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CONTENTS 1

Abstract

Mobile agents are software programs that are able to migrate through the hosts of
a network and perform operations on them. Both theoretical works and implemen-
tations showed how a mobile agent framework can bring considerable advantages
in many network services and applications like, for example, transaction processing
and distributed information retrieval. Others have pointed out, however, that mobile
agents introduce severe concerns for security. Recently there has been an increasing
interest in the use of mobile agents for network computations, from an algorithmic
perspective. In this work we study an algorithmic problem related to mobile agent
security, known asblack hole search problem. A black hole is a host destroying all
the mobile agents visiting it, without leaving any trace. During a black hole search,
a set of agents explores the network in order to detect all the black holes in it. Our
target is to design optimal (fastest) black hole search protocols. We study two slightly
different models; we rigorously formalize them and relate them to similar problems
presented in the literature. We provide the best currently known upper and lower
bounds for the complexities of the two problems. We also consider networks with
some particular topologies, providing improved upper bounds for them.
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Chapter 1

Introduction

In a distributed system, several computers or processors (also callednodesor hosts),
interconnected by some communication hardware, accomplish a common task by
exchanging informations between them. Even though the analysis and the imple-
mentation of distributed systems have manifested both theoretical and practical diffi-
culties, which in some cases showed to be very hard to overcome (when not proved
to be unsolvable at all), many of the computer applications we use in our daily rou-
tines involve some form of distributed computing. For instance, theclient/server
paradigmwe use when we exchange e-mails, fetch Web-pages or download music
from an Internet music store; not to mention the dizzy development of thepeer-to-
peer paradigmboosted by file-sharing and Voice-Over-IP applications.
One of the most challenging issues in distributed computing is related to the problem
of failures. We cannot avoid to quote the famous Lamport’s observation which every
computer user had a chance to verify:

A distributed system is one in which the failure of a computer you did
not even know existed can render your own computer unusable.

Notice that, when using the term “failure”, we actually refer to a more general notion
which covers also concepts not strictly related to malfunctioning like disconnections
or malicious behavior. In this direction, various sources have observed that the clas-
sical distributed paradigm is sometimes too “static” to accommodate the dynamics of
open and large systems, like for instance the Internet, where a number of nodes con-
tinually join the network and disconnect from it. Moreover, the distributed paradigm
of nodes exchanging messages between them seems to be unsuited for some applica-
tions like, for instance, transaction processing.
Let us take the classic example of a customer who wants to buy a flight ticket. He has
some requirements (e.g., destination, dates of travel, seats number and classes), and
wants to select, among a set of distinct offers from various companies, the best offer
fulfilling his requirements. In a classical scenario, the customer should accede to the

3
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Figure 1.1: A schematic representation of the messages exchange among parties in
a typical flight booking transaction. Messages represented by dashed lines contain
confidential informations and thus need a secure transmission.

Web and contact the airlines websites. For each contacted company, he should pro-
vide it his requirements, and collect all its offerings. Moreover, the customer wants to
provide the necessary personal informations to companies from which he can benefit
by special low fares (e.g., if he is a frequent flyer). After collecting all the offerings,
the customer selects the best one, according to some utility metric, contacts again the
providing company and buys the ticket, by sending the necessary payment data (e.g.,
his credit card numbers), in a secure way. Finally, the company sends to the customer
a receipt, containing detailed flight informations and possibly a confirmation code.
The full process is schematically represented in Figure 1.1. This schema should give
a rough idea of the number of messages that the parties have to exchange in order to
accomplish the task. Moreover, the process could be made even more complex: the
flight might be purchased in a non-atomic way (e.g., the best way to go from Rome
to New York is to fly from Rome to London withACME-jet, and from there to New
York with Rockerduck Airways) or they might be offered through an auction process.
The drawing becomes inextricable in the case that a group of customers, each with
different requirements, wants to travel together on the same flight.
It is clear that things could be much easier if some entities (e.g., the customer), can
be “transferred” to the places where their presence (in terms of knowledge and de-
cisional power) is needed. Obviously, real entities cannot move through hosts, or at
least it is very expensive for them to move. This is the main motivation ofmobile
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Figure 1.2: A schematic representation of the group flight booking process, per-
formed through a mobile agents system.

agents systems. In a mobile agents system each entity involved in the process can
create a “software alter-ego”, themobile agent, which can move through the hosts in
the system and act on behalf of its owner.
In Figure 1.2 we can see an example of how the group flight booking task can be
performed by means of a mobile agents system. Each customer creates an agent con-
taining all the necessary informations: the flight requirements, the list of companies
to contact, personal informations for special fares, a criterion to score each offer, and
data allowing the agent to pay for the ticket. Then the agents start their task; they
can, for instance, visit the companies on their own and finally meet and agree on the
best offering. Or they can meet initially and then perform the enquiries together. Fi-
nally, the agents get back to their respective owners, bringing them the receipts of the
tickets acquired.

The introduction of mobile agents systems has opened many interesting oppor-
tunities. The most widespread use of mobile agents in network environments, from
the World Wide Web to the Data Grid, is clearly to search, i.e., to locate some re-
quired ”item” (e.g., information, resource, ...) in the environment. Agents are also
used for collaborative applications and data mining, where the data space is huge.
In such applications, moving an agent to the server reduces network connectivity,
eliminates latency and overcomes limitations imposed by firewalls. Other applica-
tion domains include network management [39] and e-commerce. Just to cite one,
in [32], a hypermedia electronic newspaper system is presented, based on mobile
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agent technology. The mobile agents platform is run both by information providers
(vendors) and by information consumers (readers). The vendors encapsulate articles
and all their related content (like, for instance, the metadata) intoarticle agents. The
readers use agents to search and collect among the different information providers
the informations related to their interests. Through public-key encryption, the system
enforces copyright control and payment on a “pay-per-use” basis.

The introduction and usage of mobile agents systems has posed a number of new
theoretical and practical problems to solve. Much effort, for instance, has been spent
by AI and Logics researchers in order to design formal languages to describe the op-
erations the agents have to execute (agent programming languages) and languages to
allow agents to represent their knowledge and communicate between them (knowl-
edge representation languages). However, the common belief (see [24, 33, 36, 40])
is that one of the main obstacles to the widespread use of mobile agents systems is
security. Security of hosts from agents: apparently nothing can distinguish a “well-
behaving” agent from a harmful virus/worm hiding behind the appearance of an in-
nocuous agent. Security of agents from hosts (or other agents): in the flight book-
ing example given before, an agent brings with him reserved informations about the
owner, financial data, and the offers collected so far. A malicious company can for
instance spy the offers from competitors in order to win the contest, or even force the
agent to accept its offer, even if it is not the best one.
Security problem is twofold: not only proper security mechanisms have to be assured,
but we need users to become confident enough in these mechanisms to send reserved
informations through untrusted hosts and, at the same time, allow foreign programs
to migrate and execute on their machines. A valid measure against some of the above
mentioned security threats is cryptography (see [33, 36]). Public key encryption can
be used for instance to preserve confidentiality of informations stored in the agents;
it can also be used to provide authentication for hosts and agents. Still cryptography
cannot solve all the problems. One of the most serious menaces in mobile agents sys-
tems is represented by malicious hosts. When an agent is loaded into a host, the host
gains full control over the agent and, at least in some cases, nothing can prevent him
from altering agent’s behavior, or even terminate the agent. The fact that an agent
may be eliminated by a (possibly competitor) host can be of enormous importance
in some applications: for example, in a time-limited open-bidding auction, where a
single unique item is sold to the best offerer (e.g.,E-bayauctions). In [26] it is stated:

The protection of a mobile agents from malicious hosts is – at least from
the viewpoint of the owner of the agent – as important as the protection
of the host from malicious agents. As we will see [...] no technical
approaches to solve this problem without special secure hardware exist
so far. The solubility of this problem which is called the problem of
malicious hosts is even estimated to be very low.
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The main contribution of this thesis is to provide techniques aimed to eliminate this
problem. Our approach is algorithmic, in the sense that, given a formal definition
of a problem, we are interested in finding an algorithm to solve it which uses the
minimal set of resources (i.e., time, agents, etc.). Algorithmic approaches have been
proposed, within mobile agents systems for other network exploration problems tar-
geted, for instance, to build network maps ([1, 5, 6, 20, 13, 34]), or to search some-
thing (an information, other agents, or an intruder) in the network ([2, 3, 25, 4]).
We focus our attention on harmful hosts which destroy all the mobile agents visiting
them upon their arrival, leaving no observable trace of such a destruction. Because
of their property of allowing inward migration and inhibit outward migration, and
because of the fact that no trace of them is visible from the outside, these hosts have
been calledblack holes. It should be clear that any approach directed to get rid of
black holes cannot avoid to first identify them in the network. It should be clear, at
the same time, that there is no way of recognizing a black hole without “sacrificing”
any agent. Indeed, any black hole in the network requires that a distinct agent visits
it and vanishes. The black hole search problem has been presented and analyzed by
Dobrevet al. in [14, 15, 16, 17, 18, 19]. They consider an asynchronous model where
no timing assumptions on the system can be done. In this scenario, the black hole
search is very difficult and even unfeasible in some cases. The authors restrict their
attention to searches performed by two agents, in networks containing exactly one
black hole. Among other results, they show thatΘ(n log n) traversals are needed to
solve the problem in arbitrary networks.
In our work we consider systems in which it is possible to fix an upper bound on the
time needed by an agent to migrate through hosts. We also put some further realis-
tic assumptions: we assume, for instance, that the two agents have a complete map
of the network to explore and that they can communicate only when they are in the
same node. This scenario allows us to give a neat formulation of the task. In this
case, in fact, it is possible to provide to each agent a suited sequence of nodes it has
to visit. The existence of the black hole can be indirectly deduced by the agents since
periodical meetings between the two are scheduled in the sequences; the agent van-
ishing into the black hole will at some time miss one of these meetings. The target
is to provide for a given network, the fastest pair of sequences for such a network,
i.e., sequences allowing to infer the location of the black hole (or its absence) in the
network in the shortest time. In some cases we could be acquainted with a set of
safe nodes in the network, i.e., nodes which are surely not black holes; for example,
they could be “trusted” hosts. We consider two different models, characterized by
the fact that such information is available or not (respectively denoted asgeneraland
restricted). The restricted problem has been introduced in [12], where the authors
provide optimal algorithms for the problem in the case that the network has a line
topology and a particular tree topology. They also provide a5/3-approximation al-
gorithm for tree networks and a4-approximation algorithm for general graphs. The
authors conjecturedNP-hardness for the problem. The same authors introduced the
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general problem in [11], showing itsNP-hardness an providing a9.3-approximation
algorithm. For both problems, we show theirNP-hardness, also in the case that the
network can be represented as a planar graph, and theirAPX-hardness (in this case
we show two explicit approximation lower bounds). For the case where a subset of
the nodes of the network are known to be safe, we provide a6-approximation algo-
rithm. A better approximation algorithm (with ratio27/8) is shown for the problem
where such knowledge is dropped. Within the restricted model, we also consider net-
works with particular topologies (trees, cycles, highly connected graphs), presenting
improved black hole search algorithms for them.
We believe that the original results presented here provide a satisfactory answer to
the menace brought by black holes; however, the topic is far from being closed and
we believe that there is still room for further research. For instance, it is possible to
consider more general (and thus complex) models by removing or changing some of
the assumptions we considered here. Just to cite an example, a model in which the
topology of the network is unknown, better fits in contexts, like the Internet, where
such knowledge is impossible or very expensive to obtain. We discuss this further in
the last concluding chapter.

The contents of the thesis is organized as follows.

• In Chapter 2 we describe mobile agents systems, providing some basic termi-
nology, and a general execution model for a mobile agents system. We present
an overview of the algorithmic problems presented in the literature somehow
related to mobile agents. We devote the last section tomobile agent security
issues: the target is to classify the various threats a mobile agents system has
to manage and to spot which countermeasures have been proposed for them.

• In Chapter 3 we introduce the problem we study in this thesis, that is, theblack
hole searchproblem. We show how this is an ineluctable approach to face one
of the most severe issues in mobile agents security: the presence of malicious
hosts. We overview related “state of the art” works by showing differences and
similarities with our work. Then we detail the model we considered and define
the terminology we use in the rest of the thesis. Some preliminary lemmas and
observations are presented in the last section of the chapter.

• In Chapter 4 we analyze the complexity of the general black hole search prob-
lem. We show that the problem isAPX-hard by providing an explicit approxi-
mation lower bound; we then provide a6-approximation algorithm.

• In Chapter 5 we study the restricted version of the problem, in which only the
starting node is initially known to be safe. We show that in this case the prob-
lem isNP-hard for planar networks andAPX-hard for arbitrary networks. We
then present a10

7 -approximation algorithm for arbitrary tree networks and a
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27
8 -approximation algorithm for arbitrary networks. Moreover, we show im-

proved algorithms for networks with particular topologies, among which an
optimal algorithm for ring networks.

• Finally, Chapter 6 is devoted to recall the results presented in this thesis and
to lead the way for further works on black hole search and, in general, on
algorithmics for mobile agents systems.
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Chapter 2

Mobile agents system

2.1 What is a mobile agents system?

In a distributed system, several computers or processors (commonly calledNODESor
HOSTS), interconnected by some communication hardware, accomplish a common
task by exchanging informations between them. A mobile agents system follows an
alternative approach: instead of moving packet of data between stationary processes,
the task is accomplished by moving agents through the nodes, and by allowing agents
to interact.
MOBILE AGENTSare entities that are able to migrate from one node to another and to
perform operations once they are loaded and executed into the nodes, thus fulfilling
the task they were programmed for. They generally consist of code, data (e.g. in-
stance variables) and control informations that allow them to carry on the execution
on the nodes they visit.
MOBILE AGENTS PLATFORMSconstitute the environment where the agents exist and
operate. Their primary task is to run the agents that are present in the system, and to
provide well-known services and operations to the agents. The platform thus realizes
a virtual machine for agents; it may be a particular operating system, but preferably
agents should be operating system independent. Most mobile agents systems today
base the agent platform on the Java Virtual Machine. A fundamental requirement for
a mobile agents platform is to allow agents’ migration between host; it has to provide
a mechanism to marshal and send agents to other hosts, and, on the other hand, to
recover migrated agents and resume their execution.
Another important facility offered by mobile agents platforms is communication. As
we will see, even if we were equipped with a (virtually) unlimited number of mo-
bile agents, some problems would remain unfeasible unless we provide a way for the
agents to interact between them. Depending on the model considered, communica-
tion between mobile agents is allowed:

• when they are located in the same agent platform;

11
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Figure 2.1: Agent execution model

• when they are within a certain range from each other (usually, when they are
in two adjacent hosts);

• by leaving messages in agents platforms: in a typical scenario, each platform
provides a bounded amount of storage, calledWHITEBOARD; agents commu-
nicate by reading from and writing on the whiteboards.

A MOBILE AGENTS SYSTEM is a set of homogeneous mobile agents platforms exe-
cuting on interconnected hosts.

We recall from [27] a typical execution model for mobile agents (see Figure 2.1).
A mobile agents platform (typically hosted by the owner of the agent) creates the
agent and provides it the data and the initial execution state; then it starts the execu-
tion session. During such session, the platform processes the agent using the code
and some input, and produces a resulting agent state. The input includes all the data
injected from the outside of the agent, i.e. both communication with other agents and
data received directly by or via the current host. Examples of inputs from host are
results from system calls like random numbers or the current system time. When the
agent migrates to another host, the execution session is finished on this platform. The
resulting state produced by one host is used as the initial state on the next host. We
denote asSTEPthe migration on a host, together with the whole execution session on
such host. By extension, step0 covers the first execution session, where the agent is
created.

What we can assume on the length of a step in a mobile agents system, determines
one of the deepest distinction among the various models considered. Similarly to a
distributed system, we can consider three different timing models: asynchronous,
synchronous and partially synchronous systems. In the context of distributed sys-
tems, this definition has been applied to various aspect of the computation. Syn-
chronicity, for instance, can be related to the message passing system (see [38]): a
send event and the corresponding receive event are coordinated to form a single tran-
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sition of the system, i.e., a process cannot send a message unless the destination of
the message is ready to accept the message. Others (see [31]) identify a synchronous
model as the one in which the execution progresses in synchronous rounds, driven
by a common clock. In the mobile agents systems scenario, it is usual to relate syn-
chronicity to the length of the steps of the agents’ execution. In particular, a mobile
agents system model is:

• synchronous, when each step (migration + execution session) requires a fixed
amount of time;

• semi-synchronousor partially synchronous, if the time needed by a step is
not fixed, but it can be upper bounded;

• asynchronous, if each step takes a finite but unpredictable amount of time.

Like in distributed systems, synchronous mobile agents systems represent a rather
unrealistic abstraction of actual systems, and in many cases, it is impossible or at
least inefficient to implement measures able to “synchronize” a system. However the
study of synchronous models is justified by some important observations. Impossi-
bility results obtained on the synchronous model extend directly to less well-behaved
models. Moreover, as in the cases considered in this thesis, the analysis of some
optimization problems often leads to completely different approaches and results,
according to the timing assumption adopted.

2.2 Algorithmic problems within mobile agents systems

In recent years, a number of algorithmic questions has been raised on the use of
mobile agents to compute in networked environments. In this section we provide a
(necessarily incomplete) overview on such works.
The fundamental question is to determine which minimal resources are needed to
solve a given problem. Generally, when analyzing the efficiency of presented algo-
rithms, some different, and somehow complementary, cost measures can be taken
into account. According to the classification given in [18], the main measures of
complexity are:

• size: this is a measure of how many physical resources are needed to accom-
plish the task; usually, this corresponds to the (maximum) number of agents
needed by the protocol, more detailed analysis consider also the storage space
available within the agents and their computational power;

• cost: which is generally computed as the total (worst case) number of moves
performed by the agents; this measure can have a remarkable meaning when
there exists a monetary cost associated with each migration;
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• time: in the context of network algorithms, this is a rather tricky concept;
while in synchronous systems each step requires one time unit, and thus a
common measure of time can be used (also calledIDEAL TIME ), in partially
synchronous systems, the usual approach is to assume that each step requires
at mostone (normalized) time unit (this is the notion ofBOUNDED DELAY);
if the network is completely asynchronous, the most targeted time measure is
theCAUSAL TIME, i.e., the length of the longest chain of causally related step,
over all the possible executions.

In these works, a network is generally represented as a connected graphG = (V,E),
where nodes denote hosts and edges denote communication links. In this context, the
terms graph and network, host and node, and link and edge are used interchangeably.
We will adopt this terminology, although we tend to use the terms graph, edge and
node to refer to the abstract representation of a network.

A very common and widespread use of mobile agents is as “cartographers”, that
is, to explore in order to obtain maps of existing networks whose topology is un-
known, or maps of dynamically changing networks like, for instance, the Internet,
the Web or ad-hoc mobile networks. Indeed, the problem of efficient exploration of
a graph has been introduced and studied in the algorithmic community even before
the development of mobile agents systems area. In these early works, the concept
of graph is used to model much broader contexts (e.g., rooms with obstacles or the
streets of a city) and the concept of finite state automaton (usually calledrobot) re-
places the concept of agent; obviously, no trace of multiple agents protocols and
communication mechanisms can be found in these works. According to the mea-
sures defined before, all these algorithms have optimal size. Note also that, in the
case of single agent protocols, the concepts of cost and time overlap, at least for syn-
chronous and semi-synchronous networks.
If the graph is undirected (i.e., the links of the network can be traversed in both direc-
tions), and its nodes are uniquely labeled, the problem of exploring and mapping a
graph can be easily solved in time linear in the number of edges by depth first search;
improved bounds have been presented in [34]. The fact that the underlying graph
is directed, does not make the problem harder, since a greedy search algorithm can
solve it in timeO(|V | · |E|). Also in this case, more sophisticated techniques ([1, 13])
lower this bound.
Hardest problems arise in the case that the nodes of the network are not uniquely
globally labeled (alocal unique labeling of the links outgoing of each node is still
needed anyway). It has been proved in [20] that the problem is unsolvable (the
protocol might not terminate) unless the agent is provided with a way to mark and
distinguish between nodes. For this purpose, the authors of [20] introduce the concept
of pebble, a device with which an agent can mark a node (by dropping the pebble in
it) and later identify the marked node when visiting it again; they show that an agent
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provided with a single pebble can map an undirected graph in timeO(|V | · |E|), re-
peatedly by marking nodes and backtracking. For what concerns directed graphs, in
[6] it is shown that a robot cannot map graphs in polynomial time using a constant
number of pebbles if it does not know a bound on|V |. The authors of [5] show
that an agent provided with a single pebble and an upper boundn̂ on |V |, can map
any strongly connected graph in timeO(n̂2|V |6d2), whered is the maximal out de-
gree of the graph. They also show that in the case that the boundn̂ is not known,
Θ(log log |V |) pebbles are necessary and sufficient.
We have to mention the paper [6], also because the authors introduce a different ap-
proach than the use of pebbles: they consider exploration performed by two agents.
They show that two cooperating robots can explore and map an unknown directed
graphs withn indistinguishable nodes in expected time polynomial inn, without any
prior knowledge on the size of the graph. They also demonstrate that two robots are
strictly more powerful than one robot with a constant number of pebbles. In this
paper it is assumed that the two agents are initially placed in the same node (called
homebase).

Mobile agents are also used to search for informations or other agents in the net-
work. In [2] the rendezvous search problem in graphs is studied. In this problem,
two agents are randomly placed in nodes of a graph; their target is to plan a walk in
the network which minimizes the expected number of steps required to meet. Each
agent knows both the graph and its position, but not that of the other agent. The
authors consider two cases, thesymmetricrendezvous problem, where the agents are
constrained to use identical strategies, andasymmetricrendezvous, when the agents’
strategies may differ. This is the graph restricted version of the more general ren-
dezvous search problems, where two unit speed robots have to meet in a (continuous)
metric space. They recall and extend the notion ofrendezvous value, that is, the least
expected time required for the two agents to meet; then, by mean of a probabilistic
analysis, they show optimal randomized strategies for particular classes of graphs,
like Hamiltonian graphs, for the asymmetric case, the complete graphK3 and cycle
graphsCn for the more difficult symmetric case.

In [3] another optimization problem is presented. There, the target is to “wake
up” a set of mobile agents, starting with only one “awake” agent. An agent can awake
another one only when the two are in the same host. As soon as an agent is awake,
it can assist in the awakening task. The time it takes for its traversal is associated
to each link. The goal is to compute an awakening schedule which minimizes the
makespan, i.e., such that the last agent is awakened in the shortest time. Because of
its reminiscence of the children’s game, it has been namedthe freeze-tag problem.
The authors hint at a broad set of applications for such problem, like dissemination
of informations, routing, scheduling and network design (an optimal scheduling is a
minimum depth spanning binary tree of the graph). Among the other results, they
show that the problem isNP-hard, even for the case of star graphs with one agent
in each host. Moreover, while there exists a PTAS for star graphs, the problem is
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APX-hard even for graphs of maximum degree∆ = 4. The authors also consider
the on-line version of the problem, where the awake agents ignore both the topology
of the network and the location of the remaining agents. In this case they present a
O(log ∆)-competitive algorithm.

In [25], the authors study the problem of searching for an items contained in a
node of a network, by mean of a mobile agent. The agent can move along the nodes
of the network and ask to each node which is the successor in the shortest path tos.
The problem becomes non-trivial since it may happen that a (bounded and unknown)
set of nodes (calledliars), give bad advice. They show deterministic algorithms to
solve the problem in time at most polynomial in the number of liars.

In [4],the authors consider a problem which is somehow related to mobile agents
security. The problem is to capture a (possibly hostile) intruder in a network by using
a team of mobile agents, all starting from an initial homebase. Both the intruder
and the agents move along the network links, but the intruder can be arbitrarily fast,
and aware of the position of the agents. The intruder is captured as soon as it is
surrounded by the agents and has no escape link. The problem is to design an efficient
agents’ strategy for capturing the intruder. For both practical and historic reasons,
the main efficiency parameter is size, i.e., the number of agents in the team. Indeed,
this is a special case of the well-knowngraph-searchingproblem, first discussed in
[8]. There, we are given a network whose links are all “contaminated”, the target
is to decontaminate (clear) all links. A link(u, v) is decontaminated when an agent
traverses it fromu to v and remains clear only if another agent remains inu or all the
other links incident tou are clear.
The authors show that the problem of minimizing the size of the chasers team is
NP-complete in arbitrary networks. They hence focus their study on tree networks,
considering also the weighted case, where the number of agents required to keep a
link clear is not unitary. For both cases they give linear time algorithms that compute
a search strategy requiring the minimum number of agents.

State of the art works on algorithmic approaches for hostile hosts detection, and
thus related to black hole search, are presented in Section 3.3.

2.3 Mobile agents security

In most new technologies, designed with functionality as the main target, security
measures are often a blanket added afterward; think, for example, to Internet proto-
cols. In some of these cases this intervention brings some issues related to perfor-
mances, compatibilities and security exploits.
This was not the case with mobile agents, since it is evident that any non trivial mo-
bile agent implementation must address security as one of the main concerns.
By looking at the security requirements and the suggested solutions, it appears evi-
dent that security in mobile agents is an area for further research.
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In [36] and in [40] the authors present an analysis of the security issues related
to mobile agents, and in both of them some indications on how to solve at least some
of these issues is provided. While in [36] there are some indications of technologies
that turn out to be useful against these threats, like for instance sandboxes and cryp-
tography, in [40] the focus is on describing the various kind of attacks by the mean
of a calculus for mobile computations (theSealcalculus).

When speaking of security in mobile agents systems, a thing to remark is that the
security concerns are focused to two symmetrical targets.

• Threats directed towardhost, i.e., toward the resources of the machine on
which mobile computation is executed;

• Threats directed towardagents, originated from an opponent listening on the
network, from other mobile computations, and even from host themselves.

Orthogonally, we can provide a rough classification of the kinds of attack that can
have place in mobile agents systems. These can be classified into the following cate-
gories.

• Unauthorized disclosure. Both an host and other agents may have strong
incentives to access, and possibly spread, confidential data and informations
stored within an agent. Analogously, an agent must be prohibited from access
to any data on the host that it is not authorized for.

• Unauthorized modifications. An host can damage the agent by changing its
code or data, and make it assume a corrupted behavior; this can be performed,
for instance, to launch attacks on other hosts or simply to make the agent act
in a way that is advantageous for the host (e.g., in distributed auctions where
several host offer an object or a service the agent wants to buy). An agent can
attack the host by reducing the availability of some shared system resource.
Usual targets for these attacks are CPU, memory and network bandwidth.

The main security measure to ensure integrity and confidentiality is proper access
control. Other measure may enhance this, like checksums and encrypted storage.

In this paper we focus on threats directed toward agents, [40] gives the following
further classification.

• Exogenous threats. These are attacks that occur outside of the agent platform,
either while the agent is transferred over the network or stored on disk.

• Endogenous threats. These threats are specific to an agent platform, and can
be further divided in:

– Horizontal hostility , i.e., attacks between agents running on the same
host;
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– Vertical hostility , i.e., attacks performed by the execution environment
of the runtime system of the agent platform, commonly referred to as
hostile host attacks.

Hostile hosts have been presented quite pessimistically in the mobile agent litera-
ture [9]. Even if security requirements are basically symmetrical, with both agent and
host looking to protect their respective resources, data and services, control is asym-
metrical. The host which executes an agent must see the agent’s internal workings
and has full control of the agent. Therefore, little can be done to protect a program
from a machine that decodes and executes every single instruction of the agent’s pro-
gram. Given enough time, an attacker will be able to analyze the inner workings of
any agent and subvert its intended meaning.



Chapter 3

The black hole search problem

3.1 Introduction

We discussed in Section 2.3 of the various attacks that a malicious host can bring
to an agent. We observed that, among all these threats, the ones in which the agent
execution is menaced are the most harmful and difficult to prevent. In [36] it is stated:

It is virtually impossible to prevent a host from capturing an agent and
prevent it from further execution. Measures may be taken to track the
progress of agents to at least detect such situations, and possibly identify
the responsible host.

The threat posed by black holes falls within this category. ABLACK HOLE is a node
in a network which contains a stationary process destroying all mobile agents visiting
the node, without leaving any trace outside the host. Mobile agents cannot prevent
being annihilated once they visit a black hole. The only way of protection against
such threat is to identify all the black holes in the network and thus avoid further
visiting them. However, no hint about the presence of a black hole can be deduced
by visiting its neighborhood, and it is also assumed that an agent visiting a black hole
has no way of communicating with other agents before being terminated. Therefore,
it should be clear that it is possible to locate a black hole only by “sacrificing” one
agent and by using another agent to indirectly infer the existence of a black hole. An
agent which is to visit an unknown node can, for instance, schedule a meeting with
another agent after such visit, or write on a whiteboard in a neighbor node the label
of the unknown node that he is visiting. If the visited node is a black hole, then the
destroyed agent will neither turn up at the node where the meeting was scheduled nor
write back to the whiteboard that the node has been successfully visited. In both cases
the surviving agents can deduce that the visited node is a black hole. In Section 3.2 we
delineate the model we study in this dissertation. In Section 3.3 the current state-of-
the-art works on hostile hosts detection are presented. In Section 3.4 we provide some
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basic definitions and formalize the black hole search problem. Finally, in Section 3.5
we show some preliminary lemmas we will recall in the following chapters.

3.2 The model

We represent a network as a connected undirected graphG = (V,E), where nodes
denote hosts and edges denote communication links. With no loss of generality, we
assumeG has no multiple edges or self-loops.
For the problem we consider, we assume that there are some nodes inG which de-
stroy any agent visiting them without leaving any trace. We denote such nodes as
BLACK HOLES, and the corresponding set asB. The remaining nodes are called
SAFE NODES. The value ofB, i.e. which nodes of the network are black holes, is
(at least partially) unknown. During a Black Hole Search (or simply BHS), a set of
agents starts from a special nodes called theSTARTING NODE, and explores graphG
by traversing its edges and visiting its nodes. Obviously, the starting nodes is known
to be a safe node (i.e., it is inV \ B) since the beginning of the BHS; generally, a
subset of nodesS ⊆ V \ B, initially known to be safe, is given as input. The target
of the agents is to report tos the exact value ofB, that is, which of the nodes inG
are black holes.

For the problems considered in this thesis, we make the following further as-
sumptions in the model.

1. |B| ≤ 1, i.e., the network may contain either one black hole (B = {b}) or no
black holes at all (B = ∅).

2. Only two agents perform the task; as explained in Section 2.2, this means that
we are interested in algorithms withoptimal size.

3. Agents have a complete map ofG, and the nodes of the network are uniquely
labeled; therefore, the agents always know their exact location in the network.

4. Agents have distinct labels (we will call themAgent-1 andAgent-2), and thus
it is possible to assign them two different strategies.

5. Agents can communicate only when they are in the same node (and not, e.g.,
by leaving messages at nodes).

6. The system is synchronous or partially synchronous (according to the clas-
sification given in Section 2.1). In both cases we can assume that each step
requires one time unit (possibly after normalizing the upper bound on the step
length). In the following the terms “step” and “time unit” will be considered
as equivalent.

The cost of a black hole search should be distinguished from the time complexity
of an algorithm producing the scheme for the search. Informally, the former is the
time of walking, while the latter is the time of preparing (planning) the walk. Follow-
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ing [11] and [12], we study the optimization problem of computing (preparing), for a
given networkG and the starting nodes, a minimum-cost black hole search scheme.

3.3 Other works on black hole search

The original formulation of the black hole problem was given for the first time in
[15], and then the problem was further studied in [14, 16, 18, 19]. In these works, the
model considered is slightly different than ours. First, the system is assumed to be
totally asynchronous (i.e., no upper bound on the length of each step). The agents can
communicate by writing and reading on whiteboards in nodes, and must be provided
with the same protocol; the surviving agents are not required to return to the starting
point. Within these assumptions, the authors prove that, in order to be able to solve
the problem, at least two agents are needed, the network must be at least 2-connected.
The main measures taken into account in these works are thesize, i.e., the number of
agents needed, and thecost, i.e. the total number of migrations required to complete
the search.
In [18] the black hole search in anonymous ring networks is considered. It is shown
that, if the size of the ring is not known, then no deterministic protocol exists which
always correctly terminates. The authors then consider the exploration performed
by two agents when they start from the same node (co-located) and when they start
from randomly different nodes (dispersed). It is shown that in both casesΘ(n log n)
traversals are necessary and sufficient (by providing suited algorithms). The authors
also consider efficient algorithms with respect to the ideal time, establishing a general
trade-off between time and number of agents, and proving that at least2n − 4 ideal
time units are always needed. Finally, the authors show that, if the ring is undirected,
then in the dispersed case, at least three agents are necessary and sufficient.
In [16], the problem in arbitrary networks is studied. The authors establish tight
bounds on size and cost, depending on the a priori knowledge on the map of the
network. If the network is totally unknown, then the presented optimal algorithm has
size∆+1 (∆ is the degree of the graph) and costΘ(n2). If the agents are not provided
with the map of the graph, but have sense of direction1, only two agents suffice and
the cost isΘ(n2). Finally, if complete topological knowledge in the graph is provided
to agents, then two agents can find a black hole inΘ(n log n) moves. In [19] and in
[14] better upper bounds are provided for networks with particular topologies. In
particular, if the network has diameterd, thenO(n + d log d) moves are sufficient;
if the network is a hypercube, a cube-connected cycle, a star, a wrapped butterfly, a
chordal ring, a multi-dimensional mesh or a torus, thenO(n) moves are sufficient.

In [11, 12] the problem is studied under the model we consider in this thesis. The
network is partially synchronous, i.e., there is an upper bound on the time needed

1A network is said to have a sense of direction if a consistent edge-labeling with directions in the
graph is provided.
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by an agent for traversing any edge. The partially synchronous network makes a
dramatic change to the problem. The black hole can be located by two agents in any
graph. Moreover the agents can decide if there is a black hole or not. To measure the
efficiency of a black hole search, it is assumed that it takes exactly one time unit (one
synchronized step) for each agent to traverse one edge (and to make all necessary
computations associated with this move). Then the cost of a given black hole search
(scheme) in a given networkG and from a given starting nodes is defined as the total
time the search takes under the worst-case location of the black hole (or when there
is no black hole in the network).

In [12] the Black Hole Search problem is studied in tree topologies, and the main
results given are an exact polynomial-time algorithm for some sub-class of trees
and a5/3-approximation algorithm for arbitrary trees. The existence of an exact
polynomial-time algorithm for arbitrary trees is left open. The authors of [11] study
a variant of the problem in which the input instance is a triple(G, S, s), whereG and
s are, as above, a network and the starting node, andS ⊇ {s} is a given subset of
nodes known to be safe (no black hole can be located in any node inS). The main
results presented in [11] are that for arbitrary graphs this variant of the Black Hole
Search problem isNP-hard but can be approximated within a ratio bound9.3.

3.4 Basic definitions

The set of assumptions given in Section 3.2 allows us to give a precise formalization
of the problem. We can observe that Assumption3 on the knowledge of the network
topology, reduces the task into a planning of a network exploration strategy that must
be provided to the agents during their creation phase. Indeed, the facts that each step
has a bounded length (Assumption6) and that there is at most one black hole in the
network (Assumption1), confine the uncertainty only on the location of the black
hole, and on which of the agents will find it. For these reasons we define the concept
of exploration scheme. Given a triple(G, S, s), whereG = (V,E) is a connected
undirected graph,S ( V is a subset of nodes ands ∈ S, anEXPLORATION SCHEME

EG,S,s = (X, Y) for (G, S, s), is a pair of equal-length sequences of nodes inG:
X = 〈x0, x1, . . . , xT 〉 andY = 〈y0, y1, . . . , yT 〉.

When the BHS based on a given exploration schemeEG,S,s is performed inG,
Agent-1 follows the path defined byX while Agent-2 follows the path defined byY.
In other words, at the end of thei-th step of the BHS (at timei), Agent-1 is in nodexi,
while Agent-2 is in nodeyi. As soon as an agent deduces the value ofB, it “aborts”
the exploration and returns to the starting nodes by traversing nodes inV \B.
Note that in our model we do not account for the time of computing the shortest path
that the surviving agents have to follow to return tos at the end of the exploration.
We assume that either this time is negligible or the whole set of required shortest
paths is precomputed and stored in the agents’ memory.
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It should be clear to the reader that not any pair of sequences can be effectively
used as a basis for a BHS. We thus need to define which are the properties of a
feasible exploration scheme. IfX = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉
are two equal-length sequences of nodes inG, thenEG,S,s = (X, Y) is a FEASIBLE

EXPLORATION SCHEMEif the constraints 1–4 stated below are satisfied.

Constraint 1: x0 = y0 = s, xT = yT .
This corresponds to the fact that both agents start from the given starting node
s. The requirement that the sequencesX andY end at the same node provides
a convenient simplification of the reasoning without loss of generality.

Constraint 2: for eachi = 0, . . . , T − 1, eitherxi+1 = xi, or (xi, xi+1) ∈ E; and
similarly eitheryi+1 = yi or (yi, yi+1) ∈ E.
This constraint models the fact that during each step, an agent can eitherWAIT

in the nodev where it was at the end of the previous step, or migrate by travers-
ing an edge of the network to move to a node adjacent tov.
Note that the fact that an agent can wait in a node, requires us to slightly bend
the strict definition of step as “migration+execution” we gave in Section 2.1.
In our synchronized model, we can redefine a step as a fixed slot of time during
which it is guaranteed that an agentcanreach a neighbor host by traversing an
edge and perform all the needed computations in such host.

Constraint 3: S ∪
⋃T

i=0 {xi} ∪
⋃T

i=0 {yi} = V .
This is to assure that each node inV \ S (the set of nodes whose safety is
initially unknown) is visited by at least one agent during the exploration.

In order to state Constraint 4, some preliminary definitions are required.
Given an exploration schemeEG,S,s = (X, Y), for eachi = 0, 1, . . . , T , we call the
EXPLORED TERRITORYat stepi the setSi defined in the following way:

Si =
{

S ∪
⋃i

j=0 {xj} ∪
⋃i

j=0 {yj} , if xi = yi;
Si−1, otherwise.

Thus S0 = S by Constraint 1,ST = V by Constraint 1 and Constraint 3, and
Sj−1 ⊆ Sj for each step1 ≤ j ≤ T . A nodev is EXPLORED at a stepi if v ∈ Si,
or UNEXPLOREDotherwise. These definitions reflect the assumption that the agents
communicate with each other, exchanging their full knowledge, only when they meet
at a node. An unexplored nodev may have been already visited by one of the agents,
but it will become explored only when the agents meet (and communicate) next time.
If both agents are alive at the end of stepi, then the explored nodes at this step are all
nodes which are known bybothagents to be safe.

A MEETING STEP(or simply MEETING) is the step 0 and every step1 ≤ j ≤ T
such thatSj 6= Sj−1. Observe that, in each meeting stepj, the agents must be
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in the same node (xj = yj); we call this node aMEETING POINT. Note that the
opposite is not necessarily true, i.e., there can exist non-meeting steps during which
the agents are in the same node. The meeting steps are the steps when the agents
meet and add at least one new node to the explored territory. A sequence of steps
〈j + 1, j + 2, . . . , k〉 wherej andk are two consecutive meetings is called aPHASE

of lengthk−j; the length of a phase is the number of steps between the two meetings,
that isk − j. Observe that an agent can discover the location of the black hole, and
thus can abort the exploration and return tos, only at the meeting steps, i.e., at the
end of a phase.

We recall from [12] the following lemma, showing two basic properties that every
feasible exploration must satisfy.

Lemma 3.4.1 During a phase of a feasible exploration scheme, an agent can visit at
most one unexplored node and the same unexplored node cannot be visited by both
agents.

Proof. Suppose that an agent visits two or more unexplored nodes during the same
phase. If one of the nodes is a black hole and hence the agent vanishes, then there is
no way for the other agent to locate the black hole without vanishing.
By the fact that an agent can abort the exploration only at the end of a phase, if the
two agents are scheduled to visit the black hole during the same phase, then both will
vanish in it, thus not accomplishing the task. �

We enforce the property expressed in Lemma 3.4.1, by mean of a fourth feasibil-
ity constraint for an exploration scheme.

Constraint 4: for each phase with a sequence of steps〈j + 1, . . . , k〉,

(a) | {xj+1, . . . , xk} \ Sj | ≤ 1 and| {yj+1, . . . , yk} \ Sj | ≤ 1; and

(b) {xj+1, . . . , xk} \ Sj 6= {yj+1, . . . , yk} \ Sj .

The (GENERAL) M INIMUM COST BHS PROBLEM, or simply theBHS prob-
lem, can be thus formalized in the following way.

Minimum Cost BHS Problem (BHS problem)

Instance : a triple (G, S, s), whereG = (V,E) is a connected undirected graph,
S ( V is a subset of nodes ands ∈ S.

Solution : a feasibleEXPLORATION SCHEMEEG,S,s = (X, Y) for (G, S, s). The
feasibility ofEG,S,s is determined by Constraints 1–4 given before. The length
of the exploration schemeEG,S,s is defined to beT .

Measure : cost(EG,S,s), i.e., the cost of the BHS based onEG,S,s.
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Goal : minimization.

In order to fully delineate the problem, we have to define our notion of cost
of a BHS. We first provide a preliminary definition. For an exploration scheme
EG,S,s = (X, Y) and a fixed value ofB, where eitherB = ∅ or B = {b} for
b ∈ (V \ S), theEXECUTION TIME for (EG,S,s, B) is defined as the number of time
units taken by the agents followingEG,S,s to discover the value ofB and to report it
back tos as fast as possible. IfB = ∅, then the execution time is equal to the length
T of the exploration scheme, plus the shortest path distance fromxT (= yT ) to s. In
this case, in fact, the agents must perform the full exploration (spending one time unit
per step) and then get back to the starting node to report that there is no black hole
in the network. IfB = {b}, then letj be the first step inEG,S,s such thatb ∈ Sj .
Observe thatj must be a meeting step and1 ≤ j ≤ T sinceS0 = S andST = V .
The execution time in this case is equal toj plus the shortest length of a path from
xj(= yj) to s not includingb. In this case one agent, sayAgent-1, vanishes into the
black hole during the phase ending at stepj, so it does not show up to meetAgent-2
at nodexj = yj . Since, by Constraint 4,Agent-1 has visited only one unexplored
node during the phase, the survivingAgent-2 learns the exact location of the black
hole and thus it goes back tos, obviously omitting the black hole.

TheCOSTof the BHS based on an exploration schemeEG,S,s = (X, Y) (or simply
the cost of the exploration scheme) is denoted bycost(EG,S,s) and defined as the
worst (maximum) execution time forEG,S,s, over all the possible values ofB. In
other words, in computing the cost of a BHS, we allow a malicious adversary, which
exactly knowsEG,S,s, to place the black hole (or not to place it at all) in such a way
that the BHS requires as many time units as possible.
In the following, feasibility of exploration schemes will be implicit, and by explo-
ration scheme we will always mean a feasible exploration scheme.

3.5 Basic properties

In this section we present some simple observations about exploration schemes, which
will be frequently used in the following chapters.

Lemma 3.5.1 If stepk ≥ 1 is a meeting step for an exploration schemeEG,S,s, then
xk = yk ∈ Sk−1.

Proof. Let j be the last meeting step before stepk, and henceSj = Sj+1 = . . . =
Sk−1. By definitionxk = yk ∈ Sk. If xk = yk is not in Sk−1, then it is in both
{xj+1, . . . , xk}\Sj and{yj+1, . . . , yk}\Sj . In this case, at least one of the conditions
of Constraint 4 is violated, since either the two sets are the same or at least one of the
two contains more than one node. �
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Lemma 3.5.2 Each phase of an exploration schemeEG,S,s has length at least 2.

Proof. Let us suppose, by contradiction, that there exists inEG,S,s a phase of length
1, and hence two adjacent meeting stepsj andj+1. The stepj+1 is a meeting if and
only if Sj+1 ) Sj , but, by Lemma 3.5.1,xj+1 = yj+1 ∈ Sj , and henceSj+1 = Sj .
Therefore there cannot exist inEG,S,s a phase of length 1. �

As a trivial consequence of Constraint 4, at the end of each phase, the explored
territory may increase by at most 2 nodes. In view of Lemma 3.5.2, phases of length
2 which expand the explored territory by 2 nodes are of particular interest to us since
they progress the exploration of the network at the fastest possible speed. Any phase
〈j + 1, j + 2〉 of this kind has to have the following structure. Letm be the meeting
point at stepj. During stepj + 1, Agent-1 visits an unexplored nodev1 adjacent to
m, whileAgent-2 visits an unexplored nodev2 adjacent tom as well, andv1 6= v2. In
stepj +2, the agents meet in a node which has been already explored and is adjacent
to bothv1 andv2. This node can be eitherm, and in this case we denote the phase as
b-split(m, v1, v2), or a different nodem′ 6= m, and in this case we denote the phase
asa-split(m, v1, v2,m

′).

In what follows we introduce an operation aimed to modify an exploration scheme
without altering its properties (i.e., feasibility, length, sequence of explored territories
and the cost of the BHS based on it). We then define a notion of equivalence between
exploration schemes which is based on such operation.

Definition 3.5.1 LetEG,S,s = (X, Y) be an exploration scheme for(G, S, s), and let
φ = (Xφ, Yφ) be a phase inEG,S,s. Let E ′G,S,s be the exploration scheme obtained
fromEG,S,s by swapping the paths of the two agents in phaseφ, i.e.,φ′ = (Yφ, Xφ).
We call this operation aPHASE-SWAP. Two exploration schemes areEQUIVALENT

if and only if one is obtained from the other by applying a finite sequence of phase-
swaps.

Lemma 3.5.3 LetEG,S,s = (X, Y) be an exploration scheme for(G, S, s). LetE ′G,S,s

be the exploration scheme obtained fromEG,S,s by applying a phase swap onEG,S,s.
Then, the exploration schemeE ′G,S,s is feasible, has exactly the same meeting points,
the same sequence of explored territories and the same length asEG,S,s. Moreover,
cost(E ′G,S,s) = cost(EG,S,s).

Proof. Obviously nothing changes for the unaltered phases. Moreover, for what
concerns the swapped phase, neither the meeting point, nor the length are subject to
modification. Also the nodes added to the explored territory are the same, and hence
the execution time for the cases in whichB is one of such nodes, remains unvaried
(even if the surviving agent changes). �
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Corollary 3.5.4 Two equivalent exploration schemes have exactly the same meeting
points, the same sequence of explored territories and the same length. Moreover the
cost of the BHS based on them is the same.

Observe that, by the definition of cost of a BHS given in Section 3.4, the com-
putation of the cost of a given exploration scheme requires to evaluate the execution
time for all the possible values ofB. The following lemma helps to simplify, at least
in some cases, this task.

Lemma 3.5.5 Let (G, S, s) be an input instance for theBHS problem, and letU be
the set of initially unexplored nodes (U = V \S). The caseB = ∅ yields the maximum
execution time for any exploration scheme in(G, S, s) over all the possible values of
B ∈ U , if and only if, by removing any nodeu ∈ U from G, each node inV \ {u}
either becomes disconnected froms, or maintains its shortest path distance froms.

Proof. (if). Let us consider any exploration schemeEG,S,s and the caseB = {b} 6= ∅
(for any b). By hypothesis, we can removeb from G and have a partition of the
nodes in two subsets: nodes becoming disconnected froms, and nodes maintaining
the distance froms. Let m be the meeting point at the end of the phaseφ of EG,S,s

during whichb is visited for the first time. Nodeb cannot disconnectm from s (by
Lemma 3.5.1 nodem must be explored beforeφ and hence there must exist a path
from s to m not containingb). Hencem maintains its distance froms even if we
removeb from G. Therefore, the path fromm to s the agents follow in the case
B = ∅ cannot be shorter than the shortest path fromm to s the surviving agent can
follow in the caseB = {b}.

(only if). Let us suppose there exists a nodeu ∈ U such that its deletion fromG
increases the distance from a nodev ∈ V to s, say, byδ. LetEG,S,s be an exploration
scheme such that during the last phase nodeu is explored by one agent and the
meeting point is nodev. (It is easy to check that if nodeu disconnectsv from s,
then such scheme does not exist.) In the caseB = ∅, the execution time is equal to
the length ofEG,S,s plus the distance inV from v to s (sayM ), while in the case
B = {u} the execution time is equal to the length ofEG,S,s plus the distance in
V \ {u} from v to s, that isM + δ. �

Corollary 3.5.6 Let (G, S, s) be an input instance for theBHS problem. If G is
a tree rooted ats, then the caseB = ∅ yields the maximum execution time for any
exploration scheme in(G, S, s).

Proof. This assertion straightforwardly follows from the property that in any tree
there is always a unique path from any node to the root.
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Chapter 4

The General BHS Problem

This chapter is devoted to present the main approximability results related to the
BHS problem. Here we consider the same model as in [11], where the authors
prove theNP-hardness of the problem and present a9.3-approximation algorithm,
i.e., a polynomial time algorithm which, for any input instance(G, S, s), produces
an exploration scheme whose cost is at most9.3 times the best cost of an exploration
scheme for such input. In Section 4.1 we show that theBHS problem is not approx-
imable in polynomial time within a1 + ε factor, for anyε < 1

388 , unlessP = NP.
In Section 4.2 we give a6-approximation algorithm for the problem. A preliminary
version of these results can be found in [28].

4.1 Approximation lower bound

In this section we provide an explicit lower bound on the approximability of the
BHS problem by showing an approximation preserving reduction from a particular
subcase of the Traveling Salesman Problem, presented in [21], and defined in the
following way.

(1,M)-Traveling Salesman Problem (TSP(1,M))

Instance : a pair (G, d), whereG = (V,E) is a complete graph (withn = |V |)
andd : V 2 → {1, . . . ,M} is a distance function associating to each pair of
nodes(v, u) a positive integer distanced(v, u) between1 andM (whereM is
a constant). Functiond is symmetric (i.e.,d(u, v) = d(v, u)) and satisfies the
triangle inequality (i.e.,d(i, j) + d(j, k) ≥ d(i, k), ∀i, j, k ∈ V ).

Solution : a tour τ of G, i.e., a permutationτ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 of the
nodes inV .

29
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Measure : the length(or cost) of the tour, i.e.,

cost(τ) =
n−1∑
i=1

d(vπ(i), vπ(i+1)) + d(vπ(n), vπ(1)).

Goal : minimization.

In the same paper, the authors also present the following lower bound on the approx-
imability of such problem.

Lemma 4.1.1 It is NP-hard to approximateTSP(1,8) within 1 + ε for anyε < 1
388 .

Our approach to prove theAPX-hardness of theBHS problemis the follow-
ing. We first provide a reduction from instances(G, d) of TSP(1,M) to instances
(G′, S, s) of the BHS problem. Then we show how to construct a particular solu-
tion of theBHS problem (a τ -basedexploration schemeEτ

G′,S,s), based on a corre-
sponding solution of the first problem (a tourτ in G). We show (Lemma 4.1.4) that
cost(Eτ

G′,S,s) = 2cost(τ). Then, by introducing the concept ofregular exploration
schemes, we show that given any exploration schemeEG′,S,s, we can find a tourτ in
G such thatcost(Eτ

G′,S,s) ≤ cost(EG′,S,s) (Lemma 4.1.8 and Lemma 4.1.9). Finally
(Lemma 4.1.10), we show that if, for any instance ofBHS problem constructed by
reduction from an instance ofTSP(1,M), we can approximate the optimal solution
within a (1 + ε) factor, then we can approximate the optimal solution of the corre-
sponding instance ofTSP(1,M) within the same factor.

Polynomial time reduction from (G, d) to (G′, S, s). Let (G, d) be an instance
of TSP(1,M). We define the graphG′ = (V ′, E′), the setS, and the starting nodes,
in the following way. Letv1 be an arbitrary node inV . We addv1 to V ′ and toS,
and we defines = v1 as the starting point of the BHS. For each nodevi (2 ≤ i ≤ n)
in V , we add toV ′ a pair of nodesv′i, v

′′
i . We denote nodev1 as theISLAND I1, and

each pair of nodesv′j , v′′j (with j = 2, . . . , n) as theISLAND Ij . Then we connect
islands: for each edge(vi, vj) in E of lengthd(vi, vj), we add toV ′ (and toE′) a
path of2 · d(vi, vj)− 1 nodes, whose endpoints are adjacent respectively tov′i, v

′′
i (or

v1 if i = 1) and tov′j , v
′′
j (or v1 if j = 1). We denote such path connecting islandIi

with islandIj asBRIDGE i ↔ j. We add all the nodes of the bridge toS. We call
asbi,j and asbj,i the endpoints of bridgei↔ j adjacent respectively to islandIi and
islandIj (note that ifd(vi, vj) = 1, thenbi,j ≡ bj,i). Observe that each bridge is
composed of at least one (safe) node, and that|V ′ \ S| = 2(n − 1). An example of
this reduction is presented in Figure 4.1.

Lemma 4.1.2 The distance inG′ between any node of islandIi and any node of
islandIj (wherei 6= j andi, j = 1, . . . , n) is equal to2 · d(vi, vj).
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Figure 4.1: Inb) an instance of theBHS problem obtained by reduction from an
instance of theTSP(1,M) problem (ina)). The nodes inS are filled with gray color.

Proof. By construction, bridgei↔ j is composed of2 · d(vi, vj)− 1 nodes. Hence
the length of the path fromIi to Ij which uses such bridge is2·d(vi, vj). Suppose, by
contradiction, that there exists a path inG′ from Ii to Ij of length less than2·d(vi, vj).
This path starts fromIi, visits some other islands (say〈Ik1 , . . . , Ikk

〉) and then ends
in Ij . The length of such path is2 [d(vi, vk1) + d(vk1 , vk2) + · · ·+ d(vkk

, vj)]. This
would mean thatd(vi, vk1)+d(vk1 , vk2)+ · · ·+d(vkk

, vj) < d(vi, vj). By recursive
application of triangle inequality on the distances inG, this is not possible. Contra-
diction. �

A relevant property we can observe is that assumptions of Lemma 3.5.5 hold for
graphG′.

Lemma 4.1.3 Let (G′, S, s) be an instance ofBHS problem produced with the
above mentioned reduction. The caseB = ∅ yields the maximum execution time
for any exploration scheme inG′.

Proof. Recall that the only unexplored nodes are the nodes in islandsIj (for j =
2, . . . , n). Let v′i be any node inU . By removingv′i from G′, no node becomes
disconnected froms. Moreover, the nodev′′i (the other unexplored node in the same
island), is at the same distance asv′i from s, and has exactly the same set of neighbors
asv′i. Therefore, each node inG′ which hasv′i in his shortest path tos, can replace
v′i with v′′i in the path and remain at the same distance froms. By Lemma 3.5.5 the
assertion is proved. �
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The reduction presented before defines a relationship between instances ofTSP(1,M)
and corresponding instances ofBHS problem. Now we want to investigate a simi-
lar relation between solutions ofTSP(1,M) and corresponding solutions of theBHS
problem. Given an instance(G, d) of TSP(1,M) and the corresponding instance
(G′, S, s) of BHS problem, and given a tourτ in G, we define an exploration scheme
onG′ which explores the islands inG′, in the order defined byτ . In the following def-
inition we introduce the new keywordwalk. By walk(b) we mean that both agents
(which are supposed to be already in the same nodew), move tob by following a
shortest (safe) path fromw to b. Actually, the walk is not a complete phase (no new
nodes are explored), but it is always the initial part of a phase.

Let τ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 be a tour onG of lengthl. We assume with no
loss of generality thatπ(1) = 1. A τ -BASED EXPLORATION SCHEMEEτ

G′,S,s on G′

consists of the following sequence of steps:

1. walk(b1,π(2)), whereb1,π(2) is the node adjacent tos on the bridge1↔ π(2);

2. for eachi = 2, . . . , n:

(a) walk(bπ(i),π(i−1)), wherebπ(i),π(i−1) is the node adjacent toIπ(i) on the
bridgeπ(i− 1)↔ π(i);

(b) a-split(bπ(i),π(i−1), v
′
π(i), v

′′
π(i), bπ(i),π(i+1)), wherebπ(i),π(i+1) is the node

adjacent toIπ(i) on the bridgeπ(i) ↔ π(i + 1) (or bridgeπ(n) ↔ 1 if
i = n).

In other words, the two agents walk together along the bridges, they separate to visit
the two nodes of each unexplored island, and meet again on the first node of the next
bridge.
Given the tourτ in G, theτ -based exploration schemeEτ

G′,S,s can be obviously con-
structed in linear time.
In the following lemma we compute the cost of the BHS based onEτ

G′,S,s.

Lemma 4.1.4 Given a tourτ = 〈vπ(1), vπ(2), . . . , vπ(n)〉 on G of lengthl, the τ -
based exploration schemeEτ

G′,S,s satisfiescost(Eτ
G′,S,s) = 2 · l.

Proof. By Lemma 4.1.3, we can computecost(Eτ
G′,S,s) as the execution time of

Eτ
G′,S,s in the caseB = ∅. Thewalk in (1) requires1 step. For thei-th iteration in

(2) (i = 2, . . . , n):

• thewalk in (2.a) requires2 · d(vπ(i−1), vπ(i))− 2 steps;

• the phase defined in(2.b) requires2 steps;

The exploration schemeEτ
G′,S,s ends inbπ(n),1, and hence the surviving agents have

to get back tos. By Lemma 4.1.2, the distance frombπ(n),1 to s is 2 ·d(vπ(n), v1)−1.
Therefore:cost(Eτ

G′,S,s) = 1+2
∑n

i=2 d(vπ(i−1), vπ(i))+ 2 · d(vπ(n), v1)− 1 = 2 · l.
�
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Corollary 4.1.5 Let(G, d) be an instance of theTSP(1,M) problem, and let(G′, S, s)
be the corresponding instance of theBHS problem, where the graphG′ is con-
structed as explained before. Moreover, letτ∗ be an optimal solution for(G, d) and
let E∗G′,S,s be an optimal solution for(G′, S, s). Thencost(E∗G′,S,s) ≤ 2 · cost(τ∗).

We can classify each phase of any exploration scheme inG′, according to the
number and the location of the nodes explored during such phase. A phaseφ is a:

2s-phase: if the two nodes of the same island are explored duringφ;

2d-phase: if two nodes in two distinct islands are explored duringφ;

1-phase : if only one node is explored duringφ.

Definition 4.1.1 Given an exploration schemeEG′,S,s, we define thePHASE GRAPH

of EG′,S,s, the following directed multigraphP (EG′,S,s). The graphP (EG′,S,s) has
the nodesv2, . . . , vn corresponding to the islandsI2, . . . , In in G′, plus one further
node which we callx. The following edges are added toP (EG′,S,s):

• a directed edge〈vi, x〉 (〈x, vi〉) is added for each node in islandIi which is
explored during a 1-phase byAgent-1 (Agent-2);

• a directed edge〈vi, vj〉 is added for each 2d-phase exploring a node of island
Ii with Agent-1 and a node of islandIj with Agent-2;

• a directed self-loop〈vi, vi〉 is added if the nodes of islandIi are explored by a
2s-phase.

Lemma 4.1.6 Given any exploration schemeEG′,S,s, each node of the phase graph
P (EG′,S,s) has degree (= in-degree + out-degree) equal to2.

Proof. It follows from Definition 4.1.1 that, for any nodevi in P (EG′,S,s), there is an
outgoing edge for each node inIi of G′ which is explored byAgent-1, and there is an
incoming edge for each node inIi of G′ which is explored byAgent-2. Since each
islandIi (i = 2, . . . , n) has two unexplored nodes, the statement follows. �

The graphP (EG′,S,s) is thus a set of connected components. In the underlying
undirected multigraph, these components are either cycles or isolated nodes.
Now we give a new characterization of an exploration scheme inG′.

Definition 4.1.2 An exploration schemeEG′,S,s is REGULAR if and only if each agent
explores exactly one node of each islandIj , with j = 2, . . . , n.

Notice that anyτ -based exploration scheme is regular; we can observe that each node
in P (Eτ

G′,S,s) is an isolated node (the only adjacent edge is a self-loop).
Indeed, we can prove a tighter relation between regular exploration schemes and their
corresponding phase graph.
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Lemma 4.1.7 An exploration schemeEG′,S,s is regular if and only if, in the corre-
sponding phase graphP (EG′,S,s), for each nodevi, indeg(vi) = 1 andoutdeg(vi) =
1.

Proof. By Lemma 4.1.6, each nodevi in P (EG′,S,s) has degree2. Hence, three cases
may happen:

1. indeg(vi) = 1 and outdeg(vi) = 1: in this case one node of islandIi is
explored byAgent-1 (the outgoing edge) and the other one is explored by
Agent-2 (the incoming edge). Therefore the island is “regularly” explored by
both agents.

2. indeg(vi) = 0 andoutdeg(vi) = 2: in this case both nodes ofIi are explored
by Agent-1; the island is not “regularly” explored.

3. indeg(vi) = 2 andoutdeg(vi) = 0: in this case both nodes ofIi are explored
by Agent-2; the island is not “regularly” explored.

�

Lemma 4.1.8 For any exploration schemeEG′,S,s there exists an equivalent regular
one that can be found in linear time.

Proof. It suffices to prove that we can find in linear time a finite sequence of phase-
swaps inEG′,S,s, which transformsEG′,S,s into a regular exploration scheme. By
Lemma 4.1.7, this corresponds to transformP (EG′,S,s) into a graph where, for each
nodevi, indeg(vi) = 1 andoutdeg(vi) = 1. We can observe that each phase-swap in
EG′,S,s produces a change in the orientation of the corresponding edge inP (EG′,S,s).
SinceP (EG′,S,s) is composed by a set of cycles and isolated nodes, we can swap the
edges in the cycles according to a fixed orientation (e.g., by a lexicographical order-
ing of nodes), and thus make regular the graphP (EG′,S,s), and the corresponding
exploration scheme. �

Lemma 4.1.9 Given an exploration schemeEG′,S,s, we can find in linear time a
tour τ on G such that, for theτ -based exploration schemeEτ

G′,S,s, cost(Eτ
G′,S,s) ≤

cost(EG′,S,s).

Proof. By Corollary 3.5.4 and Lemma 4.1.8, we can assume without loss of gener-
ality thatEG′,S,s is a regular exploration scheme. By regularity,Agent-1 explores a
node of each island inG′. Let IX = 〈Iπ(2), . . . , Iπ(n)〉 be the sequence of the islands
in G′ in the order by whichAgent-1 explore their nodes. Letτ be the tour inG cor-
responding toIX (i.e.,τ = 〈v1, vπ(2), . . . , vπ(n)〉), and letl = cost(τ). We show that
the τ -based exploration schemeEτ

G′,S,s is such thatcost(EG′,S,s) ≥ cost(Eτ
G′,S,s).

Consider the caseB = ∅ (Lemma 4.1.3).Agent-1 starts froms, visits islands in
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IX and then gets back tos. By Lemma 4.1.2, the length of this path is at least
2 · l, and hence the execution time ofEG′,S,s is not shorter than2 · l. Therefore,
cost(EG′,S,s) ≥ 2 · l ≥ cost(Eτ

G′,S,s). �
Now we can relate approximability ofTSP(1,M) with approximability ofBHS prob-
lem.

Lemma 4.1.10 Let(G, d) be an instance of theTSP(1,M) problem, and let(G′, S, s)
be the corresponding instance of theBHS problem problem. Moreover, letτ∗ be an
optimal tour in G, and letE∗G′,S,s be an optimal exploration scheme forG′. Let
ε > 0. If we can find in polynomial time an exploration schemeEG′,S,s such that
cost(EG′,S,s) ≤ cost(E∗G′,S,s)(1 + ε), then we can find in polynomial time a tourτ in
G such thatcost(τ) ≤ cost(τ∗)(1 + ε).

Proof. Let us suppose that, given the instance(G′, S, s), we can construct in polyno-
mial time an exploration schemeEG′,S,s such that its cost is at most1 + ε times the
cost of an optimal exploration scheme. By Lemma 4.1.9, we can find an exploration
schemeEτ

G′,S,s, based on a tourτ in G, such thatcost(Eτ
G′,S,s) ≤ cost(EG′,S,s) ≤

cost(E∗G′,S,s)(1+ε). Supposing that the length of the tourτ is l, then, by Lemma 4.1.4:
cost(Eτ

G′,S,s) = 2 · l. Supposing that the length of the optimal tourτ∗ is l∗, then, by
Corollary 4.1.5:cost(E∗G′,S,s) ≤ 2 · l∗. Therefore, by hypothesis:

2 · l = cost(Eτ
G′,S,s) ≤ cost(E∗G′,S,s)(1 + ε) ≤ 2 · l∗(1 + ε) .

Hence,l ≤ l∗(1 + ε) . �
The main theorem immediately follows from Lemma 4.1.1 and Lemma 4.1.10.

Theorem 4.1.11TheBHS problem problem is not approximable in polynomial time
within a factor of1 + ε for anyε < 1

388 , unlessP=NP.

4.2 A 6-approximation algorithm

Let G = (V,E) be a network to be explored in search of a black hole, with a setS of
safe nodes, and a starting points. Let u = |U | be the number of unexplored nodes in
G. In this section we describe an algorithm to produce an exploration schemeEG,S,s,
whose cost is at most6 times the cost of an optimal scheme for(G, S, s). This
result improves the9.3-approximation algorithm presented in [11]. The algorithm
presented in that paper follows a rather simple approach. First a minimum Steiner
tree ofG is computed, whereU ∪ {s} is the set of terminal (required) nodes. LetT
be such computed tree. Note that the Minimum Steiner Tree problem isAPX-hard
([7]), hence, if we denote asy the number of Steiner nodes inT and asy∗ the number
of Steiner nodes in an optimal solution for the problem, then the best result we can
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obtain by a polynomial time algorithm is bounded by:u+y ≤ α(u+y∗), whereα is a
constant value larger than1. The exploration schemeEG,S,s is obtained from a depth-
first traversal of the internal nodes ofT . Each time an internal node is visited for the
first time by the agents, all its unexplored children are explored by means of aprobe
phase. Assuming that both agents are in the same nodep and thatv is an unexplored
node adjacent top, by probe(v) we denote a phase during whichAgent-1 traverses
edge(p, v), visits v and returns to nodep to meet the other agent waiting there.
Moreover, we denote byprobe-and-visit(v) a part of exploration scheme obtained
by concatenatingprobe(v) with walk(v). Eachprobephase requires2 time units,
while eachprobe-and-visitsequence requires3 time units. The cost ofEG,S,s is thus
upper bounded by2(u+y)+2u ≤ 4(u+y). The authors fix the approximation ratio
by observing that any exploration scheme inG has cost at least23(u+y∗). Therefore:

cost(EG,S,s) ≤ 4(u + y) ≤ α · 4(u + y∗) ≤ α · 6 · cost(E∗G,S,s)

If we use the best known approximating algorithm for the Minimum Steiner Tree
problem ([35]), thenα = ln 3

2 < 1.55, and hencecost(EG,S,s) < 9.3 · cost(E∗G,S,s).
Although we use a similar tree based approach for the exploration, the tree con-

structed by our algorithm has a different minimization target from the one described
before: instead of (globally) minimizing the number of Steiner (initially safe) nodes
to traverse, we want to minimize the relative distances of the terminal (unexplored)
nodes the agents have to visit.
We define the following complete weighted graphĜ. The set of nodes in̂G corre-
sponds to the nodes inU ∪ {s}. The weight of edge(vi, vj) (or, equivalently, the
distance fromvi to vj) in Ĝ, is the shortest path distance fromvi to vj in G (con-
sidering both safe and unexplored nodes). An example ofĜ is given in Figure 4.2.
Note that since weights in̂G are derived from a shortest path metric, they satisfy
triangle inequality. LetT be a minimum spanning tree of̂G rooted ats, and let
cost(T ) be its cost, i.e., the sum of the weights of all its edges. LetLT = 〈vπ(0) ≡
s, vπ(1), . . . , vπ(u)〉 be the depth-first ordering of the nodes inT , and letLG be the
sequence obtained fromLT by replacing each pair of adjacent nodesvπ(i), vπ(i+1)

with the shortest path inG from vπ(i) to vπ(i+1). Since the distance fromvπ(i) to
vπ(i+1) is at most the (weighted) cost of pathvπ(i), . . . , vπ(i+1) in T , the length of

LG is at most2cost(T ) − d(vπ(u), s). An example of the construction of̂G and the
corresponding sequencesLT andLG is reported in Figure 4.2.

We now construct the exploration schemeEG,S,s = (X, Y) for G. Initially X =
Y = LG. Then, the pairs of adjacent steps〈xi, xi+1〉 and〈yi, yi+1〉 are considered
from i = 1, . . . , k. If xi = yi = v′ and xi+1 = yi+1 = v′′, wherev′′ is an
unexplored node occurring for the first time in the sequences, we replace〈v′, v′′〉
in X with the sequence〈v′, v′′, v′, v′′〉 and we replace〈v′, v′′〉 in Y with the sequence
〈v′, v′, v′, v′′〉. This is to assure that each time the agents have to visit an unexplored
nodev′′, such visit is replaced by aprobe-and-visit(v′′) phase. Sinceu is the number
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Figure 4.2: Inb) the graphĜ obtained from an instance(G, S, s) (in a)). The nodes
in S are filled with gray color. Inb) the bold lines denote a minimum spanning tree
T of Ĝ rooted atS. In c) it is presented the ordering of the nodes in the sequenceLT .
In d) it is presented the ordering of the nodes in the corresponding sequenceLG.
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of unexplored nodes,2u steps are added to exploration schemeEG,S,s. The length of
EG,S,s is therefore at most2cost(T ) − d(vπ(u), s) + 2u, while the execution time in
the caseB = ∅ is at most2cost(T ) + 2u since the surviving agents have to get back
from vπ(u) to s.

Lemma 4.2.1 The exploration schemeEG,S,s is feasible and can be constructed in
polynomial time. Moreover,cost(EG,S,s) ≤ 2cost(T ) + 2u.

Proof. Constraints 1 and 2 can be easily checked by observing that sequenceLG

(from whichX andY are derived) is a concatenation of paths inG, starting froms
and ending invπ(u). All the nodes inU are inĜ, in LT and thus inLG; moreover the
insertion ofprobephases does not alter the set of visited nodes, hence the agents visit
all the unexplored nodes (Constraint 3). Finally, we can observe that, except for the
probephases, the agents always move together along safe nodes, hence the explored
territory increases only during theu probephases; satisfaction of Constrain 4, and
thus feasibility ofEG,S,s, straightforwardly follows.
GraphĜ can be constructed by computing the all-pair shortest paths inG; by using
the best known algorithm ([37]), this operation has costO(nω log n), whereO(nω)
is the cost of a matrix product computation. This is the dominating cost of the whole
algorithm, since the computation of the spanning treeT of Ĝ, as the computation of
LT andLG can be all performed in linear time.
For what concerns the cost ofEG,S,s, we can observe that, since the exploration tra-
verses the edges of a tree rooted ats, Corollary 3.5.6 holds and thusB = ∅ yields the
worst execution time. �

Let us consider now an optimal exploration schemeE∗G,S,s = (X∗, Y∗). In
computingcost(E∗G,S,s) we consider, as lower bound, the execution time ofE∗G,S,s

in the caseB = ∅. Let L′ = 〈xk, . . . , s〉 be the shortest path inG from the
last nodexk in X∗ to the starting node, excluding the endpointsxk and s. Let
L′′ = X∗ ◦L′ ◦Y∗ ◦L′ ◦ 〈s〉. The sequenceL′′ starts froms, visits all the nodes inU
and ends ins. The length ofL′′ (we denote it as|L′′|) is at most twice the execution
time of E∗G,S,s in the caseB = ∅, sinceL′′ is the concatenation of the paths the two
agents follow during the exploration in such case; hence2cost(E∗G,S,s) ≥ |L′′|. Let
L∗ be the minimum (shortest) tour inG starting froms and visiting all the nodes in
U , and let|L∗| be its length; obviously,|L′′| ≥ |L∗|.
Due to its optimality,L∗ has the following structure:

L∗ = 〈s〉 ◦ P (s, u1〉 ◦ P (u1, u2〉 ◦ . . . ◦ P (uu, s〉

where〈u1, . . . , uu〉 is the sequence of unexplored nodes in the order they are visited
for the first time inL∗, andP (x, y〉 is the shortest path from nodex (excluded) to
nodey in G. Since weights inG satisfy triangle inequality, the length ofL∗ is equal to
the length of the minimum traveling salesman tour inĜ, which is, by a well known
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relation, not less than the cost of the minimum spanning treeT of Ĝ. Therefore,
|L∗| ≥ cost(T ), and

cost(E∗G,S,s) ≥
cost(T )

2
. (4.1)

Moreover, since the agents cannot explore more than two nodes every two steps, the
trivial lower bound still holds:

cost(E∗G,S,s) ≥ u. (4.2)

We compute the approximation ratio of the algorithm presented in this section, by
picking the numerator from Lemma 4.2.1 and by choosing a suitable balance for
Equations (4.1) and (4.2) as the denominator. Therefore:

cost(EG,S,s)
cost(E∗G,S,s)

≤ 2 cost(T ) + 2 u

2
3

cost(T )
2 + 1

3 u
= 6 . (4.3)

Theorem 4.2.2 TheBHS problem problem is approximable within6.
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Chapter 5

The Restricted BHS Problem

In this chapter we investigate a particular subcase of theBHS problem defined in
Section 3.4. Here we assume that the nature (but not the topology) of the network is
completely unknown and thus the only node initially known to be safe is the starting
node, i.e.,S = {s}. We can therefore formulate the problem as follows.

RESTRICTEDM INIMUM COST BHS PROBLEM (rBHS problem)

Instance : a pair(G, s), whereG = (V,E) is a connected undirected graph, and
s ∈ V .

Solution : a feasibleEXPLORATION SCHEMEEG,s = (X, Y) for (G, s).

Measure : cost(EG,s), i.e., the cost of the BHS based onEG,s.

Goal : minimization.

This problem has been presented and studied in [12]. It is worthwhile to remem-
ber that, when studying a particular subcase of anNP-hard problem, while the upper
bounds (approximation algorithms) are still valid (but better upper bounds can possi-
bly be found), the lower bounds (NP-hardness and non-approximability results) may
not hold anymore. Indeed, in this chapter we will prove that therBHS problem
remainsNP-hard, even when restricted to networks for which a planar embedding
can be found (Section 5.1). In Section 5.2 we show that therBHS problem prob-
lem isAPX-hard. In Section 5.3 we present a10

7 -approximating algorithm applica-
ble when the network can be represented as a tree. In Section 5.4 we show that a
27
8 -approximating algorithm for general networks can be obtained by applying the

algorithm described in Section 5.3 on a suitable spanning tree of the network. In
Section 5.4.3 we discuss further about the spanning-tree approach we used, show its
limitations and present different approaches. A preliminary version of part of these
results can be found in [29].

41
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5.1 NP-Hardness for arbitrary planar networks

In this section we prove theNP-hardness of therBHS problem in planar graphs by
providing a reduction from a specific version of the Hamiltonian Cycle problem to
the decision version of therBHS problem.

Hamiltonian Cycle problem for cubic planar graphs (cpHC problem)

Instance : a cubic planar 2-edge-connected graphG = (V,E), and an edge(x, y) ∈
E;

Question : doesG contain a Hamiltonian cycle that includes edge(x, y)?

Decision Black Hole Search problem for planar graphs (dBHS problem)

Instance : a planar graphG′ = (V ′, E′), with a starting nodes ∈ V ′, and a positive
integerX;

Question : does there exist an exploration schemeEG′,s for G′ starting froms, such
thatcost(EG′,s) = X?

Lemma 5.1.1 ThecpHC problem is NP-complete.

Proof. The NP-completeness of thecpHC problem problem without the extra re-
quirement that the Hamiltonian cycle passes through a given edge was proved in
[23]. The version with that extra requirement is obviously inNP, and we can define
the following simple reduction. Let a given cubic planar graphG be an instance of
the original problem. We obtain an instanceG̃ of thecpHC problem in the follow-
ing way. LetD be any node inG and letA, B andC be its neighbors. We add
to G six new nodes and replace the edges adjacent toD with the edges as in Fig-
ure 5.1(a). Edge(x, y), the second part of the input instance, is picked as in Figure
5.1(a). Observe that planarity and 2-edge connectivity are preserved inG̃. It should
be clear that if graph̃G has a Hamiltonian cycle containing edge(x, y), then graph
G has a Hamiltonian cycle as well. Figure 5.1(b) shows that the implication in the
other direction is also true: if graphG has a Hamiltonian cycle, then graph̃G has a
Hamiltonian cycle containing edge(x, y). �

We describe now a polynomial time reduction from thecpHC problem to the
dBHS problem. We want to achieve the property that ifG can be traversed in a
number of steps equal to the number of nodes in it, thenG′ can be explored in a
number of time units equal to the number of unexplored nodes in it. Therefore, our
goal is to construct a graph which facilitates its exploration through split phases,
without any extra walk. LetG = (V,E) and (x, y) ∈ E be an instance of the
cpHC problem. We construct the corresponding instance of thedBHS problem,
i.e., a graphG′, a starting nodes, and an integerX, by modifying graphG in the
following steps.



5.1. NP-HARDNESS FOR ARBITRARY PLANAR NETWORKS 43

A

C

D
B

A

C

B

x y

a)

b)

A

C

B

x y

A

C

B

x y

A

C

B

x y

Figure 5.1: a) Reduction from thecpHC problem with no fixed edge to the
cpHC problem with a fixed edge(x, y). b) Extensions of Hamiltonian cycles in
graphG to Hamiltonian cycles in graph̃G passing through edge(x, y).

1. Replace inG the edge(x, y) with the edges(x, s) and(s, y), wheres /∈ V is a
new node, obtaining graph̄G.

2. LetF be the set of the faces of an arbitrary planar embedding of graphḠ. We
identify each facef ∈ F with the sequence of the consecutive edges adjacent
to this face (starting with any edge adjacent tof and traversing the boundary
of f in either of the two directions).

3. For each facef ∈ F and each edge(v, w) adjacent tof , add one new node

z
(v,w)
f and two edges(v, z

(v,w)
f ) and(w, z

(v,w)
f ). Since graphG is planar and

2-edge connected, each edgee in graphḠ is adjacent to exactly two different
facesf ′ andf ′′ in F . The two nodesze

f ′ andze
f ′′ in G′ added for edgee are

called thetwin nodesfor edgee.

4. For each facef = 〈e1, e2, . . . , eq〉 ∈ F add theshortcut edges(ze1
f , ze2

f ),
(ze2

f , ze3
f ), . . . , (zeq

f , ze1
f ).

5. For each nodev ∈ V ∪ {s} \ {x}, add a new nodevF , called theflag nodeof
nodev, and an edge(v, vF ).

6. LetG′ be the obtained graph. SetX to n′ − 1 = 5n + 2, wheren′ = n + 1 +
2(e+1)+n = 5n+3 is the number of nodes inG′ andn ande are, respectively,
the number of nodes and edges inG (in a cubic graph,e = (3/2)n).
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Figure 5.2: Ina), the two twin nodes for the edge(v, w); in b), the twin nodes for
the edges(u, v) and(v, w) and their neighborhood (shortcut edges are dashed).

The construction of graphG′ is illustrated in Figure 5.2. GraphG′ is planar and
can be constructed in linear time. The nodes inG′ inherited from graph̄G are called
theoriginal nodes.

The two following lemmas state two properties of graphG′ which we use in
further arguments.

Lemma 5.1.2 Let 〈u, v, w〉 be a path in graphḠ. Then there is a path〈u, z′, z′′, w〉
in G′ bypassing nodev (that isv 6∈ {z′, z′′}).

Proof. Since the degree of each node in̄G is at most 3, there must be a face
f ∈ F to which both edges(u, v) and(v, w) are adjacent. By construction, there

exist two adjacent nodesz(u,v)
f and z

(v,w)
f in G and thus the sequence of nodes〈

u, z
(u,v)
f , z

(v,w)
f , w

〉
is a path inG′. �

Lemma 5.1.3 Each twin node inG′ has degree4.

Proof. For each twin nodez(u,v)
f , the nodesu andv are added as neighbors dur-

ing step3, and the two twin nodesz(u,w)
f andz

(z,v)
f are added during step4 of the

construction ofG′.
Lemmas 5.1.4 and 5.1.5 prove that graphG has a Hamiltonian cycle passing

through edge(x, y) if and only if there is an exploration scheme for(G′, s) with cost
X = 5n + 2.

Lemma 5.1.4 If graph G has a Hamiltonian cycle that includes edge(x, y), then
there exists an exploration schemeE∗G′,s on graphG′ from the starting nodes, such
thatcost(E∗G′,s) = 5n + 2.
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Proof. Let{v1 = y, e1, v2, . . . , en−1, vn = x, en, v1 = y} be such Hamiltonian cycle
in G. Consider the exploration schemeE∗G′,s defined by the following sequence of
phases:

1. b-split(s, sF , y), wheresF is the flag node ofs;

2. a-split(s, z1, z2, y), wherez1 andz2 are the twin nodes of the edge(s, y);

3. for each nodevi of the Hamiltonian cycle, with (i = 1, . . . , n− 1):

(a) letvj be the third neighbor ofvi, other thanvi−1 andvi+1; if j > i then
b-split(vi, z1, z2), wherez1 andz2 are the twin nodes of(vi, vj);

(b) b-split(vi, v
F
i , vi+1), wherevF

i is the flag node ofvi;

(c) a-split(vi, z1, z2, vi+1), wherez1 andz2 are the twin nodes of the edge
(vi, vi+1);

4. a-split(x, z1, z2, s), wherez1 andz2 are the twin nodes of the edge(x, s).

Let us compute the length ofE∗G′,s. Sincea-splitandb-splitphases have length2
and increase the explored territory by2 nodes (see Section 3.5), the overall number
of phases is(5n + 2)/2 and henceE∗G′,s has length5n + 2. Notice that this is also
the exploration time forE∗G′,s, in the caseB = ∅, sinceE∗G′,s ends ins.

Now we have to check that this is also the cost ofE∗G′,s, i.e. there is no allocation
of the black hole that yields a larger exploration time. Unfortunately, graphG′ does
not have the properties for which Lemma 3.5.5 can be applied; by removing, for
instance, an original nodev adjacent tos, the remaining neighbors ofv may increase
their distance froms. However, we can still prove such a result forE∗G′,s. We first
observe that the set of meeting points inE∗G′,s is {vi : 1 ≤ i ≤ n} ∪ {s}.

Claim 1 Consider the meeting step when the agents are to meet at a nodevi (1 ≤
i ≤ n). If a black hole has been just discovered, then the remaining exploration time
for this case is not greater than the remaining exploration time for the caseB = ∅.

Proof. If the black hole is the flag nodevF
i (phase3.b) or one of the twin nodes for

the edge(vi−1, vi) or for the edge(vi, vj) (phase3.c or 3.a), then the surviving agent
can reachs by following the remaining part of the Hamiltonian Cycle, and hence the
remaining cost is at most:n + 1 − i. If the black hole is at nodevi+1 (phase3.b),
then, by Lemma 5.1.2, there is a path of length 4 inG′ from vi to vi+2 bypassing
nodevi+1 (wherevi+2 is nodes, if i + 1 = n). Therefore the surviving agent can
reach nodevi+2 (or s) by using this safe path and then, as before, he can follow the
remaining part of the Hamiltonian Cycle to reachs. The remaining cost is at most
n + 2 − i. If B = ∅, then the remaining cost is at least:2(n + 1 − i) ≥ n + 2 − i.
This concludes the proof of the claim.

Observe that the exploration schemeE∗G′,s is optimal since, by Lemma 3.5.2, the
exploration of5n + 2 nodes requires at least5n + 2 time units. �
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Lemma 5.1.5 If there exists an exploration schemeEG′,s onG′ starting froms such
that cost(EG′,s) = 5n + 2, then the graphG has a Hamiltonian cycle that includes
edge(x, y).

Proof. By Lemma 3.5.2, each phase ofEG′,s has length at least two and cannot en-
large the explored territory by more than two nodes. SinceG′ has5n + 2 unexplored
nodes,EG′,s must end ins, and each of its phases must be either ana-splitor ab-split.
Consider now the sequenceME of the meeting points established forEG′,s at the end
of eacha-split, excluding the last one which iss. Each meeting pointvi in ME other
thans must have at least degree5 since one neighbor is needed for the initial explo-
ration ofvi, two unexplored neighbors are needed for thea-split that ends invi and
two further unexplored neighbors are needed for thea-split that leavesvi. For this
reason only the original nodes ofG′ can be inME (flag nodes have degree 1 and twin
nodes, by Lemma 5.1.3 have degree 4).

Claim 2 The nodesx andy must be the two endpoints ofME , nodes cannot be in
ME , and each original node must be inME .

Proof. Sinces is the only initially safe node, the very first phase has to be ab-split
from s. The firsta-split in EG′,s is from s to x or y, while the lasta-split (ending in
s) starts from the other of these two nodesx, y. If s is also an intermediate meeting
point, then we need anothera-split to s. Since each of these four phases requires two
unexplored neighbors,s has to have degree at least8, but, by construction, its degree
is only 7. Contradiction. Finally, for each nodev in G, its flag nodevF has to be
explored with ab-splithaving as meeting point nodev. Hencev must be inME .

Now we prove that the sequenceME defines a Hamiltonian cycle onG by show-
ing that it has these two further properties:

a) each node ofG appears at most once inME ;

b) if nodesvi andvj are consecutive inME , then the edge(vi, vj) must be inG.

To provea), it suffices to count the number of distinct neighbors needed by a nodevi

in ME . At least one neighbor is needed for the initial exploration ofvi (two neighbors,
if an a-split exploresvi). Then, for each occurrence ofvi in ME , two unexplored
neighbors are needed for thea-split that ends invi, and two additional unexplored
neighbors are needed for thea-split that leavesvi. Moreover the flag nodevF

i has to
be explored with ab-split from vi, hence another unexplored neighbor ofvi is needed.
If the nodevi occursk times inME , then the total number of neighbors needed byvi

is at least1+4k +2 = 3+4k. Since each original node inG′ has only10 neighbors
(asG is a cubic graph), it must bek ≤ 1, thus each node appears at most once inME .

Now we prove propertyb) of ME . According to the structure ofG′, a-split op-
erations having original nodes as meeting points, can either explore two twin nodes
of an original edge (in this case propertyb) is satisfied since the meeting point is
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Figure 5.3: A biga-split from A to B. Flag nodes are not shown, the shaded nodes
are already explored.

adjacent inG to the previous one), or explore two original nodes ofG′ and meet in
another original node which may not be adjacent to the previous meeting point, thus
violating propertyb).

Suppose that this latter kind of split (abig a-split) happens from a nodeA to a
nodeB; see Figure 5.3. In order to do this,A must have two unexplored original
neighbors (C andD in the figure) both havingB as a neighbor.B must be already
explored, therefore the last original neighbor ofB (E in the figure) must have already
been a meeting point (we can suppose without loss of generality that the one fromA
toB is the firstbig a-splitin ME ). At this point no otherbig a-splitscan be performed
from B (all its original neighbors are now explored) and, by propertya), E cannot
be again a meeting point, thus the sequenceME can have eitherC or D as the next
meeting point. Supposing thatC is that one, consider the instant whenD becomes
a meeting point. We cannot get toD with a big a-split, sinceD does not have two
neighbors inG that are unexplored, hence alsoF has been already a meeting point.
Now all the original neighbors ofD have already been a meeting point inME , and
none of them can bes, thus there is no way to leaveD without violating propertya).
Therefore there cannot be anybig a-split in EG′,s, and thus propertyb) is verified.

We have proved that, if there exists an exploration scheme such thatcost(EG′,s) =
5n + 2, thenG has a Hamiltonian cycle (ME ) that includes edge(x, y). �

Lemma 5.1.1, together with Lemma 5.1.4 and Lemma 5.1.5, imply the following
theorem.

Theorem 5.1.6 ThedBHS problem is NP-hard.
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5.2 Approximation lower bound

Can we do something better than provingNP-hardness for therBHS problem? The
rather simple reduction described in Section 4.1 requires the bridge nodes to be ini-
tially safe, and hence it cannot be straightforwardly applied to the restricted case.
Indeed, we could not prove the same approximation lower bound for theBHS prob-
lem. However, we can still proveAPX-hardness of therBHS problem problem
by deriving it from theAPX-hardness of theTSP(1,2) problem. We first recall
Lemma 6.3 from [10]:

Lemma 5.2.1 Assume we are given an instance ofTSP(1,2) on then-node complete
graphG, in the form of the subgraphG ofG containing the edges of weight1. Assume
that G has max degree3. Assume that we know that its minimum cost TSP tour is
either of costn or at least(1 + ε0)n, for some fixedε0. Then there exists such a
constantε0 for which it isNP-hard to decide which of the two cases holds. The claim
holds forε0 = 1

786 . If G is cubic then the claim holds forε0 = 1
1290 .

With a small abuse of notation we define the cost of a tour inG as the cost of
the corresponding TSP tour in the complete graphG. We show a polynomial-time
reduction algorithmA from TSP(1,2) to rBHS problem, which takes as input an
instanceG of TSP(1,2), computes an instance(G′, s) of rBHS problem, and has
the following property.

Lemma 5.2.2 Let 0 < ε < ε0/7, let G be ann-node cubic graph (an instance of
TSP(1,2)), and let(G′, s) be the corresponding instance ofrBHS problem com-
puted by the reduction algorithmA. Then the following two conditions hold.

1. If the optimal cost of a tour inG is equal ton, then the optimal cost of an
exploration scheme for(G′, s) is at most72n + 1.

2. There existsn0 = n0(ε0, ε) such that forn ≥ n0, if the optimal cost of a tour
in G is at leastn(1 + ε0), then the optimal cost of an exploration scheme for
(G′, s) is greater than

(
7
2n + 1

)
(1 + ε).

This lemma implies that for0 < ε < ε0/7 andn ≥ n0, if we have ann-node
cubic graphG and we know that the optimal cost of a tour inG either is equal ton or
is at leastn(1+ε0), then we can decide which of these two cases happens, if we have
an (1 + ε)-approximation of the optimal cost of an exploration scheme for(G′, s).
Thus Lemmas 5.2.1 and 5.2.2 imply the following theorem.

Theorem 5.2.3 It is NP-hard to compute(1 + ε)-approximate exploration schemes
for therBHS problem problem for anyε < 1

9030 .
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Description of the reduction algorithm A.

Let ann-node cubic graphG = (V,E) be the input instance ofTSP(1,2). The
construction of the instance(G′, s) of rBHS problem is inspired by the construction
presented in Section 4.1. The main differences are that here we do not add bridges
corresponding to edges of weight2 and that, obviously, all nodes but the starting
nodes are initially unexplored. To facilitate their exploration, all the bridge nodes
are connected tos. More precisely, the construction of(G′, s) proceeds as follows.
We pick an arbitrary node inG (sayv1) as the starting node (s ≡ v1) and we add it
to G′ (as before, this is islandI1). For each nodevi in G, 2 ≤ i ≤ n, we add inG′ a
pair of unexplored nodesv′i, v

′′
i (as before, we denote this pair as islandIi). For each

edge(vi, vj) in G, we put inG′ an unexplored nodebi,j (bridge node), connected to
v′i, v

′′
i (if i > 1), to v′j , v

′′
j (if j > 1) and tos. If the number of bridge nodes (that is,

the number of edges inG) is odd, then we add another unexplored nodebs adjacent
to s (to ensure thats is adjacent to an even number of unexplored nodes). Note thats
is adjacent to all bridge nodes and is not adjacent to any “island” nodes.

Proof of Lemma 5.2.2.

Let G be ann-node cubic graph. SinceG hase = 3
2n edges, the total number of

nodes inG′ is 7
2n − 1 + odd(e), and all of them but one are initially unexplored.

The functionodd : IN 7→ IN is defined asodd(x) = x (mod 2), i.e., odd(x) is
equal to1, if x is odd, and to0 otherwise. As in Section 4.1, we define for a tour
τ = 〈v1, vπ(2), . . . , vπ(n)〉 in G, the τ -based exploration schemeEτ

G′,s for (G′, s),
which explores two by two the nodes of each island in the order〈Iπ(2), . . . , Iπ(n)〉.
Here, however, the scheme first explores the bridge nodes.

More formally, the schemeEτ
G′,s has the following sequence of steps.

1. While there are two unexplored nodesb′, b′′ adjacent tos: b-split(s, b′, b′′).

2. For eachi = 2, . . . , n:

(a) walk(b′), whereb′ is either the bridge nodebπ(i−1),π(i), if nodesvπ(i−1)

andvπ(i) are adjacent inG, or any bridge node adjacent toIi otherwise.

(b) a-split(b′, v′π(i), v
′′
π(i), b

′′), whereb′′ is either the bridge nodebπ(i),π(i+1),
if i < n and nodesvπ(i) andvπ(i+1) are adjacent inG, or any bridge node
adjacent toIi otherwise.

Note that the firstwalk operation, fori = 2, has length1. For each3 ≤ i ≤ n,
thewalk operation has length either0, if nodesvπ(i−1),π(i) are adjacent inG, or 2,
if nodesvπ(i−1),π(i) are not adjacent inG. Therefore, if the tourτ has costn + d
(that is, containsd edges of weight2), then the exploration schemeEτ

G′,s has length

at most32n+odd(e)+1+2d+2(n−1) ≤ 7
2n+2d. The execution time for the case

B = ∅ is at most72n+2d+1, sinceEτ
G′,s ends in a bridge node, which is adjacent to
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s. This is also the cost of the BHS based onEτ
G′,s. When an agent realizes that there

is a black hole, then this agent must be at a meeting point, and each meeting point is
either nodes or a bridge node, which is adjacent tos. Hence, if the cost of tourτ is
n, thend = 0 and the cost ofEτ

G′,s is at most72n+1, so the first part of Lemma 5.2.2
holds.

To prove the second part of Lemma 5.2.2, consider an arbitrary exploration scheme
EG′,s. By using a similar approach as in Section 4.1, we can find, through a se-
quence of phase swaps, a “regular” exploration schemeE ′G′,s, equivalent toEG′,s,
where each agent explores exactly one node of each islandIj for j = 2, . . . , n, and
cost(E ′G′,s) = cost(EG′,s). We assume by symmetry that schemeE ′G′,s is such that
Agent-1 explores nodesv′j , j = 2, . . . , n, and that〈v′π(2), . . . , v

′
π(n)〉 is the order in

whichAgent-1 explores these nodes. We consider the tourτ = 〈v1, vπ(2), . . . , vπ(n)〉
in G. Let d be the number of weight2 edges inτ . Thus the number of indexesi,
2 ≤ i ≤ n−1, such that(vπ(i), vπ(i+1)) is not an edge inG is at leastd−2. Consider
any of these indexesi and two consecutive phasesφji andφji+1 in E ′G′,s, whereφji

is the phase during which nodev′π(i) is explored byAgent-1. If phaseφji is asplit (an
a-split or ab-split), then the meeting point at the end of this phase is a bridge node
x adjacent to islandIπ(i). The next phaseφji+1 is either phaseφji+1 whenAgent-1
explores nodev′π(i+1), or a phase whenAgent-1 explores a bridge nodey, or a phase
whenAgent-1 does not explore any new node. In the first case, phaseφji+1 is not a
split because nodev′π(i+1) is not adjacent to nodex (there is no bridge node between
islandsIπ(i) andIπ(i+1)). In the second case, phaseφji+1 is not asplit because node
y is not adjacent to nodex (no two bridge nodes are adjacent). In the third case, phase
φji+1 is not asplit becauseAgent-1 does not explore any new node. Thus at least one
of the two phasesφji andφji+1 is not a split, so at least(d− 2)/2 phases in scheme
E ′G′,s are not splits.

The cost of any exploration scheme is at least the number of unexplored nodes
plus the number of phases other than splits. Therefore, we have

cost(E ′G′,s) ≥
7
2
n− 2 +

d− 2
2

=
7
2
n− 3 +

d

2
.

This implies that ifcost(E ′G′,s) ≤
(

7
2n + 1

)
(1 + ε), then

d ≤ 7εn + 2(4 + ε),

and

cost(τ) = n + d

≤ n + 7εn + 2(4 + ε)
≤ n(1 + ε0)− (ε0 − 7ε)n + 2(4 + ε)
< n(1 + ε0),

provided thatε < ε0/7 andn ≥ n0 = d2(4 + ε)/(ε0 − 7ε) + 1e.
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5.3 A 10
7 -approximation algorithm for tree networks

In this section we focus our attention on therBHS problem in the case that a net-
work has a tree topology. The motivation is twofold. First, the design of exploration
schemes in trees is simpler than in the case of arbitrary graphs since, roughly speak-
ing, there are less “degrees of freedom” and moreover their analysis is simplified by
application of Lemma 3.5.5. The second reason for considering trees approach is
that, as we will see, the approach we followed for the general graph approximating
algorithm, is to first compute a suitable spanning tree of the graph, and then to explore
it by using the algorithm for trees and traversing only the tree edges of the graph.
These motivations make desirable to have an efficient algorithm for trees. Unluckily,
we still do not have an answer to the following open question.

Open Question 1 Does there exists a polynomial time algorithm for therBHS prob-
lem in the case that the network can be represented as a tree ?

The question was first posed by Czyzowiczet. al. in [12]. Indeed, they showed
a linear time algorithm for constructing optimal exploration schemes for trees where
each internal node has at least2 children, calledBUSHY TREES. The optimality of
such algorithm arises from the property that, since each internal node has at least2
children, each agent has always a close reachable unexplored node and hence does
never have to wait for the other agent. As a result, the explored territory increases
by two nodes in each phase, possibly excluding the last one, and optimality of such
algorithm can be proved. Unfortunately, the algorithm does not extend to arbitrary
trees. In [12], the authors also provide a simple general algorithm for arbitrary trees.
The algorithm is guaranteed to produce exploration schemes whose cost is at most
5
3 larger than the optimal cost. We can see our algorithm as a generalization of the
bushy tree algorithm to arbitrary trees. It still produces optimal exploration schemes
for bushy trees, but it improves the approximation ratio1 for arbitrary trees from5

3 to
10
7 . We call our algorithmSearch-Tree(T,s).

Let T be a rootedn-node tree and let the starting nodes be its root. We assume
thatn ≥ 2. Algorithm Search-Tree(T,s)uses the following orderLT of the nodes of
T other than the root (that is, all unexplored nodes inT ). We first order the children
of each node according to the number of descendants: a child with more descendants
comes before a child with fewer descendants and the ties are resolved arbitrarily.
Thus from now onT is anorderedrooted tree. LetIT = 〈w1, w2, . . . , wb〉 be the
sequence of the internal nodes ofT in the depth-first order. The orderLT is a copy of
the sequenceIT where each nodewi is replaced by the (ordered) list of its children.
Observe thatLT contains indeed all nodes of treeT other than the root, and each of
these nodes occurs inLT exactly once. We denote thei-th node in the orderLT asvi

1In this case we are abusing of the termapproximation ratiosince we still do not know whether the
problem isNP-hard
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Figure 5.4: An ordered rooted treeT . The value inside each node is the position of
the node in theLT order. The internal nodes are also marked to show their depth-first
orderIT = 〈w1, w2, . . . , w10〉.

and call it thei-th node of the tree. The odd (even) nodes ofT are the nodes at the
odd (even) positions inLT . We denote the parent of nodevi aspi. An example tree
T and the corresponding orderLT of its nodes are given in Figure 5.4.

The two lemmas below, which follow from the construction of the sequenceLT ,
will be used to prove that algorithmSearch-Treereturns feasible exploration schemes
for trees.

Lemma 5.3.1 In the sequenceLT , let thej-th nodevj be the parent of thei-th node
vi. Thenj < i, andi = j + 1 if and only if nodevj does not have a sibling and node
vi is its first child.

Proof. The parentpj of nodevj precedes nodevj in the depth-first orderIT of
the internal nodes. Thus all children ofpj , including nodevj , precede all children of
vj , including nodevi, in the sequenceLT , soj < i.

If nodevj does not have a sibling, thenvj must be immediately afterpj in the se-
quenceIT . In this case, when the sequenceLT is created fromIT = 〈. . . , pj , vj , . . .〉,
the occurrence of nodepj in IT is replaced by (its only child)vj , while the occur-
rence of nodevj in IT is replaced by the ordered list of its children. Thus if nodevi

is the first child of nodevj , thenvi is immediately aftervj in the sequenceLT , that
is, i = j + 1.

If nodevj has a right siblingr, then noder is after nodevj and before nodevi

in LT , so i > j + 1. If nodevj has a left siblingl, then nodel must have at least
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one child since the siblings are ordered according to the number of descendants and
nodevj has at least one descendant. The children of nodel are after nodevj and
before nodevi in LT , soi > j + 1. If nodevi is not the first child of nodevj , then
all left siblings ofvi are after nodevj and before nodevi in LT , so also in this case
i > j + 1. �

Lemma 5.3.2 Letvi andvi+1 be two consecutive nodes in the sequenceLT , and let
pi andpi+1 be their parents. Then either nodesvi andvi+1 are siblings, sopi = pi+1,
or nodepi+1 is the next node after nodepi in the depth-first orderIT of the internal
nodes ofT .

Proof. Assume that nodesvi andvi+1 are not siblings. Nodepi must occur in
IT before nodepi+1. If there was another (internal) node betweenpi andpi+1 in IT ,
then the children of this node would be between nodesvi andvi+1 in LT . �

We classify all nodes of treeT other than the roots into the following three
disjoint types:

• type-1nodes: the leaf nodes;

• type-3nodes: the internal nodes with at least one sibling;

• type-4nodes: the internal nodes (other than the root) without siblings.

As we will see, we informally say that, in the exploration scheme which we construct
for treeT a type-tnode can be viewed as contributingt steps to the total cost. Note
that there are notype-2nodes. We denote byxt the number oftype-tnodes.

We consider first the case whenT does not have anytype-4node and has an odd
numbern = 2q + 1 ≥ 3 of nodes (that is, treeT has an even number of unexplored
nodesv1, v2, . . . , v2q). Agent-1 will be exploring the odd nodes ofT while Agent-2
will be exploring the even nodes.

For nodesu and r in treeT , let P (u, r〉 be the sequence of the nodes on the
tree path fromu to r excluding the first nodeu. If u ≡ r, thenP (u, r〉 is the
empty sequence. The exploration sequencesXT andYT for Agent-1 andAgent-2,
respectively, are

XT = 〈s〉 ◦ φ1
1 ◦ φ1

2 ◦ · · · ◦ φ1
q ,

YT = 〈s〉 ◦ φ2
1 ◦ φ2

2 ◦ · · · ◦ φ2
q ;

where

φ1
j = P (p2j−2, p2j−1〉 ◦ 〈v2j−1, p2j−1〉 ◦ P (p2j−1, p2j〉,

φ2
j = P (p2j−2, p2j−1〉 ◦ P (p2j−1, p2j〉 ◦ 〈v2j , p2j〉.

In the above formulae, operation “◦” denotes concatenation of sequences; we define
p0 ≡ s. Note that the corresponding sub-sequencesφ1

j andφ2
j in XT andYT have the
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same length and end at the same nodep2j . Indeed, we will show thatφ1
j andφ2

j form
thej-th phase of the exploration schemeET,s = (XT , YT ) (Lemma 5.3.3). Figure 5.5
provides an exhaustive enumeration of the possible relative locations of nodesv2j−2,
v2j−1, v2j , p2j−2, p2j−1 andp2j , leading to different types of sequencesφ1

j andφ2
j .

The idea behind the definition of sequencesXT andYT can be explained in the
following way. If we remove from allφ1

j andφ2
j the segments〈v2j−1, p2j−1〉 and

〈v2j , p2j〉, then both sequencesXT andYT coincide with the sequence

〈s〉 ◦ P (p0, p1〉 ◦ P (p1, p2〉 ◦ · · · ◦ P (p2q−1, p2q〉.

Lemma 5.3.2 implies that this sequence is the depth-first traversal of the internal
nodes of treeT ending when the last internal node is visited for the first time. Thus
Agent-1 (Agent-2) follows the depth-first traversal of the internal nodes ofT , and
whenever it comes to an internal nodep for the first time, it visits all children ofp
which are odd (even) nodes inT before continuing the traversal.

We prove now thatET,s = (XT , YT ) is a feasible exploration scheme for treeT .
We can easily check thatET,s satisfies the feasibility Constraints 1–3. The lemma
below identifies the phases of schemeET,s and states that each phase satisfies the
conditions given in Constraint 4.

Lemma 5.3.3 For eachj = 1, 2, . . . , q, the sub-sequencesφ1
j andφ2

j within XT and
YT form thej-th phase of the feasible exploration schemeET,s = (XT , YT ); such
phase satisfies the conditions stated in the feasibility Constraint 4.

Proof. Let m(0) = 0, and forj = 1, 2, . . . , q, let m(j) denote the step inET,s

where the sub-sequencesφ1
j andφ2

j end. That is, the sub-sequencesφ1
j andφ2

j occur
within XT andYT , respectively, at the steps〈m(j− 1) + 1, . . . ,m(j)〉. We prove by
induction that for eachj = 1, . . . , q, the following statements are true.

1. The explored territory at stepm(j) is Sm(j) = {s, v1, . . . , v2j}.

2. The sequence of steps〈m(j − 1) + 1, . . . ,m(j)〉 in schemeET,s (where the
sub-sequencesφ1

j andφ2
j occur) is a phase and satisfies Constraint 4.

Note that,Sm(0) = S0 = {s}. For the base step (j = 1), observe that

φ1
1 = P (p0, p1〉 ◦ 〈v1, p1〉 ◦ P (p1, p2〉 = 〈v1, s〉,

φ2
1 = P (p0, p1〉 ◦ P (p1, p2〉 ◦ 〈v2, p2〉 = 〈v2, s〉,

becausep0 = p1 = p2 = s. Thusm(1) = 2, Sm(1) = {s, v1, v2}, and the steps
〈1, 2〉 form a phase satisfying Constraint 4 (this phase isb-split(s, v1, v2)) so both
Statements 1 and 2 hold.

Consider now any indexj, 1 ≤ j ≤ q and assume that both Statements 1 and 2
are true forj−1. This assumption implies thatSm(j−1) = {s, v1, v2, . . . , v2j−2} and
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Figure 5.5: Different relative locations inT of three nodesv2j−2, v2j−1 andv2j

consecutive in theLT order and their parentsp2j−2, p2j−1 andp2j . The dashed lines
represent paths in the tree (which may be possibly empty in the first diagram).

that stepm(j− 1) is a meeting step. (Ifj ≥ 2, thenm(j− 1) is a meeting step as the
last step of the phase〈m(j−2)+1, . . . ,m(j−1)〉. If j = 1, then stepm(j−1) = 0
is by definition a meeting step.) By the definition of sequencesXT andYT , the agents
are at stepm(j − 1) at the nodep2j−2 (the parent of the nodev2j−2, or s if j = 1).
Now Agent-1 andAgent-2 follow the sequences of nodesφ1

j andφ2
j , respectively.

Lemma 5.3.1 implies that the nodesp2j−2 andp2j−1 are inSm(j−1). Lemma 5.3.1
also implies thatp2j ∈ Sm(j−1): if p2j 6= s, thenp2j has a sibling, sop2j is a nodevk

for somek ≤ 2j−2. Applying again Lemma 5.3.1, we conclude that all nodes in the
sequencesP (p2j−2, p2j−1〉 andP (p2j−1, p2j〉must be inSm(j−1) as well, since each
node in any of these two sequences is an ancestor of at least one of the nodesp2j−2,
p2j−1 andp2j . Thus the only nodes inφ1

j andφ2
j which are not inSm(j−1) are node

v2j−1 in φ1
j and nodev2j 6= v2j−1 in φ2

j . ThereforeSm(j) = Sm(j−1) ∪ {v2j−1, v2j}
(so Statement 1 holds forj) and the sequence of steps〈m(j − 1) + 1, . . . ,m(j)〉
satisfies Constraint 4. It remains to show that stepm(j) is the first meeting step after
the meeting stepm(j − 1), that is, to show that stepm(j) is the first step after step
m(j − 1) when the explored territory increases.

Follow the agents’ routes at stepsm(j − 1) + 1, . . . ,m(j) (see the diagrams in
Figure 5.5). At the end of stepm(j − 1) both agents are at the nodep2j−2, then
they traverse together the (possibly empty) sequence of nodesP (p2j−2, p2j−1〉, not
increasing the explored territory, and then they separate and meet again for the first
time at stepm(j) at the nodep2j . At that step the explored territory increases from
Sm(j−1) to Sm(j). Thus the sequence of steps〈m(j − 1) + 1, . . . ,m(j)〉 is a phase
in ET,s, so Statement 2 holds forj. This concludes the proof of the inductive step.

The lemma follows immediately from Statements 1 and 2. �
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Lemma 5.3.4 LetT be a tree rooted ats which has an odd numbern = 2q+1 ≥ 3 of
nodes and does not have anytype-4nodes. The exploration schemeET,s = (XT , YT )
is feasible, can be constructed in timeO(n), andcost(ET,s) = x1 + 3x3, wherext

denotes the number oftype-tnodes inT .

Proof. The feasibility of the exploration schemeET,s follows from Lemma 5.3.3.
The execution time of this scheme in the case when there is no black hole is equal to
the length ofET,s plus the distance fromp2p to s, that is, the length of the sequence
YT ◦ P (p2q, s〉 minus1. By Corollary 3.5.6, this is also the cost ofET,s.
To obtain the length of the sequenceYT ◦ P (p2q, s〉, we separate it into two sub-
sequences:

〈s〉 ◦ P (p0, p1〉 ◦ P (p1, p2〉 ◦ · · · ◦ P (p2q−1, p2q〉 ◦ P (p2q, s〉, and

〈v2, p2〉 ◦ 〈v4, p4〉 ◦ · · · ◦ 〈v2q, p2q〉.

Lemma 5.3.2 implies that the first sub-sequence is the depth-first traversal of theb
internal nodes ofT , so its length is2b − 1. The length of the second sequence is
2q = n−1. Thus the cost of the exploration schemeET,s is (2b−1)+(n−1)−1 =
(n− 1) + 2(b− 1) = (x1 + x3) + 2x3 = x1 + 3x3.

SequencesXT andYT can be constructed in time linear in the length of these
sequences, so linear in the size of treeT . �

Now we generalize algorithmSearch-Treeto treesT , which may have and even
number of nodes andtype-4nodes. For eachtype-4nodev in T , we add a new leafl
as a sibling ofv. If the total number of nodes, including the added nodes, is even, then
we add one more leaf to an arbitrary internal node. The obtained treeT ′ is rooted at
s, has an odd number of nodes and does not have anytype-4nodes, so it satisfies the
requirements of Lemma 5.3.4. We obtain an exploration schemeET,s = (XT , YT )
for treeT from the exploration schemeET ′,s = (XT ′ , YT ′) for treeT ′ by replacing
the traversals of the added edges with waiting. More precisely, if a nodel is an added
leaf, its parent is a nodep, andl is an odd (even) node in treeT ′, then we replace the
unique occurrence ofl in XT ′ (in YT ′) with p.

Lemma 5.3.5 LetT be a tree rooted ats with n ≥ 2 nodes. The exploration scheme
ET,s = (XT , YT ) for T is feasible, can be constructed in timeO(n) and

cost(ET,s) ≤ x1 + 3x3 + 4x4 + odd(x1 + x3).2 (5.1)

Proof. The feasibility of the exploration schemeET,s and its construction in linear
time follow from Lemma 5.3.4. Letβ be equal to1 if the extra node was added to
the tree to have an odd number of nodes, and0 otherwise. The cost of schemeET,s is

2Recall thatodd(x) = x (mod2).
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equal to the cost of schemeET ′,s, which, by Lemma 5.3.4 is equal tox′1 + 3x′3. The
number of leaves in treeT ′ is x′1 = x1 +x4 +β, while the number oftype-3nodes in
T ′ isx′3 = x3+x4 (eachtype-4node in treeT becomes atype-3node in treeT ′). Thus
the cost of schemeET,s is equal tox′1 +3x′3 = x1 +3x3 +4x4 +β. The statement is
proved by observing that the extra leaf is added if and only ifx′1+x′3 = x1+x3+2x4

is odd. �

We now prove that the algorithm defined so far is10
7 -approximating, i.e. the cost

of the exploration schemeET,s produced for any treeT is at most107 times larger than
the optimal one.
We partitiontype-3and type-4nodes into two subsets each. We define astype-3’
the nodes oftype-3having only one descendant inT , and astype-3” the remaining
nodes oftype-3. By x′3 andx′′3 we denote the number oftype-3’andtype-3” nodes
respectively. As before,x3 = x′3 + x′′3. Analogously, we define astype-4’ the nodes
of type-4having only one descendant inT , and astype-4” the remaining nodes of
type-4. By x′4 andx′′4 we denote the number oftype-4’ and type-4” nodes respec-
tively, andx4 = x′4 + x′′4.

We can reformulate Lemma 5.2 in [12], in the following terms:

Lemma 5.3.6 For any exploration schemeET,s onT :

cost(ET,s) ≥ x1 + 2x′3 + 2x′4 + 3x′′3 + 3x′′4 + odd(x1 + x3 + x4).

Proof. Let us first consider the number of edge traversals that have to be performed
by any BHS onT in the case that there are no black holes inT . In the following
we denote an edge as(u, v), if u is the parent ofv in T . We can observe that each
edge(u, v) has to be traversed at least twice in order to movev into the explored
territory. If v is a type-1node, then no further traversals are needed. Consider now
an edge(u, v) wherev is an internal node. Letl be the number of descendants of
v. If l ≥ 2 (i.e., v is a type-4” or a type-3” node) we can distinguish two cases.
If, during any phase after exploration ofv, edge(u, v) is traversed always by only
one agent, then at least2l ≥ 4 additional traversals are required (an agent has to
traverse(u, v) two times for every descendant ofv). If otherwise there is at least one
phase after exploration ofv where the edge is traversed by both agents, then at least
4 additional traversals of(u, v) are required for the exploration of the descendants
of v (both agents traverse(u, v) and return). In this case the total minimum number
of traversals of(u, v) is 6. If l = 1 (i.e., v is a type-4’ or a type-3’ node), then
the branch of two edges havingu as upper node can be traversed in the following
way. 2 traversals are required for the exploration of nodev. If during any phase after
exploration ofv, edge(u, v) is traversed always by only one agent, then at least4
additional edge traversals on this branch are required. If there is at least one phase
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after exploration ofv in which this edge is traversed by both agents, then at least
6 additional edge traversals on this branch are required (both agents traverse edge
(u, v), then one of them explores the lower edge and finally they return). Therefore
the total minimum number of traversals on each of such branches is6. The proof is
completed by observing that in any BHS the two agents need at leastdx2 e time units
to performx traversals. �

We can make the following observations:
Observation 1: For each node oftype-3’andtype-4’, there exists a distinct child of
type-1in T , hence:

x′3 + x′4 = αx1, where0 ≤ α ≤ 1

Observation 2: For each of the nodes oftype-4’ there exists inT a distinct ancestor
node oftype-3” (unlessT is a path, but in this case the produced exploration scheme
ET,s would be optimal). Hence:

x′4 = βx′′3, where0 ≤ β ≤ 1

We now determine a ratio between the upper bound defined by Lemma 5.3.5 and the
lower found stated by Lemma 5.3.6. Unfortunately, the two “oddities” in the upper
and lower bound are not equivalent, and hence we have to distinguish two cases,
according to the values ofou = odd(x1 + x3) andol = odd(x1 + x3 + x4).

1. ou = ol or ol = 1: in this case

cost(ET,s)
cost(E∗T,s)

≤ x1 + 3x′3 + 4x′4 + 3x′′3 + 4x′′4
x1 + 2x′3 + 2x′4 + 3x′′3 + 3x′′4

=
x1 + 3αx1 + βx′′3 + 3x′′3 + 4x′′4

x1 + 2αx1 + 3x′′3 + 3x′′4

=
(1 + 3α)x1 + (3 + β)x′′3 + 4x′′4

(1 + 2α)x1 + 3x′′3 + 3x′′4
≤ 4

3

since1+3α
1+2α > 4

3 ⇔ α > 1.

2. ou = 1 andol = 0: in this caseodd(x4) = 1 andodd(x1+x3) = 1. Note that if
x′3+x′4 = x1 (α = 1) andx′4 = x′′3 (β = 1) thenx′4 = x1−x′3 = x′′3 and hence
x1 = x3. This is a contradiction since we assumedou = odd(x1 + x3) = 1.
Therefore at least one of the two conditions must hold:x′4 = βx′′3 − 1 or
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x′3 + x′4 = αx1 − 1. If the former holds, then:

cost(ET,s)
cost(E∗T,s)

≤ x1 + 3x′3 + 4x′4 + 3x′′3 + 4x′′4 + 1
x1 + 2x′3 + 2x′4 + 3x′′3 + 3x′′4

=
x1 + 3αx1 + βx′′3 − 1 + 3x′′3 + 4x′′4 + 1

x1 + 2αx1 + 3x′′3 + 3x′′4

=
(1 + 3α)x1 + (3 + β)x′′3 + 4x′′4

(1 + 2α)x1 + 3x′′3 + 3x′′4
≤ 4

3

If the latter holds, then:

cost(ET,s)
cost(E∗T,s)

≤ x1 + 3x′3 + 4x′4 + 3x′′3 + 4x′′4 + 1
x1 + 2x′3 + 2x′4 + 3x′′3 + 3x′′4

=
x1 + 3αx1 − 3 + βx′′3 − 1 + 3x′′3 + 4x′′4 + 1

x1 + 2αx1 − 2 + 3x′′3 + 3x′′4

=
(1 + 3α)x1 + (3 + β)x′′3 + 4x′′4 − 2

(1 + 2α)x1 + 3x′′3 + 4x′′4 − 2

Sinceodd(x4) = 1, x4 ≥ 1. If x′4 ≥ 1 thenx1 ≥ 2 andx′′3 ≥ 1, hence

cost(ET,s)
cost(E∗T,s)

≤ 4x1 + 4x′′3 + 4x′′4 − 2
3x1 + 3x′′3 + 3x′′4 − 2

≤ 10
7

We wish to remark that the cost of the exploration schemeET,s is at most4/3 +
O(1/n) times the optimal cost of an exploration scheme forT , and that both the
algorithm and its worst case analysis could be further improved. For example, for the
first diagram in Figure 5.5,Agent-2 obviously does not have to go to nodep2j−1 on
its way to explore nodev2j . If it omitted nodep2j−1, then the phase would have one
step less (the agents would meet at the end of this phase in the predecessor ofp2j in
the pathP (p2j−1, p2j〉) and this local gain could reduce in some cases the overall cost
of the search. Moreover, the worst case in the analysis holds for the tree in Figure
5.6. We can observe that, while the exploration scheme produced by the algorithm
has cost10, the optimal exploration scheme on such tree has cost8 and not7 as stated
by the provided lower bound.

5.4 A 27
8 -approximation algorithm for arbitrary networks

We consider the following natural approach to therBHS problem in an arbitrary
graphG. First select a spanning tree inG and then explore the graph by traversing
the tree edges. In [12], the authors hint to a similar approach. Their tree exploration
algorithm generates exploration schemes where both agents traverse the tree together
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Figure 5.6: The tree yielding the worst case in the analysis ofSearch-Treealgorithm.
The numbers represent the types of the nodes.

in, say, the depth-first order and explore each new nodev with a two-stepprobe
phase: one agent waits in the parentp of v while the other goes tov and back to
p. Such schemes explore ann-node tree within4(n − 1) − 2l steps, wherel is the
number of leaves in the tree. This approach guarantees an approximation ratio of4,
since any exploration of ann-node graph requires at leastn− 1 steps.
Here we want to use algorithmSearchTreepresented in previous section, and exploit
the bound given by formula (5.1. In Section 5.4.1 we present a heuristic algorithm
Generate-Tree(G, s) for the problem of computing a rooted spanning treeT of graph
G which gives a relatively small value of that formula.

OurSpanning-Tree Exploration(STE) algorithm returns, for a given graphG and
a starting nodes, the exploration scheme computed bySearch-Tree(TG, s), whereTG

is the spanning tree computed byGenerate-Tree(G, s). In Section 5.4.2 we show that
theSTEalgorithm guarantees an approximation ratio of at most27

8 . In Section 5.4.3
we remark on other possible variants of exploring graphs via spanning trees, and
show the intrinsic limitations of such approach.
Note that ifG is a path withs as an end node, then the optimal exploration scheme
is obvious. Therefore we assume throughout this section that graphG is not of this
form.

5.4.1 Generating a good spanning tree of a graph

We describe now our heuristic algorithmGenerate-Tree(G, s) for computing a span-
ning treeTG of a graphG = (V,E) rooted at a nodes ∈ V whose objective is to
minimize the formula (5.1). We believe that computing a rooted spanning tree which
minimizes this formula is NP-hard, since the related problem of computing a span-
ning tree which maximizes the number of leaves is NP-hard [22]. In Section 5.4.2 we
show that the exploration scheme constructed by algorithmSearch-Tree(TG, s) for
the spanning treeTG computed by algorithmGenerate-Tree(G, s) has cost at most
27
8 times worse than the cost of an optimal BHS for graphG. It is interesting to notice
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that, if we were provided with an algorithm able to find a bushy spanning tree for any
given graph, then we would have a BHS algorithm for arbitrary networks with an
approximation ratio of2. For a bushy tree we havex4 = 0 andx3 ≤ x1 − 1. Hence,
the ratio between formula (5.1) and the optimal cost is bounded by:

x1 + 3x3 + odd(x1 + x3)
x1 + x3 + odd(x1 + x3)

=

x1 + 3α(x1 − 1) + odd(x1 + x3)
x1 + α(x1 − 1) + odd(x1 + x3)

=

x1(1 + 3α)− 3α + odd(x1 + x3)
x1(1 + α)− α + odd(x1 + x3)

≤ 2

sinceα ∈ [0, . . . 1]. Unfortunately, not every graph contains a bushy spanning tree,
and moreover we are not able to answer to the following open question:

Open Question 2 Does there exist a polynomial time algorithm able to find, given a
graphG, a spanning treeTG of G, which maximizes the number of “bushy” nodes,
i.e., of internal nodes having degree at least3?

Our heuristics follows the same route. The minimization goal of Algorithm
Generate-Tree(G, s) is pursued by trying to avoid creation oftype-4nodes. More
precisely, the algorithm grows in a greedy manner a spanning treeT , starting from
nodes, avoiding creation of internal nodes with only one child. A single child is a
type-4node, unless it is a leaf. For the computation of the algorithm, letVT denote
always the set of nodes in the current treeT and letV T = V \VT be the set of nodes
not yet inT ; initially VT = {s}. With respect to treeT , each node inV is either an
internal node, or aleaf; it is anexternal nodeif it belongs to the setV T . An external
neighborof a nodeu ∈ V is a neighbor ofu in graphG which belongs toV T .

The pseudocode of algorithmGenerate-Treeis given below. The algorithm con-
sists of two parts. During part 1, the algorithm iteratively extends the current treeT
rooted ats for as long as there is anexpandable leafin T or there is anexpandable
external nodein V T . An expandable leafin treeT is a leaf which has at least two
external neighbors. Anexpandable external node(with respect toT ) is a node in
V T which has at least one neighbor inT and at least two external neighbors, or has
at least three external neighbors. The loop in part 1 of the algorithm maintains the
following invariant: for the current treeT , there is no edge inG between an internal
node and an external node. That is, each edge inG between the setsVT andV T is
adjacent to a leaf ofT .

If there is an expandable leaf in treeT , then extendT by selecting an arbitrary
expandable leafu and attaching to it all its external neighbors (see the left diagram
in Figure 5.7). If there is no expandable leaf inT but there is an expandable external
node, then we extendT in the following way. LetP = (u1, u2, . . . , uk) be a path
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in G consisting of external nodes such that nodeu1 is the only node inP adjacent
to T and nodeuk is the only expandable external node inP . Let u0 be a node inT
adjacent tou1 and letw1, w2, . . . , wk be the neighbors ofuk which are neither inT
nor onP . According to the invariant of the loop, nodeu0 must be a leaf in treeT . We
extend treeT by attaching pathP to nodeu0 and nodesw1, w2, . . . , wk as children
of uk. PathP , as a part of the new extended tree and a part of the final treeTG, is
called amid-tree path. The middle diagram in Figure 5.7 illustrates the expansion of
the tree using mid-tree paths.

LetT1 denote the treeT at the end of part 1 of the algorithm. Since no expandable
external node is left, each connected component of the subgraph of graphG induced
by the set of external nodes must be now a path. Moreover, for each such pathP ,
no node ofP other than an end node is adjacent toT1 (or otherwise such a node
would be an expandable external node) but at least one end node ofP is adjacent
to treeT1 (sinceG is connected). LetP denote the collection of these paths. If a
pathP ∈ P has at least two nodes and both end nodes are adjacent toT1, then we
replaceP in P with pathsP ′ andP ′′ obtained fromP by removing the middle edge
(or any of the two middle edges, ifP has an odd number of nodes). Now for each
pathP = (w1, w2, . . . , wk) ∈ P wherew1 is adjacent toT1 (exactly one end node
of P is adjacent toT1), we extendT by attachingP to a neighbor ofw1 in T1, which
must be a leaf inT1 (see the last diagram in Figure 5.7). If pathP has at least two
nodes, then we call this path without the last nodewk a leaf path. When all paths
fromP are attached to treeT , treeT becomes a spanning treeTG of G, and this tree
is returned by the algorithm.

The whole algorithmGenerate-Treecan be easily implemented to run in polyno-
mial time, and it actually can be implemented to run in linear time on the number of
nodes inG. An example of a spanning tree produced by the algorithm is given in
Figure 5.8. The next two lemmas summarize the properties of the algorithm which
are important in our analysis.

Lemma 5.4.1 Consider any iteration of the loop in part 1 of algorithm Generate-
Tree(G, s), and the current treeT at the beginning of this iteration. The following
two properties hold.

1. No internal node ofT is adjacent inG to any external node.

2. Each leaf inT has a sibling, unless this is the first iteration of the loop (when
T contains only the roots).

Proof. At the beginning of the first iteration of the loop, treeT does not have any
internal node, so both Statements 1 and 2 are obviously true. LetT ′ be the treeT
at the beginning of one iteration of the loop other than the last one, and letT ′′ be the
treeT at the beginning of the next iteration. Assume inductively that Statements 1
and 2 are true for treeT ′. TreeT ′′ is obtained from treeT ′ by adding children to an
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Algorithm 1: Algorithm Generate-Tree (G, s)

1: V ← set of nodes inG; E ← set of edges inG;
2: T ← ∅; {the edges of the current tree}
3: let VT denote the set of nodes inT (initially VT = {s}), and letV T = V \ VT ;

4: {Part 1: growT until there is no expandable leaf or expandable external node.}
5: loop
6: if there exists an expandable leaf inT then
7: u← an expandable leaf inT ;
8: W ← the set of neighbors ofu in V T ;
9: T ← T ∪ {(u,w) : w ∈W};

10: else if there exists an expandable external node inV T then
11: P = (u1, . . . , uk) ← a path inG such that eachui ∈ V T , u1 is the only

node onP adjacent toT anduk is the only expandable external node onP ;
12: u0← a leaf inT adjacent tou1;
13: W ← the set of neighbors ofuk which are neither inT nor onP ;
14: T ← T ∪ {(u0, u1)} ∪ P ∪ {(uk, w) : w ∈W};
15: { P is amid-tree pathin T }
16: else
17: exit the loop;
18: end if
19: end loop

20: {Part 2: attach toT the remaining paths.}
21: T1← T ;
22: P ← the set of connected components (paths) in the subgraph induced byV T ;
23: for all P = (u1, u2, . . . , uj) ∈ P, wherej ≥ 2 andu1 anduj adjacent toT1

do
24: let P ′ = (u1, . . . , uk) andP ′′ = (uk+1, . . . , uj), wherek = bj/2c;
25: P ← P \ {P} ∪ {P ′, P ′′};
26: end for
27: for all P = (w) ∈ P do
28: u← a leaf inT1 adjacent tow; T ← T ∪ {(u, w)};
29: end for
30: for all P = (u1, u2, . . . , uk) ∈ P, wherek ≥ 2 andu1 adjacent toT1 do
31: u0← a leaf inT1 adjacent tou1; T ← T ∪ {(u0, u1)} ∪ P ;
32: { path(u1, u2, . . . , uk−1) is a leaf pathin T }
33: end for

34: return T .
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Figure 5.7: Expansion of the tree during the computation of algorithmGenerate-
Tree: in part 1 of the algorithm using an expandable leafu (the left diagram) and
using mid-tree paths to expandable external nodesv andr (the middle diagram); and
in part 2 of the algorithm (the right diagram).

expandable leaf (lines 7–9 in the pseudocode) or, ifT ′ does not have an expandable
leaf, by adding a mid-tree path and children of the last node on this path (lines 11–14).

Consider the first case: treeT ′′ is obtained fromT ′ by adding children to an
expandable leafu. Nodeu is the only new internal node inT ′′ and its children are
the only new leaves. All neighbors of nodeu are now inT ′′, so Statement 1 is true
for T ′′. Nodeu gets at least two children sinceu is an expandable leaf in treeT ′, so
also Statement 2 is true forT ′′.

Consider now the second case: treeT ′ does not have an expandable leaf and tree
T ′′ is obtained from treeT ′ by attaching a mid-tree pathP = (u1, . . . , uk) to a leaf
u0 and attaching all remaining neighbors ofuk (the neighbors neither in treeT ′ nor
in pathP ) as children ofuk. We check first that the new internal nodesu0, u1, . . . , uk

in treeT ′′ have all their neighbors inT ′′. Clearly nodeuk has all its neighbors in tree
T ′′. Nodeu0 cannot have neighbors outside ofT ′ other than nodeu1 since nodeu0

is not an expandable leaf inT ′. If k ≥ 2, then nodeu1 cannot have neighbors outside
T ′ other thanu2 sinceu1 is not an expandable external node. Ifk ≥ 3, then for each
i = 2, . . . , k − 1, nodeui is not adjacent toT ′ and is not an expandable external
node, so nodesui−1 andui+1 can be its only neighbors in graphG. Thus each new
internal node inT ′′ has all its neighbors inT ′′, so Statement 1 holds forT ′′.

The new leaves inT ′′ are the children ofuk. Sinceuk is an expandable external
node (with respect toT ′), it gets at least two children inT ′′. Indeed, ifk = 1, then,
by definition of expandable external node, nodeu1 must have at least two external
neighbors, which become its children inT ′′. If k ≥ 2, then nodeuk is not adjacent to
treeT ′, so it must have at least 3 external neighbors. One of them is nodeuk−1 while
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the remaining ones are the children ofuk in T ′′. Thus Statement 2 holds forT ′′. �

Lemma 5.4.2 Let T1 denote the treeT at the end of part 1 of Algorithm Generate-
Tree(G, s) and letP denote the set of connected components of the subgraphG′ of
graphG induced by the external nodes (with respect toT1).

1. For each connected component of subgraphG′, the edges of this component
form a (simple) path.

2. For each pathP ∈ P,

(a) the internal nodes ofP are not adjacent to treeT1;

(b) at least one end node ofP is adjacent to treeT1.

Proof. There is no expandable external node with respect toT1. Thus each node
in subgraphG′ has degree at most 2 inG′, since otherwise such a node would be
an expandable external node. Therefore each connected component ofG′ is either a
path (possibly a single node) or a cycle. However, if a connected component ofG′

were a cycle, then there would be a node on this cycle adjacent to treeT1, since graph
G is connected, and this node would be an expandable external node.

For a pathP which is a connected component of subgraphG′, if a node inP other
than an end node were adjacent to treeT1, then this node would be an expandable
external node. Since graphG is connected, at least one end node ofP must be
adjacent to treeT1. �

We look now at thetype-4nodes inTG to see how they were created and what
their properties in graphG are. We view the mid-tree paths and the leaf paths inTG

in the direction from the root toward the leaves. That is, the first node on such a path
is the node closest to the root.

Lemma 5.4.3 A node in treeTG is a type-4node if and only if it belongs to a mid-tree
path or a leaf path.

Proof. We have to examine all the possible extensions of the current treeT to a
new treeT ′ during the computation of algorithmGenerate-Tree.

In line 9 of the algorithm, nodeu changes its status fromtype-1in treeT to type-3
in treeT ′ (Property 2 in Lemma 5.4.1 implies thatu has a sibling in treeT ) and all
new nodes in treeT ′ are type-1nodes. In line 14, nodeu0 changes its status from
type-1in treeT to type-3in treeT ′, the new nodesu1, u2, . . . , uk, which form a mid-
tree path, aretype-4nodes in treeT ′, and the leaves attached touk aretype-1nodes
in treeT ′. In line 28, nodeu changes its status fromtype-1in treeT to type-3in tree
T ′ (Property 2 of Lemma 5.4.1 implies thatu has a sibling in the treeT1 constructed
during the first part of the algorithm) and the new nodew is atype-1node in treeT ′.
In line 31, nodeu0 changes its status fromtype-1in treeT to type-3in treeT ′, the
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new nodesu1, u2, . . . , uk−1, which form a leaf path, aretype-4nodes in treeT ′, and
the leafuk attached touk−1 is atype-1node in treeT ′.

Thus a node in the final treeTG is atype-4node if and only if this node has been
added to the growing tree as a part of a mid-tree path or a leaf path. �

Lemma 5.4.4 Each node on a mid-tree path in treeTG other than the first node and
the last node has degree 2 inG.

Proof. LetT be the tree during the computation of algorithmGenerate-Treewhen
a mid-tree pathP = (u1, u2, . . . , uk) is selected in line 11. For eachi = 2, 3, . . . , k−
1, nodeui is a non-expandable external node with two external neighborsui−1 and
ui+1, so by definition of the expandable external nodes, nodeui is not adjacent to
any node inT and nodesui−1 andui+1 must be its only external neighbors. �

Lemma 5.4.5 Let (u1, . . . , uk−1) be a leaf path in treeTG, and letuk be the leaf in
TG attached touk−1. Then the following properties hold.

1. Each nodeu2, u3, . . . , uk−1 has degree 2 inG.

2. Nodeuk has degree at most 2 inG.

3. If nodeuk has degree 2 inG and the length of the leaf path is at least 2 (k ≥ 3),
then both neighbors ofuk in G have degree 2.

Proof. Let T1 be the tree constructed in the first part of the algorithm, and let
P = (u1, . . . , uk−1, uk), k ≥ 2, be one of the paths considered in lines 30–31. Path
(u1, u2, . . . , uk−1) is a leaf path in the final treeTG. There is no expandable external
node with respect to treeT1, so for eachi = 2, 3, . . . , k − 1, nodeui is a non-
expandable external node with two external neighborsui−1 andui+1. The definition
of the expandable external nodes implies that nodeui is not adjacent to any node in
T1 and nodesui−1 andui+1 must be its only external neighbors. Thus the degree of
nodesui in G is 2.

Nodeuk is a non-expandable external node, so it may be adjacent to at most one
external node other thanuk−1. However, nodeuk cannot be adjacent toT1 because
if it were, then pathP would have been split into two paths in lines 24–25. Thus the
degree of nodeuk in G is at most 2.

If nodeuk has degree 2 inG, then pathP has been obtained by splitting a path
(u1, . . . , uk, uk+1, . . . , uj) of external nodes in lines 24–25, where2k ≤ j ≤ 2k+1.
If k ≥ 3, and hencej ≥ k + 2, neither of nodesuk−1 anduk+1 is adjacent to treeT1

and, as non-expandable external nodes, they may have only two external neighbors
each. Thus bothuk−1 anduk+1 have degree 2 inG. �
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Figure 5.8: An example of spanning tree produced by AlgorithmGenerate-Tree.
Each node of the tree (excluding the root) is labeled with the corresponding type.
The part of the tree produced during Part1 of the algorithm is enclosed in the dotted
curve. Arrows denote mid-tree paths and leaf paths.

5.4.2 Approximation ratio of the STEAlgorithm

Lemma 5.3.5 implies that the cost of the exploration schemeEG,s computed by the
STEalgorithm for a graphG and a starting nodes is

cost(EG,s) ≤ x1 + 3x3 + 4x4 + 1, (5.2)

wherext is the number of thetype-tnodes in the treeTG computed by algorithm
Generate-Tree(G, s). The cost of the optimal exploration scheme is at leastn− 1 =
x1 + x3 + x4, so any upper bound onx4 in a form of a linear function ofx1 andx3

would give immediately an upper bound on the approximation ratio of algorithmSTE
as a constant less than4. However this simple approach cannot work by itself since
the ratiox4/(x1 + x3) can be arbitrarily large not only for treeTG, but for the best
possible spanning tree as well. For example, if graphG is a path, then in its unique
spanning tree all nodes except nodes, its two neighbors and the end points of the
path aretype-4nodes.

Our analysis, which examines closer thetype-4nodes in treeTG, can be viewed
as consisting of the following three steps. We first identify some nodes in graphG
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which “slow down” the optimal BHS in graphG so that its cost must be greater than
the idealn − 1 (Lemma 5.4.6). We then show whichtype-4nodes inTG must be
among those “slowing down” nodes (Lemma 5.4.7). Finally we give a bound on the
number of the othertype-4nodes as a linear function ofx1 andx3 (Lemma 5.4.8).

A node in graphG is atype-dnode if its degree is at most 2 and the degrees of its
neighbors are also at most 2.

Lemma 5.4.6 The cost of an optimal exploration schemeE∗G,s for (G, s) is

cost(E∗G,s) ≥ n− 1 +
1
2
xd (5.3)

Proof. Informally, no BHS can exploretype-dnodes at the average rate of one
node per one step, requiring at least one additional step per twotype-dnodes. For-
mally, consider any BHS and the case when there is no black hole. Each phase of the
search when atype-dnodev and another nodeu (which may be also atype-dnode)
are explored must consist of at least 3 steps. To see this, check that the distance from
eitherv or u (or both) to the meeting point at the end of this phase must be at least 2.
Thus:

1. there are at least(n− 1)/2 + α phases in total, whereα ≥ 0 is the number of
phases when only one node is explored, and each phase consists of at least 2
steps;

2. there are at least(xd − α)/2 phases when atype-dnode is explored together
with another node, and each of these phases consists of at least 3 steps.

Hence the total number of steps is at leastn− 1+2α +(xd−α)/2 ≥ n− 1+xd/2.
�

Lemma 5.4.3 says that thetype-4nodes in treeTG are the nodes on the mid-tree
paths and the leaf paths. We further categorize these nodes in the following way. A
type-4enode is a node which is one of the first two or the last two nodes of a mid-tree
path or the first node of a leaf path. Atype-4menode is the second node of a leaf
path. All other nodes on the mid-tree paths and the leaf paths aretype-4mnodes. We
also introducetype-1mfor the leaves attached to the leaf paths having length at least
2 (see the example in Figure 5.8). These definitions and Lemmas 5.4.4 and 5.4.5
immediately imply the following lemma.

Lemma 5.4.7 Eachtype-4mor type-1mnode in treeTG is a type-dnode inG.

The next lemma gives bounds on the number oftype-4eand type-4menodes in
treeTG.
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Lemma 5.4.8 The number oftype-4enodes and the number oftype-4menodes in
treeTG satisfy the following relations.

x4e ≤ 3x1 + x3 − 2, (5.4)

x4me = x1m. (5.5)

Proof. The fact that there are exactly as manytype-4menodes astype-1mnodes
follows immediately from the definitions of these types. To show that Inequality (5.4)
holds, denote byz′ andz′′ the number of the mid-tree paths and the number of the
leaf paths inTG, respectively. The definition oftype-4enodes imply that

x4e ≤ 4z′ + z′′. (5.6)

The last node of a mid-tree path is a branching node in treeTG (a node with at least
two children) soz′ ≤ x1 − 1 sinceTG has at mostx1 − 1 branching nodes. We also
havez′ + z′′ ≤ x3 + 1 since the parents of the first nodes of mid-tree paths and leaf
paths must be distinct and each of them is either atype-3node or the root. Thus

4z′ ≤ 3(x1 − 1) + x3 + 1− z′′, (5.7)

and Inequalities (5.6) and (5.7) give Inequality (5.4). �
We can now state our final theorem.

Theorem 5.4.9 For any graphG and any starting nodes, the ratio of the cost of an
exploration schemeEG,s computed by the STE algorithm to the cost of an optimal
exploration schemeE∗G,s is at most278 .

Proof. Starting from the bounds (5.2) and (5.3), we have

27
8

cost(E∗G,s)− cost(EG,s) ≥

≥ 27
8

(n− 1 +
1
2
xd)− (x1 + 3x3 + 4x4 + 1) (5.8)

≥ 27
8

(x1 + x3 + x4e + x4me +
3
2
x4m +

1
2
x1m) (5.9)

−(x1 + 3x3 + 4x4e + 4x4me + 4x4m + 1)

=
19
8

x1 +
3
8
x3 −

5
8
(x4e + x4me) +

17
16

x4m +
27
16

x1m − 1

≥ 19
8

x1 +
3
8
x3 −

5
8
(3x1 + x3 − 2 + x1m) +

17
16

x4m +
27
16

x1m − 1(5.10)

=
1
4
(2x1 − x3) +

17
16

(x4m + x1m) +
1
4
≥ 0. (5.11)

Inequality (5.8) follows from (5.2) and (5.3), Inequality (5.9) follows from Lemma 5.4.7,
and Inequality (5.10) follows from (5.4) and (5.5). Finally the inequality in line (5.11)
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holds becausex3 ≤ 2x1 − 1. To see that this is a valid bound onx3, we can bound
separately the number oftype-3nodes which have only one descendant leaf and the
number of the othertype-3nodes. The number oftype-3nodes which have only one
descendant leaf is at mostx1, the number of leaves. Eachtype-3node which has at
least 2 descendant leaves is either a branching node inTG, or is the parent of the first
node of a mid-tree path and the last node of this path is a branching node. Thus the
number oftype-3nodes which have at least 2 descendant leaves is at most the number
of branching nodes inTG, which is at mostx1 − 1. �

5.4.3 Additional comments on exploring a graph via a spanning tree

The approximation algorithm for therBHS problem in arbitrary graphs which we
presented in the previous section is based on the following two-part approach.

1. Find a suitable spanning treeTG of the input graphG.

2. Using an algorithm for constructing exploration schemes for trees, construct
an exploration scheme forTG, and take it as an exploration scheme forG.

In this section we further investigate advantages and limits of this technique. We
already mentioned in the beginning of Section 5.4 the simple4-approximation algo-
rithm for therBHS problem given in [12]. One can also obtain ac-approximation
algorithm for a constantc < 4 using other ways of selecting a spanning tree than
our algorithmGenerate-Tree(G, s). In a preliminary paper ([29]) we actually gave a
different version of AlgorithmGenerate-Tree, which was based on greedily selecting
a maximal forest of bushy trees and then connecting the trees into one spanning tree.
However, we could only show that that method led to an approximation ratio of7

2 .
Another possible good candidate is a spanning treeT which “locally” maximizes

the number of leaves. The tree isk-local maximum in the sense that no exchange
of at mostk tree edges for non-tree edges, for some constantk, can give a new
spanning tree with more leaves than inT . Such a “locally maximized” spanning
tree can be computed in polynomial time starting from any spanning tree. One can
show that locally maximized spanning trees fork = 2, together with ourSearch-Tree
algorithm, give an algorithm for therBHS problem with an approximation ratio of
43
12 > 7

2 .
We would like to mention that the straightforward algorithm for searching a tree

outlined in the first paragraph of Section 5.4, together with good spanning-tree selec-
tion algorithms, can also give approximation algorithms with ratios less than4, but
greater than the approximation ratios which can be obtained using theSearch-Tree
algorithm. For example, the straightforward tree-searching algorithm gives approxi-
mation ratios of29

8 and 23
6 for therBHS problem, if used together with the spanning

trees computed by ourGenerate-Treealgorithm, and the locally maximized spanning
trees, respectively.
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Even though the spanning tree based approach seems very natural (and we found
indeed difficult to analyze more general approaches), we can show that no graph
exploration using this technique can guarantee a better approximation ratio than3/2,
even if we restrict the analysis to planar graphs.

Let Gc = (V,E) be an even-length cycle ofc + 1 nodesv0, v1, v2, . . . , vc and
edges(v0, v1), (v1, v2) . . . , (vc−1, vc), (vc, v0). A new graphG′

c is obtained fromGc

by using a similar construction as the one for the NP-hardness proof given in Sec-
tion 5.1. The starting nodes is assumed to bev0. Then, a pair of twin nodes is
added to each edge(vi, vi+1) and to(vc, v0); a flag node is appended to each node
vi, for i = 0, . . . , c − 1. We can easily find a planar embedding of the obtained
graph, in which the two corresponding twin nodes are on the two faces delimited
by cycle〈s, v1, v2, . . . , vc〉. Let us call asf ′ andf ′′ the inner and the outer of such
faces, respectively. Unlike construction in Section 5.1, here the shortcut edges al-
ternate between the two faces. Formally, for eachi = 0, 2, 4, . . . , c − 1, we add an
edge between twin nodez(vi,vi+1)

f ′ and twin nodez(vi+1,vi+2)
f ′ and an edge between

twin nodez
(vi+1,vi+2)
f ′′ and twin nodez(vi+2,vi+3)

f ′′ , where indexes ofv are computed
(mod c + 1). An example of graphG′

c, for c = 7, is shown in Figure 5.9. GraphG′
c

has4c+3 nodes and by modifying appropriately the exploration scheme given in the
proof of Lemma 5.1.4, one can show that the cost of an optimal exploration scheme
for G′

c is 4c + 2.
Consider the spanning tree ofG′

c as shown in Figure 5.9. In the terminology
and notation from Section 5.3, this tree hasx3 = c − 1 type-3nodes (the nodes
v1, v2, . . . , vc−1) andx1 = 3c + 3 type-1nodes. Lemma 5.3.4 implies that the cost
of the exploration scheme computed for this tree by algorithmSearch-Treegiven in
Section 5.3 is exactlyx1 +3x3 = 6c. We show below that the cost of any exploration
scheme for any spanning tree ofG′

c is at least6c− 2, so at least3/2−O(1/n) times
higher than the optimal cost.

We recall Lemma 5.3.6 and the partitioning of nodes defined there.

Lemma 5.4.10 For any spanning treeT of G′
c rooted ats, x′3 + x′4 + 2(x′′3 + x′′4) ≥

2c− 4.

Proof. All nodes inV \ {vc} = {v1, v2, . . . , vc−1}must be internal nodes inT since
they have to be parents of their flag nodes. Letz be the total number oftype-3’and
type-4’nodes inV \{vc}. The remainingc−1−z nodes inV \{vc} are either of type
3′′ or of type4′′. Let vi andvj be two nodes in cycleGc, such thati+2 ≤ j ≤ c− 1.
If the shortcut edges bypassing them are not inT , then at most one of them can have
only one descendant (type-3’or type-4’). To see this, observe that a path froms to a
nodevk, i < k < j, must pass through one of the nodesvi andvj or through one of
their shortcut edges. This means that if neither of the shortcut edges bypassing nodes
vi andvj is in T , then eithervi or vj is an ancestor of at least two nodes (one isvk

and the other is the flag node). Therefore, at leastz − 2 shortcut edges belong toT .



72 CHAPTER 5. THE RESTRICTED BHS PROBLEM

1

2v

v3

4v

v5

6v

v7 v

vs 0

f ’

f ’’

Figure 5.9: GraphG′
7 and its “good” spanning tree (solid edges).

Note that, for each of these edges, at least one of the endpoints is an internal node.
Hence, we have

x′3 + x′4 + 2(x′′3 + x′′4) ≥ z + 2(c− 1− z) + z − 2 = 2c− 4.

�
Lemmas 5.3.6 and 5.4.10 imply that the cost of any exploration scheme for any

spanning tree ofG′
c is at least6c− 2. The theorem follows straightforwardly.

Theorem 5.4.11There exists an infinite class of planar graphsG, for which any
spanning tree based exploration scheme onG ∈ G cannot achieve a better approxi-
mation ratio than3

2 −O
(

1
n

)

5.5 Network topologies that facilitate black hole search

In this section we show how better approximation ratios can be obtained if the graph
has some particular properties.
For example, it is shown in [30] that anyn-node graph with the minimum node degree
at least3 has a spanning tree with at leastn/4 + 2 leaves, and a polynomial-time
algorithm for computing such a spanning tree is given. This gives ac-approximation
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algorithm for therBHS problem for such graphs, wherec is 7
2 , if the straightforward

tree-searching algorithm is used, or13
4 , if algorithm Search-Treeis used. It is also

shown in [30] that for graphs with the minimum degree at leastk one can compute in
polynomial time spanning trees with at least(1−O((log k)/k))n leaves. This gives
a (1 + O((log k)/k))-approximation algorithm for therBHS problem for this class
of graphs.

In the following subsection we provide an optimal algorithm suited for the special
case where the network is a ring.

5.5.1 Optimal exploration schemes for ring networks

In [12] it is presented an optimal algorithm for therBHS problem in networks whose
topology is a line. Here we extend such result to ring networks. The approach is
rather similar; however we can exploit here the fact that there are always two distinct
paths from any node to the starting point.

We are given a cycleGc of c nodes〈v0, v1, . . . , vc−1〉 (wherec is sufficiently
large), and we assume, without loss of generality, that the starting point isv0. We
provide an optimal exploration schemeEGc,v0 for such cycle by explicitly finding,
among all the possible exploration schemes, the one yielding the lower bound on the
cost of any exploration scheme forGc.
First we give some preliminary definitions.

Definition 5.5.1 Given a graphG = (V,E) and an exploration schemeEG,s, a node
v is called aLIMIT of an explored territorySi if v ∈ Si and there exists a nodeu
adjacent tov in G such thatu ∈ V \ Si.

Remark 5.5.1 The explored territory of any exploration schemeEG,s is always a
connected set. Therefore, in ring networks each step ofEG,s has two limit nodes,
excluding the steps of the first phase (in which the only limit isv0), and the last step
(in which there are no limit nodes).

Now we define three basic exploration strategies, then we will show that we can
always express an optimal exploration scheme only by means of them.
Here we extend the notationP (·, ·〉 introduced in Section 5.3. For nodesvi andvj

in the ringGc, P (vi, vj〉 is the sequence of the nodes on the shortest path composed
of only safe nodes, fromvi to vj excluding the first nodevi. We can observe that,
excluding the last phase, there is always a single safe path between nodesvi andvj

in Gc. Such path has length(i− j) mod c (if i > j) or (j − i) mod c (if j > i).
We assume thatvi andvj are the current limits of the explored territory (withi < j
or, possibly,i = j = 0 for the first phase), and thatvm is the meeting point of the
previous phase. The phases denoted asf-probe, b-probeandc-splitare defined in the
following way:
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f-probe (or forward probe): the explored territory is expanded in the clockwise di-
rection:

φ1 = P (vm, vi〉 ◦ 〈vi+1, vi〉
φ2 = P (vm, vi〉 ◦ 〈vi, vi〉.

The meeting point at the end of the phase is nodevi. The length of the phase
is (i−m) mod c + 2.

b-probe (or backward probe): the explored territory is expanded in the counterclock-
wise direction:

φ1 = P (vm, vj〉 ◦ 〈vj−1, vj〉
φ2 = P (vm, vj〉 ◦ 〈vj , vj〉.

The meeting point at the end of the phase is nodevj . The length of the phase
is (m− j) mod c + 2.

c-split : the explored territory is expanded in both directions:

φ1 = P (vm, vi+1〉 ◦ P (vi+1, vm′〉
φ2 = P (vm, vj−1〉 ◦ P (vj−1, vm′〉;

the meeting pointvm′ is such that:(
i−m + i−m′)

mod c
=

(
m− j + m′ − j

)
mod c

and hencem′ = (j + i−m) mod c.
The length of such phase is(i− j) mod c + 2.

Definition 5.5.2 An exploration schemeEGc,v0 for a ring networkGC is calledPROPER,
if and only if the first phase is ac-split and each of the remaining phases, excluding
possibly the last one, is either ac-splitor a f-probeor a b-probe.

Our next target is to show that any (optimal) exploration scheme on a ring, can
be easily transformed into a proper one, having at most the same cost. This allows us
to narrow the range of candidates for the lower bound on the cost of any exploration
scheme. We first need a preliminary lemma.

Lemma 5.5.1 Let (Gc, v0) be an instance of therBHS problem, and letE ′Gc,v0
and

E ′′Gc,v0
be two solutions of equal length. If, for every meeting stepi of E ′Gc,v0

, S′
i ⊆ S′′

i

andx′i = x′′i = y′i = y′′i thencost(E ′′Gc,v0
) ≤ cost(E ′Gc,v0

).
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Proof. Indeed, we prove a stronger property, that is, for any possible value ofB, the
execution time ofE ′′Gc,v0

is not larger than the execution time ofE ′Gc,v0
. It is easy

to observe that, since the two exploration schemes have the same length and end in
the same node, their execution time for the caseB = ∅ is exactly the same. This
holds also for the case in which the black hole is one of the nodes explored during
the last phase. Suppose, by contradiction, that there exists a nodevb in Gc such that,
for the caseB = {vb}, the execution time ofE ′′Gc,v0

is larger than the execution time
of E ′Gc,v0

. Let i be the step in whichvb becomes explored inE ′Gc,v0
and letj be the

step in whichvb becomes explored inE ′′Gc,v0
. We are thus supposing that:

i + d(x′i, v0) < j + d(x′′j , v0),

where distances are computed in the subgraph ofGc induced byV \ {vb}. By hy-
pothesis,vb ∈ S′′

i andx′′i = y′′i , hencej ≤ i. The contradiction follows by observing
thatd(x′′j , v0) ≤ d(x′′j , x

′′
i ) + d(x′′i , v0) ≤ i − j + d(x′′i , v0) = i − j + d(x′i, v0), by

hypothesis.

Lemma 5.5.2 Let EGc,v0 be an exploration scheme on a ring networkGc such that
the first phase is not ac-split. Then, we can replace such phase with ac-splitwithout
increasing the cost of the exploration scheme.

Proof. In the first phase ofEGc,v0 eitherv1 or vc or both may be explored. Assume
that the first meeting step isi (with i ≥ 2). By Constraint 4,xi = yi = v0. We
replace the firsti steps ofEGc,v0 with a c-split followed byi− 2 steps in which both
agents are in nodev0. Observe that, for each meeting step inEGc,v0 , the explored
territory is not decreased and both agents are in the same node as before, hence, by
Lemma 5.5.1, the cost does not increase. �

Lemma 5.5.3 Let EGc,v0 be any exploration scheme for a ring networkGc. We can
transformEGc,v0 into a proper exploration schemeE ′Gc,v0

such thatcost(E ′Gc,v0
) ≤

cost(EGc,v0).

Proof. Consider any phase ofEGc,v0 , excluding the first one (which, by Lemma 5.5.2,
can be easily transformed into ac-split) and the last one. In each of these phases, the
explored territory may increase by one node in clockwise direction, in counterclock-
wise direction or in both directions. We denote such phases as1f-phase, 1b-phase
and2-phaserespectively. We show how each1f-phase, 1b-phase, 2-phasecan be
transformed respectively into af-probe, b-probe, c-split. Assume that the meeting
point before the phase is nodevm.
(1f-phase). Without loss of generality (in light of Lemma 3.5.3) we assume that
Agent-1 performs the exploration, say of nodevi+1. Assume that the meeting point
at the end of the phase is nodevm′ . Therefore the sequence followed byAgent-1 is:

φ1 = P (vm, vi+1〉 ◦ P (vi+1, vm′〉 (5.12)
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Note that if the sequence is longer, it can be replaced by sequence in 5.12, without
increasing the cost of the exploration. We can hence replace the sequence followed
by Agent-2 with the following sequence:

φ2 = P (vm, vi〉 ◦ 〈vi, vi〉 ◦ P (vi, vm′〉

It is easy to check that the explored territory remains the same as before. However,
now the agents meet in nodevi after (i−m) mod c + 2 steps; the phase has been
transformed into af-probe.
(1b-phase). The proof is symmetrical with respect to the1f-phase. We assume again
thatAgent-1 performs the exploration of nodevj−1. Assume that the meeting point
at the end of the phase is nodevm′ . Therefore the sequence followed byAgent-1 is:

φ1 = P (vm, vj−1〉 ◦ P (vj−1, vm′〉

We again replace the sequence followed byAgent-2 with the following sequence:

φ2 = P (vm, vj〉 ◦ 〈vj , vj〉 ◦ P (vj , vm′〉

It is easy to check that the explored territory remains the same as before. However,
now the agents meet in nodevj after (m− j) mod c + 2 steps; the phase has been
transformed into ab-probe.
(2-phase). Again, by Lemma 3.5.3, we assume thatAgent-1 explores nodevi+1,
while Agent-2 explores nodevj−1, with j > i + 2. Such phase has length at least:

max[(i−m) mod c +
(
i−m′)

mod c
+2, (m− j) mod c +

(
m′ − j

)
mod c

+2]

We can simply observe that, if we replace this phase with ac-split, then the agents
meet in a nodevm′′ (wherem′′ = (j + i−m) mod c) after(i− j) mod c+2 steps. If
nodevm′ is theδ-th node followingvm′′ in the clockwise direction (m′ = (m′′ + δ) mod c)
then the length of the original phase is at least:

(m− j) mod c +
(
m′ − j

)
mod c

+ 2 =

(m− j) mod c +
(
m′′ − j

)
mod c

+ δ + 2 =
(m− j) mod c + (i−m) mod c + δ + 2 =

(i− j) mod c + δ + 2.

If, otherwise, nodevm′ is theδ-th node followingvm′′ in the counterclockwise direc-
tion (m′ = (m′′ − δ) mod c), then the length of the original phase is at least:

(i−m) mod c +
(
i−m′)

mod c
+ 2 =

(i−m) mod c +
(
i−m′′)

mod c
+ δ + 2 =

(i−m) mod c + (m− j) mod c + δ + 2 =
(i− j) mod c + δ + 2.
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Therefore, we can replace the2-phasewith a c-split (ending in nodem′′), followed
by awalk from nodem′′ to nodem′, without increasing the cost of the exploration
scheme. �

By virtue of Lemma 5.5.3, we can narrow the set of candidates optimal, by con-
sidering only proper exploration schemes. Indeed, we can further restrict the structure
of optimal exploration schemes.

Lemma 5.5.4 LetEGc,v0 be a proper exploration scheme in which ab-probefollows
a f-probe(or, vice-versa, af-probefollows ab-probe). The exploration schemeE ′Gc,v0

obtained by replacing the two probes with ac-split (and possibly a walk) is such that
cost(E ′Gc,v0

) < cost(EGc,v0).

Proof. By symmetry, we consider only the case in which ab-probefollows af-probe.
Assume that, at the end of the phase before thef-probe, vm is the meeting point
andvi andvj are the two limit nodes (i < j). SinceEGc,v0 is a proper exploration
scheme, the total number of steps required by the twoprobesis (i−m) mod c + 2 +
(i− j) mod c + 2 and the meeting point at the end of the two phases is nodevj .
Suppose now that the two nodes are explored by ac-split. The length of such
phase is(i− j) mod c + 2 and the meeting point at the end of the phase is node
m′ = (j + i−m) mod c. The two agents can reach nodevj as before, with further
(m′ − j) mod c = (i−m) mod c steps. Therefore, the total length of thec-split is
(i− j) mod c+2+(i−m) mod c, and hence it requires two steps less than exploring
the same nodes by twoprobes. �

It should be obvious that in any optimal exploration scheme, the agents are not
allowed to go back and forth on both sides of the explored territory when the ex-
plored territory becomes larger and larger (see [12] for a formal proof). Therefore,
we can consider as candidate optimal, only the exploration schemes composed of the
following parts:

i) a sequence ofk′ c-splitphases (by Lemma 5.5.2,k′ ≥ 1);

ii) a sequence ofk′′ f-probephases (orb-probe, by symmetry);

iii) onec-split;

iv) a sequence ofk′′′ b-probephases (orf-probe);

v) a final phase.

with the remark that parts(iii) and(iv) are performed only ifk′′′ > 0.

It is easy to compute the length of parts(i)-(iv) above, we report the results in
the following table, together with the limit nodes at the end of the part, and the last
meeting point.
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Part Length Limit nodes Meeting point
(i)

∑k′

i=1 2i = k′(k′ + 1) 〈vk′ , vc−k′〉 v0

(ii) (k′ − 1) + 3k′′ 〈vk′+k′′ , vc−k′〉 vk′+k′′−1

(iii) 2k′ + k′′ + 3 〈vk′+k′′+1, vc−k′−1〉 vc−k′+1

(iv) 1 + 3k′′′ 〈vk′+k′′+1, vc−k′−k′′′−1〉 vc−k′−k′′′

The length of Part(v), and thus the total execution time, depends on how many nodes
are left to be explored and on whetherk′′′ is positive or not. Therefore we distinguish
four cases:

1. 1 node left andk′′′ = 0. In this case parts(iii) and (iv) and are not in the
exploration scheme; the last node to be explored is nodevk′+k′′+1 = vc−k′−1.
Hencek′′ = c− 2k′ − 2. The meeting point is nodevc−k′−3.
In the last phase one agent (sayAgent-1) goes tovc−k′−1 and then tov0 by
following the shortest path, whileAgent-2 goes directly tov0 by walking in
counterclockwise direction (by Constraint 4, it cannot use nodevc−k′−1 to re-
turn tos):

φ1 = 〈vc−k′−2, vc−k′−1〉 ◦ P (vc−k′−1, v0〉
φ2 = 〈vc−k′−4, vc−k′−5, . . . , v1, v0〉

The length of this part is:

max(min(c− k′ + 1, 3 + k′), c− k′ − 3)

which is equal toc− k′ − 3 if we assume thatc > 6 + 2k′.
The total execution time is therefore:

k′(k′ + 1) + (k′ − 1) + 3k′′ + c− k′ − 3
= k′2 + 2k′ − 1 + 3c− 6k′ − 6 + c− k′ − 3
= k′2 − 5k′ + 4c− 10

Such formula has its minimum fork′ = 2, 3, where its value is4c− 16.

2. 2 nodes left andk′′′ = 0. Also in this case parts(iii) and (iv) are not in the
exploration scheme; the last two nodes to be explored arevk′+k′′+1 = vc−k′−2

andvk′+k′′+2 = vc−k′−1. Hencek′′ = c− 2k′ − 3. The meeting point is node
vc−k′−4.
In the last phase one agent (sayAgent-1) explores nodevc−k′−2 and then goes
to v0 in the counterclockwise direction, while the other one (Agent-2) goes, in
the counterclockwise direction, tovc−k′−1 and then tov0:

φ1 = P (vc−k′−4, vc−k′−2〉 ◦ P (vc−k′−2, v0〉
φ2 = P (vc−k′−4, vc−k′−1〉 ◦ P (vc−k′−1, v0〉
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The length of this part is:

max(c− k′, c + k′ − 2) = c + k′ − 2.

The total execution time is therefore:

k′(k′ + 1) + (k′ − 1) + 3k′′ + c + k′ − 2
= k′2 + 2k′ − 1 + 3c− 6k′ − 9 + c + k′ − 2
= k′2 − 3k′ + 4c− 12

Such formula has its minimum fork′ = 1, 2, where its value is4c− 14.

3. 1 node left andk′′′ > 0. The total length of parts(i)-(iv) is:

k′(k′ + 1) + (k′ − 1) + 3k′′ + 2k′ + k′′ + 3 + 1 + 3k′′′ =
k′2 + 4k′ + 4k′′ + 3k′′′ + 3.

The last node to be explored is nodevk′+k′′+2 = vc−k′−k′′′−2, hence

c− 2k′ − k′′ − k′′′ − 4 = 0 (5.13)

k′′ + k′′′ = c− 2k′ − 4. (5.14)

The meeting point is nodevc−k′−k′′′ .
In the last phase one agent (say againAgent-1) explores nodevc−k′−k′′′−2 and
then goes tov0 by following the shortest path, while the other one (Agent-2)
goes directly tov0 by walking in the clockwise direction:

φ1 = 〈vc−k′−k′′′−1, vc−k′−k′′′−2〉 ◦ P (vc−k′−k′′′−2, v0〉
φ2 = 〈vc−k′−k′′′+1, vc−k′−k′′′+2, . . . , vc−1, v0〉

The length of this last phase is:

max[min(k′ + k′′′ + 4, k′ + k′′ + 4), k′ + k′′′ − 1]

The total execution time is therefore:

k′2 + 5k′ + 4k′′ + 4k′′′ + 7 if k′′ ≥ k′′′ (5.15)

k′2 + 5k′ + 5k′′ + 3k′′′ + 7 if k′′′ − 5 < k′′ < k′′′ (5.16)

k′2 + 5k′ + 4k′′ + 4k′′′ + 2 if k′′ ≤ k′′′ − 5 (5.17)
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By applying Equation 5.14 in 5.15 we obtain a total cost ofk′2− 3k′ + 4c− 9,
whose minimum value (fork′ = 1, 2) is 4c− 11.
By applying Equation 5.14 in 5.17 we obtain a total cost ofk′2−3k′+4c−14,
whose minimum value (fork′ = 1, 2) is 4c− 16.
By using Equation 5.13, and assumingk′′ = k′′′ − x (wherex = {1, 2, 3, 4}),
in Equation 5.16 we obtain as total cost:

k′2 + 5k′ + 8k′′′ + 7− 5x =
k′2 + 5k′ + 4(c− 2k′ − 4 + x) + 7− x =

k′2 − 3k′ + 4c− 9− x,

whose minimum value (fork′ = 1, 2 andx = 4) is 4c− 15.

4. 2 nodes left andk′′′ > 0: The total length of parts(i)-(iv) is:

k′(k′ + 1) + (k′ − 1) + 3k′′ + 2k′ + k′′ + 3 + 1 + 3k′′′ =
k′2 + 4k′ + 4k′′ + 3k′′′ + 3.

The last two nodes to be explored arevk′+k′′+2 = vc−k′−k′′′−3 andvk′+k′′+3 =
vc−k′−k′′′−2, hence

c− 2k′ − k′′ − k′′′ − 5 = 0 (5.18)

The meeting point is nodevc−k′−k′′′ .
In the last phase one agent (sayAgent-1) explores nodevc−k′−k′′′−2 and then
goes tov0 in the clockwise direction, while the other one (Agent-2) goes, in
the clockwise direction, tovc−k′−k′′′−3 and then tov0 (in the counterclockwise
direction):

φ1 = P (vc−k′−k′′′ , vc−k′−k′′′−2〉 ◦ P (vc−k′−k′′′−2, v0〉
φ2 = P (vc−k′−k′′′ , vc−k′−k′′′−3〉 ◦ P (vc−k′−k′′′−3, v0〉

The length of this last phase is:

max(4 + k′ + k′′′, 3k′ + 2k′′ + k′′′ + 4) = 3k′ + 2k′′ + k′′′ + 4.

The total execution time is therefore:

k′2 + 7k′ + 6k′′ + 4k′′′ + 7

By using Equation 5.18 we can replacek′′ and obtain as total costk′2 − 5k′ +
6c−2k′′′−23. In order to minimize this formula we have to maximize the value
of k′′′. However, sincek′′ ≥ 1, by using again Equation 5.18,k′′′ ≤ c−2k′−6
and hence we obtain, as total cost:

k′2 − 3k′ + 4c− 11

The minimum value of this formula (fork′ = 1, 2) is 4c− 13.
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Therefore, we can define the following exploration schemeE∗Gc,v0
for a ring net-

work Gc:

i) 2 c-splitphases;

ii) (c− 6) f-probephases;

iii) the following last phase:

φ1 = 〈vc−4, vc−3, . . . , vc−1, v0〉
φ2 = 〈vc−6, vc−7, . . . , v1, v0〉

Lemma 5.5.1, together with Lemma 5.5.2, Lemma 5.5.3 and the previous com-
putations, imply the following theorem.

Theorem 5.5.5 Given a ring networkGc and a nodev0 as the starting point, the
exploration schemeE∗Gc,v0

for Gc has cost4c− 16 and is optimal.
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Chapter 6

Conclusions and Further Works

Mobile agents systems are a rather new and promising concept in distributed com-
puting. Their motivating idea is that, instead of exchanging moving informations
between remote hosts, a task could be more efficiently performed by moving through
hosts data and “thinking entities” able to manage them, encapsulated in form of mo-
bile agents. In this work we analyzed, from an algorithmic perspective, a problem
related to security in mobile agents systems. In particular we studied the problem
of detecting a harmful host (called black hole) which destroys visiting mobile agents
without leaving any trace. We showed that, among all possible security threats, black
holes represent one of the most difficult to deal with. The problem has been pre-
sented and studied in the works of Dobrevet al. ([18, 17, 16, 19, 14]). The model
considered in such papers assumes that the network is totally asynchronous, i.e., ev-
ery execution step requires finite time, but this cannot be upper bounded. In this
setting it was observed that if the network is not 2-connected, then the problem is
unsolvable. Moreover, in an asynchronous network it is impossible to answer the
question of whether a black hole actually exists, hence it is assumed that there is ex-
actly one black hole and the task is to locate it as soon as possible.
In [11, 12] the problem is studied under the model we consider in this thesis. They
assume that it is possible to fix an upper bound on the time needed by an execu-
tion step. The synchronicity assumption makes a dramatic change to the problem.
A black hole can be located by two agents in any graph. Moreover the agents can
decide whether there is a black hole or not. In [12] the model considered assumes
that the nature of all the nodes, excluding the starting point, is unknown (restricted
problem). This paper shows optimal algorithms for networks whose topology is a
line or a bushy tree. The authors also provide a5

3 -approximation algorithm for tree
networks and conjecture that the black hole search problem isNP-hard for arbitrary
networks.NP-hardness is proved in [11] for thegeneralizedproblem in which a sub-
set of the nodes is initially known to be safe. In the same work it is also provided a
9.3-approximation algorithm for such problem.
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In this thesis we provided new improved results for both thegeneraland the
restrictedversion of the problem.
We showed that the general problem is not polynomial time approximable within a
1+ ε factor, for anyε < 1

388 unlessP=NP, and we improved its approximation upper
bound to6.
For the restricted problem, we provedNP-hardness holding also in the case that the
network has a planar embedding, andAPX-hardness in the general case. Then, we
gave some approximating algorithm suited for particular network topologies. We
presented an algorithm for arbitrary trees with an approximation ratio of4

3 +O( 1
n) ≤

10
7 . We provided also a27

8 -approximation algorithm for arbitrary networks. We used
the technique of first generating a spanning tree of the network, and then using an
algorithm designed for trees to explore the graph. We discussed further about this
approach, by showing its properties and limitations. Finally, we presented an optimal
algorithm for ring networks.

We conclude by addressing some directions for further works. First, most of
the bounds presented in this thesis are far from being tight. For what concerns the
restricted problem, we believe that one could show a better upper bound for the ap-
proximation ratio of our algorithm than278 by further refining the analysis; however
we do not expect a bound anywhere near the current lower bound on the approach
(i.e., 3/2). It seems that to obtain a more substantial improvement of the approxi-
mation ratio one would need to abandon the spanning-tree approach, but algorithms
which attempt something considerably different than following a spanning tree may
be very difficult to analyze. For example, one no longer would be able to assume the
absence of the black hole in the worst case scenario. A still interesting question is to
discover the nature of the black hole search problem in tree networks. Our conjecture
is that there exists a polynomial time algorithm; however, the relative complexity of
the optimal algorithm for line networks presented in [12], lead us to expect that the
formulation of such algorithm is not straightforward. For what concerns the general
problem, the big gap between the approximation upper and the lower bounds leaves
space for further research. For instance, a speedup of the 6-approximation algorithm
could possibly be obtained by replacingprobephases bysplits. This however can
lead to a better approximation only if we are provided with a suited spanning tree of
graphĜ.

Further research might be devoted also to the study of problems arising by mod-
ifying the assumption we put in Section 3.2. It would be interesting, for instance, to
see what non-trivial result could be shown about the complexity of computing fast
black hole search schemes for many agents and possibly many black holes. If there
arek + 1 agents, wherek is a parameter (not a constant) and at mostk black holes,
then it is not even clear how one should formalize the problem. The “oblivious” ap-
proach of giving each agent one predetermined sequence of nodes to visit does not
seem adequate if there are more than two agents. On the other hand, we believe that
also by changing the communication mechanism (e.g., by allowing agents to write on
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whiteboards in agents platforms) we are led to completely new problems, which need
totally different approaches. As we already discussed in the introduction, it would be
also interesting to study the black hole search problem under the assumption that the
map of the network is unknown. In this case the problem can be better modeled as
an on-line problem, and a competitive analysis seems to be more suited. One can
also see this as a mixed problem, where, similarly to the work presented in [17], two
distinct targets (black hole search and map building) are pursued at the same time.
We believe interesting to further carry out research into this kind of problems.
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