical logic, the truth
value of ¬p is uniquely determined by the value of p, instead modalities are
not truth-functional. Because of modalities, the semantics of DPDL formulas
(and modal logics) is defined over a structure, namely a Kripke structure.

The semantics of DPDL is based on the notion of deterministic Kripke
structure. A deterministic Kripke structure is a triple of the form I =
(ΔI , {aI}a∈A, {P I}P∈P), where ΔI denotes a non-empty set of states (also
called worlds); {aI}a∈A is a family of partial functions aI : ΔI → ΔI from
elements of ΔI to elements of ΔI , each of which denotes the state transitions
caused by an atomic program a; P I ⊆ ΔI denotes all the elements of ΔI were
P is true.
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The basic semantic relation “a formula φ holds at a state s of a structure
I”, is written I, s |= φ, and is defined by induction on the form of φ:

I, s |= true always
I, s |= false never
I, s |= P iff s ∈ P I

I, s |= ¬φ iff I, s �|= φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 and I, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ rI and I, s′ |= φ
I, s |= [r]φ iff for all s′, (s, s′) ∈ rI implies I, s′ |= φ

where the family {aI}a∈A is systematically extended so as to include, for every
program r, the corresponding function rI defined by induction on the form of
r:

aI : ΔI → ΔI

(r1 ∪ r2)I = rI1 ∪ rI2
(r1; r2)I = rI1 ; rI2
(r∗)I = (rI)∗

(φ?)I = {(s, s) ∈ ΔI × ΔI | I, s |= φ}

The set of subformulas of a DPDL formula φ that play some role in estab-
lishing the truth-value of φ is given by the Fischer-Ladner closure [66].

A structure I = (ΔI , {aI}a∈A, {P I}P∈P) is called a model of a formula φ
if there exists a state s ∈ ΔI such that I, s |= φ. A formula φ is satisfiable if
there exists a model of φ, otherwise the formula is unsatisfiable. A formula φ
is valid in the structure I if for all s ∈ ΔI , I, s |= φ. We call axioms formulas
that are used to select the interpretations of interest. Formally, a structure I
is a model of an axiom φ, if φ is valid in I. A structure I is a model of a finite
set of axioms Γ if I is a model of all axioms in Γ. An axiom is satisfiable if it
has a model and a finite set of axioms is satisfiable if it has a model. We say
that a finite set Γ of axioms logically implies a formula φ, written Γ |= φ, if φ
is valid in every model of Γ. It is easy to see that satisfiability of a formula
φ as well as satisfiability of a finite set of axioms Γ can be reformulated by
means of logical implication, as ∅ �|= ¬φ and Γ �|= false respectively.

DPDL enjoys two properties that are of particular interest. The first is the
tree model property, which says that every model of a formula can be unwound
to a (possibly infinite) tree-shaped model (considering domain elements as
nodes and partial functions interpreting actions as edges). The second is the
small model property, which says that every satisfiable formula admits a finite
model whose size (in particular the number of domain elements) is at most
exponential in the size of the formula itself.
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Reasoning in DPDL (and, in general, in PDLs) has been thoroughly studied
from the computational point of view. In particular, the following theorem
holds [13]:

Theorem 15 Satisfiability in DPDL is EXPTIME-complete.

4.3 Automatic Service Composition

In this section we address the problem of checking the existence and of syn-
thesizing a composite service in the FSM-based framework introduced above.
We show that if a composition exists then there is one such that the internal
schema is constituted by a MFSM, and we show how to actually synthesize
such a MFSM, when one exists. The basic idea of our approach consists in
reducing the problem of composition into satisfiability of a suitable formula of
Deterministic Propositional Dynamic Logic (DPDL).

4.3.1 Checking Existence of a Composition

In this section we show how to solve the problem of composition existence,
both in the general case and in the context of our running example.

Given the target service E0 whose external schema is a FSM A0 and a
community of services formed by n component services E1, . . . , En whose ex-
ternal schemas are FSM A1, . . . , An respectively, we build a DPDL formula
Φ as follows. As set of atomic propositions P in Φ we have (i) one proposi-
tion sj for each state sj of Aj , j = 0, . . . , n, denoting whether Aj is in state
sj ; (ii) propositions Fj , j = 0, . . . , n, denoting whether Aj is in a final state;
and (iii) propositions movedj , j = 1, . . . , n, denoting whether (component) Aj

performed a transition. As set of atomic actions A in Φ we have the actions
in Σ (i.e, A = Σ).

Example 12 The set P of atomic propositions is defined as follows:

P = {s0
0, s

1
0, s

0
1, s

1
1, s

0
2, s

1
2, F0, F1, F2, moved1, moved2}

with the above meaning.

The set A of deterministic atomic actions, which by construction coincides
with the alphabet of the community, is: A = Σ = {a, t, l}, where:

• a denotes action search by author

• t denotes action search by title

• l denotes action listen.
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Universal assertions are encoded by the master modality [u].
The DPDL formula Φ, encoding the composition problem, is built as a

conjunction of the following formulas.

• Formulas representing A0 = (Σ, S0, s
0
0, δ0, F0):

– [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s �= s′;
these say that propositions representing different states are disjoint
(cannot be true simultaneously).

– [u](s → 〈a〉true ∧ [a]s′) for each a such that s′ = δ0(s, a); these
encode the transitions of A0.

– [u](s → [a]false) for each a such that δ(s, a) is not defined; these
say when a transition is not defined.

– [u](F0 ↔
∨

s∈F0
s); this highlights final states of A0.

Example 13 To encode the master modality [u], we set

u = (a ∪ t ∪ l)∗

i.e., as the reflexive and transitive closure of the union of all atomic
actions in A. In other words, u represents the iteration of a non deter-
ministic choice among all the possible atomic actions. Indeed, we recall
that [u]φ, where φ is a proposition, asserts that φ holds after any regular
expression involving a, t, l.

Formulas capturing the external schema A0 are as follows.

[u](s0
0 → ¬s1

0)

This formula states that FSM A0 can never be simultaneously in the two
states s0

0 and s1
0. Note that it is equivalent to state [u](s1

0 → ¬s0
0).

[u](s0
0 → 〈a〉true ∧ [a]s1

0)
[u](s0

0 → 〈t〉true ∧ [t]s1
0)

[u](s1
0 → 〈l〉true ∧ [l]s0

0)

These formulas encode the transitions that A0 can perform. For example,
the first formula asserts that, for all possible sequences of actions, if A0

is in state s0
0, the FSM allows for searching an mp3 file by author, i.e., it
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can execute action a, and it necessarily moves to state s1
0. Analogously

for the other formulas.

[u](s0
0 → [l]false)

[u](s1
0 → [a]false)

[u](s1
0 → [t]false)

These formulas encode the transitions that are not defined on A0. For
example, the first formula asserts that, for all possible sequences of ac-
tions, it is never possible to execute action listen when the FSM is in
state s0

0.
[u](F0 ↔ s0

0)

Finally, this formula asserts that s0
0 is a final state for A0.

• Formulas encoding each component FSM Ai = (Σ, Si, s
0
i , δi, Fi):

– [u](s → ¬s′) for all pairs of states s ∈ Si and s′ ∈ Si, with s �= s′;
these again say that propositions representing different states are
disjoint.

– [u](s → [a](movedi ∧ s′ ∨ ¬movedi ∧ s)) for each a such that s′ =
δi(s, a); these encode the transitions of Ai, conditioned to the fact
that the component Ai is actually required to make an a-transition
in the composition.

– [u](s → [a](¬movedi∧s)) for each a such that δi(s, a) is not defined;
these say that when a transition is not defined, Ai cannot be asked
to execute it in the composition, and therefore Ai does not change
state.

– [u](Fi ↔
∨

s∈Fi
s); this highlights final states of Ai.

Example 14 Formulas capturing the external schema A1.

[u](s0
1 → ¬s1

1)

This formula has an analogous meaning as that relative to A0.

[u](s0
1 → [a](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u](s1
1 → [l](moved1 ∧ s0

1 ∨ ¬moved1 ∧ s1
1))

These formulas encode the transitions which are defined and required
to A1. As an example, the first formula asserts that for all possible
sequences of actions, if the FSM A1 is in s0

1, then after action a has been
executed, necessarily one of the following conditions must hold: either it
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is A1 that performed the transition and therefore it moved to state s1
1,

or the transition has been performed by another FSM, hence A1 did not
move and remained in the current state s0

1.

[u](s0
1 → [l](¬moved1 ∧ s0

1))
[u](s0

1 → [t](¬moved1 ∧ s0
1))

[u](s1
1 → [a](¬moved1 ∧ s1

1))
[u](s1

1 → [t](¬moved1 ∧ s1
1))

These formulas encode transitions which are not defined. For example,
the first formula states that if A1 is in state s0

1 and it is asked to execute
l, it does not move, and therefore it remains in state s0

1; this holds for
all possible sequences of actions. Note that the situation when the FSM
does not move is different from the situation when it loops on a state:
indeed, in the latter case the transition is defined whereas in the former
it is not.

Finally, the formula
[u](F1 ↔ s0

1)

asserts that state s0
1 is final for FSM A1.

Formulas capturing the external schema A2.

Such formulas are analogous to the previous ones, therefore, we will just
report them, without further comments.

[u](s0
2 → ¬s1

2)
[u](s0

2 → [t](moved2 ∧ s1
2 ∨ ¬moved2 ∧ s0

2))
[u](s1

2 → [l](moved2 ∧ s0
2 ∨ ¬moved2 ∧ s1

2))
[u](s0

2 → [l](¬moved2 ∧ s0
2))

[u](s0
2 → [a](¬moved2 ∧ s0

2))
[u](s1

2 → [t](¬moved2 ∧ s1
2))

[u](s1
2 → [a](¬moved2 ∧ s1

2))
[u](F2 ↔ s0

2)

• Finally, formulas encoding domain independent conditions:

– s0
0∧

∧
i=1,...,n s0

i ; this says that initially all services are in their initial
state; note that this formula is not prefixed by [u](·).

– [u](〈a〉true → [a]
∨

i=1,...,n movedi), for each a ∈ Σ; these say that
at each step at least one of the component FSM has moved.
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– [u](F0 →
∧

i=1,...,n Fi); this says that when the target service is in
a final state also all component services must be in a final state.

Example 15 The domain independent conditions that must hold for
the overall composition are as follows.

s0
0 ∧ s0

1 ∧ s0
2

It asserts that all services start from their initial states.

[u](〈a〉true → [a](moved1 ∨ moved2))
[u](〈t〉true → [t](moved1 ∨ moved2))
[u](〈l〉true → [l](moved1 ∨ moved2))

Each formula expresses that at each step either A1 or A2 or both move.
For example, the first one asserts that for all possible execution se-
quences, if a is executed then necessarily either E1 or E2 (or both)
performed a.

Finally,

[u](F0 → F1 ∧ F2)

states that if the composite service is in a final state, both component
services must be in a final state: the composite service may legally ter-
minate only if also all the component services can.

Note that the DPDL formula Φ, built as above, presents the following
properties:

• the Kleene star ∗ is used only in the master modality, i.e., in expressions
of the form [p∗]Ψ, where Ψ is a DPDL formula which do not contain ∗;

• the master modality has the form u = (a1 ∪ . . . ∪ an)∗, where a1 . . . an

are DPDL atomic actions;

• the 〈〉 modality appears only in front of the atomic proposition true;

• both modalities [] (when it is not used as master modality) and 〈〉 are
used in expressions of the form [a]Ψ or 〈a〉Ψ, where Ψ is a DPDL formula
and a is an atomic DPDL action.

We will make use of such observations in Chapter 7.

Lemma 16 If there exists a composition of E0 wrt E1, . . . , En, then the DPDL
formula Φ, constructed as above, is satisfiable.
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Proof. Suppose that there exists some internal schema (without restriction
on its form) E0

int which is a composition of E0 wrt E1, . . . , En. Let Tint =
T (E0

int) be the internal execution tree defined by E0
int .

Then for the target service E0 and each component service Ei, i = 1, . . . n,
we can define mappings σ and σi from nodes in Tint to states of A0 and Ai,
respectively, by induction on the level of the nodes in Tint as follows.

• base case: σ(ε) = s0
0 and σi(ε) = s0

i .

• inductive case: let σ(x) = s and σi(x) = si, and let the node x · a be in
Tint with the edge (x, x · a) labeled by (a, I), where I ⊆ [n] and I �= ∅
(notice that this may not occur since Tint is specified by a composition).
Then we define

σ(x · a) = s′ = δ0(s, a)

and

σi(x · a) =

{
si

′ = δi(si, a) if i ∈ I

si if i �∈ I

Once we have σ and σi in place we can define an interpretation I =
(ΔI , {aI}a∈Σ, {P I}P∈P) for Φ as follows:

• ΔI = {x | x ∈ Tint};

• aI = {(x, x · a) | x, x · a ∈ Tint}, for each a ∈ Σ;

• sI = {x ∈ Tint | σ(x) = s}, for all propositions s corresponding to states
of A0;

• sIi = {x ∈ Tint | σi(x) = si}, for all propositions si corresponding to
states of Ai;

• movedIi = {x · a | (x, x · a) is labeled by I with i ∈ I}, for i = 1, . . . , n;

• F I
0 = {x ∈ Tint | σ(x) = s with s ∈ F0};

• F I
i = {x ∈ Tint | σi(x) = si with si ∈ Fi}, for i = 1, . . . , n.

Since Tint is a composition of E0 wrt E1, . . . , En, it is easy to check that the
interpretation I built as above, is a (tree-like) model for Φ and that, therefore,
Φ is satisfiable.

Lemma 17 Any model of the DPDL formula Φ, constructed as above, denotes
a composition of E0 wrt E1, . . . , En.
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Proof. Suppose Φ is satisfiable. For the tree model property, there exists a
tree-like model for Φ: let I = (ΔI , {aI}a∈Σ, {P I}P∈P) be such a model. From
I we can build an internal execution tree Tint for E0 as follows.

• the nodes of the tree are the elements of ΔI ; actually, since I is tree-like
we can denote the elements in ΔI as nodes of a tree, using the same
notation that we used for internal/external execution tree;

• nodes x such that x ∈ F I
0 are the final nodes;

• if (x, x · a) ∈ aI and for all i ∈ I, x · a ∈ movedIi and for all j �∈ I,
x · a �∈ movedIj , then (x, x · a) is labeled by (a, I).

It is straightforward to show that: (i) Tint conforms to T (A0), (ii) Tint dele-
gates all actions to the services of E1, . . . , En, and (iii) Tint is coherent with
E1, . . . , En. Since we are not placing any restriction on the kind of specifi-
cation allowed for internal schemas, it follows that there exists an internal
schema Eint that is a composition of E0 wrt E1, . . . , En.

Theorem 18 The DPDL formula Φ, constructed as above, is satisfiable if
and only if there exists a composition of E0 wrt E1, . . . , En.

Proof. Straightforward, from Lemma 16 and 17.

By construction, the size of the DPDL formula Φ is polynomially related to
A0 and A1, . . . , An. Hence, from the EXPTIME-completeness of satisfiability
in DPDL and from Theorem 18 we get the following complexity result.

Theorem 19 Checking the existence of service composition can be done in
EXPTIME.

We do not have a tight lower bounds for the complexity of the composition
existence problem, however, we argue that exponentiality is inherent to the
problem, since, from a practical point of view, it is easy to find cases in which
the composition must be exponential in the size of the component services and
the client specification.

4.3.2 Synthesizing a Composition

In the previous section we have shown that we are able to check the existence
of a composition by checking satisfiability of a DPDL formula Φ encoding
the FSM external schema of the target service, FSM external schemas of the
services in the community and a number of domain independent conditions.
In this section we extend our technique to actually synthesize a composition
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which is a FSM. Specifically, we present an algorithm that returns a com-
position, if one exists, and returns a special symbol (nil), denoting that no
composition exists, otherwise.

Intuitively, by Theorem 18, if Φ is satisfiable then it admits a model, which
is exactly the the composition, we want to synthesize. Conversely, if Φ is not
satisfiable, no model exists, therefore, the component FSM A1, . . . , An cannot
be composed in order to build an internal schema for the target FSM A0.
Note that Theorem 18 says nothing about compositions which are finite state
machines. However, because of the small model property, from the PDPL
formula Φ one can always obtain a model which is at most exponential in the
size of Φ. From such a model one can extract an internal schema for E0 that
is a composition of E0 wrt E1, . . . , En, and which has the form of a MFSM.

Definition 20 (Mealy Composition) Given a finite model If =
(ΔIf , {aIf }a∈Σ, {P If }P∈P), we define Mealy composition an MFSM Ac =
(Σ, 2[n], Sc, s

0
c , δc, ωc, Fc, ), built as follows:

• Sc = ΔIf ;

• s0
c = d0 where d0 ∈ (s0

0 ∧
∧

i=1,...,n s0
i )

If ;

• s′ = δc(s, a) iff (s, s′) ∈ aIf ;

• I = ωc(s, a) iff (s, s′) ∈ aIf and for all i ∈ I, s′ ∈ moved
If

i and for all
j �∈ I, s′ �∈ moved

If

j ;

• Fc = F
If

0 .

�

As a consequence of this, we get the following results.

Theorem 21 If there exists a composition of E0 wrt E1, . . . , E0, then there
exists a Mealy composition whose size is at most exponential in the size of the
FSM external schemas A0, A1, . . . , An of E0, E1, . . . , En respectively.

Proof. By Theorem 18, if A0 can be obtained by composing A1, . . . , An,
then the DPDL formula Φ constructed as in Section 4.3.1 is satisfiable. In
turn, if Φ is satisfiable, for the small-model property of DPDL there exists a
model If of size at most exponential in Φ, and hence in A0 and A1, . . . , An.
From If we can construct a MFSM Ac as in Definition 20. The internal
execution tree T (Ac) defined by Ac satisfies all the conditions required for
Ac to be a composition, namely: (i) T (Ac) conforms to T (A0), (ii) T (Ac)
delegates all actions to the services of E1, . . . , En, and (iii) T (Ac) is coherent
with E1, . . . , En.
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AUTOMATIC SERVICE COMPOSITION

1 INPUT: A0 /* FSM external schema of target service */
2 A1 . . . An /* FSM external schema of services in the community */
3
4 OUTPUT: if (a composition of A0 wrt A1 . . . An exists)
5 then return a Mealy composition of A0 wrt A1 . . . An

6 else return nil
7
8 begin
9 Φ := FSM2DPDL(A0, A1, . . . An);
10 If := DPDLTableau(Φ);
11 if (If == nil)
12 then return nil
13 else Ac := Extract MFSM(If);
14 Cmin := Minimize(Ac);
15 return Cmin;
16 end

Figure 4.6: The algorithm for synthesizing a Mealy composition

Theorem 22 Any finite model of the DPDL formula Φ denotes a Mealy com-
position of E0 wrt E1, . . . , En.

Proof. By construction, observing that the construction of the Mealy com-
position from a finite model is semantic-preserving.

Figure 4.6 shows our algorithm for synthesizing a Mealy composition,
which consists of the following steps. First (line 9), the DPDL formula Φ is
built, exploiting the FSM2DPDL function, as a conjunction of formulas encod-
ing: (i) the FSM external schema of the target service requested by the client,
(ii) the FSM external schemas of the (available) services of the community,
and (iii) domain independent conditions. In other words, it encodes all the
FSM external schemas of (real and virtual) services participating in the com-
position. Essentially, such an encoding aims at characterizing which service
in the community “moves” in correspondence with each transition of the tar-
get service, so that general domain independent conditions are satisfied. The
novelty and peculiarity of our approach to service composition is exactly this:
we delegate to one or more services in the community the execution of each
action which is present in the transition system specified by the client, since
only in a second moment it is known which actions will be chosen by the client
for execution (and the composite service should be able to execute any action
chosen by the client). Satisfiability of Φ is then checked (line 10, function
DPDLTableau) exploiting standard tableau algorithms [52, 8] that return a fi-
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(l, 1)
(a, 1) (t, 2)

(t, 2)

(t, 2)

(a, 1)

(a, 1)

(l, 2)

moved1, F2

F0, F1, F2 F0, F1, F2

F0, F1, F2

s0
0, s0

1, s0
2

t0

t1

t2

t3

t4

s1
0, s1

1, s0
2

s0
0, s0

1, s0
2, moved1

s1
0, s0

1, s1
2

s0
0, s0

1, s0
2, moved2

moved2, F1

Figure 4.7: Finite model If for Φ.

nite model, if and only if one exists. If Φ is not satisfiable, no model exists,
and our algorithm returns nil (line 12). Otherwise, from a finite model a
Mealy composition is built, (function Extract MFSM, line 13), according to
Definition 20. Intuitively, the transformation from a finite model If to a Mealy
Machine Ac consists in discarding from each state of If the information about
the current state of (the FSM external schema of) each component service,
therefore keeping in Ac only the information about which service is in a final
state and which one “moves”. Note that, in general, after this transformation,
some states of Ac can be redundant, since they contain the same information:
in other words, a final step minimizing Ac can be performed (line 14, func-
tion Minimize), and the minimal Mealy composition Cmin is returned (line
15). In Section 7.4, we present a prototype tool that implements such steps.

Example 16 Let Φ be the DPDL formula encoding A0, A1, A2 and
the domain independent conditions, built as in Section 4.3.1. Let
If be the finite model (i.e., the Kripke Stricture) obtained using a
tableau technique for DPDL, and shown in Figure 4.7. If is defined as
If = (ΔIf , {aIf }a∈Σ, {P If }P∈P), where:

ΔIf = {t0, t1, t2, t3, t4}
aIf = {(t0, t1), (t2, t1), (t4, t1)}
tIf = {(t0, t3), (t2, t3), (t4, t3)}
lIf = {(t1, t2), (t3, t4)}
(s0

0)
If = {t0, t2, t4}

(s1
0)

If = {t1, t3}
(s0

1)
If = {t0, t2, t3, t4}

(s1
1)

If = {t1}

(s0
2)

If = {t0, t1, t2, t4}
(s1

2)
If = {t3}

moved
If

1 = {t1, t2}
moved

If

2 = {t3, t4}
F

If

0 = {t0, t2, t4}
F

If

1 = {t0, t2, t3, t4}
F

If

2 = {t0, t1, t2, t4}
Each state ti of the model is associated with the atomic propositions in

P that hold in that state, according to If . For example, consider state t0:
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If imposes that s0
0 ∧ s0

1 ∧ s0
2 ∧ F0 ∧ F1 ∧ F2 holds in t0. Therefore, we take

t0 as initial state for the MFSM. However, since the same propositions hold
also in t2 and t4, we could have as well as chosen either t2 or t4 as initial
state. For sake of readability, in Figure 4.7 we have associated to each state
of If simply the list of atomic propositions that are true. Additionally, note
that the DPDL encoding does not pose any constraint on the value of movedi

predicates in the initial state of the model: their value has been arbitrarily
chosen to be false.4

Given If = (ΔIf , {aIf }a∈Σ, {P If }P∈P) for Φ, we define a Mealy compo-
sition Ac = (Σ, 2[2], Sc, s

0
c , δc, ωc, Fc), representing the internal schema of the

target service, as follows:

• Sc = {t0, t1, t2, t3, t4};

• s0
c = t0, where t0 ∈ (s0

0 ∧ s0
1 ∧ s0

2)
If .

• δc is defined as:

δc(t0, a) = t1
δc(t0, t) = t3

δc(t1, l) = t2
δc(t3, l) = t4

δc(t2, a) = t1
δc(t2, t) = t3

δc(t4, a) = t1
δc(t4, t) = t3

• ωc is defined as:

ωc(t0, a) = {1}
ωc(t0, t) = {2}

ωc(t1, l) = {1}
ωc(t3, l) = {2}

ωc(t2, a) = {1}
ωc(t2, t) = {2}

ωc(t4, a) = {1}
ωc(t4, t) = {2}

• Fc = {t0, t2, t4}.

This example shows also that the finite state machine associated to the
finite model of Φ is in general not minimal. Indeed, the minimal MFSM Cmin

is shown in Figure 4.8. Note that Cmin coincides with the MSFM shown in
Figure 4.4 which, as shown in Example 11, is an internal schema for the target
service E0 of our running example.

Before concluding the section, we first discuss our technique on a slightly
more complex example of composition synthesis. Then, we show an example
of non-existence of a composition.

4Note also the model for the DPDL formula Φ is deterministic, as it should be. Non
determinism could have been introduced by the operator 〈〉. However, we are guaranteed
that no atomic action a connects a state s1 with two different (target) states s2 and s3,
because 〈〉 operates only on atomic actions a and it appears only in front of the atomic
proposition true. Indeed, if a related s1 with s2 and s3, such target states would actually
be the same, since s2 and s3 are associated with the same atomic proposition true.
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(a, 1)

(t, 2)

(l, 2)

(l, 1)

t2

t1

t0

a = search by author

t = search by title

l = listen

Figure 4.8: Minimal MFSM Cmin associated to If .

Example 17 Figure 4.9 shows a traveling service composition scenario. Fig-
ure 4.9 (a) shows a community CT composed by four services, having the
following behavior: (i) S1: book airtravel allows for booking (zero or
more times) first a plane ticket and then a limousine to arrive to the airport;
(ii) S2: book accommodation allows for choosing whether to reserve a hotel
room or a flat in a residence, and in the second case it allows for listing the
facilities near the chosen residence (e.g., supermarkets), finally it allows for
booking a shuttle zero or more times, to/from the chosen accommodation;
(iii) S3: book traintravel allows for booking (zero or more times) first
a train ticket and then a limousine to arrive to the train station5; (iv) S4:

register event allows for registering to an event. Such an event may be a
tourist event, e.g., Venice film festival, a conference, etc.

Figure 4.9(b) shows the FSM external schema AT of a target service re-
quested by a client, that wants to book a plane or a train ticket and a hotel
room (note, the client does not desire to book a residence flat) in any order;
then he wants to book a limousine to go to the departure place, a shuttle for
traveling around, starting from the arrival destination (at least once, possibly
more times) and finally to register to the event for which he makes the travel.

By applying our composition technique, we get the MFSM MT shown in
Figure 4.9(c). It is easy to see that MT is indeed a Mealy composition of AT
wrt CT :

1. MT conforms to AT , since the FSM obtained from MT by dropping the
part of the labeling denoting services, is equivalent to (i.e., accepts the
same language as) AT .

2. MT is coherent with CT , since (i) all actions are in the alphabet of CT ,
and (ii) all accepting runs of MT determine accepting runs over each
one of the component services. Therefore,

5Note that both S1: book airtravel and S2: book traintravel provide the same
action book limo.
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Figure 4.9: Traveling service Composition Scenario



88
CHAPTER 4. SERVICE BEHAVIORAL DESCRIPTION AS FSM AND

AUTOMATIC COMPOSITION

h

t

p

s2
0s1

0s0
0p = buy plane ticket

t = buy train ticket

h = book hotel room

r = register

r

(a) Target service S0

h
s2
1s1

1s0
1

p

r

(b) Component service S1

s0
2

t

h
s1
2

(c) Component service S2

Figure 4.10: Non-existence of a composition

3. MT correctly delegates all actions to the services of CT (note also that
this does not appear in MT ).

Finally, note that, the form of the MT is different from the form of AT : this
happens because the book limo action is provided by two different services.
In other words, in general, in order to compute a Mealy composition it does
not suffices to label the transitions of the FSM external schema of the target
service.

Example 18 Figure 4.10 (a) shows a service for conference participation:
first, the client registers to a conference (action registration), he books a ho-
tel room (action book hotel room), finally, he chooses whether to buy a plane
ticket (action buy plane ticket) or a train ticket (action buy train ticket).
Then, the client can either end the interactions or execute all of them again.
Note that he can also choose to execute the first action only. Such a service
represents the target service. Figure 4.10 (b) and (c) show services S1 and S2,
respectively, constituting the community of services. S1 allows for executing
actions registration, followed by book hotel room, and buy train ticket,
possibly in a repeated way. S2 allows for executing the sequence of actions
book hotel room, and buy plain ticket, possibly repeatedly.

In this example, no composition exists: indeed, the annotation of
book hotel room depends on which action is executed next, since actions
buy train ticket and buy plane ticket are executed by different services
and states s2

1 and s1
2 in Figure 4.10 (b) and (c), respectively, are not final,

therefore none of S1 and S2 can terminate on these states. Therefore, our
composition algorithm returns nil.
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In [71] the authors propose a framework in which they are able to com-
pute composition also in this case. Their idea is to let the client choose in
advance (e.g., in state s1

0) which action to execute after book hotel room, by
adding the so-called look-ahead. In this way, the action delegation is done
by considering not only the history of past activities, but also the sequence
of future activities. Therefore, the framework presented in [71], although in-
spired by the one discussed in this thesis, has profound differences with it:
client requests are essentially languages and compositions are finite state au-
tomata over strings. Therefore, using the taxonomy proposed in Chapter 2,
their approach can be classified as “language-based”.

4.4 Discussion

The contribution of this chapter is an effective technique for automatic service
composition. In particular, we specialize the general framework of Chapter 3
to the case where services are specified by means of (deterministic) finite state
machines, and we present a technique that, given a specification of a target
service, i.e., specified by a client, and a set of available services, (i) synthesizes
a composite service that uses only the available services, (ii) fully captures the
target one, and (iii) it is still described as a finite state machine. Actually,
specific representations of services are often based on finite state formalisms,
e.g., in [111] services are represented as statecharts, and in [40] services are
modeled as Mealy machines. We claim that indeed most services have a be-
havior which can be abstractly represented as finite state machines, once it is
singled out (in the abstract) the computations that such services can execute.

Our approach to automatic composition has two notable features:

1. The composition is based on the ability of executing the available com-
ponent services concurrently, and of controlling in a suitable way how
such services are interleaved to serve the client.

2. The client request is not a specification of a (single) desired execution,
but a set of possibly non terminating executions organized in an execu-
tion tree, whose nodes correspond to sequences of transitions executed
so far and whose successor nodes represent the choices available to the
client to choose from what to do next. In other words, the client specifies
the so-called transition system of the activities he is interested in doing.
The ability of expressing a client specification as a transition systems
realizes the natural client requirement that his decisions on which action
to execute next depend on the outcome of previously executed actions
and of other information which he cannot foresee at the time when he
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specifies his requests. If either the available services or the client specifi-
cation are not expressed as transition systems, the client would not have
any influence over the sequence of actions executed by the composite
service; instead his choices would be made once and for all before the
composition is performed.

Both of these features are quite distinctive of our approach, and set the
stage for a quite advanced form of composition: to the best of our knowledge,
here we present the first algorithm for automatic composition of services in a
framework where both the available services and the client specification are
characterized by a behavioral description expressed as finite state machine.
Our technique is sound, complete and terminating : if a composition of the
available component services realizing the client specification exists, then our
composition algorithm terminates returning one such a composition. Other-
wise, it terminates reporting the non-existence of a composition. We also study
the computational complexity of our technique, and we show that it runs in
exponential time with respect to the size of the input state machines. Note
that only few proposals in the literature follow our idea that the composition
involves the concurrent executions of several services. In particular, the most
related ones are [40, 123]: they have in common with our proposal the fact
that the services are seen as white-boxes and hence they can be interleaved if
needed. The composition deals with suitably controlling such an interleaving
so as to realize the client request. As discussed in Section 2.2, most work
on composition is based on the idea of sequentially composing the available
services, which are considered as black boxes, and hence atomically executed
[5, 98, 105, 153, 2], while the proposal in [108] lies somehow in between of such
approaches. The second feature, i.e., that the client request is a specification
of the transition system that the client wants to be able to execute, is, to the
best of our knowledge, unique to our proposal. Indeed even [71, 40, 108] ac-
tually focus on realizing a single execution fulfilling the client request. Notice
that such an execution may depend on conditions to be verified at run time,
but not on further choices made by the client. Only the proposal in [123] has
some similarities with ours: indeed, there, the client goal is expressed in a spe-
cific branching-time logic, that allows to specify alternative paths of execution
under the control of the client. Though, their goals are still essentially based
on having a main execution to follow, plus some side paths that are typically
used to resolve exceptional circumstances.



Chapter 5

Loosely Specified Target
Services

In this chapter we extend the framework presented in Chapters 3 and 4, to the
case where the target service presents don’t care non-determinism. We analyze
such a situation and study the issues it raises wrt the problem of composition.
Finally, we develop sound, complete and terminating techniques for checking
the existence and building a composition.

5.1 Underspecified Target Service

In the framework presented in Chapters 3 and 4 the client request is given in
terms of a target service and in particular its external schema, i.e., the behav-
ioral description of the service he would like to interact with. Since the client
request is completely specified, it determines a single target service, that the
service community is asked to realize. In the present chapter we remove such
a completeness assumption and allow a client to provide a loose request, i.e.,
that denotes an underspecified external schema. The incompleteness in the
external schema of the target service shows up in the form of don’t care non-
determinism. Such non-determinism is called angelic: Section 5.4 explains
more about such terminology. For each set of non-deterministic transitions
that can be executed at a certain point of the computation, the client “does
not care” which transition is executed next, since any one is “good” for him,
and he leaves the choice on the next transition to the (system implementing
the algorithm for) composition synthesis. Such choices may depend on several
factors, for instance, on the availability of services in the community to which
actions can be delegated. In general, for each set of non-deterministic tran-
sitions, several choices concerning action delegation can be made. Therefore,
an underspecified client request determines a set of target services and the

91
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community is asked to realize one (any one) in such a set. Observe that when
a transition in a non-deterministic set is chosen, the (possibly deterministic)
transitions following it along its path are of course executed: different choices
may lead to different subsequent transitions (see Figure 5.1).

Finally, note that at specific points, determined in the client request, the
client get again control over the execution.

The presence of underspecification in the client request denotes a situation
which is very common in practice, when the client has no particular constraints
on which transitions are executed next. It is also a first attempt to cope with
dynamicity in the service community.

Definition 23 (Underspecified External Schema) An underspecified ex-
ternal schema Eext is a nondeterministic FSM Aext(E) = (Σ, S0, s

0
0, δ0, F0),

where:

• Σ is the alphabet of the FSM;

• S0 is the set of states;

• s0
0 is the initial state;

• δ0 : S0 ×Σ0 → 2S0 is a partial function that given a state and an action
returns the set of possible successor states;

• F0 ⊆ S0 is the set of final states.

�

Definition 24 (Underspecified Target Service) Let C be a service com-
munity and let Σ be its alphabet. An underspecified target service E0 is a
client request denoting an underspecified external schema E0

ext . �

Again, in general, a client request may express desired properties regarding
functional and non-functional aspects of the target service schema, implemen-
tation and deployment features. As discussed in Section 3.5, we require that
the client specifies (at least) the external schema of the service he desires to
use. However, in what follows, we assume for simplicity that a client service
specifies only the external schema of a target service and therefore, when clear
from the context, we use the term “underspecified target service” to denote
the “underspecified external schema (of an underspecified target service)”.

The following example illustrate the concept of underspecified target ser-
vice.
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Figure 5.1: Underspecified target service A0

Example 19 Figure 5.1 shows an underspecified target service A0 for
composing and sending e-cards. Specifically, after being authenticated
(authentication action), the client wants to search for an e-card and select
it (search & select action). At this point the client specifies a nondetermin-
istic choice between two possible paths: along one path he first customizes an
e-card (i.e., he selects the stationery for the message, such as font, background,
etc.) and then he writes the message from scratch and checks the spelling of
it (write & spell check action); along the other path he customizess the
e-card and then he composes the message by selecting a predefined template,
which can be either English or Italian (actions use english template and
use italian template, respectively): the choice of which template to use is
left to the client. The client “doesn’t care” which path is followed and lets
the composition synthesis free to specify which sequence of action to execute.
Next, there is another choice point, and in this case it is again the client
who chooses what to do next: either (i) he sends the e-card, or (ii) he se-
lects and attaches a gift (add gift action) or some music (add music action),
pays it (buy) and sends the e-card. Finally, the client chooses whether to
stop executing the services or send another e-card by performing the action
search & select.

Observe that in our framework it is not possible to apply to the underspec-
ified external schema of Definition 23 (in general to any external and internal
schema represented as FSM) transformations from non-deterministic to deter-
ministic FSM (and vice-versa), since the semantics of it would be completely
changed and distorted, and therefore the algorithm for composition synthe-
sis may not work properly. The fact that the c-transitions of Figure 5.1 end
into two different states s3

0 and s4
0 is not casual, but it expresses a specific

constraints of the client. As already discussed in the example, in the un-
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derspecified target service of Figure 5.1, the client desires either to follow
he “upper” c-transition and then a wsc transition, or to follow the “lower”
c-transition, and then choose between it or et. Consider now a different situ-
ation, resulting when the c-transitions collapse into one, and therefore, state
s4
0 collapses into state s3

0 and wsc transition originates from s3
0. Such a (de-

terminized) specification expresses that the client wants first to execute c and
then to choose between wsc, it and et. In the two situations the semantics of
the client specification is completely different!

A nondeterministic FSM Aext(E0), representing an underspecified target
service E0 specifies a set T (Aext(E0)) of external execution trees, defined as in
Definition 2. We recall that for every action a belonging to the alphabet Σ of
the community, and that can be executed at the point represented by a node
x, there is a (single) successor node x·a. Specifically, each execution tree in
T (Aext(E0)) is obtained by unfolding the FSM and while doing so, resolving
the nondeterminism by choosing a single successor state for each transition;
this generates a (deterministic), possibly infinite tree, whose edges are labeled
by Σ0 and whose nodes corresponding to final states of Aext(E0) are annotated
as final.

Formally, similarly to what done in Section 4.1, given Aext(E0), we define
each execution tree Ti(Aext(E0)) inductively on the level of nodes in the tree,
by making use of an auxiliary function σi

ang(·) that associates to each node of
Ti(Aext(E0)) a state in the FSM Aext(E0). Intuitively, each different σi

ang(·)
corresponds to a different way of resolving the non-determinism in the FSM,
by unfolding it. The function σi

ang(·) is defined as follows:

• ε, as usual, is the root of Ti(Aext(E0)) and σi
ang(ε) = s0

0;

• let x be a node of Ti(Aext(E0)), and let σi
ang(x) = s, for some s ∈ S0,

then two situations may happen:

– for each a such that s′ = δ0(s, a) is uniquely defined, i.e., there does
not exist another state s′′ different from s′ such that s′′ = δ0(s, a),
then x · a is a node of Ti(Aext(E0)) and σi

ang(x · a) = s′;
– for each a such that there exists two different states s′ and s′′ such

that both s′ = δ0(s, a) and s′′ = δ0(s, a) are defined, then x · a is a
node of Ti(A0) and either σi

ang(x · a) = s′ or σi
ang(x · a) = s′′, but

not both1;

• x is final iff σi
ang(x) ∈ F0.

Analogously to the discussion in Section 4.1, it is easy to see that with
the above construction, from Aext(E0), one can derive a set T ext(E0) of map-
pings, i.e., of execution trees associated to E0. This is equivalent to say that

1Note that the choice is done arbitrarily.
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Figure 5.2: External execution tree T (A0)

each tree Ti(Aext(E0)), obtained by unfolding Aext(E0) and by resolving the
non-determinism in a different way, coincides with an external execution tree
T ext

i (E0) in T ext(E0).

Example 20 Figure 5.2 shows (a portion of) T (A0), which is an (i.e., one
of the many) external execution trees defined from A0 (cf. Example 19) by a
mapping σang. Each node in the figure is labeled with the state of A0 that
σang associates to it. We will not go over the whole definition of σang, because
this should be already clear from Example 9 in Section 4.1 and from Figure 5.2
itself. We want to make the following observations:

1. For every action o that can be executed at the point represented by a
node x, there is a (single) successor node x·o.

2. Action customize (c in the figure) labels two edges: the first edge ends
into a node corresponding to state s3 in the FSM A0 and the second
edge ends into a node corresponding to state s4. Since in A0 there
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is a nondeterministic choice involving c-transitions, this means that in
the two cases the non-determinism is resolved differently: indeed, the
first occurrence of action customize is followed by a choice between
actions use english template and use italian template; the second
occurrence is followed by action write & spell check. We may assume
that in the tree odd occurrences of c-transitions are resolved as in the
first case, even occurrences as in the second case. However, in general,
the choice on which c-transition to execute is done arbitrarily: for this
reason, in order to show how to resolve the non-determinism, it has been
necessary to exploit the notion of execution tree and use the function
σi

ang.

5.2 The Problem of Service Composition

In this new framework, the definition of composition is slightly different from
the one reported in Definition 10, since the problem of composition synthesis
is concerned with realizing any one of the completely specified target services,
which correspond to the underspecified target service provided by the client.

Definition 25 (Composition of Underspecified Target Service) Let C
be a well-formed service community and let Eext be set of the external schemas
of an underspecified target service E expressed in terms of the alphabet Σ of
C. Let T (Eext) = T ext(E) = {T ext

i ((E))} be the set of external execution
trees associated to E. A composition of E wrt C is an internal schema Eint

such that:

1. T (Eint) conforms to any T ext
i (E) ∈ T ext(E),

2. T (Eint) delegates all actions to the services of C (i.e., this does not
appear in T (Eint)), and

3. T (Eint) is coherent with C.

�

Given a community C of services and an underspecified target service
E0, whose underspecified external schema is the FSM Aext(E0), the problem
of composition existence is the problem of checking whether there exists a
composition that is coherent with C and that realizes Aext(E0). The problem
of composition synthesis is the problem of synthesizing a composition that is
coherent with C and that realizes Aext(E0).
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Figure 5.3: Composition of the underspecified target service A0

Since we are considering services that have a finite number of states, we
would like also to have a composition that can be represented with a finite
number of states, i.e., as a Mealy composition.

Example 21 Figure 5.3 (a) shows a community of five services A1, A2, A3, A4

and A5. A1 provides actions to (i) validate a (registered) client, or to register
a new client (authentication), and then to repeatedly (ii) search & select

an e-card and (iii) send it. A2 ad A3 provide functionalities to compose an e-
card: A2 repeatedly allows for customizing the layout of a card and for writing
a message from scratch and for spell checking it (write & spell check); A3

repeatedly allows for customizing a card and for selecting a template, which
provides help in writing the message: such template can give suggestions in
English (use english template), or in Italian (use italian template). Fi-
nally, A4 provides actions to repeatedly add a gift (add gift) and pay (buy)
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it. A5 provides actions to repeatedly add some music (add music) and pay it
(buy).

Figure 5.3 (b) shows the Mealy composition M0 that represents a com-
position of the underspecified target service A0 wrt the service community
of Figure 5.3 (a). In M0 the non-determinism of A0 on the c-transitions is
resolved by choosing always s3

0 as successor state of the c-transitions, i.e.,
to always having the customize action be followed by a choice on the ac-
tions use english template and use italian template. Therefore, action
write & spell check is never performed in M0 and service A2 is never in-
voked. Note that M0 is not the only composition of the underspecified target
service A0. In effect, several ones exists. For example, a first one is iden-
tical to M0, but the non-determinism is resolved by choosing always s4

0 as
successor state of the c-transitions, i.e., by always having the customize ac-
tion be followed by the action write & spell check. In this case, the actions
use english template and use italian template are never executed and
service A3 is never invoked. Other compositions can be obtained by resolving
the non-determinism in such a way that “sometimes”2 s4

0, “sometimes” s3
0 are

chosen as successor states of the c transition. For example, one such Mealy
composition corresponds to a compact representation of the tree of Figure 5.2,
described in Example 20, where odd occurrences of c-transitions are resolved
by choosing the “upper” c-transition in Figure 5.1, and even occurrences are
resolved by choosing the “lower” c-transition

5.3 Automatic Service Composition Synthesis
Technique

In this section, we address the problem of composition existence and synthesis
in the FSM-based framework introduced above. The basic idea consists again
in reducing the problem of composition existence to satisfiability of a formula
written in DPDL.

5.3.1 Existence of a Composition

In this section we show how to solve the problem of composition existence
in the case when the target service is underspecified. The technique we will
discuss is an extension of the technique used in Section 4.3.1. Therefore, in
order to avoid useless repetitions, we will only discuss the differences wrt the
already presented technique.

Given the underspecified target service E0, whose (underspecified) external
schema is a non-deterministic FSM A0, and a community of services formed

2Provided that the composition is compactly representable.
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by n component services E1, . . . , En, whose external schemas are (determinis-
tic) FSM A1, . . . , An respectively, we build a DPDL formula Φang as follows.
Analogously to Section 4.3.1, as set of atomic propositions P in Φang we have
(i) one proposition sj for each state sj of Aj , j = 0, . . . , n, denoting whether
Aj is in state sj ; (ii) propositions Fj , j = 0, . . . , n, denoting whether Aj is
in a final state; and (iii) propositions movedj , j = 1, . . . , n, denoting whether
(component) FSM Aj performed a transition. As set of atomic actions A in
Φang we have the actions in Σ (i.e, A = Σ).

Universal assertions are expressed by the master modality [u]. The formula
Φang is built as a conjunction of the following formulas.

• For the underspecified target service A0 = (Σ, S0, s
0
0, δ0, F0) we build the

formula ΦA0 , as a conjunction of:

– [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s �= s′;
these say that propositions representing different states are disjoint.

– [u](s →
∨

s′∈δ0(s,a)〈a〉true∧ [a]s′) for each a such that s′ = δ0(s, a);
these encode the transitions of A0. Note the difference wrt the
analogous formula of Section 4.3.1. Here, we introduce the operator∨

s′∈δ0(s,a) to capture all a transitions originating from state s: in
the formula in Section 4.3.1 this was not needed, since the FSM
denoting the external schema of the target service is deterministic.

– [u](s → [a]false) for each a such that δ(s, a) is not defined; these
say when a transition is not defined.

– [u](F0 ↔
∨

s∈F0
s); this highlights final states of A0.

• For each of the component FSM Ai = (Σ, Si, s
0
i , δi, Fi) we build a formula

ΦAi . Regarding the services in the community, there is no difference be-
tween the present framework and the framework in Chapter 4, therefore
ΦAi are built in the same way as in Section 4.3.1.

• Finally, we encode in a formula Φaux the general structure of the model.
In addition to the domain independent conditions of the framework con-
sidered in Section 4.3.1, we should have the additional constraint that
the obtained composition must be deterministic. However, the DPDL
atomic actions are deterministic, therefore, this constraint is implicitly
encoded by the DPDL semantics. In other words, also Φaux is built as
in Section 4.3.1.

Note that the DPDL formula Φ built as above presents the same properties
as in the previous chapter:

• the Kleene star ∗ is used only in the master modality;
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• the master modality has the form u = (a1 ∪ . . . ∪ an)∗, where a1 . . . an

are DPDL atomic actions;

• the 〈〉 modality appears only in front of the atomic proposition true;

• both modalities [] (when it is not used as master modality) and 〈〉 are
used in expressions of the form [a]Ψ or 〈a〉Ψ, where Ψ is a DPDL formula
and a is an atomic DPDL action.

Again, we will make use of such observations in Chapter 7.

Example 22 In what follows we discuss the DPDL encoding of the composi-
tion problem presented in the running example (underspecified target service
of Figure 5.1 and the service community of Figure 5.3(a)).

The set P of atomic propositions is:

P = {s0
0, s

1
0, s

2
0, s

3
0, s

4
0, s

5
0, s

6
0, s

7
0, s

8
0, s

0
1, s

1
1, s

2
1, s

0
2, s

1
2, s

0
3, s

1
3, s

0
4, s

1
4, s

0
5, s

1
5,

F0, F1, F2, F3, F4, F5, moved1, moved2, moved3, moved4, moved5}
where:

• si
j , for j = 0, . . . , 5 and i = 0, . . . , 8: si

j is true if and only if Aj is in state

si
j

• Fj , j = 0, . . . , 5: Fj is true if and only if Aj is in a final state;

• movedj , j = 1, . . . , 5: movedj is true if and only if (component) FSM Aj

performed a transition

The set A of deterministic atomic actions, which by construction coincides
with the alphabet Σ of the community, is defined as:

A = {a, ss, c, et, it, wsc, g, m, b, s}

where:

• c denotes action customize

• g denotes action add gift

• m denotes action add music

• b denotes action buy

• s denotes action send

• a denotes action authentication
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• ss denotes action search & select

• et denotes action use english template

• it denotes action use italian template

• wsc denotes action write & spell check

The master modality u is equal to (a ∪ ss ∪ c ∪ et ∪ it ∪wsc ∪ g ∪m ∪ b ∪ s)∗.
We briefly recall that the master modality is used in the formula [u]φ to assert
that the proposition φ holds after any regular expression involving the actions
in A.

The DPDL formula Φang is built as a conjunction of the following formulas.

The underspecified target service A0 is encoded by the following for-
mulas, with the indicated meaning.

A0 cannot be simultaneously in two (or more) states:

[u](s0
0 → ¬s1

0)
[u](s0

0 → ¬s2
0)

[u](s0
0 → ¬s3

0)
[u](s0

0 → ¬s4
0)

[u](s0
0 → ¬s5

0)
[u](s0

0 → ¬s6
0)

[u](s0
0 → ¬s7

0)
[u](s0

0 → ¬s8
0)

[u](s1
0 → ¬s2

0)
[u](s1

0 → ¬s3
0)

[u](s1
0 → ¬s4

0)
[u](s1

0 → ¬s5
0)

[u](s1
0 → ¬s6

0)
[u](s1

0 → ¬s7
0)

[u](s1
0 → ¬s8

0)
[u](s2

0 → ¬s3
0)

[u](s2
0 → ¬s4

0)
[u](s2

0 → ¬s5
0)

[u](s2
0 → ¬s6

0)
. . .
. . .

[u](s3
0 → ¬s8

0)
[u](s4

0 → ¬s5
0)

[u](s4
0 → ¬s6

0)

[u](s4
0 → ¬s7

0)
[u](s4

0 → ¬s8
0)

[u](s5
0 → ¬s6

0)
[u](s5

0 → ¬s7
0)

[u](s5
0 → ¬s8

0)
[u](s6

0 → ¬s7
0)

[u](s6
0 → ¬s8

0)
[u](s7

0 → ¬s8
0)

A0 can perform are the following transitions:

[u](s0
0 → 〈a〉true ∧ [a]s1

0)
[u](s1

0 → 〈ss〉true ∧ [ss]s2
0)

[u](s2
0 → (〈c〉true ∧ [c]s3

0) ∨ (〈c〉true ∧ [c]s4
0))

[u](s3
0 → 〈it〉true ∧ [it]s5

0)
[u](s3

0 → 〈et〉true ∧ [et]s5
0)

[u](s4
0 → 〈wsc〉true ∧ [wsc]s5

0)

[u](s5
0 → 〈m〉true ∧ [m]s6

0)
[u](s5

0 → 〈g〉true ∧ [g]s6
0)

[u](s5
0 → 〈s〉true ∧ [s]s8

0)
[u](s6

0 → 〈s〉true ∧ [s]s8
0)

[u](s8
0 → 〈ss〉true ∧ [ss]s2

0)

Note the third formula in the first column, that represents the non-
determinism by or-ing the terms encoding the two possible transitions. This
formula states that for all possible sequences of actions, if A0 is in state s2

0,
then the FSM allows either for customizing the e-card (i.e., it can execute
action c) and moving to state s3

0, or for executing action c and moving to
state s4

0. Observe the difference wrt encoding a choice on a set of actions, i.e.,
when several different actions can be executed from a state. In such case, the
terms encoding the possible transitions are in and, as the three formulas on
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top of the second column3.
The transitions that A0 cannot perform are (partially) defined as follows:

[u](s0
0 → [ss]false)

[u](s0
0 → [c]false)

[u](s0
0 → [it]false)

[u](s0
0 → [et]false)

[u](s0
0 → [wsc]false)

[u](s0
0 → [m]false)

[u](s0
0 → [g]false)

[u](s0
0 → [b]false)

[u](s0
0 → [s]false)

[u](s1
0 → [a]false)

[u](s1
0 → [c]false)

[u](s1
0 → [it]false)

[u](s1
0 → [et]false)

[u](s1
0 → [wsc]false)

[u](s1
0 → [m]false)

[u](s1
0 → [g]false)

[u](s1
0 → [b]false)

[u](s1
0 → [s]false)

. . .
[u](s5

0 → [a]false)
[u](s5

0 → [ss]false)
[u](s5

0 → [c]false)
[u](s5

0 → [wsc]false)
[u](s5

0 → [it]false)
[u](s5

0 → [et]false)
[u](s5

0 → [b]false)
. . .

Finally, the final states of A0 are captured by:

[u](F0 ↔ (s0
0 ∨ s8

0))

As far as the services in the community, we refer the reader to Sec-
tion 4.3.1 for a detailed discussion about their encoding in DPDL. In what
follows we show the encoding of service A1 of Figure 5.3(a), which is slightly
more complicated than the services in community described in Example 14 of
Section 4.3.1.
The disjointness of states is captured by:

[u](s0
1 → ¬s1

1) [u](s0
1 → ¬s2

1) [u](s1
1 → ¬s2

1)

The transitions of A1, conditioned to the fact that A1 is actually required to
make the transition in the composition, are:

[u](s0
1 → [a](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u](s1
1 → [ss](moved1 ∧ s2

1 ∨ ¬moved1 ∧ s1
1))

[u](s2
1 → [s](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s2
1))

The following formulas encode (part of) the transitions that are not
defined on A1 (and that do not make A1 change state):

[u](s0
1 → [ss](¬moved1 ∧ s0

1))
[u](s0

1 → [s](¬moved1 ∧ s0
1))

[u](s0
1 → [c](¬moved1 ∧ s0

1))
. . .
[u](s1

1 → [a](¬moved1 ∧ s1
1))

[u](s1
1 → [s](¬moved1 ∧ s1

1))

[u](s1
1 → [c](¬moved1 ∧ s1

1))
. . .
[u](s2

1 → [a](¬moved1 ∧ s0
1))

[u](s2
1 → [ss](¬moved1 ∧ s0

1))
[u](s2

1 → [c](¬moved1 ∧ s0
1))

. . .

3We remind that by a factorization on the left, such three formulas are equivalent to
[u](s5

0 → (〈m〉true ∧ [m]s6
0) ∧ (〈g〉true ∧ [g]s6

0) ∧ (〈s〉true ∧ [s]s8
0)).
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Final states of A1 are captured by: [u](F1 ↔ (s0
1 ∨ s1

1))

Finally, the domain independent conditions are captured by the fol-
lowing formulas.

Initially all services are in their initial state: s0
0 ∧ s0

1 ∧ s0
2 ∧ s0

3 ∧ s0
4 ∧ s0

5

At each step at least one of the component FSM has moved:

[u](〈a〉true → [a](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈ss〉true → [ss](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈c〉true → [c](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈it〉true → [it](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈et〉true → [et](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈wsc〉true → [wsc](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈m〉true → [m](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈g〉true → [g](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈b〉true → [b](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))
[u](〈s〉true → [s](moved1 ∨ moved2 ∨ moved3 ∨ moved4 ∨ moved5))

When the target service is in a final state also all component services must
be in a final state:

[u](F0 → F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5)

The following Lemma 26 and 27 hold.

Lemma 26 If there exists a composition of an underspecified target service
E0 wrt E1, . . . , En, then the DPDL formula Φang, constructed as above, is
satisfiable.

Lemma 27 Any model of the DPDL formula Φang, constructed as above, de-
notes a composition of E0 wrt E1, . . . , En.

Their proof are analogous to the proof of Lemma 16 and 17, considering
that (i) by Definitions 24 and 25 an underspecified target service denotes a set
of external schemas and the composition is an internal schema which realizes
anyone of such external schemas and is coherent with the community, and that
(ii) each function σi

ang defined in the previous section provides a mapping from
states of a non-deterministic FSM representing an underspecified target service
to the nodes of an external execution tree.

Therefore, by Lemma 26 and 27 the following theorem holds.
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Theorem 28 The DPDL formula Φang, constructed as above, is satisfiable if
and only if there exists a composition of E0 wrt E1, . . . , En.

The size of Φang is polynomially related to A0 and A1, . . . , An. Hence, from
the EXPTIME-completeness of satisfiability in DPDL and from Theorem 28
we get the following complexity result.

Theorem 29 Checking the existence of service composition can be done in
EXPTIME.

5.3.2 Synthesizing a Composition

In the previous section we have shown that we are able to check the existence
of a composition by checking satisfiability of a DPDL formula Φang encoding
the underspecified target service, the services in the community and a number
of domain independent conditions. In this section we show how to synthesize
a composition which is a FSM. This algorithm is an extension of the algorithm
presented in Section 4.3.2, that returns a composition, if one exists, and returns
a special symbol (nil), denoting that no composition exists, otherwise. All
the observations and results discussed in Section 4.3.2 continue to hold. In
particular, this is true for the synthesis of a composition which is a finite
state machine, and in particular, of a Mealy composition, which is obtained
starting from a model which is deterministic by construction. Therefore, also
the following theorems hold, whose proofs can be easily obtained from the
proofs of analogous Theorems 21 and 22, respectively.

Theorem 30 If there exists a composition of E0 wrt E1, . . . , E0, then there
exists a Mealy composition whose size is at most exponential in the size of the
external schemas A0, A1, . . . , An of E0, E1, . . . , En respectively.

Theorem 31 Any finite model of the DPDL formula Φang denotes a Mealy
composition of E0 wrt E1, . . . , En.

Exploiting reasoning methods for DPDL based on model construction, such
as tableaux algorithms [39, 52, 7], one can actually construct such a MFSM
composition. Also the algorithm for synthesizing a Mealy composition shown
in Figure 4.6 can be applied to this new framework. Note that the follow-
ing functions continue to work with no change in the implementation: (i)
DPDLTableau, for checking satisfiability of the DPDL formula, and building a
finite model if it exists or returning (nil), otherwise; (ii) Extract MFSM, for ex-
tracting a Mealy composition; (iii) Minimize for minimizing the MFSM. The
only function that needs to be (slightly) tailored towards the new framework is
FSM2DPDL, since as discussed in Section 5.3.1, the DPDL encoding must cope
with the presence of non-determinism in the underspecified target service.
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et = use_english_template 

it = use_italian_template

b = buy    

s = send

c = customize

wsc = write_&_spell_check

Figure 5.4: Finite model If for Φang.

Example 23 Figure 5.4 shows a finite model (i.e., a Kripke structure) If

of the formula Φang encoding our running example, returned from a DPDL
tableau algorithm. For sake of clarity, for each state we report only a list of the
atomic propositions that are true in that state and we underline the proposi-
tions denoting states that change their value when an action is performed. It
is easy to see that If is indeed a composition for the underspecified target ser-
vice A0 of Example 19. If is not minimal: by applying standard minimization
techniques one obtains the finite state machine of Figure 5.3 (b). A detailed
analysis of If allows us to make the following observations:

• Action write & spell check, performed by service A2 is never executed,
therefore A2 never moves and it always remain in its initial state s0

2,
which is also final.

• Action buy can be performed both by A4 and by A5: each execution of
buy ends in a different state (t7 and t8 in the figure), characterized by a
different value of the propositions moved4 and moved5: in t7 moved4 =
true and moved5 = false because buy is performed by A4, while in t8
moved5 = false and moved5 = true because buy is performed by A5.
Therefore, the minimal FSM shown in Figure 5.3 (b) is not a model of
Φang, because there the two buy transitions end in the same state.

• State t1 is not final, despite the fact that all component services are in
a final state, because the target service is not in a final state. The final



106 CHAPTER 5. LOOSELY SPECIFIED TARGET SERVICES

states are t0 and t9.

5.4 Discussion

In this chapter we have studied the problem of service composition in the sit-
uation when the client request is underspecified. Here, we follow the approach
presented in Chapter 4. In particular,

1. The composition consists again in coordinating the component services
in an interleaved and concurrent way, in order to achieve the client re-
quest.

2. The client request specifies a target service, i.e., the transition system
that the client desires to execute, but presents an interesting enhance-
ment. In Chapters 3 and 4 we assumed that the client request is com-
pletely specified: it represents a single target service, while here we con-
sider the case where a client request represents a a set of target ser-
vices. The underspecification that we have studied shows up in the form
of “don’t care” nondeterminism (angelic nondeterminism) on the next
set of transitions of the target service available to the client: the client
allows the composition synthesis to resolve nondeterministic choices tak-
ing advantage of what the available component services can do at that
point of their computation4.

In this enhanced framework, we have studied the problem of service compo-
sition. Our main results is a composition synthesis technique, which is sound,
complete and terminating, i.e., if and only if a composition of the available
component service realizing the client specification exists, our technique will
produce one such a composition. The composition produced is finite state,
and hence, as a collateral result of our synthesis technique, we show that if a
composition exists then there exists one which is indeed finite state.

Note that to the best of our knowledge, the framework presented in this
chapter is unique in the literature: we could deal with “don’t care” non-
determinism because the client request specifies a (desired) transition system.

Finally, a brief note on the used terminology. In general, adding non-
determinism to a specification leads to a partial specification which corre-
sponds in fact to a set of complete specifications. The non-determinism in-
troduced in the target service is called angelic because it requires to realize

4This has to be contrasted with the fact that at the same time the composition synthe-
sis must generate a composition that allows the client to make all choices specified in its
transition system.
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one (any one) of the completely specified target services corresponding to
the target services which the client partially specifies. The term “angelic”
is used in contrast to the term “diabolic” which denotes the situation when
non-determinism is added to the services in the community. The latter case
consists in having a partial specification of the exported behavior of services
in the community. In principle, this corresponds to have a huge (possibly infi-
nite) number of complete specifications for each service in the community. Of
course, the composite service must be built in such a way to be coherent with
all possible complete specification corresponding to the partial specification of
the services in the community. Therefore, diabolic non-determiminism is far
more difficult to handle: it is out of the scope of this thesis and it is left for
future research.





Chapter 6

Allowing Services to Take the
Initiative

The exported behavior of services, as defined in previous chapters, do not
mention the role a service has wrt a given action, i.e., whether the service
is “passively” delegated an action or it “takes the initiative” and delegates
it: indeed, the external schema only refers to actions being delegated to a
services, and that the service (no matters how) can execute. In this chapter, we
extend our framework by encoding such information in the exported behavioral
description of a service, and by therefore allowing service in the community to
synchronize and communicate one with the other. This novelty can be easily
applied also to the frameworks of Chapters 4 and 5.

In Chapter 5 we also studied how to automatically synthesize a composi-
tion when the client request is underspecified and presents some forms of don’t
care non-determinism: it represents a set of target services and the compo-
sition synthesis is asked to realize any target service in such a set. Here, we
focus again on a loose client specification, in which the incompleteness shows
up not only as don’t care non-determinism, but also as “empty spots” in the
specification, denoted by τ actions: they represent specific points in the exe-
cution of the composite service in which the client does not want to be directly
involved, but of which he wants to be aware.

We study again automatic composition synthesis in such a framework: we
devise a sound, complete and terminating algorithm, based on satisfiability in
a variant of Propositional Dynamic Logic that solves the composition problem,
and we analyze its computational complexity.

109
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6.1 Servant and Initiator Services

In order to perform a given task, a service executes certain actions in coordi-
nation with its client or other services. Specifically, each action in the task has
a (single) initiator, typically the client, which requests the execution of the
action possibly passing along information, and one or more servants, which
are services that respond to the request, possibly exchanging with the initiator
further information.

In order to represent the role a service has wrt a given action, we annotate
each action symbol as follows: if the service is one of the servants of an action a,
then the action appears as �a, conversely if the service is the initiator of a, then
the action appears as a�. Of course, such annotation on the actions is reflected
on the internal and external execution trees of each service: Definitions 2 and 3
continue to hold, as well as the notions introduced in Section 3.3. However,
observe that for each node of an execution tree, we can have at most one
successor node for each annotated action, i.e., from a node two a-labeled edges
can originate, having different annotations: we assume that the state of the
service is entirely determinated by the sequence of annotated actions executed
so far, i.e. up to the node associated with the current state of the computation.
The alphabet of the community contains non-annotated actions.

Also in this chapter we concentrate on services whose external and inter-
nal schemas can be represented using a finite number of states, specifically
by deterministic finite state machines (FSM), or equivalently, finite determin-
istic transition systems. Note that the definitions of external and internal
schema of a service, represented as FSM can be easily obtained from Defini-
tions 13 and 14, therefore, here we report only the definition of FSM external
schema.

Definition 32 ((Annotated) FSM External Schema) Let C be a service
community, whose alphabet of actions is Σ. Let Ei be a service in C. The
external schema of Ei is a FSM Ai = (Σ+, Si, s

0
i , δi, Fi), where:

• Σ+ = {�a, a� | a ∈ Σ} is the alphabet of the FSM;

• Si is the set of states, representing the finite set of states of the service;

• s0
i is the initial state, representing the initial state of the service;

• δE : Si × Σ+ → Si is the (partial) transition function that given a state
s and an annotated action �a (or a�) returns the state resulting from
executing the action in s;

• Fi ⊆ Si is the set of final states, i.e., the states where the service can
terminate.
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�

The FSM Ai compactly represents the execution tree T (Ai) of the corre-
sponding service: this can be shown by defining a function σtau that associates
to each node of the execution tree a state in the FSM. The definition of σtau is
done inductively on the level of nodes in the tree, and can be easily obtained
from the analogous function defined in Section 4.1 (or Section 5.1). Intu-
itively, given Ai, the execution tree T (Ai) generated by Ai is the execution
tree containing one node for each sequence of actions obtained by following (in
any possible way) the transitions of Ai, and annotating as final those nodes
corresponding to the traversal of final states.

The different roles that a service can play with respect to a given action
(i.e., either as initiator or as servant) induce a classification between the ser-
vices of a community:

• pure-servant service: it is a service that acts only as servant in all pos-
sible sequences of interactions it can be involved in; its associated FSM
external schema presents only actions of type �a; such a service can be
directly exploited by a client, as it is able to completely satisfy client
requests and execute its tasks (this is the kind of services studied in
Chapter 4);

• pure-initiator service: it is a service that acts only as initiator in all
possible sequences of interactions it can be involved in; its associated
FSM external schema presents only actions of type a�; this kind of
service is, for example, the one typically associated to the client, i.e., it
represents the target service that the client wants to actually execute.

• mixed service: it is a service that acts as initiator in at least one possible
sequence of interactions it can be involved in; its associated FSM external
schema1 presents at least one action of type a�; such a service can be
exploited in a composition only if a matching service that acts as servant
can be found in the community, to which it can delegate the execution
of actions it initiates.

Observe that the fact that a client request is a specification of a pure-initiator
service correspond to the idea, almost universally accepted in the Service Ori-
ented Computing literature, that the client cannot be exploited by the services
in the community for carrying on their tasks.

1In what follows, we omit the terms “external schema” and “internal schema” when clear
from the context.
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Figure 6.1: services of the community

Example 24 Consider the e-card scenario of Examples 19 and 21. It can be
applied to this new framework by: (ii) annotating with �(·) the actions offered
by services of the community (shown in Figure 5.3 (a)); and (ii) annotating
with (·)� the actions requested by the client in the underspecified target service
(shown in Figure 5.1). The services in the community are, therefore, pure-
servants and the target service is pure-initiator.

Example 25 Consider again an e-card scenario, where the community of ser-
vices is the one shown in Figure 6.1. It is similar but not equal to the com-
munity of Example 21, since we want to show the differences wrt the previous
framework and the novel features that this new framework presents. It is
constituted by services A1, A2, A3, A4, A5, A6 and A7. A1 provides the same
functionalities as A1 of Example 21: note that A1 is a pure-servant. A2 pro-
vides functionalities to compose an e-card: it repeatedly allows for selecting the
stationery of the message (action stationery), composing the message (ac-
tion compose message), and performing a spell check (action spell check).
A2 is servant for the compose message action and it is initiator for all the re-
maining actions. A3 is similar to A2, since it offers the same operations in the
same order: in addition, it provides help for composing the message, since be-
tween actions stationery and compose message, it allows for selecting either
an English template (action select english template), or an Italian (action
select italian template), which give suggestions in the corresponding lan-
guage. A3 acts as servant for the compose message action and it is initiator
for all the other actions. A2 and A3 are therefore mixed services: they can
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be used in a composition only if the community contains services that act as
servants for the actions A2 and A3 initiate. A4 iteratively allows for selecting
the stationery and for spell checking the text of the e-card. A5 allows for
executing actions select english template and select italian template

any number of times in any order and it acts as a servant for both of them. Fi-
nally, services A6 and A7 allow to add respectively, a gift or some music to the
e-card, and to pay it (note that they offer the same functionalities as services
A4 and A5 of Example 21, respectively). A4, A5, A6 and A7 are pure-servant.

6.2 Client Specification

Before turning to the problem of composition, we address the client request.
In this thesis, we consider the client request, as the specification of the transi-
tion system that the client is interested in being able to execute. In particular,
in the framework studied in this chapter, it represents the pure-initiator ser-
vice that the client wants to realize, possibly presenting advanced forms of
underspecification. In Chapter 5 we already studied underspecification in the
form of non-determinism on the transitions. In this chapter we enrich the
framework with another kind of underspecification. In specified points of the
pure-initiator service, specified by the client, we allow that the service itself
is interleaved with activities performed by other services in the community
in which the client is not involved at all (but of which the client is aware).
The client does not explicitly specify such activities, but he only indicates
when they are allowed, by introducing in his specification the so-called τ ac-
tions. When the client includes a τ action in his request, he is informing the
composition system that he is not interested in which sequence of actions is
performed. This has two notably consequences: (i) the composition system
is free to realize each τ action with whatever sequence of actions provided by
services in the community, and (ii) the client does not want to participate
(neither as initiator nor as a servant) in such execution, but still wants to be
informed of what is going on. Note that, however, the clients wants to know
only which action(s) are executed, not its initiator, nor its servant(s).

In practical situations, when a client is using an already deployed and run-
ning service, it is quite common the presence of actions he does not participate
in, but that are executed and of which he sees the outcome. An example is
again the Orbitz service, described in Example 7 and shown in Figure 4.1.
Consider the functionality to find a flight, the client explicitly looks for a
flight, but he does not make any request about the hotel or other services,
and still the service allows him to select among a list of hotel and of services,
depending on the parameters specified by the client when searching for the
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Figure 6.2: τ actions in the client specification

flight. This means that the actions to search for hotel and for services are
performed by the services, without involving the client. Another example is
provided by services for paying on-line with the credit card: the client does
not participate in the actions performed for charging his bank account, but he
wants to be aware that his account has been charged with the right amount.

There are two main modalities in which τ actions can be introduced in a
client specification. This is shown in the following examples. Since we are in
a finite setting, the client specification is expressed as a finite state machine.

Example 26 Figure 6.2 (a) shows a client specification B0 that allows for the
following interactions. After being authenticated (authentication action),
the client wants to search for an e-card and select it (search & select action).
Then, he desires to compose the message (compose message action). Next,
he would like to choose whether (i) sending the e-card, or (ii) selecting and
attaching a gift (add gift action) or (iii) some music (add music action),
paying it (buy) and sending the e-card. Finally, the client chooses whether to
stop executing the services or send another e-card by performing the action
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search & select. Note that each state of B0 presents a τ -labeled loop: this
means that the client specification allows the composition system to execute,
after each action for which the client is initiator, any sequence of actions,
possibly of length zero, for which the client is a pure observator.

As a slightly further step, one may consider that the client presents to
the composition system a request that does not include τ -actions. Thus, the
system may automatically add a τ -loop to each state and use the resulting
specification to compute a composition.

Figure 6.2 (b) shows a client specification A0 that allows for the same
interactions, but where the τ actions are explicitly represented: in particular,
they do not participate in loops, but they are defined between the pairs of
states (s2

0, s
3
0) and (s4

0, s
5
0). Since all states si

0 of A0 are different, each τ action
must be realized by at least one action, that allows the transition between
each pair of states to take place.

In what follows we consider only the latter situation, since it is more general
than the one described at the beginning of the example.

Once that we have given the intuition of a client specification enriched
with τ actions, we are able to give the following formal definition.

Definition 33 (Client Specification) Let C be a service community whose
alphabet of actions is Σ. We define a client specification as a nondeterministic
FSM A0 = (Σ0, S0, s

0
0, δ0, F0), where:

• Σ0 = {a� | a ∈ Σ} ∪ {τ} where τ is a special action that represents a
finite sequence of actions in which the client is not the initiator (nor a
servant);

• S0 is the set of states;

• s0
0 is the initial state;

• δ0 : S0 × Σ0 → 2S0 is the (partial) transition function that given a state
and an action returns the set of possible successor states;

• F0 ⊆ S0 is the set of final states.

�

Note that the the client specification may contain don’t care non-
determinism as introduced in the previous chapter. The non-determinism
can involve also τ actions: in this case, when two τ transitions originate from
the same state, the client is leaving the composition system free to choose any
one transition and replace it with whatever sequence of actions.
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Finally, note an important difference wrt the client specification described
in the previous chapters. A client specification still represents the service the
client wants to exploit. However, by introducing the τ actions, the client
specification does not denote the external schema of a target service, neither
a set of external schemas (of a target service). Indeed, the τ actions repre-
sents points in the execution where the client is not directly involved, while
an external schema represents the behavioral description of a service from the
client point of view, and therefore, it represents exactly (inter)actions between
a client and the services that the client chooses for execution. Consequently,
the notion of composition reported in Definition 10 is not valid in this new
framework, in particular because, due to the τ actions, a composition does
not (actually, cannot) conform to the client specification, according to Defini-
tion 10. Therefore, in the next section we discuss a new notion of composition
that copes with the new elements introduced so far, namely (i) the role of the
client as initiator, (ii) the role of services as servant or as initiator, and (iii)
the underspecification in the client request.

6.3 The problem of Service Composition

In this section, we study the problem of service composition in the new frame-
work, i.e., how to suitably orchestrate (i.e., coordinate the execution of) both
the initiator and the servants of each action, using the services in the commu-
nity, in order to realize the client request.

Definition 34 (Composition Tree) Formally, let C be a service community
whose alphabet of actions is Σ. Let C be formed by n services A1, . . . , An, and
let the client specification be denoted by A0. A composition tree Tc is a labeled
tree Tc = (T ,fin) where T is a tree over Σ× [0..n]2 (0 stands for the client and
1, . . . , n stand for the services A1, . . . , An, respectively) and fin is a boolean
labeling function, such that:

• The root ε of the tree represents the fact that no action has been executed
yet.

• Each node x in the composition tree Tc represents the history up to now,
i.e., the sequence of actions and their initiator as orchestrated so far.

• For every action a belonging to the alphabet Σ of the community and
ι ∈ [0..n], Tc contains at most one successor node x·(a, ι).

• Some nodes of the composition tree are labeled by fin as true: such
nodes are called final. When a node is final, and only then, the orches-
tration can be stopped.

2We use [i..j] to denote the set {i, . . . , j}.
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• Let the pair (x, x·(a, ι)) be an edge of the tree. Each edge (x, x·(a, ι))
of Tc is labeled by a triple (ι, a, S), where a is the orchestrated action,
ι ∈ [0..n] denotes the initiator, and S ⊆ [1..n] denotes the nonempty set
of services in C that act as servants. As an example, the label (0, a, {1, 3})
means that the action a is initiated by the client and served by the
services A1 and A3.

�

Definition 35 (Composition) Let C, A0 and Tc be as in Definition 34. A
composition O of A0 wrt the services in C is the specification of a composition
tree T (O) = Tc. �

Note that the composition tree is the internal execution tree of a syn-
thesized composite service (and the composition is its internal schema). Its
(offered3) external execution tree T ext

c is the tree obtained from the composi-
tion tree Tc by replacing:

• with (a, 0) each edge of Tc labeled by (0, a, S), i.e., such that the initiator
of a is the client, and

• with a each edge of Tc labeled by (ι, a, S), with ι �= 0, i.e., such that the
initiator of a is not the client (but any other service in the community)

In other words, T ext
c is obtained by projecting out all labels denoting the

servants and those initiators which are different from the client.
Given a composition tree T (O) and a path p (i.e., a sequence of edges) in

T (O) starting from the root and arriving to a node x in T (O), we call the
projection of p on a service Ai the sequence of (annotated) actions obtained
from p as follows:

1. we remove from p all edges whose label (ι, a, S) is such that i �∈ {ι} ∪ S

2. in the resulting sequence, we replace

(a) by a�, each edge labeled by (ι, a, S) where ι = i;

(b) by �a, each edge labeled by (ι, a, S) where i ∈ S.

Intuitively, point 1 above throws away all edges where service Ai is neither
servant nor initiator for action a; points 2(a) and 2(b) deal with edges where
Ai is, respectively, the initiator or a servant for action a.

We say that a composition O is coherent with a community C if its tree
T (O) has the following properties:

3See Section 3.3.3 for the definition of offered external schema.
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• for each edge labeled with (ι, a, S), the action a is in the alphabet of C,
and for each service Ai in {ι} ∪ S, Ai is a member of C;

• for each path p in T (O) from the root of T (O) to a node x, and for each
service Ai appearing in p, the projection of p on Ai is a (sequence of
annotated actions represented by) a node y in the execution tree T (Ai)
of Ai, and moreover, if x is final in T (O), then y is final in T (Ai).

Note that from Definition 33, a client specification characterizes some as-
pects of the composition tree that the client would like to have realized using
the services in the community. Of the composition tree, the client specifies
(i) the actions for which he is the initiator, and (ii) the possibility of having
activities in which the client himself is not involved.

Observe that the nondeterministic FSM A0 of Definition 33 specifies a set
T (A0) of composition trees, and the client requires the orchestrator to realize
one (any one) among such trees. Specifically, each composition tree in T (A0)
is obtained by

• unfolding the FSM and while doing so, resolving the nondeterminism by
choosing a single successor state for each transition (including τ tran-
sitions); this generates a (deterministic), possibly infinite tree, whose
edges are labeled by Σ0 and whose nodes corresponding to final states
of A0 are annotated as final;

• replacing each edge labeled by a� with an edge labeled by (0, a, ·); this
means that in the composition the client is the initiator of a;

• replacing each edge labeled by τ with a finite sequence of edges, each
one labeled by (j, a, ·), where a is some action, and j ∈ [1..n]; this means
that for a τ action the composition can contain any finite sequence of
interactions initiated by whatever service except by the client;

• choosing for each edge a set of servants, and adding it to the label of the
edge.

Note that our framework allows for both a τ transition and a non-τ tran-
sition, say labeled by action a, originating from a same state: even if the
composition synthesis chooses to realize the τ transition by the a action, the
composition remains deterministic, since the two a actions have different ini-
tiators (in one case it is the client, in the other it is a service in the community).

We say that a composition O realizes a client specification A0 if T (O) ∈
T (A0).

Definition 36 (Composition Existence) Let C be a community of services
(consisting of both pure-servant, pure-initiator and mixed services), and let A0
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be a client specification. The problem of composition existence is the problem
of checking whether there exists a composition that is coherent with C and
that realizes A0. �

Definition 37 (Composition Synthesis) Let C be a community of services
(consisting of both pure-servant, pure-initiator and mixed services), and let A0

be a client specification. The problem of composition synthesis is the problem
of synthesizing a composition that is coherent with C and that realizes A0. �

Since we are considering services that have a finite number of states,
we would like also to have a composition that can be represented with a
finite number of states, i.e., as a Mealy FSM (MFSM) of the form O =
(Σ × [0..n], 2[1..n], Sc, s

0
c , δc, ωc, Fc), where:

• Σ× [0..n] is the alphabet of the MFSM, which denotes actions and their
initiator;

• Sc, s0
c , δc, Fc are the set of states, the initial state, the transition function,

and the final set of states of the MFSM, in analogy with the service
FSMs;

• 2[1..n] is the output alphabet of the MFSM, which is used to denote which
are the servants of each action;

• ωc : Sc ×Σ× [0..n] → 2[1..n] is the output function of the MFSM, which,
given a state, an action a, and an initiator for a, returns the set of servant
services for a; we assume that the output function ωc is defined exactly
when δc is so.

Note that in order to define a composition, we exploited again the no-
tion of labeled tree. We cannot directly define a composition in terms of a
finite state machines for several reasons. First of all, if the τ actions ap-
pear inside a cycle (or a loop) in the client specification, in principle they
can be realized by arbitrary (sequences of) actions, which may be different
at each iteration. This implies that in general there may exist composition
trees which cannot be compactly represented as finite state machines. Addi-
tionally, as discussed in Section 5.1 (and in Example 20) a client specification
presenting non-determinism on its transitions specifies a set of execution trees.
Finally, the form of the MFSM denoting the composition is in general differ-
ent from the form of the FSM denoting the client specification (see, e.g., the
client specifications in Figures 6.2(a) and 6.2(b) and the compositions in Fig-
ure 6.3(a) and Figure 6.3(b)). In particular, the form of the MFSM depends
on how actions are delegated to services in the composition tree.
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Figure 6.3: MFSM compositions coherent service community of Example 25
and realizing the client specifications of Figure 6.2(a) and Figure 6.2(b)

Example 27 Figure 6.3 shows two MFSMs which represent possible compo-
sitions of the client specifications of Example 26 wrt the service community of
Example 25.

As an example, consider the MFSM4 M0 in Figure 6.3 (b), realizing
the client specification of Figure 6.2(b). Such composition specifies the
client as initiator of actions authentication, and search & select, and
the service A1 as servant for both of them. Then, the composition realizes
the τ action by specifying A3 as initiator of the actions stationery and
select english template, which are served respectively by A4 and A5 (note
that, correctly, the client is not involved). Next, the composition specifies the

4An edge (s1, s2) labeled (ι, a, S) indicates a transition δ(s1, (a, ι)) = s2 with output S,
where ι is the initiator of a and S is the set of servants.
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client as initiator of the action compose message with A3 as servant. The
second τ action is thus encountered and it is realized by action spell check,
initiated by A3 and served by A4. At this point the client is presented with
a set of actions among which he chooses which one to perform next. He is
therefore the initiator of: (i) send (which is served by A1); (ii) add gift, fol-
lowed by buy (which are served by A6) and further by send (served by A1);
(iii) add music, followed by buy (which are served by A7) and further by send

(served by A1). Finally, the client has to choose whether to stop the service
execution or to send another e-card: in the latter case, the composition speci-
fies that the client is initiator for the action search & select for which A1 is
servant. The MFSM of Figure 6.3(a)5 has similar semantics.

Note that the MFSMs M0 and O0, shown in Figures 6.3(a) and Fig-
ure 6.3(b) respectively, realize not only the specification of Figure 6.2(b), but
also the one in Figure 6.2(a). Indeed, as far the latter, M0 implements (i) the
τ loop on state s2

0 with the action stationery, initiated by A2 and served by
A4; and (ii) the τ loop on state s3

0 with the action spell check, also initiated
by A2 and served by A4. Analogously, O0 realizes (i) the τ loop on state s2

0

with the sequence of actions stationery, initiated by A3 and served by A4,
followed by select english template, initiated by A3 and served by A5; (ii)
the τ loop on state s3

0 with the action spell check, initiated by A3 and served
by A4. All other τ loops are realized by a zero length sequence of actions by
both services.

6.4 Composition Synthesis Technique

We address the problem of composition existence and synthesis in the FSM-
based framework introduced above. The basic tool we use is reducing the prob-
lem of composition existence to satisfiability of a formula written in PDLgm ,
a variant of PDL [81] equipped with graded modalities [61, 64, 144].

6.4.1 PDLgm

PDLgm formulas φ and complex programs r can be built, starting from a set
P of atomic propositions and a set A of atomic actions, by applying the con-
structs whose syntax and semantics has been already discussed in Section 4.2.
In addition, the following one is used to capture the graded modalities:

(≤ n〈a〉φ)

5An other composition is similar to O0, where the action select english template is
substituted with the action select italian template, annotated with the same initiator
and servant as select english template.
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its semantics is:
{o | �{(o, o′) ∈ aI | o′ ∈ φI} ≤ n}

Intuitively, it denotes all states in the Kripke structure that are connected
to at most n states where φ holds, through atomic action a.

As for DPDL, also the semantics of PDLgm is based on the notion of
Kripke structure (see Section 4.2), which for PDLgm can be in general non-
deterministic. The notions of model, formula satisfiability etc., introduced in
Section 4.2, can be applied also to PDLgm .

PDLgm formally corresponds to the well-known Description Logic
ALCQreg [41]6. Exploiting such a correspondence, PDLgm enjoys two proper-
ties that we have exploited so far and that we will exploit in the remaining of
the chapters, namely the tree model property and the small model property.
We recall that the tree model property says that every model of a PDLgm

formula can be unwound to a (possibly infinite) tree-shaped model (consider-
ing domain elements as nodes and atomic actions as edges). The small model
property says that every PDLgm that is satisfiable, admits a finite model whose
size (in particular the number of domain elements) is at most exponential in
the size of the formula itself.

6.4.2 Composition Existence

Given the specification of a client service in terms of a nondeterministic FSM
A0 and a community of n services A1, . . . , An, we build a PDLgm formula Φtau.
As set of atomic propositions in Φtau we have (i) one atomic proposition s for
each state s of Aj , for j ∈ [0..n], which intuitively denotes that Aj is in state
s;7 (ii) atomic propositions Fj , for j ∈ [0..n], denoting whether Aj is in a
final state; (iii) atomic propositions servedj , for j ∈ [1..n], denoting whether
(component) FSM Aj is a servant of a transition; (iv) atomic propositions
initiatedj , for j ∈ [0..n], denoting whether FSM Aj is a servant of a transition;
(v) an atomic proposition Init representing the initial state of the required
service; (vi) one atomic proposition a for each action a ∈ Σ. We have a single
atomic action trans in Φtau, such a role will be used to denote state transitions
caused by actions.

The formula Φtau is formed as follows.

• For the client specification A0 = (Σ, S0, s
0
0, δ0, F0) we form the formula

[trans∗]Φ0 where Φ0 is the conjunction of:

6In Section 7.2 we will further address this correspondence.
7In this paper we are not concerned with compact representations of the states of the

FSM. However, we observe that if states are succinctly represented (e.g., in binary format)
then, in general, we can exploit such a representation in Φtau to get a corresponding compact
PDLgm formula Φtau as well.
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– s → ¬s′, for all pairs of states s, s′ ∈ S0; these say that atomic
concepts representing different states are disjoint.

– s →
∨

s′∈δ0(s,a�)〈trans〉(initiated0 ∧ a ∧ s′), for each a ∈ Σ and s
with δ0(s, a�) �= ∅; these encode the transitions different from τ .

– s →
∨

s′∈δ0(s,τ) 〈R∗
τ 〉s′, for each s with δ0(s, τ) �= ∅, where Rτ stands

for
((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)?

These encode the τ transitions of A0; a τ transition is realized
through a single sequence of actions in which A0 does not partici-
pate; the qualified number restriction is used to ensure that there
is a single sequence.

– s → [trans](a → ¬initiated0), for each a such that δ(s, a�) is not
defined; these say that a� is not a possible transition.

– s → [trans]initiated0, if δ(s, τ) is not defined; these say when a τ
transition is not possible.

– F0 ≡
∨

s∈F0
s; this highlights final states of A0.

• For each component FSM Ai = (Σ, Si, s
0
i , δi, Fi), we form the formula

[trans∗]Φi, where Φi is the conjunction of:

– s → ¬s′, for all distinct pairs of states s, s′ ∈ Si.

– s → [trans](a ∧ servedi → s′), for each s and a such that s′ =
δi(s, �a); these encode the transitions of Ai, conditioned to the fact
that Ai is required to be a servant of a in the composition.

– s → [trans](a ∧ initiatedi → s′), for each s and a such that s′ =
δi(s, a�); these encode the transitions of Ai, conditioned to the
fact that Ai is required to be the initiator of a in the composition.

– s → [trans](a → ¬servedi), for each s and a such δi(s, �a) is not
defined.

– s → [trans](a → ¬initiatedi), for each s and a such δi(s, a�) is not
defined.

– s → [trans](servedi ∨ initiatedi ∨ s), for each s ∈ Si; this encodes
that when Ai does not participate to an action, it does not change
state.

– Fi ≡
∨

s∈Fi
s; this highlights final states of Ai.

• to encode the general structure of models, we form the formula [trans∗]Ψ,
where Ψ is the conjunction of:
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– (≤ 1〈trans〉(a ∧ initiated0)), for each action a ∈ Σ: this represents
that the realized composition is deterministic wrt to the action
annotated by the initiator.

– [trans](
∨

a∈Σ a); to represent that each transition is caused by an
action.

– [trans](
∨

i∈[1..n] servedi); to represent that each transition must have
some service as servant.

– [trans](
∨

i∈[0..n] initiatedi); to represent that each transition must
have an initiator, either a service in the community or the client.

– [trans](¬initiatedi ∨ ¬initiatedj), for each i, j ∈ [0..n] with i �= j;
to represent that transitions have a single initiator (but possibly
several servants).

– F0 →
∧

i∈[1..n] Fi; this says that when the client specification is in
a final state also all component services must be in a final state.

– Init → s0
0 ∧

∧
i∈[1..n] (s

0
i ); it represent that initially all services are in

their initial state.

– Init →
∧

a∈Σ (¬a)
Init →

∧
i∈[0..n] (¬initiatedi)

Init →
∧

i∈[1..n] (¬servedi);
they represent that initially no action has been executed yet.

Finally, we define Φtau as Init∧ [trans∗]Φ0 ∧
∧

i=1,...,n[trans∗]Φi ∧ [trans∗]Ψ.

In Section 6.4.4 we show the PDLgm encoding of the scenario of Example 26
(in particular, the client service of Figure 6.2(b)) and of Example 25. Note
that if τ actions are not present in a client specification, the above encoding
represents an alternative way to capture the don’t care non-derministic frame-
work of Chapter 5, enriched however with the roles of initiator and servant.
Moreover, since the Kleene star ∗ is used only to mimic universal assertions,
we do not need graded modalities and we can resort again to use DPDL. We
will make use of such observations in Chapter 7.

In what follows, before presenting the theoretical results on composition
synthesis we discuss the main differences between the DPDL encoding of Sec-
tions 4.3.1 and 5.3.1 and the PDLgm encoding presented above. A first big
difference depends of course on the formulas related to τ transitions, for which
we do need the graded modalities, and we had to resort to PDLgm , instead of
DPDL.

In Sections 4.3.1 and 5.3.1 we encoded service actions as (DPDL) atomic
actions while here the service actions are rendered as (PDLgm) atomic proposi-
tions and all the transitions are captured by the (unique) atomic action trans.
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This has consequences not only on the formulas encoding the FSM, but also
on the master modality [u]. We remind that, intuitively, the master modality
is used to encode universal quantification on all the possible sequences tran-
sitions, and therefore it is a reflexive and transitive closure over the set of
all possible actions. In Sections 4.3.1 and 5.3.1 the set of all possible DPDL
actions is given by the union of the service actions: e.g., in Example 13, where
the service actions were a, l, t, we set u = (a ∪ t ∪ l)∗. Here, we have only the
action trans, therefore we simply have u = trans∗. Note that because of this,
also the universal quantification on the transitions originating from a state are
rendered differently: for example, [a]· in Sections 4.3.1 and 5.3.1, corresponds
here to [trans](a ∧ ·). Also the formulas encoding non-defined transitions on
the client specification are inherently different (also because of the presence
of roles): the DPDL formula is [u](s → [a]false), the PDLgm formula is
[trans∗](s → [trans](a → ¬initiated0)). Finally, by representing service actions
as (PDLgm) atomic actions, we are able to state in a simple way that in the
initial state of the composition Init, no action is executed.

Another distinction is in the representation of roles. In Sec-
tions 4.3.1 and 5.3.1 the services either move or do not move. Here, due
to the differentiation between being initiator or servant, a service either
moves as initiator or moves as servant, or do not move. This difference be-
comes clear in the formula encoding component service transitions: in Sec-
tions 4.3.1 and 5.3.1, for each defined transition a, we have the formula
[u](s → [a](movedi ∧ s′ ∨ ¬movedi ∧ s)). Here, for each defined a transi-
tion, we have the two formulas [trans∗](s → [trans](a ∧ servedi → s′)) and
[trans∗](s → [trans](a ∧ initiatedi → s′)) depending on the fact that the
service is servant or initiator for a. Another difference is how it is repre-
sented the fact that a component service does not change state when it does
not make a transition. In formulas of Sections 4.3.1 and 5.3.1 this informa-
tion needs to be captured contextually to the definition of non made tran-
sition (either because they are not defined or because the service does not
move). Here, because of the different roles, it is needed the (separate) formula
[trans∗](s → [trans](servedi∨initiatedi∨s)). Finally, the DPDL (single, for each
action) formula [u](〈a〉true → [a]

∨
i=1,...,n movedi) saying that at each step at

least one of the component FSM has moved, corresponds to the three for-
mulas [trans](

∨
a∈Σ a), [trans](

∨
i∈[1..n] servedi), and [trans](

∨
i∈[0..n] initiatedi).

The difference in the encoding is due not only to the presence of two proposi-
tions servedi and initiatedi in place of the single proposition movedi, but also
because service actions are captured here as atomic propositions, whereas in
Section 4.3.1 they are represented as DPDL atomic actions.

Finally, both here and in Section 5.3.1 we allow for non-determinism in
the client specification, this is captured by a qualified number restriction on
transitions defined on the client specification A0.
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Lemma 38 If there exists a composition that is coherent with A1, . . . , An and
that realizes the client specification A0, then the PDLgm formula

Φtau = Init ∧ [trans∗]Φ0 ∧
∧

i=1,...,n

[trans∗]Φi ∧ [trans∗]Ψ

is satisfiable.

Proof. The proof is similar to the proof of Lemma 16, however, for sake
of completeness, in what follows we present the full proof.

Let O be a composition that is coherent with A1, . . . , An and that realizes
A0, and let T (O) be the composition tree specified by O.

We will show that, starting from T (O), we can construct a tree-like model
of Φtau such that Init is satisfied in the root.

First, we define mappings σtau and σi
tau from nodes in T (O) to states of

A0 and Ai, respectively, by induction on the level of nodes in T (O), as follows.

• base case: σtau(ε) = s0
0 and σi

tau(ε) = s0
i .

• inductive case: let σtau(x) = s and σi
tau(x) = si, and let the node

x · (a, ι) be in T (O) with the edge (x, x · (a, ι)) labeled by (ι, a, S), where
ι ∈ [0, . . . , n] is the initiator for action a and S ⊆ [1, . . . , n] is the non-
empty set of servants. Then we define

σtau(x · (a, ι)) =

{
s′ = δ0(s, a) if ι = 0
s if ι �= i

and

σi
tau(x · (a, ι)) =

{
si

′ = δi(si, (a, ι)) if either ι = i or i ∈ S

si if neither ι = i nor i ∈ S

Once we have σtau and σi
tau in place we can define an interpretation I =

(ΔI , {transI}, {P I}P∈P) for Φtau as follows:

• ΔI = {x | x ∈ T (O)};

• InitI = {ε | ε ∈ T (O)};

• transI = {(x, x · (a, ι)) | x, x · (a, ι) ∈ T (O)} for each a ∈ Σ, and ι ∈
[0, . . . , n];

• aI = {x · (a, ι) | (x, x · (a, ι)) ∈ T (O) is labeled by (ι, a, S) for some S},
for each a ∈ Σ;
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• sI = {x ∈ T (O) | σtau(x) = s}, for all propositions s corresponding to
states of A0;

• sIi = {x ∈ T (O) | σi
tau(x) = si}, for all propositions si corresponding to

states of Ai, for i = 1, . . . , n;

• initiatedIi = {x ·(a, ι) | (x, x ·(a, ι)) ∈ T (O) is labeled by (ι, a, S) with ι =
i and for some S}, for i = 0, . . . , n;

• servedIi = {x · (a, ι) | (x, x · (a, ι)) ∈ T (O) is labeled by (ι, a, S) with i ∈
S}, for i = 1, . . . , n;

• F I
0 = {x ∈ T (O) | σtau(x) = s with s ∈ F0};

• F I
i = {x ∈ T (O) | σi

tau(x) = si with si ∈ Fi}, for i = 1, . . . , n.

Such a model is essentially obtained from T (O) by annotating the nodes
of T (O) with the states of the services, the states of the client specification,
and with the initiator and servant(s) of each action.

Since T (O) specifies a composition that is coherent with A1, . . . , An and
that realizes A0, it is easy to check that the interpretation I built as above,
is a model for Φtau and that, therefore, Φtau is satisfiable.

Lemma 39 Any model of the PDLgm formula

Φtau = Init ∧ [trans∗]Φ0 ∧
∧

i=1,...,n

[trans∗]Φi ∧ [trans∗]Ψ

denotes a composition that is coherent with A1, . . . , An and that realizes the
client specification A0.

Proof. The proof is similar to the proof of Lemma 17, however, for sake
of completeness, in what follows we present the full proof.

If Φtau is satisfiable, then there exists a tree-like model of Φtau where Init
is satisfied in the root. We will show how to derive, from such a model, a
composition tree T (O) that is coherent with A1, . . . , An and realizes A0. Let
I = (ΔI , {transI}, {P I}P∈P) be a tree-like model for Φtau. From I we can
build a composition tree T (O) for A0 as follows.

• the nodes of the tree are the elements of ΔI ; actually, since I is tree-like
we can denote the elements in ΔI as nodes of a tree, using the same
notation that we used for composition trees; in particular, each node
x·(a, ι) of the tree is a prefix-closed word in Σ × {ι}, where Σ is the
alphabet of the service community and therefore of A0, A1, . . . , An, and
ι ∈ [0, . . . , n].
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• the node where InitI holds is the root.

• nodes x such that x ∈ F I
0 are the final nodes;

• if (x, x · (a, ι)) ∈ transI and x · (a, ι) ∈ aI , and x · (a, ι) ∈ initiatedIι and
j ∈ S for each x · (a, ι) ∈ servedIj and for all k �∈ S, x · (a, ι) �∈ servedIk ,
then (x, x · (a, ι)) is labeled by (ι, a, S).

The composition tree T (O) is essentially obtained by extracting the infor-
mation on initiator and servants from the interpretation of the propositions
initiatedi and servedi.

It is straightforward to show that T (O) is coherent with A1, . . . , An and
realizes A0.

Theorem 40 The PDLgm formula

Φtau = Init ∧ [trans∗]Φ0 ∧
∧

i=1,...,n

[trans∗]Φi ∧ [trans∗]Ψ

is satisfiable if and only if there exists a composition that is coherent with
A1, . . . , An and that realizes the client specification A0.

Proof. Straightforward, from Lemma 39 and 38.

Observe that, the size of Φtau is polynomially related to the size of A0,
A1, . . . , An. By Theorem 40 and the EXPTIME-completeness of satisfiability
in PDLgm ([41]), we get the following complexity upper bound.

Theorem 41 Checking the existence of a composition that is coherent with
A1, . . . , An and that realizes a client specification A0 can be done in EXP-
TIME.

6.4.3 Synthesizing a Composition

In the previous section we have shown how to check the existence of a com-
position. In this section we show how to synthesize a composition which is a
FSM, by presenting a sound, complete and terminating technique.

By Theorem 40, if the formula Φtau encoding the composition problem
is satisfiable, then it admits a model, which is the composition we want to
synthesize. Conversely, if Φtau is not satisfiable, no model exists, therefore,
the encoded composition problem admits no solution. However, Theorem 40
considers only compositions which are (possibly infinite) trees. Instead, we are
interested on finite compositions. By the small model property of PDLgm , if
Φtau is satisfiable, then it is satisfiable in a model that is at most exponential
in the size of Φtau. From such a finite model one can extract a representation
of the composition that has the form of a MFSM.
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Definition 42 (Mealy Composition) Given a finite model If =
(ΔIf , {transIf }, {P If }P∈P) we define Mealy composition (wrt the framework
considered in this chapter) an MFSM O = (Σ × [0..n], 2[1..n], Sc, s

0
c , δc, ωc, Fc),

built as follows:

• Sc = ΔIf ;

• s0
c = InitIf ;

• δc(s, (a, ι)) = s′ iff (s, s′) ∈ transIf , s′ ∈ aIf , and s′ ∈ initiated
If
ι ;

• ωc(s, (a, ι)) = {j1, . . . , j�} iff (s, s′) ∈ transIf , s′ ∈ aIf , s′ ∈ initiated
If
ι ,

and s′ ∈ served
If

j , for exactly those j in {j1, . . . , j�};

• Fc = F
If

0 .

�

As a consequence of this, we get the following results.

Theorem 43 If there exists a composition that is coherent with A1, . . . , An

and that realizes a client specification A0, then there exists one that is a Mealy
composition of size at most exponential in the size of A0, A1, . . . , An.

Proof. By Theorem 40, if there exists a composition tree, then the PDLgm

formula Φtau constructed as above is satisfiable. In turn, if Φtau is satisfiable,
for the small-model property of PDLgm , there exists a model If of size at
most exponential in Φtau, and hence in A0 and A1, . . . , An. From If we
can construct a MFSM Ac as in Definition 42. Notice that the composition
tree generated by Ac essentially corresponds the tree-like model obtained by
unwinding If .

Theorem 44 Any finite model of the PDLgm formula

Φtau = Init ∧ [trans∗]Φ0 ∧
∧

i=1,...,n

[trans∗]Φi ∧ [trans∗]Ψ

constructed as in the previous section denotes a Mealy composition of that
realizes A0 and that is coherent with A1, . . . , An.

Proof. By construction, observing that the construction of the Mealy com-
position from a finite model is semantic-preserving.

Exploiting reasoning methods for PDLgm based on model construction,
such as tableaux algorithms [39, 52, 7], one can actually construct such a
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Mealy composition. Notice that such algorithms need to be able to deal with
full reflexive transitive closure, introduced in Φtau due to τ transitions in the
client specification.

Consider again the algorithm for synthesizing a Mealy composition shown
in Figure 4.6. Beside the function Minimize, for minimizing the MFSM, that is
independent from the framework, all the others needs to be tailored towards
the new framework: (i) FSM2DPDL should be substituted with the function
FSM2PDLgm: it translates the FSMs representing the services in the community
and the client specification in the PDLgm encoding, and it must also cope with
the presence of both don’t care non-determinism and τ actions in the client
specification; (ii) DPDLTableau should be substituted with PDLgmTableau:
it checks satisfiability of the PDLgm formula and builds a finite model if it
exists or returning (nil), otherwise, and it also needs to deal with full reflexive
transitive closure and the graded modalities; (iii) Extract MFSM: it extracts a
Mealy composition, and in additional it should be able to deal with the roles
of a service wrt a given action.

In the following section, we show how to encode our running example in a
PDLgm formula Φtau, discuss a model of it and show that it is indeed a Mealy
composition for the loose client specification of Figure 6.2(b).

6.4.4 Composition synthesis of our Running Example

In this section, we encode in a PDLgm formula Φtau the scenario of Example 26
(in particular, the client specification of Figure 6.2(b)) and of Example 25.

The set P of atomic propositions is:

P = { s0
0, s

1
0, s

2
0, s

3
0, s

4
0, s

5
0, s

6
0, s

7
0, s

8
0, s

0
1, s

1
1, s

2
1, s

0
2, s

1
2, s

2
2, s

0
3, s

1
3, s

2
3, s

3
3, s

0
4, s

1
4,

s0
5, s

0
6, s

1
6, s

0
7, s

1
7, F0, F1, F2, F3, F4, F5, F6, F7, served1, served2, served3,

served4, served5, served6, served7, initiated0, initiated1, initiated2,
initiated3, initiated4, initiated5, initiated6, initiated7, Init, a, ss, st,
cm, set, sit, sc, g, m, b, s}

where:

• a denotes action authentication

• ss denotes action search & select

• st denotes action stationery

• cm denotes action compose message

• set denotes action select english template

• sit denotes action select italian template
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• sc denotes action spell check

• g denotes action add gift

• m denotes action add music

• b denotes action buy

• s denotes action send

The atomic propositions in P have the following semantics:

• si
j , for j = 0, . . . , 7 and i = 0, . . . , 8: si

j is true if and only if Aj is in state
si
j ;

• Fj , j = 0, . . . , 7: Fj is true if and only if Aj is in a final state;

• servedj , j = 1, . . . , 7: servedj is true if and only if (component) FSM Aj

is servant for the current transition;

• initiatedj , j = 0, . . . , 7: initiatedj is true if and only if FSM Aj (denoting
either the client specification, or a service in the community) is initiator
for the current transition;

• Init is true if and only if the composition is in the initial state;

• each proposition denoting an action is true if and only if that action is
executed in the current transition

The client specification A0 is captured by the formula [trans∗]Φ0, where
Φ0 is obtained by conjunction of the formulas below. We want to remark that,
since (Φ0, and therefore) all the formulas below are prefixed by [trans∗], the
observations that we will make hold for all transitions of A0 (in particular, for
those executed at each iteration of cycles).

A0 cannot be simultaneously in two (or more) states (propositions
representing different states are disjoint):

[u](s0
0 → ¬s1

0)
[u](s0

0 → ¬s2
0)

[u](s0
0 → ¬s3

0)
[u](s0

0 → ¬s4
0)

[u](s0
0 → ¬s5

0)
[u](s0

0 → ¬s6
0)

[u](s0
0 → ¬s7

0)
[u](s0

0 → ¬s8
0)

[u](s1
0 → ¬s2

0)
[u](s1

0 → ¬s3
0)

[u](s1
0 → ¬s4

0)
[u](s1

0 → ¬s5
0)

[u](s1
0 → ¬s6

0)
[u](s1

0 → ¬s7
0)

[u](s1
0 → ¬s8

0)
[u](s2

0 → ¬s3
0)

[u](s2
0 → ¬s4

0)
[u](s2

0 → ¬s5
0)

[u](s2
0 → ¬s6

0)
. . .
. . .

[u](s3
0 → ¬s8

0)
[u](s4

0 → ¬s5
0)

[u](s4
0 → ¬s6

0)

[u](s4
0 → ¬s7

0)
[u](s4

0 → ¬s8
0)

[u](s5
0 → ¬s6

0)
[u](s5

0 → ¬s7
0)

[u](s5
0 → ¬s8

0)
[u](s6

0 → ¬s7
0)

[u](s6
0 → ¬s8

0)
[u](s7

0 → ¬s8
0)
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The transitions (different from τ) that A0 performs as initiator are cap-
tured by:

s0
0 → 〈trans〉(initiated0 ∧ a ∧ s1

0)
s1
0 → 〈trans〉(initiated0 ∧ ss ∧ s2

0)
s3
0 → 〈trans〉(initiated0 ∧ cm ∧ s4

0)
s5
0 → 〈trans〉(initiated0 ∧ m ∧ s6

0)
s5
0 → 〈trans〉(initiated0 ∧ g ∧ s6

0)
s5
0 → 〈trans〉(initiated0 ∧ s ∧ s8

0)
s6
0 → 〈trans〉(initiated0 ∧ b ∧ s7

0)
s7
0 → 〈trans〉(initiated0 ∧ s ∧ s8

0)
s8
0 → 〈trans〉(initiated0 ∧ ss ∧ s2

0)

Consider the first formula above. Intuitively, it says that if the FSM A0

is in state s0
0 then there exists a transition (〈trans〉) ending in a state8 where

a has been executed (a is true) by A0
9 (initiated0 is true) and A0 has moved

to state s1
0. Note that since in our example A0 is deterministic, no formula

above contains or-ed terms on the right hand side. However, similarly to what
noticed in Example 22, since several different actions can be executed from a
state, several formula above contain and-ed (or better and-able) terms. For
instance, from state s5

0 the client can perform any action among m, g or s,
therefore the three formulas having s5

0 on the left hand side, can be factorized
into the unique formula s5

0 → (〈trans〉(initiated0∧g∧s6
0))∧(〈trans〉(initiated0∧

g ∧ s6
0)) ∧ (〈trans〉(initiated0 ∧ s ∧ s8

0)).
The τ -transitions that A0 specifies are captured by:

s2
0 → 〈R∗

τ 〉s3
0 s4

0 → 〈R∗
τ 〉s5

0

where Rτ stands for ((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)?.
The first formula says that if A0 is in state s2

0 then there exists a sequence
of transitions that satisfies the conditions imposed by R∗

τ and that leads A0

in state s3
0. In general, R∗

τ can be explicited as:

((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)? ∪ ((≤ 1〈trans〉¬initiated0))?;
trans; (¬initiated0)?; ((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)? ∪
((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)?; ((≤ 1〈trans〉¬initiated0))?; trans;
(¬initiated0)?; ((≤ 1〈trans〉¬initiated0))?; trans; (¬initiated0)? ∪ . . .

Informally, in the context of the first formula above, R∗
τ assume the fol-

lowing meaning:

8Both the transition and the state mentioned must exist in each model of the formula
Φtau.

9I.e., by the client.
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1. Test (?) if there exist at most one transition ((≤ 1〈trans〉)) leading into
state s3

0 for which A0 is not initiator (¬initiated0). If the test fails, then
the τ transition is realized by a n−1-length sequence, if n is the number
of times this test is executed.

2. If the test succeeds, then execute such a transition (trans)

3. Test (?) if in the current state A0 is not the initiator (¬initiated0). If in
the current state A0 is the initiator, then the τ transition is realized by
a sequence of actions of length one. If in the current state A0 is not the
initiator, then the first test is performed again.10

Note that in our example the τ transitions of A0 are realized by a non-
zero sequence of actions: the first test does not fail, since τ always connects
two different states, and A0 is not the initiator of any executed action (that
realizes τ), neither leading towards s3

0 nor towards s5
0. Observe that when a τ

action is realized by more than one service action, this formula does not specify
any requirements about the state of A0 during the execution of intermediate
service actions.

At this point one may wonder under which circumstances a τ action can
be realized by a zero length sequence of actions. This happens when there is
a state with both a τ loop and an outgoing non-τ transition, as in the client
specification B0 of Figure 6.2 (b). Consider state s1

0, from which both a τ
loop and a ss transition, initiated by B0 originate. In s1

0 the first test can
non-deterministically fail (if the ss transition is considered) or succeed (if the
τ loop is taken).

Note in the general formula, the presence of
∨

s′∈δ0(s,τ). This means that
it is allowed to specify more than one τ transition originating from the same
state, i.e., a client specification can be non-deterministic on τ actions. This
situation is handled in the same way as for non-τ actions.

The transitions, different from τ , that are not defined on A0 are captured
(in part) by:

s0
0 → [trans](ss → ¬initiated0)

s0
0 → [trans](cm → ¬initiated0)

s0
0 → [trans](m → ¬initiated0)

s0
0 → [trans](g → ¬initiated0)

s0
0 → [trans](b → ¬initiated0)

s0
0 → [trans](s → ¬initiated0)

s1
0 → [trans](a → ¬initiated0)

. . .

. . .
s5
0 → [trans](a → ¬initiated0)

s5
0 → [trans](ss → ¬initiated0)

s5
0 → [trans](cm → ¬initiated0)

s5
0 → [trans](b → ¬initiated0)

s6
0 → [trans](a → ¬initiated0)

s6
0 → [trans](ss → ¬initiated0)

. . .

10Note that this second test is needed to capture τ loops.
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Intuitively, the first formula of the first column says that if A0 is in
state s1

0 then for each transition originating from s1
0, if ss is the executed

action, then necessarily it is not initiated by A0.
The τ transitions that are not defined on A0 are captured by:

s0
0 → [trans]initiated0

s1
0 → [trans]initiated0

s3
0 → [trans]initiated0

s5
0 → [trans]initiated0

s6
0 → [trans]initiated0

s7
0 → [trans]initiated0

s8
0 → [trans]initiated0

Intuitively, the first formula of the first column says that if A0 is in
state s1

0 then A0 is the initiator of all transition originating from s1
0.

Finally, the final states of A0 are encoded by:

F0 ≡ s0
0 ∨ s8

0

Formulas capturing the services in the community. For sake of suc-
cinctness, we show the encoding only on the service A3, which acts both as ini-
tiator and as servants for the actions. A3 is captured by the formula [trans∗]Φ3,
where Φ3 is obtained by conjunction of the formulas below.

Note again that, since (Φ3, and therefore) all the formulas below are pre-
fixed by [trans∗], the observations that we will make hold for all transitions of
A3 (in particular, for those executed at each iteration of cycles).

Formulas encoding that A3 cannot be at the same time in two different
states (i.e., no two atomic propositions representing states are true at the same
time) are:

[u](s0
3 → ¬s1

3)
[u](s0

3 → ¬s2
3)

[u](s0
3 → ¬s3

3)
[u](s1

3 → ¬s2
3)

[u](s1
3 → ¬s3

3)
[u](s2

3 → ¬s3
3)

In the composition, A3 can be required to act as servant only for the cm
transition. Such transition is encoded as

s2
3 → [trans](cm ∧ served3 → s3

3)

stating that if A3 is in state s2
3, for each transition originating from s2

3 such
that A3 executes action cm as servant, A3 moves to state s3

3. Note that in
principle A3 could also be initiator for the same action cm, originating from
the same state s2

3 (but leading in another state).
The transitions of A3, for which it can be required to act as initiator in

the composition, are the following ones:

s0
3 → [trans](st ∧ initiated3 → s1

3)
s1
3 → [trans](sit ∧ initiated3 → s2

3)
s1
3 → [trans](set ∧ initiated3 → s2

3)
s3
3 → [trans](sc ∧ initiated3 → s0

3)
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Similarly to the previous set of formulas, the first formula states that if A3 is
in state s0

3, each transition originating from s0
3 such that st is executed having

A3 as servant makes A3 move to state s1
3.

The transitions of A3 for which A3 acts as servant and that are not defined
are (in part) the following ones:

s0
3 → [trans](a → ¬served3)

s0
3 → [trans](ss → ¬served3)

s0
3 → [trans](st → ¬served3)

s0
3 → [trans](cm → ¬served3)

s0
3 → [trans](sit → ¬served3)

s0
3 → [trans](set → ¬served3)

s0
3 → [trans](sc → ¬served3)

. . .

. . .
s2
3 → [trans](a → ¬served3)

s2
3 → [trans](ss → ¬served3)

s2
3 → [trans](st → ¬served3)

s2
3 → [trans](sit → ¬served3)

s2
3 → [trans](set → ¬served3)

s2
3 → [trans](sc → ¬served3)

. . .
Intuitively, the first formula of the first column states that if A3 is in state

s0
3, then all transitions that can be executed from s0

3 leads A3 into a state such
that if a is executed then A3 has not been servant for a.

The transitions of A3 for which A3 acts as initiator and that are not defined
are (in part) the following ones:

s0
3 → [trans](a → ¬initiated3)

s0
3 → [trans](ss → ¬initiated3)

s0
3 → [trans](cm → ¬initiated3)

s0
3 → [trans](sit → ¬initiated3)

s0
3 → [trans](set → ¬initiated3)

s0
3 → [trans](sc → ¬initiated3)

. . .

. . .
s2
3 → [trans](a → ¬initiated3)

s2
3 → [trans](ss → ¬initiated3)

s2
3 → [trans](st → ¬initiated3)

s2
3 → [trans](cm → ¬initiated3)

s2
3 → [trans](sit → ¬initiated3)

. . .
The meaning of this set of formulas is similar to the previous set. For

example, the first formula of the first column says that states that if A3 is
in state s0

3, then all transitions that can be executed from s0
3 leads A3 into a

state such that if a is executed then A3 has not been initiator for a.
This set of formulas encodes that when A3 does not participate to an

action, it does not change state:

s0
3 → [trans](served3 ∨ initiated3 ∨ s0

3)
s1
3 → [trans](served3 ∨ initiated3 ∨ s1

3)
s2
3 → [trans](served3 ∨ initiated3 ∨ s2

3)
s3
3 → [trans](served3 ∨ initiated3 ∨ s3

3)

For example, the first formula says that if A3 is in state s0
3, all transitions

originating from there leads A3 in a where either A3 is a servant or an initiator
(when it moves), or it remains in state s0

3 (when it does not move). Note that if
there is a loop in state s0

3, then both s0
3 and one between served3 and initiated3,
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would be true.
Final states are:

F3 ≡ s0
3

The domain independent conditions are captured by the formula
[trans∗]Ψ, where Ψ is the conjunction of the formulas below. Again, Ψ and
hence all the formulas below are prefixed by [trans∗], therefore the observa-
tions that we will make hold for all transitions of A0 (in particular, for those
executed at each iteration of cycles).

The realized composition is deterministic wrt to the action annotated by
the initiator.

(≤ 1〈trans〉(a ∧ initiated0))
(≤ 1〈trans〉(ss ∧ initiated0))
(≤ 1〈trans〉(st ∧ initiated0))
(≤ 1〈trans〉(cm ∧ initiated0))
(≤ 1〈trans〉(set ∧ initiated0))

(≤ 1〈trans〉(sit ∧ initiated0))
(≤ 1〈trans〉(sc ∧ initiated0))
(≤ 1〈trans〉(m ∧ initiated0))
(≤ 1〈trans〉(g ∧ initiated0))
(≤ 1〈trans〉(b ∧ initiated0))
(≤ 1〈trans〉(s ∧ initiated0))

For example, the first formula of the first column says that from the current
state of the composition, at most one transition must exist for which action
a is initiated by A0 (i.e., by the client). However, this does not prevent from
having two a transitions from the same state, having different initiators.

Each transition is caused by an action:

[trans](a ∨ ss ∨ st ∨ set ∨ sit ∨ cm ∨ sc ∨ m ∨ g ∨ b ∨ s)

Each transition must have at least one service as servant . . .

[trans](served1 ∨ served2 ∨ served3 ∨ served4 ∨ served5 ∨ served6 ∨ served7)

. . . and at least one service as initiator (including A0)

[trans] (initiated0 ∨ initiated1 ∨ initiated2 ∨ initiated3 ∨ initiated4 ∨ initiated5∨
initiated6 ∨ initiated7)

Each action has at most one initiator (i.e., an action is never initiated by
two services)

[trans](¬initiated1 ∨ ¬initiated2)
[trans](¬initiated1 ∨ ¬initiated3)
[trans](¬initiated1 ∨ ¬initiated4)
[trans](¬initiated1 ∨ ¬initiated5)
[trans](¬initiated1 ∨ ¬initiated6)

[trans](¬initiated1 ∨ ¬initiated7)
. . .
[trans](¬initiated5 ∨ ¬initiated6)
[trans](¬initiated5 ∨ ¬initiated7)
[trans](¬initiated6 ∨ ¬initiated7)



6.4. COMPOSITION SYNTHESIS TECHNIQUE 137

When the client specification is in a final state also all component services
must be in a final state.

F0 → F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6 ∧ F7

In the initial state of the composition, all services are in their initial state

Init → s0
0 ∧ s0

1 ∧ s0
2 ∧ s0

3 ∧ s0
4 ∧ s0

5 ∧ s0
6 ∧ s0

7

In the initial state of the composition, no action has been executed yet.

Init → (¬a) ∧ (¬ss) ∧ (¬st) ∧ (¬set) ∧ (¬sit) ∧ (¬cm) ∧ (¬sc)∧
(¬m) ∧ (¬g) ∧ (¬b) ∧ (¬s)

Init → (¬initiated1) ∧ (¬initiated2) ∧ (¬initiated3) ∧ (¬initiated4)∧
(¬initiated5) ∧ (¬initiated6) ∧ (¬initiated7)

Init → (¬served1) ∧ (¬served2) ∧ (¬served3) ∧ (¬served4)∧
(¬served5) ∧ (¬served6) ∧ (¬served7)

The PDLgm formula Φtau that encodes the scenario of Figures 6.2(b) 6.1
is defined as Init ∧ [trans∗]Φ0 ∧

∧
i=1,...,n[trans∗]Φi ∧ [trans∗]Ψ.

We conclude the section by showing a model of the PDLgm formula Φtau.
Figure 6.4 shows an interpretation (i.e., a Kripke structure) If for Φtau

which is returned from a PDLgm tableau algorithm that deals with full reflex-
ive transitive closure. For sake of clarity, for each state we report only a list of
the atomic propositions that are true in that state and we underline the propo-
sitions denoting states that change their value when an action is performed.
Additionally, in Figure 6.4, we decided to label each transition between states
by the triple (a, ι, S) where a is an action, ι is its initiator and S the set of
servants. We do it in order to help the reader to understand how to obtain
a Mealy composition, whose transitions are labeled by (a, ι, S), starting from
the PDLgm atomic propositions denoting the performed action, its initiator,
and its servants. For sake of exactness, in the figure, the transitions between
states should have been labeled by trans.

It is easy to verify that the interpretation in Figure 6.4 is indeed a (finite)
model of Φtau since for each state (domain element), all constraints expressed
in Φtau are satisfied. For example, in the initial state, (i) Init holds, (ii) all
the FSMs associated to the component services and to the client specification
start from their initial state, (iii) no action is executed, therefore no service
acts as initiator nor as a servant, (iv) since the composition is in a final state,
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Figure 6.4: Finite model of the PDLgm formula encoding our running example.

also all the component services are in a final state. State t1 is reached after
performing action a, whose initiator is the client and whose servant is A1:
therefore, both the client specification and A1 moved, respectively, to states
s1
0 and s1

1, while the other services do not change state.
It is easy to see that If is a Mealy composition for the underspecified

client specification A0 of Figure 6.2 (b). Note that If is not minimal: by ap-
plying standard minimization techniques one obtains the finite state machine
of Figure 6.3 (b). A detailed analysis of If allows us to make the following
observations:

• A2 never moves and it always remains in its initial state s0
2, which is also

final.

• Action buy can be performed both by A6 and by A7: each execution of
buy ends in a different state (t9 and t10 in the figure), characterized by
a different value of the propositions served6 and served7: in t9 served6 =
true and served7 = false because buy is performed by A6, while in t10
served6 = false and served7 = true because buy is performed by A5.
The reader is invited to compare this situation with a similar situation
in the DPDL model of Example 23. Therefore, the minimal FSM shown
in Figure 6.3 (b) is not a model of the PDLgm formula, because there
the two buy transitions end in the same state.

• State t1 is not final, despite the fact that all component services are in
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a final state, because the target service is not in a final state. The final
states are t0 and t11.

• In this model s3
0 holds in t4 (but not in t3). In fact the sub-formula

of Φtau encoding τ transitions does not require any specific state to be
assigned to the intermediate steps that realize the τ transition, therefore,
in the model s3

0 could hold in t3, as well.

6.5 Discussion

In this chapter we study the problem of service composition by following the
approach of Chapter 4 and 5 (see Sections 4.4 and 5.4 for a discussion on the
features of our approach to service composition, developed in Chapters 4 and 5,
respectively), but introduce two fundamental extensions:

1. The composition is again based on controlling the concurrent execution
of the the available component services, but in addition it allows for
synchronization and communication between the component services.
These aspects are not present in Chapters 4 and 5. Here instead, we
introduce the notion of initiator and servant of an (inter)action, and we
require that each action involves one initiator and one or more servants
that suitably synchronize and exchange information in order to complete
the action. The composition can control who is interacting at each step
and allows two component services to interact and synchronize suitably
before starting to serve the client, or while serving him. This provides us
with a bridge towards the message-based model of services [40], and to-
wards the service communication model that form the basis to standard
languages, such as BPEL4WS [4].

2. The client request is again a specification of the transition system that
the client would like to execute. Such a specification may contain incom-
plete information, not only in the form of don’t care non-determinism,
as in Chapter 5, but also by allowing the activities in which the client is
involved (i.e., those described by its transition system) to be interleaved
in specified points with activities that are performed by the component
services without the client intervention (but of which the client is in any
case aware); this allows the client to exploit the synchronization and
communication abilities that the component services have (cf. point 1
above) to allow such services to perform some preliminary/extra work
before or while serving him.

In such a framework, we again develop sound, complete and terminating
technique for checking the existence of a composition and synthesizing one, if
possible.
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Note that, if a a client specification does not present τ actions, but only
don’t care non-determinism, the PDLgm encoding does not contain graded
modalities, hence it is in fact a DPDL encoding. Therefore, the technique
developed in this chapter constitutes an alternative way to compute automatic
composition in the framework of Chapter 5, enriched however with the roles
of initiator and servant.

In service composition, there is a clear distinction between the role of the
client asking for a service, and the role of the software artifact that realizes the
service. In our model, such a distinction is reflected in the fact that a client
is always considered as an initiator of actions, and not as a servant, while a
service is seen mostly as a servant. By blurring such a distinction, one makes
the notion of service similar to the notion of agent. Under this perspective,
the results presented here become relevant for automatic synthesis of agents.
In the future, we aim at investigating this perspective in detail.

Finally, note that in order to check the existence of service composition,
instead of reducing such problem to satisfiability of a Proposition Dynamic
Logic formula, we could as well exploit results in the research area of program
synthesis (see e.g.[82, 94, 93, 60]). We will develop this point as future research
(see Section 8.2), keeping also in mind the observations of Section 2.3.2.



Chapter 7

ESC E-Service Composer

In this chapter we present the tool we developed and that implements our ser-
vice composition algorithm. We start by making some considerations, from an
implementation perspective, on the PDL encodings of the service composition
problem, discussed in previous chapters, and we show that instead of imple-
menting a PDL tableau algorithm, we can resort to Description Logics (DLs).
Thus, we present ALU [8], a simple DL equipped with the constructs we need
to encode the composition problem. Then, we show how to encode in an ALU
knowledge base the composition problems studied in Chapters 4 and 5. Finally,
we present our prototype tool that implements the composition algorithms.

7.1 Considerations about the PDL Encodings from
an Implementation Perspective

To the best of our knowledge, no investigation of effective and efficient tableau
algorithms for PDLs is available in the literature and consequently no tool that
implements PDL based reasoning services is available. Therefore, from a prac-
tical point of view, in order to actually synthesize a Mealy composition, we
resort to Description Logics (DLs [8]), exploiting the well known correspon-
dence between PDL formulas and DL knowledge bases [53, 132]. DLs are a
family of logic used to represent static knowledge, i.e., that can be expressed
in terms of classes and relationships between them. We use DLs only for im-
plementation purposes, since DL-based tableau algorithms have been widely
studied in the literature and several optimizations for effective and efficient
implementations have been devised. Note that for each logic of in the family
of PDLs, there exists a corresponding DL and vice-versa, for each DL there
exists a corresponding PDL. Specifically, ALCreg is the DL counterpart of the
deterministic variant of PDL, namely DPDL, which has been used to encode
the frameworks of Chapters 4 and 5, and ALCQreg is the DL counterpart of
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the PDL variant equipped with graded modalities, namely PDLgm , that en-
codes the framework of Chapter 6. Consequently, each service framework of
Chapters 4, 5 and 6 can be encoded in a DL knowledge base (see [21, 27]).

The deep investigations on DL Tableaux algorithms has lied the basis for
the implementation of highly optimized DL-based reasoning systems [84, 78],
that we can use to check the existence of service compositions. Actually, such
systems cannot handle Kleene star ∗. However, when in PDL formulas Φ en-
coding the composition problems ∗ is only used to mimic universal assertions,
it is still possible to use such systems to check satisfiability of the DL coun-
terpart of Φ, since they have the ability of handling universal assertions. In
other words, they can tackle the service composition problems discussed in
Chapters 4 and 5. As far as the framework of Chapter 6, ∗ is not only used
to encode universal assertions, but also to capture the semantics of τ actions:
tableau algorithms in such a case are quite complex and no result exists on
how they can be implemented in an optimal and efficient way. Note that, if
τ actions are not present, state-of-the-art DL based reasoning systems can be
used to tackle also the framework of Chapter 6.

However, state-of-the-art DL reasoning systems cannot be used to synthe-
size a Mealy composition because they do not return a model. Therefore, we
implemented from scratch a tableau algorithm for DLs that builds a model1

(of the DL knowledge base that encodes the specific composition problem)
which is a Mealy composition. The tool that we present in this chapter, for
the reason presented above, can handle (for the moment) only the service
frameworks that do not involve τ actions.

It is also important to note that in Chapters 4 and 5 we did not use the
whole DPDL, but a limited fragment, that we call DPDLlim, whose syntax is
as follows (its semantics is based on a Kripke structure and can be easily ob-
tained from DPDL semantics). Let A = {a1, . . . , an} be a set of deterministic
atomic actions and P be a set of atomic propositions. An arbitrary DPDLlim

formula ψ has the form:

ψ := P ∧ [(a1 ∪ . . . ∪ an)∗]φ

where P is an atomic DPDLlim proposition and φ is built according to the
following rules:

φ −→ P | ¬P | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a1〉true | [a1]φ1

Note that a model for the DPDLlim formula ψ is deterministic. Non
determinism can be introduced only by the operator 〈〉. However, we are
guaranteed about the functionality of DPDLlim atomic actions (i.e., that no

1If one exists.
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atomic action a connects a state s1 (of the Kripke structure) with two different
(target) states s2 and s3) from the fact that (i) 〈〉 operates only on atomic
actions a and (ii) it appears only in front of the atomic proposition true.
Indeed, if a related s1 with s2 and s3, such target states would actually be the
same, since s2 and s3 are associated with the same atomic proposition true.

7.2 The Description Logic ALU

Description Logics (DLs [8]) are logics tailored towards representing knowl-
edge in terms of classes and relationships between classes. Formally they are
a well behaved fragment of first order logic (FOL) equipped with decidable
reasoning. In DLs, the domain of interest is modeled by means of concepts
and relationships, which denote classes of objects and relations, respectively.
Generally speaking, a DL is formed by three basic components:

• a description language, which specifies how to construct complex con-
cept and relation expressions (also called simply concepts and relations),
by starting from a set of atomic symbols and by applying suitable con-
structors,

• a knowledge specification mechanism, which specifies how to construct
a DL knowledge base, in which properties of concepts and relations are
asserted, and

• a set of automatic reasoning procedures provided by the DL.

The set of allowed constructors characterizes the expressive power of the de-
scription language. Various languages have been considered by the DL com-
munity, and numerous works investigate the relationship between expressive
power and computational complexity of reasoning (see [58] for a survey). The
research on these logics has resulted in a number of automated reasoning sys-
tems, such as FaCT [84, 86] and Racer [79], which have been successfully
tested in various application domains (see e.g., [106, 131, 91]).

Among the DLs, in what follows we focus on ALU [8], which is a simple
DL equipped with the constructs we need to encode the composition problems
of Chapters 4 and 5.

Let P and A denote atomic roles (binary relations) and atomic concepts
respectively. Syntactically, ALU concepts, denoted by C, are built by starting
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from atomic concepts and atomic roles as follows:

C −→ A | (atomic concept)
¬A | (atomic negation)
C1 � C2 | (intersection (of complex concepts))
C1 � C2 | (union (of complex concepts))
∀P .C1 | (value restriction)
∃P .true ((limited) existential quantification)

In what follows, we make use of the following standard abbreviations:

true for A � ¬A
false for ¬true

A → C for ¬A � C

Note that the left hand side of the symbol → is an atomic concept.
Let us comment on the constructs of ALU . Only constructs to form con-

cept expressions are present. Among them, there are limited set operators,
namely set complement, intersection, and union that are denoted as negation
(¬), conjunction (�), and disjunction (�), respectively. However, while con-
junction and disjunction can be applied to arbitrary ALU concepts, negation
can be applied only to atomic concepts. The remaining operators allow to
capture quantification relations between the objects in two concepts. Also in
this case, the allowed forms of quantification are quite limited, due also to
the fact that ALU deals only with atomic roles. The universal quantification,
denoted as ∀P .C1, captures all objects that are related through P only to
objects of (the possibly complex) concept C1. The existential quantification
over role P , denoted as ∃P .true, allow only the top concept in the scope of
P ; intuitively, ∃P .true represents all objects that are related to some object
of the domain through P .

From the syntact rules shown above, it stems that ALU is a very simple
DL. However, it is not the simplest DL, which is AL. The only feature that
differentiates the two is the union of complex concepts, which AL does not
contemplate.

An ALU knowledge base (KB) is constituted by a finite set of inclusion
assertions of the form

C1 � C2

where C1 and C2 are arbitrary ALU concepts. Intuitively, the symbol �
denotes a subsumption relation between concepts: the above expression is
read as “C2 subsumes C1”, and it denotes that the concept C2 is more general
than (or as general as) the concept C1. We also use the abbreviation C1 ≡ C2

for C1 � C2 and C2 � C1.
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As usual in DLs, the semantics of ALU is specified through the notion of
interpretation. An interpretation I = (ΔI , ·I) of an ALU KB K is constituted
by an interpretation domain ΔI and an interpretation function ·I that assigns
to each atomic concept A a set AI ⊆ ΔI and to each atomic role P a set
P I ⊆ ΔI × ΔI , such that the following conditions are satisfied.

(¬A)I = ΔI \ AI

(C1 � C2)I = CI
1 ∩ CI

2

(C1 � C2)I = CI
1 ∪ CI

2

(∀P .C)I = {a ∈ ΔI | ∀b.(a, b) ∈ P I → b ∈ CI}
(∃P .true)I = {a ∈ ΔI | ∃b.(a, b) ∈ P I}

To specify the semantics of an ALU KB we first define when an interpreta-
tion satisfies an assertion as follows. An interpretation I satisfies an inclusion
assertion C1 � C2 if CI

1 ⊆ CI
2 . In other words, the semantics associated to

the subsumption relation is based on subsetting.
An interpretation that satisfies all assertions in a KB K is called a model

of K. We say that a KB K is satisfiable if there exists a model of K. A
concept C is satisfiable in a KB K if there is a model I of K such that CI is
non-empty. An assertion α is logically implied by K if all models of K satisfy
α. It can be shown that all these reasoning services, namely KB satisfiability,
concept satisfiability in a KB, and logical implication, are mutually reducible
(in polynomial time).

One of the distinguishing features of DLs is that they are designed so as to
admit reasoning procedures (i.e., to check KB satisfiability, concept satisfiabil-
ity in a KB, and logical implication) that are sound and complete with respect
to the semantics, and decidable. Such procedures are based on tableaux tech-
niques. Intuitively, tableau based algorithms iteratively compute, by subse-
quent subsumption (i.e., subset) tests, a taxonomy of classes, making explicit
all subsumption relationships among the concepts of the knowledge base. Once
such step, called classification, is performed, reasoning services can take ad-
vantage of it to speed up inferences. Several optimizations of the classification
step have been devised and have been implemented in the state-of-the-art DL
reasoning systems [8].

In what follows, among the reasoning services ALU is equipped with, we
will consider concept satisfiability in a knowledge base, which is easily shown
to be EXPTIME-complete for ALU , since concept satisfiability in a knowledge
base is already EXPTIME-hard for AL and is EXPTIME-complete for ALC2

which includes ALU (see [8] for details).

2The DL ALC is equal to ALU with the difference that it admits negation on arbitrary
(instead of atomic) concepts and therefore, it also admits full existential quantification, in
the form ∃R.C.
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Finally, ALU enjoys three properties that are of particular interest for our
aims. The first is the tree model property, which says that every model of a
concept in a knowledge base can be unwound to a (possibly infinite) tree. The
second is the small model property, which says that every satisfiable concept in
a knowledge base admits a finite model of size at most exponential in the size
of the concept and the knowledge base itself. The third is the single successor
property that says that every model of a concept in a knowledge base can be
transformed in such a way that in each object there is at most a unique P -
successor for each role P . Moreover such a transformation does not increase
the size of the model.

7.2.1 The Correspondence between DPDLlim and ALU

In this section we show the correspondence between a DPDLlim formula and
an ALU knowledge base, which we exploit in the rest of the chapter. Note
that the correspondence shown here is specific to our setting. A more general
correspondence exists between DLs and PDLs, that can be found in [42].

Such a correspondence is based on the similarity between the interpreta-
tion structures of the two logics: at the extensional level, states in DPDLlim

correspond to individuals (members of ΔI) in ALU , whereas state transitions
correspond to links between two individuals. At the intensional level, propo-
sitions correspond to concepts, and atomic programs correspond to roles. The
precise correspondence is realized through a (one-to-one and onto) mapping
δ from DPDLlim formulas to ALU concepts, and from DPDLlim (atomic)
programs to ALU roles. The mapping δ is defined inductively as follows:

δ(P ) = P δ(¬P ) = ¬δ(P )
δ(φ1 ∧ φ2) = δ(φ1) � δ(φ2) δ(φ1 ∨ φ2) = δ(φ1) � δ(φ2)

δ([a]φ) = ∀δ(a).δ(φ) δ(〈a〉true) = ∃δ(a).true
δ(a) = a

where P is an atomic DPDLlim proposition and a an atomic DPDLlim

action.
Given the above correspondence, all the DPDLlim constructs that we con-

sider can be naturally mapped into their ALU analogues. However, DLs are
normally used to define a knowledge base, while in PDLs no such notion exists.
Consequently, the above correspondence is not sufficient to relate the reason-
ing problems. In [132] the mapping is therefore extended in such a way that a
PDL formula can be viewed as a knowledge base formed by a set of assertions,
and reasoning on the DPDL formula can be rephrased in terms of reasoning
with respect to such knowledge base. In order to show this mapping, we need
the following Theorem [92].
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Theorem 45 [92] Let Γ be a set of DPDL formulas k1, . . . , kn, where finitely
many atomic programs appear, and let φ be a DPDL formula. Then, Γ |= φ if
and only if |= [(a1 ∪ . . . ∪ an)∗]

∧
i=1,...,n ki → φ or, equivalently, if and only if

[(a1 ∪ . . . ∪ an)∗]
∧

i=1,...,n ki ∧ ¬φ is unsatisfiable, where a1, . . . , an are all the
atomic programs appearing in Γ ∪ {φ}.

This theorem builds upon the basic idea that a set of axioms can be “in-
ternalized” into a single concept, i.e., it is possible to build a new formula
that expresses all the formulas in Γ [132]. This can be done by exploiting the
semantics of union and of reflexive and transitive closure on programs, and
because DPDL models are connected. In what follows, we will exploit the
theorem in the other direction, i.e., that a certain DPDL formula is equivalent
to a finite set of DPDL formulas. Note that in particular, the theorem above
holds for DPDLlim.

From the above theorem, we can extend the (one-to-one and onto) mapping
δ to a (one-to-one and onto) mapping δ′ from a DPDLlim formula ψ to an ALU
knowledge base K as follows. Let ψ = P ∧ [(a1 ∪ . . . ∪ an)∗]

∧
i=1,...,n ki, where

(i) k1, . . . , kn are DPDLlim axioms of the form φi
1 → φi

2, with φi
1, φ

i
2 (possibly

complex) DPDLlim formulas, (ii) a1, . . . , an are the atomic DPDLlim actions
appearing in ψ, and (iii) P is an atomic DPDLlim formula not containing
a1, . . . , an.

δ′(ψ) = P ∧ [(a1 ∪ . . . ∪ an)∗]δ′(k1) ∧ . . . ∧ δ′(kn) = {δ′(P ), δ′(k1), . . . , δ′(kn)}
δ′(ki) = δ′(φi

1 → φi
2) = δ(φi

1) � δ(φi
2)

δ′(P ) = true � δ(P )

From the above construction and by Theorem 45, we have the following
results:

Theorem 46 Let P ∧ [(a1 ∪ . . . ∪ an)∗]Γ be a DPDLlim formula. Then the
DPDLlim conjunct Γ∧P is satisfiable if and only if the ALU knowledge base
δ′(Γ), true � ¬δ(P ) is unsatisfiable.

Before concluding the section, we want to observe that the size of the
obtained ALU knowledge base is polynomial in the size of the DPDL formula.
Therefore, from the above construction, satisfiability of DPDL formula can be
polynomially reduced to satisfiability of ALU knowledge base (as well as ALU
concept satisfiability) (and vice-versa).

Notice that, although the correspondence between PDLs and DLs has been
exploited to provide reasoning methods for DLs, it has also lead to a number
of interesting extensions to PDLs in terms of those constructs that are typical
of DLs and have never been considered in PDLs. In particular, there is a tight
relation between qualified number restrictions and graded modalities in modal
logic [144, 145, 61, 64].
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7.3 ALU Encoding of Service Composition

In this section we discuss how to encode in an ALU knowledge base the com-
position problems of Chapter 4 and 5. Note that since the latter is a gener-
alization of the composition problem of the former, we only report the ALU
encoding relative to the framework of Chapter 5. Then, we prove its correct-
ness of such encodings.

7.3.1 Encoding in ALU the Framework of Chapters 4 and 5

Let E0 be an underspecified target service, whose (underspecified) external
schema is a non-deterministic FSM A0 and let C be a community of n services
E1, . . . , En whose external schemas are deterministic FSM A1, . . . , An respec-
tively. Let Σ be the alphabet of actions of C. We build an ALU knowledge
base KΦ as follows.

As set of atomic concepts A we have (i) one concept sj for each state sj of
Aj , j = 0, . . . , n, denoting that Aj is in state sj ; (ii) concepts Fj , j = 0, . . . , n,
denoting that Aj is in a final state; and (iii) concepts movedj , j = 1, . . . , n,
denoting that (component) FSM Aj performed a transition; (iv) one concept
Init to denote the initial situation. As set of atomic roles P in KΦ we have the
actions in Σ (i.e, P = Σ).

The knowledge base KΦ is constituted by the following set of assertions:

• For the external schema A0 = (Σ, S0, s
0
0, δ0, F0) of the target service we

assert:

– s � ¬s′, for all pairs of states s, s′ ∈ S0; these encode the fact that
atomic concepts representing different states are disjoint: specifi-
cally, if A0 is in a state s, it cannot stay in another state s′ (different
from s).

– s �
⊔

s′∈δ0(s,a) ∃a.true � ∀a.s′, for each a such that s′ = δ0(s, a);
these encode transitions which are defined for A0: specifically, if A0

is in state s, there exists at least one a-transition which is defined
from s and all such transitions will make A0 “move” to state s′,
or to state s′′, or to s′′′, etc., for each state s′, s′′, s′′′, . . ., such as
δ0(s, a�) = s′, δ0(s, a�) = s′′, δ0(s, a�) = s′′′, . . .

– s � ∀a.false, for each δ0(s, a); these encode transitions which are
not defined for A0: intuitively, if A0 is in state s, it cannot make
any a-transitions.

– F0 ≡
⊔

s∈F0
s; this highlights final states of A0.

• For the external schema Aj = (Σ, Sj , s
0
j , δj , Fj) of each service in the

community we assert:



7.3. ALU ENCODING OF SERVICE COMPOSITION 149

– s � ¬s′, for all distinct pairs of states s, s′ ∈ Sj .
– s � ∀a.(movedi � s′ � ¬movedi � s), for each s′ = δ0(s, a); these

encode transitions of Aj , conditioned to the fact that Aj “moves”:
specifically, if Aj is in state s, for each a-transition that is defined
from s, either Aj “moves” and goes to state s′, or it does not “move”
and remains in state s′.

– s � ∀a.(¬movedi � s), for each δi(s, a) which is not defined: intu-
itively, if Aj cannot do a, and a is performed, then Aj does not
“move”.

– Fi ≡
⊔

s∈Fi
s; this highlights final states of Ai.

• Finally, to encode the general structure of models, we assert:

– ∃a.true � ∀a.
⊔

i∈[1..n] movedi, for each action a; these encode that
at least one of the community service must move at each step

– F0 � �i∈[1..n] Fi; this says that when the target service is in a final
state also all services in the community must be in a final state.

– Init � s0
0��i∈[1..n] (s0

i ); initially all services are in their initial state.

Note that it is easy to extend such encoding to the situation where for each
action it is specified the role (initiator or servant) each service plays wrt it.

Example 28 Figure 7.1 shows the ALU knowledge base, encoding the com-
position problem of Section 4.3. Because of the correspondence between DPDL
and DLs, a finite model of such ALU knowledge base is exactly the one shown
in Figure 4.7. According to the discussion made in Section 7.2.1, the following
observations can be made between the ALC knowledge base KΦ of Figure 7.1
and the DPDL formula Φ of Section 4.3:

• the set of DPDL atomic propositions coincides with the set of ALU
atomic concepts and the set of DPDL atomic roles coincides with the
ALU atomic roles.

• the operators of negations, conjunction and disjunction on DPDL propo-
sitions correspond to analogous operators on ALU concepts.

• the DPDL modalities [R]· and 〈R〉· correspond in ALU to the universal
quantification ∀R.· and to the existential quantification ∃R.·, respec-
tively, where R is a DPDL atomic action and, equivalently, an ALU
atomic role.

• in Φ we have the master modality [u], representing the reflexive and tran-
sitive closure of the union of actions in the alphabet of the community
(e.g., u = (a∪ t∪ l)∗): in KΦ, it does not appear explicitly. Additionally,
the axioms in KΦ correspond to conjunctions in Φ.
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• the DPDL → symbol corresponds to the ALU subsumption symbol �

Finally, in order to denote the initial situation, in the ALU knowledge
base KΦ we introduce the concept Init, which has no explicit counterpart in
the DPDL formula Φ. Indeed, in Φ we choose to denote the initial situation in
terms of the conditions holding in it (i.e.,

∧
i∈[0..n] s

0
i ): note, however, that we

can as well use the atomic concept Init, in which case the DPDL subformula
would be Init →

∧
i∈[0..n] s

0
i .

7.3.2 Results on Composition Existence and Synthesis in ALU
In this section we prove the correctness of the ALU encoding by showing
that the same results of Chapter 4 and 5 hold. Such results can be proved
in two alternative ways, either by repeating the steps of the corresponding
DPDL based Theorem or Lemma, or by using the results of such Theorems
and Lemmas and exploiting the correspondence between DPDL and DL. In
order to avoid useless repetitions, we follow the second approach.

We start by showing that we can reduce the problem of checking the ex-
istence of a composition to the problem of checking the satisfiability of the
concept Init in the ALU knowledge base constructed as in Section 7.3.1.

Theorem 47 The concept Init is satisfiable in the ALU knowledge base K,
constructed as in Section 7.3.1, if and only if there exists a composition of A0

wrt A1, . . . , An.

Proof. By Theorem 18 (or Theorem 40 there exists a composition of A0 wrt
A1, . . . , An if and only if the DPDL formula Φ constructed in Section 4.3 (resp.
Section 5.3.1) is satisfiable. By Theorem 46 Φ is satisfiable if and only if the
concept Init is satisfiable in the ALU knowledge base built in Section 7.3.1.

From the EXPTIME-completeness of concept satisfiability in ALU and
from Theorem 47 we get the following complexity result.

Theorem 48 Checking the existence of a service composition can be done in
EXPTIME.

The following theorem shows that we can also build a (possibly non-finite)
composition.

Theorem 49 Any model of an ALU knowledge base K, built as in Sec-
tion 7.3.1 is a composition of A0 wrt A1, . . . , An.
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Set C of atomic concepts is: C = {s0
0, s

1
0, s

0
1, s

1
1, s

0
2, s

1
2,F0,F1,F2,moved1,moved2, Init}

Set R of atomic roles is: A = Σ = {a, t, l}

External schema A0 of the target service E0.

t

l

a

l = listen

a = search by author

s1
0s0

0

t = search by title

s0
0 � s1

0

s0
0 � ∃a.true � ∀a.s1

0

s0
0 � ∃t.true � ∀t.s1

0

s0
0 � ∀l.false

s1
0 � ∀a.false

s1
0 � ∀t.false

s1
0 � ∃l.true � ∀l.s0

0

F0 ≡ s0
0

External schema A1 of component service E1.

l

a

s1
1s0

1

s0
1 � s1

1

s0
1 � ∀a.(moved1 � s1

1 � ¬moved1 � s0
1)

s0
1 � ∀t.(¬moved1 � s0

1)
s0
1 � ∀l.(¬moved1 � s0

1)

s1
1 � ∀a.(¬moved1 � s0

1)
s1
1 � ∀t.(¬moved1 � s0

1)
s1
1 � ∀l.(moved1 � s0

1 � ¬moved1 � s1
1)

F1 ≡ s0
1

External schema A2 of component service E2.

l

t
s1
2s0

2

s0
2 � s1

1

s0
2 � ∀a.(¬moved2 � s0

2)
s0
2 � ∀t.(moved2 � s1

2 � ¬moved2 � s0
2)

s0
2 � ∀l.(¬moved2 � s0

2)

s1
2 � ∀a.(¬moved2 � s0

2)
s1
2 � ∀t.(¬moved2 � s0

2)
s1
2 � ∀l.(moved2 � s0

1 � ¬moved2 � s1
2)

F2 ≡ s0
2

Domain independent conditions:

true � ∃a.true � ∀a.moved1 � moved2

true � ∃t.true � ∀a.moved1 � moved2

true � ∃l.true � ∀a.moved1 � moved2

F0 � F1 � F2

Init � s0
0 � s0

1 � s0
2

Figure 7.1: ALU encoding of the composition problem of composition problem
of Chapter 4
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Proof. From Lemma 17 (or Lemma 39) and Theorem 46.

However, we are interested in compositions which are finite state machines,
therefore, we define a Mealy composition starting from a finite model of the
ALU knowledge base, as follows.

Definition 50 (Mealy Composition) Given a finite model If = (ΔIf , ·If ),
we define Mealy composition an MFSM Ac = (Σ, 2[n], Sc, s

0
c , δc, ωc, Fc, ), built

as follows:

• Sc = ΔIf ;

• s0
c = InitIf ;

• s′ = δc(s, a) iff (s, s′) ∈ aIf ;

• I = ωc(s, a) iff (s, s′) ∈ aIf and for all i ∈ I, s′ ∈ moved
If

i and for all
j �∈ I, s′ �∈ moved

If

j ;

• Fc = FIf

0 .

�

By the small model property of ALU , we can prove the existence of a
Mealy composition.

Theorem 51 If there exists a composition of A0 wrt A1, . . . , An then there
exists one that is a Mealy composition of size at most exponential in the size
of A0, A1, . . . , An.

Proof. From Theorems 47 and 46.

Finally, the following theorem says that we can also build a Mealy compo-
sition, starting from a finite model of the ALU knowledge base, and applying
the construction of Definition 50.

Theorem 52 Any finite model of the ALU knowledge base built in Sec-
tion 7.3.1 is a Mealy composition of A0 wrt A1, . . . , An.

Proof. From Theorem 49 and Theorem 46.
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Figure 7.2: The Service Composition Architecture

7.4 The Service Composition Tool ESC

In this section we discuss the prototype tool ESC that we developed to compute
automatic service composition in our framework.

Figure 7.2 shows the high level architecture for ESC. Each service is repre-
sented in terms of both its static interface, through a WSDL document, and its
behavioral description3, which can be expressed in any language that allows to
express a finite state machine (e.g., Web Service Conversation Language [77],
Web Service Transition Language [30], BPEL4WS [4], etc.). We recall that in
our framework the focus is on actions that a service can execute; such actions
can be seen as the abstractions of the effective input/output messages and
operations offered by the service. As an example, Figure 7.3 shows the WSDL
interface of service E0 whose behavior is represented in Figure 7.1.

We start from a repository of services, which implements the commu-
nity of services, and which can be seen, therefore, as an advanced version
of UDDI[142]. The client specifies his target service in terms of a WSDL
document and of its behavioral description, again expressed using one of the
language mentioned before4. Both the services in the repository and the tar-
get service are then abstracted into the corresponding FSM (Abstraction
Module). The Synthesis Engine is the core module of ESC. It takes in
input such FSMs, produces the ALU knowledge base KΦ, (possibly) builds
a model and produces in output the MFSM of the composite service, where

3Note that such behavioral description of services specifies the external schema.
4The behavioral description of both the client specification and the services in the repos-

itory are expressed in the same language.
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<definitions ...

xmlns:y="http://new.thiswebservice.namespace"

targetNamespace="http://new.thiswebservice.namespace">

<!-- Types -->

<types>

<element name="ListOfSong_Type">

<complexType>

<sequence>

<element minOccurs="1"

maxOccurs="unbound"

name="SongTitle"

type="xs:string"/>

</sequence>

</complexType>

</element>

</types>

<!-- Messages -->

<message name="search_by_title_request">

<part name="containedInTitle" type="xs:string"/>

</message>

<message name="search_by_title_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>

</message>

<message name="search_by_author_request">

<part name="authorName" type="xs:string"/>

</message>

<message name="search_by_author_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>

</message>

<message name="listen_request">

<part name="selectedSong" type="xs:string"/>

</message>

<message name="listen_response">

<part name="MP3fileURL" type="xs:string"/>

</message>

<!-- Service and Operations -->

<portType name="MP3CompositeServiceType">

<operation name="search_by_title">

<input message="y:search_by_title_request"/>

<output message="y:search_by_title_response"/>

</operation>

<operation name="search_by_author">

<input message="y:search_by_author_request"/>

<output message="y:search_by_author_response"/>

</operation>

<operation name="listen">

<input message="y:listen_request"/>

<output message="y:listen_response"/>

</operation>

</portType>

</definitions>

Figure 7.3: WSDL specification of service E0 whose external schema A0 is
represented in Figure 7.1.
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Figure 7.4: A screenshot of ESC running on the example of Figure 7.1

each action is annotated with (the identifier of) the component service(s) that
executes it. Finally, such abstract version of the composite service is realized
into a BPEL4WS specification5 (Realization Module), that can be executed
by an orchestration engine, i.e., a software module that suitably coordinates
the execution of the component services participating to the composition [69].

Figure 7.4 shows a screenshot of the execution of ESC over the ALU en-
coding of Figure 7.1.

We tested our tool on several examples, involving communities containing
up to 10 services, each one having roughly 10-20 states: ESC performs quite
nicely, considering that the current release does not implement any relevant
optimization.

7.4.1 The Abstraction Module

The implementation of the Abstraction Module depends on which language
is used to represent the behavioral description of services. In our prototype we
use the Web Service Transition Language (WSTL [30]). WSTL is an XML-
based description language able to represent the exported behavior of services.
It does not address the implementation that actually drives the interactions;
rather, it captures what is observable from the point of view of the client.
Although simple, it enables the modeling of complex behaviors, such as loops

5It represents the internal schema for the target service.
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<?xml version="1.0" encoding="UTF-8"?>
<Conversation name="target">

<Transition source="s00IF" target="s01">
<InputMessage>search_by_author_request</InputMessage>
<OutputMessage>search_by_author_response</OutputMessage>

</Transition>
<Transition source="s00IF" target="s01">

<InputMessage>search_by_title_request</InputMessage>
<OutputMessage>search_by_title_response</OutputMessage>

</Transition>
<Transition source="s01" target="s00IF">

<InputMessage>listen_request</InputMessage>
<OutputMessage>listen_response</OutputMessage>

</Transition>
</Conversation>

Figure 7.5: WSTL specification of FSM A0 shown in Figure 7.1

and exceptions. WSTL integrates well with existing standards, in particular
it is complementary to WSDL since it extends the static interface of WSDL
with elements which describe the correct sequence of the exchanged messages.
An interesting feature of WSTL is that it has a clear and formal semantics
based on finite state transition systems: in particular, the WSTL specification
of a service can be easily obtained from the conceptual specification of the
service behavior, expressed as FSM, by following the methodology presented
in [30]. A detailed description of WSTL goes beyond the scope of this thesis.
However, for sake of completeness we show in Figure 7.5 a WSTL specification
of the target service A0 shown in Figure 7.1.

Here, we will not go over the specification, we only make the following
observations. State s0

0 is both initial and final in A0, therefore in the WSTL
specification we adorn its name with I and F , to denote such information.
Each transition, which connect a source state to a target state, abstractly rep-
resents the input and output messages of an action: InputMessage denotes
the functionality that the client requests to a service and OutputMessage rep-
resents the functionality provided by the service. For example, when the client
invokes the input functionality search by author request, the service “an-
swers” with the output functionality search by author response. Note that
also here we are focusing on functionalities, therefore, we are not concerned on
whether the returned list of songs is empty or it contains at least one element:
in all cases the output functionality that service provides when its client re-
quests to search an mp3 by specifying its author is followed by a request to
provide the functionality to listen to a song (listen request). Note that the
input and output messages of the WSTL file of Figure 7.5 are those listed in
the WSDL file of Figure 7.3.
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7.4.2 Implementation of the Synthesis Engine Module

The various functionalities of the Synthesis Engine are implemented into
three Java sub-modules.

• The FSM2ALU Translator module takes in input the FSMs produced by
the Abstraction Module, and translates them into an ALU knowledge
base, following the encoding presented in Section 7.3.1.

• The ALU Tableau Algorithm module implements the standard
tableau algorithm for ALU (cf., Buchheit et al., 1993 [39]). It takes
in input the ALU knowledge base and checks the satisfiability of the Init
concept, or, equivalently, it verifies if a composition exists. If this is the
case, it returns a model of the knowledge base, which is a finite state
machine. Otherwise, it returns the information about unsatisfiability of
the knowledge base, i.e., the non-existence of a composition.

• The FSM Minimizer module minimizes the model, since it may contain
states which are unreachable or unnecessary. Classical, standard min-
imization techniques can be used, in particular, we implemented the
Implication Chart Method [125]. The minimized FSM is then converted
into a Mealy FSM, where each action is annotated with the service in
the repository that executes it (and possibly with the role the service
participates in).

Since these three modules are in fact independent, they are wrapped into
an additional module, the Composer Module, which also provides the external
interface.

7.4.3 Implementation of the Realization Module

The Realization Module, whose development is currently ongoing, is in
charge of producing an executable BPEL4WS file starting from the automat-
ically synthesized MFSM. In the following, we outline the intuitions that are
driving our design and development (based on results in [10, 24]):

• Transitions are mapped first, thus deriving transition skeletons, then
states are mapped, thus deriving state skeletons, and finally the
BPEL4WS file is obtained, by connecting state skeletons on the basis
of the MFSM; in such a way the obtained BPEL4WS specification has
a structure similar to the one shown in Figure 7.6, i.e., with a <flow>
operation wrapping all the state skeletons, connected among them by
<link>s.
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<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

Transition
Skeletons

State
Skeletons

BPEL4WS
Specification

Skeleton

MSFM

Mapping transitions

Mapping states

Connecting state 
skeletons on the 
basis of the graph

Figure 7.6: Methods for deriving the BPEL4WS file and its structure [10]

• Each transition corresponds to a BPEL4WS pattern (i.e., transition
skeleton) consisting of (i) an <onMessage> operation (in order to wait
for the input from the client of the composite service), (ii) followed by
the invocation to the appropriate component service, and then (iii) a
final operation for returning the result to the client. Of course both be-
fore the component service invocation and before returning the result,
messages should be copied forth and back in appropriate variables.

• All the transitions originating from the same state are collected in a
<pick> operation, having as many <onMessage> clauses as transitions
originating from the state; this is the state skeleton.

• The above steps for transition and state skeletons work for request/reply
interactions; simple modifications are needed for notification/response,
one-way and notification-only interactions, that can imply a proactive
behaviour of the composite service, possibly guarded by <onAlarm>
blocks. Figure 7.7 shows the structure of the skeletons.

• Finally, the BPEL4WS file is built visiting the MFSM in depth, starting
from the initial state and applying the previous rules. Specifically, all the
<pick> blocks are enclosed in a surrounding <flow>; the dependencies
are modeled as <link>s: <link>s are controlled by specific variables
Si-to-Sj that are set to TRUE iff the transition Si → Sj is executed;
each state skeleton has many outgoing <link>s as states connected in
output, each going to the appropriate <pick> block.
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<onMessage ... >

<sequence>

<assign>

<copy>

<from variable="input" ... />

<to variable="transitionData" ... />

</copy>

</assign>

< !-- invocation of the component service -->

<assign>

<copy>

<from variable="transitionData" ... />

<to variable="output" ... />

</copy>

</assign>

<reply ... />

</sequence>

</onMessage>

(a) Transition skeleton

<!-- N transition from state Si -->

<pick name = "Si">

<!-- transition #1 -->

<onMessage ...>

<!-- transition skeleton -->

</onMessage>

...

<!-- transition #N -->

<onMessage ...>

<!-- transition skeleton -->

</onMessage>

</pick>

(b) State skeleton

Figure 7.7: BPEL4WS code skeletons for transitions and states

• The previous step works for acyclic state machines. In the case of a state
machine with cycles, the following intuition can be applied: (i) identify
all the cycles; (ii) for each cycle enclose the involved state skeletons
inside a <while> block controlled by a condition !exit, where exit is
a variable defined ad hoc and it is set to FALSE by any transition that
“goes out” of the cycle; (iii) connect the overall <while> block to other
state skeletons by appropriate <link>s.

There are some interesting special cases: (i) a state S with self-
transitions can be represented as a <pick> block enclosed in a <while>
block controlled by a condition (Vs) (the variable Vs is set to FALSE
by other non self-transitions); (ii) cycles starting from the initial state
should not be considered, as they can be represented as the start of a
new instance of the BPEL4WS process.
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By remarking the fact that the Realization Module is still in the devel-
opment phase, we present in Figure 7.8 the BPEL4WS pseudo code for the
MFSM of the running example.

We foresee the validation of our approach and an engineered implementa-
tion of the tool in the context of the MAIS6 project, which aims at studying
and applying the SOC paradigm to Multichannel Adaptive Information Sys-
tems.

6http://black.elet.polimi.it/mais/index.php
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have defined a formal and comprehensive framework for the
characterization and the theoretical investigation of the problem of service
composition. In particular, the main contribution wrt research on Service
Oriented Computing is in tackling simultaneously the following issues:

• presenting a formal framework where services are characterized in terms
of their behavioral descriptions and the problem of service composition
is precisely defined;

• providing techniques for automatically computing service composition
in the case where the behavioral description of services is expressed as
finite state machines, and providing a computational complexity char-
acterization of the algorithms for automatic composition;

• presenting ESC, an open source prototype tool that implements our tech-
niques for automatically synthesizing a composition.

This thesis constitutes a first step at least towards (i) the achievement of an
agreed upon comprehension of what a service is, from an abstract perspective;
(ii) the definition of a general and common framework that contextualizes
services and service composition, and (iii) a consolidated formal definition of
service composition.

The ultimate goal of Service Oriented Computing is to enable organizations
to seamlessly compose business processes and dynamically integrate them with
the partners processes, exploiting network technology. Thus, the results on
automatic service composition developed in this thesis form a conceptual basis
to define how internal business processes can be dynamically integrated with
those of other organizations in order to create new value-added services.
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8.2 Future Work

The research areas related to services, and in particular, service composition
are quite recent and there are many open problems to study and resolve.
This thesis is among the first ones that tackle the issue of automatic com-
position from an abstract perspective and depict a formal framework for the
characterization of such a problem. The work done in this thesis can be there-
fore taken as a starting point for a deeper investigation of several aspects of
service composition. In what follows, we highlight some possible future di-
rections. Throughout the thesis we already mentioned some of them, such as
(i) allowing the service community to export a partial behavioral description,
and studying the problem of service composition in such a framework (see
Section 5.4); (ii) allowing several instances of a service to be simultaneously
active and possibly interact one with the other (see Section 3.7); (iii) extend-
ing our ESC tool to deal also with client specifications containing τ actions
(see Chapter 7); (iv) dynamic community and on-the-fly re-configuration of
composite services (see Section 3.7); (v) introduce data in such a way that the
problem of service composition is polynomial in the data (see Section 3.3.2);
(vi) extending our framework towards an agent based perspective, by blurring
the distinction between clients and component services (see Section 6.5).

In the next subsection, we discuss additional extensions that we are cur-
rently developing.

8.2.1 Simulation

In this thesis we have solved the problem of service composition (where services
are represented as FSMs) by reducing it to the problem of satisfiability in
PDL/DL. In other words, the algorithm we have provided does not explicitly
show how a composite service is built, since its construction can be seen as a
“side-effect” of the tableau algorithms that check satisfiability. Therefore, it
is interesting to devise techniques to explicitly build the MFSM representing
the composite service. This also allows us to reach a hardness result for the
problem of service composition synthesis, that we conjecture to be EXPTIME-
hard.

Our basic idea is to refer to notions and results in the program synthesis
and verification field, focusing, in particular, to the simulation problem be-
tween two concurrent transition systems. We recall that given two transition
systems S and S′, S simulates S′ (written S � S′) if, intuitively, S′ presents
more behavior than S′, and includes the behavior of S′ (see e.g. [82]). The
simulation problem is defined as, given S and S′, to check whether S � S′.
Thus, it is easy to see [20] that a composition exists if and only if S � S′,
if S is the FSM (external schema of the) target service, and S′ is a “suit-
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ably” built cartesian product of (the FSM external schema of) all component
services. In [82], the authors prove that the simulation problem for concur-
rent transition systems is EXPTIME-complete. In particular, they show the
hardness by providing an explicit construction: given S′ and an alternating
Turing machine T of space complexity s(n), they prove that it is possible to
synthesize, using a logarithmic amount of space, a concurrent transition sys-
tem S of size O(s(n)) such that S � S′ iff T accepts the empty tape. In the
program synthesis and verification field, S′ represents the specification of a
desired program, S represent (a model of) the program that one would like
to build. However, we cannot directly use this results because in our service
framework the target service S is given and S′ should be built!

Currently, we are studying how to solve the opposite problem, i.e., given
S′ how to synthesize S such that S � S′.

8.2.2 FLOWS

FLOWS1 (First-Order Logic Ontology for Web Service [29]) is a proposal
of a language for representing services and in particular their process model
(i.e., their exported behavioral description). It has been developed as part of
SWSL (Semantic Web Services Language)2, which is a working group of the
Semantic Web Service Initiative. The main purpose of FLOWS is to overcome
the limitations intrinsic in OWL-S, which is a description logic based language
with a well defined semantics, but which is not expressive enough to capture
all and only the intended interpretations of the process model. Therefore, in
order to resolve ambiguities, process models expressed in OWL-S need to be
interpreted by a human, thus not achieving completely the Service Oriented
vision, according to which the semantics of a service should be computer-
interpretable. Additionally, FLOWS aims at providing a uniform view of the
various frameworks where services are characterized in terms of their process,
expressed in PDL/DL [31], as automata [40], as Petri Nets [118], in Situation
Calculus [107].

FLOWS is based on the Process Specification Language (PSL [75, 76]),
which is a first order logic ontology explicitly designed for allowing (correct)
interoperability among heterogeneous software applications, that exchange in-
formation as first-order sentences. Recently, PSL has become an International
Standard (ISO 18629). PSL has many interesting features, that make it suit-
able for modeling service behavior. Indeed, PSL can model both “black box”
processes, i.e., activities, and “white box” processes, i.e., complex activities,
and allows for explicit quantification over complex activities. In particular,
the latter aspect, not shared by several other formalisms, makes it possible to

1This is a joint work with Michael Gruninger, Rick Hull and Sheila McIlraith.
2http://www.daml.org/services/swsl/
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express in an explicit manner a broad variety of properties and constraints on
composite activities. PSL is constituted by a (finite) set of first order logic
theories defining concepts (i.e., relations and functions) needed to formally
describe a process and its properties (e.g., temporal constraints, activity oc-
currences, etc.): they are defined starting from primitive ones, whose meaning
is assumed in the ontology. Additionally, it is extensible, in the sense that
other theories can be created in order to define other concepts. The fact that
PSL is based on FOL, on one side equippes it with a well understood model-
theoretic semantics, thus overcoming the OWL-S expressivity problems, but
on the other hand it makes it semi-decidable. However, a solution to this
drawback consists in identifying several decidable subsets of PSL, which can
be exploited in performing automated tasks, such as service composition or
verification.

8.2.3 The COLOMBO Framework

COLOMBO3 is a rich framework for services, that builds on the results pre-
sented in this thesis and extends it essentially with data and message types.
Data may be internal to services or shared by the service community, there-
fore we introduce, respectively, the notions of local store and world schema
to represent them. In general the data contained in the local store is not a
subset of the data in the world schema, since the former may refer to variables
that are internal to the services and therefore are not exported. In addition
to the world schema, a service community is also characterized by a set of
atomic actions that modify the world schema, a finite set of services, and a
set of message types, denoting the alphabet of the community. Each service is
characterized in terms of its behavior expressed as guarded automata, defined
as usual over the alphabet of the community. Differently from the framework
presented in this thesis, each service interacts with the other services in the
community and with the client in terms of messages and actions. Therefore,
the primitive actions it defines are essentially used to send a message (type),
receive a message (type), but also to perform an operation, by specifying in-
put parameters, and to assign some value to a location in the local store. The
transition relation defines the set of successor states given a state, a guard
and a primitive actions. A guard is a FOL formula in the general case, it is a
propositional formula in a restricted, decidable framework. Finally, between
the various services in the community, a set of (bidirectional) channels can
be defined: in general, we envision a queue based communication topology,
where the various queues are not part of the services, but are seen as part of
the community.

3This is a joint work with Giuseppe De Giacomo, Diego Calvanese, Rick Hull, Maurizio
Lenzerini and Massimo Mecella.
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The problem of service composition, in such a framework, aims at build-
ing a new service that realizes a client request, by coordinating the available
services. Several solutions to this problems may be found, depending also on
the formalism used to express the client request.

8.2.4 Modeling the Client

The Service Oriented Computing paradigm aims at supporting the automatic
interoperation and collaboration of available services. Therefore, the work
done in the service literature (including the one reported in this thesis) focus on
such issues. However, most of the services will be exploited and in particular,
automatically composed, so that a human user reaches his goal.

To the best of our knowledge few works in the literature models the client
requests and no work at all models a (human) client and his/her interactions
wrt a service. Instead, it would be very interesting to study how human-
machine interaction models can be applied in the context of services, so that
also the degree of service usability reaches high levels. According to the def-
inition in [55], a user is “whoever is trying to get the job done using the
technology”, i.e., by interacting with a system.





Appendix A

Characterizing Services and
Service Composition in
Situation Calculus

In this chapter we discuss the use of reasoning about actions formalisms, and
in particular of Situation Calculus, for representing services and synthesizing
compositions. Then, we show the use of description logics reasoning proce-
dures for getting effective algorithms and complexity results to perform com-
position synthesis. This approach is alternative and equivalent to the one
presented in Chapter 4.

A.1 Preliminaries on Situation Calculus

In this section, we present the basic notions of the Situation Calculus, that we
will use in the remaining of the chapter. We assume the reader to be familiar
with it and refer him/her to [124] for a more detailed insight.

Situation Calculus is a first-order language (with some second order fea-
tures) for representing dynamic domains. In this formalism, world changes
happen under the effects of named actions. The history of world changes, de-
noted simply by a sequence of actions, is called situation and it is represented
by a first-order term. The initial situation, denoted by the special constant
S0, represents the particular situation in which no actions have occurred yet.
The situations are arranged in a tree based structure called situation tree,
whose root is the initial situation. The distinguished binary function do(a, s)
denotes the successor situation to s resulting from performing the action a. In
general, actions may be parameterized. For example, pickup(x) denotes the
action of picking up an object x and do(pickup(block), s) denotes the situation
resulting from picking up the block in situation s. Propositions whose truth
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values vary from situation to situation are called fluents, and are denoted by
predicate symbols taking a situation term as their last argument. For example,
the fluent holding(x, s) is true when an agent is holding object x in situation
s.

Each action in the domain is specified by providing certain types of axioms.
First, it is necessary to state the conditions that must hold so that exe-

cuting an action is physically possible. These are specified by the the action
precondition axioms, using the special predicate Poss(a, s). For example,

∀s.Poss(pickup(x), s) ≡ ∀y.¬holding(y, s) ∧ clear on top(x, s)

says that the agent can pick up object x if and only if the agent is not holding
any other object and x is clear on top, i.e., no other object is on top of x.

Second, it must be stated how the action affects the world. This is done
by specifying effect axioms, which represent “causal laws” of the application
domain. For example,

clear on top(x, s) ⊃ holding(x, do(pickup(x, s)))

says that picking up an object x causes it to being hold in the hand, provided
that no other object was on top of x. However, effects axioms are not sufficient
to reason about change, since it is necessary also to provide the frame axioms,
stating which fluents remain unchanged by executing the action. Of course, the
number of the frame axioms is very large, in general, it is of the order of 2×A×
F , where A is the number of actions and F is the number of fluents. Therefore,
axiomatizing a domain can be quite complex and theorem proving can become
highly inefficient. This problem is called the frame problem. In [124] a way to
deal with the the frame problem is presented, based on the idea of collecting all
the effect axioms about a given fluent and making a completeness assumption,
i.e., that they specify all and only the ways that the value of the fluent may
change. Thus, performing a syntactic transformation, one obtains a successor
state axiom for the fluent:

holding(x, do(a, s)) ≡ (a = pickup(x) ∧ clear on top(x, s))∨
(holding(x) ∧ a �= drop(x))

This says that an agent holds object x in situation s if and only if x is clear on
top and the agent makes the action of picking x up, or the agent was already
holding x and did not drop it. Note that this approach yields a solution to the
frame problem, i.e., a parsimonious representation for the effects of action.

Within this language, we can formulate domain theories that describe how
the world changes as the result of the available actions. One possibility are
Reiter’s Basic Action Theories, which have the following form [124]:
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• Axioms describing the initial situation, S0.

• Action precondition axioms, one for each primitive action a. They have
the form ∀s.Poss(a, s) ≡ Ψa(s), where Ψa(s) is a Situation Calculus
formula (uniform in s) with s as the only free variable and in which
Poss does not appear.

• Successor-state axioms, one for each fluent F . They have the form
∀a, s.F (do(a, s)) ≡ ΦF (a, s), where ΦF (a, s) is a Situation Calculus for-
mula (uniform in s) with a and s as the only free variables.

• Unique names axioms for the primitive actions plus some foundational,
domain independent axioms.

A.2 Service Composition in Situation Calculus

In Chapter 3 we have characterized service behavior and composition in gen-
eral terms by means of execution trees. This abstract view needs to be refined
in order to get a finite representation of services that can be concretely ma-
nipulated.1 In Chapter 4 we addressed services whose execution trees (both
external and internal) have a finite representation as finite state machines.
Here, we also deal with services whose execution trees have a compact rep-
resentation, and we propose an alternative but equivalent approach based on
formalisms developed for Reasoning about Actions to represent services. This
allows us to use logical reasoning, in particular, satisfiability, to characterize
the problem of service composition, in an analogous way as done in Section 4.3.
There are many possible action languages that can be used for representing
services (including some tightly related to DL [53, 103]). Here we focus on Re-
iter’s Situation Calculus Basic Action Theories [124], which are widely known
and allow us to concentrate on the aspects specific to our problem. Since we
aim at actually computing the compositions we will deal with the proposi-
tional variant of the Situation Calculus (in which fluents are propositions).
As in Section 4.3 we also assume that for each service there is only a fixed
finite number of active instances, and, in fact, wlog, we assume that there is
only one, so that we can omit the term “instance” when referring to a service.
Within this setting, in the next section, we show how to solve the composi-
tion problem. Instead, how to deal with an unbounded number of instances
remains open for future work.

In order to characterize composition in this setting, we first show how a
Basic Action Theory can represent the external execution tree of a service.
We represent the external schema of a service E as a Basic Action Theory

1Obviously, not all execution trees can be represented in a finite way.
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Γ, where each action is represented by a Situation Calculus action. The set
of fluents of Γ is constituted by (i) a special fluent Final, denoting that the
service execution can stop in that situation; and (ii) one fluent Fa for each
action a, with the following meaning: Fa is true in situation s if and only if
it is possible to execute a in s. Also, Γ fully specifies the value of each fluent
in the initial situation S0. Technically, this means that we have complete
information on the initial situation, and, because of the action precondition
and successor-state axioms, we have complete information in every situation.

Observe that the fluents used in Γ have a meaning only wrt to the ser-
vice community, since they are not attached in any way to the actual service
instance the client interacts with. In contrast, actions represent interactions
meaningful both to the client and the service instance.

Intuitively, the part of the situation tree [124] formed only by the actions
that are possible (as specified by Poss) directly corresponds to the external
execution tree of the service, where the final nodes are the situations in which
Final is true. To formally define such an execution tree, we first inductively
define a function n(·) from situations to sequences of actions union a special
value undef :

• n(S0) = ε;

• n(do(a, s)) = n(s) · a if n(s) �= undef and Poss(a, s) holds;

• n(do(a, s)) = undef otherwise.

The execution tree T (Γ) generated by Γ is defined over the set of nodes
{n(s) | n(s) �= undef }, such that a node n(s) is final if and only if Final(s)
holds. It is easy to check that T (Γ) is indeed an execution tree. Note also that
from such correspondence, also the part of the situation tree formed only by
the actions that are possible is finitely representable.

Next, we turn to the problem of characterizing service composition. Let
Γ1, . . . ,Γn, be the theories for the component services E1, . . . , En, respectively,
and let Γ0 be the theory for the target service. The basic idea is to represent
which services are executed when an action of the target service is performed.
We do this by means of special predicates Stepi(a, s), denoting that service Ei

executes action a in situation s. Formally, we construct a Situation Calculus
theory ΓC formed by the union of the axioms below:

• Γ0;

• Γ′
i, for i = 1, . . . , n, where Γ′

i is obtained from Γi:

1. by renaming each fluent F , including Final , to Fi;

2. by renaming Poss to Poss i;
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3. by modifying the successor-state axioms as follows:
∀a, s.Fi(do(a, s)) ≡ (Stepi(a, s)∧ΦFi(a, s))∨ (¬Stepi(a, s)∧Fi(s));

• ∀a, s.(Poss(a, s) ∧ ¬Final(s)) ⊃
∨n

i=1 Stepi(a, s) ∧ Poss i(a, s);

• ∀s.Final(s) ⊃
∧n

i=1 Final i(s).

Observe that, because of the last two axioms, which encode domain inde-
pendent conditions, the resulting theory ΓC is not a Basic Action Theory. In
ΓC , we do not have anymore complete knowledge on the value of the fluents
of the various services. This is due to the new form of the successor-state ax-
ioms, which make fluents depend on the predicates Stepi, whose value is not
determined uniquely by ΓC . Note however that if we did know such values in
every situation, then the value of all the fluents would be determined. Note
also that the value of Stepi is constrained by the last two axioms so that, in
every situation that is not final for the target service E0, at least one of the
component services steps forward. Finally, the last axiom states that, if E0 is
final, then so are all component services.

It can be shown that ΓC (i) characterizes all the internal execution trees
that conform to the external execution tree T (Γ0) generated by Γ0; (ii) del-
egates all actions to E1, . . . , En; (iii) is coherent with E1, . . . , En. More pre-
cisely it can be shown that from each model of ΓC one can construct one such
internal execution tree and that on the other hand starting from each such
internal execution tree one can construct a model of ΓC .

This characterization allow us to reduce checking for the existence of a
composition to checking satisfiability of a propositional Situation Calculus
theory.

Theorem 53 Let Γ0, Γ1, . . . ,Γn be the Basic Action Theories representing the
services E0, E1, . . . , En respectively, and let ΓC be the theory defined as above.
Then, ΓC is satisfiable if and only if E0 can be composed using E1, . . . , En.

Proof. Let T (Γ0), T (Γ1), . . . , T (Γn) be the execution trees generated by
Γ0, Γ1, . . . ,Γn, respectively.

“⇐” If E0 can be composed using E1, . . . , En, then by Definition 10 there
exists an internal schema E0

int of E0 such that (i) T (E0
int) conforms to T (Γ0),

(ii) T (E0
int) delegates all actions to E1, . . . , En, and (iii) T (E0

int) is coherent
with E1, . . . , En.

From T (E0
int) and T (Γ0) we can obtain a model M of ΓC as follows.

First, from T (Γ0) it is straightforward to build a model M0 of Γ0 (it suffices
to use the function n(·) from situations to sequences of actions 2 defined above).

2Each node x of an execution tree is characterized by the sequence of actions (see Sec-
tion 3.3.1) leading to x.
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Figure A.1: External execution tree of service E0

From T (E0
int), we can then extend M0 to a model M′

0 by adding the truth-
value of Stepi(a, s) for every component service Ei, every action a, and every
situation s. The truth-value of Stepi(a, s) is defined by the elements (ei, Ei) of
the set I(a,n(s)) that labels action a at node n(s) of T (E0

int) with the instance ei

of service Ei executing a (Definition 3): if Ei ∈ π1(I(a,n(s))) (where π1(·) is the
projection over the first component) i.e., there exists a pair in I(a,n(s)) where
Ei is the first component, then Stepi(a, s) = true in situation s. Now consider
that Poss i and all fluents Fi, including Final i, are completely determined once
each Stepi is determined, due to the form of precondition and successor-state
axioms, respectively. This means that we can further extend M′

0 to a model
M of Γ′

1, . . . ,Γ
′
n. Moreover, by construction of T (E0

int), such a model M
satisfies the last two axioms of ΓC , and hence the whole ΓC .

“⇒” Let M be a model of ΓC . Note that ΓC is an extension of Γ0, hence
the execution tree generated by ΓC is T (Γ0). Now, by using the truth values of
Stepi(a, s) for every component service Ei, every action a, and every situation
s, one can construct the internal execution tree T (E0

int) of E0. Due to the
constraints posed to the interpretation of Step1, . . . ,Stepn by the theory ΓC ,
T (E0

int) is indeed a composition.

Example 29 Consider the scenario of Examples 4 and 5, which we report here
for sake of readability. Service E0 allows for searching and listening to mp3
files. In particular, the client may choose to search for a song by specifying ei-
ther its author(s) or its title (action search by author and search by title,
respectively). Then the client selects and listens to a song (action listen).
Finally, the client chooses whether to perform those actions again. Figure A.1
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(l, E2, e2)
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Figure A.2: Internal Execution tree of service E0

shows the external execution tree of E0. The community of services E0 be-
longs to is constituted by two services, E1 and E2: E1 iteratively allows to (i)
search by author an mp3 file and to (ii) listen to it; E2 iteratively allows
to (i) search by title an mp3 file and to (ii) listen to it. E0 delegates its
actions to E1 and E2: this is shown in Figure A.2, which represents the inter-
nal execution tree of E0. In other words, if the external execution tree of E0

is considered as the target service, and the service community is constituted
by E1 and E2, it is easy to verify that there exists an internal schema for E0

which is a composition of E1 and E2. This can be checked by representing E0,
E1, and E2 as Situation Calculus theories Γ0, Γ1, Γ2, construct from them ΓC ,
and check its satisfiability. In what follows, given the simplicity of the running
example, we discuss a simplified encoding, where there is only the fluent Final.
We leave as an exercise to the reader the extension of the provided encoding
to the general case. In the encoding we denote action search by author by
a, action search by title by t, action listen by l.

The Action Theory ΓC for the running example is constituted by the union
of the the following axioms:

• Basic Action Theory Γ0 describing the target service:

∀s.Poss(a, s) ≡ Final(s)
∀s.Poss(t, s) ≡ Final(s)
∀s.Poss(l, s) ≡ ¬Final(s)

∀α, s.Final(do(α, s)) ≡ (α = r ∧ ¬Final(s))∨
(Final(s) ∧ α �= a ∧ α �= t)
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Note that actually, from the execution tree in Figure A.1, it is possible
to execute action a and t only from final nodes, while action l can be
executed from non-final nodes.

• Action Theory Γ′
1 describing the service E1:

∀s.Poss1(a, s) ≡ Final1(s)
∀s.Poss1(t, s) ≡ false
∀s.Poss1(l, s) ≡ ¬Final1(s)

∀α, s.Final1(do(α, s)) ≡ (Step1(α, s) ∧ α = r ∧ ¬Final1(s))∨
(¬Step1(α, s) ∧ Final1(s) ∧ α �= a)

The second axiom states that E1 cannot execute action t, as it is.

• Action Theory Γ′
2 describing the service E2 is analogous to Γ′

1:

∀s.Poss2(a, s) ≡ false
∀s.Poss2(t, s) ≡ Final2(s)
∀s.Poss2(l, s) ≡ ¬Final2(s)

∀α, s.Final2(do(α, s)) ≡ (Step2(α, s) ∧ α = r ∧ ¬Final2(s))∨
(¬Step2(α, s) ∧ Final2(s) ∧ α �= a)

• Domain independent conditions:

∀a, s.(Poss(a, s) ∧ ¬Final(s)) ⊃ Step1(a, s) ∧ Poss1(a, s)∨
Step2(a, s) ∧ Poss2(a, s)

∀sperFinal(s) ⊃ Final1(s) ∧ Final2(s)

• Axiom describing the initial situation:

Final(S0)

Satisfiability of ΓC can be checked using standard techniques.

A.3 Computing Service Composition

Next we turn to the problem of actually synthesizing a composite service. To
do so, we resort to description logics and we re-express Situation Calculus Ac-
tion Theories as an ALU [8] knowledge base. We refer the reader to Section 7.2
for an introduction to description logics and ALU .
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We define a mapping δ from (uniform) Situation Calculus formulas (wlog in
negation normal form) with a free situation variable s to boolean combination
of concepts as follows:

δ(F (s)) = F, for each fluent F

δ(Poss(a, s)) = Poss a, (similarly for Poss i(a, s))
δ(Stepi(a, s)) = Step ai, for each i ∈ 1..n

δ(¬ϕ(s)) = ¬δ(ϕ(s)) (ϕ is an atomic proposition)
δ(ϕ1(s) ∧ ϕ2(s)) = δ(ϕ1(s)) � δ(ϕ2(s))
δ(ϕ1(s) ∨ ϕ2(s)) = δ(ϕ1(s)) � δ(ϕ2(s))

Also, we consider an ALU role for each atomic action in Σ.
Next, we define the ALU counterpart ΔC of ΓC as the following knowledge

base.

• to model the situation tree, we add the assertion � � �a∈Σ ∃a.�, and
implicitly take into account the tree model property and the unique
successor property;

• to model the initial situation Φ0, we add the assertion Init � δ(Φ0),
where Init is a new atomic concept denoting the initial situation;

• for each precondition axiom ∀s.Poss(a, s) ≡ Ψa(s), we add the assertion
δ(Poss(a, s)) ≡ δ(Ψa(s)); similarly for the modified precondition axioms
in Γ′

1, . . . ,Γ
′
n;

• for each successor-state axiom ∀a, s.F (do(a, s)) ≡ ΦF (a, s), we first in-
stantiate the axiom for each action in Σ and we simplify the equal-
ities on actions. Then, for each instantiated successor-state axiom
F (do(ā, s)) ≡ Φā

F (s) – where Φā
F (s) is what we obtain from ΦF (a, s)

once we instantiate it on the action ā and resolve the equalities on ac-
tions – we add the assertion ∀ā.F ≡ δ(Φā

F (s));

• for the last two axioms of ΓC , we add the assertions Poss a ∧ ¬Final �⊔n
i=1 Step ai � Poss ai and Final � �n

i=1 Final i.

Note that, in the above construction, it is necessary to instantiate the
successor-state axioms for each action, since, contrary to the Situation Cal-
culus, ALU does not admit quantification over actions. From the above con-
struction we get the following theorem.

Theorem 54 The Init concept is satisfiable in the ALU-counterpart ΔC of
ΓC if and only if ΓC is satisfiable.
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Observe that the size of ΔC is at most equal to the size of ΓC times
the number of actions in Σ. Hence, from the EXPTIME-completeness of
concept satisfiability in ALU knowledge bases and from Theorem 54 we get
the following complexity result.

Theorem 55 Checking the existence of a service composition can be done in
EXPTIME.

Observe that, because of the small model property and the single successor
property of Description Logics, if Init is satisfiable in ΔC one can always obtain
a model which is single successor and of size at most exponential. From such
a model one can immediately extract a finite (possibly exponential) represen-
tation of the internal execution tree constituting the composition. Also from
such a representation one can build a Situation Calculus Basic Action Theory
(or its counterpart in ALU if needed) that generates exactly such a internal
execution tree.

The results obtained in this section are perfectly compatible with the re-
sults in Section 7.2.

As already discussed in Chapter 7, from a practical point of view, one can
use current highly optimized Description Logic systems [8, 78] to check the
existence of service compositions. Since these systems are based on tableaux
techniques that construct a model when checking for satisfiability, one can,
with minor modifications, also return such a model, which correspond to the
internal execution tree constituting the composition.

A.4 Discussion

In this chapter we have studied an alternative way to check composition ex-
istence of services resorting to a Propositional Situation Calculus setting, a
well-known formalism for reasoning about actions. In such a setting we have
given a characterization of the problem of finding a composition in terms of
satisfiability of a certain action theory. Finally, resorting to a translation of
such a Situation Calculus theory in a Description Logic we have shown that
such a problem is EXPTIME, and that current tableaux based DL-reasoning
procedures can be used to actually obtain the composition.

We want to observe that what our Propositional Situation Calculus setting
can capture is essentially a description of services given in terms of finite state
machines (compactly represented by resorting on propositional fluents). This
is a particularly interesting class of descriptions since it is one of the classes
most commonly used to describe services in the literature [110, 40, 30].

Note that our definition of service composition does not require execution
trees to be finite branching (i.e. to have only a finite set of possible interac-
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tions), but also allows for infinite branching execution trees. This opens up
the possibility of having parameterized actions, whose parameters are arbi-
trary terms. To capture services and service composition in this case, one has
to resort to the full (non-propositional) Situation Calculus. Observe that the
logical theories that represent execution trees need to be complete (we have
complete information on such trees) and that particular care must be taken in
order to have terms denoting each action (i.e., one needs some form of infinite
domain closure, expressible only in second-order logic). Naturally, in general,
decidability of composition is lost in this case, and it becomes of interest to
understand for which theories decidability is preserved.

In this chapter we have made use of Situation Calculus, especially because
it is one of the best known formalism for reasoning about actions. However,
the basic ideas of this paper may be easily exported to other reasoning about
actions formalisms. Of particular interest is looking at service compositions,
as defined here, in the framework proposed by [108, 107]. That is each com-
posite service, is represented by a Golog/conGolog program (which indeed
defines an execution tree, although possibly nondeterministic). Observe that
one of the main differences between our approach and that in [108, 107] is
that in our approach the client’s needs are themselves expressed by a service,
while in [108, 107] they are expressed as customization conditions on desired
composite services.
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[119] B. Orriëns, J. Yang, and M.P. Papazoglou, ServiceCom: A Tool for Ser-
vice Composition Reuse and Specialization, Proceedings of the 4th In-
ternational Conference on Web Information Systems Engineering (WISE
2003), IEEE Computer Society, 2003, pp. 355–358.
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