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On fait la science avec des faits comme une maison avec des pierres; mais une
accumulation de faits n’est pas plus une science qu’un tas de pierres n’est une

maison. (H.J. Poincaré)

Science is made up of data as a house is made up of stones; but a heap of data
is no more science than a pile of stones is a house





A B S T R A C T

Nucleation of water gas bubbles in trachyphonolitic magmatic melts has been
investigated integrating theory and numerical modelling with decompression
experiments and analysis of natural ash samples of explosive eruptions. Bubble
nucleation, considered the natural response of magmas to decompression, is
strongly dictated by the gas-melt surface tension. Here, I use an integrated
approach to quantify the role of the surface tension in the nucleation process
combining high pressure - high temperature nucleation experiments with a
numerical modelling based on the gradient theory (Cahn and Hilliard, 1959).
This theory, successfully applied in several studies of industrial polymers (Poser
and Sanchez, 1981; Harrison et al., 1999; Kahl and Enders, 2000; Enders et al.,
2005) was never been used before to study systems of volcanological interest.
I show that surface tension is far to be a constant, but it decreases with in-
creasing nucleation pressure (i.e. the confining pressure). Entering the values
of surface tension into the classical theory of nucleation, I obtain a variable
supersaturation pressure triggering nucleation. The decreasing value of the
gas-melt surface tension with increasing pressure, facilitate bubble nucleation at
high pressure, thus enhancing the explosivity of eruptive events from deeper
reservoirs. Instead, the hindered nucleation at relatively low pressure, due to
high bubble surface tension, implies that the generation of explosive eruptions
from shallow reservoirs requires high decompressions. Finally the vesiculation,
in terms of nucleation and growth, of natural samples of ash-rich eruptions
has been studied by applying a novel technique able to take 3D measurements
of bubbles preserved on ash particle’s surface. The Bubble Size Distributions
(BSD), together with the field evidence, suggest that the ash production in these
ash-rich eruptions, rather than to magma-water explosive interaction, is related
to the high decompression necessary to nucleate bubbles in a shallow reservoir.

R I A S S U N T O

E’ stato investigato il processo di nucleazione di bolle di acqua allo stato gas-
soso in liquidi magmatici a composizione trachifonolitica integrando teoria e
modellistica numerica con esperimenti di decompressione e analisi su ceneri
vulcaniche prodotte da eruzioni a carattere esplosivo. Un approccio integrato,
combinando esperimenti di nucleazione ad alta pressione-alta temperatura con
un modello numerico basato sulla teoria del gradiente (Cahn and Hilliard, 1959),
ha permesso di quantificare il ruolo della tensione superficiale nei processi di
nucleazione. La teoria del gradiente, applicata con successo in numerosi studi di
polimeri industriali (Poser and Sanchez, 1981; Harrison et al., 1999; Kahl and En-
ders, 2000; Enders et al., 2005) non era mai stata utilizzata precedentemente per
problemi di interesse vulanologico. Nel presente lavoro di tesi viene mostrato
che la tensione superficiale è tutt’altro che costante ma diminuisce all’aumentare
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della pressione di nucleazione (i.e. pressione di confinamento). Inserendo i valori
della tensione superficiale così ottenuti nella teoria classica della nucleazione, si
ottiene che la pressione di sovrassaurazione per produrre nucleazione varia con
la pressione di confinamento a cui si trova il sistema. La diminuzione della ten-
sione superficiale gas-melt all’aumentare della pressione di confinamento facilita
la nucleazione di bolle ad alta pressione, favorendo il carattere esplosivo degli
eventi eruttivi associati a reservoir profondi. Invece, la difficoltà di nucleazione
a pressione relativamente minore, dovuta all’elevata tensione superficiale, fa sì
che la generazione di eruzioni esplosive da reservoir supericiali richieda elevati
valori di decompressione. Infine è stata studiata la vescicolazione, in termini
di nucleazione e crescita, su particelle di cenere prodotte da eruzioni ricche in
cenere utilizzando una nuova metodologia in grado di effettuare misure 3D
delle bolle conservate sulla superficie della particella di cenere. Le “Bubble
Size Distribution” (BSD) dei campioni, congiuntamente alle evidenze di terreno,
suggeriscono che il meccanismo di produzione della cenere per i casi esaminati,
piuttosto che di tipo idromagmatico, sia da collegarsi all’elevata decompressione
necessaria per nucleare bolle in serbatoi superficiali.
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1
I N T R O D U C T I O N

Vesiculation process (i.e. bubble formation followed by growth) drives the
magma rising into the conduit and triggers the explosive eruptions. Natural
sample analysis (Cashman and Mangan, 1994; Mangan and Cashman, 1996;
Mastrolorenzo et al., 2001; Polacci et al., 2001, 2003; Adams et al., 2006; Carey
et al., 2009), laboratory experiments (Mangan and Sisson, 2000; Gardner et al.,
1999; Hurwitz and Navon, 1994) and numerical modelling (Toramaru, 1989,
1990a,b) indicate that bubbles preserved on the volcanic particles represent
a powerful tool to investigate magma storage conditions and intra-conduit
dynamics, and correlate these with the eruptive style. This work is concerned
with the initial stage of the formation of a gas phase: this process is called
bubble nucleation. Bubble nucleation processes are often interpreted using
the classical nucleation theory (Landau and Lifshitz, 1980). Nevertheless, the
physics of nucleation may be more complex than the classical theory predicts.
Therefore, as matter of application, the nucleation mechanism of gas bubbles of
trachy-phonolitic compositions from the volcanic districts of Vulsini and Campi
Flegrei (Central Italy) will be studied, combining data from natural products,
laboratory experiments and numerical modelling. In particular the role of gas-
melt surface tension, the main obstacle of bubble formation, will be explored.
Finally the relation of the nucleation process with the eruptive style will be
discussed, with implications on the intra-conduit vesiculation processes leading
to fragmentation, to explain the ash formation in the ash-rich eruptions.
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2
S TAT E O F T H E A RT A N D M O T I VAT I O N S

Earth-scientists, in the last two decades, dedicated an increasing interest to
gas bubble formation and growth (i.e. vesiculation) in magmas. Vesiculation
triggers the eruption and drives the magma rising into the conduit. For this
reason the study of vesiculation addresses the problem of eruptability of volcanic
systems and of determining the eruptive style. From the physical point of view,
nucleation and growth represent two independent processes working at different
scales: nucleation is a molecular-scale phenomenon, growth is a macro-scale
process. If the growth of gas bubbles can be described using the formulation of
classical physics (Proussevitch et al., 1993), on the other hand processes related
to nucleation have to be analysed from a different perspective, considering the
dynamics of the molecules.

Up to now scientists used three different approaches to study vesiculation:
the analytical examination of natural samples, analog or high-pressure high-
temperature laboratory experiments, and numerical simulations. The following
sections are mainly concerned with the initial stage of formation of a gas phase,
nucleation. I will discuss the methods commonly used and the results obtained
from the analysis of natural samples, from the laboratory experiments and
numerical modelling. Finally I will explain the motivations of the present work.

2.1 theory and numerical modelling of bubble nucleation in mag-
mas

The first systematic study of the physics of bubble nucleation in magmas was
presented by Toramaru (Toramaru, 1989, 1990a,b). The author developed an ana-
lytical formulation for bubble nucleation combined with the growth rates and
applied it to a numerical model to predict Bubble Size Distribution (BSD), impos-
ing different initial conditions (e.g. depth, decompression rate, initial dissolved
water concentration, etc.). In this model, nucleation is represented by the so
called Classical Nucleation Theory (Landau and Lifshitz, 1980), a simple, widely
used theory for the nucleation of a new fluid phase. Hurwitz and Navon (1994)
and Navon and Lyakhovsky (1998) analysed the vesiculation processes in silicic
magmas, discussing the modification to the classic formulation of the nucleation
theory, in particular regarding the role of the so-called heterogeneous nucleation.
To form a new phase, every system has to overcome a Free Energy barrier: this
barrier strongly decreases when nucleation occurs on host sites (i.e. impurities
in general) and in this case it is called heterogeneous, opposed to the classical
homogeneous nucleation. Heterogeneous bubble nucleation is a function of the
wetting angle (i.e. the angle between crystal and bubble), so it depends on the
shape of the crystals. The role of heterogeneities in enhancing bubble nucleation
is confirmed in experiments and it will be discussed in the next sections. The
same authors (Hurwitz and Navon, 1994; Navon and Lyakhovsky, 1998) evi-
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denced the fundamental role of supersaturation and surface tension, showing
that nucleation rate is very sensitive to these two interplayed variables, but they
did not quantify the value of surface tension along a magma-water interface.
Also Proussevitch et al. (1993) evidenced the fundamental role of surface tension,
discussing the critical radius of bubbles (i.e. the radius of the nuclear bubble).
Blower et al. (2002) explored the evolution of BSD using a fractal model to
describe the bubble distributions of observed samples. They formulated a model
for a continuous fashion of nucleation events and subsequent growth to produce
an increasing exponent of the ’power law’ function, commonly observed in BSD
of natural and experimental samples. This is in contrast with the interpreta-
tions of Gaonac’h et al. (1996) who attributed the same kind of distribution
to coalescence rather than to multiple nucleation events. On the other hand,
Proussevitch et al. (2007) highlighted that a power function cannot be formally
a probability density but represents a truncation of a log logistic distribution
for the large scale bubbles far beyond the distribution mode. This means that
power law function, often used to characterize vesiculation of volcanic products,
shifts the focus into the tail of the distribution that represents an inaccuracy
because the distribution mode (i.e. the maximum of probability density function)
represents the fundamental characterization of a statistical distribution. Finally
Toramaru (2006) proposed a method, based on his previous model (Toramaru,
1989), to estimate decompression rate by using Bubble Number Density (number
of bubbles per melt volume; BND) data of natural pumice samples from volcanic
eruptions, highlighting a strong correlation between nucleation and explosive
eruptive style.

2.2 experimental studies of bubble nucleation in magmas

Experimental works (Mangan and Sisson, 2000; Gardner et al., 1999; Hurwitz
and Navon, 1994) show that bubbles can nucleate during decompression on
the surface of microlites in a crystal-bearing magma. Otherwise homogeneous
bubble nucleation appears more difficult, basically because of the gas-melt
surface tension. Low pressure (1 atm) and high temperature (1200− 1400◦C)
melting experiments by Bagdassarov and Dingwell (1993), using natural rhyolite
obsidian with 0.1− 0.2wt% of water, show that crystals may serve as sites for
heterogeneous bubble nucleation. A rhyolite containing 5 − 10% in volume
microlites vesiculates 10− 100 times faster than does crystal-free rhyolite. The
same behaviour is also shown in the isothermal decompression experiments
by Hurwitz and Navon (1994) and Gardner et al. (1999) using hydrous rhyolite
saturated at 750 − 850◦C and 150 − 200MPa. In their experiments, bubbles
nucleate when the pressure is reduced 5 to 20 MPa below the initial saturation
pressure. Mourtada Bonnefoi and Laporte (1999), using a uniform saturated
rhyolite melt, show that pressure reductions of 150− 200MPa may be required
to trigger bubble nucleation in the absence of crystals. Also Mangan and Sisson
(2000) find that in absence of microlites, nucleation does not occur until the
supersaturation pressure reaches ca. 120MPa.

In the last years, it has been recognized that surface tension profoundly
influences the ability of gas bubbles to nucleate in silicate melts. Epelbaum
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et al. (1973) obtain surface tensions of 0.061 and 0.072 J/m2 for water-saturated
rhyodacite at 950◦C and 100 and 50MPa, respectively. Khitarov et al. (1979)
obtain 0.090− 0.170J/m2 for basalt at 1200◦ and 100− 500MPa water pressure.
Bagdassarov et al. (2000) provide more extensive data on hydrous synthetic
haplogranite melt. Values of 0.065− 0.135J/m2 are obtained at 800− 1200◦C and
100− 400MPa water pressure. They find a systematic increase with dissolved
water and a less dramatic increase with increasing temperature. Mangan and
Sisson (2005) evaluate surface tension in natural dacite melt water-saturated
experimentally at 200MPa, 950− 1055◦C and 5.7− 4.8wt% of water. Rather than
traditional macroscopic measurements like Bagdassarov et al. (2000), the authors
solve for surface tension the classical nucleation theory, finding value of about
0.01− 0.03J/m2 for water contents of 4− 6wt%. In order to further examine the
impact of temperature on surface tension, Gardner and Ketcham (2011) and
Gardner (2012) use the same method and find that surface tension increases
with temperature, but only when temperature exceeds ca. 850◦C. These last
recent works calculate the surface tension solving the classical nucleation theory,
hence assuming that this theory allows a successful description of the nucleation
process and obtain results that are strictly dependent on nucleation.

2.3 natural sample analysis

Textures of pyroclasts, specifically vesicle size distribution and vesicle shape, are
quantified from image analysis and used to study intra-conduit processes (Cash-
man and Mangan, 1994; Mangan and Cashman, 1996; Mastrolorenzo et al., 2001;
Polacci et al., 2001, 2003; Adams et al., 2006; Carey et al., 2009). The morphology
of particles is used to distinguish the mechanism of fragmentation (i.e. magmatic
vs hydromagmatic) through comparing the shape of natural samples with that
ones obtained by experiments of magma-water interactions (Wohletz, 1983, 1986;
Wohletz et al., 1995; Buttner and Zimanowky, 1997; Buttner et al., 1999, 2002,
2006; Austin Erickson et al., 2009). Hydromagmatic fragmentation has been in-
voked to explain the origin of ash in specific explosive eruptions (Dellino and La
Volpe, 1996a; Dellino et al., 2001). Vesicle size distributions are a tool to constrain
the relative timing of bubble nucleation, growth, coalescence, and potentially
collapse in explosive eruptions and to understand how the chamber and conduit
dynamics, driven by magma degassing, influence the eruptive behavior (Mangan
et al., 1993; Cashman and Mangan, 1994; Polacci et al., 2001, 2003). In particular
Carey et al. (2009) try to explain the origin of the ash-rich phase of the 1875
Askja eruption by relating the macroscopic evidence of transition of style with
the microscopic evidence of the vesicles. Their conclusions are that the magma
was a foam prior to fragmentation and that the ash-rich phases are not only
related to a hydromagmatic fragmentation mechanism. However they do not
solve the problem of the extensive ash production.

Scanning electron microscope, -SEM-, for highest magnification, and scanned
images, for the lowest one, from polished thin sections are used to quantify
textural features in pumices and scorias from individual stratigraphic levels
(Adams et al., 2006; Carey et al., 2009) . The images, so obtained, are captured in
grayscale and then processed. A manual editing of the images is yet required to
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rebuild vesicle walls broken during thin section preparation. In addition, thin
bubble walls are often erased during image acquisition or during the conversion
from grayscale to binary and have to be redrawn. For each vesicle area measured,
an equivalent diameter for a circle with the same area is calculated. Based on
this diameter, vesicles are binned, and areal number densities are calculated for
each bin . The binned data so obtained are plotted in a frequency histogram.
Conversion from two-dimensional to three-dimensional number densities (i.e.
number of vesicles within a certain size interval per unit volume), is performed
using the method by Sahagian and Proussevitch (1998). The method relies
on the intersection probabilities for spheres to convert each 2D bin-size. The
stereology technique, conversion from 2D to 3D, is based on the idea that
a random plane cutting a volume of objects with different sizes gives a 2D
distribution that overstimates the ratio between large and smaller objects. The
procedure to measure the bubbles and calculate the distribution received a great
contribution by Polacci et al. (2006), Proussevitch et al. (2007), Polacci et al. (2010)
and Proussevitch et al. (2011).

Proussevitch et al. (2007) propose an analytical and computational formulation
to characterize bubble size ditribution (BSD) in a fully quantitative way. The
authors show that all the known distributions belong to the logarithmic family
of statistical distributions and propose a formulation to find the function that
fits best the observed data. This approach allows to describe bubble data with
a known probability distribution, using a standard procedure, overcoming the
ambiguity related to the different visualization of the data. An important ouline
of their paper is about the definition of the BND: it must be defined as number
of bubbles per melt volume (not bulk volume, as traditionally used) because, the
molar volume of dissolved volatiles is much smaller than that of bubbles/gases.
Defining BND in this way, it remains invariant as bubbles grow and it is just a
function of nucleation (assuming no coalescence). The details of the method will
be discussed in the chapter 4.

Proussevitch et al. (2011) propose a new method to take 3D measurements
using a Stereo SEM (SSEM), a scanning electron microscope with sample tilting
capability. The technique is based on the imaging of vesicle fragments preserved
on the ash-surface particles. The SSEM tilts the sample and measures images with
different angles. The images so acquired are used to create a digital elevation
model (DEM), a ’topography’ of the particle. The method allows measurement
of vesicles within a size range from one to over a million cubic microns.

2.4 motivations of the work

Nucleation of gas bubbles in magmas represents the main triggering of explo-
sive eruptions. Classical nucleation theory predicts a very strong dependence
of bubble nucleation rate on the supersaturation pressure and surface tension.
While the role of supersaturation has been deeply explored in details (Mangan
and Sisson, 2000; Gardner et al., 1999; Mourtada Bonnefoi and Laporte, 1999;
Hurwitz and Navon, 1994; Bagdassarov and Dingwell, 1993), the role of surface
tension is not still clear. Surface tension is usually calculated by decompression
experiments in a crystal-free magma, solving for the surface tension the classical
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theory of homogeneous nucleation. There is not guarantee that nucleation, in
absence of crystals, occurs homogeneously. In other words, every kind of im-
purities in the melt could represent a host site for heterogeneous nucleation,
making the assumption of homogeneous nucleation invalid. In the present work
the surface tension will be calculated using a criterion independent from the
nucleation theory. In particular the problem will be numerically solved using
a statistical mechanics based model, where the surface tension is calculated
using a model for a lattice fluid and considering interaction between molecules.
The results are compared with nucleation experiments on a trachytic magma
from Campi Flegrei (central Italy) to verify the effect of surface tension on nucle-
ation processes. The experiments have been performed using a Mini Internal
Heated Pressure Vessel, a novel experimental facility that allows a very fast
pressure drop. Finally Bubble Size Distribution analysis (BSD) using Stereo-SEM
technique has been applied on natural ash samples. Ash particles preserve infor-
mation on the state of the magmatic foam, in terms of nucleation and growth, at
the time it has undergone brittle fragmentation, so can give information on the
mechanisms leading to ash formation. This kind of analysis has been applied to
well-preserved ash-rich trachy-phonolitic eruptions, from the Quaternary Vulsini
Volcanic District (central Italy), in which the fine-grained nature of deposits,
even in near-vent settings, indicates negligible sorting by transport, implying
the eruption of highly fragmented magmas.





3
C A S E S T U D I E S

3.1 grotte di castro and sovana eruptions

Two major explosive events of the Latera volcano, in the Vulsini Volcanic District
(central Italy)(Fig.1), have been investigated in the present study, the Grotte di
Castro and the Sovana eruptions (Vezzoli et al., 1987), for the occurrence of
wide-dispersion ash-rich eruptive phases. Volcanism in the area occurred at
five major volcanic complexes and spanned 0.6− 0.1Ma (Vezzoli et al., 1987;
Palladino et al., 2010). Chemical compositions of the erupted products encom-
pass a wide spectrum of potassic rock types with the major explosive eruptions
trachytic to phonolitic in composition (Vezzoli et al., 1987; Palladino et al., 2010).
The Latera Caldera is located in the western sector of the Vulsini Volcanic Dis-
trict and developed between 0.3− 0.15Ma from the polygenetic collapse of a
stratovolcano.

The Latera activity was dominated by plinian and pyroclastic flow-forming
eruptions leading to the emplacement of widespread pyroclastic fall and flow
deposits around the present-day caldera and ended with strombolian, hydro-
magmatic and effusive activities from essentially monogenetic intra- and circum-
caldera centers (Sparks, 1975; Vezzoli et al., 1987; Palladino and Valentine, 1995;
Palladino and Agosta, 1997; Palladino et al., 2010).

3.1.1 Grotte di Castro

Based on the geochronological age determinations on the bracketing deposits,
the Grotte di Castro eruption (hereafter GRC) has an inferred age of approxi-
mately 0.18 Ma (see Palladino et al., 2010 for an updated summary of available
geochronological data). Here, I focus on the lower member of the Grotte di Cas-
tro eruptive succession (Fig. 2), which in relatively proximal settings includes
early, decimeter-thick, strombolian (blackish scoria-bearing) and subplinian
(whitish pumice-bearing) fallout horizons, followed by widespread meter-thick,
ash-rich, dune-bedded, accretionary-lapilli-bearing surge deposits (Fig. 2).

The well-sorted strombolian scoria fall horizon has a maximum observed
thickness of 20cm and contains one or two intercalations of ash layers. The
juvenile component is made up of subaphiric grey-blackish scoria lapilli; the
lithic component mostly includes lava and subordinately sedimentary clasts
(reddish clays), usually < 1 cm in size; loose crystals (feldspars, clinopyroxene
and leucite) are rare. This deposit is exposed SE of the present caldera with a
NW-SE dispersal axis and an inferred source area located inside the caldera. The
overlying pumice fall subunit shows a maximum observed thickness of 50 cm
and multiple grading, with a distinctive centimeter-thick ash layer interbedded.
The juvenile component is made up of centimeter-sized, subaphiric, whitish
pumice containing clinopyroxene, leucite and feldspars phenocrysts. The lithic
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Figure 1: Location and geological sketch map of the Vulsini Volcanic District (Roman
Province) which comprises the Latera caldera and the vent area inside. The
black diamonds indicate the outcrops location

component is mostly represented by lava and subordinate sedimentary (red
clays) centimeter-sized clasts. Loose feldspars, clinopyroxene and leucite crystals
are also present. Also this deposit is distributed SE of the Latera Caldera, with
a NW-SE dispersal axis and a common inferred source area as the preceding
strombolian phase. The pumice fall subunit passes directly to an ash-dominated
pyroclastic current deposit that shows a maximum observed thickness of about 3
m. In relatively proximal areas it is mildly to strongly lithified, and well-stratified
due to the presence of ca. 30 cm-thick beds and plane-parallel to low-angle cross-
lamination, with tractional features such as swarms and inversely graded layers
of juvenile scoria/pumice lapilli (Fig. 2). The presence of abundant accretionary
lapilli and vegetation marks, including leaves and tree molds (up to 30 cm across;
Fig. 2), together with the ash-rich nature, is the most prominent deposit feature.
The dominant ash component, as well as lapilli-sized clasts, are represented by
grey-blackish scoria and subordinate whitish pumice; accessory lava fragments
and loose crystals of feldspars, clinopyroxene and leucite are also present, while
accidental lithics are absent. This deposit is axisymmetrically distributed all
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Figure 2: Field images of the lower part of the Grotte di Castro formation under study
(a: locality 9, b: locality 3, Fig. 1); the top right inset in (a) shows an example
of tree mold in the dune-bedded, accretionary-lapilli-bearing ash-rich surge
deposits. c, d, e: representative SEM microphotographs of juvenile ash grains
from the different eruption phases.

around the present Latera Caldera; outside the dispersal area of the underlying
fallout horizons, it directly rests on top of a decimeter-thick paleosoil. An up to
60cm thick paleosoil separates the study succession from the upper member of
the GRC formation (Vezzoli et al., 1987).

Bulk chemical compositions of juvenile clasts (Table 1) were determined by
microprobe analyses of homogeneous glass beads, obtained by grinding and
fusing individual clast samples. The composition of both strombolian scoria
and juvenile lapilli from the ash-rich pyroclastic current deposits plots in the
shoshonite field of the TAS diagram, while the plinian pumice is phonolitic in
composition. Chemical bulk compositions (Tab.1), determined by microprobe
analysis of a homogeneous glass bead, obtained by grinding and fusing the
rock sample, plot in the shoshonitic TAS area (strombolian scoria fall, ash-rich
pyroclastic current) and in the phonolitic area (plinian pumice fall).

3.1.2 Sovana

The Sovana eruption (SVK) products are widely exposed around the present
Latera Caldera and are probably related to a major stage of caldera collapse
(Palladino et al., 2010). The SVK eruption succession rests on top of a dark brown
paleosoil, up to 1 m thick, developed on top of the Farnese Eruptive Unit (Vezzoli
et al., 1987). The SVK shows an unusually high degree of magma fragmentation
at the eruption onset, leading to the emplacement of widespread ash from a
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Sample GRC-a GRC-b GRC-c SVK1 C.I.

SiO2 51.97 60.07 51.97 58.69 61.54

TiO−2 0.95 0.46 0.83 0.54 0.29

Al2O3 17.69 18.84 17.70 18.49 18.74

FeO 8.61 3.79 8.24 3.46 3.30

MnO 0.17 0.20 0.07 0.17 0.18

MgO 4.39 0.81 4.33 0.54 0.24

CaO 9.29 3.30 8.88 2.61 1.79

Na2O 3.86 3.14 2.52 2.39 6.16

K2O 2.10 9.05 4.23 9.29 7.09

P2O5 0.61 0.15 0.40 0.07 0.06

Cl 0.04 0.05 0.03 - 0.21

F 0.06 0.01 0.23 - 0.36

SO3 0.03 0.08 0.07 - -

Tot. 99.76 99.95 99.50 96.25 99.96

Table 1: Microprobe chemical bulk analysis of the study deposits. GRC = Grotte di
Castro; -a: strombolian scoria fall; -b: plinian pumice fall; -c: ash-rich pumice
flow; SVK. = Sovana, ash-rich flow; C.I. = Campanian Ignimbrite, obsidian
sample used in the experiments. 1: XRF analysis from Palladino and Taddeucci
(1998)

dilute, turbulent pyroclastic current (BUS; Palladino and Taddeucci, 1998; Tad-
deucci and Palladino, 2002), followed abruptly by "conventional", coarse pumice-
bearing pyroclastic flow deposits (Fig. 3; Sparks, 1975; Palladino and Valentine,
1995) and associated proximal lithic-rich breccias. The BUS is a decimeter-thick
(maximum observed thickness 85cm), loose to mildly consolidated, pale yel-
low to greenish ash-rich bed, enclosing sparse, up to centimeter-sized, whitish,
subaphiric (sanidine-bearing) pumice clasts and accretionary lapilli. The only
deposit structures are subtle clast grading and stratification imparted by swarms
of fine pumice and accretionary lapilli and/or abrupt grain size changes. Vege-
tation casts or charred wood are absent. The absence of thermal effects on the
paleosoil and the occurrence of accretionary lapilli suggest a low emplacement
temperature. The BUS mantles the gently sloping pre-eruptive surface with
remarkable continuity over a nearly circular area outside the present-day Latera
Caldera, as far as 15 km from the caldera rim. A conservative estimate of the
deposit volume, based on the isopach distribution in the outcrop area, yields 0.4
km3 (Palladino and Taddeucci, 1998). The inferred vent location is within the
southwestern part of the present caldera area, as for the following co-eruptive
SVK deposits. The BUS outcrop area coincides with that of the overlying py-
roclastic flow deposit, suggesting that it was preserved due to the immediate
emplacement of co-eruptive products. The overlying pyroclastic flow deposit,
distributed all around the present caldera, is meter-thick, matrix-supported,
massive and poorly sorted, showing normal and inverse coarse-tail grading
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Figure 3: a: Field image of the lower part of the Sovana eruption succession under study
(locality 2, Fig. 1). b, c: representative SEM images of ash grains from the two
eruption phases.

of lithic and pumice clasts, respectively (Palladino and Valentine, 1995). The
maximum observed thickness is up to 15 m in the southern sector of the Latera
volcano and 5 m in the northern part. The juvenile component is made up of
whitish/light grey to blackish pumice lapilli and blocks, containing sanidine,
leucite, clinopyroxene and biotite phenocrysts, also present in the ash matrix.
The abundant lithic component is represented by a variety of centimeter- to
decimeter-sized volcanic and sedimentary clasts, which locally concentrate in
breccia layers. Regardless the variable textural appearance, the bulk chemical
composition of juvenile pumice is phonolitic throughout the SVK succession
(Fig.1 Vezzoli et al., 1987; Palladino and Taddeucci, 1998).

3.2 campanian ignimbrite

Two major explosive eruptions, the Campanian Ignimbrite (CI) and the Neapoli-
tan Yellow Tuff, occurring respectively at 39 and 12 ka, produced a cumulative
magma mass transport to the surface greater than 300 km3, and make the Campi
Flegrei Volcanic Field (fig. 4) one of the riskiest in the world (references in De
Vivo et al. (1976)). The last recorded eruption occurred in 1538 A.D. originating
a small tuff cone called Monte Nuovo. This eruption and the recent unrest
and seismic episodes associated with the current hydrothermal and fumarolic
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activity testify that the magmatic system is still active (De Vivo et al., 1976; De
Natale, 2006; Trigila et al., 2008).

CI is the largest pyroclastic deposit in the Mediterranean area (Barberi et al.,
1978). It covers an area of about 30000km2, with an estimated volume of erupted
magma of about 150km3 (DRE; Civetta et al., 1997). The eruption generated a
compositionally zoned, basal plinian fall deposit and at least three pyroclastic
flow units (Fisher et al., 1993; Rosi et al., 1996). In proximal areas, four brec-
cia units (Breccia Museo) have been recognized and correlated to the caldera
forming event (Rosi et al., 1996). The obsidian sample used for the experimental
study in the present work has been collected within the Campanian Ignimbrite
eruption succession exposed at Punta della Lingua, Procida Island (Central
Italy) (fig.5, 6). On Procida island, as it occurs for proximal CI exposures on the
mainland (e.g., Camaldoli Hill), facies architecture includes welded spatter flow,
coarse lithic-rich breccia and ash-pumice flow deposits, typically of relatively
proximal deposits from a caldera-forming eruptive event. In particular, at Punta
della Lingua, the CI overlies an unconformity that cuts into a yellow, stratified
pyroclastic deposit, lithified due to vapour phase crystallization of zeolite min-
erals, part of local tuff cone activity. The local CI eruptive succesion (fig.5, 6)
includes i) basal strongly welded spatter flow deposit (ca. 2.5 m thick); ii) mas-
sive, spatter-bearing, coarse lithic-rich breccia (>7 m thick); iii) clast-supported,
coarse lapilli- to boulder-sized lithic-rich breccia with a fines-poor pumiceous
matrix, also containing isolated meter-sized black spatter blocks and diffuse
obsidian clasts, interpreted as a ’lag breccia’ which marks the eruption climax
concomitant to the onset of caldera collapse; iv) massive, poorly consolidated,
ash and pumice flow deposits with degassing pipes (>10 m thick). The vertical
and lateral facies transitions are marked by gradually changing proportions of
spatter, pumice and lithic components.

The obsidian block used in the present work has been collected within the
’lag breccia’ deposit. It shows millimetric euhedral sanidine phenocrysts (up to
10− 15% of the volume) commonly associated with augitic pyroxene, corroded
bytownite, euhedral andesine, spinel, biotite and apatite (all together 5− 8% of
the total volume) . Table 1 shows the composition of the studied sample, falling
in the field of the Campanian Ignimbrite products (Fowler et al., 2007).
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Figure 4: Location and geological sketch map of the Campi Flegrei volcanic field; a)
Procida island and Punta della Lingua outcrop (image modified from Palladino
et al., 2008b)
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Figure 5: Procida Island, Punta della Lingua. Outcrop of the strongly welded spatter-
flow deposit passing upward to the coarse lithic-rich breccia deposit, emplaced
during the early phases of the Campanian Ignimbrite eruption in a proximal
(near-vent) setting.

3

Figure 6: Procida Island, Punta della Lingua. Close-up of the lithic-rich breccia enclos-
ing coarse lapilli- to boulder-sized lithic clasts representative of virtually all
sedimentary and igneous rock types from the wall rocks of the crustal magma
reservoir and feeder conduits (beach balloon for scale).



4
M E T H O D S

The Gas bubble nucleation problem has been studied, initially, from a theoretical-
numerical perspective. The role of surface tension in the theory of nucleation
processes has been analysed. The surface tension has been calculated using a
method based on statistical thermodynamics. Laboratory experiments, using
a novel experimental facility, have been performed in order to verify the effect
of surface tension on bubble nucleation. Finally a new method to take 3D
measurements (Proussevitch et al., 2011) has been applied to natural samples, in
order to characterize the vesiculation (in terms of nucleation and growth) of ash-
rich eruptions and correlate the nucleation mechanism to magma fragmentation
leading to extensive ash formation during volcanic eruptions.

4.1 the statistical thermodynamics approach to surface tension

Quantity Symbol Units

Characteristic volume v̇ l3/mol

Chemical potential µ E/mol

Density ρ m/l3

Gas constant R E/mol*T

Grand Thermodynamic Potential ∆a E/l3=F/l2

Influence parameter k dimless

Interaction energy term ε̇ E/mol

Molar mass M m/mol

molar volume of the mixture vmix l3/mol

Number of lattice sites occupied by a molecule r dimless

Partial density ρi mol/l3

Pressure P F/l2

Pure component parameter density ρ̇ m/l3

Table 2: Quantities used in the model. dimless=dimensionless, E=energy, F=force,
l=length, mol=mole, T=temperature.

Using a procedure similar to that proposed by Cahn and Hilliard (1959), Poser
and Sanchez (1981) developed a model, based on statistical thermodynamics, to
compute the surface tension of binary mixtures, considering the change of the
partial densities of the two components of the mixture within a planar interface.
This model requires an equation of state (hereafter EOS) of the binary mixture.
The most popular EOS for this kind of calculation is the Sanchez-Lacombe
equation of state (SL EOS; Enders et al., 2005; Poser and Sanchez, 1981; Sanchez
and Lacombe, 1976).

The model involves the following steps: i) determining the EOS of the pure
components (i.e. magma and water); ii) determining the EOS of the binary

29
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Quantity Symbol Units

Pure component parameter pressure Ṗ F/l2

Pure component parameter surface tension σ̇ E/l2

Pure component parameter temperature Ṫ T

Reduced characteristic volume σ̃ dimless

Reduced density ρ̃ dimless

Reduced influence parameter k̃ dimless

Reduced pressure P̃ dimless

Reduced surface tension σ̃ dimless

Reduced temperature T̃ dimless

Surface tension σ E/l2

Temperature T T

Volume fraction φ dimless

Weight fraction w dimless

Table 3: Quantities used in the model. dimless=dimensionless, E=energy, F=force,
l=length, mol=mole, T=temperature.

mixture; iii) calculating the surface tension of the binary mixture. Finally (iv), I
entered the surface tension, so calculated, into the Classical Nucleation Theory
to calculate the nucleation rate

i) The starting step in developing the model is determining the EOS of the
pure components, i.e. magma and water. The Sanchez-Lacombe equation of state
(SL EOS; Sanchez and Lacombe, 1976) is a lattice fluid equation, calibrated on
experimental data, describing density-dependent phenomena

ρ̃2 + P̃2 + T̃2
[

ln 1− ρ̃+ (1−
1

r

]
= 0 (4.1)

where

ρ̃ =
ρ

ρ̇
; P̃ =

P

Ṗ
; T̃ =

T

Ṫ
; (4.2)

are respectively the reduced parameters for density, pressure and temperature.
The pure components parameters, ρ̇, Ṗ, Ṫ , are obtained by fitting the EOS
equation to experimental data of temperature and pressure dependence of the
density and equilibrium phases. To this end, I realized a best fit algorithm that
uses the MATLAB function fmincon (optimization toolbox) to minimize the
χ2 per degrees of freedom (List. 1). The following relations characterize the
parameters:

ε̇ = RṪ ; v̇ =
RṪ

Ṗ
; r =

MṖ

RṪ ρ̇
(4.3)

where R is the gas constant, ε̇ represents the interaction energy term, v̇ the
characteristic volume and ṙ the number of lattice sites occupied by a molecule.

The parameters of the pure magma component are calculated fitting (4.1)
to the empirical formula proposed by Lange and Carmichael (1990) for the
dependence of density on pressure and temperature (Fig. 7; Tab. 5; List. 1). This
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formula allows to calculate the volume of an anhydrous silicate liquid taking
into account the experimental thermal expansion and compressibility of oxide
components, as well as the chemical bulk composition (Lange and Carmichael,
1990). In this case, I used the trachytic composition of the experimental sample
(Tab.4.19).

Figure 7: Pressure/temperature dependence of the trachyte density at various tem-
perature/pressure. Cross symbols are the data from the empirical formula
proposed by Lange and Carmichael (1990) in the temperature range 1000-1400

◦C /pressure range 500-2000 bar. Circles are the values calculated by the SL
EOS.

The parameters of pure water are reported in Machida et al. (2010), who
propose pure parameters different from the classical ones (Sanchez and Lacombe,
1976), by taking into account the temperature dependence of hydrogen bonding
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and ionic interactions (Tab. 4). In their approach ε̇ is not treated as a constant,
but is temperature dependent

˙ε(T) = ε0
αT

1+αT
(4.4)

The value for parameter α represents the temperature dependence and ε0 is the
asymptotic value of the interaction energy.

The EOS of the pure components are then used to calculate the influence
parameters of magma ( kA) and water (kB), fitting to the experimental data of
the surface tension of the pure components, i at a given temperature, eq. (4.5),
in the reduced form (Poser and Sanchez, 1979; List. 3):

σ̃ = 2

∫ ρ̃g
ρ̃l

(k̃i∆ã)
1
2dρ̃i; i = A,B (4.5)

σ̃ = σ/σ̇; σ̇ = ε̇/v̇
2
3 ; (4.6)

k̃ = k/v̇
2
3 ; (4.7)

The Grand Thermodynamical potential ∆̃a represents the difference between
the actual free energy at the interfacial region of the inhomogeneous system and
that which would exist assuming the system homogeneous. It is given by:

∆ã = [ρ̃µ̃(ρ̃, P̃eq) − ρ̃µ̃eq]; (4.8)

The equilibrium chemical potential is calculated imposing the equilibrium
condition:

µl(P) = µg(P); (4.9)

where the P equating the potentials represents the equilibrium pressure Peq for
a fixed temperature. The chemical potential for a pure component is given by
(Poser and Sanchez, 1979):

µ̃ = −ρ̃+ P̃ṽ+ T̃ [(1/ρ̃− 1) ln(1− ρ̃+
1

r
ln(ρ̃)]; (4.10)

Pure magma (anhydrous) has no detectable surface tension, so a standard
value for real polymers (Enders et al., 2005) has been assumed (5).

The influence parameter kB for water has been calculated fitting the experi-
mental data of liquid-gas water surface tension reported in (Kahl and Enders,
2000; 8; Tab. 4).

ii) The EOS of the pure components are then used to calculate the EOS of the
binary mixture through the following mixing rules (Enders et al., 2005):

Ṗ =
∑
i

∑
j

φiφjPij; (4.11)
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Figure 8: Temperature dependence of the water surface tension. Triangle symbols are
experimental data from Kahl and Enders (2000). The dashed line represents
the surface tension calculated by the model

Water

1/α [K] 207.0

ε0 [J/mol] 7447

v̇ [cm3/mol] 2.614

r [adim] 5.823

k̃magma [adim] 0.91

Table 4: Pure component parameters (1/α, ε0, v̇, r) and influence parameter (k̃water) of
water proposed by Machida et al. (2010) to take into account the temperature
dependence of hydrogen bonding and ionic interactions. In the new form ε̇ is
not treated as a constant but the temperature dependence is considered.

Table 5: Pure component parameters: ρ̇, Ṗ, Ṫ ; influence parameter of the trachytic magma:
(k̃magma). Binary interaction parameter of the binary system trachyte-water:
k1,2

ρ̇[kg/m3] Ṗ[MPa] Ṫ [K] k̃magma k1,2

2473.1 4915.6 4449.1 0.3 -0.0355

˙PAB = (1− kAB)

√
˙PAṖB; (4.12)

Ṫ = Ṗ
∑
i

φi,0Ṫi

Ṗi
; (4.13)
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1

r
=

∑
i

φi,0
ri,0

(4.14)

φi,0 =
φiṖi/Ṫi∑
jφjṖj/Ṫj

; (4.15)

φi =
wi/ρi∑
jwj/ρj

; (4.16)

vmix =
∑
i

φiv̇i; (4.17)

where vmix is the molar volume of the mixture, φ is the volume fraction and w
the weight fraction. The binary interaction parameter kAB is determined so as to
minimize the relative deviations between experimental and calculated values of
solubility of water in magma (Tab. 5), using the same kind of Matlab algorithm
described in i)(List. 2). The experimental solubility data for the trachytic system
are reported in De Rita et al. (1976) and Di Matteo et al. (2004). The solubility (Fig.
9) is calculated using the EOS for the binary mixture and the same equilibrium
criterion of (4.9) extended to a binary system that reads:

µBl = µBg; (4.18)

where the chemical potential of B (i.e. water) is calculated respectively in the
liquid and in the gas phase. The equation for chemical potential of water in the
binary mixture is given by:

µi = RT(lnφi + (1−
ri
rj
)φj + riρ̃(( ˙PA + ṖB − 2 ˜PA,B)/( ˙PA ˜TA))φj2)

+ rART(−ρ̃/ ˜TA + P̃A/(ρ̃ ˜TA) + (1/ρ̃)((1− ρ̃)ln(1− ρ̃) + (ρ̃/rA)ln(ρ̃)));
(4.19)

where ρ̃ is the reduced density of the binary mixture.
iii) The interfacial tension (σ) between the two fluid phases (liquid and gas),

is given by (Poser and Sanchez, 1981) :

σ = 2
1
2

[√
kA +

√
kB
∆ρB
∆ρA

] ∫ρAI
ρAII

∆a
1
2dρA (4.20)

where ρAI and ρAII are the partial densities of component A in the coexisting
liquid and gas phases. The partial volume density is given by:

ρiJ = φiJ
ρ̃

vmix
; i = A,B; J = I, II; (4.21)

where ρ̃ is the reduced density of the binary mixture, φiJ is the volume fraction
of component i in the J phase and vmix is the molar volume of the mixture.
∆ρA and ∆ρB in equation 4.20 are the differences in density of a component



4.2 nucleation experiments using a mini internal heated pressure vessel 35

Figure 9: Solubility curve for the trachyte of Phlegrean Fields. Solid line represents the
solubility calculated by the SL EOS. The stars are the experimental data from
Di Matteo et al. (2004), the open circles from De Rita et al. (1976)

between the two bulk phases (liquid and gas). In this case, the component A (i.e.
magma) has a negligible vapour pressure, thus only the component B (i.e. water)
is present in both phases. All these variables are calculated by the equation of
state (EOS) of the binary mixture. kA and kB are the influence parameters of
the fluid, estimated basing on the experimental surface tensions of the pure
components at a given temperature. The Grand Thermodynamic Potential of
the binary mixture is given by:

∆a = ρA(µ− µeq); (4.22)

where µ represents the chemical potential of the homogeneous system and µeq
the equilibrium chemical potential, both of them calculated by the EOS.

Using (4.20; List. 4) the free energy barrier within the interface is calculated
and the surface tension of the binary mixture estimated (Fig. 14).

iv) The surface tension so obtained (Fig. 14, 15), a function of pressure,
has been used to calculate the homogeneous nucleation rate using Classical
Nucleation Theory (CNT; Landau and Lifshitz, 1980). According to CNT the
nucleation rate, i.e. the number of bubbles nucleated in 1 s in 1 m3, is given by:

J =
2n0Dvw

a0
(
σ

kT
)
1
2 exp

−16πσ3

3kT∆P2
(4.23)

where n0 (1027molecules/m3; Mangan and Sisson, 2005) is the concentration
of potential sites, taken as the number of water molecules in the melt, vw
(10−29m3) is the volume of a water molecule , a0 (10−9m; Mangan and Sisson,
2005) is the distance between neighbouring water molecules, D the diffusivity
of a trachyte (Freda et al., 2003), k the Boltzmann constant, T the temperature,
∆P the decompression and σ the surface tension.

4.2 nucleation experiments using a mini internal heated pres-
sure vessel

The decompression experiments were performed using the HP16/60 Miniclave
(Fig. 10) at the Dipartimento di Scienze della Terra, Università degli Studi di
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Roma Sapienza. The HP16/60 Miniclave is novel low-cost experimental facility,
very simple to operate and allowing a fast quenching of the sample. This is an
internally heated pressure vessel (IHPV) achieving a maximum pressure of 500

MPa and a maximum temperature of 1200 ◦C. Compared to the ’classical’ IHPV,
the HP16/60 is much more manageable, with a size of 32X10 cm and a weight
of 8 Kg. The rock-type used in this work is an obsidian sample collected from
the Lag Breccia Unit, in the lower part of the Campanian Ignimbrite pyroclastic
succession (Phlegrean Fields, Central Italy), exposed at Punta della Lingua,
Procida Island (location in Chap. 3 Fig. 4; chemical analysis in Chap. 3 Tab. 1 ).
Platinum tubes (ca. ≈ 3mmX18mm) were filled with the powder of the sample,
hydrated with a variable percent content of distilled water and finally welded
leaving enough void space inside the capsule to allow for the gas expansion.
The reported experiments refer to 12 decompression runs performed at different
initial pressures, combined with 3 different decompression values (Tab. 6). Each
experiment started leaving the sample for 1 hour at the P-T conditions of
interest. The capsule was then instantly (< 2s) decompressed isothermally and
fast-quenched (< 5s) switching off the furnace and twisting it to the vertical
position. The vessel thermocouple is tight to the sample wall to ensure that
the temperature value read on the display represents the actual temperature
experienced by the sample. The fast decompression of the miniclave, allows us
to consider the decompression leading to bubble nucleation as the difference
between the initial and the final pressure value. The time before quenching is
short enough to consider bubbles growth negligible, according to the typical
Delay Time, i.e. the time before growth process starts (Proussevitch and Sahagian,
1998). The water content for each experiment exceeds the reference solubility
(De Rita et al., 1976; Di Matteo et al., 2004) at the pressure of interest. The super-
liquidus pressure-temperature (P-T) of the experiments have been determined
from isobaric simulations using the MELTS code (Ghiorso and Sack, 1995). Four
Isobaric quenching experiments have been performed in order to verify the
P-T simulations. The bubbles generated experimentally have been observed
by scanning electron microscope (SEM) FEI Quanta 400 equiped with EDAX
Genesis microanalysis system at at the Dipartimento di Scienze della Terra,
Università degli Studi di Roma Sapienza. Finally, the images so obtained have
been processed to determine Bubble Size Distributions (BSD) using the technique
reported in Proussevitch et al. (2007). The BSD can give useful information on
vesiculation processes in terms of growth and nucleation. In particular, the
nucleation process has been evaluated through the Bubble Number Density
(BND) and the amount of water dissolved in the sample after the experiments
determined by a CE CHN-1110 gas chromatographic elemental analyser.

4.3 natural samples analysis by stereo-scanning electron microscopy

(ssem)

4.3.1 Materials and methods

Preliminary investigations by Scanning Electron Microscope (SEM) were per-
formed on ash- and lapilli-size juvenile pyroclasts in order to detect the magmatic
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Figure 10: the HP16/60 Miniclave in use in the High Pressure - High Temperature
laboratory of the Department of Earth Science of the University of Rome
’Sapienza’

Run H2O T Pi C(Pi) Pf C(Pf) ∆P H2Odis BND

[wt%] [◦C] [bar] [wt%] [bar] [wt%] [bar] [wt%] nbubbles/m
3

SC19 4.39 1000 851 3.8 725 3.4 126 3.24 1.1∗1014

SC18 4.15 970 800 3.6 625 3.0 175 1.98 1.7∗1014

SC17 4.39 1000 875 3.9 585 2.8 290 2.61 1.8∗1014

SC42 3.36 990 590 2.9 180 1.1 410 2.52 1.8∗1014

SC49 3.73 985 572 2.8 255 1.3 317 2.79 5.5∗1013

SC44 4.73 985 625 3.0 408 2.1 217 2.52 5.4∗1013

SC55a 6.62 985 1190 4.8 940 4.0 250 4.68 1.7∗1014

SC56b 6.57 980 1250 5.0 950 4.0 300 4.95 1.7∗1013

SC1 3.43 984 578 2.8 578 2.8 0 - 5.1∗1013

SC2 4.55 970 800 3.6 800 3.6 0 - 2.0∗1013

SC3 4.07 1002 873 3.9 873 3.9 0 - 4.5∗1013

SC4 5.37 1000 1240 5.0 1240 5.0 0 - 3.9∗1013

Table 6: Experimental results. T = temperature, Pi=initial pressure, Pf=final pressure,
C= solubility (De Rita et al., 1976; Di Matteo et al., 2004), ∆P=decompression,
H2Odis=dissolved water measured by gas cromatographic elemental analyser.

vs. hydromagmatic fragmentation style, according to widely accepted particle
morphoscopy criteria (Heiken and Wohletz, 1985; Dellino and La Volpe, 1996a,b;
Polacci et al., 2003; Rust and Manga, 2002). Then a method to determine the
Bubble Size Distributions (BSD) using a novel application of the Stereo-Scanning
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Figure 11: The tilting capability of the SSEM allows capturing two images of the sample
with different tilt angle.

Electron Microscopy (SSEM) Technique (Proussevitch et al., 2011) has been
tested on juvenile ash-sized pyroclasts from the same samples. The analysis were
performed at the Instrumentation Center of the University of New Hampshire
(NH, USA). The 125-250 µm grain-size class was chosen on purpose as the
best compromise between the need of a good representativity of BSD and to
avoid a significant interference of post-fragmentation vesiculation of pyroclasts.
The technique is based on stereo-pair imaging of ash fragments by scanning
electron microscopy with sample tilting capabilities SSEM (fig.11). The images
so acquired can be used to create a digital elevation model (DEM) (fig.12), or
’topography’, of the particle surface that records the micron-scale curvatures of
vesicle wall surfaces (fig. 13). This method allows 3D measurements of vesicles
within a size range from one to over million cubic microns.

4.3.2 Sample preparation

Isolating representative ash grains from samples collected is a very subjective
task dependent on the quality of samples. Ash grains collected here, particularly
from the GRC samples, were often present in mildly consolidated/cemented
state, with observed weathering in many isolated grains and in many cases
visible vesicle portions being heavily obscured by the presence of adhering dust.
So, the samples were initially dried in a standard oven at 60 ◦C for 24 hours,
and subsequently immersed in water in a test tube and sonicated. Sonication,
the technique of applying ultrasound, was found to be an effective technique to
break apart cemented samples as well as clear the adhering dust and weathering
products from obscured vesicles. I found that sonication at a low energy setting
for approximately 10 minutes was effective in accomplishing the task without
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Figure 12: Topography of the particle surface obtained by the digital elevation model
(DEM)

Figure 13: The Bubble Maker software allows the 3D measurement of the bubble.

degrading the ash grains. Sample stubs for SSEM analysis were prepared in a
plastic container, using a gust of air from a compressed air canister to allow the
ash grains to become airborne and adhere to the carbon tape on the stub. At this
stage, with some experimentation I was able to obtain a statistically unbiased
sample of vesicular ash grains. The stubs were then coated with Gold-Palladium
(Au-Pd). During the SSEM image analysis I chose a minimum number of 5 clasts
to analyse for each sample, representing a total of about 150-200 bubbles per
sample, a number arbitrarily chosen to represent an unbiased and statistically
significant population to obtain a BSD. Table 7 in the next chapter summarizes
the samples examined from GRC and SVK eruptions.
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4.3.3 Data analysis

Here I tested new software routines that enable judicious selection of vesicle
surface positions, and a new approach to stereo image rectification yielding
excellent results in reducing distortion for accurate DEM construction. In order
to characterise the BSD of the ash samples, the data so obtained have been
processed using the analytical and computational formulation described by
Proussevitch et al. (2007). Polymodal BSD are treated as superposed mixtures
of unimodal distributions. Each bubble subpopulation is characterised by a
Number Density function, n(V), that is the concentration of bubbles of a certain
size, V, per melt volume, and could be considered as a local bubble number
density:

n(V) = Ntotalf̃V) (4.24)

where f̃(V) is the probability density function, and Ntotal is the total number
of bubbles per unit volume of matrix (melt+crystals). Hence the bubble number
density (BND) of a complex BSD is defined by the sum of the different Ntotal
for each distribution mode. So defined, BND, for a given nucleation event, is
a non-extensive quantity that remains invariant as bubbles grow, so that it is
related only to the nucleation process. The probability density function is given
by:

f̃(V) =
dF(V)

dV
(4.25)

where F(V) is the probability to find a bubble of size between 0 and V. For
number density histograms with ∆V bin size and i size classes, the function
takes the discrete form:

n(Vi) =
1

Vm

ni
∆V

(4.26)

In order to determine the appropriate continuous distribution (i.e., the probabil-
ity density function; Eq. 4.25) to characterise a bubble population, it is necessary
to find the function that fits best the histogram data. The Number Density func-
tion (Eq. 4.24), which combines BND and the probability density (Eq. 4.25), thus
provides an overall characterization of the ash particle vesicularity, including
information on bubble nucleation, growth and coalescence.
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R E S U LT S

5.1 surface tension and bubble nucleation : numerical model and

experiments

I find that surface tension strongly depends on pressure, decreasing from 60

mN/m at 10MPa to 10 mN/m at 200 MPa (Fig. 14). The order of magnitude
is consistent with experimental data from different silicate systems(Fig. 15; e.g.
Mangan and Sisson (2005, 2000); Bagdassarov et al. (2000); Epelbaum et al.
(1973)).

Figure 14: Surface tension calculated in this work.

The values obtained have been entered into the CNT to calculate the bubble
nucleation rate as a function of pressure. The Figure 16 shows the relation
between the decompression to nucleate bubbles and the nucleation pressure
(i.e. the depth of the volcanic reservoir). The solid and dash lines are obtained
by the model, the circles are the experimental data. The area between the two
lines represents the interval of decompression in which the nucleation of the
maximum number of bubbles commonly observed in natural (see the next
section in this chapter) and experimental trachytic samples with rare crystals
(this study: 1014Bubbles/m3), can occur in a time scale between 1 day and 1

second. These two lines divide the explosive field (in red) from the effusive one
(in blue). For example, starting from 100 MPa of pressure, the solid straight line
of the decompression path enters into the explosive red area at ≈ 40 MPa of
decompression. The key aspect of 16 regards the dependence of surface tension
on pressure that makes nucleation at high pressures (i.e.> 850bar) much more
easy, in terms of decompression, than at lower pressures - i.e. nucleation at high
pressure requires a lower decompression.

The isobaric quenching experiments show that, after one hour of homoge-
nization, the sample is glassy and crystals-free. This is not bubble-free since
there are micron-sized bubbles trapped in the melt. The Bubble Number Denisty
(BND) calculated for these samples, ranging from 2 ∗ 1013 to 5 ∗ 1013 (Tab. 6),
provides a base-line for the number of bubbles nucleated during decompres-

41



42 results

Figure 15: Surface tension vs dissolved water determined by Mangan and Sisson (2005)
(solid squares), Mangan and Sisson (2000) (solid triangles), Bagdassarov et al.
(2000) (crossed squares), Epelbaum et al. (1973) (open squares). In these cases
the surface tension has been calculated as a function of the dissolved water,
but the magma is not necessarily water-saturated and so the dependence on
pressure cannot be write explicitly.

Figure 16: See the text for the explanation.

sion. The nucleation process can be considered negligible, if decompression
experiments show a BND of the same order of magnitude of the base line
(i.e. 1013). Decompression experiments (Figure 16) show that bubbles nucleate
when decompression ∆P, or supersaturation ∆S, exceeds 400bar, or 1.8wt%
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at 600bar of initial pressure and when exceeds 150bar, or 0.4wt%, when
the initial pressure is greater than 850bar. The number of bubbles nucleated
during the decompression is in the order of 1014bubbles/m3 (Tab. 6). Bubbles
are spherical, randomly distributed and only rarely attached to crystals. Mean
bubble diameters are between 1− 3µm. Samples that nucleated bubbles during
decompression (BND = 1014bubbles/m3) have a dissolved water content closer
to the predicted solubility at Pfinal , while the samples showing a negligible
nucleation during decompression (BND = 1013bubbles/m3) have a dissolved
water content closer to the predicted solubility at Pinitial (Tab. 6).

The experiments (see fig.16) confirm that surface tension facilitates bubble
nucleation at higher pressure. The decompression necessary to nucleate bubbles
at high pressure (> 850bar) is at least three times lower than at low pressure
(< 600bar; fig. 16).

5.2 bubble nucleation and growth in the ash-rich eruptions

Preliminary SEM analyses show that juvenile ash and lapilli from the strombolian
fall and the ash-rich surge of GRC are moderately vesicular and characterised
by spherical-elongated vesicles, while the subplinian fall is mostly characterised
by highly vesicular, elongate tube pumices indicative of shear stress along the
conduit (Palladino et al., 2008a). The SVK juvenile products are highly vesicular
and dominated by slightly to highly elongate vesicles in both the study eruption
phases. Elongated shape particles are likely related to the shear stress along
the conduit. Particle morphoscopic and textural features (e.g., high degree of
vesicularity, delicate-irregular contours and surfaces, absence of typical magma-
water interaction signature, etc.) for both the eruptions (fig. 17, 18, 19, 20) do not
provide evidence for significant hydromagmatic fragmentation ((Heiken and
Wohletz, 1985; Dellino and La Volpe, 1996a,b; Palladino and Taddeucci, 1998;
Polacci et al., 2003; Rust and Manga, 2002)), also for the ash-rich phases, thus
suggesting a dominantly magmatic fragmentation mechanism.

Here we focus on the transitions from/to "conventional" to/from ash-rich
phases in the study eruptions, i.e. from the subplinian fall to the subsequent
ash-rich surge phase in the GRC and from the early ash-rich surge to the
"conventional" ash-pumice flow in the SVK, which have been analysed through
the BSD functions of ash-samples from each phase (Tab.7, fig.21). BND values are
in the order of 1014bubbles/m3 in the subplinian phase of the GRC eruption and
1013 to 1014bubbles/m3 in the subsequent ash-rich surges. In the SVK eruption,
BND values attain 1014bubbles/m3 in the early ash-rich surge, whereas they
are as high as 1015bubbles/m3 in the subsequent conventional pyroclastic
flow (Tab.7). The analysed samples show either unimodal or bimodal BSDs
(fig.21), resulting from a single or two superimposed log-normal Number Density
functions(eq.4.24 with variable BND and standard deviations. By comparing the
BSDs of the "conventional" vs. the "ash-rich" phases, we note (Tab.7, fig.21): i) in
both eruptions, the BND of "ash-rich" phases are ca. 1 order of magnitude lower
than the associated "conventional" phases; ii) overall, BSDs are better sorted in
the "ash-rich" samples than in the "conventional" one in the SVK case, while in
the GRC case sorting differences are less significant; iii) in each eruption case,
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the BSDs of associated "conventional" and "ash-rich" phases display a common
main mode around a similar value of bubble size; iv) in the SVK case, the
"conventional" phase (sample SVK11-2) shows a secondary, slightly subordinate,
mode toward finer bubbles, while the "ash-rich" phase may show unimodal BSD
(SVK2-8) or an additional minor mode toward coarser bubbles (SVK11-1); v)
in the GRC case (where, we recall, the conventional and ash-rich phases are
compositionally different), the ash-rich sample (GRC4-12) also shows a minor
mode toward coarse bubbles (similar to ash-rich SVK11-1), which is not observed
in the associated subplinian phase (GRC4-11); vi) the ash-rich layer immediately
on top of the subplinian fallout (sample GRC1-R) shows a similar BSD shape
as GRC4-12 for its secondary minor mode toward coarse bubbles, although
with overall much smaller bubbles and relatively high BND, comparable to the
subplinian phase.

Sample Unit Distrib. Mode Mean Tot.N.Dens. χ2

[bubbles/m3]

SVK11-1 ash-rich flow log-normal bimodal −16.63
−15.56

6.35∗1014

2.17∗1013 0.19

SVK11-2 ’conventional’ p.flow log-normal bimodal −19.16
−16.54

1.43∗1015

3.57∗1015 0.30

SVK2-8 ash-rich flow log-normal unimodal -15.10 2.97 ∗ 1014 0.37

GRC4-11 subplinian fall log-normal unimodal -15.55 3.03 ∗ 1014 0.16

GRC4-12 ash-rich flow log-normal bimodal −14.62
−11.88

3.19∗1013

2.19∗1012 0.16

GRC1-R subplinian fall log-normal bimodal −17.74
−15.59

2.94∗1014

2.42∗1014 0.33

Table 7: Summary of the study ash samples and their relevant BSD features from SSEM
analysis.
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(a) GRC strombolian fall (GRC3-d) (b) detail of GRC3-d

(c) GRC subplinian fall (GRC1-h) (d) detail of GRC1-h

(e) GRC ash-rich flow (GRC4-4) (f) detail of GRC4-4

Figure 17: Texture of lapilli from Grotte di Castro eruption (GRC).
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(a) SVK ash-rich flow (SVK2-8) (b) detail of SVK2-8

(c) SVK ash-rich flow (SVK11-1) (d) detail of SVK11-1

(e) SVK ’conventional’ flow (SVK11-2) (f) detail of SVK11-2

Figure 18: Texture of juvenile lapilli from Sovana eruption (SVK).
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(a) GRC subplinian fall (GRC1R) (b)

(c) GRC subplinian fall (GRC411) (d)

(e) GRC ash-rich flow (GRC4-12) (f)

Figure 19: Ash samples from Grotte di Castro eruption (GRC). The high degree of
vesicularity, the delicate-irregular surfaces and the absence of typical magma-
water interaction signature rule out hydromagmatic fragmentation features
also for the ash-rich flow.
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(a) Sovana ash-rich flow (SVK28) (b)

(c) Sovana ash-rich flow (SVK11-1) (d)

(e) Sovana ’conventional’ pyroclastic flow
(SVK11-2)

(f)

Figure 20: Ash samples from Sovana eruption (SVK). Also in this case, the absence
of typical magma-water interaction features, in both the phases, rules out
hydromagmatic fragmentation.
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Figure 21: BSD of the studied samples.
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D I S C U S S I O N

6.1 the role of surface tension in bubble nucleation

The gradient theory, successfully applied in several studies of industrial poly-
mers (Poser and Sanchez, 1981; Harrison et al., 1999; Kahl and Enders, 2000;
Enders et al., 2005), has been tested here for the first time to numerically model
the surface tension of supercritical gas water in contact with trachytic liquid.
This method allows to calculate the surface tension, typically evaluated solving
the CNT under the heavy assumption of homogeneous nucleation (Fig. 15;
Mangan and Sisson, 2005; Gardner and Ketcham, 2011; Gardner, 2012), in a
way completely independent from the details of the nucleation process. The
surface tension is far to be a constant, but it decreases with increasing nucleation
pressure. Experiments (see Fig.16) confirm that surface tension facilitates bubble
nucleation at higher pressure. The decompression necessary to nucleate bubbles
at high pressure (> 850bar) is at least three times lower than at low pressure
(< 600bar)(fig. 16).Instead, the hindered nucleation at relatively low pressure,
due to high bubble surface tension, leads to a higher decompression/supersatu-
ration before bubbles nucleate, which may impact the intensity of the eruption
enhancing more explosive eruptions (Mangan and Sisson, 2000; Gardner, 2012)
at shallow depth (< 3Km).

6.2 nucleation and ash generation in the ash-rich eruptions

The morphoscopic features of juvenile pyroclasts, as well as the paucity of lithic
fragments from a possible interacting aquifer, in the study ash-rich deposits rule
out a significant hydromagmatic component for the intense magma fragmenta-
tion. This work shows that extensive ash production in a dominant magmatic
scenario implies high BNDs (ranging from 1013 to 1015bubbles/m3 in the study
cases).

The BND (i.e., the total number of bubbles of all sizes in a m3 of melt) is
not supposed to change as bubbles grow, provided that no new bubbles get
nucleated (i.e., magma vesiculation is controlled by a single nucleation event).
As bubbles grow, the BSD shifts to the right, i.e. toward increasing bubble sizes.
Also, different samples with similar BSD shapes, shifted toward coarser/finer
bubbles, indicate increasing/decreasing amounts of bubble growth. By analyzing
BSD functions, earlier/deeper bubble nucleation event(s) can be associated with
BSD mode(s) toward coarser bubble sizes (i.e., resulting into higher amounts of
bubble growth), while later/shallower nucleation event(s) are associated with
BSD mode(s) toward finer bubble sizes (i.e., lower amounts of bubble growth).

I suggest that the changing degrees of ash production during the GRC and
SVK eruptions is related to changing intra-conduit dynamics, as also recorded
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by the observed BSD functions. For each eruption case, the observed modes in
the BSD functions reflect more or less complex magma vesiculation history.

The bimodal BSD of the "conventional" pyroclastic flow phase of SVK (SVK11-
2; fig.21) thus reflects two major nucleation events of similar intensity (each
represented by ca. 1015bubbles/m3), producing two distinct bubble subpopula-
tions, respectively centered around 0.3µm and 2µm modal sizes. Considering
the rapid cooling of fine magma particles upon fragmentation (Proussevitch et al.
(2011); I recall that the 125-250 µm− size fraction was analyzed on purpose),
post-fragmentation bubble nucleation and growth can be assumed negligible.
Thus the two nucleation events can be related respectively to a deeper magma
vesiculation triggering the explosive eruption and to a later nucleation event
occurring during magma ascent in the conduit at shallow depth just prior to
fragmentation, as indicated by moderate bubble growth for the finer/earlier
bubble subpopulation. The subplinian phase of the GRC eruption (GRC4-11;
with magma composition analogous to SVK) is instead characterized by a single
dominant nucleation event. The modal bubble size similar to the coarse mode of
the previous case, would be consistent with early bubble nucleation occurred at
high depth.

The distinctive coarse mode observed in the BSDs of ash-rich phases in both
eruption cases indicates that the earlier/deeper nucleation event was quite
subordinate in terms of BND (one order of magnitude lower) in comparison to
the main nucleation event occurred at shallower depth. The lack of accidental
lithics in the ash-rich deposits is consistent with the shallow level of magma
fragmentation following the main nucleation event. In the SVK case, the better
sorting of BSD of the ash-rich phase vs. the conventional one also testifies an
overall less complex vesiculation history of the feeder magma. In the GRC case,
where different magma compositions were erupted in the two phases, I cannot
exclude the occurrence of two distinct feeder magma batches at different depths.

Also, qualitative SEM analysis of lapilli-sized juvenile clasts (fig. 17, 18) in-
dicates two distinct bubble generations (possibly related to distinct nucleation
events) in the GRC ash-rich deposits (fig. 17) and multiple nucleation events in
the SVK ash-rich horizon (fig. 18). Different from observation at fine ash-scale,
coarser pumice clasts show evidence of ongoing bubble growth and coalescence
after fragmentation.

According to the theoretical and experimental results, exposed previously
(Fig. 16), lower BND values can be related to hindered nucleation due to high
bubble surface tension at relatively low pressure conditions in a shallow magma
reservoir. On these grounds, the extensive magma fragmentation during ash-rich
eruptive phases, rather than invoking poorly constrained explosive magma-water
interaction, can be attributed to the high decompression required to nucleate
bubbles in a shallow reservoir. The dominant nucleation event at shallow depth,
implying finer BSD, would have led to the collapse of the magmatic foam into
an erupting fine-grained gas-pyroclast mixture.

In particular, in the SVK case, the changing degree of fragmentation from the
early ash-rich surge to the coarse-grained pyroclastic flow, is possibly related
to the changing depth and geometry of magma withdrawal from a common
reservoir. An abrupt decompression at the top of the magma body fed the initial
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phase of the eruption through a central conduit, whereas a deeper portion of
the magma reservoir was involved during the eruption of the pyroclastic flow
through the developing ring fractures during ongoing caldera collapse. The
overall wider/coarser BSD in the conventional phase would have controlled the
overall wider/coarser grain size distribution of the fragmenting magma.

Conversely, the GRC event shows a reverse transition from a "conventional"
Subplinian phase to highly fragmented ash-rich surges, concomitant to a sub-
stantial shift in the erupted magma composition from phonolite to shoshonite.
In this case, we suggest that the high degree of fragmentation of the ash-rich
surges is related to the intense decompression of a distinct shoshonitic magma
batch located at relatively shallow depth, which was possibly intersected by
developing fractures during incipient roof collapse of the phonolitic magma
chamber.

In particular, the ash layer heralding the pyroclastic surge activity (GRC1-
R), characterised by high bubble nucleation and limited growth, would be
consistent with intense decompression at shallow level, while the decreasing
bubble nucleation of the succeeding surges (e.g., GRC4-12) would indicate a
progressive decay in the decompression rate.

In conclusion, the application of the SSEM technique to determine BSD fea-
tures of ash particles from Quaternary major explosive eruptions represents
a promising approach to gain insights into vesiculation and fragmentation
mechanisms leading to peculiar ash-rich eruption phases. The present study
provides evidence that extensive ash production was related, rather than to
hydromagmatic fragmentation, to the magma decompression history at shallow
depth.





7
S U M M A RY

The present work addressed the vesiculation process, in particular nucleation,
combining numerical modelling, experiments and natural samples analysis. A
new approach, based on statistical thermodynamics, allowed the calculation
of the magma-water surface tension for a trachytic liquid. The key aspect
regards the dependence of surface tension on pressure that affects the bubble
nucleation. Nucleation at high pressure (i.e.> 0.8Kbar) is much easier, in terms
of decompression/supersaturation. Instead, the hindered nucleation at low
pressure (i.e.< 0.8Kbar), due to high bubble surface tension, leads to higher
decompression/supersaturation before bubbles nucleate, which may enhance
more explosive eruptions (Mangan and Sisson, 2000; Gardner, 2012) at shallow
depth (< 3Km).

Decompression experiments have been performed using the HP16/60 Mini-
clave, an Internally Heated Pressure Vessel that allows fast quench and de-
compression. Nucleation values obtained by the experiments match well the
numerical model.

Natural samples of ash-rich explosive eruptions have been analysed, in terms
of nucleation and growth, in order to infer the mechanism of ash formation
from the features preserved on the ash particles. The data have been acquired
using a novel application of the Stereo Scanning Electron Microscopy (SSEM)
that allows 3D measurements of the bubbles. The morphologic features and the
lithic-poor nature of the study deposits rule out hydromagmatic fragmentation
for ash production. Therefore the extensive ash-production can be related to the
high decompression necessary to nucleate bubbles at shallow depth, where the
surface tension is higher.

The present work shows that in nature macroscale-processes (e.g., volcanic
activity) are strictly controlled by processes acting at the microscale (e.g., bub-
ble nucleation). The Statistical Mechanics is the way to relate microscale and
macroscale processes. In the next future, this kind of approach may be applied
to crystal phases (e.g., nucleation, dissolution of crystals) and to the interplay
of crystals and bubbles, by means of Monte Carlo and Molecular Dynamics
simulations.
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a.1 code

Listing 1: Pure component parameters

% This program calculates pure component parameters rho_pr, P_pr, T_pr
% of the equation of state (EOS) for each component.
% The EOS is based on Sanchez & Lacombe (1976) J. Chem. Phys. Vol. 80, N

.21, 2352-2362.
% The best fit algorithm uses the MATLAB function fmincon (optimization

toolbox)
% Simone Colucci, ’Sapienza’- UniversitÃă di Roma, Italy (January 2012)

clear all; close all; clc;
scsz = get(0,’ScreenSize’);
%--------------------------------------------------------------------------
% EXPERIMENTAL DATA
%--------------------------------------------------------------------------
% The experimental data are reported in
% Lange & Carmichael, Mineralogical Society of America-Reviews in
% Mineralogy, 1990, Vol.24, p.36
Rgas=8.3144621; % Gas constant [J/(mol*K)]
%..................................MAGMA...................................

%%%%%%%%%%%%%%%%%%%%%%%%%% input data
Tmin = 1000 + 273; % [K]
Tmax = 1400 + 273;
T_exp = linspace(Tmin,Tmax,10);
Pmin = 500; % [Bar]
Pmax = 2000;
P_exp = linspace(Pmin,Pmax,10);
% [SiO2,TiO2,Al2O3,Fe2O3,Fe0,Mg0,CaO,Na2O,K2O,Li2O]
Xi = [0.699,0.002,0.126,0.004,0.023,0.004,0.022,0.068,0.051,0.000]; %[molar

fraction]
Mi =

[60.084,79.865,101.961,159.687,71.844,40.304,56.077,61.979,94.195,29.881];
% molar mass [g/mol]

Vi_1673 = [26.90,23.16,37.11,42.13,13.65,11.45,16.57,28.78,45.84,16.85]; %
[cm^3/mol]

wt_Vi_1673=[0.06,0.26,0.18,0.28,0.15,0.13,0.09,0.10,0.17,0.15]; % weights
dVi_dT = 1e-3*[0.00,7.24,2.62,9.09,2.92,2.62,2.92,7.41,11.91,5.25]; % [cm

^3/K*mol]
wt_dVi_dT=1e-3*[0.50,0.46,0.17,3.49,1.62,0.61,0.58,0.58,0.89,0.81];
dVi_dP = 1e-4*[-1.89,-2.31,-2.26,-2.53,-0.45,0.27,0.34,-2.40,-6.75,-1.02];

% [cm*3/Bar*mol]
wt_dVi_dP=1e-4*[0.02,0.06,0.09,0.09,0.03,0.07,0.05,0.05,0.14,0.06];
%%%%%%%%%%%%%%%%%%%%%%%%%%
for p=1:length(P_exp)

for t=1:length(T_exp)
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V_liq(p,t) = sum(Xi.*(Vi_1673 + dVi_dT.*(T_exp(t)-1673) + dVi_dP.*(
P_exp(p)-1))); % [cm^3/mol]

wt_V_liq(p,t)=sqrt(sum((Xi.^2).*(wt_Vi_1673.^2 + (wt_dVi_dT.*(T_exp
(t)-1673)).^2 + (wt_dVi_dP.*(P_exp(p)-1)).^2)));

rho_exp(p,t) = sum(Xi.*Mi)./V_liq(p,t); %[g/cm^3]
wt_rho_exp(p,t)=sqrt(sum(((Xi.*Mi).^2)./(wt_V_liq(p,t).^2)));

end
end
%..........................................................................
disp(’------ plot density data of magma component-------’);
figure(1)
subplot(1,2,1)
for p=1:length(P_exp)

plot(T_exp,rho_exp(p,:),’+’,’MarkerSize’,7,’MarkerFaceColor’,’m’,’
MarkerEdgeColor’,’m’)

hold on
end
axis([1200 1700 1 4]);
xlabel(’Temperature (K)’)
ylabel(’Density (g/cm^3)’)
title(’Temperature dependence of magma density at various pressures’,’

fontsize’,16)
subplot(1,2,2)
for t=1:length(T_exp)

plot(P_exp,rho_exp(:,t),’+’,’MarkerSize’,7,’MarkerFaceColor’,’m’,’
MarkerEdgeColor’,’m’)

hold on
end
axis([500 2000 1 4]);
xlabel(’Pressure (Bar)’)
ylabel(’Density (g/cm^3)’)
title(’Pressure dependence of magma density at various temperatures’,’

fontsize’,16)
box on;
%--------------------------------------------------------------------------
% PURE COMPONENT PARAMETERS
%--------------------------------------------------------------------------

%....................... MAGMA COMPONENT.................................
%%%%%%%%%%%%%%%%%%%%%% Input Data
Mmg= sum(Xi.*Mi)*1e-3 ; % Molar mass (Kg/mol)
% sigma and mean of gaussian distribution of starting points
sigma_Pi = 20000*1e-1; % [MPa]
sigma_Ti= 30000; % [K]
sigma_rhoi= 5*1e3; % [Kg/m^3]
mean_Pi = 5000*1e-1;
mean_Ti =3000+273;
mean_rhoi =5*1e3;
inflim_P=1; % solution’s range, lower and...
inflim_T=1;
inflim_rho= max(max(rho_exp))+1;
suplim_P=50000*1e-1; % ... upper boundaries
suplim_T=50000+273;
suplim_rho=10*1e3;
%%%%%%%%%%%%%%%%%%%%%%%%
P_exp=P_exp*1e-1;
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rho_exp=rho_exp*1e3;
P_cs=P_exp(1)*ones(1,length(T_exp));
P_exp1=P_exp;
for i=2:length(P_exp)

Ap_P=P_exp(i)*ones(1,length(T_exp));
P_cs=[P_cs Ap_P];
P_exp1=[P_exp1 P_exp];

end
T_cs=T_exp(1)*ones(1,length(P_exp));
T_exp1=T_exp;
for i=2:length(T_exp)

Ap_T=T_exp(i)*ones(1,length(P_exp));
T_cs=[T_cs Ap_T];
T_exp1=[T_exp1 T_exp];

end
P=[P_exp1 P_cs];
T=[T_cs T_exp1];
rho_P=rho_exp(:,1);
rho_P=rho_P’;
rho_T=rho_exp(1,:);
for i=2: length(rho_exp(1,:))

Ap_rho_P=rho_exp(:,i);
Ap_rho_P=Ap_rho_P’;
rho_P=[rho_P Ap_rho_P];
rho_T=[rho_T rho_exp(i,:)];

end
rho_exp1=[rho_P rho_T];
wt_rho_P=wt_rho_exp(:,1);
wt_rho_P=wt_rho_P’;
wt_rho_T=wt_rho_exp(1,:);
for i=2: length(wt_rho_exp(1,:))

Ap_wt_rho_P=wt_rho_exp(:,i);
Ap_wt_rho_P=Ap_wt_rho_P’;
wt_rho_P=[wt_rho_P Ap_wt_rho_P];
wt_rho_T=[wt_rho_T wt_rho_exp(i,:)];

end
wt_rho_exp1=[wt_rho_P wt_rho_T];
P=P’;T=T’;rho_exp1=rho_exp1’; sigma=wt_rho_exp1’;
%........................Call Min Search function..........................
disp(’------ START MIN SEARCH MAGMA-------’);
[Pmg_pr, Tmg_pr, rhomg_pr]= minsearch(Mmg, P, T,rho_exp1,inflim_P,inflim_T

,...
inflim_rho,suplim_P,suplim_T,suplim_

rho,...
sigma_Pi,sigma_Ti,sigma_rhoi,...
mean_Pi,mean_Ti,mean_rhoi,sigma); % [

MPa, K, Kg/m^3]
rmg=((Mmg*Pmg_pr)/(Rgas*Tmg_pr*rhomg_pr))*1e6;
%.........................WATER COMPONENT..................................
% Data from Machida, Sato and Smith, Fluid Phase Equilibria, 2010,
% Vol. 297, pp. 205-209.
Mw= 18.01528*1e-3; % Molar mass (Kg/mol)
alpha=1/207;
eps0= 7447; % [J/mol]
%eps=eps0*(alpha*T/1+alpha*T); % [J/mol]
v= 2.614; % [cm^3/mol]
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r= 5.823; % [adim]
%Tw_pr= eps/Rgas; % [K]
%Pw_pr= eps/v; % [MPa=J/cm^3]
%rhow_pr= 1e6*Mw*Pw_pr/(Rgas*Tw_pr*r); % [Kg/m^3]
%------------------------PLOT BEST FIT FUNCTIONS---------------------------
figure(1)
subplot(1,2,1)
for p=1:length(P_exp)

for t=1:length(T_exp)
Pmg_rd=P_exp(p)./Pmg_pr;
Tmg_rd=T_exp(t)./Tmg_pr;
rhomg_rd=EOS1(Pmg_rd, Tmg_rd,rmg);
rhomg=rhomg_rd*rhomg_pr;
rhomg=rhomg*1e-3;
plot(T_exp(t),rhomg,’o’,’MarkerSize’,4,’Color’,’k’)
axis([1200 1700 1 4]);
hold on

end
end
subplot(1,2,2)
for t=1:length(T_exp)

for p=1:length(P_exp)
Pmg_rd=P_exp(p)./Pmg_pr;
Tmg_rd=T_exp(t)./Tmg_pr;
rhomg_rd=EOS1(Pmg_rd, Tmg_rd,rmg);
rhomg=rhomg_rd*rhomg_pr;
rhomg=rhomg*1e-3;
P_exp_plot=P_exp(p)*1e1;
plot(P_exp_plot,rhomg,’o’,’MarkerSize’,4,’Color’,’k’)
hold on
axis([500 2000 1 4]);

end
end �
function h = eos24c(rho_rd,T_rd,P_rd,r)
% EOS (24c), Sanchez and Lacombe (1976)
h = 1 - exp(-rho_rd.^2./T_rd - (1-1./r).*rho_rd - P_rd./T_rd); �
function h1 = EOSroots(rho_rd,T_rd,P_rd,r)
% roots of EOS (24c), Sanchez and Lacombe (1976)
h1 = rho_rd - eos24c(rho_rd,T_rd,P_rd,r); �
function [P_pr T_pr rho_pr]=minsearch(M, P, T,rho_exp,inflim_P,inflim_T,

inflim_rho,suplim_P,...
suplim_T,suplim_rho,sigma_Pi,sigma_Ti,sigma_

rhoi,mean_Pi,mean_Ti,mean_rhoi,sigma)

options = optimset(’TolFun’,1e-7,’TolX’,1e-7,’MaxFunEvals’,2000,’MaxIter
’,2000,’Algorithm’,’interior-point’,’Display’,’off’);

for in= 1:100
disp(in);
Pi_pr(in)= abs(normrnd(mean_Pi,sigma_Pi)); % fmincon starting

points
Ti_pr(in)= abs(normrnd(mean_Ti,sigma_Ti));
rhoi_pr(in)= abs(normrnd(mean_rhoi,sigma_rhoi));
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[BF,fval,exitflag]= fmincon(@(VAR) X2_EOS(VAR,M, P, T,rho_exp,sigma),...
[Pi_pr(in),Ti_pr(in),rhoi_pr(in)],[],[],[],[],...
[inflim_P,inflim_T,inflim_rho],[suplim_P,suplim_T,

suplim_rho],[],options);
Pbf(in) = BF(1);
Tbf(in) = BF(2);
rhobf(in) = BF(3);
bf_chi(in) = fval;
bf_ef(in) = exitflag;

end
[X2v, Ix] = min(bf_chi);
P_pr = Pbf(Ix);
T_pr = Tbf(Ix);
rho_pr = rhobf(Ix);
scsz = get(0,’ScreenSize’);
figure(’Position’,[50 50 0.8*scsz(3) 0.8*scsz(4)],’Name’,’STATISTICS:

UPLIFT INVERSION’);
iP = linspace(min(Pi_pr),max(Pi_pr),10);
iT = linspace(min(Ti_pr),max(Ti_pr),10);
irho = linspace(min(rhoi_pr),max(rhoi_pr),10);
subplot(2,5,1); hist(bf_ef,20); title(strcat(’exitflag: ’,sprintf(’ %2.0f’,

bf_ef(Ix))));
subplot(2,5,2); hist(bf_chi,5); title(strcat(’\chi^2: ’,sprintf(’ %4.2f’,X2

v)));
subplot(2,5,3); hist(Pi_pr,iP); title(’Pressure’);
subplot(2,5,4); hist(Ti_pr,iT); title(’Temperature’);
subplot(2,5,5); hist(rhoi_pr,irho); title(’Density’);
subplot(2,5,8); hist(Pbf,length(iP)); title(strcat(’bf Pressure: ’,sprintf

(’%4.0f’,P_pr)));
subplot(2,5,9); hist(Tbf,length(iT)); title(strcat(’bf Temperature: ’,

sprintf(’%4.0f’,T_pr)));
subplot(2,5,10); hist(rhobf,length(irho)); title(strcat(’bf Density: ’,

sprintf(’%4.0f’,rho_pr)));
disp(’Pure component parameters-Polymer’)
disp(’Pressure(MPa) Temperature(K) Density(Kg/m^3)’)
disp(P_pr);disp(T_pr); disp( rho_pr);
disp(’Chi square per degrees of freedom =’)
disp(min(bf_chi)) �
function [rad] = EOS1(P_rd_root, T_rd_root,r_root)
% this function calculates the liquid density, representing the root of EOS
% equation with the maximum value
% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical

Fluids
% J. Chem. Phys. Vol. 80, N.21, 2352-2362.

rho_rd_root = linspace(-0.1,0.99999,100);
IRoots = sign(EOSroots(rho_rd_root,T_rd_root,P_rd_root,r_root));
K=0;
for i=2:length(IRoots)
flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_rd_root(i-1);
X0(K,2) = rho_rd_root(i);

end;
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end;
for k=1:K

rad(k) = fzero(@(rho_rd_root) EOSroots(rho_rd_root,T_rd_root,P_rd_

root,r_root), X0(k,:));
end
if K==0

rad=10*1e6;
disp(’rad=0’);

end
if length(rad)==2 && min(rad)<=0

disp(’there are more than 1 roots => there is a gas phase of
component 1 or of the binary mixture’)

disp(rad);
rad=max(rad);

elseif length(rad)>1 && min(rad)>0
disp(’there are more than 1 roots => there is a gas phase of

component 1 or of the binary mixture’)
disp(rad);
rad=10*1e6;

end �
function X2f=X2_EOS(VAR,M,P, T,rho_exp,sigma)
% chi square per degrees of freedom function for a 3 parameters model

P_pr = VAR(1); T_pr = VAR(2); rho_pr = VAR(3);
R= 8.3144621; % gas constant (J/mol*K)
r = ((M*P_pr)/(R*T_pr*rho_pr))*1e6;
for j=1:length(P);

P_rd=P(j)/P_pr;
T_rd=T(j)/T_pr;
rho_rd = EOS1(P_rd, T_rd,r); %reduced density of the liquid phase (max

density)
rho_rd=max(rho_rd);
rho(j)=rho_rd*rho_pr;

end
model = rho;
data = (rho_exp)’ ; % vector of experimental data
r = data - model ; % residual
r=r’;
L=length(P);
Wd=diag(1./sigma.^2);
X2 = r’*Wd*r; % Chi Square - full covariance
p = length(VAR); % number of parameters
N = length(data); % number of data points
X2f = X2/(N-p); % Chi Square per degrees of freedom �

Listing 2: Binary parameter

% This program calculates binari interaction parameter k12 of the binary
% mixture magma-water.The mixing rules of the binary EOS are based on
% Lacombe and Sanchez (1976) J. Chem. Phys. Vol. 80, N.23, 2568-2580.
% The best fit algorithm uses the MATLAB function fmincon (optimization

toolbox)
% Simone Colucci, ’Sapienza’- UniversitÃă di Roma, Italy (January 2012)

clc;
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clear all;close all;
%-------------------------input data---------------------------------------

Rgas=8.3144621; % gas constant (J/mol*K)
% experimental solubility
Psol=linspace(10,200,10);
Tsol=1273*ones(length(Psol),1); % [K]
Psol1=[69, 69, 69, 69, 103, 103, 103, 103, 103, 207, 207, 207, 207, 207]’;

% [MPa] De Rita et al., 1973
wexp1=1e

1*[2.45,2.29,2.28,1.21,5.10,3.56,3.29,2.31,3.41,6.85,6.76,6.20,5.59,4.40]’;
%[weight fraction mg/g]

Psol2=[20,40,40,40,50,80,100,100,130,150,150,200,200,200]’;% [MPa] Di
Matteo et al., 2004

wexp2=1e
1*[0.93,2.77,1.81,1.88,3.22,3.97,5.34,5.21,6.16,6.22,6.38,6.83,5.73,7.43]’;
%[weight fraction mg/g]

Err2=1e
1*[0.21,0.35,0.11,0.28,0.42,0.25,0.14,0.45,0.34,0.79,0.30,0.55,0.16,0.34];

% Pure component parameters of magma
P_pr=4.9156*1e3; % (MPa)
T_pr=4.4491*1e3; % (K)
rho_pr=2.4731*1e3; % (Kg/m^3)
M= 67.7*1e-3; % magma molecular weight (Kg/mol)
rpol = ((M*P_pr)/(Rgas*T_pr*rho_pr)) *1e6;
% Pure component parameters of water
alpha=1/207; % [1/K]
eps0= 7447; % [J/mol]
v= 2.614; % [cm^3/mol]
rcd= 5.823; % [adim]
Mcd= 18.01528*1e-3; % water molecular weight (Kg/mol)
eps=eps0*(alpha*Tsol(1)./(1+alpha*Tsol(1))); % [J/mol]
Tcd_pr= eps/Rgas; % [K]
Pcd_pr= eps/v; % [MPa=J/cm^3]
rhocd_pr= 1e6*Mcd*Pcd_pr./(Rgas*Tcd_pr.*rcd);
k12=-0.0355; % unknown
%----------------------plot experimental data -----------------------------
disp(’------ plot solubility data -----------’);
figure(1)
plot(Psol1,wexp1*1e-3,’ok’);
axis([0 210 0 0.1])
hold on
errorbar(Psol2,wexp2*1e-3,Err2*1e-3,’xk’);
axis([0 210 0 0.1])
hold on
% --------------------minsearch solubility---------------------------------
disp(’------ START MIN SEARCH SOLUBILITY-------’);
inflim_k12 = -20;
suplim_k12 = 5;
mean_k12i = -10;
sigma_k12i = 10;
phi1=solubility( k12,Tsol,Psol, P_pr, Pcd_pr, Tcd_pr,T_pr,rhocd_pr,rho_pr,

Rgas,rcd,rpol,Mcd,M);
w_cd = (phi1.*rhocd_pr)./(rho_pr-(phi1.*rho_pr) + (phi1.*rhocd_pr));
%--------------------------Densities --------------------------------------



66 appendix

P_rd=Psol./P_pr;
T_rd=Tsol./T_pr;
Pcd_rd=Psol./Pcd_pr;
Tcd_rd=Tsol./Tcd_pr;
for k=1:length(Psol)
% Reduced Densities
[rho_bin_rd(k),rho_bin_pr(k),Not3] = mix_rules(Psol(k),Tsol(k),phi1(k),

Pcd_pr,P_pr,Tcd_pr,T_pr, rhocd_pr,rho_pr,rcd,rpol,Mcd,M,k12);
rho_rd(k) = EOS1_anew(P_rd(k), T_rd(k),rpol);
rhocd_rd(k) = EOS1_anew(Pcd_rd(k), Tcd_rd(k),rcd);
% Densities of pure components and binary mixture
rho_bin(k) = rho_bin_rd(k)*rho_bin_pr(k);
rho(k) = rho_rd(k)*rho_pr;
rhocd(k) = rhocd_rd(k)*rhocd_pr;

end
%------------------------plot model----------------------------------------
figure(2)
plot(Psol,rho,’-k’);
hold on
xlabel(’P(MPa)’)
ylabel(’magma density (Kg/m^3)’)
title(’Density of hanydrous magma ’,’fontsize’,16)
box on;
figure(3)
plot(Psol,rhocd,’-k’);
hold on
xlabel(’P(MPa)’)
ylabel(’water density (Kg/m^3)’)
title(’Density of water ’,’fontsize’,16)
box on;
figure(4)
plot(Psol,rho_bin,’-k’);
hold on
xlabel(’P(MPa)’)
ylabel(’magma density (Kg/m^3)’)
title(’Density of magma+water ’,’fontsize’,16)
box on;
figure(1)
plot(Psol,w_cd,’-k’,’MarkerSize’,7,’MarkerFaceColor’,’y’,’MarkerEdgeColor

’,’r’);
hold on
xlabel(’Pressure (MPa)’)
ylabel(’weight fraction (g_{gas}/g_{pol})’)
%title(’Solubility of Carbon Dioxide in SA’,’fontsize’,16)
axis([0 210 0 0.1]);
box on; �
function [mi ] = chem_pot_bin( R,phi_root,r1,r2,phi2,r1_0,rho_bin_par,rho_

bin,P1_pr,P2_pr,Pmatr,T1_rd,T,P1_rd )
%this function calculates the chemical potential of the binary mixture

mi = R*T.*(log(phi_root) + (1-r1/r2).*phi2 + r1_0*rho_bin_par.*...
((P1_pr+P2_pr-2*Pmatr(1,2))./(P1_pr.*T1_rd)).*phi2.^2) + ...
r1_0*R*T.*(-rho_bin_par./T1_rd + P1_rd./(rho_bin.*T1_rd) ...
+ (1./rho_bin).*(( 1 - rho_bin_par).*log(1-rho_bin_par) + (rho_bin_

par/r1_0).*log(rho_bin_par)));
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end �
function h = eos24cnew(rho_rd,T_rd,P_rd,r)

h = 1 - exp(-rho_rd.^2./T_rd - (1-1./r).*rho_rd - P_rd./T_rd); �
function [rad] = EOS1_anewbin(P_rd, T_rd,r)
% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids

% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_cryt2=5;
rho_cryt1=-1;
r_aux=1-1/r;
discr=4+(T_rd*r_aux)^2 -4*T_rd*r_aux-8*T_rd/r;
if discr>0

rho_cryt2=-0.25*(T_rd*r_aux -2 -sqrt(discr));
rho_cryt1=-0.25*(T_rd*r_aux -2 +sqrt(discr));

end
F_cryt1=-rho_cryt1 + 1 - exp(-rho_cryt1.^2./T_rd - (1-1./r).*rho_cryt1 - P_

rd./T_rd);
F_cryt2=-rho_cryt2 + 1 - exp(-rho_cryt2.^2./T_rd - (1-1./r).*rho_cryt2 - P_

rd./T_rd);
if rho_cryt1>0 && rho_cryt2<5 && (F_cryt2*F_cryt1)<0

if 0>=F_cryt1>=-0.1 && (F_cryt2*F_cryt1)<0
rho_aux = linspace(0,5,1000);
F_aux=-rho_aux + 1 - exp(-rho_aux.^2./T_rd - (1-1./r).*rho_aux - P_

rd./T_rd);
IRoots = sign(F_aux);
K=0;
for i=2:length(IRoots)

flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_aux(i-1);
X0(K,2) = rho_aux(i);

end
end
for k=1:K

rad(k)= fzero(@(rho_rd) eosrootsnew(rho_rd,T_rd,P_rd,r), X0(k
,:));

end
rad=max(rad);

else
rad=10;
disp(’too much roots! rad=10’);
pause

end
else
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rad= fzero(@(rho_rd) eosrootsnew(rho_rd,T_rd,P_rd,r), [0,5]);
end �
function h=equilibrium_bin(phi_root,T,P,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho

2_pr,T1_rd,P1_rd,r1_0,r2_0,R,M1,M2,k12)

rho1 = EOS1_anew(P1_rd, T1_rd,r1_0);
mi1 = chem_potnew(T,rho1,P1_rd,T1_rd,r1_0); % chemical potential of 1 in

the gas phase, it is equivalent to the pure
% chem. pot. because only

component 1 is present in
the gas phase

for k=1:length(phi_root)
phi2(k)=1-phi_root(k);
[rho_bin_rd(k),rho_bin_pr(k),Pmatr]=mix_rules(P,T,phi_root(k),P1_pr,P2_

pr,T1_pr,T2_pr, rho1_pr,rho2_pr,r1_0,r2_0,M1,M2,k12);
end
rho_bin_par= rho_bin_rd; %.*phi_root;
mi1_binmix = chem_pot_bin(R,phi_root,r1_0,r2_0,phi2,r1_0,rho_bin_par,rho_

bin_rd,P1_pr,P2_pr,Pmatr,T1_rd,T,P1_rd);
h = mi1_binmix-mi1; �
function k12=minsearchsol(inflim_k12,suplim_k12,mean_k12i,sigma_k12i,Tsol,

Psol, wexp,P_pr, P1_pr, T1_pr,T_pr,rho1_pr,rho_pr,R,r1,r,M1,M)

options = optimset(’TolFun’,1e-7,’TolX’,1e-7,’MaxFunEvals’,2000,’MaxIter
’,2000,’Algorithm’,’interior-point’,’Display’,’off’);

for in= 1:10
disp(in);
k12i(in)= abs(normrnd(mean_k12i,sigma_k12i)); % fmincon starting

point
[BF,fval,exitflag]= fmincon(@(VAR) X2_sol(VAR,Tsol,Psol, wexp,P_pr, P1_pr,

T1_pr,T_pr,rho1_pr,rho_pr,R,r1,r,M1,M),...
k12i(in),[],[],[],[],...
inflim_k12,suplim_k12,[],options);

k12bf(in) = BF;
bf_chi(in) = fval;
bf_ef(in) = exitflag;

end;
[X2v, Ix] = min(bf_chi);
k12 = k12bf(Ix);
scsz = get(0,’ScreenSize’);
figure(’Position’,[50 50 0.8*scsz(3) 0.8*scsz(4)],’Name’,’STATISTICS:

UPLIFT INVERSION’);
ik = linspace(min(k12i),max(k12i),10);
subplot(2,5,1); hist(bf_ef,20); title(strcat(’exitflag: ’,sprintf(’ %2.0f’,

bf_ef(Ix))));
subplot(2,5,2); hist(bf_chi,5); title(strcat(’\chi^2: ’,sprintf(’ %4.2f’,X2

v)));
subplot(2,5,3); hist(k12i,ik); title(’binary parameter’);
subplot(2,5,8); hist(k12bf,length(ik)); title(strcat(’bf binary parameter:

’,sprintf(’%4.0f’,P_pr)));
disp(’binary parameter’)
disp(k12);
disp(’Chi square per degrees of freedom =’)
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disp(min(bf_chi)) �
function [rad] = root_bin( R,T,P,r1,r2,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho

2_pr,M1,M2,k12)

P1_rd=P./P1_pr;
T1_rd=T./T1_pr;
phi_root = linspace(0.00001,0.2,100);
IRoots = sign(equilibrium_bin(phi_root,T,P,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,

rho2_pr,T1_rd,P1_rd,r1,r2,R,M1,M2,k12));
K=0;
for i=2:length(IRoots)

flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = phi_root(i-1);
X0(K,2) = phi_root(i);

end
end
if K==0

rad=2;
else

for k=1:K % find roots
rad_temp(k) = fzero(@(phi_root) equilibrium_bin(phi_root,T,P,P1_pr,

P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,T1_rd,P1_rd,r1,r2,R,M1,M2,k
12), X0(k,:));

if K>1
phiA= rad_temp(k);
[rho_test_rd,rho_bin_pr,Not3] = mix_rules(P,T,phiA,P1_pr,P2_pr,

T1_pr,T2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12);
rho_test(k) = rho_test_rd*rho_bin_pr;

end
end
rad=rad_temp(1);
if K>1

[rho_test_min,ind] = min(rho_test(1:K));
rad=rad_temp(ind);
disp(’K>1’);

end
end �
function X2f=X2_sol(VAR,Tsol,Psol, wexp,P_pr, P1_pr, T1_pr,T_pr,rho1_pr,rho

_pr,R,r1,r,M1,M)
% chi square per degrees of freedom function for a 1 parameter model

k12 = VAR;
phi1=solubility( k12,Tsol,Psol, P_pr, P1_pr, T1_pr,T_pr,rho1_pr,rho_pr,R,r

1,r,M1,M);
w_cd = (phi1.*rho1_pr)./(rho_pr-phi1.*rho_pr+phi1.*rho1_pr);
model = w_cd ;
data = wexp’ ; % vector of experimental data
res = data - model ;% residual
res=res’;
L=length(Psol);
sigma=ones(L,1);
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Wd=diag(1./sigma.^2);
X2 = res’*Wd*res; % Chi Square - full covariance
p = length(VAR); % number of parameters
N = length(data); % number of data points
X2f = X2/(N-p); % Chi Square per degrees of freedom �
function mi= chem_potnew(T,rho_rd,P_rd,T_rd,r)

R=8.3144621; % gas constant
mi=r*R*T*(-(rho_rd/T_rd) + (P_rd/(rho_rd*T_rd)) +(1-rho_rd)*log(1-rho_rd)/

rho_rd + (1/r)*log(rho_rd)); �
function [rad] = EOS1_anew(P_rd_root, T_rd_root,r_root)
% this function calculates the liquid density, representing the root of EOS
% equation with the maximum value
% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids

% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_rd_root = linspace(-0.1,0.99999,100);
IRoots = sign(eosrootsnew(rho_rd_root,T_rd_root,P_rd_root,r_root));
K=0;
for i=2:length(IRoots) % find intervals where function changes sign
flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_rd_root(i-1);
X0(K,2) = rho_rd_root(i);

end
end
for k=1:K % find roots

rad(k) = fzero(@(rho_rd_root) eosrootsnew(rho_rd_root,T_rd_root,P_rd_

root,r_root), X0(k,:));
end
end �

function h1 = eosrootsnew(rho_rd,T_rd,P_rd,r)
% roots of EOS (24c), Sanchez and Lacombe (1976)
h1 = rho_rd - eos24cnew(rho_rd,T_rd,P_rd,r); �
function [rho_rd,rhobin_pr,Pmatr] = mix_rules(P,T,phiA,P1_pr,P2_pr,T1_pr,T

2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12)
% Mixing rules for binary mixture (Lacombe Sanchez, 1976, Sato et al.,

1996)

Rgas=8.3144621; % gas constant (J/mol*K)
P12=(1-k12)*sqrt(P1_pr*P2_pr); % eq.8 (Sato et al., 1996);

modified from eq.79 (Lacombe Sanchez, 1976)
P21=P12;



A.1 code 71

P11=P1_pr;
P22=P2_pr;
Pmatr=[P11,P12;P21,P22];
P2_rd = P./P2_pr;
T2_rd= T./T2_pr;
phiB=1-phiA;
phi=[phiA,phiB]; % phi vector eq. 12
Pbin_pr= ((phiA*phiA*P11)+(phiA*phiB*P12)) + ((phiB*phiA*P21)

+(phiB*phiB*P22)); % eq.7
Pbin_rd=P./Pbin_pr;
phiA_0=(phiA.*P1_pr./T1_pr)./((phiA.*P1_pr./T1_pr)+(phiB.*P2_pr

./T2_pr));
phiB_0=(phiB.*P2_pr./T2_pr)./((phiA.*P1_pr./T1_pr)+(phiB.*P2_pr

./T2_pr));
phi_0=[phiA_0,phiB_0]; % phi_0 vector eq.11
Tbin_pr=Pbin_pr*(phiA_0*T1_pr/P1_pr + phiB_0*T2_pr/P2_pr); %

eq.9
Tbin_rd=T./Tbin_pr;
r1_0 = r1;
r2_0 = r2;
A=(phiA_0/r1_0)+(phiB_0/r2_0);
rbin=1./A;
w1= (phiA.*rho1_pr)./(rho2_pr-(phiA.*rho2_pr) + (phiA.*rho1_pr)

); % weight fraction
w2= (phiB.*rho2_pr)./(rho1_pr-(phiB.*rho1_pr) + (phiB.*rho2_pr)

);
v1=Rgas*T1_pr/P1_pr;
v2=Rgas*T2_pr/P2_pr;
v1_aux=v1*rho1_pr;
v2_aux=v2*rho2_pr;
x1=(w1/v1_aux)/(w1/v1_aux + w2/v2_aux); % molar fraction
x2=(w2/v2_aux)/(w1/v1_aux + w2/v2_aux);
rhobin_pr=1e6*(M2*x2+M1*x1)*Pbin_pr/(Rgas*Tbin_pr*rbin);% eq.

10
rho_rd = EOS1_anewbin(Pbin_rd, Tbin_rd,rbin);

end �
function phi1 = solubility( k12,T,P, P2_pr, P1_pr, T1_pr,T2_pr,rho1_pr,rho

2_pr,R,r1,r2,M1,M2)

% 1=water
phi1=zeros(1,length(P));
for i=1:length(P)

phi1(i)= root_bin(R,T(i),P(i),r1,r2,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho
2_pr,M1,M2,k12);

end
end �

Listing 3: Surface tension of pure components

% WATER SURFACE TENSION
% This program calculates the surface tension of water.
% Equations from Poser C.I. and Sanchez I.C.(1979). Surface tension theory
% of pure liquids and polymer melts. Journal of Colloid and Interface
% Science, Vol.69, No.3, 539-548.
% Experimental data from Kahl H.and Enders S.(2000). Calculations of
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% surface properties of pure fluids using density gradient theory and
% SAFT-EOS. Fluid Phase equilibria, 172, 27-42.

clear all; close all; clc;
disp(’------ plot water surface tension data -----------’);
filepath = ’data/water_surface_tension.txt’;
[T,st] = textread (filepath, ’%f %f’ );
figure(1)
plot(T,st,’^’,’MarkerSize’,7,’MarkerFaceColor’,’y’,’MarkerEdgeColor’,’y’)
hold on
xlabel(’T(K)’)
ylabel(’surface tension (mN/m)’)
title(’Surface tension of water’,’fontsize’,16)
box on;
% -------------------------------------------------------------------------
Rgas=8.3144621; % gas constant (J/mol*K)
alpha=1/207; % [1/K]
eps0= 7447; % [J/mol]
v= 2.614; % [cm^3/mol]
r= 5.823; % [adim]
M= 18.01528*1e-3; % water molecular weight (Kg/mol)
eps=eps0*(alpha*T)./(1+(alpha*T)); % [J/mol]
T_pr= eps/Rgas; % [K]
P_pr= eps/v; % [MPa=J/cm^3]
rho_pr= 1e6*M*P_pr./(Rgas*T_pr.*r);
k_rd= 0.91;
intg =integral(T,T_pr,r);
st=surf_ten_MB( k_rd,T_pr,P_pr,intg);
figure(1)
plot(T,st,’--’,’MarkerSize’,7,’MarkerFaceColor’,’y’,’MarkerEdgeColor’,’y’);
xlabel(’T(K)’)
ylabel(’reduced surface tension (mN/m)’)
title(’Surface tension of water’,’fontsize’,16)
box on;
axis([200 700 0 90]);
hold on �
function mi= chem_pot(rho,P,T,r)

v=1./rho;
mi=-rho+P.*v + T.*((v-1).*log(1-rho)+(1/r)*log(rho)); �
function h = eos24cnew(rho_rd,T_rd,P_rd,r)
% EOS (24c), Sanchez and Lacombe (1976)

h = 1 - exp(-rho_rd.^2./T_rd - (1-1./r).*rho_rd - P_rd./T_rd); �
function [rad] = EOS1_anew(P_rd_root, T_rd_root,r_root)
% this function calculates the liquid density, representing the root of EOS
% equation with the maximum value
% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids
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% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_rd_root = linspace(-0.1,0.99999,100);
IRoots = sign(eosrootsnew(rho_rd_root,T_rd_root,P_rd_root,r_root));
K=0;
for i=2:length(IRoots)

flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_rd_root(i-1);
X0(K,2) = rho_rd_root(i);

end;
end;
for k=1:K

rad(k) = fzero(@(rho_rd_root) eosrootsnew(rho_rd_root,T_rd_root,P_rd_

root,r_root), X0(k,:));
end �
function [rad] = EOS1_anew_B(P_rd_root, T_rd_root,r_root)
% this function calculates the liquid density, representing the root of EOS
% equation with the maximum value
% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids

% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_rd_root = linspace(-0.00001,1,1000);
IRoots = sign(eosrootsnew(rho_rd_root,T_rd_root,P_rd_root,r_root));
K=0;
for i=2:length(IRoots)
flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_rd_root(i-1);
X0(K,2) = rho_rd_root(i);

end;
end;
for k=1:K

rad(k) = fzero(@(rho_rd_root) eosrootsnew(rho_rd_root,T_rd_root,P_rd_

root,r_root), X0(k,:));
end
end �

function h1 = eosrootsnew(rho_rd,T_rd,P_rd,r)
% roots of EOS (24c), Sanchez and Lacombe (1976)

h1 = rho_rd - eos24cnew(rho_rd,T_rd,P_rd,r); �
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function h= eqroots(P,T,r)

for i=1:length(P);
rho=EOS1_anew(P(i), T,r);
rhol(i)=max(rho);
rhog(i)=min(rho);

end
h=chem_pot(rhol,P,T,r) - chem_pot(rhog,P,T,r) ; �
function [P_eq]=eq_search(T,r)

P=linspace(0,0.1,100); %P = linspace(-0.1,0.001,1000)
index2=0;
index1=0;
for j=1:length(P)

rho=EOS1_anew(P(j), T,r);
if (length(rho)>1) % if you are under critical point

find the roots
index2=[index2 j];

elseif (length(rho)==1)
index1=[index1 j];

else
disp(’no solutions found’)

end
end
if (length(index2)>1);

P_coexist=P(index2(2:end));
maxP=max(P_coexist);
P2=linspace(0,maxP,100);
IRoots = sign(eqroots(P2,T,r));
K=0;
for l=2:length(IRoots)

flag(l) = IRoots(l) + IRoots(l-1);
if flag (l) == 0

K=K+1;
X0(K,1) = P2(l-1);
X0(K,2) = P2(l);

end
end
P_ind=0;
for i=1:length(IRoots)

if IRoots(i)==0
P_ind=[P_ind i];

end
end
if (K==0)

P_eq=100;
disp(’K=0’);

else
for k=1:K

P_eq(k) = fzero(@(P2) eqroots(P2,T,r), X0(k,:));
end

end
else

P_eq=100;
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end �
function [ P_eq rhol rhog] = equilibrium_new(T,r)
% this function calculates the equibrium pressure and densities applying
% the equilibrium criterion based on equaling chemical potentials

A=eq_search(T,r);
if (A==100)

rhol=30000;
rhog=10000;
P_eq=100;

else
P_eq=A
if length(P_eq>1)

P_eq=max(P_eq)
end
rho=EOS1_anew_B(P_eq, T,r);
rhol=max(rho);
rhog=min(rho);

end �
function [int ] = integral(T,T_pr,r )
%This function calculates the integral of surface tension using trapezoidal

numerical integration trapz

T_rd=T./T_pr;
for j=1:length(T_rd)

[ P_eq,rhol,rhog ] = equilibrium_new(T_rd(j),r);
X=(rhog+((rhol-rhog)/100)):(rhol-rhog)/100:(rhol-((rhol-rhog)/100));
mi_eq= chem_pot(rhol,P_eq,T_rd(j),r);
A=X.*mi_eq;
Y1=P_eq-(X.^2)+T_rd(j).*((1-X).*log(1-X)+(X./r).*log(X));
Y2=Y1-A;
Y=Y2.^(1/2);
disp(’mi_eq’);disp(mi_eq);
int(j)=trapz(X,Y);

end �
function [st] = surf_ten_MB( k,T_pr,P_pr,intg)
%this function calculates the surface tension of a pure component

st_rd=(2*(k^(1/2))*intg)’
kBolt=1.38*1e-23; % Boltzmann constant(J/(K*mol))
P_pr=P_pr*1e6
st_pr=((T_pr.*kBolt).^(1/3)).*((P_pr).^(2/3)) % T=[K];P=[N/m^2];st_pr=[N/m

]
st=st_rd.*st_pr*1e3; %st=[mN/m] �

Listing 4: Surface tension of the binay mixture

% This program calculates the surface tension of a binary mixture.
% The set of equations is based on
% Poser and Sanchez (1981) Macromolecules, 14, 361-370.
% The integration algorithm uses the MATLAB function quad
% Simone Colucci, ’Sapienza’- UniversitÃă di Roma, Italy (January 2012)
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clear all;close all;clc;
k =1.3806505*1e-23; % Boltzmann constant [J/K]
Rgas=8.3144621; % Gas constant [J/(mol*K)]
conv = 4.186*1e3; % Conversion J-kcal
% equilibrium variables
P_eq = linspace(10,200,10); % [MPa]
T = 1273*ones(1,length(P_eq)); % [K]
% pure components parameters
T2_pr = 4.4491*1e3; % [K] magma
P2_pr = 4.9156*1e3; % [MPa]
rho2_pr = 2.4731*1e3; % [Kg/m^3]
M2 = 67.7*1e-3; % molecular weight (Kg/mol)
eps22 = T2_pr*Rgas/conv; % [kcal/mol]
v2_pr = T2_pr*Rgas/P2_pr; % [cm^3/mol]
r2 = (1e6)*M2*P2_pr/(Rgas*T2_pr*rho2_pr); % [adim]
alpha=1/207; % [1/K] water
eps0= 7447; % [J/mol]
M1= 18.01528*1e-3; % water molecular weight (Kg/mol)
eps11=eps0*alpha*T./( (1+alpha*T)*conv); % [kcal/mol]
v1_pr= 2.614; % [cm^3/mol]
r1= 5.823; % [adim]
T1_pr= eps11*conv./Rgas; % [K]
P1_pr= eps11*conv./v1_pr; % [MPa=J/cm^3]
rho1_pr= 1e6*M1*P1_pr./(Rgas*T1_pr*r1); % [Kg/m^3]
% binary mixture parameters
k12 = -0.0355; % [adim] % Mixing rules Lacombe and Sanchez, 1976
% interaction parameters
k11_rd = 0.3 ; % [adim]
k22_rd = 0.91 ; % [adim]
phi1_v = 1;
mi1_eq=zeros(1,length(P_eq));
mi2_eq=zeros(1,length(P_eq));
surf_ten=zeros(1,length(P_eq));
for i=1:length(P_eq)

% equilibrium chemical potentials
phi1 = solubility( k12,T(i),P_eq(i), P2_pr, P1_pr(i), T1_pr(i),...

T2_pr,rho1_pr(i),rho2_pr,Rgas,r1,r2,M1,M2);
P1_rd=P_eq(i)./P1_pr(i);
T1_rd=T(i)./T1_pr(i);
rho1_rd = EOS1_anew(P1_rd, T1_rd,r1);
mi1_eq(i) = chem_potnew(T(i),rho1_rd,P1_rd,T1_rd,r1);
mi2_eq(i) = equilibrium_mu((1-phi1),T(i),P_eq(i),P1_rd,T1_rd,P2_pr,P1_

pr(i),...
T2_pr,T1_pr(i),rho2_pr,rho1_pr(i),r2,r1,Rgas,M2,M1,k12);

% Calculates surface tension of binary mixture
surf_ten(i) = surface_ten(phi1,phi1_v,T(i),P_eq(i),P1_pr(i),P2_pr,...

T1_pr(i),T2_pr,rho1_pr(i),rho2_pr,v1_pr,v2_pr,eps11(i),eps22,...
r1,r2,M1,M2,k12,k11_rd,k22_rd,mi1_eq(i),mi2_eq(i),P_eq(i)); % [mN/m

]
disp(’surface_tension = ’);disp(surf_ten(i));

end
figure(1)
plot(P_eq,surf_ten,’-k’)
xlabel(’Pressure(MPa)’)
ylabel(’surface tension(mN/m)’)
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axis([0 210 0 80]); �
function [mi ] = chem_pot_bin( R,phi_root,r1,r2,phi2,r1_0,rho_bin_par,rho_

bin,P1_pr,P2_pr,Pmatr,T1_rd,T,P1_rd )
%this function calculates the chemical potential of the binary mixture

mi = R*T.*(log(phi_root) + (1-r1/r2).*phi2 + r1_0*rho_bin_par.*...
((P1_pr+P2_pr-2*Pmatr(1,2))./(P1_pr.*T1_rd)).*phi2.^2) + ...
r1_0*R*T.*(-rho_bin_par./T1_rd + P1_rd./(rho_bin.*T1_rd) ...
+ (1./rho_bin).*(( 1 - rho_bin_par).*log(1-rho_bin_par) + ...
(rho_bin_par/r1_0).*log(rho_bin_par)));

end �
function mi= chem_potnew(T,rho_rd,P_rd,T_rd,r)

R=8.3144621; % gas constant
mi=r*R*T*(-(rho_rd/T_rd) + (P_rd/(rho_rd*T_rd)) +(1-rho_rd)*log(1-rho_rd)/

rho_rd + (1/r)*log(rho_rd)); �
function h = eos24cnew(rho_rd,T_rd,P_rd,r)
% EOS (24c), Sanchez and Lacombe (1976)

h = 1 - exp(-rho_rd.^2./T_rd - (1-1./r).*rho_rd - P_rd./T_rd); �
function [rad] = EOS1_anew(P_rd_root, T_rd_root,r_root)
% this function calculates the liquid density, representing the root of EOS
% equation with the maximum value
% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids

% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_rd_root = linspace(-0.1,0.99999,100);
IRoots = sign(eosrootsnew(rho_rd_root,T_rd_root,P_rd_root,r_root));
K=0;
for i=2:length(IRoots)

flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_rd_root(i-1);
X0(K,2) = rho_rd_root(i);

end;
end;
for k=1:K

%
find roots
rad(k) = fzero(@(rho_rd_root) eosrootsnew(rho_rd_root,T_rd_root,P_rd_

root,r_root), X0(k,:));
end
end �
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function [rad] = EOS1_anewbin(P_rd, T_rd,r)

% Reference

****************************************************************************

% Sanchez & Lacombe (1976). An Elementary Molecular Theory of Classical
Fluids

% J. Chem. Phys. Vol. 80, N.21, 2352-2362.
%

**************************************************************************************

rho_cryt2=5;
rho_cryt1=-1;
r_aux=1-1/r;
discr=4+(T_rd*r_aux)^2 -4*T_rd*r_aux-8*T_rd/r;
if discr>0

rho_cryt2=-0.25*(T_rd*r_aux -2 -sqrt(discr));
rho_cryt1=-0.25*(T_rd*r_aux -2 +sqrt(discr));

end
F_cryt1=-rho_cryt1 + 1 - exp(-rho_cryt1.^2./T_rd - (1-1./r).*rho_cryt1 - P_

rd./T_rd);
F_cryt2=-rho_cryt2 + 1 - exp(-rho_cryt2.^2./T_rd - (1-1./r).*rho_cryt2 - P_

rd./T_rd);
if rho_cryt1>0 && rho_cryt2<5 && (F_cryt2*F_cryt1)<0

if 0>=F_cryt1>=-0.1 && (F_cryt2*F_cryt1)<0
rho_aux = linspace(0,5,100);
F_aux=-rho_aux + 1 - exp(-rho_aux.^2./T_rd - (1-1./r).*rho_aux - P_

rd./T_rd);
IRoots = sign(F_aux);
K=0;
for i=2:length(IRoots)

flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = rho_aux(i-1);
X0(K,2) = rho_aux(i);

end
end
for k=1:K

rad(k)= fzero(@(rho_rd) eosrootsnew(rho_rd,T_rd,P_rd,r), X0(k
,:));

end
rad=max(rad);

else
rad=10;
disp(’too much roots! rad=10’);
pause

end
else

rad= fzero(@(rho_rd) eosrootsnew(rho_rd,T_rd,P_rd,r), [0,5]);
end �
function h1 = eosrootsnew(rho_rd,T_rd,P_rd,r)
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h1 = rho_rd - eos24cnew(rho_rd,T_rd,P_rd,r); �
function h=equilibrium_bin(phi_root,T,P,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho

2_pr,T1_rd,P1_rd,r1_0,r2_0,R,M1,M2,k12)

rho1 = EOS1_anew(P1_rd, T1_rd,r1_0);
mi1 = chem_potnew(T,rho1,P1_rd,T1_rd,r1_0); % chemical potential of 1 in

the gas phase, it is equivalent to the pure
% chem. pot. because only

component 1 is present in
the gas phase

for k=1:length(phi_root)
phi2(k)=1-phi_root(k);
[rho_bin_rd(k),rho_bin_pr(k),Pmatr]=mix_rules(P,T,phi_root(k),P1_pr,P2_

pr,T1_pr,T2_pr, rho1_pr,rho2_pr,r1_0,r2_0,M1,M2,k12);
end
rho_bin_par= rho_bin_rd; %.*phi_root;
mi1_binmix = chem_pot_bin(R,phi_root,r1_0,r2_0,phi2,r1_0,rho_bin_par,rho_

bin_rd,P1_pr,P2_pr,Pmatr,T1_rd,T,P1_rd);
h = mi1_binmix-mi1; �
function [mu] = equilibrium_mu(phiA,T,P,PA_rd,TA_rd,PA_pr,PB_pr,TA_pr,TB_pr

,rhoA_pr,rhoB_pr,rA_0,rB_0,R,MA,MB,kAB)

for k=1:length(phiA)
phiB(k)=1-phiA(k);

[rho_bin_rd(k),Not2,Pmatr]=mix_rules(P,T,phiA(k),PA_pr,PB_pr,TA_pr,TB_

pr, rhoA_pr,rhoB_pr,rA_0,rB_0,MA,MB,kAB);
end
rho_bin_par= rho_bin_rd;
mu = chem_pot_bin(R,phiA,rA_0,rB_0,phiB,rA_0,rho_bin_par,rho_bin_rd,PA_pr,

PB_pr,Pmatr,TA_rd,T,PA_rd);
end �
function [ int ] = integfun( X2,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,v1_

pr,v2_pr,r1,r2,M1,M2,k12,...
mi1_eq,mi2_eq,P_eq,T )

% Integrand function
R=8.3144621;
T1_rd=T./T1_pr;
P1_rd=P_eq/P1_pr;
X=1-X2;
rho_bin_rd=zeros(1,length(X));
Not2=zeros(1,length(X));
vbin_pr_l=zeros(1,length(X));
phi2=zeros(1,length(X));
for i=1:length(X)

[rho_bin_rd(i),Not2(i),Pmatr]=mix_rules(P_eq,T,X(i),P1_pr,P2_pr,T1_pr,T
2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12);

vbin_pr_l(i)=X(i)*v1_pr + (1-X(i))*v2_pr; % [cm^3/mol] Lacombe and
Sanchez, 1976, eq.19

phi2(i)=1-X(i);
rho_bin_par(i)= rho_bin_rd(i);

end
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mu = chem_pot_bin(R,X,r1,r2,phi2,r1,rho_bin_par,rho_bin_rd,P1_pr,P2_pr,
Pmatr,T1_rd,T,P1_rd);

par_den1= rho_bin_rd.*vbin_pr_l;
Delta_A=abs(par_den1.*(mu -mi1_eq));
int = rho_bin_rd.*sqrt(Delta_A).*(1./vbin_pr_l); % [(mol/cm^3)((J/cm^3)

^1/2)]
end �
function [ int ] = integral( P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,v1_pr,

v2_pr,r1,r2,M1,M2,k12,PHI2_II,...
PHI2_I,mi1_eq,mi2_eq,P_eq,T )

% Integral eq. 8 Harrison et al., 1996

R=8.3144621;
phi_plot=linspace(0,0.999,1000);
T1_rd=T./T1_pr;
P1_rd=P_eq/P1_pr;
phi2=zeros(1,length(phi_plot));
rho_bin_rd=zeros(1,length(phi_plot));
Not2=zeros(1,length(phi_plot));
vbin_pr_l=zeros(1,length(phi_plot));
for k =1:length(phi_plot)

phi2(k)=1-phi_plot(k);
[rho_bin_rd(k),Not2(k),Pmatr]=mix_rules(P_eq,T,phi_plot(k),P1_pr,P2_pr

,...
T1_pr,T2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,

k12);
vbin_pr_l(k)=phi_plot(k)*v1_pr + phi2(k)*v2_pr;

end
rho_bin_par= rho_bin_rd;
phi_aux=1-PHI2_II;
[rho_aux,rho_bin_pr,Not3] = mix_rules(P_eq,T,phi_aux,P1_pr,P2_pr,T1_pr,T2_

pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12);
rho1_rd = EOS1_anew(P1_rd, T1_rd,r1);
% ------------------------linear density profile---------------------------
mu = chem_pot_bin(R,phi_plot,r1,r2,phi2,r1,rho_bin_par,rho_bin_rd,P1_pr,P2_

pr,Pmatr,T1_rd,T,P1_rd);
% plot Free Energy profile
par_den1= rho_bin_rd.*vbin_pr_l;
Delta_A_plot=par_den1.*(mu -mi1_eq);
D=par_den1.*mu;
H=par_den1.*mi1_eq;
figure(3)
plot(phi_plot,H);
xlabel(’water volume fraction’)
ylabel(’Free Energy (J/mol)’);
hold on
figure(3)
plot(phi_plot,D,’r’);
hold on
pause
close all
int = quad(@(X) integfun(X,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,v1_pr,v

2_pr,r1,r2,M1,M2,k12,...
mi1_eq,mi2_eq,P_eq,T),PHI2_I,PHI2_II); %[(1/cm^3)((J/cm^3)^1/2)]

end
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�
function [rho_rd,rhobin_pr,Pmatr] = mix_rules(P,T,phiA,P1_pr,P2_pr,T1_pr,T

2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12)
% Mixing rules for binary mixture (Lacombe Sanchez, 1976, Sato et al.,

1996)

Rgas=8.3144621; % gas constant (J/mol*K)
P12=(1-k12)*sqrt(P1_pr*P2_pr); % eq.8 (Sato et al., 1996);

modified from eq.79 (Lacombe Sanchez, 1976)
P21=P12; %sqrt(P1_pr*P2_pr);
P11=P1_pr;
P22=P2_pr;
Pmatr=[P11,P12;P21,P22];
P2_rd = P./P2_pr;
T2_rd= T./T2_pr;
phiB=1-phiA;
phi=[phiA,phiB]; % phi vector eq. 12
Pbin_pr= ((phiA*phiA*P11)+(phiA*phiB*P12)) + ((phiB*phiA*P21)

+(phiB*phiB*P22));%phiA*phiB*P12; %dot(phi,(phi*Pmatr)); %
eq.7

Pbin_rd=P./Pbin_pr;
phiA_0=(phiA.*P1_pr./T1_pr)./((phiA.*P1_pr./T1_pr)+(phiB.*P2_pr

./T2_pr));
phiB_0=(phiB.*P2_pr./T2_pr)./((phiA.*P1_pr./T1_pr)+(phiB.*P2_pr

./T2_pr));
phi_0=[phiA_0,phiB_0]; % phi_0 vector eq.11
Tbin_pr=Pbin_pr*(phiA_0*T1_pr/P1_pr + phiB_0*T2_pr/P2_pr); %sum

(phi_0*Tcd_pr./Pcd_pr); % eq.9
Tbin_rd=T./Tbin_pr;
r1_0 = r1;
r2_0 = r2;
A=(phiA_0/r1_0)+(phiB_0/r2_0);%(phiA_0/r1_mod)+(phiB_0/r2_mod);
rbin=1./A;
w1= (phiA.*rho1_pr)./(rho2_pr-(phiA.*rho2_pr) + (phiA.*rho1_pr)

); % weight fraction
w2= (phiB.*rho2_pr)./(rho1_pr-(phiB.*rho1_pr) + (phiB.*rho2_pr)

);
v1=Rgas*T1_pr/P1_pr;
v2=Rgas*T2_pr/P2_pr;
v1_aux=v1*rho1_pr;
v2_aux=v2*rho2_pr;
x1=(w1/v1_aux)/(w1/v1_aux + w2/v2_aux); % molar fraction
x2=(w2/v2_aux)/(w1/v1_aux + w2/v2_aux);
rhobin_pr=1e6*(M2*x2+M1*x1)*Pbin_pr/(Rgas*Tbin_pr*rbin);% eq.

10
rho_rd = EOS1_anewbin(Pbin_rd, Tbin_rd,rbin);

end �
function DeltaA = plot_aux( X,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,v1_

pr,v2_pr,r1,r2,M1,M2,k12,...
mi1_eq,mi2_eq,P_eq,T )

for i=1:length(X)
[rho_rd_l(i),Tbin_rd_l(i),rbin(i),Pbin_pr(i)] = mix_rules_integ(P_eq,T,

X(i),P1_pr,P2_pr,T1_pr,T2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12);
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vbin_pr_l(i)=X(i)*v1_pr + (1-X(i))*v2_pr; % [cm^3/mol] Lacombe and
Sanchez, 1976, eq.19

end
DeltaA = plot_G(X,Pbin_pr,vbin_pr_l,rbin,r1,r2,rho_rd_l,...

Tbin_rd_l,mi1_eq,mi2_eq,P_eq); % [J/cm^3]
end �
function [ DeltaA ] = plot_G(X,Pbin_pr,vbin_pr_l,rbin,r1,r2,rho_rd_l,...

Tbin_rd_l,mi1_eq,mi2_eq,P_eq)

X2 = 1-X; % mer fraction [adim]
v_rd_l = 1./rho_rd_l;
DeltaA = (Pbin_pr.*rho_rd_l).*(-rho_rd_l + Tbin_rd_l.*...

((v_rd_l-1).*log(1-rho_rd_l) + (1./rbin).*log(rho_rd_l) + ...
(X./r1).*log(X) + (X2./r2).*log(X2))) + P_eq - (rho_rd_l./(vbin_pr_l))

.*...
(X.*mi1_eq + X2.*mi2_eq); % [J/cm^3=MPa] eq.54 Poser and Sanchez, 1981

G1=(Pbin_pr.*rho_rd_l).*(-rho_rd_l + Tbin_rd_l.*...
((v_rd_l-1).*log(1-rho_rd_l) + (1./rbin).*log(rho_rd_l) + ...
(X./r1).*log(X) + (X2./r2).*log(X2)))+P_eq;

G2=(rho_rd_l./(vbin_pr_l)).*...
(X.*mi1_eq + X2.*mi2_eq);

figure(5)
plot(X,G1,’r’)
hold on
figure(5)
plot(X,G2)
hold on
figure(6)
plot(X,rho_rd_l);
hold on
end �
function [rad] = root_bin( R,T,P,r1,r2,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho

2_pr,M1,M2,k12)

P1_rd=P./P1_pr;
T1_rd=T./T1_pr;
phi_root = linspace(0.00001,0.2,100);
IRoots = sign(equilibrium_bin(phi_root,T,P,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,

rho2_pr,T1_rd,P1_rd,r1,r2,R,M1,M2,k12));
K=0;
for i=2:length(IRoots) % find intervals

where function changes sign
flag(i) = IRoots(i) + IRoots(i-1);
if flag (i) == 0

K=K+1;
X0(K,1) = phi_root(i-1);
X0(K,2) = phi_root(i);

end
end
if K==0

rad=2;
else

for k=1:K % find roots
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rad_temp(k) = fzero(@(phi_root) equilibrium_bin(phi_root,T,P,P1_pr,
P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,T1_rd,P1_rd,r1,r2,R,M1,M2,k
12), X0(k,:));

if K>1
phiA= rad_temp(k);
[rho_test_rd,rho_bin_pr,Not3] = mix_rules(P,T,phiA,P1_pr,P2_pr,

T1_pr,T2_pr, rho1_pr,rho2_pr,r1,r2,M1,M2,k12);
rho_test(k) = rho_test_rd*rho_bin_pr;

end
end
rad=rad_temp(1);
if K>1

[rho_test_min,ind] = min(rho_test(1:K));
rad=rad_temp(ind);
disp(’K>1’);

end
end �
function phi1 = solubility( k12,T,P, P2_pr, P1_pr, T1_pr,T2_pr,rho1_pr,rho

2_pr,R,r1,r2,M1,M2)

% 1=water
for i=1:length(P)

phi1(i)= root_bin(R,T(i),P(i),r1,r2,P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho
2_pr,M1,M2,k12);

end
end �
function [ sigma ] = surface_ten(phi1_l,phi1_v,T,P,P1_pr,P2_pr,T1_pr,T2_pr

,...
rho1_pr,rho2_pr,v1_pr,v2_pr,eps11,eps22,r1,r2,M1,M2,...
k12,k11_tilde,k22_tilde,mi1_eq,mi2_eq,P_eq )

% Surface Tension of a binary mixture

Rgas=8.3144621; % Gas constant [J/(mol*K)]
NA = 6.022136736*1e23; % Avogadro Number [1/mol]
% liquid phase
[rho_rd_l,rhobin_pr,Pmatr] = mix_rules(P,T,phi1_l,P1_pr,P2_pr,T1_pr,T2_pr,

rho1_pr,rho2_pr,r1,r2,M1,M2,k12);
vbin_pr_l=phi1_l*v1_pr + (1-phi1_l)*v2_pr; % [cm^3/mol] Lacombe and

Sanchez, 1976, eq.19
% vapour phase
P1_rd=P./P1_pr;
T1_rd=T./T1_pr;
rho_rd_v = EOS1_anew(P1_rd, T1_rd,r1);
vbin_pr_v=v1_pr; % [cm^3/mol]
% Densities
phi2_l = 1-phi1_l; % mer fraction [adim]
phi2_v = 0;
rho1_l = phi1_l.*rho_rd_l./vbin_pr_l; % [mol/cm^3], Poser and Sanchez,

1981, eq.53
rho2_l = phi2_l.*rho_rd_l./vbin_pr_l;
rho1_v = phi1_v.*rho_rd_v./vbin_pr_v;
rho2_v = phi2_v.*rho_rd_v./vbin_pr_v;
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Delta_rho1 = rho1_l - rho1_v; % [mol/cm^3]
Delta_rho2 = rho2_l - rho2_v;
PHI2_II = phi2_l; % [adim]
PHI2_I = phi2_v;
% surface tension
k11 = 2*P1_pr*((v1_pr)^(8/3))*k11_tilde; % eq. 15 (Harrison et al., 1996)

[cm^5 J/mol]
k22 = 2*P2_pr*((v2_pr)^(8/3))*k22_tilde;
integ = integral(P1_pr,P2_pr,T1_pr,T2_pr,rho1_pr,rho2_pr,v1_pr,v2_pr,r1,r2,

M1,M2,k12,PHI2_II,...
PHI2_I,mi1_eq,mi2_eq,P_eq,T );

sigma = sqrt(2)*abs(sqrt(k22) + sqrt(k11).*(Delta_rho1./Delta_rho2)).*integ
; % Equation from Harrison et al., 1996

sigma = sigma*1e-3; % [mN/m] �
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C.C. Mourtada Bonnefoi and D. Laporte. Experimental study of homogeneous
bubble nucleation in rhyolitic magmas. Geophysical Research Letters, 26:3505–
3508, 1999.

O. Navon and V. Lyakhovsky. Vesiculation processes in silicic magmas. Geological
Society, London, Special Publications, 145:27–50, 1998.

D.M. Palladino and E. Agosta. Pumice fall deposits of the western vulsini
volcanoes (central italy). Journal of Volcanology and Geothermal Research, 78:
77–102, 1997.

D.M. Palladino and J. Taddeucci. The basal ash deposit of the sovana eruption
(vulsini volcanoes, central italy): the product of a dilute pyroclastic density
current. Journal of Volcanology and Geothermal Research, 87:233–254, 1998.

D.M. Palladino and G.A. Valentine. Coarse-tail vertical and lateral grading in
pyroclastic flow deposits of the latera volcanic complex (vulsini, central italy):
origin and implications for flow dynamics. Journal of Volcanology and Geohermal
Research, 69:343–364, 1995.

D.M. Palladino, S. Simei, and S. Kyriakopoulos. On magma fragmentation by
conduit shear stress: evidence from the kos plateau tuff, aegean volcanic arc.
Journal of Volcanology and Geothermal Research, 178:807–817, 2008a.

D.M. Palladino, S. Simei, and R. Trigila. The campanian active volcanoes: Somma-
vesuvius and campi flegrei. Guide book, 70th EAGE Conference, pages 1–33,
2008b.



bibliography 89

D.M. Palladino, G. Sottili, S. Simei, and R. Trigila. Integrated approach for the
reconstruction of stratigraphy and geology of quaternary volcanic terrains: an
application to the vulsini volcanoes (central italy). In G. Groppelli e L. Viereck
(Eds.), "Stratigraphy and geology in volcanic areas", Geological Society of America,
Special Paper, 464:66–84, 2010.

M. Polacci, P. Papale, and M. Rosi. Textural heterogeneities in pumices from
the climactic eruptions of mount pinatubo, 15 june 1991, and implications for
magma ascent dynamics. Bulletin of Volcanology, 63:83âĂŞ97, 2001.
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