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Chapter 1

Introduction

1.1 Optimization problems

In 1962, the worldwide company Procter & Gamble advertised acontest in which
one had to find the shortest round trip route to visit all of 33 locations shown on a
United States map. The company offered several thousands dollars for the solution.
The participants of the contest might have recognized it or not, but they were facing
an instance of anoptimization problem. In an optimization problem there are data,
solutions, and one clear objective. Mathematically, an optimization problem can
be formalized in the following way.

Definition 1.1. An instanceof an optimization problem is given by a pair (F, c).
The setF is the set offeasible solutionsof the instance. The functionc : F → R
is thecost function. The problem is to find anoptimal solution, that is ans∗ ∈ F
such thatc(s∗) ≤ c(s) for every s ∈ F. An optimization problemis then simply
a set of instances. When the setF is finite for every instance of the problem, the
optimization problem is called acombinatorialoptimization problem.

It is worth emphasizing that although the set of feasible solutions and the cost
function together completely describe an instance of an optimization problem, they
are usually not given explicitly. Instead, the instance is represented implicitly by
more succinct data.

Example 1.1.The problem posed in the Procter & Gamble contest is an instance of
theTraveling Salesman Problem(TSP). In an instance of the Traveling Salesman
Problem we are given an integern > 0 and the distance between every pair ofn
cities in the form of ann × n matrix [di j ], wheredi j ∈ Z+. The setF of feasible
solutions is the set of cyclic permutations onn objects. The costc(ϕ) associated to
ϕ ∈ F is

∑n
i=1 diϕ(i).

Notice that every combinatorial optimization problem admits a trivial solution
method: simply enumerate all feasible solutions and keep track of the one with the
least cost. However, in most interesting optimization problems the set of feasible
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solutions is so large with respect to its description that such an approach is doomed
to be impractical because it requires excessive amounts of time.

Example 1.2. In the TSP, a trivial enumeration of alln-city tours requires time
proportional to at least (n − 1)!, which is more than exponential in the number of
cities.

We are interested in computing an optimal solution of an optimization problem
in a reasonable amount of time. This requirement is formalized by saying that we
want an algorithm whose running time is polynomial in the length of thebinary
representationof the input instance. Such an algorithm is called apolynomial time
algorithm.

1.2 Approximation algorithms

Unfortunately, the optimization problems we are dealing with in this thesis, such
as the Traveling Salesman Problem, are NP-hard. This implies that no polynomial
time algorithm is known that solves any of these problems, and there is evidence
that no such algorithm actually exists. The question “Does the TSP admit a poly-
nomial time algorithm?” is even more important than it may appear at first sight,
as it is equivalent to the P vs. NP question, which is central to complexity theory.
After many unsuccessful attempts by researchers at answering this question, it has
been declared one of the mathematical problems of the millennium [40].

While the P vs. NP question remains unsettled, we may want to relax our orig-
inal requirements. In particular, we could consider ourselves satisfied if we could
find, for a given NP-hard optimization problem, a polynomialtime algorithm that
finds solutions that are not necessarily optimal, but very close to optimal.

Definition 1.2. An algorithm for a combinatorial optimization problemP is
said to be anr-approximation algorithmif

•  is a polynomial time algorithm;

• for every instancex of P,

(x) ≤ r · (x)

where(x) is the cost of the solution found byA on inputx and(x) is
the cost of any optimal solution tox.

A consequence of the definition is that if is anr-approximation algorithm, it
is also anr′-approximation algorithm for anyr′ > r. Thus an interesting question,
for a given algorithm, is to ask the value of the smallestr such that is an
r-approximation algorithm. This value is called theapproximation ratioof .

Notice that the approximation ratio is aworst casemeasure, since the fact that
 is anr-approximation algorithm means that it findsr-approximate solutions on
every instance.
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The approximation ratio is useful because it stands as an objective benchmark
for measuring the performance of algorithms. When comparing two algorithms
for the same problem, the first may find better solutions on some subset of the
instances and the other may find better solutions on another subset and thus it is not
clear which one is better in general. Comparing them throughtheir approximation
ratios gives a reasonable way out of this dilemma. Moreover,and perhaps more
importantly, designing and analyzing algorithms from the point of view of their
approximation ratio is useful to obtain insights into the combinatorial structure of
the problem being attacked.

The theory of approximation algorithms has developed very quickly in recent
years and now we know that while some NP-hard problems do not admit approx-
imation algorithms with any constant approximation ratio unless P= NP, others
do and some even allow approximation ratior for any r > 1. This variety reflects
the variety of all these combinatorial optimization problems, in contrast with their
common NP-hardness.

1.3 Online optimization

In many applications, the input data for an optimization problem is not entirely
available beforehand. It may very well be that the input is revealed piece by piece
and a partial solution is needed for every partial input. That is, the solution process
is required to make decisions before complete information is available. In this
case we call the optimization problem anonlineoptimization problem, as opposed
to offline problems in which all data are already available at the beginning of the
solution process.

There are two intuitive models of online computation, theone-by-onemodel
and thereal-timemodel. Mathematically, they can be unified in a single frame-
work, that of request-answer games, but doing so weakens part of the intuition
behind these models. In this introduction, we describe the two models separately.
In both the one-by-one model and the real-time model the input is modeled as a
sequenceσ = σ1σ2 · · · of requestswhich is revealed step by step to an online al-
gorithm. In the one-by-one model, the online algorithm has to handle each request
before seeing the next one; that is, while managingσ j the algorithm only knows
aboutσ1σ2 · · ·σ j . Serving the request will have some influence on the overall
cost of the solution, depending on the details of the problem. After the algorithm
servesσ j, the cost will be irrevocably influenced and only then the algorithm will
discoverσ j+1.

Example 1.3. In an instance of thepagingproblem, an algorithm has to manage a
fast memory of sizek (a cache) and a larger, slower memory of sizeN > k. Every
request in the input sequence specifies which page of the slowmemory has to be
accessed. In order to access the page, it has to be copied in some block of the cache
if the cache does not contain it already. Eventually, this will require the eviction of
some old page in order to create more room in the cache. When a page is copied
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from the slow memory to the cache, apage faultoccurs. The cost incurred by
the algorithm on an input sequence is the number of page faults that the algorithm
generates. Thus, the goal is to design an eviction policy that minimizes the number
of page faults.

In the real-time model, each request has arelease dateat which it becomes
available. The release date specifies the time at which the request becomes known
to the algorithm; no request can be served before its releasedate. Release dates are
nonnegative real numbers and the sequenceσ1σ2 · · · is ordered by nondecreasing
release dates. Thus, the algorithm determines its behaviorat any timet as a function
of t and of the prefix ofσ consisting of all the requests with release date less than
or equal tot. An important difference with the one-by-one model is that requests
need not be served in the order they arrive: the algorithm canwait and defer the
service of a particular request. However, waiting typically increases the overall
cost incurred by the algorithm. Finally, and similarly to the one-by-one model,
once the algorithm has taken some action, this cannot be revoked.

Example 1.4. In an instance of themultiprocessor schedulingproblem, an algo-
rithm has to processjobs on a set ofmachines. Every job j has a release dater j

and a processing timet j . The algorithm can decide when and on which machine
every job will start processing. Once started, a job cannot be interrupted and every
machine can process only one job at a time. The time at which a job finishes pro-
cessing is called thecompletion timeof the job. A typical objective is to minimize
the latest completion time of the jobs.

There are several methodologies for dealing with online optimization prob-
lems. Instochastic optimization, one assumes that the probability distribution of
the input instances is known, and the goal is to develop algorithms that perform
well in expectation with respect to that distribution. Thus, this type of analysis
is focused on the average case behavior of the algorithms being considered. A
different approach, and the one we will adopt in this thesis, is that of competitive
analysis, which instead studies the worst case behavior of the onlinealgorithms,
by comparing their performance on every instance with that of an ideal optimal
solver. The next sections introduce and discuss the concepts behind competitive
analysis. Finally,simulation is a methodology that is often adopted in practice:
the algorithms to be studied are implemented and executed oninstances generated
according to some appropriate model of the “real” instancesof the problem. The
results may lead to insights into both the worst case and the average case behavior
of the algorithms.

Sometimes in the literature one also finds online optimization named asdy-
namic optimization. However, we prefer to keep different meanings for these two
terms. In a dynamic optimization problem, data is also arriving step by step, but
one does not need to commit in any way to the partial solution built so far. In a dy-
namic problem, computing an answer from scratch is always inprinciple a viable
option, and the focus is actually on how to compute quickly a good new solution

4



given the last partial one. Instead, in an online optimization problem, one has to
commit to the partial solution; it is not possible to undo anyaction, only new ac-
tions can be added. It is clear that in this case one cannot hope in general to obtain
optimal solutions, even if there are no efficiency constraints on the online solver,
because the lack of information about the future inputs cannot be compensated in
any way.

Another frequently used expression isreal-time optimization. A real-time
problem is an online problem in which the bounds on producingevery new piece
of the solution are very tight. Thus, in a real-time problem,the efficiency of the
online solver cannot be neglected. If we, as it is common, assume that efficiency
is represented by polynomial running time, this gives one more reason why many
interesting real-time problems cannot be solved optimallyat all: because of their
online aspect, and because often the associated offline problems are NP-hard, and
thus polynomial time algorithms cannot solve them unless P= NP. Fortunately, it
is still possible to resort to algorithms that have both a constant approximation ratio
and a polynomial running time.

1.4 Competitive analysis

In online optimization, a consolidated framework for measuring the quality of on-
line algorithms iscompetitive analysis.

Definition 1.3. An algorithm for an online optimization problemP is said to be
c-competitiveif

•  is an online algorithm;

• for any instanceσ of P,
(σ) ≤ c · (σ)

where(σ) is the cost incurred by on σ and(σ) is the cost of an
optimal (offline) solution toσ.

Notice the analogy with the definition of anr-approximation algorithm (Def-
inition 1.2). The only difference is that instead of requiring the algorithm to be
polynomial time, we only allow algorithms that construct their solutions online.
Again, we can define thecompetitive ratioof algorithm  to be the smallestc
such that is ac-competitive algorithm.

The fact that competitive algorithms are not required to be polynomial time
deserves further explanation. Indeed, as online problems often model real-time
systems, it would seem appropriate that algorithms for suchproblems should be
very efficient, and thus having a polynomial running time would be a minimum
prerequisite. However, it is conceptually useful to separate the issue of dealing
with limited time from that of dealing with limited information, which is really
what online computation is about. Moreover, this separation is also justified by
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the fact that many online algorithms, that use superpolynomial time subroutines to
optimally solve hard offline subproblems, can be made polynomial time by replac-
ing the optimal subroutines with approximation algorithms, while not affecting the
competitive ratio much.

1.5 The competitive ratio as the value of a game

An interesting feature of competitive analysis is its relation to game theory. Indeed,
the competitive ratio can be seen as the outcome of a game between an online
playerand a maliciousadversary. We can think of the adversary as the process that
generates the online sequence of requests, while the onlineplayer is the algorithm
handling the requests. Consider now the following game: theonline player chooses
an online algorithm, while the adversary chooses a sequenceσ. Then, the online
player pays the adversary a monetary amount equal to(σ)/(σ). Then the
value of the game for the adversary is precisely the competitive ratio. That is, if
the competitive ratio is at leastc, then the adversary can force the online player to
pay at leastc, and vice versa.

In the case of a deterministic online algorithm, the responses of the online
player to the same inputs are fixed and one can assume that the adversary knows
them. Thus, the adversary will simply try to construct a sequence that maximizes
the ratio; such a sequence is sometimes called acruel sequence. Cruel sequences
can be used to provelower boundson the competitive ratio of an online algorithm.
In the case of a randomized online algorithm, the assumptionthat the adversary
can predict the behavior of the algorithm does not hold anymore and one has to be
more careful in defining what the adversary knows about the online algorithm. We
discuss this issue in the next section.

1.6 Online algorithms and randomization

So far, we have considered competitive analysis of deterministic algorithms. How-
ever, given the success of randomization in other fields of computing, it is reason-
able to attempt to extend our definitions torandomized algorithms, that is, algo-
rithms that choose some of their actions according to the value of some random
variables. From the game-theoretical point of view, this can be shown to be equiv-
alent to the assumption that the online player chooses his strategy randomly out of
a set of deterministic strategies, implementing thus a so-calledmixed strategy[30].
This motivates the following definition.

Definition 1.4. A randomized online algorithm is defined as a probability dis-
tribution over a set of deterministic online algorithms. The cost(σ) of  on
input sequenceσ is thus a random variable.

In order to define the competitive ratio of a randomized algorithm, we should
be careful about the precise adversary model used. Three such models are common
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in the literature. Theoblivious adversarychooses an input sequence based only on
the description of the online algorithm. Thus, it cannot build the input sequence on
the basis of the actual behavior of the online algorithm. Theadaptive offline adver-
sarycan build the input sequence online and can base future requests on the actions
of the online algorithm on previous requests. Theadaptive online adversarycan
build the input sequence online like the adaptive offline adversary, but it must also
generate its own solution online. In the case of a deterministic online algorithm,
these distinctions vanish because the behavior of the algorithm is completely pre-
dictable, given the request sequence. Instead, when considering randomized online
algorithms, adaptive adversaries are more powerful than the oblivious adversary;
so powerful, indeed, that they almost negate all the advantages of randomization
[22]. In this thesis we will only use the oblivious adversary model when dealing
with randomized online algorithms.

Definition 1.5. A randomized online algorithm distributed over a set{y} of
deterministic online algorithms for an online optimization problemP is calledc-
competitive against an oblivious adversaryif, for all instancesσ of P,

Ey[y(σ)] ≤ c · (σ).

As for the deterministic algorithms, we define the competitive ratio of as
the smallestc such that is c-competitive.

For randomized algorithms, it can be difficult to prove a lower bound on the
cost of an arbitrary randomized algorithm on a specific instance. Fortunately, the
use ofYao’s principle[31, 87, 91] can be helpful in these cases. It will be enough
for us to resort to the following form of the principle.

Theorem 1.1(Yao’s principle). Let {y : y ∈ Y} denote the set of deterministic
online algorithms for an online minimization problem. If X is a distribution over
input sequences{σx : x ∈ X} such that

inf
y∈Y
EX[y(σx)] ≥ cEX[(σx)]

for some real number c≥ 1, then c is a lower bound on the competitive ratio of
any randomized algorithm against an oblivious adversary.

1.7 Beyond competitive analysis

One of the advantages of competitive analysis is that its adversarial nature allows
one to prove unconditional lower bounds on the competitive ratio rather easily. The
downside is that sometimes these lower bounds are too strong, in the sense that they
do not reflect correctly the practical behavior of the algorithms being analyzed.
For example, consider the paging problem. From the competitive analysis point of
view, the two algorithms Least Recently Used () and First In First Out ()
have the same competitive ratio, that isk, the size of the cache. However, it has
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long been known that is much better in practice than. This failure of
competitive analysis in distinguishing the two algorithmsis mainly due to the fact
that the power of the offline adversary is too great. For this reason, refinements of
and alternatives to competitive analysis have been proposed in the literature.

Perhaps the simplest way to weaken the all-powerful adversary is to strengthen
the online algorithm by giving it more resources than the adversary. For example,
in a scheduling problem the online algorithm could have moreprocessors, while in
the paging problem it could have a larger cache. This approach is calledresource
augmentationand it has been applied successfully in several cases [62, 81, 86].

Another method, introduced by Koutsoupias and Papadimitriou [65], is com-
parative analysis. In comparative analysis, one enlarges the scope of competitive
analysis by distinguishing between different information regimes. Consider two
classesA andB of algorithms. Thecomparative ratioR(A,B) is defined as:

R(A,B) = max
B∈B

min
A∈A

max
σ

A(σ)
B(σ)

.

Not surprisingly, the clearest interpretation is again that of a game. The adver-
sary chooses an algorithmB ∈ B. As an answer to that, the online player picks an
algorithm A ∈ A. Then the adversary picks an input sequenceσ, and the online
player pays the adversary the ratioA(σ)/B(σ). The amount that the adversary can
hope to obtain is exactlyR(A,B). We obtain competitive analysis as a special case
if A is the set of all online algorithms andB is the class of all algorithms, online
and offline.

Another generalization of competitive analysis is thediffuse adversary model.
While standard competitive analysis is completely worst case, in the diffuse adver-
sary model one assumes that something is known about the input distribution. In
particular, we assume that the actual input distributionD belongs to a known class
∆ of possible distributions. The competitive ratio is then defined as:

R(∆) = min
A

max
D∈∆

ED[A(σ)]
ED[(σ)]

.

This means that the adversary chooses a distributionD among those in∆ so that
the expected value, with respect toD, of the competitive ratio is as large as possible.
Thus, this generalization represents a bridge between classical competitive analysis
(which is the particular case in which∆ is the class of all possible distributions) and
stochastic optimization (which we obtain as a special case when∆ is a singleton).

1.8 Server routing problems

This thesis deals with the online versions of particular combinatorial optimization
problems known asserver(or vehicle) routing problems. In a server routing prob-
lem, a set of servers has to process a set of transportation requests in a metric space.
In order to serve the requests, the servers incur some cost, the details depending
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on the problem being considered. We have already seen a fundamental server rout-
ing problem, the Traveling Salesman Problem or TSP. In the TSP there is a single
server, requests consist of isolated points that have to be visited, and the goal is to
minimize the total length of a round trip route visiting all requested points. The
TSP is a classical problem in combinatorial optimization and has been the testbed
of many algorithmic techniques. The server routing problems we consider in this
thesis can all be seen as online generalizations or variations of the standard TSP.

1.9 Outline of the thesis

In this section we briefly outline the contents of this thesis.

• In Chapter2, after reviewing the basic complexity results for offline server
routing problems, we introduce the online server routing framework and we
survey the state of the art for online server routing. We showthe basic proof
techniques and we discuss several attempts in the literature to extend the
basic competitive analysis setting. Part of the content of this chapter is joint
work with L. Allulli, G. Ausiello, and L. Laura [5].

• In Chapter3, we consider theonline asymmetric traveling salesman problem
from the point of view of competitive analysis. We prove thatthe homing
version, where the server has to return to its starting point, admits a (1+ φ)-
competitive algorithm, whereφ is the golden ratio, and we show that this
is best possible. We also consider the nomadic version (where returning to
the starting point is not mandatory) and prove that it does not admit constant
competitive algorithms. However, for the nomadic version we prove a com-
petitive ratio as a function of the amount of asymmetry of thespace. We also
consider the competitiveness of zealous algorithms. We discuss the issue of
polynomial time algorithms in this setting. The content of the chapter is joint
work with G. Ausiello and L. Laura [12].

• In Chapter 4, we study theonline prize-collecting traveling salesman prob-
lem. After discussing the approximation ratio of the offline version, we give a
7/3-competitive algorithm. We also consider the special caseof the halfline
as the metric space, for which we prove lower and upper boundsof 1.89
and 2, respectively, on the competitive ratio of deterministic algorithms. The
content of the chapter is joint work with G. Ausiello, L. Laura, A. Marchetti-
Spaccamela and S. Leonardi [13, 14].

• In Chapter 5, we consider theonline nomadic traveling salesman and the
online traveling repairman with k servers. We give competitive algorithms
whose competitive ratios match the ones for the single server variants. For
the special case of the real line, we prove the existence of algorithms with
competitive ratio 1+ O((logk)/k), meaning that we can approach the opti-
mal cost ask grows. We also show that this phenomenon is limited to the
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one dimensional case, since already in the Euclidean plane,we prove a lower
bound of 4/3 for the online nomadic TSP and of 5/4 for the online TRP inde-
pendently of the number of servers. Finally, we give resource augmentation
results that are asymptotically best possible as the numberof online servers
grows beyond the number of offline servers. The content of the chapter is
joint work with L. Stougie [29].

• In Chapter 6, in order to address the limits of competitive analysis, we intro-
ducea new model for online server routing based on adversarial queueing
theory. The model addresses the stability of online algorithms that are con-
tinuously operating. We call an online algorithmstable if there exists an
upper bound on the number of unserved requests at any time that does not
depend on the time the system has been running. We consider a number of
natural algorithms in this model and we prove the existence of algorithms
that are stable and such that the maximum flow time of a requestalso does
not depend on the time the system has been running [28].

1.10 Related literature

Combinatorial optimization lies at the interface between operations research and
computer science. A classical text by Papadimitriou and Steiglitz [79] combines
the two approaches. We assume that the reader is familiar with basic notions from
complexity theory; see Garey and Johnson [50] for a self-contained introduction
focusing on NP-hardness. More modern references are available for the theory of
approximation algorithms [15, 90]. A somewhat dated but still unique monograph
on the traveling salesman and other server routing problemsis the book by Lawler
et al. [73].

Competitive analysis has its origins in the 1980s, when for the first time formal
concepts for the analysis of online algorithms where introduced [86], although
some online algorithms with guaranteed competitive ratio were already designed
in the 1960s in the context of multiprocessor scheduling [54]. For an in-depth
presentation of online computation, the reader can refer tothe texts by Borodin
and El-Yaniv [30] or by Fiat and Woeginger [47]. A useful reference for online
vehicle routing is given by Krumke [66], together with a number of Ph.D. theses
on the subject [43, 75, 82].
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Chapter 2

Online server routing

2.1 Introduction

In this chapter, we survey the state of the art for online server routing. Since we
do not want to disregard the running time of the algorithms weconsider, we start
with a brief review of basic complexity results for offline server routing problems
(Section2.2). Then we introduce the online server routing model, discuss the main
results in the area and show by some examples the basic proof techniques (Section
2.3). We end by surveying extensions of the basic model in several directions
(Section2.4).

2.2 Offline server routing: complexity results

The Traveling Salesman Problem (TSP for short) is an archetypical problem in
combinatorial optimization. This problem and its generalizations,serveror vehicle
routing problems, have been studied for more than fifty years [42], and several
monographs are devoted to the subject [55, 61, 73, 83, 89]. In this section we
discuss some basic complexity results for the TSP and some ofits variants.

2.2.1 The Traveling Salesman Problem

The basic TSP was already defined in the Introduction (Example1.1). Let us define
it again here, in a slightly different but equivalent form.

Definition 2.1. An instance of theTraveling Salesman Problemis given by an
integern > 0 and the distance between every pair ofn cities in the form of a
function d : {1, . . . , n}2 → Z+. The setF of feasible solutions is the set of cyclic
permutations onn objects. The costc(ϕ) associated toϕ ∈ F is

n
∑

i=1

d(ϕ(i−1)(1), ϕ(i)(1))
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whereϕ(i) stands for thei-th iterate of ϕ, defined inductively byϕ(0)(x) = x and
ϕ(i+1)(x) = ϕ(ϕ(i)(x)).

The TSP is an NP-hard problem. To see why, consider the NP-hard Hamil-
tonian Cycleproblem [50]. In the Hamiltonian Cycle problem, one is given an
undirected graph, and the problem is that of deciding whether the graph has a
Hamiltonian cycle, that is, a cycle spanning all the vertices. The following re-
duction from the Hamiltonian Cycle problem to the TravelingSalesman Problem
shows that the latter is NP-hard.

Theorem 2.1([84]). The Traveling Salesman Problem isNP-hard.

Proof. Let G = ({1, 2, . . . , n},E) be an instance of the Hamiltonian Cycle problem.
We define a TSP instance as follows: the number of cities is equal ton, the number
of vertices ofG, while the intercity distances are given by

d(i, j) =

{

1 iff {i, j} ∈ E
2 otherwise.

From the construction it follows thatG has a Hamiltonian Cycle if and only if
the TSP instance has a solution of costn. Thus, a polynomial time algorithm for
the TSP implies a polynomial time algorithm for the NP-hard Hamiltonian Cycle
problem. �

Indeed, the same proof technique can be used to prove a much more drastic
fact: not only does the TSP have no polynomial time algorithms unless P=NP, it is
also hard to approximate within any factor better than an exponential inn.

Theorem 2.2([84]). For any fixed k∈ Z+, there is no2nk
-approximation algorithm

for the Traveling Salesman Problem unlessP=NP.

Proof. We can proceed as in Theorem2.1, except thatd(i, j) is now 1+ n2nk
when

{i, j} < E. The reduction can be performed in time polynomial in log(1+ n2nk
),

which is polynomial inn. �

2.2.2 The metric TSP

As we have seen in the previous section, we cannot hope to havegood approxima-
tions to the general TSP unless P=NP. Fortunately, in many applications the input
data satisfy some additional constraints that simplify theproblem. Particularly of
interest is the constraint that the intercity distances form ametric.

Definition 2.2. Given a setM, a functiond : M2→ R+ is called ametriconM if:

1. d(i, i) = 0 for everyi ∈ M (definiteness);

2. d(i, j) = d( j, i) for everyi, j ∈ M (symmetry);

3. d(i, j) ≤ d(i, k) + d(k, j) for everyi, j, k ∈ M (triangle inequality).
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The setM, equipped withd, is called ametric space.

The TSP with the metric constraint is called themetric TSP. The metric TSP is
still an NP-hard problem (the instances constructed in the proof of Theorem2.1are
metric). However, differently from the basic TSP, it admits constant approximation
algorithms.

Theorem 2.3. The metric TSP admits a 2-approximation algorithm.

Proof. The algorithm constructs a minimum spanning treeT on the input metric.
The total weight ofT is at most the cost of the optimal solution to the metric TSP
instance, since any Hamiltonian cycle contains a spanning tree.

Then, a Eulerian multigraph is obtained fromT by taking two copies of every
edge ofT. Finally, we take a Eulerian closed walk along this multigraph and
we “shortcut” it by eliminating multiple occurrences of thesame vertex. By the
triangle inequality, doing so does not increase the cost of the walk. Thus, the final
Hamiltonian cycle has cost at most twice that of the optimal solution. �

The best approximation algorithm known to date for the metric TSP is a heuris-
tic by Christofides.

Theorem 2.4([38]). The metric TSP admits a3/2-approximation algorithm.

It is quite striking that no progress has been made over this algorithm in thirty
years, despite numerous attempts by researchers. It is thusnatural to ask if 3/2
is the best approximation ratio possible assuming P, NP. Although an answer to
this question is still missing, researchers were able to prove results that go in this
direction.

Theorem 2.5([80]). There is no r-approximation algorithm for the metric TSP for
r < 220/219, unlessP=NP.

In a variant of the TSP, called the Wandering Salesman Problem [61], the sales-
man is not required to return at the starting point at the end of the tour.

Definition 2.3. An instance of theWandering Salesman Problem(WSP) is given
by an integern > 0 and the distance between every pair ofn cities in the form of
a functiond : {1, . . . , n}2 → Z+. The setF of feasible solutions is the set of cyclic
permutationsϕ over the set ofn cities. The costc(ϕ) associated toϕ ∈ F is

n−1
∑

i=1

d(ϕ(i−1)(1), ϕ(i)(1)).

Similarly to the TSP, we can define a metric variant of the WSP.It turns out
that the approximation properties of the WSP are essentially the same as those of
the TSP.

Theorem 2.6([57]). The metric WSP admits a3/2-approximation algorithm.
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Other special cases of the TSP have different approximability properties. An
important case is that ofRp with the Euclidean metric, which was considered by
Arora [9].

Theorem 2.7([9]). For any r ∈ (1,∞) and p ∈ N, there is an r-approximation
algorithm for the TSP inRp with the Euclidean metric.

2.2.3 The Traveling Repairman Problem

In the TSP, the objective function is quite partial to the salesman, since it asks to
minimize the total length of the tour. Instead, we can consider objective functions
that are more oriented to the customers in the cities. An important such function is
the total latency, that is the objective of the so calledTraveling Repairman Prob-
lem. The latency of a city is the distance traveled before first visiting the city.

Definition 2.4. An instance of theTraveling Repairman Problem(TRP) is given
by an integern > 0 and the distance between every pair ofn cities in the form of
a functiond : {1, . . . , n}2 → Z+. The setF of feasible solutions is the set of cyclic
permutations onn objects. The costc(ϕ) associated toϕ ∈ F is

n
∑

i=1

i−1
∑

j=1

d(ϕ( j−1)(1), ϕ( j)(1)).

Similarly to the TSP, the TRP is an NP-hard problem and it is very hard to
approximate if one does not assume a metric distance function. Even with the
metric assumption, a constant approximation algorithm wasfar harder to develop
than for the TSP [26, 52]. The best result to date is due to Chaudhuri et al.

Theorem 2.8([33]). The metric TRP admits a3.59-approximation algorithm.

Finally, we mention that on the Euclidean line, the TRP is solvable in polyno-
mial time by dynamic programming [1], while for fixed higher dimensions there is
a quasipolynomial time approximation scheme [10].

2.3 Online server routing: competitive analysis

2.3.1 The online server routing framework

In a server routing problem, a server moves in a special kind of metric space (recall
Definition 2.2). In particular, we generally assume that the metric space is path-
metricandcontinuous. By path-metric we mean that the distance between any two
points is equal to the length of the shortest path between them. A metric space
M is continuous if, for allx, y ∈ M and a ∈ [0, 1], there is az ∈ M such that
d(x, z) = ad(x, y) andd(z, y) = (1 − a)d(x, y). We callgeneral metric spacesthe
metric spaces that are both path-metric and continuous. Finally, we assume that
the metric spaceM has a distinguished pointo called theorigin.
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We will be interested in general metric spaces as well as somespecial cases.
For example:

• thereal line, i.e.R with the Euclidean distanced(x, y) = |x−y| and the origin
at 0;

• the nonnegative part of the real line, or simply thehalfline, i.e. R+ with the
Euclidean distanced(x, y) = |x− y| and the origin at 0;

• the p-dimensional spaceRp with the origin at 0 and the Euclidean distance

d(x, y) =

√

√

n
∑

i=1

(xi − yi)2;

• the general metric space induced (in the natural way) by an undirected, con-
nected edge-weighted graph.

In Chapter3 we will also consider a generalization in which the distancefunction
is not necessarily symmetric.

Being an online problem, a server routing problem has instances that consist of
a sequence of requestsσ = σ1σ2 · · ·. In the basic framework, each request is a pair
σ j = (r j , x j) ∈ R+ ×M. The parameterr j is therelease dateof requestσ j , that is,
the time at which the request becomes known and available forprocessing, while
x j represents the location of the request. In order to serve therequest, the server
will have to visit locationx j . In the basic model, there are no processing times,
that is, once visited a request is instantaneously served. Thecompletion time Cj of
a requestσ j is the first time at which that request becomes served.

In accordance to the real-time model of online problems, thesequence of re-
quests is assumed to be ordered by nondecreasing release dates. Also, it is some-
times handy to denote byσ≤t the prefix ofσ consisting of all requests released up
to time t. Similarly we denote byσ=t andσ≥t the requests released at timet and
the requests released since timet, respectively.

The online algorithm controls a server, located at the origin o ∈ M at time
0. We denote the position of the server at timet by s(t). By scaling distances
appropriately, we can assume without loss of generality that the server can move
at most at unit speed. Obviously, since the algorithm has to be online, it does not
have information about the number of requests nor about the release date of the
last request. Thus, at any timet, the algorithm must determine the behavior of the
server as only a function oft andσ≤t. Instead, an offline algorithm knows the entire
sequenceσ already at time 0.

A solution to an online server routing problem is called a (feasible)schedule.
Informally, a schedule for instanceσ is a sequence of moves of the server such
that all requests inσ are served. Notice that (1) the server must start in the origin
at time 0; (2) no request can be served before its release date. In some variants
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of online server routing problems, the schedule must beclosed, that is, the server
must also return to the origin after serving all requests.

Different server routing problem associate different costs to a schedule. Thus,
we will introduce the various costs as we present the problems we are interested in.

2.3.2 The homing online TSP

In the online Traveling Salesman Problem, cities to be visited (requests) are re-
vealed online while the salesman is traveling. The objective is to minimize the
duration of a closed schedule serving all requests, that is,the time at which the
server is back at the origin and every request has been served. Since the schedule
is required to be closed, the problem is also calledhomingonline TSP, to stress that
the server has to return “home”. The homing online TSP, as itsname suggests, is
probably the closest online analogue of the TSP. However, there are some interest-
ing differences between the two problems. One is that in the offline TSP lengths
and times have essentially the same role, while in the onlineTSP the cost is given
not by the length of the tour but by the length of the schedule,that is, by the total
time traveled by the server. If the server stays idle, this will result in an increased
cost. Another difference is that while in the offline TSP a solution never needs to
visit the same point twice, an online schedule might have to do so due to the release
dates constraints.

The homing online TSP was first considered by Ausiello et al. [17]. They
give a 2-competitive algorithm for general metric spaces and show that to be best
possible. Although the 2-competitive algorithm is not polynomial time, the authors
show how to derive from it a 3-competitive polynomial time algorithm, by applying
Theorem2.4. A better polynomial time algorithm, with a competitive ratio of
(7+

√
13)/4 ≈ 2.65, is derived by Ascheuer et al. [11].

Ausiello et al. also consider the homing online TSP on the real line, for which
they devise a 7/4-competitive polynomial time algorithm and prove a lower bound
of (9+

√
17)/8 ≈ 1.64. Later, the problem on the real line was closed by Lipmann

[75], who gives a matching (9+
√

17)/8-competitive algorithm. Finally, Blom et al.
[25] consider the case of the halfline, for which they devise a simple, best possible
3/2-competitive algorithm.

In order to expose the reader to the basic proof techniques, we would like
to discuss a different 2-competitive algorithm for the homing online TSP. This
algorithm, called SmartStart, was proposed and analyzed byAscheuer et al. [11]
in the more general context of dial-a-ride problems (see also Section2.3.5). The
analysis is particularly interesting because it shows how waiting can help in online
server routing. We will also use the same technique in Chapter 3, where we will
consider the online TSP in asymmetric spaces.
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A 2-competitive algorithm

 (Algorithm 1) depends on a real parameterα > 0. From time to time,
the algorithm calls a “work-or-sleep” subroutine that computes a (possibly approx-
imate) shortest scheduleS for all unserved requests released so far, starting and
ending at the origin. Letℓ(S) be the length of scheduleS. If ℓ(S) ≤ αt, that is, the
lengthℓ(S) of the schedule is relatively short compared to the currenttime t, then
the subroutine returns (S, work), otherwise it returns (S, sleep). Notice that the
subroutine has to find a solution to a metric TSP instance. We assume that it uses a
ρ-approximation algorithm, for someρ ∈ [1, 1 + α]. When we are only interested
in competitive analysis, the running time of the subroutinewill not be relevant so
that we can assumeρ = 1. However, when we are interested in a polynomial time
algorithm we need to consider larger values ofρ (for example, 3/2 when using
Christofides’ heuristic).

The algorithm has three different states of operation. In theidle state, the server
has served all known requests, is sitting at the origin and waiting for new requests
to occur. In thesleepingstate, the server is sitting at the origin and knows some
unserved requests, but has decided, according to the work-or-sleep subroutine, to
postpone their service. In theworking state, the server is following the schedule
last computed.

Algorithm 1 
If the algorithm is idle at timet and new requests arrive, it calls the work-or-sleep
subroutine (that uses aρ-approximation algorithm). If the result is (S, work), the
algorithm enters the working state where it follows schedule S. Otherwise the
algorithm enters the sleeping state with wake-up timet′, wheret′ ≥ t is the earliest
time such thatℓ(S) ≤ αt′ andℓ(S) denotes the length of the just computed schedule
S, i.e.,t′ = max{t, ℓ(S)/α}.
In the sleeping state the algorithm simply does nothing until its wake-up timet′.
At this time the algorithm consults again the work-or-sleepsubroutine. If the result
is (S, work), then the algorithm enters the working state and followsS. Otherwise
the algorithm continues to sleep with new wake-up timeℓ(S)/α.
In the working state, that is, while the server is following aschedule, all new re-
quests are (temporarily) ignored. As soon as the current schedule is completed the
server either enters the idle-state (if there are no unserved requests) or it consults
the work-or-sleep subroutine which determines the next state (sleeping or work-
ing).

Theorem 2.9([11]).  is a c-competitive algorithm for the online TSP
with

c = max
{

1+ α, ρ
(

1+
1
α

)

,
1+ α

2
+ ρ

}

.

Proof. Denote byσ=rm the set of requests released at timerm, whererm is the latest
release date. We distinguish different cases depending on the state of

17



at timerm.

1. The algorithm is idle.

In this case the algorithm consults its work-or-sleep routine which computes
an approximately shortest scheduleS for the requests inσ=rm. The server
will start its work at timet′ = max{rm, ℓ(S)/α}.
If t′ = rm, it follows thatℓ(S) ≤ αrm and the algorithm completes no later
than time (1+ α)rm ≤ (1 + α)(σ). Otherwiset′ = ℓ(S)/α and it fol-
lows thatt′ + ℓ(S) = (1 + α)t′. By the performance guaranteeρ of the ap-
proximation algorithm employed in the work-or-sleep subroutine, we have
(σ) ≥ ℓ(S)/ρ = αt′/ρ. Thus, it follows that

(σ) = t′ + ℓ(S)

≤ (1+ α)t′ ≤ (1+ α) · ρ
α
(σ)

= ρ

(

1+
1
α

)

(σ).

2. The algorithm is sleeping.

Since the wake-up time of the server is no later than max{rm, ℓ(S)/α}, where
S is now a shortest schedule for all the requests inσ not yet served by
 at timerm, we can proceed as in the first case.

3. The algorithm is working.

If after the completion of the current schedule the server enters the sleeping
state, then by the same arguments as above we can ensure that the completion
time of the server does not exceedρ(1+ 1

α
)(σ).

The remaining case is that the server starts its final scheduleS′

immediately after having completedS. Let tS be the time when the server
startedS and denote byσ≥tS the set of requests presented after the server
startedS at time tS. Notice thatσ≥tS is exactly the set of requests that are
served by in its last scheduleS′:

(σ) = tS + ℓ(S) + ℓ(S′). (2.1)

Here,ℓ(S) andℓ(S′) denote the lengths of the schedulesS andS′, respec-
tively. We have that

ℓ(S) ≤ αtS (2.2)

since only starts a schedule at some timet if its length is no larger
thanαt. Let σ j ∈ σ≥tS be the first request fromσ≥tS served by. Since
the optimal schedule must be closed, we conclude that

(σ) ≥ tS + d(x j , o). (2.3)
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On the other hand, since a feasible schedule forσ≥tS consists in moving to
x j and then following the same route as the adversary, we have

ℓ(S′) ≤ ρ(d(o, x j ) + (σ) − tS) (2.4)

where we subtractedtS from the cost since we are computing a length, not
a completion time, and the adversary will not serveσ j at a time earlier than
tS.

Using (2.2), (2.3) and (2.4) in (2.1) and the assumption thatρ ≤ 1 + α, we
obtain

(σ) ≤ (1+ α)tS + ℓ(S′) (by 2.2)
≤ (1+ α − ρ)tS + ρd(o, x j ) + ρ(σ) (by 2.4)
≤ (1+ α)(σ) + (2ρ − 1− α)d(o, x j ) (by 2.3)
≤ (1+ α)(σ) +max{(2ρ − 1− α), 0}(σ)

2

≤ max
{

1+α
2 + ρ, 1+ α

}

(σ)

and the proof is complete.

�

Corollary 2.10 ([11]).  is a 2-competitive algorithm for the homing
online TSP whenα = ρ = 1.

By using Christofides’ algorithm, we can approximate the offline TSP in poly-
nomial time with a ratioρ = 3/2. For this value ofρ, the best value ofα is
(
√

13− 1)/2 ≈ 1.3.

Corollary 2.11 ([11]). Let c = (7 +
√

13)/4 ≈ 2.65. Then  is a
c-competitive polynomial time algorithm for the homing online TSP whenα =
(
√

13− 1)/2 and Christofides’ algorithm is used in the work-or-sleep subroutine.

2.3.3 The nomadic online TSP

As we have seen in Section2.2.2, if we relax the condition that the server ends
its schedule at the same point it departed from, we obtain theWandering Sales-
man Problem. Its online version is called thenomadiconline TSP and has been
introduced together with the homing online TSP [17]. Ausiello et al. [17] give a
5/2-competitive algorithm for general metric spaces and a simple lower bound of
2. The same lower bound also holds for the real line, in which case the authors give
a 7/3-competitive algorithm.

Lipmann [75] gives an improved algorithm for general spaces with competitive
ratio 1+

√
2. This algorithm, as that of Ausiello et al., is not polynomial time,

but it can be made so with only a constant increase in the competitive ratio, by
combining it with the approximation algorithm of Theorem2.6. Lipmann also
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considers the problem on the real line, for which he gives a best possible, though
fairly complicated, algorithm with competitive ratio 2.03 [76].

The case of the halfline received less attention, the only result being a 1.63
lower bound by Lipmann [75]. In this section we give a simple 2-competitive
polynomial time algorithm for this variant. As the gaps in the results suggest, the
nomadic online TSP is harder to analyze than its homing counterpart and no best
possible algorithm is known, not even on special spaces suchas the real line.

We will consider the nomadic TSP on asymmetric spaces in Chapter 3, as well
as a multiserver variant in Chapter5. In order to present the basic techniques that
will be used there, we present here our 2-competitive algorithm for the halfline.

A 2-competitive algorithm on the halfline

For the nomadic online TSP on the halfline, we give here a simple 2-competitive
algorithm (Algorithm2).

Algorithm 2 -
The server follows the space-time lines(t) = t/2, that is, it departs from the origin
at half-speed. The server always serves immediately every request it encounters
along the way. On every new request released between the current position of the
server and the origin, the server goes back at full speed to the unserved request
that is closest to the origin, serving all requests it encounters on the way. Then, it
proceeds at full speed away from the origin till encountering the space-time line
s(t) = t/2. At that point, it remains on that space-time line until thenext request,
as before.

Theorem 2.12.- is2-competitive for nomadic online TSP on the halfline.

Proof. If no request is ever released between the server and the origin, -
is obviously 2-competitive. Otherwise, letσ j = (r, x) be the last request causing
the server to back up, and letx∗ be the distance from the origin to the farthest
request ever. We have

(σ) ≥ max{r, x∗}, (2.5)

since no schedule can end before requestσ j is released, and in every schedule the
server should reach the farthest point requested. Ifx∗ ≤ s(r), sinces(r) ≤ r/2, we
have:

-(σ) ≤ r + s(r) + x∗ ≤ 2r ≤ 2(σ).

Otherwise,x∗ > s(r) and-(σ) ≤ r + r/2− x+ x∗ − x. We distinguish two
cases.

1. r ≥ 2x∗: then-(σ) ≤ 2r ≤ 2(σ).
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2. r < 2x∗: in this case we need another lower bound on(σ). If the adversary
serves first requestσ j and then the one inx∗, we have(σ) ≥ r + x∗ − x;
otherwise,(σ) ≥ x∗ + x∗ − x. In both cases,

(σ) ≥ min{r, x∗} + x∗ − x. (2.6)

Summing (2.5) to (2.6) we get(σ) ≥ x∗ + (r − x)/2. The competitive
ratio is then

-(σ)
(σ)

≤ r + r/2+ x∗ − 2x
r/2+ x∗ − x/2

≤ r + r/2+ x∗
r/2+ x∗

= 1+
r

r/2+ x∗
≤ 2.

�

2.3.4 The online TRP

The online version of the Traveling Repairman Problem has been considered by
several authors. Feuerstein and Stougie [45] give a 9-competitive algorithm for the
real line and a corresponding lower bound of 1+

√
2. This lower bound is still the

best known, even for general spaces. Instead, the best knownalgorithm for general
spaces was given by Krumke et al. [68] where a (1+

√
2)2 ≈ 5.81-competitive

algorithm was devised for the more general dial-a-ride problem.
The large gap between the best known lower and upper bounds witnesses the

fact that the online TRP is an analytically difficult problem. We will consider a
multiserver variant of the online TRP in Chapter5.

2.3.5 Other related problems

Following the initial body of results on online server routing problems, many other
related problems have been considered in the literature.

In theminimum total flow timeonline routing problem, the objective function is
∑

j(C j − r j), which is equivalent to the minimization of the average delay between
the release date of a request and its completion time. This objective function is
particularly relevant because it can represent average user dissatisfaction in a con-
tinuously running system. Unfortunately, there cannot exist constant competitive
algorithms for this problem, even in very restricted settings [6]. This is reminiscent
of similar results in the scheduling literature [20, 64, 74]. Analogous nonexistence
results hold for theminimum maximum flow timeproblem [6]. Several attempts at
studying these problems in weaker adversarial models have been considered (see
Section2.4).

Onlinedial-a-ride problemshave also been considered by some authors. In a
dial-a-ride problem, every request specifies both a source and a destination point in

21



the metric space. The object corresponding to the request must be transported by
the server between the two points. The server has some capacity C, meaning that
it can transport at mostC objects at a time, and preemption is not allowed: once an
object has been picked up by the server, the server is not allowed to drop it at any
other place than its destination. Dial-a-ride problems aregeneralizations of server
routing problems, which are obtained as special cases when for every request its
source and destination coincide. Some of the best known algorithms for server
routing problems have been indeed devised in the context of dial-a-ride problems.
Ascheuer et al. [11] give a best possible competitive algorithm for the homing
dial-a-ride problem. For the nomadic dial-a-ride problem,Lipmann [75] gives
a (3+

√
5)/2 ≈ 2.62-competitive algorithm. The “latency” dial-a-ride problem,

with cost
∑

j C j, has been investigated by Feuerstein and Stougie [45], who give
a lower bound of 3 on the competitive ratio of the problem and a9-competitive
algorithm for the real line. This result was generalized andimproved by Krumke
et al. [68], who devised a (1+

√
2)2 ≈ 5.81-competitive algorithm for general metric

spaces. Some results for the dial-a-ride problem with the objective of minimizing
the maximum flow time are given by Krumke et al. [67].

Irani et al. [58] consider a server routing problem where requests have dead-
lines. The objective is to maximize the number of requests that are served by their
deadline. The length of time between the arrival of a requestand its deadline is a
constant. The authors give both upper and lower bounds on thecompetitive ratio
of the problem in terms of the diameter of the metric space. The same problem is
also investigated by Krumke et al. [71], who give a constant competitive algorithm
for the uniform metric space and prove that no deterministicalgorithm can achieve
a constant competitive ratio on the real line.

In Chapter3 we study an online version of theasymmetric TSP with triangle
inequality, that is, we drop the symmetry condition on the metric space.We give
a best possible competitive algorithm for the homing version, and we show that
there cannot be constant competitive algorithms for the nomadic case. Indeed, we
show that, in a precise sense, in the nomadic case the competitive ratio has to be a
function of the amount of asymmetry of the space.

In Chapter4 we consider theonline Prize-Collecting TSP. In the Prize-
Collecting TSP, individual requests are not required to be served, but each request
has a weight and every feasible schedule has to serve enough requests to collect at
least a certain total weight, called thequota. The quota is specified before requests
start being released. Moreover, every request has an associated value called its
penalty, and the cost of a schedule is given by its length plus the sum of the penal-
ties of the requests not in the schedule. For this problem we give a 7/3-competitive
algorithm. For the special case when the metric space is the real halfline we obtain
an improved competitive ratio of 2, which compares with a lower bound of 1.89.
A special case of the online Prize-Collecting TSP calledonline Quota TSPhas al-
ready been considered in the literature by Ausiello et al. [16]. The Quota TSP is
defined as the Prize-Collecting TSP, except that there are nopenalties. Ausiello et
al. give a simple 2-competitive algorithm for the online Quota TSP and prove it to
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be best possible among deterministic algorithms. They alsoconsider the problem
on the halfline, and give a best possible 3/2-competitive algorithm for this case.

2.4 Alternative online models

As we have seen in the Introduction of this thesis, competitive analysis is some-
times criticized for leading to estimates that are too pessimistic. This critique ap-
plies also in the context of online server routing, and in particular to problems
such as the minimum total/maximum flow time, for which no constant competi-
tive algorithms are at all possible. For this reason, many alternative models have
been suggested in the literature in the hope of restricting the adversary enough so
that the differences in quality between various online algorithms for such problems
become evident. These efforts have been partially successful on the individual
problems considered, but still a more general, unified approach has not emerged.

2.4.1 Resource augmentation

In the online algorithms literature, a method of analysis that is often used to par-
tially mitigate the power of the adversary is resource augmentation (see also Sec-
tion 1.7). Although resource augmentation has been used for other online problems
following the real-time model, such as scheduling, no application of resource aug-
mentation specific for server routing problems was known, prior to this thesis. We
give some resource augmentation results for the nomadic online TSP and the on-
line TRP in Chapter5. We notice that resource augmentation in terms of number
or speed of the servers is not enough when dealing with the total or maximum flow
time objective functions.

2.4.2 Fair adversary

One of the first alternative adversarial models proposed in the context of online
server routing has been thefair adversarymodel. The observation is that for some
algorithms, the worst case is obtained when the adversary moves away from pre-
viously released requests without giving any information to the online algorithm.
A fair adversary, instead, always keeps its server within the convex hull of the re-
quests released so far. The fair adversary model has been introduced by Blom et al.
[25], who consider the homing online TSP on the nonnegative partof the real line.
They devise an online algorithm with a competitive ratio of (1 +

√
17)/4 ≈ 1.28

against a fair adversary, and also show that this ratio is best possible. Lipmann [75]
also has several lower bounds for routing problems with fairadversaries.

Unfortunately, already on the real line, the fair adversaryis not weak enough
to allow competitive algorithms for cost functions such as the maximum flow time
[70]. However, when considering the same objective function ina uniform metric
space, the simple first-come first-serve algorithm which always serves an oldest
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unserved request next is 2-competitive and best possible against a fair adversary
[67].

2.4.3 Non-abusive adversary

The fair adversary is still too powerful in the sense that it can move to a point
where it knows that a request will pop up without revealing any information to the
online server before reaching that point. Thenon-abusive adversary, introduced by
Krumke et al. [70], is a natural restriction of the adversary on the real line.A non-
abusive adversary may only move in a direction if there are yet unserved requests
on that side. Krumke et al. [70] give an 8-competitive algorithm for the maximum
flow time server routing problem on the real line against a non-abusive adversary.

2.4.4 Reasonable load

A completely different approach to avoid pathological worst case input sequences
is based on the notion ofreasonable load, proposed by Hauptmeier et al. [56]:
informally, they define a set of requests, that come up in a sufficiently large period,
to be reasonable if they can be served by an optimal algorithmin a time period of
the same length. This corresponds to a stability condition,similar to those used in
queueing theory, implying that the system is not overloadedby requests even when
it is continuously operating. The authors analyze in this model the online dial-a-
ride problems for the minimization of maximum and total flow time. Under the
reasonable load condition, they are able to distinguish between the quality of two
classical algorithms for which pure competitive analysis gives the same negative
result.

Following similar motivations, in Chapter6 we propose a model for continu-
ously operating server routing systems that is based onadversarial queueing theory
[32]. We assume that requests are introduced in the system by an adversary with
some bounded rate. This allows us to study questions such as whether an algorithm
is stable, that is, it maintains a bounded number of unserved requestsat any time,
or whether it is such that the maximum flow time of every request is also bounded
(that is, independent of the age of the system).

2.4.5 Algorithms with lookahead

Lookaheadis the capability of an online algorithm of seeing some requests in ad-
vance, and as such it can be seen as a relaxation of the online model. Classic online
problems have been studied in the presence of lookahead, such as paging [2] and
list update [3]. Different models of lookahead have been proposed, but usually the
online algorithms are allowed to see a certain fixed number ofrequests in advance.
For online problems following the real-time model, such as online server routing
problems, a more natural notion is that oftime lookahead: an online algorithm
endowed with time lookahead∆ foresees, at any timet, all the requests that will
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be released up to timet + ∆, no matter their number. Allulli et al. [6] consider
server routing problems in metric spaces with limited diameter δ, and give results
where the competitive ratio is a function of∆/δ. Jaillet and Wagner [59] instead
give competitiveness results where the competitive ratio is a function of the ratio
between the amount of time lookahead∆ and some characteristic quantities of the
input instance, related to its optimal cost.

2.4.6 Randomized algorithms

Generally speaking, allowing randomization can be seen as away to improve the
power of an online algorithm. Indeed, for some classical online problems, such as
paging, it is known that randomized algorithms obtain strictly better competitive
ratios than their deterministic counterparts [46].

For online server routing problems, it is unclear whether randomization really
helps online algorithms. Krumke et al. [68, 69] present a (2+

√
2)/ ln(1 +

√
2) ≈

3.87-competitive randomized algorithm for the online TRP against an oblivious
adversary. This algorithm has a better performance than thebest known determin-
istic algorithm. However, its competitive ratio is still well above the lower bound
of 1 +

√
2 for deterministic algorithms. Thus, it could be the case that a better,

deterministic algorithm is discovered. For other problems, the best known algo-
rithms are deterministic. However, this is probably mostlydue to the fact that the
literature has focused mainly on deterministic algorithms.

2.4.7 Zealous algorithms

A distinctive feature of online problems in the real-time model is that the server
can not only serve the requests in an arbitrary order, but it can also be idle, waiting.
Although at first thought this may not sound as a good idea, there are indeed situa-
tions in which some waiting is beneficial. In particular, by waiting, the server could
avoid the need to do part of its work two or more times. If this extra work costs
more than waiting, then by waiting the algorithm is actuallysaving something.

The phenomenon we have just described is not uncommon in server routing
problems. In order to study the matter more quantitatively,Blom et al. [25] intro-
duced the notion ofzealous algorithmsfor online server routing problems. Infor-
mally, a zealous algorithm should never sit and wait when it could serve unserved
requests. Also, a zealous server should move towards work that has to be done
directly, without any detours.

Definition 2.5. An algorithm for an online server routing problem is calledzealous
if it satisfies the following conditions:

1. If there are still unserved requests, the direction of theserver changes only if
a new request becomes known, or if the server is either in the origin or it has
just served a request.
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2. At any time when there are unserved requests, the server either moves to-
wards an unserved request or the origin at maximum (that is, unit) speed.

3. If there are unserved requests, the server cannot wait at the origin.

By comparing the competitive ratio of zealous and non-zealous algorithms for
the same problem, we can measure the importance of waiting. For example, Blom
et al. show that no zealous online algorithm for the online TSP on the real line
can have competitive ratio less than 7/4. Thus, the 7/4-competitive algorithm pre-
sented by Ausiello et al. [17], which is in fact a zealous algorithm, is best possible
within its class. Instead, a non-zealous algorithm for the same problem attains the
better ratio (9+

√
17)/8 ≈ 1.64 [75]. Other comparisons between zealous and

non-zealous algorithms for online server routing problemsare given by Lipmann
[75].

2.4.8 Restricted information

A model of online dial-a-ride problems in which the online algorithm, instead of
the adversary, has more restrictions than usual is therestricted information model
considered by Lipmann et al. [77]. In this model, the online algorithm becomes
aware of the destination of a ride only when the ride begins (such as when the
server picks up the customer from the source point, as it actually happens, for
example, with many radio-taxi services). They show that lower and upper bounds
become considerably worse in this model, concluding that, in many real-world
scenarios, it is worthwhile to invest on the information system in order to gather all
the information as soon as a request is presented.
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Chapter 3

The online asymmetric traveling
salesman problem

3.1 Introduction

In the classical traveling salesman problem, a set of citieshas to be visited in a
single tour with the objective of minimizing the total length of the tour. As we
saw in Chapter2, this, together with its dozens of variations, is one of the most
studied problems in combinatorial optimization. In the asymmetric version of the
problem, the distance from one point to another in a given space can be different
from the inverse distance. This variation, known as the Asymmetric Traveling
Salesman Problem (ATSP) arises in many applications; for example, one can think
of a delivery vehicle traveling through one-way streets in acity, or of gasoline costs
when traveling through mountain roads.

Here we are interested in the online version of the ATSP, named online ATSP.
In the online TSP and ATSP, the places to be visited in the space are requested over
time and a server (the salesman or vehicle) has to decide in what order to serve
them, without knowing the entire sequence of requests beforehand. The objective
is to minimize the completion time of the server. To analyze our algorithms, we
use the established framework ofcompetitive analysis(see Chapter1). This work
is the first to address the online ATSP from the point of view ofcompetitive anal-
ysis. Previous work, both theoretical and experimental, has focused on the offline
version [39, 49, 63].

Our results are summarized in Table3.1, where they are also compared with
the known results for the symmetric case. As we will see, the asymmetric TSP
is substantially harder than the normal TSP also when considered from an online
point of view; in other words, the online ATSP is not a trivialextension of the
online TSP. In fact, as Table3.1 shows, most bounds on the competitive ratio are
strictly higher than the corresponding bounds for the online TSP, and in particular
in the nomadic case there cannot be online algorithms with a constant competitive
ratio.
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Although the algorithmic techniques we adopt in the asymmetric case come
essentially from the symmetric case, they require some adjustment in order to attain
useful competitive ratios. On the other hand, it is worth noting that the lower bound
techniques are quite different from the previously known ones and we hope they
can be of some use in future work.

We should also mention that we present our algorithms in simplified versions
that compute optimal traveling salesman tours or paths. Thus, they will not run in
polynomial time unless P=NP. However, if one is interested in polynomial running
time, it is possible to compute approximately optimal toursinstead, the competitive
ratio degrading by a factor that is essentially (at most) theapproximation ratio of
the subroutine being used. For example, as a consequence of our results, a constant
approximation algorithm for the ATSP would automatically imply a constant com-
petitive polynomial time algorithm for the online ATSP. We further discuss this
issue in Section3.6.

The rest of this chapter is organized as follows. After giving a brief review
of the approximation results for the offline problem in Section3.2, we give the
necessary definitions and the discussion of the online modelin Section3.3. In Sec-
tion 3.4, we study the homing case of the problem, in which the server is required
to finish its tour at the same place where it started; for this problem we give a
3+
√

5
2 ≈ 2.62-competitive algorithm and show that this is best possible. In Section

3.5, we address the nomadic version, also known as the wanderingtraveling sales-
man problem (see also Section2.2.2), in which the server is not required to finish
its tour at the origin. For this case we show that in general anonline algorithm
with a competitive ratio independent of the space cannot exist; indeed, we show
that the competitive ratio has to be a function of the amount of asymmetry of the
space (in a precise sense introduced in Section3.3). In Section3.6we explain how
our algorithms can be combined with polynomial time approximation algorithms
in order to obtain polynomial time online algorithms. In thelast section, we give
our conclusions and discuss some open problems.

3.2 The offline ATSP

The ATSP has been well studied from the point of view of approximation algo-
rithms. However, if the condition is that every city or placehas to be visitedex-
actlyonce, the general problem does not admit anyρ-approximation in polynomial
time, unless P=NP orρ is a superpolynomial function of the number of cities (recall
Theorem2.2).

Instead, when every city or place given in the input has to be visited at least
once or, equivalently, the distance function satisfies the triangular inequality (which
we will tacitly assume for the rest of the chapter), approximation algorithms exist
having an approximation ratio ofO(logn) [49, 63].

Theorem 3.1([49]). There is alog2 n-approximation algorithm for theATSPon n
cities.
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Problem Lower Upper References
Bound Bound

Homing TSP 2 2 [11, 17]
Homing ATSP (3+

√
5)/2 (3+

√
5)/2 Th.3.3, 3.4

Homing TSP (zealous) 2 2 [17]
Homing ATSP (zealous) 3 3 Th.3.5, 3.6
Nomadic TSP 2.03 1+

√
2 [75]

Nomadic ATSP
√
ψ 1+

√

ψ + 1 Th.3.9, 3.10
Nomadic TSP (zealous) 2.05 2.5 [17, 75]
Nomadic ATSP (zealous) (ψ + 1)/2 ψ + 2 Th.3.11, 3.10

Table 3.1: The competitive ratio of symmetric and asymmetric routing problems.
Refer to Section3.3 for the definition ofψ.

For the sake of completeness, we give a short proof of this simple but elegant
result.

Proof. The algorithm is based on solving multiple instances of thecycle cover
problem. In the cycle cover problem, the input is the same as in the ATSP: a
complete weighted directed graph onn nodes. A solution is simply a cycle cover,
that is, a collection of node-disjoint directed cycles, such that every city appears in
some cycle, and every cycle has length at least two. The cost of a cycle cover is
the sum of the weights of all its cycles. In the cycle cover problem, the objective
is to minimize the weight of a cycle cover. Thus, the ATSP is just the cycle cover
problem with the additional constraint that there cannot bemore than one cycle.
Despite this similarity, the cycle cover problem can be solved in polynomial time,
as it can be easily reduced to the well-known assignment problem [72], while the
ATSP is NP-hard.

The algorithm of Frieze et al. simply solves the cycle cover problem repeatedly
and “patches” together the cycles thus obtained until a single cycle remains. More
precisely, at stagei the algorithm solves the cycle cover problem on the remaining
nodesSi , obtaining a cycle coverCCi. The cost ofCCi is at most the cost of
the optimal ATSP tour, since the restriction of this tour toSi is a feasible cycle
cover. Then,Si+1 is constructed by selecting one arbitrary node per cycle inCCi.
Since at each stage every cycle has length at least two,|Si+1| ≤ |Si |/2. Thus, there
are at most log2 n stages, and the total cost of the cycle covers found is at most
(log2 n) · . Finally, the cycle covers are merged together to form an Eulerian
directed multigraphM on the initial set ofn nodes. From this multigraph, an
Eulerian tour is obtained and then “shortcut” into a singlen-node tour that, by the
triangle inequality, has at most the same cost asM. �

Using a more sophisticated approach, Kaplan et al. [63] obtain an approxima-
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tion algorithm with ratio 0.842 log2 n, which is currently the best known result.
On the negative side, it is known that the problem does not admit polynomial

time approximation schemes if P, NP.

Theorem 3.2 ([80]). There is no r-approximation algorithm for the ATSP with
triangle inequality for r< 117/116, unlessP=NP.

The question of the existence of an algorithm with a constantapproximation
ratio for the asymmetric case is still open after more than two decades.

3.3 The online model

An input for the online ATSP consists of a spaceM from the classM defined
below, a distinguished pointo ∈ M, called the origin, and a sequence of requests
σi = (r i , xi) wherexi is a point ofM andr i ∈ R+ is the time when the request is
presented. The sequence is ordered so thati < j impliesr i ≤ r j .

The server is located at the origino at time 0 and the distances are scaled so
that, without loss of generality, the server can move at mostat unit speed.

We will consider two versions of the problem. In thenomadicversion, the
server can end its schedule anywhere in the space; the objective is just to minimize
the makespan, that is, the time required to serve all presented requests. In the
homingversion, the objective is to minimize the time required to serve all presented
requests and return to the origin.

An onlinealgorithm for the online ATSP has to determine the behavior of the
server at a certain momentt as a function only of the requests (r i , xi) such that
r i ≤ t. Thus, an online algorithm does not have knowledge about thenumber of
requests or about the time when the last request is released.We will useS to denote
a schedule over a subset of the requests; in this case,ℓ(S) will be the length of that
schedule.

Finally, we would like to clarify the conditions that the spaceM should sat-
isfy. Usually, in the context of the online TSP, continuous path-metric spaces
are considered (as defined in Section2.3.1). However, here the main issue is
precisely asymmetry, so we have to drop the requisite that for every x and y,
d(x, y) = d(y, x). We review here the definitions. A setM, equipped with a distance
functiond : M2→ R+, is called aquasi-metric spaceif, for all x, y, z ∈ M:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) ≤ d(x, z) + d(z, y).

We call a spaceM an admissible spaceif M is a quasi-metric and, for any
x, y ∈ M, there is a functionf : [0, 1] → M such thatf (0) = x, f (1) = y and
f is continuous, in the following sense:d( f (a), f (b)) = (b − a)d(x, y) for any
0 ≤ a ≤ b ≤ 1. Such a function represents ashortest pathfrom x to y. Notice that
every admissible space is strongly connected.
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We will useM to denote the class of admissible spaces. Notice that the discrete
metric induced by a weighted graph is not admissible if we takeM to be the set
of vertices. However, we can always make such a space admissible by adding (an
infinity of) extra points “along the arcs”.

In particular, to see how a directed graph with positive weights on the arcs can
define an admissible space, consider the all-pairs shortestpaths matrix of the graph.
This defines a finite quasi-metric. Now we add, for every arc (x, y) of the graph, an
infinity of pointsπγ, indexed by a parameterγ ∈ (0, 1). Letπ0 andπ1 denotex and
y respectively. We extend the distance functiond so that:

d(πγ, πγ′) = (γ′ − γ)d(x, y) for all 0 ≤ γ < γ′ ≤ 1.

It can be verified that the setπ = {πγ : γ ∈ [0, 1]} represents a shortest path from
x to y. Forγ < {0, 1}, the distance from a pointπγ to a pointz not in π is defined
asd(πγ, z) = d(πγ, y) + d(y, z); that is, the shortest path fromπγ to zpasses through
y. Vice versa, the distance fromz to πγ is defined asd(z, πγ) = d(z, x) + d(x, πγ).
Finally,

d(πγ′ , πγ) = (1− (γ′ − γ))d(x, y) + d(y, x) for all 0 ≤ γ < γ′ ≤ 1.

We say that such a space isinducedby the original directed weighted graph. We
remark that this model, while still including the originally proposed one [17] as a
special case, can also capture the situation in which the server is not allowed to do
U-turns.

Finally, it will be useful to have a measure of the amount of asymmetry of a
space. Define as themaximum asymmetryof a spaceM ∈ M the value

ψ(M) = sup
x,y∈M
x,y

d(x, y)
d(y, x)

.

We will say that a spaceM hasbounded asymmetrywhenψ(M) < ∞. Indeed, the
spaces with bounded asymmetry are exactly those in which theserver is always
allowed to do a U-turn.

3.4 The homing online ATSP

In this section we consider the homing version of the online ATSP, in which the ob-
jective is to minimize the completion time required to serveall presented requests
and return to the origin. We establish a lower bound of about 2.618 and a matching
upper bound. Note that in the symmetric online TSP, the corresponding bounds
are both equal to 2 [17, 66].

Letφ denote the golden ratio, that is, the unique positive solution tox = 1+1/x.

In closed form,φ = 1+
√

5
2 ≈ 1.618.

Theorem 3.3. The competitive ratio of any deterministic online algorithm for the
homing online ATSP is at least1+ φ.
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Figure 3.1: The graph used in the proof of Theorem3.3.

Proof. Fix anyǫ > 0. The space used in the proof is the one induced by the graph
depicted in Figure3.1. The graph has 7+ 4n nodes, wheren = 1+

⌈φ−1
ǫ

⌉

, and the
length of every arc isǫ, except for those labeled otherwise. Observe that the space
is symmetric with respect to an imaginary vertical axis passing througho. Thus,
we can assume without loss of generality that, at time 1, no request being released
yet, the online server is in the left half of the space. Then attime 1 a request is
given in pointA, in the other half. Now lett be the first time at which the online
server reaches pointD or E.

If t ≥ φ, no further request is given. In this case(σ) ≥ t + 1 + 2ǫ while
(σ) ≤ 1+ 3ǫ so that, whenǫ approaches zero,(σ)/(σ) approaches 1+ t ≥
1+ φ.

Otherwise, ift ∈ [1, φ], at timet, we can assume that the online server has just
reachedE (again, by symmetry). At this time, the adversary gives a request inBi,
wherei = ⌈ t−1

ǫ
⌉. Now the online server has to traverse the entire arcEC before it

can serveBi, thus

(σ) ≥ t + 1+ 3ǫ + 1+ ǫ
⌈ t − 1
ǫ

⌉

+ 2ǫ ≥ 2t + 1+ 5ǫ.

Instead, the adversary server will have moved fromo to Bi in time at mostt + 2ǫ
and then servedBi andA, achieving the optimal cost(σ) ≤ t + 4ǫ. Thus, when
ǫ approaches zero,(σ)/(σ) approaches 2+ 1

t ≥ 1+ φ. �

To prove a matching upper bound on the competitive ratio, we use a variation
of algorithm, described in Section2.3.2. Here we give a different, less
formal description of the algorithm.

As we will soon see, the best value ofα is α∗ = φ.

Theorem 3.4.  is (1+φ)-competitive for the homing online ATSP when
α = φ.
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Algorithm 3 
The algorithm keeps track, at every timet, of the length of an optimal schedule
S∗(t) over the unserved requests, starting at and returning to the origin. At the
first instantt′ such thatt′ ≥ αℓ(S∗(t′)), the server starts following at full speed
the currently optimal schedule, ignoring temporarily every new request. When
the server is back at the origin, it stops and returns monitoring the valueℓ(S∗(t)),
starting as before when necessary.

Proof. We distinguish two cases depending on whether the last request arrives
while the server is waiting at the origin or not.

In the first case, lett be the release time of the last request. If the server starts
immediately at timet, it will follow a schedule of lengthℓ(S∗(t)) ≤ t/α, ending
at time at most (1+ 1/α)t, while the adversary pays at leastt, so the competitive
ratio is at most 1+ 1/α. Otherwise, the server will start at a timet′ > t such that
t′ = αℓ(S∗(t)) (sinceS∗ does not change after timet) and pay (1+ α)ℓ(S∗(t)), so
the competitive ratio is at most 1+ α.

In the second case, letS∗(t) be the schedule that the server is following while
the last request arrives; that is, we taket to be the starting time of that schedule.
Let S′(t) be an optimal schedule over the requests releasedafter time t. If the
server has time to wait at the origin when it finishes following S∗(t), the analysis
is the same as in the first case. Otherwise, the completion time of  is
t + ℓ(S∗(t)) + ℓ(S′(t)). Since has started followingS∗(t) at timet, we
havet ≥ αℓ(S∗(t)). Then

t + ℓ(S∗(t)) ≤ (1+ 1/α)t.

Also, if σ f = (r f , xf ) is the first request served by the adversary having release
time at leastt, we have thatℓ(S′(t)) ≤ d(o, xf ) + (σ) − t, since a possibility for
S′ is to go toxf and then do the same as the adversary (subtractingt from the cost
since we are computing a length, not a completion time, and onthe other hand the
adversary will not serveσ f at a time earlier thant).

By putting everything together, we have that pays at most

(1+ 1/α)t + d(o, xf ) + (σ) − t

and since two obvious lower bounds on(σ) aret andd(o, xf ), this is easily seen
to be at most (2+ 1/α)(σ).

Now max{1 + α, 2 + 1
α
} is minimum whenα = α∗ = φ. For this value of the

parameter the competitive ratio is 1+ φ. �

3.4.1 Zealous algorithms

In the previous section we have seen that the optimum performance is achieved
by an algorithm that, before starting to serve requests, waits until a convenient

33



starting time is reached. In this section we consider instead the performance that
can be achieved byzealousalgorithms. A zealous algorithm does not change the
direction of its server unless a new request becomes known, or the server is at the
origin or at a request that has just been served; furthermore, a zealous algorithm
moves its server always at full (that is, unit) speed when there are unserved requests
(see Section2.4.7for a precise definition).

We show that, for zealous algorithms, the competitive ratiohas to be at least 3
and, on the other hand, we give a matching upper bound.

Theorem 3.5. The competitive ratio of any zealous deterministic online algorithm
for the homing online ATSP is at least3.

Proof. We use the same space used in the lower bound for general algorithms
(Figure3.1). At time 1, the server has to be at the origin and the adversary gives
a request inA. Thus, at time 1+ ǫ the server will have reached wlogE (by sym-
metry) and the adversary gives a request inB0. The completion time of the online
algorithm is at least 3+ 6ǫ, while (σ) ≤ 1+ 3ǫ. The result follows by taking a
sufficiently smallǫ. �

Using the previous theorem, we can prove that the Ignore algorithm (Algorithm
4) is best possible among the zealous algorithms for the homing online ATSP.

Algorithm 4 
Whenever the server is at the origin and there are unserved requests, the algorithm
computes a shortest schedule over the set of unserved requests starting and ending
ato. Then the server starts following the schedule, ignoring temporarily every new
request, until it finishes at the origin. Then it waits at the origin until unserved
requests are available, as before.

Theorem 3.6.  is zealous and3-competitive for the homing online ATSP.

Proof. Let t be the release time of the last request. IfS is the schedule that
was following at timet, we have that finishes followingS at time t′ ≤
t + ℓ(S). At that time, it will eventually start again following a schedule over the
requests which remain unserved at timet′. Let us callS′ this other schedule. The
total cost paid by will be then at mostt + ℓ(S) + ℓ(S′). But t ≤ (σ),
since even the offline adversary cannot serve the last request before it is released,
and on the other hand bothS andS′ have length at most(σ), since the offline
adversary has to serve all of the requests served inS andS′. Thus,t+ℓ(S)+ℓ(S′) ≤
3(σ). �

3.5 The nomadic online ATSP

In this section we consider the nomadic version of the onlineATSP, in which the
server can end its schedule anywhere in the space. We show that no online algo-
rithm can have a constant competitive ratio (that is, independent of the underlying
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Figure 3.2: The graph used in the proof of Theorem3.7.

space). Then we show, for spaces with a maximum asymmetryψ, a lower bound√
ψ and an upper bound 1+

√

ψ + 1. Note that in the symmetric nomadic online
TSP the best lower and upper bounds are 2.03 and 1+

√
2, respectively [75].

Theorem 3.7. For every L> 0, there is a spaceM ∈ M such that the competitive
ratio of any online algorithm for nomadic online ATSP onM is at least L.

Proof. For a fixedǫ > 0, consider the space induced by a directed cycle onn =
⌈L/ǫ⌉ nodes, where every arc has lengthǫ (Figure3.2). At time 0 a request is given
in nodeA3. Let t be the first time the online algorithm reaches nodeA2.

Now if t ≥ 1, the adversary does not release any other request so that(σ) =
2ǫ, (σ) ≥ 1+ ǫ and(σ)/(σ) ≥ 1

2ǫ +
1
2.

Otherwise, ift ≤ 1, at timet the adversary releases a request at the origin. It is
easily seen that(σ) ≤ t + 2ǫ and(σ) ≥ t + ǫ(⌈ L

ǫ
⌉ − 1) ≥ t + 2ǫ + L− 3ǫ so that

(σ)/(σ) ≥ 1+
L − 3ǫ
t + 2ǫ

≥ 1+
L − 3ǫ
1+ 2ǫ

.

By takingǫ close to zero we see that in the first case the competitive ratio grows
indefinitely while in the second case it approachesL + 1. �

Corollary 3.8. There is no deterministic online algorithm for nomadic online
ATSP on all spacesM ∈ M with a constant competitive ratio.

We also observe that the same lower bound can be used when the objective
function is the sum of completion times.

Thus, we cannot hope for an online algorithm which is competitive for all
spaces inM. Indeed, we will now show that the amount of asymmetry of a space
is related to the competitive ratio of any online algorithm for that space.
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Theorem 3.9. For everyψ ≥ 1, there is a spaceM ∈ M with maximum asymmetry
ψ such that any deterministic online algorithm for nomadic online ATSP onM has
competitive ratio at least

√
ψ.

Proof. Consider a set of pointsM = {xγ : γ ∈ [0, 1]} with a distance function

d(xγ, xγ′) =

{

γ′ − γ if γ ≤ γ′
ψ(γ − γ′) if γ ≥ γ′.

The origin isx0. The adversary releases a request at time 1 in pointx1. Let t be
the time the online algorithm serves this request. Ift ≥ √ψ, no more requests are
released and(σ) ≥ √ψ, (σ) = 1, (σ)/(σ) ≥ √ψ.

Otherwise, ift ≤
√
ψ, at timet a request is given at the origin. Now(σ) ≥

t + ψ, (σ) ≤ t + 1 and

(σ)/(σ) ≥ t + ψ
t + 1

= 1+
ψ − 1
t + 1

≥ 1+
ψ − 1
√
ψ + 1

=
√

ψ.

�

A natural algorithm, along the lines of the best known algorithm for the sym-
metric version of the problem [75], gives a competitive ratio which is asymptoti-
cally the same as that of this lower bound.

Algorithm 5 -
At any moment at which a new request is released, the server returns to the origin
via the shortest path. Once at the origin at timet, it computes an optimal schedule
S over all requests presented up to timet and then starts following this schedule,
staying within distanceβt′ of the origin at any timet′, by reducing the speed at the
latest possible time.

Theorem 3.10. For everyψ ≥ 1, there is a value ofβ such that- is
(1+

√

ψ + 1)-competitive on every spaceM ∈ M with maximum asymmetryψ.

Proof. There are two cases to be considered. In the first case- does
not need to reduce its speed after the last request is released. In this case, ift is the
release time of the last request, we have

-(σ) ≤ t + ψβt + ℓ(S)

≤ (σ) + ψβ(σ) + (σ) = (2+ ψβ)(σ).

In the second case, lett be the last time- is moving at reduced speed.
At that time,- must be serving some request; letx be the location of
that request. Since- was moving at reduced speed towardsx, we must
haved(o, x) = βt; afterwards- will follow the remaining partSx of the
schedule at full speed. Thus

-(σ) ≤ t + ℓ(Sx) = (1/β)d(o, x) + ℓ(Sx).
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On the other hand,(σ) ≥ ℓ(S) ≥ d(o, x)+ ℓ(Sx). Thus, in this case, the compet-
itive ratio is at most 1/β.

The valueβ∗ =
√
ψ+1−1
ψ

minimizes max{2+ψβ, 1/β} and yields the competitive
ratio of the theorem. �

3.5.1 Zealous algorithms

Also in the case of the nomadic version of the online ATSP, we wish to consider
the performance of zealous algorithms. Of course, no zealous algorithm will be
competitive for spaces with unbounded asymmetry. Here we show that the gap
between non-zealous and zealous algorithms is much higher than in the homing
case, the competitive ratio increasing fromΘ(

√
ψ) toΘ(ψ).

Theorem 3.11.For everyψ ≥ 1, there is a spaceM ∈ M with maximum asymme-
try ψ such that the competitive ratio of any zealous deterministic online algorithm
for nomadic online ATSP onM is at least12(ψ + 1).

Proof. We use the same space used in the proof of Theorem3.9. At time 0, the
adversary releases a request in pointx1. The online server will be at pointx1

exactly at time 1. Then, at time 1, the adversary releases a request in pointx0. It is
easy to see that(σ) ≥ 1+ ψ, while (σ) = 2. �

We finally observe that- with β = 1 is a zealous algorithm for
nomadic online ATSP and, by the proof of Theorem3.10, it has competitive ratio
ψ + 2.

3.6 Polynomial time algorithms

None of the algorithms that we have proposed in the previous sections run in poly-
nomial time, since all of them need to compute optimal schedules on some subsets
of the requests. On the other hand, a polynomial time online algorithm with a
constant competitive ratio could be used as an approximation algorithm for the
ATSP, and thus we do not expect to find one easily. However, ouralgorithms use
offline optimization as a black box and thus can use approximation algorithms as
subroutines in order to give polynomial time online algorithms, the competitive
ratio depending of course on the approximation ratio. In particular, in the homing
version we need to solve instances of the offline ATSP. The best polynomial time
algorithm known for this problem has an approximation ratioof 0.842 logn [63].
For the nomadic version, the corresponding offline problem is the shortest asym-
metric hamiltonian path, which also admitsO(logn) approximation in polynomial
time [35].

We do not repeat here the proofs of our theorems taking into account the ap-
proximation ratio of the offline solvers, since they are quite straightforward. How-
ever, we give the competitive ratio of our algorithms as a function ofρ, the approxi-
mation ratio, andψ, the maximum asymmetry of the space, in Table3.2. Note that,
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Problem Algorithm Competitive ratio
Homing ATSP  (1+ 2ρ +

√

1+ 4ρ)/2
Homing ATSP (zealous)  1+ 2ρ

Nomadic ATSP - (1+ ρ +
√

(1+ ρ)2 + 4ψ)/2
Nomadic ATSP (zealous) - 1+ ρ + ψ

Table 3.2: The competitive ratio as a function ofρ andψ.

with respect to the values in Table3.1, the competitive ratio becomes worse by a
factor that is strictly less than the approximation ratio. In the case of
and-, this is also due to the fact that the algorithms can adapt to the
approximation ratio by suitably choosing the parametersα andβ. For ,
the optimal choice is

α∗ρ =
1
2ρ

(

1+
√

1+ 4ρ
)

,

while for - it is

β∗ρ =
1

2ψ

[
√

(1+ ρ)2 + 4ψ − (1+ ρ)
]

.

In those special cases in which the ATSP with triangle inequality is approx-
imable within a constant factor in polynomial time, our results yield polynomial
time constant competitive algorithms. Notably, these cases include the ATSP with
strengthened triangle inequality[24].

3.7 Conclusions

We have examined some of the online variations of the asymmetric traveling sales-
man problem. Our results confirm that the asymmetric problems are indeed harder
than and not simply extensions of their symmetric counterparts.

The main conclusion is that, as usual in online vehicle routing when mini-
mizing the completion time, waiting can improve the competitive ratio substan-
tially. This is particularly evident in the case of nomadic ATSP on spaces with
bounded asymmetry, where zealous algorithms have competitive ratioΩ(ψ) while
- is O(

√
ψ)-competitive.

We expect the competitive ratio of the homing online ATSP to be somewhat
lower than 1+ φ when the space has bounded asymmetry. Also, since the proof
that no online algorithm can have a constant competitive ratio in the nomadic case
is also valid when the objective function is the sum of completion times (the trav-
eling repairman problem, see Sections2.2.3and2.3.4), it would be interesting to
investigate this last problem in spaces with bounded asymmetry.
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Finally, we remark that the existence of polynomial timeO(1)-competitive al-
gorithms for the homing version is indissolubly tied to the existence of anO(1)-
approximation algorithm for the offline ATSP.
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Chapter 4

The online prize-collecting
traveling salesman problem

4.1 Introduction

In the Traveling Salesman Problem, a salesman has to visit a set of cities to sell his
merchandise, and his goal is to minimize the length of the tour. Let us consider the
more general case in which each city has both apenaltyand aweightassociated
with it; now the commitment of the salesman is to collect a givenquotaof weights,
by visiting a sufficient number of cities; the final cost will be the length of thetour
plus the penalty of every city that was not visited. This problem is known as the
Prize-Collecting Traveling Salesman Problem(PCTSP) [21]. If all the penalties
are equal to zero, then the PCTSP reduces to the special case known as the Quota
Traveling Salesman Problem [16, 19, 27], also called sometimes the Quorum-Cast
problem [37]. On the other hand, when the quota is zero, i.e. there is no require-
ment to visit any city at all, we call the resulting problem the Penalty Traveling
Salesman Problem1. Related to the PCTSP is also the so calledk-TSP problem,
i.e. the problem of finding a tour of minimum length which visits k cities among
the given ones. Moreover, the problem is also related to thek-MST problem, that
is the problem of finding a minimum weight tree which spansk nodes in a graph.
Thus, the PCTSP generalizes a number of interesting routingproblems.

In this chapter we address the online version of the PCTSP, inwhich the re-
quests arrive over time in a metric space and a server (the traveling salesman) has to
decide which requests to serve and in what order to serve them, without yet know-
ing the whole sequence of requests; the goal is, as in the offline PCTSP, to collect
the quota while minimizing the sum of the time needed to complete the tour and the
penalties associated to the requests not in the tour. We study the online PCTSP in
the usual framework ofcompetitive analysis, where the performance of the online
algorithm is matched against the performance of an optimum offline server (see

1Although the name Penalty TSP is not standard in the literature, we use it to avoid ambiguity,
since some authors use the name PCTSP to refer to this specialcase.
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Chapter1 for details).
The rest of the chapter is structured as follows. We begin by providing a formal

definition of the offline problem and an overview of approximation results in Sec-
tion 4.2. We introduce the online model of the problem in Section4.3. In Section
4.4, we observe that a lower bound on the competitive ratio of anyalgorithm for
the online PCTSP is 2 and we give a 7/3-competitive algorithm. In Section4.5we
give lower and upper bounds for the special case when the underlying metric space
is the halfline. Finally, we give our conclusions in Section4.6.

4.2 The offline PCTSP

We begin by formally defining the offline PCTSP.

Definition 4.1. An instance of thePrize-Collecting Traveling Salesman Problem,
is given by a metricd over a finite space{1, . . . , n}. Moreover, the instance specifies
2n + 1 nonnegative integersQ,w1, . . . ,wn, π1, . . . , πn. A feasible solution is given
by a tour, that is a cyclic permutationϕ on some setS ⊆ {1, . . . , n} such that
1 ∈ S and

∑

i∈S wi ≥ Q. The cost of the solution isc(ϕ) = ℓ(ϕ) + π(ϕ) where
ℓ(ϕ) =

∑

i∈S diϕ(i) andπ(ϕ) =
∑

i<S πi.

Several other problems can be defined in terms of the PCTSP.

Definition 4.2. An instance of thePenalty Traveling Salesman Problemis a PCTSP
instance in whichQ = 0 andwi = 0 for all i ∈ {1, . . . , n}. Feasible solutions and
costs are defined exactly as in the PCTSP.

Definition 4.3. An instance of theQuota Traveling Salesman Problemis a PCTSP
instance in whichπi = 0 for all i = {1, . . . , n}. Feasible solutions and costs are
defined exactly as in the PCTSP.

Definition 4.4. An instance of thek-Traveling Salesman Problemis a PCTSP in-
stance in whichπi = 0 andwi = 1 for all i ∈ {1, . . . , n}. The quotaQ is customarily
denoted byk. Feasible solutions and costs are defined exactly as in the PCTSP.

Notice that the standard Traveling Salesman Problem is a special case of both
the Penalty TSP (by letting every penalty be sufficiently high) and of thek-TSP
(when k = n). Thus, the TSP is a special case of the Prize-Collecting TSPin
two different ways. The lattice of relations between all these problems is given in
Figure4.1, where an arrow from problemA to problemB means thatA is a special
case ofB.

In the general form that we have described, the PCTSP was firstformulated
by Balas [21], who gave structural properties of the PCTSP polytope as well as
heuristics. The problem arose during the task of developingdaily schedules for a
steel rolling mill.

The only results on guaranteed heuristics for the PCTSP are due to Awerbuch
et al. [19]. They give a polynomial time algorithm with an approximation ratio of
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PCTSP

Quota TSP

Penalty TSP

k-TSP

TSP

Figure 4.1: Relations between the TSP, thek-TSP, the Quota TSP, the Penalty TSP
and the PCTSP.

O((log min(Q, n))2), wheren is the number of cities andQ is the required quota.
However, the PCTSP contains as special cases both the Penalty TSP and thek-TSP,
which received more attention in the literature.

The Penalty TSP has been considered by Bienstock et al. [23], who give a 5/2-
approximation algorithm. A better result, due to Goemans and Williamson [53], is
the following.

Theorem 4.1([53]). The Penalty TSP admits a2-approximation algorithm.

For thek-TSP, the best bound to date is a 2-approximation due to Garg [51].
Apart from the result of Awerbuch et al. [19] on the more general PCTSP, the Quota
TSP was not addressed directly in the literature. However, aconstant approxima-
tion easily follows from a result of Ausiello et al. [18].

Theorem 4.2([18]). The Quota TSP admits a10-approximation algorithm.

Proof. Ausiello et al. [18] give a 5-approximation for the Quota Minimum Span-
ning Tree problem. A 10-approximation for the Quota TSP easily follows by the
standard technique of doubling a tree obtained by that algorithm and constructing
a tour out of an Eulerian closed walk of the Eulerian multigraph thus obtained. �

From these results for the Penalty TSP and the Quota TSP, we show in the
following how a technique used by Awerbuch et al. [19] allows to derive a constant
approximation algorithm for the PCTSP.

Theorem 4.3. The PCTSP admits a constant approximation algorithm.

Proof. A simple idea exploited by the algorithm of Awerbuch et al. [19] is that, for
a given instanceI of the PCTSP, the following quantities constitute lower bounds
on the cost of an optimal solution:

1. the costq of an optimal solution to a Quota TSP instanceIq defined on
the same graph and having the same weights and quota as inI (since every
feasible solution toI can be turned into a feasible solution toIq of at most
the same cost).
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2. the costp of an optimal solution to a Penalty TSP instanceIp defined
on the same graph and having the same penalties as inI (since a feasible
solution toI is also feasible forIp and has the same cost);

Thus, to approximate an optimal solution to the PCTSP instance I we can:

1. Run aρq-approximation algorithm for Quota TSP onIq to obtain a tourTq

such thatℓ(Tq) ≤ ρq · q. While Tq is feasible for the PCTSP instanceI ,
its cost might be high when we take into account penalties.

2. Run aρp-approximation algorithm for Penalty TSP onIp to obtain a tourTp

such thatc(Tp) ≤ ρp · p. Notice that this tourTp might not be feasible for
I .

3. ConcatenateTq andTp to obtain a tourT feasible for the PCTSP instanceI
and of cost

c(T) ≤ ℓ(Tq) + c(Tp) ≤ ρq · q + ρp · p ≤ (ρq + ρp) · .

This means that, by using the algorithms of Theorems4.1and4.2, we can obtain a
constant-factor approximation to the Prize-Collecting TSP. �

4.3 The online model

Let us define the online PCTSP in a formal way. LetM be a metric space, with
a distinguished pointo called theorigin. As is customary (see Section2.3.1), we
only requireM to be continuous and path-metric; for example, any weightedgraph
induces a space satisfying this requirements. We will also look at the special case
of the halflineR+, with the origin at zero.

The input is given by a pair (Q, σ), whereQ ∈ Q+ is called thequotaandσ =
σ1 · · ·σn is a sequence ofrequests. Every requestσi is a quadruple (r i , xi ,wi , πi),
wherer i ∈ R+ is the release dateof the request,xi ∈ M its location, wi ∈ Q+
its weightandπi ∈ Q+ its penalty. We also assume that the sequence is ordered
such thati < j implies r i ≤ r j . All the information about a request, including its
existence, becomes known only at its release date. On the other hand, the quota is
revealed immediately to the algorithm.

The algorithm controls a singleserver(traveling salesman), initially located in
the origin. The server can move around the space at speed at most 1. Toservea
request, the server must visit the location of the request not earlier than its release
date.

A feasible solution for instance (Q, σ) is a schedule, that is, a sequence of
moves of the server such that the following conditions are satisfied: (1) the server
starts in the origin, (2) the total weight of the served requests is at leastQ, and (3)
the server ends in the origin. LetS be a schedule for (Q, σ). The time at which
the server returns permanently at the origin is called themakespanof the schedule

44



Problem Lower Upper References
Bound Bound

PCTSP 2 7/3 Th.4.4, 4.8
PCTSP (R+) 1.89 2 Th.4.10, 4.13

Table 4.1: The competitive ratio of prize-collecting traveling salesman problems.

and we denote it bym(S). The sum of the penalties of the requests which were
not served is denoted byπ(S). The objective of the online PCTSP is to construct
online a scheduleS for the given instance that minimizesm(S) + π(S).

In the following, we denote by(Q, σ) and(Q, σ) the total cost incurred
by an online and an optimal offline server respectively on input (Q, σ).

For a sequenceσ, we letπ(σ) =
∑

σi∈σ πi. By σ≤t we denote the subsequence
of σ including all the requests having release date less than or equal to t, and
similarly σ>t is the suffix of σ consisting of all the requests having release date
strictly larger thant. We also denote by(t) the total cost incurred by the optimal
offline server over the sequenceσ≤t, i.e., (Q, σ≤t). Whenσ≤t has no feasible
solution (that is,

∑

r i∈σ≤t wi < Q), we conventionally define(t) = ∞. Note that
according to these definitions we have(Q, σ) = (rn). Finally, we useS∗(t) to
denote an optimal offline schedule for (Q, σ≤t). Thus,(t) = m(S∗(t))+ π(S∗(t)).
A summary of our results is contained in Table4.1.

4.4 A competitive algorithm for the online PCTSP

In this section we give a 7/3-competitive algorithm for the online PCTSP. Notice
that a lower bound of 2 on the competitive ratio of the online PCTSP is inherited
from simpler problems.

Theorem 4.4. The competitive ratio of any deterministic online algorithm for the
online PCTSP is at least 2, even if Q= 0 or if πi = 0 for all requestsσi .

Proof. WhenQ = 0, we can give requests with arbitrarily high penalties so that the
problem becomes equivalent to the standard online TSP, for which a lower bound
of 2 is known [17].

Whenπi = 0 for all requestsr i , the problem is equivalent to the online Quota
TSP, for which a lower bound of 2 is also known, even for fixedQ [16]. �

In order to get our competitiveness result, we begin by proving a lemma on the
properties of(t) as a function oft. Notice that the fact that a request is served
in the optimal solution for a sequenceσ does not imply that the request is served
in an optimal solution forσ≤t; this is why the following lemma is non-trivial.
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Lemma 4.5. Consider an instance(Q, σ) of the online PCTSP and letσl be a
request with maximum release date among the requests servedin an optimal offline
solution. Then

(a) (t) + π(σ>t) = (rn) for all t ∈ [r l , rn];

(b) (r l) ≥ r l .

Proof. (a) Since a feasible solution forσ is to first serve optimallyσ≤t and then
pay penalties for all successive requests, we have

(rn) ≤ (t) + π(σ>t). (4.1)

On the other hand, a feasible solution forσ≤t is to follow the optimal offline
schedule forσ, of course saving on the penalty cost of the requests released
after timet, so we have

(t) ≤ (rn) − π(σ>t). (4.2)

The claim follows by combining (4.1) and (4.2).

(b) Assume by contradiction that(r l) < r l . By (a),

(rn) = (r l) + π(σ>r l )
< r l + π(σ>r l ).

But since there is an optimal schedule forσ that servesσl and no request
with a release date later thanr l ,

(rn) ≥ r l + π(σ>r l )

which gives a contradiction.
�

Consider the following algorithm for the online PCTSP (Algorithm 6).

Algorithm 6  - Wait and Go with Restart
The algorithm has two states, WAIT and GO. The initial state is WAIT.

• WAIT. Wait until a timet such that(t) = t, then enter state GO.

• GO. Lettg be the time this state was entered. Return the server to the origin
at full speed, then start following scheduleS∗(tg); when done, return to state
WAIT. Meanwhile, if a new request arrives at timet, compute(t). If
(t) ≥ t, make arestart, that is, stop the server at its current location and
return to state WAIT.

The intuition behind the algorithm is the following. In order to be competitive,
the algorithm tries to guess which requests are ignored and which are served by the
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optimal offline server. The condition(t) ≥ t is used to ensure that if a restart
occurs, only a short time has elapsed, compared to the optimal cost, while if a
restart does not occur, the new requests can be safely ignored.

To move from intuition to proof, we need the following important property of
: after the algorithm restarts, it eventually enters state GO another time. This
property is non-trivial, because(t) can be a discontinuous function oft. We
formalize the property in the following lemma.

Lemma 4.6. If  enters state WAIT at time tw and (tw) ≥ tw, then at some
time tg ≥ tw  enters state GO.

Proof. If no requests are released after timetw, for any t ≥ tw we have(t) =
(tw) and thus at timetg = (tw) ≥ tw  enters state GO.

Otherwise, consider the sequenceσ>tw. If no request inσ>tw is served in an
optimal solution forσ, by Lemma4.5(a),

(t) = (tw) + π(σ>tw) − π(σ>t)

for any t ∈ [tw, rn]. Thus, for t ≥ tw, (t) can only increase as a function oft
(until time rn), thus at some timetg it must intersect the identity function, sinceσ
has finite length.

The last case to consider is when some request inσ>tw is served in an optimal
solution forσ. Let σl be a request with maximum release date among such re-
quests. Then by Lemma4.5(b), (r l ) ≥ r l and since(t) can only increase for
t ∈ [r l , rn], at some timetg it will intersect the identity function. �

We need a last ingredient in order to prove the competitiveness of.

Lemma 4.7. At any time t, the server controlled by is at most at distance t/3
from the origin.

Proof. We prove the claim by induction on the sequence of states entered by the
algorithm. The claim is trivially true at time 0. Also, by induction, it is true while
the algorithm is in state WAIT since in that state the server does not move.

When the algorithm enters state GO, the server is, by inductive hypothesis, at
some distancedg ∈ [0, tg/3] from the origin. first has to move the server to the
origin; if it changes state before arriving, then the claim is true. Otherwise, at time
tg+dg, starts following scheduleS∗(tg), which takes time at most(tg) = tg,
so at any later momenttg + dg + ∆ the server cannot be at a distance greater than
min{∆, tg/2} from the origin. Now min{∆, tg/2} ≤ (tg + ∆)/3 ≤ (tg + dg + ∆)/3,
which proves the lemma. �

Theorem 4.8. is 7/3-competitive for online PCTSP.

Proof. Let tg = (tg) be the last time state GO was entered (if state GO is never
entered, is easily seen to be optimal). According to Lemma4.7, the online
server is at distance at mosttg/3 from the origin. Then the server will pay, for
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the sequenceσ≤tg, at mosttg + tg/3 + (tg) = (7/3)(tg). Notice that this
also includes the penalties of all requests inσ≤tg that were not served byS∗(tg).
Moreover, the last requestσl served by an optimal offline solution must have been
released at a timer l ≤ tg, otherwise, since by Lemma4.5(b) (r l) ≥ r l , 
would have restarted and by Lemma4.6 state GO would have been entered one
more time.

The online server also pays the penalties of all the requestsreleased after time
tg, but notice that these penalties are also paid by the optimalsolution. More specif-
ically,

(Q, σ) ≤ 7
3
(tg) + π(σ>tg)

while by Lemma4.5(a),

(Q, σ) = (r l) + π(σ>r l ) = (tg) + π(σ>tg).

The competitive ratio is then at most 7/3. �

To see that the ratio is tight, consider the real line withQ = 1. Fix some
sufficiently largeB and sufficiently smallǫ. At time r1 = 1 a new request having
x1 = 1, w1 = 1 andπ1 = B arrives. waits until time 2, then begins moving
towards the request. At timer2 = 3 − ǫ a new request arrives havingx2 = −ǫ,
w2 = 1 andπ2 = B; no more requests arrive so(Q, σ) = (r2) = 3. When the
second request arrives, (while the server is in 1− ǫ) recomputes(r2) and
makes a restart since(r2) > r2. At time r2 + 1 = 4− ǫ  reacheso and then
starts a schedule which ends at time 4− ǫ + 3 = 7 − ǫ. For ǫ approaching 0 the
competitive ratio approaches 7/3.

4.5 The online PCTSP on the halfline

In this section we consider the online PCTSP when the underlying metric space is
the real halfline. For this case, we prove a lower bound of 1.89 on the competitive
ratio of any algorithm and we give a 2-competitive online algorithm.

4.5.1 Lower bound

Lemma 4.9. No competitive algorithm for online PCTSP with Q= 0 can leave the
origin until at least one request with positive penalty has been released.

Proof. Suppose that the online server is not at the origin at some time t > 0. If no
requests at all are released, the optimal cost is zero while the online algorithm pays
at leastt > 0. Even if we insist that at least one request should be released, the
same result follows by considering a single request with a penalty that approaches
zero. �

Theorem 4.10.The competitive ratio of any deterministic online algorithm for the
online PCTSP on the halfline is at least(3+

√
21)/4 ≈ 1.89.
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Proof. In what follows, letγ = (3 +
√

21)/4. Since we assume thatQ = 0, the
weights of the requests will not be relevant for the proof. Using Lemma4.9we can
assume that the server will remain at the origin until the first request is released in
x1 = 1 at timer1 = 1. This request has penaltyπ1 = 3/γ. If the online algorithm
 eventually servesσ1, then obviously

(Q, σ) ≥ 3,

(Q, σ) ≤ π1,

(Q, σ)
(Q, σ)

≥ 3
π1
= γ.

Otherwise, lettc be the makespan of the online algorithm onσ≤r1. If tc ≥ 3 − π1,
we have

(Q, σ)
(Q, σ)

≥ 3− π1 + π1

π1
≥ 3
π1
= γ.

Finally, if tc < 3 − π1, at timer2 = 1 + π1
2 (≥ tc), while the online server is at

the origin, the adversary releases a new request inx2 = 2 − r2 with a very high
penalty. Thus this requestσ2 must be necessarily served for the algorithm to be
competitive.

If the online algorithm only servesσ2, we have

(Q, σ) ≥ r2 + 2x2 + π1 = 4− r2 + π1 = 3+
π1

2
.

On the other hand, if the algorithm serves bothσ1 andσ2, the cost will be

(Q, σ) ≥ r2 + 2x1 = 1+ π1/2+ 2 = 3+
π1

2
.

Thus, regardless of the behavior of the algorithm, a lower bound on the online cost
is 3+π1/2. Instead, the optimal offline solution is to serve both requests by moving
immediately to 1, servingσ1 as soon as it is released, and servingσ2 on the way
back to the origin. The cost of this solution is 2. Thus, the competitive ratio is at
least

1
2

(

3+
π1

2

)

= γ.

�

4.5.2 Upper bound

The algorithm we consider in this section is a variation of Algorithm 6 designed
specifically for the halfline metric space. For the analysis of the competitive ratio,
it will be useful to make the further assumption that, among the optimal schedules,
we consider one that minimizes the makespan.

We can now state the algorithm (Algorithm7).
In the competitiveness proof for we will need the following two lemmas,

which strengthen Lemma4.5and4.6, respectively.
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Algorithm 7  - Wait and Go on the Halfline
The algorithm has two states, WAIT and GO. The initial state is WAIT.

• WAIT. Wait until a timet such thatt = m(S∗(t)), then enter state GO.

• GO. Let tg be the time this state was entered. Letx∗ be the point ofS∗(tg)
which is farthest from the origin. Move the server tox∗ at full speed, then
return it to the origin, while serving every request whose location is visited;
when done, return to state WAIT. Meanwhile, if a new request arrives at time
t, computem(S∗(t)); if m(S∗(t)) ≥ t, stop the server at its current location
and return to state WAIT.

Lemma 4.11. Consider an instance(Q, σ) of the online PCTSP and letσl be a
request with maximum release date among the requests servedby an optimal offline
solution. Then

(a) m(S∗(t)) = m(S∗(r l)) for all t ∈ [r l , rn];

(b) m(S∗(r l)) ≥ r l .

Proof. (a) First, notice that

m(S∗(r l)) ≥ m(S∗(t)) for all t ∈ [r l , rn]. (4.3)

Otherwise, by using scheduleS∗(r l) on σ≤t, we could achieve a shorter
makespan while not increasing the total cost which, by Lemma4.5(a), is
(r l) + π(σ>r l ) − π(σ>t). By a similar argument,

m(S∗(t)) ≥ m(S∗(rn)) for all t ∈ [r l , rn]. (4.4)

Finally,
m(S∗(rn)) ≥ m(S∗(r l)) (4.5)

as if that was not the case, since scheduleS∗(rn) does not serve any request
released later thanr l , by using it onσ≤r l we could achieve a shorter makespan
while not increasing the total cost which, by Lemma4.5(a), is (rn) −
π(σ>r l ). The claim follows by combining (4.3), (4.4) and (4.5), as equality
must hold throughout.

(b) Follows from (a) and the fact thatS∗(rn) servesσl and thus must have
makespan at leastr l .

�

Lemma 4.12. If  enters state WAIT at time tw and m(S∗(tw)) ≥ tw, then at some
time tg ≥ tw  enters state GO.
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Proof. If no requests are released after timetw, for anyt ≥ tw we havem(S∗(t)) =
m(S∗(tw)) and thus at timetg = m(S∗(tw)) ≥ tw  enters state GO.

Otherwise, consider the sequenceσ>tw. If no request inσ>tw is served in an
optimal solution forσ, by Lemma4.11(a),

m(S∗(t)) = m(S∗(tw))

for any t ∈ [tw, rn]. Thus, fort ≥ tw, m(S∗(t)) remains constant as a function oft,
and the claim follows withtg = m(S∗(tw)).

The last case to consider is when some request inσ>tw is served in an opti-
mal solution forσ. Let σl be a request with maximum release date among such
requests. Then by Lemma4.11(b), m(S∗(r l)) ≥ r l and since by Lemma4.11(a)
m(S∗(t)) remains constant fort ≥ r l , the claim follows withtg = m(S∗(r l )). �

Theorem 4.13. is 2-competitive for online PCTSP on the halfline.

Proof. Letσl be a request that, among the ones served by the optimal offline solu-
tion, has maximum release date. By Lemma4.11(a),

m(S∗(r l)) = m(S∗(rn)) ≥ r l ,

thus from Lemma4.12, eventually after timer l the algorithm enters state GO. Let
tg(≥ r l) be the last time state GO is entered. From Lemma4.5(a) we have

(rn) = (tg) + π(σ>tg). (4.6)

Recall thatx∗ is the point of the optimal scheduleS∗(tg) which is farthest from the
origin, thus

m(S∗(tg)) ≥ 2x∗. (4.7)

Also,
m(S∗(tg)) = tg, (4.8)

because state GO was entered at timetg.
Let s(tg) be the position of at timetg. If s(tg) ≤ x∗, we have

(Q, σ) ≤ tg + 2x∗ + π(S∗(tg)) + π(σ>tg)
≤ m(S∗(tg)) +m(S∗(tg)) + π(S∗(tg)) + π(σ>tg) by (4.7),(4.8)
= m(S∗(tg)) + (rn) by (4.6)
≤ 2(rn) by (4.6)
= 2(Q, σ).

If s(tg) ≥ x∗, we have

(Q, σ) ≤ tg + s(tg) + π(S∗(tg)) + π(σ>tg)
≤ 2tg + π(S∗(tg)) + π(σ>tg)
≤ 2m(S∗(tg)) + π(S∗(tg)) + π(σ>tg) by (4.8)
= m(S∗(tg)) + (rn) by (4.6)
≤ 2(rn) by (4.6)
= 2(Q, σ).

�
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4.6 Conclusions

We formulated an online version of the Prize-Collecting Traveling Salesman Prob-
lem. For general spaces, we gave a 7/3-competitive algorithm which is not far
from best possible, the competitive ratio of any online algorithm being at least 2.
We also discussed the special case of the halfline, for which we gave a 1.895 lower
bound and a 2-competitive algorithm.

Other than improving the bounds, an interesting open problem is to develop
a competitive algorithm for the online PCTSP that runs in polynomial time. The
standard technique of combining the online algorithm with an offline approxima-
tion subroutine does not seem to work directly here, as that requires the subroutine
to be used as a black box, while our analysis relied more than once on the properties
of the optimal solution. Thus, a different approach may be required.
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Chapter 5

Online k-server routing problems

5.1 Introduction

In a k-server routing problem,k servers (vehicles) move in a metric space in order
to visit a set of points (cities). Given a schedule, that is, asequence of movements
of the servers, the time at which a city is visited for the firsttime by one of the
servers is called thecompletion timeof the city. The objective is to find a schedule
that minimizes some function of the completion times.

We studyk-server routing problems in theironlineversion. Prior to this work,
there was essentially no result on online multiserver routing problems, except for
some isolated algorithms [11, 25]. We give competitive algorithms and negative
results for online multiserver routing problems, with the objective of minimizing
eithermakespanor total completion time. In the case of makespan we consider the
variant known asnomadic, in which the servers are not required to return at the
origin after serving all requests; the above cited previousresults apply to the other
variant, known as thehomingtraveling salesman problem. Apart from being the
first work dedicated to multiserver online routing problems, the results are some-
what unexpected. We give the first results of online problemsfor which multiple
server versions admit lower competitive ratios than their single server counterparts.
This is typically not the case for problems in the one-by-onemodel; for example, it
is known that in the famousk-serverproblem [78] the competitive ratio necessarily
grows linearly withk.

It may also be useful to draw a comparison with machine scheduling, which is
closer to routing problems in many ways. In scheduling a lot of research has been
conducted to online multiple machine problems [85]. In the one-by-one model
competitive ratios increase with increasing number of machines. In real time online
scheduling nobody has been able to show smaller competitiveratios for multiple
machine problems than for the single machine versions, though here lower bounds
do not exclude that such results exist (and indeed people suspect they do) [36, 41].

The rest of this chapter is structured as follows. We discussthe approximabil-
ity of offline k-server problems in Section5.2. Then, after introducing the online
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model in Section5.3, we give in Section5.4 competitive algorithms and lower
bounds for both thek-Traveling Salesman and thek-Traveling Repairman in gen-
eral spaces. In Section5.5 we show that in the case of the real line we have an
almost optimal algorithm for largek. The same result cannot hold in the Euclidean
plane, as we show in Section5.6. We give our conclusions in Section5.7.

5.2 Offline k-server routing problems

Routing problems with multiple servers have been studied often in the literature.
Here we focus on approximation results related to the problems that we will study
in the online setting. We begin by defining thek-server version of the Traveling
Salesman Problem.

Definition 5.1. An instance of thek-Traveling Salesman Problem1 is given by a
metric d over a finite space{1, . . . , n}. A feasible solution is given by ak-tour,
that is a set ofk cyclic permutationsϕ1, . . . , ϕk whereϕ j : X j → X j and the
X j ⊆ {1, . . . , n} are such that 1∈ X1 ∩ . . . ∩ Xk andX1 ∪ . . . ∪ Xk = {1, . . . , n}. The
cost of a solution is

c(ϕ1, . . . , ϕk) = max
j∈{1,...,k}

|X j |
∑

i=1

d(ϕ(i−1)
j (1), ϕ(i)

j (1)).

Frederickson et al. [48] consider thek-TSP and give an approximation preserv-
ing reduction from thek-TSP to the standard TSP.

Theorem 5.1([48]). The k-TSP admits a(ρ + 1− 1/k)-approximation algorithm,
whereρ is the ratio of any approximation algorithm for the TSP.

By using Christofides’ heuristic [38] one obtains the following result, that has
not been improved yet.

Corollary 5.2. The k-TSP admits a(5/2− 1/k)-approximation algorithm.

We now consider the multiple server version of the TravelingRepairman Prob-
lem.

Definition 5.2. An instance of thek-Traveling Repairman Problemis given by a
metric d over a finite space{1, . . . , n}. A feasible solution is given by ak-tour,
that is a set ofk cyclic permutationsϕ1, . . . , ϕk whereϕ j : X j → X j and the
X j ⊆ {1, . . . , n} are such that 1∈ X1 ∩ . . . ∩ Xk andX1 ∪ . . . ∪ Xk = {1, . . . , n}. The
cost of a solution is

c(ϕ1, . . . , ϕk) =
k

∑

j=1

|X j |
∑

i=1

i−1
∑

l=1

d(ϕ(l−1)
j (1), ϕ(l)

j (1)).

1It should be noted that this is a different problem from the TSP withk clientsdefined in Chapter
4. Unfortunately, the namek-TSP is standard in the literature for both problems. In thischapter we
only consider the TSP withk servers.
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The first approximation algorithm for thek-TRP has been given by
Fakcharoenphol et al. [44]. It has an approximation ratio of 8.497ρ, whereρ is
the best approximation factor for the problem of finding the least cost rooted tree
spanningi vertices (i-MST). The currently best known factor for thei-MST is 2
[51], which gives an approximation ratio of 16.994 for thek-TRP. This ratio has
been improved by Chaudhuri et al. [33], who reduce it to 8.497, which is currently
the best known factor for the problem.

Theorem 5.3([33]). The k-TRP admits a8.497-approximation algorithm.

Jothi and Raghavachari [60] consider a generalization of thek-TRP in which
nodes have associated repair times. They present aρ + 2-approximation algorithm
for this problem, whereρ is the best approximation factor obtainable for the basick-
Traveling Repairman Problem. Chekuri and Kumar [34] consider instead a variant
of the k-TRP in which different servers may have different departure points, or
depots. They give a 24-approximation algorithm for this problem. Chaudhuri et al.
[33] improve this factor to 12.

To our knowledge, a multiple server version of the WanderingSalesman Prob-
lem (defined in Chapter2) has never been considered in the literature from the
point of view of approximation algorithms.

5.3 The online model

The model we use is an extension of the single-server online routing model intro-
duced in Section2.3. Here we only highlight the differences.

A k-server routing algorithm controlsk vehicles orservers. Initially, at time 0,
all these servers are located in the same pointo of the metric spaceM. The algo-
rithm can then move the servers around the space at speed at most 1. (We do not
consider the case in which servers have different maximum speeds; in compliance
with machine scheduling vocabulary we could say that the servers are identical
and work in parallel.) As in the single-server framework, weconsider continuous
path-metric spaces.

Defining thecompletion timeof a request as the time at which the request
has been served, thenomadic k-traveling salesman problem(k-TSP) has objec-
tive minimizing themaximum completion time, themakespan, and thek-traveling
repairman problem(k-TRP) has objective minimizing thetotal completion time.

We uses1, . . . , sk to denote thek servers, and writesj(t) for the position of
serversj at timet, andd j(t) for d(sj (t), o). Finally, given a pathP inM, we denote
its length byℓ(P).

All the lower bounds we prove hold for randomized algorithmsagainst an
oblivious adversary. In order to prove these results, we frequently resort to Yao’s
principle (cf. Section1.6).

A summary of our results is presented in Tables5.1and5.2, which also report
the known results for thehoming k-traveling salesman problem, the multiserver
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Problem Lower Upper References
Bound Bound

Homingk-TSP 2 2 [11, 76]
Nomadick-TSP 2 1+

√
2 Th.5.11, 5.6

k-TRP 2 (1+
√

2)2 Th. 5.11, 5.10
Homingk-TSP (R) 3/2 3/2 [25]
Nomadick-TSP (R) 1+ Ω(1/k) 1+O((logk)/k) Th. 5.16, 5.12
k-TRP (R) 1+ Ω(1/k) 1+O((logk)/k) Th. 5.16, 5.12

Table 5.1: The competitive ratio of multiserver routing problems.

Problem Lower References
Bound

Homingk-TSP (R2) 3/2 [25]
Nomadick-TSP (R2) 4/3 Th.5.17
k-TRP (R2) 5/4 Th.5.18

Table 5.2: Lower bounds in the Euclidean plane.

generalization of the homing TSP defined in Section2.3.2(in Table5.1, the entries
for the homingk-TSP on the real line assumek ≥ 2).

5.4 Algorithms for general metric spaces

In the following, we give competitive algorithms and lower bounds for the nomadic
k-TSP and thek-TRP in general spaces. Our results will be formulated in a more
generalresource augmentationframework [62]. We define the nomadic (k, k∗)-
TSP and (k, k∗)-TRP exactly as the nomadick-TSP and thek-TRP, except that
we measure the performance of an online algorithm withk servers relative to an
optimal offline algorithm withk∗ ≤ k servers.

Sections5.4.1and5.4.2give an algorithm for the (k, k∗)-TSP and the (k, k∗)-
TRP respectively. A lower bound for both problems is proved in Section5.4.3.

5.4.1 Thek-Traveling Salesman Problem

Theorem 5.4. There is a deterministic online algorithm for the nomadic(k, k∗)-
TSP with competitive ratio

1+
√

1+ 1/2⌊k/k∗⌋−1.

The algorithm achieving this bound is called Group Return Home (Algorithm
8). Define thedistance of a group to the originat timet as the maximum distance
of a server in the group too at timet.
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Algorithm 8  - Group Return Home
Divide the servers intog = ⌊k/k∗⌋ disjoint sets (groups) of k∗ servers each. Any
remaining server is not used by the algorithm.
Initially, all servers wait ato. Every time a new request arrives, all servers not ato
return to the origin at full speed. Once all of the servers in one of the groups, say
groupG (ties broken arbitrarily), are ato, compute a set ofk∗ paths{P1, . . . ,Pk∗}
starting ato, covering all unserved requests and minimizing maxi ℓ(Pi). Then, for
i = 1, . . . , k∗, the i-th server inG follows pathPi at the highest possible speed
while remaining at a distance at mostαt from o at any timet, for some constant
α ∈ (0, 1]. Servers in other groups continue to head towardso (or wait there) until
a new request is released.

Lemma 5.5. At any time t, in the schedule generated by, let G1(t), . . . ,Gg(t)
be the g groups in order of nondecreasing distance to o. Then the distance of Gi(t)
to o is at most2i−gαt.

Proof. We prove the lemma by induction on the number of requests. That is, we
show that if the lemma holds at the release datet of some request, it will hold until
the release datet + δ of the next request. Obviously, the lemma is true up to the
time the first request is given, since all servers remain ato.

Suppose a request is given at timet. By induction, we know that there are
groupsG1(t), . . . ,Gg(t) such that each server of groupGi(t) is at distance at most
2i−gαt from o. For the rest of the proof we fix the order of the groups as the order
they have at timet and writeGi instead ofGi(t). Let Di(τ) = maxs∈Gi d(s(τ), o).

Between timet andt′ = t +D1(t), the lemma holds since all servers are getting
closer too. We show that the lemma holds att′ + δ for all δ > 0. Notice that
D1(t′ + δ) ≤ δ since every server moves at most at unit speed.

If δ ∈ (0, 21−gαt], we know thatD1(t′ + δ) ≤ 21−gαt, so the lemma holds with
the groups in the same order as before.

Now, let δ ∈ (2i−1−gαt, 2i−gαt] for 2 ≤ i ≤ g. Then at timet′ + δ, groupG j is
already ato for each 1< j < i. For groupGi, Di(t′ + δ) ≤ 2i−gαt − 2i−1−gαt =
2i−1−gαt. For groupG1, D1(t′ + δ) ≤ 2i−gαt. For groupsGi+1 throughGg, Di+1(t′ +
δ) ≤ 2i+1−gαt, . . . ,Dg(t′ + δ) ≤ 20αt. So the lemma holds for these values ofδ.

The last case isδ > αt. In this case all groups exceptG1 are ato, and because
of the speed constraintD1(t′ + δ) ≤ α(t′ + δ). Thus the lemma holds. �

Proof of Theorem5.4. Let t be the release date of the last request and letG1 be the
group minimizing the distance to the origin at timet. Using Lemma5.5 we know
thatD1(t) ≤ 21−gαt. GroupG1 will return to the origin and then follow the offline
set of paths{P1, . . . ,Pk∗}. Notice that(σ) ≥ t, since no schedule can end before
the release date of a request, and(σ) ≥ maxi ℓ(Pi) because of the optimality of
thePi .

Let s be the server inG1 that achieves the makespan. Ifs does not limit its
speed after timet, we have(σ) ≤ t + D1(t) +maxi ℓ(Pi) ≤ (2+ 21−gα)(σ).
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Otherwise, lett′ be the last time at whichs is moving at limited speed. It
is not difficult to see thats must serve some request at that time. Letx0 be the
location of this request. Thent′ = (1/α)d(x0, o) and s continues following the
remaining part of its path, call itP′, at full speed. Hence,(σ) = t′ + ℓ(P′).
Since(σ) ≥ maxi ℓ(Pi) ≥ d(o, x0) + ℓ(P′) this yields(σ) ≤ (1/α)(σ).

Thus, the competitive ratio is at most max{2 + 21−gα, 1/α} and choosingα in
order to minimize it givesα =

√

2g−1(2g−1 + 1)− 2g−1 and the desired competitive
ratio. �

Corollary 5.6. There is a deterministic(1+
√

2)-competitive online algorithm for
the nomadic k-TSP.

5.4.2 Thek-Traveling Repairman Problem

Theorem 5.7. There is a deterministic online algorithm for the(k, k∗)-TRP with
competitive ratio2 · 31/⌊k/k∗⌋.

Algorithm 9  - Group Interval
Divide the servers intog = ⌊k/k∗⌋ disjoint sets (groups) ofk∗ servers each. Any
remaining server is not used by the algorithm.
Let L be the earliest time that any request can be completed (wlogL > 0). For
i = 0, 1, . . ., defineBi = α

iL whereα ∈ (1, 31/g] will be fixed in the analysis.
At time Bi, compute a set of pathsSi = {Pi

1, . . . ,P
i
k∗} for the set of yet unassigned

requests released up to timeBi with the following properties:
(i) everyPi

j starts at the origino;

(ii) max j ℓ(Pi
j) ≤ Bi;

(iii) Si maximizes the number of requests served among all schedulessatisfying
the first two conditions.
The requests inSi are now considered assigned.
Let β = 2/(αg − 1). Starting at timeβBi, the j-th server in the (i modg)-th group
follows pathPi

j, then returns too at full speed.

We call the algorithm achieving the bound Group Interval (Algorithm9), as it
can be seen as a multiserver generalization of algorithm Interval [68]. The algo-
rithm is well defined since the time between two departures ofthe same group
is enough for the group to complete its first schedule and return to the origin:
βBi+g − βBi = β(αg − 1)Bi = 2Bi. It is an online algorithm sinceβ ≥ 1 for
anyα ∈ (1, 31/g].

To sketch the proof of Theorem5.7, we start with two auxiliary lemmas.

Lemma 5.8([68]). Let ai , bi ∈ R for i = 1, . . . , p, for which

(i)
∑p

i=1 ai =
∑p

i=1 bi , and

(ii)
∑p′

i=1 ai ≥
∑p′

i=1 bi for all 1 ≤ p′ ≤ p.
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Then the
∑p

i=1 τiai ≤
∑p

i=1 τibi for any nondecreasing sequence of real numbers
0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τp.

Lemma 5.9. Let Ri be the set of requests served by the set of paths Si computed
by  at time Bi, i = 1, 2, . . . and let R∗i be the set of requests in the optimal offline
solution that are completed in the time interval(Bi−1, Bi]. Then

q
∑

i=1

|Ri | ≥
q

∑

i=1

|R∗i | for all q = 1, 2, . . . .

Proof. We omit the proof, as it is basically the same as that of Lemma 4in [68]. �

Proof of Theorem5.7. Let σ = σ1 . . . σm be any sequence of requests. By con-
struction of, each request inRi is served at most at time (1+ β)Bi. Now, let
p be such that the optimal offline schedule completes in the interval (Bp−1, Bp].
Summing over all phases 1, . . . , p yields

(σ) ≤ (1+ β)
p

∑

i=1

Bi |Ri | = (1+ β) · α
p

∑

i=1

Bi−1|Ri |. (5.1)

From Lemma5.9 we know that
∑q

i=1 |Ri | ≥
∑q

i=1 |R
∗
i | for q = 1, 2, . . . We also

know that
∑p

i=1 |Ri | =
∑p

i=1 |R
∗
i |. Applying Lemma5.8 to the sequencesai := |Ri |,

bi := |R∗i |, τi := Bi−1, i = 1, . . . , p yields in (5.1)

(σ) ≤ (1+ β) · α
p

∑

i=1

Bi−1|Ri | ≤ (1+ β) · α
p

∑

i=1

Bi−1|R∗i |. (5.2)

Let C∗j be the optimal offline completion time of requestσ j. For eachσ j denote by
(Bφ j , Bφ j+1] the interval that containsC∗j . This inserted in (5.2) yields

(σ) ≤ (1+ β) · α
m

∑

j=1

Bφ j ≤ (1+ β) · α
m

∑

j=1

C∗j = (1+ β) · α · (σ).

Choosingα = 31/g (so thatβ = 1) gives the theorem. �

Corollary 5.10. There is a deterministic(1 +
√

2)2-competitive online algorithm
for the k-TRP.

Proof. When g = 1, the analysis in Theorem5.7 can be improved slightly by
choosingα = 1+

√
2 (however, simple calculus shows that no similar improvement

is possible wheng ≥ 2). This improved ratio matches the (1+
√

2)2-competitive
algorithm [68] for the TRP with a single server. �
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5.4.3 Lower bounds

Theorem 5.11.The competitive ratio of any randomized online algorithm for the
nomadic(k, k∗)-TSP or the(k, k∗)-TRP is at least2.

Proof. Consider the metric space induced by a star graph withm unit-length rays,
the origin being the center of the star. No request is given until time 1. At time 1,
the adversary gives a request on an edge chosen uniformly at random, at distance
1 from the origin. The expected makespan for the adversary is1. For the online
algorithm, we say that a serverguardsa ray if at time 1 the server is located on the
ray, but not at the center of the star. Then the makespan is at least 2 if no server
guards the ray where the request is released, and at least 1 otherwise. Butk servers
can guard at mostk rays, so

E[(σ)] ≥ 2 ·
(

1− k
m

)

+ 1 · k
m
≥ 2− k

m

and the result follows by Yao’s principle, sincem can be arbitrarily large. �

Notice that this lower bound is independent of the valuesk andk∗. A conse-
quence of this is that the upper bounds of Sections5.4.1and5.4.2are essentially
best possible whenk >> k∗, as in that case they both approach 2.

5.5 Algorithms for the real line

5.5.1 An asymptotically optimal algorithm

Theorem 5.12. There is a deterministic online algorithm with competitiveratio
1+O((logk)/k) for both the nomadic k-TSP and the k-TRP on the real line.

As a preliminary, we prove a similar result on thehalfline.

Algorithm 10  - Geometric Progression Speeds
As a preprocessing step, the algorithm delays every request(r, x) for which x ≥ r
to time x; that is, the release date of each request (r, x) is reset atr′ := max{r, x}
(themodified release date).
Then, letgk be the unique root greater than 1 of the equationgk

k =
3gk−1
gk−1 and define

α j = g j−k−1
k for j ∈ {2, 3, . . . , k}. For everyj > 1, serversj departs at time 0 fromo

at speedα j and never turns back. The first servers1 waits ino until the first request
(r0, x0) is released with 0< x0 < s2(r′0). For i ≥ 0, defineti = gi

kr
′
0. During any

interval [ti−1, ti ], s1 moves at full speed first fromo to (gk − 1)ti−1/2 and then back
to o.

Lemma 5.13.  (Algorithm10) is gk-competitive for nomadic k-TSP and k-TRP
on the halfline.
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Proof. First, notice that the modified release date of a request is a lower bound on
its completion time. Thus it is enough to prove that, for every request (r, x), the
time at which it is served is at mostgkr′.

For 1 < j < k, we say that a request (r, x) is in zone jif α j ≤ x/r′ < α j+1.
We also say that a request is in zone 1 ifx/r′ < α2, and that it is in zonek if
x/r′ ≥ αk. By construction, every request is in some zone and a requestin zone j
will be eventually served by serversj.

For a request (r, x) in a zone j with 1 < j < k, since the request is served by
serversj at timex/α j and sincex ≤ α j+1r, the ratio between completion time and
modified release date is at mostα j+1/α j = gk. Similarly, for a request in zonek,
sincex ≤ r′, the ratio between completion time and modified release dateis at most
1/αk = gk.

It remains to give a bound for requests in zone 1. Take any suchrequest, i.e.,
a request (r, x) such thatx < α2r′ and suppose it is served at timeτ ∈ [ti−1, ti ] for
somei. If r′ ≥ ti−1, then, sinceτ ≤ ti , the ratio betweenτ andr′ is at mostgk by
definition ofti , i ≥ 0.

If r′ < ti−1, then, sinceτ > ti−1, only two possible cases remain. First, the
situation thatx > gk−1

2 ti−2. Sinceτ = ti−1 + x andr′ ≥ x/α2, we have

τ

r′
≤ x+ ti−1

x/α2
≤ α2

(

1+
2gkti−2

(gk − 1)ti−2

)

= α2
3gk − 1
gk − 1

= α2gk
k = gk.

In the second situation,x ≤ gk−1
2 ti−2. Thenr′ must be such thats1 was already on

its way back to 0 during [ti−2, ti−1], in particularr′ ≥ gkti−2 − x. Thus,

τ/r′ ≤ gkti−2 + x
gkti−2 − x

≤ 3gk − 1
gk + 1

≤ gk.

�

The algorithm for the real line simply splits thek servers evenly between the
two halflines, and uses on each halfline.

Algorithm 11  - Split Geometric Progression Speeds
Arbitrarily assign⌈k/2⌉ servers toR+ and⌊k/2⌋ servers toR−. On each of the two
halflines, apply Algorithm10 independently (i.e., ignoring the requests and the
servers in the other halfline).

Lemma 5.14. For any k ≥ 2,  (Algorithm 11) is g⌊k/2⌋-competitive for the
nomadic k-TSP and the k-TRP on the line.

Proof. The only lower bounds on the offline cost that we used in the proof of
Lemma5.13 were the distance of every request fromo and the release date of
every request. They are valid independent of the number of offline servers. In
particular, they hold if the number of offline servers is twice the number of online
servers. Thus, we can analyze the competitiveness of the online servers on each of
the two halflines separately and take the worst of the two competitive ratios. �
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Lemma 5.15. For any k≥ 1, gk ≤ 1+ 2 logk+3
k .

Proof. We definedgk as the unique root greater than 1 ofzk = 1 + 2z
z−1. Since

limz→∞ zk > limz→∞ 1 + 2z
z−1, it suffices to prove thatz0 := 1 + 2 logk+3

k satisfies

zk
0 ≥ 1+ 2z0

z0−1. The binomial theorem and the standard fact that
(

k
j

)

≥ k j

j j yield

zk
0 − 1 =

k
∑

j=1

(

k
j

)

(2 logk+ 3) j

k j
≥

k
∑

j=1

(2 logk+ 3) j

j j
≥
⌊logk⌋+1
∑

j=1

(2 logk+ 3
j

) j

≥
⌊logk⌋+1
∑

j=1

2 j ≥ 2logk+1 − 2 = 2k− 2.

Now it can be verified that for allk > 2, 2k − 2 > 2k
2 logk+3 + 2 = 2z0

z0−1. Finally, the
bound also holds fork ∈ {1, 2} as seen by explicitly findingg1 andg2. �

Theorem5.12now follows from Lemma5.14and Lemma5.15.

5.5.2 Lower bounds

Theorem 5.16.The competitive ratio of any randomized online algorithm for the
nomadic(k, k∗)-TSP or the(k, k∗)-TRP on the line is at least1+ 1/2k.

Proof. The adversary gives a single request at time 1, in a point drawn uniformly at
random from the interval [−1, 1]. The expected optimal cost is obviously 1. Thus,
by Yao’s principle it suffices to show thatE[(σ)] ≥ 1+ 1/2k.

In order to boundE[(σ)], let f (x) = min j∈{1,...,k} d(x, sj (1)). Notice that 1+
f (x) is a lower bound on the cost paid by the online algorithm, assuming that the
request was given atx. In terms of expected values,

E[(σ)] ≥ E[1 + f (x)] = 1+
1
2

∫ 1

−1
f (x)dx.

Thus, we want to find the minimum value of the area belowf in [−1, 1]. Basic
calculus shows that this area is minimized when the servers are evenly spread inside
the interval and at distance 1/k from the extremes, in which case its value is 1/k.

�

5.6 Lower bounds on the plane

Comparing the results in Section5.4with those in Section5.5, we see that while in
general spaces the competitive ratio of both the nomadick-TSP and thek-TRP
always remains lower bounded by 2, on the real line we can achieve 1+ o(1)
asymptotically. A natural question is whether on a low-dimensional space like
the Euclidean plane we can also achieve 1+ o(1) competitiveness. In this section
we answer this question negatively.
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Theorem 5.17. The competitive ratio of any randomized online algorithm for the
nomadic k-TSP on the plane is at least4/3.

Proof. As a crucial ingredient of the proof we introduce a new kind ofrequest,
which is located in a single pointx of the space but has an arbitrarily long process-
ing time p (this processing time can be divided among the servers processing the
request). We show how this can be emulated in the Euclidean plane with arbitrar-
ily good precision by giving a high enough number of requestspacked inside an
arbitrarily small square aroundx.

Fix some arbitraryǫ > 0. Consider a square with side lengths=
√
ǫp centered

aroundx. The square can be partitioned ins2/ǫ2 smaller squares of side lengthǫ.
In the center of each of these smaller squares we give a request. Notice that the
distance between any pair of such requests is at leastǫ. Thus, the sum of the times
required for anyk servers to serve all requests is at least (s2

ǫ2 − k)ǫ, no matter where
the servers start (the−kǫ term reflects the possible saving each server could have
by starting arbitrarily close to thefirst request he serves).

For ǫ tending to zero, the requests converge to the pointx and the total pro-
cessing time needed converges top. If the starting points of the servers are most
favorable, an algorithm could finish serving all requests intime p/k.

We show how to use such a “long” request to achieve our lower bound. At
time 1, the adversary gives a long request of processing timep = 2k in a point
drawn uniformly at random from{(1, 0), (−1, 0)}. The expected optimal cost is
1+ p/k = 3. By Yao’s principle, it remains to prove thatE[(σ)] ≥ 4.

Since there is a single long request, we can assume wlog that all the online
servers will move to the request and contribute to serving it. Sincep = 2k, the
server that will contribute most to the service will have to spend time at least 2k/k =
2 in x, and this is enough for any other server to arrive and give a contribution (since
at time 1 no server can be farther than 2 fromx).

Suppose wlog that the servers are numbered in order of nondecreasing distance
to x and letdi = d(x, si(1)). We have(σ) ≥ 1+ t0, with t0 the time needed for the
servers to completely serve the request, i.e., the time whenits remaining processing
time is zero. Thus,t0 satisfies

∑k−1
i=1 i(di+1−di)+k(t0−dk) = p , since during interval

[di , di+1) exactlyi servers are processing the request. Hence,

kt0 = p+ kdk −
k−1
∑

i=1

i(di+1 − di) = p+
k

∑

i=1

di .

Now consider the positions of the online servers at time 1 inside the ball of
radius 1 around the origin. Regarding points as vectors inR2, di can be written as
||si(1)− x|| (here|| · || denotes the Euclidean norm). Then

k
∑

i=1

di =
∑

i

||si(1)− x|| ≥
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

(si(1)− x)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= k
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
k

∑

i

si(1)− x
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= k||b− x|| = k · d(b, x),
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whereb = 1
k

∑

i si(1) is the centroid of thesi(1). Hence,

E[(σ)] ≥ 1+ E[t0] ≥ 1+ p/k + E[d(b, x)] =

= 3+ (1/2)d(b, (1, 0)) + (1/2)d(b, (−1, 0))

≥ 3+ (1/2)d((1, 0), (−1, 0)) = 4.

�

A similar technique gives an analogous lower bound for thek-TRP on the plane.

Theorem 5.18.The competitive ratio of any randomized online algorithm for the
k-TRP on the plane is at least5/4.

Proof. We use the same input distribution used in the proof of Theorem 5.17. For
the costs, it is equivalent but easier to consider average completion time instead of
the sum of completion times. Then, the expected optimal costcan be easily seen to
be 2 since thek servers can uniformly process the request of lengthp (recall that
p = 2k) during time interval [1, 3].

To lower bound the online cost, considerw ∈ [0, p] and letC(w) be the first
time at which a total work ofw has been completed by the online algorithm. Then

(σ) =
1
p

∫ p

0
C(w)dw.

Now if we definet0 as in the proof of Theorem5.17we haveC(p) = 1+ t0, while
C(ǫ) > 1 for anyǫ > 0. Moreover, the functionC is concave, since the speed at
which the long request is processed can only increase as moreservers arrive, so the
value of the integral above is at leastp(1+ t0/2). Thus

E[(σ)] ≥ E[
1
p
· p(1+

t0
2

)] ≥ E[1 + t0/2] = 5/2

since we already showed in the proof of Theorem5.17thatE[t0] ≥ 3. The claim
follows by Yao’s principle. �

5.7 Conclusions and open problems

After analyzing the differences between multiple and single server variants, we can
conclude that sometimes having multiple servers is more beneficial to the online
algorithm than to the offline adversary. In some cases, including the traveling re-
pairman problem on the line, the online algorithms can approach the offline cost
when there are enough servers. In more general spaces, theseextremely favorable
situation cannot occur. Still in some intermediate cases, like the Euclidean plane,
it is conceivable that the competitive ratios become lower than those of the corre-
sponding single server problems. We leave the analysis of the competitive ratio in
these situations as an open problem.
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Chapter 6

An adversarial queueing model
for online server routing

6.1 Introduction

Consider the following model of a computer harddrive: whilethe disk is rotating,
read and write requests arrive for data lying on specific sectors of the disk. Thus,
the head located on the arm of the disk has to move in order to align itself to the
correct track, and wait for the disk to rotate onto the sectorholding the data. If we
ignore the rotational delay, we can view the problem as an online server routing
problem on a finite chain (the head’s arm).

A sensible algorithm for controlling the disk’s head shouldbe able to cope with
requests in astablemanner: the number of unserved requests should not increase
indefinitely as time passes. This requires of course that therate of incoming re-
quests does not overflow the head’s service speed, but that condition alone is not
sufficient; an algorithm that moves the head back and forth between far away loca-
tions while serving few requests will easily lead to an unstable system even when
the arrival rate is relatively low. Notice that this stability requirement can be seen
as requiring the algorithm to have an optimalthroughput, since no algorithm with
suboptimal throughput can keep the system stable if the loadis high for a sufficient
amount of time. Apart from this minimal stability requirement, one would like the
delay of each individual request to be as small as possible and definitely within a
fixed, predictable range.

The optimization part of this problem could be seen as an online server routing
problem with themaximum flow timeobjective. However, it is well-known from the
online algorithm literature that there cannot be constant competitive algorithms for
this problem. Thus, pure competitive analysis is unable to distinguish the behavior
of different algorithms. Restrictions to the offline adversary and alternative models
have been proposed that try to overcome this issue [56, 70].

In this chapter we propose a different approach that, while abandoning com-
petitive analysis, still assumes worst case behavior of theinputs. The approach
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is based onadversarial queueing theory, which has been recently proposed as a
mean to analyze online packet routing problems [7, 32]. We propose an adversar-
ial queueing theory model specific for online server routing, and in this framework
we analyze the stability and the performance of several natural algorithms. This
allows us to distinguish between algorithms that would fareequally badly from the
point of view of competitive analysis.

6.2 Related work

The adversarial queueing theory framework was first formulated by Borodin et al.
[32], who consider a model of packet routing problems in networks with contin-
uous packet arrivals. The model replaces the probabilisticassumptions usual in
queueing theoretical analyses with worst case inputs. Thusthe nameadversarial
queueing theorywas proposed to stress that while the issue studied is that ofsta-
bility – the crucial issue of queueing theory – the approach is of adversarial nature.
Following the work of Borodin et al., Andrews et al. [7] consider several natural
algorithms in this framework and give many stability and instability results.

In the context of online server routing problems, the model that comes closer
to the one we propose is thereasonable loadmodel by Hauptmeier et al. [56].
Roughly speaking, they assume that every set of requests that come up in a suffi-
ciently large time period can be served in a time period of at most the same length.
Under this assumption, they consider the dial-a-ride problem for the minimiza-
tion of maximum resp. total flow time, and they distinguish the behavior of two
algorithms, Replan and Ignore, that would be indistinguishable by pure compet-
itive analysis. We also give similar results for Replan, Ignore and several other
algorithms. Other results in related directions of research, albeit in quite different
models, are given by Alborzi et al. [4] and Irani et al. [58].

Experimental results for different disk scheduling policies were given by Teo-
rey and Pinkerton [88]. More recently, new algorithms for disk scheduling have
been proposed by Andrews et al. [8].

6.3 The model

An online server routing systemconsists of a triple (G,A,P), whereG is a graph,
A is an adversary andP is an online protocol1. We now further detail each of these
components.

The undirected, connected graphG = (V,E) represents the space where re-
quests are injected by the adversary and where the server operated by the online
protocol moves. A special vertexo ∈ V is marked as the origin. We letn be the
number of vertices ofG andδ its diameter.

1In network management applications [32], the term protocol is used to stress the fact that the
algorithm is distributed, i.e. it acts based only on local information. Since we do not have this issue
here, we use interchangeably the termsprotocolandalgorithm.
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We use a discrete time model. At every time step, the server operated by the
protocol can either cross an edge or serve a single request from its current location
(but not both). At time 0, the server is located at the origin.

We consider two types of adversaries, a stronger one used in all the positive
results and a weaker one used for the negative results; this difference can only
strengthen the results. Astrong adversaryof rate λ ∈ (0, 1] and burstµ > 0
can, during any time intervalI , release at mostλ|I | + µ requests overall anywhere
on the nodes of the graph. Aweak adversaryof rateλ ∈ (0, 1] can, during any
time interval I , release at most

⌈

λ|I |⌉ requests overall anywhere on the nodes of
the graph. The sequence generated by the adversary is denoted byσ = σ1σ2 · · ·.
Every request is a pair (r j , x j) ∈ Z+ × V, wherer j is the release date of the request
(the time it becomes available) andx j its location (a vertex ofG). We denote by
C j the completion time of requestσ j, i.e., the time unit following the one during
which the server started processingσ j .

More formally, the model can be described as follows. At every time stept,
the currentconfigurationCt of the system is a vertexs(t) ∈ V plus a collection of
sets{U t

v : v ∈ V}, such thats(t) is the position of the server at timet andU t
v is

the set of requests waiting atv at the timet. From the configurationCt we obtain
the configurationCt+1 as follows. The adversary adds new requests to some of the
setsU t

v; then the protocol either choosess(t + 1) such that{s(t), s(t + 1)} ∈ E or
it removes a request fromU t

s(t) and leavess(t + 1) = s(t). A time-evolutionof G,
of rateλ and burstµ, is a sequence of such configurationsC0,C1, . . . , such that
for all intervalsI , no more thanλ|I | + µ requests are introduced duringI in G. By
thesystem(G,A,P) we mean the time-evolution ofG induced by adversaryA and
protocolP with initial configurations(0) = o andU0

v = ∅ for all v ∈ V.
Our results are centered around the following concepts.

Definition 6.1. An online server routing system (G,A,P) is stableif there exists a
constantumax (which may depend on the system) such that

∑

v∈V
|U t

v| ≤ umax

for all t ∈ Z+, that is, the total number of unserved requests is bounded byumax at
all times. Otherwise we say that the system isunstable.

Definition 6.2. A protocol P is universally stableif for every graphG and every
strong adversaryA of rateλ and burstµ with λ < 1, the system (G,A,P) is stable.

Definition 6.3. A system (G,A,P) hasbounded flow timeif there is a constantF
such that for any requestσ j released byA, C j − r j ≤ F. We say that a protocol has
bounded flow time if for every graphG and every strong adversaryA of rateλ and
burstµ with λ < 1, the system (G,A,P) has bounded flow time.

Clearly, if a protocol is not universally stable, it cannot have bounded flow time.
The converse implication is false in general; compare, for example, Theorems6.6
and6.11.
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6.4 Stability results

In this section we consider several natural algorithms for the online server routing
model we have introduced, and we classify each of them according to Definitions
6.2and6.3. A summary of the results is presented in Table6.1.

As a preliminary result, we remark that, in Definition6.2, it is necessary to con-
sider only adversaries with rateλ strictly less than 1, as otherwise for any protocol
the system can be made unstable.

Lemma 6.1. Let P be any protocol and G any nontrivial graph. Then there exists
an adversary A of rate1 such that the system(G,A,P) is unstable.

Proof. The adversary gives at every time step a request on a vertex that is distinct
from the current location of the server. The server must change location infinitely
often, but every time it does, the number of unserved requests increases by one.�

Since the requests are qualitatively identical, we assume without loss of gener-
ality that at every node of the graph there is aqueueholding the requests pending
at that node; inside a queue, requests are ordered by releasedate. The protocol
always serves the oldest request of a queue.

A general term used in the algorithms is that of “emptying” the queue at a
given vertexv of the graph. By this we mean that the server serves a request in v at
every time step until no more requests inv are available. This process takes a finite
amount of time because the rate of the adversary is strictly less than one. More
precisely, we have the following.

Lemma 6.2. Suppose that at time t a server is located at a node v where uv re-
quests are pending unserved. Against a strong adversary of rate1− ǫ and burstµ,
emptying v requires at most(uv + µ)/ǫ time steps.

Proof. Suppose the claim is false. Then, a request will be served inv on each of
the following 1+ (uv+µ)/ǫ time steps, but there are at mostuv requests inv at time
t and no more than

(1− ǫ)
(

1+
uv + µ

ǫ

)

+ µ = 1+
uv + µ

ǫ
− ǫ − uv − µ + µ < 1+

uv + µ

ǫ
− uv

new requests can be released until timet+1+(uv+µ)/ǫ. Thus we get a contradiction,
because the server would serve more requests than what are available. �

Some of the algorithms we consider are undefined in the case ofties. In those
cases, we assume the worst tie-breaking rule for the positive results and the best
for the negative ones.

The following technical lemma is useful when establishing instability results.
Given two adversariesA1,A2, theirunion A1∪ A2 is the adversary that releases the
requests of both adversaries.
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Algorithm Univ. Bounded References
stable? flow time?

 no no Th.6.4
 no no Th.6.5
 yes no Th.6.6, 6.11
 yes yes Th.6.7, 6.12
 no no Th.6.8
 yes yes Th.6.9, 6.12
- yes yes Th.6.10, 6.12

Table 6.1: Universal stability of different server routing algorithms.

Lemma 6.3. Let A1 be a weak adversary of rateλ ≤ 1/2. Then for every v∈ V and
every sufficiently smallǫ > 0, there exists a weak adversary A2 of rateǫ releasing
requests in v such that A1 ∪ A2 is a weak adversary of rate at most2/3+ ǫ.

Proof. We defineA2 as follows: it releases requests inv only at time steps during
which A1 does not release any request, and so that its rate isǫ; this is always
possible by takingǫ sufficiently small. Apart from these constraints, the precise
release dates of the requests ofA2 are irrelevant for the lemma.

We have to prove that for any intervalI of length t, the requests released by
A1 ∪ A2 are at most

⌈

(2/3+ ǫ)t
⌉

.
Consider any such intervalI . If t = 1, the claim holds simply becauseA1 and

A2 never release a request during the same time step.
For all othert, notice that the number of requests released byA1 (resp.A2) is at

most
⌈

λt
⌉

(resp.
⌈

ǫt
⌉

). We prove the claim by showing that
⌈

λt
⌉

+
⌈

ǫt
⌉ ≤ ⌈

(2/3+ǫ)t
⌉

.
We assume thatǫ ≤ 2/3− λ. Whent ≥ 1/(2/3− λ),

⌈

λt
⌉

+
⌈

ǫt
⌉ ≤ ⌈

λt + 1+ ǫt
⌉ ≤ ⌈

λt + (2/3− λ)t + ǫt
⌉ ≤ ⌈

(2/3+ ǫ)t
⌉

.

Whent < 1/(2/3− λ), notice that
⌈

ǫt
⌉

= 1. If t is even, sayt = 2q,
⌈

λt
⌉ ≤ ⌈

t/2
⌉

= q ≤ (4/3)q = (2/3)t.

If t is odd,t = 2q+ 1 whereq ≥ 1,
⌈

λt
⌉ ≤ ⌈

t/2
⌉

= q+ 1 ≤ (4/3)q + 2/3 = (2/3)t.

Thus, in both cases,
⌈

λt
⌉ ≤ (2/3)t < (2/3)t + ǫt

from which it follows
⌈

λt
⌉

+
⌈

ǫt
⌉

=
⌈

λt
⌉

+ 1 ≤ ⌈

(2/3)t + ǫt
⌉

.

�
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Algorithm 12  - First In First Out
The server processes the requests in the same order as their release dates.

In the context of single-machine scheduling, the protocol (Algorithm12)
is an optimal algorithm for minimizing the maximum flow time of jobs. However,
a similar approach fails in server routing because the costsof moving between
distant requests are not recovered in any way.

Theorem 6.4. For every nontrivial graph G, there is a weak adversary A suchthat
(G,A, ) is unstable.

Proof. Consider any edge{v,w} of the graph, and suppose that the server starts in
w. Fix λ ∈ (1/2, 1). The requests are given alternatively inv andw at rateλ. Note
that serves requests at a rate of at most 1/2, since it needs to move after serving
each request. Butλ > 1/2, thus the system is unstable. In general, if the graph has
diameterδ,  is unstable at every rate greater than 1/(δ + 1). �

Another natural algorithm is Shortest Seek Time First (Algorithm 13). The
algorithm attempts to minimize the distance traveled between the service of any
two requests.

Algorithm 13  - Shortest Seek Time First
 works in phases. At the beginning of each phase, letv be the node with a
nonempty queue that is nearest to the current position of theserver. At every step
during the phase, the server moves along a shortest path fromthe current node to
v. When it reachesv, it proceeds to emptyv. Whenv has been emptied, the phase
ends.

Theorem 6.5. For every graph G of diameter at least 3 there is a weak adversary
A such that(G,A, ) is unstable.

Proof. Consider any chainv0v1v2v3 of length 3 inG, and suppose that the server
starts inv1. A first adversaryA1 gives requests alternatively inv0 andv1, at a rate
of 1/2, so that as soon as a request is served invi a new request appears inv1−i . By
Lemma6.3, for anyǫ > 0 there exists an adversaryA2 of rateǫ releasing requests
in v3 such thatA1 ∪ A2 has rate at most 2/3 + ǫ. Notice that requests ofA1 keep
the server betweenv0 andv1, so that requests ofA2 will never be served. Thus the
system (G,A1 ∪ A2, ) is unstable. �

Another reasonable strategy tries to maximize the work to bedone on the next
queue before leaving it, by serving the largest queue (Algorithm 14).

Theorem 6.6.  is universally stable.
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Algorithm 14  - Empty the Largest Queue
 works in phases. At the beginning of each phase, letv ∈ V be the node with
the largest queue in the system. At every step during the phase, the server moves
along a shortest path from the current node tov, until it reachesv. When it reaches
v, the server proceeds to empty it. Whenv has been emptied, the phase ends.

Proof. Consider a strong adversary of rate 1− ǫ and burstµ. First we prove by
induction on phases that at the beginning of every phase the number of unserved
request is at most

(1− ǫ)δn/ǫ + µn/ǫ.

Consider some phase starting att and ending att′, and letz be the number of
requests served during the phase andu the number of requests unserved at timet.
Then

t′ − t ≤ δ + z, (6.1)

since at every time step either the algorithm moves towards the target node of the
phase, or it serves a request inv. Also,

z≥ u/n, (6.2)

sincev was the node with the largest queue at timet, and thus holds at least the
average number of requests per node. Then, the number of unserved requests at
time t′ is at most

u+ (1− ǫ)(t′ − t) + µ − z ≤ (1− ǫ)δ + µ + u− ǫz by (6.1)
≤ (1− ǫ)δ + µ + (1− ǫ/n)u by (6.2)
≤ (1− ǫ)δn/ǫ + µn/ǫ by induction.

To conclude the proof we need to show that the duration of eachphase is bounded
by a constant. Obviously, traveling to the target nodev takes at mostδ time steps.
It remains to bound the time needed to emptyv. When the server arrives atv, v
contains at mostu+ δ + µ requests. By Lemma6.2, emptyingv will require time
at most (u+ δ + 2µ)/ǫ. �

An algorithm related to is  (Algorithm 15). It can be seen as a variant
of  with an hysteresis mechanism.

Algorithm 15  - Empty the Oldest Queue
 works in phases. At the beginning of each phase, letv be the node containing
the oldest request in the system. At every step during the phase, the server moves
along a shortest path from the current node tov. When it reachesv, it proceeds to
emptyv. Whenv has been emptied, the phase ends.

Theorem 6.7.  is universally stable.
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Proof. We define anepochas a sequence ofn phases. We first prove by induction
that at the beginning of every epoch the number of unserved request is bounded by

(1− ǫ)δn/ǫ + µ/ǫ.

Then we show that the duration of every epoch is also bounded.Let [t, t′) be an
epoch, letz be the number of requests served during the epoch and letu be the
number of unserved requests at the beginning of the epoch. Then

t′ − t ≤ δn+ z (6.3)

by definition of, since at every time step either moves the server towards
the target of the new phase (of which there aren) or it serves a request. On the other
hand, letX be the set of nodes that had a nonempty queue at timet. We claim that
during the epoch, empties each node inX at least once. This is true because
in each phase of the epoch empties a node, and the nodes inX have requests
older than those inV \ X.

The fact that every node inX is emptied at least once during the epoch implies
that

z≥ u. (6.4)

The number of requests unserved at timet′ is then at most

u+ (1− ǫ)(t′ − t) + µ − z ≤ (1− ǫ)δn+ µ + u− ǫz by (6.3)
≤ (1− ǫ)δn+ µ + (1− ǫ)u by (6.4)
≤ (1− ǫ)δn/ǫ + µ/ǫ by induction.

To conclude the proof we need to show that the duration of eachepoch is bounded
by a constant. This is true because the duration of each phaseis bounded (the
proof, based on Lemma6.2, is similar to that in the proof of Theorem6.6). �

Two classical strategies for generic online service are and  (Al-
gorithms16 and17). Although for the purpose of minimizing the maximum flow
time they perform equally badly from the point of view of competitive analysis,
the following results establish as a more robust algorithm. These results are
similar to those of Hauptmeier et al. [56].

Algorithm 16 
 maintains a shortest walk on the set of nodes that have unserved requests.
Whenever the current node is nonempty, serves a request there. Otherwise,
it moves the server along the shortest walk. Whenever a new request is released,
the shortest walk is recomputed.

Theorem 6.8. For every graph G of diameter at least3 there is a weak adversary
A such that(G,A, ) is unstable.
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Algorithm 17 
works in phases. At the beginning of each phase, letobe the current position
of .  computes a shortest schedule on the set of currently unserved
requests starting and ending ato. During the phase, follows the schedule,
ignoring temporarily requests released after the beginning of the phase. When the
schedule has been completed, the phase ends.

Proof. Consider any chainv0v1v2v3 of length 3 in the graph, and suppose that the
server starts inv0. The first adversaryA1 gives the following requests: (0, v3),
(3, v0), (6, v3), and (9+ 3i, v0) for all i ≥ 0. The sequence is such that starting from
time 9, the server will never reachv3 again. The rate ofA1 is 1/3; thus, by Lemma
6.3, for any sufficiently smallǫ > 0 there exists an adversaryA2 of rateǫ releasing
requests inv3 such thatA1 ∪ A2 has rate at most 2/3+ ǫ. The requests released by
A2 do not change the behavior of, since they are always scheduled after the
requests released byA1. Thus the requests ofA2 are never served and the system
is unstable. �

Theorem 6.9.  is universally stable.

Proof. We start by proving by induction that at the beginning of every phase the
number of unserved request is bounded by

(1− ǫ)2n/ǫ + µ/ǫ,

then we show that the duration of every phase is bounded. Let [t, t′) be a phase,
let z be the number of requests served during the phase and letu be the number of
unserved requests at the beginning of the phase. Then, by definition of ,

t′ − t ≤ 2(n− 1)+ z (6.5)

since when does not serve a request, its server moves along a shortest closed
walk spanning all the requests unserved at timet, and this walk cannot be longer
than twice the number of edges of a spanning tree of the graph.By definition,
 serves all those requests, which means that

z= u. (6.6)

The number of requests unserved at timet′ is then at most

u+ (1− ǫ)(t′ − t) + µ − z ≤ (1− ǫ)2n + µ + u− ǫz by (6.5)
≤ (1− ǫ)2n+ µ + (1− ǫ)u by (6.6)
≤ (1− ǫ)2n/ǫ + µ/ǫ by induction.

To conclude the proof we need to show that the duration of eachphase is bounded
by a constant. Again, this can be shown using Lemma6.2. �
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Finally, we propose an algorithm called- (Algorithm 18) that can be
seen as a generalization of the algorithm Scan frequently used for disk scheduling
[88]. Notice that-, differently from algorithms such as or , does
not use phases and is greedy, in the sense that it always serves a request from the
current location of the server if possible.

Algorithm 18 -
Let W be a closed Eulerian walk on the graph obtained by doubling all the edges
of a spanning tree ofG.
At every time step, if the current node has a nonempty queue,- serves a
request on the current node. Whenever the current nodev has an empty queue,
- moves the server to the node followingv in the walkW.

Theorem 6.10.- is universally stable.

Proof. The analysis is very similar to that of (Theorem6.9), except that the
proof is by induction on time steps instead of phases. Consider any timet′. Let t be
the latest time beforet′ during which the server was located ats(t′) and such that
betweent andt′ - visited the whole graph. Letzbe the number of requests
served during [t, t′). Then

t′ − t ≤ z+ 2(n− 1), (6.7)

since at each time step either the algorithm serves a requestor it moves to the next
node in the walkW. Also, letu be the number of unserved requests at timet. The
inductive hypothesis is thatu ≤ 2(1− ǫ)(n − 1)/ǫ + µ/ǫ. All requests unserved
at timet are served at timet′ because the algorithm always serves requests when
visiting a node and during the interval [t, t′) the server visited the entire graph; thus

z≥ u. (6.8)

The number of requests unserved at timet′ is then at most

u+ (1− ǫ)(t′ − t) + µ − z ≤ 2(1− ǫ)(n− 1)+ µ + u− ǫz by (6.7)
≤ 2(1− ǫ)(n− 1)+ µ + (1− ǫ)u by (6.8)
≤ 2(1− ǫ)(n − 1)/ǫ + µ/ǫ by induction.

For the basis of the induction, we can consider a fictitious preliminary walk on the
graph without pending requests. �

6.5 Results on maximum flow time

In this section, we investigate which algorithms among the ones we gave in Section
6.4 have bounded flow time. Since bounded flow time implies stability, the only
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algorithms among the ones we have considered that may have bounded flow time
are, ,  and-.

It is easy to see that does not have bounded flow time, since while its server
is busy serving a pair of long queues, a single request can remain unserved in a
stable queue.

Theorem 6.11.  has unbounded flow time.

Proof. Consider a chainv0v1v2v3v4 and suppose the server starts atv0. Assume
a weak adversary gives the cruel sequence (0, v2), (1, v2), (2, v0), (3, v0), (4, v4) fol-
lowed by (7+8i, v2), (8+8i, v2), (11+8i, v0), (12+8i, v0) for all i ≥ 0. The longest
queues are always atv0 andv2, and the single request atv4 remains unserved for-
ever. �

Theorem 6.12. ,  and- have bounded flow time.

Proof. : consider any requestσ j entering the system at timer j . Recall the
proof of Theorem6.7 and consider the timet ≥ r j at which the next epoch begins
in the execution of. During an epoch, all the nodes with nonempty queues
are visited and emptied, so in particularσ j will be served. Since every epoch has
bounded length, the claim follows.
: consider any requestσ j. Recall the proof of Theorem6.9and consider

the time at which the next phase begins in the execution of. During a phase,
all requests that were unserved at the beginning of the phaseare served by,
so in particularσ j will be served. Since every phase has bounded length, the claim
follows.
-: consider any requestσ j entering the system at timer j . Let k < 2n

be the distance from the location of the server at timer j to x j , the location ofσ j. By
Theorem6.10and Lemma6.2, there is a constantumax such that- spends
at most (umax+ µ)/ǫ time units on each node, where 1− ǫ is the rate andµ the burst
of the adversary. Thus, the server will reach and emptyx j in at mostk(umax + µ)/ǫ
time steps. �

6.6 A lower bound

In this section we give a lower bound on the number of unservedrequests that any
protocol may need to have at any time.

Lemma 6.13. Let P be any protocol and G a graph of diameterδ. For every
ǫ ∈ (0, 1), there exists a weak adversary A of rate1 − ǫ such that eventually the
number of requests pending at one of the nodes of G is at least(1− ǫ)δ/ǫ.

Proof. Let v,w ∈ V be two nodes at distanceδ from each other. We break the
construction ofA into phases. Av-phase(resp.,w-phase) starts when the server
moves tov (resp.,w) and ends when it moves tow (resp.,v). In av-phase (resp.,w-
phase),A gives requests inw (resp.,v) at rate 1− ǫ. We prove the claim by showing
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that in any phase, either the total number of unserved request has to increase, or
there are already more than (1− ǫ)δ/ǫ unserved requests.

Consider anyv-phase. Letuv, uw be the number of unserved requests atv and
w at the start of the phase, and letu′v, u

′
w, be the number of unserved requests atv

andw at the end of the same phase. Ifzv is the number of requests served during
the phase atv, we have by construction

u′v = uv − zv (6.9)

u′w = uw + (1− ǫ)(δ + zv) (6.10)

zv ≤ uv. (6.11)

Suppose that the total number of unserved requests atvandw does not increase,
that is

(u′v + u′w) − (uv + uw) ≤ 0. (6.12)

Combining (6.12) with (6.9) and (6.10),

(1− ǫ)(δ + zv) − zv ≤ 0.

Solving forzv, we get
zv ≥ (1− ǫ)δ/ǫ

and by (6.11), we obtain
uv ≥ (1− ǫ)δ/ǫ

so that the number of unserved requests at the beginning of the phase is already at
least (1− ǫ)δ/ǫ. The analysis for aw-phase is completely symmetrical. �

In case the graphG is a chain,δ = n − 1, and the lemma shows that the upper
bound for- (given in the proof of Theorem6.10) is best possible up to a
factor of 2.

6.7 Open problems

Our model suggests several open problems. First, the model can be easily gener-
alized in several directions. One is that of directed (strongly connected) graphs.
For directed graphs, an algorithm such as is still stable, but can we do better in
terms of the worst case number of unserved requests? Notice that it is not obvious
how to generalize- to directed graphs.

Another direction is that of considering the dial-a-ride problem, in which re-
quests have both a source and a destination. In that case, of course, the rate con-
straint on the adversary should be reformulated appropriately. Such a model would
be interesting, since in particular it could represent a quite fair model for elevator
scheduling. Also, in our model the processing time of a request is directly related
to the speed of the server: serving a request takes the same time as moving to a
neighboring node. What about requests with arbitrary processing times?
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Finally, in our opinion the most interesting problem suggested by our model
is the following: consider the online server routing problem on a graph, where the
objective is nowminimization of the maximum number of unserved requests at any
time. Can we find a constant competitive algorithm for this problem? The compet-
itive ratio would necessarily depend on the characteristics of the graph (otherwise
it is easy to prove that no such algorithm can exist). In any case, we think that such
a competitive algorithm would be interesting because it would be able to maintain
a near-optimal number of unserved requests not only under heavy load conditions
(something that every stable algorithm already does), but even when the load is
light.
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Summary

Models and Algorithms for Online Server Routing

Combinatorial optimization is the discipline that studiesproblems in which one
seeks to minimize or maximize an objective function by appropriately choosing
the values of some variables from within an allowed finite set. In a typical combi-
natorial optimization problem, the feasibility of a solution can be efficiently veri-
fied, but the number of feasible solutions is so large that an exhaustive search of an
optimal solution is doomed to failure. Thus, efficient combinatorial optimization
algorithms need to exploit the structure of the problem being solved.

While the classical approach to a combinatorial optimization problem is to as-
sume that all relevant data are available before a solution method is applied, it has
recently become more and more evident that in many applications data arrive step
by step and a partial solution needs to be maintained at everystep. Typical exam-
ples of online problems are the scheduling of processes in anoperating system, or
the trade of stocks in a financial market. In these applications the data is arriving
over time and the algorithm that solves the problem has to be online, meaning that
it has to keep at every time a solution that has been produced without knowledge
of future data. It is quite clear that, because of this lack ofinformation about the
future, an online algorithm will not in general be able to produce the optimal so-
lution. Competitive analysis is a theoretical framework that allows to quantify the
worst-case suboptimality of the solutions found by an online algorithm. An online
algorithm is called competitive if it produces solutions whose cost is always within
a constant factor of the optimal solution.

In this thesis we study competitive algorithms for server routing problems. In a
server routing problem, one or more servers move in a metric space in order to visit
some requested points in the space. The objective is to minimize some function
of the movement of the servers. An important example is the traveling salesman
problem, in which a salesman has to find a round-trip tour through a set of cities
in order to minimize the total length of the tour. We consideronline versions of
this and other server routing problem, in which the points tobe visited are released
over time.

After giving a brief introduction to the field of online optimization in the first
chapter of this thesis, in Chapter 2 we review the basic complexity results for offline
server routing problems, we introduce formally the online server routing frame-
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work and we survey the state of the art. We show the basic prooftechniques and
we discuss several attempts in the literature to extend the basic competitive analysis
setting.

In Chapter 3, we consider the online asymmetric traveling salesman problem
from the point of view of competitive analysis. For the homing version, where
the server has to return to its starting point, we give an algorithm that has the best
possible competitive ratio. We also consider the nomadic version (where returning
to the starting point is not mandatory) and prove that it doesnot admit constant
competitive algorithms. However, for the nomadic version we prove a competitive
ratio as a function of the amount of asymmetry of the space. Wealso consider
the competitiveness of zealous algorithms, in which, intuitively, the server is not
allowed to remain idle when there are outstanding requests.Finally we discuss the
issue of polynomial time online algorithms for the problem.

In Chapter 4, we study the online prize-collecting traveling salesman prob-
lem. After discussing the approximation ratio of the offline version, we give a
7/3-competitive algorithm. We also consider the special caseof the halfline as the
metric space, for which we prove lower and upper bounds of 1.89 and 2, respec-
tively, on the competitive ratio of deterministic algorithms.

In Chapter 5, we consider the online nomadic traveling salesman and the on-
line traveling repairman withk servers. We give competitive algorithms whose
competitive ratios match the ones for the single server variants. For the special
case of the real line, we prove the existence of algorithms with competitive ratio
1 + O((logk)/k), meaning that we can approach the optimal cost ask grows. We
also show that this phenomenon is limited to the one dimensional case, since al-
ready in the Euclidean plane, we prove a lower bound of 4/3 for the online nomadic
TSP and of 5/4 for the online TRP independently of the number of servers. Finally,
we give resource augmentation results that are asymptotically best possible as the
number of online servers grows beyond the number of offline servers.

In Chapter 6, in order to address the limits of competitive analysis, we intro-
duce a new model for online server routing based on adversarial queueing theory.
The model addresses the stability of online algorithms thatare continuously op-
erating. We call an online algorithm stable if there exists an upper bound on the
number of unserved requests at any time that does not depend on the time the sys-
tem has been running. We consider a number of natural algorithms in this model
and we prove the existence of algorithms that are stable and such that the maxi-
mum flow time of a request also does not depend on the time the system has been
running.
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