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Università degli Studi di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
e-mail: ferrara@dis.uniroma1.it

www: http://www.dis.uniroma1.it/∼ferrara/



To F.F.





Acknowledgements

I would like to thank Marco Schaerf and Paolo Liberatore, for their continuous support and valuable
suggestions, that have made my research possible. The many hours of discussions have been a very
pleasure for me, and have introduced me to research and to fascinating issues.

I would also like to thank Moshe Y. Vardi for all he teaches to me, and Guoqiang Pan and
Stefano Tonetta for their help and assistance in difficult situations I had when I was in Houston.

I wish to thank Giuseppe De Giacomo for his interesting suggestions and discussions. I also
wish to thank the external reviewers, Paolo Traverso and Enrico Giunchiglia for their advises about
the contents and presentation of this thesis.

Many thanks to all the people of the Dipartimento di Informatica e Sistemistica of the Università
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Chapter 1

Introduction

1.1 Contents

Formal verification of discrete systems is a verification method in which a system, often called a
model, is described by the possible transitions of its components. Using this description, we can
verify whether:

the system satisfies properties encoded in a temporal modal logic [101]. This problem is
called Temporal Logic Model Checking [39] (Model Checking for short). Examples of these
properties are:

does the system reach certain states? (Reachability)

does the system show a legal behavior? (Safety)

the behaviors of a system is included in the behaviors of another system. Depending the def-
inition of this behavioral relation, we have a corresponding problem: for instance Simulation,
Trace Containment [17, 89, 88].

Formal verification has many industrial applications. It is used, for example, for the verification
of protocols and hardware circuits [59, 14]. Many tools, called model checkers, have been developed
to this aim. The most famous ones are SPIN [67] and SMV [86] (with its many incarnations:
NuSMV [37], RuleBase [15]), VIS [29], and FormalCheck [65].

The complexity of Model Checking (PSPACE-complete [75]), Simulation (EXPTIME-complete
[64]), Containment (EXPSPACE-complete [64]) is known. In this thesis, we first deal with the com-
plexity of these and other problems under the hypothesis of structural restrictions (e.g. treewidth
[103, 102, 107]). With these structural restrictions, several PSPACE-complete and NP-complete
problems becomes PTIME (e.g. CNF-SAT) (see [27, 26, 25] for an overview).

We first show a positive result: the complexity of image computation operation decreases. The
image computation operation is a basic operation in the explicit Model Checking, one of most
effective approach to this problem [39]. Then, we present a negative result about Bounded Model
Checking (BMC for short) [22], a SAT-based Model Checking in which the behaviors of the system
are unrolled in a Boolean formula (that exactly describes them); we show that the unrolling in the
Bounded Model Checking does not preserve the treewidth, therefore the verification of a system
using the BMC approach cannot take an advantage from structural restrictions such as treewidth.
We continue proving a sequence of negative results: the complexity of Simulation, Containment
and Model Checking does not decrease under the hypothesis of bounded treewidth on the model.

Then, we study whether there is another restriction that can help in solving Model Checking;
we assume that a part of the input (either the model or the formula) can be preprocessed. In many
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2 CHAPTER 1. INTRODUCTION

cases, the two inputs of the model checking problem (the model and the formula) can be processed
in a different way. If we want to verify several properties of the same system, it makes sense to
spend more time on the model alone, if the verification of the properties becomes faster. Many
tools allow to build the model separately from checking the formula [36, 114, 69]; in this way, one
can reuse the same model, compiled into a data structure, in order to check several formulae.

In the same way, we may wish to verify the same property on different systems: the property is
this time the part we can spend more time on. Many tools allow populating a property database
[36, 114, 69], i.e., a collection of temporal formulae which will be checked on the models. We
imagine a situation in which we early establish the requirements that our system must satisfy, even
before the system is actually designed. As a result, and we can fill a database of temporal formulae,
but we do not yet describe the system. While the design/modeling of the system goes on, we can
preprocess the formulae (without knowledge of the model, which is not yet known). Whenever the
system is specified, we can then use the result of this preprocessing step to check the model against
the formulae.

We prove that preprocessing the model or the property using any amount of time and storing
the result of this preprocessing in a polynomial-space data structure, does not decrease the worst
case complexity. As a side result, we prove a theorem about the size increase in the worst case of
a large class of data structures adopted in Symbolic Model Checking algorithms. Symbolic Model
Checking algorithms are a large class of algorithms for solving the Model Checking problem;
they work by manipulating sets of states, and these sets are often represented by BDDs or other
data structures [43]. It has been observed that the size of BDDs may grow exponentially as the
model and formula increase in size. We formally prove that a superpolynomial increase of the
size of these BDDs is unavoidable in the worst case. While this superpolynomial growth has been
empirically observed, and it is proved for particular problems (e.g. integer multiplication [31]), to
the best of our knowledge, it has never been proved in the general case so far. This result not only
holds for all types of BDDs regardless of the variable ordering, but also for more powerful data
structures, such as BEDs, RBCs, MTBDDs, and ADDs.

Then, we discuss some problems related to the reachability property, that is interesting also
in the field of reasoning about actions. In particular, we consider the planning area, where the
reachability problem is equivalent to the existence of a combination of actions that reaches a given
goal (the property). The connection between Model Checking and Planning are discussed and
used in [58, 18, 20, 77, 98, 21, 19]. In details, we show the practical importance to decide whether
an action is redundant, i.e. it is not needed to reach the goal. Then, we study the computational
complexity of several problems related to the redundancy of actions: checking whether a domain
contains a redundant action, what is the minimal number of actions needed to make the goal
reachable, checking whether the removal of an action does not increase the minimal plan length,
and other related problems.

Finally, we present an application of formal verification to Web services (WS for short). Our
aim is to reduce the effort of testing phase in the WS development. We present a framework for
the design and the verification of WSs using process algebras [17] and their tools. Process algebras
are an algebraic formalisms whose sematics is based on transition systems. We define a two-way
mapping between abstract specifications written using these calculi and executable Web services
written in BPEL [4, 1, 2]; the translation includes also compensation, event, and fault handlers.
The following choices are available: design and verification in BPEL, using process algebra tools,
or design and verification in process algebra and automatically obtaining the corresponding BPEL
code. The approaches can be combined. Process algebras are not useful only for temporal logic
model checking: we remark the use of simulation/bisimulation for verification, for the hierarchical
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refinement design method, for the service redundancy analysis in a community of Web services,
and for replacing a service with another one in a composition.

1.2 Main Results

The main results of the thesis are:

about the complexity of formal verification problems, under the hypothesis of structural
restrictions the following results hold (Chapter 3):

the Image Computation complexity on a transition system with |V | states and treewidth
at most k is O(|V |2 · k); in the case of unbounded treewidth is O(|V |3). This result is in
Section 3.2.

Bounded Model Checking Unrolling does not preserve treewidth (Section 3.3)

Temporal Logic Model Checking is PSPACE-complete (Section 3.4)

Simulation is EXPTIME-complete (Section 3.4)

Containment is EXPSPACE-complete (Section 3.4)

about the complexity of preprocessing Model Checking and BDDs superpolynomial growth
(Chapter 4)

about the complexity of checking action redundancy, we study some problems related with
reachability (Chapter 5)

about the application of the formal verification to Web services area, we present a two-way
mapping between process algebra e BPEL (Chapter 6)





Chapter 2

Preliminaries

In this chapter, we introduce the basic definitions needed in the thesis.

2.1 Treewidth and Formal Verification

2.1.1 Treewidth

In this section we recall the basic definitions about treewidth that are needed in Chapter 3. The
notions of treewidth and pathwidth were introduced in [103, 102].

Definition 1 A tree decomposition of a graph G = (V,E) is a pair (T,X) with T = I, F is a tree
whose I is the set of nodes and F the set of edges and X = {Xi|i ∈ I} a family of subset of V , one
for each node of T . T is such that

⋃

i∈I Xi = V .

for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ X, and w ∈ Xi.

for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition (T,X) is maxi∈I |Xi| − 1. The treewidth of a graph G is the
minimum width over all possible tree decompositions of G.

One obtain an equivalent definition, when the third condition in the definition of tree decom-
position is replaced by:

For all v ∈ V , the set of nodes i ∈ I|v ∈ Xi forms a connected component part (i.e. a subtree) of
T .

The notion of path decomposition restrict the tree to be a path.

Definition 2 A path decomposition of a graph G = (V,E) is a pair (T,X) with T = I, F is a path
whose I is the set of nodes and F the set of edges and X = {Xi|i ∈ I} a family of subset of V , one
for each node of T . T is such that

⋃

i∈I Xi = V .

for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ X, and w ∈ Xi.

for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

5
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The width of a path decomposition (T,X) is maxi ∈ I|Xi| − 1. The pathwidth of a graph G is
the minimum width over all possible path decompositions of G.

One obtain an equivalent definition, when the third condition in the definition of path decom-
position is replaced by:

For all v ∈ V , the set of nodes i ∈ I|v ∈ Xi forms a connected component part (i.e. two adiacent
nodes) of T .

By Corollary 24 in [27], we know that for a graphG with n vertices we have that pathwidth(G) =
O(treewidth(G) · log n). Clearly, treewidth(G) ≤ pathwidth(G).

Definition 3 The Gaifman graph of a CNF formula is a graph having one vertex for each variable
and an edge (v1, v2) if the variables v1 and v2 occur in the same clause of the formula. By treewidth
(pathwidth) of a CNF formula we refer to the treewidth (pathwidth) of its Gaifman graph.

2.1.2 Transition Systems

Now, we recall the basic definitions about Transition Systems that are needed in Chapter 3. We
introduce the definitions about the non deterministic transition system with bounded concurrency.
A non deterministic transition system with bounded concurrency (concurrent transition system
for short) is a tuple P = 〈O,P1, . . . , Pn〉 consisting of a finite set O of observable events and n
components P1, . . . , Pn for some n ≥ 1. Each component Pi is a tuple 〈Oi,Wi,W

0
i , δi, Li〉, where:

Oi ⊆ O is a set of local observable events. The Oj are not necessarily pairwise disjoint; hence,
observable events may be shared by several components. We require that

⋃n
j∈I Oj

Wi is a finite set of states, and we require that the Wj be pairwise disjoint. Also we let
W =

⋃n
j∈I Wj

W 0
i ⊆Wi is the set of initial states.

δ ⊆ Wi × β(W ) × Wi is a transition relation, where β(W ) denotes the set of all Boolean
propositional formulae over W .

Li : Wi → 2Oi is a labeling function that labels each state with a set of local observable
events. The intuition is that for each state w ∈Wi, Li(w) are the events that occur, or hold,
in w

Since states are labeled with sets of elements from O, we refer to Σ = 2O as the alphabet of P .
While each component of P has its local observable events and its own states and transitions, these
transitions depend not only on the component’s current state but also on the current states of the
other components. Also, as we shall now see, the labels of the components are required to agree
on shared observable events.

A configuration of P is a tuple c = 〈w1, w2, . . . , wn, σ〉 ∈ W1 ×W2 × · · · ×Wn × Σ, satisfying
Li(wi) = σ ∩ Oi for all 1 ≤ i ≤ n. Thus, a configuration describes the current state of each of the
components, as well as the set of observable events labeling these states. The requirement on σ
implies that these labels are consistent , i.e., for any Pi and Pj , and for each o ∈ Oi ∩ Oj , either
o ∈ Li(wi) ∩ Lj(wj) (in which case, o ∈ σ), or o 6∈ Li(wi) ∪ Lj(wj) (in which case, o 6∈ σ). For a
configuration c = 〈w1, w2, . . . , wn, σ〉, we term 〈w1, w2, . . . , wn〉 the global state of c, and we term σ
the label of c, and denote it by L(c). A configuration is initial if for all 1 ≤ i ≤ n, we have wi ∈W 0

i .
We use C to denote the set of all configurations of a given system P , and C0 to denote the set of
all its initial configurations. We also use c[i] to refer to Pi’s state in c.
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For a propositional formula θ in B(W ) and a global state p = 〈w1, w2, . . . , wn〉, we say that p
satisfies θ if assigning true to states in p and false to states not in p makes θ true. For example,
s1 ∧ (t1 ∨ t2), with s1 ∈ W1 and {t1, t2} ⊆ W2, is satisfied by every global state in which P1 is in
state s1 and P2 is in either t1 or t2. We shall sometimes write disjunctions as sets, so that the
above formula can be written {s1} ∧ {t1, t2}. Formulas in B(W ) that appear in transitions are
called conditions.

Given two configurations c = 〈w1, w2, . . . , wn, σ〉 and c′ = 〈w′
1, w

′
2, . . . , w

′
n, σ

′〉, we say that c′ is
a successor of c in P , and write succP (c, c′), if for all 1 ≤ i ≤ n there is 〈wi, θi, w

′
i〉 ∈ δi such that

〈w1, w2, . . . , wn〉 satisfies θi. In other words, a successor configuration is obtained by simultaneously
applying to all the components a transition that is enabled in the current configuration. Note that
by requiring that successors are indeed configurations, we are saying that transitions can only lead
to states satisfying the consistency criterion, to the effect that they agree on the labels for shared
observable events. 1

Given a configuration c, a c-computation of P is an infinite sequence π = c0, c1, . . . of config-
urations, such that c0 = c and for all i ≥ 0 we have succP (ci, ci+1). A computation of P is a
c-computation for some c ∈ C0. The computation c0, c1, . . . generates the infinite trace ρ ∈ Σω,
defined by ρ = L(c0) · L(c1) · · · .

We use T (P c) to denote the set of all traces generated by c-computations, and the trace set
T (P ) of P is then defined as

⋃

c∈C0
T (P c). In this way, each concurrent transition system P defines

a subset of Σω. We say that P accepts a trace ρ if ρ ∈ T (P ). Also, we say that P is empty if
T (P ) = ∅; i.e., P has no computation, and that P is universal if T (P ) = Σω; i.e., every trace in
Σω is generated by some fair computation of P .

The size of a concurrent transition system P is the sum of the sizes of its components. Sym-
bolically, |P | = |P1| + · · · + |Pn|. Here, for a component Pi = 〈Oi,Wi,W

0
i , δi, Li, αi〉, we define

|Pi| = |Oi| + |Wi| + |δi| + |Li| + |αi|, where |δi| =
∑

〈w,θ,w′〉∈δi
|θ|, |Li| = |Oi| · |Wi|, and |αi| is the

sum of the cardinalities of the sets in αi. Clearly, P can be stored in space O(|P |).
When P has a single component, we say that it is a sequential transition system. Note that the

transition relation of a sequential transition system can be really viewed as a subset of W ×W ,
and that a configuration of a sequential transition system is simply a labeled state.

Treewidth and Transition Systems Now, we introduce the definitions about the local and
global treewidth, and the degree of a graph.

Definition 4 The communication graph of a concurrent transition system P is a graph having one
vertex for each component and an edge (vi, vj) if either the component for vi and the component for
vj share observable events or if the transition relation of one of the components for vi or vj refer
to the variables of the other.

Definition 5 The local treewidth of the concurrent transition system P is the treewidth of its
communication graph.

By the Theorem 2.2 in [64], every concurrent transition system P can be translated into a sequential
transition system of size 2O(|P |).

Definition 6 The global treewidth of the concurrent transition system P is the treewidth of its
equivalent sequential transition system.

1This requirement could obviously have been imposed implicitly in the transition relation, by disallowing in the
δi any tuples 〈w, θ, w′〉 for which θ holds when the states of some of the components are mutually inconsistent. Since
we always want the components to agree on the labeling of shared observable events, we have set up our definitions
of configurations and successors to make this requirement explicit. Technically, imposing the requirement in the
transition relation could be done by replacing each condition θ by θ∧ϕ, where ϕ ∈ B(W ) is satisfied in a global state
exactly when the states of all its components are mutually consistent. The length of ϕ is linear in |W | and |O|, so
that the explicit requirement does not involve a substantial decrease in succinctness.
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Definition 7 The degree of a graph is the maximum vertex degree, in other words, the maximum
count of arcs connected to a single vertex in the graph.

A graph with bounded pathwidth and bounded degree has bounded cutwidth [112]. The pathwidth
implies many other structural restrictions [107].

Example 1 We construct a concurrent transition system P to encode a (ripple-carry) binary
counter; it can count up to 2n in base 2 using n components. Each component Pi is used to
store the i-th bit (the bit with weight 2i−1), so P1 is the least significant bit and Pn is the most
significant bit. The set of observable events is the bit-value stored by each component, and the
counter works by ripple carry propagation.

Formally, given the number of bits n, P is 〈{bit1, . . . , bitn}, P1, . . . , Pn〉, where Pi = 〈{biti},
{si

00, s
i
01, s

i
10}, {I

i}, δi, Li〉. For each state si
jk, j represent the carry status, and k represent the

bit state, for example, the state si
10 represents the case where the value of bit i is 0 and a carry is

propagated toward bit i+ 1. Ii is an initial state 2.
In Figure 2.1 we show the Pi process, representing a cell of the counter. The edges are labeled

by the condition of the transition relation: ci−1 means that the carry of the process Pi−1 is 1, and
it corresponds to si−1

10 , ¬ci−1 means that the carry of Pi is 0 and it corresponds to si−1
00 ∨ si−1

01 .
We remark that P1 corresponds to the least significant bit of the counter, and the c0 is always

1. We define δi and Li as follows:

For i = 1 . . . , n, δi = {〈si
00,¬ci−1, s

i
00〉, 〈si

00, ci−1, s
i
01〉, 〈si

01,¬ci−1, s
i
01〉, 〈si

01, ci−1, s
i
10〉,

〈si
10,¬ci−1, s

i
00〉, 〈s

i
10, ci−1, s

i
01〉, }.

For every Pi, we set Li(s
i
00) = Li(s

i
10) = ∅, Li(s

i
01) = {biti}.

The communication graph of this counter have constant pathwidth, since each component Pi

interacts only with the components Pi−1 and Pi+1, thus forming a path.

s00

s01 s10

ci−1 ¬ci−1

ci−1

ci−1

¬ci−1

¬ci−1

Figure 2.1: A cell of the counter

2.1.3 Verification Problems

In this section, we introduce the definitions for the verification problems that we consider in Chapter
3: model checking, containment, simulation, image computation. Complexity results about model
checking are presented also in Chapter 4, where we use, for the sake of the proof simplicity, an
alternative and equivalent definition of transition system introduced in Section 2.1.4.

2Note if we start with si
00 for all states, the ripple-carry nature of the counter would take 2n + n − 1 cycles to

flip the carry state of the most significant bit, but we will simply assert there exists an initial sequence such that the
counter would count exactly 2n.
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The Temporal Logics and Model Checking The temporal logics [101] often used in the
model checking are CTL and LTL, that are fragment of CTL∗. The logic CTL∗ combines both
branching-time and linear-time operators [45]. A path quantifier, either A (“for all paths”) or E
(“for some path”), can prefix an assertion composed of an arbitrary combination of the linear-time
operators X (“next time”), and U (“until”). There are two types of formulas in CTL∗: state
formulas, whose satisfaction is related to a specific state, and path formulas, whose satisfaction is
related to a specific path. Formally, let AP be a set of atomic proposition names. A CTL∗ state
formula is either:

true, false, p, or ¬p, for all p ∈ AP ;

ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are CTL∗ state formulas;

Aψ or Eψ, where ψ is a CTL∗ path formula.

a CTL∗ path formula is either:

a CTL∗ state formula;

ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ1, Xψ1, ψ1Uψ2, where ψ1 and ψ2 are CTL∗ path formulas.

CTL∗ is the set of state formulas generated by the above rules.

The logic CTL is a restricted subset of CTL∗ in which the temporal operators must be imme-
diately preceded by a path quantifier. Formally, it is the subset of CTL∗ obtained by restricting
the path formulas to be Xϕ1, ϕ1Uϕ2, or ϕ1Ũϕ2, where ϕ1 and ϕ2 are CTL state formulas.

The logic LTL is the fragment of CTL∗ in which the temporal operators does not have path
quantifier; only state formulae are allowed.

We use the following abbreviations in writing formulas: Fψ = trueUψ (“eventually”).

The semantics of CTL∗ is defined with respect to a Kripke structure K = 〈AP,W,R,w0, L〉,
where AP is a set of atomic propositions, W is a set of states, R ⊆W ×W is a transition relation
that must be total (i.e., for every w ∈W there exists w′ ∈W such that 〈w,w′〉 ∈ R), w0 is an initial
state, and L : W → 2AP maps each state to the set of atomic propositions true in that state. A
path in K is an infinite sequence of states, π = w0, w1, . . . such that for every i ≥ 0, 〈wi, wi+1〉 ∈ R.
We denote the suffix wi, wi+1, . . . of π by πi. We define the size ‖K‖ of K as |W | + |R|.

The notation K,w |= ϕ indicates that a CTL∗ state formula ϕ holds at the state w of the
Kripke structure K. Similarly, K,π |= ψ indicates that a CTL∗ path formula ψ holds at a path π
of the Kripke structure K. When K is clear from the context, we write w |= ϕ and π |= ψ. Also,
K |= ϕ if and only if K,w0 |= ϕ. The model checking problem is the following: given K and ϕ, is
K a model for ϕ? It easy to see that the definitions of transition system and Kripke structure are
equivalent [39].

The relation |= is inductively defined as follows.

For all w, we have w |= true and w 6|= false.

w |= p for p ∈ AP iff p ∈ L(w).

w |= ¬p for p ∈ AP iff p 6∈ L(w).

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.

w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.

w |= Aψ iff for every path π = w0, w1, . . ., with w0 = w, we have π |= ψ.
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w |= Eψ iff there exists a path π = w0, w1, . . ., with w0 = w, such that π |= ψ.

π |= ϕ for a state formula ϕ, iff w0 |= ϕ where π = w0, w1, . . .

π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.

π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.

π |= Xψ iff π1 |= ψ.

π |= ψ1Uψ2 iff there exists i ≥ 0 such that πi |= ψ2 and for all 0 ≤ j < i, we have πj |= ψ1.

Containment and Simulation The problems that formalize correct trace-based and tree-based
implementations of a system are containment and simulation, respectively. These problems are
defined below with respect to two concurrent transition systems P = 〈O,P1, . . . , Pn〉 and P ′ =
〈O′, P ′

1, . . . , P
′
m〉 with O ⊇ O′, and with possibly different numbers of components. For technical

convenience, we assume that O = O′.

The containment problem for P and P ′ is to determine whether T (P ) ⊆ T (P ′). That is, whether
every trace accepted by P is also accepted by P ′. If T (P ) ⊆ T (P ′), we say that P ′ contains P and
we write P ⊆ P ′.

While containment refers only to the set of computations of P and P ′, simulation refers also to
the branching structure of the systems. Let c and c′ be configurations of P and P ′, respectively. A
relation H ⊆ C ×C ′ is a simulation relation from 〈P, c〉 to 〈P ′, c′〉 iff the following conditions hold
[87].

H(c, c′).

For all configurations a ∈ C and a′ ∈ C ′ with H(a, a′), we have L(a) = L(a′).

For all configurations a ∈ C and a′ ∈ C ′ with H(a, a′) and for every configuration b ∈ C such
that succS(a, b), there exists a configuration b′ ∈ C ′ such that succS′(a′, b′) and H(b, b′).

A simulation relation H is a simulation from P to P ′ iff for every c ∈ C0 there exists c′ ∈ C ′
0

such that H(c, c′). If there exists a simulation from P to P ′, we say that P simulates P ′ and we
write S � S′. Intuitively, it means that the system P ′ has more behaviors than the system P . In
fact, every tree embodied in P is also embodied in P ′. The simulation problem is, given P and P ′,
to determine whether S � S′.

Image Computation The image computation problem is the following: given a set of states F ,
called the frontier, and a transition relation TR for it, calculate the image of F , that is the set of
successors of each state in F according to TR.

OBDD: a data structure for transition systems representation Ordered Boolean decision
diagrams (OBDDs) [30] are a canonical form representation for Boolean formulas. An OBDD is a
rooted, directed acyclic graph with one or two terminal nodes labeled 0 or 1, and a set of variable
nodes of out-degree two. The variables respect a given linear order on all paths from the root to
a leaf. Each path represents an assignment to each of the variables on the path. Since there can
be exponentially more paths than vertices and edges, OBDDs can be substantially more compact
than traditional representations like CNF. In many case, however, going from CNF representation
to OBDD representation may cause an exponential blow-up [14].
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2.1.4 An alternative definition of Transition Systems

In this section, we introduce the basic definitions about model checking that are needed in Chapter
4. We recall an alternative definition of transition system [85, 39] used by Model Checking tools;
this definition is equivalent to the definition in Section 2.1 [39]. We use this alternative definition
in Chapter 4 for the sake of the proof simplicity. We rephrase the Model Checking problem using
this alternative terminology and definitions.

We follow the notation of [110, 109]. LTL (Linear Temporal Logic) is a modal logic aimed at
encoding how states evolve over time. It has three unary modal operators (X, G, and F ) and one
binary modal operator (U). Their meaning is: Xφ is true in particular state if and only if the
formula φ is true in the next state; Gφ is true if and only φ is true from now on; Fφ is true if φ will
become true at some time in the future; φUψ is true if ψ will eventually become true and φ stays
true until then. We indicate with L(O1, . . . , On) the LTL fragment in which the only temporal
operators allowed are O1, . . . , On; for instance, L(F,X) is the fragment of LTL in which only F
and X are allowed.

The semantics of LTL is based on Kripke models. In the following, for an ’atomic proposition’
we mean a Boolean variable. Given a set of atomic proposition, a Kripke structure for LTL is
a tuple 〈Q,R, ℓ, I〉, where Q is a set of states, R is a binary relation over states (the transition
relation), ℓ is a function from states to atomic propositions (it labels every state with the atomic
propositions that are true in that state), I is a set of initial states. A run of a Kripke structure
is a Kripke model. A Kripke model for LTL is an infinite sequence of states, where the transition
relation links each state with the one immediately following it in the sequence. The semantics of
the modal operators is defined in the intuitive way: for example, Fφ is true in a state of a Kripke
model if φ is true in some following state.

The main problem of interest in practice is to verify whether all runs of a Kripke structure
(all of its Kripke models) satisfy the formula; this is the Universal Model Checking problem. The
Existential Model Checking one is to verify whether there is a run of the Kripke structure that
satisfies the formula. In formal verification, we encode the behavior of a system as a Kripke
structure, and the property we want to check as an LTL formula. Checking the structure against
the formula tells whether the system satisfies the property. Since the Kripke structure is usually
called a “model” (which is in fact very different from a Kripke model, which is only a possible run),
this problem is called Model Checking.

In practice, all model checkers describe a system by the Kripke structure of its components.
A Kripke structure can be seen as a transition system [39]. Thus the global system is obtained
by parallel composition of the transition systems representing its components and sharing some
variables [85, 39]; using this approach, we can give results that hold for all model checkers in
Chapter 4.

Each component of the global system is modeled using a transition system, which is a formal
way to describe a possible transition a system can go through. Intuitively, all is needed is to specify
the state variables, the possible initial states, and which transitions are possible, i.e., we have to
say whether the transition from state s to state s′ is possible for any pair of states s and s′. The
formal definition is as follows [85, 39].

Definition 8 A finite-state transition system is a triple (V, I, ̺), where V = {x1, . . . , xn} is a
set of Boolean variables, I is a formula over V , and ̺(V, V ′) is a formula over V ∪ V ′, where
V ′ = {x′1, . . . , x

′
n} is a set of new variables in one to one relation with elememts of V .

Intuitively, V is the set of state variables, I is a formula that is true on a truth assignment if
and only if it represents a possible initial state, and ̺ is true on a pair of truth assignments if they
represent a possible transition of the system. The set of variables V ′ is needed because ̺ must refer



12 CHAPTER 2. PRELIMINARIES

to both the value of a variable in the current state (xi) and in the next state (x′i). In other words,
in this formula xi means the value of xi in the current state, while x′i is the value of the same
variable in the next state. For example, the fact that xi remains true is encoded by ̺ = xi → x′i:
if xi is true now, then x′i is true, i.e., xi is true in the next state.

Formally, a state s is an assignment to the variables; a state s′ is successor of a state s iff
〈s, s′〉 |= ̺(V, V ′). A computation is an infinite sequence of states s0, s1, s2, . . . , satisfying the
following requirements:

Initiality: s0 is initial, i.e. s0 |= I

Consecution: For each j ≥ 0, the state sj+1 is a successor of the state sj

For the sake of simplicity, without loss of any generality, we only consider Boolean variables
and Boolean assertions.

In order to model a complex system, we assume that each of its parts can be modeled by a
transition system. Clearly, there is usually some interaction between the parts; as a result, some
variables may be shared between the transition systems. In the following, we consider k transition
systems M1, . . . ,Mk. Every Mi is described by ((V L

i ∪ V S
i ), Ii(Vi), ̺i(Vi, V

′
i )) for i 1 ≤ i ≤ k where

V L
i is the set variables local to Mi, V

S
i is the set of shared variables of Mi, and Vi = V L

i ∪ V S
i .

A group of transition systems can be composed in different ways: synchronous, interleaved
asynchronous, and asynchronous. The third way is not frequently used in Model Checking, so we
only define the first two ways of composition. In the following, a process is any of the transition
systems Mi.

The synchronous parallel composition of k transition systems is obtained by assuming that the
global transition is due to all processes Mi making a transition simultaneously. In other words, all
processes must make a transition at any time step, and no process is allowed to “idle” at any time
step.

Definition 9 The synchronous parallel composition of processes M1, . . . ,Mk, is the transition sys-
tem M = (V, I, ̺) described by:

V =
⋃k

i=1 Vi I(V ) =
∧k

i=1 Ii(Vi)

̺(V, V ′) =
∧k

i=1 ̺i(Vi, V
′
i )

The synchronous parallel composition of M1, . . . ,Mk, is denoted by M1‖ . . . ‖Mk.

The basic idea of the interleaved asynchronous parallel composition is that only one process is
active at the same time. As a result, a global transition can only result from the transition of a
single process. The variables that are not changed by this process must maintain the same value.

Definition 10 The interleaved asynchronous parallel composition of M1, . . . ,Mk is the transition
system M = (V, I, ̺): , where V and I are as in the synchronous composition and ̺ is:

̺(V, V ′) =
∨k

i=1

[

̺i(Vi, V
′
i ) ∧

∧k
j=1

j 6=i

V L
i = V L

i
′
]

The interleaved asynchronous parallel composition of M1, . . . ,Mk, is denoted by M1| . . . |Mk.
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A model can be described as the composition of transition systems. As a result, we can define
the model checking problem for concurrent transition systems as the problem of verifying whether
the model described by the composition of the transition systems satisfies the given formula.

2.1.5 Complexity and Compilability

Now, we introduce the definitions about complexity and compilability needed in Chapter 4.

We assume that the reader knows the basic concepts of complexity theory [111, 56]. What we
mainly use in this chapter are the concepts of polynomial reduction and the class PSPACE.

The Model Checking problem is PSPACE-complete, and is thus intractable. On the other hand,
as said in the Introduction, it makes sense to preprocess only one part of the problem (either the
model or the formula), if this reduces the remaining running time. The analysis of how much can be
gained by such preprocessing, however, cannot be done using the standard tools of the polynomial
classes and reductions. The compilability classes [35] have to be used instead.

The way in which the complexity of the problem is identified in the theory of NP-completeness
is that of giving a set of increasing classes of problems. If a problem is in a class C but is not in
an inner class C′, then we can say that this problem is more complex to solve that a problem in
C′. A similar characterization, with similar classes, can be given when preprocessing is allowed.
For example the class ‖;P is the class of problems that can be solved in polynomial time after a
preprocessing step. Crucial to this definition are two points:

1. which part of the problem instance can be preprocessed?

2. how expensive is the preprocessing part allowed to be?

The first point depends on the specific problem and on the specific settings: depending on the
scenario, for example, we can preprocess either the model or the formula for the model checking
problem. The second question instead allows for a somehow more general answer. First, we cannot
limit this phase to take polynomial time, as otherwise there would be no gain in doing preprocessing
from the point of view of computational complexity. Second, we cannot allow the final result of
this part to be exponentially large, for practical reasons; we bound the result of the preprocessing
phase only to take a polynomial amount of space.

In order to denote problems in which only one part can be preprocessed, we assume that their
instances are composed of two parts, and that the part that can be preprocessed is the first one.
As a result, the model checking problem written as 〈M,φ〉 indicates that M can be preprocessed;
written as 〈φ,M〉 indicates that φ can be preprocessed.

The “complexity when preprocessing is allowed” is established by characterizing how hard a
problem is after the preprocessing step. This is done by building over the usual complexity classes:
if C is a “regular” complexity class such as NP, then a problem is in the (non-uniform) compilability
class ‖;C if the problem is in C after a preprocessing step whose result takes polynomial space. In
other words, ‖;C is “almost” C, but preprocessing is allowed and will not be counted in the cost
of solving the problem. More details can be found in [35].

In order to identify how hard a problem is, we also need a concept of hardness. Since the regular
polynomial reductions are not appropriate when preprocessing is allowed, ad-hoc reductions (called
nu-comp reductions in [35]) have been defined.

In this chapter, we do not show the hardness of problems directly, but rather use a sufficient
condition called representative equivalence. For example, in order to prove that model checking
is ‖;PSPACE-hard, we first show a (regular) polynomial reduction from a PSPACE-hard prob-
lem to model checking and then show that this reduction satisfies the condition of representative
equivalence.
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Let us assume that we know that a given problem A is ‖;C-hard and we have a polynomial
reduction from the problem A to the problem B. Can we use this reduction to prove the ‖;C-
hardness of B ? Liberatore [83] shows sufficient conditions that should hold on A as well as on
the reduction. If all these conditions are verified, then there is a nucomp reduction from ∗A to B,
where ∗A = {〈x, y〉 |y ∈ A}, thus proving the ‖;C-hardness of B.

Definition 11 (Classification Function) A classification function for a problem A is a polyno-
mial function Class from instances of A to nonnegative integers, such that Class(y) ≤ ||y||.

Definition 12 (Representative Function) A representative function for a problem A is a poly-
nomial function Repr from nonnegative integers to instances of A, such that Class(Repr(n)) = n,
and that ||Repr(n)|| is bounded by some polynomial in n.

Definition 13 (Extension Function) An extension function for a problem A is a polynomial
function from instances of A and nonnegative integers to instances of A such that, for any y and
n ≥ Class(y), the instance y′ = Exte(y, n) satisfies the following conditions:

1. y ∈ A if and only if y′ ∈ A;

2. Class(y′) = n.

Let us give some intuitions about these functions. Usually, an instance of a problem is composed
of a set of objects combined in some way. For problems on boolean formulas, we have a set of
variables combined to form a formula. For graph problems, we have a set of nodes, and the graph
is indeed a set of edges, which are pairs of nodes. The classification function gives the number of
objects in an instance. The representative function thus gives an instance with the given number
of objects. This instance should be in some way “symmetric”, in the sense that its elements should
be interchangeable (this is because the representative function must be determined only from the
number of objects). Possible results of the representative function can be the set of all clauses of
three literals over a given alphabet, the complete graph over a set of nodes, the graph with no
edges, etc. Let for example A be the problem of propositional satisfiability. We can take Class(F )
as the number of variables in the formula F , while Repr(n) can be the set of all clauses of three
literals over an alphabet of n variables. Finally, a possible extension function is obtained by adding
tautological clauses to an instance. Note that these functions are related to the problem A only,
and do not involve the specific problem B we want to prove hard, neither the specific reduction
used. We now define a condition over the polytime reduction from A to B. Since B is a problem
of pairs, we can define a reduction from A to B as a pair of polynomial functions 〈r, h〉 such that
x ∈ A if and only if 〈r(x), h(x)〉 ∈ B.

Definition 14 (Representative Equivalence) Given a problem A (having the above three func-
tions), a problem of pairs B, and a polynomial reduction 〈r, h〉 from A to B, the condition of
representative equivalence holds if, for any instance y of A, it holds:

〈r(y), h(y)〉 ∈ B iff 〈r(Repr(Class(y)), h(y)〉 ∈ B

The condition of representative equivalence can be proved to imply that the problem B is ‖;C-
hard, if A is C-hard [83]. As an example, we show these three functions for the PLANSAT ∗

1

problem. PLANSAT ∗
1 is the following problem of planning: giving a STRIPS [50] instance

y = 〈P,O, I,G〉 in which the operators have an arbitrary number of preconditions and only one
postcondition, is there a plan for y? PLANSAT ∗

1 is PSPACE-Complete [32]. Without loss of
generality we consider y = (P,O ∪ o0, I, G), where o0 is a operator which is always usable (it has
no preconditions) and does nothing (it has no postconditions). We use the following notation:
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P = {x1, . . . , xn}, I is the set of conditions true in the initial state, G = 〈M,N〉. A state in
STRIPS is a set of conditions. In the following we indicate with φh

i the hth positive precondition
of the operator oi, with φi all its the positive preconditions, with ηh

i its hth negative precondition,
and with ηi all its negative preconditions; αi is the positive postcondition of the operator oi, βi is
the negative postcondition of the operator oi. Since any operator has only one postcondition, for
every operator i it holds that ‖αi ∪ βi‖ = 1.

Since we shall use them in the following, we define a classification function, a representative
function and a extension function for PLANSAT ∗

1 :

Classification Function: Class(y) = ‖P‖. Clearly it satisfies the condition Class(y) ≤ ‖y‖.

Representative Function: Repr(n) = 〈Pn, ∅, ∅, ∅〉, where Pn = {x1, . . . , xn}. Clearly it is poly-
nomial and satisfies the following conditions: (i) Class(Repr(n))=n, (ii) ‖Repr(n)‖ ≤ p(n)
where p(n) is a polynomial.

Extension Function: Let y = 〈P,O, I,G〉 and y′ = Exte(y, n) = 〈Pn, O, I,G〉. Clearly for any
y and n s.t. n ≥ Class(y) y′ satisfies the following conditions: (i)y ∈ A iff y′ ∈ A, (ii)
Class(y′) = n.

For the full definitions of compilability, the reader should refer to [35] for an introduction, to
[34, 33] for an application to the succinctness of some formalisms, to [83] for further applications
and technical advances.

2.2 Planning and Action Redundancy

In this section we introduce the basic definitions needed in Chapter 5, where we consider proposi-
tional STRIPS instances [50]. For the sake of simplicity, we neglect its many extensions. A STRIPS

instance is a quadruple 〈P,O, I,G〉 where P is a set of conditions (a.k.a. facts, fluents, or variables),
O is a set of operators (a.k.a. actions), I is the initial state, and G is the goal. A state is a subset
of P : the state of the domain at some point is represented by the set of conditions that are true.
An action is composed of four parts: the positive and negative preconditions and the positive and
negative postconditions. These are simply the conditions that must be true or false to make the
action executable, and the conditions that are made true or false by the execution of the action.
The initial state is a state (the initial state is therefore fully known), while the goal is represented
by a set of conditions that must be made true and a set that must be made false.

A plan is a sequence of actions that are executable in sequence from the initial state and lead
to a state satisfying the goal. Redundancy is defined as follows.

Definition 15 (Redundant Action) An action is redundant for a planning instance 〈P,O, I,G〉
iff there is a plan not containing it.

In other words, a is a redundant action if and only if 〈P,O\{a}, I, G〉 admits a plan that leads
from the initial state to the goal.

2.3 Web Service and Process Algebra

Now, we introduce the concepts and the definitions needed for the Chapter 6.

2.3.1 LOTOS in a Nutshell

LOTOS is a specification language for distributed open systems normalized by the ISO [70]. It
combines two specification models: one for static aspects (data and operations) which relies on
the algebraic specification language ACT ONE [44] and one for dynamic aspects (processes) which
draws its inspiration from the CCS [89] and CSP [66] process algebras (PA for short) .
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Abstract Datatypes LOTOS allows the representation of data using algebraic abstract types.
In ACT ONE, each sort (or datatype) defines a set of operations with arity and typing (the whole
is called signature). A subset of these operations, the constructors, are sufficient to create all the
elements of the sort. Terms are obtained from all the correct operation compositions. Axioms are
first order logic formulas built on terms with variables; they define the meaning of each operation
appearing in the signature.

Basic LOTOS This PA authorizes the description of dynamic behaviors evolving in parallel and
synchronizing using rendez-vous (all the processes involved in the synchronization should be ready
to evolve simultaneously along the same action). A process P denotes a succession of actions (also
called event, channel or game in other formalisms) which are basic entities representing dynamic
evolutions of processes; a process can be recursive. The symbol stop denotes an inactive behavior
(it could be viewed as the end of a behavior) and the exit one depicts a normal termination. The
specific i action corresponds to an internal (unobservable) evolution.

Now, we present LOTOS behavioral operators. The prefixing operator G;B proposes a rendez-
vous on the action G, or an independent firing of this action, and then the behavior B is run.
The non deterministic choice between two behaviors is represented using []. LOTOS has at its
disposal three parallel composition operators. The general case is given by the expression B1 |[G1,
..., Gn]| B2 expressing the parallel execution between behaviors B1 and B2. It means that B1 and
B2 evolve independently except on the actions G1, ..., Gn on which they evolve at the same time
firing the same action (they also synchronize on the termination exit). Two other operators are
particular cases of the former one to write out interleaving B1|||B2 which means an independent
evolution of composed processes B1 and B2 (empty list of actions), and full synchronization B1||B2

where the composed processes synchronize on all actions (list containing all the actions used in each
process). Moreover, the communication model proposes a multi-way synchronization: n processes
may participate to the rendez-vous.

The disabling operator B1[>B2 model the interruption: the behavior B1 could be interrupted
at any moment by the behavior B2; when B1 is interrupted, B2 is executed (without having
interruptions).

Full LOTOS In this part, we describe the extension of basic LOTOS to manage data expressions,
especially to allow value passing synchronizations. A process is parameterized by a (optional) list
of formal actions Gi∈1..m and a (optional) list of formal parameters Xj∈1..n of type Tj∈1..n. The full
syntax of a process is the following:

process P [G0, ..., Gm] (X0:T0, ..., Xn:Tn) : func := B endproc

where B is the behavior of the process P and func corresponds to the functionality of the
process: either the process loops endlessly (noexit), or it terminates (exit) possibly returning
results of type Tj∈1..n (exit(T0, ..., Tn)).

Action identifiers are possibly enhanced with a set of parameters (offers). An offer has either
the form G!V and corresponds to the emission of a value V , or the form G?X:S which means the
reception of a value of type S in a variable X.

A behavior may depend on Boolean conditions. Thereby, it is possible that it be preceded
by a guard [Boolean expression] → B. The behavior B is executed only if the condition is true.
Similarly, the guard can follow an action accompanied with a set of offers. In this case, it expresses
that the synchronization is effective only if the Boolean expression is true (e.g., G?X:Nat[X>3]).
In the sequential composition operator, the left-hand side process can transmit some values (exit)
to a process B (accept):



2.3. WEB SERVICE AND PROCESS ALGEBRA 17

... exit(X0, ..., Xn) ≫ accept Y0:S0, ..., Yn:Sn in B

To end this section, let us say a word about CADP3, a toolbox that supports developments
based on LOTOS specifications. It proposes a wide panel of functionalities from interactive execu-
tion to formal verification techniques (minimization, bisimulation, proofs of temporal properties,
compositional verification, etc).

2.3.2 Other Process Algebras

Numerous processes algebras have been proposed: CCS [89], CSP [66], ACP [12] are the basic ones.
Extensions are π-calculus [96], Timed CSP [108]. Although syntactically different, all process
algebras share a set of basic and dynamic constructs: actions, sequence, parallel composition,
synchronizing actions, non deterministic choice, emission, reception, process, local process, recursive
process.

2.3.3 Equivalences between processes

Two process are considered equivalent if their behavior is indistinguishable from an external observer
interacting with them. In the process algebra community several notions of process equivalence have
been proposed. More on the topic can be found in [89]. An approach is trace-based : two process are
equivalent if they show the same execution traces. A process is contained in another one if the set
of its execution traces are included in the set of execution traces of the other. Another approach is
tree-based : two process are equivalent if they have equivalent execution trees, that is they simulate
each other (they bisimulate). A process is simulated by another one if all its behaviors are contained
in the behaviors of the other. A group of process running concurrently are simulated by another
group of process running concurrently if all their behaviors are contained in the behaviors of the
other. It is known that simulation implies containment. As example let us discuss Figure 2.2.

Figure 2.2: Processes Equivalences; a is a ticket purchase, b ticket use for the match, c a ticket
change.

The left process corresponds in basic LOTOS to a; (b[]c), the right one to a; b [] a; c. They have
the same traces (ab or ac), and so they are trace-equivalent. They do not bisimulate each other;
after doing a the left process will do either b or c, while the right process on doing a, it will either

3http://www.inrialpes.fr/vasy/cadp/
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choose to move in a state from which it does b or in a state from which it doesc; depending on this
choice, it cannot do one of the two actions whereas the left process leaves both possibilities open.
Let a is a ticket purchase, b ticket use for the match, c a ticket change; the left process always
allows to change the ticket after the purchase, the right one does not.



Chapter 3

Treewidth in Verification: Local vs.

Global

3.1 Introduction

The treewidth of a graph measures how close the graph is to a tree (trees have treewidth 1). Many
problems that are intractable (e.g. NP-hard, PSPACE-hard) for general graphs, are polynomial or
linear-time solvable when the graph has bounded treewidth (see [27, 26, 25] for an overview). For
example, constraint-satisfaction problems, which are NP-complete, are PTIME-solvable when the
variable-relatedness graph has bounded treewidth [40, 54].

In [95, 61] the complexity of the model-checking problem is studied under the hypothesis of
bounded treewidth; that is, it is assumed that the model is a state transition system, whose
underlying graph has bounded treewidth. Bounding treewidth yields a large class of tractable
model-checking problems. For example, while it is not know whether model checking µ-calculus
formulas is in PTIME[71], it is in PTIME under the bounded treewidth assumption [95].

We refer to the treewidth of the state transition graphs of transition systems as the global
treewidth. The global treewidth-boundedness assumption used in [61, 95] is not, in our opinion,
useful to described real-world verification problems. There is little reason to believe, however,
that the global treewidth of real-world systems is bounded. For example, it is easy to see that
the graphs underlying systems with two counters are essentially grid, which are known to have
high tree width [103]. In verification practice, real-world systems are often modeled as concurrent
transition systems, where communication between concurrent components is modeled explicitly.
When we consider the communication graph between the concurrent components (the component
are the nodes, and an edge exists between each pair of communicating nodes), assuming treewidth
boundedness is not unreasonable. Indeed, the topology of communication in concurrent systems is
often constrained physically; for example, by the need to layout a circuit in silicon. Such topological
constraints are studied, for example, in [86, 100]. In [86] the width of a Boolean circuit is related
to the size of its corresponding OBDD, while in [100] bounded cutwidth is used to explain why
ATPG, an NP-complete verification problem, is so easy in practice. Cutwidth boundedness is used
also to improve symbolic simulation and Boolean satisfiability in [24, 116]. These various notions of
bounded width are assumed because of the constrained topology of communication in concurrent
systems.

In this chapter, we refer to treewidth of the component communication graph as local treewidth
and study the impact of local-treewidth boundedness on the complexity of verification problems. We
believe that because the component communication graph is often constrained physically, as noted
above, assuming local treewidth boundedness is natural and realistic. (In fact, the assumption of
treewidth boundedness is less severe than related assumption that are often made, such as pathwidth
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boundedness or cutwidth boundedness [27, 26, 25].)
We first present a positive result. Under the hypothesis of global bounded treewidth, the

complexity of the image computation in the explicit case decreases; the image computation in the
explicit case is used in the algorithm [57], implemented in the model checker SPIN [67].

Another positive result can be found in [49], where it is proved that a CNF formula of bounded
treewidth can be represented by an OBDD of polynomial size (treewidth here is defined on the
primal graph of the formula, where vertices represent variables and edges represent the co-occurance
of the variables in the same clause). Thus, if a transition relation of a concurrent transition system
is specified by a CNF formula with bounded treewidth, then there is an OBDD [30] of polynomial
size representing it. In contrast, the OBDD of transition relations often blow up, requiring symbolic
model-checking techniques that avoid building these OBDDs [14]; this fact is formally proved in
[48], and it is presented in Chapter 4 (Theorem 11). In [49] it is shown a first negative result
about bounded local treewidth: the small-OBDD property of bounded treewidth CNF formulas
is destroyed as soon as we apply existential quantification, which is a basic operation in symbolic
model checking, where the image operations involves existential quantification [86].

In this chapter, we present another negative result: treewidth boundedness of a transition
relation is not preserved under unrolling, which is a basic operation in SAT-based bounded model
checking (BMC) [22]. (Note that while satisfiability of CNF formulas is NP-complete, satisfiability
of bounded-treewidth CNF formulas can be solve in polynomial time, cf. [5]).

Finally, we show that the complexity of various verification problems are high even under the
assumption of local treewidth boundedness. We review several verification problem for concurrent
systems, including model checking, simulation, and containment, and show that the known lower
bounds (PSPACE-complete, EXPTIME-complete, and EXPSPACE-complete, respectively [75, 64])
hold also under the assumption of local treewidth boundedness. (Our results are robust: the lower
bound apply even under pathwidth boundedness or cutwidth boundedness.)

In summary, while global treewidth boundedness does have computational advantages, it is not
a realistic assumption. In contrast, local treewidth boundedness is a realistic assumption, but its
computational advantages are rather meager.

The chapter is organized as follows: in Section 3.2 we prove the result about the image com-
putation, in section 3.3 we show the result about bounded model checking. Finally, in Section 3.4
we show that lower bound for model checking, simulation, and containment hold also under the
assumption of local treewidth boundedness.

The results of this chapter are published in [49], and the basic definitions are introduced in
Section 2.1.

3.2 Image Computation

In this section we give a result about the image computation operation in the explicit case; this is a
key operation in all model checking algorithms that uses an explicit representation of the sequential
transition system corresponding to the given concurrent transition system ([57], implemented in
the model checker SPIN [67]).

Let P a sequential transition system, with |V | states and let |E| the cardinality of its tran-
sition relation. It is known that the worst case complexity of the image computation operation
on P is O(|V |3), when P is represented explicitly (that is not using OBDD, or other symbolic
representations).

If P has bounded treewidth, the image computation operation complexity in the explicit case
decreases.

Theorem 1 The worst case complexity of the image computation operation on a sequential tran-
sition system P with treewidth at most k is O(|V |2 · k).
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Proof. It follows from Lemma 91 in [27], proved in [104]. This lemma states that if a graph
G = (V,E) has treewidth at most k, then |E| ≤ k · |V | − k · (k + 1)/2.

3.3 Bounded Model Checking

Let us consider the effect of the local bounded treewidth on the complexity of Bounded Model
Checking (BMC). In bounded model checking, given a transition relation TR(V, V ′), k copies of
the transition relation are created on k + 1 copies of state variables where TR1 uses V0, V1, TR2

uses V1, V2, etc, in additional to initial and property constraints. In the following theorem, we show
that BMC unrolling does not preserve the bounded treewidth.

Theorem 2 Even though the transition relation of a concurrent transition system, represented by
a CNF TR(V, V ′), has bounded treewidth, its BMC unrolling can have unbounded treewidth.

Proof. As an example, we take the case where the variables in V = {x1, x2, . . . xw} is linearly
arranged, and for the next state variable set V ′, each variable x′i = xi−1 ↔ xi ↔ xi+1. The CNF
for transition relation TR(V, V ′) clearly has bounded pathwidth (where each path decomposition
node consists of the variables xi, xi+1, x

′
i, x

′
i+1).

Now we considering Gaifman graph of the BMC unrolling. An example where two copies are
unrolled is shown in Figure 3.1. The state variable for xi at iteration j is denoted as xj

i . We can
see clearly that if we unroll, say, h+2 copies, the Gaifman graph will have a w×h grid as a minor,
which implies unbounded pathwidth (and treewidth) [42].

x1
1 x1

2 x1
3 x1

n

x2
1 x2

2 x2
3 x2

n

x3
1 x3

2 x3
3 x3

n

Figure 3.1: The TR(k) in Theorem 2, for k = 3

3.4 Model Checking, Containment, Simulation

In this section we consider the complexity of the reachability, containment and simulation prob-
lems for concurrent transition systems, under the hypothesis of bounded treewidth both in the
communication graph and in each component. The complexity of these problems has been studied
in [75, 64]. We show that these problems have the same complexity of the general case, even if
each component has constant size (and thus bounded treewidth and degree) and the communication
graph has bounded pathwidth and degree (and then bounded cutwidth and treewidth). Our results
are then robust; in fact a bounded pathwidth implies many other structural restrictions [107].

In [75] the model checking problem for temporal logics (e.g. CTL, LTL, CTL*) is shown to be
PSPACE-hard, also in the reachability case. The reachability case is when the formula specifies an
event that the transition system has to reach. For example in LTL, it is simply Fψ, where ψ is
a Boolean formula. From the characteristic of the concurrent transition system used in the proof,
the following theorem holds.
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Theorem 3 The CTL, LTL, and CTL* model checking for concurrent transition systems is
PSPACE-hard also in the reachability case, and remains PSPACE-hard even if each component
is fixed and the communication graph has bounded pathwidth and bounded degree.

In [64] the simulation problem is shown to be EXPTIME-complete; from the characteristic of
the concurrent transition systems used in the proof, the following theorem holds.
Theorem 4 The simulation problem for concurrent transition systems is EXPTIME-hard, and
remains EXPTIME-hard even if each component is fixed and the communication graph has bounded
pathwidth and bounded degree.

In [64] the containment problem is shown to be EXPSPACE-complete, but the concurrent
transition systems used in the proofs have communication graphs with unbounded pathwidth and
unbounded degree.

Theorem 5 The containment problem for concurrent transition systems is EXPSPACE-hard, and
remains EXPSPACE-hard even if each component has fixed size and the communication graph has
bounded pathwidth and bounded degree.

Proof. To prove hardness, we carry out a reduction from deterministic exponential-space-bounded
Turing machines. Given a Turing machine T and input u of length n, we want to check whether T
accepts the word u in space 2n. we denote by Σ an alphabet for encoding runs of T (the alphabet Σ
and the encoding are defined later). We write u′ to represent the initial tape-encoding of u, i.e., if
u is u1u2 . . . un, u′ is (q0, u1)u2 . . . un. We then construct a transition system PT over the alphabet
Σ ∪ {$}, for some $ 6∈ Σ, such that (i) the size of PT is polynomial in |T | and linear in n, and (ii)
#u(Σω + (Σ∗ · $ω)) ⊆ T (PT ) iff T does not accept the word u. The crucial point is that using
bounded concurrency, we can handle the exponential size of the tape by n components that count
to 2n.

We assume, without loss of generality, that once T reaches a final state it loops there forever.
The transition system PT accepts all traces in Σω, and accepts a trace w · $ω ∈ Σ∗ · $ω if either

1. w is not an encoding of a prefix of a legal computation of T ,

2. w is an encoding of a prefix of a legal computation of T , but, within this prefix, the compu-
tation still has not reached a final state, or

3. w is an encoding of a prefix of a legal, but rejecting, computation of T over any input.

Thus, PT rejects a trace w · $ω iff w encodes a prefix of a legal accepting computation of T and the
computation has already reached a final state. Hence, PT accepts all traces in #u(Σω + Σ∗ · $ω) iff
T does not accept the word u.

Now to the details of the construction. Let T = 〈Γ, Q, 7→, q0, Facc, Frej〉, where Γ is the alphabet,
Q is the set of states, and 7→: (Q × Γ) → (Q × Γ × {L,R}) is the transition function. We write
(q, a) 7→ (q′, b, δ) for 7→ (q, a) = (q′, b, δ), with the meaning that when in state q and reading a in
the current tape cell, T moves to state q′, writes b in the current tape cell and moves its head one
cell to the left or right, depending on δ. Finally, q0 is T ’s initial state, Facc ⊆ Q is the set of final
accepting states, and Frej ⊆ Q is the set of final rejecting states.

We encode a configuration of T by a string in #Γ∗(Q×Γ)Γ∗, of the form #γ1γ2 . . . (q, γi) . . . γ2n).
The meaning of this is that the j’th cell, for 1 ≤ j ≤ 2n, is labeled γj , T is in state q and its head
points to the i’th cell.

We encode a computation of T by a sequence of configurations, which is a word over Σ =
{#} ∪ Γ ∪ (Q × Γ). Let #σ1 . . . σ2n#σ′1 . . . σ

′
2n be two successive configurations of T in such a

sequence. (Here, each σi is in Σ.) If we set σ0 = σ2n+1 = # and consider a triple 〈σi−1, σi, σi+1〉, for
1 ≤ i ≤ 2n, it is clear that the transition function of T prescribes σ′i. In addition, along the encoding
of the entire computation, # must repeat exactly every 2n+1 letters. Let next(σi−1, σi, σi+1) denote
our expectation for σ′i. That is, with the γ’s denoting elements of Γ, we have:
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next(γi−1, γi, γi+1) = next(#, γi, γi+1) = next(γi−1, γi,#) = γi.

next((q, γi−1), γi, γi+1) = next((q, γi−1), γi,#) =

{

γi if (q, γi−1) 7→ (q′, γ′
i−1, L)

(q′, γi) if (q, γi−1) 7→ (q′, γ′
i−1, R)

next(γi−1, (q, γi), γi+1) = next(#, (q, γi), γi+1) = next(γi−1, (q, γi),#) = γ′
i
,

where (q, γi) 7→ (q′, γ′
i
, δ). 1

next(γi−1, γi, (q, γi+1)) = next(#, γi, (q, γi+1)) =

{

γi if (q, γi+1) 7→ (q′, γ′
i+1, R)

(q′, γi) if (q, γi+1) 7→ (q′, γ′
i+1, L)

next(σ2n ,#, σ′

1) = #.

A necessary and sufficient condition for a trace to encode a legal computation of T on the word u
is that consecutive configurations are compatible with next.

Now for the construction of PT . PT is a concurrent process with n + 1 components. The first
component, PM is the master process that accept all the traces Σω, and accept all non-accepting
traces in Σ∗ · $ω. The other components P1, · · · , Pn, are used by PM and their only task is perform
the count as in Example 1; each of these processes is associated with a bit (P1 with the least
significant, Pn the most significant).

Let us describe the process PM . In spirit, PM follows the outline of the master process in [64].
In the construction of PM , we use the following block of states GΣ3 , which is used to generate
sequences of triples (σi−1, σi, σi+1) ∈ Σ3. GΣ3 have |Σ3| states, each representing a triple, and
labeled by the middle state. For two triples (u, u′, u′′) and (v, v′, v′′), there is an transition from
the first to the second iff u′ = v and u′′ = v′. PM can either start in a clique of Σ states to
generate Σω, or it can start in a block of states (which we call Init) to generate non-accepting
traces. All edges in Init have condition true. From a state s in Init, we can reach a corresponding
successor state, which represents the same triple as the successors of s in Init, in a new block of
states Bs, of which every state asserts c0 to start the count in the component P1. In other words,
c0 =

∨

t∈Bs|s∈Init t. All edges into states in Bs have condition true, except those that go into states
with label next(s). As PM progresses in Bs, the counter is counting to 2n. The edges into the
state labeled with next(s) have condition ¬sn

10, and from every state in Bs, we can move to a state
which is a self loop labeled $ with condition sn

10. This asserts that the trace we are generating is
not a prefix of a legal computation over T . Alternatively, PM can also start in a clique of size |Σ′|
where Σ′ = {#} ∪ Γ ∪ {(Q− Facc) × Γ}, i.e., all the non-accepting symbols in Σ. Each edge in the
clique have condition true, and each state in the clique can go to the self loop on $ on condition
true. This captures all the (legal or illegal) non-accepting traces on T .

It is easy to see that |PT | is polynomial in |T | and linear in n. The processes PM , P1, · · · , Pn

have constant size. PM interacts only with P1 and with Pn, the generic Pi interacts only with Pi−1

and Pi+1: the communication graph is a ring and then it has bounded pathwidth and degree.
Now, given the word u = u1u2 . . . un, we construct P to be a concurrent transition system

that generates the language #(q0, u1)u2 . . . un(Σω + (Σ∗ · $ω)). In fact, P can be easily taken to
be a concurrent transition system with n + 1 components, each with |Σ| + 1 states, implemented
as a shifter. In other words, the next state of component i is the current state of component
i + 1, and component n + 1 can non-deterministically generate Σω + (Σ∗ · $ω). Obviously, each
component is of constant size, and the concurrent transition system is of bounded pathwidth and
bounded degree. It follows that T does not accept the word u iff P ⊆ PT . By taking T to be
an universal Turing machine, we showed that the containment problem for concurrent transition
systems is EXPSPACE-hard even if each component has fixed size and the communication graph
has bounded pathwidth and bounded degree.

1We assume that T ’s head does not “fall” from the right or the left boundaries of the tape. Thus, the case where
i = 1 and (q, γi) 7→ (q′, γ′

i, L) and the dual case where i = 2n and (q, γi) 7→ (q′, γ′
i, R) are not possible.





Chapter 4

Model Checking, Preprocessing, and

BDD Size

4.1 Introduction

Temporal Logic Model Checking [39] is a verification method for discrete systems. In a nutshell,
the system, often called the model, is described by the possible transitions of its components, while
the properties to verify are encoded in a temporal modal logic. It is used, for example, for the
verification of protocols and hardware circuits [14, 59]. Many tools, called model checkers, have
been developed to this aim. The most famous ones are SPIN [67] and SMV [86] (with its many
incarnations: NuSMV [37], RuleBase [15]), VIS [29], and FormalCheck [65].

There are many languages to express the model; the most widespread ones are Promela and
SMV. Two temporal logics [101] are mainly used to define the specification: CTL [39] and LTL
[99]. In this chapter we focus on the latter.

In many cases, the two inputs of the model checking problem (the model and the formula) can
be processed in a different way. If we want to verify several properties of the same system, it makes
sense to spend more time on the model alone, if the verification of the properties becomes faster.
Many tools allow to build the model separately from checking the formula [36, 114, 69]; in this way,
one can reuse the same model, compiled into a data structure, in order to check several formulae.

In the same way, we may wish to verify the same property on different systems: the property is
this time the part we can spend more time on. Many tools allow populating a property database
[36, 114, 69], i.e., a collection of temporal formulae which will be checked on the models. We
imagine a situation in which we early establish the requirements that our system must satisfy, even
before the system is actually designed. As a result, and we can fill a database of temporal formulae,
but we do not yet describe the system. While the design/modeling of the system goes on, we can
preprocess the formulae (without knowledge of the model, which is not yet known). Whenever the
system is specified, we can then use the result of this preprocessing step to check the model against
the formulae.

In this chapter, we analyze whether preprocessing a part of the model checking problem in-
stances improve the performances. The technical tool we use is [35, 83] the compilability theory.
This theory characterizes the complexity of problems when the problem instances can be divided
into two parts (the fixed and the varying part), and we can spend more time on the first part alone,
provided that the result of this preprocessing step has polynomial size respect the fixed part. We
show that the Model Checking problem remains PSPACE-hard even if we can preprocess either
the model or the formula, if this preprocessing step is constrained to have a polynomial size. These
theorems hold for all model checkers.

Finally, we answer to a long-time standing question in Symbolic Model Checking. It has been
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observed that the BDDs that are used by SMV and other Symbolic Model Checking systems
become exponentially large in some cases. However, it has not yet been established whether this
size increase is due to the choice of variable ordering, or to the kind of BDDs employed, or it is
intrinsic of the problem. We show that, if PSPACE 6⊆ Πp

2 ∩ Σp
2, such a grown is, in the worst case,

unavoidable. This result is independent from the particular class of BDDs and from the variable
order of the BDDs. It also holds for all decision diagrams representing integer-value functions
whose evaluation problem is in the polynomial hierarchy, such as BEDs [117], RBCs [3], MTBDDs
[38], and ADDs [13].

The results of this chapter are published in [48], and the basic definitions are introduced in
Sections 2.1.4 and 2.1.5.

4.2 Results

The Model Checking problem for concurrent transition systems is PSPACE-complete [75]. In
Section 4.2.1, we prove that the following problems remain PSPACE-hard even if preprocessing is
allowed (in other words, they are ‖;PSPACE-hard):

1. model checking on the synchronous and interleaved asynchronous composition of transition
systems, where the transitions systems are the fixed part of the problem and the LTL formula
is the varying part;

2. the same problem, where the LTL formula is the fixed part and the transition system is the
varying part;

3. given a set of transition systems and a formula as the fixed part, a state as the varying part,
checking whether the state is a legal initial state.

We can conclude that preprocessing the model or the formula does not lead to a polynomial
algorithm for model checking. We recall that the fixed part is preprocessed off-line in a polynomial
data structure during the preprocessing phase, and the varying part is given on-line.

The relevance of the first two problems is clear: in formal verification, it is often the case
that many properties (formulae) have to be verified over the same system (the model, in this case
modeled by the transition systems); on the other hand, it may also be that the same property has
to be verified on different systems.

The result about the third problem is less interesting by itself. On the other hand, we use it to
prove that the superpolynomial growth of the size of the data structures (e.g. OBDDs) currently
used in model checkers based on the Symbolic Model Checking algorithms [86] (such as SMV and
NuSMV) cannot be avoided in general. The result is independent from its variable ordering, and
it holds for others data structures that can be employed. We show these results in Section 4.2.2.

We point out that most of Temporal Logic Model Checking algorithms [39] fall in one of three
classes: Symbolic Model Checking algorithms, which work on symbolic representation of M ; algo-
rithms based on Bounded Model Checking [23] (i.e. based on reduction from Model Checking into
SAT); algorithms that work on an explicit representation of M (e.g. [57]). Our results concerning
the size of the BDD (or some other decision diagrams) are valid for all algorithms of the first class.

In the proofs of the following sections we consider Existential Model Checking problems, but
the results are valid also for the Universal case; in fact PSPACE is closed under complementation
also for compilability.
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4.2.1 Preprocessing Model Checking

We now identify the complexity of the Model Checking problem when the preprocessing of the
model (represented as the composition of transition systems) is allowed, both in the synchronous
and in the interleaved case.

Theorem 6 The model checking problem for k synchronous concurrent process MCsyn =
〈(M1|| . . . ||Mk), ϕ〉 where ϕ ∈ LTL is ‖;PSPACE-hard, and remains ‖;PSPACE-hard for ϕ ∈
L(F,G,X).

Proof. It is similar to the proof of the Theorem 7. We carry out a reduction from the PLANSAT ∗
1

problem, that satisfies the conditions of representative equivalence; the main difference is about
the LTL formula.

We now consider the Model Checking problem for concurrent processes composed in a inter-
leaved way when the model can be preprocessed.

Theorem 7 The model checking problem for k interleaved concurrent process MCasyn =
〈(M1| . . . |Mk), ϕ〉 where ϕ ∈ LTL is ‖;PSPACE-complete, and remains ‖;PSPACE-hard for
ϕ ∈ L(F,G,X).

Proof. We show a reduction, that translates an instance y ∈ PLANSAT ∗
1 into an in-

stance 〈r(y), h(y)〉 ∈ Masyn, satisfying the condition of representative equivalence. Given y =
〈P,O, I,G〉 ∈ PLANSAT ∗

1

- r(y) defines a concurrent transition systems M1, . . . ,Mn, where each Mi is obtained from a
variable xi ∈ P and it is described by:

Vi = {xi}

Ii(Vi) = (xi) ∨ (¬xi)

̺i(Vi, V
′
i ) = (xi = 0 ∧ x′i = 0) ∨ (xi = 0 ∧ x′i = 1) ∨

(xi = 1 ∧ x′i = 0) ∨ (xi = 1 ∧ x′i = 1)

The process M = M1‖ . . . ‖Mn represents all possible computations, starting from all possible
initial assignments, over the variables x1, . . . , xn.

- h(y) = h(I,G,O) = ¬(φI ∧ φG ∧ φO)
where:

ϕI =
∧

i∈I

xi ∧
∧

i/∈I

¬xi

ϕG = F (
∧

i∈M
xi ∧

∧

i∈N
¬xi)

ϕO = G
m
∨

i=0
[
‖φi‖
∧

h=1

φh
i ∧

‖ηi‖
∧

h=1

¬ηh
i ∧Xγi ∧

n
∧

j 6=i
j=1

(xj ↔ Xxj)]

where

γi =

{

αi if αi 6= ∅
¬βi if βi 6= ∅

ϕI adds constraints about the initial states of y represented by I.
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ϕG adds constraints about the goal states of y represented by G: it tells that a goal state will be
reached.

ϕO describes the operators in O: globally (i.e. in every state) one of the operators must be used
to go in the next state; ϕO also describes the nop operator o0.

Now, we prove that y ∈ PLANSAT ∗
1 iff 〈r(y), h(y)〉 ∈Masyn. Given y = 〈P,O, I,G〉, a solution

for y is a plan which generates the following sequence of states: (s1, . . . , sp) where s1 is an initial
state and sp is a goal state. This sequence of states is obtained applying a sequence of operators
(oh1

, . . . , ohp
) chosen in O = {o1, . . . , om} in the following way: for all i s.t. 1 ≤ i ≤ p, preconditions

for ohi
are included in the state si, and the state si+1 is obtained from the state si modifying the

postcondition associated with ohi
. We remark that a state in STRIPS is the set of conditions.

The model M = r(y) = r(P ) represents all possible traces starting from all possible initial
configurations, over the variables x1, . . . , xn. Thus, in this case the Existential Model Checking
problem 〈M,ϕ〉 reduces to the satisfiability problem for ϕ: we check whether ther exists a trace
among all traces over the variables x1, . . . , xn that satisfies the LTL formula ϕ. Therefore, we have
to prove that y ∈ A iff ϕ = h(y) is satisfiable:

⇒. Given a solution for y ∈ A, we identify a model for ϕ = h(y); by construction such a model
has:

- initial state sM
1 s.t. ℓ(s1) = I ∪ {¬xi|xi /∈ I}

- a state sM
p s.t. ℓ(sp) ⊆ M∪ {¬xi|xi /∈ N}

- given a state sM
i , sM

i+1 is successor of sM
i iff

- ℓ(sM
i ) ⊆ Precond(ohi

), where Precond(ohi
) = {xj |xj ∈ φhi

} ∪ {¬xj |xj ∈ ηhi
}

- ℓ(sM
i+1) = ℓ(sM

i ) ∪ αi − βi

where αi is the positive postcondition of ohi
and βi is the negative postcondition of ohi

.

- an infinite number of states: when the state sp is reached this state is repeated for at least
once or for ever (applying the nop operator o0), or it is possible, it depends from y, to apply
any operators whose preconditions are satisfied by ℓ(sM

p ).

⇐. Let (sM
1 , . . . , s

M
p , . . .) a model for ϕ, and let sp the goal state, that the first state satisfying

ϕG. We obtain the sequence of states visited by a plan which is a solution for y, by cutting the
states after the goal state sp and assigning si = ℓ(sM

i ); thus this sequence of states (s1, . . . , sp),
associated with the plan, has by construction:

- initial state s1 s.t. s1 = I ∪ {¬xi|xi /∈ I}

- a state sp s.t. sp ⊆ M∪ {¬xi|xi /∈ N}

- given a state si, si+1 is successor of si iff

- si ⊆ Precond(ohi
)

- si+1 = si ∪ αi − βi

where αi is the positive postcondition of ohi
and βi is the negative postcondition of ohi

.

Now we show the complexity results, both in the synchronous and in the interleaved case, when
the formula can be preprocessed.
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Theorem 8 The model checking problem for k synchronous concurrent process MC ′
syn =

〈ϕ, (M1|| . . . ||Mk)〉 where ϕ ∈ LTL is ‖;PSPACE-complete, and remains ‖;PSPACE-hard for
ϕ ∈ L(F,G,X).

Proof. PLANSAT ∗
1 is the following problem of planning: giving a STRIPS [50] instance

y = 〈P,O, I,G〉 in which the operators have an arbitrary number of preconditions and only one
postcondition, is there a plan for y? PLANSAT ∗

1 is PSPACE-complete [32]. Without loss of
generality we consider y = (P,O ∪ o0, I, G), where o0 is a operator which is always usable (it has
no preconditions) and does nothing (it has no postconditions). We use the following notation:
P = {x1, . . . , xn}, I is the set of conditions true in the initial state, G = 〈M,N〉. A state in
STRIPS is a set of conditions.

In the following we indicate with φh
i the hth positive precondition of the operator oi, and with ηh

i

the hth negative precondition of the operator oi; αi is the positive postcondition of the operator oi,
βi is the negative postcondition of the operator oi. Since any operator has only one postcondition,
for every operator i it hold that ‖αi ∪ βi‖ = 1.

We show a polynomial reduction from the problem A to the problem B that satisfies the con-
dition of representative equivalence. This proves that B is ‖;C-hard, if A is C-hard; to apply
this condition we must define a Classification Function, a Representative Function and a Exten-
sion Function for A. Thus we use such a proof schema: we define a Classification Function, a
Representative Function and a Extension Function for PLANSAT ∗

1 , then we show a polynomial
reduction from an instance y ∈ PLANSAT ∗

1 to an instance 〈r(y), h(y)〉 ∈ MC ′
SY N that satisfies

the condition of representative equivalence.
Let y = 〈P,O, I,G〉 ∈ PLANSAT ∗

1 . We define r and h as follows:

- r(y) = r(P ) = ¬

{

F (xg) ∧G
∧n

i=0

[

¬(xi ↔ Xxi) →
∧n

j=1

j 6=i

(xj ↔ Xxj)

]}

- h(y) defines the transition systems M1‖ . . . ‖Mk. The generic Mi is obtained from the oper-
ators oi1 , . . . , oidi

whose postcondition involves the variable xi ∈ P ; di is the number of such
operators. We add the variable xg; thus we have at most as many processes as variables: if
k is the number of variables used as postcondition of operators plus one, we have k ≤ n+ 1.
Let Mk the process associated with the variable xg; this variable is 0 at the beginning and it
becomes 1 only when the goal of the PLANSAT problem is reached. Mi, for i s.t. 1 ≤ i < k,
is defined by:

Vi =
⋃di

q=1 φiq ∪ ηiq ∪ αiq ∪ βiq

Ii(Vi) =
∧

xj∈I∩Vi

xj ∧
∧

xj∈I∪Vi

¬xj

̺i(Vi, V
′
i ) =

∨di

k=1

‖φik
‖

∧

h=1

φh
ik
∧

‖ηik
‖

∧

h=1

¬ηh
ik
∧ ¬(

∧

i∈M
xi ∧

∧

i∈N
¬xi) ∧ (x′i ≡ bik)

where bik =

{

1 if αik 6= ∅
0 if βik 6= ∅

The process Mk is defined by:

Vk = {xg}

Ik(V ) = (xg = 0)

̺k(Vk, V
′
k) =

∧

i∈M xi ∧
∧

i∈N ¬xi ∧ x
′
g = 1
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Now we prove that this reduction is correct, i.e. y ∈ PLANSAT ∗
1 iff 〈r(y), h(y)〉 ∈MC ′

SY N .

⇒. Given a solution for y ∈ PLANSAT ∗
1 , we show a path of M which satisfies ϕ (r(y) defined

above).

A solution for y is a plan which generates the following sequence of states: (s1, . . . , sp) where s1
is a initial state and sp is a goal state. This sequence of states is obtained by applying a sequence
of operators (oh1

, . . . , ohp
).

By construction M admits a path (sM
1 , . . . , s

M
p , s

M
p+1, . . . ) s.t.:

- ℓ(sM
i ) = si ∪ ¬xg for i 1 ≤ i ≤ p

- ℓ(sM
p+1) = sp ∪ xg

This path satisfies ϕ:

- ϕ does not constrain about the initial state, therefore every initial state of the model is legal;

- xg ⊆ ℓ(sM
p+1), therefore F (xg) is true;

- the path shown is s.t. only one variable change at a time, therefore the subformula under the
Globally is true.

⇐. Given a path of M which satisfies ϕ, we show a solution for y ∈ PLANSAT ∗
1 .

The path is a sequence (sM
1 , . . . , s

M
p , s

M
p+1, . . . ). We can obtain the sequence of states visited by a

plan for y in this way:

- si = ℓ(sM
i ) − {¬xg} for i 1 ≤ i ≤ p;

- we ignore the rest of the path of M .

Theorem 9 The model checking problem for k interleaved concurrent process MC ′
asyn =

〈ϕ, (M1| . . . |Mk)〉 where ϕ ∈ LTL is ‖;PSPACE-complete, and remains ‖;PSPACE-hard for
ϕ ∈ L(F ).

Proof. We carry out a reduction from the PLANSAT ∗
1 problem, that satisfies the conditions of

representative equivalence. The proof is similar to the proof of the Theorem 8.

Now we introduce the decision problem MCs0
= 〈[M,ϕ], s0〉, where M is specified by the

interleaved parallel composition of k transition systems M1, . . . ,Mk, ϕ ∈ L(F ), and s0 is a specific
state. MCs0

is true if the model checking problem for concurrent transition system 〈M,ϕ〉 has
solution and s0 is a legal initial state i.e., is an initial state belonging to M that satisfies ϕ.

Theorem 10 MCs0
is ‖;PSPACE-complete.

Proof. The hardness follows from a polynomial time reduction from the problem 〈(P,O,G), I〉,
that can be easily shown ‖;PSPACE-complete on the basis of the results in [84].

We sketch the reduction. We encode each operator in O into each process Mi, and the goal G
into the formula ϕ. We encode the set of initial states I using s0.
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4.2.2 The Size of BDDs

In this section we prove that the size of BDDs and others data structures increases superpolynomi-
ally with the size of the input data, in the worst case, when are used in a Symbolic Model Checking
algorithm.

Let M a model specified by k concurrent transition systems M1, . . . ,Mk, and let ϕ an LTL (or
a CTL or CTL*) formula.

Theorem 11 If PSPACE 6⊆ Πp
2 ∩ Σp

2, then there is not always a BDD of any kind and with any
variable order that is polynomially large and represents the set of initial states consistent with M
and ϕ.

Proof. The evaluation problem for any kind of BDD, i.e. giving a BDD and an assignment of
its variables evaluate the BDD, is in P . If there exists a poly-size BDD representing the set of
initial states consistent with M and ϕ, then we can compile M and ϕ in the BDD and evaluate the
assignment (representing a initial state) in polynomial time. This implies that MCs0

is in ‖;P. We
know from Theorem 10 that MCs0

is ‖;PSPACE-complete. Therefore if such a BDD exists, then
‖;PSPACE=‖;P. Now, by applying Theorem 2.12 in [35], we conclude that there is no poly-size
reduction from MCs0

to the evaluation problem for a BDD, if PSPACE 6⊆ Πp
2 ∩ Σp

2.

Symbolic Model Checking algorithms work by building a representation of the set of the initial
states of M that satisfy ϕ. In particular, this set is represented by BDDs. Therefore, the last
theorem proves that these algorithms, in the worst case, end up with a BDD of superpolynomial
size. This result does not depend on the kind of BDD used (free, ordered, etc.) and on the variable
ordering. On the contrary, it holds also when the states are labeled with enumerative variable;
in other words it holds not only for BDD but also for any decision diagram, provided that the
evaluation problem over this representation of the states is in a class of the polynomial hierarchy.
More formally, we consider an arbitrary representation of a set of states. The evaluation problem
is that of determining whether a state belongs to a set.

Theorem 12 Given a method for representing a set of states whose evaluation problem is in a
class Σp

i of the polynomial hierarchy, it is not always possible to represent in polynomial space the
set of legal initial states of a model M and a formula ϕ, provided that Σp

i+1 6= Πp
i+1.

The proof of this theorem has the same structure of the proof of the Theorem 11.
Instances of such data structures, currently used in Symbolic Model Checking tools, are BDDs,

Boolean Expression Diagrams (BEDs) [117] and Reduced Boolean Circuits (RBCs) [3]. Our results
hold also for data structures used to represent integer-value functions, like Multi terminal binary
decision diagrams (MTBDDs) [38], Algebraic Decision Diagrams (ADDs) [13]; see for details the
survey [43].

Now, we discuss related works. There are several results on the exponential growth of the BDD
size respect to a particular problem (e.g. integer multiplication [31]); moreover there are results
dealing with the size growth of other decision diagrams [43] respect to particular problems. While
these results are not conditional to the collapse of the polynomial hierarchy as the ones reported
in this chapter, they are also more specific, as they concern only specific kinds of data structures
(e.g. OBDDs) respect to particular problems (e.g. integer multiplication). On the other hand, it
is also possible to prove that the above two theorems cannot be stated unconditionally: indeed if
P = PSPACE, then there is a data structure of polynomial size allowing the representation of the
set of initial states in such a way deciding whether a state is in this set can be decided in polynomial
time. As a result, the non-conditioned version of the above two theorems implies a separation in
the polynomial hierarchy.





Chapter 5

The Complexity of Checking Action

Redundancy

5.1 Introduction

In this chapter, we discuss some problems related to the reachability property, that is interesting
also in the field of reasoning about actions. In particular, we consider the planning area, where
the reachability problem is equivalent to the existence of a combination of actions that reaches
a given goal. The connection between Model Checking and Planning are discussed and used in
[58, 18, 20, 77, 98, 21, 19].

Most problems in reasoning about action and in planning, like plan existence and plan gener-
ation, are problems on a fixed planning domain: the initial states, goal, and possible actions are
assumed fixed and cannot be modified. This is not always the case, in fact, in many real-world
applications the domain can be (at least to some extent) modified. In this chapter, we study a
number of problems concerning a modifications of the set of available actions from the domain. For
example, in an industrial production setting, the actions might correspond to physical machinery
that performs an action. In this setting, deciding whether an action (machinery) is necessary to
reach the goal makes sense.

It is important to remark that we are not checking whether an action can be removed from a
single plan [51, 52, 74], a problem that arises naturally in the context of plan abstraction [118, 6].
Rather, we are checking whether an action can be removed from the set of available actions. Such
a problem makes sense in several situations such as:

Design: if the planning instance is the formalization of a system that is yet to be built, it makes
sense to consider whether some actions can be removed, as this may correspond to the sim-
plification of the design;

Reliability: in some system, operation must be warranted regardless of faults; since the effect of
faults on a planning instance is to make some actions non-executable, then all actions should
be redundant to ensure that the system will work properly in all cases;

Solving: the cost of solving a planning instance is often related to the number of possible actions;
knowing that a specific action is not really needed may simplify the planning generation
problem (this is the motivation behind the work of Nebel, Dimopolous, and Koehler [93].)

An application domain of our problems are Web services. Web services (WSs) are distributed
and independent pieces of code solving specific tasks which communicate with each other through

33
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the exchange of messages. A more unusual specificity that distinguishes them from more traditional
software components is that they are deployed and then accessed through the internet. Planning
techniques can be applied in the Web service synthesis and composition: For example, in [113] a
new (not existing) WS is specified by the goal, and the existing WSs (the components) are described
by the planning actions. The resulting plan represent the interaction between the components and
the new WS. In this framework our approach can be useful:

we can characterize the set of the existing WSs that need to be reliable. This has consequences
in the quality of service requirements: if a service is not redundant, then the provider of the
service has to ensure an higher level of reliability.

we can establish how much longer becomes the shortest plan (that is the interaction) if we
remove a service.

if we reduce the services needed to compose a new service, we more easily understand the
behaviour of the synthesized service (it is more human readable).

It is important to note that solving the problem of action redundancy is done before the plan
is generated. We are not considering the problem of removing an action from a plan after that
the plan has been found. This topic has already been studied [51, 52]; rather, we are considering
the problem of the possible removal of an action before any plan is generated. In other words, the
problem is not to establish the redundancy of an action in a plan, but the redundancy of an action
in a planning domain. There are scenarios in which the problem of redundancy in a plan makes
sense, and others in which redundancy in a domain is more relevant.

Various problems are considered. First, we consider problems related to actions only: given a
set of actions, is there any action that can be simulated by the other ones? In other words, is there
any action that is redundant? In this case, we are not (yet) considering a specific initial state nor
a specific goal. This question is therefore of interest whenever either we do not have yet an initial
state or goal, or we want to study the problem for all possible initial states or goals. We call these
problems Absolute Action Redundancy.

We also consider some problems about planning domains in which the initial states and goal are
fixed. Actually, the most relevant case is that in which the initial states and the goals are
only partially known; however, the complexity results for the case of full knowledge
carry on to the case of partial knowledge of the initial state and the goal. The problems
considered for this case are: is a specific action redundant (Single Specific Action Redundancy)?
is there any action that can be removed (Single Action Redundancy)? and problems related to
finding a minimal set of actions.

In this chapter, we study the computational complexity of these problem. An assumption we
make is that all actions have the same cost, so that minimality is considered in terms of the number
of actions. Another implicit assumption is that all actions are independent, in the sense that it
is possible to remove a single one of them from the domain. These assumptions are not always
realistic: for example, it may be that two actions are both executed by the same part of a system:
the relevant problem is whether this part is necessary, which is equivalent to the redundancy of
both actions. These extensions of the problems considered in this chapter are under investigation.

The chapter is organized as follows. In the next section, we introduce the notion of redundancy
and define the problems we study. We assume that notions of computational complexity and
planning are known. In the third section we give some preliminary results that will be used in
the complexity analysis. In the fourth section we show the complexity of problems related to
redundancy. We conclude the chapter by comparing our results with related work presented in the
literature. The results of this chapter are published in [47], and the basic definitions are introduced
in Section 2.2.
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We now describe the computational problems we consider. In the following, we assume that
the initial state and the goal are either fully specified or not specified at all. Clearly, the most
interesting problems are those in which these two parts of the domain are only partially specified.
The reason for not considering this case is simply that all hardness proofs extend from the fully
specified to the partially specified case, and that the membership proofs are easy to extend because
non-deterministic polynomial space is equal to polynomial space. In other words, the restriction
to the fully specified case is done only for the sake of simplicity, but all results carry on the more
interesting case of partial specification.

We first focus on the redundancy of actions in a given planning instance.

Single Specific Action Redundancy. Given a planning instance 〈P,O, I,G〉 and an action a ∈
O, is a redundant in 〈P,O, I,G〉?

Single Action Redundancy. Given a planning instance 〈P,O, I, G〉, is there a redundant action
in O?

The latter problem is similar to the former one, but we are not checking whether a specific
action is redundant but whether there is a redundant action in O.

While the two above problems are about the redundancy of actions for a given initial state and
goal, we also consider the redundancy of actions when neither the initial state nor the goal are
specified.

Absolute Specific Action Redundancy

Given: 〈P,O〉 and an action a ∈ O

Question: is a redundant? In other words, is it true that 〈P,O, I,G〉 has plans if and only
if 〈P,O\{a}, I, G〉 has plans for every I and G?

Absolute Action Redundancy

Given: 〈P,O〉

Question: is there any redundant action in O?

The following problems are related to minimizing the number of actions.

Minimal Number of Actions

Given: a planning instance 〈P,O, I,G〉 and an integer k with k < |O|

Question: do Ok ⊂ O, where |Ok| = k, exist s.t. 〈P,Ok, I, G〉 has plans?

Minimal Set of Actions

Given: a planning instance 〈P,O, I,G〉 and O′ ⊂ O

Question: is O′ minimal? (minimal = does not contain any redundant action)

Specific Action of a Minimal Set

Given: a planning instance y = 〈P,O, I,G〉 and a ∈ O

Question: is a in a minimal subset of O′ ⊂ O such that 〈P,O′, I, G〉 has plans?
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Finally, we consider four problems related to the length of plans.

Plan Length for a Specific Action Subset

Given: a planning instance y = 〈P,O, I,G〉 and O′ ⊂ O

Question: does y′ = 〈P,O′, I, G〉 have a plan of the same length of the shortest plans for y?

Plan Length for an Action Subset

Given: a planning instance y = 〈P,O, I,G〉

Question: does O′ ⊂ O exist s.t. y′ = 〈P,O′, I, G〉 has a plan of the same length of the
shortest plans for y?

Plan Length Increase for a Specific Action Subset

Given: a planning instance y = 〈P,O, I,G〉, O′ ⊂ O, and an integer c > 0

Question: does y′ = 〈P,O′, I, G〉 have a plan of length l + c where l is the length of the
shortest plans for y?

Plan Length Increase for an Action Subset

Given: a planning instance y = 〈P,O, I,G〉 and an integer c > 0

Question: does O′ ⊂ O exist s.t. y′ = 〈P,O′, I, G〉 has a plan of length l + c where l is the
length of the shortest plans for y?

5.2 Useful Properties

Here we present two properties that will be useful in the sequel. The first such property states
that two planning instances can be combined in such a way the plans of the resulting instance are
related to the plans of the two original ones.

Formally, we are given two planning instances 〈P1, O1, I1, G1〉 and 〈P2, O2, I2, G2〉, which we
assume built on disjoint sets of conditions and operators. The disjunction of these two planning
instances is defined as follows.

Definition 16 The disjunction of 〈P1, O1, I1, G1〉 and 〈P2, O2, I2, G2〉 is 〈P,O, I,G〉, where:

P = P1 ∪ P2 ∪ {x}

O = O1 ∪O2 ∪ {o1, o2}

I = I1 ∪ I2

G = 〈{x}, ∅〉

where {x} is a new condition and {o1, o2} are new operators; o1 has G1 as precondition and x as
a positive postcondition, while o2 has G2 as precondition and x as a positive postcondition.

The plans of 〈P,O, I,G〉 are the plans of 〈P1, O1, I1, G1〉 with o1 added at the end, the plans
of 〈P2, O2, I2, G2〉 with o2 at the end, plus any other sequence that is obtained by interleaving
other actions to these plans. In a way, the new planning instance is a “disjunction” of the original
instances, as it has all plans of both. The minimal plans of the disjunction are exactly the shortest
of the plans of the two instances.
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The second property states that a planning instance can be modified in such a way that the
resulting instance always has plans composed of all operators, in addition to the plans of the original
one.

Definition 17 The maximized versions of a STRIPS instance 〈P,O, I,G〉 is the instance 〈P ∪Y ∪
Z ∪{w}, B ∪C ∪{d}, I, G′〉, where Y and Z are sets of new variables of the same cardinality of O,
w is a new variable, B and C are sets of new actions of the same cardinality of O, and d is a new
action. The goal G′ is similar to G, but it also requires w to be false. The effects of the actions
are: ci is the same as ai, but also makes yi true; bi has no precondition, but makes zi, w, and the
preconditions of ci true. Finally, d is only applicable if all variables Y ∪ Z are true and makes the
goal satisfied.

This instance has plans: the sequence [b1, c1, . . . , bm, cm] makes all variables Y ∪ Z true; the
application of d therefore makes the goal reached. In order for this plan to work, no action can be
removed from it: removing d leads to having w true in the final state; on the other hand, d is only
applicable if all variables Y ∪Z are true, which can be accomplished only if all actions B ∪C have
been applied at least once.

On the other hand, if the original instance is satisfiable, then the plans of the original instance
can be mapped into plans of this new one just be replacing each ai with the corresponding ci. No
other sequence of actions is a plan: if a sequence contains any of the bi, then it has to contain d
as well, as bi makes w true and d is the only action that makes it false, as required by the goal.
In turn, d is applicable only if all variables in Y ∪ Z are true, which means that all actions B ∪ C
must been applied beforehand.

5.3 Complexity of Action Redundancy

In this section, we characterize the complexity of the problems we have introduced. Most of these
problems belong to PSPACE, as they can be solved by solving a number of regular planning
problems, such as plan existence, that are known to be in PSPACE. The difficult part of their
complexity characterization, indeed, is the hardness part.

The first problem we consider is the Single Specific Action Redundancy. The redundancy of a
single specific action has been called complete irrelevance by Nebel, Dimopolous, and Koehler [93],
who proved the following theorem.

Theorem 13 ([93]) Single Specific Action Redundancy is PSPACE-complete.

A related question is: given a planning instance for which we know a plan, does the removal of
an action a cause the domain not to have plans any more? This problem is still PSPACE-complete.

Using the above result we can easily show that:

Theorem 14 Single Action Redundancy is PSPACE-complete.

Proof. Membership. This is the problem of checking whether a planning instance contains an
action that can be removed. In other words, it is equivalent to solve the Single Specific Action
Redundancy for all actions. Since solving each of these problems is in PSPACE, the problem of
Single Action Redundancy is in PSPACE as well.

Hardness. Proved by reduction from the problem of plan existence. Given a STRIPS instance
for which we want to establish the plan existence, we build its maximized version. This maximized
version is an instance that has the same plans of the original instance plus some plans composed of
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all actions. If the original instance does not have plans, the maximized version has only the plans
composed of all actions; as a result, no action is redundant. If the original instance has some plans,
even if they contains all actions, the maximized version has the same plans, which however do not
contain the action d because this action is not present in the original instance. As a result, the
modified instance contains a redundant action if and only if the original instance has plans.

Let us now consider the problems of absolute redundancy. These are the problems of checking
redundancy of actions when neither the initial state nor the goal are known. As for the case of
(non-absolute) redundancy, we consider first the redundancy of a single specific action and then
the presence of a redundant action.

Theorem 15 Absolute Specific Action Redundancy is PSPACE-complete.

Proof. Membership. We are given a set of actions O, and want to check whether an action a ∈ O is
not necessary for whatever initial state and goal. In other words, for any possible I and G, we have
to check whether the existence of plans 〈P,O, I,G〉 implies the existence of plans in 〈P,O\{a}, I, G〉.
The problem can be therefore solved by nondeterministically guessing I and G and then solving a
problem in PSPACE. The problem is therefore in PSPACE.

Hardness. We show a polynomial reduction from the problem of checking the existence of a
plan for the instance 〈P,O, I,G〉. We build the Absolute Specific Action Redundancy instance
〈P,O ∪ a〉 where a is a new action that is only executable in the state I and has postcondition G.
Clearly, this action a is redundant if and only if the goal can be reached from the initial state.

Theorem 16 Absolute Action Redundancy is PSPACE-Complete.

Proof. Membership. We solve the Absolute Specific Action Redundancy problem for each of the
actions in O. Since we solve a polynomial number of problems that can all be solved in polynomial
space, the problem is in PSPACE.

Hardness. We show a polynomial reduction from Absolute Specific Action Redundancy. Let
the instance of this problem be 〈P,O〉 where O = {a1, .., an, a} and a is the “candidate” redundant
action. The idea of the reduction is to make all actions but a irredundant. To this aim, we consider
an action a′i for each ai: this action has the same preconditions and postconditions of ai plus a new
postcondition yi. The instance we build is 〈P ∪ {y1, .., yn}, O

′〉 where O′ = {a′1, .., a
′
n, a}. None of

the actions a′i is redundant, as a′i is the only action that makes yi true. As a result, a is redundant
for 〈P,O〉 iff 〈P ∪ {y1, .., yn}, O

′〉 contains a redundant action.

Let us now consider the problems related to minimality. The first one is that of checking the
existence of a group of k actions that are sufficient for building a plan. It is easy to see that this
problem is not the same as checking the existence of a plan of length k, as an action may occur
more than once in a plan. In other words, we are checking the plans containing a minimal number
of actions, not the plans of minimal length.

Theorem 17 Minimal Number of Actions is PSPACE-Complete.

Proof. Membership. Guess a subset of O′ ⊆ O composed of k actions, and check the existence of
plans for the instance in which there are only actions O′. Since the problem can be solved by a
nondeterministic guess followed by the solution of a PSPACE problem, the problem is in NPSPACE
and is therefore in PSPACE.

Hardness. We show a polynomial reduction from Single Action Redundancy. The instance
〈P,O, I,G〉 contains a redundant action if and only if there exists a set of k = |O| − 1 actions that
are sufficient to make the goal reachable.
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Checking whether a set of actions is minimal is the complementary problem of Single Action
Redundancy: a set of actions is minimal if and only if it does not contain any redundant action.

Corollary 1 Minimal Set of Actions is PSPACE-complete.

We now consider the problem of checking whether an action is in some minimal set of actions.

Theorem 18 Specific Action of a Minimal Set is PSPACE-complete.

Proof. Membership. For each O′ ⊆ O, we check whether this set of actions is sufficient for the
existence of a plan; if it is, we check it for minimality; if it is minimal, we check whether a ∈ O′.
This algorithm requires only a polynomial amount of space.

Hardness. We show a reduction from the problem of plan existence. Given a STRIPS instance,
we build its maximized version, and check whether d is in some minimal set of actions. The plans
of the maximized version are composed of all actions plus any plan of the original instance. As a
result, if the original instance has no plans, then no action is redundant. On the other hand, if the
original instance has plans, then the goal is reachable even if the action d is removed. As a result,
d is not in any minimal set of actions.

The problem of redundancy considered so far are about whether actions can be removed from a
domain while preserving the plan existence. We now consider the problem of whether the removal
of actions increases the length of the minimal plans.

Theorem 19 Plan Length for a Specific Action Subset is PSPACE-Complete.

Proof. Membership. Find the minimal plan length for both the original instance and the instance
without the actions to remove. Both problems can be solved in polynomial space.

Hardness. Given an instance 〈P,O, I,G〉 with n conditions, we build the composition of this
instance with a planning instance that is known to have plans longer than 2n. The resulting
instance has plans that are made of plans of 〈P,O, I,G〉 followed by the action o1 plus plans of the
exponential-plan instance followed by o2 (plus other plans that are obtained by interleaving these
plans with other actions.)

We can now exploit the fact that 〈P,O, I,G〉 has plans if and only if it has plans of length
bounded by 2n. As a result, the minimal plans of the composed instances are those of 〈P,O, I,G〉
followed by o1 if this instance is satisfiable, or the plans of the second instance followed by o2
otherwise. As a result, removing o1 leads to an increase of the minimal plan length if and only if
the instance 〈P,O, I,G〉 has plans.

The following theorem is about the similar problem in which there is no specific set of actions to
remove: we are only checking whether some actions can be removed without increasing the minimal
plan length.

Theorem 20 Plan Length for an Action Subset is PSPACE-Complete.

Proof. Membership. Check the minimal plan length for the original instance and for all instances
obtained from it by removing some actions. All these problems can be solved in polynomial space.

Hardness. Proved by reduction from plan existence. We modify the planning instance in such a
way a plan composed of all actions always exists. We then create the translation of this instance on
a new alphabet, with the only exception that d is replaced by two actions a and b, which have the
same effect when executed in sequence. Finally, we compose the two planning instances, making
sure that the actions o1 and o2 are duplicated.
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This instance is built in such a way that every action can be removed without increasing the
plan length. There is however an exception: if all minimal plans contain d, then the removal of d
can only be compensated by the two actions a and b, which means that the minimal plan length is
increased. In turns, this is only possible if the original instance has no plan.

The problems with the similar formulation but where the minimal plan length is allowed to
increase of a given number k are clearly as hard as the ones above, where k = 0. The membership
of these problems to PSPACE can be proved by modifying the proofs for the case k = 0.

Corollary 2 Plan Length Increase for a Specific Action Subset and Plan Length Increase for a
Action Subset are PSPACE-Complete.

Finally, we note that all hardness results about a specific instance 〈P,O, I,G〉 extend to the case
where this instance is not fully specified. More precisely, if a problem about instances 〈P,O, I,G〉
is extended to the case where only a part of I and G is given, then hardness results maintain
their validity. For example, the problem of a specific action redundancy, which consists in checking
whether an action a ∈ O can be removed from 〈P,O, I,G〉, can be extended to the case of partial
knowledge of I and G by assuming that some of the conditions are not (yet) known in the initial
state, and some conditions are not known whether they will be part of the goal. This is exactly
what we expect when the domain is fixed but the initial state and goal are not completely known.
In this case, an action is redundant if it so for any possible initial state and goal. Since the case
of full specification is simply a particular case, the hardness proof holds for the general case as
well. Moreover, the general problem can be formalized as: for any I and G that extends the known
parts of the initial state and goal, solve the problem of action redundancy for the case of full
specification. Since the latter problem is in PSPACE, cycling over all possible I and G does not
increase complexity, and the problem therefore remains in PSPACE. In summary, the complexity
of all problems that are stated with a fixed I and G extends to the case of partially
specified initial state and goal.

5.4 Related Work

The problem of checking the redundancy of actions in a domain is clearly related to the problem of
checking the existence of a plan, and to the problem of finding such a plan. These are the two most
studied problems in planning, and a large number of papers on this topic are in the literature. Our
results clearly build on the work of Bylander [32], Nebel [93, 92, 11], and Bäckström [7, 9, 10, 8].

The paper which presents results strictly related to our work is the paper by Nebel, Dimopoulos,
and Koehler [93] where they analyze the problem of checking the redundancy of STRIPS instances.
More precisely, the problem they considered is whether a specific action or a specific fact (condition)
is really needed to achieve the goal. They also considered the problem of whether an action or a
fact is needed by some of the plans of the domain. Their paper is mainly focused on finding
irrelevant actions of facts to the aim of simplifying the plan search. Most of their work is therefore
devoted to developing heuristics, and only one complexity result is given (checking whether a fact or
action is redundant in a STRIPS instance is PSPACE-complete). The present work extends Nebel,
Dimopoulos, and Koehler’s by giving a more complete complexity characterization of redundancy
in planning.

A concept related to checking redundancy of an action in a domain is that of redundancy of
an action in a specific plan. Removing redundant actions in a plan is a problem that has been
investigated in the context of planning by abstraction [118, 74, 6], where a plan is called justified
if it does not contain actions that can be removed. This idea has been formalized in a number
of different ways by Fink and Yang [51, 52]. Given the similarity with the work reported in the
present chapter, it is important to clarify the differences:
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1. in the work on justified planning, a plan is given, and the goal is to remove actions from it;
on the other hand, in action redundancy, the work has to be done on the domain, not on a
specific plan;

2. a plan is justified if it does not contain actions that can be removed; on the other hand, it
may be that a plan contains two times the same action, and only one of them can be removed;
in other words, justification is not the irredunancy of actions, but rather the irredundancy of
action occurrences in a plan; on the contrary, if an action is redundant then it can be removed
altogether from the domain.

Clearly, whether justification or redundancy is of interest depends on the stage of planning: if
the system on which planning is needed can be modified, then action redundancy is of interest;
once the domain is fixed, and a plan has been found, the aim of reducing the plan length is of
interest.

The problem of checking the redundancy of actions in a specific plan is also of interest in the
context of plan recognition. It is indeed clear that not all actions may be directed toward a single
goal; for example, it has been observed that ”operators of control system, when not otherwise
occupied, often glance at the current value of process variables” [60]. These ’checking’ actions
are often redundant to the plan, and not taking this fact into account may produce a wrong plan
identification.

The problems studied in this chapter are about planning domains where actions can be removed.
A similar assumption that has been considered by several authors [73, 63, 94, 82] is that the initial
state and the goal may change. The aim of plan modification or plan adaptation is to change an
already known plan to take into account the different initial state or goal.

In spite of a name homonymy, redundancy in partially ordered planning search spaces [72] is
not really related to redundancy as intended in this chapter. Roughly speaking, redundancy in a
search space is the presence of solutions that are not really necessary to visit. Clearly, this kind of
redundancy is about plans, and is about searching for plans, while action redundancy is about a
domain and is not directly related to a particular planning algorithm.

5.5 Conclusions and Future Work

While the results of this chapter are about the redundancy of actions in a domain, several other
problems can be considered if we remove the assumption that the planning domain cannot be mod-
ified. For example, costs can be associated to actions, and the aim of the redundancy elimination
would be to reduce the overall cost of the actions. If actions consume resources, one can consider
whether we can reduce the cost associated to an action (for example, we may replace a part of a
system with a more efficient one).

A restriction we have (implicitly) assumed in this chapter is that actions can be eliminated one-
by-one. This is however not always true, as the removal of an action is only effective if all actions
that require a part of a system are removed. In such cases, we are no longer interested in removing
a single action, but rather into removing groups of actions. These extensions are currently under
investigation.

In our opinion, it is also interesting to study the complexity of these problems in the non
deterministic case, with different levels of observability (total, partial, none). In this chapter we
have shown the complexity in the deterministic case with full observability.

Finally, we are studying efficient algorithms to solve these problems in order to apply these
techniques to the Web service synthesis problem.





Chapter 6

Web Services: a Process Algebra

Approach

6.1 Introduction

In this chapter, we present an application of formal verification to Web services. Our aim is to
reduce the effort of testing phase in the WS development.

Web services (WSs) are distributed and independent pieces of code solving specific tasks which
communicate with each other through the exchange of messages. A more unusual specificity that
distinguishes them from more traditional software components is that they are deployed and then
accessed through the internet. Some XML-based standardized technologies have already been
proposed to support WSs development: WSDL interfaces abstractly describe messages to be ex-
changed, SOAP is a protocol for exchanging structured information, UDDI is used to publish and
discover WSs, BPEL4WS (BPEL for short) is a notation for describing executable business process
behaviors. WSs raise many theoretical and practical issues which are part of on-going research.
Some well-known problems related to WSs are to specify them in an adequate, formally defined
and expressive enough language, to compose them (automatically), to discover them through the
web, to ensure their correctness.

Formal methods provide an adequate framework (many specification languages and reasoning
tools) to address most of these issues (description, composition, correctness). Different proposals
have emerged recently to abstractly describe WSs, most of which are grounded on transition system
models (Labelled Transition Systems, Mealy automata, Petri nets, etc.) [16, 68, 91, 62, 80, 55].

With respect to these works, we use process algebras (PAs for short) as abstract representation.
Process algebras offer more respect to all these previous approaches: they not only provide temporal
logic model checking, but also bisimulation (resp. simulation) analysis, that is we can establish
whether two processes have equivalent behaviors (resp. whether one of the two includes the behavior
of the other). Bisimulation analysis is useful to establish when a service can substitute another
services in a composition [28]; another use of bisimulation is to check the redundancy of service in
a community.
Because process algebras support simulation analysis, we can apply to WSs a well-know design
method, the hierarchical refinement [78, 76]: intuitively we start with an abstract description of
a process and we refine it iteratively, obtaining at each step a less abstract one. At each stage,
using simulation and bisimulation we can verify the correspondence between the current version
and the previous (more abstract) one. It can be applied also in the BPEL modelling of WSs, using
the two-way mapping. Moreover we argue, with a simple consideration, that the simulation can be
part of the problem of automatic composition of services.

In Figure 6.1 we present a framework, for the design and verification of WSs using process
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algebras [17] (e.g. CCS, π-calculus, LOTOS). In this chapter we focus on LOTOS, one of the most
expressive process algebra. We provide a two-way mapping between BPEL/WSDL and LOTOS,
and general guidelines for translations between BPEL/WSDL and a process algebra. We choose
LOTOS because it allows us the data handling, and the verification and the modelling of the BPEL
handlers.

Respect to the quoted previous works, we study also the direction from a formal language
to BPEL. Using the two-way mapping, that allows an automatic translation between the two
languages, two choices are available: designing in BPEL and verifying with a process algebra,
designing and verifying in a process algebra. These two approaches are not alternative, but they
can be combined in the same development.

Designing in BPEL and verifying with a process algebra. Going from BPEL to a PA
allows us the verification step in PA, and the converse allows to see the counterexamples directly
in BPEL, hopefully even in the visual interface for designing BPEL services. Obviously one can
correct in PA, and the BPEL corrected code is automatically generated. This approach is useful
also for reverse engineering issues, and when we want to verify BPEL services developed by others.

Designing and verifying in a process algebra. We point out that using the mapping we
can automatically obtain BPEL/WSDL specifications. To our knowledge this is the first work in
this direction. As advocated in a previous work [105], being simple, abstract and formally defined,
PAs make it easier to specify the message exchange between WSs, and to reason on the specified
systems. They are especially worthy as a first description step because they enable one to analyze
the problem at hand, to clarify some points, to sketch a (first) solution using an abstract language
(then dealing only with essential concerns), to have at one disposal a formal description of one or
more services-to-be, therefore adequate to use existing reasoning tools to verify and ensure some
temporal properties (safety, liveness and fairness properties), behavior equivalences (bisimulation),
and execution traces. Process algebras design allows the distributed development and software
reuse.

In Section 6.2 we focus on the two-way mapping between LOTOS to BPEL and we give the
guidelines formalizing the translation between process algebras and BPEL. In Section 6.3 we il-
lustrate the features provided by our approach: temporal logic model checking, execution traces,
simulation, bisimulation. We discuss the hierarchical refinement and other problems that we can
solve using a process algebra representation for WSs and a bisimulation analysis. In Section 6.4
presents related works and motivates our contribution with respect to them. We draw up concluding
remarks in Section 6.5 and we mention some future works.

The results of this chapter are published in [46, 106], and the basic definitions are introduced
in Section 2.3.

6.2 The two-way mapping between LOTOS and BPEL

In this section we show the two-way mapping between LOTOS, a process algebra that allows data
handling, and BPEL. Our goal is showing a two-way mapping between the two languages, that
allows an automated translation. For lack of space, it is not possible to introduce all of BPEL,
XMLSchema, and XPath. Accordingly, the reader who is not used with them should refer to
[4, 1, 2].

When it is possible, we present together both directions of the mapping. While the translation
from BPEL to LOTOS implicitly preserves the BPEL structure, the converse does not: LOTOS
allows to use the construct in very flexible manner, BPEL does not. In the LOTOS design we have
to be careful, if we want a simple automatic translation, to write behavior structurally similar to
BPEL ones. For example in BPEL a service can communicate only with other services, there is
no message exchange inside a service. In LOTOS instead, as in all process algebras, there are no
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Figure 6.1: Proposal overview
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constraints about this. In order to obtain a simple automatic translation from a process algebra, we
have to follow this simple rule in the design. The details of other similar rules will be given during
the explanation. We remark that in our framework, when we design and correct in BPEL, the
LOTOS-BPEL direction is free from this problem: we start from LOTOS code, that is BPEL-like
structured, because directly obtained by the translation from BPEL.

In our presentation we refer to Table 6.1 and to Table 6.2, where we show sample code of
both languages; the correspondence is about both directions of the mapping. Figure 6.2 gives a
very general picture. We show the mapping of basic construct, dynamic behavior, data definition
and handling, and fault, compensation, event handlers. Finally we give general guidelines for
translations between PAs and BPEL.

Sample BPEL Code Sample LOTOS Specification

< ... act1 ... > ..act1..; exit(5) ≫
</act1> accept x:Nat in ..act2..

<assign ... >

<copy>

<from expression="5"/>

<to var="x"/>

<copy>

</assign>

< ... act2 ... >

</act2>

<receive ... variable="m"> g?m:Nat;
</receive

<reply ... variable="m"> g!m:Nat;
</reply>

<invoke ... invar="mS" gS!mS:Nat; gR?mR:Nat;
outvar="mR">

</invoke>

Table 6.1: The BPEL-LOTOS two-way mapping: examples for basic behaviors.

6.2.1 General Outline

An external view of interacting WSs shows processes (services) running concurrently. Such a kind of
global system in LOTOS is described using LOTOS main behavior (that is the outermost process):
it instantiates processes composed in parallel and synchronizing on all actions representing their
interactions.

At the basis of our mapping there is the correspondence between LOTOS actions and BPEL
interactions. BPEL services and LOTOS processes instantiated in the main process correspond
to each other. The direction from BPEL to LOTOS is straightforward: we simply automatically
build a main behavior containing the instantiation of all the processes (each of them correspond
to a service), in the manner described above. About the other direction, from LOTOS to BPEL,
the LOTOS programmer have to respect this rule: he has to write the main behavior simply
instantiating all the processes representing services, in the usual manner.

To describe behaviors, in LOTOS we have the process definition, in BPEL the service descrip-
tion. In LOTOS a defined process can be instantiated (with action passing, that renames the name
of action in the definition, and parameter passing). From LOTOS to BPEL, we use the behaviors
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Sample BPEL Code Sample LOTOS Specification

<pick ... > (g1?m1:Nat; ..act1..) []

<onMessage ... variable="m1"> (g2?m2:Nat; ..act2..)

< ... act1 ...>

</onMessage>

<onMessage ... variable="m2">

< ... act2 ... >

</onMessage>

</pick>

<sequence ...> ..act1..; ..act2..

< ... act1 ... >

< ... act2 ... >

</sequence>

<flow ... > ..act1..;

< ... act1 ... > ([cond1]->link1 !1; []

<source linkname="link1" [not(cond1)]->link1 !0;)

condition="cond1"/>

</act1> ||

< ... act2 ... >

<target linkname="link1"/> ( link1 ?x:Bool;

</act2> ([x=1]->..act2.. [] [x=0]->i;) )

</flow>

<switch> [x>=0] -> ..act1..;

<case condition= []

"bpws:getVariableData(x)>=0"> [x<0] -> ..act2.. ;

<..act1..>

</..act1..>

</case>

<otherwise>

<..act2..>

</..act2..>

</otherwise>

</switch>

<while condition= proc while1 [..](..) :=

"bpws:getVariableData(x)>=0"> [x<0]-> i;

<..act1..> []

</..act1..> [x>=0]->..act1..; while1[..](..)

</while> endproc

Table 6.2: The BPEL-LOTOS two-way mapping: examples for structured behaviors.
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specified in the process definition to generate the BPEL service description with the names of part-
ner links, port type, operations, variables. From BPEL to LOTOS, we use the service description to
generate, including the names of actions, both the process definition and the process instantiations.
We have a process instantiation if the process represents a scope or a while.

We do not consider bindings issues. For the data type definitions in BPEL/WSDL we have
XMLSchema, in LOTOS we can define abstract data types. In LOTOS we initialize the data
structures defined with the type construct at the beginning of the main process.

To summarize, the main process first initializes data, then instantiates the process/services
running concurrently.

6.2.2 Basic behaviors and interactions

At the core of BPEL process model is the notion of peer-to-peer interaction between partners de-
scribed in WSDL. All BPEL basic activities perform interactions between WSs. An interaction is
characterized by the partner link, the port type, and the operation involved in the two communicat-
ing partners (each partner defines these three elements for each interaction). In parallel, LOTOS
has at its disposal the notion of action to represent dynamic evolutions and of rendez-vous to
describe synchronizations among processes. Consequently, when process/services are instantiated,
LOTOS synchronizing actions are equivalent to BPEL interactions. When the process representing
a service is defined, an action is simply an emission or a reception. The name of the action stores
information (parter link, port type, operation in BPEL, process and action names in LOTOS) on
the receiver in the emission case, on the sender in the reception case. This name can contain a
description of the interaction (e.g. request, notification, cancellation). When we instantiate, we
have to compose the names of the action of both interacting processes/services; we consider two
synchronizing action, we concatenate their definition name, and we give the concatenated name to
both.

Let us go forward in more details. Starting the mapping from BPEL, in order to build the
name of LOTOS action, we use the information in partner link, port type, operation attributes
in the receive, reply, and invoke. Let a partner 1 (resp. 2) have a partner link pl1 (resp. pl2),
a port type p1 (resp. p2), an operation o1 (resp. o2), and a variable v1(resp. v2) associated
with the exchanged message. Let a reservation request the object of the partner 1 message, and
an availability response the object of the partner 2 message. Then the process associated with
the partner 1 has in the definition the action pl1 p1 o1 resReq and the process for the partner 2
the action pl2 p2 o2 avResp. When the two processes are instantiated in the main behavior, the
name of their synchronized action is pl1 p1 o1 resReq pl2 p2 o2 avResp, and v1 (resp. v2) is the
parameter of the action for the partner 1 (resp. 2). Moreover if we have a message with N part
tags, in LOTOS we have an action with N parameters, one for each part of the message.

Starting from LOTOS instead, we extract the port type, operation and message definitions
analyzing the names of LOTOS actions in the instantiated processes. For example if we have two
actions pl1 p1 o1 pl2 p2 o2 and pl1 p1 o

′
1 pl2 p2 o2, we conclude that we have the service 1 with

partner link pl1, port type p1 and operations o1 and o′1, and a service 2 with partner link pl2, port
type p2 and operation o2. Moreover we know that there are two interactions: one between service
1 in partner link pl1, port type p1, operation o1, and service 2 in partner link pl2, port type p2,
operation o2; the other interaction is between service 1 in partner link pl1, port type p1, operation
o′1, and service 2 in partner link pl2, port type p2, operation o2.

The reception of a message is expressed using the receive activity in BPEL and using a action
with a reception in all its parameters in LOTOS.

In BPEL, the emission is written with the reply or the asynchronous invoke activity whereas
in LOTOS we use a action with an emission in all its parameters. The BPEL synchronous invoke,



6.2. THE TWO-WAY MAPPING BETWEEN LOTOS AND BPEL 49

performing two interactions (sending a request and receiving a response) corresponds in LOTOS to
an emission followed immediately by a reception. In LOTOS we have two different actions, because
we have two interactions in BPEL; the names of actions share the same partner link, the same
port type, the same operation but they differs only by a letter S or R at the end (representing the
emission and the reception of the invoke). Using this rule we can distinguish in the LOTOS code
when a contiguous emission-reception is an invoke.

6.2.3 Structured Behaviors

Now we introduce the mapping for LOTOS dynamic constructs and BPEL structured activities.

The pick BPEL activity is executed when it receives one message defined in one of its onMessage
tag or when it is fired by an onAlarm event; we cannot model the latter case because basic LOTOS
does not have the notion of time. The equivalent construct in LOTOS is obtained using the
non deterministic choice, in which the first action of each branch is a reception; it is chosen the
branch whose beginning reception is performed first. In the LOTOS modelling, if we use the
non deterministic choice with an emission as first action, then an automatic translation to BPEL
becomes very difficult. For example the following LOTOS behavior, because the a is an emission,
does not have a straightforward translation in BPEL:

... a!x:Nat; b?x:Nat; [] c?x:Nat; b?x:Nat;..

When we design in a process algebra, we have to think to BPEL code structure, in order to
simplify the automatic translation.

The sequence activity in BPEL match with the LOTOS prefixing operator ’;’.

In BPEL we have the flow activity, in LOTOS the full synchronization constructs ’||’. Because
in BPEL we cannot have interaction inside a service, therefore we do not have synchronizations in a
parallel composition inside a process representing a service. The mapping about the link tag is more
complicated, because LOTOS does not have an explicit construct of dependence relation between
concurrent actions. In BPEL we specify with the source tag the activity that has to occur first,
and with the target tag the dependent activity. In LOTOS we have an action for each link. These
actions are put after the end of the source behavior, and before the beginning of the target one; the
two behaviors synchronizes on these actions, that is they have to execute them at the same time.
In this way we are sure that the source behavior is completed before the beginning of the target
one. In Table 6.2, in the flow sample, activity act2 can be executed only both after executing
activity act1 and the condition cond1 is true; in the BPEL code, this condition is specified by
the transitionCondition attribute. In LOTOS after executing act1, we execute the action link1,
representing the link, and assign to its parameter the value 1 if the condition cond1 is true, 0
otherwise; act2 can be executed only if the condition is true and only after act1, because it can be
executed only after the action link1. If we cannot execute act2, we have to choices: just to skip
act2 (in LOTOS we do nothing putting an i action, in BPEL we set suppressJoinFailure = yes),
or to trow a fault (in LOTOS we put a fault action, in BPEL we set suppressJoinFailure = no).
More about the links can be found in the Section 6.2.7.

The switch tag defines an ordered list of case tag. A case corresponds to a possible activity
which may be executed. The condition of a case is a Boolean expression on variables. In our
process algebra we have a standard pattern combining guarded expression and non deterministic
choice, very often used in the design with LOTOS.

To define an environment with own local variables and with own handler of faults and events, in
BPEL there is the scope activity, in LOTOS the concept of local process. The process corresponding
to the scope is local to the process representing the outer scope. The outermost scope in BPEL is
the global one. We deal with this activity in Section 6.2.5
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The while BPEL tag and LOTOS recursive processes correspond to each other. The condition
of the while is the exit condition of the recursive process. The behavior of this recursive process
matches exactly the body of the BPEL loop, and conversely. The recursive process is instantiated by
the process corresponding to the scope that contains the while. In the LOTOS modelling, recursive
processes have to respect the structure of the BPEL while, in order to simplify the translation.

6.2.4 Data Descriptions

In this subsection, we are going to discuss three levels of data representation in LOTOS and BPEL:
data type definitions, XPath and LOTOS, data manipulation.

Data type definitions LOTOS allows us to define abstract data types, that is data domains
and operations on them (e.g. a list with operations: add an element, extract the first one etc.);
many basic types (char, natural, etc.) are already defined. In BPEL, types are described using
XMLSchema; elements can be simple (lots are already defined) or complex (composed by other
elements). A simple element and LOTOS basic data type corresponds each other; moreover we can
use the rename construct in LOTOS, for example to rename the type string with ’lastname’. We
have a complex element in XMLSchema and abstract data type in LOTOS, having one data type
for each element composing the complex one.

In XMLSchema complex elements can be composed in different manners, depending from the
indicators that establish the order, and the number of occurrences of simple elements.

Order Indicators. The indicator all : each element occurs exactly once, in any order. In
LOTOS we can define the abstract data type list. The element of the list, that can be added in any
order, are the element in the complex type. The indicator choice: an element in a set is chosen.
In LOTOS we can define the abstract data type set. The element of the set are the element in
the complex type. The indicator sequence: it specifies the elements and the order in which they
have to appear. In LOTOS we can use a list whose elements can be added only in a fixed order,
depending on the type.

Occurrence Indicators. They are use to define how often an element can occur, in details
maxOccurs the maximum number of times and minOccurs the minimum. In LOTOS we have the
constraints on the list with a fixed order.

Group Indicators. They define a set of elements, with indicators, that can be referenced in
another element. In LOTOS we can simply use the abstract data type of the group in the abstract
data type of the element that uses the group. For example, if a ’choice’ is referenced in a ’all’
indicator, an element of the list is a set.

Variable declaration and manipulation In LOTOS, variables are either parameters of
processes or parameters of a action. In BPEL, variables can represent both data and messages.
They are defined using the variable tag (global when defined before the activity part) and their
scope may be restricted (local declarations) using a scope tag. In LOTOS, only process parameters
need to be declared (not necessary for action variables) whereas in BPEL either global and local
variables involved in interactions have to be declared. In LOTOS, in local process we can declare
local variables.

A BPEL message corresponds to a set of action parameters in LOTOS. In particular a BPEL
part corresponds to a parameter of a action in LOTOS.

The BPEL assign tag has three equivalents in LOTOS depending on their use: (i) let Xi:Ti=Vi

in B means the initialization of variables Xi of types Ti with values Vi (∀i ∈ 1..n) in the behavior
B, (ii) B1; exit(Yi) ≫ accept Xi:Ti in B2 denotes the modification of variables Xi (replaced by new
values Yi), (iii) P(Xi) is an instantiation of a process or a recursive call meaning assignments of
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values Xi to the parameters of the process P . Conversely, these LOTOS constructs can be mapped
into BPEL using assign, and more precisely the copy tag.

LOTOS and XPath In BPEL/WSDL we can define either message or data variables, whose
type are XMLSchema data structures (element or complex element). XPath is used in BPEL to
manipulate data structures: to select element in a complex one, to get value from a variable, to
perform operations (e.g. sum, multiplication). LOTOS data structures are abstract data type that
are endowed by operations. For example lists have operations for adding an element, extracting
the first element and so on. Natural numbers has sum, multiplication and so on. We can use
these operations to manipulate data structures. In BPEL we use XPath as expression language; for
example we can query data from a variable, and if the variable is a complex type (e.g. a record),
we can select the part of interest and retrieve the value. LOTOS instead is similar to the common
programming languages like C: when we write a variable, we have its value directly, as in the assign
example of Table 6.1.

6.2.5 BPEL scope and LOTOS pattern of processes

In BPEL the scope tag defines a behavior context (local variables, event handlers, fault handlers,
compensation handler) for its primary activity. The primary activity describes the normal behavior
of the scope. In LOTOS we can define a pattern of processes that behaves in the same way. We
point out that a LOTOS user, in the design of a scope with handlers have to respect this pattern
of processes, in order to obtain automatically BPEL code. Vice versa, from BPEL specification we
can get the LOTOS one, automatically filling this pattern of processes.

In BPEL we can have nested scope. The outermost scope is the global service. In LOTOS we
have the concept of local process. In LOTOS the process/scope is local to the outer process/scope.
Each process/scope instantiate the following processes:

primary activity : a process primaryActivity for the primary activity of the scope. In the case of
normal termination, its last action is an end (to end fault and event handlers); we explain it
below.

event handler : a process eventHandlers, executed in full synchronization with primaryActivity,
because in BPEL event handlers are concurrent with the primary activity of the scope to
which the event handler is attached.

fault handlers: a process faultManager that catches a fault storing its name, launches the process
Kill to terminate the primaryActivity and eventHandlers, then, depending on the fault
name, calls the corresponding process to perform the fault activities.

compensation handler : a process for the compensation handler. In BPEL we can have at most
one compensation handler in a scope. The name of the compensation handler is the name
given in the scope attribute of the activity compensate. This process models the activity of
the corresponding compensation handler.

Each process/scope has the following structure (LOTOS pseudo-code):

proc scopeName [..](..) :=

( (primaryActivity[..](..) || eventHandlers[..](..))

[> Kill[]()

)

|[fault,end]| faultManager[..](..)

endproc
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The eventHandlers is concurrent with primaryActivity; they both can be interrupted by the
processKill, launched by the faultManager when a fault occurs. The process for the compensation
handler is called inside a process representing a fault or another compensation handler: in BPEL it
can be invoked, using the compensate tag, only either in a fault handler or in another compensation
handler.

Now, we introduce the translation about the handlers in details.

Fault Handlers When a fault occurs in a BPEL scope, all activities in the primary activity
and in the event handlers of the scope begin to terminate. Let faultName the parameter that
stores the name of the fault . In LOTOS we define a process faultManager running concurrently
respect the process representing the scope, synchronizing on the actions fault and end. The fault
action has the parameter faultName to communicate the name of the fault; the end does not have
parameters because we do not need to send or to receive messages, but only to communicate an
event. It follows the faultManager definition:

proc faultManager [fault, end] (faultName:String):=

( fault?faultName:String; Kill;

[faultName1]-> faultProc1[..](..)

[faultName2]-> faultProc2[..](..)

..

)

[] end;

endproc

If the scope terminates without faults, the process representing the scope performs as last
action the action end, allowing to faultManager to terminate without doing nothing. A fault
in BPEL is launched through the tag throw (that has with attribute the name of the fault) or
as response to an invoke activity; in LOTOS through action fault. After this the process Kill
is instantiated. This process doing nothing, but terminate primaryActivity and eventHandlers
using the disabling operator ’[>’. Finally, the process corresponding to the fault name is chosen:
for example faultProc1 corresponds to the fault faultName1.

We consider now the problem of fault propagation and handling. In BPEL, when a fault occurs
in a scope S that cannot handle it, S terminates abnormally and the fault is propagated to the
next scope up. If S can handle the fault, it terminates normally after executing the fault handler
activities. From BPEL to LOTOS translation we know which fault handler will catch a fault by
parsing the BPEL files. Similarly, from LOTOS to BPEL translation, by parsing the LOTOS
specification we know the fault handler that will catch the fault; if the fault is not caught, we have
a stop action instead of the fault one.

Compensation Handlers While a business process is running, it might be necessary to undo
one of the steps that have already been successfully completed. To each scope we can optionally
associate its compensation handler that undoes the primary activity of the scope; once a scope
completes successfully, its compensation handler become ready to run. This can happen in either
of two cases: explicit or implicit compensation. We map the compensation handler into a LOTOS
process local to the process representing the scope.

explicit compensation: It occurs upon the execution of a compensate activity, that can occur
inside a fault handler or a compensation handler of the scope immediately enclosing the scope
to be compensated; the compensate activity has an attribute scope whose value specifies the
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name of the scope to be compensated. The compensate activity is modelled in LOTOS by a
call to the process representing the compensation handler associated with the scope.

implicit compensation: It occurs when there is a fault handling. Let A be a scope, and B an
its nested compensatable scope. Consider the following scenario: B is completed successfully,
but another activity in A throws a fault. Implicit compensation ensures that whatever hap-
pened in scope B get undone by running its compensation handler. Therefore, the implicit
compensation of a scope goes through all its nested scopes and runs their compensation han-
dlers in reverse order of completion of those scopes. We can map this mechanism in LOTOS
by calling in the same order the processes representing the compensation handlers; all these
calls are executed in faultManager of A before the beginning of the fault activities. Ob-
viously we have to store the order in which the scopes are completed. We can use a queue
data structure in LOTOS to do it; this queue has global visibility and it is updated when a
scope completes or if a scope is compensated. The process faultManager of A can use this
structure to know the order of completion.

Event Handlers We have to consider the BPEL semantics of the event handler: it can ac-
cept messages an arbitrary number of times, until the scope ends. We adopt in LOTOS a recur-
sive process, concurrent to the primary activity of the scope in which is contained. We cannot
model the onAlarm tag, because in LOTOS there is no notion of time. It follows the structure of
eventHandlers:

proc eventHandlers [onMessage1, onMessage2,..](..):=

( (

(onMessage1?m1:T; ..act_m1..;) []

(onMessage2?m2:T; ..act_m2..;) []

..

)

eventHandlers [onMessage1, onMessage2,..](..);

)

[] end;

endproc

The action onMessage1 represents the reception of a message m1, whose type is T . After
receiving the message, the corresponding activity act m1 is executed. Then the process recursively
calls itself, and it ends when an end interaction happens.

6.2.6 Guidelines for translation between a PA and BPEL

Slightly modifying the mapping for LOTOS, we easily obtain a mapping for other process algebras.
In fact, while syntactically different, they share many concepts: the emission (message sending),
the reception (message receiving), the sequence of actions, the concurrency of actions (parallel
composition) and their synchronization, the processes and local ones, non deterministic choice of
actions. In Figure 6.2 we give the outline of the correspondences. We remark that for modelling
in a PA, if one wants a simple automatic translation, the PAs processes have to respect the BPEL
structure, as in LOTOS.

If the PA does not support the data definition and handling, the mapping is slightly different:
in this case the messages are tokens, and we cannot distinguish between parts in a message. In
details from BPEL to PAs we use the information in partner link, port type, operation attributes
in order to build the name of a action. If a partner 1 (resp. 2) has a partner link pl1 (resp. pl2), a
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Figure 6.2: The BPEL-PA correspondences

port type p1 (resp. p2), an operation o1 (resp. o2), and a variable v1(resp. v2) associated with the
exchanged message, then the name of the action in the instantiation is pl1 p1 o1 v1 pl2 p2 o2 v2.
In another words, now the message it is not a parameter of the action, but it is a part of the action
name: it characterizes the interaction. It is worth noting that for the translation from PAs to
BPEL, if the designer respects such a structure, partner links, port types, and operations involved
in the BPEL interactions can be deduced automatically from PAs actions. Otherwise, the user
have to give the names manually.

We end this section discussing why LOTOS is a better choice than other process algebras. A
first advantage is due to the disabling operator: if a PA does not have a disabling operator (e.g.
CCS, π-calculus), it is much more complex and inefficient (but still possible) to deal with the BPEL
handlers.

Another advantage of LOTOS is the data definition and the data handling. We can verify
services that deals with data and with messages having more than one part, about properties that
depends on values; we can carry out a black box testing. Moreover, starting the modelling from
LOTOS, we can check the data types.

6.2.7 An Example

Now we give an example of translation using the ”Loan Approval Process”, taken from [4]. The
service interacts with the services of customer, loan assessor, loan approver. A loan amount is
proposed by the customer. If the amount is lower than $10000, and if the loan assessor gives a
”low-risk” assessment, the loan is approved; otherwise the approver have to make the decision. In
any case the service communicates to the customer the decision.

If follows the WSDL message definition:

<message name="creditInformationMessage">

<part name="firstName" type="xsd:string"/>

<part name="name" type="xsd:string"/>

<part name="amount" type="xsd:integer"/>
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</message>

<message name="approvalMessage">

<part name="accept" type="xsd:string"/>

</message>

<message name="riskAssessmentMessage">

<part name="level" type="xsd:string"/>

</message>

<message name="errorMessage">

<part name="errorCode" type="xsd:integer"/>

</message>

In the business process defined below, the interaction with the customer is represented by
the initial <receive> and the matching <reply> activities. The use of risk assessment and loan
approval services is represented by <invoke> elements. All these activities are contained within
a <flow>, and their (potentially concurrent) behavior is staged according to the dependencies
expressed by corresponding <link> elements. Note that the transition conditions attached to the
<source> elements of the links determine which links get activated. Because the operations invoked
can return a fault of type ”loanProcessFault”, a fault handler is provided. When a fault occurs,
control is transferred to the fault handler, where a <reply> element is used to return a fault
response of type ”unableToHandleRequest” to the loan requester. We omit the details in the code
not involved in the translation.

<process name="loanApprovalProcess"

suppressJoinFailure="yes" ...>

...

<!-- variables declaration>

<variables>

<variable name="request"

messageType="lns:creditInformationMessage"/>

<variable name="risk"

messageType="lns:riskAssessmentMessage"/>

<variable name="approval"

messageType="lns:approvalMessage"/>

<variable name="error"

messageType="lns:errorMessage"/>

</variables>

<!-- fault handler definition>

<faultHandlers>

<catch faultName="lns:loanProcessFault"

faultVariable="error">

<reply partnerLink="customer"

portType="lns:loanServicePT"

operation="request"

variable="error"

faultName="unableToHandleRequest"/>

</catch>
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</faultHandlers>

<!-- behavior definition>

<flow>

<links>

<link name="receive-to-assess"/>

<link name="receive-to-approval"/>

<link name="approval-to-reply"/>

<link name="assess-to-setMessage"/>

<link name="setMessage-to-reply"/>

<link name="assess-to-approval"/>

</links>

<receive partnerLink="customer"

portType="lns:loanServicePT"

operation="request"

variable="request" createInstance="yes">

<source linkName="receive-to-assess"

transitionCondition=

"bpws:getVariableData(’request’,’amount’)

< 10000"/>

<source linkName="receive-to-approval"

transitionCondition=

"bpws:getVariableData(’request’,’amount’)

>=10000"/>

</receive>

<invoke partnerLink="assessor"

portType="lns:riskAssessmentPT"

operation="check"

inputVariable="request"

outputVariable="risk">

<target linkName="receive-to-assess"/>

<source linkName="assess-to-setMessage"

transitionCondition=

"bpws:getVariableData(’risk’,’level’)=’low’"/>

<source linkName="assess-to-approval"

transitionCondition=

"bpws:getVariableData(’risk’,’level’)!=’low’"/>

</invoke>

<assign>

<target linkName="assess-to-setMessage"/>

<source linkName="setMessage-to-reply"/>

<copy>

<from expression="’yes’"/>

<to variable="approval" part="accept"/>

</copy>

</assign>

<invoke partnerLink="approver"
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portType="lns:loanApprovalPT"

operation="approve"

inputVariable="request"

outputVariable="approval">

<target linkName="receive-to-approval"/>

<target linkName="assess-to-approval"/>

<source linkName="approval-to-reply" />

</invoke>

<reply partnerLink="customer"

portType="lns:loanServicePT"

operation="request"

variable="approval">

<target linkName="setMessage-to-reply"/>

<target linkName="approval-to-reply"/>

</reply>

</flow>

</process>

Now we show the LOTOS code. Due to the lenght of the action names, we shorten them the
following way:

request <- customer_lns:loanServicePT_request

check_S <- assessor_lns:riskAssessmentPT_check_S

check_R <- assessor_lns:riskAssessmentPT_check_R

approve_S <-approver_lns:loanApprovalPT_approve_S

approve_R <-approver_lns:loanApprovalPT_approve_R

To specify parts of the message in BPEL we have the part tag, in LOTOS the action parameters.
Each parameter of the actions models a part of the exchanged message. For example the BPEL
variable request has three parts: firstName (string), name (string), amount (integer). In LOTOS
we have three parameters with same corresponding names and types.

The Approval process definition, without considering the dependencies between activities ex-
pressed by links:

proc Approval [request, check_S, check_R, approve_S, approve_R]

(firstName:String, name:String, amount:Integer,

level:String, accept:String) :=

\\ receive

request ?firstName:String ?name:String ?amount:Integer

||

\\invoke

check_S !firstName:String !name:String !amount:Integer;

check_R ?level:String

||

\\ assign
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exit(yes) accept accept:String in {

\\ invoke

approve_S !firstName:String !name:String !amount:Integer;

approve_R ?accept:String

||

\\ reply

request !accept:String

}

endproc

It follows the Approval process definition, now considering the dependencies between activities
expressed by links:

proc Approval [request, check_S, check_R, approve_S, approve_R,

link_receive-to-assess, link_receive-to-approval,

link_assess-to-setMessage, link_assess-to-approval,

link_setMessage-to-reply, link_approval-to-reply]

(firstName:String, name:String, amount:Integer,

level:String, accept:String,

b1:Bool, b2:Bool, b3:Bool, b4:Bool) :=

\\receive

request ?firstName:String ?name:String ?amount:Integer;

( [amount < 10000] -> link_receive-to-assess;

\\ source receive-to-assess

[]

[amount >= 10000] -> link_receive-to-approval!1;

\\ source receive-to-approval

)

||

\\ invoke

link_receive-to-assess; \\ target receive-to-assess

check_S !firstName:String !name:String !amount:Integer;

check_R ?level:String;

( [level = ’low’] -> link_assess-to-setMessage;

\\ source assess-to-setMessage

[]

[level != ’low’] -> link_assess-to-approval!1;

\\ source assess-to-approval

)

||

\\ assign

link_assess-to-setMessage; \\ target assess-to-setMessage

exit(yes) accept accept:String in {
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link_setMessage-to-reply!1; \\ source setMessage-to-reply

\\ invoke

\\ target receive-to-approval and assess-to-approval

( link_receive-to-approval ?b1:Bool []

link_assess-to-approval ?b2:Bool );

( link_receive-to-approval ?b1:Bool []

link_assess-to-approval ?b2:Bool );

( [b1=1 AND b2=1]->

( approve_S !firstName:String !name:String !amount:Integer;

approve_R ?accept:String );

[]

[not(b1=1 AND b1=1)]-> i

)

link_approval-to-reply!1; \\ source approval-to-reply

||

\\ reply

\\ target setMessage-to-reply and target approval-to-reply

( link_setMessage-to-reply ?b3:Bool []

link_approval-to-reply ?b4:Bool );

[]

( link_setMessage-to-reply ?b3:Bool []

link_approval-to-reply ?b4:Bool );

( [b3=1 AND b4=1]-> request !accept:String

[]

[not(b3=1 AND b4=1)]-> i

)

}

endproc

The case of an activity that depends from two or more other activities is more complicated:
the source activities can happen in any sequence. In LOTOS we model this situation using the non
deterministic choice in which each branch is a link activity; if an activity depends from N source
activities, we repeat the non deterministic choice of all link action N times. In this way the we have
to receive N values; we ensure that we receive N different aknowledgement of a source activity
execution by the guarded expression before performing the target activity. For example the last
request has to be executed after link_setMessage-to-reply and link_approval-to-reply in
any order; using the non deterministic choice we ensure that we receive two aknowledgement of ex-
ecution of the source activity. We ensure that both activities are performed by executing the target
activity request only if we have b3 = 1 (the action link_setMessage-to-reply is executed) and
b4 = 1 (the action link_approval-to-reply is executed). If b3 = 0 or b4 = 0 we simply do noth-
ing, according to the suppressJoinFailure =′ yes′ attribute in the BPEL process tag. We remark
that b3 and b4 are initialized with 0 by the main process; all LOTOS parameters related with the
link actions have to be initialized with 0 (we always follow this rule in the mapping about the links).
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The faultManager process definition:

proc faultManager [fault, end] (faultName:String) :=

( fault?faultName:String; Kill;

[lns:loanProcessFault]-> faultProc1[request](error)

)

[] end;

endproc

The faultProc1 process definition:

proc faultProc1 [request](error:Integer) :=

request !errorCode:Integer

endproc

Finally we give the LOTOS main process, considering also the links; we concatenate the names
of two actions in process definition that constitute an interaction (e.g. the action request_c is the
interaction composed by the action ’request’ (a reception) in the process definition Approval and
the action ’c’ (an emission) in the process definition Customer). The two actions are instantiated
with the same name. For example the request in the process definition Approval becomes, in the
Approval instantiation, request_c; the action c in the process definition Customer is replaced by
request_c in the instantiation. The actions corresponding to the links are not renamed (they do
not model an interaction between services); we always follow this rule in the mapping about the
links.

proc main [request_c, check_S_ass, check_R_ass,

approve_S_app, approve_R_app,

link_receive-to-assess, link_receive-to-approval,

link_assess-to-setMessage, link_assess-to-approval,

link_setMessage-to-reply, link_approval-to-reply, ..]

(firstName, name, amount, level, accept, ..) :=

( ( Approval[request_c, check_S_ass, check_R_ass,

approve_S_app, approve_R_app,

link_receive-to-assess, link_receive-to-approval,

link_assess-to-setMessage, link_assess-to-approval,

link_setMessage-to-reply, link_approval-to-reply]

(firstName, name, amount, level, accept, 0, 0, 0, 0)

|| Customer[request_c,..](..)

|| Assessor[check_S_ass, check_R_ass,..](..)

|| Approver[approve_S_app, approve_R_app,..](..)

)

[> Kill[]()

)

|[fault,end]|

faultManager[]()

endproc

6.3 Design and verification features

In this section we discuss the features that process algebras provide for design and verification, and
we sketch some problems, for a future work, that deal with simulation and bisimulation. Examples
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of WS developed using process algebras can be found in [105], where a sanitary agency is modelled
in CCS, and in [106], where a simple e-commerce application is designed using LOTOS.

Distributed development and reuse. Allowing the modularization, the modelling from a
process algebra supports the distributed development and the software reuse.

Verification features. The following verification facilities are available at an early stage of
the Web services deployment:

temporal logic model checking, in order to prove properties of the service: liveness (some-
thing good happens), safety (bad events do not happens), request-response (a request is
always satisfied, also for infinite behaviors), and others. We can verify for example mutual
exclusion properties (e.g. if the provider can satisfies only one request among multiple con-
current requests, it satisfies the first confirmed request). If the property is not satisfied, a
counterexample is returned.

bisimulation, to check whether the behaviors of two services or two versions of the same
service are equivalent; if they are different, it is shown a counterexample.

simulation, to check whether the behavior of a services is included by the behavior of other
interacting services; if it is not, it is shown a counterexample.

execution traces of the service (manually or random guided), to understand the behavior of
the service. In the verification community (and in [91]), often the simulation name is used to
denote execution traces analysis; this is no the case of this chapter.

In the case of a process algebra allowing the data handling, it is available:

data type checking, in the case of LOTOS and other process algebras allowing data handling.

black box testing: for a class of input values, some properties are satisfied.

Respect previous approach [91, 53, 90, 55], one of the main advantage of using process algebra
is the availability of the simulation and bisimulation analysis; simulation supports the hierarchical
refinement design method, while the bisimulation allows the redundancy analysis of a community,
and it can be used to establish when a service can substitute another one in a composition [28].
Moreover we argue, with a simple consideration, that the simulation can be part of the problem
of automatic composition of services. In the rest of the section we discuss briefly these issues,
considering them for a future work.

Hierarchical refinement [78, 76]. It is a well-known method for design development. It
proceedes top-down: starting with a highly abstract specification, we construct a sequence of
behavior descriptions, each of which refers to its predecessors as a specification, and is thus less
abstract than the predecessor. At each stage the current implementation is verified to satisfy its
specification. The last description in the sequence contains no abstractions, and constitutes the
final implementation. The behavioral equivalence between a specification and its implementation is
checked by simulation or by a trace-based equivalence. The advantage of using a two-way mapping,
rather than only the direction starting from BPEL, is that we can apply hierarchical refinement
also in the BPEL modelling of WS.

Automatic Composition and Redundancy. The simulation can be part of the problem of
automatic composition of services: intuitively, a service is composable from a bundle of other ones,
if it can be simulated by them, that is if its behaviors are contained in their behaviors.

When a community of Web services is used to compose a new service (e.g. [16]), it is useful to
know which services in the community are redundant: we calculate it off-line, using bisimulation.
On-line, before starting the composition algorithm, we select services avoiding that two or more
equivalent services are activated.
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6.4 Related Works

We are going to introduce three kinds of related works aiming at: i) specifying WSs at an abstract
level using formal description techniques and reasoning on them, ii) using jointly abstract descrip-
tions and executable languages (mainly BPEL), iii) developing WSs from abstract specifications.

At this abstract level, lots of proposals originally tended to describe WSs using semi-formal
notations, especially workflows [81]. More recently some more formal proposals grounded for most
of them on transition system models (LTSs, Mealy automata, Petri nets) have been suggested
[68, 91, 62, 16, 80]. With regards to the reasoning issue, works have been dedicated to verifying
WS description to ensure some properties of systems [55, 41, 91, 53, 90]. Summarizing these works,
they use model checking to verify some properties of cooperating WSs described using XML-based
languages (DAML-S, WSFL, BPEL, WSCI). Accordingly, they abstract their representation and
ensure some properties using ad-hoc or well-known tools (e.g. SPIN, LTSA). We have a deeper
look in the following of this section at proposals focusing on BPEL.

In comparison to these existing works, the strength of our alternative approach (using PA) is to
work out all these issues (description, composition, reasoning) at an abstract level, based on the use
of expressive (especially compared to the former proposals) description techniques and adequate
tools. The compositionality property of process algebra is also very convenient in one area where
composition is one of the main concern.

The second bunch of related work [55, 97, 53, 91, 115] deals with mappings between abstract
and concrete descriptions of WSs. Let us emphasize that in first attempts [105, 106], we have
already proposed some guidelines to map process algebra and BPEL. Nevertheless, these guidelines
(for CCS and LOTOS) were not defined in details and they deal with a subset of BPEL; in this
work we include in the mapping also fault, compensation, and event handlers. Two relevant related
works are [53, 55]. In the first one, the authors proposed a formal approach to model and verify
the composition of WSs workflows using the FSP (Finite State Processes) notation and the LTSA
tool. Their paper introduces a translation of the main BPEL structured activities (sequence,
switch, while, pick and flow) into FSP processes. In the second one, it is presented an approach to
analyze BPEL composite web services communicating through asynchronous messages. They use
guarded automata as an intermediate language from which different target languages (and tools)
can potentially be employed. They especially illustrate with the use of Promela/SPIN as the formal
language and the corresponding model checker.

Compared to them, our attempt is more general: (i) we show a two-way mapping, useful
to develop WSs and also to reason on deployed ones (the latter direction was the single goal of
mentioned related works). All other previous works give only a mapping from BPEL to a formal
language. (ii) we consider in the mapping also compensation and event handlers, and we deal with
fault handlers explicitly. (iii) we can verify not only temporal logic properties, but also behaviors
equivalences between services using bisimulation. Using this facilities we can apply the hierarchical
refinement design method to WSs, also in the BPEL modelling.

Finally, the recent proposal of Lau and Mylopoulos [79] argue the use of TROPOS as starting
point of WS design, but they do not deal with verification, but requirements issues. A more general
methodology, integrating the requirements analysis and the generation of BPEL code, was proposed
in [97].

6.5 Concluding Remarks and Future Work

We present a framework, for the design and the verification of WSs using process algebras. We
illustrate a two-way mapping between a very expressive process algebra, LOTOS, and BPEL. We
give also general guidelines for translations between a process algebra and BPEL.
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Process algebras allow not only temporal logic model checking, but also a simulation and bisim-
ulation analysis; they allow a design method, hierarchical refinement [78, 76], that we can apply
to WSs. In fact the two-way mapping allows us to design and verify both in process algebra and
in BPEL. In Section 6.3, we sketch how simulation and bisimulation are involved in the automatic
composition of services and in the redundancy check of services. In our opinion, these connections
deserve to be studied in a future work, together with the generalization of the mapping to other
languages and its implementation. In our current mapping, we do not consider dynamic process
instantiation and correlation set. Moreover we do not tackle the problem of the dynamic choice of
the partner to talk to (our interactions are established before the conversation between partners
starts); for this reason we do not consider BPEL endpoint references. It is interesting to extend
the mapping in these directions. Finally, we plan to experiment the use of process algebras in the
methodology proposed in [97], where only temporal model checking is performed; in particular we
are interested in adding the simulation and bisimulation analysis.
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Conclusions

The first aim of this thesis is to identify conditions that make tractable some verification problems.
We first study the complexity of such problems under the hypothesis of some structural restrictions
(e.g. treewidth). Many problems that are intractable (e.g. NP-hard, PSPACE-hard) for general
graphs, are polynomial or linear-time solvable when the graph has bounded treewidth (see [27, 26,
25] for an overview). For example, constraint-satisfaction problems, which are NP-complete, are
PTIME-solvable when the variable-relatedness graph has bounded treewidth [40, 54].

Our answer is negative; we identify only a problem whose complexity decreases, under the hy-
pothesis of bounded treewidth. In Section 3.2, we prove the positive result: the Image Computation
complexity on a transition system with |V | states and treewidth at most k is O(|V |2 · k); in the
case of unbounded treewidth is O(|V |3).

Then, we show a sequence of negative theorems. About Bounded Model Checking, one of the
main approaches to Model Checking, the unrolling does not preserve treewidth (Section 3.3).
In Section 3.4, we show that, even if we assume bounded pathwidth and bounded degree in
the transition sysyem, Temporal Logic Model Checking remains PSPACE-complete, Simulation
remains EXPTIME-complete, and Containment remains EXPSPACE-complete.

In Chapter 4, about Model Checking, we show that preprocessing either the transition system
or the property in a polynomial size data structure - using any amount of time, does not decrease
the worst case complexity. The preprocessing of the system is useful when we want to verify the
same system against many properties; while the preprocessing of the property can be used when
we agree on some requirements and we want to verify them against many systems. Many model
checking tools support these functions (e.g. databases of property in the case of preprocessing the
property, the compilation of the system in BDDs in the case of the preprocessing of the model).

Then, we formally prove that the superpolynomial growth in Symbolic Model Checking is
unavoidable, for a large class of data structure (e.g. BDDs, ADDs). Symbolic Model Checking is
one of the most effective approaches to this problem.

The second aim of the thesis is to show the complexity of many problems related with
reachability. Reachability is an important problem both for formal verification community (it is a
particular case of model checking) and for reasoning about actions area (it can be the goal of the
planning problem). We discuss these results in Chapter 5.

The third aim of the thesis is to apply formal verification to Web services, an emerging tech-
nology in computer science. In Chapter 6, we present a two-way mapping between process algebra
(a formal verification formalism) and BPEL (the main WS coordination language).

We remark the applications of this mapping: model checking analysis, the use of simula-
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tion/bisimulation for verification, for the hierarchical refinement design method, for the service
redundancy analysis in a community, and for replacing a service with another one in a composi-
tion.



Bibliography

[1] XMLSchema, www.w3c.org/XML/Schema.

[2] XPath, www.w3c.org/TR/xpath.

[3] P.A. Abdullah, P. Bjesse, and N. Een, Symbolic reachability analisys based on SAT-solvers,
Proceedings of the 6th International Conference on Tools and Algorithms for the Construction
and Analisys of Systems (TACAS’00), 2000.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, Specification: Busi-
ness Process Execution Language for Web Services Version 1.1, 2003, http://www-
106.ibm.com/developerworks/library/ws-bpel/.

[5] A. Atserias, P.G. Kolaitis, and Moshe Y. Vardi, Constraint propagation as a proof system,
CP 2004, 2004, pp. 77–91.

[6] F. Bacchus and Q. Yang, The downward refinement property, Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI’91), 1991, pp. 286–293.
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