
Università degli Studi di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica

XVII Ciclo – 2004

Declarative constraint modelling

and specification-level reasoning

Toni Mancini
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Abstract

Declarative problem modelling is becoming the new challenge for constraint program-
ming. However, in current systems, the efficiency of computation may be strongly
affected in several ways. First of all, different but equivalent models for the same
problem do, in general, exist, and choosing one of them can make the difference.
Secondly, the role played by the search strategy to be followed when traversing the
search space is fundamental. Nowadays, it is the user that chooses, based on his/her
experience, the best model for a problem, and the most appropriate search strategy
to solve it.

On the other hand, different techniques have been proposed in order to improve
the efficiency of computation, e.g., symmetry breaking, abstraction, addition of useful
implied constraints, etc. However, many of these techniques apply, to the best of our
knowledge, after the commitment to the instance, and very little work has been done
at the symbolic level of the problem specification.

Moreover, many languages for constraint programming actually exhibit a clear
separation between problem specifications and instances, and many properties of con-
straint problems that are amenable to be optimized rely on the problem structure,
not on the particular instance considered. Hence, it becomes clear how the detection
of these properties at the instance level, when the problem structure has been almost
completely hidden, may easily become unconvenient.

In this thesis we discuss how problem specifications can be regarded as logical for-
mulae, and how different forms of reasoning can be performed, in order to reformulate
them with the goal of improving the efficiency of the solving process. We deal with
different forms of reasoning on problem specifications, highlighting those constraints
that can be safely ignored in a first stage, and then efficiently reinforced, detecting and
breaking symmetries, detecting and exploiting functional dependencies, and recogniz-
ing specifications that can take advantage of Knowledge Compilation. Moreover, we
show how these forms of reasoning can be practically made by computer, by exploit-
ing current ATP technology. Experimental results show how reasoning on problem
specifications can significantly improve performances when using different classes of
solvers.

The second topic covered in this thesis is the design of highly declarative languages
for constraint modelling, suitable also in industrial environments. In particular, we
propose NP-Alg and ConSql, obtained as extensions of relational algebra and sql,
respectively. The main motivation under the proposal of such languages is that, in
commercially available packages for constraint programming, there is no true inte-
gration between the data definition and the constraint modelling and programming
languages, with the main disadvantage of providing poor levels of data integrity. Pro-
posed languages, instead, can be actually considered as second-order query languages
for relational databases, providing strong integration between constraint modelling
and programming and up-to-date technology for storing and querying data. We be-
lieve that this feature can allow a wider diffusion of the declarative constraint mod-
elling paradigm in industrial environments, permitting a very strong integration with
the information system of the enterprise.
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Chapter 1

Introduction

The paradigm of declarative programming is becoming very attractive for solving dif-
ferent classes of problems. In particular, Constraint Programming (CP) has emerged
as a winning approach for, among the others, combinatorial, scheduling, planning,
and resource allocation problems, since the high declarativeness of problem specifi-
cations may coexist with the increasing efficiency of state-of-the-art solvers. To this
end, a constraint problem specification may definitively be viewed as a program, that
is given in a highly declarative language, and in which users state what conditions a
solution must satisfy, rather than how it can be computed. Ideally, this second issue
is left to the system.

The CP paradigm has shown great advantages over “traditional” (i.e., imperative)
programming: problem specifications can be highly declarative, by describing the
problem in terms of a search space and a set of conditions a generic element of it has
to satisfy to be a solution of the problem. Moreover, CP programs are usually much
shorter, readable and reusable than traditional ones. Finally, they present advantages
also with respect to other declarative paradigms, since several techniques have been
developed with the aim of increasing their efficiency (e.g., constraint propagation,
local consistency notions, etc.)

Even if CP can be actually considered only as a fruitful application of already
well known techniques, the novel element was the appearing (in the ‘70s and ‘80s)
of several new languages, having built-in constraint primitives. Very well known
languages and systems for CP are, e.g., Prolog II (35), Prolog III (36), CLP(R)
(76), CHIP (89), BNR-Prolog (103), Lλ (97), etc. Most of them rely on the
subclass of CP called Constraint logic programming (CLP), since they were derived
from logic programming languages as Prolog (cf. (75) for a survey).

Nowadays, CP is becoming a very promising approach also in industrial applica-
tions, since the maturity of the field and the developed techniques allow to deal with
problem instances of larger size. ampl (57), opl (124), Gams (27) and Xpressmp1,
are examples of commercial packages and libraries for programming with constraints.
Academic interests are now also directed into the realization of deductive systems
whose semantics is based on non-monotonic formalisms. Significant proposals in this
context are the systems dlv (85), Smodels (118) and the language ps (47).

1cf. http://www.dashoptimization.com.
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instance

Solving solution

spec

Instantiation

Figure 1.1: Two-level architecture for the solution of combinatorial problems

State-of-the-art specification languages have been realized by extending the CP
methodology essentially in two ways:

1. By adding more linguistic constructors to specify the problem, e.g., by con-
sidering the possibility of expressing various form of quantification, or the so
called “higher-order constraints”, in which arbitrary relations can be part of
the expressions (as e.g., in opl), and by allowing a neat separation between the
problem specification and the instance, thus allowing for reusable, maintainable
and extendible specifications not dependent on particular input data;

2. By adding a real “programming” component (in the sense of the traditional
programming languages), by means of which it is possible to generate, combine,
and elaborate constraints.

As subsequent sections will show, in thesis we focus on the first point, providing lan-
guages for high level declarative modelling of combinatorial and constraint problems,
and techniques that allow such models to be more efficiently evaluable.

1.1 Declarative modelling languages for combinato-

rial problems

Even if the CP paradigm naturally yields a certain degree of declarativeness in prob-
lem specifications, current CP systems often rely on additional information provided
by the user (heuristics, choice of the algorithm, etc.) to improve their efficiency.
This leads to a lowering of the degree of declarativeness. Moreover, in some existent
systems, the problem specification is mixed with the input instance, resulting in a
specification that is less readable, reusable, maintainable, and extendable.

To this end, a current promising approach is to provide languages with a clean sep-
aration between problem specification and input instance (e.g., ampl, opl, Xpressmp,
esra (55), EaCL (122), NP-Spec (15), NP-Alg and ConSql, cf. Chapter 8). User
provides the generic definition of the problem, and an instance of it separately. In this
way, new instances of the same problem can be solved without modifications to the
specification. The general architecture these systems rely on is depicted in Figure 1.1:
the specification is firstly instantiated against the instance, and only then a particular
solver is invoked.
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The major benefit of separation between specification and instance is the decou-
pling of the solver from the specification. Ideally, the programmer can focus only on
the specification of the problem, without committing a priori to a specific solver. In
fact, some systems are able to translate –at the request of the user– a specification
in various formats, suitable for different solvers. Probably the best known of such
systems is ampl, which offers an interface for the specification (also called model) of
a Mathematical Programming problem, each instance of which can be, at the request
of the user, translated and solved by one of several solvers for integer and/or linear
programming, among them Cplex (72), Lancelot2, Minos3, and many others.4

Some systems go one step further, and offer a limited form of reasoning on the
specification, with the goal of choosing the most appropriate solver for a problem. As
an example, the opl system checks whether a specification contains only linear con-
straints and objective function, and in this case invokes an integer linear programming
solver (typically very efficient); otherwise, it uses a constraint programming solver.

With these languages, much emphasis is given to the qualities of problem spec-
ifications viewed as software artifacts. Readability, extendability, maintainability,
verifiability and reusability are viewed as key issues like correctness and efficiency.
Declarative problem modelling is thus coming up as the next goal for CP systems (cf.,
e.g., (58)), by attempting to provide languages in which the search space specifica-
tion and the constraints are evidently distinguished and highly-level modelled, and
no procedural aspect is included.

However, in state-of-the-art systems, the efficiency of computation can be highly
affected in several ways. First of all, different but equivalent formulations for the
same problem do, in general, exist, and choosing one of them can make the difference.
To this end, many techniques and several approaches have been proposed in order to
modify a given constraint problem into an equivalent form, with the goal of reducing
the solving time. Such techniques include, e.g., the addition of new constraints, e.g.,
symmetry-breaking or implied constraints, in order to reduce the size of the search
space, or the opposite strategy of deleting (abstracting) some constraints in order to
obtain a simplified problem whose solutions can be used to compute, in an efficient way
(in some cases without further search), valid solutions of the original one. All of the
approaches listed above lead to different and widely independent (even if correlated)
research fields.

The second point that can greatly affect the efficiency of the solving engine is
the choice of the search strategy to be applied, and the heuristic to be used to order
variables and domain values during branches. Many systems actually require that
the user defines a search strategy for the problem at hand, thus greatly loosing in
declarativeness. However some of them, e.g., opl, even if allow the specification of
a search strategy, do not require it, thus allowing the user to focus only on the com-
binatorial aspects of the problem. Nonetheless, even if the default search strategy
performs quite well in many cases, there are situations where a smart reasoning on
the problem specification permits to infer much better strategies. A good example
is given by specifications where functional dependencies among variables exist, either
because of a precise modelling choice (e.g., in order to increase modularity, readabil-

2cf. http://www.cse.clrc.ac.uk/nag/lancelot/lancelot.shtml.
3cf. http://www.sbsi-sol-optimize.com/.
4cf. http://www.ampl.com.
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ity, or other qualities of the specification), or because of intrinsic properties of the
modelled problem. If some of the variables are recognized to be dependent on the
others, the declarative constraint program provided by the user can be transformed
by synthesizing a search strategy that exploits such dependencies, e.g., by avoiding
branches on those variables (cf. Section 5.4).

Although much research has been done on these aspects, all techniques proposed
in the literature in order to optimize the solving process either apply at the instance
level, or are reformulations of a specific constraint problem, obtained as the output
of a true design process: it is the designer that chooses, based on his/her experience,
the best formulation for a problem for the particular solver used.

On the other hand, our research aims to a more ambitious long-term goal: the au-
tomated reformulation of a purely declarative constraint problem specification, into a
form that is more efficiently evaluable for the solver at hand. In particular, in this the-
sis make a first step towards this direction, investigating the problem of reformulating
declarative specifications in several and complementary directions.

A second important question that arises when dealing with highly declarative
languages, is what is the class of problems that can be formulated with them. In
general, a formal characterization of the computational properties of specification
languages is indeed very useful both when designing new ones, and when choosing
a particular one for the class of problems to be solved. Unfortunately, many of the
available CP languages don’t have a formal characterization of their computational
properties (e.g., opl). In Chapter 8 we propose NP-Alg, a modelling language based
on relational algebra, and provide a formal analysis of its computational properties,
showing what is its expressive power, as well as its data and combined complexity.

1.2 Existential second order logic as an abstract

modelling language

The style used for the specification of a combinatorial problem varies a lot among
different languages for constraint programming. As already claimed in Chapter 1, in
this thesis, rather than considering procedural encodings such as those obtained using
libraries (in, e.g., C++ or prolog), we focus on highly declarative languages.

Again, the syntax varies a lot among such languages: ampl, opl, Xpressmp, esra
and gams allow the representation of constraints by using algebraic expressions, while
dlv, smodels, and np-spec are rule-based languages, more specifically extensions of
datalog. Anyway, from an abstract point of view, all such languages are extensions
of existential second-order logic (ESO) over finite databases, where the existential
second-order quantifiers and the first-order formula represent, respectively, the guess
and check phases of the constraint modelling paradigm. In particular, even if all
such languages have a richer syntax and more complex constructs, in all of them
it is possible to embed ESO queries, and the other way around is also possible, as
long as only finite domains are considered. Hence, as we show in the remainder of
this section, ESO can be considered as the formal basis for virtually all available
languages for constraint modelling, being able to represent all search problems in
the complexity class NP (51; 105). Intuitively, the relationship between ESO and
available modelling languages is similar to that holding between Turing machines or
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assembler, and high-level programming languages.
To this end, in this thesis we use ESO logic to model specifications, for at least

two reasons:

1. We believe that studying the simplified scenario is a mandatory starting point
for our investigations, because of the simplicity of the model;

2. We believe that our results can serve as a basis for reformulating specifications
written in richer languages, thus greatly improving interoperability. To this
end, in the following sections we show how our techniques can be applied to
specifications given in high-level languages, e.g., ampl and opl, and prove their
effectiveness by experimental results using state-of-the-art solvers.

Moreover, we point out that a logic-based approach has also been successfully adopted
in the ‘80s to study the query optimization problem for relational databases. Analo-
gously to our approach, the query optimization problem has been studied in a formal
way using first-order logic (cf., e.g., (3; 30; 111; 80)). In a later stage, the theoreti-
cal framework has been translated into rules for the automated rewriting of queries
expressed in languages and systems used in real world.

Formally, an ESO formula ψ is of the form:

∃~S φ(~S, ~R), (1.1)

where ~R denotes a fixed set of relational symbols not including equality “=”, ~S =
{S1, . . . , Sh} denote variables ranging over relational symbols (of various arities) dis-

tinct from those in ~R ∪ {=}, and φ is a function-free first-order formula containing

occurrences of relational symbols from ~R ∪ ~S ∪ {=}. The symbol “=” is always in-
terpreted as identity.

By Fagin’s theorem (51; 105), any collection D of finite databases over ~R is recog-
nizable in NP time if and only if it is defined by an ESO formula of the kind (1.1). A
database D is in D if and only if there exists a list of relations Σ1, . . . ,Σh (matching
the list of relational variables S1, . . . , Sh) that, along with D, satisfies formula (1.1),
i.e., such that

(D,Σ1, . . . ,Σh) |= φ.

The tuples of Σ1, . . . ,Σh must take elements from the Herbrand universe of D,
i.e., the set of constant symbols occurring in it, plus those occurring in φ.

Being capable to express all problems in NP, ESO can be definitively considered as
an abstract modelling language for constraint problems. In particular, an ESO
specification describing a search problem π is a formula ψπ of the kind (1.1), where
~R is the relational schema for every input instance.

Coherently with all state-of-the-art systems, an instance I to problem π is given as
a relational database over the schema ~R, i.e., as an extension for all relations in ~R. All
constants appearing in the database are uninterpreted, i.e., they don’t have a specific
meaning. Existentially quantified predicates, i.e., those in the set ~S = {S1, . . . , Sn}
(of given arities) are called guessed, and their possible extensions (with tuples with
components in the Herbrand universe) encode points in the search space for problem



6 CHAPTER 1. INTRODUCTION

int+ n_nodes = ...;

int+ n_colors = ...;

range nodes 1..n_nodes;

range colors 1..n_colors;

struct edge {

nodes start;

nodes end;

};

{edge} edges = ...;

var colors coloring[nodes];

solve {

forall (e in edges : e.start <> e.end) {

(coloring[e.start] <> coloring[e.end]);

};

};

Figure 1.2: opl specification for the Graph k-coloring problem.

π. Formula ψπ correctly encodes problem π if, for every input instance I, a bijective
mapping exists between solutions to π(I) and extensions of predicates in ~S that verify

φ(~S, I):

For each instance I: Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ(~S, I).

In other words, solutions for problem π on input instance I are those extensions for
guessed predicates in ~S with components in the Herbrand domain that make φ(~S, I)
true.

It is worthwhile to note that, when a specification is instantiated against an input
database, a CSP in the sense of (44) is obtained.

Example 1.2.1 (Graph k-coloring (62, Prob. GT4, p. 191)). Given an
undirected graph and a positive integer k as input, this problem amounts to decide
whether it is possible to give each of its nodes one out of k colors, in such a way that
adjacent nodes (not including self-loops) are never colored the same way. The problem
is well-known to be NP-complete for any k ≥ 3.

Figure 1.2 shows an opl encoding of this problem. An input instance is given by
providing the number of nodes, the number of colors, and an extension for relation
edge which encodes the edges of the input graph. A solution to this problem is an ex-
tension for the coloring[] array (denoted with the keyword var) such that every edge
(not including self-loops) links nodes with different colors ( good coloring constraint).

The same problem can be specified in ESO by, e.g., the following formula over re-
lations node(·), edge(·, ·), and color (·), listing the graph nodes, edges and the available
colors, respectively. In particular, relation color(·) will have exactly k tuples. We also
assume that node(·) and color (·) have no tuples in common.
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param n nodes;
param n colors integer, > 0;
set NODES := 1..n nodes;
set EDGES within NODES cross NODES;
set COLORS := 1..n colors;

# Coloring of nodes as a 2-ary predicate
var Coloring {NODES,COLORS} binary;

s.t. CoveringAndDisjointness {x in NODES}:
# nodes have exactly one color
sum {c in COLORS} Coloring[x,c] = 1;

s.t. GoodColoring {(x,y) in EDGES, c in COLORS}:
# nodes linked by an edge have diff. colors
Coloring[x,c] + Coloring[y,c] <= 1;

Figure 1.3: ampl specification for Graph k-coloring.

∃Col ∀XY Col(X,Y ) → node(X) ∧ color(Y ) ∧ (1.2)

∀X ∃Y node(X) → Col(X,Y ) ∧ (1.3)

∀XY Z Col(X,Y ) ∧ Col(X,Z) → Y = Z ∧ (1.4)

∀XY Z X 6= Y ∧Col(X,Z) ∧Col(Y, Z) → ¬edge(X,Y ). (1.5)

Constraint (1.2) forces components of the guessed predicate Col(·, ·) to be of the right
types, while (1.3) and (1.4) impose every node to be assigned exactly one color. Con-
straint (1.5) is the good coloring constraint.

As it can be observed, opl variables play the same role of guessed predicates in the
ESO specification. One of the main differences between ESO and richer modelling
languages like opl is the absence of types and constructs for specifying functions.
However, the above example shows (i) how functions from a given domain to a given
codomain can be modelled by guessing relations and imposing additional constraints
over them, i.e., (1.2–1.4), and (ii) how bounded integers can be represented (in the
simplest way) in unary form. We further discuss how to model functions, integers,
and orderings in ESO later in this section.

The additional constraints needed in an ESO specification to model functions may
suggest, to a first look, that ESO is actually too far away from languages provided
by commercial systems. However, this is not true in general. As an example, Fig-
ure 1.3 shows the specification of the Graph k-coloring problem in ampl (57), which
admits only linear constraints: as it can be observed, it is very similar to that of
Example 1.2.1, in that covering and disjointness constraints must be explicitly stated.

In constraint problems, domains for variables are often finite (cf. the domain for
the coloring[] array in Figure 1.2 and those for the Coloring predicate in Fig-
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ure 1.3). Furthermore, in many circumstances, the size of these domains is “small”,
and independent on the particular instance. In such cases, there exist alternative, but
equivalent, ESO specifications. In general, given an n-ary guessed predicate P with
one of the arguments over a domain of size m (independent on the instance), we can
always unfold it into m (n− 1)-ary guessed predicates P1, . . . , Pm, one for each such
values. The remaining of the specification must be unfolded accordingly.

As an example, in the following we give an ESO specification for the Graph 3-
coloring problem, in which the binary guessed predicate Col(·, ·) is unfolded according
to the second argument, hence obtaining 3 monadic guessed predicates, R, G, B, one
for each colors (red, green, blue).

Example 1.2.2 (Graph 3-coloring). An ESO specification of the Graph 3-coloring
problem with monadic guessed predicates is as follows:

∃RGB ∀X R(X) ∨G(X) ∨B(X) ∧ (1.6)

∀X R(X) → ¬G(X) ∧ (1.7)

∀X R(X) → ¬B(X) ∧ (1.8)

∀X B(X) → ¬G(X) ∧ (1.9)

∀XY X 6= Y ∧R(X) ∧R(Y ) → ¬edge(X,Y ) ∧ (1.10)

∀XY X 6= Y ∧G(X) ∧G(Y ) → ¬edge(X,Y ) ∧ (1.11)

∀XY X 6= Y ∧B(X) ∧B(Y ) → ¬edge(X,Y ), (1.12)

Clauses (1.6) and (1.7-1.9) are obtained as the unfolding of, respectively constraints (1.3)
and (1.4), while (1.10–1.12) are the unfolding of (1.5). It is interesting to observe
that constraint (1.2) can be thrown away, since the Herbrand domain of the latter
specification is made only by the graph nodes.

Referring to the graph in Figure 2.1, the Herbrand universe is the set {a, b, c, d, e},
the input database has only one relation, i.e., edge, which has five tuples (one for
each edge). Formula ψ is satisfied if R, G, and B are assigned to, e.g., the following
relations (cf. Figure 2.1, right):

R d
G a

e
B b

c

Another simple example of ESO specification is the following.

Example 1.2.3 (Not-all-equal Sat (62, Prob. LO3)). In this NP-complete prob-
lem the input is a propositional formula in CNF, and the question is whether it is
possible to assign a truth value to all the variables in such a way that the input for-
mula is satisfied, and that every clause contains at least one literal whose truth value
is false. We assume that the input formula is encoded by the following relations (an
alternative format for the input is described in Section 7.2):

• inclause(·, ·); tuple 〈l, c〉 is in inclause if and only if literal l is in clause c;

• l+(·, ·) (resp. l−); a tuple 〈l, v〉 is in l+ (resp. l−) if and only if l is the positive
(resp. negative) literal relative to variable v, i.e., v itself (resp. ¬v);
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• var(·), containing the set of propositional variables occurring in the formula;

• clause(·), containing the set of clauses of the formula.

An ESO specification for this problem is as follows (T and F represent the set of
variables whose truth value is true and false, respectively):

∃TF ∀X var(X) ↔ T (X) ∨ F (X) ∧ (1.13)

∀X ¬ (T (X) ∧ F (X)) ∧ (1.14)

∀C clause(C) →
[

∃L inclause(L,C)∧ ∀V
(

l+(L,V )→T (V )
)

∧
(

l−(L,V )→F (V )
) ]

∧ (1.15)

∀C clause(C) →
[

∃L inclause(L,C)∧ ∀V
(

l+(L,V )→F (V )
)

∧
(

l−(L,V )→T (V )
) ]

. (1.16)

Constraints (1.13–1.14) force every variable to be assigned exactly one truth value;
moreover, (1.15) forces the assignment to be a model of the formula, while (1.16)
leaves in every clause at least one literal whose truth value is false.

In what follows, the set of tuples from the Herbrand universe taken by guessed
predicates will be called their extension and denoted with ext(). As an example,
ext(G) = {a, e} in Example 1.2.2. The symbol ext() will be used also for any first-
order formula with one free variable. An interpretation will be sometimes denoted as
the aggregate of several extensions.

As already argued in Example 1.2.1, even if ESO does not have built-in constructs for
functions, bounded integers, and ordering, these can be defined by applying additional
constraints on the extensions of guessed predicates. Here, we show how opportune
short-hands can be defined in order to deal with these issues in the general case,
increasing the readability and analyzability of problem specifications written in ESO.
We remark that functions, bounded integers, and ordering do not add any expressive
power to the language. In particular, some interesting expressions that can be defined
(formal definitions are delayed to Appendix A) are:

• typedRelation(F (d+r),D (d),R(r)) evaluates to true if and only if guessed predi-
cate F is a relation from tuples in relation D (domain) to those in R (codomain).

• functiond,r (F
(d+r)) evaluates to true if and only if guessed predicate F is mono-

valued, i.e., a function. First d arguments denote its domain, last r its codomain.
In other words, for every d-tuple 〈x1, . . . , xd〉 that occurs as the first d compo-
nents of any tuple in F , there exists at most one r-tuple 〈y1, . . . , yr〉 such that
〈x1, . . . , xd, y1, . . . , yr〉 belongs to F .

• total(F (d+r),D (d)) evaluates to true if and only if guessed predicate F is such
that for every d-tuple 〈x1, . . . , xd〉 in D there exists at least one r-tuple 〈y1, . . . , yr〉
such that 〈x1, . . . , xd, y1, . . . , yr〉 belongs to F . That is, F is a total relation on
the domain D .

• surgective(F (d+r),R(r)) evaluates to true if and only if guessed predicate F is
such that for every r-tuple 〈y1, . . . , yr〉 in R there exists at least one d-tuple
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〈x1, . . . , xd〉 such that 〈x1, . . . , xd, y1, . . . , yr〉 belongs to F . That is, F is a
surgective relation on the codomain R.

• injectived,r(F
(d+r)) evaluates to true if and only if guessed predicate F is such

that for every r-tuple 〈y1, . . . , yr〉 occurring as the last components of a tuple in
F there exists at most one d-tuple 〈x1, . . . , xd〉 such that 〈x1, . . . , xd, y1, . . . , yr〉
belongs to F .

• bijective(F (d+r),D (d),R(r)) evaluates to true if and only if guessed predicate F
is a bijective function from tuples in D to those in R.

• linearOrder (ORDER(2k),N (k)) evaluates to true if and only if guessed predicate
ORDER correctly encodes a successor relation over elements in relation N, i.e.,
a 1-1 correspondence with the interval [1, |N |].

By guessing a linear order among tuples of a relation, e.g., N , we have bounded integers
up to |N |, and can further encode in ESO formulae that compare two integers and
compute arithmetic operations over them, as long as the results of these operations
are bounded. Details of these encodings are given in Appendix A. It is worth noting
that the possibility to encode bounded integers and arithmetics in ESO has interesting
consequences. In particular, it is known that many solvers, e.g., SAT-based, or those
based on extensions of datalog, e.g., NP-Spec, dlv, do not have built-in integers and
arithmetics, and this is a major obstacle for the convenient modelling of a great variety
of problems. Definitions given in Appendix A can be straightforwardly rewritten to
let these languages deal with these issues.

In Constraint Programming, problems of interest usually belong to the complexity
class NP. This is why we restrict ourselves to the existential fragment of second-
order logic when defining a modelling language for CP. However, many reasoning
problems in Artificial Intelligence reside in different complexity classes, e.g., ΣP

2 , ΠP
2 ,

etc., higher in the Polynomial Hierarchy. To this end, when dealing with these more
complex problems (cf., e.g., Chapter 7), we need larger fragments of second-order
logic. In general, we remind that full, i.e., with arbitrary sequences of second-order
quantifiers, second-order logic over finite databases is able to express all problems in
the complexity class PSPACE.

1.3 Reasoning on the specification

Reasoning on constraint problems in order to change their formulations has been
proven to be of fundamental importance in order to speed-up the solving process.
To this end, different approaches have been proposed in the literature, among them
symmetry detection and breaking, abstraction and simplification of constraints, gen-
eration of useful implied constraints, and the use of redundant models. We briefly
describe these and other approaches below.

Symmetries arise very frequently in constraint problems, and are one of the major
bottlenecks for a backtracking solver, making the size of the search space for the
problem at hand much larger than necessary. In fact, if a point in the search space
has been proven to be not a solution, all the symmetric points can be immediately
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excluded from search, since they cannot be solutions at all. On the other hand, when
a solution is found, all symmetric points in the search space are guaranteed to be
solutions as well, and no additional check is needed for them. Symmetry detection
and breaking has been attacked in different ways by the research community. We
delay the description of the main approaches in Section 4.1.

A second approach to problem reformulation is abstraction, i.e., the simplification
of some of the constrains in order to find more efficient reformulations of the original
problem (cf. e.g., (43; 66; 59)). In particular, in (59) a form of abstraction is pre-
sented, that may require backtracking for finding solutions of the original problem. In
Chapters 2 and 3 we present a different approach to constraint simplification, called
safe delay, which is backtracking free.

A different strategy is the generation of implied constraints, i.e., constraints that
are not explicitly stated, but that follow from the others. Explicitly stating (some
of the) implied constraints can lead some algorithms for constraint programming to
make better propagation, obtaining better pruning of the search space. Several works
have been proposed in this context, among them (121) and the the system cgrass
(60), which automatically breaks symmetries and generate useful implied constraints.

Another technique to obtain better propagation is the use of redundant models,
i.e., multiple viewpoints of the search space for the problem at hand synchronized by
channelling constraints (33; 53; 129). Each constraint is then expressed under the
most convenient viewpoint, e.g., the one that allows better propagation. Also the
search strategy can exploit the different viewpoints, hence leading to a better choice
of the variables to branch on (71).

Finally, other approaches to problem reformulation exist. As an example, in (131)
it is shown how to translate an instantiated CSP into its Boolean form, which is useful
for finding different reformulations, while in (34) the proposed approach is to gener-
ate a conjunctive decomposition of an instantiated CSP, by localizing independent
subproblems. Some attempts have also been done in formalizing and systematizing
the process of selecting the best formulation for a problem (10), and in deriving alter-
native CSP formulations by automatically refining an abstract problem specification
(5).

However, many of the approaches described above either are designed for a specific
constraint problem, or act at the instance level, and very little work has been per-
formed at the level of problem specification.

Indeed, many of the properties of constraint problems amenable to optimizations,
e.g., symmetries, existence of “useful” implied constraints, of constraints that can be
simplified, or existence of multiple viewpoints, strongly depend on the problem struc-
ture, and not on the particular input instance considered. Hence, their recognition at
the instance level, where the problem structure has been almost completely hidden,
may easily become not convenient and expensive.

Moreover, as already observed in Section 1.1, almost all state-of-the-art systems
for constraint modelling and programming exhibit a clear separation between prob-
lem specification and input instances. Hence, it becomes very attractive, from a
methodological point of view, detecting and exploiting those properties of constraint
problems amenable to optimizations that derive from the problem structure, at the
symbolic level, before binding the specification to a particular instance. This leads to
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the automated reformulation of specifications.

In general, given a declarative problem specification π, the task of reformulating π
is to compute a new specification π′ (possibly integrated with additional information
about the search strategy to be used) such that:

1. For every input instance I, π(I) is equivalent to π′(I), or, at least, solutions of
π(I) can be computed in a efficient way starting from solutions of π′(I);

2. π′ is more efficiently evaluable than π.

Of course the effectiveness of a reformulation may depend both on the problem and
on the solver, but this does not rule out the possibility to find reformulations that are
good for all solvers (or for solvers of a certain class, e.g., SAT-based, linear solver, or
local-search based ones).

A similar approach has already been widely used in other contexts, e.g. that of
relational DBMSs. There, the query provided by the user is preprocessed in order to
find the so called best execution plan. In many cases, the query reformulation does not
account for the current database extension. As an example, a widely used heuristic
is to make selections as soon as possible to decrease the number of accesses to disk
(cf., e.g., (2)). The rewritten query is then used to retrieve the result.

On the other hand, even if there have been some attempts to deal with specifica-
tions rewriting (e.g., into instances of SAT (26)), at the moment no general method-
ology has been developed for CP systems.

In general, reasoning at the specification level can be done in many different ways,
e.g., by modifying the search space shape, adding, removing (i.e., abstracting) or
modifying constraints, detecting and exploiting structural properties like symmetries
or functional dependencies, or recognizing particular classes of problems that are effi-
ciently solvable in different ways. Obviously, once such a specification preprocessing
is made by the system, all classical techniques developed for CP at the instance level
can yet be used.

Unfortunately, reformulating a constraint problem specification is a difficult task
in general: as argued in Section 1.2, a specification is essentially a formula in second-
order logic, and it is well known that the equivalence problem is undecidable already
in the first-order case (9). For this reason, research must focus on controlled and
restricted forms of reformulation.

In this thesis we present several and complementary techniques for reformulating
declarative constraint specifications, as Section 1.4 outlines. The intended overall
approach is to find criteria for reformulating specifications that can be automatically
performed by the system. To this end, some of the techniques presented in this
thesis rely on syntactic properties of the specifications. We remind that the syntactic
approach has been used with success also in other works, e.g., in (69) for characterizing
polynomial and NP-complete sub-cases of existential second-order logic over graphs,
and in (83) for characterizing approximable NP optimization problems.

However, some other reformulation techniques proposed here intrinsically rely on
semantic (and undecidable) properties of the specification. Indeed, in these cases
we show how, in practical circumstances, automated tools, e.g., first-order theorem
provers, can be effectively used to make the required reasoning (cf. Chapter 6).
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1.4 Outline of the thesis, and summary of results

In this thesis, we focus on the reformulation problem for constraint problem specifi-
cations, expressed as second-order formulae, in different directions.

In particular, in Chapter 2 we show how to highlight some of the constraints in a
specification that can be safely ignored in a first step of the solving process and effi-
ciently enforced afterwards, i.e., the so called safe-delay constraints. This technique
permits a simplification of the original specification, yet guaranteeing that every so-
lution of the rewritten problem can be transformed in a valid solution of the original
one. Furthermore, the transformation is guaranteed to be performed in polynomial
time, i.e., without further search. We present several examples of specifications that
exhibit such kind of constraints, like Graph coloring (cf. Example 1.2.2), Not-all-
equal Sat (cf. Example 1.2.3), Job-shop scheduling, and others, and experimental
results that prove the effectiveness of the approach for different classes of solvers.
In Chapter 3 we consider an extension of reformulation by safe-delay for a class of
permutation problems. We show that in this case, more complex modifications of
the remaining constraints of the specification to be reformulated may be needed to
ensure correctness. We consider well known permutation problems, like Hamiltonian
path, Permutation flow shop and Tiling, and show how the technique applies to these
problems. Experimental results show the effectiveness of the reformulation.

Chapter 4 deals with the well-known symmetry detection problem. As already
argued in Section 1.3, symmetries arise frequently in problem specifications, and are
a major bottleneck for many solvers. However, differently with other approaches, we
focus on those symmetries that depend on the problem structure, and recognize them
at level of the specification. To this end, we formally characterize the so called uni-
form value symmetries in problem specifications, and reduce the problem of detecting
them into that of checking the equivalence of two first-order formulae. Moreover, when
symmetries have been found, additional constraints, the so called symmetry-breaking
formulae can be added to the specification itself in order to break them. We formally
define what properties a formula must satisfy in order to be symmetry-breaking, in
terms of semantic properties of logical formulae, and present examples and experi-
mental results about the effectiveness of breaking symmetries in this way.

Chapter 5 focuses on another major issue that degrades solvers performances,
i.e., the presence, in declarative problem specifications, of functional dependencies
among different guessed predicates. This happens whenever state information, e.g.,
intermediate results, has to be maintained in order to evaluate constraints and/or
the objective function, or because of precise modelling choices, e.g., the so called re-
dundant modelling, that consists in having multiple viewpoints of the search space
(synchronized by channeling constraints), in order to express each constraint under
the most effective one. We give a precise formalization of functional dependencies
among guessed predicates, and show how the problem of recognizing a functional de-
pendence can be reduced to checking whether a first-order formula is valid. Moreover,
once functional dependencies have been detected, opportune search strategies can be
automatically synthesized in order to exploit them, hence greatly reducing the size of
the explored search space. We give examples of problem specifications that exhibit
functional dependencies and show how they can be automatically exploited. Further-
more, experimental results show how the addition of the synthesized search strategies
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greatly enhances the performances of state-of-the art solvers.

The proposed techniques for detecting symmetries and functional dependencies of
problem specifications reduce to checking semantic properties of first-order formulae.
Moreover, in previous chapters, we prove that, in general, these tasks are undecidable.
In chapter 6, we investigate the use of automated reasoning tools in order to make the
required reasoning by computer, and show that, in practical circumstances, current
automated theorem proving (ATP) technology usually performs very well on this kind
of tasks.

Chapter 7 is devoted to a slightly different problem, i.e., that of recognizing prob-
lem specifications that can be compiled. Knowledge compilation (KC) is one of the
techniques that have been proposed in the Artificial Intelligence literature for ad-
dressing polynomial intractability of reasoning. The central observation is that, in
many reasoning tasks, the input to a (e.g., deduction) problem is split into two parts,
with different status: typically the first part is not modified very often (e.g., it is a
knowledge base that is not frequently revised), and it is used for several instances of
the problem. The idea is to split the deduction problem into two phases: in the first
one the fixed part of the input (e.g., the knowledge base) is preprocessed, thus ob-
taining an appropriate data structure, that is then used to solve the original problem,
when the varying part of the input becomes available. The goal of preprocessing is
to make the second phase (called on-line reasoning) computationally easier (possibly
polynomial-time) with respect to reasoning in the case when no preprocessing at all is
done, under the requirement that the size of the intermediate data structure is poly-
nomial in the size of the input, in order the storing of the computer information to be
practical. Intuitively, the effort spent in the preprocessing phase (off-line reasoning)
pays off when its computational cost is amortized over the (facilitated) answer to
many instances.

We give sufficient conditions for a problem specification (formulated in second-
order logic over a finite database) to be compilable, and show how KC reduces to
compute a second-order view of the input database, plus a rewriting of the specifica-
tion using the computed view. Such a rewriting relies on syntactic properties of the
specification. We present several examples of compilable queries, both in NP and in
higher levels of the Polynomial Hierarchy, from deduction problems to problems on
graphs, in order to show how the proposed technique applies.

Chapter 8 is devoted to the description of two highly declarative modelling lan-
guages for constraint problems: NP-Alg and ConSql, extending relational algebra
and sql, respectively. The main motivation under the proposal of such languages is
that, in commercially available packages for constraint programming, there is no true
integration between the data definition and the constraint modelling and program-
ming languages, with the main disadvantage of providing poor levels of data integrity.
Proposed languages, instead, can be actually considered as second-order query lan-
guages for relational databases, providing strong integration between constraint mod-
elling and programming and up-to-date technology for storing and querying data.
We believe that this feature can permit a wider diffusion of the declarative constraint
modelling paradigm in industrial environments, allowing a very strong integration
with the information system of the enterprise.

Proceeding with the experience of NP-Spec (15), we provide a formal character-
ization of the NP-Alg language, i.e., of its expressive power and data and combined



1.4. OUTLINE OF THE THESIS, AND SUMMARY OF RESULTS 15

complexity (in the sense of (128)). Moreover, relying on results from (69), we isolate
fragments of the NP-Alg language that guarantee that queries that can be expressed in
them are polynomially solvable. We also show how well-known polynomial problems
can be specified in such fragments. This shows an example of advantages of using a
formal language like ESO for problem modelling, i.e., the possibility to apply many
theoretical results in the literature of second-order logic to constraint modelling and
programming.

Finally, we describe a prototype system that implements the ConSql language
by relying on a standard relational DBMS, and exploits local-search techniques for
finding solutions. It is worth noting that the implemented local-search solving engine,
jLocal, is completely independent on the modelling language, and allows to represent
a constraint problem specification by relying on abstract concepts like search space,
constraint, objective function, etc. Hence, this can be considered one of the first highly
declarative and general-purpose local-search solvers available.

Discussions, description of the limitations of the various techniques, and plans for
future research are given at the end of each chapter, while technical issues, like proofs
of theorems and details about the examples are delayed to the appendixes.
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Chapter 2

Reformulation by safe-delay

of constraints

2.1 Introduction

In this chapter, we present a technique for constraint problems reformulation that
allows to select constraints in a problem specification that can be ignored in a first
step, regardless of the instance. Such constraints can be safely deleted from the
specification, hence obtaining a new, simplified, problem, that can be instantiated
and solved. In a second step, once a solution of the latter problem has been found,
such constraints can be efficiently reinforced, in order to obtain valid solutions of the
original specification from arbitrary solutions of the simplified one.

The graph k-coloring problem of Example 1.2.1 offers a simple example of a con-
straint of this kind. We remind that the problem amounts to find an assignment of
nodes to k colors such that:

• Each node has at least one color (covering);

• Each node has at most one color (disjointness);

• Adjacent nodes have different colors (good coloring).

For each instance of the problem, if we obtain a solution neglecting the disjointness
constraint, we can always choose for each node one of its colors in an arbitrary way
in a later stage (cf. Figure 2.1). We call a constraint with this property a safe-delay
constraint. It is interesting to note that the standard DIMACS formulation in SAT
of k-coloring actually omits the disjointness constraint.

Of course not all constraints are safe-delay: as an example, both the covering and
the good coloring constraints are not. Intuitively, identifying the set of constraints of
a specification that are safe-delay may lead to several advantages:

• The instantiation phase (cf. Figure 1.1) will typically be faster, since safe-delay
constraints are not taken into account. As an example, let’s assume we want to
use (after instantiation) a SAT solver for the solution of k-coloring on a graph

17
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Figure 2.1: Delaying the disjointness constraint in 3-coloring.

with n nodes and e edges. The SAT instance encoding the k-coloring instance –
in the obvious way, cf., e.g., (61)– has n ·k propositional variables, and a number
of clauses which is n, n · k · (k − 1)/2, and e · k for covering, disjointness, and
good coloring, respectively. If we delay disjointness, n ·k · (k−1)/2 clauses must
not be generated.

• Solving the simplified problem, i.e., the one without disjointness, might be eas-
ier than the original formulation for some classes of solvers, since removing
constraints makes the set of solutions larger. For each instance it holds that:

{solutions of original problem} ⊆ {solutions of simplified problem}.

In our experiments using six different solvers, including SAT, integer linear
programming, and constraint programming ones, we obtained fairly consistent
(in some cases, more than one order of magnitude) speed-ups for hard instances
of various problems, e.g., graph coloring and job-shop scheduling. On top of
that, we implicitly obtain several good solutions. Results of the experimentation
are given in Section 2.4.

• Ad hoc efficient methods for solving delayed constraints may exist. As an ex-
ample, for k-coloring, the problem of choosing only one color for the nodes with
more than one color is O(n).

The architecture we propose is illustrated in Figure 2.2 and can be applied to any
system that separates the instance from the specification. It is in some sense similar
to the well-known divide and conquer technique, cf., e.g., (37), but rather than divid-
ing the instance, we divide the constraints. In general, the first stage will be more
computationally expensive than the second one, that, in our proposal, will always be
doable in polynomial time.

The goal of this chapter is to understand in which cases a constraint is safe-delay.
Our main contribution is the characterization of safe-delay constraints with respect
to a semantic criterion on the specification. This allows us to obtain a mechanism for
the automated reformulation of a specification that can be applied to a great variety
of problems, including the so-called functional ones.

The outline of this chapter is as follows. In Section 2.2 we present our reformula-
tion technique, and discuss the adopted methodology in Section 2.3. Afterwards, an
experimentation on the effectiveness of the approach is described in Section 2.4, on
both benchmark and randomly generated instances, using six different solvers, both
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Figure 2.2: Reformulation architecture for safe-delay.

SAT based, linear and constraint programming ones. Finally, discussions, future and
related work are presented in Section 2.5.

2.2 Reformulation

In this section we show sufficient conditions for constraints of a specification to be
safe-delay. We refer to the architecture of Figure 2.2, with some general assumptions:

Assumption 1: As shown in Figure 2.1, the output of the first stage of computa-
tion may –implicitly– contain several solutions. As an example, node c can be
assigned to either green or blue, and node e to either red or green. In the sec-
ond stage we do not want to compute all of them, but just to arbitrarily select
one. In other words, we focus on search (i.e., satisfaction) problems, with no
objective function to be optimized.

Assumption 2: The second stage of computation can only shrink the extension of
a guessed predicate. Figure 2.3 represents the extensions of the red predicate
in the first (R∗) and second (R) stages of Figure 2.1 (ext(B) and ext(G) are
unchanged).

This assumption is coherent with the way most algorithms for constraint satis-
faction operate: each variable has an associated finite domain, from which values
are progressively eliminated, until a satisfying assignment is found. Nonethe-
less, in Subsection 2.2.4 we give examples of problem specifications that are
amenable to safe-delay, although with a second stage of different nature.

Identification of safe-delay constraints requires reasoning on the whole specification,
taking into account relations between guessed and database predicates. For the sake
of simplicity, in Subsection 2.2.1 we will initially focus our attention on a single
monadic guessed predicate, trying to figure out which constraints concerning it can
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be delayed. Afterwards, in Subsection 2.2.2 we extend our results to sets of monadic
guessed predicates, then, in Subsection 2.2.3, to binary predicates.

2.2.1 Single monadic predicate

We refer to the 3-coloring specification of Example 1.2.2, reported here for reader’s
convenience:

∃RGB ∀X R(X) ∨G(X) ∨B(X) ∧ (1.6)

∀X R(X) → ¬G(X) ∧ (1.7)

∀X R(X) → ¬B(X) ∧ (1.8)

∀X B(X) → ¬G(X) ∧ (1.9)

∀XY X 6= Y ∧R(X) ∧R(Y ) → ¬edge(X,Y ) ∧ (1.10)

∀XY X 6= Y ∧G(X) ∧G(Y ) → ¬edge(X,Y ) ∧ (1.11)

∀XY X 6= Y ∧B(X) ∧B(Y ) → ¬edge(X,Y ), (1.12)

and focus on one of the guessed predicates, R, trying to find an intuitive explanation
for the fact that clauses (1.7–1.8) can be delayed. We immediately note that clauses
in the specification can be partitioned into three subsets: NOR, NEGR, and POSR

with –respectively– no, only negative, and only positive occurrences of R.
Neither NOR nor NEGR clauses can be violated by shrinking the extension of R.

Such constraints will be called safe-forget for R, because if we decide to process (and
satisfy) them in the first stage, they can be safely ignored in the second one (that,
by Assumption 2 above, can only shrink the extension for R). We note that this is
just a possibility, and we are not obliged to do that: as an example, clauses (1.7–1.8)
will not be processed in the first stage.

Although in general POSR clauses are not safe-forget –because shrinking the ex-
tension of R can violate them– we now show that clause (1.6) is safe-forget. In fact,
if we equivalently rewrite clauses (1.6) and (1.7–1.8), respectively, as follows:

∀X ¬B(X) ∧ ¬G(X) → R(X) (1.6’)

∀X R(X) → ¬B(X) ∧ ¬G(X), (1.7’–1.8’)

we note that clause (1.6’) sets a lower bound for the extension ofR, and clauses (1.7’–1.8’)
set an upper bound for it; both the lower and the upper bound are ext(¬B(X) ∧
¬G(X)). If we use –in the first stage– clauses (1.6,1.9–1.12) for computing ext(R∗)
(in place of ext(R)), then –in the second stage– we can safely define ext(R) as
ext(R∗) ∩ ext(¬B(X) ∧ ¬G(X)), and no constraint will be violated (cf. Figure 2.3).
The next theorem shows that is not by chance that the antecedent of (1.6’) is seman-
tically related to the consequence of (1.7’–1.8’).

Theorem 2.2.1. Let ψ be an ESO formula of the form:

∃S1, . . . , Sh, S Ξ ∧ ∀X α(X) → S(X) ∧ ∀X S(X) → β(X),
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Figure 2.3: Extensions for the 3-coloring specification.

in which S is one of the (all monadic) guessed predicates, Ξ is a conjunction of
clauses, both α and β are arbitrary formulae in which S does not occur and X is the
only free variable, and such that the following hypotheses hold:

Hyp 1: S either does not occur or occurs negatively in Ξ;

Hyp 2: |= ∀X α(X) → β(X).

Let now ψs be:

∃S1, . . . , Sh, S
∗ Ξ∗ ∧ ∀X α(X) → S∗(X),

where S∗ is a new monadic predicate symbol, and Ξ∗ is Ξ with all occurrences of S
replaced by S∗, and let ψd be:

∀X S(X) ↔ S∗(X) ∧ β(X).

For every input instance I, and every extension M∗ for predicates (S1, . . . , Sh, S
∗)

such that (M∗, I) |= ψs, it holds that:

((M∗ − ext(S∗)) ∪ ext(S), I) |= ψ

where ext(S) is the extension of S as defined by M∗ and ψd.

The proof is delayed to Appendix B. A comment on the relevance of the above
theorem is in order. Referring to the architecture of Figure 2.2, ψ is the specification,
I is the instance, ψs is the “simplified specification”, and ∀X S(X) → β(X) is the
“delayed constraint”. Solving ψs against I produces –if the instance is satisfiable– a
list of extensions M∗ (the “output”). Evaluating ψd against M∗ corresponds to the
“PostProcessing” phase in the second stage. The structure of the delayed constraint
ψd clearly reflects Assumption 2 above, i.e., that extensions for guessed predicates
can only be shrunk in the second stage. Moreover, since the last stage amounts to
the evaluation of a first-order formula against a fixed database, it can be done in
logarithmic space (cf., e.g., (2)), thus in polynomial time.

In other words, Theorem 2.2.1 says that, for each satisfiable instance I of the
simplified specification ψs, each solution M∗ of ψs can be translated, via ψd, to a



22 CHAPTER 2. REFORMULATION BY SAFE-DELAY OF CONSTRAINTS

ext(S)

α)

ext(β)

ext(α)

ext(β)

ext(S*)ext(S*) ext(S)

ext(
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solution of the original specification ψ; we can also say that Ξ∧ ∀X α(X) → S(X) is
safe-forget, and ∀X S(X) → β(X) is safe-delay.

Referring to the specification of Example 1.2.2, the distinguished guessed predicate
is R, Ξ is the conjunction of clauses (1.9–1.12), and α(X) and β(X) are both ¬B(X)∧
¬G(X), cf. clauses (1.7’–1.8’). Figure 2.3 represents possible extensions of the red
predicate in the first (R∗) and second (R) stages, for the instance of Figure 2.1,
and Figure 2.4 (left) gives further evidence that, if Hyp 2 holds, the constraint
∀X α(X) → S(X) can never be violated in the second stage.

We are guaranteed that the two-stage process preserves at least one solution of ψ
by the following theorem.

Theorem 2.2.2. Let I, ψ, ψs and ψd as in Theorem 2.2.1. For every instance I, if
ψ is satisfiable, ψs and ψd are satisfiable.

To substantiate the reasonableness of the two hypotheses of Theorem 2.2.1, we play
the devil’s advocate and consider the following example.

Example 2.2.1 (Graph 3-coloring with red self-loops). In this problem, which
is a variation of the one in Example 1.2.2, the input is the same as for Graph 3-
coloring, and the question is whether it is possible to find a coloring of the graph with
the additional constraint that all self-loops insist on red nodes.

A specification for this problem can be derived from that of Example 1.2.2 by adding
the following constraint:

∀X edge(X,X) → R(X). (2.1)

We immediately notice that now clauses (1.7–1.8) are not safe-delay: intuitively, after
the first stage, nodes may be red either because of (1.6) or because of (2.1), and (1.7–
1.8) are not enough to set the correct color for a node. Now, if –on top of (1.9–1.12)–
Ξ contains also the constraint (2.1), Hyp 1 is clearly not satisfied. Analogously, if
(2.1) is used to build α(X), then α(X) becomes edge(X,X)∨ (¬B(X)∧¬G(X)), and
Hyp 2 is not satisfied. Figure 2.4, right, gives further evidence that the constraint
∀X α(X) → S(X) can be violated if ext(S) is computed using ψd and ext(α) is not
a subset of ext(β).

Summing up, a constraint with a positive occurrence of the distinguished guessed
predicate S can be safely forgotten only if there is a safe-delay constraint that justifies
it.
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Some further comments about Theorem 2.2.1 are in order. As it can be observed,
the theorem proof does not formally require Ξ to be a conjunction of clauses; actually,
it can be any formula such that, from any structure M such that M |= Ξ, by shrinking
ext(S) and keeping everything else fixed we obtain another model of Ξ. As an example,
Ξ may contain the conjunct ∃X S(X) → γ(X) (with γ(X) a first-order formula in
which S does not occur). Secondly, although Hyp 2 calls for a tautology check –
which is not decidable in general– we will see in what follows that many specifications
satisfy it by design.

2.2.2 Set of monadic predicates

Theorem 2.2.1 states that we can delay some constraints of a specification ψ, by
focusing on one of its monadic guessed predicates, hence obtaining a new specification
ψs, and a set of delayed constraints ψd. Of course, the same theorem can be further
applied to the specification ψs, by focusing on a different guessed predicate, in order to
obtain a new simplified specification (ψs)s and new delayed constraints (ψs)d. Since,
by Theorem 2.2.2, satisfiability of such formulae is preserved, it is afterwards possible
to translate, via (ψs)d, each solution of (ψs)s to a solution of ψs, and then, via ψd,
to a solution of ψ.

The procedure Reformulate in Figure 2.5 deals with the general case of a set
of guessed predicates: if the input specification ψ is satisfiable, it returns a simplified
specification ψs and a list of delayed constraints ψd. Algorithm SolveByDelaying
gets any solution of ψs and translates it, via the evaluation of formulae in the list ψd

–with LIFO policy– to a solution of ψ.
As an example, by evaluating the procedure Reformulate on the specification

of Example 1.2.2, by focusing on the guessed predicates in the order R,G,B, we
obtain as output the following simplified specification ψs, that omits all disjointness
constraints (i.e., clauses (1.7–1.9)):

∃R∗G∗B ∀X R∗(X) ∨G∗(X) ∨B(X) ∧

∀XY X 6= Y ∧R∗(X) ∧R∗(Y ) → ¬edge(X,Y ) ∧

∀XY X 6= Y ∧G∗(X) ∧G∗(Y ) → ¬edge(X,Y ) ∧

∀XY X 6= Y ∧B(X) ∧B(Y ) → ¬edge(X,Y ),

and the following list ψd of delayed constraints:

∀X R(X) ↔ R∗(X) ∧ ¬G(X) ∧ ¬B(X); (2.2)

∀X G(X) ↔ G∗(X) ∧ ¬B(X). (2.3)

It is worth noting that the check that ∀X β(X) is not a tautology prevents the

(useless) delayed constraint ∀X B(X) ↔ B∗(X) to be pushed in ψd.
From any solution of ψs, a solution of ψ is obtained by reconstructing first of all

the extension for G by formula (2.3), and then the extension for R by formula (2.2)
(synthesized, respectively, in the second and first iteration of the algorithm). Since
each delayed constraint is first-order, the whole second stage is doable in logarithmic
space (thus in polynomial time) in the size of the instance.
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Algorithm SolveByDelaying
Input: a specification Φ, a database D;
Output: a solution of 〈D,Φ〉, if satisfiable, ‘unsatisfiable’ otherwise;

begin

〈Φs,Φd〉 = Reformulate(Φ);
if (〈Φs, D〉 is satisfiable) then

begin
let M be a solution of 〈Φs, D〉;

while (Φd is not empty) do
begin

Constraint d = Φd.pop();
M = M∪ solution of d; // cf. Theorem 2.2.1

end;
return M ;

end;
else return ‘unsatisfiable’;

end;

Procedure Reformulate
Input: a specification Φ;

Output: the pair 〈Φs,Φd〉, where Φs is a simplified specification, and Φd

a stack of delayed constraints;
begin

Stack Φd = the empty stack;
Φs = Φ;

for each monadic guessed pred. R in Φs do
begin

partition constraints in Φs according to Thm 2.2.1, in:
〈Ξ; ∀X α(X) → R(X); ∀X R(X) → β(X)〉;

if the previous step is possible with ∀X β(X) 6= true then
begin

Φd.push(‘∀X R(X) ↔ R∗(X) ∧ β(X)’);
Φs = Ξ∗ ∧ ∀X α(X) → R∗(X);

end;
end;

return 〈Φs,Φd〉;
end;

Figure 2.5: Algorithm for safe-delay in case of a set of monadic predicates.

We also observe that the procedure Reformulate is intrinsically non-determin-
istic, because of the partition that must be applied to the constraints.
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2.2.3 Binary predicates

In this subsection we show how our reformulation technique can be extended in or-
der to deal with specifications with binary (and, in general, n-ary) guessed predi-
cates. This can be formally done by unfolding non-monadic guessed predicates into
monadic ones, exploiting the finiteness of the Herbrand domain. In Section 1.2 we
already described the unfolding technique and showed how a specification with non-
monadic guessed predicates (cf., e.g., Example 1.2.1) can be unfolded into one with
only monadic ones (cf. Example 1.2.2). As an example, the output of the unfolding
process for the Graph k-coloring specification of Example 1.2.1 for k = 3 –up to
an appropriate renaming of the three monadic guessed predicates into R,G,B – is
exactly the specification of Example 1.2.2.

In Section 1.2, we described the unfolding technique in case the argument to be
unfolded can take only a finite and instance independent number of values. In what
follows, instead, we make a generalization of the approach, that allows to unfold
non-monadic predicates even if domains of all their arguments depend on the input
instance. This is because the unfolding technique has to be intended here only as a
formal step, and does not have to be performed in practice (cf. forthcoming examples).

The above considerations imply that we can use the architecture of Figure 2.2
for a large class of specifications, including the so called functional specifications, i.e.,
those in which the search space is a (total) function from a finite domain to a finite
codomain. A safe-delay functional specification is an ESO formula of the form

∃P Ξ ∧ ∀X ∃Y P (X,Y ) ∧ ∀XY Z P (X,Y ) ∧ P (X,Z) → Y = Z,

where Ξ is a conjunction of clauses in which P either does not occur or occurs nega-
tively. In particular, the disjointness constraints are safe-delay, while the covering and
the remaining ones, i.e., Ξ, are safe-forget. Formally, soundness of the architecture
on safe-delay functional formulae is guaranteed by Theorem 2.2.1.

Safe-delay functional specifications are quite common; apart from graph coloring,
notable examples are Job-shop scheduling and Bin packing, that we consider next.

Example 2.2.2 (Job-shop scheduling (62, Prob. SS18)). In the Job-shop
scheduling problem we have sets (sorts) J for jobs, K for tasks, and P for processors.
Jobs are ordered collections of tasks and each task has an integer-valued length (en-
coded in binary relation L) and the processor that is requested in order to perform it
(in binary relation Proc). Each processor can perform a task at the time, and tasks
belonging to the same job must be performed in their order. Finally, there is a global
deadline D that has to be met by all jobs.

An ESO specification for this problem is as follows. For simplicity, we assume that
relation Aft contains all pairs of tasks 〈k′, k′′〉 of the same job such that k′ comes after
k′′ in the given order (i.e., it encodes the transitive closure), and that relation T ime
encodes all time points until deadline D (thus it contains exactly D tuples). Moreover,
we assume that predicate“≥” and function “+” are correctly defined on constants in
T ime. It is worth noting that these assumptions do not add any expressive power to
the ESO formalism, and can be encoded in ESO with standard techniques.
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∃S ∀k, t S(k, t) → K(k) ∧ T (t) ∧ (2.4)

∀k∃t S(k, t) ∧ (2.5)

∀k, t′, t′′S(k, t′) ∧ S(k, t′′) → t′ = t′′ ∧ (2.6)

∀k′, k′′, j, t′, t′′, l′ Job(k′, j) ∧ Job(k′′, j)∧

k′ 6= k′′ ∧Aft(k′′, k′) ∧ S(k′, t′) ∧ S(k′′, t′′)∧ (2.7)

L(k′, l′) → t′′ ≥ t′ + l′ ∧

∀k′, k′′, p, t′, t′′, l′, l′′

Proc(k′, p) ∧ Proc(k′′, p) ∧ k′ 6= k′′ ∧ L(k′, l′)∧

L(k′′, l′′) ∧ S(k′, t′) ∧ S(k′′, t′′) → (2.8)

[(t′ ≥ t′′ → t′ ≥ t′′ + l′′) ∧ (t′ ≤ t′′ → t′′ ≥ t′ + l′)]∧

∀k, t, l T (k) ∧ S(k, t) ∧ L(k, l) → T ime(t+ l). (2.9)

Constraints (2.4–2.6) force a solution to contain a tuple 〈k, t〉 (t being a time point)
for every task k, hence to encode an assignment of exactly a starting time to every
task (in particular, (2.6) assigns at most one starting time to each task). Moreover,
constraint (2.7) forces tasks that belong to the same job to be executed in their order
without overlapping, while (2.8) avoids a processor to perform more than one task at
each time point. Finally, (2.9) forces the scheduling to terminate before deadline D.

As an example, Figure 2.6(a) and (b) show, respectively, an instance and a possible
solution of the Job-shop scheduling problem. The instance consists of 3 jobs (J1, J2,
and J3) of, respectively, 4, 3, and 5 tasks each. The order in which tasks belonging
to the same job have to be performed is given by the letter in parentheses (a, b, c, d,
e). Tasks have to be executed on 3 processors, P1, P2, and P3, that are denoted by
different borderlines. Hence, the processor needed to perform a given task is given by
the task borderline.

To reformulate the Job-shop scheduling problem, after unfolding the specification
in such a way to have one monadic guessed predicate St for each time point t, we
focus on a time point t and partition clauses in the specification in which St does
not occur, occurs positively, or negatively, in order to build Ξ, α(k), and β(k). The
output of this phase is as follows:

• α(k)
.
=

∧

t6=t ¬St(k) (obtained by unfolding (2.5));

• β(k)
.
=

∧

t6=t ¬St(k) (obtained by unfolding (2.6)).

α and β above clearly satisfy Hyp 2 of Theorem 2.2.1. Moreover, according to the
algorithm in Figure 2.5, by iteratively focusing on all predicates St, we can delay
all such (unfolded) constraints. It is worth remarking that the unfolding of guessed
predicates is needed only to formally characterize the reformulation with respect to
Theorem 2.2.1, and must not be performed in practice.

Intuitively, the constraint we delay, i.e. (2.6), forces each task to have at most one
start time: thus, by delaying it, we allow a task to have multiple starting times, i.e.,
the task does not overlap with any other task at any of its start times.
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Again, in the second stage, we can arbitrarily choose one of them. We observe that
a similar approach has been used in (38) for an optimized ad-hoc translation of this
problem into SAT, where propositional variables represent the encoding of earliest
starting times and latest ending times for all tasks, rather than their exact scheduled
times, and that it is widely used in current specialized solvers for scheduling problems
(cf., e.g., the relevant constructs of opl that deal with activities and resources). As an
example, Figure 2.6(c) shows a solution of the first stage of the reformulated problem
for the instance in Figure 2.6(a), which subsumes the solution in Figure 2.6(b).

Example 2.2.3 (Bin packing (62, Prob. SR1)). In the Bin packing problem (cf.
also (91)), we are asked to pack a set I of items, each one having a given size, into
a set B of bins, each one having a given capacity. Under the assumption that input
instances are given as extensions for relations I, S, B, and C, where I encodes the
set of items, B the set of bins, S the size of items (a tuple 〈i, s〉 for each item i), and
C the capacity of bins (a tuple 〈b, c〉 for each bin b), an ESO specification for this
problem is as follows:

∃P ∀i, b P (i, b) → I(i) ∧B(b) ∧ (2.10)

∀i∃b I(i) → P (i, b) ∧ (2.11)

∀i, b, b′ P (i, b) ∧ P (i, b′) → b = b′ (2.12)

∀b, c C(b, c) → sum ({s | P (i, b) ∧ S(i, s)}) ≤ c (2.13)

where, to simplify notations, we assume bounded integers to encode the size of items
and capacity of bins, and the existence of a function sum that returns the sum of
elements that belong to the set given as argument. We remind that bounded integers
and arithmetic operations over them do not add expressive power to ESO.

In the above specification, a solution is a total mapping P from items to bins.
Constraints force the mapping to be, respectively, over the right relations (2.10), to-
tal (2.11), monodrome (2.12), and satisfying the capacity constraint for every bin (2.13).

In particular, by unfolding the guessed predicate P to |I| monadic predicates Pi, one
for every item i, and, coherently, the whole specification, the constraints that can be
delayed are the unfolding of (2.12), that force an item to be packed in exactly one
bin. Thus, by iteratively applying Theorem 2.2.1 by focusing on all unfolded guessed
predicates, we intuitively allow an item to be assigned to several bins. In the second
stage, we can arbitrarily choose one bin to obtain a solution of the original problem.

As showed in the previous examples, it is worth noting that arithmetic constraints do
not interfere with our reformulation technique. As an instance, in the last example,
the “≤” predicate leads to clauses that remain satisfied if the extension of the selected
guessed predicate is shrunk, while keeping everything else fixed.

2.2.4 Non-shrink second stages

As specified at the beginning of Section 2.2, in this chapter we have focused on second
stages in which the extension of the selected guessed predicate can only be shrunk,
while those for the other ones remain fixed.
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(a)

(b)

(c)

Figure 2.6: (a) An instance of the Job-shop scheduling problem, consisting in 3 jobs
of, respectively, 4, 3, and 5 tasks each, to be executed on 3 processors. (b) A possible
solution of the whole problem for the instance in (a). (c) A solution of the first stage
of the reformulated problem, that subsumes that in (b). Shades indicate multiple
good starting times for tasks.
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Actually, there are other specifications that are amenable to be reformulated by
safe-delay, although with a different kind of second stages. As an example, we show
a specification for the Golomb ruler problem.

Example 2.2.4 (Golomb ruler (64, Prob. 3)). In this problem, we are asked to
put m marks M1, . . . ,Mm on different points on a ruler of length l in such a way that:

1. Mark i is put on the left (i.e., before) mark j if and only if i < j, and

2. The m(m− 1)/2 distances among pairs of distinct marks are all different.

By assuming that input instances are given as extensions for unary relations M (en-
coding the set of marks) and P (encoding the l points on the ruler), and that the
function “+” and the predicate “<” are correctly defined on tuples in M and on those
in P , a specification for this problem is as follows:

∃G ∀m, i G(m, i) →M(m) ∧ P (i) ∧ (2.14)

∀m∃i M(m) → P (m, i) ∧ (2.15)

∀m, i, i′ G(m, i) ∧G(m, i′) → i = i′ ∧ (2.16)

∀m,m′, i, i′ G(m, i) ∧G(m′, i′) ∧m < m′ → i < i′∧ (2.17)

∀m,m′, i, i′, n, n′, j, j′

G(m, i) ∧G(m′, i′) ∧G(n, j) ∧G(n′, j′)∧ (2.18)

m < m′ ∧ n < n′ ∧ (m < n ∨ (m = n ∧m′ < n′)) →

(i′ − i) 6= (j′ − j).

A solution is thus an extension for the guessed predicate G that is a mapping (2.14–
2.16) assigning a point in the ruler to every mark, such that the order of marks is
respected (2.17) and distances between two different marks are all different (2.18).

Here, the constraint that can be delayed is (2.17), which forces the ascending ordering
among marks. By neglecting it, we extend the set of solutions of the original problem
with all their permutations. In the second stage, the correct ordering among marks
can be enforced in polynomial time.

By unfolding the binary guessed predicate G, we obtain |M | monadic predicates
Gm, one for each mark m. Once a solution of the simplified specification has been
computed, by focusing on all of them, in order to reinforce the m(m− 1)/2 unfolded
constraints derived from (2.17), we possibly have to exchange tuples among pairs
of predicates Gm and Gm′ , for all m 6= m′, and not to shrink the extensions of
single guessed predicates. Hence, Theorem 2.2.1 does not apply. A similar kind of
second stage is needed for reformulating some permutation problems by safe-delay (cf.
Section 3).

Furthermore, a modification of some of the other constraints may be needed to
ensure the correctness of the reformulation. As an example, in constraint (2.18)
differences must be replaced by their absolute values.
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2.3 Safe-delay constraints and other modelling lan-

guages

As already claimed in Section 1.2, and as the previous examples show, using ESO
for specifying problems wipes out many aspects of state-of-the-art languages which
are somehow difficult to take into account (e.g., numbers, arithmetics, constructs for
functions, etc.), thus simplifying the task of finding criteria for reformulating problem
specifications. However, we already stated that ESO, even if somewhat limited, is not
too far away from the modelling languages provided by some commercial systems,
and reformulation techniques proposed here can often be straightforwardly applied to
specifications written in such languages.

A good example is the ampl specification of the Graph k-coloring problem shown
in Figure 1.3. In this case, the reformulated specification can be obtained by replacing
the “CoveringAndDisjointness” constraint with the following one:

s.t. Covering {x in NODES}
sum {c in COLORS} Coloring[x,c] >= 1;

thus leading exactly to the reformulated specification of Example 1.2.2.
As for languages that admit non linear constraints, e.g., opl, it is possible to write

a different specification using integer variables for the colors and inequality of colors
between adjacent nodes. In this case it is not possible to separate the disjointness
constraint from the other ones, since it is implicit in the definition of the domains. Of
course, study of safe-delay constraints is relevant also for such languages, because we
can always specify in opl problems such as the one of Example 2.2.4, that has such
constraints.

We also note that, as shown in Examples 2.2.2, 2.2.3, and 2.2.4, we can consider
useful syntactic sugar for encoding bounded integers, operations and relations such
as “sum”, “+”, “≤”, etc., without adding expressive power to ESO.

For what concerns the experimentation, it must be observed that a specification
written in ESO naturally leads to a translation into a SAT instance. For this rea-
son, we have chosen to use, among others, SAT solvers for the experimentation of
the proposed technique. Moreover we considered also the impressive improving in
performances recently shown by state-of-the art SAT solvers.

As already claimed in Section 1, the effectiveness of a reformulation technique is
expected to strongly depend on the particular solver used. To this end, we solved
the same set of instances with SAT solvers of very different nature (cf. Section 5.5).
Finally, since it is known that state-of-the-art linear and constraint programming
systems may perform better than SAT on some problems, we repeated the experi-
mentation by using commercial systems Cplex (linear) and Solver (non-linear), cf.
www.ilog.com.

2.4 Experimental results

We made an experimentation of our reformulation technique on 3-coloring (randomly
generated instances), k-coloring (benchmark instances from the DIMACS repository
(46), and job-shop scheduling (benchmark instances from OR library (104)), using



2.4. EXPERIMENTAL RESULTS 31

both SAT-based solvers (and an ad hoc program (26) for the instantiation stage),
and the constraint and linear programming system opl (124), obviously using it as a
pure modelling language, and omitting search procedures.

As for the SAT-based experimentation, we used four solvers of very different na-
ture: the DPLL-based complete systems zchaff (100) and satz (87), and the local-
search based incomplete solvers walksat (115) and bg-walksat (133) (the last one
being guided by “backbones”). We solved all instances both with and without delay-
ing constraints. As for opl, we wrote both a linear and a non-linear specification for
the above problems, and applied our reformulation technique to the linear one (cf.
Section 2.3).

Experiments were executed on an Intel 2.4 GHz Xeon bi-processor computer. The
size of instances was chosen so that our machine is able to solve (most of) them in
more than few seconds, and less than one hour. In this way, post-processing time,
i.e., the time for evaluating delayed constraints, is negligible with respect to solving
time, and comparison can be done only on the latter.

In what follows, we refer to the saving percentage, defined as the ratio:

(time with disj. − time without disj.) /time with disj.

Graph 3-coloring. We solved the problem on 1500 randomly generated graph
instances with 500 nodes each. The number of edges varies, and covers the phase
transition region (32): the ratio (# of directed edges/# of nodes) varies between 2.0
and 6.0. In particular, we considered sets of 100 instances for each fixed number of
edges, and solved each set both with and without delaying disjointness constraints
(timeout was set at 1 hour). Table 2.1 shows overall solving times for each set of
instances, for all the SAT solvers under consideration.

As it can be observed, the saving percentage highly depends both on the edg-
es/nodes ratio, and on the solver. In particular, zchaff seems not to be positively
affected by safe-delay, and, for some classes of instances, e.g., those with 1500 edges,
it seems to be negatively affected (-28.40%). On the other hand, both local-search
based SAT solvers, i.e., walksat and bg-walksat show a consistent improvement
with our reformulation technique, saving from 13% to 17% for hard instances. Even
if they are incomplete solvers, they have been always able to find a solution for sat-
isfiable instances, except for the class of input graphs with 1100 edges: in this case,
they found a solution on the 40% (walksat) and 50% (bg-walksat) of positive
instances. Delaying disjointness constraints does not alter this percentage in a signif-
icant way. Also satz benefits from safe-delay, with savings from 22% to 26% for hard
instances, even if underconstrained instances (e.g., those with 700 edges) highlight
poorer performances (-49.83%). It is interesting to note that the best technology, i.e.,
local search, is improved.

For what concerns Cplex instead, experimental results do not highlight saving in
performances, since, in many cases, for the same set of 1500 instances, either both
solving times were negligible, or a timeout occurred both with and without disjointness
constraints.

Graph k-coloring. We solved the k-coloring problem on several benchmark in-
stances, with k close to the optimum. Results of our SAT-based experiments are
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Table 2.1: Experimental results for 3-coloring on random instances with 500 nodes (100 instances for each fixed number of edges).
Solving times (in seconds, with timeout of 1 hour) are relative to each set of 100 instances.

Und. zchaff walksat bg-walksat satz
edges e/n

∑

w/ disj.
∑

w/o disj. % sav.
∑

w/ disj.
∑

w/o disj. % sav.
∑

w/ disj.
∑

w/o disj. % sav.
∑

w/ disj.
∑

w/o disj. % sav.
500 2.0 0.26 0.26 0.00% 0.92 0.60 34.55% 2.43 1.85 23.97% 10.17 7.17 29.50%
600 2.4 0.13 0.22 -69.23% 2.22 1.82 18.05% 3.63 3.00 17.43% 8.97 5.08 43.37%
700 2.8 0.22 0.12 45.45% 8.48 7.58 10.61% 9.92 8.60 13.28% 7210.96 10804.02 -49.83%
800 3.2 0.2 0.1 50.00% 9.33 8.58 8.04% 10.95 9.82 10.35% 7208.19 7240.53 -0.45%
900 3.6 0.18 0.14 22.22% 18.18 16.52 9.17% 19.88 17.87 10.14% 14408.3 14403.53 0.03%
1000 4.0 0.16 0.07 56.25% 48.77 42.82 12.20% 48.62 42.97 11.62% 18787.4 21603.45 -14.99%
1100 4.4 11.25 12.07 -7.29% 119.70 105.50 11.86% 119.47 105.47 11.72% 11825.44 8772.81 25.81%
1200 4.8 80537.81 86843.41 -7.83% 129.35 112.05 13.37% 129.75 113.78 12.31% 16686.21 12279.19 26.41%
1300 5.2 1497.69 1441.24 3.77% 134.50 115.80 13.90% 138.37 117.58 15.02% 700.14 544.35 22.25%
1400 5.6 60.4 59.77 1.04% 145.32 119.93 17.47% 145.53 124.68 14.33% 95.09 78.27 17.69%
1500 6.0 18.77 24.1 -28.40% 147.68 125.25 15.19% 152.82 128.97 15.61% 31.56 26.95 14.61%
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shown in Table 2.2. As it can be observed, also here the effectiveness of the reformu-
lation technique varies among the different solvers. In particular, zchaff benefits by
safe-delay on several instances, both positive and negative, but not on all of them.
On the other hand, for local search solvers walksat and bg-walksat, delaying dis-
jointness constraints always (except for very few cases) speeds-up the computation
(usually by 20-30%). The same happens when using satz with even higher savings,
even if this solver timeouts for several instances.

As for opl instead, we have mixed evidence, as Table 2.3 shows. In particular,
it is not the case that the linear specification (solved using Cplex) is always more
efficient than the non-linear one (solved using Solver), or vice versa: actually, the
ratio between the solving time of Cplex and Solver is highly variable. However,
by focusing on the class of instances for which the linear specification is more effi-
cient than the non-linear one, delaying the disjointness constraint further improves
performances.

It is worth noting that Tables 2.2 and 2.3 show solving times for only those in-
stances for which at least one solver was able to terminate in less than 1 hour. For
this reason, even if we used the same initial set of instances for the various solvers
(SAT, Cplex, and Solver), instances in the two tables do not coincide.
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Table 2.2: Solving times (seconds) for k-coloring (SAT solvers).

zchaff walksat bg-walksat satz
Instance Colors Solvable? w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav.

anna 10 N 24.87 15.02 39.61 6.48 5.71 11.83 6.2 4.0 4.57 – – –
anna 11 Y 0.01 0.01 0.00 0.08 0.05 40.00 0.1 0.06 33.33 0.29 0.09 68.97
david 10 N 15.15 13.04 13.93 5.58 4.78 14.33 5.52 4.66 15.41 – – –
david 11 Y 0.1 0.1 0.00 0.07 0.05 25.00 0.07 0.05 25.00 0.63 0.08 87.30

DSJC125.5 8 N 41.42 4.04 90.25 mem mem – mem mem – – – –
DSJC250.5 10 N – 52.69 >98.54 mem mem – mem mem – – – –
DSJC500.1 5 N 11.14 1.55 86.09 mem mem – mem mem – 158.67 145.33 8.41
le450 5a 5 Y 17.23 0.91 94.72 5.42 4.91 9.23 5.51 4.97* 9.97 96.83 77.16 20.31
le450 5b 5 Y 27.77 1.36 95.10 6.17* 5.10 17.30 6.15* 5.48 10.84 104.62 93.33 10.79
le450 5c 5 Y 0.02 0.02 0.00 10.00* 8.67 13.33 9.65 9.23* 4.32 22.45 20.02 10.82
le450 5c 9 Y 11.20 1.81 83.84 1.20 1.20 0.00 1.47 1.35 7.95 – – –
le450 5d 5 Y 0.09 1.20 -1233.33 8.52 8.15 4.31 8.42 8.40 0.20 6.00 5.20 13.33
miles500 9 N 80.19 54.55 31.97 9.08 8.51 6.24 9.70 7.38 23.92 – – –
miles500 20 Y 0.01 0.01 0.00 0.53 0.36 31.25 0.63 0.46 26.32 8.36 3.76 55.02
mulsol.i.2 30 N – – – 28.83 22.85 20.75 30.18 24.16 19.93 – – –
mulsol.i.2 31 Y 0.01 0.01 0.00 4.25 2.36 44.31 4.21 2.80 33.60 5.10 2.67 47.65
mulsol.i.3 30 N – – – 29.20 23.03 21.12 31.47 24.38 22.51 – – –
mulsol.i.3 31 Y 0.01 0.01 0.00 4.22 2.48 41.11 4.60 3.05 33.70 5.04 2.70 46.43
mulsol.i.4 30 N – – – 29.40 23.58 19.78 30.93 24.81 19.77 – – –
mulsol.i.4 31 Y 0.01 0.01 0.00 4.03 2.38 40.91 4.98 2.76 44.48 5.08 2.73 46.26
mulsol.i.5 30 N – – – 26.70 21.38 19.91 28.48 22.63 20.54 – – –
mulsol.i.5 31 Y 0.01 0.01 0.00 4.63 2.53 45.32 5.42 2.88 46.77 5.14 2.74 46.69
myciel5 5 N 413.99 1714.26 <-314.08 1.33 1.16 12.50 1.33 1.15 13.75 52.89 39.25 25.79
myciel5 6 Y 0.01 0.01 0.00 0.02 0.02 0.00 0.01 0.01 0.00 0.10 0.04 60.00
queen8 8 9 Y 1397.23 2144.76 -53.50 5.23 3.95 24.52 5.25 4.13 21.27 0.27 0.22 18.52
queen9 9 10 Y – – – 8.22* 7.31* 10.95 8.43* 7.61* 9.68 56.91 45.51 20.03

queen11 11 13 Y 553.46 863.14 -55.95 15.13 9.71 35.79 14.47 11.63 19.59 205.66 175.62 14.61
queen14 14 17 Y 17.75 114.14 -543.04 8.27 11.82 -42.94 7.40 9.08 -22.75 943.30 708.92 24.86
queen8 12 12 Y 0.13 1.78 -1269.23 5.27 4.68 11.08 6.03 5.71 5.25 0.35 0.25 28.57

(‘–’ means that the solver did not terminate in one hour, while ‘mem’ that an out-of-memory error occurred. A ‘*’ means that the
local search solver did not find a solution).
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Table 2.3: Solving times (seconds) for k-coloring (opl).

Cplex Solver
Instance Colors Solvable? w/ disj. w/o disj. % sav. w/ disj.

anna 10 N 0.76 0.62 18.42 –
anna 11 Y 0.64 0.61 4.69 0.87
david 10 N 0.23 0.25 -8.70 –
david 11 Y 0.56 0.64 -14.29 0.92

DSJC125.1 4 N – – – 0.48
DSJC125.1 5 Y – – – 4.77
DSJC125.5 8 N 15.32 12.45 18.73 10.81
DSJC125.5 20 Y – – – 9.68
DSJC125.5 25 Y – – – 0.59
DSJC125.9 21 N 1408.23 937.69 33.41 –
DSJC250.1 9 Y – – – 2.61
DSJC250.5 10 N – 3160.31 >12.21 –
DSJC500.1 11 N 2.53 1.65 34.78 –
DSJC500.1 12 Y 19.22 18.15 5.57 –
fpsol2.i.2 21 N 22.79 14.24 37.52 –
fpsol2.i.2 31 Y – – – 0.34
fpsol2.i.2 32 Y 3305.41 – <-8.91 1.25
fpsol2.i.3 31 Y – – – 0.64
fpsol2.i.3 32 Y 1572.75 – <-128.90 0.51
games120 8 N 0.97 1.05 -8.25 –
games120 9 Y 0.97 0.88 9.28 0.59

huck 10 N 0.57 0.41 28.07 –
huck 11 Y 0.72 0.8 -11.11 0.73
jean 9 N 0.35 0.43 -22.86 –
jean 10 Y 0.24 0.22 8.33 1.78

le450 15a 13 N 9.51 6.44 32.28 –
le450 15a 16 Y – – – 3.43
le450 15b 16 Y – – – 576.26
le450 25a 21 N 84.73 17.32 79.56 –
le450 25a 25 Y 3536.41 – <-1.80 1.48
le450 25b 25 Y – – – 0.89
le450 5a 4 N 2.24 2.11 5.80 0.76
le450 5a 5 Y – – – 3.68
le450 5b 4 N 2.63 2.47 6.08 0.81
le450 5b 5 Y – – – 1.67
le450 5c 4 N 5.64 6.05 -7.27 0.60
le450 5c 5 Y 690.33 2408.61 -248.91 1.51
le450 5d 4 N 5.89 6.03 -2.38 0.75
le450 5d 5 Y 549.78 651.46 -18.49 0.93
miles1000 42 Y – – – 0.97
miles250 7 N 0.67 0.53 20.90 –
miles250 8 Y 1.21 0.98 19.01 0.86
miles500 19 N 2.31 1.54 33.33 –
miles500 20 Y 2.15 2.01 6.51 0.81
miles750 31 Y 134.88 194.24 -44.01 0.78
mulsol.i.1 49 Y – 92.13 >97.44 1.68
mulsol.i.2 31 Y 26.75 48.24 -80.34 0.66
mulsol.i.3 31 Y 55.77 61.13 -9.61 0.91
mulsol.i.4 31 Y 47.46 53.52 -12.77 1.57
mulsol.i.5 31 Y 166.85 – <-2057.63 0.49
myciel3 3 N 0.86 0.79 8.14 0.74
myciel3 4 Y 1.25 0.98 21.60 0.81
myciel4 4 N 5.22 4.78 8.43 0.79
myciel4 5 Y 1.57 0.88 43.95 0.68
myciel5 5 N – – – 1139.41

(‘–’ means that the solver did not terminate in one hour.)
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Table 2.3: (continued)

Cplex Solver
Instance Colors Solvable? w/ disj. w/o disj. % sav. w/ disj.
myciel5 6 Y 1.77 0.87 50.85 0.73
myciel6 7 Y 1.07 0.91 14.95 0.65
myciel7 8 Y 1.42 1.33 6.34 0.58

queen10 10 12 Y 93.86 44.57 52.51 0.73
queen10 10 15 Y 3.24 3.26 -0.62 1.59
queen11 11 13 Y – 125.1 >96.53 39.44
queen12 12 14 Y – – – 395.71
queen12 12 15 Y 464.78 228.41 50.86 8.45
queen13 13 16 Y 355.31 1055.29 -197.01 168.83
queen14 14 17 Y – 2220.31 >38.32 1.57
queen16 16 19 Y – – – 425.75
queen5 5 4 N 0.81 1.02 -25.93 0.61
queen5 5 5 Y 0.76 0.65 14.47 0.58
queen6 6 6 N 5.62 5.71 -1.60 1.79
queen6 6 7 Y 10.84 6.05 44.19 1.35
queen7 7 6 N 0.99 1.13 -14.14 0.80
queen7 7 7 Y 1.89 3.07 -62.43 0.69
queen8 12 11 N 1.51 1.47 2.65 1552.69
queen8 12 12 Y 75.85 221.24 -191.68 1.29
queen8 8 9 Y – 2411.25 >33.02 1.65
queen9 9 10 Y – – – 126.41
zeroin.i.1 49 Y – – – 0.77
zeroin.i.2 30 Y 48.86 68.36 -39.91 1.81
zeroin.i.3 30 Y – 56.26 >98.44 1.39

(‘–’ means that the solver did not terminate in one hour.)

Job shop scheduling. We considered 40 benchmark instances known as LA01,
. . . , LA40, with the number of tasks ranging from 50 to 225, number of jobs from
10 to 15, and number of processors ranging from 5 to 15. However, in order to
make our solvers (especially the SAT ones) able to deal with such large instances,
we reduced (and rounded) all task lengths and the global deadline by a factor of
20 (original lengths were up 100). In this way, we obtained instances that are good
approximations of the original ones, but with much smaller time horizons, hence less
propositional variables must be generated.

SAT solving times are listed in Table 2.4 for different values for the deadline.
Again, we have a mixed evidence for what concerns zchaff, which benefits from safe-
delay on many but not all instances, while savings in time are always positive when
using local search solvers walksat and bg-walksat (even when they are not able
to find a solution for positive instances, delaying constraints makes them terminate
earlier). As for satz, savings in performances are often very high, even if this solver is
able to solve only a small portion of the instance set. Interestingly, the blow-down in
the number of clauses due to safe-delay, in some cases makes the solver able to handle
some large instances (cf. Table 2.4, e.g., instance LA06 with deadline 50), preventing
the system from going out of memory (even if, in many cases, the out-of-memory
error changes to a timeout).

For what concerns the experiments in Cplex instead, this solver seems not to be
much affected by delaying constraints (or even affected negatively) on this problem,
and anyway it is slower than Solver. For this reason, detailed results are omitted.
We also remind that opl, when used with non-linear specifications, has specialized



2.4. EXPERIMENTAL RESULTS 37

constructs for dealing with scheduling problems, that propagate very efficiently. This
feature makes impossible a fair experimentation of this reformulation technique with
Solver, since the relevant specification does not explicitly make use of variables for
tasks’ starting times.

Summing up, we solved several thousands of instances. Delaying of constraints seems
to be useful when using a SAT solver. In particular, local search solvers like walksat
and bg-walksat almost always benefit from the reformulation. The same happens
when using satz. As for zchaff, we have mixed evidence, since in some cases it seems
not to be affected by safe-delay (cf., e.g., results in Table 2.1), or affected negatively,
while in others it benefits from the reformulation (cf., e.g., Tables 2.2 and 2.4).

As far as Cplex is concerned, we have mixed evidence. First of all, as already
observed, it is not always the case that Cplex is always faster than Solver, or vice
versa. However, in those cases in which the linear specification is faster, it is possible
to find several instances for which delaying constraints speeds-up the computation.

As a concluding remark, it is interesting to observe that the experimentation shows
that very often delaying constraints improves the performances of the best solver for
each instance. Performances of other –not optimal– solvers instead can be worse.
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Table 2.4: Solving times (seconds) for job shop scheduling.

zchaff walksat bg-walksat satz
Instance Proc Tasks Jobs Deadline Solvable? w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav.

la01 5 50 10 33 N 0.69 0.85 -23.19 39.83 31.13 21.84 39.55 31.21 21.07 – – –
la01 5 50 10 34 Y 0.13 1.24 -853.85 40.77* 31.42* 22.94 40.72* 31.95* 21.53 154.49 1.76 98.86
la02 5 50 10 32 N 1.75 1.61 8.00 36.63 28.63 21.84 37.95 29.92 21.17 – – –
la02 5 50 10 33 Y 2.34 1.07 54.27 37.37* 28.80* 22.93 38.23* 29.10* 23.89 – – –
la03 5 50 10 31 N 2.77 2.10 24.19 32.78 25.37 22.62 32.92 25.11 23.70 – – –
la03 5 50 10 32 Y 1.92 0.31 83.85 32.85* 25.53* 22.27 32.67* 26.31* 19.44 – – –
la04 5 50 10 29 N 1.11 1.06 4.50 33.22 26.10 21.42 33.48 26.06 22.15 904.38 189.44 79.05
la04 5 50 10 30 Y 4.05 2.83 30.12 33.25* 26.22* 21.15 34.47* 26.02* 24.52 699.77 295.12 57.83
la05 5 50 10 28 N 1.33 0.99 25.56 28.92 22.83 21.04 29.25 23.10 21.03 – – –
la05 5 50 10 29 Y 0.29 0.57 -96.55 26.42 18.40 30.35 27.73* 19.46 29.81 0.89 0.58 34.83
la06 5 75 15 46 N – – – 78.10 62.92 19.44 79.98 63.00 21.23 mem – –
la06 5 75 15 50 Y 0.44 1.89 -329.55 77.32 60.20* 22.14 78.77* 60.37* 23.36 mem 4.87 100.00
la07 5 75 15 43 N – – – 78.35 62.21 20.59 80.10 62.55 21.91 – – –
la07 5 75 15 50 Y 1.27 0.98 22.83 78.62* 60.78* 22.68 78.08* 59.40* 23.93 mem – –
la08 5 75 15 42 N – – – 77.02 60.72 21.16 76.18 60.17 21.02 – – –
la08 5 75 15 43 Y 262.44 181.53 30.83 76.83* 62.02* 19.28 77.25* 61.07* 20.95 – – –
la09 5 75 15 46 N – – – 86.58 67.20 22.39 86.57 67.15 22.43 mem – –
la09 5 75 15 50 Y 0.31 5.76 85.73* 65.40* 23.72 83.65* 63.30 24.33 mem 3108.10 100.00
la10 5 75 15 46 N – – – 80.80 64.86 19.72 81.42 63.07 22.54 mem – –
la10 5 75 15 50 Y 2.23 15.44 80.10* 61.90* 22.72 80.97* 61.05* 24.60 mem – –
la16 10 100 10 47 N 155.26 90.71 41.58 69.33 51.73 25.38 67.47 51.11 24.23 mem – –
la16 10 100 10 48 Y 151.64 18.71 87.66 69.87* 51.55* 26.22 70.70* 51.53* 27.11 mem – –
la17 10 100 10 39 N 5.42 3.72 31.37 57.03 44.46 22.03 56.23 43.78 22.14 – – –
la17 10 100 10 40 Y 3.68 4.19 -13.86 57.82* 44.20* 23.55 58.80* 43.71* 25.65 – – –
la18 10 100 10 41 N 6.31 4.21 33.28 62.30 47.53 23.70 61.12 45.48 25.58 – – –
la18 10 100 10 42 Y 5.75 3.27 43.13 63.72* 47.50* 25.45 62.17* 46.85* 24.64 – – –
la19 10 100 10 42 N 50.04 33.09 33.87 63.28 47.17 25.47 63.97 47.4 25.90 – – –
la19 10 100 10 43 Y 120.68 154.67 -28.17 64.83* 48.53* 25.14 63.52* 47.58* 25.09 – 3524.02 >2.11
la20 10 100 10 44 N 6.04 5.33 11.75 66.52 50.68 23.80 66.22 49.53 25.20 mem – –
la20 10 100 10 45 Y 20.86 13.91 33.32 68.87* 50.60* 26.52 67.47* 49.40* 26.78 mem – –
la22 10 150 15 48 N – – – mem mem – mem mem – mem mem –
la22 10 150 15 50 Y 1173.04 619.5 47.19 mem mem – mem mem – mem mem –
la23 10 150 15 50 N – 934.79 >48.07 mem mem – mem mem – mem mem –
la23 10 150 15 53 Y – 1028.56 42.86 mem mem – mem mem – mem mem –
la24 10 150 15 46 N 138.15 123.37 10.70 mem mem – mem mem – mem mem –
la24 10 150 15 48 Y – 1083.31 >39.82 mem mem – mem mem – mem mem –
la25 10 150 15 48 N 356.56 344.02 3.52 mem mem – mem mem – mem mem –
la25 10 150 15 50 Y 438.27 510.21 -16.41 mem mem – mem mem – mem mem –
la29 10 200 20 50 N 705.09 216.74 69.26 mem mem – mem mem – mem mem –
la29 10 200 20 75 Y – 1387.73 >22.90 mem mem – mem mem – mem mem –

(‘–’ means that the solver did not terminate in one hour, while ‘mem’ that an out-of-memory error occurred. A ‘*’ means that the local search solver
did not find a solution).
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Table 2.4: (continued)

zchaff walksat bg-walksat satz
Instance Proc Tasks Jobs Deadline Solvable? w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav. w/ disj. w/o disj. % sav.

la36 15 225 15 62 N 1238.04 782 36.84 mem mem – mem mem – mem mem –
la36 15 225 15 65 Y – 527.86 >70.67 mem mem – mem mem – mem mem –
la38 15 225 15 58 N – 844.58 >53.08 mem mem – mem mem – mem mem –
la38 15 225 15 75 Y 1329.74 – <-35.36 mem mem – mem mem – mem mem –
la39 15 225 15 61 N 1193.76 1773.00 -48.52 mem mem – mem mem – mem mem –
la39 15 225 15 62 Y 787.54 918.24 -16.60 mem mem – mem mem – mem mem –
la40 15 225 15 59 N 989.98 712.96 27.98 mem mem – mem mem – mem mem –
la40 15 225 15 75 Y 1154.18 1256.54 -8.87 mem mem – mem mem – mem mem –

(‘–’ means that the solver did not terminate in one hour, while ‘mem’ that an out-of-memory error occurred. A ‘*’ means that the local search solver
did not find a solution).
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2.5 Discussion and future research directions

In this chapter we have shown a simple reformulation architecture and proven its
soundness for a large class of problems. The reformulation allows to delay the solution
of some constraints, often resulting in faster solving. In this way, we have shown that
reasoning on the specification can be very effective, at least on some classes of solvers.

In many of the proposed examples, the constraints that have been delayed are
those stating that a variable must be assigned to at most one domain value (cf., e.g.,
the disjointness constraints in Graph k-coloring). It may be wondered that this fact is
somehow implicit in the CP paradigm, where variables are always assigned to exactly
one value. However, in this thesis we take a Knowledge Representation approach
to problem modelling and reformulation, aiming to have a strong decoupling of the
problem specification from the solving technology used. Hence, as already mentioned
in Section 1.3, the usefulness of this and other reformulation techniques must be
evaluated in relation to the class of solvers used. As for the constraints delayed in
the proposed examples, we observe that they need to be explicitly stated when using
Mathematical Programming (cf., e.g., the ampl specification of Graph k-coloring in
Figure 1.3), or SAT technology, and, as experimental results show, delaying them
often greatly improves performances of such solvers.

Although Theorem 2.2.1 calls for a tautology checking (cf. Hyp 2), we have shown
different specifications for which this test is immediate. Furthermore, we believe
that, in practice, an automated theorem prover (ATP) can be used to reason on
specifications, thus making it possible to automatically perform the task of choosing
constraints to delay. Actually, in Chapter 6 we show that state-of-the-art ATPs
usually perform very well in similar tasks (i.e., detecting and breaking symmetries
and detecting functional dependencies on problem specifications).

The proposed technique focuses on a form of reformulation that partitions the first-
order part of a specification. This basic idea can be generalized, as an example by
evaluating in both stages of the computation a constraint (e.g., (2.1)), or to allow
non-shrink second stages (cf., e.g., the specification for the Golomb ruler problem in
Example 2.2.4), in order to allow reformulation for a larger class of specifications (an
extension of the technique to a class of permutation problem is studied in Chapter 3).
Even more generally, the second stage may amount to the evaluation of a second-order
formula. In the future, we plan –with a more extensive experimentation– to check
whether such generalizations are effective in practice.

Another important issue is to understand the relationships between delaying con-
straints and other techniques, e.g., symmetry breaking (cf. Chapter 4). In fact, it
is not always the case that delaying constraints, and so making the set of solutions
larger, improves the solving process. Adding, e.g., symmetry-breaking constraints is
a well known technique that may reach the same goal with the opposite strategy,
i.e., reducing the set of solutions. Currently, it is not completely clear in which cases
removing constraints results in better performances with respect to adding more con-
straints to the specification itself, even if it seems that an important role is played by
the nature of constraints we remove or add, e.g., by their amenability to propagation
in the search tree, together with the nature of the solver used, e.g., backtracking,
linear, or based on local search. As for the latter class of solvers, it is known that
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enlarging the set of solutions can significantly speed-up performances (cf., e.g., (106)).
Our experiments on walksat and bg-walksat confirm this thesis.

Finally, it is our goal to rephrase the theoretical results into rules for automatically
reformulating problem specifications given in more complex languages, e.g. ampl and
opl, which have higher-level built-in constructs.

Results in this chapter have been published in (20).
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Chapter 3

Safe-delay constraints for

permutation problems

3.1 Introduction

In this chapter, we extend the reformulation technique by safe-delay proposed in
Chapter 2 to the context of permutation problems. As already argued in Subsec-
tion 2.2.4, some problem specifications may exhibit constraints that can be safely
delayed, even if with a second stage of different nature with respect to that described
in Chapter 2. This is the case of permutation problems. In this context, the sce-
nario is more complex, in that, to allow some of the constraints to be delayed, a
slight modification of the other constraints is needed, to ensure correctness (cf. Sec-
tion 3.3). The architecture we propose is yet the one depicted in Figure 2.2, even if
the “Simplification” stage is more complex.

In particular, this chapter focuses on the subclass of permutation problems char-
acterized by constraints that bind an element of the permutation to the next or
previous one only. Problems in this class arise frequently both in theory and in
practice: NP-complete Hamiltonian path, Permutation flow-shop scheduling, and the
Tiling problems are good examples.

The outline is as follows: in Section 3.2 we show how permutations can be formulated
in ESO and provide the specification of a prototypical problem in the class we focus
on: Hamiltonian path (HP), which we carry on as running example. In Section 3.3 we
show a first reformulation of the HP problem, while in Section 3.4 we provide further
examples. The reformulation technique presented in Section 3.3 can be extended
and optimized in different ways: Section 3.5 describes some of these optimizations
on the previous examples. Finally, a preliminary experimentation of the technique,
that shows promising time savings, is presented in Section 3.6, while conclusions and
future work are given in Section 3.7.

43
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3.2 Permutation problems

A permutation of tuples in a r-ary relation R can be viewed as a new 2r-ary relation
P with components in R defining a linear order among its tuples (cf. Section 1.2).
Equivalently, we can identify a permutation with a bijective function from the set
of tuples in R to the set of bounded integers in the interval [1, |R|], where |R| is
the number of tuples that belong to relation R. For the sake of simplicity, in the
following we use the second characterization. We already introduced bounded integers
in Section 1.2, and observed that this does not affect the expressive power of ESO.

Formula (1.1) characterizes ESO specifications for search problems in general.
However, since this chapter focuses on permutation problems only, we assume that
specifications for them are given in the following specialized form:

∃P (r+1), ~S′ permutation(P,R(r)) ∧ ϕ(~S, ~R), (3.1)

where R is a r-ary relation of (or a relational expression over relations in) the instance

schema ~R, and P (r+1) is a distinguished guessed predicate of ~S = {P} ∪ ~S′, whose
extensions are supposed to be permutations (i.e., total orderings) of tuples in R, as
the expression for permutation(·, ·) states:

permutation(P (r+1), R(r))
.
= ∀~x, i P (~x, i) → R(~x) ∧ (i ∈ [1, |R|]) ∧ (3.2)

∀~x ∃i P (~x, i) ∧ (3.3)

∀i ∃~x P (~x, i) ∧ (3.4)

∀~x, i, i′ P (~x, i) ∧ P (~x, i′) → i = i′ ∧ (3.5)

∀~x, ~x′, i P (~x, i) ∧ P (~x′, i) → x = x′. (3.6)

The expression for permutation(·, ·) forces extensions of P to be bijections among
tuples in R and bounded integers in the interval [1, |R|]. In particular, (3.2) forces
P to be a relation in R × [1, |R|], while (3.3–3.6) force P to be, respectively, total,
surgective, monodrome (i.e., a function), and injective (we call the last constraint
all-different).

It is worth noting that every set of three of the constraints (3.3–3.6) entails the
fourth, since the size of the domain of the function encoded by P is equal to the size
of its codomain. To this end, from now on we ignore constraint (3.4).

Example 3.2.1 (The Hamiltonian path (HP) problem (62, Prob. GT39, p.
199)). Given a graph as input, this NP-complete problem amounts to decide whether
there exists a path in the graph that touches every node exactly once.

This problem can be formulated in ESO different ways. As an example, in Exam-
ple A.2.1 we give a possible specification for HP. On the other hand, here we give a
formulation as a permutation problem: an HP is a permutation of the graph nodes
such that every node is linked by an edge to the next one, with respect to the order
given by the permutation.

In particular, assuming that the input graph is encoded in relations node(·) and
edge(·, ·), a specification for HP as permutation problem is as follows:
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∃P (2) permutation(P, node) ∧

∀v, v′, i P (v, i) ∧ P (v′, i+ 1) → edge(v, v′). (3.7)

Constraint (3.7) (i.e., the ϕ part of the specification, according to formula (3.1))
imposes the existence of an edge from any node to its successor. Figure 3.1(a) shows
an instance and a solution of the HP problem.

In what follows we present a reformulation technique that applies to the class of
permutation problems characterized by the fact that the ϕ(~S, ~R) part of the specifi-
cation (3.1) contains constraints that bind an element of the permutation to the next
or previous one only. It can be checked that the specification given in Example 3.2.1
belongs to this class.

To simplify the presentation of our reformulation technique, we will initially use the
HP problem as a running example. However, it is worth noting that our technique can
be used with any specification in the class defined above. To this end, in Section 3.4
we show other examples of problem specifications for which our technique works.

3.3 Reformulating Hamiltonian path

Let us consider the specification in Example 3.2.1, and let us ignore (3.6) (the all-
different constraint) in the definition of permutation(·, ·). As a result, relation P can
map several tuples of relation node(·) into the same integer, thus inducing only a
partial order on the graph nodes. We say that nodes have been divided into groups.
As an example, Figure 3.1(b) shows a situation in which the two nodes in group 5
can be visited in any order, one of them leading to the solution in Fig. 3.1(a). More
formally, the problem can be abstracted from the level of nodes to the level of groups
of nodes.

If, coherently with the relaxation of (3.6), constraint (3.7) is extended to handle
pairs of (distinct) nodes in the same group, i.e., to:

∀v, v′, i P (v, i) ∧ P (v′, i+ 1) → edge(v, v′) ∧

∀v, v′, i P (v, i) ∧ P (v′, i) ∧ v 6= v′ → edge(v, v′),
(3.7’)

we obtain, except for some technicalities we will discuss next, a possible reformulation
of the original HP specification, since, for every input instance, a solution of the
reformulated specification can be translated in polynomial time (actually in linear
time in the size of the graph) to a solution of the original problem (via a post-
processing stage), by choosing an arbitrary order of nodes in the same group.

It can be observed that constraint (3.7’) has a slightly different meaning with
respect to (3.7):

1. It forces each group to be “strongly” connected to the next one (by forcing every
node of every group to be linked to every node of the next one);

2. It forces subgraphs induced by groups of nodes to be cliques.
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The PostProcessing stage of the computation (cf. Figure 2.2) is the same as enforcing
the delayed constraint (3.6), i.e., forcing the partial order on nodes to be total.

Hence, since (3.6) can be ignored (in a first step) regardless of the input instance,
we call it a safe-delay constraint. However, a modification of the remaining constraints
(e.g., (3.7)) is needed in this case to guarantee the correctness of the reformulation.

The reformulated specification for the HP problem is thus as follows:

∃P ∗(2) permutationw/o (all-diff)(P
∗, node) ∧ (3.8)

∀v, v′, i P ∗(v, i) ∧ P ∗(v′, i+ 1) → edge(v, v′) ∧

∀v, v′, i P ∗(v, i) ∧ P ∗(v′, i) ∧ v 6= v′ → edge(v, v′),
(3.9)

where permutationw/o (all-diff)(P
∗, node) is obtained by ignoring the all-different con-

straint (3.6) from the definition of permutation(P ∗, node), cf. (3.2–3.6).
Constraints (3.3) and (3.5) in the expression for permutationw/o (all-diff)(P

∗, node)
partition the graph nodes into groups, opportunely linked by edges (3.9) to allow the
traversal of the whole graph. Since groups are cliques, paths linking all nodes in them
surely exist, and, for every input instance, any extension of P ∗ that is a solution
of the reformulated specification, can be transformed in an extension of P that is a
valid solution of the original one, by choosing one such sub-path for every group in
an arbitrary way.

However, some technicalities must be considered: in particular, the expression
“i + 1” in constraint (3.9) must be read as the successor group with respect to i,
since the sequence of group numbers can have “holes” (i.e., P ∗ can map nodes to,
e.g., groups 1 and 3, but not to 2). To deal with these issues in a simple way, we
add a new constraint to the definition of permutationw/o (all-diff)(·, ·), saying that the
sequence of group numbers does not have holes (we call it the compactness constraint).
It is worth noting that this constraint preserves satisfiability and can be removed by
a different encoding of the search space (e.g., by avoiding integers and encoding it as
a partial order on nodes by means of a successor relation).

Figure 3.1(b) shows a solution of the reformulated problem for the same instance
in Figure 3.1(a), that leads to a set of solutions of the original one.

In Section 3.5 we will discuss two optimization of this reformulation technique,
that lead to larger groups of nodes.

3.4 Further examples

In order to show how this technique can be applied to different problems in the class
defined in Section 3.1, in the following we present ESO specifications for some of
them: the Permutation flow-shop and the Mono-dimensional tiling problems.

Example 3.4.1 (The Permutation flow-shop (PFS) problem (62, Prob.
SS55, p. 241)). Given a set M of machines, a set J of jobs, each one consist-
ing of a sequence of |M | tasks (the i-th one to be executed on the i-th machine) of
given positive durations, and an overall time deadline (makespan) D to be met, this
NP-complete problem amounts to decide whether a permutation P of the jobs, and a
starting time for each task of each job exists, such that:
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1. For every job j and for every machine m, task of j at m is executed after task
of job j − 1 at m;

2. For every job, the execution of its task on any machine starts only after the task
on the previous machine terminates;

3. Each machine executes at most one task at a time;

4. No preemption is allowed (i.e., a task must be terminated once started);

5. The execution of all jobs terminates before time D.

Input to this problem is assumed to be given by relations M(·) listing the machines,
J(·) listing jobs, dur(·, ·, ·) encoding duration of tasks (a tuple 〈j,m, d〉 in relation
dur(·, ·, ·) means that the task of job j to be executed on machine m has duration d),
and T ime(·) encoding all time instants from 0 to D.

For the sake of simplicity, we assume that tuples in relations M and T ime are or-
dered (e.g., represented by integers), and the function “+” on elements in the domain
of relation T ime is defined.

An ESO specification for the PFS problem is as follows:

∃P (2), S(3) permutation(P, J) ∧

totalFunction(S, 〈J,M〉, T ime) ∧ (3.10)

∀i ∀j,m, t ∀j′, t′, d′
(

P (j, i) ∧ P (j′, i− 1) ∧ S(j,m, t) ∧ (3.11)

S(j′,m, t′) ∧ dur(j′,m, d′)
)

→ (t ≥ t′ + d′) ∧

∀j,m, t, tprv, dprv

(

S(j,m, t) ∧ S(j,m− 1, tprv)∧ (3.12)

dur(j,m − 1, dprv)
)

→ (t ≥ tprv + dprv) ∧

∀j,m, t, d S(j,m, t) ∧ dur(j,m, d) → T ime(t+ d). (3.13)

Guessed predicate P (2) encodes a total order among jobs, while S(3) represents the
starting time for each task of each job: tuple 〈j,m, t〉 in S means that task m of job
j is scheduled to start at time t.

From the specification above, S is forced to be a total function (cf. (3.10)) from
pairs in J ×M to tuples in T ime, i.e., it assigns a unique starting time (up to the
horizon D) to every task of every job (we omit the definition of totalFunction(·, ·, ·),
that can be derived from the other expressions in Appendix A); we just say that the
second argument is the domain, while the third is the codomain of the mapping.

As for the other constraints, (3.11) forces the starting times assignment to let each
machine execute at most one job at each time instant, while (3.12) forces each task of
any job to start only when the previous task of the same job terminates. Finally, (3.13)
forces the scheduling to meet the global deadline D.

By applying our reformulation technique to the PFS problem, we allow different jobs
to be assigned by P to the same integer, i.e., that are grouped together to form a
unique job. For every input instance, once a solution of the reformulated specification
is obtained, any arbitrary order among jobs grouped together leads to a valid solution
of the original problem (cf. Figures 3.1(c) and (d)). Anyway, as we will briefly discuss
in Section 3.5, a relaxation of the deadline can be used to optimize the reformulation.
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(a)

(c)

(b)

(d)

Figure 3.1: An instance and a solution for HP (a) and PFS (3 jobs, 3 machines) (c),
and a solution of the reformulated specification for the same instance ((b) and (d)),
subsuming the one in (a) and (c), respectively.

Example 3.4.2 (The Mono-dimensional tiling (1DT) problem (62, A variant
of Prob. GP13, p. 257)). Given a set C of colors and a set of tiles with their left
and right sides colored with colors in C, this NP-complete problem amounts to decide
whether a permutation P of the tiles exists, such that, for every pair of tiles one next
to the other with respect to the order given by the permutation, colors on adjacent
sides coincide.

Input to this problem is assumed to be given by relations C(·) for colors and T ile(·)
for tiles, and colors for the left and right side of each tile are represented by relation
T ileColors(·, ·, ·) (a tuple 〈t, l, r〉 in T ileColors means that tile t has the left side
colored in l and the right one in r, where both l and r belong to C).

An ESO specification for the 1DT problem is as follows:

∃P (2) permutation(P, T ile) ∧

∀i ∀t, l, r, ∀t′, l′, r′ P (t, i) ∧ P (t′, i+ 1) ∧ (3.14)

T ileColors(t, l, r) ∧ T ileColors(t′, l′, r′) → (r = l′).

The straightforward application of our reformulation technique for this specification
leads to different tiles that can be assigned to the same position number in the se-
quence, i.e., grouped together to form a block that behaves just like a single tile.
Any ordering of tiles in the same block can be used to obtain a valid solution of the
original problem, for every input instance, and for every solution of the reformulated
specification. However, by the other constraints, this reformulation forces all tiles in
a block to be equal to each other, and such that the color on their left side is the
same as the one on their right side. Again, we will briefly describe an optimized
reformulation for this specification in Section 3.5.
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3.5 Optimizations and extensions

In this section we discuss some alternatives to optimize specifications that are obtained
by the application of our technique.

Let us consider again the specification of the HP problem (cf. Example 3.2.1), and
its reformulation (3.8–3.9), that we refer to as Reformulation 1 (cf. also Figure 3.1(a)
and (b)).

From Figure 3.1(b), we can observe how the price for allowing the abstraction
from the level of nodes to the level of groups of nodes (i.e., (3.9)) is very high, since
it imposes every node of a group to be linked to every node of the next one. As a
consequence, groups are usually very small.

A first optimization (which we refer to as Reformulation 2 of HP) is to force every
node of a group to be linked to at least one (and not to every) node of the next group.
This yet guarantees that every permutation of nodes in a group is a good sub-path
of the whole path. This leads to the following specification:

∃P ∗ permutationw/o (all-diff)(P
∗, node) ∧ (3.15)

∀v, i ¬last(P ∗, i) → ∃v′ P ∗(v, i) ∧ P ∗(v′, i+ 1) → edge(v, v′) ∧

∀v, v′, i P ∗(v, i) ∧ P ∗(v′, i) ∧ v 6= v′ → edge(v, v′),
(3.16)

where

last(P ∗, i)
.
= ∃vi P ∗(vi, i) ∧ ¬∃vi+1 P ∗(vi+1, i+ 1),

i.e., group i is the last one with respect to the order given by P ∗.
Figure 3.2(a) shows a possible solution of the reformulated problem, subsuming

the one in Figure 3.1(b).
Actually, we can make this intuition much more reasonable, observing that what

we really want is to go from one group to the next without touching a node twice.
So, if we start traversing group i from node v, we need an edge from a node v′ 6= v in
group i to some node in group i+ 1 (if present). This allows us to choose a path for
group i starting from v and ending in v′. Such a path surely exists, since groups are
cliques (cf. Fig. 3.2(b)). This (simplified) constraint can be formalized in the following
way: each group i needs to have at least two distinct nodes, vi

in and vi
out, such that:

• An edge exists from v
(i−1)
out to vi

in, for every i > 1;

• An edge exists from vi
out to v

(i+1)
in , for every i < k, with k being the last group.

We call this new reformulation for the HP problem Reformulation 3, and its formal
specification is as follows:

∃P ∗(2) permutationw/o (all-diff)(P
∗, node) ∧ (3.17)

∀i ∃vi
in, v

i
out P ∗(vi

in, i) ∧ P ∗(vi
out, i) ∧ vi

in 6= vi
out ∧

(i > 1) → ∃vi−1
out P

∗(vi−1
out , i− 1) ∧ edge(vi−1

out , v
i
in) ∧

¬last(P ∗, i) → ∃vi+1
in P ∗(vi+1

in , i+ 1) ∧ edge(vi
out, v

i+1
in ).

(3.18)

In general, for any instance, the following inclusion relationship holds:
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(a) (b)

Figure 3.2: A solution of Reformulation 2 (a) and 3 (b) of HP for the instance of
Fig. 3.1(a), and subsuming solution of Fig. 3.1(b).

{Sols of orig. spec} ⊆ {Sols of Ref. 1} ⊆ {Sols of Ref. 2} ⊆ {Sols of Ref. 3}.

As for PFS, it can be observed that allowing several jobs to be grouped together leads
to longer schedulings (cf. Figure 3.1(d)). To contrast this phenomenon, a possible
optimization of our technique is to augment the makespan, yet guaranteeing that,
for every solution of the reformulated problem, every ordering of jobs in the same
group leads to a valid solution of the original problem (with the original deadline).
We are currently investigating different alternatives and heuristics for the makespan
augmentation, from the simplest one, that relies on the minimum and maximum
duration of tasks of each job, to more complex expressions, that rely also on the
particular grouping of jobs guessed.

Also the reformulated specification for 1DT can be optimized, in a similar way of
that for HP, i.e., by allowing that at least one ordering of tiles in the same group (and
not every one) leads to a good sub-tiling that correctly interfaces with the rest of the
solution. Furthermore, also a limitation on the group size is possible, to let this check
to be first-order, and so polynomial time.

3.6 Experimentation

In order to check the effectiveness of this technique, we made a preliminary experi-
mentation on several instances for the specifications described above. In particular,
experiments involved both the DPLL-base SAT solver eqsatz (86) and the state-of-
the-art CP engine Ilog Solver, invoked through oplstudio.

In particular, we made the following experiments:

• Hamiltonian path: random instances (graphs between 16 and 24 nodes) solved
with both eqsatz (and an ad-hoc program for the instantiation), and Ilog
Solver;

• Permutation flow shop: benchmark instances taken from the OR-Library solved
with Ilog Solver;

• Mono-dimensional tiling: random instances (from 9 to 11 tiles and different
values for the number of colors), created with an home-made generator and
solved with Ilog Solver.
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Experiments were executed on an Intel 2.4 GHz Xeon bi-processor computer and on
a PentiumII.

As for HP, we solved all three reformulated specifications. For what concerns the
SAT-based experimentation, consistent time savings (from seconds to several min-
utes, and up to 95%) have been obtained for almost all instances. On the other hand,
Ilog Solver seems to be negatively affected by reformulation on this problem: in
particular, solving Reformulation 1 is rarely faster than solving the original specifica-
tion, and, moreover, the solver was often unable to solve Reformulations 2 and 3 in
reasonable time. A similar behavior has been observed for 1DT. As for future work,
we plan to use a SAT solver for this problem, to test the effectiveness of the technique
in this case.

On the contrary, the application of the proposed reformulation to PFS lead to
consistent time savings to the Solver specification, especially on negative instances.
In particular, for many of them, deciding that the reformulated specification had no
solutions needed very few seconds, while the solver did not terminate in 30 minutes
with the original specification.

3.7 Discussion and future research directions

In this chapter, we extended reformulation by safe-delay, presented in Chapter 2, in
order to deal with a class of permutation problems. We identified the all-different
constraint as safe-delay, and proposed a reformulation technique that allows to ignore
its evaluation in a first-stage, with the goal of improving the performances of the
solving engine. Once a solution of the new specification has been found, it is possible to
find a valid solution of the original problem in an efficient (i.e., polynomial time) way,
without further search. Having a larger set of solutions, the reformulated specification
is thus likely to be more efficiently solvable for some classes of solvers.

The main difference between this technique and that of Chapter 2 is that a modifi-
cation of the remaining constraints of the specification can be necessary to guarantee
the correctness of the reformulation. We characterized a class of permutation problems
for which the reformulation works, and presented encouraging experimental results
that show that this technique improves solving times on several classes of instances
for different problems and different solvers.

Finally, it is worth noting that, even if the above reformulations seem much more
complex than those in Chapter 2, they are absolutely syntax-based, and therefore are
completely automatable.

As for future work, we plan to characterize the presented reformulation technique
in a formal way, providing formal proofs of the correctness of the transformation.
Secondly, we plan to further analyze the various extensions and optimizations of
our technique discussed in Section 3.5, e.g., by providing a better relaxation of the
deadline in the reformulation of PFS. A more exhaustive experimentation, in the style
of that of Section 5.5 is also planned. As ultimate goal, it would be very interesting
to understand how to make the system able to automatically perform these kind of
optimizations, by modifying the other constraints.

Preliminary results of this chapter have been published in (90).
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Chapter 4

Detecting and breaking

symmetries on problem

specifications

4.1 Introduction

In this chapter we tackle the reformulation problem in presence of symmetries in the
specification, that have been widely recognized to be one of the major obstacles for
the efficient solving of combinatorial and constraint satisfaction problems.

Much work has been already done, and a wide literature is nowadays available on
how symmetries can be detected and exploited, with the aim of greatly reducing the
size of the search space. Four are the main approaches that have been followed by
the research community to deal with symmetries:

1. Imposing additional constraints to the model of the problem, which are satisfied
only for one of the symmetrical points in the search space, cf., e.g., (107; 39;
110; 116; 119; 54);

2. Introducing additional constraints during the search process, to avoid the traver-
sal of symmetrical points, cf., e.g., (11; 4; 63; 56; 52; 108);

3. Defining a search strategy able to break symmetries as soon as possible (e.g.,
by first selecting variables involved in the greatest number of local symmetries),
cf., e.g., (95);

4. Isolating subclasses of CSPs for which particular search strategies can be used
in order to efficiently break their symmetries (cf., e.g., tractability of symmetry
breaking for CSPs with various form of interchangeability (125)).

We follow the first approach, but, differently from other works in the literature (e.g.,
(39; 110; 54)), we attack the problem at the logical level of the specification. In
fact, in many cases, symmetries arise from the problem structure, and not from the
particular instance considered. Hence, they can be very easily detected by humans
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(cf. Section 4.5) at the specification level, and convenient symmetry-breaking formulae
can be added to the specification itself. Furthermore, since specifications are logical
formulae, computer tools can be used to automatically or semiautomatically detect
and break symmetries in complex cases (cf. Chapter 6).

Finally, detecting and breaking symmetries at the specification level does not rule
out the possibility to use symmetry-breaking techniques at the instance level, in order
to deal also with additional symmetries that arise from the problem instance. As an
example, since some systems generate a SAT instance, e.g., (26), or an instance of
integer linear programming, e.g., (124), it is possible to do symmetry breaking on
such instances, using existing techniques, cf. e.g., (40).

The outline of this chapter is as follows: in Section 4.2, after recalling basic defi-
nitions of symmetries on CSPs, we lift to the specification level, defining the concepts
of symmetry of a specification and of symmetry-breaking formula. Then, in Sec-
tions 4.3 and 4.4, we show, respectively, how to detect and break such symmetries,
clarifying the new definitions by showing, in Section 4.5, some specifications: Graph
3-coloring, Not-all-equal Sat, Social golfer, and BIBD generation problems. For all
of them we detect and break symmetries. Finally, Section 4.6 presents experimental
results of our symmetry-breaking techniques on some of those examples, using state-
of-the-art linear and constraint programming solvers Cplex and Solver, invoked
through oplstudio, while Section 4.7 draws conclusions and discusses future work.

4.2 Basic definitions

In this section we give the definitions of transformation and symmetry of a problem
specification. These definitions can be obtained as a natural lifting of the respective
definitions in the context of Constraint Satisfaction Problems (CSPs). To this end,
we briefly recall these standard definitions, before focusing on the specification level.

Definition 4.2.1 (Constraint satisfaction problem (CSP)). A CSP is a tuple

〈~V , ~D, ~C〉, where ~V = {X1, . . . , Xn} is a set of variables, ~D = {D1, . . . , Dn} is a set

of finite domains, one for each variable, ~C = {C1, . . . , Cm} is a set of constraints

on ~V and ~D, i.e., a set of relations Ci(Xi1 , . . . , Xik
} ⊆ Di1 × · · · × Dik

, for every
i ∈ [1..m], containing those configurations of assignments allowed by the constraint.

Given a CSP π, we can transform it in a new CSP π′ by exchanging variables and/or
domains order. A CSP transformation is defined in the following way:

Definition 4.2.2 (CSP transformation). Given a CSP π = 〈~V , ~D, ~C〉, with ~V =

{X1, . . . , Xn} and ~D = {D1, . . . , Dn}, a transformation of π is a set of bijections
σ0, σ1, . . . , σn such that:

σ0 : ~V → ~V

for every i ∈ [1, n], σi : Di → Dindex(σ0(Xi)),

where index() is a function that returns the index of the argument variable.

It is worth noting that a transformation is defined on ~V and ~D only, and not on ~C.
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Some interesting specializations of Definition 4.2.2 do exists. They apply also to
forthcoming Definition 4.2.3. In particular, we have:

Variable transformation:

• σ1, . . . , σn are the identity function;

Value transformation:

• σ0 is the identity function;

Uniform value transformation:

• σ0 is the identity function;

• σ1 = σ2 = · · · = σn;

• D1 = D2 = · · · = Dn.

Intuitively, a variable transformation exchanges only the order of variables, leaving
the domains unchanged. On the other hand, a value transformation does not modify
the variable order. In what follows, we focus on uniform value transformations, in
which domain values for each variable are swapped uniformly.

As widely described in the literature, symmetries of a CSP are transformations
that map solutions into solutions:

Definition 4.2.3 (CSP symmetry (94)). Given a CSP π = 〈~V , ~D, ~C〉, a symmetry

on π is a CSP transformation on 〈~V , ~D〉 which preserves constraints: an assignment

τ = {X1 = v1, . . . , Xn = vn} to variables in ~V satisfies every constraint in ~C if and
only if σ(τ) = {σ0(X1) = σindex(σ0(X1))(v1), . . . , σ0(Xn) = σindex(σ0(X1))(vn)} does.

We now focus on transformations and symmetries on specifications. In what follows,
we initially focus on problem specifications which, like the one of Example 1.2.2, have
only monadic guessed predicates. The reason for this limitation is that, in this way,
we have a neat conceptual correspondence between the guessed predicates and domain
values of a CSP.

Specifications with non-monadic guessed predicates can be handled by unfolding
non-unary predicates and exploiting finiteness of the input database, as already ar-
gued in Section 1.2 and Subsection 2.2.3. Forthcoming Example 4.5.3 shows how our
definitions can be used for non-monadic predicates.

In the context of ESO problem specifications, we give the following definition:

Definition 4.2.4 (Uniform value transformation (UVT) of a specification).

Given a problem specification ψ
.
= ∃~S φ(~S, ~R), with ~S = {S1, . . . Sn}, Si monadic

for every i, and input schema ~R, a uniform value transformation (UVT) for ψ is a

mapping σ : ~S → ~S, which is total and onto, i.e., defines a permutation of guessed
predicates in ~S.

The term “uniform value transformation” in Definition 4.2.4 is used because swapping
monadic guessed predicates is conceptually the same as uniformly exchanging domain
values in a CSP.
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From here on, given φ and σ as in the above definition, φσ is defined as

φ[S1/σ(S1), . . . , Sn/σ(Sn)],

i.e., φσ is obtained from φ by uniformly substituting every occurrence of each guessed
predicate with the one given by the transformation σ. Analogously, ψσ is defined as
∃~S φσ(~S, ~R).

We now define when a UVT is a symmetry for a given specification.

Definition 4.2.5 (Uniform value symmetry (UVS) of a specification). Let

ψ
.
= ∃~S φ(~S, ~R) be a specification, with ~S = {S1, . . . Sn}, Si monadic for every i ∈

[1, n], and input schema ~R, and let σ be a UVT for ψ. Transformation σ is a uniform

value symmetry (UVS) for ψ if every extension for ~S which satisfies φ, satisfies also
φσ and vice versa, regardless of the input instance, i.e., for every extension of the
input schema ~R.

Note that every CSP obtained by instantiating a specification with UVS σ has at least
the corresponding uniform value symmetry. The above definition could in principle
be stated with a different pattern of quantifiers, as an example, we could require
equivalence only for some instances, instead that for each instance. Generalization of
the definition is left for future research.

4.3 Detecting symmetries on specifications

In this section we face with the problem of detecting UVSs by reasoning on spec-
ifications. We show that checking whether a UVT is a UVS reduces to checking
equivalence of two first-order formulae. As a consequence, this task can be performed
by a first-order theorem prover (cf. forthcoming Chapter 6). Proofs of the following
theorems are delayed to Appendix C.

Theorem 4.3.1. Let ψ
.
= ∃~S φ(~S, ~R) be a problem specification, with ~S = {S1, . . . Sn},

Si monadic for every i, and σ a UVT for ψ. Transformation σ is a UVS for ψ if and
only if φ ≡ φσ.

The following theorem shows that also the converse reduction can be proven, thus
implying that checking whether a UVT is a UVS is not decidable.

Theorem 4.3.2 (Undecidability of the UVS checking problem). Given a spec-
ification ψ and a UVT σ for it, the problem of checking whether σ is a UVS for ψ is
undecidable.

Example 4.3.1 (Graph 3-coloring: Example 1.2.2, continued). Three UVTs
are as follows:

• σR,G s.t. σR,G(R) = G, σR,G(G) = R, σR,G(B) = B;

• σR,B s.t. σR,B(R) = B, σR,B(G) = G, σR,B(B) = R;

• σG,B s.t. σG,B(R) = R, σG,B(G) = B, σG,B(B) = G.
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It is easy to observe that, for each of the above transformations, formulae φσR,G

,

φσR,B

, and φσG,B

are all equivalent to φ, because clauses of the former ones are
syntactically equivalent to clauses of φ and vice versa. This implies, by Theorem 4.3.1,
that they are all UVSs.

To play the devil’s advocate, we consider a modification of the problem of Example
1.2.2, and show that only one of the UVTs in Example 4.3.1 is indeed a UVS in the
new problem.

Example 4.3.2 (Graph 3-coloring with red self-loops (Example 2.2.1 con-
tinued)). Let us consider UVTs described in Example 4.3.1:

• σG,B: it is yet a UVS, because the argument of Example 4.3.1 applies.

• σR,G: in this case, φσR,G

is not equivalent to φ any more: as an example,
for the input instance edge = {(v, v)}, the color assignment R,G,B such that
R = {v}, G = B = ∅ is a model for the original problem, i.e., R,G,B |=
φ(R,G,B, edge). It is however easy to observe that R,G,B 6|= φ(R,G,B,

edge)σR,G

, because φσR,G

is verified only by color assignments for which G(v)
holds. This implies, by Theorem 4.3.1, that σ is not a UVS.

• σR,B : it is not a UVS, because the same argument of the previous point applies.

Theorem 4.3.1 suggests that the problem of detecting UVSs of an ESO specification
ψ can in principle be performed in the following way:

1. Selecting a UVT σ, i.e. a permutation of guessed predicates in ψ;

2. Checking whether σ is a UVS, deciding whether φ ≡ φσ.

If ψ has n guessed predicates, there are n! possibilities for point 1. As for point 2,
we proved that UVS checking is not decidable (cf. Theorem 4.3.2). However, as we
show in Chapter 6, first-order theorem provers and finite model finders can be used to
perform automatically this task. The proposed algorithm, taken “as-is”, may require
n! checks for point 2. However, in practice, n, i.e., the number of guessed predicates
in the specification, is expected to be very small and, furthermore, good heuristics can
be found for point 1. As an example, there may exist efficient techniques for detecting
(in some cases, even with a deduction-free analysis) particular classes of symmetries
(cf., e.g., (126)).

4.4 Breaking symmetries

As already mentioned in Section 4.1, once symmetries for a problem have been de-
tected, several approaches can be used in order to exploit them. In what follows,
we consider adding additional constraints to the problem specification, in order to
break its symmetries, i.e., to wipe out from the solution space (some of) the symmet-
rical points. This kind of constraints are called symmetry-breaking formulae, and are
defined as follows.
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Definition 4.4.1 (Symmetry-breaking formula). Let ψ
.
= ∃~S φ(~S, ~R), be a spec-

ification, with ~S = {S1, . . . Sn}, Si monadic for every i ∈ [1, n], and input schema ~R,
and let σ be a UVS for ψ. A symmetry-breaking formula for ψ with respect to sym-
metry σ is a closed (except for ~S) formula β(~S) such that the following two conditions
hold:

1. Transformation σ is no longer a symmetry for ∃~S φ(~S, ~R) ∧ β(~S):

(φ(~S, ~R) ∧ β(~S)) 6≡ (φ(~S, ~R) ∧ β(~S))σ; (4.1)

2. Every model of φ(~S, ~R) can be obtained by those of φ(~S, ~R) ∧ β(~S) by applying
symmetry σ:

φ(~S, ~R) |=
∨

~σ∈σ∗

(φ(~S, ~R) ∧ β(~S))~σ. (4.2)

where ~σ is a sequence (of finite length ≥ 0) over σ, and, given a first-order

formula γ(~S), γ(~S)~σ denotes (· · · (γ(~S)σ) · · · )σ, i.e., σ is applied |~σ| times (if

~σ = 〈〉, i.e., the empty string, then γ(~S)~σ is γ(~S) itself).

If β(~S) matches the above definition, then we are entitled to solve the problem

∃~S φ(~S, ~R) ∧ β(~S) instead of the original one ∃~S φ(~S, ~R). In fact, point 1 in the

above definition states that formula β(~S) actually breaks σ, since, by Theorem 4.3.1,
σ is not a symmetry of the rewritten problem. Furthermore, point 2 states that every
solution of φ(~S, ~R) can be obtained by repeatedly applying σ to some solutions of

φ(~S, ~R) ∧ β(~S). Hence, all solutions are preserved in the rewritten problem, up to
symmetric ones.

It is worthwhile noting that, even if in formula (4.2) ~σ ranges over the (infinite)
set of finite-length sequences of 0 or more applications of σ, this actually reduces
to sequences of length at most n!, since this is the maximum number of succes-
sive applications of σ that can lead to all different permutations. Moreover, we ob-
serve that the inverse logical implication always holds, because σ is a UVS, and so
φ(~S, ~R)σ ≡ φ(~S, ~R). Finally, from point 1 it follows that a problem specification for
which there are no satisfiable instances, i.e., which first-order part φ ≡ ⊥, does not
have symmetries. We do not further consider such case, since it would evidence a bug
in the model.

We observe that breaking a symmetry is sound, i.e., it preserves at least one
solution, as shown by the following theorem:

Theorem 4.4.1 (Symmetry-breaking formulae preserve satisfiability). Let

ψ
.
= ∃~S φ(~S, ~R) be a problem specification with ~S = {S1, . . . Sn}, Si monadic for

every i ∈ [1, n], and input schema ~R, and let σ be a UVS for ψ. Furthermore, let

β(~S) be a symmetry-breaking formula for ψ with respect to σ. For each input instance

I, i.e., for each extension of the input schema ~R, if ∃~S φ(~S, I) has solutions, then

also ∃~S φ(~S, I) ∧ β(~S) has solutions.

The proof is delayed to Appendix C. Given a problem specification ψ and a UVS σ,
in general there exist several formulae β(~S) that are symmetry-breaking for ψ with
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respect to σ. Hence, a measure of the effectiveness of a symmetry-breaking formula
can be defined. In what follows, we consider the effectiveness of a symmetry-breaking
formula higher when (φ(~S, ~R)∧β(~S)) and (φ(~S, ~R)∧β(~S))σ have few common models,

i.e., the less models in the conjunction (φ(~S, ~R) ∧ β(~S)) ∧ (φ(~S, ~R) ∧ β(~S))σ , the
better. However, it must be observed that this measure of the effectiveness of a
symmetry-breaking formula focuses only on how completely the formula breaks the
symmetry, and not on efficiency issues like its amenability to propagation. In the next
section we see several examples of UVSs and different breaking formulae for them.

Definition 4.4.1 deals with breaking a single symmetry, and it can be generalized
in order to break multiple symmetries simultaneously. The definition, omitted for
simplicity, deals with a set Σ = {σ1, . . . , σn} of UVSs. The first condition must be
repeated for all symmetries in Σ, and the second one becomes:

φ(~S, ~R) |=
∨

~σ∈Σ∗

(φ(~S, ~R) ∧ β(~S))~σ (4.3)

where ~σ = 〈σi1 , . . . , σim
〉 (ij ∈ [1, n] for each 1 ≤ j ≤ m and m ≥ 0) is a finite

sequence with elements in Σ. Thus, the above formula states that each solution of
φ(~S, ~R) can be obtained by applying some finite sequence of symmetries in Σ to some

solutions of φ(~S, ~R) ∧ β(~S).

4.5 Examples of symmetry-breaking formulae

In this section we discuss some examples of well-known combinatorial problems that
have many symmetries, show some of them using Theorem 4.3.1, and present symmetry-
breaking formulae for them. In Appendix C we then show that formulae below respect
both conditions of Definition 4.4.1.

Example 4.5.1 (Graph 3-coloring: Example 4.3.1, continued). In the
following, we present different symmetry-breaking formulae for this problem, referring
to σR,G, σR,B , and σG,B.

1. Let us consider σG,B: a simple symmetry-breaking formula is:

βG,B
sel (R,G,B)

.
= G(v) ∨R(v), (4.4)

that forces a selected node, say v, not to be colored in blue.

It is worth noting that the simpler formula G(v) is not a symmetry-breaking
formula for σG,B, since it does not match condition (4.2) of Definition 4.4.1.
To give the intuition for this fact, it suffices to observe that the symmetric

assignment would color v in blue (G(v)σG,B

is B(v)), so loosing all solutions
that color v in red. Actually, the stronger formula G(v) breaks two different
symmetries, σG,B and σG,R, and can be obtained as the logical “and” of (4.4)
and G(v) ∨B(v).
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2. A different symmetry-breaking formula for the same symmetry is the following
one:

βG,B
least(R,G,B)

.
= ∀Y B(Y ) → ∃X G(X) ∧X < Y, (4.5)

where ‘<’ is a (possibly pre-interpreted) total ordering on the graph nodes. This
formula forces the least blue node to be greater than the least green one (thus,
forcing the so-called lowest index ordering on green and blue nodes).

3. A more complex symmetry-breaking formula for σG,B is:

βG,B
≤ (R,G,B)

.
= |G| ≤ |B|, (4.6)

that forces the number of green nodes to be less than or equal to the number of
blue ones (this constraint can be written in ESO using standard techniques, cf.
Section 1.2). In Appendix C we show that formula (4.6) respects both conditions
of Definition 4.4.1.

We note that |G| < |B| is not a symmetry-breaking formula, since point 2 of
Definition 4.4.1 is not satisfied: in fact adding such a constraint is obviously
unsound, since some satisfiable instances may become unsatisfiable.

4. Let us now consider the two symmetries σR,G and σR,B : a multiple symmetry-
breaking formula for them is:

βR
≤(R,G,B)

.
= |R| ≤ |G| ∧ |R| ≤ |B|, (4.7)

that uses a partial order among the sets of nodes with the same color, R being
the minimal element.

5. The next formula breaks all three symmetries:

β≤(R,G,B)
.
= |R| ≤ |G| ∧ |R| ≤ |B| ∧ |G| ≤ |B|, (4.8)

by using a total order among colors, i.e., |R| ≤ |G| ≤ |B|. It is interesting to
note that β(R,G,B) can be obtained by composing formulae (4.6–4.7). Such a
composition can be extended to the k-coloring problem for handling any number
of colors.

Example 4.5.2 (Not-all-equal Sat, Example 1.2.3 continued). UVT σ,
such that σ(T ) = F and σ(F ) = T is a UVS for this problem, since φσ is clearly
equivalent to φ. Symmetry-breaking formulae for σ are:

βleast(T, F )
.
= ∀Y F (Y ) → ∃X T (X) ∧X < Y, (4.9)

where ‘<’ is a (possibly pre-interpreted) total ordering among the variables, and:

β≤(T, F )
.
= |T | ≤ |F |. (4.10)
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Example 4.5.3 (Social golfer (64, Prob. 10)). Given a set of players, a set
of groups, and a set of weeks, encoded in monadic relations player (·), group(·), and
week(·) respectively, this problem amounts to decide whether there is a way to arrange
a scheduling for all weeks in relation week, such that:

• For every week, players are divided into equal sized groups;

• Two different players don’t play in the same group more than once.

A specification for this problem (assuming the ratio |player|/|group|, i.e., the group
size, integral) is the following (Play(P,W,G) states that player P plays in group G
on week W ):

∃Play ∀P,W,G Play(P,W,G) → player (P ) ∧ week (W ) ∧ group(G) ∧ (4.11)

∀P,W player (P ) ∧ week (W ) → ∃G Play(P,W,G) ∧ (4.12)

∀P,W,G,G′ Play(P,W,G) ∧ Play(P,W,G′) → G = G′ ∧ (4.13)

∀P, P ′,W,W ′, G,G′ (4.14)

(P 6= P ′ ∧W 6= W ′ ∧ PLAY (P ,W ,G) ∧ PLAY (P ′,W ,G)) →

¬ [Play(P,W ′, G′) ∧ Play(P ′,W ′, G′)] ∧

∀G,G′,W,W ′ group(G) ∧ group(G′) ∧ week (W ) ∧ week(W ′) → (4.15)

|{P : Play(P,W,G)}| = |{P : Play(P,W ′, G′)}|.

Constraints (4.11–4.13) force Play to be a total function assigning a group to each
player on each week; moreover, (4.14) is the meet only once constraint, while (4.15)
forces groups to be of the same size (Appendix A shows how this constraint can be
written in ESO).

In order to highlight UVSs according to Definition 4.2.5, we need to substitute the
ternary guessed predicate Play by means of, e.g., |week|× |group| monadic predicates
PlayW,G (each one listing players playing in group G on week W ). The above spec-
ification must be unfolded accordingly. We observe that, in this case, the number of
monadic guessed predicates obtained as output of the unfolding actually depends on the
input instance. However, we stress that in this case unfolding non-monadic guessed
predicates is only a formal step in order to apply the definitions in this chapter, and
has not to be performed in practice.

On the unfolded specification, UVTs σG,G′

W , swapping PlayW,G and PlayW,G′ , i.e.,
given a week W , and two groups G and G′, assign to group G′ on week W all players
assigned to group G on week W , and vice versa, are symmetries for the Social golfer

problem. Intuitively, UVTs σG,G′

W are UVSs for the unfolded specification because
group renamings have no effect.

After fixing arbitrary linear orders ‘<’ on players and groups, each symmetry σG,G′

W

(with G < G′) can be broken by, e.g., the following formula:

βG,G′

least,W (PlayW,G,PlayW,G′)
.
=

∀P ′ PlayW,G′(P ′) → ∃P PlayW,G(P ) ∧ P < P ′,
(4.16)
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that forces the least player in PlayW,G to have a lower order number (with respect to
‘<’) than the least player in PlayW,G′ .

Similarly to Example 4.5.1, we can simultaneously break several of the above sym-

metries, by adding a constraint βG,G′

least,W (PlayW,G,PlayW,G′) for each week W and
each pair G, G′ of groups such that G′ is the successor of G in the linear order ‘<’,
hence forcing, for each week, the least player in any group to have order number lower
than the least player in the consecutive one. An implication of the above formulae is
that the first player always plays in the first group.

As another example, the following family of transformations –which we call σW,W ′

–
are also symmetries for the original Social golfer specification: given two weeks W and
W ′, swap uniformly all groups in week W with the ones in week W ′, and vice versa.

Each symmetry σW,W ′

can be broken: in the following, we give only an intuitive
description of a possible symmetry-breaking formula βW,W ′

, once total orders ‘<’ on
weeks and on weekly assignments, i.e., on sets {PlayW,G1

, . . . ,PlayW,G|group|
} have

been fixed: given two assignments of players to groups {PlayW,G1
,. . .,PlayW,G|group|

}

and {PlayW ′,G1
, . . . ,PlayW ′,G|group|

}, on weeks W and W ′, they are swapped if and
only if the first is greater than the second one.

By breaking several of the aforementioned symmetries, we can add the following
constraints, one for each pair W , W ′ of weeks such that W ′ is the successor of W in
the given linear order ‘<’:

{PlayW,G1
, . . . ,PlayW,G|group|

} < {PlayW ′,G1
, . . . ,PlayW ′,G|group|

} (4.17)

saying that weekly assignments are in increasing order.
It is worth noting that, by combining the symmetry-breaking formulae for the two

families of symmetries described above, we are able to get some of the symmetry-
breaking constraints described in (120), like the one that arbitrarily fixes the assign-
ment in the first week. Moreover, we can further fix one player (the one having the
least order number) to be assigned always to the same group (the one having the least
order number).

Finally, we observe that, by a different unfolding of the specification, it is possible
to reproduce, by means of |player | × |week | monadic predicates PLAYP ,W , the usual
players/weeks matrix model of the problem, and encode the symmetry-breaking formula
βlex2 , that forces any assignment to respect the lexicographic ordering on both rows
and columns of this matrix (54). In Appendix C we show the formal definition of
βlex2 and prove that it respects conditions of Definition 4.4.1.

Example 4.5.4 (Balanced Incomplete Block Design (BIBD) generation
(95)). Given a set of v objects in a monadic relation object(·), a set of b blocks
in a monadic relation block (·), with no tuples in common, plus positive integers r, k,
and λ, this problem amounts to decide whether there is a way to arrange the v objects
into the b blocks in such a way that each block contains exactly k distinct objects, each
object occurs in exactly r different blocks, and every two distinct objects occur together
in exactly λ blocks.

A specification for this problem is quite similar to the one of Example 4.5.3, and also
its symmetries are similar. We don’t give here more details about this problem. Just as
an example, it is always possible to swap the order of two blocks. Symmetry-breaking
formulae can be built using the same techniques of Example 4.5.3.
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From the above examples, it can be observed that the various symmetry-breaking
formulae are often very similar to each other, usually following the same schema.
Hence, they can be generalized in order to build a library of templates, from which
generate candidate formulae to break UVSs for the problems at hand. An automated
theorem prover can then be used to check whether some of the formulae in the library
are actually symmetry-breaking (cf. Chapter 6).

As an example of template, a candidate formula for breaking symmetries that
involve two guessed predicates is to force the size of the extension of the first pred-
icate to be at most the size of the extension of the second one (cf., e.g., formu-
lae (4.6) and (4.10)). This pattern for a symmetry-breaking formula can be gen-

eralized as follows: given a problem specification ψ of the kind ∃~S φ(~S, ~R), with
~S = {S1, . . . Sn}, Si monadic for every i ∈ [1, n], and a UVS σ such that σ(Si) = Sj ,
σ(Sj) = Si, for i 6= j and σ(Sh) = Sh for all h 6= i, h 6= j (i.e., σ permutes only Si and
Sj), then formula β≤(Si, Sj) is a candidate symmetry-breaking formula for σ, where
β≤ is defined as:

β≤(S′, S′′)
.
= |S′| ≤ |S′′|. (4.18)

As another example, consider formula (4.5). It can be generalized as follows, in order
to obtain a proper template. Let the UVS σ for specification ψ swap predicates Si

and Sj only. Let us also assume that a linear order ‘<’ exists among elements of the
Herbrand domain. Formula βleast(Si, Sj) is a candidate symmetry-breaking formula
for σ, where βleast is defined as:

βleast(S
′, S′′)

.
= ∀X ′′ S′′(X ′′) → ∃X ′ S′(X ′) ∧ X ′ < X ′′. (4.19)

It is possible to derive much more complex symmetry-breaking formulae by composing
simpler ones. As an example, in Appendix C we show how to model the well-known
lex2 symmetry-breaking constraint (54) for problems that have a “matrix model”
with row and column symmetries (e.g., Social golfer or BIBD).

4.6 Experiments

In this section we present some experimental results for assessing the effectiveness of
the previously described techniques for some of the problems shown above.

We used state-of-the-art linear and constraint programming solvers, and wrote
both a linear and a non linear specification, solved by using Ilog’s Cplex and Solver,
respectively.

In particular, we focused on the following specifications:

• Graph coloring (we actually focused on the k-coloring version) on some of the
benchmark instances already examined in Section 2.4;

• Not-all-equal Sat, on random instances in 3-CNF;

• The Social golfer problem, on some instances, up to 6 players.

The symmetry-breaking formulae we added to the Graph k-coloring specification are
the generalizations of (4.5) (least index coloring) and (4.7) (cardinality-based order-
ing) to the case of k colors. In fact, using the generalization of (4.8) resulted in
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poorer performances: intuitively, solutions of coloring problems are rarely “color un-
balanced”, therefore adding too many constraints may not be effective. As shown in
Table 4.1, adding our symmetry-breaking formulae (in particular the generalization of
(4.7)) seems to be effective especially when Cplex is used. Solver seems to be often
negatively affected (hence, detailed results have been omitted), even if with some, but
significant, exceptions, and in some cases it is outperformed by Cplex. The same
behavior has been observed for Not-all-equal Sat (we solved few hundreds random
instances in 3-CNF).

For what concerns the Social golfer problem, we implemented the lex2 symmetry-
breaking formula for the non-linear specification. Differently from the other examples,
on this problem Solver is affected positively on several instances, especially negative
ones, as Table 4.2 shows.

It is worth noting that both Solver and Cplex have built-in features for sym-
metry cuts, that can be safely used because of Proposition 4.4.1. All experiments
have been done both enabling and disabling such a feature (times in Table 4.1 are
with no symmetry cuts). In general, effectiveness of our technique seems independent
on using that feature; the built-in feature results anyway in further speed-up when
used along with our formulae (thus confirming the intuition given in Chapter 1 on the
possibility to apply both specification and instance level optimization techniques).

4.7 Discussion and future research directions

In this chapter we focused on the problem of detecting and breaking symmetries in
constraint problem specifications, and presented formal definitions of uniform value
transformation (UVT) and symmetry (UVS) in this context, lifting those for CSPs.
Furthermore, we gave a logical characterization of UVSs, and showed how the problem
of checking whether a UVT is a symmetry for a given specification reduces to check-
ing semantic properties of first-order formulae. Once symmetries have been detected,
several approaches can in general be used in order to exploit them. We focused on
adding new constraints to the problem specification in order to break detected sym-
metries. To this end, we defined what is a symmetry-breaking formula, and showed
that also the problem of checking whether a given formula is symmetry-breaking for
a specification with respect to a given symmetry reduces to checking semantic prop-
erties of logical formulae. We detected and broken symmetries on several problem
specifications, e.g., Graph 3-coloring, Not-all-equal Sat, Social golfer, and experimen-
tal results show that this kind of reasoning can be much effective for the efficient
solution of constraint problems, on different solvers.

It is worth noting that the two proposed approaches for symmetry detection and
breaking are conceptually independent on each other. In particular, the detection
of symmetries of the problem at hand is a necessary prerequisite also for alternative
techniques for symmetry breaking, e.g., those that break symmetries during search
(cf. Section 4.1).

In this chapter we addressed exclusively uniform value symmetries, but the same
approach can be extended to other kind of transformations (cf. Section 4.1). As for
future work, we plan to investigate such extensions. As an example, Figure 4.1 shows
an opl specification for the N -queens problem, cf. (124, Section 2.2, Statement 2.16),
which states that three constraints must hold for all pairs of distinct rows (cf. the con-
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Cplex
No s.b. βleast β≤

Instance k Sol? Time Time % sav. Time % sav.

DSJC1000.1 24 N – 368.46 >89.77 – –
DSJC125.5 8 N 15.32 13.21 13.77 10.51 31.40
DSJC125.5 25 Y – 2337.29 >35.08 2177.21 39.52
DSJC125.9 21 N 1408.23 2080.21 -47.72 1088.65 22.69
DSJC250.5 10 N – 2158.75 >40.03 2432.55 32.43
DSJC500.1 11 N 2.53 – −∞ – −∞
fpsol2.i.2 21 N 139.80 43.70 68.70 102.20 26.90
fpsol2.i.2 31 Y – 397.61 >88.96 – –
fpsol2.i.3 31 Y – 330.22 >90.83 – –
le450 25a 21 N 84.73 95.32 -12.50 46.51 45.11
le450 25a 25 Y 3536.41 – <-1.80 1783.23 49.58
miles500 19 N 2.31 – −∞ 1.67 27.71
mulsol.i.1 30 N – 10.61 >99.71 – –
mulsol.i.1 49 Y – 311.12 >91.36 – –
mulsol.i.2 30 N – 10.98 >99.70 – –
mulsol.i.2 31 Y 26.75 48.67 -81.94 – −∞
mulsol.i.3 30 N – 10.78 >99.70 – –
mulsol.i.3 31 Y 55.77 43.65 21.73 284.32 -409.81
mulsol.i.4 30 N – 10.99 >99.69 – –
mulsol.i.4 31 Y 47.46 14.25 69.97 – −∞
mulsol.i.5 30 N – 11.12 >99.69 – –
mulsol.i.5 31 Y 166.85 20.68 87.61 64.56 61.31
myciel4 4 N 5.22 0.87 83.33 8.46 -62.07

Table 4.1: Solving times (seconds) for k-coloring (‘–’ means that the solver did not
terminate in one hour).

Instance Solver
Players Weeks Groups Solvable? No s.b. βlex2 % sav.

6 6 3 N 2267.3 2.1 +99.9
6 7 3 N 273.5 4.2 +98.5
6 8 3 N 96.6 10.3 +89.3
9 5 3 N – 1.0 +99.9
9 6 3 N 342.2 3.8 +98.9

Table 4.2: Solving times (seconds) for Social golfer (‘–’ means that the solver did not
terminate in one hour).
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int+ N = ...;

range Row 1..N; range Col 1..N;

var Col Queen[Row];

solve {

forall (r1, r2 in Row : r1 <> r2) {

Queen[r1] <> Queen[r2]; // no vertical attack

Queen[r1] + r1 <> Queen[r2] + r2; // no NW-SE diagonal attack

Queen[r1] - r1 <> Queen[r2] - r2; // no NE-SW diagonal attack

}};

Figure 4.1: opl specification for the N -queens problem.

dition r1 <> r2). For symmetry reasons, a solution-preserving (and possibly more
efficient) formulation requires the constraints to hold just for totally ordered pairs of
rows, i.e., r1 < r2. From a CSP point of view, this is an example of symmetries on
variables (94), and it can be recognized simply by proving that swapping r1 and r2

leads to an equivalent specification. In a ESO specification, this symmetry can be
checked by swapping universally quantified first-order variables, and proving that the
equivalence holds. We plan to give formal and general definitions for this and other
classes of symmetries, by extending those already given in the CSP literature, and
perform a more exhaustive experimentation in order to check whether such general-
izations are effective in practice.

As for symmetry-breaking, this chapter suggests, in principle, a guess and test
approach, via the use of a library of templates. Hence, an important direction for
future work is to address the task of automatically synthesize guaranteed-correct
symmetry-breaking formulae for detected symmetries.

Results in this chapter have been published in (19).



Chapter 5

Detecting and exploiting

functional dependencies

5.1 Introduction

In this chapter we exploit another interesting property of constraint problems, i.e.,
the functional dependencies that can hold among predicates in problem specifications.
Informally, given a problem specification of the kind (1.1), a guessed predicate S in ~S
is said to be functional dependent on the others if, for every solution of any instance,
its extension is determined by the extensions of the others.

The presence of functional dependencies is very common in declarative problem
specifications for different reasons: as an example, to allow the user to have multiple
views of the search space, in order to be able to express the various constraints
under the most convenient viewpoint, or to maintain aggregate or intermediate results
needed by some of the constraints, as the following example shows.

Example 5.1.1 (The HP 2D-Protein folding problem (84)). This problem
specification models a simplified version of one of the most important problems in
computational biology. It consists in finding the spatial conformation of a protein
(i.e., a sequence of amino-acids) with minimal energy.

The simplifications with respect to the real problem are twofold: firstly, the 20-
letter alphabet of amino-acids is reduced to a two-letter alphabet, namely H and P.
H represents hydrophobic amino-acids, whereas P represents polar or hydrophilic
amino-acids. Secondly, the conformation of the protein is limited to a bi-dimensional
discrete space. Nonetheless, these limitations have been proven to be very useful for
attacking the whole protein conformation prediction protein, that is known to be NP-
complete (41) and very hard to solve in practice.

In this formulation, given the sequence (of length n) of amino-acids of the protein
(the so called primary structure of the protein), i.e., a sequence of length n with ele-
ments in {H,P}, we aim to find a connected shape of this sequence on a bi-dimensional
grid (whose points have coordinates in the integral range Coord = [−(n− 1), (n− 1)],
the sequence starting at (0, 0)), which is non-crossing, and maximizes the number of
“contacts”, i.e., the number of non-sequential pairs of H amino-acids for which the

67
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Euclidean distance of the positions is 1 (the overall energy of the protein is defined as
the opposite of the number of contacts).

Different alternatives for the search space obviously exist: as an example, we can
guess the position on the grid of each amino-acid in the sequence, and then force the
obtained shape to be connected, non-crossing, and with minimal energy. A second
approach is to guess the shape of the protein as a connected path starting at (0, 0), by
guessing, for each position t of the sequence, the direction that the amino-acid at the
t-th position in the sequence assumes with respect to the previous one (directions in
the HP-2D model can only be North, South, East, West). It is easy to show that the

former model would lead to a search space of (2n)2n points, while the latter to a much
smaller one (4n points).1

However, choosing the latter model is not completely satisfactory. In fact, to
express the non-crossing constraint, and to compute the number of contacts in the
objective function, absolute coordinates of each amino-acid in the sequence must be
computed and maintained. It is easy to show that these values are completely defined
by (i.e., functionally dependent on) the sequence of directions taken by the protein.

Given a problem like the HP 2D-Protein folding one, if writing a procedural program,
e.g., in C++, to solve it, possibly using available libraries for constraint programming,
a smart programmer would avoid predicates encoding absolute coordinates of amino-
acids to be part of the search space. Extensions for these predicates instead, would
be computed starting from extensions of the others.

On the other hand, when using a declarative language for constraint modelling,
the user looses the power to distinguish among predicates whose extension has to be
found through a true search, from those which can be computed starting from the
others, since all of them become of the same nature. Hence, the search space actually
explored by the system can be ineffectively much larger, and additional information
should be required from the user to distinguish among them, thus greatly reducing
the declarativeness of the specification. To this end, the ability of the system to
automatically recognize whether a predicate is functionally dependent on (or defined
from) the others becomes of great importance from an efficiency point of view, since
it can lead to significant reductions of the search space, although retaining the highest
level of declarativeness.

The technique of avoiding branches on dependent predicates has already been suc-
cessfully applied at the instance level for solving, e.g., SAT instances. As an example,
it is shown in (65) how to modify the Davis-Putnam procedure for SAT so that it
avoids branches on variables added during the clausification of non-CNF formulae,
since values assigned to these variables depend on assignments to the other ones.
Moreover, some SAT solvers, e.g., eqsatz (86), have been developed in order to ap-
propriately handle (by means of the so-called “equivalence reasoning”) equivalence
clauses, that have been recognized to be a very common structure in the SAT en-
coding of many hard real-world problems, and a major obstacle to the Davis-Putnam
procedure.

We believe that looking for dependent predicates at the specification level, rather
than after instantiation, can be much more natural, since these issues strongly depend

1Actually, as for the second model, possible directions of each amino-acid with respect to the
previous one can be only three, because of the non-crossing constraint. Nonetheless, we opt for the
simpler model to enhance readability.
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on the structure of the problem. To this end, our approach is to give a formal char-
acterization of functional dependencies suitable to be checked by computer tools, and
ultimately, to transform the original problem specification by automatically adding
an explicit search strategy that exploits such dependencies, avoiding branches on de-
pendent predicates. Moreover, in those cases in which functional dependencies derive
from the adoption of multiple viewpoints of the search space, we could choose the best
maximal set of independent predicates to branch on, depending on the amenability
of the relevant constraints to propagation (cf., e.g, (71)).

The outline of the chapter is as follows: in Section 5.2 we formally define functional
dependencies in problem specifications, and characterize them in terms of semantic
properties of first-order formulae. This characterization can then be used, in practical
circumstances, to exploit computer tools for recognizing functional dependencies (cf.
forthcoming Chapter 6). Then, in Section 5.3 we show some examples (using the
well-known constraint modelling language opl) from bio-informatics, planning and
resource allocation fields, that exhibit dependencies. In Section 5.4 we describe our
approach for exploiting detected dependencies, that consists in the automatic syn-
thesis of a search procedure that explicitly avoids branches on dependent predicates,
and show how, in many cases, opl benefits from this addition. Finally, Section 5.6 is
devoted to discussion and description of future work.

5.2 Definitions and formal results

In this section we give the formal definition of functionally dependent guessed predi-
cate in a specification, and show how the problem of checking whether a set of guessed
predicates is dependent on the others reduces to check semantic properties of a first-
order formula.

Definition 5.2.1 (Functional dependence of a set of predicates in a spec-

ification). Given a problem specification ψ
.
= ∃~S ~P φ(~S, ~P , ~R) (in which the set of

guessed predicates is partitioned into ~S and ~P ) with input schema ~R, ~P functionally

depends on ~S if, for each instance I of ~R and for each pair of interpretations M , N
of (~S, ~P ) it holds that, if

1. M 6= N , and

2. M, I |= φ, and

3. N, I |= φ,

then M|~S 6= N|~S, where ·|~S denotes the restriction of an interpretation to predicates

in ~S.

The above definition states that ~P functionally depends on ~S, or that ~S functionally
determines ~P , if it is the case that, regardless of the instance, each pair of distinct
solutions of ψ must differ on predicates in ~S, which is equivalent to say that no two
different solutions of ψ exist that coincide on the extension for predicates in ~S but
differ on that for predicates in ~P .
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Example 5.2.1 (Graph 3-coloring, Example 1.2.2 continued). In the Graph
3-coloring problem specification, one of the three guessed predicates R,G,B is func-
tionally dependent on the others. As an example, B functionally depends on R and
G, since, regardless of the instance, it can be defined as

∀X B(X) ↔ ¬(R(X) ∨G(X)).

This is because constraint (1.6) is equivalent to

∀X ¬(R(X) ∨G(X)) → B(X)

and (1.8) and (1.9) imply

∀X B(X) → ¬(R(X) ∨G(X)).

In other words, for every input instance, no two different solutions exist that coincide
on the set of red and green nodes, but differ on the set of blue ones.

Example 5.2.2 (Not-all-equal Sat (Example 1.2.3 continued)). In the Not-
all-equal problem specification, one of the two guessed predicates T and F is dependent
on the other, since by constraints (1.13–1.14) it follows, e.g., that

∀X F (X) ↔ var(X) ∧ ¬T (X).

The two examples above are very simple, and have been presented to give just the
main intuition. It can be observed how in both cases, the presence of functional
dependencies arises because of the non-overlapping constraints among different pred-
icates. However, in the remainder of the chapter, much more complex examples of
problem specifications that exhibit functional dependencies will be shown.

It is worth noting that Definition 5.2.1 is strictly related to the concept of Beth
implicit definability, well-known in logic (cf., e.g., (31)). We will further discuss this
relationship in Section 5.4.

In what follows, instead, we show that the problem of checking whether a subset
of the guessed predicates in a specification is functionally dependent on the remaining
ones, reduces to semantic properties of a first-order formula (proofs are delayed to

Appendix D). To simplify notations, given a list of predicates ~T , we write ~T ′ for
representing a list of predicates of the same size with, respectively, the same arities,
that are fresh, i.e., do not occur elsewhere in the context at hand. Also, ~T ≡ ~T ′ will
be a shorthand for the formula

∧

T∈~T

∀ ~X T ( ~X) ↔ T ′( ~X),

where T and T ′ are corresponding predicates in ~T and ~T ′, respectively, and ~X is a
list of variables of the appropriate arity.

Theorem 5.2.1. Let ψ
.
= ∃~S ~P φ(~S, ~P , ~R) be a problem specification with input

schema ~R. ~P functionally depends on ~S if and only if the following formula is valid:

[φ(~S, ~P , ~R) ∧ φ(~S′, ~P ′, ~R) ∧ ¬(~S ~P ≡ ~S′ ~P ′)] → ¬(~S ≡ ~S′). (5.1)
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Unfortunately, the problem of checking whether the set of predicates in ~P is function-
ally dependent on the set ~S is undecidable, as the following result shows:

Theorem 5.2.2. Given a specification on input schema ~R, and a partition (~S, ~P ) of

its guessed predicates, the problem of checking whether ~P functionally depends on ~S
is not decidable.

Even if Theorem 5.2.2 states that checking functional dependencies in a specification
is an undecidable task, in practical circumstances it can be effectively and often
efficiently performed by automatic tools, such as first-order theorem provers and finite
model finders (cf. Chapter 6). Hence, in order to automatically recognize functional
dependencies in a problem specification, an approach similar to that of Section 4.3 for
detecting uniform value symmetries can, in principle, be used. Of course, the same
observations regarding the number of checks to be made in practical circumstances
hold also in this case.

5.3 Further examples

In this section we present some problem specifications that exhibit functional de-
pendencies among guessed predicates. Due to their high complexity, we don’t give
their formulations as ESO formulae, but show their specifications in the well known
language for constraint modelling opl.

Example 5.3.1 (The HP 2D-Protein folding problem, Example 5.1.1 con-
tinued). As already stated in Example 5.1.1, rather than guessing the position on
the grid of each amino-acid in the sequence, we chose to represent the shape of the
protein by a guessed predicate Moves[], that encodes, for each position t, the direction
that the amino-acid at the t-th position in the sequence assumes with respect to the
previous one (the sequence starts at (0, 0)). An opl specification for this problem is
shown in Appendix H.1.1. The analogous of the instance relational schema, guessed
predicates, and constraints can be clearly distinguished in the opl code.

To express the non-crossing constraint, and to compute the number of contacts in
the objective function (not shown in the opl code for brevity), absolute coordinates
of each amino-acid in the sequence must be calculated (predicates X[] and Y[]). The
non-crossing constraint can be expressed by stating O(n2) binary inequalities, i.e.,
that do not exist two different elements t and t′ for which X[t] = X[t’] and Y[t]

= Y[t’]. From the considerations above, it follows that guessed predicates X[] and
Y[] are functionally dependent on Moves[].

To test the effectiveness of the approach, we considered also a second specification
for HP 2D-Protein folding, where the non-crossing constraint is modelled differently.
In particular, a new guessed predicate Hits[] is used, in order to maintain, for every
position on the grid, the number of amino-acids of the protein that are placed on it at
each point during the construction of the shape. For all of them, this number cannot be
greater than 1, that implies that the string does not cross. In this specification, which
opl code is presented in Appendix H.1.2, also guessed predicate Hits[] is defined by
Moves[].
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Example 5.3.2 (The Sailco inventory problem (124, Section 9.4, Statement
9.17)). This problem specification, part of the oplstudio distribution package (as
file sailco.mod), models a simple inventory application, where the question is to
decide how many sailboats the Sailco company has to produce over a given number of
time periods, in order to satisfy the demand and to minimize production costs. The
demand for the periods is known and, in addition, an inventory of boats is available
initially. In each period, Sailco can produce a maximum number of boats (capacity)
at a given unitary cost (regularCost). Additional boats can be produced, but at
higher cost (extraCost). Storing boats in the inventory also has a cost per period
(inventoryCost per boat).

Section A.2 shows an opl model for this problem. From the specification it can
be observed that the amount of boats in the inventory for each time period t > 0
(i.e., inv[t]) is defined in terms of the amount of regular and extra boats produced in
period t by the following relationship: inv[t] = regulBoat[t] + extraBoat[t] -

demand[t] + inv[t-1].

Example 5.3.3 (The Blocks world problem (102; 130)). In the Blocks world
problem, the input consists of a set of blocks that are arranged in stacks on a table.
Every block can be either on the table or onto another block. Given the initial and the
desired configurations of the blocks, the problem amounts to find a minimal sequence
of moves that allows to achieve the desired configuration. Every move is performed
on a single clear block (i.e., on a block with no blocks on it) and moves it either onto
a clear block or on the table (that can accommodate an arbitrary number of blocks). It
is worth noting that a plan of length less than or equal to twice the number of blocks
always exists, since original stacks can all be flattened on the table before building the
desired configuration.

In our formulation, given in Appendix H.3, we assume that the input is given
as an integer nblocks, i.e., the number of blocks, and functions OnAtStart[] and
OnAtGoal[], encoding, respectively, the initial and desired configuration. As for the
guessed functions, MoveBlock[] and MoveTo[] respectively state, for each time point
t, which block has been moved at time point t-1, and its new position at time t.
Moreover, we use guessed functions On[], that states the position (which can be either
a block or the table) of a given block at a given time point, and Clear[], that states
whether a given block is clear at a time point. We observe that guessed functions On[]

and Clear[] are functionally dependent on MoveBlock[] and MoveTo[].

5.4 Exploiting functional dependencies

Once a set ~P of guessed predicates of a problem specification ψ
.
= ∃~S ~P φ(~S, ~P , ~R)

has been recognized to be functionally dependent on the others, different approaches
can be followed in order to exploit such a dependence: the most simple and elegant
one is to force the system to branch only on defining predicates, i.e., those in ~S,
avoiding spending search on those in ~P . An alternative approach is to substitute in
the specification all occurrences of predicates in ~P with their definition, and we will
briefly discuss it in the following.

As already observed in Section 5.2, the concept of functional dependence among
guessed predicates expressed in Definition 5.2.1 is strictly related to the one of Beth
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implicit definability (cf., e.g, (31)). In particular, given a problem specification ψ
.
=

∃~S ~P φ(~S, ~P , ~R), guessed predicates in set ~P functionally depend on those in ~S if and

only if the first-order formula φ(~S, ~P , ~R) implicitly defines predicates in ~P (i.e., if

every 〈~S, ~R〉-structure has at most one expansion to a 〈~S, ~P , ~R〉-structure satisfying

φ(~S, ~P , ~R)).
It is worth remarking that, since we are interested in finite extensions for guessed

predicates, Beth implicit definability has to be intended in the finite. Now, the ques-
tion that arises is whether it is possible to derive, once a functional dependence (or,
equivalently, an implicit definition) has been established, a formula that explicitly de-
fines the dependent predicates in terms of the others. This formula, then, could take
the place of all occurrences of those predicates in the problem specification. Although
such a formula always exists in unrestricted first-order logic, this is not the case when
only finite models are allowed. This is because first-order logic does not have the
Beth property in the finite (cf., e.g., (48), and the intrinsically inductive definition of
guessed function inv[] in Example 5.3.2). Nonetheless, in some cases such a formula
indeed exists (cf., e.g., Examples 5.2.1 and 5.2.2). On the other hand, a second-order
explicit definition of a dependent predicate would not be adequate, since new quan-
tified predicates have to be added to the specification, and, moreover, the obtained
specification may not be in ESO any more. Hence, we follow the first approach, i.e.,
forcing the system to avoid branches on dependent predicates, in order to save search.

In this section we show how an explicit search strategy that avoids branches on
dependent predicates can be automatically synthesized. To this end, we assume to
face with languages that allow the user to provide an explicit search strategy, and,
in particular, since its description may depend on the particular solver, we present
examples by focusing on the constraint language opl.

opl does not require a search strategy (called, in the opl syntax, “search proce-
dure”) to be defined by the user, since it automatically uses default strategies when
none is explicitly defined. On the other hand, it provides the designer with the pos-
sibility of explicitly programming in detail how to branch on variables, and how to
split domains, by adding a search part in the problem specification.

The simplest way to provide a search procedure is by using the generate() con-
struct, which receives a guessed predicate as input and forces opl to generate all
possible extensions for it, letting the policy for the generation to the system defaults.
Of course, multiple occurrences of generate() (with different guessed predicates as
arguments) are allowed. opl also allows more explicit search procedures, where the
programmer can explicitly choose the order for the generation of the various extensions
for that predicate (cf. (124)). However, these topics require an accurate knowledge of
the particular problem at hand, and are out of the scope of this chapter, since they
are less amenable to be generalized and automated.

Hence, given a problem specification in which a set ~P of the guessed predicates is
functionally dependent on the others (set ~S), a search procedure that forces opl to

avoid branches on predicates in ~P is the following:

search {

generate(S1); ... generate(Sm);

generate(P1); ... generate(Pk);

};
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where {S1, . . . , Sm} is a suitable permutation of the m predicates in ~S, and

{P1, . . . , Pk} is a suitable permutation of the m predicates in ~P (the actual permu-
tations chosen may affect only efficiency). This search strategy does not completely
exclude branches on dependent predicates, but it makes such branches only after a
generation of the extension for all defining predicates has already been made (and its
effects propagated). Removing the generation of extensions for dependent predicates
may, in general, invalidate completeness. However, in case the computation of the ex-
tensions for predicates in ~P can be made by using only constraint propagation (which
arises frequently in practice, cf., e.g., all the examples above), calls to generate(Pi)

for i ∈ [1, k] do not actually produce non-determinism, since the domains for the
relevant variables have already been reduced to singletons, and hence can be omit-
ted. Anyway, in these cases, their inclusion is not expected to produce a significant
overhead.

Search procedures added to the opl specifications of HP 2D-Protein folding, Sailco
inventory, and Blocks world problems in order to deal with the above described de-
pendencies are, respectively, the following ones:

search {

generate(Moves);

generate(X);

generate(Y);

};

search {

generate(regulBoats);

generate(extraBoats);

generate(inv);

};

search {

generate(MoveBlock);

generate(MoveTo);

generate(On);

generate(Clear);

};

It is worth noting that, for some specifications, sets ~S and ~P are interchangeable. This
intuitively happens when the user adopts multiple viewpoints of the search space (cf.,
e.g., Example 5.3.1, in which set {X,Y } depends on {Moves} and vice versa). In
those cases, a first choice for deciding which set should be regarded as “defining”
(i.e., ~S), may involve the size of the associated search space, but other and smarter
approaches can be used (cf., e.g., (71)).

5.5 Experiments

To test the effectiveness of adding the automatically synthesized search procedures
presented in Section 5.4, we made an experimentation with opl. In particular, we
made the following experiments:
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• The HP 2D-Protein folding problem on benchmark instances, some of them
taken from (70);

• The Blocks world problem, on structured instances, some of them used as bench-
marks in (78);

• The Sailco inventory problem on random instances.

As for HP 2D-Protein folding, we used both specifications described in Example 5.3.1.
Adding a search procedure that explicitly avoids branches on dependent predicates
always speeds-up the computation, and often the saving in time in quite consistent.
Table 5.1 reports typical behaviors of the system (specification denoted by “BI” is the
one with binary inequalities for non-crossing, cf. Appendix H.1.1, while that denoted
by “Hits” is the one with additional guessed predicate Hits, cf. Appendix H.1.2). It
is worth noting that benefits are very impressive for what concerns the specification
“Hits”. This is an example of how automated reasoning on problem specifications can
recover some inaccuracies made by designers, when writing “low quality” models.

Also results for the Blocks world problem show that avoiding branches on depen-
dent predicates greatly speed-ups the computation. Time savings are often impressive
in this case, as Table 5.2 shows.

On the other hand, for what concerns the Sailco inventory problem, no saving
in time has been observed. This can be explained by observing that the problem
specification is linear, and the linear solver automatically chosen by the system (i.e.,
Cplex) is built on different technologies (e.g., the simplex method) that are not
amenable to this kind of program transformation.

5.6 Discussion and future research directions

In this chapter we discussed a semantic logical characterization of functional depen-
dencies among guessed predicates in declarative constraint problem specifications.
Functional dependencies can be very easily introduced during declarative modelling,
either because intermediate results have to be maintained in order to express some
of the constraints, or because of precise choices, e.g., redundant modelling. However,
dependencies can negatively affect the efficiency of the solver, since the search space
can become much larger, and additional information from the user is today needed in
order to efficiently cope with them.

We described how, in our framework, functional dependencies can be checked by
computer, and can lead to the automated synthesis of search strategies that avoid the
system spending search in unfruitful branches. Several examples of constraint prob-
lems that exhibit dependencies have been presented, from bio-informatics, planning,
and resource allocation fields, and experimental results have been discussed, showing
that current systems for constraint programming greatly benefit from the addition of
such search strategies.

As for future work, we plan to investigate the actual complexity of finding the
extensions for dependent predicates, once a guessing on defining ones has been made.
In particular, our investigations will focus on problems that are guaranteed to have
exactly one solution.
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Time
Spec. Length max. contacts w/out search proc. with search proc. % saving

BI 14 5 47.73 39.56 17.12
BI 14 2 33.83 33.44 1.15
BI 16 7 26.91 22.57 16.13
BI 16 6 127.53 113.36 11.11
BI 17 6 2787.64 2136.22 23.37
BI 17 6 316.83 286.37 9.61
BI 18 4 575.36 493.75 14.18
BI 18 ? – – –
BI 20 ? – – –

Hits 6 1 157.42 0.53 99.66
Hits 6 2 377.72 0.89 99.76
Hits 7 0 – 0.53 >99.99
Hits 7 2 – 0.62 >99.98
Hits 8 1 – 0.46 >99.99
Hits 8 2 – 0.57 >99.98
Hits 8 3 – 2.68 >99.93

Table 5.1: opl solving times for benchmark instances of the HP 2D-Protein folding
problem, with and without search procedure. (‘–’ means that opl did not terminate
in one hour.)

Results in this chapter have been published in (21; 22).
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Minimal Time
Instance Blocks plan length w/out search proc. with search proc. Saving %

bw-sussman 3 3 12.48 0.42 96.63
bw-reversal4 4 4 1.23 1.16 5.69

bw-4.1.1 4 6 882.72 0.66 99.92
bw-4.1.2 4 5 1879.25 0.87 99.95
bw-5.1.1 5 8 – 1.21 >99.97
bw-5.1.3 5 7 935.32 27.53 97.06

bw-large-a 9 12 – – –

Table 5.2: opl solving times for some benchmark instances of the Blocks world prob-
lem, with and without search procedure. (‘–’ means that opl did not terminate in
one hour.)
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Chapter 6

Automated reasoning on

problem specifications

6.1 Introduction

In previous chapters we presented different techniques for reformulating constraint
problem specifications and showed how the problem of recognizing the relevant prop-
erties of specifications can be reduced in checking semantic conditions of first-order
formulae. This implies that automated tools can be used, in principle, to automati-
cally make the required reasoning.

This chapter is devoted to this topic. In particular, we discuss the use of first-
order theorem provers and finite model finders for checking properties of problem
specifications suitable for being optimized. The main result is that, even if the under-
lying problems have been proven to be undecidable (cf. Theorems 4.3.2 and 5.2.2), in
practical circumstances such tools perform well on these reasoning tasks.

Relations between constraint satisfaction and deduction have been observed since
several years (cf., e.g., the early work (8), and (81) for an up-to-date report). Indeed,
not much work has been done on reasoning at the specification level (the only example,
to the best of our knowledge, is cgrass (60), that can be potentially used to auto-
matically infer properties also on constraint models, or classes of CSPs). On the other
hand, by using ESO as the formalism for specifying constraint problems, it becomes
natural –in principle– to infer properties of the specifications by means of automated
reasoning tools. Hence, the purpose of this chapter is exactly to link two important
technologies: automated theorem proving (ATP) and constraint programming.

We report the results on using first-order theorem provers and finite model finders
when focusing on two forms of reasoning:

• Checking existence of value symmetries, i.e., properties of the specification that
permit to exchange values of the finite domains without losing all solutions
(cf. Chapter 4); on top of that, we check whether a given formula breaks such
symmetries or not;

• Checking existence of functional dependencies, i.e., properties that force values
of some guessed predicates to depend on the value of other ones (cf. Chapter 5).

79
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spec
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Figure 6.1: Architecture of the problem solving system.

There are at least two reasons why a system should make automatically such checks:
in Chapters 4 and 5 we already showed how exploiting of, respectively, symmetries and
functional dependencies, can make the solving process more efficient, and provided
several examples of specifications that exhibit these properties.

On the other hand, the automated detection of such properties is needed also for
verification purposes. In fact, the person performing constraint modelling may be
interested in the above properties: as an example, existence (or lack) of a dependence
may reveal a bug in the specification.

The architecture of the system we envision is represented in Figure 6.1. Hence,
the output of the transformation phase is a reformulated constraint program and,
possibly, a search strategy.

In what follows we show that it is actually possible to use ATP technology to reason
on combinatorial problems and to reformulate them. As a side-effect, we propose a
new domain of application and a brand new set of benchmarks for ATP systems, that
is not represented in large repositories such as TPTP1.

Sections 6.2 and 6.3 are devoted to the description of experiments in checking
symmetries and dependencies, respectively, while Section 6.4 draws conclusions and
presents current research. Appendixes H and E show some files for, respectively, opl
and the ATP used.

6.2 Detecting and breaking uniform value symme-

tries

In this section we face the problem of automatically detecting and breaking value
symmetries in problem specifications. To this end, we refer to definitions and results
in Chapter 4, and in particular to the concepts of Uniform value transformation (UVT)
and symmetry (UVS) (cf. Definitions 4.2.4 and 4.2.5, respectively), to Theorem 4.3.1
and to the definition of symmetry-breaking formula (cf. Definition 4.4.1).

Given an ESO problem specification ψ
.
= ∃~S φ(~S, ~R), Theorem 4.3.1 and Defini-

tion 4.4.1 claim that, checking whether a given UVT σ is a symmetry for ψ, or whether

1http://www.tptp.org.
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a formula β(~S) is breaks a given symmetry, reduces to check semantic properties of
first-order formulae.

In the following, we give some details about the experimentation done using auto-
mated tools. First of all we note that, obviously, all the above mentioned conditions
can be checked by using a refutation theorem prover. It is interesting to note that,
for some of them, we can use a finite model finder. In particular, we can use such a
tool for checking statements (such as condition (4.1) of Definition 4.4.1 or the nega-
tion of the condition of Proposition 4.3.1) that are syntactically a non-equivalence.
As a matter of facts, it is enough to look for a finite model of the negation of the
statement, i.e., the equivalence. If we find such a model, then we are sure that the
non-equivalence holds, and we are done. The tools we used are the first-order refu-
tation theorem prover Otter (93) and the first-order model finder Mace (92). We
invoked both tools in full “automatic” mode.

6.2.1 Detecting symmetries

The examples we worked on are those of Chapter 4, and in particular:

• Graph 3-coloring (Example 4.3.1), with the symmetry σG,B defined as
σG,B(R) = R, σG,B(G) = B, σG,B(B) = G;

• Not-all-equal Sat (Example 4.5.2), with the symmetry σT,F , defined as
σT,F (T ) = F and σT,F (F ) = T ;

• Social golfer (Example 4.5.3) in the unfolded version, with symmetries σG,G′

W ,
for all weeks W , swapping PLAY W,G and PLAY W,G′ .

The results we obtained with Otter are shown in Table 6.1. The third row refers to
the version of the Not-all-equal Sat problem in which all clauses have three literals,
the input is encoded using a ternary relation clause(·, ·, ·), and the specification varies
accordingly. It is interesting to see that the performance is good in many cases (cf.
Table 6.1). As for the fourth row, it refers to the unfolded specification of the Social
golfer problem with 2 weeks and 2 groups of size 2. Unfortunately, Otter does not
terminate for a larger number of weeks or groups (cf. Section 6.4).

A note on the encoding is in order. Initially, we gave the input to Otter exactly
in the format specified by Theorem 4.3.1, but the performance was quite poor: for
Graph 3-coloring the tool did not even succeed in transforming the formula in clausal
form, and symmetry was proven only for very simplified versions of the problem, e.g.,
2-coloring, omitting constraint (1.6). Results of Table 6.1 have been obtained by
introducing new propositional variables defining single constraints: as an example,
constraint (1.6) is represented as

covRGB <-> (all x (R(x) | G(x) | B(x))).,

where covRGB is a fresh propositional variable.
Obviously, we wrote a first-order logic formula encoding condition of Theo-

rem 4.3.1, and gave its negation to Otter in order to find a refutation. As an
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Spec Symmetry CPU time (sec)

3-coloring σG,B 0.27
Not-all-equal Sat σT,F 0.22

Not-all-equal 3-Sat σT,F 4.71

Social golfer (unfolded) σG,G′

W 0.96

Table 6.1: Performance of Otter for proving that a UVT is a UVS.

example, Appendix E.2.1 shows the whole Otter code used to check that σR,G is a
UVS for the 3-coloring specification.

As for proving non-existence of symmetries, we used the Graph 3-coloring with
red self-loops problem of Example 2.2.1, and the UVT σR,G that is not a symmetry
for it. We wrote a first-order logic formula encoding condition of Theorem 4.3.1 for
σR,G and gave its negation to Mace in order to find a model of the non-equivalence.
Mace was able to find the model described in Example 2.2.1 in less than one second
of CPU time.

6.2.2 Breaking symmetries

We worked on Graph 3-coloring (Example 4.3.1) with the UVS σG,B, and So-

cial golfer (Example 4.5.3) in the unfolded version, with symmetries σG,G′

W . As
for the candidate symmetry-breaking formulae, we considered some of those de-
scribed in Examples 4.5.1 and 4.5.3. In particular, we checked both con-
ditions of Definition 4.4.1 with βG,B

sel (R,G,B) (4.4), βG,B
least(R,G,B) (4.5), and

βG,B
≤ (R,G,B) (4.6) with respect to σG,B in the Graph 3-coloring specification, and

with βG,G′

least W (PLAY W,G,PLAY W,G′) (4.16) with respect to σG,G′

W in the Social golfer
specification.

As for βG,B
≤ (R,G,B), some considerations are in order, since this example high-

lights some difficulties that can arise when using first-order ATPs. In fact, although
formula (4.6) can be written in ESO using standard techniques (i.e., an ESO for-
mula that evaluates to true if and only if a total injective function from tuples in
R to those in G exists, cf. Appendix A), it is not first-order definable. Therefore,
conditions in Definition 4.4.1 are second-order (non-)equivalences, and the use of a
first-order theorem prover may not suffice.

However, in some circumstances, it is possible to synthesize first-order conditions
that can be used to infer the truth value of those of Definition 4.4.1. In Appendix E.1
we show an example of first-order definable steps that imply that condition (4.1), i.e.,

point 1 of Definition 4.4.1 holds, for the case of a formula β(~S) expressed in ESO, as

is, e.g., βG,B
≤ (R,G,B).

We used Mace and Otter in order to prove that the formulae described above were
symmetry-breaking for the 3-coloring problem specification with respect to σG,B,
by checking conditions of Definition 4.4.1. As Table 6.2 shows, times are always
good when checking the first condition, while may become worse when Otter is
used to prove the second one. On the other hand, we strongly believe that the
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Spec Symmetry β(~S) CPU time (sec)
Cond. (4.1) (Mace) Cond. (4.2) (Otter)

3-coloring σG,B β
G,B

sel (R, G, B) 1.47 1.89

σG,B β
G,B

least(R,G, B) 2.67 ?

σG,B β
G,B

≤ (R, G, B) 0.25 –

Social golfer σ
G,G′

W β
G,G′

least W (· · · ) 0.04 ?

Table 6.2: Performance of Otter for proving that a formula β(~S) is symmetry-
breaking for a given symmetry.

poor performances of Otter when dealing with more complex symmetry-breaking
formulae can be explained by observing that these tools are strongly optimized for the
kind of formulae of benchmark libraries, e.g., TPTP and various competitions (e.g.,
CASC2), that have a structure very different with respect to ours. As a side-effect,
we think that the wide availability of problem specifications can offer a brand new
set of benchmarks for this kind of tools.

6.3 Detecting functional dependencies

In this section we tackle the problem of the automated recognition of guessed predi-
cates that functionally depend on other ones in a given specification.

In Chapter 5 we have already shown how functional dependencies arise frequently
in problem specifications, and that their recognition can positively affect the effi-
ciency of backtracking solvers, leading to the automatic synthesis of search strategies
exploiting them, e.g., by avoiding branches regarding dependent predicates. In the
same chapter we gave several examples of problem specifications that exhibit func-
tional dependencies, and presented experimental results showing the effectiveness of
the approach.

In this section, instead, we show how ATP technology can be effectively used
to automate the reasoning described in Chapter 5. In the following, we refer to
that chapter for definitions and results: in particular, in this section we make use of
Definition 5.2.1 and Theorems 5.2.1 and 5.2.2.

Using Theorem 5.2.1 it is easy to write a first-order formula that is valid if and only if
a given dependence holds. We used Otter for proving the existence of dependencies
among guessed predicates of different problem specifications:

• Graph 3-coloring (cf. Example 5.2.1), where one among the guessed predicates
R, G, B is dependent on the others;

• Not-all-equal Sat (cf. Example 5.2.2), where one between the guessed predicates
T and F is dependent on the other.

For each of the above specifications, we wrote a first-order logic encoding of for-
mula (5.1), and gave its negation to Otter in order to find a refutation.

2http://www.cs.miami.edu/~tptp/CASC/
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For the purpose of testing effectiveness of the proposed technique in the context
of more complex specifications written in implemented languages, we considered also:

• Sailco inventory problem (cf. Example 5.3.2), where inv[] depends on
regulBoat[] and extraBoat[];

• HP 2D-Protein folding problem (cf. Example 5.3.1), where X[] and Y[] depend
on Moves[].

Otter encodings of such problems are given in Appendix E.2.2.

In order to make Otter able to correctly handle expressions of interest (in particu-
lar, arithmetic constraints), additional constraints had to be included in the Otter
formulae.

As for Sailco (cf. Appendix E.2.2), we opted for an encoding that uses function
symbols: as an example, the inv[] array (cf. the opl specification in Appendix H.2)
is translated to a function symbol inv(·) rather than to a binary predicate. More
precisely, according to Theorem 5.2.1, a pair of function symbols inv(·) and inv′(·)
is introduced. The same happens for regulBoat[] and extraBoat[]. Moreover, we
included the following additional constraints:

equalDiscrete <-> (inv(0) = inv_prime(0) &

(all t (t > 0 -> (inv(t) - inv(t-1)) =

(inv_prime(t) - inv_prime(t-1))))).

induction <-> (equalDiscrete -> (all t (inv(t) = inv_prime(t)))).

in order to allow Otter to infer ∀t inv(t) = inv′(t) from equality of inv and inv′ at
the initial time period and equivalence of increments in all time intervals of length 1.
A similar approach has been followed for HP 2D-Protein folding (cf. Appendix E.2.2).

Results of the experiments to check that dependencies for all the aforementioned
problems hold are shown in Table 6.3. As it can be observed, for almost all of
them the time needed by Otter is very small. An exception is HP 2D-Protein
folding, for which Otter needed several minutes, with the specification showed in
Appendix H.1.2, and was not able to find a proof when using the specification in
Appendix H.1.1. As for the Blocks world problem specification instead, Otter did
not return any proof. To this end, we are investigating the use of other theorem
provers (cf. Section 6.4).

6.4 Discussion and future research directions

The use of automated tools for preprocessing CSPs has been almost completely lim-
ited, to the best of our knowledge, to the instance level. In this chapter we proved
that current ATP technology is able to perform significant forms of reasoning on spec-
ifications of constraint problems. We focused on two forms of reasoning: symmetry
detection and breaking, and functional dependence checking. Reasoning has been
done for various problems, including the ESO encodings of graph 3-coloring and Not-
all-equal Sat, and the opl encoding of an inventory problem, 2D HP-Protein folding
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Spec ~S ~P CPU time (sec) Proof length Proof level

3-coloring R, G B 0.25 27 18

Not-all-equal 3-Sat T F 0.38 18 14

Sailco regulBoat, inv 0.21 29 11
extraBoat

HP 2D-Prot. folding Move X, Y 569.55 76 16

Table 6.3: Performance of Otter for proving that the set ~P of guessed predicates is
functionally dependent on the set ~S.

and Blocks world problems. In the latter examples, arithmetic constraints exist, and
we have shown how they can be handled. In many cases, reasoning is done very ef-
ficiently by the ATP, although effectiveness depends on the format of the input, and
auxiliary propositional variables seem to be necessary.

There are indeed some tasks, namely, proving existence of symmetries in the Social
golfer problem, or existence of functional dependencies in the Blocks world problem,
which Otter –in the automatic mode– was unable to do. So far, we used only
two tools, namely Otter and Mace, and plan to investigate effectiveness of other
provers, e.g., Vampire (109). We note that the wide availability of constraint problem
specifications, both in computer languages, cf., e.g., (57; 124), and in natural language,
cf., e.g., (62), the CSP-Library (64), and the OR-Library (104), offers a brand new
set of benchmarks for ATP systems, which is not represented in large repositories,
such as TPTP.

Currently, the generation of formulae that are given to the theorem prover is
performed by hand. Nonetheless, we claim that, as it can be observed from the
various examples, this task can in principle be performed automatically, since the opl
syntax for expressing constraints is essentially first-order logic. We plan to investigate
this topic in future research, with much attention on how to deal with arithmetic
constraints in a general way. In particular, from our experiments, it seems that the
complete axiomatizations of integers, linear orders, and arithmetics may in general
be avoided, as long as a minimal set of axioms is included in the ATP input formula
in order to let the theorem prover able to correctly make the relevant unifications
among different arithmetic expressions.

We believe that ATPs can be used also for other useful forms of reasoning, apart from
those described in this chapter. As an example, in Figure 4.1 an opl specification of
the N -queens problem is shown. In Section 4.7 we already observed that for symmetry
reasons, a solution-preserving (and possibly more efficient) formulation requires the
constraints to hold just for totally ordered pairs of rows, i.e., r1 < r2, and how this
kind of symmetries can be detected. Otter was able to prove that this symmetry
on variables hold in less than one second of CPU time. As already remarked in
Section 4.7, we are currently investigating the applicability of such a technique for a
general class of specifications, in which different classes of symmetries hold.

Results in this chapter have been published in (23; 24).
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Chapter 7

Recognizing compilable

specifications

7.1 Introduction

This chapter deals with a different technique that has been proposed in the Artificial
Intelligence literature for addressing polynomial intractability of reasoning: Knowl-
edge compilation (KC). The central observation behind KC is that, in many reasoning
tasks, the input to a deduction problem KB |= δ is split into two parts, KB and δ,
with different status: Typically KB is not modified very often, and it is used for
several instances of the problem. For this reason, KB is sometimes called the fixed
part, and δ the varying part. The idea of KC is to split the deduction problem into
two phases (depicted in Figure 7.1):

• In the first one (sometimes called off-line reasoning) KB is preprocessed, thus
obtaining an appropriate data structure DKB;

• In the second phase (sometimes called on-line reasoning), the problem KB |= δ
is actually solved using DKB and δ.

The goal of preprocessing is to make on-line reasoning computationally easier (possibly
polynomial-time) with respect to reasoning in the case when no preprocessing at all
is done. A reasonable requirement is that the size of DKB is polynomial in the size of
KB, otherwise it would be unpractical to store the computed information. Intuitively,
the effort spent in the preprocessing phase pays off when its computational cost is
amortized over the (facilitated) answer to many instances. KC has been analyzed for
a variety of logical consequence relations |=, including propositional logic (114), belief
revision (132), and various non-monotonic formalisms such as default logic (7) and
circumscription (101).

In this chapter we study KC in the context of relational databases. In particular,
we will assume that both KB and δ are represented in some way as databases, and
that logical consequence, i.e., the ‘|=’ relation in KB |= δ, is represented as a logical
query Q in second-order logic. DKB is also a database, to be synthesized from KB
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KB

δ

KB |= δ?

Does

DKB
Off-line reasoning

reasoning
On-line

Figure 7.1: Compilation of a problem.

by means of an appropriate view. On-line reasoning is also represented as a logical
query Qr, obtained by rewriting Q.

We will show syntactic restrictions on the query Q that imply that a polynomial-
size DKB and a first-order Qr exist, thus implying that on-line reasoning can be done
in polynomial time, i.e., Q is compilable to P. We will also present classes (in some
sense complementary to the former ones) of non-compilable queries, for which either
no polynomial-size DKB or no first-order Qr exist (unless the Polynomial Hierarchy
–PH– collapses).

Focusing on such a restricted case of KC rules out some interesting cases: As an
example, since Q is second-order, no problem which is PSPACE-hard can be stud-
ied (provided PH 6= PSPACE). Nevertheless, formalizing the deduction problem as
a logical formula presents a clear advantage, since we have the possibility to sepa-
rate compilable and non-compilable queries by means of a syntactic criterion. This
helps to understand why “similar” problems may be quite different with respect to
compilation.

In fact a vast literature both on the pragmatic and the theoretical aspects of KC
exists (a survey on knowledge compilation appears as (12)). Apart from the above
cited papers, many cases of compilable and non-compilable problems have been shown
in (68; 42); ad hoc complexity classes and reductions for proving compilability and
non-compilability have been defined in (13). Nevertheless the syntactic approach
considered here is, to the best of our knowledge, original. A syntactic approach
has been used in other works, e.g., in (69) for characterizing polynomial and NP-
complete sub-cases of existential SO logic over graphs, and in (83) for characterizing
approximable NP optimization problems.

This chapter is organized as follows: In Section 7.2 we recall preliminary notions
and present a couple of motivating examples, while in Section 7.3 the main theorem
concerning queries compilable to P is presented. In Section 7.4 we investigate the
reasonableness of the assumptions of such a theorem, showing that, relaxing them,
non-compilable problems can be expressed. Section 7.5 generalizes results of Sec-
tion 7.3 by dealing with compilability to other complexity classes. Several examples
will be described throughout the chapter. Discussions and plans future work are given
in Section 7.6.
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7.2 Preliminaries and motivating examples

In this section we give the preliminary notions that will be used throughout the
chapter. First of all, we give the formal definition of problem compilable to P; such
a definition refers only to problems whose input is split into a fixed and a varying
part. Afterwards, we use a couple of specific examples of deduction problems, to
highlight the intuitions behind the definitions. In the following, | · | denotes the size
of a structure.

Definition 7.2.1 (Problem compilable to P (14; 114)). A problem π, whose

input schema is split into a fixed and a varying part, ~F and ~V respectively, is said to
be compilable to P if there exist two polynomials p1, p2 and an algorithm ASK such
that for each instance KB of ~F there is a data structure DKB such that:

1. |DKB| ≤ p1(|KB|);

2. For each instance δ of ~V the call ASK(DKB, δ) returns yes if and only if 〈KB, δ〉
is a “yes” instance of π;

3. ASK(DKB, δ) requires time ≤ p2(|δ| + |DKB|).

The problems we consider in this section refer to propositional logic, and in particular
to deduction from a propositional formula in conjunctive normal form (CNF), i.e., a
conjunction of clauses, where a clause is a disjunction of literals, i.e., propositional
variables, possibly negated.

The problems we consider are Conjunction inference and Clause inference, whose
definitions are the following:

Example 7.2.1 (Conjunction inference (Conj-inf)). Given a propositional for-
mula T in CNF (fixed part), and a conjunction of literals J = l1 ∧ · · · ∧ ln (varying
part), the problem amounts to decide whether T |= J , i.e., whether every model of T
is also a model of J .

Example 7.2.2 (Clause inference (Clause-inf)). Given a propositional formula
T in CNF (fixed part), and a disjunction of literals C = l1 ∨ · · · ∨ ln (varying part),
the problem amounts to decide whether T |= C, i.e., whether every model of T is also
a model of C.

To make above specifications more clear, consider the following formula T :

(¬c ∨ d) ∧ (a ∨ ¬b) ∧ (c ∨ ¬a) ∧ (¬d ∨ ¬a). (7.1)

Formula T logically implies both the conjunction ¬a and the clause c ∨ ¬b.
As mentioned in Section 7.1, in our setting the problem instance must be repre-

sented as a relational database. As for the fixed part, there are several ways to encode
a formula in CNF as a database (cf. e.g., Example 1.2.3 and (69)). Differently from
Example 1.2.3, here we choose to represent a formula T = γ1 ∧ · · · ∧ γm over the set
of variables x1, . . . , xn as a directed graph, i.e., a binary relation ET , in which:

• There is one node for each clause γi (1 ≤ i ≤ m), and one node for each of the
literals xi, ¬xi (1 ≤ i ≤ n);
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a

¬a

γ2
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¬b

γ3

c

γ4

¬c
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Figure 7.2: Graph of the CNF formula (7.1)

• For each variable xi there is one edge from xi to ¬xi and one edge from ¬xi to
xi;

• For each clause γi = l1i ∨ · · · ∨ lki

i , there are ki edges ending in γi, one for each

literal l1i , . . . , l
ki

i .

Note that clauses correspond to sink nodes in the graph, and that complementary
literals form a cycle of length 2. We call a relation like ET a fixed relation. In
Figure 7.2 we show the graph corresponding to the CNF formula (7.1).

The varying parts of both problems can be simply represented as monadic rela-
tions: C for the clause, and J for the conjunction, storing tuples corresponding to their
literals; by referring to the previous example, conjunction ¬a and the clause c ∨ ¬b
(both of them logically implied by the CNF formula in Figure 7.1), are represented
by the following relations:

J ¬a C c
¬b
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We call relations like J and C varying relations.
Now, we have to represent the deduction problems Conj-inf and Clause-inf as

queries. Since both problems are coNP-complete, queries must be formulae in the
universal fragment of second-order logic (USO), cf. (51). Before showing the complete
queries, we go through some intermediate formulae, which are useful for what follows.

A given monadic relation M represents an interpretation of a CNF formula T ,
encoded as described above, represented as relation ET , if and only if the following
first-order formula evaluates to true:

∀X ∀Y (ET (X,Y ) ∧ET (Y,X)) → (M(X) ↔ ¬M(Y )) .

The above formula, which will be abbreviated as int(M,ET ), asserts that for each
pair of complementary literals X and Y , exactly one is in M (implicitly getting truth
value true). By referring again to formula (7.1), a possible interpretation assigns true

to a, c, d and false to b, and it is encoded by the following relation M :

M a
¬b
c
d

Note that this relation makes the previous formula true.
Interpretation M a model of T if and only if it assigns true to at least one literal

L for each clause C, i.e., for every sink node of ET . Formally, M is a model of T if
and only if the following first-order formula (abbreviated as model(M,ET )) evaluates
to true:

int(M,ET ) ∧ ∀X ∀Y (¬ET (X,Y ) → ∃Z (ET (Z,X) ∧M(Z))) . (7.2)

Returning to the example, it can be observed that interpretation M in the above
table (that does not satisfy clause c4 in formula (7.1)) makes formula (7.2) false. On
the other hand, the following one (a model of (7.1)) makes it true:

M ¬a
¬b
c
d

Problems Conj-inf and Clause-inf can now be simply represented, respectively, as the
following USO queries:

Example 7.2.3 (Conjunction inference (Example 7.2.1 continued)). Given a
propositional formula T in CNF (fixed part), encoded in a binary relation ET , and a
monadic relation J encoding a conjunction of literals l1 ∧ · · · ∧ ln (varying part), an
USO specification for the Conjunction inference problem is as follows:

∀M model(M,ET ) → ∀X (J(X) →M(X)) . (7.3)
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Example 7.2.4 (Clause inference (Example 7.2.2 continued)). Given a propo-
sitional formula T in CNF (fixed part), encoded in a binary relation ET , and a
monadic relation C encoding a disjunction of literals l1 ∨ · · · ∨ ln (varying part),
an USO specification for the Clause inference problem is as follows:

∀M model(M,T ) → ∃X (C(X) ∧M(X)) . (7.4)

It is known (114) that Conj-inf can take advantage of compilation: given a CNF
formula T and a conjunction J , off-line reasoning amounts to computing the set of
literals logically following from T , i.e., I = {l | l is a literal and T |= l}, while on-line
reasoning just checks that each literal occurring in J belongs to I. Since the set I has
polynomial size in the size of T , and on-line reasoning is polynomial-time in the size
of V and J , Conj-inf is said –according to Definition 7.2.1– to be compilable to P.

This idea can be readily used by transforming the USO query (7.3) as follows.
Off-line reasoning is captured by computing a view, i.e., the following second-order
formula open with respect to first-order variable X :

infLiteral(X)
.
= ∀M model(M,ET ) → M(X). (7.5)

By referring to formula (7.1), since all its models (extensions for relation M that
make formula (7.2) true) are:

¬a
¬b
¬c
¬d

¬a
¬b
¬c
d

¬a
¬b
c
d

it follows that infLiteral(X) would store the following literals:

¬a
¬b

On-line reasoning is done by evaluating the following query, obtained by
rewriting (7.3):

∀X J(X) → infLiteral(X). (7.6)

In our example, the conjunction J is ¬a, therefore formula (7.6) is true.
In general, computing the view (7.5) is an NP-hard task, but in KC we don’t care

about it: what matters is that the view needs polynomial space to be stored, and
that the rewritten query (7.6) is first-order, hence polynomial-time.

It is possible to prove that the rewritten query (7.6) is equivalent to the original
one (7.3). Actually, in the next section we show a subset of second-order queries –
generalizing (7.3) – for which the existence of a polynomial-size view and a first-order
equivalent query is guaranteed.

The situation is radically different for the Clause-inf problem, for the following
reason. Given a CNF formula T and a clause δ, off-line reasoning could – in principle
– be done by computing all clauses that logically follow from T , and on-line reasoning
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just by checking whether δ is one of them or not. More compactly, only the clauses
not implied by other ones, i.e., the so called prime implicates, could be computed
during off-line reasoning. Anyway, even the latter method is not practical, since it
has been proven in (29) that there exist CNF formulae in which the number of prime
implicates is exponential in their size.

The definition of non-compilable problem follows from Definition 7.2.1: π is non-
compilable to P if there are no polynomials p1, p2 with the properties stated in
Definition 7.2.1. Intuitively, if a polynomial p1 with the properties mentioned in
Definition 7.2.1 does not exist, it means that compilation would take too much (i.e.,
super-polynomial) space. Dually, if p1 exists and p2 does not, then encoding of the
problem in a polynomial-space data structure is possible, but it is not possible to
extract information from it in polynomial time.

Actually, it is still not known whether the Clause-inf problem is compilable or not,
although there are some conditional results that give interesting information. It has
been shown (14; 79) that if Clause-inf is compilable, then NP ⊆ P/poly holds, that
implies (77) that Σp

2 = Πp
2, i.e., the Polynomial Hierarchy collapses, an event that –

although not as strong as P = NP – is widely conjectured to be false. A similar result
can be proven for the more general problem T |= W , where W is any propositional
formula. If this problem is compilable, then P = NP, as tautologies could be detected
in polynomial time compiling the empty T .

Nevertheless, to give a formal proof that a problem is not compilable is quite
difficult. As an example, proving that Clause-inf is not compilable implies P 6= NP
(a necessary and sufficient condition for compilability is shown in (14)). In fact,
this is a typical situation when dealing with non-compilability of problems, that we
can parallel with the traditional notion of polynomial-time intractability: proving
intractability is usually done proving NP-hardness, which means that a problem does
not have polynomial-time algorithms provided P 6= NP.

Summing up, proving compilability can be done by exhibiting polynomials accord-
ing to Definition 7.2.1, while non-compilability is proven only conditionally. Hence,
in the following we will use the term “non-compilable problem”, by meaning this
conditional result (i.e., compilability would imply the collapse of the PH).

7.3 Queries compilable to P

In this section we present the main result of the chapter concerning compilability. We
give a sufficient condition for compilability to P in terms of syntactic restrictions of
second-order formulae.

In the following, δ( ~X) denotes that all free first-order variables in formula δ are in

the list ~X. Moreover, δ( ~M) denotes that predicate symbols in the list ~M may occur
in δ.

First of all, we present a result that will be useful in the following.

Lemma 7.3.1. Let ψ be a second-order query of the form:

∀ ~M α( ~M ) ∨ ∀ ~X
(

β( ~X) ∨ γ( ~X, ~M)
)

, (7.7)

where α is an arbitrary second-order formula in which no free first-order variables
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occur, and β and γ are arbitrary first-order formulae, with β not containing predicates
in ~M .

Formula (7.7) is equivalent to:

∀ ~X β( ~X) ∨ view( ~X), (7.8)

where view( ~X) is defined as:

∀ ~M α( ~M) ∨ γ( ~X, ~M). (7.9)

The proof is delayed to Appendix F. Lemma 7.3.1 captures several intuitions:

• Complex (possibly quantified) subformulae can be treated as single components,
like α, β, and γ.

• This is very useful for modelling the off-line computation, that may involve all
predicates, except for the on-line ones. As an example, in formula (7.3) con-
cerning Conj-inf, the off-line computation involves model(M,ET ) and M(X),
cf. (7.5).

• In query (7.7) it is possible to separate the second-order and fixed parts from
the varying part. This allows us to process the former in the off-line phase (by
means of the view (7.9)), and to evaluate the rewritten query (7.8) in the on-line
phase.

In what follows, we make the assumption that the size of the query is fixed with
respect to the size of the database, which is implied by the data complexity (cf. (128))

assumption. As a consequence, the arity of ~X is a constant, and polynomial space
in the size of data is enough to represent view( ~X). Furthermore, since (7.8) is an
ordinary first-order formula, its evaluation requires polynomial time in the size of
data.

From these observations, the main theorem follows:

Theorem 7.3.1. Let ψ, α, β, γ, and view as in Lemma 7.3.1. If neither α nor
γ contain varying predicates, then the problem specified by ψ is compilable to P.
In particular, off-line reasoning is done by computing the view (7.9), and on-line
reasoning by evaluating the (rewritten) query (7.8).

The above theorem is stated for second-order queries starting with universal quan-
tification, which are adequate for modeling deduction problems: in such problems,
typically, a formula must be true in all models of a specified set. A dual theorem
for queries starting with existential quantification (adequate, for example, for model
checking problems) holds.

7.3.1 Examples

In this subsection we show some applications of the above theorem.
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From coNP to P: Deduction problems

Theorem 7.3.1 immediately applies to the Conj-inf problem (cf. Section 7.2), by as-

suming ~M = {M}, ~X = {X}, and:

• α( ~M ) = ¬model(M,ET );

• β( ~X) = ¬J(X);

• γ( ~X, ~M) = M(X).

A generalization of Conj-inf with the same fixed part is 2CNF inference, in which the
varying part is a formula in CNF with exactly two literals per clause (2CNF).

Example 7.3.1 (2CNF inference (2CNF-inf)). Given a propositional formula T
in CNF (fixed part), encoded in a binary relation ET , and a propositional formula F
in CNF exactly two literals per clause (2CNF), the problem amounts to decide whether
T |= F , i.e., whether every model of T also a model of F .

Representing a 2CNF formula F can be done simply by means of a binary (symmetric)
relation RF whose tuples correspond to the clauses in F . As an example, by referring
to formula (7.1), the logically implied 2CNF formula (¬a ∨ ¬c) ∧ (¬b ∨ c) can be
encoded by the following relation:

RF ¬a ¬c
¬c ¬a
¬b c
c ¬b

The problem T |= F corresponds to the following USO formula:

∀M model(M,ET ) → ∀X1, X2 (RF (X1, X2) → (M(X1) ∨ M(X2))) (7.10)

that evaluates to true if and only if every model M of T contains at least one literal
of every clause of F .

In this case the view is different: In particular, ~M = {M}, ~X = {X1, X2}, and
Theorem 7.3.1 applies with:

• α( ~M ) = ¬model(M,ET );

• β( ~X) = ¬RF (X1, X2);

• γ( ~X, ~M) = M(X1) ∨M(X2).

As noted in (99), the generalization kCNF inference of 2CNF-inf, in which the varying
part is a CNF formula with exactly k literals per clause, is still compilable, as long as
k is fixed with respect to the size of T . Query (7.10) can be modified to account for
longer clauses simply by increasing the arity of RF , and Theorem 7.3.1 still applies.
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From coNP to P: Graph coloring

Theorem 7.3.1 can be applied to non-deductive problems. As an example, we consider
the following Forced colors in a graph problem:

Example 7.3.2 (Forced colors in a graph). Given a graph (fixed part), encoded in
a binary relation edge (cf. Example 1.2.2), and a set of nodes (varying part) encoded
in a monadic relation S, the problem amounts to decide whether every node in S is
forced to be assigned a pre-determined color (e.g., red) in each 3-coloring of the graph
in which two fixed nodes, a and b, have a given color, e.g., red and green, respectively.

Using unary predicatesR, G, andB for the colors, in Example 1.2.2 we already showed
a closed first-order formula, denoted here by 3col(R,G,B, edge), that represents the
fact that R, G, and B encode a 3-coloring of graph represented by edge. The query
for the Forced colors problem is as follows:

∀R,G,B (3col(R,G,B, edge) ∧R(a) ∧G(b)) → ∀X (S(X) → R(X)) . (7.11)

Theorem 7.3.1 applies when ~M = {R,G,B}, ~X = {X}, and:

• α( ~M ) = ¬(3col(R,G,B, edge) ∧R(a) ∧G(b));

• β( ~X) = ¬S(X);

• γ( ~X, ~M) = R(X).

The intuitive meaning of the forced colors problem is to check whether choosing
the color for a couple of nodes constrains a different set S of nodes (not known
in advance) to have a specific color. Such a problem is an abstraction for several
resource allocation problems, e.g., the Frequency assignment problem in the context
of telecommunications networks. In the Frequency assignment problem nodes are
transmitters, colors are frequencies, and an edge means that two nodes cannot be
assigned the same frequency. In the query (7.11) we are basically asking whether
assigning frequencies to a subset of the transmitters implies that other nodes (set
S) must have a specific frequency. Clearly, query (7.11) can be generalized to any
constant number of colors (frequencies).

As another example in the context of graphs we consider the Few blue neighbors
problem:

Example 7.3.3 (Few blue neighbors). Given a graph (fixed part), encoded in a
binary relation edge (cf. Example 1.2.2), and a set of nodes (varying part), encoded
in a monadic relation T , the problem amounts to decide whether every node in T has
at most one blue neighbor in each 3-coloring of the graph in which two fixed nodes, a
and b, have a given color, e.g., red and green, respectively.

A query for the few blue neighbors problem is the following:

∀R,G,B (3col(R,G,B, edge) ∧R(a) ∧G(b)) →

∀X,Y, Z (T (X) ∧ edge(X,Y ) ∧ edge(X,Z) ∧B(Y ) ∧B(Z)) → Y = Z.

In this case, ~M = {R,G,B}, ~X is {X,Y, Z}, and:
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• α( ~M ) = ¬3col(R,G,B, edge);

• β( ~X) = ¬T (X);

• γ( ~X, ~M) = ¬edge(X,Y ) ∨ ¬edge(X,Z) ∨ ¬B(Y ) ∨ ¬B(Z) ∨ (Y = Z).

Also the few blue neighbors problem abstracts resource allocation problems. As an
example it can be viewed as a variant of the frequency assignment problem, where we
want transmitters in the set T to have at most one neighbor with a given frequency,
because it may interfere with others.

From Πp
2 to P: Circumscription

In principle, we can apply Theorem 7.3.1 to any problem in the PH. As an example, we
consider the Conjunction inference from circumscription problem, defined as follows:

Example 7.3.4 (Conjunction inference from circumscription (Conj-circ)).
Given a propositional formula T in CNF (fixed part) encoded in binary relation ET ,
and conjunction of literals J = l1 ∧ · · · ∧ ln, the problem amounts to decide whether
CIRC(T ) |= J , i.e., whether every model of the circumscription of T is also a model
of J .

Circumscription (88) is a form of non-monotonic reasoning, and the models of
CIRC(T ) are the minimal models of T , with respect to set containment (as an
example, the minimal models of a ∨ b are {a} and {b}, and the model {a, b} is not
minimal). As shown in (50), Conj-circ (ignoring the distinction between varying and
fixed parts) is Πp

2-complete. We now show that it can be compiled to P. First of all
we introduce the following USO formula (abbreviated as minModels(M,ET )) that
evaluates to true if and only if M represents a minimal model of T :

model(M,ET ) ∧

∀N model(N,ET ) → ¬[(∀X varT (X) ∧N(X) → M(X)) ∧

(∃X varT (X) ∧M(X) ∧ ¬N(X))]

(7.12)

where varT is a unary fixed relation storing the propositional variables occurring in
T . Now, Conj-circ can be specified as follows:

∀M minModels(M,ET ) → (∀X J(X) →M(X)),

and Theorem 7.3.1 applies with ~M = {M}, ~X = {X}, and:

• α( ~M ) = ¬minModels(M,ET );

• β( ~X) = ¬J(X);

• γ( ~X, ~M) = M(X).

It is interesting to notice that off-line reasoning, i.e., to compute the view
∀M minModels(M,ET ) → M(X) is a Πp

2-hard task. In this case, KC is even more
convenient, since a Πp

2-complete problem is transformed into a polynomial one.
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7.4 Queries non-compilable to P

In this section we deal with non-compilability, in the conditional sense of Section 7.2.
More precisely, we show the reasonableness of the assumptions of Theorem 7.3.1
concerning γ and α, by showing that the set of second-order queries in which either
assumption does not hold contains queries non-compilable to P.

Theorem 7.4.1. The set of formulae of Lemma 7.3.1 in which in γ there are varying
predicates, contains queries non-compilable to P.

Proof. By allowing formulae with varying predicates in γ, Clause-inf (cf. Exam-

ple 7.2.4) can be modelled by taking ~M = {M}, ~X = {}, and:

• α( ~M ) = ¬model(M,ET );

• β( ~X) = false;

• γ( ~X, ~M) = ∃Y C(Y ) ∧M(Y ).

We remind that this problem, as mentioned in Section 7.2, is non-compilable to P.

Before claiming the next result, we briefly describe a generalized version of
circumscription (cf. Section 7.3.1), and the Conjunction inference from (P ;Z)-
circumscription problem, useful for what follows.

Example 7.4.1 (Conjunction inference from (P;Z)-circumscription
(Conj-(P;Z)-circ)). Given a propositional formula T in CNF (fixed part), encoded
in a binary relation ET , and conjunction of literals l1∧· · ·∧ ln (varying part), encoded
in a monadic relation J , the problem amounts to decide whether CIRC(T ;P ;Z) |= J ,
i.e., whether every (P ;Z)-minimal model of T also a model of J .

In the (P ;Z)-circumscription only a subset of the propositional variables (those in a
specified set P ) are minimized, while the remaining ones (in the complementary set
Z) are left floating (cf. (88)). This leads to the notion of (P ;Z)-minimal models,
which coincide with minimal models described in Section 7.3.1 when Z = ∅. As an
example, if P = {b} and Z = {a}, then a∨ b has only one (P ;Z)-minimal model, i.e.,
{a} (the minimal model {b} is not (P ;Z)-minimal).

The USO formula (abbreviated as minModels(P ;Z)(M,P,ET )) that evaluates to
true if and only if M represents a (P ;Z)-minimal model of T can be obtained by
modifying formula (7.12) as follows:

model(M,ET ) ∧

∀N model(N,ET ) → ¬[(∀X P (X) ∧N(X) → M(X)) ∧

(∃X P (X) ∧M(X) ∧ ¬N(X))]

(7.13)

where, P is a unary relation storing all propositional variables to be minimized.
Hence, Conj-(P ;Z)-circ can be immediately specified with the query:

∀M minModels(P ;Z)(M,P,ET ) → (∀X J(X) →M(X)). (7.14)

We are now ready to present the next theorem.
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Theorem 7.4.2. The set of formulae of Lemma 7.3.1 in which in α there are varying
predicates, contains queries non-compilable to P.

Proof. Consider the Conj-(P;Z)-circ problem with the P set varying; by allowing for-
mulae of kind (7.7) with varying predicates in α, the query (7.14) matches conditions

of Lemma 7.3.1 by taking ~M = {M}, ~X = {X}, and:

• α( ~M ) = ¬minModels(P ;Z)(M,P,ET );

• β( ~X) = ¬J(X);

• γ( ~X, ~M) = M(X).

However, it has been proven in (14) that in such a case CIRC(T ;P ;Z) |= J (J being
a conjunction of literals) is non-compilable to P, even when T is a positive 2CNF
formula and J is a single literal.

We remark that the above theorems just deal with syntactic criteria. Their goal is
not to provide a sharp separation between compilable and non-compilable problems,
but rather to justify the assumptions of Theorem 7.3.1.

The similarity between Conj-inf (7.3) and Clause-inf (7.4) deserves further comments.
In general, a second-order formula can be put in prenex form, and its matrix in CNF,
treating arbitrary second-order subformulae where no free first-order variables occur
(like α in Lemma 7.3.1) as single literals. A formula in this form is said to be in prenex
generalized CNF (PGCNF). In all compilability examples of Section 7.3, queries are
actually in PGCNF, and their matrices contain exactly one clause. On the other
hand, we note that Clause-inf (7.4) is also in PGCNF, but has two clauses.

It is actually possible to show PGCNF queries with two clauses, which are com-
pilable to P. As an example, the next query combines the two compilable problems
of Section 7.3.1, having the same fixed part:

∀R,G,B (3col(R,G,B,EH) ∧R(a) ∧G(b)) →

[∀X,Y, Z (T (X) ∧ EH(X,Y ) ∧ EH(X,Z) ∧B(Y ) ∧B(Z) → Y = Z) ∧

∀W (S(W ) → R(W ))].

The above query is of the form:

∀ ~M
{

α( ~M ) ∨
[

(∀ ~X1 β( ~X1) ∨ γ( ~X1, ~M)) ∧ (∀ ~X2 β( ~X2) ∨ γ( ~X2, ~M))
]}

,

and all problems of this kind are indeed compilable to P, as shown by the next
theorem, that generalizes Theorem 7.3.1.

Theorem 7.4.3 (∧-composition). Let ψ be a second-order query of the form:

∀ ~M
∧

i

{

αi( ~M) ∨ ∀ ~Xi (βi( ~Xi) ∨ γi( ~Xi, ~M))
}

, (7.15)
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where αi are arbitrary second-order formulae where no free first-order variables occur,
βi and γi are arbitrary first-order formulae, with βi not containing predicates in ~M ,
and αi, γi do not contain varying predicates.

The problem specified by ψ is compilable to P. In particular, off-line reasoning is
done by computing the views viewi( ~Xi), defined as:

∀ ~M αi( ~M) ∨ γi( ~Xi, ~M),

and on-line reasoning can be done by evaluating the (rewritten) query:

∧

i

(

∀ ~Xi βi( ~Xi) ∨ viewi( ~Xi)
)

.

Proof. Because of the presence of the universal quantifier and the outermost connec-
tive ∧, by pushing ∀ ~M in, formula (7.15) can be safely rewritten as

∧

i ψi where each
ψi is of the form (7.7). Now, query ψ can be rewritten using the same arguments of
the proof of Lemma 7.3.1.

The above theorem says that, when we have two or more problems that are “indepen-
dently” compilable to P, then their combination is compilable to P as well. Obviously,
the theorem does not apply to the Clause-inf problem, because in (7.4) the scope of
the first-order variableX spans both clauses of the matrix. In particular, it seems that
the presence of the same first-order variable in both a fixed and a varying predicate
in different clauses is a plausible predictor for non-compilability of a query.

7.5 Queries compilable to other classes

In general, KC deals with making on-line reasoning more efficient, but not necessarily
polynomial-time. Hence, a definition more general than Definition 7.2.1 is that of
problem compilable to C, where C is an arbitrary complexity class:

Definition 7.5.1 (Problem compilable to C). A problem π, whose input schema

is split into a fixed and a varying part, ~F and ~V respectively, is said to be compilable
to C if there exists a polynomial p and an algorithm ASK such that for each instance
KB of ~F there is a data structure DKB such that:

1. |DKB| ≤ p(|KB|);

2. for each instance δ of ~V the call ASK(DKB, δ) returns yes if and only if 〈KB, δ〉
is a “yes” instance of π;

3. ASK(DKB, δ) is in the complexity class C.

As an example, it makes sense to compile a problem that is Πp
2-complete to a coNP-

complete one, if it is non-compilable to P. To this end, Theorem 7.3.1 is useless,
because it only deals with compilation to P. On the other hand, if we can modularize
a second-order query as a formula of the form:

~QSO
~M ~QFO

~X η( ~M, ~X, λ( ~X)) (7.16)
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where ~QSO and ~QFO are, respectively, lists of second-order and first-order quantifiers,
λ is an arbitrary second-order formula in which neither on-line predicates nor pred-
icates in ~M occur, and η is second-order, then the evaluation of λ( ~X) can be done
off-line.

Several interesting deduction problems can indeed be specified in such a form. As
an example, another variant of the Clause-inf problem is the Clause-gcwa problem,
defined as follows:

Example 7.5.1 (Clause inference in the Generalized closed-world assump-
tion (Clause-gcwa)). Given a propositional formula T in CNF (fixed part), encoded
as a binary relation ET , and disjunction of literals l1∨ . . .∨ ln (varying part), encoded
as a monadic relation C, the problem amounts to decide whether GCWA(T ) |= C,
i.e., whether every model of GCWA(T ) is also a model of C.

The generalized closed-world assumption (GCWA) of a propositional formula T is a
form of non-monotonic reasoning defined in (98) as follows:

GCWA(T ) = T ∪ {¬x | variable x is false in all minimal models of T }.

As an example, the GCWA of formula T = a ∨ b is T itself, since both a and b are
true in at least one minimal model of T .

As shown in (50), Clause-gcwa is Πp
2-complete; moreover, if T is fixed, compilation

to P is not possible, cf. (14). There is some room for compilation to an intermediate
class, such as coNP, using the following idea. All negative literals that are true in all
minimal models of T can be computed during the off-line phase, and can obviously
be represented in a polynomial-size structure. On-line reasoning will use such literals
as well as the original formula T , and can be done by means of a coNP computation.

The following view gcwaLit(Y ) represents off-line reasoning, because it stores all
negative literals Y that are true in all minimal models of T :

∀X (varT (X) ∧ ET (X,Y ) ∧ET (Y,X)) → (∀N minModels(N,ET ) → N(Y ))

where varT is a unary fixed relation storing the propositional variables occurring in
T . Note that Y is a negative literal, because it is the negation of X , that is a variable
of T . Now, Clause-gcwa can be written as:

∀M (model(M,ET ) ∧ (∀Y gcwaLit(Y ) →M(Y ))) → (∃X C(X) ∧M(X)) ,

that is indeed in the form (7.16), with λ( ~X) = gcwaLit(Y ).
Another interesting problem specifiable by means of a formula of the form (7.16)

is the WIDTIO approach to knowledge base revision (132). In this case, the problem
is to check whether a clause q follows from a formula T revised with another formula
p that makes T inconsistent. The view is the set of clauses in T which “survive” after
the revision. The Πp

2-complete query can be compiled to a coNP-complete one.
It is worth noting that formulae of the kind (7.16) subsume those of Theorem 7.3.1.

They are also less precise, because they capture formulae like (7.4): just take λ( ~X)
as the empty formula.
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7.6 Discussion and future research directions

In this chapter we have focused on Knowledge Compilation in the context of relational
databases. Both fixed and varying parts of the instance are represented, as usual, as
relations, and the inference operator is represented as a query in second-order logic.
Our main result concerning compilability is the definition of a syntactic restriction of
second-order formulae that guarantees the existence of a polynomial-size view and a
first-order equivalent rewritten query, thus allowing on-line reasoning to be done in
polynomial time.

We have applied such a result to a variety of deduction problems, with underlying
complexity at various levels of the Polynomial Hierarchy. Non-deductive problems
concerning graphs have also been addressed. The syntactic restriction has been mo-
tivated by showing that relaxing it we obtain a set of second-order queries containing
queries non-compilable to P.

Finally, we have addressed the issue of compilability to higher classes in the Poly-
nomial Hierarchy, by showing examples of Πp

2-complete deduction problems which are
compilable to coNP-complete ones.

Our approach is somewhat limited because our target language (for problems
compilable to P) is first-order logic. This implies that some compilable problems,
like, e.g., Cycles in a Hamiltonian reduction, defined in (12), cannot be captured,
because they involve on-line reasoning which is not first-order expressible. To this
end, we plan to investigate extensions of the target language to classes of formulae in
fixpoint logic.

We also aim to characterize in a more detailed way the “frontier” between com-
pilable and non-compilable problems, e.g., by adding finer-grained constraints to the
conditions of Theorems 7.4.1 and 7.4.2.

Results in this chapter have been published in (18).



Chapter 8

The NP-Alg and ConSql

languages

8.1 Introduction

The efficient solution of NP-hard combinatorial problems, such as resource alloca-
tion, scheduling, planning, etc., is becoming crucial also for applications of industrial
relevance. Currently, this task is accomplished either by using ad-hoc hand-written
programs, or by calling, from general-purpose programming languages, specialized
libraries for expressing constraints, e.g., (73). A promising alternative is going to be
made by declarative constraint modelling languages (cf. Section 1.1), e.g., opl.

However, in all cases, data encoding the instance are either in text files in an
ad-hoc format, or in standard relational DBs accessed through libraries called from
external programs (cf., e.g., (74)). In other words, there is not a strong integration
between the data definition and the constraint modelling and programming languages.

Indeed, such an integration is particularly needed in industrial environments,
where the necessity for solving combinatorial problems coexists with the presence
of large databases where data to be processed lie. Hence, constraint solvers that
operate externally to the databases of the enterprise may lead to a series of disad-
vantages, first of all a potential lack of the integrity of recorded data. To this end, a
better coupling between standard data repositories and constraint solving engines is
highly desiderable.

In this chapter we tackle exactly this issue, discussing the integration of con-
straint modelling and programming into relational database management systems
(R-DBMSs). In particular, we show how standard query languages for relational
databases can be extended in order to give them constraint modelling and solving
capabilities: with such languages, constraint problem specifications can be viewed
just like (more complex) queries to standard data repositories. In what follows, we
propose extensions of standard query languages such as relational algebra and sql,
that are able to formulate queries defining combinatorial and constraint problems.

In principle relational algebra can be used as a language for testing constraints.
As an example, given relations A and B, testing whether all tuples in A are contained
in B can be done by computing the relation A−B, and then checking its emptiness.

103
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Anyway, it must be noted that relational algebra is unfeasible as a language for
expressing NP-hard problems, since it is capable of expressing just a strict subset of
the polynomial-time queries (cf., e.g., (2)). As a consequence, an extension is needed.

The proposed generalization of relational algebra is named NP-Alg, and it is proven
to be capable of expressing all problems in the complexity class NP. We focus on NP
because this class contains the decisional versions of most combinatorial problems of
industrial relevance (62).

NP-Alg is relational algebra plus a simple guessing operator, that declares a set
of relations to have an arbitrary extension. Algebraic expressions are used to express
constraints. Several interesting properties of NP-Alg are provided: its data complexity
is shown to be NP-complete, and for each problem π in NP we prove that there is a
fixed query that, when evaluated on a database representing an instance of π, solves
it. Combined complexity is also addressed.

Since NP-Alg expresses all problems in NP, an interesting question is whether
a query corresponds to an NP-complete or to a polynomial-time problem. We give
a partial answer to it, by exhibiting some syntactical restrictions of NP-Alg with
polynomial-time data complexity.

In the same way, ConSql (sql with constraints) is the proposed non-deterministic
extension of sql, the well-known language for querying relational databases (123),
having the same expressive power of NP-Alg, and supporting also the specification of
optimization problems. We believe that writing a ConSql query for the solution of
a combinatorial optimization problem is only moderately more difficult than writing
sql queries for a standard database application. The advantage of using ConSql
is twofold: it is not necessary to learn a completely new language or methodology,
and integration of the problem solver with the information system of the enterprise
can be done very smoothly. The effectiveness of both NP-Alg and ConSql as con-
straint modelling languages is demonstrated by showing several queries that specify
combinatorial and optimization problems.

The structure of this chapter is as follows. Syntax and semantics of NP-Alg are
introduced in Section 8.2. Some examples of NP-Alg queries for the specification
of NP-complete combinatorial problems are proposed in Section 8.3. Main compu-
tational properties of NP-Alg, including data and combined complexity, expressive
power, and polynomial fragments, are presented in Section 8.4. Section 8.5 contains
some details of ConSql and its implementation ConSql simulator, as well as the
specification of some real-world combinatorial and optimization problems. Finally,
Section 8.6 contains conclusions as well as references to main related work.

8.2 NP-Alg: Syntax and semantics

We refer to a standard definition of relational algebra with the five operators
{σ, π,×,−,∪} (2). Other operators such as “1” and “/” can be defined as usual.
Attributes (fields) of relations will be denoted either by their names or by their in-
dexes. As an example, given a relation R(a, b), the selection of tuples in R with
the same values for the two attributes will be denoted in one of the following forms:
σ

R.a=R.b
(R), σ

a=b
(R) (since there is no confusion to what relation a and b refer to),
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or σ
$1=$2

(R). As for join conditions, they will have atoms of the form a = b or

a 6= b where a is an attribute name (or even index) of the relation on the left of
the join symbol, and b one of that on the right. Finally, temporary relations such
as T = algexpr(. . .) will be used to make expressions easier to read. As usual (cf.,
e.g., (28)) queries are defined as mappings which are partial recursive and generic,
i.e., constants are uninterpreted.

Let D denote a finite relational database, ~R its relational schema, and DOM the
unary relation representing the set of all constants occurring in D.

Definition 8.2.1 (Syntax of NP-Alg). An NP-Alg expression has two parts:

1. A set ~Q = {Q
(a1)
1 , . . . , Q

(an)
n } of new relations of arbitrary arity, denoted as

Guess Q
(a1)
1 , . . . , Q

(an)
n . Sets ~R and ~Q must be disjoint.

2. An ordinary expression exp of relational algebra on the new database schema
[ ~Q, ~R].

For simplicity, until Section 8.4 we focus on boolean queries, i.e., queries that admit
a yes/no answer. For this reason we restrict exp to be a relation that we call FAIL.

Definition 8.2.2 (Semantics of NP-Alg). The semantics of an NP-Alg expression
is as follows:

1. For each possible extension ext of the relations in ~Q with elements in DOM, the
relation FAIL is evaluated, using ordinary rules of relational algebra.

2. If there is an extension ext such that the expression for FAIL evaluates to the
empty relation “∅” (denoted as FAIL3∅), the answer to the boolean query is
“yes”. Otherwise the answer is “no”.

When the answer is “yes”, the extension of relations in ~Q is a solution for the
problem instance.

A trivial implementation of the above semantics obviously requires exponential time,
since there are exponentially many possible extensions of the relations in ~Q. Anyway,
as we will show in Section 8.4.3, some polynomial-time cases indeed exist.

The reason why we focus on a relation named FAIL is that, typically, it is easy
to specify a decision problem as a set of constraints (cf. forthcoming Sections 8.3
and 8.5). As a consequence, an instance of the problem has a solution if and only
if there is an arbitrary choice of the guessed relations such that all constraints are
satisfied, i.e., FAIL = ∅. A FOUND(1) query can be anyway defined as FOUND =
DOM − π

$1
(DOM × FAIL). In this case, the answer is “yes” if and only if there is an

extension ext such that FOUND 6= ∅.

8.3 Examples of NP-Alg queries

In this section we show the specifications of some NP-complete problems, as queries
in NP-Alg. All examples are on uninterpreted structures, i.e., on unlabeled directed
graphs, because we adopt a pure relational algebra with uninterpreted constants. As a
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side-effect, the examples show that, even in this limited setting, we are able to emulate
bounded integers and ordering. This is very important, because the specification of
very simple combinatorial problems requires bounded integers and ordering.

In Section 8.5 we use the full power of ConSql to specify some real-world prob-
lems.

In what follows, we assume a directed graph is represented as a pair of relations
NODES (1)(n) and EDGES (2)(from, to) (with tuples in EDGES (2) having compo-

nents in NODES (1), hence, DOM = NODES).

Example 8.3.1 (Graph k-coloring). This problem has been already presented as
Example 1.2.1. Given a graph as input, we say that it is k-colorable if there is a

k-partition Q
(1)
1 , . . . , Q

(1)
k of its nodes, i.e., a set of k sets such that:

• ∀i ∈ [1, k], ∀j ∈ [1, k], j 6= i→ Qi ∩Qj = ∅,

•
⋃k

i=1Qi = NODES,

and each set Qi has no pair of nodes linked by an edge. The problem can be specified
in NP-Alg as follows:

Guess Q
(1)
1 , . . . , Q

(1)
k ; (8.1)

FAIL DISJOINT =
⋃

i6=j∈{1,...,k}

Qi 1 Qj ; (8.2)

FAIL COVER = NODES ∆

k
⋃

i=1

Qi; (8.3)

FAIL PARTITION = FAIL DISJOINT ∪ FAIL COVER; (8.4)

FAIL COLORING = π
$1





k
⋃

i=1





(

σ
$16=$2

(Qi ×Qi)

)

1
$1=EDGES .from

$2=EDGES .to

EDGES







 ;

(8.5)

FAIL = FAIL PARTITION ∪ FAIL COLORING. (8.6)

Expression (8.1) declares k new relations of arity 1. Expression (8.6) collects all
constraints a candidate coloring must obey to:

• (8.2) and (8.3) make sure that Q1, . . . , Qk is a partition of NODES (“∆” is
the symmetric difference operator, i.e., A ∆ B = (A−B)∪ (B −A), useful for
testing equality since A ∆ B = ∅ ⇐⇒ A = B).

• (8.5) checks that each set Qi has no pair of nodes linked by an edge.

As an example, let k = 3 and the database be as follows:
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NODES n
a
b
c
d
e

EDGES from to
a b
a c
a d
b d
b e

The above extension for relations NODES and EDGES encodes the graph in Fig-
ure 2.1. An extension of Q1, Q2 and Q3 such that FAIL = ∅ is:

Q1 d
Q2 a

e
Q3 b

c

Note that such an extension constitutes a solution of the coloring problem.

We observe that in the specification above the FAIL PARTITION relation (8.4) makes

sure that an extension of Q
(1)
1 , . . . , Q

(1)
k is a k-partition of NODES. Such an expression

can be very useful for the specification of problems, so we introduce, as we did for
ESO (cf. Appendix A), an expression:

failPartition (1)(N (k), P
(k)
1 , . . . , P (k)

n ),

that returns an empty relation if and only if {P
(k)
1 , . . . , P

(k)
n } is a partition of N (k).

The prefix fail in the name of the expression reminds that it should be used in checking
constraints. We note that the arity of failPartition can, without loss of generality,
be fixed to 1, since we can always project out the remaining columns. Other useful
syntactic sugar will be introduced in the following examples, and is summarized in
Appendix G.1.

Example 8.3.2 (Independent set (62, Prob. GT20, p. 194)). Given a graph
as input, and a positive integer k ≤ |NODES |, encoded by a relation K (1) containing
exactly k tuples, this NP-complete problem amounts to decide whether there exists a
subset N of NODES, with |N | ≥ k that contains no pair of nodes linked by an edge.

In order to be able to compare the size of N with the integer k (i.e., with the
size of relation K), we will use the same trick used in ESO (cf. Appendix A), i.e.,
we check the existence of an appropriate function from N to K . To this end, we
can define relational algebra expressions that check whether a relation FUN (d+r) is a
(total, injective, surjective, or bijective) function from domain D (d) to range R(r), as
Appendix G.1 shows.

Hence, the following NP-Alg query specifies the Independent set problem:

Guess N (1);

FAIL = failGeqSize(1)(N ,K ) ∪

π
$1

[

(N × N ) 1
$1=EDGES .from

∧
$2=EDGES .to

EDGES
]

.
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The first subexpression of FAIL specifies the constraint |N | ≥ k (cf. Appendix G.1 for
its definition), while the second one evaluates to the empty relation if and only if no
pair of nodes in N is linked by an edge. An extension of N is an independent set (with
size at least k) of the input graph if and only if the corresponding FAIL relation is
empty.

Example 8.3.3 (Clique of a graph (62, Prob. GT19, p. 194)). Given a graph
as input and an integer k ≤ |NODES | encoded by a relation K (1) containing exactly
k tuples, this NP-complete problem amounts to decide whether there exists a subset N
of NODES, with |N | ≥ k such that every pair of distinct nodes of N is linked by an
edge (i.e., the subgraph induced by N is complete).

This problem can be specified in NP-Alg as follows:

Guess N (1);

FAIL = failGeqSize(N ,K ) ∪
(

σ
$16=$2

(N × N ) 1
$1=$1

∧
$2=$2

complement (2)(EDGES )
)

.

The structure of the query is very similar to the one of the previous example, except
for the new expression complement (k)(R(k)), that returns the active complement (i.e.,
the complement with respect to the active domain of the database, cf. e.g., (2)) of the
relation given as argument. Obviously the above query can be written in several other
ways. As an example, a more efficient one would use the difference operator, instead
of the join; notwithstanding this, we have chosen the above query to show the use of
complement.

The above examples show how NP-Alg is strictly related to ESO (cf. Section 1.2).

In particular, relations in the set ~Q defined by the Guess construct play the same
role of guessed predicates in an ESO specification of the form ∃~S φ(~S, ~R), while the

expression for FAIL has the same role of φ(~S, ~R). Extensions for relations in ~Q encode
points in the search space; a particular extension of guessed relations is a solution of
the specified problem if and only if the expression for FAIL evaluates to ∅ (a discussion
of the relationship between ESO and NP-Alg is presented in Section 8.4).

We can specify in NP-Alg other famous problems over graphs like Dominating set,
Transitive closure, and Hamiltonian path. We remind that Transitive closure, indeed
a polynomial-time problem, is not expressible in relational algebra (cf., e.g., (2)),
because it intrinsically requires a form of recursion. In NP-Alg recursion can be sim-
ulated by means of guessing, as is for ESO. Hamiltonian path (HP) is the problem of
finding a traversal of a graph that touches each node exactly once (cf. Example 3.2.1).
The possibility to specify HP in NP-Alg leads to the possibility of having bounded
integers in NP-Alg, and arithmetic operations on them, as it happens for ESO (cf.
Section 1.2).

Other interesting problems, not involving graphs, can be specified in NP-Alg:
Satisfiability of a propositional formula and Evenness of the cardinality of a relation
are some examples.

Appendix G.1 describes useful syntactic sugar that can be introduced in NP-Alg
without altering its expressive power.
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8.4 Computational aspects of NP-Alg

In this section we focus on the main computational aspects of NP-Alg: data and
combined complexity, expressive power, and polynomial fragments.

Technically, the results presented in this section can be easily obtained from cor-
responding ones formulated for other languages, e.g., ESO. Nevertheless, we believe
that when designing a constraint modelling language it is of fundamental importance,
from the methodological point of view, to ascertain its main computational properties.

8.4.1 Data and combined complexity

The data complexity, i.e., the complexity of query answering assuming the database as
input and a fixed query (cf. (2)), is one of the most important computational aspects
of a language, since queries are typically small compared to the database.

Since we can express NP-complete problems in NP-Alg (cf. Section 8.3), the prob-
lem of deciding whether FAIL3∅ is NP-hard. Moreover we can prove that the data
complexity for such a problem is in NP by using the following argument. It is pos-
sible to generate, in non-deterministic polynomial time, an extension ext of Q. The
answer is “yes” if and only if there is such an ext such that FAIL = ∅. The last
check, being the evaluation of an ordinary relational algebra expression, can be done
in polynomial time in the size of the database. The above considerations give us the
first computational result on NP-Alg.

Theorem 8.4.1. The data complexity of deciding whether FAIL3∅ for an NP-Alg
query, where the input is the database, is NP-complete.

Another interesting measure is combined complexity, where both the database and
the query are part of the input. It is possible to show that, in this case, to determine
whether FAIL3∅ is hard for the complexity class NE defined as

⋃

c>1NTIME (2cn)
(cf. (105)), i.e., the class of all problems solvable by a non-deterministic machine in
time bounded by 2cn, where n is the size of the input and c is an arbitrary constant.

Theorem 8.4.2. The combined complexity of deciding whether FAIL3∅ for an NP-
Alg query, where the input is both the database and the query, is NE-hard.

The proof is delayed to Appendix G.2.1.

8.4.2 Expressive power

The expressiveness of a query language characterizes the problems that can be ex-
pressed as fixed, i.e., instance independent, queries. In this section we prove the main
result about the expressiveness of NP-Alg, by showing that it captures exactly NP, or
equivalently (cf. (51)) queries in the existential fragment of second-order logic (ESO).

Of course it is very important to be assured that we can express all problems in
the complexity class NP. In fact, Theorem 8.4.1 says that we are able to express some
problems in this class. We remind that the expressive power of a language is in general
less than or equal to its data complexity. In other words, there exist languages whose
data complexity is hard for class C in which not every query in C can be expressed;
several such languages are known, cf., e.g., (2).
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In the following, we illustrate a method that transforms a formula in ESO (cf.
Section 1.2) into an NP-Alg query. In particular, we deal with ESO formulae of the
following kind:

∃~S ∀ ~X ∃~Y ϕ( ~X, ~Y ), (8.7)

where ϕ is a first-order formula (without quantifiers) containing variables among ~X, ~Y

and involving relational symbols in ~S ∪ ~R∪ {=}. The reason why we can restrict our
attention to second-order formulae in the above normal form is explained in (82). As
usual, “=” is always interpreted as “identity”.

The transformation of a formula of the kind (8.7) into an NP-Alg expression ψ
works in two steps:

1. The first-order formula ϕ( ~X, ~Y ) obtained by eliminating all quantifiers from
(8.7) is translated into an expression PHI of plain relational algebra;

2. The overall NP-Alg query ψ is defined as:

Guess Q
(a1)
1 , . . . , Q(an)

n ;

FAIL = DOM | ~X| − π
~X
(PHI ),

(8.8)

where a1, . . . , an are the arities of the n predicates in ~S, and | ~X | is the number of

variables occurring in ~X.
The first step is rather standard (cf., e.g., (2)), and is briefly sketched here just

to give the intuition. A relation R (with the same arity) is introduced for each

predicate symbol r in the relational vocabulary of ϕ, i.e., ~R ∪ ~S. A (function-free)
atomic formula of first-order logic is translated as the corresponding relation, possibly
prefixed by a selection that accounts for constant symbols and/or repeated variables,
and by a renaming of attributes mapping the arguments. Selection can be used also
for dealing with atoms involving equality. Inductively, the relation corresponding to
a complex first-order formula is built as follows:

• f ∧ g translates into F 1 G, where F and G are the translations of f and g,

respectively;

• f ∨ g translates into F ′ ∪G′, where F ′ and G′ are derived from the translations
F and G to account for the (possibly) different schemata of f and g;

• ¬f(~Z) translates into ρ
$1→F.$1

...
$|~Z|→F.$|~Z|

(DOM |~Z| − F ).

It is worth noting that a better translation avoids the insertion of occurrences of the
DOM relation for the important class of safe formulae (cf., e.g., (2)). However, these
issues are out of the scope of this chapter, and will not be taken into account.
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Relations obtained through such a translation will be called q-free, because they
do not contain the projection operator (that plays the role of an existential quantifi-
cation), except those implicit in equi-joins. Intuitively, this means that there are no
existential quantifiers.

The following theorem claims that the above translation is correct.

Theorem 8.4.3. For any NP-recognizable collection ~D of finite databases over ~R
–characterized by a formula of the kind (8.7)– a database D is in ~D, i.e.,

D |= ∃~S ∀ ~X ∃~Y ϕ( ~X, ~Y ),

if and only if FAIL3∅, when ψ (cf. formula (8.8)) is evaluated on D.

The proof is delayed to Appendix G.2.

8.4.3 Polynomial fragments

Polynomial fragments of second-order logic have been presented in, e.g., (69). In this
section we use some of those results to show that it is possible to isolate polynomial
fragments of NP-Alg. In particular, the classes of NP-Alg queries identified by the
following theorems correspond respectively to the Eaa and E1e

∗aa prefix classes of
second-order logic described in (69), that are proved to be polynomial by a mapping
into instances of 2SAT. The correctness of the translation is formally guaranteed by
Theorem 8.4.3.

Theorem 8.4.4. Let s be a positive integer, PHI a q-free expression of relational al-
gebra over the relational vocabulary ~R∪{Q(s)}, and Y1, Y2 the names of two attributes
of PHI. An NP-Alg query of the form:

Guess Q(s);

FAIL = (DOM × DOM ) − π
Y1,Y2

(PHI ) .

can be evaluated in polynomial time in the size of the database.

Some interesting queries obeying the above restriction can indeed be formulated. As
an example, 2-coloring can be specified as follows (when k = 2, k-coloring, cf. Exam-
ple 8.3.1, becomes polynomial):

Guess C(1);

FAIL = DOM × DOM −

[

complement(EDGES) ∪

C × complement(C) ∪ complement(C) × C

]

.

C and its complement denote the 2-partition. The constraint states that each edge
must go from one subset to the other one.

Another polynomial problem of this class is 2-partition into cliques (cf., e.g., (62)),
that amounts to decide whether there is a 2-partition of the nodes of a graph such
that the two induced subgraphs are complete. An NP-Alg query that specifies the
problem is:
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Guess P (1);

FAIL = DOM × DOM−

[complement(P )× P ∪ P × complement(P ) ∪ EDGES ] .

A second polynomial class is defined by the following theorem.

Theorem 8.4.5. Let PHI (X1, . . . , Xk, Y1, Y2) (k > 0) be a q-free expression of re-

lational algebra over the relational vocabulary ~R ∪ {Q (1)}. An NP-Alg query of the
form:

Guess Q (1);

X (X1, . . . , Xk) = PHI (X1, . . . , Xk, Y1, Y2) / ρ
$1→Y1

$2→Y2

(DOM × DOM );

FAIL = empty(X );

can be evaluated in polynomial time in the size of the database.

As an example, the specification for the Graph disconnectivity problem, i.e., to check
whether a graph is not connected, belongs to this class.

8.5 The ConSql language

In this section we describe the ConSql language, a non-deterministic extension of
sql whose optimization-free subset has the same expressive power as NP-Alg, and
present some specifications written in this language.

8.5.1 Syntax of ConSql

ConSql is a strict superset of sql. The problem instance is described as a set
of ordinary tables, using the data definition language of sql. The novel construct
CREATE SPECIFICATION is used to define a problem specification. It has three parts,
two of which correspond to the parts of Definition 8.2.1:

1. Definition of the guessed tables, by means of the new keyword GUESS;

2. Definition of the objective function, by means of one of the two keywords
MAXIMIZE and MINIMIZE;

3. Specification of the constraints that must be satisfied by guessed tables, by
means of the standard sql keyword CHECK.

Furthermore, the user can specify the desired output by means of the new keyword
RETURN. In particular, the output is computed when an extension of the guessed tables
satisfying all constraints and such that the objective function is optimized is found.
Of course, it is possible to specify many guessed tables, constraints and returned
tables. The syntax is as follows (we write it in BNF, with terminals either capitalized
or quoted, and, for every terminal or non-terminal a, “[a]” meaning optionality, “a∗”
a list of an arbitrary number of a, and “a+” meaning “a(a∗)”):
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CREATE SPECIFICATION problem_name ‘(’

(GUESS TABLE table_name [‘(’aliases‘)’] AS guessed_table_spec)+

((MAXIMIZE | MINIMIZE) ‘ (’aggregate_query‘)’

(CHECK ‘(’ condition ‘)’)+

(RETURN TABLE return_table_name AS query)*

‘)’

The guessed table table_name gets its schema from its definition guessed table sp-

ec. The latter expression is similar to a standard SELECT-FROM-WHERE sql query,
except for the FROM clause that can contain also expressions such as:

SUBSET OF SQL_from_clause |

[TOTAL | PARTIAL] FUNCTION_TO ‘(’ (range_table | min ‘..’ max) ‘)’

AS field_name_list OF SQL_from_clause |

(PARTITION ‘(’ n ‘)’ | PERMUTATION) AS field_name OF SQL_from_clause

with SQL_from_clause being the content of an ordinary sql FROM clause (e.g.,
a list of tables). The schema of such expressions consists in the attributes of
SQL_from_clause, plus the extra field_name (or field_name_list), if present.

In the FROM clause the user is supposed to specify the shape of the search space,
either as a plain subset (like in NP-Alg), or as a mapping (i.e., partition, permutation,
or function) from the domain defined by SQL_from_clause. Mappings require the
specification of the range and the name of the extra field(s) containing range values.
As for PERMUTATION, the range is implicitly defined to be a subset of integers. As
for FUNCTION_TO the range can be either an interval min..max of a sql enumerable
type, (e.g., integers) or the set of values of the primary key of a table denoted by
range_table. The optional keyword PARTIAL means that the function can be defined
over a subset of the domain (the default is TOTAL). We remind that using partitions,
permutations or functions does not add any expressive power to the language (cf.
Appendix G.1.)

As for the objective function, the user is supposed to specify a query whose output
is a monadic table with only one tuple of an sql totally ordered type (e.g., integers
or reals), typically by making use of sql aggregate operators like COUNT, SUM, etc.

It is possible to specify constraints on the guessed tables by using ordinary sql
boolean conditions, e.g., EXISTS, NOT EXISTS, IN, NOT IN, =ANY, =ALL, etc.

Finally, the query that defines a returned table is an ordinary sql query on the
tables defining the problem instance plus the guessed ones, and it is evaluated for an
extension of the guessed tables encoding an optimal solution.

Once a problem has been specified, its solution can be obtained with an ordinary
sql query on the return tables:

SELECT field_name_list

FROM problem_name.return_table_name

WHERE condition

The table ANSWER(n INTEGER) is implicitly defined locally to the CREATE SPECIF-

ICATION construct, and it is empty if and only if the problem has no solution.
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Figure 8.1: ER diagram of the database schema for the k-coloring problem. The
guessed table COLORING is in boldface.

8.5.2 Examples

In this subsection we exhibit the specification of some problems in ConSql. In
particular, to highlight its similarity with NP-Alg, we show the specification of the
graph coloring problem of Example 8.3.1. Afterwards, we exploit the full power of
the language and show how some real-world problems can be easily specified. In all
the examples, we describe the schema of the input database, and underline key fields.

Graph k-coloring

We assume an input database over the schema shown in the Entity-Relationship (ER)
diagram in Figure 8.1, thus containing relations NODES(n), EDGES(f,t) (encoding
the graph), and COLORS(id,name) (listing the k colors). Once a database (i.e., a
problem instance) has been created (by using standard sql commands), a ConSql
specification of the k-coloring problem is the following:

CREATE SPECIFICATION Graph_Coloring (

/* COLORING contains tuples of the kind <NODES.n, COLORS.id>,

with COLORS.id arbitrarily chosen. */

GUESS TABLE COLORING AS

SELECT n, color FROM TOTAL FUNCTION_TO(COLORS) AS color OF NODES

CHECK ( NOT EXISTS (

SELECT * FROM COLORING C1, COLORING C2, EDGES

WHERE C1.n <> C2.n AND C1.color = C2.color

AND C1.n = EDGES.f AND C2.n = EDGES.t ))

RETURN TABLE SOLUTION AS SELECT COLORING.n, COLORS.name

FROM COLORING, COLORS WHERE COLORING.color = COLORS.id

)

The GUESS part of the problem specification defines a new (binary) table COLORING,
with fields n and color, as a total function from the set of NODES to the set of COLORS.
The CHECK statement expresses the constraint an extension of COLORING table must
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Figure 8.2: ER diagram of the database schema for the University course
timetabling problem. The guessed table TIMETABLE is in boldface.

satisfy to be a solution of the problem, i.e., there are no two distinct nodes linked by
an edge which are assigned the same color.

The RETURN statement defines the output of the problem by a query that is eval-
uated for an extension of the guessed table that satisfies every constraint. The user
can ask for such a solution with the statement

SELECT * FROM Graph_Coloring.SOLUTION

As described in the previous subsection, if no coloring exists, the system table
Graph_Coloring.ANSWER will contain no tuples. This can be easily checked by the
user, in order to obtain only a significant Graph_Coloring.SOLUTION table.

University course timetabling

The University course timetabling problem (112) consists in finding the weekly sched-
ule for all the lectures of a set of university courses in a given set of classrooms. We
consider a variant of the original problem in which the objective function to minimize
is the total number of students that wish to attend overlapping lectures.

The input database schema is shown in Figure 8.2, and consists of the following
relations:

• COURSE(id, num lectures, num students), consisting of tuples 〈c, l , s〉 meaning
that the course c needs l lectures a week, and has s enrolled students.

• PERIOD(id, start, finish) encoding (non-overlapping) periods, plus information
on start and finish time.
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• ROOM(id, capacity). A tuple 〈r , c〉 means that room r has capacity c.

• CONFLICT(course1, course2, num students). A tuple 〈c1 , c2 ,n〉 means that
courses c1 and c2 have n common students.

• UNAVAILABLE(course, period). A tuple 〈c, p〉 means that the teacher of course
c is not available for teaching at period p.

A solution to the problem is a (guessed) relation TIMETABLE(period, room, course)
with tuples 〈p, r , c〉 meaning that at period p in room r there is a lecture of course
c. If for some values of the room and period fields there is no tuple in the relation
TIMETABLE, then the room is unused in that period.

A ConSql specification of the timetabling problem, given an input database, is
the following:

CREATE SPECIFICATION University_Timetabling (

GUESS TABLE TIMETABLE(period, room, course) AS

SELECT p.id, r.id, course

FROM PARTIAL FUNCTION_TO(COURSE) AS course OF PERIOD p, ROOM r

// Objective function

MINIMIZE ( SELECT ( SUM(c.num_students)

FROM TIMETABLE t1, TIMETABLE t2, CONFLICT c

WHERE t1.period = t2.period AND t1.course <> t2.course AND

c.course1 = t1.course AND c.course2 = t2.course

))

// At most one lecture of a course per period

CHECK ( NOT EXISTS (

SELECT * FROM TIMETABLE t1, TIMETABLE t2

WHERE t1.course = t2.course AND

t1.period = t2.period AND t1.room <> t2.room

))

// Unavailability constraints

CHECK ( NOT EXISTS (

SELECT * FROM TIMETABLE t, UNAVAILABLE u

WHERE t.course = u.course AND t.period = u.period

))

// Capacity constraints

CHECK ( NOT EXISTS (

SELECT * FROM TIMETABLE t, COURSE c, ROOM r

WHERE t.course = c.id AND t.room = r.id AND

c.num_students > r.capacity

))

// Teaching requirements

CHECK ( NOT EXISTS (

SELECT * FROM COURSE c

WHERE c.num_lectures <>

( SELECT COUNT(*) FROM TIMETABLE t

WHERE t.course = c.id

)

))

RETURN TABLE SOLUTION AS SELECT * FROM TIMETABLE
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)

In particular, the constraints force extensions of the guessed table TIMETABLE to
be such that:

• There is at most one lecture of a course per period, i.e., there cannot be two
different rooms allocated for the same course in the same time slot;

• Unavailability constraints are respected, i.e., no lecture is scheduled in a period
for which the relevant teacher is unavailable;

• Capacity constraints are respected, i.e., no room is allocated for courses having
a number of students that exceeds its capacity;

• Teaching requirements are satisfied, i.e., all courses have a room and a time slot
assigned for all the lectures they need.

An extension for guessed table TIMETABLE that satisfies the constraints above is an
optimal solution of the University course timetabling problem if it minimizes the over-
all number of students that are expected to attend conflicting lectures, i.e., lectures
that are scheduled at the same time.

Aircraft landing

The aircraft landing problem (6) consists in scheduling landing times for aircraft.
Upon entering within the radar range of the air traffic control (ATC) at an airport, a
plane requires a landing time and a runway on which to land. The landing time must
lie within a specified time window, bounded by an earliest time and a latest time,
depending on the kind of the aircraft. Each plane has a most economical, preferred
speed. A plane is said to be assigned its target time, if it is required to fly in to
land at its preferred speed. If ATC requires the plane to either slow down or speed
up, a cost incurs. The bigger the difference between the assigned landing time and
the target landing time, the bigger the cost. Moreover, the amount of time between
two landings must be greater than a specified minimum (the separation time) that
depends on the planes involved. Separation times depend on the aircraft landing on
the same or different runways (in the latter case they are smaller).

Our objective is to find a landing time for each planned aircraft, encoded in a
guessed relation LANDING, satisfying all the previous constraints, and such that the
total cost (i.e., the sum of the costs associated with each aircraft) is minimized. The
input database schema is shown in Figure 8.3, and consists of the following relations:

• AIRCRAFT (id , target time, earliest time, latest time, bef cost , aft cost), list-
ing aircraft planned to land, together with their target times and landing time
windows; the cost associated with a delayed or advanced landing at time x is
given by bef cost ·max[0, t − x ] + aft cost ·max[0, x − t ], where t is the aircraft
target time.

• RUNWAY (id) listing all the runways of the airport.
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Figure 8.3: ER diagram of the database schema for the Aircraft landing problem.
The guessed table LANDING is in boldface.

• SEPARATION (first, second , int same rw , int diff rw). A tuple 〈a, a′, is , id〉
means that if aircraft a′ lands after aircraft a, then landing times must be
separated by is (resp. id) minutes if they land on the same runway (resp. on
different runways).

In the following specification, the search space is a total function assigning an aircraft
to a landing time and a runway. For the sake of simplicity, landing times are expressed
in minutes after a conventional time instant, e.g., the scheduling starting time, and
the time horizon is set to one day, i.e., 24 × 60 minutes.

CREATE SPECIFICATION Aircraft_Landing (

GUESS TABLE LANDING AS

SELECT ar.id, ar.runway, at.time

FROM (TOTAL FUNCTION_TO(RUNWAY) AS runway OF AIRCRAFT) ar,

(TOTAL FUNCTION_TO(0..24*60-1) AS time OF AIRCRAFT) at

WHERE ar.id = at.id

// Objective function

MINIMIZE ( SELECT SUM(cost)

FROM (

SELECT a.id, (a.bef_cost * (a.target_time - l.time)) AS cost

FROM AIRCRAFT a, LANDING l

WHERE a.id = l.aircraft AND l.time <= a.target_time

UNION // advanced plus delayed aircraft

SELECT a.id, (a.aft_cost * (l.time - a.target_time)) AS cost

FROM AIRCRAFT a, LANDING l

WHERE a.id = l.aircraft AND l.time > a.target_time

) AIRCRAFT_COST // Contains tuples <aircraft, cost>
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)

// Time window constraints

CHECK ( NOT EXISTS (

SELECT * FROM LANDING l, AIRCRAFT a WHERE l.aircraft = a.id

AND ( l.time > a.latest_time OR l.time < a.earliest_time )

))

// Separation constraints

CHECK ( NOT EXISTS (

SELECT * FROM LANDING l1, LANDING l2, SEPARATION sep

WHERE l1.aircraft <> l2.aircraft AND l1.time <= l2.time AND

sep.first = l1.aircraft AND sep.second = l2.aircraft AND

( ( (l1.runway = l2.runway) AND

(l2.time - l1.time) < sep.int_same_rw ) OR

( (l1.runway <> l2.runway) AND

(l2.time - l1.time) < sep.int_diff_rw )

)))

RETURN TABLE SOLUTION AS SELECT * FROM LANDING

)

In particular, the constraints force extensions of the guessed table LANDING to be
such to respect both time window constraints (i.e., the actual landing time for each
aircraft must lie inside its landing time window), and separation constraints (encoded
in the SEPARATION relation). Such an extension is an optimal solution of the
Aircraft landing problem if it minimizes the overall cost.

8.5.3 ConSql simulator

ConSql simulator is an application that works as an interface to a traditional
R-DBMS. It simulates the behavior of a ConSql server by reading from its input
stream ConSql queries, i.e., ordinary sql queries and commands, and problem spec-
ifications. Ordinary sql queries and commands are simply passed to the underlying
R-DBMS, while problem specifications are processed. The overall architecture of the
system is depicted in Figure 8.4. In particular, CREATE SPECIFICATION constructs are
parsed, creating the new tables (corresponding to the guessed ones) and an internal
representation of the search space. The search space is then explored by the solver,
looking for an element corresponding to an optimal solution, by posing appropriate
queries to the R-DBMS (in standard sql). As soon as the optimal solution is found,
the results of the query specified in the RETURN statements are accessible to the user
as output.

The implementation of ConSql simulator gives much attention to software en-
gineering aspects and to different quality factors of software artifacts. In particular,
the system is platform independent and highly portable, since it is written in Java,
and uses the standard JDBC protocol for the connection with the R-DBMS, and the
whole architecture presents a neat separation among the language parser, the problem
modelling module and the solver engine (jLocal), so as to emphasize qualities such
as modularity, extendability and reusability. In particular, the problem modelling
module allows to represent problem specifications in a language independent fashion,
relying on abstract concepts such as Problem, Search space, Objective function, and
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Figure 8.5: Portion of the conceptual UML class diagram for the language-
independent problem modelling module.

Constraint, as the conceptual UML diagram in Figure 8.5 shows. In this way, the
solving engine jLocal, interacting with the abstract problem modelling module, is
independent of the particular language, i.e., ConSql. The only language-dependent
part of the system is the parser for the ConSql language, that provides concrete im-
plementations for the abstract concepts that compose the problem modelling module,
building the internal representation of the problem instance, the search space, and
the constraints, and for some of the services needed by the solver.

As for the search methods, the solver engine jLocal exploits local search tech-
niques to find solutions. Local search is considered one of the most attractive tech-
niques for solving combinatorial optimization problems (cf., e.g., (1)), being able to
solve instances of realistic size in reasonable time. Several local search algorithms
have been implemented in jLocal, among them Hill climbing and Tabu search (67),
and several strategies that combine different solvers for doing the search are present
(e.g., Tandem search, in which two different solvers are used in sequence). Additional
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local search strategies can be simply added by subclassing the LocalSearchSolver class
(not described here for the sake of simplicity).

It is worth noting that the user is completely unaware of the search techniques
implemented by the system. In particular, definitions for neighborhoods, moves, as-
piration functions, etc., are made by ConSql simulator itself, starting from the
types of the guessed tables defined in the specification (i.e., subsets, functions, per-
mutations, partitions).

The development of ConSql simulator has been done according to the iterative
model of the software life-cycle. In particular, three iterations were expected. The
first, prototypical, version of the system, which was used only to test specifications,
relied on a purely enumerative approach, and, of course, no considerations on perfor-
mances could be done. As for the present version, which is at the second iteration
of the development process, we added the local search engine, but the connection
with the DBMS is yet completely black box. In particular, jLocal uses the DBMS
both for maintaining the current state, for checking constraints, and for evaluating
which neighbor to visit next. The main motivation behind this choice, is that cur-
rent DBMSs offer means to answer queries efficiently, especially in case of very large
instances. Nonetheless, since constraints are evaluated from scratch in every visited
state, performances cannot be good, and only instances of small sizes can be actually
solved.

In the third version of the system, which is currently under development, we are
adding the following functionalities:

1. The ability of checking constraints incrementally: constraints’ check is the main
source of inefficiency of the current version, since they are evaluated from scratch
for every visited state, and for all its neighbors, in order to choose the best move.
Hence, the number of queries posted to the DBMS is very high, and all of them
are answered independently from each other. However, it is clear that, when
using local search technology, only a small variation in the number of constraint
violations is expected, when moving from one state to its neighbors. To this end,
our goal is to make the DBMS able to compute only variations to constraints’
violations when performing checks. This is expected to greatly increase the
overall performances of the system, since we can rely on very sophisticated
algorithms to, e.g., maintain and synchronize views, actually present in currently
available DBMSs.

2. The use of a much more complex local search engine. In particular, we are
currently integrating EasyLocal++ (45), a very sophisticated solver, with our
system. This can lead to better algorithms, and to a fine tuning of their param-
eters.

3. The addition of an optional “search” part in CREATE SPECIFICATION constructs,
as it happens in, e.g., opl, in order to provide the user with the possibility of
declaring which search algorithm to adopt, as well as the types of neighborhoods,
moves, aspiration functions, etc. Of course, as already claimed, our goal is to
provide good defaults for the options in this part, as, e.g., opl does, by letting
the system able to automatically make a good choice for these issues, depending
on the specification at hand.
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4. To provide a better coupling with a particular open-source DBMS, in order to
make the system able to directly use the DBMS’ APIs, instead of interacting
by means of (inefficient, but highly portable) protocols like JDBC.

8.6 Discussion, related work and future research di-

rections

In this chapter we have tackled the issue of strong integration between constraint
modelling and programming and up-to-date technology for storing data. In particular
we have proposed constraint languages that have the ability to interact with data
repositories in a standard way. To this end, we have presented NP-Alg, an extension
of relational algebra which is specially suited for combinatorial problems. The main
feature of NP-Alg is the possibility of specifying, via a form of non-determinism, a
set of relations that can have an arbitrary extension. This allows the specification
of a search space suitable for the solution of combinatorial problems, with ordinary
relational algebra expressions defining constraints. Although NP-Alg provides just
a very simple guessing operator, many useful search spaces, e.g., permutations and
functions, can be defined as syntactic sugar.

Several computational properties of NP-Alg have been shown, including data and
combined complexity, and expressive power. Notably, the language is shown to cap-
ture exactly all the problems in the complexity class NP, which includes many com-
binatorial problems of industrial relevance. In the same way, we have proposed Con-
Sql, a non-deterministic extension of sql, with the same expressive power of NP-Alg,
which is suitable also for specifying optimization problems. The effectiveness of NP-
Alg and ConSql both as complex query and constraint modelling languages has been
demonstrated by showing several queries that specify combinatorial problems.

Other extensions of relational algebra have already been proposed. The most
important examples are the languages Alg + while and Alg + while+, where, respec-
tively, a non-inflationary and an inflationary fixpoint semantics is added (2). Both
these languages are capable of expressing the Transitive Closure query, but have very
different expressive power: Alg + while can express queries in PSPACE, but the lan-
guage captures exactly this class only on ordered databases (i.e., databases in which a
total order among all constants occurring in it is fixed). As for Alg + while+ instead,
it can express only polynomial-time queries, and the language captures the whole
PTIME class only on ordered databases. A feature for expressing linear recursion has
recently been added also to sql (sql‘99), by means of the WITH construct. However,
both the aforementioned extensions of relational algebra, and the new version of sql
do not make such languages suitable for expressing constraint problems.

Several languages and systems for constraint programming are nowadays available
either as research and commercial packages. Some of them are in the form of frame-
works and libraries. As an example, in ECLiPSe (49) or SICStus (117) a traditional
programming language such as Prolog is enhanced by means of libraries and specific
constructs for specifying constraints, which are then solved by highly optimized algo-
rithms. The ILOG Optimization suite (73) provides instead libraries for expressing
constraints callable by host general-purpose programming languages like C++.

Specification languages natively developed for constraint modelling and program-
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ming are also available, either commercially like or as research prototypes, and some
of them have been already cited in Section 1.1. All of them offer an ad-hoc syntax for
problem specifications, but differently from them, NP-Alg and ConSql use standard
and well-known languages for specifying problem specifications, that are considered
just like queries over a relational database representing the input instance. We be-
lieve that this feature permits a wider diffusion of the declarative constraint modelling
paradigm in industrial environments, permitting a very strong integration with the
information system of the enterprise. Conversely, the other systems usually get input
data from text files in ad-hoc formats, and additional machinery is needed to build
such files from the content of a relational database, and for storing problem solutions.
Even if such machinery is sometimes offered by means of libraries and/or plug-ins
(cf., e.g., (74)), relational data is always manipulated outside of the database, with
a consequent potential lack of data integrity and other transactional properties. In
fact, the most currently adopted solution for evaluating complex queries over a rela-
tional database is to embed sql into external programs, written in a general-purpose
programming language, like Java or C++.

Hence, we believe that ConSql is a clear step towards a language for both declar-
ative constraint modelling and complex queries to relational databases, which relies on
standard and well-known technologies. The language has been explicitly designed for
being implemented inside the R-DBMS, so guaranteeing all transactional properties
to the query evaluation process.

Several query languages capable of capturing the complexity class NP have been
shown in the literature. As an example, in (82) an extension of datalog (the well-
known recursive query language (123)) allowing negation is proved to have such a
property. Another extension of datalog capturing NP, without negation but with
a form of non-determinism, is proposed in (25). Other rule-based languages with
different semantics have also been proposed: Smodels (118) which relies on stable
models semantics, and dlv (85) which is based on answer set programming. They
also are based on negation and recursion. On the other hand, NP-Alg captures NP
without recursion. Actually, recursion can be simulated by non-determinism, and it
is possible to write, e.g., the transitive closure query in NP-Alg. Being non-recursive,
NP-Alg is more similar to plain second-order existential logic. Nevertheless, it retains
the functional character of relational algebra, that sometimes makes it easier (with
respect to rule-based languages) to specify a problem.

As for the proposed implementation of ConSql simulator, it is conceived to
be based on a purely declarative language and to be ready to use, i.e., it does not
require any additional code to be written by the user. Other systems for local search
do, however, exist, either in forms of declarative languages for modelling in a concise
way local search algorithms. (cf., e.g., (96; 127)) or, alternatively, in forms of libraries
or frameworks (cf., e.g., Local++ (113)), hence providing algorithms that rely on
additional application-specific code provided by the user. ConSql simulator is
different from such systems in that it provides the user with the ability of modelling
an optimization problem by means of a language, i.e., ConSql, that is completely
unaware of the particular solving technology used. It is responsibility of the engine to
provide the local search solver with all the information needed to explore the search
space (e.g., description of neighborhoods, moves, etc.). This choice is currently made
starting from the types of the guessed tables defined in the specification, and future
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work has to be done in order to better exploit the different alternatives.
As for the solving engine, we note that the strong separation of the language-

independent solver jLocal from the ConSql parser permits an easy reuse of the
solver with other problem specification languages. Actually, jLocal is yet in a proto-
typal stage, and more work is needed in order to extend and optimize the implemented
search algorithms.

ConSql simulator and jLocal will be released as free and potentially open
source software, thus allowing the packages to receive improvements and extensions
from the community.

Results in this chapter have been published in (17; 16).



Chapter 9

Conclusions

In this thesis we focused on declarative constraint modelling of constraint problems,
arguing that this paradigm is going to be the next challenge for Constraint Program-
ming systems.

In fact, current languages and systems to be efficient, still require that the user
provides a “good” model of the problem, and explicitly states some procedural aspects,
like search procedures. This implies that problem modelling must be performed with
taking procedural aspects in mind, hence leading to a high lowering in the degree of
declarativeness. As a consequence, modelling has yet to be considered as an “art”,
and a strong expertise is requested to users in order to be able to solve real problems
in practice.

From these observations, we started the investigation of different and complemen-
tary techniques to let the system able to perform automatically some kind of reasoning
on the specifications given by the user, with the goal of reformulating them in order
to improve the efficiency of the solving process.

Differently with all other approaches in the literature, all the proposed techniques
apply at the symbolic level of the specification, and so regardless of the particular
instance to be solved. This is coherent with the clear separation, exhibited by many
state-of-the-art systems for CP, between problem specification and instance, and is
similar, in a sense, to the approach used in relational databases in order to deal with
the query optimization problem, that is known to rely on the query and the database
schema only, and not on the current database content (cf. Section 1.1). In our vision,
all “structural” properties of constraint problems that are amenable to be optimized
should be recognized and exploited at the level of the specification, letting to the
subsequent stage the task of detecting and exploiting only the additional properties
that may arise from particular instances. On the other hand, existing techniques for
problem optimization try to infer all properties after instantiation, when the structure
of the problem has been almost completely hidden.

In order to be able to formally deal with problem specifications, we observed (cf.
Section 1.2) that they can be regarded as logical formulae in existential second-order
logic (ESO). To this end, all the proposed techniques for problem reformulation deal
with ESO formulae, but of course, they can be (often straightforwardly) extended to
richer languages for constraint modelling, like ampl or opl, as some examples show.
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Chapters 2 to 5 deal with different techniques for reformulating problem specifi-
cations given as ESO formulae. In particular, in Chapters 2 and 3 we studied how
to characterize those constraints whose evaluation can be safely delayed, in order to
reduce the original problem to a simplified one, with a larger set of solutions, while
in Chapters 4, 5, and 6 we investigated the problem of detecting symmetries and
functional dependencies at the specification level, showed how automated tools, like
first-order theorem provers and finite model finders, can be used in practice in order
to automate the discovery process, and discussed how detected properties can be au-
tomatically exploited in order to save search. Experimental results at the end of each
chapter evidence the effectiveness of the various approaches.

Chapter 7 deals with Knowledge Compilation (KC), a slightly different technique
for dealing with intractable problems. In particular, we give sufficient syntactic con-
ditions for a specification to be able to take advantage of compilation, in order to
efficiently solve several instances that share a common part, and show how many
compilable problems fit in this characterization. Moreover, we proved the reasonabil-
ity of the presented classification, by showing that, by relaxing hypotheses, sets of
specifications containing non-compilable ones are obtained.

In Chapter 8 we discuss two highly declarative languages for constraint modelling,
NP-Alg and ConSql, which are non-deterministic extensions of relational algebra
and sql, respectively. The desiderability of such languages has been justified by
observing how state-of-the-art systems do not provide a strong integration between
constraint solving engines and standard data repositories, and that this can be an
obstacle for a wider diffusion of the constraint modelling paradigm in industrial en-
vironments, where issues concerning data integrity are very important. Since NP-Alg
and ConSql have been designed in order to extend standard query languages to rela-
tional databases, they can be completely embedded in next generation R-DBMSs, and
problem specifications given in these languages can be regarded exactly as more com-
plex queries to a relational database. We believe that this can be a starting point for
a wider diffusion of CP in industrial environments, since, for the non-academic user to
exploit CP, it will not be necessary to learn a completely new language and method-
ology. Computational properties of proposed languages have been investigated, e.g.,
data and combined complexity, as well as expressive power, and polynomial classes
of queries have been isolated. In particular, the latter issue highlights how regarding
problem specifications as logical formulae makes it possible to refer to existing results
in second-order logic.



Appendix A

ESO encodings of expressions

in Section 1.2

In this section we give the formal definitions for expressions given in Section 1.2, in
order to let ESO deal with functions, integers, and orderings.

A.1 Expressions for functions

In what follows, ~X, ~X1, and ~X2 are vectors of size d, while ~Y , ~Y1, and ~Y2 are of size
r. We also assume that we are given relations D of arity d and R of arity r.

Definitions of expressions of Section 1.2 are as follows:

• typedRelation(F (d+r),D (d),R(r))
.
=

∀ ~X ∀~Y F ( ~X, ~Y ) → D( ~X) ∧R(~Y ) (A.1)

• functiond,r (F
(d+r))

.
=

∀ ~X ∀ ~Y1 ∀ ~Y2 F ( ~X, ~Y1) ∧ F ( ~X, ~Y2) → ~Y1 = ~Y2 (A.2)

• total(F (d+r),D (d))
.
=

∀ ~X D( ~X) → ∃~Y F ( ~X, ~Y ) (A.3)

• surgective(F (d+r),R(r))
.
=

∀~Y R(~Y ) → ∃ ~X F ( ~X, ~Y ) (A.4)
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• injectived,r(F
(d+r))

.
=

∀~Y ∀ ~X1 ∀ ~X2 F ( ~X1, ~Y ) ∧ F ( ~X2, ~Y ) → ~X1 = ~X2 (A.5)

• bijective(F (d+r),D (d),R(r))
.
=

total(F ,D) ∧ injective(F ) ∧ surjective(F ,R) (A.6)

A.2 Bounded integers and linear orders

The simplest way to represent bounded integers in ESO is to encode them in unary
form. In particular, positive integer k can be represented by a (wlog monadic) re-
lation K having exactly k tuples. Hence, given two monadic relations K ′ and K ′′

representing positive integers k′ and k′′, comparisons between them can be reduced
to checking the existence of appropriate functions from K ′ to K ′′. As an example,
we have that:

• k′ = k′′ if and only if there exists a total bijective function between K ′ and K ′′;

• k′ ≥ k′′ if and only if there exists a partial surjective function from K ′ to K ′′.

However, an alternative representation of bounded integers is described below.
For what concerns orderings, we observe that in ESO it is possible to specify the

NP-complete Hamiltonian Path on a graph problem, as the following example shows:

Example A.2.1 (Hamiltonian path (62, Prob. GT39, p. 199)). Given a
directed graph as input, encoded in a binary relation edge(·, ·), this NP-complete prob-
lem amounts to decide whether there exists a traversal of the input graph that touches
every node exactly once. An ESO specification for the Hamiltonian path (HP) problem
is as follows:

∃P, TC ∀X,Y P (X,Y ) → edge(X,Y ) ∧ (A.7)

∃!S, T ∀X ¬P (X,S) ∧ ¬P (T,X) ∧ (A.8)

∀X X 6= T ↔ ∃!Y P (X,Y ) ∧ (A.9)

∀Y Y 6= S ↔ ∃!X P (X,Y ) ∧ (A.10)

∀X ∃Y P (X,Y ) ∨ P (Y,X) ∧ (A.11)

closure(P, TC) ∧ (A.12)

∀X ¬TC(x, x). (A.13)

Constraint (A.7) forces P to be a subset of the graph edges. Moreover, exactly two1

distinguished nodes S and T exist in P : the former will be the source node of the
Hamiltonian path, the latter the target one. Constraint (A.8) forces node S to have

1Formula ∃!X φ(X) means that exists exactly one X that makes φ(X) true, and is a common
short-hand for ∃X φ(X) ∧ ∀X′ φ(X′) → X = X′.
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no predecessors and T to have no successors. Constraints (A.9–A.10) impose every
node to have exactly one successor and one predecessor in P , except for S (which
has no predecessor) and T (which has no successor). Finally, (A.11) forces every
node to be touched by the path encoded in P . Constraints (A.7–A.11) force the graph
induced by P to be a set of one chain (starting from S and ending in T ) plus zero
or more cycles (sub-cycles), all disconnected from each other. An extension for P
that satisfies (A.7–A.11) is an Hamiltonian path if and only if it has no such cycles.
Additional constraints (A.12–A.13) check this: in particular, the formes ensures that
the additional guessed predicate Cl is a closure of the graph induced by P (this can be
the transitive closure, but simpler forms of closure may suffice, since the structure of
the graph is known), while the latter checks that no tuple of the form 〈X,X〉 belongs
to Cl: this is true if and only if the path encoded by P does not have cycles. A simple
expression for closure(·, ·) is as follows:

closure(R, T )
.
=

∀X,Y T (X,Y ) ↔ R(X,Y ) ∨ (∃Z T (X,Z) ∧ T (Z, Y )) ,
(A.14)

and evaluates to true if and only if binary relation T encodes this particular kind
of closure of the binary relation R. It is easy to prove that guessed predicate Cl
satisfying closure(P ,Cl) contains a tuple 〈X,X〉 if and only if P (which has the
structure imposed by the preceeding constraints) has a cycle.

A formulation for HP as permutation problem is given in Example 3.2.1.

The possibility to specify HP has interesting consequences. Consider a unary relation
N , with n 6= 0 tuples, and the complete graph C with nodes in N (hence, having n
nodes and n2 edges). An Hamiltonian path H of C is a total ordering of the n elements
in N : in fact it is a successor relation. The Transitive closure of H (also expressible in
ESO by a formula more complex than (A.14), that intuitively simulates the behavior
of the well-known datalog program for its computation) is the corresponding less-than
relation. As a consequence, we have an alternative representation in ESO of bounded
integers up to n (every tuple of N is associated an integer), and, furthermore, we can
also specify arithmetic operations over them, as long as results of those operations is
bounded.

Hence, expression linearOrder(ORDER(2k),N (k)) actually checks whether guessed
relation ORDER defines an HP over the complete graph with nodes in N .
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Appendix B

Chapter 2: proofs of results

Proof of Theorem 2.2.1. Let I be an instance, M∗ be a list of extensions for
(S1, . . . , Sh, S

∗) such that (M∗, I) |= ψs, and ext(S) be an extension for S such
that (M∗, ext(S), I) |= ψd.

From the definition of ψd, it follows that:

(M∗, ext(S), I) |= ∀X S(X) → S∗(X),

and so, since clauses in Ξ∗ contain at most negative occurrences of S∗, that:

(M∗, ext(S), I) |= Ξ. (B.1)

Furthermore, from the definition of ψs it follows that:

(M∗, I) |= ∀X α(X) → S∗(X),

and from Hyp 2 that:

(M∗, I) |= ∀X α(X) → S∗(X) ∧ β(X).

This implies, by the definition of ψd, that:

(M∗, ext(S), I) |= ∀X α(X) → S(X). (B.2)

Moreover, by the same definition, it is also true that:

(M∗, ext(S), I) |= ∀X S(X) → β(X). (B.3)

From (B.1–B.3), and from the observation that S∗ does not occur in any of the right
parts of them, the thesis follows.

Proof of Theorem 2.2.2. Let I be an input instance, and M be a list of extensions
for (S1, . . . , Sh, S) such that (M, I) |= ψ. Let S∗ be defined in such a way that
ext(S∗) = ext(S).

Since solutions for ψ are also solutions for ψs, and since ext(S∗) = ext(S), it
follows that ((M − ext(S)) ∪ ext(S∗)) is a solution of ψs.

131



132 APPENDIX B. CHAPTER 2: PROOFS OF RESULTS

As for ψd, we observe that since M (that is a solution for the whole specification
ψ) is also a solution for one of its constraints, namely ∀X S(X) → β(X) (the de-
layed constraint), then, from ext(S∗) = ext(S), and in particular from the fact that
∀X S(X) → S∗(X) holds, it follows that (M, ext(S∗)) |= ∀X S(X) → S∗(X)∧β(X).

Conversely, from ext(S∗) = ext(S), and in particular from the fact that
∀X S∗(X) → S(X) holds, it follows that (M, ext(S∗)) |= ∀X S∗(X)∧β(X) → S(X).

Hence, the thesis follows.
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Chapter 4: proofs of results

and examples

Proof of Proposition 4.3.1.
If part. If φ ≡ φσ , then it is easy to show that σ meets the condition of Definition 4.2.5,
thus it is a UVS for ψ.
Only if part. If σ is a UVS for ψ, then, according to Definition 4.2.5, every extension
for predicates in ~S and ~R that is a model of φ must be a model of φσ and vice versa,
therefore φ ≡ φσ must hold.

Proof of Proposition 4.3.2. We prove the statement by reducing it to the problem of
checking whether an arbitrary closed first-order formula is a contradiction.

Let ψ
.
= ∃~S φ(~S, ~R) be any fixed specification on input schema ~R, and let σ be

any fixed UVT which is not a UVS for it, i.e., from Proposition 4.3.1:

φ 6≡ φσ. (C.1)

We remind that φσ is defined as φ[S1/σ(S1), . . . , Sn/σ(Sn)] (cf. Section 4.2).

Let now ~P be a fresh set of relational symbols, with ~P ∩{~S∪ ~R} = ∅, γ(~P ) an arbitrary

closed first-order formula on the relational vocabulary ~P , and consider the following
new specification ψ′:

∃~S φ(~S, ~R) ∧ γ(~P ).

The UVT σ is also a UVT for ψ′, since ψ′ has the same set of guessed predicates as
ψ. By Proposition 4.3.1, the problem of deciding whether σ is a UVS for ψ′ reduces
to checking whether:

φ(~S, ~R) ∧ γ(~P ) ≡ φσ(~S, ~R) ∧ γσ(~P ). (C.2)

It is immediate to observe that, if γ(~P ) is a contradiction, formula (C.2) holds. Hence,

what remains to be proven is that, if formula (C.2) holds, then γ(~P ) must be a

contradiction. Suppose this is not the case, i.e., there exists an extension ~P for

predicates in ~P for which γ(~P ) evaluates to true. Since, by hypothesis, formula (C.1)
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holds, there exists an extension 〈~S, I〉 for 〈~S, ~R〉 such that φ(~S, I) is true, but φσ(~S, I)

is false (or vice versa). This implies that the extension 〈~S, I, ~P 〉 makes the left part of
formula (C.2) true, and the right part false (or vice versa). In both cases, formula (C.2)
does not clearly hold.

What it has been proven is that an arbitrary given first-order closed formula
γ(~P ) is a contradiction if and only if a fixed UVT σ is a UVS for the specification

∃~S φ(~S, ~R) ∧ γ(~P ). Since the former problem is undecidable (9), the latter is unde-
cidable as well.

Proof of Proposition 4.4.1. First of all, we observe that for each input instance I,
if problem ∃~S φ(~S, I) has solutions, then, for every UVT σ and positive integer

k, also ∃~S (φ(~S, I))σk

has solutions, where σk denotes k consecutive applications of

function σ. In fact, supposing ~S = {S1, . . . , Sn} a solution of the former, the extension

σk(~S) = {σk(S1), . . . , σ
k(Sn)} is a solution of the latter.

Now, suppose that, for a given input instance I, ∃~S φ(~S, I) has solutions; this

implies that φ(~S, I) is satisfiable. From point 2 of Definition 4.4.1 it follows that also
∨

~σ∈σ∗(φ(~S, I)∧β(~S))~σ is satisfiable. Hence, there exists a k ≥ 0 such that (φ(~S, I)∧

β(~S))σk

holds. Since both σ and σ−1 are UVTs for the problem ∃~S φ(~S, I) ∧ β(~S),

from the observation above, it follows that all (φ(~S, I) ∧ β(~S))~σ, with ~σ ∈ σ∗ are

satisfiable. In particular, for ~σ = 〈〉, ∃~S φ(~S, I) ∧ β(~S), i.e., the rewritten problem,
has solutions.

Lemma C.0.1 (Alternate formulation of condition 1 of Definition 4.4.1).

Let ψ
.
= ∃~S φ(~S, ~R), be a specification, with ~S = {S1, . . . Sn}, Si monadic for every

i ∈ [1, n], and input schema ~R, let σ be a UVS for ψ, and β(~S) a closed (except for
~S) formula. Formula β(~S) respects condition 1 of Definition 4.4.1 if and only if the
following holds:

φ(~S, ~R) 6|= β(~S) ↔ β(~S)σ (C.3)

i.e., there exists a model 〈~S, ~R〉 of φ that makes β(~S) and β(~S)σ not equivalent.

Proof. If part. Since φ(~S, ~R) ≡ φ(~S, ~R)σ (because σ is a UVS for ψ and because of
Proposition 4.3.1), condition 1 of Definition 4.4.1 can be rewritten as:

φ(~S, ~R) ∧ β(~S) 6≡ φ(~S, ~R) ∧ β(~S)σ.

If the above formula holds, then there exists an interpretation 〈~S, ~R〉 that makes its

left side φ(~S, ~R) ∧ β(~S) true, and its right side φ(~S, ~R) ∧ β(~S)σ false (or vice versa).

Furthermore, this interpretation makes φ(~S, ~R) true, and β(~S) true and β(~S)σ false
(or vice versa). Hence, it proves that formula (C.3) holds.

Only if part. Suppose that formula (C.3) holds, and that 〈~S, ~R〉 is a model of φ

that makes β(~S) true and β(~S)σ false (or vice versa). It is straightforward to check
that such an interpretation makes the left side of condition 1 of Definition 4.4.1 true
and the right side false (or vice versa).



135

Lemma C.0.2 (Alternate formulation of condition 2 of Definition 4.4.1).

Given ψ, σ, and β(~S) as above, formula β(~S) respects condition 2 of Definition 4.4.1
if and only if the following holds:

φ(~S, ~R) |=
∨

~σ∈σ∗

β(~S)~σ. (C.4)

Proof. Since for every ~σ ∈ σ∗, φ(~S, ~R)~σ ≡ φ(~S, ~R) (because σ is a UVS for ψ and
because of Proposition 4.3.1), condition 2 of Definition 4.4.1 can be rewritten as:

φ(~S, ~R) |= φ(~S, ~R) ∧
∨

~σ∈σ∗

β(~S)~σ,

which is clearly equivalent to (C.3).

Corollary C.0.1 (Sufficient condition for condition 2 of Definition 4.4.1).

Given ψ, σ, and β(~S) as above, if
∨

~σ∈σ∗ β(~S)~σ is a tautology, then formula β(~S)
respects condition 2 of Definition 4.4.1.

Proof. Straightforward, from Lemma C.0.2.

Example 4.5.1. We show how symmetry-breaking formulae presented in Exam-
ple 4.5.1 for the Graph 3-coloring problem respect both conditions of Definition 4.4.1.
φ denotes the first-order part of the Graph 3-coloring specification, cf. Example 1.2.2.

1. Formula βG,B
least(R,G,B)

.
= ∀Y B(Y ) → ∃X G(X) ∧X < Y , with respect to

symmetry σG,B:

Condition 1: We use Lemma C.0.1: to this end, (βG,B
least(R,G,B))σG,B

is

∀Y G(Y ) → ∃X B(X) ∧X < Y.

Consider an input graph for which edge = {(v, v)}, and the color assign-
ment R,G,B such that R = B = ∅, G = {v}. R,G,B is a good 3-coloring
of the input graph, hence it satisfies φ(R,G,B, edge).

Furthermore, interpretation 〈R,G,B, edge〉 makes βG,B
least(R,G,B) true

and (βG,B
least(R,G,B))σG,B

false, implying that formula (C.3) holds. By

Lemma C.0.1, βG,B
least(R,G,B) respects condition 1 of Definition 4.4.1.

Condition 2: We use Lemma C.0.2: to this end, it is enough to observe that

βG,B
least(R,G,B) ∨ (βG,B

least(R,G,B))σG,B

can be rewritten as:

∀Y ¬B(Y ) ∨ (∃X G(X) ∧X < Y ) ∨

¬G(Y ) ∨ (∃X B(X) ∧X < Y )

and then as:
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∀Y (B(Y ) ∧G(Y )) → (∃X G(X) ∧X < Y ) ∨

(∃X B(X) ∧X < Y ) .

Since for every every model 〈R,G,B, edge〉 of φ it holds that
∀Y ¬

(

B(Y ) ∧G(Y )
)

, cf. clause (1.9), then the above formula is sat-
isfied by all such interpretations. Hence, formula (C.3) holds, and, by

Lemma C.0.2, βG,B
least(R,G,B) respects condition 2 of Definition 4.4.1.

2. Formula βG,B
≤ (R,G,B)

.
= |G| ≤ |B|, with respect to symmetry σG,B:

Condition 1: We use Lemma C.0.1: to this end, we first observe that

(βG,B
≤ (R,G,B))σG,B

is |B| ≤ |G|.

Consider an input graph for which edge = {(v, v)}, and the color assign-
ment R,G,B such that R = G = ∅, B = {v}. R,G,B is a good 3-coloring
of the input graph, hence it satisfies φ(R,G,B, edge).

Furthermore, interpretation 〈R,G,B, edge〉 makes βG,B
≤ (R,G,B) true

and (βG,B
≤ (R,G,B))σG,B

false, implying that formula (C.3) holds. By

Lemma C.0.1, βG,B
≤ (R,G,B) respects condition 1 of Definition 4.4.1.

Condition 2: We use Corollary C.0.1: to this end, it is enough to observe that

βG,B
≤ (R,G,B) ∨ (βG,B

≤ (R,G,B))σG,B

is simply:

|G| ≤ |B| ∨ |B| ≤ |G|,

hence a tautology, because of the total ordering over positive integers.

3. Formula βR
≤(R,G,B)

.
= |R| ≤ |G|∧|R| ≤ |B|, with respect to both symmetries

σR,G and σR,B.

Condition 1: We must use the definition of multiple symmetry-breaking for-
mula. As for condition 1, we have to check the following two conditions:

(a) (φ(~S, ~R) ∧ β(~S)) 6≡ (φ(~S, ~R) ∧ β(~S))σR,G

;

(b) (φ(~S, ~R) ∧ β(~S)) 6≡ (φ(~S, ~R) ∧ β(~S))σR,B

.

As for condition (a), it becomes:

(

φ(~S, ~R) ∧ |R| ≤ |G| ∧ |R| ≤ |B|
)

6≡
(

φ(~S, ~R) ∧ |G| ≤ |R| ∧ |G| ≤ |B|
)

.

Consider an input graph for which edge = {(v, v)}, and a color assignment
R,G,B such that R = B = ∅, G = {v}. R,G,B is a good 3-coloring of the
input graph, and interpretation 〈R,G,B, edge〉 makes the left part of the
non-equivalence true, and the right part false.

As for condition (b), a similar argument holds, with color assignment
R,G,B such that R = G = ∅, B = {v}.
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Condition 2: Since βG,B
≤ (R,G,B) is a multiple symmetry-breaking formula,

we must check condition (4.3). To this end, it suffices to show that:

βG,B
≤ (R,G,B) ∨ (βG,B

≤ (R,G,B))σR,G

∨ (βG,B
≤ (R,G,B))σR,B

is a tautology. The above formula can be rewritten as:

(|R| ≤ |G| ∧ |R| ≤ |B|) ∨

(|G| ≤ |R| ∧ |G| ≤ |B|) ∨

(|B| ≤ |G| ∧ |B| ≤ |R|) .

To show that it is a tautology, we intuitively observe that the first disjunct
is satisfied by color assignments for which red is used to color the less
number of nodes. Similarly the second and third disjuncts are satisfied
by assignments for which green and blue, respectively, are used to color
the less number of nodes. It is straightforward to observe that every color
assignment must be satisfied by at least one of them.

4. Formula β≤(R,G,B)
.
= |R| ≤ |G| ∧ |R| ≤ |B| ∧ |G| ≤ |B|, with respect to the

three symmetries σR,G, σR,B, and σG,B.

Conditions 1 and 2 of the multiple symmetry-breaking formula definition can
be checked by using very similar arguments of the previous point.

Example 4.5.2. To show that formulae (4.9) and (4.10) respect both conditions of
Definition 4.4.1, a technique very similar to that of the previous example can be
used.

Example 4.5.3. We show the encoding βlex2 of the lex2 constraint for the Social golfer
specification in Example 4.5.3, and prove that it is a multiple symmetry-breaking
formula.

To this end, given the Social golfer specification, we unfold the ternary guessed
predicate PLAY (·, ·, ·) into |player | × |week | monadic predicates PLAYP ,W , hence
leading to the usual players/weeks matrix model of the problem.

Assuming, without loss of generality, that players are identified by integer con-
stants in the range [1, np], with np = |player |, and weeks by constants [1, nw], with
nw = |week |, the unfolded specification is as follows:
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∃PLAY 1,1, . . . ,PLAY 1,nw, . . .PLAY np,nw

np
∧

p=1

nw
∧

w=1

∀G PLAY p,w(G) → group(G) ∧

np
∧

p=1

nw
∧

w=1

∃G PLAY p,w(G) ∧

np
∧

p=1

nw
∧

w=1

∀G,G′ PLAY p,w(G) ∧ PLAY p,w(G′) → G = G′ ∧

np
∧

p=1

nw
∧

w=1

np
∧

p′=1
p′ 6=p

nw
∧

w′=1
w′ 6=w

∀G,G′ (PLAY p,w(G) ∧ PLAY p′,w(G)) →

¬ [PLAY p,w′(G′) ∧ PLAY p′,w′(G′)] ∧
nw
∧

w=1

nw
∧

w′=1

∀G,G′ group(G) ∧ group(G′) →

|{p ∈ [1, np] : PLAY p,w(G)}| = |{p ∈ [1, np] : PLAY p,w′(G′)}|.

Let us consider, for any two fixed p and p in [1, np], p 6= p, UVT σp,p, defined as
follows:

σp,p(PLAY p,w) =











if p = p, then PLAYp,w

if p = p, then PLAYp,w

the identify function, otherwise

In other words, for each week w ∈ [1, nw], σp,p swaps predicates PLAYp,w and
PLAYp,w , thus exchanging the whole schedulings for players p and p. Moreover,

for every pair p and p in [1, np], σp,p is a symmetry for the unfolded specification.
This can be checked by replacing every occurrence of PLAYp,w with PLAYp,w and
vice versa (cf. Proposition 4.3.1), and by observing that every clause of the former
specification occurs in the latter and vice versa (syntactic equivalence).

Once a linear order “<” over groups has been fixed, a symmetry-breaking formula
for σp,p is as follows:

βp,p
lex

.
=

nw
∨

w=1

[

nw
∧

w=1
w<w

∀G,G′
(

PLAY p,w(G) ∧ PLAY p,w(G′)
)

→ G = G′ ∧

∀G,G′
(

PLAY p,w(G) ∧ PLAY p,w(G′)
)

→ G < G′
]

∨

nw
∧

w=1

∀G,G′
(

PLAY p,w(G) ∧ PLAY p,w(G′)
)

→ G = G′
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and forces the lexicographic ordering on the whole schedulings for players p and p
(actually, this formulation is more general than needed for this problem, because,
e.g., the other constraints do not allow for the schedulings to be equal). The version
of this symmetry-breaking formula for the original specification can be derived by
re-folding it, hence obtaining:

[

∃W ∀W W < W → ∀G,G′
(

PLAY (P ,W,G) ∧ PLAY (P ,W,G′)
)

→ G = G′
)

∧

∀G,G′
(

PLAY (P ,W,G) ∧ PLAY (P ,W,G′)
)

→ G < G′
]

∨

∀W,G,G′
(

PLAY (P ,W,G) ∧ PLAY (P ,W,G′)
)

→ G = G′.

βp,p
lex deals with only one symmetry, i.e., σp,p. We now define βplayers

lex as follows:

βplayers
lex

.
=

np
∧

p,p=1

p<p

βp,p
lex , (C.5)

and prove that βplayers
lex is a multiple symmetry-breaking formula, breaking all sym-

metries σp,p.
As for the first condition, we use must show that βplayers

lex breaks all those symme-
tries. We do this by using Lemma C.0.1 for any pair p and p of players. To this end,
we show an instance of the Social golfer problem and a solution that satisfies βplayers

lex

but does not satisfy (βplayers
lex )σp,p

, for any pair p and p.
The instance has 4 players (np = 4), 3 weeks (nw = 3), and 2 groups, and a

solution is as follows:

PLAY1 ,1 (1 ), PLAY1 ,2 (1 ) PLAY1 ,3 (1 )

PLAY2 ,1 (1 ), PLAY2 ,2 (2 ) PLAY2 ,3 (2 )

PLAY3 ,1 (2 ), PLAY3 ,2 (1 ) PLAY3 ,3 (2 )

PLAY4 ,1 (2 ), PLAY4 ,2 (2 ) PLAY4 ,3 (1 )

i.e., player 1 plays in group 1 on weeks 1, 2, 3, player 2 plays in group 1 on week 1,
and in group 2 on weeks 2 and 3, etc.

This solution satisfies βplayers
lex since, for any two players p and p, scheduling of

player p is lexicographically less than that of player p if and only if p < p (schedulings

are the “rows” in the matrix above). On the other hand, (βplayers
lex )σp,p

is obtained

from βplayers
lex by uniformly exchanging every occurrence of PLAY p,w with PLAY p,w

and vice versa, for every w. Hence, (βplayers
lex )σp,p

imposes a lexicographic ordering on
players schedulings with the roles of p p reversed (i.e., if p was less than p, now it is

greater, and vice versa). Hence, the scheduling above cannot satisfy (βplayers
lex )σp,p

.
As for the second condition, we use the generalization of Lemma C.0.2 to the case

of multiple symmetries, showing that, given Σ = {σp,p, p < p, p, p ∈ [1, np]}, every



140 APPENDIX C. CHAPTER 4: PROOFS OF RESULTS AND EXAMPLES

solution for any instance of the Social golfer problem makes the following formula
true:

∨

~σ∈Σ∗

(βplayers
lex )~σ

To this end, consider an arbitrary instance of the problem and a solution. This is
encoded in an extension for predicates PLAY p,w, p ∈ [1, np], w ∈ [1, nw] containing
exactly one tuple each (the group in which player p plays in week w). This interpre-

tation satisfies (βplayers
lex )~σ for ~σ built as follows:

1. ~σ = 〈〉 (i.e., the empty sequence);

2. If there exist a pair 〈PLAY p,1, . . . ,PLAY p,nw〉 6≤lex 〈PLAY p,1, . . . ,PLAY p,nw〉

with p < p:

(a) For every week w, swap tuples of predicates PLAY p,w and PLAY p,w;

(b) Add σp,p to ~σ.

(c) Go to 2.

3. Return ~σ.

We do not give a formal proof of the correctness of this algorithm, but intuitively
observe that the idea is to make the solution lexicographically ordered by swapping
non-ordered schedulings. ~σ will contain the sequence of such swaps.

As an example, consider again the instance with 4 players, 3 weeks, and 2 groups,
and the following solution:

PLAY1 ,1 (2 ), PLAY1 ,2 (1 ) PLAY1 ,3 (2 )

PLAY2 ,1 (2 ), PLAY2 ,2 (2 ) PLAY2 ,3 (1 )

PLAY3 ,1 (1 ), PLAY3 ,2 (2 ) PLAY3 ,3 (2 )

PLAY4 ,1 (1 ), PLAY4 ,2 (1 ) PLAY4 ,3 (1 )

We now build ~σ such that the above interpretation satisfies (βplayers
lex )~σ.

Start with ~σ = 〈〉. Since the scheduling for player 2 (second row) is not lexico-
graphically less than that for player 3 (third row), we swap tuples of PLAY 2,w and
PLAY 3,w for every week w, hence obtaining:

PLAY1 ,1 (2 ), PLAY1 ,2 (1 ) PLAY1 ,3 (2 )

PLAY2 ,1 (1 ), PLAY2 ,2 (2 ) PLAY2 ,3 (2 )

PLAY3 ,1 (2 ), PLAY3 ,2 (2 ) PLAY3 ,3 (1 )

PLAY4 ,1 (1 ), PLAY4 ,2 (1 ) PLAY4 ,3 (1 )

and add σ2,3 to ~σ. By iterating, we build ~σ as 〈σ2,3, σ1,2, σ3,4, σ2,3, σ1,2〉.
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We observe that the proposed algorithm for generating ~σ is very naive and does
not return the shortest ~σ. As an example, a shorter sequence of swaps that orders
the rows of the matrix in the solution above is 〈σ1,4, σ2,3, σ3,4〉.

Let us now consider such a sequence (for simplicity the shorter one), and the

corresponding (βplayers
lex )〈σ

1,4,σ2,3,σ3,4〉. This formula forces the following ordering on
players schedulings:

〈PLAY 4,1, . . . ,PLAY 4,nw〉 ≤lex

〈PLAY 3,1, . . . ,PLAY 3,nw〉 ≤lex

〈PLAY 1,1, . . . ,PLAY 1,nw〉 ≤lex

〈PLAY 2,1, . . . ,PLAY 2,nw〉.

Hence, the initial solution satisfies it.

The definition of βplayers
lex , cf. formula (C.5), defines np× (np− 1)/2 lexicographic

ordering constraints among different players schedulings. However, it is easy to prove
that it is equivalent to the following one:

np−1
∧

p=1

βp,p+1
lex

that forces only a linear number of such constraints.

Analogously to σp,p, we can define transformations σw,w, that, for each player p ∈
[1, np], swap predicates PLAYp,w and PLAYp,w , thus exchanging, for each player,

the schedulings for weeks w and w. By using the same technique presented for σp,p,
it is possible to show that all σw,w are symmetries for the unfolded Social golfer
specification. A multiple symmetry-breaking formula βweeks

lex can be defined similarly

to βplayers
lex .

From βplayers
lex and βweeks

lex , we finally define βlex2 as follows:

βlex2

.
= βplayers

lex ∧ βweeks
lex (C.6)

and prove that βlex2 breaks all symmetries σp,p and σw,w, with p and p in [1, np] and
w and w in [1, nw].

As for condition 1, it suffices to show that there exists an instance and solution for
the Social golfer problem that satisfies βlex2 , but does not satisfy (βlex2)σ, for every

σ ∈ {σp,p, p, p ∈ [1, np]} ∪ {σw,w, w, w ∈ [1, nw]}.

An example is again the instance with 4 players, 3 weeks, and 2 groups, and the
following solution:
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PLAY1 ,1 (1 ), PLAY1 ,2 (1 ) PLAY1 ,3 (1 )

PLAY2 ,1 (1 ), PLAY2 ,2 (2 ) PLAY2 ,3 (2 )

PLAY3 ,1 (2 ), PLAY3 ,2 (1 ) PLAY3 ,3 (2 )

PLAY4 ,1 (2 ), PLAY4 ,2 (2 ) PLAY4 ,3 (1 )

This solution clearly satisfies both βplayers
lex and βweeks

lex , and so βlex2 . However, for

every σ ∈ {σp,p, p, p ∈ [1, 4]} ∪ {σw,w, w, w ∈ [1, 3]}, this solution does not satisfy
(βlex2)σ.

As for condition 2, instead, a simple generalization of the technique used for
βplayers

lex and βweeks
lex suffices, since every symmetric assignment can be obtained by a

finite sequence of rows and columns swaps.

As a final remark, we observe that the proof presented here does not really rely on
the specification for Social golfer. What is really important is that the unfolding of
the specification leads to a row/column matrix of monadic guessed predicates, each of
them forced to have exactly one tuple, and that all symmetries on rows and columns
hold. Hence, the βlex2 formula can be used also in other specifications, as that for
the BIBD problem (cf. Example 4.5.4).
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Chapter 5: proofs of results

Proof of Theorem 5.2.1.
If part. We show that if formula (5.1) is valid, then ~P functionally depends on ~S.

Actually, we prove that, if ~P does not functionally depend on ~S, then formula (5.1) is

not valid, i.e., there is an extension for ~S, ~P , ~S′, ~P ′, ~R that falsifies it. Let us assume
that ~P does not functionally depend on ~S: this means, according to Definition 5.2.1,
that there exists an instance I of ~R and two interpretations M and N of predicates
in (~S, ~P ) such that M 6= N , I,M |= φ, I, N |= φ but M|~S = N|~S, i.e., M and N are

models of φ that differ only on the extension of predicates in ~P . The interpretation
(M,N, I) (where M and N are the interpretations of predicates in (~S, ~P ) and in

(~S′, ~P ′), respectively) makes the left side of implication (5.1) true, and the right side
false. Thus this interpretation is not a model of formula (5.1).

Only if part. Here we show that if ~P functionally depends on ~S, then formula (5.1) is
valid. Actually, we prove that, if formula (5.1) is not valid, i.e., there is an extension

for ~S, ~S′, ~P , ~P ′, ~R that falsifies it, then ~P does not functionally depend on ~S. Let
us assume that an interpretation (M,N, I) of predicates ~S, ~P , ~S′, ~P ′, ~R exists that
falsifies formula (5.1). This means that such an interpretation makes the left side of
implication (5.1) true and the right side false. Thus, it is such that:

1. M, I |= φ(~S, ~P , ~R);

2. N, I |= φ(~S′, ~P ′, ~R);

3. M|~P 6= N|~P ;

4. M|~S = N|~S .

From points 1-4 and Definition 5.2.1, it follows that ~P does not functionally depend on
~S, since M and N are two models of φ that differ only for the extension of predicates
in ~P .

Proof of Theorem 5.2.2.
We prove the statement by reducing it to the problem of checking whether an arbitrary
closed first-order formula is a contradiction.

143



144 APPENDIX D. CHAPTER 5: PROOFS OF RESULTS

Let ψ
.
= ∃~S ~P φ(~S, ~P , ~R) be any fixed problem specification with input schema ~R,

such that ~P is functionally dependent on ~S, so, by Theorem 5.2.1:

[φ(~S, ~P , ~R) ∧ φ(~S′, ~P ′, ~R) ∧ ¬(~S ~P ≡ ~S′ ~P ′)] → ¬(~S ≡ ~S′)

is a valid formula. Let γ(~R) be an arbitrary closed first-order formula on the relational

vocabulary ~R.
Consider the new specification ψ′ .= ∃~S ~P φ′(~S, ~P , ~R), where φ′(~S, ~P , ~R) is defined

as φ(~S, ~P , ~R)∨γ(~R). From Theorem 5.2.1, ~P functionally depends on ~S with respect
to specification ψ′, if and only if

[φ′(~S, ~P , ~R) ∧ φ′(~S′, ~P ′, ~R) ∧ ¬(~S ~P ≡ ~S′ ~P )] → ¬(~S ≡ ~S′)

is a valid formula, or, equivalently,

[
(

φ(~S, ~P , ~R) ∨ γ(~R)
)

∧
(

φ(~S′, ~P ′, ~R) ∨ γ(~R)
)

∧ ¬(~S ~P ≡ ~S′ ~P ′)] → ¬(~S ≡ ~S′) (D.1)

is a valid formula. Since, by hypothesis, ~P functionally depends on ~S with respect to
specification ψ, it follows that, if γ(~R) is a contradiction, then ~P functionally depends

on ~S with respect to ψ′.
On the other hand, let us assume that an interpretation I for ~R exists such that

γ(I) is true. Consider a pair of interpretations M and N of (~S, ~P ), such that M 6= N

but M|~S = N|~S . Thus, interpretation (M,N, I) of predicates (~S, ~P ), (~S′, ~P ′), and ~R is

not a model of formula (D.1). Since, for every interpretation I for ~R (with non-empty
universe) a pair of interpretations M and N of the above kind can always be built,

formula (D.1) is valid, i.e., ~P functionally depends on ~S with respect to ψ′ if and only

if γ(~R) is a contradiction. Since the latter problem is not decidable, cf., e.g., (9), the
former is not decidable as well.
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Chapter 6

E.1 First-order conditions for symmetry-breaking

formulae in ESO

In Section 6.2.2 we have shown that, in order to check whether a given formula β(~S)

breaks a symmetry σ for problem specification ψ
.
= ∃~S φ(~S, ~R), first-order theorem

provers may in general not suffice. This happens, in particular, when formula β(~S)
is second-order, but not first-order definable. In fact, in this case, conditions of
Definition 4.4.1 become second-order (non-)equivalences. In the same section, we

have presented an example of such a β(~S), namely βG,B
≤ (R,G,B) for the Graph 3-

coloring specification and symmetry σG,B.
However, we have also argued that, in some circumstances, it is possible to define

a sequence of first-order steps that allow to infer second-order (non-)equivalences of
Definition 4.4.1.

In this section, we focus on candidate symmetry-breaking formulae β(~S) expressed
in ESO, and show an example of first-order definable steps that imply that condi-
tion (4.1), i.e., point 1 of Definition 4.4.1 holds.

We assume that β(~S) is in the following form:

β(~S)
.
= ∃~T γ(~S, ~T ), (E.1)

where γ(~S, ~T ) is a (possibly quantified) first-order formula open only with respect to

the set of guessed predicates ~S of the whole specification, plus the set of existentially
quantified predicates ~T in β(~S).

βG,B
≤ (R,G,B) belongs to this case, since, as discussed in Appendix A, it can be

written in ESO as follows:

βG,B
≤ (R,G,B)

.
= ∃T ∀X,Y T (X,Y ) → G(X) ∧B(Y ) ∧ (E.2)

∀X∃Y G(X) → T (X,Y ) ∧ (E.3)

∀X,Y, Y ′ T (X,Y ) ∧ T (X,Y ′) → Y = Y ′ ∧ (E.4)

∀X,X ′, Y T (X,Y ) ∧ T (X ′, Y ) → X = X ′. (E.5)
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The above formula evaluates to true if a total (E.3), injective (E.5) function (E.4)
exists from the set of green nodes to that of blue ones (E.2), i.e., if and only if
the number of green nodes is less than or equal to the number of blue ones in the
assignment given by R, G, B.

For a formula in the form (E.1), since ~T does occurs neither in φ(~S, ~R) nor in

φ(~S, ~R)σ, condition (4.1) of Definition 4.4.1 becomes as follows:

∃~T
(

φ(~S, ~R) ∧ γ(~S, ~T )
)

6≡ ∃~T
(

φ(~S, ~R) ∧ γ(~S, ~T )
)σ

. (E.6)

We immediately note that testing whether
(

φ ∧ γ(~S, ~T )
)

6≡
(

φ ∧ γ(~S, ~T )
)σ

does

not suffice. However, we can proceed as follows: our goal is to find an extension

〈~S, ~R〉 for predicates in ~S and ~R that is a model of the left side of (E.6) and not of

the right side (or vice versa). Thus, we are interested in an interpretation 〈~S, ~R〉 for

which an extension for predicates in ~T that satisfies φ(~S, ~R)∧ γ(~S, ~T ) does exist, but

an extension for predicates in ~T that satisfies
(

φ(~S, ~R) ∧ γ(~S, ~T )
)σ

does not (or vice

versa).

To this end, we can use a first-order finite model finder to get an extension 〈~S, ~R, ~T 〉

for ~S, ~R and ~T such that:

〈~S, ~R, ~T 〉 |= φ(~S, ~R) ∧ γ(~S, ~T ).

〈~S, ~R〉 consists of an instance for the problem ψ
.
= ∃~S φ(~S, ~R) plus a solution for that

instance. Moreover, this solution satisfies the symmetry-breaking formula β(~S)
.
=

∃~T γ(~S, ~T ).

Of course we are not yet guaranteed that for 〈~S, ~R〉 an extension
~
T such that

(

φ(~S, ~R) ∧ γ(~S,
~
T )

)σ

evaluates to true does not exist. But, if γ(~S, ~T )σ is a contra-

diction, this happens, and so we have found an instance ~R and an extension ~S for

~S that is a solution for φ(~S, ~R) ∧ β(~S), but not for
(

φ(~S, ~R) ∧ β(~S)
)σ

. This implies

that condition (4.1) holds.

It is worthwhile noting that, in general, not every model found in the first step

satisfies the additional condition that γ(~S, ~T )σ is a contradiction, so we may need
to backtrack in order to look for another model. To reduce the number of such
backtracks, a simple heuristic is to look, in the first step, for a model of φ(~S, ~R) ∧

γ(~S, ~T ) ∧ ¬γ(~S, ~T )~σ. Summing up, the suggested procedure is the following:

1. Find 〈~S, ~R, ~T 〉 such that:

〈~S, ~R, ~T 〉 |= φ(~S, ~R) ∧ γ(~S, ~T ) ∧ ¬γ(~S, ~T )~σ;

2. If γ(~S, ~T )σ |= ⊥, then condition (4.1) of Definition 4.4.1 holds; otherwise
return to Step 1.
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We observe that a hybrid strategy, that uses both a finite model finder and a theorem
prover at the same time, can be effective in practice to perform Step 2.

As an example, we show how the procedure above works when checking whether
βG,B
≤ (R,G,B) is symmetry-breaking for σG,B in the Graph 3-coloring problem (cf.

Example 1.2.2 for the problem specification).
We first look for an interpretation 〈R,G,B, edge, T 〉 such that R,G,B define a

good coloring of the graph encoded by relation edge, and T is a total and injective
function from tuples in R to those in G, but not vice-versa, cf. Step 1 of the procedure
above. One of the smallest examples of such an extension is the following:

R = {}; G = {v}; B = {} edge = {}.

Now, consider formula γ(R,G,B, T )σR,G

, with R,G,B as above. This formula is
satisfiable if and only if a total and injective function T from tuples in G to those in
R exists, that is, if and only if |R| ≥ |G|. But of course, by construction, this is false
(in Step 1 we synthesized 〈R,G,B〉 such that |R| < |G|).

Hence, we have found an interpretation for predicates in ~S and in ~R, namely
〈R,G,B, edge〉 that is a model of the left part of condition (E.6) and not of its right
part. Thus, the second-order non-equivalence stated in (E.6) holds.

E.2 OTTER code for the examples

E.2.1 Detecting symmetries

Graph 3-coloring problem

set(auto).

formula_list(usable).

% Definition of phi

covering <-> (all x (R(x) | G(x) | B(x))).

disjRG <-> (all x (R(x) -> - G(x))).

disjRB <-> (all x (R(x) -> - B(x))).

disjBG <-> (all x (B(x) -> - G(x))).

goodColR <-> (all x y (x!= y & R(x) & R(y) -> - Edge(x,y))).

goodColG <-> (all x y (x!= y & G(x) & G(y) -> - Edge(x,y))).

goodColB <-> (all x y (x!= y & B(x) & B(y) -> - Edge(x,y))).

3col <-> (covering & disjRG & disjRB & disjBG & goodColR & goodColG & goodColB).

% Definition of phi^(sigma)

covering_sigma <-> (all x (G(x) | R(x) | B(x))).

disjGR_sigma <-> (all x (G(x) -> - R(x))).

disjGB_sigma <-> (all x (G(x) -> - B(x))).

disjBR_sigma <-> (all x (B(x) -> - R(x))).

goodColG_sigma <-> (all x y (x!= y & G(x) & G(y) -> - Edge(x,y))).

goodColR_sigma <-> (all x y (x!= y & R(x) & R(y) -> - Edge(x,y))).

goodColB_sigma <-> (all x y (x!= y & B(x) & B(y) -> - Edge(x,y))).
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3col_sigma <-> (covering_sigma & disjGR_sigma & disjGB_sigma & disjBR_sigma &

goodColG_sigma & goodColR_sigma & goodColB_sigma).

% Conjecture: Is 3col equivalent to 3col_sigma?

-(3col <-> 3col_sigma).

end_of_list.

E.2.2 Detecting functional dependencies

Sailco inventory problem

set(auto).

formula_list(usable).

% Definition of the Sailco specification

initial <-> inv(0) = inventory.

regular <-> (all t (regulBoat(t) <= capacity)).

allBoat <-> (all t (t > 0 -> regulBoat(t) + extraBoat(t) - demand(t) =

inv(t) - inv(t-1))).

sailco <-> allBoat & initial & regular.

% Definition of specification_prime

initial_prime <-> inv_prime(0) = inventory.

regular_prime <-> (all t (regulBoat_prime(t) <= capacity)).

allBoat_prime <-> (all t (t > 0 -> regulBoat_prime(t) + extraBoat_prime(t) - demand(t) =

inv_prime(t) - inv_prime(t-1))).

sailco_prime <-> allBoat_prime & initial_prime & regular_prime.

% Induction principle for inv, inv_prime

equalDiscrete <-> (inv(0) = inv_prime(0) &

(all t (t > 0 -> (inv(t) - inv(t-1)) =

(inv_prime(t) - inv_prime(t-1))))).

induction <-> (equalDiscrete -> (all t (inv(t) = inv_prime(t)))).

% Extensions are equivalent on the "dependent" functions

equivDep <-> (all t (inv(t) = inv_prime(t))).

% Extensions are equivalent on the "defining" functions

equivDef <-> (all x (regulBoat(x) = regulBoat_prime(x) &

extraBoat(x) = extraBoat_prime(x))).

% Extensions are equivalent on all guessed functions

equivAll <-> equivDep & equivDef.

% Conjecture: Is inv() dependent on regulBoat() and extraBoat()?

-( (sailco & sailco_prime & induction & -equivAll) -> -equivDef ).

end_of_list.
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HP 2D-Protein folding problem (model with new guessed predicate for
non crossing)

set(auto).

formula_list(usable).

% Definition of the HP 2D-Protein folding specification

% Initial position of the string

initpos <-> (X(0) = 0 & Y(0) = 0).

% Channelling constraints for X() and Y()

channXY <-> (all t ( (t > 0) -> (

(Moves(t-1) = N -> (X(t) = X(t-1) & Y(t)=Y(t-1)+1)) &

(Moves(t-1) = S -> (X(t) = X(t-1) & Y(t)=Y(t-1)-1)) &

(Moves(t-1) = E -> (X(t)=X(t-1)+1 & Y(t) = Y(t-1))) &

(Moves(t-1) = W -> (X(t)=X(t-1)-1 & Y(t) = Y(t-1)))

))).

domMoves <-> (all t (Moves(t) = N | Moves(t) = S | Moves(t) = E | Moves(t) = W)).

% No overlap for for X() and Y()

nooverlap <-> (all t1 t2 (

(t1 != t2) -> ( (X(t1) != X(t2)) | (Y(t1) != Y(t2)) )

)).

protein <-> domMoves & initpos & channXY & nooverlap.

% Definition of specification_prime

% Initial position of the string

initpos_prime <-> (X_prime(0) = 0 & Y_prime(0) = 0).

% Channelling constraints for X_prime() and Y_prime()

channXY_prime <-> (all t ( (t > 0) -> (

(Moves_prime(t-1) = N -> (X_prime(t) = X_prime(t-1) & Y_prime(t)=Y_prime(t-1)+1) ) &

(Moves_prime(t-1) = S -> (X_prime(t) = X_prime(t-1) & Y_prime(t)=Y_prime(t-1)-1) ) &

(Moves_prime(t-1) = E -> (X_prime(t)=X_prime(t-1)+1 & Y_prime(t) = Y_prime(t-1)) ) &

(Moves_prime(t-1) = W -> (X_prime(t)=X_prime(t-1)-1 & Y_prime(t) = Y_prime(t-1)) )

))).

domMoves_prime <-> (all t (Moves_prime(t) = N | Moves_prime(t) = S |

Moves_prime(t) = E | Moves_prime(t) = W)).

% No overlap for for X_prime() and Y_prime()

nooverlap_prime <-> (all t1 t2 (

(t1 != t2) -> ( (X_prime(t1) != X_prime(t2)) |

(Y_prime(t1) != Y_prime(t2)) )

)).

protein_prime <-> domMoves_prime & initpos_prime &

channXY_prime & nooverlap_prime.
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%indentity <-> (

% (all t (((t+1)-1) = t )) &

% (all t ( ((t-1)+1) = t )) ).

identityX <-> ( (all t ((X(t)+1)-1 = X(t))) & (all t ((X(t)-1)+1 = X(t))) &

(all t ((X_prime(t)+1)-1 = X_prime(t))) &

(all t ((X_prime(t)-1)+1 = X_prime(t)))

).

identityY <-> ( (all t ((Y(t)+1)-1 = Y(t))) & (all t ((Y(t)-1)+1 = Y(t))) &

(all t ((Y_prime(t)+1)-1 = Y_prime(t))) &

(all t ((Y_prime(t)-1)+1 = Y_prime(t)))

).

equalDiscreteX <-> X(0) = X_prime(0) & (all t ( t > 0 ->

( ( (X(t) = X(t-1)+1) & (X_prime(t) = X_prime(t-1)+1) &

X(t-1) = X_prime(t-1) ) |

( (X(t) = X(t-1)-1) & (X_prime(t) = X_prime(t-1)-1) &

X(t-1) = X_prime(t-1) ) )

)).

inductionX <-> (equalDiscreteX -> (all t ( X(t) = X_prime(t) ))).

equalDiscreteY <-> Y(0) = Y_prime(0) & (all t ( t > 0 ->

( ( (Y(t) = Y(t-1)+1) & (Y_prime(t) = Y_prime(t-1)+1) &

Y(t-1) = Y_prime(t-1) ) |

( (Y(t) = Y(t-1)-1) & (Y_prime(t) = Y_prime(t-1)-1) &

Y(t-1) = Y_prime(t-1) ) )

)).

inductionY <-> (equalDiscreteY -> (all t (Y(t) = Y_prime(t)))).

movesDiff <-> (N != E & N != S & N != W & E != S & E != W & S != W).

axioms <-> identityX & identityY %% identity

& inductionX & inductionY & movesDiff.

% Extensions are equivalent on the "dependent" functions

equivDep <-> ((all t (X(t) = X_prime(t))) & (all t (Y(t) = Y_prime(t)))).

% Extensions are equivalent on the "defining" functions

equivDef <-> (all t (Moves(t) = Moves_prime(t))).

% Extensions are equivalent on all guessed functions

equivAll <-> equivDep & equivDef.

% Conjecture: are X() and Y() dependent on Moves()?

-( (protein & protein_prime & axioms & -equivAll) -> -equivDef ).

end_of_list.



Appendix F

Chapter 7: proofs of results

Proof of Lemma 7.3.1. Since variables in ~X do not occur in the sub-formula α, and
since variables in α can be safely renamed to avoid conflicts with variables in ~X ,
formula (7.7) can be rewritten as:

∀ ~M ∀ ~X
(

β( ~X) ∨ α( ~M) ∨ γ( ~X, ~M)
)

.

Furthermore, ∀ ~X can be switched with ∀ ~M , and since no predicate in ~M occurs in
β, the latter quantifier can be pushed in, thus obtaining:

∀ ~X β( ~X) ∨ ∀ ~M
(

α( ~M) ∨ γ( ~X, ~M)
)

.

By using the definition of view( ~X) as in (7.9), the thesis follows.
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Appendix G

Chapter 8: NP-Alg and ConSql

G.1 NP-Alg expressions

In this section we collect and give the formal definitions of useful NP-Alg expressions,
some of them used in Section 8.3, in order to let NP-Alg deal with functions, integers,
and orderings.

• empty(1)(R)
.
=

DOM − π
$1

(DOM × R(k), ) (G.1)

evaluates to the empty relation if R is a non-empty one (and vice versa).

• complement (k)(R(k))
.
=

ρ
$1→R.$1

...
$k→R.$k

(DOM k − R), (G.2)

evaluates to the active complement (with respect to DOM k) of R (ρ is the
field-renaming operator).

• failPartition (1)(N (k),P
(k)
1 , . . . ,P

(k)
n )

evaluates to the empty relation if and only if {P
(k)
1 , . . . ,P

(k)
n } is a partition of

N (cf. Example 8.3.1 for its definition).

• failSuccessor (1)(SUCC (2k),N (k))

evaluates to the empty relation if and only if SUCC encodes a correct successor
relation on elements in N, i.e., a 1-1 correspondence with the interval [1, |N |]
(essentially by checking whether SUCC is an Hamiltonian path on the graph
with edges defined by N × N ) (cf. Example 3.2.1 for an ESO specification of
the HP problem).
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• failPermutation (1)(PERM (2k), N (k))

evaluates to the empty relation if and only if PERM is a permutation of the
elements in N (k): the ordering sequence is given by the first k columns of PERM.

• failFunction(FUN (2),D (1),R(1))
.
=

(

π
$1

(FUN )−D

)

∪

(

π
$2

(FUN )−R

)

∪ π
$1









FUN 1
$1=$1

∧
$26=$2

FUN









(G.3)

evaluates to the empty relation if and only if FUN is a function, i.e., a mon-
odrome relation from D to R. The first and the second subexpressions check
whether tuples in FUN are in the cartesian product D ×R, and the third checks
whether FUN is monodrome (for the sake of simplicity, this and the following
definitions are for d = r = 1, but their extensions to arbitrary d and r are
straightforward).

• failTotal (FUN (2),D (1),R(1))
.
=

D − π
$1

(FUN ) (G.4)

evaluates to the empty relation if and only if FUN is defined for every tuple in
D .

• failSurjective(FUN (2),D (1),R(1))
.
=

R − π
$2

(FUN ) (G.5)

evaluates to the empty relation if and only if the image of FUN is the whole
relation R.

• failInjective(FUN (2),D (1),R(1))
.
=

FUN 1
$16=$1

∧
$2=$2

FUN (G.6)

evaluates to the empty relation if and only if FUN is such that different tuples
in D are mapped into different tuples of R.

We remark that, since elements in R can be ordered (cf. expressions failSuccessor ()
above), FUN is also an integer function from elements of D to the interval [1, |R|].
Integer functions are very useful for the specification of resource allocation problems,
such as Integer knapsack (see also examples in Section 8.5.2).
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• failGeqSize(AUX ,D ,R)
.
=

failFunction(AUX ,D ,R) ∪ failSurjective(AUX ,D ,R) (G.7)

• failLeqSize(AUX ,D ,R)
.
=

failGeqSize(AUX ,R,D) (G.8)

• failEqSize(AUX ,D ,R)
.
=

failLeqSize(AUX ,D ,R) ∪ failGeqSize(AUX ,D ,R) (G.9)

where AUX is an auxiliary guessed relation that encodes the function between
D and R, and will be omitted as an argument if it is not used anywhere else.

G.2 Proofs of results

Proof of Theorem 8.4.3.
Only if part. If D ∈ ~D, it follows that an extension ~Σ for predicates in ~S exists, such
that:

[D, ~Σ] |= ∀ ~X ∃~Y ϕ( ~X, ~Y ).

By translating ϕ on the right side into relational algebra (according to the point 1
in Section 8.4.2), we obtain a relational expression PHI on the relational vocabu-

lary given by relations corresponding to predicates in ~R, plus those corresponding to
predicates in ~S (i.e., relations in ~Q).

When evaluating PHI on the new database [D, ~Ξ], where ~Ξ are the extensions of

relations in ~Q corresponding to the extensions of predicates in ~Σ, we obtain that for
all tuples 〈 ~X〉 there exists a tuple 〈~Y 〉 such that the tuple 〈 ~X, ~Y 〉 belongs to PHI, i.e.:

∀〈 ~X〉∃〈~Y 〉 : 〈 ~X, ~Y 〉 ∈ PHI .

Since 〈 ~X〉 ∈ DOM | ~X|, we obtain that DOM | ~X| ⊆ π
~X
(PHI ), implying that the ex-

pression for FAIL in the NP-Alg query (8.8) evaluates to the empty relation for the

extension ~Ξ of the guessed tables ~Q.

If part. Suppose that D 6∈ ~D. This implies that

D |= ¬∃~S ∀ ~X ∃~Y ϕ( ~X, ~Y

or, equivalently, that:

D |= ∀~S ∃ ~X ∀~Y ¬ϕ( ~X, ~Y )
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By translating formula ϕ into relational algebra, we obtain that, for every extension
~Ξ of relations in ~Q (corresponding to predicates in ~S), there exists at least one tuple

〈 ~X〉 such that for every tuple 〈~Y 〉, tuple 〈 ~X, ~Y 〉 does not belong to PHI. This implies
that:

∃〈 ~X〉 ∈ DOM | ~X| : 〈 ~X〉 6∈ π
~X
(PHI),

and so that the expression for FAIL in the NP-Alg query (8.8) does not evaluate to

the empty relation for all possible extensions ~Ξ of the guessed tables ~Q.

G.2.1 Combined complexity of NP-Alg

In this section we prove Theorem 8.4.2. The proof consists in reducing an NE-complete
problem, Succint 3-coloring (82), i.e., the “succinct version” of the graph 3-coloring
problem, into an NP-Alg query. The Succint 3-coloring problem is defined as follows:

Definition G.2.1 (The Succint 3-coloring problem). Nodes of the input graph
are elements of {0, 1}n, and, instead of an explicitly given EDGES relation, there is a
boolean circuit with 2n inputs and one output, such that the value output by the circuit
is 1 if and only if the inputs are two n-tuples that encode a pair of nodes connected
by an edge. A boolean circuit is a finite set of triples {(ai, bi, ci), i = 1, . . . , k}, where
ai ∈ {OR,AND,NOT, IN} is the kind of the gate, and bi, ci < i are the inputs of the
gate (hence, the whole circuit is acyclic), unless the gate is an input gate (ai = IN),
in which case, say, bi = ci = 0. For NOT gates, bi = ci. Given values in {0, 1} for
the input gates, we can compute the values of all gates one by one by starting from the
first one. The value of the circuit is the value of the last gate. Finally, the Succint
3-coloring problem is the following: Given a boolean circuit with 2n inputs and one
output, is the graph thus presented 3-colorable?

The Succint 3-coloring problem is proven to be NE-complete in the same paper (82).

Reduction of Succint 3-coloring into an NP-Alg query. Given an input boolean
circuit G = {gi = (ai, bi, ci) | 1 ≤ i ≤ k} with 2n inputs and one output, we con-
struct the NP-Alg query ψ that specifies the Succint 3-coloring problem (on the graph
represented by circuit G) as follows.

As for the set ~Q of guessed relations, we declare a relation G
(2n)
i for every gate

i, i.e., for every triple gi = (ai, bi, ci), (1 ≤ i ≤ k). Moreover, we declare in ~Q three

more relations, COL
(n)
1 , COL

(n)
2 , COL

(n)
3 , encoding the partition of the nodes into 3

groups, analogously to the specification for k-coloring given in Example 8.3.1. So, the
Guess part of the NP-Alg query being built is the following:

Guess G
(2n)
1 , . . . ,G

(2n)
k ,COL

(n)
1 ,COL

(n)
2 ,COL

(n)
3 ;

Intuitively, relations Gi will contain all tuples 〈 ~X, ~Y 〉, with ~X = 〈X1, . . . , Xn〉, and
~Y = 〈Y1, . . . , Yn〉 (i.e., binary encodings of the nodes X and Y ) for all pairs of nodes
X and Y that make the output of the i-th gate 1.

The expression for FAIL is of the following kind:

FAIL = FAIL CIRCUIT ∪ FAIL PARTITION ∪ FAIL COLORING.
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The first subexpression evaluates to the empty relation if and only if the guessed
extension for the Gi relations correctly encodes the circuit, while the second and the
third ones evaluate to the empty relation if and only if relations COL1, COL2, COL3,
are a partition of the graph nodes and a correct coloring of the graph (we omit their
definitions, since they are very similar to those presented in Example 8.3.1).

The expression for FAIL CIRCUIT contains in turn one of the following subex-
pressions FAIL Gi, 1 ≤ i ≤ k, for every gate i, according to its type ai. In particular:

• If ai = AND, then FAIL Gi = Gi ∆
[

Gbi
∩ Gci

]

;

• If ai = OR, then FAIL Gi = Gi ∆
[

Gbi
∪ Gci

]

;

• If ai = NOT , then FAIL Gi = Gi ∆
[

DOM 2n
01 −Gbi

]

;

• If ai = IN , then FAIL Gi = Gi ∆ σ
$j=1

(DOM 2n
01 ), assuming that the i-th gate

(of type IN) is the j-th input of the circuit.

In the above definition, we used of the relation DOM 01, defined as:

DOM 01 = σ
$16=AND ∧
$16=OR ∧

$16=NOT ∧
$16=IN

(DOM )

that will contain at most the two tuples 〈0〉 and 〈1〉 (since DOM would also con-
tain constants for the gate types). Thus, the expression for FAIL CIRCUIT is the
following:

FAIL CIRCUIT =

k
⋃

i=1

FAIL Gi.

It remains to prove that the expression for FAIL CIRCUIT evaluates to the empty
relation if and only if guessed relations G1, . . . ,Gk correctly encode the boolean circuit
representing the input graph, i.e., if and only if for all i, relation Gi contains exactly
all 2n-tuples (encoding pairs of nodes given as input to the circuit) that make the
output of the i-th gate 1. This is what the following lemma claims.

Lemma G.2.1. Let G = {gi = (ai, bi, ci) | 1 ≤ i ≤ k} be a boolean circuit encoding
a graph, and let ψ be the NP-Alg query built as described above. An extension for

guessed tables G
(2n)
1 , . . . ,G

(2n)
k exists such that the expression for FAIL CIRCUIT

evaluates to the empty relation. Moreover, for such an extension, each Gi contains
exactly all 2n-tuples 〈X1, . . . , Xn, Y1, . . . , Yn〉 that make the output of the i-th gate 1.
As a consequence, the extension for Gk contains all 2n-tuples that encode pairs of
nodes linked by an edge.

Proof. We first show that, if extensions for G1, . . .Gk in the NP-Alg query ψ exist that
make the expression for FAIL CIRCUIT evaluate to the empty relation (by making
all the expressions for FAIL Gi evaluate to the empty relation), then, for every input
{X1, . . . , Xn, Y1, . . . , Yn} to the circuit, each gate i (1 ≤ i ≤ k) outputs 1 if and only if
the 2n-tuple 〈X1, . . . , Xn, Y1, . . . , Yn〉 belongs to the corresponding Gi. Secondly, we
show that such an extension indeed exists. The proof of the first point is by induction
on the index i:
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i = 1 : Gate g1 is, by construction, of type IN (i.e., a1 = IN). Let us assume that g1
is the j-th input to the circuit, i.e., its output is 1 if and only if the j-th input
to the circuit is 1. As it can be observed from the definition of FAIL G1, since
by hypothesis it evaluates to the empty relation, G1 contains all 2n-tuples that
have 1 as the j-th component.

i > 1 : Let us assume that the lemma holds for all i′ such that 1 ≤ i′ < i, and let
us consider the i-th gate (of type ai ∈ {IN,AND,OR,NOT }) and the exten-
sion for the corresponding guessed relation Gi. Since, by hypothesis, FAIL Gi

evaluates to the empty relation, it can be observed by its definition that:

• If ai = IN , assuming that gi is the j-th input to the circuit, Gi contains,
by construction, all 2n-tuples that have 1 as the j-th component;

• If ai = AND, it follows by induction that Gbi
and Gci

contain exactly
those tuples that make the output of, respectively, gates gib

e gci
1. By

construction, the extension for Gi contains exactly those tuples that belong
to both Gbi

and Gci
.

• If ai = OR an analogous argument holds, showing that Gi contains exactly
those tuples that belong to Gbi

or to Gci
.

• If ai = NOT , it follows by induction that Gbi
(in this case bi = ci) contains

exactly those tuples that make the output of gate gbi
1. By construction,

the extension for Gi contains exactly those tuples in DOM 2n
01 that do not

belong to Gbi
.

As for the second point of the proof, it is easy to show that an extension for G1, . . .Gk

that makes all the expressions for FAIL Gi evaluate to the empty relation indeed
exists. The key observation is that expressions for FAIL Gi essentially define which
tuples must belong to each Gi (more precisely, each FAIL G i evaluates to the empty
relation if and only if Gi contains exactly the tuples that belong to the relational
algebra expression on the right of the “∆” symbol), and that the Guess part of the
query generates all possible extensions of those relations with elements in DOM ⊃
DOM 01.

Lemma G.2.1 claims that an extension for G1, . . .Gk in query ψ that makes the
expression for FAIL CIRCUIT evaluate to the empty relation exists, and is the one
that correctly models the boolean circuit representing the input graph. It remains to
prove that the whole query ψ is such that FAIL3∅ if and only if the input graph is
3-colorable. This is claimed by the following result:

Lemma G.2.2. Let G = {gi = (ai, bi, ci) | 1 ≤ i ≤ k} be a boolean circuit en-
coding a graph, and let ψ be the NP-Alg query built as described above. The ex-
pression for FAIL in ψ evaluates to the empty relation for a given extension of
G1, . . .Gk,COL1,COL2,COL3 if and only if G1, . . .Gk correctly encode the circuit G
and COL1,COL2,COL3 represent a valid coloring of the input graph. Thus, FAIL3∅
if and only if the input graph is 3-colorable.

Proof. The boolean circuit G is translated into k guessed relations G1, . . .Gk. The
correctness of the translation is claimed by Lemma G.2.1. Moreover, the Guess
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part of query ψ generates also all possible extensions for three more guessed rela-
tions, i.e., COL1, COL2, COL3. As discussed in Example 8.3.1, the expression for
FAIL PARTITION ∪ FAIL COLORING evaluates to the empty relation if and only
if COL1, COL2, COL3 define a valid coloring of the graph.

From previous lemmas, it follows the proof of Theorem 8.4.2 that states the combined
complexity of NP-Alg:

Proof of Theorem 8.4.2. Immediate, from Lemma G.2.2 and from the NE-
completeness of the Succint 3-coloring problem (82).
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Appendix H

OPL code for the examples

H.1 HP 2D-Protein folding, Example 5.1.1

H.1.1 Model with binary inequalities for non-crossing

int+ n = ...; // Part of the inst. schema: string length

enum Aminoacid {H,P};

range Pos [0..n-1];

range PosButLast [0..n-2];

Aminoacid seq[Pos] = ...; // Part of the inst. schema: amino-acid seq.

enum Dir {N,E,S,W};

range Coord [-(n-1)..n-1];

// Guessed predicates

var Dir Moves[PosButLast]; // Protein shape

var Coord X[Pos], Y[Pos]; // Abs coordinates for each amino-acid

var Pos contactsNumber;

maximize contactsNumber

subject to {

contactsNumber = (sum(t1, t2 in Pos : t1+1 < t2)

(((seq[t1] = H) & (seq[t2] = H)) &

((abs(X[t1] - X[t2]) + abs(Y[t1] - Y[t2])) = 1)));

X[0] = 0; Y[0] = 0; // Pos. of initial elem. of the seq.

forall (t in Pos: t > 0) { // Chann. constraints for position

(Moves[t-1] = N) => (X[t] = X[t-1] & Y[t] = Y[t-1] + 1);

(Moves[t-1] = S) => (X[t] = X[t-1] & Y[t] = Y[t-1] - 1);

(Moves[t-1] = E) => (X[t] = X[t-1] + 1 & Y[t] = Y[t-1]);

(Moves[t-1] = W) => (X[t] = X[t-1] - 1 & Y[t] = Y[t-1]);

};

// Non-crossing constraint

forall(t1, t2 in Pos : t2 > t1) {
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(X[t1] <> X[t2]) \/ (Y[t1] <> Y[t2])

}

};

H.1.2 Model with new guessed predicate for non-crossing

int+ n = ...; // Part of the inst. schema: string length

enum Aminoacid {H,P};

range Pos [0..n-1];

range PosButLast [0..n-2];

Aminoacid seq[Pos] = ...; // Part of the inst. schema: amino-acid seq.

enum Dir {N,E,S,W};

range Coord [-(n-1)..n-1];

range Hit [0..n/2]; // Number of hits for a cell

// Guessed predicates

var Dir Moves[PosButLast]; // Protein shape

var Coord X[Pos], Y[Pos]; // Abs coordinates for each amino-acid

var Pos contactsNumber;

var Hit Hits[Coord,Coord,Pos]; // Number of times a cell has

maximize contactsNumber

subject to {

contactsNumber = (sum(t1, t2 in Pos : t1+1 < t2)

(((seq[t1] = H) & (seq[t2] = H)) &

((abs(X[t1] - X[t2]) + abs(Y[t1] - Y[t2])) = 1)));

X[0] = 0; Y[0] = 0; // Pos. of initial elem. of the seq.

forall (t in Pos: t > 0) { // Chann. constraints for position

(Moves[t-1] = N) => (X[t] = X[t-1] & Y[t] = Y[t-1] + 1);

(Moves[t-1] = S) => (X[t] = X[t-1] & Y[t] = Y[t-1] - 1);

(Moves[t-1] = E) => (X[t] = X[t-1] + 1 & Y[t] = Y[t-1]);

(Moves[t-1] = W) => (X[t] = X[t-1] - 1 & Y[t] = Y[t-1]);

};

// Non-crossing: Initially, no cell has been hit ...

forall (x, y in Coord : x<>0 \/ y<>0) Hits[x,y,0] = 0;

Hits[0,0,0] = 1; // ... but the origin

// Non-crossing: Channelling constraints for Hits

forall (t in Time, x, y in Coord: t > 0) {

( (x = X[t] & y = Y[t]) => (Hits[x,y,t] = Hits[x,y,t-1] + 1) ) &

( (not (x = X[t] & y = Y[t])) => Hits[x,y,t] = Hits[x,y,t-1] );

};

// Non-crossing: Each cell is hit 0 or 1 times (string does not cross)

forall (x, y in Coord, t in Time) Hits[x,y,t] <= 1;

};
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H.2 Sailco inventory, Example 5.3.2

int+ nbPeriods = ...; range Periods 1..nbPeriods;

float+ demand[Periods] = ...; float+ regularCost = ...;

float+ extraCost = ...; float+ capacity = ...;

float+ inventory = ...; float+ inventoryCost = ...;

var float+ regulBoat[Periods]; var float+ extraBoat[Periods];

var float+ inv[0..nbPeriods];

minimize ... // Objective function (omitted)

subject to { // Constraints

inv[0] = inventory;

forall(t in Periods) regulBoat[t] <= capacity;

forall(t in Periods) regulBoat[t]+extraBoat[t]+inv[t-1] = inv[t]+demand[t];

};

H.3 Blocks world, Example 5.3.3

int nblocks = ...;

range Block 1..nblocks; range BlockOrTable 0..nblocks;

BlockOrTable TABLE = 0; range Time 1..2*nblocks;

range TimeWithZero 0..2*nblocks; range bool 0..1;

BlockOrTable OnAtStart[Block] = ...; BlockOrTable OnAtGoal[Block] = ...;

// MoveBlock[t] and MoveTo[t] refer to moves performed from time t-1 to time t

var Block MoveBlock[Time];

var BlockOrTable MoveTo[Time];

var BlockOrTable On[Block, TimeWithZero]; // Dependent guessed function

var bool Clear[BlockOrTable, TimeWithZero]; // Dependent guessed function

var TimeWithZero schLen; // Schedule length (to minimize)

minimize schLen

subject to {

forall (b in Block) On[b,0] = OnAtStart[b]; // Initial state (time = 0);

forall (b in Block, t in TimeWithZero) { // Chann. constr’s for Clear

( ( sum(b_up in Block) (On[b_up,t]=b) ) > 0 ) <=> (Clear[b,t] = 0); };

forall (t in TimeWithZero) { Clear[TABLE,t] = 1; };

forall (t in Time) { // Moves

(MoveBlock[t] <> MoveTo[t]);

(MoveTo[t] <> On[MoveBlock[t],t-1]); // No useless moves

(t <= schLen) => (

(Clear[ MoveBlock[t], t-1 ] = 1) & // Moving block must be clear

(Clear[ MoveTo[t], t-1 ] = 1 ) & // Target pos. must be clear

(On[ MoveBlock[t], t ] = MoveTo[t]) ); // Chann. constr’s for On

forall (b in Block) { // Chann. constr’s for On

(t <= schLen) => ( // (frame conditions)

(b <> MoveBlock[t]) => (On[b,t] = On[b,t-1]) ) };

};

forall (b in Block) { On[b,schLen] = OnAtGoal[b]; }; // Final state

};
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