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Introduction

Gamma-ray bursts (GRB) are flashes of electromagnetic radiation observed at

an average rate of a few per day throughout the Universe, up to redshifts of

9 [1]. Their maximum luminosity can surpass the luminosity of all the visible

objects in the Universe, they are the brightest sources of electromagnetic radia-

tion known so far. Until 1997 they were detected only in gamma-rays with poor

angular resolution and there was no direct information about the distance from

them and the energy involved. From early 1997 the Beppo-SAX satellite started

to detect theoretically predicted X-ray afterglows of GRBs. These X-ray measure-

ments yielded positions of GRBs on the sky sufficiently accurate to allow the

follow up by large ground-based optical telescopes. These latter observations

identified host galaxies of GRBs thus proving their cosmological origin. The en-

ergy output estimated assuming isotropic energy release was found to range

from 1048 up to 1054 ergs. The duration of GRBs ranges from milliseconds up to

thousands of seconds.

The only known source of such large energy released on such a short time

scale is the gravitational energy. A theorem [2] shows that both Coulomb and

rotational energy of a black hole are in principle extractable, giving respectively

up to 50% and up to 29% of the total mass-energy. As simulations show, large

amount of gravitational energy (of the order of a solar rest mass) can be released

in a very short time (seconds or less) in a very small region (tens of kilometers

or so) by a core collapse of a massive star or by a merger of two compact objects,

e.g. neutron stars and/or black holes [3–5].

The gravitational energy, released in the source of GRB, must be ultimately

converted into electromagnetic energy detected by distant observer. The electro-

magnetic model of GRBs [6] assumes that the energy in the source of GRB is

converted first into the energy of electromagnetic field, which is transported out

of the source in the form of a Poynting flux. Only later this energy is dissipated in

the form of electromagnetic radiation. Most of proposed models, however, focus
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Introduction

on another possibility. Within the fireball model ([7, 8] and references therein)

and the fireshell model ([9] and references therein) it is assumed that the energy

in the source of the GRB is converted into relativistic optically thick plasma.

Such plasma expands driven by radiative pressure until it becomes transparent

to photons transported together with the plasma. The first electromagnetic sig-

nal from GRBs is expected to come from this transparency event. The spectrum

characterizing emission from transparency is expected in the literature to be

nearly black body [10–13]. Pure black body spectra were never found in GRBs.

Within the fireball model the observed nonthermal spectra are assumed to orig-

inate from relativistic shocks [7]. Within the fireshell model such nonthermal

spectra are assumed to originate as a result of convolution over Equitemporal

Surfaces [14] and integration over time [5]. However, the transparency emission,

referred to as the Proper GRB, remain a key ingredient of the fireshell model.

Both its energy and time separation from the extended afterglow peak emission

are predicted and tested with observations [5].

Recent observations with unprecedented spectrum and time resolution by

Fermi Gamma-ray Space Telescope satellite indicate that subdominant thermal com-

ponent is present in many, if not all observed GRB spectra, see e.g. [15–19]. In the

literature such thermal component is accounted for by the so-called photospheric

models [12, 20–26]. All these works based essentially on the steady wind model

of Paczynski [27] show that observed spectrum of the photospheric emission is

broader than the Planck function. However, the relativistic outflows expected to

originate from energy release in GRB sources are by definition finite in time and

in space. These finiteness effects were never studied in the literature, except the

work [23] where the switching off relativistic wind was considered. Before con-

sidering the theory of photospheric emission from relativistic outflows, which is

the central topic of this thesis, in Chapter 1 we consider relativistic degeneracy

of electron-positron-photon plasma.

Observations indicate that plasma in the sources of GRBs is relativistic, i.e.

average energy per particle is comparable to or may exceed their rest-mass en-

ergy. Such plasma, that may be created out of equilibrium, is shown to relax

to thermal equilibrium on a time scale much shorter than its dynamical time

[28, 29]. However, the effects of relativistic degeneracy were neglected in pre-

vious works: particles were assumed to follow Boltzmann statistics. Besides,

the three-particle interactions were taken into account approximately, assum-

ing that plasma reaches kinetic equilibrium before they become relevant. This
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last approximation is justified in mildly relativistic plasma, but fails for higher

energy densities, as rates of three-particle interactions become comparable to

two-particle ones. Therefore, in Chapter 1 we revised the issue of thermaliza-

tion in relativistic degenerate plasma. In the collision integrals of relativistic

Boltzmann equations we take into account the Pauli blocking and the Bose en-

hancement factors of all two-particle and three-particle interactions in plasma.

As in previous works [28, 30] two-particle interactions are described by exact

quantum electrodynamics (QED) matrix elements. In addition, all three-particle

interactions are now described by QED matrix elements as well. Relaxation time

scales are computed and compared with previous ones of [31].

Provided that relativistic plasma in the sources of GRBs reaches thermal equi-

librium prior to its expansion, relativistic thermodynamics and hydrodynamics

can be applied to description of such a plasma. A brief review of GRB hydrody-

namics is given in Chapter 2. Particular attention is given to initial and boundary

conditions for relativistic hydrodynamic equations. Two popular models in the

literature, namely relativistic steady wind and relativistically expanding thin

shell, are recalled. We propose a new hydrodynamic model of relativistic out-

flow, which represents steady wind and thin shell in corresponding limiting

cases. We also discuss the hydrodynamic spreading [32, 33] due to possible

Lorentz factor gradient. In addition we consider another mechanism of radial

spreading due to thermal velocity dispersion in expanding plasma.

In Chapter 3 we consider the optical depth of relativistically moving medium.

On simple examples we show the appearance of several asymptotic solutions for

the optical depth. The hydrodynamic model proposed in Chapter 2 is used to

compute the optical depth and corresponding transparency radius of relativistic

outflows. The new notions of photon thick and photon thin outflows are intro-

duced for illustration of corresponding asymptotic expressions of optical depth.

In Chapter 4 we focus on light curves and spectra of the emission originating

from transparency of relativistic outflows. Our method is based on the solu-

tions of the radiative transfer equation. For photon thick outflows light curves

and spectra are computed using “fuzzy photosphere” approximation, which ac-

counts for the emission from different regions of the outflow by the correspond-

ing probability density function introduced in [23], see also [25]. For photon thin

outflows radiative diffusion is found to play important role, in contrast with the

photon thick case, photons are decoupled from plasma from the boundaries of

the outflow, where they are transported to by diffusion.
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Introduction

In a different field of astrophysics and cosmology since the pioneering works

of Zwicky [34, 35], observations of galaxies and clusters of galaxies have shown

that the orbital velocities in these systems are around several hundreds km/s,

which implies that the ratio between the total mass and the luminous mass is ten

times higher than expected for a galaxy containing only luminous matter. This

problem did not receive much attention from astrophysicists, who thought it to

be a measurement problem, until the 1970s, when more accurate observations

were shown that the orbital velocities tend to a constant value far away from the

center of the galaxies, implying that there was some amount of non-luminous

matter present, see e.g. [36, 37]. This non-luminous matter was dubbed Dark

Matter (DM). More recently, using gravitational lensing and Cosmic Microwave

Background (CMB) probes like COBE and WMAP, DM was shown to be present

also in clusters of galaxies and at cosmological scales. Using CMB data and

constraints from the Big Bang Nucleosynthesis, it also appears that this matter

in not baryonic, i.e., not composed of three quarks like protons and neutrons

[38]. What is actually DM made of and how it is distributed in the galaxies is

still unknown.

The aim of the Chapter 5 is to present a unified approach in modeling of the

dark matter distribution in the galactic halos and also in the galactic center. We

model the DM as fermionic noninteracting particles. The semidegenerate config-

urations of fermionic DM in equilibrium were studied in [39–41] in Newtonian

gravity and in General Relativity. We extend these studies, comparing the ro-

tational curves of such configurations to the phenomenological models of DM

distributions in Galaxies. We also obtain the limits on the configuration param-

eters that follows from the law of constant DM surface density [42–45].
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Chapter 1

Relativistic degeneracy in

nonequilibrium electron-positron

plasma

The description of processes involving electron-positron plasma is required in

many phenomena in physics and astrophysics [5]. The standard cosmological

model includes lepton era with electron-positron plasma at high temperature

and initially in thermal equilibrium, see e.g. [46]. Strong electromagnetic fields

are generated in laser experiments aiming at production of electron-positron

pairs [47, 48]. When electromagnetic field invariants E2−H2 and E ·H approach

critical value, vacuum breakdown is predicted [49] to lead to copious pair pro-

duction, ultimately forming electron-positron plasma [50]. Strong electromag-

netic fields are thought to occur in astrophysical conditions, near such compact

objects as black holes [51], hypothetical strange stars [52, 53] and possibly neu-

tron stars [54].

Pair production by vacuum breakdown or by laser beam interactions is in

principle the out of equilibrium process. Relaxation of electron-positron plasma

to thermal equilibrium has been considered in [28, 30]. There relativistic Boltz-

mann equations with exact QED collision integrals taking into account all rele-

vant two-particle (Bhabha scattering, Møller scattering, Compton scattering, pair

creation and annihilation) and three-particle (relativistic bremsstrahlung, three

photon annihilation, double Compton scattering, and radiative pair production)

interactions were solved numerically. It was confirmed that a metastable state

called "kinetic equilibrium" [55] exists in such plasma, which is characterized by

the same temperature of all particles, but nonnull chemical potentials. Such state
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

occurs when the detailed balance of all two-particle reactions is established. It

was pointed out that direct and inverse three-particle interactions become rel-

evant when kinetic equilibrium has been reached. These three-particle inter-

actions are shown to be essential [28] in bringing electron-positron plasma to

thermal equilibrium, as they are particle non-conserving processes.

In [31] relaxation timescales for optically thick electron-positron plasma in

a wide range of temperatures and proton loadings were computed numerically

using the kinetic code developed in [28, 30]. These timescales were previously

estimated in the literature by order of magnitude arguments using the reaction

rates of the dominant processes [56, 57]. It was shown that these numerically

obtained timescales differ from previous estimations by several orders of mag-

nitude. In the description of plasma Boltzmann statistics of particles was used

in all these works. However, electrons, positrons and photons are quantum par-

ticles fulfilling Fermi-Dirac and Bose-Einstein statistics, respectively. This leads

to change of reaction rates considered firstly in [58, 59]. The role of relativistic

degeneracy in pair plasma in establishing thermal equilibrium has never been

studied. In this Chapter we bridge this gap.

We generalize previous works on thermalization of uniform isotropic neutral

pair plasma. In addition to collision integrals for two-particle interactions ex-

pressed through QED matrix elements we take into account also three-particle

interactions in the same way. Plasma degeneracy is accounted for by quantum

corrections to collision integrals with the corresponding Pauli blocking and Bose

enhancement factors. In Sec. 1.1 basic parameters of pair plasma are introduced.

In Sec. 1.2 concepts of kinetic and thermal equilibria and their relations to de-

tailed balance conditions are recalled. In Sec. 1.3 relativistic Boltzmann equa-

tion is introduced. In Sec. 1.3.1 two-particle collision integrals are described.

In Sec. 1.3.2 three-particle collision integrals are introduced. In Sec. 1.4 details

of adopted numerical scheme are given. In Sec. 1.5 our numerical results of

integration of Boltzmann equations for several interesting cases are described.

Conclusions follow in Sec. 1.6.

1.1 Basic parameters

The qualitative character of processes in electron-positron plasma is determined

by a number of parameters, which we recall below, for details see [30].

The average energy per particle 〈ε〉 determines wether plasma is in relativistic

14



1.1. Basic parameters

D < 1

D > 1

20 22 24 26 28 30
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-

3

Figure 1.1: Number density-energy density diagram of relativistic electron-

positron plasma. Solid curve shows critical particle density ncr(ρ), obtained from

Eq. (1.8) with ξ = 0. Dashed line corresponds to transition from nondegenerate

D > 1 to degenerate D < 1 plasma, where D is defined by Eq. (1.2).

or in non-relativistic domain. We consider mildly relativistic plasma with

0.01 .
〈ε〉

mec2 . 10, (1.1)

where me is electron mass, c is the speed of light. This range contains both rela-

tivistic and non-relativistic domains. The upper limit is chosen to avoid thermal

production of other particles such as neutrinos and muons, while the lower limit

is required to have sufficient pair density [31].

The degeneracy parameter [60, p. 352] is defined as

D =
1

nλ3
th

, (1.2)

where n is number density of particles, λth =
ch̄
kT

is the thermal wave-length, k

is Boltzmann constant, T is temperature, h̄ = h/(2π), h is Planck constant. In

Fig. 1.1 on the number density–energy density diagram for relativistic electron-

positron plasma we show nondegenerate (D > 1) and degenerate (D < 1) re-

gions.
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

The plasma parameter g is defined as

g =
1

nλ3
D

, (1.3)

where the Debye length [60, p. 351] is

λD =


√

kT
4πe2n

, D > 1,√
EF

4πe2n
, D < 1,

(1.4)

e is electron charge, and EF is the Fermi energy. For g� 1 plasma is called ideal,

and Boltzmann equation for one-particle distribution functions can be used for

its description. This is indeed the case for relativistic plasma, as discussed in [60,

p. 352].

The classicality parameter defined by

κ =
e2

h̄vr
=

α

βr
, (1.5)

where α is the fine-structure constant, vr = βrc is mean relative velocity of the

particles, determines the type of cross section to be used in charged particle

collisions. In relativistic plasma κ � 1, which requires quantum description.

The Coulomb logarithm defined by

Λ =
MλDΓrvr

h̄
, (1.6)

whereM is the reduced mass of charged particles, Γr = (1− β2
r)
−1/2, character-

izes the strength of screening in Coulomb interactions.

Finally, the optical depth τ characterizes intensity of interactions between pho-

tons and other particles. We discuss the computation of this important parameter

in details in the following Chapters. In static relativistic plasma, which is the case

in this Chapter, the optical depth can be estimated as

τ = σnl, (1.7)
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1.2. Kinetic and thermal equilibria

where n is electron density, σ is Thompson cross section, and l is plasma linear

dimension. In this Chapter we assume τ � 1.

1.2 Kinetic and thermal equilibria

The concepts of kinetic and thermal equilibria play important role in description

of relativistic plasma. They both are connected with conditions of detailed bal-

ance established for two-particles and three-particles interactions, respectively.

1.2.1 Two-particle interactions and kinetic equilibrium

Kinetic equilibrium [55, 61] is defined as the state with vanishing difference be-

tween the rates of direct and inverse interactions for each of the two-particle

processes. Such state is characterized by two parameters: common temperature

of all particles T and non-null chemical potential µ. Both these parameters can

be found from given energy density ρ and number density n by the system of

equations



n =
8πm3

e c3

h3

(
2
∫ ∞

1

ε
√

ε2 − 1
eε/θ−ξ + 1

dε +
∫ ∞

0

ε2

eε/θ−ξ − 1
dε

)
,

ρ =
8πm4

e c5

h3

(
2
∫ ∞

1

ε2
√

ε2 − 1
eε/θ−ξ + 1

dε +
∫ ∞

0

ε3

eε/θ−ξ − 1
dε

)
,

(1.8)

where ε =
ε

mec2 is dimensionless energy, θ =
kT

mec2 is dimensionless temperature

and ξ =
µ

kT
is dimensionless chemical potential.

For instance, the detailed balance in electron-positron pair creation and an-

nihilation process

e+1 + e−2 ←→ γ3 + γ4 (1.9)
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

Table 1.1: Two-particle processes in electron-positron plasma and detailed bal-

ance conditions

Binary interactions Conditions

Møller and Bhabha scattering

e±1 e±2 ←→ e±′1 e±′2 n± =
1

exp ε±−µ±
kT±

+ 1

e±e∓ ←→ e±′e∓′ T+ = T−
Compton scattering

e±γ←→ e±γ′ nγ =
1

exp εγ−µγ

kTγ
− 1

T± = Tγ

Pair production and annihilation

γγ′ ←→ e±e∓ 2µγ = µ+ + µ−

is described by the condition

f+(ε1) f−(ε2)

[
1 +

fγ(ε3)

gγh−3

] [
1 +

fγ(ε4)

gγh−3

]
= fγ(ε3) fγ(ε4)

[
1− f+(ε1)

g+h−3

] [
1− f−(ε2)

g−h−3

]
, (1.10)

where fα(ε) are distribution functions of particle species α, gα = 2 are spin

weights of particles. Energies of interacting particles related by the conservation

law ε1 + ε2 = ε3 + ε4. The distribution functions fα are normalized as

nα(t) =
∫

fα(p, t)d3p, (1.11)

where nα are the corresponding number densities. Similar conditions hold for

the detailed balance conditions in all other two-particle interactions listed in

Tab. 1.1. Combining these conditions and requiring that distribution functions

for electrons and positrons (photons) have Fermi-Dirac (Bose-Einstein) form we

arrive to [30]

θ = θ+ = θ− = θγ, ξ = ξγ = ξ+ = ξ−. (1.12)
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1.3. Boltzmann equations

In fact, the chemical potential in kinetic equilibrium is constrained by the con-

dition ξ ≤ 0. The equality in this relation implies that there is a critical number

density ncr given by Eq. (1.8) with ξ = 0. Since in two-particle processes the total

number of particles (number density) is conserved, for n > ncr Bose conden-

sation of photons is expected. However, in reality three-particle interactions do

change the number of particles bringing the system to thermal equilibrium with

ξ = 0 [62].

1.2.2 Three-particle interactions and thermal equilibrium

Thermal equilibrium is defined as the state with vanishing difference between the

rates of direct and inverse interactions of all processes. It was shown in [28]

that in electron-positron plasma two-particle processes are insufficient to bring

the non-equilibrium system to thermal equilibrium. The necessary condition for

reaching thermal equilibrium is detailed balance in three-particle processes.

For instance, the detailed balance in double Compton scattering

e±1 + γ2 ←→ e±3 + γ4 + γ5 (1.13)

is described by the condition

f±(ε1)

2h−3
fγ(ε2)

2h−3

[
1− f±(ε3)

2h−3

] [
1 +

fγ(ε4)

2h−3

] [
1 +

fγ(ε5)

2h−3

]
=

f±(ε3)

2h−3
fγ(ε4)

2h−3
fγ(ε5)

2h−3

[
1− f±(ε1)

2h−3

] [
1 +

fγ(ε2)

2h−3

]
. (1.14)

Provided that kinetic equilibrium is established, this condition, as any of the

corresponding conditions of all three-particle processes, constrains the chemical

potential to vanish, ξ = 0.

1.3 Boltzmann equations

In uniform and isotropic electron-positron plasma relativistic Boltzmann equa-

tions for distribution functions fα have the following form [28]:

d
dt

fα(p, t) = ∑
q

(
η

q
α − χ

q
α fα(p, t)

)
, (1.15)
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

Table 1.2: Particle interactions in the pair plasma.

Two-particle processes Three-particle processes

Compton scattering Double Compton

e±γ−→e±′γ′ e±γ←→e±′γ′γ′′

Coulomb, Møller and Bhabha scattering Bremmstrahlung

e±1 e±2 −→ e±′1 e±′2 e±1 e±2 ←→e±′1 e±′2 γ

e+e− −→ e+′e−′ e+e−←→e+′e−′γ

Creation/annihilation Three-photon annihilation

e+e− ←→ γ1γ2 e+e−←→γ1γ2γ3

Pair creation/annihilation

γ1γ2←→e+e−γ′

e±γ←→e±′e+e−

where the sum enumerated by index q is taken over all two- and three-particle

processes q listed in Tab. 1.2, η
q
α and χ

q
α are, respectively, emission and absorption

coefficients.

1.3.1 Two-particle collision integrals

Consider interaction of two incoming particles of species I and I I in quantum

states 1 and 2, producing two outgoing particles of species I I I and IV in quan-

tum states 3 and 4. Let initial particle momenta be p1 in a given range d3p1 and

p2 in d3p2, and final particle momenta be p3 in d3p3 and p4 in d3p4, respectively.

This process can be symbolically represented as follows

I1 + I I2 −→ I I I3 + IV4. (1.16)

The corresponding inverse process is thus

I I I3 + IV4 −→ I1 + I I2. (1.17)

Energy and momentum conservations read

ε̂ = ε1 + ε2 = ε3 + ε4, p̂ = p1 + p2 = p3 + p4. (1.18)
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1.3. Boltzmann equations

The number of collisions per unit time and volume is, see e.g. [63, Eq. (2.1)],

dN
dVdt

= d3p1d3p2d3p3d3p4

×W(1,2|3,4) f I(p1, t) f I I(p2, t)
(

1± f I I I(p3, t)
2h−3

)(
1± f IV(p4, t)

2h−3

)
, (1.19)

where W is the transition function, linked to QED matrix elements of the reaction

M f i as

W(1,2|3,4) =
h̄2c6

(2π)2

|M f i|2

16ε1ε2ε3ε4
δ(ε1 + ε2 − ε3 − ε4)δ

3(p1 + p2 − p3 − p4), (1.20)

δ is Dirac delta-function, and
[
1± fα(p, t)/(gαh−3)

]
are Bose enhancement (sign

”+”) and Pauli blocking (sign ”−”) factors. Matrix elements can be found, for

example, in [64], Eqs. (86.6, 88.4, 81.7, 81.17).

Then collision integral for the particle I in the state 1 is

ηI(p1, t)− χI(p1, t) f I(p1, t) =
∫

d3p2d3p3d3p4

×
[

W(3,4|1,2) f I I I(p3, t) f IV(p4, t)
(

1± f I(p1, t)
2h−3

)(
1± f I I(p2, t)

2h−3

)
− W(1,2|3,4) f I(p1, t) f I I(p2, t)

(
1± f I I I(p3, t)

2h−3

)(
1± f IV(p4, t)

2h−3

)]
. (1.21)

Specifically, for a scattering with I = I I I and I I = IV the inverse process is the

same as the direct one since pairs of indices (1, 2) and (3, 4) can be interchanged.

The relation W(1,2|3,4) = W(3,4|1,2) holds for all processes listed in Tab. 1.1. When

incoming or outgoing particles coincide (I = I I and/or I I I = IV) quantum

indistinguishability gives the term 1
2 in front of the corresponding emission and

absorption coefficients, see e.g. [65, p. 76], [60, p. 18].

There are 4 delta-functions in Eq. (1.20) representing conservation of energy

and momentum (1.18). Three integrations over momentum of particle I I I can be

performed immediately

∫
dp3δ3(p1 + p2 − p3 − p4) −→ 1. (1.22)

In the integration over energy ε4 of particle IV it is necessary to take into account
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

that ε3 is now a function of energy and angles of particles I and I I, as well as

angles of particle IV, so we have

∫
dε4δ(ε1 + ε2 − ε3 − ε4) −→

1
1− (β3/β4)n3 · n4

, (1.23)

where n = p/p is the unit vector in the direction of particle momentum, p =

|p| =
√
(ε/c)2 −m2c2 is the absolute value of particle momentum, β = pc/ε,

and a dot denotes scalar product of 3-vectors. We use spherical coordinates in

momentum space: {ε, µ, φ}, µ = cos ϑ, where ε is the particle energy, and ϑ and φ

are polar and azimuthal angles, respectively. Then energy and angles of particle

I I I and energy of particle IV follow from energy and momentum conservations

(1.18) and relativistic energy-momentum relation, namely

ε4 = c
√

p2
4 + m2

IVc2, ε3 = ε̂− ε4, p3 = p̂− p4,

p4 =
AB±

√
A2 + 4m2

IVc2(B2 − 1)

2(B2 − 1)
, (1.24)

A =
c
ε̂
[ p̂2 + (m2

I I I −m2
IV)c

2]− ε̂

c
, B =

c
ε̂

n4 · p̂.

Then we introduce these relations into collision integral (1.21). We also use

spherical symmetry in momentum space to fix angles of the particle I: µ1 =

1, φ1 = 0, and to perform the integration over azimuthal angle of particle I I:∫
dφ2 −→ 2π, setting φ2 = 0 in the remaining integrals. Then final expression

for collision integral is

ηI(ε1, t)− χI(ε1, t) f I(ε1, t) =
h̄2

32π

∫
dε2dµ2 dµ4dφ4

×
p2p4|M f i|2

ε1ε3 [1− (β3/β4)n3 · n4]

×
[

f I I I(ε3, t) f IV(ε4, t)
(

1± f I(ε1, t)
2h−3

)(
1± f I I(ε2, t)

2h−3

)
− f I(ε1, t) f I I(ε2, t)

(
1± f I I I(ε3, t)

2h−3

)(
1± f IV(ε4, t)

2h−3

)]
. (1.25)
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1.3. Boltzmann equations

For numerical integration, however, another expression is proved useful

ηI(ε, t)− χI(ε, t) f I(ε, t) =
h̄2

32π

[∫
dε3 dε4dµ4 dµ2dφ2

× δ(ε1 − ε)×
p2p4|M f i|2

ε1ε3 [1− (β1/β2)n1 · n2]

× f I I I(ε3, t) f IV(ε4, t)
(

1± f I(ε1, t)
2h−3

)(
1± f I I(ε2, t)

2h−3

)
−
∫

dε2dµ2 dµ4dφ4 ×
p2p4|M f i|2

εε3 [1− (β3/β4)n3 · n4]

× f I(ε, t) f I I(ε2, t)
(

1± f I I I(ε3, t)
2h−3

)(
1± f IV(ε4, t)

2h−3

)]
, (1.26)

where the first term, i.e. emission coefficient, is expressed in the form ready

for replacement by the sum over incoming particles I I I and IV. In this term

ε1, µ1, φ1, ε2 are given by relations (1.24) with indices exchange 1 ↔ 3, 2 ↔ 4,

I ↔ I I I, I I ↔ IV.

This collision integral of any of two-particle processes is a four-dimensional

integral in momentum space. In Sec. 1.4 we show how such integral is computed

numerically on finite grid.

1.3.2 Three-particle collision integrals

Consider interaction of two incoming particles of species I and I I in quantum

states 1 and 2, producing three outgoing particles of species I I I, IV, and V

in quantum states 3, 4, and 5. Let particle momenta be p1 and p2 before the

interaction, and p3, p4, and p5 after interaction, respectively. This process can be

represented as

I1 + I I2 −→ I I I3 + IV4 + V5. (1.27)

The corresponding inverse process is

I I I3 + IV4 + V5 −→ I1 + I I2. (1.28)
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

Energy and momentum conservations give

ε1 + ε2 = ε3 + ε4 + ε5, p1 + p2 = p3 + p4 + p5. (1.29)

The number of collisions of the direct process (1.27) per unit time and volume

is

dN
dVdt

= d3p1d3p2d3p3d3pkd3p5 ×W(1,2|3,4,5) × f I(p1, t) f I I(p2, t)

×
(

1± f I I I(p3, t)
2h−3

)(
1± f IV(p4, t)

2h−3

)(
1± fV(p5, t)

2h−3

)
. (1.30)

For the inverse process (1.28) this number is

dN
dVdt

= d3p1d3p2d3p3d3p3d3p5

×W(3,4,5|1,2) × f I I I(p3, t) f IV(p4, t) fV(p5, t)

×
(

1± f I(p1, t)
2h−3

)(
1± f I I(p2, t)

2h−3

)
. (1.31)

Then collision integral for particle I in the state 1 becomes

ηI(p1, t)− χI(p1, t) f I(p1, t) =
∫

d3p2d3p3d3p4d3p5

×
[

W(3,4,5|1,2) × f I I I(p3, t) f IV(p4, t) fV(p5, t)

×
(

1± f I(p1, t)
2h−3

)(
1± f I I(p2, t)

2h−3

)
−W(1,2|3,4,5) × f I(p1, t) f I I(p2, t)

×
(

1± f I I I(p3, t)
2h−3

)(
1± f IV(p4, t)

2h−3

)(
1± fV(p5, t)

2h−3

)]
, (1.32)

where the first term in square parenthesis corresponds to emission of particle

I in inverse process (1.28), while the second term corresponds to absorption

of particle I in direct process (1.27). So far we considered the case when all

incoming and outgoing particles are different. When the same particle is present

among incoming and outgoing ones, the collision integral for this particle species

becomes more complicated.

Consider, for instance, the case when I = V. This particle disappears from the
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1.3. Boltzmann equations

quantum state 1 and appears in the quantum state 5 in the direct process (1.27).

The same particle disappears from the quantum state 5 and appears in the quan-

tum state 1 in the inverse process (1.28). Consequently two terms in the collision

integral on the RHS of Boltzmann equation (1.15) are ready to be written. These

are the absorption coefficient χI(p1, t) f I(p1, t) in the direct process (1.27) and

the emission coefficient ηI(p1, t) in the inverse process (1.28). Both these terms

appear in Eq. (1.32). However, indices denoted with arabic numbers enumerate

quantum particle states, which are arbitrary. Consequently, indices 1 and 5 can

be interchanged both in direct (1.27) and inverse (1.28) processes. Then two new

terms in collision integral for particle I in state 1 appear: emission coefficient

ηI(p1, t) in direct process I5 + I I2 −→ I I I3 + IV4 + I1, and absorption coefficient

χI(p1, t) f I(p1, t) in inverse process I I I3 + IV4 + I1 −→ I5 + I I2. Combining all

four terms, the collision integral in this case becomes

ηI(p1, t)− χI(p1, t) f I(p1, t) =
∫

d3p2d3p3d3p4d3p5

×
[
−W(1,2|3,4,5) × f I(p1, t) f I I(p2, t)

×
(

1± f I I I(p3, t)
2h−3

)(
1± f IV(p4, t)

2h−3

)(
1± f I(p5, t)

2h−3

)

+ W(3,4,5|1,2) × f I I I(p3, t) f IV(p4, t) f I(p5, t)

×
(

1± f I(p1, t)
2h−3

)(
1± f I I(p2, t)

2h−3

)

+ W(5,2|3,4,1) × f I(p5, t) f I I(p2, t)

×
(

1± f I I I(p3, t)
2h−3

)(
1± f IV(p4, t)

2h−3

)(
1± f I(p1, t)

2h−3

)

−W(3,4,1|5,2) × f I I I(p3, t) f IV(p4, t) f I(p1, t)

×
(

1± f I(p5, t)
2h−3

)(
1± f I I(p2, t)

2h−3

)]
. (1.33)

Generally speaking, such four terms should be present in collision integral of any

reaction for a particle specie which is present both among incoming and outgoing parti-

cles, unless the process is a scattering. This statement is valid for arbitrary number

of incoming and outgoing particles. It is not limited to QED but applies to any

quantum field theory in general.
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

All three-particle QED processes listed in Tab. 1.2, with exception of three-

photon annihilation, are indeed represented by four terms in collision integrals.

Such four terms for double Compton scattering with corresponding symmetriza-

tion factors were considered by Chluba [66]. It should be noted, that the detailed

balance conditions discussed in Sec. 1.2.2 may be obtained [67, 68] with only two

terms in collision integrals, without interchanging the states 1 and 5. However,

the structure of all four coefficients is different, and their presence in collision

integral (1.33) is essential.

In three-particle processes transition function W can be expressed through

the differential cross-section dσ. Using the definition of dσ [64, Eq. (64.18)] and

its relation to number of collisions
dN

dVdt
per unit time in unit volume (1.30),

given by Eq. (12.7) in [69], we have

W(1,2|3,4,5)d
3p3d3p4d3p5 = c

√
[ε1ε2 − (p1 · p2)c2]2 − (mImI Ic4)2

ε1ε2
dσ. (1.34)

The differential cross section in turn can be expressed through dimensionless

matrix element squared X, see [70, Eq. (11.31)]. Then we obtain

W(1,2|3,4,5) =
αr2

e
(4π)2 ×

c7X
ε1ε2ε3ε4ε5

δ(εinitial − ε final)δ
3(pinitial − p final), (1.35)

where re =
e2

mec2 is the classical electron radius. For double Compton scattering

X is given by Eqs. (3), (9), (10) of [71]. For relativistic bremsstrahlung X = 16A,

where A is given by Eqs. in Appendix B of [72].

Matrix elements for all other processes of Tab. 1.2 can be obtained from the

ones of double Compton scattering and of relativistic bremsstrahlung by the

substitution law, given in [70, Sec. 8.5]. For example, exchanging initial photon

with the final electron or positron in double Compton scattering

e−1 + γ2 −→ e−3 + γ4 + γ5, (1.36)

we obtain three-photon annihilation process

e−1 + e+3 −→ γ2 + γ4 + γ5. (1.37)
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1.3. Boltzmann equations

The matrix element squared of this process (1.37) can then be obtained from the

one of double Compton process (1.36) with the following substitution law

p3 −→ −p3, ε3 −→ −ε3, p2 −→ −p2, ε2 −→ −ε2. (1.38)

The detailed balance condition for three-particle processes gives

h3W(1,2|3,4,5) = 2W(3,4,5|1,2). (1.39)

Following the same line of reasoning as in the derivation of Eq. (1.26), we arrive

to the collision integral in the form

ηI(ε, t)− χI(ε, t) f I(ε, t) =
αr2

e c
8π

[∫
dε3 dε4dµ4 dε5dµ5dφ5 dµ2dφ2

× δ(ε1 − ε)× p2p4p5X
ε1ε3 [1− (β1/β2)n1 · n2]

× f I I I(ε3, t) f IV(ε4, t) fV(ε5, t)
(

1± f I(ε1, t)
2h−3

)(
1± f I I(ε2, t)

2h−3

)
−
∫

dε2dµ2 dµ4dφ4 dε5dµ5dφ5 ×
p2p4p5 X

εε3 [1− (β3/β4)n3 · n4]

× f I(ε, t) f I I(ε2, t)
(

1± f I I I(ε3, t)
2h−3

)(
1± f IV(ε4, t)

2h−3

)(
1± fV(ε5, t)

2h−3

)]
, (1.40)

where again the form of the first integral is ready to be substituted by corre-

sponding sum over incoming particles I I I, IV, and V. In this first integral, i.e. in

the emission coefficient, in order to find energy and angles of particle I and en-

ergy of particle I I relations (1.24) should be used with indices exchange 1 ↔ 3,

2↔ 4, I ↔ I I I, I I ↔ IV, and

ε̂ = ε3 + ε4 + ε5, p̂ = p3 + p4 + p5. (1.41)

In the absorption coefficient in order to find energy and angles of particle I I I

and energy of particle IV from relation (1.24) instead of (1.18) the following

relations must be used

ε̂ = ε1 + ε2 − ε5, p̂ = p1 + p2 − p5. (1.42)
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

This collision integral (1.40) of any of three-particle processes is a seven-

dimensional integral in momentum space. In the next Section we show how

such integral is computed numerically on finite grid.

1.4 The numerical scheme

The main difficulty arising in computation of collision integrals in comparison

with previous works [28, 30, 31] is that particle emission and absorbtion coef-

ficients contain not only distribution functions of incoming particles, but also

those of outgoing particles. Therefore we adopt a different approach which we

refer to as "reaction-oriented" instead of "particle-oriented" one used earlier.

The phase space is divided in zones. The zone Ωα
a,j,k for particle specie α

corresponds to energy εa, cosine of polar angle µj and azimuthal angle φk, where

indices run in the following ranges 1 ≤ a ≤ amax, 1 ≤ j ≤ jmax, and 1 ≤ k ≤ kmax.

The zone boundaries are εa∓1/2, µj∓1/2, φk∓1/2. The length of the a-th energy

zone Ωα
a is ∆εa ≡ εa+1/2 − εa−1/2. On finite grid fα does not depend on µ and φ,

and number density of particle α in zone a is

Yα
a (t) = 4π

∫ εa+1/2

εa−1/2

c−3ε
√

ε2 −m2
αc4 fα(ε, t)dε

= 4πc−3εa

√
ε2

a −m2
αc4 fα(εa, t)∆εa. (1.43)

In this variables discretized Boltzmann equation for particle I and energy zone

a reads

dYα
a (t)
dt

= ∑
[
η I

a(t)− χI
a(t)Y

I
a (t)

]
, (1.44)

where the sum is taken over all processes involving particle I. Emission and

absorption coefficients on the grid are obtained by integration of (1.26) for two-

particle processes and of (1.40) for three-particle processes over the zone. The

corresponding integrals are replaced by sums on the grid. For instance, absorp-
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1.4. The numerical scheme

tion coefficient for incoming particle I in two-particle process (1.16) is

χI
a(t)Y

I
a (t) =

h̄2c4

8(4π)2 ∑
b,j,s,k

∆µj∆µs∆φk × |M f i|2

× p4

ε3[1− (β3/β4)n3 · n4]
× Y I

a (t)
εa

Y I I
b (t)
εb
×
[

1± Y I I I
c (t)
Ȳ I I I

c

] [
1±

Y IV
d (t)
Ȳ IV

d

]
, (1.45)

where index j denotes polar angle zone of incoming particle I I, index s denotes

polar angle zone of outgoing particle IV, index k denotes azimuthal angle zone

of outgoing particle IV, and

Ȳα
a = 4π

∫ εa+1/2

εa−1/2

c−3ε
√

ε2 −m2
αc4 (2h−3)dε = 8π(hc)−3εa

√
ε2

a −m2
αc4∆εa. (1.46)

Emission coefficient of particle I in process (1.17) from integration of (1.26) is

η I
a(t) =

h̄2c4

8(4π)2 ∑
c,d,j,s,k

Ca(ε1)∆µj∆µs∆φk × |M f i|2

× p2

ε1[1− (β1/β2)n1 · n2]
× Y I I I

c (t)
εc

Y IV
d (t)
εd

×
[

1± Y I
a (t)
Ȳ I

a

] [
1±

Y I I
b (t)
Ȳ I I

b

]
, (1.47)

where index j denotes polar angle zone of incoming particle IV, index s denotes

polar angle zone of outgoing particle I I, index k denotes azimuthal angle zone

of outgoing particle I I, and

Ca(ε1) =



εa − ε1

εa − εa−1
, εa−1 < ε1 < εa,

εa+1 − ε1

εa+1 − εa
, εa < ε1 < εa+1,

0, otherwise.

(1.48)

In integration of (1.26) over the zone one can integrate out the δ-function
∫

δ(ε1−
ε)dε1 −→ 1. However, when energies of incoming particles are fixed on the grid,

the energies of outgoing particles are not on the grid. Hence an interpolation

(1.48) is adopted, which enforces the exact number of particles and energy con-

servation in each two-particle process due to redistribution of outgoing particle

α with energy ε over two energy zones Ωα
n, Ωα

n+1 with εn < ε < εn+1.
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

The redistribution of final particles should also satisfy requirements of quan-

tum statistics. Therefore if a process occurs, when final particle should be dis-

tributed over the quantum states which are fully occupied, such process is for-

bidden. Thus we introduce the Bose enhancement/Pauli blocking coefficients in

(1.45) and (1.47) as

[
1± Yα

a (t)
Ȳα

a

]
= min

(
1± Yα

n (t)
Ȳα

n
, 1±

Yα
n+1(t)
Ȳα

n+1

)
. (1.49)

The sum over angles µj, µs, φk can be found once and for all at the beginning

of the calculations. We then store in the program for each set of the incoming

and outgoing particles the corresponding terms and redistribution coefficients

given by Eq. (1.48).

Extension of this scheme to three-particle interactions is straightforward.

However, unlike two-particle case where pairs of indices I, I I and I I I, IV can

be interchanged, in three-particle case there is no such symmetry. Then we give

absorption and emission coefficients for incoming and outgoing particles in pro-

cesses (1.27) and (1.28) separately. Considering the direct process (1.27), finite dif-

ference representation of absorption coefficient for incoming particle I in (1.40)

is

χI
a(t)Y

I
a (t) =

αr2
e c3

2(4π)2 ∑
b,j,s,k, f ,p,r

∆µj∆µs∆φk∆ε f ∆µp∆φr

× X× p4p5

ε3[1− (β3/β4)n3 · n4]
× Y I

a (t)
εa

Y I I
b (t)
εb

×
[

1± Y I I I
c (t)
Ȳ I I I

c

] [
1±

Y IV
d (t)
Ȳ IV

d

] [
1±

YV
f (t)

ȲV
f

]
, (1.50)

and emission coefficient for outgoing particle I I I is

η I I I
c (t) =

αr2
e c3

2(4π)2 ∑
a,b,j,s,k, f ,p,r

∆µj∆µs∆φk∆ε f ∆µp∆φr

× Ca(ε3)× X× p4p5

ε3[1− (β3/β4)n3 · n4]
× Y I

a (t)
εa

Y I I
b (t)
εb

×
[

1± Y I I I
c (t)
Ȳ I I I

c

] [
1±

Y IV
d (t)
Ȳ IV

d

] [
1±

YV
f (t)

ȲV
f

]
, (1.51)
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where indices f , p, r denote energy, polar angle and azimuthal angle zone of out-

going particle V, respectively. Considering the inverse process (1.28), emission

coefficient for the outgoing particle I is

η I
a(t) =

αr2
e c5h3

4(4π)3 ∑
c,s,k,d,j, f ,p,r

∆µs∆φk∆µj∆µp∆φr

× Ca(ε1)× X× p2

ε1[1− (β1/β2)n1 · n2]

Y I I I
c (t)
εc

Y IV
d (t)
εd

YV
f (t)

ε f

×
[

1± Y I
a (t)
Ȳ I

a

] [
1±

Y I I
b (t)
Ȳ I I

b

]
, (1.52)

while absorption coefficient for the incoming particle I I I is

χI I I
c (t)Y I I I

c (t) =
αr2

e c5h3

4(4π)3 ∑
s,k,d,j, f ,p,r

∆µs∆φk∆µj∆µp∆φr

× X× p2

ε1[1− (β1/β2)n1 · n2]

Y I I I
c (t)
εc

Y IV
d (t)
εd

YV
f (t)

ε f

×
[

1± Y I
a (t)
Ȳ I

a

] [
1±

Y I I
b (t)
Ȳ I I

b

]
, (1.53)

where indices s and k denote polar and azimuthal angle zones of outgoing parti-

cle I I, respectively; index j denotes polar angle zone of incoming particle IV, and

indices f , p, r denote energy, polar angle and azimuthal angle zone of particle V,

respectively.

In these sums (1.50–1.53) summation over angles µj, µs, φk, µp, φr again can be

performed once and for all at the beginning of the calculations. Representation

of discretized collisional integral for particle I and energy zone a in processes
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(1.16, 1.17, 1.27, 1.28) is

dY I
a

dt
= −∑ A×Y I

a (t)Y
I I
b (t)×

[
1± Y I I I

c (t)
Ȳ I I I

c

] [
1±

Y IV
d (t)
Ȳ IV

d

]

+ ∑ B×Y I I I
c (t)Y IV

d (t)×
[

1± Y I
a (t)
Ȳ I

a

] [
1±

Y I I
b (t)
Ȳ I I

b

]

−∑ C×Y I
a (t)Y

I I
b (t)×

[
1± Y I I I

c (t)
Ȳ I I I

c

] [
1±

Y IV
d (t)
Ȳ IV

d

] [
1±

YV
f (t)

ȲV
f

]

+ ∑ D×Y I I I
c (t)Y IV

d (t)YV
f (t)×

[
1± Y I

a (t)
Ȳ I

a

] [
1±

Y I I
b (t)
Ȳ I I

b

]
, (1.54)

where constant coefficients A, B, C, D are obtained from the summation over

angles in the sums (1.45, 1.47, 1.50, 1.52). The full Boltzmann equation (1.44)

contains similar sums for all processes from Tab. 1.2. Each individual term in

these sums appears in the system of discretized Boltzmann equations four or

five times in emission and absorption coefficients for each particle entering a

given process. Then each term can be computed only once and added to all

corresponding sums, that is the essence of our "reaction-oriented" approach.

In our method exact energy and number of particles conservation laws are

satisfied. The number of energy intervals is typically 20, while internal grid

of angles has 32 points in µ and 64 in φ. The system under consideration has

several characteristic times for different processes, and therefore the resulting

system of ordinary differential equations (1.44) is stiff. We use Gear’s method

[73] to integrate the system numerically.

1.5 Characteristic time scales of plasma relaxation

We solved numerically Boltzmann equation (1.15) in two cases. Initially only

photons are present with constant spectral energy density and total energy den-

sity ρ = 1023 erg/cm3 and ρ = 1029 erg/cm3. Such energy densities corresponds

to the temperature θ in thermal equilibrium of 0.3 and 8, respectively.

In Figs. 1.2 and 1.3 we present number density, energy density, temperature

and chemical potential of photons and pairs in both cases. We also show the

difference between quantum and Boltzmann statistics by including and omitting

the Pauli blocking and Bose enhancement factors in evolution equations (1.54).
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Figure 1.2: Comparison of evolution of number n and energy ρ densities, di-

mensionless temperature θ, chemical potential ξ, for quantum (solid curves) and

classical (dotted curves) statistics with total energy density ρ = 1023 erg/cm3.

Black and red curves correspond to photons and pairs, respectively, blue curve

gives the sum of densities.

Time is expressed in units of Compton time

τC =
1

σTn±c
, (1.55)

where n± is number density of pairs in thermal equilibrium, σT is Thomson

cross section.

Timescales of relaxation to thermal equilibrium for quantum (classical) statis-

tics nearly coincide: 15τC (18τC) for ρ = 1023 erg/cm3, and 27τC (23τC) for

ρ = 1029 erg/cm3. Inspection of Figs. 1.2 and 1.3 indicates that both temperatures

and chemical potentials of leptonic and photon components become nearly equal

when the total number density of particles shown by blue curves is almost con-

stant. This fact indicates that three-particle interactions become relevant when

almost detailed balance (kinetic equilibrium) is established by two-particle in-
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Figure 1.3: The same as in Fig. 1.2, but for total energy density ρ = 1029 erg/cm3.

teractions [28]. Notice, however, that due to energy dependence of reaction rates

the characteristic timescale on which kinetic equilibrium is established is larger

than Compton time (1.55). For the same reason the characteristic timescale on

which thermal equilibrium is established is smaller than the simple estimate

α−1τC. Thus the ratio of the timescales of kinetic and thermal equilibrium is no

longer α but higher. This fact shows why the exact treatment of three-particle

interactions, especially for high energy densities, becomes important.

In Figs. 1.4 and 1.5 we show spectral evolution for both our initial conditions.

The final spectra shown for t = 103τC are in good agreement with Planck/Fermi-

Dirac distribution functions, correspondingly, obtained for the given energy den-

sity, typically within 5 % accuracy. Notice that at the Compton time both elec-

tron/positron and photon spectra are far from equilibrium shape, with the only

exception of leptonic spectrum for ρ = 1023 erg/cm3. This quick relaxation of

leptonic component is due to large Coulomb logarithm for non-relativistic tem-

peratures.
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Figure 1.4: Numerical spectral energy densities of photons (black line) and pairs

(red line) at t = τC (left) and at t = 103τC (right) for ρ = 1023 erg/cm3.

Thick curves show the corresponding Bose-Einstein and Fermi-Dirac distribu-

tions with the same number and energy densities, respectively. Dashed thin line

shows initial photon spectrum.
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Figure 1.5: The same as in Fig. 1.4 for ρ = 1029 erg/cm3.
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1. Relativistic degeneracy in nonequilibrium electron-positron plasma

1.6 Conclusions

In this Chapter we consider relaxation of nonequilibrium optically thick pair

plasma to complete thermal equilibrium by integrating numerically relativistic

Boltzmann equations with exact QED two-particle and three-particle collision

integrals. Quantum nature of particle statistics is accounted for in collision inte-

grals by the corresponding Bose enhancement and Pauli blocking factors.

We point out that unlike classical Boltzmann equation for binary interactions

such as scattering, more general interactions are typically described by four colli-

sion integrals for each particle that appears both among incoming and outgoing

particles.

The partial summations over angles in three-particle processes appears to be

the most time-consuming part of the numerical solution of Boltzmann equation.

Typical number of points in calculations is 1012.

Our numerical results indicate that the rates of three-particle interactions

become comparable to those of two-particle ones for temperatures exceeding

the electron rest-mass energy. Thus three particle interactions such as relativistic

bremsstrahlung, double Compton scattering, and radiative pair creation become

essential not only for establishment of thermal equilibrium, but also for correct

estimation of interaction rates, energy losses etc.
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Chapter 2

Hydrodynamics of GRBs

Observations of time-resolved spectra from GRBs indicate the presence of rela-

tivistic motion. This fact follows from the compactness argument, see e.g. Sec. 4

of [7], as observations of nonthermal spectra from initially optically thick plasma

require ultrarelativistic velocity of expansion.

GRBs are known to be located at cosmological distances, thanks to detection

of their X-ray afterglows [74]. Total number of photons emitted from the source

during time δt is

Nγ =
Eγ

εγ
=

Lγδt
εγ

, (2.1)

where Eγ is the total energy of the photons, Lγ is the luminosity of the source,

εγ is the average energy of photon. Assuming the source is at rest, the optical

depth of emitting region to pair production γγ −→ e+e− is

τγγ ∼ nγσTRer ∼
NγσT

R2
er
∼ LγσT

εγc2δt
∼ 1015, (2.2)

where nγ is the photon number density, σT is Thomson cross section, linear

dimension of emitting region is Rer ∼ cδt, and we assumed typical values of

GRB parameters Lγ ∼ 1052 erg/s, δt ∼ 1 ms, εγ ∼ 1 MeV. Eq. (2.2) implies

that indeed the source is optically thick. The compactness argument is based on

the dependence of τγγ on the Lorentz factor of the bulk motion of expanding

plasma. The corresponding lower limit, which follows from the condition τγγ ≤
1, is typically Γ & 100. The presence of such ultrarelativistic motion requires

description in terms of relativistic hydrodynamics.
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2. Hydrodynamics of GRBs

In this Chapter we focus on the baryonic thermally accelerated GRB model

which includes both fireball [3, 7] and fireshell [75] models. In the optically thick

phase of expansion the plasma is assumed to be composed of two components:

baryons with nonrelativistic equation of state, and photons with ultrarelativis-

tic equation of state. When electron-positron pairs are present, their equation of

state can be also considered ultrarelativistic for simplicity. We also assume spher-

ical symmetry. Then any relativistic outflow of such composition can be char-

acterized by the following three hydrodynamical quantities: comoving number

density of baryons nB(r, t), total comoving energy density ρ(r, t), and Lorentz

factor Γ(r, t). Any finite outflow can then be discretized and represented by the

sequence of thin shells with thickness δ with constant hydrodynamic quantities

within the shell. Each individual subshell is characterized by nB,i(t), ρi(t), Γi(t), i

being the number of the subshell. Usually in the literature instead of time depen-

dence of these quantities, their dependence on the radial position R of a given

subshell is considered.

In this Chapter we review the hydrodynamic phase of GRBs and recall the

derivation of the expressions for n(R), ρ(R), and Γ(R). These results will be used

in subsequent Chapters. In Sec. 2.1 we discuss initial and boundary conditions

for hydrodynamic equations. Two particular classes of these conditions lead to

wind and shell models of GRBs. In Sec. 2.2 we recall hydrodynamic equations

and their solutions for ultrarelativistic outflows. We also consider spatial spread-

ing of the relativistically expanding plasma in Sec. 2.4. In Sec. 2.5 we discuss also

additional mechanism of spreading due to thermal velocity dispersion, and in

Sec. 2.6 we show that for typical GRB parameters thermal effects are negligible.

Conclusions follow.

2.1 Initial and boundary conditions: wind and shell

models

Consider the release of energy E0 in a source of radius R0 loaded with mass M.

When the energy is released gradually, on a time scale ∆t� R0/c, the result-

ing outflow is characterized by activity time ∆t and the quantities defined on the

boundary R0: energy ejection rate L = dE/dt, mass ejection rate Ṁ = dM/dt,

and ejection velocity v0. Such initial and boundary conditions are generally re-

ferred to as a wind. The comoving energy density on the boundary R0 is given by
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2.2. Relativistic hydrodynamics of expansion

ρ = L/(4πR2
0v0Γ2

0) with Γ0 = (1− v2
0/c2)−1/2. In thermal equilibrium this cor-

responds to the temperature T ∼ (ρ/σSB)
1/4, where σSB is the Stefan-Boltzmann

constant.

In principle, all these quantities may depend on time, that would produce

the variable outflow with nB(r, t), ρ(r, t), and Γ(r, t). Particulary simple choice

L(t) = const, Ṁ(t) = const, v0(t) = const, R0 = const, ∆t → ∞ gives rise to the

model of steady infinite wind [11]. This is the most actively studied model, see

e.g. [23, 24, 24–26, 76], provided by its simplicity. In [77] the authors considered

gravitational collapse of a charged shell with the electric field exceeding the crit-

ical value Ecr = (m2
e c3)/(eh̄) ' 1.323× 1016 V/cm. In that model of relativistic

wind all parameters explicitly depend on time.

Sudden energy release can be considered as a special case of wind with ∆t '
R0/c. In the literature a model of sudden energy release is considered with

∆t → 0 [10, 32, 33, 78, 79]. In this model energy E0 and mass M are initially

distributed with, respectively, densities ρ(r, t = 0) and mpn(r, t = 0) and initial

velocity v(r, t = 0) within the sphere of radius R0, and vacuum outside it. Such

initial conditions give rise to the model of thin shell [32, 33, 78, 79]. Particulary

simple choice is uniform distributions ρ(r) = const, n(r) = const with v(r) = 0,

see [10] and [80].

In the following Chapters we consider a wind with L = const, Ṁ = const, v0 =

const, R0 = const with finite activity time ∆t. Clearly steady infinite wind can

be recovered in this model with ∆t → ∞. Due to ultrarelativistic character of

expansion also thin shell can be recovered with ∆t = R0/c. From the point of

view of dynamics the key parameter is the baryonic loading [20, 80, 81]

B =
Mc2

E0
=

Ṁc2

L
. (2.3)

2.2 Relativistic hydrodynamics of expansion

Hydrodynamic expansion of GRB plasma far from the origin may be studied

within the formalism of Special Relativity. General Relativity effects may be in-

cluded by taking Schwarzschild or Kerr-Newman metric. However, we are inter-

ested in optically thick plasma which expands with acceleration and propagates

far from its source, where the spatial curvature effects may be neglected. For this

reason we simplify the treatment and adopt a spatially flat metric. The interval
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2. Hydrodynamics of GRBs

in laboratory frame is taken in the form

ds2 = −c2dt2 + dr2 + r2dϑ2 + r2 sin2 ϑdϕ2. (2.4)

Following [82], we start with the energy-momentum conservation, that in curvi-

linear coordinates reads

(Tµν);ν =
1√

−det gµν

∂(
√
−det gµν Tµν)

∂xν
+ Γµ

νλTνλ = 0, (2.5)

where Γµ
νλ are Cristoffel symbols and det gµν is determinant of the metric tensor.

We assume for the energy-momentum tensor

Tµν = p gµν + ω UµUν, (2.6)

where Uµ is four-velocity, ω = ρ + p is comoving enthalpy, p is comoving pres-

sure and ρ is comoving energy density.

The energy conservation equation is the zeroth component of (2.5)

(
T0ν
)

;ν
= ωU0Uν

;ν + Uν
(

ωU0
)

;ν
= 0. (2.7)

When plasma is optically thick, radiation is trapped in it and entropy conserva-

tion applies. It may be obtained multiplying (2.5) by four-velocity

−Uµ (Tµν);ν = Uµρ;µ + ωUµ
;µ = 0. (2.8)

Using the second law of thermodynamics, see e.g. [83]

d
(ω

n

)
= Td

(σ

n

)
+

1
n

dp, (2.9)

where σ = ω/T is comoving entropy density, T is the comoving temperature,

and n is comoving density, one may rewrite (2.8) as

(σUµ);µ = Uµσ;µ + σUµ
;µ = 0. (2.10)

Baryon number conservation equation for comoving density of baryons nB has
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2.2. Relativistic hydrodynamics of expansion

exactly the same form

(nBUµ);µ = UµnB;µ + nBUµ
;µ = 0. (2.11)

Equations (2.7), (2.8), and (2.11) together with equation of state p(ρ) and ap-

propriate initial and boundary conditions were solved for thin shell model nu-

merically, see [10, 32, 33] and analytically, see [84]. For the steady wind model

solutions of Eqs. (2.7), (2.8), and (2.11) were found analytically in [11] and nu-

merically in [27]. Nonequilibrium effects were considered for the steady wind in

[85] and for thin shell in [78, 79] using rate equation formalism.

In the case of sudden energy release considered in [32, 33] it was found that

expanding plasma forms a thin shell (hence the name). The width l of the shell

measured in laboratory reference frame remains constant l ' R0 until the radius

R of the shell reaches the value

Rb = 2Γ2l, (2.12)

where Γ is the average Lorentz factor of the shell. During this phase the density

and energy profiles of the outflow are "frozen" in laboratory frame, that is called

"frozen-pulse approximation" in [33]. Hydrodynamic simulations [32, 33] show

that for R > Rb shell width increases linearly with radius l ' R(R0/Rb) due

to gradient of expansion velocity developed inside the shell. We discuss this

hydrodynamic spreading in Sec. 2.4.

The fact l ' const for R < Rb has been used in [78, 79] to simplify the

hydrodynamic description of expanding shell by averaging all quantities over

its width. These averaged values satisfy the set of ordinary differential equa-

tions. The reliability of such averaged shell approximation, referred to as "constant

thickness approximation" in [79], has been verified by direct comparison to the

solution of hydrodynamic equations (2.7), (2.8) and (2.11).

In the fireshell model [75] it is assumed that pure electron-positron plasma

forms in the source of GRB. This plasma expands and interacts with the rem-

nant of GRB progenitor represented by shell of cold baryons. It is found in [79]

that after interaction between expanding plasma and baryon shell, the resulting
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2. Hydrodynamics of GRBs

electron-positron-baryon plasma shell expands keeping its original width for

B ≤ 10−2. (2.13)

Now following [82], see also [33, 78–80], we derive the scaling laws for the

averaged over the thin shell comoving quantities: baryon density 〈n〉, energy

density 〈ρ〉, temperature 〈T〉, and Lorentz factor 〈Γ〉.

Recalling that Uµ ∂

∂xµ =
d

dtc
, Uµ

;µ =
d ln Vc

dtc
, and U0 = −Γ, where Vc is

comoving volume, tc is the comoving time, from Eqs. (2.7), (2.8), and (2.11) we

get for every differential shell

dρ + ωd ln Vc = 0, d ln nB + d ln Vc = 0, d ln(ωΓ) + d ln Vc = 0. (2.14)

Introducing the thermal index γ = 1+ p
ρ restricted by the inequality 1 ≤ γ ≤ 4/3

and integrating over finite volume Vc we obtain the following scaling laws for

number and energy densities averaged over this volume

〈ρ〉V〈γ〉c = const, 〈nB〉Vc = const, 〈ωΓ〉Vc = const. (2.15)

One can derive [33, 82] the corresponding scaling laws for the average comov-

ing temperature by splitting the total energy density into nonrelativistic (with

γ = 1) and ultrarelativistic (with γ = 4/3) parts with ρ → nBmc2 + ε, where m

is the mass of particles1, ε is proper internal energy density. The entropy of the

ultrarelativistic component is then σ =
4
3

ε

T
, and (2.10) gives

〈ε〉Vc

〈T〉 = const. (2.16)

For ε� nBmc2, which is the energy dominance condition, internal energy plays

dynamical role by influencing the laws of expansion. For ε � nBmc2, which is

the matter dominance condition, internal energy does not play any dynamical

role, but determines the scaling law of the temperature. In order to understand

the dynamics of thermodynamic quantities, one should write down the corre-

1Nonrelativistic component is represented by baryons. For simplicity we assume only one sort

of baryons, say protons, having mass m. Ultrarelativistic component is represented by photons

and electron-positron pairs.
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2.2. Relativistic hydrodynamics of expansion

sponding equations of motion.

The volume of the differential shell located at r, measured in the laboratory

reference frame is

dV = 4πr2dr, (2.17)

while the same volume measured in the reference frame comoving with the shell

is

dVc = 4πΓr2dr, (2.18)

where we neglect the hydrodynamic spreading.

Consider an expanding ultrarelativistic shell with laboratory radius R, labo-

ratory width l, and Lorentz factor Γ = const across the shell. For fixed laboratory

time and l � R comoving volume of the shell is Vc ' 4πΓR2l.

Then omitting averaging 〈. . . 〉 for simplification of notation we rewrite the

conservation equations (2.15) as [86]

ρ
1
γ ΓR2 = const, nBΓR2 = const, ρΓ2R2 = const, (2.19)

leading to the solution

Γ ∝ R
2(γ−1)

2−γ , nB ∝ R−
2

2−γ , ρ ∝ R−
2γ

2−γ . (2.20)

These relations can be applied to the geometrically thin expanding shell with R

being its radius. Since the shell is expanding, the equation of motion R(t) should

be specified. However, in ultrarelativistic limit simple relation R(t) ' ct can be

used. From the other hand, the same equations hold for steady wind, with R

being the radial position, see e.g. [3, 7].

For the ultrarelativistic equation of state with γ = 4/3 we obtain

Γ ∝ R, nB ∝ R−3, ρ ∝ R−4. (2.21)

As Γ is linearly increasing with radius, this phase of expansion is called accelera-

tion phase. In the presence of baryons as the pressure decreases, plasma becomes

matter dominated and expansion velocity saturates. Hence for the nonrelativistic

43



2. Hydrodynamics of GRBs

equation of state with γ = 1 different scaling laws come out

Γ ' const, nB ∝ R−2, ρ ∝ R−2. (2.22)

Since velocity gets constant, the expansion enters the coasting phase. Transition

between the two regimes (2.21) and (2.22) occurs at the saturation radius

Rs = B−1R0, (2.23)

where R0 is initial size of plasma.

From (2.19) we obtain for internal energy density and temperature at accel-

eration phase

ε ∝ R−4, T ∝ R−1, R0 < R < Rs, (2.24)

and at coasting phase

ε ∝ R−8/3, T ∝ R−2/3, R > Rs. (2.25)

Initial temperature in the source of GRB in thin shell model may be estimated

neglecting the baryonic contribution as [82]

kT0 '
(

3E0

4πaR3
0

)1/4

' 6.5E1/4
54 R−3/4

8 MeV, (2.26)

where k is Boltzmann constant, a = 4σSB/c, and the last value is obtained for

the parametrization E0 = 1054E54 erg and R0 = 108R8 cm. For the steady wind

model analogous expression is

kT0 '
(

L
16πσSBR2

0

)1/4

' 1.2L1/4
54 R−1/2

8 MeV, (2.27)

where wind luminosity is parameterized by L = 1054L54 erg/s.
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2.3. Finite wind model

2.3 Finite wind model

Consider now a wind with L = const, Ṁ = const, v0 = const, R0 = const during

finite activity time ∆t. As follows from Eqs. (2.21) and (2.22), each differential

shell originating from the boundary R0 follows the same expansion law.

In Fig. 2.1 we illustrate the dynamics of the outflow produced by such finite

wind. It is clear that when the outflow reaches ultrarelativistic velocities its width

is

l ' c∆t. (2.28)

Given that the width of the outflow is constant during expansion, baryon con-

servation implies that laboratory baryon number density nB,l = ΓnB at a given

laboratory time should decrease with radius as r−2. Such radial dependence

holds both at acceleration and coasting phases, as follows from Eqs. (2.21) and

(2.22). Then the dynamics of the laboratory baryon density in the outflow can be

represented as

nB,l =


n0

(
R0

r

)2

, R(t) < r < R(t) + l,

0, otherwise,

(2.29)

where R(t) is the radial position of the inner boundary of the outflow, R(t) + l is

the radial position of the outer boundary of the outflow. The equation of motion

R(t) at the accelerating phase is determined from Eq. (2.21) as

R(t) =
√

c2t2 + R2
0, 0 ≤ t ≤

√
B−2 − 1 R0/c, (2.30)

and at the coasting phase from Eq. (2.22) it becomes

R(t) =
√

1− B2 ct + BR0, t >
√

B−2 − 1 R0/c. (2.31)

For R � l all the hydrodynamic variables across such outflow with constant

L, Ṁ, and vej do not deviate strongly from their average values, as follows from
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R0 R
r

t

Dt

l>cDt

Dt

0

Figure 2.1: Dynamics for finite wind with B � 1. Solid lines represent world

lines of first and last differential shells of the outflow from wind of duration ∆t.

Dashed lines are asymptotes of these world lines. In the ultrarelativistic regime,

when the inner boundary of the outflow is far from the origin, R(t) � R0, its

width is l ' c∆t.

Eqs. (2.21, 2.22). For this reason both finite wind and averaged shell formulations

of initial and boundary conditions produce for R � l equivalent outflows, e.g.

[3, 7]. In particular, finite wind of duration ∆t and constant L and Ṁ produces

the same outflow as averaged shell with

E0 = L∆t, M = Ṁ∆t. (2.32)

Clearly, the model of stationary infinite wind can also be obtained in this model

with ∆t→ ∞.

2.4 Hydrodynamical spreading

The hydrodynamical mechanism of spreading for ultrarelativistically expand-

ing shell was considered in [32, 33]. As follows from Eq. (2.22) at the matter

dominated phase of expansion each differential subshell is moving with almost

constant speed v ' c(1− 1/2Γ2), so the spreading of the shell is determined

by the radial dependence of the Lorentz factor Γ(r). In a variable outflow there

can be regions with Γ(r) decreasing with radius and Γ(r) increasing with ra-
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2.4. Hydrodynamical spreading

dius. At sufficiently large radii only the regions with increasing Γ contribute to

the spreading of the outflow. From equations of motion of external and internal

boundaries of this region we obtain the thickness of the region as function of

radial position of the region

l(R) = l +
R
2

(
1
Γ2

i
− 1

Γ2
e

)
, (2.33)

where Γe and Γi are Lorentz factors at external and internal boundaries, l is the

width of the region at small R. Let us consider such a region in two limiting

cases: a) when relative Lorentz factor difference is strong, Γe � Γi; and b) when

relative Lorentz factor difference is weak ∆Γ = Γe − Γi � Γi.

In case a) the second term in parenthesis in Eq. (2.33) can be neglected, and

we obtain that the spreading becomes efficient at R > Rb, defined in Eq. (2.12)

with Γ = Γi, see [32, 33]. In case b) we find the corresponding critical radius

of hydrodynamic spreading Rb = Γ2
i l

Γi

∆Γ
� Γ2

i l. Notice that in the finite wind

model there is no hydrodynamical spreading.

Note that Eq. (2.22) has been derived under the assumptions of no spreading.

Here we derive the corresponding relations assuming strong relative Lorentz

factor difference across the outflow in the sense defined above. Let us take an

element of fluid with constant number of particles dN in the part of the outflow

with gradient of Γ. Internal boundary of the element is moving with velocity v,

and external is moving with velocity v + dv = v + dv
dr dr, where dr is the differ-

ential thickness at some fixed laboratory time t = 0 and derivative dv
dr is taken at

the same time. Then at time t the width of the element is dl = dr + tdv, its radial

position is R(t) = r0 + vt and corresponding laboratory density is

nB,l =
dN
dV

=
dN

4πR2
(

1 + t dv
dr

)
dr

= n0
r2

0

R2
(

1 + t dv
dr

) , (2.34)

where n0 = dN
dV0

= dN
4πr2

0dr
. At large enough t using R ' ct we have from Eqs. (2.20)

nB,l ∝ R−3, T ∝ R−1, R� Rb =
1
Γ3

(
dΓ
dr

)−1

. (2.35)
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2. Hydrodynamics of GRBs

2.5 Thermal spreading

We now determine the velocity spread of particles as a function of comoving

temperature T and bulk Lorentz factor Γ for relativistic Maxwellian distribution.

Such spread of particles lead to spreading of expanding plasma with arbitrary

Γ(r, t), in both wind and shell models. Based on this result we compute the value

of thermal spreading for expanding shell.

We assume that each layer of the expanding shell is in local thermodynam-

ical equilibrium. It is a reasonable assumption for the hydrodynamic phase of

expansion due to large optical depth of the shell. Then the distribution of parti-

cles in the momentum space p′ = (p′x, p′y, p′z) in the rest frame of plasma is given

by relativistic relativistic Maxwellian, obtained by Jüttner [87]

f (p′x, p′y, p′z) = A exp

−1
θ

√
1 +

(
p′

mc

)2
 , (2.36)

where A is a normalization constant determined by the particle density, θ =
kT

mc2 is the dimensionless temperature, m is the mass of particles, c is the speed

of light, T is the local temperature and k is Boltzmann constant. Then in the

laboratory frame this distribution will be transformed to the Lorentz-boosted

relativistic Maxwellian

f (px, py, pz) = A exp

(
− 1

mcθ

[
m2c2 + py

2 + pz
2

+

(
Γpx −

√
(Γ2 − 1)(m2c2 + p2)

)2]1/2
)

, (2.37)

where we assumed that the relative motion of the frames is along their x-axes.

Velocity dispersion in the x-direction is

D(vx) = M(v2
x)−M2(vx), (2.38)

where M(χ) denotes the average value of χ, which is defined by the convolution
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2.5. Thermal spreading

with the distribution function (2.37)

M(χ) =

∫
d3p χ(p) f (p)∫

d3p f (p)
. (2.39)

The above written integrals cannot be computed analytically, but their numerical

approximations can be found after the following convenient change of variables

px = mc pr, py = mc pp cos φ, pz = mc pp sin φ, (2.40)

so that for χ with axial symmetry around x-axis

M(χ) =

∫
dpr

∫
dpp χ(pr, pp) exp

[
−g(pr, pp)/θ

]
∫

dpr

∫
dpp exp

[
−g(pr, pp)/θ

] , (2.41)

where

g(pr, pp) =

√
1 + (Γpr −

√
Γ2 − 1

√
1 + p2

r + p2
p)

2 + p2
p

and limits of integration are taken from −∞ to +∞ for pr and from 0 to +∞ for

pp.

Numerical issues in the velocity dispersion calculations by (2.38) arise from

the fact that for high Γ we need to subtract two numbers M(v2) and M2(v)

which are very close to each other and to c2. This leads to substantial reduction

of accuracy. A different formula for dispersion

D(vx) = M([vx −M(vx)]
2) (2.42)

proves to be more convenient. The spread of particle velocities is then

(∆v)therm =
√

D(v). (2.43)

Results of the numerical integration are illustrated in Figures 2.2–2.4. For
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Figure 2.2: The velocity dispersion along the direction of bulk motion for non-

relativistic comoving temperature θ = 10−2 shown as a function of the bulk

Lorentz factor. Thick gray line is the asymptotic value (2.44).

nonrelativistic comoving temperatures the correct asymptotics is, see Fig. 2.2

(
∆v
c

)
θ�1

= Γ−2θ1/2, (2.44)

but not ∆v/c = Γ−2 assumed in [32]. This behavior can be understood easily

with the following argument: when the initial spread of velocities is small com-

pared to the bulk velocity V, then by the velocity transformation formula we can

approximate the new spread as

∆v ' ∆v′
d

dv′
V + v′

1 + Vv′
c2

∣∣∣∣∣
v′=0

= ∆v′
(

1− V2

c2

)
, (2.45)

that gives us exactly the result obtained numerically.

The case of ultrarelativistic comoving temperature (θ � 1) is more interest-

ing. Starting close to the maximal value 1/
√

2, the velocity spread for 10 . Γ . θ

reaches approximately, see Fig. 2.3

(
∆v
c

)
10.Γ.θ

' Γ−3/2, (2.46)

which means that the dispersion is independent on the temperature. For Γ � θ
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Figure 2.3: The velocity dispersion along the direction of bulk motion for highly

relativistic comoving temperature as a function of the bulk Lorentz factor in

intermediate regime. Seven sets of dots presented on the figure correspond to

values of log θ from 0 (lowest curve) to 6 (highest curve) in steps of 1. Thick gray

line is the asymptotic value (2.46).

the asymptotics (2.44) is restored just up to a multiplier close to unity, see Fig. 2.4

(
∆v
c

)
1�θ�Γ

' 1.16 Γ−2θ1/2. (2.47)

Our results suggest that (2.46) gives absolute upper limit for the velocity

spread, and temperature dependence of (2.44) and (2.47) reduce the spread even

further.

2.6 Implications of thermal spreading for GRBs

In particular, Eqs. (2.26, 2.27) show that initial temperatures of GRB sources ban

be both relativistic or non relativistic for electrons, but for protons it is always

nonrelativistic kT0 � mpc2. At both radiation and matter dominated phases the

comoving temperature of the plasma decreases. Now we compute the thermal

spreading at both phases.

For the acceleration phase due to the nature of Lorentz transformations in
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Figure 2.4: The velocity dispersion along the direction of bulk motion for highly

relativistic comoving temperature as a function of the bulk Lorentz factor in

high-Γ regime. Seven sets of dots presented on the figure correspond to values

of log θ from 0 (highest curve) to 6 (lowest curve) in steps of 1. Thick gray line is

the asymptotic value (2.47).

constantly accelerated frame the final spreading of the shell in laboratory frame

∆l1 =
∫ t

0 ∆v dt appears to be finite even if we extend this phase infinitely in time,

and the main part of the spreading is connected with initial part of motion with

relatively small Γ. Velocity spread is given by Eq. (2.44) and in energy dominated

phase the spreading is

∆l1
R0

. 2.2

√
kT0

mpc2 = 0.18 E1/8
54 R−3/8

8 . (2.48)

In the matter dominated phase the additional spreading of the shell at radius

R is

∆l2
R0
' 3B7/3

√
kT0

mpc2

(
R
R0

)1/3

= 5.3 · 10−6 E1/8
54 R−17/24

8 B7/3
−2 R

1/3
8 , (2.49)

when R � B−1R0. Comparing to the hydrodynamical spreading for reasonable

GRB parameters the spreading coming from both (2.48) and (2.49) is negligible.

Note that velocity dispersion in any case does not exceed the value given
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2.7. Conclusions

by Eq. (2.46) with θ � 1 and this gives an absolute maximum of the thermal

spreading on the radiation dominated phase

∆l1
R0

=
1

R0

∫ t1

0
∆v(t)dt .

1
R0

∫ ∞

0
cΓ(t)−3/2dt ' 2.6. (2.50)

2.7 Conclusions

In this Chapter we presented a brief overview of relativistic hydrodynamics of

GRB paying special attention to the formulation of initial and boundary con-

ditions. We also considered two mechanisms of spreading of relativistically ex-

panding shell.

Considering initial and boundary conditions giving rise to wind and thin

shell models we find that their dynamics is similar in the ultrarelativistic limit

Γ � 1 and R � l. Then, following the proposal of [33], we estimated hydrody-

namical spreading of relativistically expanding shell.

We also considered thermal spreading. Assuming relativistic Maxwellian dis-

tribution function for electrons and baryons we determined the velocity disper-

sion depending on the temperature and the Lorentz factor of the bulk motion.

We then applied these results to GRBs and showed that thermal spreading pro-

vides negligible spreading for realistic parameters of GRBs.

53



2. Hydrodynamics of GRBs

54



Chapter 3

Optical depth of relativistically

moving medium

In this Chapter we compute the optical depth of photon scattering in relativis-

tically moving medium and apply the results to GRB outflows. This problem

finds applications in theory of GRB photospheric emission and we discuss such

applications in Chapter 4.

It is well known that optical depth τ is relativistic invariant, see e.g. [61,

Sec. 4.9]. However, in concrete physical situation the choice of particular refer-

ence frame where the calculations are performed is dictated by physical con-

ditions. It is also instructive to demonstrate on simple analytic examples the

invariance of optical depth.

We begin with the general definition of optical depth and its representation

in manifestly covariant 4-dimensional form by Ehlers [65, p. 76–77], see Sec. 3.1.

Then we calculate the optical depth of relativistically moving slab in Sec. 3.2,

and of spherically symmetric matter distributions, see Sections 3.3–3.7. Finally,

optical depth and transparency radius of the outflows in baryonic thermally

accelerated models of GRBs, such as fireball [7] and fireshell [75], is computed

in Sections 3.8–3.10. A survey of the literature and comparison with previous

results is given in Sec. 3.11. Conclusions follow.

3.1 Definition of the optical depth

Take a light ray in the medium. It follows a light-like world line. Optical depth

on the world line from one space-time point A to another space-time point B is
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3. Optical depth of relativistically moving medium

defined (see e.g. [61, Eqs. (1.25), (1.26)]) by the following formula

τAB = − ln
NB

NA
, (3.1)

where NA and NB are the numbers of photons emitted at point A and received

at point B, respectively.

As it is shown by Ehlers [65, p. 76–77], the optical depth along the ray with

the world line L from space-time point A to space-time point B in a medium

with nonrelativistic comoving temperature is a curvilinear integral

τAB = −
∫
LAB

σncuµdxµ = −
∫
LAB

σjµdxµ, (3.2)

where we used Einstein summation rule and (−,+,+,+) metric signature, σ

is invariant scattering cross-section, i.e. cross section measured in the system

comoving with the medium, uµ and jµ = ncuµ are respectively 4-velocity and

4-current of the medium, nc is its comoving number density, dxµ is the world

line element along the ray. In all Chapter we assume σ = const which is the case

of Thomson scattering, relevant for determination of the photospheric emission

of GRBs.

For hydrodynamic models considered in Chapter 2, the integral for optical

depth (3.2) has its simplest form in the laboratory reference frame. For this rea-

son in all Chapter we adopt this reference frame, if not specified otherwise. We

assume Minkowski space-time and use subscripts "c" and "l" referring respec-

tively to comoving and laboratory reference frames. When it does not lead to

confusion, index "l" is omitted for simplification of notation. 3-dimensional vec-

tors are denoted by bold letters.

In a given laboratory frame with coordinates (ct, r) we have

uµ = Γ(1, β), jµ = ncΓ(1, β) = nl(1, β), (3.3)

where v = βc is 3-velocity of the medium in laboratory frame, Γ = (1− β2)−1/2

is Lorentz factor, nl is laboratory density of the medium. The element of the ray

world line in this reference frame, parameterized by time t or by length along
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3.2. Optical depth of a slab in planar geometry

the ray ζ is

dxµ = cdt (1, µ) = dζ (1, µ) , (3.4)

where µ is the unit vector in the 3-direction of the ray, |µ| = 1, and dζ = cdt is

the spatial length of the element.

Then the integral (3.2) in laboratory reference frame is

τAB =
∫ ζB

ζA

σncΓ(1− β · µ)dζ =
∫ ζB

ζA

σnl(1− β · µ)dζ, (3.5)

where ζA and ζB correspond to space-time points A and B, respectively, and a

dot denotes scalar product of 3-vectors. This expression is also in agreement with

transformation laws for opacity κ, in particular, it is equivalent to Eq. (4.112) of

the textbook [61], if we take into account the Doppler effect, their Eq. (4.11). It is

also the same as Eq. (90.8) of the textbook [88], where the Doppler effect is given

by Eq. (89.5).

It should be noted that optical depth is a two-point function which depends

both on locations of event A and event B, as it clearly follows from Eqs. (3.2) and

(3.5). Only if one of these points is fixed, for example, at infinity, then τ becomes

a one-point function.

3.2 Optical depth of a slab in planar geometry

In order to clarify the physical meaning of the expression (3.5) it is instructive to

make explicit calculation of optical depth in some simple model. Consider a slab

with constant comoving density nc moving along x-axis, and a ray of photons,

crossing the slab in both directions parallel and antiparallel to this axis. Space-

time diagrams of the events in comoving and laboratory frame are shown on

Fig. 3.1.

Spatial lengths of both world lines AB and BC in comoving frame are equal

to the width of the slab in this frame Lc
AB = Lc

BC = lc. The optical depth in this

frame is

τAB = τBC =
∫ lc

0
σncdζc = σnclc. (3.6)
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Figure 3.1: Space-time diagram of ray propagation through the slab in comoving

(left) and laboratory (right) frame. Scale is the same on both figures, β = 2/3.

In laboratory frame the length of the ray inside the slab in forward direction

is affected by two factors: firstly, it is increased with respect to path in comoving

frame by a factor of 1/(1− β). This is purely kinematical effect, that has direct

analogy in nonrelativistic case. Secondly, the path is decreased due to Lorentz

contraction of the slab by a factor of 1/Γ. The result is

Ll
AB =

lc
Γ(1− β)

=
ll

1− β
. (3.7)

For the backward motion we have the same Lorentz contraction multiplier 1/Γ,

but another kinematical multiplier 1/(1 + β), also reducing the path as

Ll
BC =

lc
Γ(1 + β)

=
ll

1 + β
. (3.8)

The optical depth in laboratory frame along the world line AB is

τAB =
∫ ζlB

ζlA

σnl(1− fi¯)dζl =
∫ Ll

AB

0
σnl(1− β)dζl

= σnl(1− β)Ll
AB = σnl ll = σnclc. (3.9)
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For the world line BC

τBC =
∫ ζlC

ζlB

σnl(1− fi¯)dζl =
∫ Ll

BC

0
σnl(1 + β)dζl

= σnl(1 + β)Ll
BC = σnl ll = σnclc. (3.10)

This is an expected result: the optical depth of a slab does not depend on its state

of motion. This can be understood also as constancy of column number density

K = nclc = nl ll of the slab. Optical depth τ = σK is equal to the average number

of scattering events inside the world tube with cross section area σ along the

world line of rays AB or BC. This number does not depend on the choice of

reference frame.

3.3 Optical depth of a spherically-symmetric static

matter distribution

Before considering the optical depth in hydrodynamic models discussed in Chap-

ter 2, it is also instructive to calculate the optical depth in the case when density

of medium nl is not a constant along the ray. For illustration take a spherically-

symmetric static distribution of matter with number density

nl(r) = n0

(
R0

r

)2

(3.11)

extended from radius R to radius R + l, i.e. a static shell. Total number of parti-

cles in the shell N does not depend on parameter R

N =
∫ R+l

R
n0

(
R0

r

)2

4πr2dr = 4πn0R2
0l. (3.12)

However, optical depth (3.5) of this shell in radial direction depends on R

τ =
∫ R+l

R
σn0

(
R0

r

)2

dr = τ0R0

(
1
R
− 1

R + l

)
, (3.13)
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3. Optical depth of relativistically moving medium

where we have introduced the parameter

τ0 = σn0R0. (3.14)

The optical depth has two asymptotic limits: in the case of geometrically thick

shell l � R second term in parenthesis (R + l)−1 can be neglected and optical

depth becomes the same as in the case of infinite distribution of matter with

l → ∞

τthick = τ0
R0

R
, l � R. (3.15)

In the case of geometrically thin shell l � R we can expand Eq. (3.13) into a

series in small parameter l/R and the first term of the series gives

τthin = τ0
R0l
R2 , l � R. (3.16)

This expression is the same as in the slab case, because in this case τ = σn(R)l,

cf. Eq. (3.9), and it is valid as far as the contrast of density n, given by (3.11),

along the ray

∆n
n

=
n(R + l)− n(R)

n(R)
= 1−

(
R

R + l

)2

(3.17)

is small. In this respect the shell far from the origin becomes more and more

"slab-like". If density contrast is not small, then exact expression for optical

depth (3.13) should be used. Range of applicability of derived asymptotics is

illustrated in Fig. 3.2.

3.4 Optical depth of a spherically-symmetric moving

matter distribution, computed in laboratory frame

In this section we compute the optical depth of the expanding outflow corre-

sponding to the finite wind model introduced in Sec. 2.3.
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Figure 3.2: Optical depth of a static shell (3.13) as a function of ratio of shell

internal radius R to shell width l (solid curve). Asymptotics (3.15) and (3.16) are

shown by dashed lines.

3.4.1 Coasting phase

Unlike the previous case of static shell with R = const as a parameter, this ex-

panding outflow runs through different R(t) in the course of time. We compute

the optical depth of the entire outflow (2.29) evaluating integral (3.5) starting

from the inner radius R up to the radius R + Ll
AB given by Eq. (3.7), namely

τ =
∫ R+ l

1−β

R
σn0

(
R0

r

)2

(1− β)dr = τ0R0(1− β)

(
1
R
− 1

R + l
1−β

)
. (3.18)

This expression reduces to Eq. (3.13) for static shell β = 0.

Again we recover two asymptotic cases. If the outflow is thick enough, we

have

τthick = τ0(1− β)
R0

R
, l � R(1− β). (3.19)

In opposite case of thin outflow we arrive to

τthin = τ0
R0l
R2 , l � R(1− β), (3.20)

that is equal to the optical depth of static thin shell (3.16). Since R(t) is monoton-

ically increasing with time, the approximation (3.19) becomes invalid at certain
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Figure 3.3: Optical depth of a moving outflow (3.18) as a function of ratio of its

internal radius R to its width l for different velocities: β = 0 (static shell, solid

curve), β = 0.9 (dashed curve), β = 0.99 (dotted curve), β = 0.999 (dotted–

dashed curve). Far enough from the origin all curves approach the asymptotic

(3.20).

radius Rt. For larger radii it should be substituted by approximation (3.20) as can

be seen clearly from Fig. 3.3. The radius of transition between this two asymp-

totic solutions is given by

Rt =
l

1− β
' 2Γ2l, (3.21)

where the last relation holds in the ultrarelativistic case with Γ � 1. Notice the

coincidence of Rt and Rb defined in Eq. (2.12).

Unlike geometrical thickness l � R in (3.15) and thinness l � R in (3.16) cri-

teria in the static case, in the case of expanding outflow different criteria appear:

respectively l � R(1− β) in (3.19) and l � R(1− β) in (3.20). For this reason

we have introduced the terms photon thick and photon thin outflows, respectively,

in [89].

We can say then that the optical depth of an expanding spherical outflow in

general case depends on its velocity as a parameter, in contrast to the case of a

moving slab in plane geometry, cf. Eq. (3.15) and Eq. (3.19).
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3.5. Optical depth of spherical outflow with constant density profile computed in
laboratory frame

3.4.2 Accelerating phase

Now let us treat the case of accelerating outflow taking again the model of a

finite wind, described by Eqs. (2.21) and (2.29) of Sec. 2.3.

The world line of any differential shell with increasing time tends to light-

like line, and laboratory distance between a differential shell and the pure light

like world line starting radially at some time te, has a finite limit in a constantly

accelerating case, namely

∆rlim(te) = lim
t→∞

r(te) + c(t− te)− r(t)

=
√

c2(te − t0)2 + R2
0 − c(te − t0) ≤ R0. (3.22)

This effect is analogous to the effect of Rindler horizon for observer with constant

proper acceleration, e.g. [90].

For our purposes it means that if the outflow is thick enough l > ∆rlim(te),

then light ray from its inner boundary never crosses its outer boundary during

acceleration. This is the only case of astrophysical interest, because the width of

outflow in GRBs is at least of order R0, see Chapter 2. In this case integration

in optical depth should be extended to infinity, and hence we find that the accel-

erating outflow is always photon thick. Assuming Γ(t) � 1, from Eq. (3.5) optical

depth of the outflow (2.29) for a ray emitted from its inner boundary is

τ '
∫ ∞

R
σn0

(
R0

r

)2 R2
0

2r2 dr =
τ0

6
R3

0
R3 . (3.23)

Note that in accelerating phase optical depth decreases with radius even faster

than it does in coasting phase.

3.5 Optical depth of spherical outflow with constant

density profile computed in laboratory frame

In this section we calculate optical depth for the average shell model, defined

in the Sec. 2.2. In that model the laboratory density of the outflow at a given

laboratory time does not depend on radial coordinate nl(r, t)|t=const = const. For

simplicity we assume that the radial velocity of expansion is constant v = βc.
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3. Optical depth of relativistically moving medium

Equations of motion of outflow inner boundary ri(t) and of outflow outer

boundary ro(t) are

ri(t) = vt, ro(t) = vt + l, (3.24)

respectively, so that l is laboratory width of the outflow. The laboratory volume

of the outflow is

V(t) =
4
3

π
[
(l + vt)3 − (vt)3

]
=

4
3

π
[
l3 + 3l2vt + 3l(vt)2

]
, (3.25)

and laboratory density of the outflow nl is

nl =
N

V(t)
, (3.26)

where N = const is the total number of particles, on which photon scatters.

Approximation of constant density along the ray is good when the density

changes slowly on the ray world line, namely
∣∣∣ 1

n
dn
dt

∣∣∣∆t� 1, where ∆t = l
c(1−β)

is

the time during which light cross the shell. From Eqs. (3.25) and (3.26) it follows

that this condition is

F =

∣∣∣∣ 1n dn
dt

∣∣∣∣ l
c(1− β)

=
3β

1− β

l3 + 2l2vt
l3 + 3l2vt + 3l(vt)2 � 1. (3.27)

It is clear that F(t) monotonically decreases with time. When t changes from 0

to infinity, F(t) decreases from 3β
1−β to zero. Then we have two different cases:

• For β < 1/4 we have F < 1 always and density contrast along the ray is

small. We can say that in such case the "slab-like" approximation of con-

stant nl is reasonable, and the optical depth is given by the integral (3.9).

• For β > 1/4 F can be either larger than 1 or smaller than 1. We can define

t∗ =
lc
v

9β− 3 +
√

33β2 + 6β− 3
6(1− β)

<
2l

c(1− β)
(3.28)

such as F(t∗) = 1, then for t� t∗ the "slab-like" approximation (3.9) should

be valid. From Eq. (3.28) we find that ri � Γ2l in this case, that is exactly

our photon thin region (3.20).
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Figure 3.4: Optical depth of the outflow with density, constant in laboratory

frame, as function of radius of emission R. Curves from top to bottom corre-

spond to Γ = 10 (solid), Γ = 100 (dashed), and Γ = 1000 (dotted), respectively.

Two transition regions at R ∼ l and R ∼ Γ2l are clearly visible.

Optical depth for a ray crossing the outflow radially from inner boundary at

radius R is

τ =
∫ R+ l

1−β

R
σ

3N
4π [l3 + 3l2vt + 3l(vt)2]

(1− β)dr

=
(1− β)σN

√
3

2πl2β

tan−1

√
3
[
l + 2

(
R + βl

1−β

)]
l

− tan−1
√

3[l + 2R]
l

 , (3.29)

where we used the fact that on the world line of the ray t = R/v + (r− R)/c, as

follows from Eq. (3.24). Evolution of optical depth is illustrated by Fig. 3.4 and

has three asymptotics:

• For l � R, that corresponds to geometrically thick outflow, the optical

depth is nearly constant. However this case is not relevant for thermally

accelerating GRB models because outflow should be accelerating in these

radii.

• For l � R � βl
1−β , that corresponds to geometrically thin outflow in the

photon thick regime, the optical depth is inversely proportional to R, τ '
Nσ(1−β)

4πlβR , cf. Eq. (3.19).

• For R � βl
1−β , that corresponds to geometrically thin and photon thin out-
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3. Optical depth of relativistically moving medium

flow, the optical depth is proportional to R−2 and does not depend on

outflow velocity, τ ' Nσ
4πR2 , cf. Eq. (3.20).

We come to conclusion that the optical depth of geometrically thin outflow of

constant laboratory density, nl(r, t)|t=const = const across the outflow, follows the same

law as in the case of the outflow with density profile n ∝ r−2, considered in Sec. 3.4.

3.6 Optical depth of a radially spreading relativistic

outflow

In previous sections we assumed that the Lorentz factor inside the outflow is

constant and hence neglected the hydrodynamical spreading phenomena dis-

cussed in Sec. 2.4. In this section following [91] we consider the limiting case of

strong hydrodynamical spreading, namely case a) of Sec. 2.4. As it was shown

there, at sufficiently large radii the laboratory density is described by Eq. (2.34).

Taking into account hydrodynamical spreading (2.33) we obtain for the bary-

onic density along the light ray the following expression

n = n0

(
R0

r

)2 1
1 + 2r

Γ
dΓ
dr

, (3.30)

that is exact in ultrarelativistic limit. Notice the difference between Eq. (3.30)

and Eq. (2.34): in the former case dΓ/dr is computed along the light ray, while

in the latter case dv/dr is computed along the radial coordinate at fixed labora-

tory time. This expression reduces to Eq. (2.22) when dΓ/dr = 0. Instead when

the second term in the denominator of the Eq. (3.30) dominates, namely when

r � Γ(dΓ/dr)−1, density radial dependence coincides with the one given by

Eq. (2.35).

An estimate for dΓ/dr can be given for strong relative Lorentz factor differ-

ence in the outflow

dΓ
dr
∼ ∆Γ

∆r
∼ Γ

2Γ2l
=

1
2Γl

, (3.31)

where ∆r ∼ 2Γ2l is the distance inside the outflow along the light ray and ∆Γ ∼
Γ. Integrating expression (3.31) we obtain Lorentz factor dependence on radial
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comoving frame

coordinate for the case of strong relative Lorentz factor difference as

Γ(r) =

√
r− R

l
. (3.32)

Then from Eq. (3.5) we have the integral

τ = τ0

∫ R+∆r

R

(
R0

r

)2 1
1 + 2r

Γ
dΓ
dr

1
2Γ2 dr. (3.33)

Since we are interested in the asymptotics when the hydrodynamic spreading

is essential, we can assume in the integral r � R and ∆r � R. Under these

conditions the optical depth is

τ =
τ0

8
R0l
R2 . (3.34)

This result coincides with Eq. (3.20) up to a numerical factor. However its phys-

ical meaning is different. It represents photon thick asymptotic case, because

∆r � R in Eq. (3.33).

We conclude that photon thin asymptotics exists only in relativistic outflows

with small variations of the Lorentz factor in coasting phase in the sense defined

in the case b) of Sec. 2.4.

3.7 Optical depth of spherical outflow with constant

density profile computed in comoving frame

In the literature another approach to optical depth calculation, based on comov-

ing rate of photon scattering is used frequently in analogy with cosmology, see

e.g. [12]. In the thin shell model [32, 33] recalled in Sec. 2.2, the comoving thick-

ness of relativistically expanding shell is

lc =


R = R0Γ, R < B−1R0,

B−1R0, B−1R0 < R < B−2R0,

BR, R > B−2R0,

(3.35)

where B is the baryonic loading (2.3).
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3. Optical depth of relativistically moving medium

The corresponding comoving volume for fixed laboratory time is then [32]

Vc = 4πR2lc =


4πR3, R < B−1R0,

4πB−1R0R2, B−1R0 < R < B−2R0,

4πBR3, R > B−2R0.

(3.36)

Baryon number conservation

ncVc = const = 4πR3
0n0, (3.37)

implies

nc =



n0

(
R
R0

)−3

, R < B−1R0,

n0B
(

R
R0

)−2

, B−1R0 < R < B−2R0,

n0B−1
(

R
R0

)−3

, R > B−2R0.

(3.38)

In analogy with cosmology, the condition of photon decoupling (transparency)

for an uniform medium may be written as

ncσc = H, (3.39)

where σc = 〈σv〉 is the so-called thermally averaged cross section for Compton

scattering of photons on electrons [38, p. 61], H is the comoving expansion rate

given by

H =
dVc

Vcdtc
= a

dR
Rdtc

, (3.40)

where from Eq. (3.36)

a =


3, R < B−1R0,

2, B−1R0 < R < B−2R0,

3, R > B−2R0.

(3.41)
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3.8. Optical depth of the GRB outflow and transparency radius

Using the transformation between the laboratory and comoving time dt =

Γdtc, we obtain from (3.39) the condition of decoupling

ncσR
aΓ

= 1. (3.42)

The optical depth in the uniform expanding medium is then

τ =
ncσR

aΓ
=



τ0

3

(
R
R0

)−3

, R < B−1R0,

τ0B2

2

(
R
R0

)−1

, B−1R0 < R < B−2R0,

τ0

3

(
R
R0

)−2

, R > B−2R0.

(3.43)

The first and the second expressions are in agreement with the results of this

Chapter for photon thick outflows up to numerical factors of order unity, see

Eqs. (3.19) and (3.23). The third line of Eq. (3.43) corresponds to the case of the

outflow with strong hydrodynamical spreading: case a) of Sec. 2.4, see Eq. (3.34).

We conclude that the photon thin asymptotics relevant for the case b) of weak

hydrodynamical spreading cannot be obtained in this approach by comparison

of rates in the uniform medium without boundaries. In the photon thin case

photons decouple from the outflow because they cross its boundaries, and this

process by definition is missing in the comoving frame with infinite matter, for

which Eq. (3.43) was derived.

3.8 Optical depth of the GRB outflow

and transparency radius

Opacity of GRB outflows is dominated by Compton scattering of photons on

electrons and positrons, see e.g. [3, 7]. Positrons and electrons are presented in

the outflow by pair creation/annihilation process. There are also electrons, as-

sociated with baryons, that are predominant source of opacity for GRB with

high enough baryon loading, see e.g. [79]. In what follows we treat separately

outflows, opacity of which is dominated by pairs and by baryon-associated elec-

trons. Geometry of the outflow and variables used in the computations are illus-
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Figure 3.5: Geometry of the outflow (part of it is shown by gray shading) and

variables used. Observer is located to the right at infinity.

trated by Fig. 3.5.

The transparency radius Rtr is defined by equating to unity the optical depth

(3.5) for ray direction along the line of sight. This radius has a clear physical

meaning: if N photons emitted radially from the inner boundary of the outflow

at Rtr, then N/e photons are not scattered out of the ray on their way to spatial

infinity, where e = 2.7 . . . is the exponential constant. It is clear then that this is

the radius of decoupling for the photons emitted from the inner boundary.

It is worth noting that it is the lower limit in the integral (3.5) that is associated

with the transparency radius, but not the upper one. The upper limit in (3.5) is

the radius at which the photon leaves the outflow, even if it may decouple from

the outflow at much smaller radius, as in the photon thick case.

3.8.1 Outflows with opacity dominated by electron-positron pairs

Consider first the case when opacity is dominated by pairs. Then accelerated

expansion and optical depth is the same as in the case of pure electron-positron-

photon plasma. Due to pair creation/annihilation process number of electrons

and positrons in the outflow is not a constant, but it is a function of radial

position of the outflow, see Chapter 2.

As pure electron-positron plasma reaches thermal equilibrium before expan-

sion [28, 30] and it remains accelerating until it becomes transparent to radia-

tion1, the comoving number density of electrons and positrons is then a function

of the comoving temperature Tc. It is decreasing during accelerating adiabatic

1As rates of Compton scattering σcnc and annihilation < σe+e−v > nc are comparable (see,

e.g. [5]), electron-positron plasma is in thermal equilibrium all the way up to the transparency.
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3.8. Optical depth of the GRB outflow and transparency radius

expansion, see Eq. (2.24), as

Tc(r) = T0
R0

r
, (3.44)

where T0 is the temperature of plasma in the source. Far from the source r � R0

in ultrarelativistic regime the comoving temperature is nonrelativistic, kTc �
mec2, as it follows from Eqs. (2.26–2.27), and we can treat electron-positron pairs

as nondegenerate and nonrelativistic. Their comoving number density is then

nc(T) =
1√
2

(
kTme

πh̄2

)3/2

exp
(
−mec2

kT

)
. (3.45)

The optical depth of the pair plasma shell in radial direction is thus

τ(R) =
∫ ∞

R

σ√
2

(
kT0me

πh̄2

)3/2(R0

r

)5/2

exp
(
−mec2r

kT0R0

)
dr. (3.46)

Solving the equation τ(Rtr) = 1 numerically, we obtain that due to exponen-

tial dependence on the radial coordinate in pair density (3.45) transparency is

reached at the comoving temperature

kT± ' 0.040mec2 (3.47)

rather independent of the initial conditions of the outflow. Note that the opti-

cal depth for an expanding electron-positron-photon shell computed in [80] is

incorrect since it uses photon thin asymptotics, which never applies to the pure

e+e− outflows as they accelerate all the way up to the photosphere. The formula

(3.47) is in agreement with works [85] and [92], what used correct photon thick

asymptotics.

In thin shell model the radius of transparency corresponding to comoving

temperature (3.47) is

Rtr =
1

T±

(
3E0l
4πa

)1/4

, (3.48)

where a = 4σSB/c and σSB is the Stefan-Boltzmann constant. Analogously in
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3. Optical depth of relativistically moving medium

finite wind model with initial temperature (2.27) we have

Rtr =
1

T±

(
E0R2

0
4πla

)1/4

=
1

T±

(
LR2

0
16πσSB

)1/4

, (3.49)

where we have used the relations (2.32).

3.8.2 Outflows with opacity dominated by

baryon-associated electrons

Consider now the outflows with opacity dominated by electrons associated with

baryons. Then we can neglect the pairs and fix the number of electrons in the

outflow to the number of baryons

N =
E0B
mpc2 =

L∆tB
mpc2 . (3.50)

It this case both for averaged shell model and for finite wind model of the out-

flow, as it was shown in Sections 3.4 and 3.5, we have three asymptotics of optical

depth, one for the outflow at acceleration phase, Eq. (3.23), and two at coasting

phase, Eqs. (3.19) and (3.20). These asymptotics can be expressed with the use of

parameter τ0 (3.14)

τ0 = σn0R0 =
σE0B

4πR0lmpc2 =
σLB

4πR0mpc3 (3.51)

as follows

τ =



1
6

τ0

(
R0

R

)3

, R0 � R� B−1R0, (3.52a)

B2

2
τ0

(
R0

R

)
, B−1R0 � R� 2B−2l, (3.52b)

τ0
R0l
R2 , R� 2B−2l. (3.52c)

Recall the interpretation of the formulae (3.52). On the one hand, first two

asymptotics (3.52a, 3.52b) correspond to the case when the ray propagates in-
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3.8. Optical depth of the GRB outflow and transparency radius

side the outflow for a significant time so that the number density on its path

substantially decreases before it leaves. In this respect the outflow is “a long

wind”, even if the laboratory thickness of the outflow may be small, l � R.

That is why we refer to this case as a photon thick outflow [89]. On the other hand,

(3.52c) corresponds to the case when the number density of the outflow does not

change substantially on the photon world line before it escapes. In this respect

the outflow is “a thin shell” even if the duration of energy release could be long

and a long wind was launched. That is why we refer to this latter case as a photon

thin outflow [89]. For instance, a geometrically thin ultrarelativistically expand-

ing shell may be both thin or thick with respect to the photon ray propagating

inside it.

Similar consideration may be applied to a photon emitted at any distance

ξ from the outer boundary of the outflow, see Section 4.2 and Fig. 3.6. It is

clear then, that even in a photon thick outflow there is always a photon thin

layer located near the outer boundary. During acceleration phase such a photon

thin part accounts for a fraction not larger than Γ−1 of the entire width of the

outflow2. Recall that in the derivation of (3.52) we used the finite wind model

or averaged shell model, but the asymptotics of optical depth are generic and

apply to any density profile of the outflow.

From Eq. (3.52) the transparency radius of the outflow with opacity domi-

nated by baryon-associated electrons has three asymptotics

Rtr

R0
=



3

√
τ0

6
, Rtr < B−1R0,

τ0B2

2
, B−1R0 < Rtr < B−2R0,√

τ0
l

R0
, Rtr > B−2R0.

(3.53)

Further we will refer this type of the outflows getting transparent at radius Rtr

with Rtr < B−1R0, with B−1R0 < Rtr < B−2R0, and with Rtr > B−2R0 to as

accelerating photon thick, coasting photon thick, and coasting photon thin outflows,

respectively.

2Formally photon thin accelerating solution exists, and it is given by the Eq. (3.52c). However,

its validity condition is l � R2
0/R = R0/Γ.
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3.9 Transparency of the thin shell

Consider now the shell model of GRBs with typical parameters, expressing their

total energy as E0 = 1054E54 erg, initial size as R0 = l = 108R8 cm and bary-

onic loading as B = 10−2B−2. From Eqs. (3.48) and (3.52) we find the following

asymptotic solutions for the transparency radius together with domains of their

applicability

Rtr =



4.4× 1010 (E54R8)
1/4 cm,

E54 � 4.8× 10−20B−4
−2R−1

8 ,

1.8× 1012 (E54B−2R8)
1/3 cm,

4.8× 10−20B−4
−2R−1

8 � E54 � 3.2× 10−8B−4
−2R2

8,

1.8× 1017E54B3
−2R−1

8 cm,

3.2× 10−8B−4
−2R2

8 � E54 � 1.1× 10−5B−5
−2R2

8,

5.9× 1014 (E54B−2)
1/2 cm,

E54 � 1.1× 10−5B−5
−2R2

8.

(3.54)

Fig. 3.7 shows the energy-baryonic loading diagram, where the regions of va-

lidity of the asymptotics are indicated explicitly for typical parameters of GRBs.

For very small baryonic loading, or in other words for a pure electron-positron

plasma, the transparency radius does not depend on B parameter. For increas-

ing baryonic loading it increases as B1/3 (accelerating photon thick solution). In

both these cases the Lorentz factor at the transparency is not equal to B−1, but

it is much smaller. For larger baryonic loading the transparency radius steeply

increases as B3 (coasting photon thick solution), and finally it increases as B1/2

(coasting photon thin solution). For all the relevant range of GRBs parameters

1048 erg < E0 < 1055 erg and 106 cm < R0 < 1012 cm all four asymptotics

are present in the interval 10−10 < B < 10−1. Dependence of parameters of
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Figure 3.6: Optical depth τ of the outflow with density profile n ∝ r−2 for radial

ray as function of depth of emission ξ at coasting phase. Here τthick corresponds

to optical depth of photon thick asymptotics (3.52b), red line show the position

ξ = (1− β)R of transition from photon thin τ ∝ ξ to photon thick τ ' const

asymptotics of optical depth.
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Figure 3.7: The energy–baryonic loading diagram showing the validity of the

various asymptotic solutions of the transparency radius for typical parameters

of GRBs with l = R0 = 108 cm.
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transparency on initial conditions is illustrated in Tab. 3.1 at page 80.

Calculating optical depth by integral (3.5) and taking into account both pairs

and electrons, associated with baryons, we get for the transparency radius of dif-

ferent shell models the results shown in Fig. 3.8. There we also show as function

of the baryonic loading the following quantities computed at the transparency

radius: the Lorentz factor, the observed and comoving temperatures, and frac-

tion of energy in the photons there to the total energy, for different values of

the total energy E0. All the four asymptotics of Eq. (3.54) are clearly visible at

Fig. 3.8. It is obvious that the highest Lorentz factors at transparency radius are

attained in photon thick asymptotics. The largest transparency radii are reached

instead in photon thin asymptotics.

3.10 Transparency of the wind

In the case of gradual energy release resulting in relativistic wind an additional

parameter is present, that is the duration of energy release, which we parame-

terize as ∆t = 1∆t1 s. Instead of the total energy E0 the luminosity L = 1050L50

erg/s is used. The corresponding transparency radius is

Rtr =



8.1× 108L1/4
50 R1/2

8 cm,

L50 � 5.3× 10−15B−4
−2R−2

8 ,

1.3× 1010 (L50B−2R2
8
)1/3 cm,

5.3× 10−15B−4
−2R−2

8 � L50 � 9.8× 10−2B−4
−2R8,

5.9× 1010L50B3
−2 cm,

9.8× 10−2B−4
−2R8 � L50 � 105B−5

−2∆t1,

5.9× 1012 (L50∆t1B−2)
1/2 cm,

L50 � 105B−5
−2∆t1.

(3.55)

Fig. 3.9 shows the luminosity-baryonic loading diagram where the regions of

validity of the asymptotics discussed above are indicated. Again we can see that
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Figure 3.8: From top to bottom: transparency radius Rtr, Lorentz factor Γtr, ob-

served Tobs and comoving Ttr temperatures, and ratio of the energy in photons

to the total energy Etr/E0 at transparency radius as functions of entropy η for

shells with different total energy E0 but the same width l = R0 = 108 cm. All

four regimes with different asymptotics are clearly visible and dashed black lines

corresponding to their domain of validity from Eq. (3.54) are shown. Curves are

drawn for E0 equal to: 1049 erg (green), 1051 erg (blue), 1053 erg (violet), and

1055 erg (red). Dashed thick lines denote the diffusion radius for each energy,

see Sec. 4.3.
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Figure 3.9: The luminosity-baryonic loading diagram showing the validity of

the various asymptotic solutions for transparency radius of wind with duration

∆t = 0.1 s. Notation is the same as on Fig. 3.7.

for typical parameters of GRB considered in the literature all the four asymptotic

solutions are relevant, contrary to the claims that are encountered in the litera-

ture, see for example [93]. The photon thin asymptotic limit may also be valid

for relativistic winds in the coasting phase, provided that l � RB−2/2. This is

an independent condition from ∆t � R0/c and it is therefore possible to give

the following constraints for ∆t, under which the outflow from a finite wind is

photon thin at the transparency radius:

R0

c
� ∆t� τ0B4

4
R0

c
. (3.56)

Dependence of the transparency parameters on the initial conditions of the wind

is presented in Tab. 3.2.

Again calculating transparency radius from integral (3.5) taking into account

both pairs and electrons we get the results presented in Fig. 3.10. There we show

also as function of the baryonic loading the following quantities computed at

the transparency radius: the Lorentz factor, the observed and comoving tem-

peratures, and fraction of energy in photons to the total energy, for different

duration of the wind with the total energy E0 = 1051 erg, and inner boundary

radius R0 = 108 cm. Wind duration ranges from 10 ms to 10 s, the corresponding

wind luminosity varies from 1053 erg/s to 1050 erg/s.
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Figure 3.10: The same as in Fig. 3.8 for winds with different duration, but the

same total energy E0 = 1051 erg and radius of origin R0 = 108 cm. All four

regimes with different asymptotics are clearly visible. Curves are drawn for ∆t
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3.11. Comparison with previous works

3.11 Comparison with previous works

Reviewing existing literature, we found that different asymptotics for optical

depth and transparency radius were used previously, see Tab. 3.3. There were

no paper discussing all asymptotics with the range of their applicability until a

recent work of Toma, Wu & Mészáros (2011) [93].

As the photon thick outflow becomes transparent for the photons from dif-

ferent differential shells at the same radius equal to the radius of transparency,

this radius is traditionally called in the literature the radius of photosphere, e.g.

[23]. The expressions for the optical depth of a relativistic wind outflow were

obtained e.g. in [20]. Their formulas coincide with our (3.52) up to a numerical

factor which comes from the integration over the radial coordinate. It should be

noted, however, that only the photon thick asymptotic limit is discussed in [20].

The transparency radius for photon thick and photon thin asymptotics for a fi-

nite coasting relativistic wind outflow was obtained by [96]. However, literature

on the photospheric emission of relativistic winds generally neglect photon thin

asymptotics, see e.g. [23, 26].

Similar considerations apply to an ultrarelativistic shell which is considered

in [32, 79, 80] in the photon thin approximation. The corresponding condition

that the shell at the photospheric radius appears to be photon thin is τ0 � 4B−4.

Gamma-Ray Bursts analyzed so far in the context of the fireshell model fall into

the domain of validity of photon thin asymptotics with the only exception of

two cases, GRB050509B and GRB071227, see Fig. 3.11. For low baryonic loading

it is possible that initial conditions result in a photon thick shell, considered for

the case of giant flares in soft gamma-ray repeaters in [98].

All asymptotic solutions for the optical depth have been considered by [12],

except for the case of pure electron-positron outflow. They derived the pho-

tospheric radius considering the expansion in comoving reference frame, see

Sec. 3.7. Notice, that the photon thin asymptotics was obtained in [12] by as-

suming hydrodynamic spreading of the outflow found by the same authors in

[32]. In absence of such spreading (e.g. for the finite wind model considered

above) this asymptotics cannot be obtained this way. Finally, [93] discusses all

asymptotic solutions, applying them to a relativistic wind.
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Figure 3.11: Validity of different asymptotics shown on the plane E–B with

l = 108 cm. Blue range I represents applicability domain of accelerating

photon thick asymptotics. In white region the coasting photon thick asymp-

totics is valid, while in the magenta region II the coasting photon thin

asymptotics is held. GRBs analyzed so far in the fireshell model are shown

by red points with the numbers. Data for different GRBs were taken from

the following papers: GRB970228 [99], GRB991216 [100], GRB050315 [101],

GRB060607A [102], GRB090618 [103], GRB060218 [104], GRB031203 [105],

GRB060614 [106], GRB090423 [107, 108], GRB050509B [109], GRB071227 [110,

111], GRB080319B and GRB050904 [112], GRB101023 [113].

3.12 Conclusions

We conclude that interpretation of the formula (3.52) it terms of photon thick

and photon thin conditions given in this Chapter provides additional physical

insight to the consideration of optical depth in shell and wind models of GRBs.

This new classification is different from the classification based on the geomet-

rical thickness of the outflow, that is essential in the hydrodynamic treatment of

Chapter 2.

The photon thick/thin classification is rooted in the time evolution of ultrarel-

ativistic outflow as it expands during the light crossing time of the outflow. Due

to relativistic motion this time is 2Γ2 times larger than crossing time for static

shell of the same width, that is just a kinematic effect. If the evolution of the out-

flow during this time is negligible, we refer to the outflow as photon thin; if it
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3. Optical depth of relativistically moving medium

is substantial, we refer to the outflow as photon thick. It should be stressed that

as a result of relativistic motion outflows are effectively "thickened", as crossing

time is increasing.

One of the scopes of this Chapter is to show that the association of “instan-

taneous energy release” with “thin shell” (e.g. [32, 33]) and “continuous energy

release” with “thick wind” (e.g. [11, 27]) generally adopted in the literature is

incomplete with respect to the optical depth of the outflows: both shells can be

"wind-like", i.e. photon thick, see Fig. 3.7, and winds can be "shell-like", i.e. pho-

ton thin, see Fig. 3.9. We found that all four asymptotics of optical depth and

transparency radius derived in Sec. 3.8 are relevant for typical parameters of

GRBs both in shell and wind models, see Sections 3.9 and 3.10.
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Chapter 4

Radiative transport in

ultrarelativistic outflows

and photospheric emission of GRBs

Due to rarefication of the expanding GRB outflow photons decouple from it

and reach the observer. These photons represent the photospheric emission of

GRBs. Early models of such photospheric emission have been proposed already

in the 80’s [10, 11]. Within the fireshell model [75] special attention is paid to

this emission which is called the Proper GRB (P-GRB) [100, 114]. In this model

both energy and time separation of this emission from the rest of the prompt

emission is predicted and identified in many GRBs, see [99–113].

Theoretically properties of this emission were studied in [114–117]. In [115]

radiative diffusion from expanding outflow was treated as a quasistationary

problem in semiinfinite medium and the results were then applied in [114] to

obtain light curves and spectra of P-GRB. However, GRB outflows are both non-

stationary and finite, and in this Chapter we take into account these factors.

Another approach of slicing the GRB outflow into small shells emitted during

the process of collapse, suggested in [77], was used in [116, 117] with a simpli-

fying assumption about instantaneous emission of thermal spectrum of photons

from these shells of plasma at their transparency. Here we treat the problem with

the help of full radiative transfer and take into account the fact that process of

photon decoupling from different parts of the outflow is not instantaneous.

Following the identification of thermal component in time-resolved spectra

of BAT GRBs [118, 119], a different theoretical approach to photospheric emis-

sion was developed, e.g. in [23, 24, 24–26, 76]. It uses essentially the model of

85



4. Radiative transport in ultrarelativistic outflows
and photospheric emission of GRBs

steady wind due to Pachinski [11, 27] and analytic result for the optical depth

in this case was obtained in [94]. In particular, geometrical effects of switching

off relativistic wind were discussed in the work [23]. Comoving anisotropy of

radiative field was discussed in the work [25] using radiative transfer and MC

simulations. However, they all miss the case of photon thin outflows.

In this Chapter we present the treatment of radiative transport in the rela-

tivistic outflows with application to GRBs, based on the paper [89]. In Section 4.3

radiative diffusion in an expanding relativistic outflow is treated. In Section 4.2

we discuss geometry and dynamics of the outflow photosphere as seen by a dis-

tant observer. Section 4.1 describes the scheme of application of radiative transfer

equations to photospheric emission of relativistic outflows. Then observed light

curves and spectra of photon thick and photon thin outflows are computed in

Sections 4.4–4.5. In Section 4.6 main results and their implications for GRBs are

discussed. Conclusions follow.

4.1 Radiative transfer in relativistic outflows

The basis of spectrum and flux calculation is the radiative transfer equation for

specific intensity Iν along the ray, see e.g. [61, p. 11]

dIν

ds
= jν − κν Iν, (4.1)

where jν is monochromatic emission coefficient, κν is absorption coefficient and

s is distance, measured along the ray.

Spectral intensity of radiation at infinity on a ray coming to observer at some

arrival time ta is given by formal solution of this equation

Iν(ν, ρ, ta) =
∫
Iν(ν, r, θ, t)

d
ds
{exp[−τ(ν, r, θ, t)]} ds

=
∫
Iν(ν, r, θ, t) exp[−τ(ν, r, θ, t)] dτ, (4.2)

where Iν(r, θ, t) is the source function, equal to the ratio of emission and absorp-

tion coefficients Iν = jν/κν, optical depth τ is an integral of κν from the point

on the ray under consideration to infinity τ =
∫

κνds, given by Eq. (3.2) or, after

specification of reference frame, by Eq. (3.5), and variables (r, θ, t) are connected

by ta = t− r cos θ and r sin θ = ρ, see Fig. 3.5. We use Thomson scattering cross
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4.1. Radiative transfer in relativistic outflows

section in comoving frame κν,c = const.

The formal solution (4.2) emphasizes the meaning of optical depth τ (3.2) that

defines the visibility of N0 photons, emitted towards the observer from a given

element of 4-tube around the ray world line, specified by the parameter s along

the ray. The intensity in these photons is given by the source function Iν, and

only N0 exp(−τ) part of them reaches the observer without further scattering or

absorption.

Total observed flux is an integral over all rays

Fν(ν, ta) = 2π∆Ω
∫

ρ dρ Iν(ν, ρ, ta), (4.3)

where ∆Ω is the solid angle of the observer’s detector as seen from the outflow

in the laboratory frame and 2πρdρ is an element of area in the plane of the sky.

In what follows we assume that emissivity jν is thermal and isotropic in

comoving frame of the outflow. The laboratory source function is then

Iν(ν, r, θ, t) =
2h
c2

ν3

exp
{

hνΓ(r,t)[1−β(r,t) cos θ]
kTc(r,t)

}
− 1

, (4.4)

where Tc is the comoving temperature. This approximation is justified when the

radiation field is tightly coupled to the matter. The photospheric emission comes

from entire volume of the outflow, and the computational method sketched

above is closely related to that used in [25] where the concept of “fuzzy pho-

tosphere” was introduced. This method will be referred to as fuzzy photosphere

approximation.

Most of energy reaching observer is emitted from the region near the the

photosphere. One can define the probability density function along the ray as

P(r, θ, t) = P0
d
ds

exp[−τ(r, θ, t)] (4.5)

with P0 being normalization. When the time dependence in this equation is dis-

carded this P(r, θ) coincides with the probability density function of the last scat-

tering defined in [23]. This function determines the probability of the photon to

come to observer at infinity, and it reaches the maximum near the photosphere.

For determination of both light curves and spectra of photospheric emission it is

then crucial to know the dynamics of the photosphere which crosses the outflow
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during its expansion. Assuming that all the energy comes from the photosphere

only, i.e. from a surface instead of the volume discussed above, the computation

of fluxes and spectra may be reduced to one dimensional integration by substi-

tution of the function P with a Dirac delta in the integral (4.2). Such more crude

approximation, in contrast to the fuzzy photosphere one, will be referred to as

sharp photosphere approximation.

4.2 Geometry and dynamics of the photosphere

Unlike traditional static sources usually dealt with in astrophysics, relativistic

outflows may have strongly time-varying photospheres, i.e. surfaces of τ = 1

along the ray coming to the observer at infinity. For the finite wind model (3.11)

the optical depth can be calculated analytically both at acceleration and coasting

phases for photon thin and photon thick outflows. For model of Lorentz factor,

smoothly joining asymptotics (2.21) and (2.22)

Γ(r) =
r

R0 + r/η
(4.6)

the result is

τ(r, θ, t) = τ0R0

{
1

r sin θ

[
θ − tan−1

(
r sin θ

cT + r cos θ

)]

− βm

(
1
r
− 1√

(cT + r cos θ)2 + (r sin θ)2

)

+
R2

0
6

(
1
r3 −

1

[(cT + r cos θ)2 + (r sin θ)2]
3/2

)}
, (4.7)

where T is the time interval during which photon remains inside the outflow,

determined by the equations of motion of the photon and of the outflow, and

βm = 1− B2/2. For a given laboratory time t the photosphere geometry r = r(θ)

is obtained by equating (4.7) to unity along the rays coming to observer. Then

formula (4.7) gives complete information on the dynamics and geometry of the

photosphere of finite ultrarelativistic wind. In order to understand this dynamics

it is instructive to consider its limiting cases.

Firstly, the photosphere of the coasting infinitely long relativistic wind with
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Figure 4.1: The shape of photospheres of infinitely long coasting (blue solid

curve) and accelerating (black dotted curve) winds for Γph = 100. Dashed line

shows the relativistic beaming angle.

Γ = const analyzed by [94] may be recovered from (4.7) with T → ∞. In that

case the last term in (4.7) can be neglected and we have (see e.g. [23])

r
R0

= τ0

(
θ

sin θ
− βm

)
, (4.8)

which is a static surface having concave shape, see Fig. 4.1.

Secondly, the photosphere of the accelerating infinite wind may be obtained

from (4.7) for T → ∞ and η → ∞. It results in a cubic equation describing a

static surface

r
R0

=
ζτ0

3

(
1− A− A−1

)
, (4.9)

A = 3

√√√√ 4ζ3τ2
0

3
√

9 + 8ζ3τ2
0 − 9− 4ζ3τ2

0

, ζ =
θ

sin θ
− 1,

with curvature larger than that of the coasting wind, see Fig. 4.1. In both cases

these photospheres appear for a distant observer as static spots with radius

ρ = πτ0R0. (4.10)

Now consider dynamic properties of the photosphere of ultrarelativistic out-

flow described by (4.7) as seen by a distant observer. The arrival time of radiation
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is defined as ta = t− r cos θ/c. The equitemporal surface (EQTS) of the photo-

sphere represents a part of the photosphere visible at a given instant of arrival

time ta, see e.g. [100]. We will refer to that surface as Photospheric EQTS (PhE).

PhE of any outflow initially appears at acceleration phase as a convex sur-

face with increasing visible radius, tending to asymptotic value of ρ = R0, that

propagates towards observer with increasing velocity, see Fig. 4.2.

If at transparency outflow is still deep in acceleration phase, size of spot

changes at this phase of the PhE evolution as

ρ =
√

R2
0 − (ta/c)2, −R0/c ≤ ta ≤ 0,

and velocity of central part of PhE reaches the maximum and begin to decrease.

That leads to change of PhE shape—it become concave. Then at ta = 0 PhE

reaches the photosphere of infinite accelerating wind (4.9) inside relativistic

beaming surface cos θ = β (in this case it is the cylinder ρ = R0) and stop there,

growing only along this surface almost linearly with arrival time ρ ' R0 + cta.

If baryon loading is higher, outflow comes into coasting phase still being

optically thick as a whole. PhE does not become concave at acceleration, instead

it transforms to the part of convex ellipsoid, that is the EQTS of infinitesimally

thin constantly emitting relativistic shell considered firstly in [120] and then in

[121, 122], see the first PhEs at Fig. 4.3. The EQTS of this shell appears to a distant

observer as an ellipsoid with axes ratio equal to Γ. The external boundary of

PhE—part of the ellipsoid described—for a given ta is defined by the condition

that photons emitted from the outermost layer of the outflow toward observer

has τ = 1. In the beginning of coasting phase, when PhE crosses photon thin

part of the outflow, this surface almost coincides with the relativistic beaming

cone, provided by ξ|τ=1 � B2R. Visible radius of PhE is growing at this stage as

ρ = cta/B.

If baryon loading is not so high, then PhE crosses photon thin part of the

outflow and comes into photon thick part. This leads to decrease of PhE velocity

propagation, firstly in the central part, and then at larger and larger θ. Form of

PhE become concave and it tends asymptotically to the photosphere of infinite

coasting wind (4.8). Notice that the boundary of PhE at this phase gets out of

the relativistic beaming angle, see Fig. 4.3.

In the last case of very high baryon loading PhE resides only in photon thin

part of the outflow and PhE is always the part of ellipsoid described above.
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4.3. The role of radiative diffusion

Let us summarize similarities and differences between PhEs of accelerat-

ing and coasting outflows. Developed PhE of photon thick outflow has concave

shape, see Fig. 4.2 and Fig. 4.3. This concave PhE in both cases approaches the

photosphere of infinitely long wind. In the coasting case the approach to that

surface is only asymptotic, while in the accelerating case the photosphere ac-

tually reaches it at finite arrival time. The external boundary of the PhE for a

given ta shown in Fig. 4.3 is defined by the condition that the optical depth for

photons emitted from the outermost layer of the outflow equals unity. Notice

that this boundary is wider than the relativistic beaming surface (these are tube

and cone for accelerating and coasting outflows, respectively).

As soon as the innermost part of the outflow reaches the photospheric ra-

dius, i.e. observer sees the switching off of the wind, the inner boundary of the

PhE expands with ta. The surface of these boundaries is given by Eqs. (4.8) and

(4.9) in the case of coasting and accelerating photon thick outflows, respectively.

Analogous behavior is presented in the case of photon thin outflow, but it is

irrelevant for photospheric emission and will not be described here in detail.

4.3 The role of radiative diffusion

Before considering the photospheric emission from photon thick and photon

thin outflows we focus on the role of radiative diffusion.

In the previous Chapter we assumed explicitly that photons escape the ex-

panding outflow when its optical depth decreases to unity. We have distin-

guished two possibilities:

• in the photon thick case electron number density decreases along the pho-

ton path so rapidly that the medium becomes too rarified to sustain colli-

sions. Most photons however still remain inside the outflow after decou-

pling;

• in the photon thin case the variation of the electron number density along

the ray can be neglected, but the mean free path of photons increases with

expansion and eventually exceeds the radial thickness of the outflow.

However, photon can also escape from the outflow due to diffusion, and we

briefly discuss this effect below.

Comoving diffusion time is given by tD,c = l2
c /Dc, where lc = Γl is the

comoving radial thickness of the outflow, and diffusion coefficient is Dc =
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Figure 4.2: PhE of the photon thick accelerating outflow at different arrival times,

and the probability density function of photon last scattering integrated over an-

gles P(r) (red thick curve). Thick black curve represents the photosphere of in-

finitely long accelerating wind. PhEs are illustrated for several arrival times with

logarithmic spacing (from right to left ta = (−2−10δt,−2−9δt, . . . ), see (4.12)) by

thin black curves. The surface cos θ = β is given by ρ = R0 and it is shown by

thick black line. Dashed curves illustrate the maximal visible size ρ for several

arrival times with logarithmic spacing ta = (2−10δt, 2−9δt, . . . ) from bottom to

top. The PhE at that arrival times is a part of the wind photosphere limited by

the corresponding curves. Range of observed temperature of emission under the

asymptotic photosphere is illustrated by color, see legend. Here Rph = 100R0.
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Figure 4.3: The same as in Fig. 4.2 for a photon thick coasting outflow. PhEs are

illustrated by thin curves for several arrival times with logarithmic spacing from

left to right ta = (10−2tp, 10−1.75tp, 10−1.5tp, . . . ), see (4.14). Thick black curve

bounding PhEs correspond to the position of maximal visible angles at given ta.

Notice that these angles exceed the relativistic beaming angle, shown by dashed

black line. Right edge of the colored area is the photosphere of infinitely long

coasting wind (4.8). Here Γ = 100.
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(cλc)/3 = c/(3σnc), where λc and nc are comoving mean free path of photons

and comoving electron number density, respectively.

In order to determine, at which radii diffusion becomes important, one has

to compare this comoving diffusion time with comoving expansion time of the

outflow tc = R/(cΓ). Then we obtain that it happens when the outflow reaches

the radius

RD =
(

τ0η2R0l2
)1/3

'

7.2× 1013(E54l8B−1
−2)

1/3 cm,

2.2× 1013(L50∆t2
1B−1
−2)

1/3 cm.
(4.11)

This diffusion radius turns out to be larger than the transparency radius of pho-

ton thick outflows, RD � Rtr, so that diffusion is irrelevant for their description.

In the case of photon thin outflows the diffusion radius is smaller than the

transparency radius RD � Rtr. In this case most radiation leaves the photon thin

outflow not at its photospheric radius, but when it reaches the diffusion radius.

Notice, that at that radius the outflow as a whole is still opaque.

In other words, the decoupling of photons from the outflow occurs not lo-

cally, as in the photon thick case, but near its boundaries where photons are

transferred to by diffusion. In this sense the characteristic radius of the photo-

spheric emission is not the transparency radius found from (3.52), but the radius

of diffusion (4.11). Besides, the comoving temperature of escaping radiation is

different from that discussed in Section 3.8. We discuss all these effect in details

in Sec. 4.5.

4.4 Photospheric emission from photon thick outflows

For photon thick outflow the optical depth (4.7) becomes function of r and θ

only and the comoving temperature also depends only on radius. In this respect

the photon thick case is similar to the infinite wind. Then the integrand in (4.3)

does not depend on time and only limits of integration provide time dependence

due to motion of the outflow boundaries. The probability density function (4.5)

integrated over angles is shown in Figs. 4.2 and 4.3 for accelerating and coasting

photon thick outflows.

The observed flux of photospheric emission from accelerating outflow is il-

lustrated in Fig. 4.4 by thick red curve (fuzzy photosphere) and by dotted blue

curve (sharp photosphere). The characteristic raising and decaying time is in
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4.4. Photospheric emission from photon thick outflows

both cases

δt =
R2

0
(Rtrc)

=
R0

Γtrc
. (4.12)

There is no simple analytic expression describing full light curve, however its

decreasing part is close to a power law with index −4.7 and −6.5 within fuzzy

and sharp photosphere approximations, respectively. As minimal duration of

the photon thick outflow ∆t is of order R0/c, then ∆t � δt and the light curve

has almost rectangular shape.

Such accelerating outflow appears to a distant observer as a spot with size

ρ = (R2
0 − (ta/c)2)1/2, for −R0/c ≤ ta ≤ 0. As soon as the PhE reaches the cor-

responding accelerating infinitely long wind photosphere at ta = 0 the spot size

starts to increase almost linearly with time ρ ' R0 + cta. Finally, as the innermost

part of the outflow reaches the transparency radius the spot transforms to a ring

with rapidly decreasing width and brightness.

The observed photospheric emission of the coasting photon thick outflow

results in the flux changing as

F = Fmax

[
1− (tp/ta)

2
]

, (4.13)

with

tp =
RtrB2

2c
, (4.14)

i.e. increase up to the saturation value Fmax ∝ L, see the raising part of the light

curve in Fig. 4.5, both in sharp and fuzzy photosphere approximations. Radius

of the visible spot then reaches its maximal size (4.10). As arrival time exceeds

tp + ∆t the innermost part of the outflow approaches the wind photosphere

(4.8) along the line of sight and the spot transforms to a ring, the flux decreases

rapidly in both approximations

F ∝ t2
p

[
1

(ta − ∆t)2 −
1
t2
a

]
. (4.15)

For ta � ∆t it behaves as F ∝ t−3
a , see the decreasing part of the light curve

in Fig. 4.5. Similarly to the accelerating photon thick outflow the light curve for
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Figure 4.4: The light curve of photospheric emission from the photon thick ac-

celerating outflow in fuzzy (red curve) and sharp photosphere approximations

(dashed blue curve). Here Rph = 100R0, and ∆t = 2δt, see (4.12).
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Figure 4.5: The same as in Fig. 4.4 for a photon thick coasting outflow. Here

Γ = 100 and ∆t = 5tp, see (4.14).

∆t� tp has almost rectangular shape due to the fact that its increase and decay

times are much shorter than ∆t.

Accelerating photon thick outflows exhibit photospheric spectra close to ther-

mal ones, see Fig. 4.6. In ultrarelativistic case spectra computed using both sharp

and fuzzy photosphere approximations are very close to each other. Both have

small deviations from thermal spectrum in the low energy part with the corre-

sponding Band low energy indices α = 0.82 and α = 0.71, respectively.

In contrast, the spectrum of photospheric emission of the coasting photon
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Figure 4.6: Instantaneous spectrum of photospheric emission of accelerating

photon thick outflow in continuous (blue thick curve) and sharp photosphere

approximation (black thick curve). Dashed red curve represents the thermal

spectrum with the temperature at the line of sight TLOS. Lorentz factor at photo-

spheric radius is Γph = 100.

thick outflow is significantly wider that the thermal spectrum, see Fig. 4.7. Low

energy part is described by a power law with Band indices respectively α = 0.34

and α = 0, for sharp and fuzzy photosphere approximations.

After initial phase of evolution, namely rising of the low-energy part, spectra

do not evolve until observer detects emission from the innermost part of the

outflow. At that moment there is a transition to another phase characterized

by the fast decrease of both temperature and flux. Considering time-integrated

spectrum we find that as characteristic times of the first and third phases are

much less than that of the second one, the spectrum is close to the instantaneous

one described above.

4.5 Photospheric emission from photon thin outflows

Now we turn to photon thin outflows. In Sec. 4.3 we pointed out that most of the

radiation leaves the outflow not at its transparency radius, but earlier, before and

near the diffusion radius. Given that opacity of the outflow is still large there,

the emission escapes only from a very narrow region near the outer boundary

of the outflow. The probability density function (4.5) is strongly peaked in this

narrow region and the photospheric emission for a given arrival time originates
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Figure 4.7: The same as in Fig. 4.4 for a photon thick coasting outflow with

Lorentz factor Γ = 100.

from this place. Sharp photosphere approximation is thus completely justified

for photon thin outflows.

Since all the radiation is emitted from the PhE we briefly remind its geometry

and dynamics. The PhE of the photon thin outflow is similar to EQTS of infinites-

imally thin constantly emitting relativistic shell considered firstly by [120] and

then by [121, 122]. The EQTS of this shell appears to a distant observer as an

ellipsoid with axes ratio equal to Γ. However the PhE of photon thin outflow is

not the entire ellipsoid: it is only a part of that surface, see Fig. 4.8. The exter-

nal boundary of the PhE for a given ta is defined by the condition that photons

emitted from the outermost layer of the outflow toward observer leaves the out-

flow. In the photon thin asymptotics this surface coincides with the relativistic

beaming cone.

We again start with the radiative transfer equation (4.1). In contrast with the

photon thick case, here the source function I in (4.2) strongly depends on both r

and t. The main process by which photons are coupled to the matter is Compton

scattering which conserves the number of photons. Since opacity is large other

processes which do not conserve the photon number lead to local thermody-

namic equilibrium with thermal comoving radiation intensity Ic = J1, number

density and spectrum of photons in the outflow. Hence we use the Rosseland

radiative diffusion approximation (see e.g. [61], pp. 39–42), that we now derive

1To avoid excessive usage of subscripts c in this section, comoving radiation intensity Ic and

comoving source function Ic are referred to as J and S, respectively.

98



4.5. Photospheric emission from photon thin outflows

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

s�RD

-0.4 -0.2 0. 0.2 0.4

log10 T�TLOS

Ρ
�
R

D

Figure 4.8: Evolution of PhE for the photon thin coasting outflow and di-

mensionless radiative diffusion flux, corrected for adiabatic cooling (red thick

curve). PhEs shown by thin curves correspond from left to right to arrival times

ta = (tD
a /5, 2tD

a /5, . . . ), see (4.26). Thick black curve bounding PhEs correspond

to the surface cos θ = β. Relevant range of observed temperature of photospheric

emission is illustrated by color, see legend. Here Γ = 100.
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from the radiative transfer equations (4.1) for expanding outflows.

For large opacities the distribution function of photons in comoving refer-

ence frame is close to isotropic one and the radiative diffusion approximation is

accurate. Following [25] we use spectral intensity in comoving frame Jν(t, ξ, µ).

Starting from the radiative transfer equation (4.1) along the ray s in laboratory

frame, we transform all variables except time t, depth ξ, and distance s into

comoving reference frame

ν3 d
ds

(
Jν

ν3

)
=

κν

D (Sν − Jν), (4.16)

and integrating over comoving frequency ν we have

1
c

∂J
∂t
− µ

ΓD
∂J
∂ξ

+
1− µ2

vt− ξ

∂J
∂µ

+ 4
Γβ

D
1− µ2

vt− ξ
J =

κ

D (S− J), (4.17)

where µ = cos θc, θc is the photon angle with respect to the radial direction

in comoving frame, D = Γ(1 + βµ) is Doppler factor, J =
∫

Jνdν is total photon

intensity, S =
∫

Sνdν is total source function, κ = J−1
∫

κν Jνdν is effective opacity,

κν = σnc is opacity in comoving frame.

In the case of small deviations from isotropy decomposition

J = J0(t, ξ) + µJ1(t, ξ) (4.18)

could be applied. Introducing it into (4.17) and integrating it over Ddµ and over

Dµdµ after some algebra for coherent scattering with S = S0 = J0 we have

∂J0

∂ct
+

β

3
∂J1

∂ct
− 1

3Γ2
∂J1

∂ξ
+

2J1

3(vt− ξ)
+

4J0β

3(vt− ξ)
= 0, (4.19)

∂J1

∂ct
+ β

∂J0

∂ct
− 1

Γ2
∂J0

∂ξ
+

8J1β

5(vt− ξ)
= −κ J1

Γ
. (4.20)

Diffusion approximation is based on slow variation of total flux through the

entire sphere L1 = J1(t/t0)
2 over mean free path, so that ∂L1

∂ct = 0, and it provide

J1 from the equation (4.20). Inserting this into (4.19) after simple but tedious

calculations in ultrarelativistic β ' 1 photon thin case Γ2ξ � vt for function

L = J0(t/t0)
8/3, which effectively accounts for the adiabatic cooling of radiation
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in expanding outflow, we obtain the diffusion equation

∂L
∂ct
− c2t2∆

3R0

∂2L
∂ξ2 = 0, ∆ =

1
Γ2σn0R0

=
1

Γ2τ0
. (4.21)

Notice that the diffusion coefficient is explicitly time dependent due to the ex-

pansion of the outflow.

This equation should be supplemented with boundary conditions. There are

two types of boundary conditions used frequently: free-streaming, for example

in two-stream approximation ([61], pp. 42–45), and zero boundary conditions,

that can be used as replacement for free-streaming for "extrapolated boundary"

[123]. We find that the position of "extrapolated boundary" ξ = −k c2t2∆
R0

(k is a

constant of order unity, dependent on the approximation used for free-streaming

description) for the main part of emission is very close to the real boundary, and

in the case of zero boundary conditions L|ξ=0 = L|ξ=l = 0 there is a series

expansion of solution, that for initial conditions L(ξ, t0) = 1 gives

L(ξ, t) =
∞

∑
n=0

4
(2n + 1)π

sin
[
(2n + 1)πξ

l

]
× exp

[
−

∆(2n + 1)2π2c3(t3 − t3
0)

9R0l2

]
. (4.22)

This solution in comparison with numerical one with free-streaming boundary

conditions is accurate to a few percents and is shown in Fig. 4.9.

The flux of L is characterized by an initial burst and then tends to the asymp-

totic solution, that corresponds to t0 = 0, with flux

F(t) =
4∆c3t2

3R0l2 ϑ2

[
0, exp

(
−4∆π2c3t3

9R0l2

)]
, (4.23)

where ϑ2 is the Jacobi elliptic theta function, see Fig. 4.8. The peak of the flux of

L is near the diffusion time

tD =
l
c

(
R0

l∆

)1/3

, (4.24)

and "extrapolated boundary" ξ = −kl(l∆/R0)
1/3 � l is very close to real one

as ∆ � 1, that ensures the accuracy of (4.22). This diffusion time exactly corre-

sponds to the diffusion radius, obtained in Sec. 4.3.
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Figure 4.9: Solution to diffusion of comoving radiation intensity corrected for

the adiabatic cooling L(ξ, t) from initial homogeneous distribution.

The raising part of the corresponding flux of L through the external boundary

of the outflow scales as t1/2, while its decaying part is quasi-exponential one.

Consequently, while the diffusion in a static object gives the flux decreases as

t−1/2, in our case the observed flux (4.3), shown in Fig. 4.10, is a more slowly

decreasing function

F ∝ t−1/6
a , (4.25)

up to arrival time of diffusion

tD
a =

RDB2

2c
' 0.12E1/3

54 B5/3
−2 l1/3

8 s, (4.26)

where large part of energy has left the outflow already. At this moment the

energy decrease due to diffusion becomes substantial even in the deepest parts

of the outflow and later the observed flux decreases quasi-exponentially with

arrival time.

The comoving temperature of radiation on the photosphere is determined

by the balance between the energy diffusion from the interior of the outflow

and radiative losses and it is much smaller than the temperature in the interior.

The variation of observed temperature across the PhE is small, see Fig. 4.8, and
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Figure 4.10: Lightcurve of observed photospheric emission from the photon thin

outflow.

hence the observed instantaneous spectrum is very close to the thermal one and

peaks near the observed temperature on the line of sight. We find that the latter

decreases as t−13/24
a , in contrast with adiabatic law t−2/3

a . However, at diffusion

radius both temperatures coincide, giving for the line of sight temperature

TLOS ' 162B−4/9
−2 keV, (4.27)

with very weak dependence on the other parameters of the outflow. The time

integrated spectrum has a Band shape with a cut-off near the temperature of

transition from acceleration to coasting, see Fig. 4.11. Low energy part of the

spectrum has the slope varying in the range from α ' 0 near the maximum

to α = 1 asymptotically far in low energies, while high-energy part has β =

−46/13 ' −3.5.

4.6 Discussion

Firstly we compare the results of Sec. 4.4 for photon thick outflows with those

obtained by other methods. The photospheric emission from infinitely long wind

both at acceleration and coasting phases was considered in [25] by the solution

of the corresponding steady radiative transfer equation. The main conclusion of

that work is that in addition to usual relativistic beaming leading to anisotropy

of radiation in laboratory frame, in the coasting wind another anisotropy in the
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Figure 4.11: Time-integrated spectrum of photospheric emission of photon thin

outflow (thick curve, η = 100, RD = 105R0), superimposed with two instanta-

neous spectra of that emission, corresponding to arrival time of photons emitted

at the moment of transition from acceleration to coasting (dashed green curve

on the right) and to arrival time of diffusion (dashed red curve on the left).

comoving frame of the outflow is developing. This comoving anisotropy results

from the fraction of photons which already underwent their last scattering in

the bulk photon field of the outflow. The anisotropy of such photons grows with

increasing radius for geometrical reasons. Since the amount of such photons

increase with radius the entire photon field becomes increasingly anisotropic.

For the finite photon thick outflow the radiative transfer problem becomes

explicitly time dependent. The expanding outflow at a given laboratory time

spans only a finite part of the probability density distribution shown in Figs. 4.2

and 4.3, that results in difference in observed spectra for finite and infinite cases.

Interesting consequence of ultrarelativistic motion of the outflow is that even

geometrically thin outflow l � R at a given arrival time spans large interval of

laboratory radius ∆r = 2Γ2l.

The effect of additional comoving anisotropy on the source function found

in [25] is actually small. The difference between the probability of last scattering

(4.5) and the distribution of last scattering in a steady wind found in [25] does

not exceed several percent.

Our method is also similar to the one used in [23] and [26] to describe the

late-time photospheric emission of switching off relativistic wind considering

the probability density function (4.5) for the last scattering of photons. An addi-
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tional approximation adopted by these authors is the possibility to split radial

and angular dependencies. Actually in [23] not the traditional energy flux un-

derstood as energy crossing unit area in unit time was computed, but photon

flux as number of photons crossing unit area in unit time. For this reason the

decay law for photon flux at late times was found to be Fob(ta) ∝ t−2
a . Lorentz

transformation of the photon energy from the comoving frame to the laboratory

one results in additional multiplier (1− βµ)−1 in the energy flux that leads to

the observed flux F ∝ t−3
a , which agrees with our result in Eq. (4.15), see also

[26].

We conclude that the fuzzy photosphere approximation in fact follows closely

the methods of [26] and [25]. In fact we obtained similar results for the proba-

bility of last scattering as more sophisticated treatment of radiation transfer [25].

The sharp photosphere approximation provides good description of light curves

including their raising and decaying parts. The observed spectrum from acceler-

ating outflow is also well described in this approximation, while there is some

difference for the coasting case. The advantage of sharp photosphere approxima-

tion for computing observed light curves and spectra is evident for intrinsically

variable and dynamic outflows.

Now turn to the photospheric emission of photon thin outflows. The expres-

sion (4.26) gives an estimate for duration of photospheric emission of photon thin

outflows. When available observed spectra are integrated on time intervals com-

parable to (4.26) the observed spectrum of photospheric emission is expected to

have Band shape. Thus, starting from comoving thermal spectrum for the pho-

tospheric emission we obtain for the first time an observed spectrum which may

be well described by the Band function with high energy power law index β

being determined by the density profile of the outflow. We find this result quite

remarkable.

Notice that non thermal spectra as a result of convolution of thermal ones

over time has been introduced for afterglows of GRBs by [124]. Double convo-

lution over EQTS and arrival time is also one of the key ideas in the fireshell

model [13].

Band spectra in photospheric models of GRBs have been obtained by now

only assuming additional dissipation mechanisms such as magnetic reconnec-

tion [22], collisional heating [24] and internal shocks [93, 125]. In our model

such additional assumption is not required.

It is even more remarkable that GRBs appear to be the only known objects
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in nature able to reach the photon thin asymptotics in their ultrarelativistic ex-

pansion. For thermally accelerated relativistic plasmas which are discussed in

connection with their possible synthesis in ground based laboratories (e.g. [5]) it

is unreachable. The photon thin asymptotics is reached if the optical depth (3.51)

τ0 � 4Γ4 l
R0

= 4× 108B−4
−2

l8
R8

. (4.28)

GRBs clearly can satisfy this constraint as the contribution of baryons τ0 ' 3.5×
1013E54B−2R−1

8 l−1
8 .

We obtained both time integrated and instantaneous spectra of accelerating

photon thick outflow which are close to thermal one with small deviations in

the Rayleigh-Jeans part, in agreement with [85].

Time integrated observed spectrum of coasting photon thick outflow is broader

than thermal one, and deviates from it both in low- and high-energy parts. This

broadening is also found by [24] using Monte-Carlo simulations, and our results

agree for a model of isotropic scattering, giving spectral index of the low energy

part as α = 0. We reproduced this result in our own Monte-Carlo code [126].

Taking further into account final radial extension of the outflow in the code we

confirm main emission properties found in [89] and presented in this Chapter

by an independent method.

As discussed earlier in Sec. 3.8 each photon thick outflow always contains a

photon thin layer with depth ξthin = (R+ l)B2/2 located near its outer boundary.

Radiation diffused out from this part of the outflow arrives to observer first and

modifies the initial part of the light curve and the corresponding spectrum of

the outflow. The diffusion length ξD =
[
(R + l)3B2/(τ0R0)

]1/2 remains always

within this photon thin layer ξthin and our solution for photon thin outflow is

applicable for description of this early emission. The photospheric emission from

well developed photon thick outflow and its late time behavior occurring when

the outflow crossed the photospheric radius may be described either by fuzzy or

by sharp photosphere approximations.

When the outflow becomes transparent in the transition from photon thick to

photon thin conditions, the observed time integrated spectrum will contain both

Band component produced by the early emission from the photon thin layer and

thermal-like component coming from the photon thick part superimposed. This

may be the reason why in most GRBs analyzed by [119] there are both power
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law and black body components.

We presented analytic expressions for the photon flux in the simple model of

the finite wind (2.29). With more complex density, velocity and energy profiles

of the outflow the light curve is expected to be variable and arbitrarily complex.

The minimal time scale of variability is given by Eq. (4.26) and it may be very

small for small baryon loading. It is necessary to emphasize that the decaying

part of the light curve follows t−3
a for photon thick outflows. Steeper decay of

the light curve of photospheric emission is a clear signature of the photon thin

outflow.

The photospheric emission should be additionally identified by the spec-

tral analysis. In particular, power law spectra extending to high energies above

10 MeV cannot be produced by the photospheric emission unless additional

mechanisms are involved. What we have shown here, though, is that the ob-

served spectrum may not necessarily be close to the thermal one.

4.7 Conclusions

In summary, in this Chapter we proposed a unified treatment of photospheric

emission of ultrarelativistic outflows, which originate in finite wind and thin

shell models of GRBs. Instead of the traditional division into steady winds and

thin shells we propose a new physically motivated classification, which in our

opinion helps to understand in particular why geometrically thin shell may ap-

pear as thick wind with respect to the photospheric emission. For this reason we

re-examined the existing scattered literature and pointed out the advantage of

the proposed classification.

We studied geometry of photospheres in generic relativistic outflows. As we

are interested in appearance of the photosphere to a distant observer, we intro-

duced the notion of photospheric equitemporal surface and described its dy-

namics.

We computed both energy flux and observed spectra of photon thick out-

flows in two approximations, derived from the radiative transfer equation. In

our fuzzy photosphere approximation the effect of simultaneous emission from

entire volume of the outflow is taken into account. We also used a more crude,

but computationally more simple sharp photosphere approximation which is

shown to reproduces well both light curves and spectra. These results generalize

the corresponding results in the literature for steady relativistic winds.

107



4. Radiative transport in ultrarelativistic outflows
and photospheric emission of GRBs

In photon thin outflows most of radiation is shown to originate not at its

transparency radius, but at smaller radii due to radiation diffusion. Starting from

the radiative transfer equation for time dependent outflows we derived the dif-

fusion equation and obtained approximate analytic solution for the energy flux.

We present both instantaneous and time integrated observed spectra. The latter

are well described by the Band function. For our simple density profile we find

values for the low energy power law index α = 1 and the high-energy power

law index β ' −3.5.
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Chapter 5

Semidegenerate self-gravitating

system of fermions as a model for

galactic dark matter and universality

laws

Dark matter properties are constrained both from cosmology and astrophysics.

Cosmological bounds are based on the assumptions on cross sections of interac-

tion between the dark matter particles and usual matter plus interaction between

dark matter particles themselves. Usually it appears that dark matter decouple

from normal matter at thermal equilibrium and at the same time or earlier in-

teraction between dark matter particles themselves come to a halt, so that they

form collisionless dark matter. In this case mass density of the particles can be

found and compared to the known dark matter cosmological density. This pro-

vides different limits on the mass of dark matter particles, two of them being

Gershtein-Zeldovich limit for the sum of light neutrino masses [127]

∑
i

mνi < 94 eV/c2, (5.1)

and Gunn-Tremaine lower bound on the neutrino mass if neutrinos make up the

dark matter in galaxy halos is [128]

mν > k(Gh3vrmsr2)−1/4, (5.2)
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where k is a factor of order unity, G is the Newton gravitational constant, h is the

Planck constant, vrms is the root mean square velocity, and r is the radius of the

halo, respectively. Application of the Gunn-Tremain limit to dwarf spheroidal

satellites of the Milky Way gives [129]

mν & 300 eV/c2. (5.3)

Different approach to the study of properties of dark matter is coming from

cosmology and specially from theories of galaxy formation and evolution. While

studies of CMB allow to constrain number and masses of light neutrinos repre-

senting hot dark matter [130], properties and masses of warm and cold dark

matter are constrained by the total mass density of the Universe [131] and galac-

tic halos structure [128] and substructure [132]. The Lee-Weinberg bound [131]

limits the mass of dark matter particles with given coupling constant from above

implying that particle was in thermal equilibrium in early Universe. For typical

weak interaction coupling GF mass is constrained to be more than ∼ 2 GeV/c2

and such particles is referred to as Weakly Interacting Massive Particles, WIMPs.

Bound by [128] and its improvement by many authors [133, 134] are based on

assumption of fermionic nature of dark matter and nondegeneracy of galactic

haloes of dwarf galaxies, that leads to lower limit on mass ∼ 0.41 keV/c2.

The problem of dark matter distribution in galactic halos has traditionally

been treated in the realm of newtonian physics in view of the low velocities

of the stars in the galaxies, like the simulations from [135]. In the meantime,

phenomenological profiles of dark matter have been advanced by [136, 137],

and universal properties of the dark matter distribution have been inferred from

dwarf galaxies and probably globular clusters all the way to very massive galax-

ies [42, 43, 45, 138]. However, a problem arises: while simulations like those from

NFW point to a cusped halo, observations from various types of galaxies seem

to show cored halos [139]. This discrepancy between theory and observations is

not yet fully understood, but could show a problem with the simulations done

so far.

In a completely unrelated field (as of yet), the physics of Active Galactic

Nuclei (AGN) and quasars has been recognized for more than 50 years as dom-

inated by relativistic gravitational effects of a black hole. The formation of these

black holes is not yet fully understood, although different black holes mass esti-

mates for AGNs and quasars show masses up to 1010 M� all the way to z ≈ 6.4
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[140–143]. Due to the lack of understanding on the energetics of AGNs and

quasars and on the formation of the black holes, the possibility of an extended

object in the core of galaxies has been advanced by [144].

The aim of this Chapter is to present a unified approach to the dark matter

distribution in the galactic halos and also in the galactic center following [145].

In order to do that, some assumptions have been made:

1. The treatment must be general relativistic from the beginning, in order to

explain both the galactic nuclei and galactic haloes.

2. The matter particles are assumed to be semi-degenerated fermions and so

obey the Fermi-Dirac statistics.

3. Configurations are in relativistic thermal equilibrium
√

g00T = const or

sufficiently close to it.

5.1 Model of halo

The equilibrium configurations of a self-gravitating semi-degenerate system of

fermions were studied by [39] in Newtonian gravity and by [40] in general rel-

ativity. It is shown that in any such system the density at large radii scales as

r−2 quite independently of the values of the central density, providing flat rota-

tion curve. Then solution was extended to an energy cutoff in the distribution

function [41].

Following [40] we are considering spherical symmetry, the line element is

written in standard Schwarzschild coordinates as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2). (5.4)

The equilibrium equations are given by

dP
dr

= −G
c2

(P + ρc2)(M(r) + 4πρr3)

r(rc2 − 2GM(r))
(5.5)

dM
dr

= 4πρr2, (5.6)

with M the mass within a radius r, ρ and P the energy density and the pressure
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respectively, given by

ρ = m
g
h3

∫ εc

0

(
1 +

ε

mc2

) 1− e(ε−εc)/kT

e(ε−µ)/kT + 1
d3p (5.7)

P =
2g
3h3

∫ εc

0

(
1 +

ε

2mc2

) (
1 +

ε

mc2

)−1 (1− e(ε−εc)/kT)ε

e(ε−µ)/KT + 1
d3p, (5.8)

with εc being the cutoff energy, g = 2s + 1 being the spin weights, m being the

mass of the particle, and T being the temperature and µ the chemical potential.

The volume element in momentum space can be expressed in terms of the kinetic

energy ε of the particles as

d3p = 4πp2dp = 4
√

2m3c3
√

1 +
ε

2mc2

(
1 +

ε

mc2

)√ ε

mc2 d
ε

mc2 . (5.9)

The particle energy is a constant of motion, so

(ε + mc2)eν/2 = const, (5.10)

while thermodynamical equilibrium (Tolman condition and Klein integral [146])

implies

(µ + mc2)eν/2 = (µR + mc2)eνR/2 (5.11)

Teν/2 = TReνR/2, (5.12)

where the quantities with subscript “R” refer to the boundary of the configura-

tion. For the cutoff energy we have

(εc + mc2)eν/2 = mc2eνR/2, (5.13)

since εc(R) = 0.

Introducing the function W = εc/kT and the temperature parameter at the

boundary βR = kTR/mc2, and using eqs. (5.12) and (5.13) we can find that

mc2

kT
=

1− βRW
βR

. (5.14)

Note that the condition 0 ≤ βRW < 1 has to be fulfilled. Using eq. (5.12) to
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substitute the temperature in eq. (5.11) we get the relation between the metric

function ν and W:

eν = eνR(1− βRW)2 (5.15)

so now the spacetime metric is completely determined:

eν = eνR [1− βRW]2, eλ =

(
1− 2GM

rc2

)−1

(5.16)

with νR + λR = 0.

Differentiating Eq. (5.15) and using the conservation of the energy momen-

tum tensor

dP
dr

= −1
2
(P + ρc2)

dν

dr
(5.17)

gives

dP
dr

=
βR(P + ρc2)

1− βRW
dW
dr

(5.18)

and we can write Eq. (5.5) as

dW
dr

= −G
c2

[
1− βRW

βR

]
Mc2 + 4πPr3

r(rc2 − 2GM)
(5.19)

In order to numerically integrate the final set of equations (5.6) and (5.19)

with initial conditions W(0) = W0 and M(0) = 0, it is useful to transform all of

our physical variables into dimensionless ones:

ρ =
c2

Gχ2 ρ̂ (5.20)

P =
c4

Gχ2 P̂ (5.21)

M =
c2χ

G
M̂ (5.22)

r = χr̂, (5.23)
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where

χ =
h̄

mc

(mp

m

)(8π3

g

)1/2

(5.24)

has dimension of length and mp = (h̄c/G)1/2 is the Planck mass.

It is instructive to write down characteristic length χ, that is inversely pro-

portional to square of the mass of the particle, in conventional units

χ = 0.870m−2 pc, (5.25)

where m is measured in keV/c2, and unit of mass is

c2χ

G
= 1.820× 1013m−2M�, (5.26)

where M� = 1.989 · 1033 g is mass of the Sun.

We then obtain the dimensionless equations

dW
dr̂

= −
[

1− βRW
βR

]
M̂(r) + 4πP̂r̂3

r̂(r̂− 2M̂(r))
dM(r)

dr
= 4πρ̂r̂2, (5.27)

where

ρ̂ = 4
√

2π

[
βR

1− βRW

]3/2

×
∫ W

0

[
1 +

βRx/2
1− βRW

]1/2 [
1 +

βRx
1− βRW

]2 1− ex−W

ex−θ + 1
x1/2dx

P̂ =
8
√

2
3

π

[
βR

1− βRW

]5/2 ∫ W

0

[
1 +

βRx/2
1− βRW

]3/2 1− ew−W

ex−θ + 1
x3/2dx, (5.28)

where θ = µ/kT is the degeneracy parameter and we introduced the variable

x = ε/kT. We have for this variable

ε

mc2 =
βRx

1− βRW
. (5.29)
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The relation between the degeneracy parameter θ and W is

W = θ − θR, (5.30)

so that W(R) = 0, where θR is the value of the degeneracy parameter at the

boundary. We can relate the parameters in the boundary with those in the center

θR = θ0 −W0 βR =
β0

1 + β0W0
(5.31)

so that βR ≈ β0 for β0 << 1. Besides that we have

1− βRW
βr

=
1− β0(W −W0)

β0
. (5.32)

Now the system can be completely solved (numerically) by solving the Eqs. (5.27)

together with

θ = θ0 + W −W0 (5.33)

and using Eq. (5.28) with three independent parameters: W0, θ0 and β0. The only

remaining free parameter is the mass of the particle, which occurs only in the

definition of β and the characteristic length χ.

5.1.1 Properties of the equilibrium configurations

We have solved numerically the system of integral-differential equations given

by (5.19), the two equations corresponding to β and θ and (5.28), with a set of

initial conditions M0, W0, β0 and θ0. Galactic dark matter halos have asymptotic

rotation velocities of the order of ten to thousands km/s, i.e., they are not rela-

tivistic. As that velocities are of the same order as thermal velocities of fermionic

particles forming the halo, this means that βR � 1 and consequently β0 � 1. For

semidegenerate configurations θ0 & 20, and in this case we have three regions

of halo (fig. 5.1): a degenerate core of almost constant density, an inner halo also

with almost constant density and a tail where density scales as r−2 until the

cutoff.

On the velocity curve, we can see 4 characteristic regions (fig. 5.2):
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Figure 5.1: Density profile of the model for β0 = 10−8, θ0 = 32 and W0 = 92.

• Part I: The core with constant density, where v ∝ r;

• Part II: The first part of the inner halo, where the mass of the core prevails

over the mass of the halo and v ∝ r−1/2;

• Part III: Second part of the inner halo, where now the mass of the halo

prevails and again v ∝ r;

• Part IV: The outer halo, where the velocity tends to a constant value v0

after some oscillations of diminishing magnitude.

5.2 Comparison with other phenomenological

and theoretical dark matter profiles

To compare results obtained with known Dark Matter properties we need to

find out the correspondence between fits of circular velocity, much like it was

suggested in [138]. There is some controversy in current literature about the

undisturbed profile of dark matter in Galaxies and clusters. Cold dark matter

simulations suggest the so-called Navarro-Frenk-White profile [135]

ρ =
ρNFW

r/rNFW(1 + r/rNFW)2 (5.34)
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Figure 5.2: Velocity curve for the same parameter values as before

and Einasto profile [147] introduced by J. Einasto for modeling of matter distri-

bution in Milky Way [136]

ρ = ρE exp
(
−2

α
[(r/rE)

α − 1]
)

(5.35)

while phenomenological pseudoisothermal sphere

ρ =
ρiso

1 + (r/riso)2 (5.36)

and Burkert profile [137]

ρ =
ρB

(1 + r/rB)(1 + (r/rB)2)
. (5.37)

are commonly used for fitting. Comparing profiles of circular velocity for all

these profiles with the one of the semidegenerate solution, we came to conclu-

sion that NFW and Burkert profiles, having wrong asymptotics as r → ∞, better

reproduce the characteristic "bump" in the circular velocity near the edge of in-

ner halo (fig. 5.3). The best reproduction is obtained for Burkert profile. As most

of papers dealing with rotational curve fitting find out that Burkert or other

cored profiles are the best fits for dark matter distribution, and that characteris-

tic scale rB of the fitted profile is comparable to the full length of fitting range
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Figure 5.3: Dependence of vc/c on radius r (black thick line) for β = 10−10, θ0 =

20, m = 9.3 keV/c2 near the edge of the inner halo and its fits by NFW (red

dashed line), Burkert (blue thin line) and pseudoisothermal sphere (green dot-

dashed line) profiles. The radius range used for fitting is shown by grey shading

(r = 103 to r = 104 pc).

(see, e.g., [148]), that means that semidegenerate fermion halo can provide the

same quality of fits for that galaxies.

As we move outside from the border of inner/outer halo, the fits by pseu-

doisothermal sphere became better than that of other profiles (fig. 5.4). The fits

by other profiles suffer due to their different outer slope, so constant circular

velocity can be only approximated in a finite range of radii by a decreasing

function. As a result we have systematic deviations from the real flat curve in

the beginning and the end of fitting range.

The result obtained means that all fits of rotational curves by Burkert, NFW

and pseudoisothermal sphere profiles could be fitted as well by semidegenerate

fermion halo.

5.3 Scaling laws of dark matter distribution

The solutions obtained show remarkable self-similarity properties. The charac-

teristics of solutions obey five scaling laws against the free parameters of the

model β0, θ0, W0 and m f . These are laws for the asymptotic velocity of the rota-

tion curves, for the core mass, for the core radius, for the halo mass and for the
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Figure 5.4: Dependence of vc/c on radius r (black thick line) for β = 10−10, θ0 =

20, m = 9.3 keV/c2 in the outer halo and its fits by NFW (red dashed line),

Burkert (blue thin line) and pseudoisothermal sphere (green dot-dashed line)

profiles. The radius range used for fitting is shown by grey shading (r = 104 to

r = 105 pc).

halo radius.

Asymptotic rotation velocity scaling law

v0 = 4.07× 105√β0 km/s (5.38)

show dependence on the temperature of the configuration only. This is essen-

tially the same scaling law that appears in the case of isothermal sphere [149].

Core is defined as region from the center of the system till the first maximum

of the rotation velocity curve, position of which will be referred to as core radius

rc (region I in fig. 5.2). Near that point the density of fermions decreases fast,

and rotational curve become Keplerian

vrot =

√
GMc

r
. (5.39)

Core mass was found by fitting of rotational curve in the inner halo region by

Eq. (5.39). Radial range adopted for fitting is chosen to be r ∈ [r3/4
c r1/4

m , r1/4
c r3/4

m ],

where rm is the position of minimum of rotational curve. Scalings of mass and
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radius of the core are

Mc = 4.30× 1012 β0.750
0 θ0.737

0 m−2
f M� '4.07× 1012(β0θ0)

3/4m−2
f M�, (5.40)

rc = 0.1972 β−0.250
0 θ−0.252

0 m−2
f pc '0.1954(β0θ0)

−1/4m−2
f pc, (5.41)

where m f is in units of keV/c2. Characteristics of core are dependent almost

solely on the product β0θ0, i.e. on the chemical potential µ at the semidegenerate

center of configuration, in accordance with results of [150]. From the laws an

important relation could be obtained, involving only Mc, rc and m

Mcr3
c = 3.04× 1010m4

f M�pc3. (5.42)

Halo radius rh is defined as the position of the second maximum on the

rotational curve (transition form region III to region IV in fig. 5.2). Mass of the

halo Mh is taken at the same point. Scaling laws of halo properties are

Mh = 4.42× 1013β0
0.750100.1597 θ0m−2

f M�, (5.43)

rh = 0.830β0
−0.250100.1598 θ0m−2

f pc. (5.44)

Notice that instead of power-law dependence on θ0 in core properties, halo prop-

erties depend on central degeneracy of configuration exponentially.

The equations above are exact in m f and hold in the following physical range

of the other parameters: log10 β0 ∈ [−10,−5], θ0 ∈ [20, 200], W0 ∈ [110, 200].

Note that W0 does not appear in the scaling laws, so that its value does not

change inner structure of configuration.

5.3.1 Application to the Milky Way

In order to find out the order of semidegenerate halo parameters corresponding

to observed ones, we adopted the four most reliable observed characteristics of

the Milky Way, i.e. its asymptotic rotational velocity v0 ≈ 220 km/s, mass of

the central object in the Galactic center Mc ≈ 4 × 106 M�, radius of Galactic

halo rh ≡ r0 ≈ 14× 103 pc, (r0: one dark halo scale length) and its mass Mh ≈
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2× 1011 M�.

We take three equations corresponding to the number of three unknown pa-

rameters, namely (5.38), (5.43), and (5.40). Then solving the system using the

data presented above we arrive to

β0 = 10−6.6, (5.45)

θ0 = 32.4 (W0 = 130), (5.46)

m f = 12.6 KeV. (5.47)

Finally we can take the law (5.41) to obtain rc = 2.2× 10−2 pc. Although this

value is quite far from the size of very compact region known as SgrA*, it is

still in the very inner region of the bulge, in accordance with the observations

of [151] and [152] made for orbits of S2(blue) stars, where can be seen that at

a radius of around 1× 10−2 pc the enclosed mass for the orbit must be around

4× 106 M�.

5.3.2 Observational universality laws of dark matter distribution

Dark matter distributions in galaxies shows a number of relations between pa-

rameters of halos. One set of relations is especially interesting in the context of

fermionic semidegenerate dark matter halos studied here—the set of recently

discovered mass-radius relations. First relation was found in the works [42, 43].

Authors of the works analyzed dark matter halos of 28 galaxies: a sample of

dwarf spheroidal galaxies (dSphs), two dwarf irregular galaxies, and two sam-

ples of spiral galaxies of various Hubble types, and found that parameters of

Burkert DM profile used for fitting are correlated in such a way that dark matter

surface density within one core radius is constant throughout the sample:

ρBrB = const = 141+82
−52M� pc−2. (5.48)

As it was noted by the authors, this universality is equivalent to the constancy

of gravitational acceleration by DM at rB: aDM(rB) = 3.2+1.8
−1.2 · 10−9 cm·s−2. This

leads to the constancy of maximal acceleration by DM amax, which is for Burkert

DM profile is equal to aDM(rB) to the accuracy better than 10−3. Corresponding

radius of amax for Burkert DM profile rmax = 0.963rB is very close to rB. In globu-

lar clusters the similar behavior was found (see [153]), however the acceleration
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is higher amax ∼ 2 · 10−8 cm·s−2.

Scaling laws for amax and rmax in the interval of parameters investigated are

amax = 1.200× 103β1.216
0 100.1612θ0m2

f cm/s2, (5.49)

and

rmax = 0.358β−0.221
0 100.1612θ0m−2

f pc. (5.50)

Taken the number from [43], we arrive to the relation between temperature

and central degeneracy parameters of the configuration

1.216 lg β− 0.1612θ0 + 2 lg m f = −11.57. (5.51)

While β is dependent on limit of circular velocity only (5.38), this relation allows

us to find the second parameter θ0 from observed surface densities

θ0 = −13.1(−18.0) + 12.4 lg m f + 15.1 lg
v∞

km/s
, (5.52)

where the number in parenthesis is for globular clusters and outside number is

for galaxies.

For rotation curves v∞ is in the range of 10 − 1000 km/s and for 17 keV

particle we have θ0 ∈ [17, 47]. In globular clusters the rotation curve is flattened

at lower velocities, down to 3 km/s, but still the central degeneracy is high

θ0 & 5.

5.4 Conclusions

The equilibrium configurations of semidegenerate fermions with degenerate

cores and nondegenerate halos provide natural explanation for both central con-

centration of mass in galaxies and extended halos probed by rotational curves.

Observed discrepancy between radius and mass of the central object of our

Galaxy and predictions of the model can be, in principle, accounted for by inter-

action of the particles and is the subject of the further work.
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In Chapter 1 we considered thermalization of nonequilibrium optically thick pair

plasma with energy density, relevant to the plasma in the GRB sources. We fol-

lowed the evolution of plasma by integrating numerically relativistic Boltzmann

equations with exact quantum electrodynamics two-particle and three-particle

collision integrals. Quantum nature of particle statistics was accounted for in

collision integrals by the corresponding Bose enhancement and Pauli blocking

factors. We pointed out that unlike classical Boltzmann equation for binary in-

teractions, more general interactions are typically described by four terms in

collision integrals for each particle that appears both among incoming and out-

going particles. Our numerical results indicated that the rates of three-particle

interactions become comparable to those of two-particle ones for temperatures

exceeding the electron rest-mass energy. Thus three-particle interactions such as

relativistic bremsstrahlung, double Compton scattering, and radiative pair cre-

ation become essential not only for establishment of thermal equilibrium, but

also for correct estimation of interaction rates, energy losses etc.

In Chapter 2 we presented a brief overview of relativistic hydrodynamics of

GRB paying special attention to the formulation of initial and boundary con-

ditions. We also considered two mechanisms of spreading of relativistically ex-

panding shell. Firstly, following the proposal of [33], we estimated hydrody-

namical spreading of relativistically expanding shell. Secondly, we considered

thermal spreading. Assuming relativistic Maxwellian distribution function for

electrons and baryons we determined the velocity dispersion depending on the

temperature and the Lorentz factor of the bulk motion. We then applied these

results to GRBs and showed that thermal mechanism provides negligible spread-

ing for realistic parameters of GRBs.

In Chapter 3 we computed the optical depth of relativistically moving medi-

um and applied the results to GRB outflows. Starting from 4-dimensional in-

variant form of optical depth along the light ray, we showed by means of several
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simple examples the appearance of different asymptotics in the optical depth

of ultrarelativistically expanding outflows and introduced the notion of photon

thick and photon thin outflows with different characteristic behavior of optical

depth. This classification emerged from consideration of time evolution of ul-

trarelativistic outflow as it expands during the time, needed for a light ray to

cross the outflow. Due to relativistic motion of the outflow this time is 2Γ2 times

longer than crossing time for static shell of the same width. If the evolution of

the outflow during this time is negligible, we referred the outflow to as photon

thin, if it is substantial, we referred the outflow to as photon thick. It should be

stressed that as a result of relativistic motion outflows are effectively "thickened",

as crossing time is increasing.

Then we applied our results to GRB outflows and clarified the source of

discrepancies existing in the literature about optical depth and transparency in

GRBs. We showed that the association of “instantaneous energy release” with

“thin shell” (e.g. [32, 33]) and “continuous energy release” with “thick wind”

(e.g. [11, 27]) generally adopted in the literature is incomplete: at transparency

shells can be “wind-like”, i.e. photon thick, and winds can be “shell-like”, i.e.

photon thin. We found that all four asymptotics of optical depth and trans-

parency radius derived in Sec. 3.8 are relevant for typical parameters of GRB

both in shell and wind models, see Sections 3.9 and 3.10.

Based on these results, we proceeded in Chapter 4 to determine the observed

characteristics of relativistically expanding initially optically thick plasma. We

explore three levels of description of transparency. Firstly, determination of trans-

parency radius (diffusion radius) of entire outflow characterizes the radius of

emission of majority of photons. It also estimates the observed duration of pho-

tospheric emission in the photon thin case. Secondly, dynamics of transparency

surface which crosses the outflow during its expansion, characterizes the instan-

taneous spectrum of the photospheric emission. Analysis of this dynamics is the

basis of our sharp photosphere approximation. Thirdly, the probabilistic nature

of the radiate transfer is accounted for by the probability of photon emission

as function of radial position, angle and time. It also characterizes observed in-

stantaneous spectrum of photospheric emission and it is the basis of our fuzzy

photosphere approximation.

In Chapter 4 we proposed a unified treatment for transparency of ultrarel-

ativistic outflows, which originate from finite wind and thin shell models of

GRBs. We considered geometry of photospheres of ultrarelativistic outflows. As
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we were interested in appearance of the photosphere to a distant observer, we

introduced the notion of photospheric equitemporal surface and described its

dynamics. We studied radiative diffusion in the relativistic outflows and found

out that it is the main factor in photon decoupling from outflows, that are pho-

ton thin at transparency. We computed both energy flux and observed spectra of

photon thick outflows in two approximations, derived from the radiative trans-

fer equation. In our fuzzy photosphere approximation the effect of simultaneous

emission from entire volume of the outflow is taken into account. We also used a

simplier, but computationally less demanding sharp photosphere approximation

which is shown to reproduces quite well both light curves and spectra. These re-

sults generalize the corresponding results in the literature for steady relativistic

winds.

In photon thin outflows most of radiation was shown to originate not at

its transparency radius, but at smaller radii due to radiation diffusion. Starting

from the radiative transfer equation for time dependent outflows we derived the

diffusion equation and obtained approximate analytic solution for the energy

flux. We presented both instantaneous and time integrated observed spectra, the

latter being well described by the Band function.

In Chapter 5 the equilibrium configurations of semidegenerate fermions with

degenerate cores and nondegenerate halos were studied in General Relativity.

Density and circular velocity profiles were obtained for these configurations and

it was shown that they provide natural explanation for both central concentra-

tion of mass in galaxies and extended halos probed by rotational curves. It was

found that in different ranges of radius the profiles of circular velocity coincide

with phenomenological profiles of Dark Matter distributions, especially Einasto

and Burkert ones.

Based on this analysis we conclude that DM distributions found in different

galaxies and described by these phenomenological profiles can originate from

semidegenerate fermion configurations as well. Observed discrepancy between

radius and mass of the central object of our Galaxy and predictions of the model

can be, in principle, accounted for by interaction of the particles and it is a subject

of the future work.
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