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Chapter 1

Introduction

1.1 Optimization problems

In 1962, the worldwide company Procter & Gamble advertisedrdest in which
one had to find the shortest round trip route to visit all of 8kions shown on a
United States map. The companfesed several thousands dollars for the solution.
The participants of the contest might have recognized ibtrbut they were facing
an instance of anptimization problemIn an optimization problem there are data,
solutions, and one clear objective. Mathematically, afnaightion problem can
be formalized in the following way.

Definition 1.1. An instanceof an optimization problem is given by a pakF,€).
The setF is the set offeasible solution®f the instance. The function: F — R

is thecostfunction. The problem is to find amptimal solution that is ans® € F
such thatc(s*) < ¢(s) for everys € F. An optimization problemnis then simply
a set of instances. When the $efs finite for every instance of the problem, the
optimization problem is called @@ambinatorialoptimization problem.

It is worth emphasizing that although the set of feasibletsmhs and the cost
function together completely describe an instance of aimigation problem, they
are usually not given explicitly. Instead, the instanceejgresented implicitly by
more succinct data.

Example 1.1. The problem posed in the Procter & Gamble contest is an iostah
the Traveling Salesman Proble(MSP). In an instance of the Traveling Salesman
Problem we are given an integer> 0 and the distance between every paimnof
cities in the form of am x n matrix [d;;], whered;; € Z,. The setF of feasible
solutions is the set of cyclic permutations wobjects. The cost(y) associated to

Y E Fis Zin:]_ di¢(i).

Notice that every combinatorial optimization problem atdnai trivial solution
method: simply enumerate all feasible solutions and ke tof the one with the
least cost. However, in most interesting optimization peots the set of feasible

1



solutions is so large with respect to its description thahsan approach is doomed
to be impractical because it requires excessive amounisief t

Example 1.2. In the TSP, a trivial enumeration of ailcity tours requires time
proportional to at leasin(— 1)!, which is more than exponential in the number of
cities.

We are interested in computing an optimal solution of annoiatition problem
in a reasonable amount of time. This requirement is forredlizy saying that we
want an algorithm whose running time is polynomial in thegnof thebinary
representatiorof the input instance. Such an algorithm is callgebynomial time
algorithm

1.2 Approximation algorithms

Unfortunately, the optimization problems we are dealinghvim this thesis, such
as the Traveling Salesman Problem, are NP-hard. This imffiet no polynomial

time algorithm is known that solves any of these problemd, there is evidence
that no such algorithm actually exists. The question “DbesTtSP admit a poly-
nomial time algorithm?” is even more important than it mapesr at first sight,

as it is equivalent to the P vs. NP question, which is centrabimplexity theory.

After many unsuccessful attempts by researchers at amgyvhis question, it has
been declared one of the mathematical problems of the millem[40].

While the P vs. NP question remains unsettled, we may wamia® our orig-
inal requirements. In particular, we could consider omelsatisfied if we could
find, for a given NP-hard optimization problem, a polynontiaie algorithm that
finds solutions that are not necessarily optimal, but vergelto optimal.

Definition 1.2. An algorithm aLc for a combinatorial optimization problefa is
said to be am-approximation algorithnif

e ALG IS @ polynomial time algorithm;
e for every instance of P,
ALG(X) < 1 - oPT(X)

whereaLa(X) is the cost of the solution found b4 on inputx andort(X) is
the cost of any optimal solution ta

A consequence of the definition is thakif is anr-approximation algorithm, it
is also anr’-approximation algorithm for any > r. Thus an interesting question,
for a given algorithmaig, is to ask the value of the smallassuch thatis is an
r-approximation algorithm. This value is called tiygproximation raticof aLc.

Notice that the approximation ratio isrorst casemeasure, since the fact that
ALG iS anr-approximation algorithm means that it findapproximate solutions on
every instance.



The approximation ratio is useful because it stands as &t benchmark
for measuring the performance of algorithms. When compativo algorithms
for the same problem, the first may find better solutions onessabset of the
instances and the other may find better solutions on anatheesand thus it is not
clear which one is better in general. Comparing them thrabgh approximation
ratios gives a reasonable way out of this dilemma. Moreaued, perhaps more
importantly, designing and analyzing algorithms from tteenp of view of their
approximation ratio is useful to obtain insights into thentnatorial structure of
the problem being attacked.

The theory of approximation algorithms has developed veigldy in recent
years and now we know that while some NP-hard problems dodwoitapprox-
imation algorithms with any constant approximation ratidegss P= NP, others
do and some even allow approximation ratifor anyr > 1. This variety reflects
the variety of all these combinatorial optimization prabke in contrast with their
common NP-hardness.

1.3 Online optimization

In many applications, the input data for an optimizationbem is not entirely
available beforehand. It may very well be that the input \&eded piece by piece
and a partial solution is needed for every partial input.tTéighe solution process
is required to make decisions before complete informatgoavailable. In this
case we call the optimization problem anline optimization problem, as opposed
to offline problems in which all data are already available at the eginof the
solution process.

There are two intuitive models of online computation, tme-by-onemodel
and thereal-time model. Mathematically, they can be unified in a single frame-
work, that ofrequest-answer gamgebut doing so weakens part of the intuition
behind these models. In this introduction, we describewerhodels separately.
In both the one-by-one model and the real-time model thetirgpomodeled as a
sequencer = o107 - - - Of requestavhich is revealed step by step to an online al-
gorithm. In the one-by-one model, the online algorithm lwelsandle each request
before seeing the next one; that is, while managifdhe algorithm only knows
aboutoyo---0j. Serving the request will have some influence on the overall
cost of the solution, depending on the details of the problafter the algorithm
servesrj, the cost will be irrevocably influenced and only then theoethm will
discoveroi,.

Example 1.3. In an instance of thpagingproblem, an algorithm has to manage a
fast memory of siz& (acachg and a larger, slower memory of sike> k. Every
request in the input sequence specifies which page of theralawory has to be
accessed. In order to access the page, it has to be copienétdock of the cache

if the cache does not contain it already. Eventually, thisrequire the eviction of
some old page in order to create more room in the cache. Whageip copied
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from the slow memory to the cache,page faultoccurs. The cost incurred by
the algorithm on an input sequence is the number of pagesfthat the algorithm

generates. Thus, the goal is to design an eviction poligyntiidmizes the number
of page faults.

In the real-time model, each request hazlease dateat which it becomes
available. The release date specifies the time at which theest becomes known
to the algorithm; no request can be served before its rettgtse Release dates are
nonnegative real numbers and the sequenge; - - - is ordered by nondecreasing
release dates. Thus, the algorithm determines its behavémry timet as a function
of t and of the prefix ofr consisting of all the requests with release date less than
or equal tot. An important diference with the one-by-one model is that requests
need not be served in the order they arrive: the algorithmweaihand defer the
service of a particular request. However, waiting typicaficreases the overall
cost incurred by the algorithm. Finally, and similarly teetbne-by-one model,
once the algorithm has taken some action, this cannot b&edvo

Example 1.4. In an instance of thenultiprocessor schedulingroblem, an algo-
rithm has to proces@bs on a set ofmachines Every job j has a release datg
and a processing timg. The algorithm can decide when and on which machine
every job will start processing. Once started, a job canedhterrupted and every
machine can process only one job at a time. The time at whiob &njishes pro-
cessing is called theompletion timeof the job. A typical objective is to minimize
the latest completion time of the jobs.

There are several methodologies for dealing with onlinentipation prob-
lems. Instochastic optimizatignone assumes that the probability distribution of
the input instances is known, and the goal is to develop #igos that perform
well in expectation with respect to that distribution. Thttss type of analysis
is focused on the average case behavior of the algorithnmg leeinsidered. A
different approach, and the one we will adopt in this thesis,asdhcompetitive
analysis which instead studies the worst case behavior of the oaligerithms,
by comparing their performance on every instance with thaoideal optimal
solver. The next sections introduce and discuss the canbebtind competitive
analysis. Finallysimulationis a methodology that is often adopted in practice:
the algorithms to be studied are implemented and execut@tstances generated
according to some appropriate model of the “real” instarafdbe problem. The
results may lead to insights into both the worst case andviigge case behavior
of the algorithms.

Sometimes in the literature one also finds online optimizatiamed asly-
namic optimization However, we prefer to keepfirent meanings for these two
terms. In a dynamic optimization problem, data is also amgistep by step, but
one does not need to commit in any way to the partial solutioh o far. In a dy-
namic problem, computing an answer from scratch is alwaysiirtiple a viable
option, and the focus is actually on how to compute quicklypadynew solution
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given the last partial one. Instead, in an online optimaragroblem, one has to
commit to the partial solution; it is not possible to undo aayion, only new ac-
tions can be added. It is clear that in this case one cannet inageneral to obtain
optimal solutions, even if there are nfiieiency constraints on the online solver,
because the lack of information about the future inputs cetha compensated in
any way.

Another frequently used expression resal-time optimization A real-time
problem is an online problem in which the bounds on produeivery new piece
of the solution are very tight. Thus, in a real-time probléhg dficiency of the
online solver cannot be neglected. If we, as it is commoryraesthat iciency
is represented by polynomial running time, this gives oneemmeason why many
interesting real-time problems cannot be solved optimailgll: because of their
online aspect, and because often the associdtbdeoproblems are NP-hard, and
thus polynomial time algorithms cannot solve them unlessNP. Fortunately, it
is still possible to resort to algorithms that have both astamt approximation ratio
and a polynomial running time.

1.4 Competitive analysis

In online optimization, a consolidated framework for measythe quality of on-
line algorithms iscompetitive analysis

Definition 1.3. An algorithmoL for an online optimization problem is said to be
c-competitivef

e oL is an online algorithm;

o for any instancer of P,
oL(o) < ¢ opr1(0)

whereoL(o) is the cost incurred byL on o andopr(o) is the cost of an
optimal (dfline) solution taor.

Notice the analogy with the definition of arapproximation algorithm (Def-
inition 1.2). The only diference is that instead of requiring the algorithm to be
polynomial time, we only allow algorithms that construceithsolutions online.
Again, we can define theompetitive ratioof algorithmor to be the smallest
such thabr is ac-competitive algorithm.

The fact that competitive algorithms are not required to blyrmpmial time
deserves further explanation. Indeed, as online probldies anodel real-time
systems, it would seem appropriate that algorithms for fuoblems should be
very dficient, and thus having a polynomial running time would be aimim
prerequisite. However, it is conceptually useful to sefgathe issue of dealing
with limited time from that of dealing with limited informiain, which is really
what online computation is about. Moreover, this sepanaisoalso justified by
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the fact that many online algorithms, that use superpolyabtime subroutines to
optimally solve hard filine subproblems, can be made polynomial time by replac-
ing the optimal subroutines with approximation algorithrmvhile not decting the
competitive ratio much.

1.5 The competitive ratio as the value of a game

An interesting feature of competitive analysis is its lielato game theory. Indeed,
the competitive ratio can be seen as the outcome of a gamesdetan online
playerand a maliciousdversary We can think of the adversary as the process that
generates the online sequence of requests, while the giéger is the algorithm
handling the requests. Consider now the following gameotti@e player chooses
an online algorithnor, while the adversary chooses a sequanc€&hen, the online
player pays the adversary a monetary amount equalL({®)/orr(c). Then the
value of the game for the adversary is precisely the conineetiaitio. That is, if
the competitive ratio is at least then the adversary can force the online player to
pay at least, and vice versa.

In the case of a deterministic online algorithm, the respsnsf the online
player to the same inputs are fixed and one can assume thalubesary knows
them. Thus, the adversary will simply try to construct a segpe that maximizes
the ratio; such a sequence is sometimes calledial sequence. Cruel sequences
can be used to prodewer boundon the competitive ratio of an online algorithm.
In the case of a randomized online algorithm, the assumpkiahthe adversary
can predict the behavior of the algorithm does not hold amgraad one has to be
more careful in defining what the adversary knows about thie@algorithm. We
discuss this issue in the next section.

1.6 Online algorithms and randomization

So far, we have considered competitive analysis of detéstigralgorithms. How-
ever, given the success of randomization in other fields wifpding, it is reason-
able to attempt to extend our definitionsremdomized algorithmsthat is, algo-
rithms that choose some of their actions according to theevaf some random
variables. From the game-theoretical point of view, this lba shown to be equiv-
alent to the assumption that the online player choosesraiggy randomly out of
a set of deterministic strategies, implementing thus aadleamixed strategy30].
This motivates the following definition.

Definition 1.4. A randomized online algorithmor is defined as a probability dis-
tribution over a set of deterministic online algorithms.€eTd¢ostrow(co") of roL ON
input sequencer is thus a random variable.

In order to define the competitive ratio of a randomized algor, we should
be careful about the precise adversary model used. Throasaels are common
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in the literature. Theblivious adversarghooses an input sequence based only on
the description of the online algorithm. Thus, it cannoldbthe input sequence on
the basis of the actual behavior of the online algorithm. adtegptive giine adver-
sarycan build the input sequence online and can base futurestnoe the actions
of the online algorithm on previous requests. Huaptive online adversargan
build the input sequence online like the adaptiiéiree adversary, but it must also
generate its own solution online. In the case of a detertienisline algorithm,
these distinctions vanish because the behavior of theitdgois completely pre-
dictable, given the request sequence. Instead, when evimgjdandomized online
algorithms, adaptive adversaries are more powerful tharobtivious adversary;
so powerful, indeed, that they almost negate all the adgestaf randomization
[22]. In this thesis we will only use the oblivious adversary rebathen dealing
with randomized online algorithms.

Definition 1.5. A randomized online algorithroL distributed over a sebry} of
deterministic online algorithms for an online optimizatiproblemP is calledc-
competitive against an oblivious adversdiyfor all instancess of P,

Ey[oLy(o)] < ¢ - opT(0).

As for the deterministic algorithms, we define the compatitiatio ofroL as
the smallest such thakor is c-competitive.

For randomized algorithms, it can befutiult to prove a lower bound on the
cost of an arbitrary randomized algorithm on a specific imsta Fortunately, the
use ofYao’s principle[31, 87, 91] can be helpful in these cases. It will be enough
for us to resort to the following form of the principle.

Theorem 1.1(Yao’s principle) Let{ory : y € Y} denote the set of deterministic
online algorithms for an online minimization problem. If Xa distribution over
input sequencegry : X € X} such that

inf Exfon ()] > CExlori(o)

for some real number & 1, then c is a lower bound on the competitive ratio of
any randomized algorithm against an oblivious adversary.

1.7 Beyond competitive analysis

One of the advantages of competitive analysis is that itemsdvial nature allows
one to prove unconditional lower bounds on the competitii® rather easily. The
downside is that sometimes these lower bounds are too sirotige sense that they
do not reflect correctly the practical behavior of the aldonis being analyzed.
For example, consider the paging problem. From the conetinalysis point of
view, the two algorithms Least Recently Usedd) and First In First Out#ro)
have the same competitive ratio, thakjsthe size of the cache. However, it has
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long been known thatru is much better in practice thamro. This failure of
competitive analysis in distinguishing the two algorithimsnainly due to the fact
that the power of theflline adversary is too great. For this reason, refinements of
and alternatives to competitive analysis have been praopiosie literature.

Perhaps the simplest way to weaken the all-powerful admeis#o strengthen
the online algorithm by giving it more resources than theeaslry. For example,
in a scheduling problem the online algorithm could have nppogessors, while in
the paging problem it could have a larger cache. This appracalledresource
augmentatiorand it has been applied successfully in several c& 81, 86].

Another method, introduced by Koutsoupias and Papadoniti65], is com-
parative analysis In comparative analysis, one enlarges the scope of cotimpeti
analysis by distinguishing betweenffdirentinformation regimes Consider two
classesA and B of algorithms. Theeomparative ratioR(A, B) is defined as:

R(A, B) = maxmin max@.
BeB AcA o B(o)

Not surprisingly, the clearest interpretation is again tifaa game. The adver-
sary chooses an algorithBie 8. As an answer to that, the online player picks an
algorithm A € A. Then the adversary picks an input sequemcand the online
player pays the adversary the rafi¢r)/B(o). The amount that the adversary can
hope to obtain is exacthR(A, B). We obtain competitive analysis as a special case
if A is the set of all online algorithms arf8lis the class of all algorithms, online
and diline.

Another generalization of competitive analysis is thiguse adversary model
While standard competitive analysis is completely worse¢an the dfuse adver-
sary model one assumes that something is known about thedigttibution. In
particular, we assume that the actual input distribubobelongs to a known class
A of possible distributions. The competitive ratio is theffirkd as:

R(A) = min max—ED[A(O-)] .
A" DeA Eplopt(0)]

This means that the adversary chooses a distriblliamong those in\ so that
the expected value, with respectioof the competitive ratio is as large as possible.
Thus, this generalization represents a bridge betweesicésompetitive analysis
(which is the particular case in whichis the class of all possible distributions) and
stochastic optimization (which we obtain as a special casenw is a singleton).

1.8 Server routing problems

This thesis deals with the online versions of particular bovatorial optimization

problems known aserver(or vehiclg routing problemsIn a server routing prob-
lem, a set of servers has to process a set of transportatjopses in a metric space.
In order to serve the requests, the servers incur some bestletails depending
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on the problem being considered. We have already seen arfiamdal server rout-

ing problem, the Traveling Salesman Problem or TSP. In the fh@re is a single

server, requests consist of isolated points that have tasited; and the goal is to

minimize the total length of a round trip route visiting aflquested points. The
TSP is a classical problem in combinatorial optimizatiod has been the testbed
of many algorithmic techniques. The server routing prolsieme consider in this

thesis can all be seen as online generalizations or vargatbthe standard TSP.

1.9 Outline of the thesis

In this section we briefly outline the contents of this thesis

¢ In Chapter2, after reviewing the basic complexity results faflioe server
routing problems, we introduce the online server routirgrfework and we
survey the state of the art for online server routing. We stimbasic proof
techniques and we discuss several attempts in the literatuextend the
basic competitive analysis setting. Part of the contenhigf¢hapter is joint
work with L. Allulli, G. Ausiello, and L. Laura §].

¢ In Chapter3, we consider thenline asymmetric traveling salesman problem
from the point of view of competitive analysis. We prove ttiad homing
version, where the server has to return to its starting paafits a (+ ¢)-
competitive algorithm, where is the golden ratio, and we show that this
is best possible. We also consider the nomadic version gmedurning to
the starting point is not mandatory) and prove that it doesadmit constant
competitive algorithms. However, for the nomadic versianpvove a com-
petitive ratio as a function of the amount of asymmetry ofghace. We also
consider the competitiveness of zealous algorithms. Waidgsthe issue of
polynomial time algorithms in this setting. The contentha thapter is joint
work with G. Ausiello and L. Laural2].

¢ In Chapter 4, we study thenline prize-collecting traveling salesman prob-
lem After discussing the approximation ratio of th@lime version, we give a
7/3-competitive algorithm. We also consider the special odslee halfline
as the metric space, for which we prove lower and upper boohds39
and 2, respectively, on the competitive ratio of deterntim&lgorithms. The
content of the chapter is joint work with G. Ausiello, L. LayA. Marchetti-
Spaccamela and S. LeonardB[ 14].

¢ In Chapter 5, we consider thanline nomadic traveling salesman and the
online traveling repairman with k server§Ve give competitive algorithms
whose competitive ratios match the ones for the single seamants. For
the special case of the real line, we prove the existencegofigims with
competitive ratio I+ O((logk)/k), meaning that we can approach the opti-
mal cost ak grows. We also show that this phenomenon is limited to the
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one dimensional case, since already in the Euclidean plamprove a lower
bound of 43 for the online nomadic TSP and oféfor the online TRP inde-
pendently of the number of servers. Finally, we give reseaagmentation
results that are asymptotically best possible as the nuoflamiline servers
grows beyond the number offbne servers. The content of the chapter is
joint work with L. Stougie R9].

¢ In Chapter 6, in order to address the limits of competitivalygsis, we intro-
ducea new model for online server routing based on adversariauging
theory The model addresses the stability of online algorithms aha con-
tinuously operating. We call an online algorithstableif there exists an
upper bound on the number of unserved requests at any tihddba not
depend on the time the system has been running. We considentzen of
natural algorithms in this model and we prove the existerfcagorithms
that are stable and such that the maximum flow time of a reqsstdoes
not depend on the time the system has been runi2iéig [

1.10 Related literature

Combinatorial optimization lies at the interface betwegerations research and
computer science. A classical text by Papadimitriou anégigte[79] combines
the two approaches. We assume that the reader is familiabagic notions from
complexity theory; see Garey and Johnsbfj [for a self-contained introduction
focusing on NP-hardness. More modern references are lalaflar the theory of
approximation algorithmslp, 90]. A somewhat dated but still unique monograph
on the traveling salesman and other server routing probiethe book by Lawler
etal. [73].

Competitive analysis has its origins in the 1980s, whenHeffirst time formal
concepts for the analysis of online algorithms where inicedl B6], although
some online algorithms with guaranteed competitive ratimenalready designed
in the 1960s in the context of multiprocessor schedulitd.[ For an in-depth
presentation of online computation, the reader can reféhdaexts by Borodin
and El-Yaniv BQ] or by Fiat and Woeginger4[7]. A useful reference for online
vehicle routing is given by Krumkesp], together with a number of Ph.D. theses
on the subject43, 75, 82].
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Chapter 2

Online server routing

2.1 Introduction

In this chapter, we survey the state of the art for onlineexerguting. Since we
do not want to disregard the running time of the algorithmscenesider, we start
with a brief review of basic complexity results foffiine server routing problems
(Section2.2). Then we introduce the online server routing model, dis¢he main
results in the area and show by some examples the basic paofiues (Section
2.3. We end by surveying extensions of the basic model in skdérections
(Section2.4).

2.2 Offline server routing: complexity results

The Traveling Salesman Problem (TSP for short) is an arplegty problem in
combinatorial optimization. This problem and its genewions,serveror vehicle
routing problems have been studied for more than fifty yead®][ and several
monographs are devoted to the subjé, [61, 73, 83, 89]. In this section we
discuss some basic complexity results for the TSP and solite\@riants.

2.2.1 The Traveling Salesman Problem

The basic TSP was already defined in the Introduction (Exafnfi). Let us define
it again here, in a slightly élierent but equivalent form.

Definition 2.1. An instance of thelTraveling Salesman Probleis given by an
integern > 0 and the distance between every paimo€ities in the form of a
functiond : {1,...,n}2 — Z,. The setF of feasible solutions is the set of cyclic
permutations om objects. The cost(¢) associated te € F is

D de D), V()
i=1
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whereo®) stands for the-th iterate of ¢, defined inductively by(@(x) = x and
(i+1)(y) = 0]
(%) = @(e™ (X))

The TSP is an NP-hard problem. To see why, consider the N Hiamil-
tonian Cycleproblem BQ]. In the Hamiltonian Cycle problem, one is given an
undirected graph, and the problem is that of deciding whetthe graph has a
Hamiltonian cycle, that is, a cycle spanning all the vedic&he following re-
duction from the Hamiltonian Cycle problem to the Travel®glesman Problem
shows that the latter is NP-hard.

Theorem 2.1([84]). The Traveling Salesman ProblemN&-hard.

Proof. LetG = ({1,2,...,n}, E) be an instance of the Hamiltonian Cycle problem.
We define a TSP instance as follows: the number of cities ialégu, the number

of vertices ofG, while the intercity distances are given by
1 iff{i,jleE
2 otherwise.

. J) = {

From the construction it follows tha® has a Hamiltonian Cycle if and only if
the TSP instance has a solution of cnstThus, a polynomial time algorithm for
the TSP implies a polynomial time algorithm for the NP-harahtiltonian Cycle
problem. m|

Indeed, the same proof technique can be used to prove a muehdrastic
fact: not only does the TSP have no polynomial time algorhmless BPNP, it is
also hard to approximate within any factor better than aroegptial inn.

Theorem 2.2([84]). For any fixed ke Z,, there is ndZ”k-approximation algorithm
for the Traveling Salesman Problem unl&ss\P.

Proof. We can proceed as in Theorédri, except that(i, j) is now 1+ n2™ when
{i, j} ¢ E. The reduction can be performed in time polynomial in Iog(mZ”k),
which is polynomial inn. m|

2.2.2 The metric TSP

As we have seen in the previous section, we cannot hope toguaeeapproxima-
tions to the general TSP unless¥P. Fortunately, in many applications the input
data satisfy some additional constraints that simplifygrablem. Particularly of
interest is the constraint that the intercity distancemfametric

Definition 2.2. Given a sei, a functiond : M2 — R, is called ametricon M if:
1. d(i,i) = O for everyi € M (definiteness)
2. d(i, j) = d(j,i) for everyi, j € M (symmetry)
3. d(i, j) < d(i, k) + d(k, j) for everyi, j,k € M (triangle inequality)

12



The sefM, equipped withd, is called ametric space

The TSP with the metric constraint is called thetric TSP The metric TSP is
still an NP-hard problem (the instances constructed in theff Theoren?.1lare
metric). However, dferently from the basic TSP, it admits constant approximmatio
algorithms.

Theorem 2.3. The metric TSP admits a 2-approximation algorithm.

Proof. The algorithm constructs a minimum spanning tfeen the input metric.
The total weight ofT is at most the cost of the optimal solution to the metric TSP
instance, since any Hamiltonian cycle contains a spanmngsy t

Then, a Eulerian multigraph is obtained framby taking two copies of every
edge of T. Finally, we take a Eulerian closed walk along this multraand
we “shortcut” it by eliminating multiple occurrences of teame vertex. By the
triangle inequality, doing so does not increase the cogteftalk. Thus, the final
Hamiltonian cycle has cost at most twice that of the optinoaitson. m|

The best approximation algorithm known to date for the mét8P is a heuris-
tic by Christofides.

Theorem 2.4([38]). The metric TSP admits 3/ 2-approximation algorithm.

It is quite striking that no progress has been made over h@ithm in thirty
years, despite numerous attempts by researchers. It im#iugal to ask if 32
is the best approximation ratio possible assumirg NP. Although an answer to
this question is still missing, researchers were able teeresults that go in this
direction.

Theorem 2.5([80]). There is no r-approximation algorithm for the metric TSP for
r < 220/219, unlessP=NP.

In a variant of the TSP, called the Wandering Salesman Rrofii&], the sales-
man is not required to return at the starting point at the drnideotour.

Definition 2.3. An instance of thaVandering Salesman ProblefWSP) is given
by an integem > 0 and the distance between every paindifties in the form of
afunctiond : {1,...,n}*> — Z,. The sefF of feasible solutions is the set of cyclic
permutationgy over the set oh cities. The cost(y) associated tep € F is

n-1
D de ), ¢ ().
i=1

Similarly to the TSP, we can define a metric variant of the WESfirns out
that the approximation properties of the WSP are essgntladl same as those of
the TSP.

Theorem 2.6([57]). The metric WSP admits32-approximation algorithm.
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Other special cases of the TSP hav@aient approximability properties. An
important case is that &P with the Euclidean metric, which was considered by
Arora [9].

Theorem 2.7([9]). For any r € (1,) and p € N, there is an r-approximation
algorithm for the TSP iRP with the Euclidean metric.

2.2.3 The Traveling Repairman Problem

In the TSP, the objective function is quite partial to theesatan, since it asks to
minimize the total length of the tour. Instead, we can cosrsabjective functions

that are more oriented to the customers in the cities. An itapbsuch function is

thetotal latency that is the objective of the so callddlaveling Repairman Prob-
lem The latency of a city is the distance traveled before firsitinig the city.

Definition 2.4. An instance of thélraveling Repairman ProblefTRP) is given
by an integem > 0 and the distance between every paindaiities in the form of
afunctiond : {1,...,n}> = Z,. The sefF of feasible solutions is the set of cyclic
permutations om objects. The cost(y) associated tp € F is

n i-1
d(eU=9(1), oD (2)).
1

i=1 j=

Similarly to the TSP, the TRP is an NP-hard problem and it iy \erd to
approximate if one does not assume a metric distance fumctitven with the
metric assumption, a constant approximation algorithm fambkarder to develop
than for the TSPZ6, 52]. The best result to date is due to Chaudhuri et al.

Theorem 2.8([33]). The metric TRP admits &59-approximation algorithm.

Finally, we mention that on the Euclidean line, the TRP isaole in polyno-
mial time by dynamic programmind], while for fixed higher dimensions there is
a quasipolynomial time approximation scher][

2.3 Online server routing: competitive analysis

2.3.1 The online server routing framework

In a server routing problem, a server moves in a special Kimaetric space (recall
Definition 2.2). In particular, we generally assume that the metric spapath-
metricandcontinuous By path-metric we mean that the distance between any two
points is equal to the length of the shortest path betweem.th& metric space

M is continuous if, for allx,y € M anda € [0, 1], there is az € M such that
d(x,2) = ad(x,y) andd(zy) = (1 — a)d(x,y). We callgeneral metric spacethe
metric spaces that are both path-metric and continuousallfinve assume that
the metric spac®l has a distinguished poiotcalled theorigin.
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We will be interested in general metric spaces as well as |pueial cases.
For example:

¢ thereal ling, i.e. R with the Euclidean distanad{x, y) = |x—Yy| and the origin
at 0;

¢ the nonnegative part of the real line, or simply tiadfline i.e. R, with the
Euclidean distancd(x,y) = |x —y| and the origin at O;

¢ the p-dimensional spaciP with the origin at 0 and the Euclidean distance

doey) = 4| D06 W3
i=1

¢ the general metric space induced (in the natural way) by dirested, con-
nected edge-weighted graph.

In Chapter3 we will also consider a generalization in which the distafwrestion
is not necessarily symmetric.

Being an online problem, a server routing problem has imssithat consist of
a sequence of requests= o107, - - -. In the basic framework, each request is a pair
oj = (rj, X)) € Ry x M. The parameter; is therelease dat®f requestrj, that is,
the time at which the request becomes known and availablprémessing, while
Xj represents the location of the request. In order to serveetgest, the server
will have to visit locationx;. In the basic model, there are no processing times,
that is, once visited a request is instantaneously serveglcdmpletion time Cof
arequestr; is the first time at which that request becomes served.

In accordance to the real-time model of online problems strgpence of re-
quests is assumed to be ordered by nondecreasing release AkHo, it is some-
times handy to denote hy=' the prefix ofo- consisting of all requests released up
to timet. Similarly we denote by=! ando=! the requests released at timand
the requests released since titneespectively.

The online algorithm controls a server, located at the orggic M at time
0. We denote the position of the server at titniay s(t). By scaling distances
appropriately, we can assume without loss of generality tttenserver can move
at most at unit speed. Obviously, since the algorithm hatortline, it does not
have information about the number of requests nor aboutdiease date of the
last request. Thus, at any timethe algorithm must determine the behavior of the
server as only a function ofando=!. Instead, anfiline algorithm knows the entire
sequencer already at time O.

A solution to an online server routing problem is called agible)schedule
Informally, a schedule for instance is a sequence of moves of the server such
that all requests - are served. Notice that (1) the server must start in therorigi
at time 0; (2) no request can be served before its release tasome variants
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of online server routing problems, the schedule mustlbsed that is, the server
must also return to the origin after serving all requests.

Different server routing problem associatffatent costs to a schedule. Thus,
we will introduce the various costs as we present the problemare interested in.

2.3.2 The homing online TSP

In the online Traveling Salesman Problem, cities to be edsirequests) are re-
vealed online while the salesman is traveling. The objeci$vto minimize the
duration of a closed schedule serving all requests, thahéstime at which the
server is back at the origin and every request has been sebuack the schedule
is required to be closed, the problem is also callethingonline TSP, to stress that
the server has to return “home”. The homing online TSP, asaitse suggests, is
probably the closest online analogue of the TSP. Howeveretare some interest-
ing differences between the two problems. One is that in fiim@ TSP lengths
and times have essentially the same role, while in the ol the cost is given
not by the length of the tour but by the length of the schedhia, is, by the total
time traveled by the server. If the server stays idle, thisnesult in an increased
cost. Another dference is that while in thefiine TSP a solution never needs to
visit the same point twice, an online schedule might havetsaldue to the release
dates constraints.

The homing online TSP was first considered by Ausiello et BlI].[ They
give a 2-competitive algorithm for general metric spaces strow that to be best
possible. Although the 2-competitive algorithm is not paynial time, the authors
show how to derive from it a 3-competitive polynomial timg@ithm, by applying
Theorem?2.4. A better polynomial time algorithm, with a competitive icabf
(7 + V13)/4 ~ 2.65, is derived by Ascheuer et al1].

Ausiello et al. also consider the homing online TSP on théliea, for which
they devise a /A-competitive polynomial time algorithm and prove a loweuhd
of (9+ V17)/8 ~ 1.64. Later, the problem on the real line was closed by Lipmann
[75], who gives a matching (9 V17)/8-competitive algorithm. Finally, Blom et al.
[25] consider the case of the halfline, for which they devise phinbest possible
3/2-competitive algorithm.

In order to expose the reader to the basic proof techniquesweuld like
to discuss a dierent 2-competitive algorithm for the homing online TSPisTh
algorithm, called SmartStart, was proposed and analyze8isbheuer et al.]1]
in the more general context of dial-a-ride problems (see 8kction2.3.5. The
analysis is particularly interesting because it shows haitimg can help in online
server routing. We will also use the same technique in Chapterhere we will
consider the online TSP in asymmetric spaces.
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A 2-competitive algorithm

sMARTSTART (Algorithm 1) depends on a real parameter- 0. From time to time,
the algorithm calls a “work-or-sleep” subroutine that cargs a (possibly approx-
imate) shortest scheduf for all unserved requests released so far, starting and
ending at the origin. Lef(S) be the length of schedulg. If £(S) < at, that is, the
length£(S) of the schedule is relatively short compared to the curtier t, then
the subroutine returnsS( work), otherwise it returnsS, sleep). Notice that the
subroutine has to find a solution to a metric TSP instance. 38erae that it uses a
p-approximation algorithm, for somee [1,1 + «]. When we are only interested
in competitive analysis, the running time of the subroutiik not be relevant so
that we can assume= 1. However, when we are interested in a polynomial time
algorithm we need to consider larger valuespdffor example, 32 when using
Christofides’ heuristic).

The algorithm has threeftiérent states of operation. In tlte state, the server
has served all known requests, is sitting at the origin aritingafor new requests
to occur. In thesleepingstate, the server is sitting at the origin and knows some
unserved requests, but has decided, according to the weslle@p subroutine, to
postpone their service. In theorking state, the server is following the schedule
last computed.

Algorithm 1 SMARTSTART

If the algorithm is idle at time& and new requests arrive, it calls the work-or-sleep
subroutine (that uses@approximation algorithm). If the result i$( work), the
algorithm enters the working state where it follows schedsl Otherwise the
algorithm enters the sleeping state with wake-up timeheret’ > t is the earliest
time such thaf(S) < at’ and{(S) denotes the length of the just computed schedule
S, i.e.,t’ = maxt, £(S)/a}.

In the sleeping state the algorithm simply does nothingl itstivake-up timet’.

At this time the algorithm consults again the work-or-sleaproutine. If the result

is (S, work), then the algorithm enters the working state ana¥edlS. Otherwise
the algorithm continues to sleep with new wake-up tifi{®)/a.

In the working state, that is, while the server is followingahedule, all new re-
quests are (temporarily) ignored. As soon as the curremidsde is completed the
server either enters the idle-state (if there are no undeeguests) or it consults
the work-or-sleep subroutine which determines the nexé g&eeping or work-

ing).

Theorem 2.9([11]). smarTsTART IS @ C-competitive algorithm for the online TSP
with
I\ 1+«
c= max{1+ a,p(l + —), — +p}.
a 2
Proof. Denote byr="m the set of requests released at timewherer, is the latest
release date. We distinguishfidrent cases depending on the statevofkTsTART
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at timerp,.

1. The algorithm is idle.

In this case the algorithm consults its work-or-sleep rautvhich computes
an approximately shortest sched@édor the requests im="m. The server
will start its work at timet” = maxrm, £(S)/a}.

If t' = rpy, it follows that{(S) < ary, and the algorithm completes no later
than time (1+ a)rm < (1 + a)ort(o). Otherwiset’ = £(S)/a and it fol-
lows thatt’ + £(S) = (1 + a)t’. By the performance guarantpeof the ap-
proximation algorithm employed in the work-or-sleep sultiee, we have
ort(0) > €(S)/p = at’/p. Thus, it follows that

SMARTSTART(07) = t' + £(S)

L+a)t <(L+a)- §0PT(0')

IA

p(l + C—]L:)OPT(O').

2. The algorithm is sleeping.

Since the wake-up time of the server is no later than{maxX(S)/a}, where
S is now a shortest schedule for all the requestsgrinot yet served by
SMARTSTART at timerp,, we can proceed as in the first case.

3. The algorithm is working.

If after the completion of the current schedule the servéersrihe sleeping
state, then by the same arguments as above we can ensutettaitpletion
time of thesmartstart server does not excegdl + 2)opt(c).

The remaining case is that th@arTstarT Server starts its final schedug
immediately after having complete®l Letts be the time when the server
startedS and denote byr='s the set of requests presented after the server
startedS at timets. Notice thato='s is exactly the set of requests that are
served bysmartsTarT in its last schedul&’:

SMARTSTART(0") = tg + £(S) + {(S’). (2.1)

Here, £(S) and£(S’) denote the lengths of the schedusndS’, respec-
tively. We have that
{(S) < atg (2.2)

sincesmarTsTART ONly starts a schedule at some tinifits length is no larger
thanat. Leto;j € o' be the first request fromr's served byorr. Since
the optimal schedule must be closed, we conclude that

opt(0r) > ts + d(X;, 0). (2.3)
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On the other hand, since a feasible scheduler-fé® consists in moving to
x; and then following the same route as the adversary, we have

£(S") < p(d(0, ;) + opT(0r) — ts) (2.4)

where we subtractet§ from the cost since we are computing a length, not
a completion time, and the adversary will not sesveat a time earlier than

ts.

Using 2.2, (2.3) and @.4) in (2.1) and the assumption that< 1 + «, we

obtain

SMARTSTART(07) < (1+ a)ts + £(S) (by 2.2

< (A +a-p)ts +pd(0, X)) + popt(0) (by 2.9
< (1+a)opr(c) + (20 — 1 — @)d(0, x;) (by 2.3)
< (L+)opr(a) + max(2p — 1 - a),0) 2@
<

max{“T" +p,1+ a}OPT(O')
and the proof is complete.

O

Corollary 2.10 ([11]). smarTsTART iS @ 2-competitive algorithm for the homing
online TSP whear = p = 1.

By using Christofides’ algorithm, we can approximate tf#re TSP in poly-
nomial time with a ratigp = 3/2. For this value ofo, the best value of is
(V13-1)/2 ~ 1.3.

Corollary 2.11 ([11]). Let ¢ = (7 + V13)/4 ~ 2.65. ThensMARTSTART iS a
c-competitive polynomial time algorithm for the homingioal TSP whenr =
(V13- 1)/2 and Christofides’ algorithm is used in the work-or-sleeprsutine.

2.3.3 The nomadic online TSP

As we have seen in Secticgh2.2 if we relax the condition that the server ends
its schedule at the same point it departed from, we obtailWWaedering Sales-
man Problem. Its online version is called themadiconline TSP and has been
introduced together with the homing online TSH|[ Ausiello et al. [L7] give a
5/2-competitive algorithm for general metric spaces and akrower bound of
2. The same lower bound also holds for the real line, in whidedhe authors give
a 7/3-competitive algorithm.

Lipmann [75] gives an improved algorithm for general spaces with coitipet
ratio 1+ V2. This algorithm, as that of Ausiello et al., is not polynainime,
but it can be made so with only a constant increase in the ciitiaperatio, by
combining it with the approximation algorithm of Theor&r6. Lipmann also
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considers the problem on the real line, for which he givessa pessible, though
fairly complicated, algorithm with competitive ratiod3 [76].

The case of the halfline received less attention, the oniyltréging a 163
lower bound by Lipmann7b]. In this section we give a simple 2-competitive
polynomial time algorithm for this variant. As the gaps ie tlesults suggest, the
nomadic online TSP is harder to analyze than its homing espatt and no best
possible algorithm is known, not even on special spaces asithe real line.

We will consider the nomadic TSP on asymmetric spaces in €hapas well
as a multiserver variant in Chapter In order to present the basic techniques that
will be used there, we present here our 2-competitive dlgorfor the halfline.

A 2-competitive algorithm on the halfline

For the nomadic online TSP on the halfline, we give here a sirigtompetitive
algorithm (Algorithm2).

Algorithm 2 sLow-waLK

The server follows the space-time lis@) = t/2, that is, it departs from the origin
at half-speed. The server always serves immediately eegpyest it encounters
along the way. On every new request released between thentpiwsition of the

server and the origin, the server goes back at full speedetatiserved request
that is closest to the origin, serving all requests it entengnon the way. Then, it
proceeds at full speed away from the origin till encountgtiine space-time line
s(t) = t/2. At that point, it remains on that space-time line until tiext request,

as before.

Theorem 2.12.sLow-wALK iS 2-competitive for nomadic online TSP on the halfline.

Proof. If no request is ever released between the server and tha,stigw-waLk

is obviously 2-competitive. Otherwise, let, = (r, X) be the last request causing
the server to back up, and lgt be the distance from the origin to the farthest
request ever. We have

opt(0) = maxt, X.}, (2.5)

since no schedule can end before requgds released, and in every schedule the
server should reach the farthest point requestes, # s(r), sinces(r) <r/2, we
have:

SLOW-WALK(07) < T + S(r) + X, < 2r < 2op1(0).

Otherwise X, > S(r) andsLow-waLk(o) <t +r/2— X+ X, — X. We distinguish two
cases.

1. r > 2x,: thensLow-waLk (o) < 2r < 2op1(0).
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2. r < 2X,: inthis case we need another lower bounaer{o). If the adversary
serves first request; and then the one ir,, we haveort(o) > I + X, — X;
otherwise orr(c) > X, + X, — X. In both cases,

opt(0r) = Minfr, X.} + X, — X. (2.6)

Summing 2.5) to (2.6) we getorr(c) > X. + (r — X)/2. The competitive

ratio is then
SLOW-WALK (0) r+r/2+ X, — 2X
opt(0r) T r/24+ % —X/2
r+r/2+x
r/2+ X,
r
=1 <2
M r/2+ %,

2.3.4 The online TRP

The online version of the Traveling Repairman Problem has lmonsidered by
several authors. Feuerstein and Stoudi §ive a 9-competitive algorithm for the
real line and a corresponding lower bound of 2. This lower bound is still the
best known, even for general spaces. Instead, the best kaigarithm for general
spaces was given by Krumke et 8] where a (1+ V2)? ~ 5.81-competitive
algorithm was devised for the more general dial-a-ride lemob

The large gap between the best known lower and upper bouridesses the
fact that the online TRP is an analyticallyfiitult problem. We will consider a
multiserver variant of the online TRP in Chapter

2.3.5 Other related problems

Following the initial body of results on online server ragtiproblems, many other
related problems have been considered in the literature.

In theminimum total flow timenline routing problem, the objective function is
2i(Cj = rj), which is equivalent to the minimization of the averageagiddetween
the release date of a request and its completion time. Thécile function is
particularly relevant because it can represent averagadissatisfaction in a con-
tinuously running system. Unfortunately, there cannostegonstant competitive
algorithms for this problem, even in very restricted sgtifp]. This is reminiscent
of similar results in the scheduling literatur20[ 64, 74]. Analogous nonexistence
results hold for theninimum maximum flow tinpgroblem B]. Several attempts at
studying these problems in weaker adversarial models hese bonsidered (see
Section2.4).

Online dial-a-ride problemshave also been considered by some authors. In a
dial-a-ride problem, every request specifies both a sourdaalestination point in
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the metric space. The object corresponding to the request Ieutransported by
the server between the two points. The server has some ta@agneaning that

it can transport at mo€ objects at a time, and preemption is not allowed: once an
object has been picked up by the server, the server is natedldo drop it at any
other place than its destination. Dial-a-ride problemsgaeeralizations of server
routing problems, which are obtained as special cases wiregvéry request its
source and destination coincide. Some of the best knownitdges for server
routing problems have been indeed devised in the contextibhetide problems.
Ascheuer et al. J1] give a best possible competitive algorithm for the homing
dial-a-ride problem. For the nomadic dial-a-ride probldipmann [75] gives

a (3+ V5)/2 ~ 2.62-competitive algorithm. The “latency” dial-a-ride piein,
with cost}}; Cj, has been investigated by Feuerstein and Stougie Who give

a lower bound of 3 on the competitive ratio of the problem ar@da@mpetitive
algorithm for the real line. This result was generalized enproved by Krumke
etal. [8], who devised a ( V2)? ~ 5.81-competitive algorithm for general metric
spaces. Some results for the dial-a-ride problem with thectise of minimizing
the maximum flow time are given by Krumke et &7].

Irani et al. p8] consider a server routing problem where requests have dead
lines. The objective is to maximize the number of requesitdhe served by their
deadline. The length of time between the arrival of a reqaedtits deadline is a
constant. The authors give both upper and lower bounds oodimpetitive ratio
of the problem in terms of the diameter of the metric space Sdme problem is
also investigated by Krumke et al 1], who give a constant competitive algorithm
for the uniform metric space and prove that no determinatiorithm can achieve
a constant competitive ratio on the real line.

In Chapter3 we study an online version of thesymmetric TSP with triangle
inequality, that is, we drop the symmetry condition on the metric spaie.give
a best possible competitive algorithm for the homing versiend we show that
there cannot be constant competitive algorithms for theathioncase. Indeed, we
show that, in a precise sense, in the nomadic case the cdinmeditio has to be a
function of the amount of asymmetry of the space.

In Chapter4 we consider theonline Prize-Collecting TSPIn the Prize-
Collecting TSP, individual requests are not required todygexd, but each request
has a weight and every feasible schedule has to serve eneqgésts to collect at
least a certain total weight, called thaota The quota is specified before requests
start being released. Moreover, every request has an assbaialue called its
penalty and the cost of a schedule is given by its length plus the duhegenal-
ties of the requests not in the schedule. For this problemiveeag7/3-competitive
algorithm. For the special case when the metric space istidalfline we obtain
an improved competitive ratio of 2, which compares with adowound of 139.

A special case of the online Prize-Collecting TSP calaine Quota TShas al-

ready been considered in the literature by Ausiello etld].[The Quota TSP is
defined as the Prize-Collecting TSP, except that there apenalties. Ausiello et
al. give a simple 2-competitive algorithm for the online @udSP and prove it to
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be best possible among deterministic algorithms. They@ssider the problem
on the halfline, and give a best possibj@ &ompetitive algorithm for this case.

2.4 Alternative online models

As we have seen in the Introduction of this thesis, competidinalysis is some-
times criticized for leading to estimates that are too peissic. This critique ap-
plies also in the context of online server routing, and irtipalar to problems
such as the minimum tofahaximum flow time, for which no constant competi-
tive algorithms are at all possible. For this reason, materrstive models have
been suggested in the literature in the hope of restrictiegativersary enough so
that the diferences in quality between various online algorithms fehgquroblems
become evident. Thesdferts have been partially successful on the individual
problems considered, but still a more general, unified aagrdias not emerged.

2.4.1 Resource augmentation

In the online algorithms literature, a method of analysat ik often used to par-
tially mitigate the power of the adversary is resource augat®n (see also Sec-
tion 1.7). Although resource augmentation has been used for otlieeqroblems
following the real-time model, such as scheduling, no aaibn of resource aug-
mentation specific for server routing problems was knowioy fio this thesis. We
give some resource augmentation results for the nomadiceomSP and the on-
line TRP in Chapteb. We notice that resource augmentation in terms of number
or speed of the servers is not enough when dealing with tabdotmaximum flow
time objective functions.

2.4.2 Fair adversary

One of the first alternative adversarial models proposedhéncontext of online
server routing has been tfer adversarymodel. The observation is that for some
algorithms, the worst case is obtained when the adversamesraway from pre-
viously released requests without giving any informatiorhte online algorithm.
A fair adversary, instead, always keeps its server withindbnvex hull of the re-
guests released so far. The fair adversary model has beeduoed by Blom et al.
[25], who consider the homing online TSP on the nonnegativegidhte real line.
They devise an online algorithm with a competitive ratio bf{ V17)/4 ~ 1.28
against a fair adversary, and also show that this ratio isgmssible. Lipmanni5]
also has several lower bounds for routing problems withddirersaries.
Unfortunately, already on the real line, the fair adverdargot weak enough
to allow competitive algorithms for cost functions suchtzes tnaximum flow time
[70]. However, when considering the same objective functioa imiform metric
space, the simple first-come first-serve algorithm whichagivserves an oldest
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unserved request next is 2-competitive and best possildimsicn fair adversary

[67].

2.4.3 Non-abusive adversary

The fair adversary is still too powerful in the sense thataib enove to a point
where it knows that a request will pop up without revealing erfiormation to the
online server before reaching that point. Ttum-abusive adversarintroduced by
Krumke et al. Y0, is a natural restriction of the adversary on the real lifv@on-
abusive adversary may only move in a direction if there ataigeerved requests
on that side. Krumke et al7{)] give an 8-competitive algorithm for the maximum
flow time server routing problem on the real line against a-alousive adversary.

2.4.4 Reasonable load

A completely diferent approach to avoid pathological worst case input semse
is based on the notion agkasonable loadproposed by Hauptmeier et ab€q]:
informally, they define a set of requests, that come up infiecgntly large period,
to be reasonable if they can be served by an optimal algoiithertime period of
the same length. This corresponds to a stability condigonilar to those used in
queueing theory, implying that the system is not overloduedequests even when
it is continuously operating. The authors analyze in thigleldhe online dial-a-
ride problems for the minimization of maximum and total flamé. Under the
reasonable load condition, they are able to distinguistvéxen the quality of two
classical algorithms for which pure competitive analydiseg the same negative
result.

Following similar motivations, in Chapté& we propose a model for continu-
ously operating server routing systems that is baseatigersarial queueing theory
[32]. We assume that requests are introduced in the system bgvansary with
some bounded rate. This allows us to study questions suchetber an algorithm
is stable that is, it maintains a bounded number of unserved reqa¢stsy time,
or whether it is such that the maximum flow time of every retjisealso bounded
(that is, independent of the age of the system).

2.4.5 Algorithms with lookahead

Lookaheads the capability of an online algorithm of seeing some rstgia ad-
vance, and as such it can be seen as a relaxation of the ordhel.nClassic online
problems have been studied in the presence of lookahedd asysaging 4] and

list update B]. Different models of lookahead have been proposed, but usually th
online algorithms are allowed to see a certain fixed numbegaiests in advance.
For online problems following the real-time model, such abn@ server routing
problems, a more natural notion is thattohe lookahead an online algorithm
endowed with time lookaheadl foresees, at any timg all the requests that will
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be released up to time+ A, no matter their number. Allulli et al.6] consider
server routing problems in metric spaces with limited disané&, and give results
where the competitive ratio is a function 4f¢s. Jaillet and Wagnersp)] instead
give competitiveness results where the competitive ratia function of the ratio
between the amount of time lookaheadnd some characteristic quantities of the
input instance, related to its optimal cost.

2.4.6 Randomized algorithms

Generally speaking, allowing randomization can be seenveayao improve the
power of an online algorithm. Indeed, for some classicaihenproblems, such as
paging, it is known that randomized algorithms obtain 8tribetter competitive
ratios than their deterministic counterpad$§][

For online server routing problems, it is unclear whethedoamization really
helps online algorithms. Krumke et a6, 69] present a (2 V2)/In(1 + V2) ~
3.87-competitive randomized algorithm for the online TRPiagaan oblivious
adversary. This algorithm has a better performance thabhabktknown determin-
istic algorithm. However, its competitive ratio is still Wabove the lower bound
of 1 + V2 for deterministic algorithms. Thus, it could be the casa thbetter,
deterministic algorithm is discovered. For other problethe best known algo-
rithms are deterministic. However, this is probably mosile to the fact that the
literature has focused mainly on deterministic algorithms

2.4.7 Zealous algorithms

A distinctive feature of online problems in the real-time dmbis that the server
can not only serve the requests in an arbitrary order, bahitatso be idle, waiting.
Although at first thought this may not sound as a good ideaethee indeed situa-
tions in which some waiting is beneficial. In particular, bgiting, the server could
avoid the need to do part of its work two or more times. If thitr& work costs
more than waiting, then by waiting the algorithm is actuallying something.

The phenomenon we have just described is not uncommon ierseniting
problems. In order to study the matter more quantitativelgm et al. R5] intro-
duced the notion ofealous algorithms$or online server routing problems. Infor-
mally, a zealous algorithm should never sit and wait wheould serve unserved
requests. Also, a zealous server should move towards watkhtés to be done
directly, without any detours.

Definition 2.5. An algorithm for an online server routing problem is calilous
if it satisfies the following conditions:

1. Ifthere are still unserved requests, the direction osttr@er changes only if

a new request becomes known, or if the server is either inrigaar it has
just served a request.
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2. At any time when there are unserved requests, the sether enoves to-
wards an unserved request or the origin at maximum (thahit, speed.

3. If there are unserved requests, the server cannot waie atrigin.

By comparing the competitive ratio of zealous and non-aeakigorithms for
the same problem, we can measure the importance of waitorgeample, Blom
et al. show that no zealous online algorithm for the onlind®> T the real line
can have competitive ratio less thaf7 Thus, the 74-competitive algorithm pre-
sented by Ausiello et al1[7], which is in fact a zealous algorithm, is best possible
within its class. Instead, a hon-zealous algorithm for @maes problem attains the
better ratio (9+ V17)/8 ~ 1.64 [75]. Other comparisons between zealous and
non-zealous algorithms for online server routing problemesgiven by Lipmann

[75].

2.4.8 Restricted information

A model of online dial-a-ride problems in which the onling@dithm, instead of
the adversary, has more restrictions than usual isabigicted information model
considered by Lipmann et al77]. In this model, the online algorithm becomes
aware of the destination of a ride only when the ride beginshsas when the
server picks up the customer from the source point, as italigthappens, for
example, with many radio-taxi services). They show thatloand upper bounds
become considerably worse in this model, concluding thmmany real-world
scenarios, it is worthwhile to invest on the informationtsys in order to gather alll
the information as soon as a request is presented.
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Chapter 3

The online asymmetric traveling
salesman problem

3.1 Introduction

In the classical traveling salesman problem, a set of chieesto be visited in a
single tour with the objective of minimizing the total lehgof the tour. As we
saw in Chaptep, this, together with its dozens of variations, is one of thesin
studied problems in combinatorial optimization. In theragyetric version of the
problem, the distance from one point to another in a giveresgan be dferent
from the inverse distance. This variation, known as the Awsgtnic Traveling
Salesman Problem (ATSP) arises in many applications; f@mgke, one can think
of a delivery vehicle traveling through one-way streets @ity or of gasoline costs
when traveling through mountain roads.

Here we are interested in the online version of the ATSP, naonéne ATSP.
In the online TSP and ATSP, the places to be visited in theespeerequested over
time and a server (the salesman or vehicle) has to decide & evller to serve
them, without knowing the entire sequence of requests ékéod. The objective
is to minimize the completion time of the server. To analyme algorithms, we
use the established frameworkad@mpetitive analysiésee Chaptet). This work
is the first to address the online ATSP from the point of viewahpetitive anal-
ysis. Previous work, both theoretical and experimentad, fbaused on theffiine
version B9, 49, 63].

Our results are summarized in Taldel, where they are also compared with
the known results for the symmetric case. As we will see, garanetric TSP
is substantially harder than the normal TSP also when ceretdfrom an online
point of view; in other words, the online ATSP is not a triveattension of the
online TSP. In fact, as Tablg1 shows, most bounds on the competitive ratio are
strictly higher than the corresponding bounds for the @nlii$P, and in particular
in the nomadic case there cannot be online algorithms withnatant competitive
ratio.
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Although the algorithmic techniques we adopt in the asymimetse come
essentially from the symmetric case, they require somesadgnt in order to attain
useful competitive ratios. On the other hand, it is worthmgthat the lower bound
techniques are quite fiierent from the previously known ones and we hope they
can be of some use in future work.

We should also mention that we present our algorithms in Igiegh versions
that compute optimal traveling salesman tours or pathss,Timey will not run in
polynomial time unless£NP. However, if one is interested in polynomial running
time, itis possible to compute approximately optimal tdossead, the competitive
ratio degrading by a factor that is essentially (at most)ayeroximation ratio of
the subroutine being used. For example, as a consequenaerekalts, a constant
approximation algorithm for the ATSP would automaticattyply a constant com-
petitive polynomial time algorithm for the online ATSP. Werther discuss this
issue in Section.6.

The rest of this chapter is organized as follows. After givinbrief review
of the approximation results for theffline problem in Sectior8.2, we give the
necessary definitions and the discussion of the online min@xdction3.3. In Sec-
tion 3.4, we study the homing case of the problem, in which the ses/erquired
to finish its tour at the same place where it started; for thablem we give a

3*—2‘/5 ~ 2.62-competitive algorithm and show that this is best possibi Section
3.5, we address the nomadic version, also known as the wandeaivajing sales-
man problem (see also Secti@r2.2), in which the server is not required to finish
its tour at the origin. For this case we show that in generabrdime algorithm
with a competitive ratio independent of the space canndteikideed, we show
that the competitive ratio has to be a function of the amotistsgymmetry of the
space (in a precise sense introduced in Se@&idn In Section3.6we explain how
our algorithms can be combined with polynomial time appredion algorithms
in order to obtain polynomial time online algorithms. In tast section, we give
our conclusions and discuss some open problems.

3.2 The dHine ATSP

The ATSP has been well studied from the point of view of appnation algo-
rithms. However, if the condition is that every city or plauas to be visiteax-
actly once, the general problem does not admit grapproximation in polynomial
time, unless PNP orp is a superpolynomial function of the number of cities (recal
Theorem?.2).

Instead, when every city or place given in the input has toibited at least
once or, equivalently, the distance function satisfiesrinagular inequality (which
we will tacitly assume for the rest of the chapter), appration algorithms exist
having an approximation ratio @(log n) [49, 63].

Theorem 3.1([49]). There is dog, n-approximation algorithm for th&TSPon n
cities.
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Problem Lower Upper References

Bound Bound
Homing TSP 2 2 11,17
Homing ATSP (3+ V5)/2 (3+V5)/2  Th.3.334
Homing TSP (zealous) 2 2 17]
Homing ATSP (zealous) 3 3 TRB.5 3.6
Nomadic TSP D3 1+ V2 [75]
Nomadic ATSP Vo 1+ \w+1 Th.3.93.10
Nomadic TSP (zealous) .5 25 [17, 75]
Nomadic ATSP (zealous) y(+ 1)/2 Y+2 Th.3.113.10

Table 3.1: The competitive ratio of symmetric and asymraetsuting problems.
Refer to SectiorB.3for the definition ofiy.

For the sake of completeness, we give a short proof of thiplsifout elegant
result.

Proof. The algorithm is based on solving multiple instances of dhele cover
problem. In the cycle cover problem, the input is the samenahe ATSP: a
complete weighted directed graph nmodes. A solution is simply a cycle cover,
that is, a collection of node-disjoint directed cycles,tstiwat every city appears in
some cycle, and every cycle has length at least two. The €@stycle cover is
the sum of the weights of all its cycles. In the cycle coverem, the objective
is to minimize the weight of a cycle cover. Thus, the ATSP # jflhe cycle cover
problem with the additional constraint that there cannotrfaee than one cycle.
Despite this similarity, the cycle cover problem can be edlin polynomial time,
as it can be easily reduced to the well-known assignmentigmoly2], while the
ATSP is NP-hard.

The algorithm of Frieze et al. simply solves the cycle covebfem repeatedly
and “patches” together the cycles thus obtained until desicygrle remains. More
precisely, at stagethe algorithm solves the cycle cover problem on the remginin
nodessS;, obtaining a cycle cove€C;. The cost ofCC; is at most the cost of
the optimal ATSP tour, since the restriction of this tourSjis a feasible cycle
cover. ThenSi,; is constructed by selecting one arbitrary node per cycte@n
Since at each stage every cycle has length at leasi8yg| < |Si|/2. Thus, there
are at most logn stages, and the total cost of the cycle covers found is at most
(log, n) - opr. Finally, the cycle covers are merged together to form areran
directed multigraphM on the initial set ofn nodes. From this multigraph, an
Eulerian tour is obtained and then “shortcut” into a singieode tour that, by the
triangle inequality, has at most the same cos¥las o

Using a more sophisticated approach, Kaplan et6&]. ¢btain an approxima-
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tion algorithm with ratio 42 log, n, which is currently the best known result.
On the negative side, it is known that the problem does notitgastynomial
time approximation schemes if:PNP.

Theorem 3.2([80]). There is no r-approximation algorithm for the ATSP with
triangle inequality for r< 117/116, unlessP=NP.

The question of the existence of an algorithm with a consagptroximation
ratio for the asymmetric case is still open after more thamdecades.

3.3 The online model

An input for the online ATSP consists of a spadefrom the classM defined
below, a distinguished poirtt € M, called the origin, and a sequence of requests
oi = (ri, %) wherex; is a point ofM andr; € R, is the time when the request is
presented. The sequence is ordered soithatimpliesr; <rj.

The server is located at the originat time 0 and the distances are scaled so
that, without loss of generality, the server can move at rabshit speed.

We will consider two versions of the problem. In themadicversion, the
server can end its schedule anywhere in the space; theigbjecjust to minimize
the makespan, that is, the time required to serve all predemrquests. In the
homingversion, the objective is to minimize the time required twseall presented
requests and return to the origin.

An online algorithm for the online ATSP has to determine the behavidhe
server at a certain momenhtas a function only of the requests, ) such that
ri <t. Thus, an online algorithm does not have knowledge abounhtineber of
requests or about the time when the last request is reledéedill useS to denote
a schedule over a subset of the requests; in this éé8ewill be the length of that
schedule.

Finally, we would like to clarify the conditions that the sgaVl should sat-
isfy. Usually, in the context of the online TSP, continuowsthpmetric spaces
are considered (as defined in Sect@3.1). However, here the main issue is
precisely asymmetry, so we have to drop the requisite thaev¥ery x andy,
d(x,y) = d(y, X). We review here the definitions. A gel, equipped with a distance
functiond : M? — R, is called aquasi-metric spac#, for all x,y,z € M:

() d(x,y) =0ifand onlyifx=y;
(i) d(xy) <d(x2 +d(zy).

We call a spacév an admissible spacé M is a quasi-metric and, for any
X,y € M, there is a functionf : [0,1] — M such thatf(0) = x, f(1) = y and
f is continuous, in the following senseal(f(a), f(b)) = (b — a)d(x,y) for any
0 <a< b< 1. Such afunction representsiaortest pattfrom x toy. Notice that
every admissible space is strongly connected.
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We will use M to denote the class of admissible spaces. Notice that thesths
metric induced by a weighted graph is not admissible if we tgkto be the set
of vertices. However, we can always make such a space adirissi adding (an
infinity of) extra points “along the arcs”.

In particular, to see how a directed graph with positive Wisgn the arcs can
define an admissible space, consider the all-pairs shodéss matrix of the graph.
This defines a finite quasi-metric. Now we add, for every arg)(of the graph, an
infinity of pointsr,, indexed by a parametere (0, 1). Letrg andr; denotex and
y respectively. We extend the distance functibso that:

d(my,my) = (¥ —y)d(xy) forall0<y <y <1

It can be verified that the set= {r, : v € [0, 1]} represents a shortest path from
xtoy. Fory ¢ {0, 1}, the distance from a point, to a pointz not in r is defined
asd(my, 2) = d(my, y) + d(y, 2); that is, the shortest path from to z passes through
y. Vice versa, the distance fromto r, is defined asl(z r,) = d(z x) + d(X, 7,).
Finally,

d(mry,my) = (A - (' —y)d(xy) +d(y,x) forallO<y <y <1

We say that such a spaceilglucedby the original directed weighted graph. We
remark that this model, while still including the originalbroposed onell7] as a
special case, can also capture the situation in which tivesirnot allowed to do
U-turns.

Finally, it will be useful to have a measure of the amount gfhametry of a
space. Define as thmaximum asymmetigf a spacéM € M the value

d(x.y)

M) = .

v x,sylélkal d(y, x)
Xy

We will say that a spachkl hasbounded asymmetiyheny(M) < co. Indeed, the
spaces with bounded asymmetry are exactly those in whickeaheer is always
allowed to do a U-turn.

3.4 The homing online ATSP

In this section we consider the homing version of the onlii&R, in which the ob-
jective is to minimize the completion time required to seallgpresented requests
and return to the origin. We establish a lower bound of abdit®and a matching
upper bound. Note that in the symmetric online TSP, the spmeding bounds
are both equal to 21[7, 66].

Let¢ denote the golden ratio, that is, the unique positive smhuidx = 1+1/X.

In closed formg = 1+T‘/§ ~ 1.618.

Theorem 3.3. The competitive ratio of any deterministic online algamittior the
homing online ATSP is at least+ ¢.
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Figure 3.1: The graph used in the proof of Theor&®

Proof. Fix anye > 0. The space used in the proof is the one induced by the graph
depicted in Figurg.1 The graph has # 4n nodes, whera = 1 + [¢7‘1], and the
length of every arc ig, except for those labeled otherwise. Observe that the space
is symmetric with respect to an imaginary vertical axis pagshrougho. Thus,

we can assume without loss of generality that, at time 1, goast being released
yet, the online server is in the left half of the space. Thetina¢ 1 a request is
given in pointA, in the other half. Now let be the first time at which the online
server reaches poil or E.

If t > ¢, no further request is given. In this casgo) > t + 1 + 2e while
ort(0) < 1+ 3e so that, wher approaches zeror(o)/opr(c) approaches 4t >
1+ ¢.

Otherwise, ift € [1, ¢], at timet, we can assume that the online server has just
reacheckE (again, by symmetry). At this time, the adversary gives aiestjinB;,
wherei = [%]. Now the online server has to traverse the entireEEdoefore it
can serveB;, thus

OL(O')Zt+1+3E+1+E" “+2622t+1+56.

€
Instead, the adversary server will have moved fioto B; in time at most + 2¢

and then serve®; andA, achieving the optimal cosier(c) < t + 4e. Thus, when
€ approaches zeroy(o)/oprr(o) approaches 2 % >1+¢. m|

To prove a matching upper bound on the competitive ratio, seeauvariation
of algorithmsmartstart, described in Sectiof.3.2 Here we give a dierent, less
formal description of the algorithm.

As we will soon see, the best valuewfs a* = ¢.

Theorem 3.4. smMarTSTART iS (1 + ¢)-competitive for the homing online ATSP when
a=¢.
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Algorithm 3 SMARTSTART

The algorithm keeps track, at every timeof the length of an optimal schedule
S*(t) over the unserved requests, starting at and returningetmtigin. At the
first instantt’ such thatt’” > «f(S*(t')), the server starts following at full speed
the currently optimal schedule, ignoring temporarily gvaew request. When
the server is back at the origin, it stops and returns mangahe value/(S*(t)),

starting as before when necessary.

Proof. We distinguish two cases depending on whether the last sequeves
while the server is waiting at the origin or not.

In the first case, let be the release time of the last request. If the server starts
immediately at time, it will follow a schedule of lengtht(S*(t)) < t/a, ending
at time at most (& 1/a)t, while the adversary pays at ledsso the competitive
ratio is at most & 1/a. Otherwise, the server will start at a tirtle> t such that
t' = af(S*(t)) (sinceS* does not change after tintgand pay (1+ «)f(S*(t)), so
the competitive ratio is at mostd.a.

In the second case, I&(t) be the schedule that the server is following while
the last request arrives; that is, we take be the starting time of that schedule.
Let S’(t) be an optimal schedule over the requests releasied time t. If the
server has time to wait at the origin when it finishes follogvii‘(t), the analysis
is the same as in the first case. Otherwise, the completio® dfflamMARTSTART IS
t+ £(S*()) + €(S'(t)). SincesmartsTaRT has started followings*(t) at timet, we
havet > af(S*(t)). Then

t+ £(S*(t) < (1+ 1/a)t.

Also, if oy = (rf, X¢) is the first request served by the adversary having release
time at least, we have that(S’(t)) < d(o, x1) + opt(0) — t, since a possibility for
S’ is to go tox; and then do the same as the adversary (subtracfiogn the cost
since we are computing a length, not a completion time, artti@other hand the
adversary will not serve s at a time earlier that).

By putting everything together, we have thatrrstarT pays at most

(1 + 1/a)t + d(o, X¢) + opr(0) — t

and since two obvious lower bounds arr(o) aret andd(o, x¢), this is easily seen
to be at most (2 1/a)opt(0).

Now max1l + a, 2 + %} is minimum whenx = o* = ¢. For this value of the
parameter the competitive ratio istlp. m|

3.4.1 Zealous algorithms

In the previous section we have seen that the optimum peaflacen is achieved
by an algorithm that, before starting to serve requeststswaitil a convenient
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starting time is reached. In this section we consider inktha performance that
can be achieved bgealousalgorithms. A zealous algorithm does not change the
direction of its server unless a new request becomes knavtheaerver is at the
origin or at a request that has just been served; furthernaorealous algorithm
moves its server always at full (that is, unit) speed wheretaee unserved requests
(see Sectiore.4.7for a precise definition).

We show that, for zealous algorithms, the competitive riadis to be at least 3
and, on the other hand, we give a matching upper bound.

Theorem 3.5. The competitive ratio of any zealous deterministic onlilgpathm
for the homing online ATSP is at leg&t

Proof. We use the same space used in the lower bound for generaltiatger
(Figure3.1). Attime 1, the server has to be at the origin and the advegiaes
a request inA. Thus, at time I+ e the server will have reached wldg (by sym-
metry) and the adversary gives a requedBin The completion time of the online
algorithm is at least 3 6¢, while opr(c) < 1 + 3¢. The result follows by taking a
suficiently smalle. i

Using the previous theorem, we can prove that the Ignoreittigo (Algorithm
4) is best possible among the zealous algorithms for the hpntine ATSP.

Algorithm 4 1GNoRE

Whenever the server is at the origin and there are unsergegsts, the algorithm
computes a shortest schedule over the set of unserved tegteesing and ending
ato. Then the server starts following the schedule, ignoringperarily every new
request, until it finishes at the origin. Then it waits at thigio until unserved

requests are available, as before.

Theorem 3.6. 1GNoRE is zealous an@-competitive for the homing online ATSP.

Proof. Lett be the release time of the last requess If the schedule that~ore
was following at timet, we have thatcnore finishes followingS at timet’ <

t + £(S). At that time, it will eventually start again following alsedule over the
requests which remain unserved at tithelet us callS’ this other schedule. The
total cost paid byeyore will be then at most + £(S) + £(S’). Butt < opr(0),
since even theffline adversary cannot serve the last request before it iagede
and on the other hand bogandS’ have length at mosier(c), since the @line
adversary has to serve all of the requests serv8daindS’. Thust+£(S)+£(S’) <
3orr(0). m|

3.5 The nomadic online ATSP

In this section we consider the nomadic version of the o8P, in which the
server can end its schedule anywhere in the space. We showatmaline algo-
rithm can have a constant competitive ratio (that is, inddpat of the underlying
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Figure 3.2: The graph used in the proof of Theor&m

space). Then we show, for spaces with a maximum asymmetaylower bound
v and an upper bound 4 +/y + 1. Note that in the symmetric nomadic online
TSP the best lower and upper bounds af8and 1+ V2, respectively T5).

Theorem 3.7. For every L> 0, there is a spac®l € M such that the competitive
ratio of any online algorithm for nomadic online ATSP ldhis at least L.

Proof. For a fixede > 0, consider the space induced by a directed cycla en
[L/€] nodes, where every arc has lengtfirigure3.2). Attime 0 a request is given
in nodeAgs. Lett be the first time the online algorithm reaches néde

Now if t > 1, the adversary does not release any other request sert@) =
2¢, oL(0) = 1+ € andoL(o)/opT(07) > 2—16 + %

Otherwise, ift < 1, at timet the adversary releases a request at the origin. It is
easily seen thatpr(c) < t+2e andoL(c) > t+€([£1- 1) > t+2¢ + L — 3¢ so that

L - 3e L - 3¢
> 1+ .
t+ 2¢ 1+ 2¢

By takinge close to zero we see that in the first case the competitive gedivs
indefinitely while in the second case it approachesl. m|

ou(o)/orr(c) = 1+

Corollary 3.8. There is no deterministic online algorithm for nomadic asli
ATSP on all spaceBl € M with a constant competitive ratio.

We also observe that the same lower bound can be used whejdetive
function is the sum of completion times.

Thus, we cannot hope for an online algorithm which is contigetifor all
spaces inVl. Indeed, we will now show that the amount of asymmetry of a&spa
is related to the competitive ratio of any online algorithon that space.
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Theorem 3.9. For everyy > 1, there is a spac®l € M with maximum asymmetry
¥ such that any deterministic online algorithm for nomadidirem ATSP oriMl has
competitive ratio at least/iy.

Proof. Consider a set of pointsl = {x, : y € [0, 1]} with a distance function

Y -y ify <y
d(x,, X,/) = N ,
0 %) { yliy-v) ify=vy.
The origin isXg. The adversary releases a request at time 1 in paintett be
the time the online algorithm serves this request. 3f 1, no more requests are
released andi(c) > Vi, opr(o) = 1, oL(c)/opT(0) > i
Otherwise, ift < /iy, at timet a request is given at the origin. Naw(c) >
t+y, opr(0) <t+1and
+y

t —1
or(o)/opr(0) > 1 1+ ltﬁ+ L2 \/_+ 1 = .

O

A natural algorithm, along the lines of the best known alidponi for the sym-
metric version of the problenv ]|, gives a competitive ratio which is asymptoti-
cally the same as that of this lower bound.

Algorithm 5 RETURN-HOME

At any moment at which a new request is released, the setugnsao the origin
via the shortest path. Once at the origin at titnié computes an optimal schedule
S over all requests presented up to titnend then starts following this schedule,
staying within distancgt’ of the origin at any time’, by reducing the speed at the
latest possible time.

Theorem 3.10. For everyy > 1, there is a value 0B such thatRETURN-HOME iS
(1 + /¥ + 1)-competitive on every spadé € M with maximum asymmety.

Proof. There are two cases to be considered. In the first ees&~-HoME does
not need to reduce its speed after the last request is rdlelasthis case, if is the
release time of the last request, we have

t+ ypBt + £(S)

opt(0) + YPBorr(c) + orr(0r) = (2 + YB)orr(0).

RETURN-HOME(0")

IA

IA

In the second case, lebe the last tima&erurn-HOME iS moving at reduced speed.
At that time,ReTURN-HOME MUSt be serving some request; Jebe the location of
that request. SinceeTurn-HOME Was moving at reduced speed towargdgve must
haved(o, x) = Bt; afterwardserurn-Home Will follow the remaining parSy of the
schedule at full speed. Thus

RETURN-HOME(0") < t + £(Syx) = (1/8)d(0, X) + £(Sx).
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On the other handyr(o) = £(S) > d(0, X) + £(Sx). Thus, in this case, the compet-
itive ratio is at most 15.

The values* = W;l_l minimizes max2+y3, 1/8} and yields the competitive
ratio of the theorem. i

3.5.1 Zealous algorithms

Also in the case of the nomadic version of the online ATSP, wshwo consider
the performance of zealous algorithms. Of course, no zeagorithm will be
competitive for spaces with unbounded asymmetry. Here woev that the gap
between non-zealous and zealous algorithms is much higherinh the homing
case, the competitive ratio increasing fré+/y) to O(y).

Theorem 3.11. For everyy > 1, there is a spac®l € M with maximum asymme-
try ¢ such that the competitive ratio of any zealous determiistiline algorithm
for nomadic online ATSP ail is at least3(y + 1).

Proof. We use the same space used in the proof of The@@&mAt time 0, the
adversary releases a request in point The online server will be at point;
exactly at time 1. Then, at time 1, the adversary releaseguestin pointxg. It is
easy to see that.(o) > 1 + y, while opr(o) = 2. m|

We finally observe thakerurn-nome with g = 1 is a zealous algorithm for
nomadic online ATSP and, by the proof of Theor8rQ, it has competitive ratio
v+ 2.

3.6 Polynomial time algorithms

None of the algorithms that we have proposed in the previeasons run in poly-
nomial time, since all of them need to compute optimal sclesdon some subsets
of the requests. On the other hand, a polynomial time onligerighm with a
constant competitive ratio could be used as an approximatigorithm for the
ATSP, and thus we do not expect to find one easily. Howeveralgarithms use
offline optimization as a black box and thus can use approximatigorithms as
subroutines in order to give polynomial time online aldaris, the competitive
ratio depending of course on the approximation ratio. Itigaar, in the homing
version we need to solve instances of tligirme ATSP. The best polynomial time
algorithm known for this problem has an approximation rati®.842 logn [63].
For the nomadic version, the correspondirfiiime problem is the shortest asym-
metric hamiltonian path, which also adm@logn) approximation in polynomial
time [35].

We do not repeat here the proofs of our theorems taking intowaxt the ap-
proximation ratio of the filine solvers, since they are quite straightforward. How-
ever, we give the competitive ratio of our algorithms as afiam of p, the approxi-
mation ratio, and,, the maximum asymmetry of the space, in Tah2 Note that,
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Problem Algorithm Competitive ratio

Homing ATSP SMARTSTART (1+20+ {1+4p)/2
Homing ATSP (zealous) 1GNORE 1+2o
Nomadic ATSP RETURN-HOME (1 + p + /(1 + p)? + 4¢)/2

Nomadic ATSP (zealous) RETURN-HOME 1+ p + i/

Table 3.2: The competitive ratio as a functionoadndy.

with respect to the values in TabBel, the competitive ratio becomes worse by a
factor that is strictly less than the approximation ratin.the case ofMARTSTART
andreTurN-HOME, this is also due to the fact that the algorithms can adagtdo t
approximation ratio by suitably choosing the parameteasnds. FOr SMARTSTART,
the optimal choice is

a; = 551+ VT o),

while for RETURN-HOME it iS
B*—_—l[ (1+p)2+44//—(1+p)]
P20 '

In those special cases in which the ATSP with triangle intyus approx-
imable within a constant factor in polynomial time, our féesyield polynomial
time constant competitive algorithms. Notably, these s@iselude the ATSP with
strengthened triangle inequalif24].

3.7 Conclusions

We have examined some of the online variations of the asynmtegveling sales-
man problem. Our results confirm that the asymmetric problara indeed harder
than and not simply extensions of their symmetric countéspa

The main conclusion is that, as usual in online vehicle moutivhen mini-
mizing the completion time, waiting can improve the comipetiratio substan-
tially. This is particularly evident in the case of nomadi€ ¥ on spaces with
bounded asymmetry, where zealous algorithms have coimpetitio Q() while
RETURN-HOME iS O(v/i/)-competitive.

We expect the competitive ratio of the homing online ATSP ¢éasbmewhat
lower than 1+ ¢ when the space has bounded asymmetry. Also, since the proof
that no online algorithm can have a constant competitivie rathe nomadic case
is also valid when the objective function is the sum of cortipletimes (the trav-
eling repairman problem, see Secti¢hg.3and?2.3.4), it would be interesting to
investigate this last problem in spaces with bounded asytrgme
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Finally, we remark that the existence of polynomial ti@€l)-competitive al-
gorithms for the homing version is indissolubly tied to théseence of arO(1)-
approximation algorithm for theffline ATSP.
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Chapter 4

The online prize-collecting
traveling salesman problem

4.1 Introduction

In the Traveling Salesman Problem, a salesman has to visitd sities to sell his
merchandise, and his goal is to minimize the length of the loet us consider the
more general case in which each city has botfenaltyand aweightassociated
with it; now the commitment of the salesman is to collect &giguotaof weights,
by visiting a stfficient number of cities; the final cost will be the length of ther
plus the penalty of every city that was not visited. This peaibis known as the
Prize-Collecting Traveling Salesman ProbldCTSP) 21]. If all the penalties
are equal to zero, then the PCTSP reduces to the special mas@ ks the Quota
Traveling Salesman Problerig, 19, 27], also called sometimes the Quorum-Cast
problem B7]. On the other hand, when the quota is zero, i.e. there is quine
ment to visit any city at all, we call the resulting problene tRenalty Traveling
Salesman Probleln Related to the PCTSP is also the so cakeBSP problem,
i.e. the problem of finding a tour of minimum length which tédk cities among
the given ones. Moreover, the problem is also related t&4kST problem, that
is the problem of finding a minimum weight tree which spamdes in a graph.
Thus, the PCTSP generalizes a number of interesting roptivigjems.

In this chapter we address the online version of the PCTS®hioh the re-
guests arrive over time in a metric space and a server (thaitvg salesman) has to
decide which requests to serve and in what order to serve, tivéhout yet know-
ing the whole sequence of requests; the goal is, as infilireoPCTSP, to collect
the quota while minimizing the sum of the time needed to cetepthe tour and the
penalties associated to the requests not in the tour. Wg #tednline PCTSP in
the usual framework afompetitive analysjsvhere the performance of the online
algorithm is matched against the performance of an optimttmn® server (see

1Although the name Penalty TSP is not standard in the litezatue use it to avoid ambiguity,
since some authors use the name PCTSP to refer to this spasél
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Chapterl for details).

The rest of the chapter is structured as follows. We begirrbyiging a formal
definition of the dfline problem and an overview of approximation results in Sec-
tion 4.2 We introduce the online model of the problem in Secdo® In Section
4.4, we observe that a lower bound on the competitive ratio ofaggrithm for
the online PCTSP is 2 and we give g37competitive algorithm. In Sectioh5we
give lower and upper bounds for the special case when thealyimdemetric space
is the halfline. Finally, we give our conclusions in Sectibé

4.2 The diline PCTSP

We begin by formally defining theffline PCTSP.

Definition 4.1. An instance of thdrize-Collecting Traveling Salesman Problem
is given by a metric over a finite spacél, . .., n}. Moreover, the instance specifies
2n + 1 nonnegative integei®, ws, ..., Wn, 71, ..., mn. A feasible solution is given
by atour, that is a cyclic permutatiop on some seS c {1,...,n} such that
1le Sand}.swW > Q. The cost of the solution is(¢) = €(¢) + n(¢) where

Up) = Yies dig) andza(p) = Yigs 7.
Several other problems can be defined in terms of the PCTSP.

Definition 4.2. An instance of théenalty Traveling Salesman Problésra PCTSP
instance in whichQ = 0 andw; = O for alli € {1,...,n}. Feasible solutions and
costs are defined exactly as in the PCTSP.

Definition 4.3. An instance of th&uota Traveling Salesman Problésa PCTSP
instance in whichrj = O for alli = {1,...,n}. Feasible solutions and costs are
defined exactly as in the PCTSP.

Definition 4.4. An instance of th&-Traveling Salesman Probleima PCTSP in-
stance in whichrj = 0 andw; = 1 for alli € {1,...,n}. The quotaQ is customarily
denoted byk. Feasible solutions and costs are defined exactly as in ti&PC

Notice that the standard Traveling Salesman Problem iscamase of both
the Penalty TSP (by letting every penalty behsiently high) and of the&k-TSP
(whenk = n). Thus, the TSP is a special case of the Prize-Collecting ihSP
two different ways. The lattice of relations between all these problis given in
Figure4.1, where an arrow from probler to problemB means tha#\ is a special
case ofB.

In the general form that we have described, the PCTSP waddimaulated
by Balas R1], who gave structural properties of the PCTSP polytope dbasge
heuristics. The problem arose during the task of develogaily schedules for a
steel rolling mill.

The only results on guaranteed heuristics for the PCTSPwéalAwerbuch
et al. [L9]. They give a polynomial time algorithm with an approxineetiratio of
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PCTSP

\
/ Quota TSP

Penalty TSP

\ - k-TSP

TSP

Figure 4.1: Relations between the TSP, kKHESP, the Quota TSP, the Penalty TSP
and the PCTSP.

O((log min(Q, n))?), wheren is the number of cities an@ is the required quota.
However, the PCTSP contains as special cases both thePES&tand th&-TSP,
which received more attention in the literature.

The Penalty TSP has been considered by Bienstock éx3who give a 52-
approximation algorithm. A better result, due to Goemarts\&filiamson B3], is
the following.

Theorem 4.1([53]). The Penalty TSP admitsZaapproximation algorithm.

For thek-TSP, the best bound to date is a 2-approximation due to Gdig [
Apart from the result of Awerbuch et alLl$] on the more general PCTSP, the Quota
TSP was not addressed directly in the literature. Howevegnstant approxima-
tion easily follows from a result of Ausiello et alL§].

Theorem 4.2([18]). The Quota TSP admitsE03-approximation algorithm.

Proof. Ausiello et al. [L8] give a 5-approximation for the Quota Minimum Span-
ning Tree problem. A 10-approximation for the Quota TSPIlgdsllows by the
standard technique of doubling a tree obtained by that ithgorand constructing
atour out of an Eulerian closed walk of the Eulerian muliidrshus obtained. o

From these results for the Penalty TSP and the Quota TSP, eve ishthe
following how a technique used by Awerbuch et 4RJ[allows to derive a constant
approximation algorithm for the PCTSP.

Theorem 4.3. The PCTSP admits a constant approximation algorithm.

Proof. A simple idea exploited by the algorithm of Awerbuch et &Bj[is that, for
a given instancé of the PCTSP, the following quantities constitute lower s
on the cosber of an optimal solution:

1. the cosbrrq of an optimal solution to a Quota TSP instarigedefined on
the same graph and having the same weights and quotal gsiirce every
feasible solution td can be turned into a feasible solutionltpof at most
the same cost).
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2. the costorr, of an optimal solution to a Penalty TSP instarigedefined
on the same graph and having the same penalties bgsince a feasible
solution tol is also feasible fot, and has the same cost);

Thus, to approximate an optimal solution to the PCTSP isthme can:

1. Run apg-approximation algorithm for Quota TSP dgto obtain a toufTq
such that/(Tq) < pq - opTq. While Ty is feasible for the PCTSP instante
its cost might be high when we take into account penalties.

2. Run gop-approximation algorithm for Penalty TSP bnto obtain a toufT
such that(Tp) < pp - opTp. Notice that this toull, might not be feasible for
l.

3. Concatenat&y and T, to obtain a touiT feasible for the PCTSP instante
and of cost

C(T) < UTg) + c(Tp) < pq - OPTq + pp - OPTp < (0g + Pp) - OPT.

This means that, by using the algorithms of Theordmsind4.2, we can obtain a
constant-factor approximation to the Prize-Collectind®TS m|

4.3 The online model

Let us define the online PCTSP in a formal way. Mte a metric space, with
a distinguished poind called theorigin. As is customary (see Secti@3.1), we
only requireM to be continuous and path-metric; for example, any weigbtagh
induces a space satisfying this requirements. We will als& bt the special case
of the halflineR,, with the origin at zero.

The input is given by a paiQ, o), whereQ € Q, is called thequotaando =
o1---0p IS a sequence akquests Every requestr; is a quadrupler{, x;, w;, 7;),
wherer; € R, is therelease dateof the requestx; € M its location w; € Q.
its weightandr; € Q. its penalty We also assume that the sequence is ordered
such that < j impliesr; < rj. All the information about a request, including its
existence, becomes known only at its release date. On tkee lotimd, the quota is
revealed immediately to the algorithm.

The algorithm controls a singkerver(traveling salesman), initially located in
the origin. The server can move around the space at speedsatlin®oservea
request, the server must visit the location of the requetstaidier than its release
date.

A feasible solution for instanceQ) o) is a schedule that is, a sequence of
moves of the server such that the following conditions atisfeed: (1) the server
starts in the origin, (2) the total weight of the served rexgsiés at leas@, and (3)
the server ends in the origin. L8tbe a schedule for(, o). The time at which
the server returns permanently at the origin is callechth&esparof the schedule
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Problem Lower Upper References
Bound Bound

PCTSP 2 73 Th.4.4,4.8

PCTSPR,) 1.89 2 Th.4.104.13

Table 4.1: The competitive ratio of prize-collecting triwg salesman problems.

and we denote it byn(S). The sum of the penalties of the requests which were
not served is denoted by(S). The objective of the online PCTSP is to construct
online a schedul& for the given instance that minimizexS) + =(S).

In the following, we denote byL(Q, o) andort(Q, o) the total cost incurred
by an online and an optimaltine server respectively on inpu®(o).

For a sequence, we letn(o) = Y., . By o=' we denote the subsequence
of o including all the requests having release date less thamual ¢ot, and
similarly o>t is the siffix of o consisting of all the requests having release date
strictly larger thart. We also denote byer(t) the total cost incurred by the optimal
offline server over the sequencé!, i.e., opr(Q, o=!). Wheno=! has no feasible
solution (that is}, ¢« W; < Q), we conventionally definepr(t) = co. Note that
according to these definitions we haxa(Q, o) = opr(ry). Finally, we uses*(t) to
denote an optimalfline schedule for@, o=!). Thus,opr(t) = m(S*(t)) + 7(S*(t)).

A summary of our results is contained in Taldld.

4.4 A competitive algorithm for the online PCTSP

In this section we give a/B-competitive algorithm for the online PCTSP. Notice
that a lower bound of 2 on the competitive ratio of the onli&TSP is inherited
from simpler problems.

Theorem 4.4. The competitive ratio of any deterministic online algamittior the
online PCTSP is at least 2, even if£)0 or if #j = 0 for all requestsr.

Proof. WhenQ = 0, we can give requests with arbitrarily high penalties s the
problem becomes equivalent to the standard online TSP, arhaa lower bound
of 2 is known [L7].

Whenr; = 0 for all requests;, the problem is equivalent to the online Quota
TSP, for which a lower bound of 2 is also known, even for fixz{L6]. ]

In order to get our competitiveness result, we begin by mga lemma on the
properties obrr(t) as a function ot. Notice that the fact that a request is served
in the optimal solution for a sequeneedoes not imply that the request is served
in an optimal solution forr=!; this is why the following lemma is non-trivial.
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Lemma 4.5. Consider an instanc€Q, o) of the online PCTSP and let) be a
request with maximum release date among the requests saraaaptimal gfline
solution. Then

(@) opr(t) + m(c>Y) = opr(ry) for all t € [r), rp];
(b) opt(r)) > 1.

Proof. (a) Since a feasible solution foris to first serve optimally=t and then
pay penalties for all successive requests, we have

opt(ry) < opr(t) + (0™h). 4.1)

On the other hand, a feasible solution &ot is to follow the optimal dine
schedule fowr, of course saving on the penalty cost of the requests release
after timet, so we have

opr(t) < opr(ry) — (o). (4.2)
The claim follows by combining4.1) and &.2).
(b) Assume by contradiction thatt(r|) < r;. By (a),

orr(rn) = oer(n) + x(c™")
< r +n(c”").

But since there is an optimal schedule oithat servesr; and no request
with a release date later than

opr(rp) > 1) + (™)

which gives a contradiction.

Consider the following algorithm for the online PCTSP (Aligam 6).

Algorithm 6 war - Wait and Go with Restart
The algorithm has two states, WAIT and GO. The initial staté&/AlT.

e WAIT. Wait until a timet such thaber(t) = t, then enter state GO.

e GO. Letty be the time this state was entered. Return the server toitjia or
at full speed, then start following sched®&(ty); when done, return to state
WAIT. Meanwhile, if a new request arrives at tinhecomputeorr(t). If
ort(t) > t, make arestart, that is, stop the server at its current location and
return to state WAIT.

The intuition behind the algorithm is the following. In orde be competitive,
the algorithm tries to guess which requests are ignored d&ichvare served by the
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optimal diline server. The conditionpr(t) > t is used to ensure that if a restart
occurs, only a short time has elapsed, compared to the dptiosg while if a
restart does not occur, the new requests can be safely @ynore

To move from intuition to proof, we need the following impamt property of
war: after the algorithm restarts, it eventually enters stafeddother time. This
property is non-trivial, becauserr(t) can be a discontinuous function bf We
formalize the property in the following lemma.

Lemma 4.6. If waer enters state WAIT at timg, tand orr(t,) > ty, then at some
time § > ty, war enters state GO.

Proof. If no requests are released after titpe for anyt > t,, we haveorr(t) =
op1(tw) and thus at timéy = opr(ty) > tw wer enters state GO.

Otherwise, consider the sequeneg™. If no request inc>% is served in an
optimal solution foro-, by Lemmad.5a),

opt(t) = opr(ty) + 77(0->tw) _ ﬂ.(0_>t)

for anyt € [ty,rn]. Thus, fort > t,, opr(t) can only increase as a function of
(until time ry), thus at some timg, it must intersect the identity function, sinoe
has finite length.

The last case to consider is when some requestinis served in an optimal
solution foro. Let o be a request with maximum release date among such re-
quests. Then by Lemm&a5(b), orr(r|) > r; and sinceopr(t) can only increase for
t € [ry, rp], at some timdyg it will intersect the identity function. m|

We need a last ingredient in order to prove the competitisgéwacr.

Lemma 4.7. At any time t, the server controlled lysr is at most at distance/8
from the origin.

Proof. We prove the claim by induction on the sequence of statesezht®y the
algorithm. The claim is trivially true at time 0. Also, by iadtion, it is true while
the algorithm is in state WAIT since in that state the sergrsthot move.

When the algorithm enters state GO, the server is, by indribilypothesis, at
some distancey € [0, ty/3] from the origin.war first has to move the server to the
origin; if it changes state before arriving, then the clagntrue. Otherwise, at time
ty+ dg, war starts following schedul&(tg), which takes time at moser(tg) = tg,
so at any later momen§ + dy + A the server cannot be at a distance greater than
min{A, tg/2} from the origin. Now mifA, t5/2} < (tg + A)/3 < (tg + dg + A)/3,
which proves the lemma. m|

Theorem 4.8. war is 7/3-competitive for online PCTSP.

Proof. Letty = opr(tg) be the last time state GO was entered (if state GO is never
entered,war is easily seen to be optimal). According to Lemed, the online
server is at distance at magt3 from the origin. Then the server will pay, for
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the sequence=', at mostty + tg/3 + opr(ty) = (7/3)opr(ty). Notice that this
also includes the penalties of all requestsritke that were not served bg*(tg).
Moreover, the last request served by an optimalffiine solution must have been
released at a timg < tg, otherwise, since by Lemm&5(b) opr(r;) > rj, wor
would have restarted and by Lemmab state GO would have been entered one
more time.

The online server also pays the penalties of all the requelstased after time
ty, but notice that these penalties are also paid by the opsiahalion. More specif-
ically,

wGr(Q, o) < gOPT(tg) +n(0™%9)
while by Lemmad.5a),
opr1(Q, o) = op1(r)) + m(0”") = opr(ty) + n(c).
The competitive ratio is then at most3 m|

To see that the ratio is tight, consider the real line with= 1. Fix some
suficiently largeB and stficiently smalle. Attimer; = 1 a new request having
x1 = 1,w; = 1 andr; = B arrives. war waits until time 2, then begins moving
towards the request. Attime = 3 — € a new request arrives having = —e,
w, = 1 andr, = B; no more requests arrive ser(Q, o) = opr(r) = 3. When the
second request arrivesGr (While the server is in E €) recomputesrr(rp) and
makes a restart sineer(ry) > rp. Attimer, + 1 = 4 — € wor reaches and then
starts a schedule which ends at time 4 + 3 = 7 — €. Fore approaching O the
competitive ratio approachegd.

4.5 The online PCTSP on the halfline

In this section we consider the online PCTSP when the unidgriyetric space is
the real halfline. For this case, we prove a lower bound &9 bn the competitive
ratio of any algorithm and we give a 2-competitive onlineoaitpm.

451 Lower bound

Lemma 4.9. No competitive algorithm for online PCTSP with=0 can leave the
origin until at least one request with positive penalty haet released.

Proof. Suppose that the online server is not at the origin at somettis0. If no
requests at all are released, the optimal cost is zero wWiglenline algorithm pays
at leastt > 0. Even if we insist that at least one request should be mteadke
same result follows by considering a single request withrelbe that approaches
zero. i

Theorem 4.10. The competitive ratio of any deterministic online algomittfior the
online PCTSP on the halfline is at leg8t+ v21)/4 ~ 1.89.
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Proof. In what follows, lety = (3 + V21)/4. Since we assume th = 0, the
weights of the requests will not be relevant for the proofingd.emma4.9we can
assume that the server will remain at the origin until the feguest is released in
xp = 1 attimer; = 1. This request has penalty = 3/y. If the online algorithm
oL eventually serves-1, then obviously

oL(Q,0) = 3
ort(Q,0) < mq,
Qo) _ 3 _
oprr(Q,0) T m 4

Otherwise, let. be the makespan of the online algorithm@t:. If t; > 3 — 74,

we have
o(Qo) 3-m+m _ 3
> > — =.
or1(Q, o) m 1
Finally, if t. < 3 -7y, attimer, = 1+ 3 (> tc), while the online server is at
the origin, the adversary releases a new request is 2 — ro with a very high
penalty. Thus this request, must be necessarily served for the algorithm to be
competitive.

If the online algorithm only servas,, we have

T
OL(Q,O')ZI’2+2X2+7T1=4—I'2+7T1=3+ El

On the other hand, if the algorithm serves bethando, the cost will be
oL(Q o) >Tp+2x = 1+m/2+2=3+ %

Thus, regardless of the behavior of the algorithm, a low&nklan the online cost
is 3+m1/2. Instead, the optimalfiine solution is to serve both requests by moving
immediately to 1, serving; as soon as it is released, and serwingon the way
back to the origin. The cost of this solution is 2. Thus, thepetitive ratio is at

least
}(3+ﬂ)_
o\t

4.5.2 Upper bound

The algorithm we consider in this section is a variation of@ithm 6 designed
specifically for the halfline metric space. For the analy$ithe competitive ratio,
it will be useful to make the further assumption that, amdregdptimal schedules,
we consider one that minimizes the makespan.

We can now state the algorithm (Algorithr).

In the competitiveness proof fevea we will need the following two lemmas,
which strengthen Lemm@&5and4.6, respectively.
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Algorithm 7 wan - Wait and Go on the Halfline
The algorithm has two states, WAIT and GO. The initial staté&/AlT.

o WAIT. Wait until a timet such that = m(S*(t)), then enter state GO.

e GO. Letty be the time this state was entered. kebe the point ofS*(tg)
which is farthest from the origin. Move the serverxpat full speed, then
return it to the origin, while serving every request whoseatmn is visited;
when done, return to state WAIT. Meanwhile, if a new requesies at time
t, computem(S*(t)); if m(S*(t)) = t, stop the server at its current location
and return to state WAIT.

Lemma 4.11. Consider an instancéQ, o) of the online PCTSP and let; be a
request with maximum release date among the requests dgyaedoptimal giine
solution. Then

(@) m(S*(t)) = m(S*(r))) forall t € [r, rn];
(b) M(S*(r)) = .

Proof. (@) First, notice that
m(S*(r)) = m(S*(t)) for all t € [r}, rp]. 4.3)

Otherwise, by using schedul®*(r)) on o=!, we could achieve a shorter
makespan while not increasing the total cost which, by Lerddéa), is
opt(r)) + (") — n(c>t). By a similar argument,

m(S*(t)) = m(S*(rn)) for all t € [ry, ). (4.4)

Finally,
m(S*(rn)) = M(S*(r)) (4.5)

as if that was not the case, since schedil@r,,) does not serve any request
released later tham, by using it on=" we could achieve a shorter makespan
while not increasing the total cost which, by Lem#&(a), is orr(r,) —
#(oc>"). The claim follows by combining4(3), (4.4) and @.5), as equality
must hold throughout.

(b) Follows from (a) and the fact th&*(r,) serveso; and thus must have
makespan at least.
i

Lemma 4.12. If wen enters state WAIT at timg aind n{S*(ty)) > tw, then at some
time ¢ > t, wan enters state GO.
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Proof. If no requests are released after tiefor anyt > t,, we havem(S*(t)) =
m(S*(tw)) and thus at timé; = m(S*(ty)) > tw wen enters state GO.

Otherwise, consider the sequeneg. If no request inc™>% is served in an
optimal solution foro-, by Lemmad.11(a),

m(S™(t)) = m(S"(tw))

for anyt € [ty, rn]. Thus, fort > t,, m(S*(t)) remains constant as a functiontof
and the claim follows withg = m(S*(tw)).

The last case to consider is when some request’in is served in an opti-
mal solution foro. Let o be a request with maximum release date among such
requests. Then by Lemmall(b), m(S*(r;)) > r, and since by Lemmd.11(a)
m(S*(t)) remains constant fdr> ry, the claim follows withty = m(S*(ry)). m|

Theorem 4.13. wan is 2-competitive for online PCTSP on the halfline.
Proof. Let o be a request that, among the ones served by the optiitiaksolu-
tion, has maximum release date. By Lem#nal(a),

m(S*(r)) = m(S*(rn)) > 11,
thus from Lemmat.12 eventually after time, the algorithm enters state GO. Let
ty(> 1)) be the last time state GO is entered. From Lerdnia) we have

opT(n) = oPT(ty) + m(0'). (4.6)

Recall thatx, is the point of the optimal scheduf (ty) which is farthest from the
origin, thus
m(S*(tg)) > 2x.. (4.7)
Also,
m(S*(tg)) = tg, (4.8)
because state GO was entered at tigne
Let s(ty) be the position ofveh at timety. If S(tg) < x., we have
waH(Q, o) tg + 2X. + 1(S*(tg)) + m(0"9)
m(S*(tg)) + M(S*(tg)) + 7(S*(ty)) + n(c'9) by (4.7),(4.9)
m(S*(ty)) + op1(rn) by (4.6)
20pt(rp) by (4.6
20pr1(Q, o).

If s(ty) > x., we have

waH(Q, o)

(1 VAN | R VAN VAN

tg + S(tg) + 1(S*(ty)) + n(c')

2ty + n(S*(ty)) + n(c")

2m(S*(tg)) + 7(S*(tg)) + m(c>'9) by (4.9
m(S*(tg)) + opr(rn) by (4.6)
2opt(rp) by (4.6)
2oprt(Q, ).

IIA 1IN A IA
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4.6 Conclusions

We formulated an online version of the Prize-CollectingvBlang Salesman Prob-
lem. For general spaces, we gave/8-¢ompetitive algorithm which is not far
from best possible, the competitive ratio of any online athm being at least 2.
We also discussed the special case of the halfline, for whichave a B95 lower
bound and a 2-competitive algorithm.

Other than improving the bounds, an interesting open prohteto develop
a competitive algorithm for the online PCTSP that runs irypomial time. The
standard technique of combining the online algorithm withofiline approxima-
tion subroutine does not seem to work directly here, as #uatires the subroutine
to be used as a black box, while our analysis relied more thae on the properties
of the optimal solution. Thus, affiérent approach may be required.
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Chapter 5

Online k-server routing problems

5.1 Introduction

In ak-server routing problenk servers (vehicles) move in a metric space in order
to visit a set of points (cities). Given a schedule, that sequence of movements
of the servers, the time at which a city is visited for the fiinste by one of the
servers is called theompletion timeof the city. The objective is to find a schedule
that minimizes some function of the completion times.

We studyk-server routing problems in thaeimline version. Prior to this work,
there was essentially no result on online multiserver nguproblems, except for
some isolated algorithmd ], 25]. We give competitive algorithms and negative
results for online multiserver routing problems, with tHgeztive of minimizing
eithermakesparor total completion timeln the case of makespan we consider the
variant known asiomadic in which the servers are not required to return at the
origin after serving all requests; the above cited previessilts apply to the other
variant, known as thbomingtraveling salesman problem. Apart from being the
first work dedicated to multiserver online routing problenie results are some-
what unexpected. We give the first results of online problé&mnsvhich multiple
server versions admit lower competitive ratios than thagle server counterparts.
This is typically not the case for problems in the one-by-oralel; for example, it
is known that in the famous-serverproblem [78] the competitive ratio necessarily
grows linearly withk.

It may also be useful to draw a comparison with machine sdhegwvhich is
closer to routing problems in many ways. In scheduling aloesearch has been
conducted to online multiple machine problend$][ In the one-by-one model
competitive ratios increase with increasing number of rireeh In real time online
scheduling nobody has been able to show smaller competéti@s for multiple
machine problems than for the single machine versionsgtitere lower bounds
do not exclude that such results exist (and indeed peopfesuthey do) 36, 41].

The rest of this chapter is structured as follows. We disthis@pproximabil-
ity of offline k-server problems in Sectidh2 Then, after introducing the online
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model in Sectiorb.3, we give in Sectiorb.4 competitive algorithms and lower
bounds for both th&-Traveling Salesman and tkeTraveling Repairman in gen-
eral spaces. In Sectidh5we show that in the case of the real line we have an
almost optimal algorithm for large The same result cannot hold in the Euclidean
plane, as we show in Secti@n6. We give our conclusions in Sectién?.

5.2 Offline k-server routing problems

Routing problems with multiple servers have been studi¢einaih the literature.

Here we focus on approximation results related to the problnat we will study

in the online setting. We begin by defining theserver version of the Traveling
Salesman Problem.

Definition 5.1. An instance of the&k-Traveling Salesman Problénis given by a
metric d over a finite spacé¢l,...,n}. A feasible solution is given by k-tour,

that is a set ok cyclic permutationsps, ..., ¢ Whereg; @ X; — X and the
X;jc{l,...,nfaresuchthat E X;n...Nn XcandX; U...UXx ={1,...,n}. The
cost of a solution is

Xl

Frederickson et al4] consider thek-TSP and give an approximation preserv-
ing reduction from th&-TSP to the standard TSP.

Theorem 5.1([48]). The k-TSP admits @ + 1 — 1/k)-approximation algorithm,
wherep is the ratio of any approximation algorithm for the TSP.

By using Christofides’ heuristic3B] one obtains the following result, that has
not been improved yet.

Corollary 5.2. The k-TSP admits &/2 — 1/k)-approximation algorithm.

We now consider the multiple server version of the TraveRegpairman Prob-
lem.

Definition 5.2. An instance of thé&-Traveling Repairman Probleis given by a
metric d over a finite spacé¢l,...,n}. A feasible solution is given by k-tour,

that is a set ok cyclic permutationsps, ..., ¢ Whereg; : X; — X and the
X;jc{l,...,nfaresuchthatE X;n...Nn XcandX; U...UXx ={1,...,n}. The
cost of a solution is

k
0(901,---,90k)=z_

=1

[any

IXjl i—
de @), ¢ (1)),

Il
i

1t should be noted that this is affirent problem from the TSP withclientsdefined in Chapter
4. Unfortunately, the namke- TSP is standard in the literature for both problems. In thiapter we
only consider the TSP witk servers
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The first approximation algorithm for thé&-TRP has been given by
Fakcharoenphol et al4fl]. It has an approximation ratio of.497, wherep is
the best approximation factor for the problem of finding ta&st cost rooted tree
spanningi vertices (-MST). The currently best known factor for theMST is 2
[51], which gives an approximation ratio of B94 for thek-TRP. This ratio has
been improved by Chaudhuri et a3, who reduce it to 897, which is currently
the best known factor for the problem.

Theorem 5.3([33]). The k-TRP admits 8497-approximation algorithm.

Jothi and Raghavachai®()] consider a generalization of theTRP in which
nodes have associated repair times. They present Zapproximation algorithm
for this problem, wherg is the best approximation factor obtainable for the blsic
Traveling Repairman Problem. Chekuri and Kun][consider instead a variant
of the k-TRP in which diterent servers may havefiirent departure points, or
depots. They give a 24-approximation algorithm for thisgbean. Chaudhuri et al.
[33] improve this factor to 12.

To our knowledge, a multiple server version of the Wande8atesman Prob-
lem (defined in Chapte2) has never been considered in the literature from the
point of view of approximation algorithms.

5.3 The online model

The model we use is an extension of the single-server ontinéng model intro-
duced in Sectio2.3. Here we only highlight the dierences.

A k-server routing algorithm controlsvehicles orservers Initially, at time O,
all these servers are located in the same poinitthe metric spac®l. The algo-
rithm can then move the servers around the space at speedstal m@Ve do not
consider the case in which servers havedent maximum speeds; in compliance
with machine scheduling vocabulary we could say that theessrare identical
and work in parallel.) As in the single-server framework, @aasider continuous
path-metric spaces.

Defining thecompletion timeof a request as the time at which the request
has been served, thmadic k-traveling salesman problefiTSP) has objec-
tive minimizing themaximum completion timéhe makespanand thek-traveling
repairman problen{k-TRP) has objective minimizing thtetal completion time

We usesy, ..., s to denote thek servers, and writesj(t) for the position of
servers; at timet, andd;(t) for d(s;(t), 0). Finally, given a pattP in M, we denote
its length by¢(P).

All the lower bounds we prove hold for randomized algorithagginst an
oblivious adversary. In order to prove these results, wguieatly resort to Yao's
principle (cf. Sectiorl.6).

A summary of our results is presented in Tallesand5.2, which also report
the known results for thboming ktraveling salesman problem, the multiserver
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Problem Lower Upper References

Bound Bound
Homingk-TSP 2 2 L1 76]
Nomadick-TSP 2 1+ V2 Th.5.11,5.6
k-TRP 2 (1+ V22 Th.5.11,5.10
Homingk-TSP R) 3/2 3/2 [25]
Nomadick-TSP R) 1+ Q(1/k) 1+ O((logk)/k) Th.5.16 5.12
k-TRP R) 1+Q(1/k) 1+0((logk)/k) Th.5.165.12

Table 5.1: The competitive ratio of multiserver routing lpems.

Problem Lower References
Bound
Homingk-TSP R?) 3/2 [25]
Nomadick-TSP R?) 4/3 Th.5.17
k-TRP R?) 5/4 Th.5.18

Table 5.2: Lower bounds in the Euclidean plane.

generalization of the homing TSP defined in Secfidh2(in Table5.1, the entries
for the homingk-TSP on the real line assurke> 2).

5.4 Algorithms for general metric spaces

In the following, we give competitive algorithms and lowenmds for the nomadic
k-TSP and th&-TRP in general spaces. Our results will be formulated in @&mo
generalresource augmentatioframework p2]. We define the nomadidk(k*)-
TSP and K, k*)-TRP exactly as the nomadicTSP and th&k-TRP, except that
we measure the performance of an online algorithm itfervers relative to an
optimal dfline algorithm withk* < k servers.

Sectionsb.4.1and5.4.2give an algorithm for thek{ k*)-TSP and thel(, k*)-
TRP respectively. A lower bound for both problems is prove&eéctions.4.3

5.4.1 Thek-Traveling Salesman Problem

Theorem 5.4. There is a deterministic online algorithm for the nomaghck®*)-
TSP with competitive ratio

1+ 1+ 1/2k/kI-1,

The algorithm achieving this bound is called Group ReturmiddAlgorithm
8). Define thedistance of a group to the origiat timet as the maximum distance
of a server in the group toat timet.
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Algorithm 8 Gru - Group Return Home

Divide the servers intg = |k/k*| disjoint sets group9 of k* servers each. Any
remaining server is not used by the algorithm.

Initially, all servers wait ab. Every time a new request arrives, all servers nat at
return to the origin at full speed. Once all of the serversria of the groups, say
groupG (ties broken arbitrarily), are at, compute a set dt* paths{P, ..., Pk}
starting at, covering all unserved requests and minimizing déR;). Then, for

i = 1,...,k% thei-th server inG follows pathP; at the highest possible speed
while remaining at a distance at mestfrom o at any timet, for some constant
a € (0, 1]. Servers in other groups continue to head towar@s wait there) until
a new request is released.

Lemma 5.5. At any time t, in the schedule generatedday, let Gy(t),. .., Ggy(t)
be the g groups in order of nondecreasing distance to o. Thewlistance of (t)
to 0 is at mos2'Yat.

Proof. We prove the lemma by induction on the number of requestst iShwe
show that if the lemma holds at the release datesome request, it will hold until
the release date+ ¢ of the next request. Obviously, the lemma is true up to the
time the first request is given, since all servers remam at

Suppose a request is given at titneBy induction, we know that there are
groupsG(t),...,Ggy(t) such that each server of gro@(t) is at distance at most
2-9at from 0. For the rest of the proof we fix the order of the groups as theror
they have at timé and writeG; instead ofG;(t). Let Di(r) = maxsg, d(s(7), 0).

Between tima andt’ = t + D;(t), the lemma holds since all servers are getting
closer too. We show that the lemma holds #@t+ ¢ for all § > 0. Notice that
Di(t" + 6) < 6 since every server moves at most at unit speed.

If 5 € (0, 2179at], we know thatDy(t’ + 6) < 2179t, so the lemma holds with
the groups in the same order as before.

Now, lets € (2~ 9at, 29t] for 2 < i < g. Then at time’ + 6, groupG; is
already ato for each 1< j < i. For groupG;j, Di(t’ + 6) < 29t — 219t =
2-190t. For groupGy, D1(t’ +6) < 29at. For groupsGi,1 throughGg, Di1(t’ +
8) < 21 9at, ..., Dy(t’ +6) < 2%t. So the lemma holds for these valuessof

The last case i§ > at. In this case all groups excefh are ato, and because
of the speed constraif; (t’ + §) < a(t’ + 6). Thus the lemma holds. m|

Proof of Theorenb.4. Lett be the release date of the last request anG{dde the
group minimizing the distance to the origin at timdJsing Lemméb.5we know
thatD1(t) < 21"9t. GroupG; will return to the origin and then follow theflline
set of pathgP4, ..., Py }. Notice thatorr(o) > t, since no schedule can end before
the release date of a request, and(c) > max ¢(P;) because of the optimality of
the P;.

Let s be the server 51 that achieves the makespan. slfloes not limit its
speed after timé we havesru(c) < t + D1(t) + max £(P;) < (2 + 21 9)opr(0).
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Otherwise, lett’ be the last time at whicls is moving at limited speed. It
is not dificult to see that must serve some request at that time. kgbe the
location of this request. Theth = (1/a)d(Xg, 0) and s continues following the
remaining part of its path, call ¥’, at full speed. Hencesru(o) = t' + £(P).
Sinceort(0?) > max £(P;) > d(o, xg) + £(P’) this yieldseru(c) < (1/a)opt(0).

Thus, the competitive ratio is at most mjax 219, 1/a} and choosingy in
order to minimize it givesr = 4/29-1(29-1 + 1) — 29-1 and the desired competitive
ratio. m]

Corollary 5.6. There is a deterministi¢l + V2)-competitive online algorithm for
the nomadic k-TSP.
5.4.2 Thek-Traveling Repairman Problem

Theorem 5.7. There is a deterministic online algorithm for tifle k*)-TRP with
competitive ratic2 - 3Y/LK/KJ,

Algorithm 9 a1 - Group Interval

Divide the servers intg = | k/k*] disjoint sets (groups) df* servers each. Any
remaining server is not used by the algorithm.

Let L be the earliest time that any request can be completed (wleg0). For

i =0,1,..., defineB; = 'L wherea € (1, 3%9] will be fixed in the analysis.

At time B;, compute a set of patt® = {P', ..., PL*} for the set of yet unassigned
requests released up to tirBewith the following properties:

(i) every Pij starts at the origir;

(ii) max; ¢(P}) < B;;

(i) S;j maximizes the number of requests served among all schesaiis$ying
the first two conditions.

The requests i%; are now considered assigned.

Letp = 2/(a? — 1). Starting at timggB;, the j-th server in thei(modg)-th group
follows pathP!, then returns te at full speed.

We call the algorithm achieving the bound Group Intervalg@ithm9), as it
can be seen as a multiserver generalization of algorithervak [68]. The algo-
rithm is well defined since the time between two departurethefsame group
is enough for the group to complete its first schedule andnetmw the origin:
BBiig — BBi = B(a¥ - 1)B; = 2B;. It is an online algorithm sincg > 1 for
anya € (1,3%Y9].

To sketch the proof of Theoref7, we start with two auxiliary lemmas.

Lemma 5.8([68]). Leta,b e Rfori =1,...,p, for which
() =P ,a =2, b and
i) ¥, a>3 bforal 1< p <p.
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Then thezi'o:l Tigy < Zip:l 7ibj for any nondecreasing sequence of real numbers
O<m<m<...<1p.

Lemma 5.9. Let R be the set of requests served by the set of patlte®®puted

bycsrattime B,i = 1,2,... and let R be the set of requests in the optimglioe
solution that are completed in the time inter&_;, Bj]. Then

q q
ZlRil > Z|Ri*| forallq=12,....
i1 =

Proof. We omit the proof, asitis basically the same as that of Lemmd@g]. o

Proof of Theorend.7. Let o = o1...0m be any sequence of requests. By con-
struction ofar, each request iR, is served at most at time (L 58)B;. Now, let

p be such that the optimalfitine schedule completes in the interv@y(y, Bp).
Summing over all phases 1., pyields

p p
ai(0) < (1+p) ) BRI =(1+p)-a ) BialRi (5.1)
i=1 i=1

From Lemma5.9 we know thaty,!, |R| > %, |R| for g = 1,2,... We also
know thaty” | IR| = 2, IR'|. Applying Lemmab5.8to the sequences = |Rj],
bi :=IRl,7i:=Bi_1,i=1,...,pyields in G.1)

p p
Gi(0) < (L+p)-a ) BalRI<(1+p)-a ) BalRl. (5.2)
i=1 i=1

LetC? be the optimal filine completion time of request;. For eachv; denote by
(By;» By,.,] the interval that contain@]f. This inserted in§g.2) yields

m m
Gi(e) < (1+B)-a ) By <(1+p)-a ) Ci=(1+p)-a-or(0).
=1 i1
Choosinga = 39 (so thaiB = 1) gives the theorem. O

Corollary 5.10. There is a deterministi¢l + V2)?-competitive online algorithm
for the k-TRP.

Proof. Wheng = 1, the analysis in Theorer.7 can be improved slightly by
choosingr = 1+ V2 (however, simple calculus shows that no similar improveime
is possible whemy > 2). This improved ratio matches the £1v2)?-competitive
algorithm B8] for the TRP with a single server. ]
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5.4.3 Lower bounds

Theorem 5.11. The competitive ratio of any randomized online algorithmthe
nomadic(k, k")-TSP or thglk, k*)-TRP is at leas®.

Proof. Consider the metric space induced by a star graph mvitimit-length rays,
the origin being the center of the star. No request is givdil time 1. At time 1,
the adversary gives a request on an edge chosen uniforméya@bm, at distance
1 from the origin. The expected makespan for the adversaty Ior the online
algorithm, we say that a servguardsa ray if at time 1 the server is located on the
ray, but not at the center of the star. Then the makespan é&ast P if no server
guards the ray where the request is released, and at ledstriviste. Buk servers
can guard at modtrays, so

E[c1(0)] > 2-(1— £)+1. K >2- k
m m m
and the result follows by Yao’s principle, sinogecan be arbitrarily large. m|

Notice that this lower bound is independent of the valkkesdk*. A conse-
guence of this is that the upper bounds of Sectibrdsland5.4.2are essentially
best possible whek > k*, as in that case they both approach 2.

5.5 Algorithms for the real line

5.5.1 An asymptotically optimal algorithm

Theorem 5.12. There is a deterministic online algorithm with competitihadio
1+ O((logk)/K) for both the nomadic k-TSP and the k-TRP on the real line.

As a preliminary, we prove a similar result on thaifline

Algorithm 10 cps - Geometric Progression Speeds

As a preprocessing step, the algorithm delays every requedtfor which x > r
to time x; that is, the release date of each request)(is reset ar’ := maxr, x}
(themodified release da}e

Then, letgk be the unique root greater than 1 of the equa@j{@ﬁ Zﬂk_‘ll and define
j—k-1

aj =g, for j € {2,3,...,k}. For everyj > 1, servers; departs at time O froro
at speedy; and never turns back. The first sergewaits ino until the first request
(ro, o) is released with O< Xp < s(rg). Fori > O, definet; = g:(ré. During any
interval [ti_1,t], st moves at full speed first fromto (gx — 1)ti_1/2 and then back
to o.

Lemma 5.13. gps (Algorithm 10) is gc-competitive for nomadic k-TSP and k-TRP
on the halfline.
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Proof. First, notice that the modified release date of a requestas/erlbound on
its completion time. Thus it is enough to prove that, for guwaguest I, X), the
time at which it is served is at moggr’.

For 1< j < k, we say that a request, &) is in zone jif o; < X/I" < @j;1.
We also say that a request is in zone Xjif’ < ap, and that it is in zone if
X/r" > ax. By construction, every request is in some zone and a requeshe j
will be eventually served by servsy.

For a requestr(x) in a zonej with 1 < j < K, since the request is served by
servers; at timex/aj and sincex < aj,1r, the ratio between completion time and
modified release date is at maest.1/aj = gk. Similarly, for a request in zonlk,
sincex < r’, the ratio between completion time and modified releaseiglatanost
1/ak = Gk-

It remains to give a bound for requests in zone 1. Take any sequest, i.e.,
a requestr( x) such thatx < ar’ and suppose it is served at time= [t;_;, t;] for
somei. If r’ > ti_1, then, sincer < tj, the ratio between andr’ is at mostgy by
definition oftj, i > 0.

If r' < tj_1, then, sincer > ti_1, only two possible cases remain. First, the
situation thatx > gk—z_lti_z. Sincer = tj_1 + xandr’ > X/a», we have

< X+1tig < 2(1 20ti_» ) _ a23gk -1
X/ a2 (k- Dti2 g—1
In the second situatiorg < gk—z_lti_z. Thenr’ must be such thad; was already on
its way back to 0 duringt{ »,ti_1], in particularr’ > gkti_» — X. Thus,
/ g|<'[i_2+XS 3ok—-1 <
Oti-2— X Ok+

T k
P = @20y = Ok-

T/r

O

The algorithm for the real line simply splits ttkeservers evenly between the
two halflines, and usas’s on each halfline.

Algorithm 11 scps - Split Geometric Progression Speeds

Arbitrarily assign[k/2] servers t®R, and|k/2] servers t®R_. On each of the two
halflines, apply Algorithml0 independently (i.e., ignoring the requests and the
servers in the other halfline).

Lemma 5.14. For any k > 2, sgps (Algorithm 11) is gy 2;-competitive for the
nomadic k-TSP and the k-TRP on the line.

Proof. The only lower bounds on thefftine cost that we used in the proof of
Lemmab.13 were the distance of every request framand the release date of
every request. They are valid independent of the numbefribh® servers. In
particular, they hold if the number ofitine servers is twice the number of online
servers. Thus, we can analyze the competitiveness of timeeadrvers on each of
the two halflines separately and take the worst of the two ebithge ratios. O
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Lemma 5.15. For any k> 1, gy < 1+ 229643,

Proof. We definedgy as the unique root greater than 1&f= 1 + 5. Since
Ilmz_mozk > limze 1+ 2, it suffices to prove thatp := 1+ 2'°gk+3 satlsfles
Z>1+ ﬂ' The binomial theorem and the standard fact (Ij'l)ak il  yield

k k Llogkl+1 :
K (2Iogk+3)J 2Iogk+3)J 2logk + 3,i
41 - R LT ()
j=1 =1 j=1
Llogk|+1
> Z 21 > Jlogk+l _ o = ok — 2.
i=

Now it can be verified that for akk > 2, &k - 2 > ﬁ'}% +2= %. Finally, the
bound also holds fdk € {1, 2} as seen by explicitly finding; andg,. m|

Theoremb.12now follows from Lemméab.14and Lemméeb.15

5.5.2 Lower bounds

Theorem 5.16. The competitive ratio of any randomized online algorithmthe
nomadic(k, k")-TSP or thelk, k*)-TRP on the line is at least+ 1/2k.

Proof. The adversary gives a single request at time 1, in a pointrdtaiformly at
random from the intervaH1, 1]. The expected optimal cost is obviously 1. Thus,
by Yao’s principle it siffices to show thak[oL(c)] > 1+ 1/2k.

In order to boundE[oL(c)], let f(X) = minje1,._iy d(X, Sj(1)). Notice that 1+
f(X) is a lower bound on the cost paid by the online algorithmuiaésg that the
request was given at In terms of expected values,

E[oi(0)] = E[1 + f(X)] = 1+ % j: i f(x)dx

Thus, we want to find the minimum value of the area beloim [-1, 1]. Basic

calculus shows that this area is minimized when the servervanly spread inside

the interval and at distancgK.from the extremes, in which case its value j&.1
m]

5.6 Lower bounds on the plane

Comparing the results in Secti&m with those in Sectio®.5, we see that while in
general spaces the competitive ratio of both the nomkdiSP and thek-TRP
always remains lower bounded by 2, on the real line we caregehl+ o(1)
asymptotically. A natural question is whether on a low-disienal space like
the Euclidean plane we can also achieve d(1) competitiveness. In this section
we answer this question negatively.
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Theorem 5.17. The competitive ratio of any randomized online algorithmtfe
nomadic k-TSP on the plane is at ledg8.

Proof. As a crucial ingredient of the proof we introduce a new kindaxfuest,
which is located in a single poimtof the space but has an arbitrarily long process-
ing time p (this processing time can be divided among the servers gsoagthe
request). We show how this can be emulated in the Euclidesarepkith arbitrar-
ily good precision by giving a high enough number of requestsked inside an
arbitrarily small square around

Fix some arbitrary > 0. Consider a square with side lengtk /ep centered
aroundx. The square can be partitionedstye? smaller squares of side length
In the center of each of these smaller squares we give a fegNesice that the
distance between any pair of such requests is at éeddtus, the sum of the times
required for any servers to serve all requests is at Ieg%t—(k)e, no matter where
the servers start (theke term reflects the possible saving each server could have
by starting arbitrarily close to thiirst request he serves).

For € tending to zero, the requests converge to the poiand the total pro-
cessing time needed convergesptolf the starting points of the servers are most
favorable, an algorithm could finish serving all requestsnre p/k.

We show how to use such a “long” request to achieve our lowentho At
time 1, the adversary gives a long request of processing firge2k in a point
drawn uniformly at random fronf(1, 0), (—1,0)}. The expected optimal cost is
1+ p/k = 3. By Yao’s principle, it remains to prove thBfoL(c)] > 4.

Since there is a single long request, we can assume wlog lththeaonline
servers will move to the request and contribute to servingihcep = 2k, the
server that will contribute most to the service will havepesd time at leastk =
2in x, and this is enough for any other server to arrive and given&iboition (since
at time 1 no server can be farther than 2 frgm

Suppose wlog that the servers are numbered in order of noradeiag distance
to xand letd, = d(x, 5(1)). We haveorL(o) > 1+ tg, with tg the time needed for the
servers to completely serve the request, i.e., the time v esmaining processing
time is zero. Thudy satisfiesZ!‘:‘l1 i(diy1—di)+k(to—dk) = p, since during interval
[di, di,1) exactlyi servers are processing the request. Hence,

k-1 k
ko= p+kde— ) i(dhs —dh) = p+
i=1 i=1
Now consider the positions of the online servers at time daghe ball of

radius 1 around the origin. Regarding points as vectoRjrd; can be written as
lIs(1) — X|| (here|| - || denotes the Euclidean norm). Then

Ya = Yls®-xis | > sw-x|
i=1 i i

1
kHE Z s(1) - XH — Kb — x| = k- d(b, %),
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whereb = % > S(1) is the centroid of the(1). Hence,

Elon(o)] > 1+E[t]] > 1+ p/k+E[d(b,X)] =
= 3+ (1/2)d(b, (L, 0)) + (1/2)d(b, (-1, 0))
> 3+ (1/2)d((1,0),(~1,0)) = 4

i
A similar technique gives an analogous lower bound forkii&RP on the plane.

Theorem 5.18. The competitive ratio of any randomized online algorithmtfe
k-TRP on the plane is at leaSt4.

Proof. We use the same input distribution used in the proof of Thadrd7. For
the costs, it is equivalent but easier to consider averagglgtion time instead of
the sum of completion times. Then, the expected optimalcasbe easily seen to
be 2 since thé servers can uniformly process the request of lemqmfrecall that
p = 2K) during time interval [13].

To lower bound the online cost, considere [0, p] and letC(w) be the first
time at which a total work ofv has been completed by the online algorithm. Then

1 p
oL(o) = Bj(; C(w)dw.

Now if we definety as in the proof of Theorers.17we haveC(p) = 1 + to, while
C(e) > 1 for anye > 0. Moreover, the functiorl€ is concave, since the speed at
which the long request is processed can only increase asseomers arrive, so the
value of the integral above is at leg®fl + tp/2). Thus

E[o(c)] > E[lp - p(l+ %0)] > E[1 +to/2] = 5/2

since we already showed in the proof of Theorgri7 thatE[tg] > 3. The claim
follows by Yao’s principle. i

5.7 Conclusions and open problems

After analyzing the dferences between multiple and single server variants, we can
conclude that sometimes having multiple servers is morefi@al to the online
algorithm than to thefiline adversary. In some cases, including the traveling re-
pairman problem on the line, the online algorithms can aggiicdhe @line cost
when there are enough servers. In more general spacesgethiemmely favorable
situation cannot occur. Still in some intermediate casks,the Euclidean plane,

it is conceivable that the competitive ratios become lowantthose of the corre-
sponding single server problems. We leave the analysiseafdimpetitive ratio in
these situations as an open problem.
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Chapter 6

An adversarial gueueing model
for online server routing

6.1 Introduction

Consider the following model of a computer harddrive: whiile disk is rotating,
read and write requests arrive for data lying on specificoseaif the disk. Thus,
the head located on the arm of the disk has to move in ordeigo @self to the
correct track, and wait for the disk to rotate onto the selstdding the data. If we
ignore the rotational delay, we can view the problem as amerderver routing
problem on a finite chain (the head’s arm).

A sensible algorithm for controlling the disk’s head shooddable to cope with
requests in atablemanner: the number of unserved requests should not increase
indefinitely as time passes. This requires of course thatateeof incoming re-
quests does not overflow the head’s service speed, but thditiom alone is not
suficient; an algorithm that moves the head back and forth betfeeaway loca-
tions while serving few requests will easily lead to an ubtaystem even when
the arrival rate is relatively low. Notice that this statyilrequirement can be seen
as requiring the algorithm to have an optinialoughput since no algorithm with
suboptimal throughput can keep the system stable if theifoligih for a siiicient
amount of time. Apart from this minimal stability requiremigone would like the
delay of each individual request to be as small as possildedafinitely within a
fixed, predictable range.

The optimization part of this problem could be seen as amerdéerver routing
problem with themaximum flow timebjective. However, it is well-known from the
online algorithm literature that there cannot be constantpetitive algorithms for
this problem. Thus, pure competitive analysis is unablagtirdjuish the behavior
of different algorithms. Restrictions to thélime adversary and alternative models
have been proposed that try to overcome this isS8¢g7[0].

In this chapter we propose afidirent approach that, while abandoning com-
petitive analysis, still assumes worst case behavior ofirthats. The approach
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is based oradversarial queueing theoryhich has been recently proposed as a
mean to analyze online packet routing problems3p]. We propose an adversar-
ial queueing theory model specific for online server roytangd in this framework
we analyze the stability and the performance of severalralafdgorithms. This
allows us to distinguish between algorithms that would &really badly from the
point of view of competitive analysis.

6.2 Related work

The adversarial queueing theory framework was first fortedldy Borodin et al.
[32], who consider a model of packet routing problems in netwaxlith contin-
uous packet arrivals. The model replaces the probabiléstgumptions usual in
gqueueing theoretical analyses with worst case inputs. Theisameadversarial
gqueueing theoryvas proposed to stress that while the issue studied is thetbof
bility — the crucial issue of queueing theory — the approaabf adversarial nature.
Following the work of Borodin et al., Andrews et a¥][consider several natural
algorithms in this framework and give many stability andatdity results.

In the context of online server routing problems, the motdat tomes closer
to the one we propose is thheasonable loadnmodel by Hauptmeier et al5f).
Roughly speaking, they assume that every set of requedtsdahee up in a Sffi-
ciently large time period can be served in a time period of @trthe same length.
Under this assumption, they consider the dial-a-ride gmobfor the minimiza-
tion of maximum resp. total flow time, and they distinguisk thlehavior of two
algorithms, Replan and Ignore, that would be indistingalidé& by pure compet-
itive analysis. We also give similar results for Replan,dgnand several other
algorithms. Other results in related directions of redeaatbeit in quite diferent
models, are given by Alborzi et ak]and Irani et al. $8].

Experimental results for fierent disk scheduling policies were given by Teo-
rey and Pinkertond8]. More recently, new algorithms for disk scheduling have
been proposed by Andrews et &)].[

6.3 The model

An online server routing systeoonsists of a triple@, A, P), whereG is a graph,
Ais an adversary and is an online protocal We now further detail each of these
components.

The undirected, connected gragh= (V, E) represents the space where re-
guests are injected by the adversary and where the serveategdy the online
protocol moves. A special vertaxe V is marked as the origin. We letbe the
number of vertices 0B ands its diameter.

1In network management applicatiorZ], the term protocol is used to stress the fact that the
algorithm is distributed, i.e. it acts based only on loc&bimation. Since we do not have this issue
here, we use interchangeably the tepratocolandalgorithm
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We use a discrete time model. At every time step, the serveratgd by the
protocol can either cross an edge or serve a single reqoesits current location
(but not both). Attime 0, the server is located at the origin.

We consider two types of adversaries, a stronger one usdtlthegositive
results and a weaker one used for the negative results; iffieseshce can only
strengthen the results. strong adversaryof rate A € (0,1] and bursty > 0
can, during any time intervdl, release at most|l| + u requests overall anywhere
on the nodes of the graph. veak adversanof rated € (0, 1] can, during any
time intervall, release at mogti|l|] requests overall anywhere on the nodes of
the graph. The sequence generated by the adversary is ddnate= o105 - - -
Every request is a pair {, Xj) € Z, x V, whererj is the release date of the request
(the time it becomes available) amglits location (a vertex o). We denote by
C; the completion time of request;, i.e., the time unit following the one during
which the server started processing

More formally, the model can be described as follows. At guame stept,
the currentconfigurationC; of the system is a vertex(t) € V plus a collection of
sets{U! : v € V}, such thats(t) is the position of the server at tinteand U}, is
the set of requests waiting atat the timet. From the configuratio®; we obtain
the configuratiorCy, 1 as follows. The adversary adds new requests to some of the
setsU}; then the protocol either choose& + 1) such thafs(t), st + 1)} € E or
it removes a request fromts(t) and leaves(t + 1) = s(t). A time-evolutionof G,
of rate A and bursty, is a sequence of such configuratiafg C1, ..., such that
for all intervalsl, no more tham|l| + u requests are introduced durihgn G. By
the system(G, A, P) we mean the time-evolution & induced by adversarf and
protocol P with initial configurations(0) = o andU? = 0 for all v e V.

Our results are centered around the following concepts.

Definition 6.1. An online server routing systen®(A, P) is stableif there exists a
constantu,,., (which may depend on the system) such that

t
DU < Un

veV

forallt € Z,, that is, the total number of unserved requests is boundeg bt
all times. Otherwise we say that the systemristable

Definition 6.2. A protocol P is universally stabléf for every graphG and every
strong adversanp of rateA and bursj with A < 1, the system@, A, P) is stable.

Definition 6.3. A system G, A, P) hasbounded flow timé& there is a constarit
such that for any request; released byA, C; —rj < F. We say that a protocol has
bounded flow time if for every grap@ and every strong adversa#yof rated and
burstu with 1 < 1, the system@, A, P) has bounded flow time.

Clearly, if a protocol is not universally stable, it cannat/b bounded flow time.
The converse implication is false in general; compare, ¥angle, Theorem6.6
and6.11
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6.4 Stability results

In this section we consider several natural algorithmsHerdnline server routing
model we have introduced, and we classify each of them aitgptd Definitions
6.2and6.3. A summary of the results is presented in Tahle

As a preliminary result, we remark that, in Definiti6rg, it is necessary to con-
sider only adversaries with rafiestrictly less than 1, as otherwise for any protocol
the system can be made unstable.

Lemma 6.1. Let P be any protocol and G any nontrivial graph. Then thelistex
an adversary A of raté such that the syste(, A, P) is unstable.

Proof. The adversary gives at every time step a request on a vegeisttistinct
from the current location of the server. The server must ghdocation infinitely
often, but every time it does, the number of unserved requesteases by one.o

Since the requests are qualitatively identical, we assuiti®ut loss of gener-
ality that at every node of the graph there igueueholding the requests pending
at that node; inside a queue, requests are ordered by relatse The protocol
always serves the oldest request of a queue.

A general term used in the algorithms is that of “emptyingé tjueue at a
given vertexv of the graph. By this we mean that the server serves a request i
every time step until no more requestssiare available. This process takes a finite
amount of time because the rate of the adversary is striely than one. More
precisely, we have the following.

Lemma 6.2. Suppose that at time t a server is located at a node v whgre-u
quests are pending unserved. Against a strong adversaat®lr ¢ and burstu,
emptying v requires at mo@ty + u)/e time steps.

Proof. Suppose the claim is false. Then, a request will be servetmeach of
the following 1+ (uy + u)/€ time steps, but there are at mogtrequests irv at time
t and no more than

Uy + Uy + Uy +
L M)+,u:1+v—’u—e—u\,—y+,u<1+ VT K
€

(1- e)(l ; '
new requests can be released until tim&+(u,+4)/e. Thus we get a contradiction,
because the server would serve more requests than whatzdlisbba: m|

Some of the algorithms we consider are undefined in the casesofin those
cases, we assume the worst tie-breaking rule for the pesitisults and the best
for the negative ones.

The following technical lemma is useful when establishingtability results.
Given two adversaries,, Ay, theirunion A U A; is the adversary that releases the
requests of both adversaries.
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Algorithm  Univ.  Bounded References
stable? flow time?

FIFO no no Th6.4
SSTF no no Th.6.5
ELQ yes no Th6.6,6.11
EOQ yes yes Th6.7,6.12
REPLAN no no Th.6.8
IGNORE yes yes Th6.9,6.12
TREE-SCAN yes yes Th6.10 6.12

Table 6.1: Universal stability of éfierent server routing algorithms.

Lemma6.3. Let A be a weak adversary of rate< 1/2. Then for every ¥ V and
every syficiently smalle > 0, there exists a weak adversary #f rate € releasing
requests in v such thatbAJ A; is a weak adversary of rate at mat3 + e.

Proof. We defineA; as follows: it releases requestsvionly at time steps during
which A; does not release any request, and so that its rade tisis is always
possible by taking: suficiently small. Apart from these constraints, the precise
release dates of the requestsfgfare irrelevant for the lemma.

We have to prove that for any intervhlof lengtht, the requests released by
A1 U Ay are at mosf(2/3 + e)t].

Consider any such intervdl If t = 1, the claim holds simply becauge and
A, never release a request during the same time step.

For all othert, notice that the number of requests releasedpfresp.Ay) is at
most[At] (resp.[et]). We prove the claim by showing thiit]+[et] < [(2/3+€)t].
We assume that< 2/3 - 1. Whent > 1/(2/3 — ),

[At] + [et] < [At+ 1+ et] < [At + (2/3 - Dt + et] < [(2/3 + e)t].
Whent < 1/(2/3 — 1), notice thafet] = 1. If t is even, say = 2q,
[At] <[t/2] = q < (4/3)q = (2/3)t.
If tis odd,t = 2q+ 1 whereq > 1,
[At] < [t/2] = q+ 1 < (4/3)q + 2/3 = (2/3).
Thus, in both cases,
[at] < (2/3)t < (2/3)t + et

from which it follows

[At]+[et] =[A]+1 < [(2/3)t + et].
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Algorithm 12 riro - First In First Out
The server processes the requests in the same order astbage dates.

In the context of single-machine scheduling, the protocol (Algorithm12)
is an optimal algorithm for minimizing the maximum flow tim&jobs. However,
a similar approach fails in server routing because the aufstaoving between
distant requests are not recovered in any way.

Theorem 6.4. For every nontrivial graph G, there is a weak adversary A stinet
(G, A, FrrFo) is unstable.

Proof. Consider any edggy, w} of the graph, and suppose that the server starts in
w. Fix A € (1/2,1). The requests are given alternativelywiandw at rated. Note
thatriro serves requests at a rate of at mg&, kince it needs to move after serving
each request. But > 1/2, thus the system is unstable. In general, if the graph has
diameters, riro is unstable at every rate greater tha(t 1). o

Another natural algorithm is Shortest Seek Time First (Aillpon 13). The
algorithm attempts to minimize the distance traveled betwihe service of any
two requests.

Algorithm 13 sstr - Shortest Seek Time First

sstF works in phases. At the beginning of each phasey leé the node with a
nonempty queue that is nearest to the current position cdeheer. At every step
during the phase, the server moves along a shortest pathtfi@current node to
v. When it reaches, it proceeds to empty. Whenv has been emptied, the phase
ends.

Theorem 6.5. For every graph G of diameter at least 3 there is a weak advgrsa
A such tha{G, A, sstF) is unstable.

Proof. Consider any chaingvivovs of length 3 inG, and suppose that the server
starts invy. A first adversaryd; gives requests alternatively g andv,, at a rate
of 1/2, so that as soon as a request is servagamew request appearsvi ;. By
Lemmab.3, for anye > O there exists an adversafy of ratee releasing requests
in v3 such thatA; U A, has rate at most/3 + €. Notice that requests @%; keep
the server betweewy andvy, so that requests @, will never be served. Thus the
system G, A; U Ay, ssTF) is unstable. m|

Another reasonable strategy tries to maximize the work tddre on the next
queue before leaving it, by serving the largest queue (Atlyorl4).

Theorem 6.6. ELq is universally stable.
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Algorithm 14 eLq - Empty the Largest Queue

eLQ Works in phases. At the beginning of each phasey ketV be the node with
the largest queue in the system. At every step during theeplias server moves
along a shortest path from the current nodeg, tontil it reaches/. When it reaches
v, the server proceeds to empty it. Whehas been emptied, the phase ends.

Proof. Consider a strong adversary of rate-k and burstu. First we prove by
induction on phases that at the beginning of every phaseuinder of unserved
request is at most

(1 - e)dn/e + un/e.

Consider some phase startingtadnd ending at’, and letz be the number of
requests served during the phase arlde number of requests unserved at time
Then

' —t<é+z (6.1)

since at every time step either the algorithm moves towdrelsarget node of the
phase, or it serves a requestirAlso,
z>u/n, (6.2)

sincev was the node with the largest queue at timand thus holds at least the
average number of requests per node. Then, the number afvadsequests at
timet’ is at most

u+(l-e)t -t)+u—-z < Ql-ed+u+u-—ez by (6.1
< (1-¢e6+u+@-€/nu by (6.2
< (1-€)dn/e + un/e by induction

To conclude the proof we need to show that the duration of pheke is bounded
by a constant. Obviously, traveling to the target nedakes at moss time steps.
It remains to bound the time needed to emptyWhen the server arrives &f v
contains at most + § + u requests. By Lemm@.2, emptyingv will require time
atmost (1 + d + 2u)/e. O

An algorithm related teLq is eoq (Algorithm 15). It can be seen as a variant
of rrro With an hysteresis mechanism.

Algorithm 15 eoq - Empty the Oldest Queue

eoQ Works in phases. At the beginning of each phasey b the node containing
the oldest request in the system. At every step during theeptibe server moves
along a shortest path from the current node.t&Vhen it reaches, it proceeds to
emptyv. Whenv has been emptied, the phase ends.

Theorem 6.7. eoq is universally stable.
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Proof. We define arepochas a sequence ofphases. We first prove by induction
that at the beginning of every epoch the number of unsenauest is bounded by

(A-e)dn/e + u/e.

Then we show that the duration of every epoch is also bountet[t,t") be an
epoch, letz be the number of requests served during the epoch andldetthe
number of unserved requests at the beginning of the epo@n Th

t—t<én+z (6.3)

by definition ofeoq, since at every time stemq either moves the server towards
the target of the new phase (of which theremrer it serves a request. On the other
hand, letX be the set of nodes that had a nonempty queue atttitve claim that
during the epochgoq empties each node X at least once. This is true because
in each phase of the epoehq empties a node, and the nodesXrhave requests
older than those W \ X.

The fact that every node iX is emptied at least once during the epoch implies
that

Z> . (6.4)

The number of requests unserved at tifnis then at most

u+(l-e)t' -t)+u-z < (A-e)dn+u+u—ez by (6.3
< QL-éeon+u+(@-e€u by (6.4)
< (A-e)dn/e+pu/e by induction.

To conclude the proof we need to show that the duration of epobh is bounded
by a constant. This is true because the duration of each phdsmunded (the
proof, based on Lemm&2, is similar to that in the proof of Theorefm6). o

Two classical strategies for generic online servicerarean andiGNore (Al-
gorithms16 and17). Although for the purpose of minimizing the maximum flow
time they perform equally badly from the point of view of coetitive analysis,
the following results establislinore as a more robust algorithm. These results are
similar to those of Hauptmeier et ab].

Algorithm 16 repLAN

REPLAN Maintains a shortest walk on the set of nodes that have wetseequests.
Whenever the current node is nonempisLan serves a request there. Otherwise,
it moves the server along the shortest walk. Whenever a nguest is released,
the shortest walk is recomputed.

Theorem 6.8. For every graph G of diameter at lea3tthere is a weak adversary
A such tha{G, A, rRepLAN) IS unstable.
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Algorithm 17 1GNorRE

1GNORE WOrks in phases. At the beginning of each phase et the current position

of 1IGNORE. IGNORE computes a shortest schedule on the set of currently urtkerve
requests starting and endingatDuring the phasegnore follows the schedule,
ignoring temporarily requests released after the beginofrthe phase. When the
schedule has been completed, the phase ends.

Proof. Consider any chaimgvivovs of length 3 in the graph, and suppose that the
server starts injg. The first adversan/; gives the following requests: (&),
(3,v0), (6,v3), and (9+ 3i, p) for all i > 0. The sequence is such that starting from
time 9, the server will never reach again. The rate of\; is 1/3; thus, by Lemma
6.3, for any suficiently smalle > O there exists an adversafy of ratee releasing
requests irvs such thath; U A, has rate at most/3 + €. The requests released by
A, do not change the behavior drLaN, since they are always scheduled after the
requests released #i. Thus the requests & are never served and the system
is unstable. m|

Theorem 6.9. GNoRE iS universally stable.

Proof. We start by proving by induction that at the beginning of gvghase the
number of unserved request is bounded by

(1-¢€)2n/e + u/e,

then we show that the duration of every phase is bounded. tlt6t lpe a phase,
let z be the number of requests served during the phase andé&the number of
unserved requests at the beginning of the phase. Then, mjtidefiof iGNoRE,

t-t<2n-1)+z (6.5)

since whencNore does not serve a request, its server moves along a shodssticl
walk spanning all the requests unserved at tirend this walk cannot be longer
than twice the number of edges of a spanning tree of the gr&yhdefinition,
IGNORE Serves all those requests, which means that

Z=u. (6.6)

The number of requests unserved at tirnis then at most

u+(l-e)t' -t)+u-z < (Q-e)2n+u+u-—ez by (6.5
< (1-ée2n+u+(Q-eu by (6.6)
< A-e)2n/e +ule by induction.

To conclude the proof we need to show that the duration of pheke is bounded
by a constant. Again, this can be shown using Len2a m|
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Finally, we propose an algorithm calledee-scan (Algorithm 18) that can be
seen as a generalization of the algorithm Scan frequendlgl fs disk scheduling
[88]. Notice thatrree-scan, differently from algorithms such @sq or ieNore, does
not use phases and is greedy, in the sense that it always seregquest from the
current location of the server if possible.

Algorithm 18 TREE-ScAN

Let W be a closed Eulerian walk on the graph obtained by doublihth@ledges

of a spanning tree db.

At every time step, if the current node has a nonempty quetee;scaN serves a

request on the current node. Whenever the current ndues an empty queue,
TREE-SCAN Moves the server to the node followiagn the walkW.

Theorem 6.10. TREe-scAN iS universally stable.

Proof. The analysis is very similar to that afvore (Theorem6.9), except that the
proof is by induction on time steps instead of phases. Censidy timet’. Lett be
the latest time befor& during which the server was locatedsdtt) and such that
betweert andt’ Tree-scan visited the whole graph. Letbe the number of requests
served duringt[t’). Then

t—t<z+2(n-1), (6.7)

since at each time step either the algorithm serves a requishoves to the next
node in the walkV. Also, letu be the number of unserved requests at tirmehe
inductive hypothesis is that < 2(1 - €)(n — 1)/e + u/e. All requests unserved

at timet are served at tim# because the algorithm always serves requests when
visiting a node and during the interval ) the server visited the entire graph; thus

Z> . (6.8)

The number of requests unserved at tifnis then at most

u+(l-e)t -t)+u-z < 2(1l-e)n-1)+pu+u-—ez by (6.7)
< 2(1l-¢e)n-1)+u+(1-¢€u by (6.8
< 21-€e)(n—1)/e+u/e by induction.

For the basis of the induction, we can consider a fictitiogiqinary walk on the
graph without pending requests. m|

6.5 Results on maximum flow time

In this section, we investigate which algorithms among thesove gave in Section
6.4 have bounded flow time. Since bounded flow time implies stgbthe only
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algorithms among the ones we have considered that may haveled flow time
areeLQ, EoQ, IGNORE aNJTREE-SCAN.

Itis easy to see that.q does not have bounded flow time, since while its server
is busy serving a pair of long queues, a single request caaineamserved in a
stable queue.

Theorem 6.11.eLg has unbounded flow time.

Proof. Consider a chaiwgviVvovavs and suppose the server startssat Assume
a weak adversary gives the cruel sequencej(1, v»), (2, Vo), (3, Vo), (4, v4) fol-
lowed by (7+ 8i, v»), (8 + 8i, w»), (11+ 8i, vp), (12+ 8i, p) for all i > 0. The longest
gqueues are always & andv,, and the single request & remains unserved for-
ever. i

Theorem 6.12. 00, 1IGNoRE and TREE-scaN have bounded flow time.

Proof. oq: consider any request; entering the system at tinrg. Recall the
proof of Theoren6.7 and consider the time> r; at which the next epoch begins
in the execution oktoq. During an epoch, all the nodes with nonempty queues
are visited and emptied, so in particutay will be served. Since every epoch has
bounded length, the claim follows.

IGNORE: consider any request;. Recall the proof of Theore®.9and consider
the time at which the next phase begins in the executiaswoke. During a phase,
all requests that were unserved at the beginning of the prasserved bysnore,
so in particulairj will be served. Since every phase has bounded length, time cla
follows.

TREE-SCAN. consider any request; entering the system at timg. Letk < 2n
be the distance from the location of the server at tinte x;, the location otrj. By
Theorem6.10and Lemmab.2, there is a constant,., such thatrree-scan spends
at most (.., + 1)/ € time units on each node, where-k is the rate ang the burst
of the adversary. Thus, the server will reach and enxpin at Mostk(Un + 1)/ €
time steps. m|

6.6 A lower bound

In this section we give a lower bound on the number of unserggdests that any
protocol may need to have at any time.

Lemma 6.13. Let P be any protocol and G a graph of diameter For every
€ € (0,1), there exists a weak adversary A of rdte- € such that eventually the
number of requests pending at one of the nodes of G is at(kast)d/e.

Proof. Let v,w € V be two nodes at distanegefrom each other. We break the
construction ofA into phases. Av-phase(resp.,w-phasg starts when the server
moves tov (resp.,w) and ends when it moves to(resp. V). In av-phase (respw-

phase)A gives requests iw (resp.,v) at rate - . We prove the claim by showing
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that in any phase, either the total number of unserved rédpassto increase, or
there are already more than-{lk)d/e unserved requests.

Consider anyw-phase. Lety, uy be the number of unserved requests ahd
w at the start of the phase, and i&tu;,, be the number of unserved requests at
andw at the end of the same phase zfis the number of requests served during
the phase at, we have by construction

W = W-2z (6.9)
Uy = U+ (1-€+2) (6.10)
Z;, < U (6.11)

Suppose that the total number of unserved requestaratw does not increase,
that is
(W, +u,) — (uy +uy) <0. (6.12)

Combining 6.12) with (6.9) and 6.10),
(1-e(6+z)-z<0.

Solving forz,, we get
z,>(l-¢€)d/e

and by 6.11), we obtain
Ww=>(1-¢ed/e

so that the number of unserved requests at the beginning ghthse is already at
least (1- €)6/e. The analysis for &-phase is completely symmetrical. m|

In case the grapl® is a chaing = n— 1, and the lemma shows that the upper
bound forrree-scan (given in the proof of Theorerf.10 is best possible up to a
factor of 2.

6.7 Open problems

Our model suggests several open problems. First, the madébe easily gener-
alized in several directions. One is that of directed (filprronnected) graphs.
For directed graphs, an algorithm sucheag s still stable, but can we do better in
terms of the worst case number of unserved requests? Nbété ts not obvious
how to generalizaree-scan to directed graphs.

Another direction is that of considering the dial-a-ridelgem, in which re-
quests have both a source and a destination. In that caseuisies the rate con-
straint on the adversary should be reformulated appratyia®uch a model would
be interesting, since in particular it could represent aeqgfair model for elevator
scheduling. Also, in our model the processing time of a retjisedirectly related
to the speed of the server: serving a request takes the sam@easi moving to a
neighboring node. What about requests with arbitrary @siog times?
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Finally, in our opinion the most interesting problem suggdsy our model
is the following: consider the online server routing prablen a graph, where the
objective is nowminimization of the maximum number of unserved requestsyat a
time. Can we find a constant competitive algorithm for this proi2eThe compet-
itive ratio would necessarily depend on the charactesigifcthe graph (otherwise
it is easy to prove that no such algorithm can exist). In asgcave think that such
a competitive algorithm would be interesting because itlditye able to maintain
a near-optimal number of unserved requests not only undetyiead conditions
(something that every stable algorithm already does), bem evhen the load is
light.
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Summary

Models and Algorithms for Online Server Routing

Combinatorial optimization is the discipline that studg®blems in which one
seeks to minimize or maximize an objective function by appedely choosing
the values of some variables from within an allowed finite et typical combi-
natorial optimization problem, the feasibility of a sobrican be fiiciently veri-
fied, but the number of feasible solutions is so large thakhaugstive search of an
optimal solution is doomed to failure. Thugfieient combinatorial optimization
algorithms need to exploit the structure of the problem @psimived.

While the classical approach to a combinatorial optimaraproblem is to as-
sume that all relevant data are available before a solutiethod is applied, it has
recently become more and more evident that in many appitatilata arrive step
by step and a partial solution needs to be maintained at etepy Typical exam-
ples of online problems are the scheduling of processes aparating system, or
the trade of stocks in a financial market. In these applinatihe data is arriving
over time and the algorithm that solves the problem has tobeey meaning that
it has to keep at every time a solution that has been produgedw knowledge
of future data. It is quite clear that, because of this lacinfifrmation about the
future, an online algorithm will not in general be able togwoe the optimal so-
lution. Competitive analysis is a theoretical frameworattallows to quantify the
worst-case suboptimality of the solutions found by an anlitlgorithm. An online
algorithm is called competitive if it produces solutionsask cost is always within
a constant factor of the optimal solution.

In this thesis we study competitive algorithms for serveitirgg problems. In a
server routing problem, one or more servers move in a metacesin order to visit
some requested points in the space. The objective is to nz@isome function
of the movement of the servers. An important example is tneeting salesman
problem, in which a salesman has to find a round-trip tourutjinoa set of cities
in order to minimize the total length of the tour. We considaline versions of
this and other server routing problem, in which the pointsdwisited are released
over time.

After giving a brief introduction to the field of online optimation in the first
chapter of this thesis, in Chapter 2 we review the basic cenitylresults for dine
server routing problems, we introduce formally the onlieever routing frame-
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work and we survey the state of the art. We show the basic peabhiques and
we discuss several attempts in the literature to extendabie bompetitive analysis
setting.

In Chapter 3, we consider the online asymmetric travelingssaan problem
from the point of view of competitive analysis. For the hogiversion, where
the server has to return to its starting point, we give anralyun that has the best
possible competitive ratio. We also consider the nomadisioe (where returning
to the starting point is not mandatory) and prove that it doasadmit constant
competitive algorithms. However, for the nomadic versi@move a competitive
ratio as a function of the amount of asymmetry of the space.al& consider
the competitiveness of zealous algorithms, in which, tiveily, the server is not
allowed to remain idle when there are outstanding requEstally we discuss the
issue of polynomial time online algorithms for the problem.

In Chapter 4, we study the online prize-collecting travglsalesman prob-
lem. After discussing the approximation ratio of thifline version, we give a
7/3-competitive algorithm. We also consider the special cdiske halfline as the
metric space, for which we prove lower and upper bounds & ar&i 2, respec-
tively, on the competitive ratio of deterministic algoritl.

In Chapter 5, we consider the online nhomadic traveling sadesand the on-
line traveling repairman witlk servers. We give competitive algorithms whose
competitive ratios match the ones for the single serveawutsi For the special
case of the real line, we prove the existence of algorithrmb wsempetitive ratio
1+ O((logk)/k), meaning that we can approach the optimal cost gows. We
also show that this phenomenon is limited to the one dimeasicase, since al-
ready in the Euclidean plane, we prove a lower bound®fdr the online nomadic
TSP and of B for the online TRP independently of the number of serveirsally,
we give resource augmentation results that are asymptptimest possible as the
number of online servers grows beyond the numbeffitihe servers.

In Chapter 6, in order to address the limits of competitivalgsis, we intro-
duce a new model for online server routing based on advatsareueing theory.
The model addresses the stability of online algorithms @natcontinuously op-
erating. We call an online algorithm stable if there existsupper bound on the
number of unserved requests at any time that does not depethe ¢time the sys-
tem has been running. We consider a number of natural igusiin this model
and we prove the existence of algorithms that are stable aetd that the maxi-
mum flow time of a request also does not depend on the time gterayhas been
running.
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