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Abstract

This thesis deals with algorithmic aspects of communication in networks. The main focus of the
thesis is to find factors which can influence significantly the efficiency in performing a given com-
munication task.

When we approach a problem, the first thing we have to do in order to study it, is to find a
good model. A model is good if it allows to remove all factors that are irrelevant and expose the
core of the problem we want to address, while remaining close to the reality. During the modeling
step, however, there are cases in which more than one assumption is reasonable, and thus different
models can be developed to study the same task. This makes it interesting to investigate how
different assumptions can influence the bounds on the level of efficiency that can be achieved.

The efficiency itself is something that has to be well defined. Depending on the computational
and communication model we assume, different measures of performance may be more appropriate
to evaluate the quality of a given algorithm or distributed protocol. Depending on the scenario
we consider, moreover, we may have the need to optimize our solutions with respect to different
objective functions. A protocol that performs a given task quickly could have a bad behavior with
respect to, e.g., power consumption or fault tolerance. While in some cases we can focus on a single
parameter, in many situations we need to search for solutions that provide good trade-offs among
different performance metrics.

Another factor worth to mention is the amount of available information. Distributed protocols
that rely on complete knowledge of the network are impractical. Indeed, nodes involved in a
communication task have to cooperate in order to complete it, often relying on local knowledge
to achieve a global optimum. The relation between the information provided to nodes and the
efficiency is one of the main topics in this thesis.

We analyzed the broadcast operation, one of the basic network communication primitives, in
different models and considering different performance metrics. We also studied the spanning trees
with many leaves problem, which is related to power consumption issues for the broadcast operation
in radio network, and the lifetime problem for repeated broadcast operations. Another task we
studied is acknowledged broadcasting, that is a communication task closely related to the broadcast
operation. Other problems addressed in this thesis are a coloring problem arising from radio-
frequency assignments, the autonomuos deployment of mobile sensors, and the assignment of proxies
to simulate defective devices in a parallel computer.
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Notation

We use the symbol � to denote the end of a proof. � denotes the end of an algorithm, when
described at a high level without pseudo-code. Similarly, ♣ denotes the end of a subroutine. We
use log to denote the logarithm with base 2.
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Chapter 1

Introduction

To establish how the efficiency in performing important communication tasks in networks can be
influenced by different factors is the main goal of this thesis.

Our contributions are mainly based on algorithm design and analysis, using combinatorial and
graph theoretical tools. To a minor extent, probabilistic tools and simulations have also been used.
The approach used throughout the thesis to study network communication avoids to consider any
particular device or networking protocol; indeed, all our contributions rely on simple network models,
based on different graph families, in order to prove general results which remain valid regardless of
the technology adopted.

In this introduction we would like to briefly describe some of the factors affecting efficiency in
network communication that will be analyzed in the following chapters.

Different assumptions made during the modeling step can greatly affect the level of perfor-
mance we can achieve in our solutions. As an example, depending on the model of communication
we consider, the graphs used to model networks can be either directed or undirected. Undirected
graphs can be used to describe the network topology whenever the reachability relation defined by
the model of communication is symmetric. Radio networks, e.g., are studied both in symmetric
and asymmetric models, as different characteristics of the transmitting devices can make one model
more appropriate than the other. In wired networks, the reachability relation is more often assumed
to be symmetric, as cables allow bidirectional communication. While protocols working correctly
on directed graphs can be applied to undirected graphs, the opposite is not true. It follows that we
can expect to have better performance when we work under a model of communication allowing us
to restrict attention to undirected graphs.

Further restrictions on the type of graph modeling the network can be interesting to study. Some
tasks can be NP hard in general, but they can admit an efficient solution in a restricted but still
meaningful family of graphs. In some cases, the network topologies which are difficult to address
may be very unlikely to arise in practice. A deterministic solution for a given problem has to be
correct on all inputs, but if we allow a small probability of failure, using a probabilistic approach,
then we can restrict attention to a subclass of instances having some good properties. In order to
do so we need to be able to prove that these properties hold with high probability on instances
which are relevant to the problem we are studying.

The definition of the model of communication is probably the most important part of the
modeling step. There are problems however that are complex even to state; in such cases, a good
model should allow to reason on a clean formulation of the problem itself. As an example, frequency
assignment problems in radio networks become node coloring problems on graphs: the behavior of
radio transmissions is handled by mean of coloring constraints, thus confining the complexity of the
physics into the modeling step.

1



2 CHAPTER 1. INTRODUCTION

Once the problem we want to analyze is correctly modeled, we still need to define the measure
of performance we consider in order to evaluate efficiency. The one that is used more frequently
to evaluate centralized algorithm is the asymptotic time complexity. Such a measure provides a
good estimation of the performance we can expect by an algorithm, when implemented and executed
on a modern computer, only if the amount of data processed is small enough to fit in the random
access memory. Complex memory hierarchies indeed require the algorithms to express good locality
properties, as the number of accesses to the slow external memories, like hard disks (and in general
memories on lower levels in the hierarchy), has a strong impact on the execution time.

When we consider distributed protocols, computation performed locally may be irrelevant with
respect to the time spent in message exchanges, thus the communication complexity is often pre-
ferred to the time complexity in order to evaluate efficiency. Pushing this assumption to the limits
however, as in models where NP complete problems can be solved locally in negligible time, makes
the model impractical, and solutions achieved under such a set of assumptions only have a theoretical
interest.

The choice of the measure of performance is thus strictly related with the model we assume.
If the model fails to capture aspects that are important with respect to the task we are studying,
then the measure of performance will fail to provide a good estimation of the actual efficiency of
the algorithms developed on top of it.

In many situations, we cannot afford to consider performance of an algorithm with respect to
a single parameter. Consider as an example approximating algorithms, usually developed in order
to obtain “sufficiently good” solutions to NP hard problems, in polynomial time. Performance of
such algorithms is evaluated with respect both to the time taken to output the solution and to the
quality of the solution itself, in terms of distance from the optimum. This is still a simplification
as, depending on the scenario, we may have the need to be able to choose the level of precision,
trading completion time for the quality of the solution obtained. If this is the case, we can con-
sider our problem solved and we can start to consider efficiency only if we have a polynomial-time
approximation scheme.

Power consumption is an important measure of performance. Minimizing the power con-
sumption of a network can indeed lower the total cost of ownership, resulting both in competitive
advantages and in environmental friendliness. The minimization of overall power consumption can
result in unbalanced workload among nodes. In the case of networks made of portable devices de-
pending on batteries of limited capacity like, e.g., in a sensor network, it is important to maximize
the operating time between battery recharges. To achieve this goal, early power drains in few
nodes have to be avoided and thus the workload has to be balanced even at the cost of increasing
overall power consumption.

The ability to correct faults (or to correctly operate in spite of their presence) becomes a
fundamental goal when we deal with unreliable devices.

Obviously, the efficiency of a given algorithm or distributed protocol for a given problem can
vary dramatically depending on the measure of complexity we adopt and the different parameters
we consider for optimization.

Another factor affecting efficiency is the availability of information. Indeed, while a cen-
tralized algorithm operating over a network receives the network itself as part of its input, this
is not the case for distributed protocols. In a distributed protocol, nodes have to operate usually
relying on a partial and local knowledge of the network. This makes it interesting to investigate the
relation between the availability of information and efficiency of the solution to a given problem.
If we consider how much of the total knowledge is available to nodes in the network at the very
beginning of the execution of the task, we have at the two extremes on the one hand the situation
in which each node has complete knowledge of the network, and on the other hand the case where
each node only knows its own label.
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When complete knowledge of the network is available to all nodes, each node can simulate a
centralized algorithm, and thus we are allowed to assume the existence of a central monitor even
when we develop distributed protocols. The case where nodes only have a partial knowledge is more
interesting, both because it models more faithfully real communication environments, and because
it allows to define different submodels with clear separations in terms of achievable performance.
Protocols can be either adaptive or oblivious. In the first case, nodes can acquire, during the
execution of the protocol, additional knowledge of the network, and can modify their behavior
depending on this information. The behavior of a node in an oblivious protocol is instead fully
determined by the initial knowledge (available to the node since the very beginning of the execution
of the task). It follows that we can expect adaptive protocols to outperform oblivious ones, while
the opposite cannot happen.

Partial information available to nodes can be of many different kinds. It can be local knowledge
as in the case where, e.g., nodes know their neighborhood within a certain distance, or it can be
global, when nodes know global parameters of the network like the total number of nodes and the
diameter. It is possible to study how the availability of a particular kind of information affects the
efficiency, thus adopting what we can call a qualitative approach. If we change our perspective on
the problem, we can see that the amount of available information (regardless of its type) can be
a measure in itself. Indeed, we can use it in order to investigate the difficulty of a given task by
analyzing how much information has to be provided to nodes in order to achieve a given degree
of efficiency. In order to do so, we need to take a quantitative approach, abstracting from the
particular knowledge provided to nodes.

1.1 Structure of the Thesis

This section contains a description of the structure of the thesis, together with a brief overview of
the original contributions it contains. All the details concerning the problems addressed, and the
related bibliographic references, are given in the respective chapters.

In Chapter 2 we focus on the relation between information and efficiency. The communication
task we consider is the broadcast operation. This operation, which is one of the basic primitives
in network communication, requires to disseminate a message from a distinguished node called the
source to all nodes in the network.

Results presented in Section 2.2 are based on the advice paradigm, that is a recently introduced
methodology enabling a quantitative approach for studying the relation between the amount of
information available to nodes (or in general to agents operating in a distributed setting), and the
efficiency in solving a given task. The task we analyzed is the broadcast operation in tree networks
in the synchronous one-port model (one of the classical models for studying wired network commu-
nication). The measure of performance we considered is communication time. Our contribution is
the first one to give the approximate shape of the whole curve representing the relation between
available information and broadcasting time.

Section 2.3 is devoted to radio networks. In the model we used for such networks, broadcasting
time depends on the diameter and on the density, i.e., the minimum Euclidean distance between
two nodes. One more thing which influences performance is the ability of nodes to perceive their
position with respect to an absolute coordinate system. This ability enables the usage of techniques,
based on tilings of the Euclidean plane, which make it easier to achieve a good level of parallelism
while avoiding collisions during communication. (We will see in the sequel how the problem of
collisions affects broadcasting time in radio networks.)

While the assumption of having positional information is reasonable, since devices like GPS
are nowadays cheap and small, it is practically fundamental and theoretically interesting to study



4 CHAPTER 1. INTRODUCTION

how the availability of approximate positional information can be exploited, as in the literature
this information has always been assumed to be exact. Moreover, we dropped another assumption
made in the literature, that the density of the network is known to nodes. It turned out that
the combination of missing and inaccurate information (unknown density and unknown error in
perceiving positions) substantially changes the problem with respect to the easier scenario previ-
ously embraced. The main challenge in this setting has been achieving fast broadcasting in sparse
networks, where the optimal broadcasting time is linear with respect to the diameter.

Section 2.4 considers a different scenario and a different performance metric. While in Sec-
tions 2.2 and 2.3 we assumed a synchronous model of communication, in this section we assumed
the communication to be asynchronous, adopting a recently introduced model for radio networks.
Here the performance metric is the work spent to complete broadcasting, i.e., the total number of
messages sent in the whole network (notice that the work coincide with the message complexity).
Indeed, due to the fact that in this model we assumed that the adversary can delay arbitrarily
the actual transmission of the messages with respect to the scheduled times, time is not a good
measure of performance anymore. In this setting, we improved some of the existing results and we
extended the study from centralized algorithms to distributed protocols, addressing the problem of
asynchronous broadcasting in networks of unknown topology. Our analysis involves different graph
families and considers both oblivious and adaptive protocols.

Chapter 3 addresses the issue of power consumption in network communication.
In Section 3.2 we consider the lifetime problem for repeated broadcast operations originating

from a fixed source. As opposed to the rest of the thesis, the contribution described in this section
relies on probabilistic tools. The assumption at the basis of this work is that actual radio networks
like sensor networks can be faithfully modeled as random geometric graphs, where nodes are placed
on a region in the Euclidean plane according to a uniform probability distribution and (oriented)
edges between nodes are placed according to the transmitting range of the sender. Exploiting
properties satisfied by such graphs with high probability, we have been able to develop a fully
distributed protocol to perform a number of broadcast operations, originating from a fixed source,
that is 1/12 of the optimum.

Section 3.3 considers the problem of finding a spanning tree with many leaves. If we consider a
radio network, made of homogeneous nodes which cannot adjust their transmitting range, identifying
a spanning tree of the topology graph with the maximum number of leaves allows us to perform
broadcasting with the minimum overall power consumption. Indeed, information dissemination can
be obtained by letting internal nodes in the spanning tree transmit the source message, while leaves
can avoid to transmit. (Obviously, if the source is a leaf in the spanning tree, it still has to transmit
in order to pass the message to at least one of the internal nodes, thus an optimal spanning tree
with many leaves could provide a solution to the minimum energy broadcast problem which differs
from the optimum by the cost of a single transmission.)

Unfortunately, the problem of finding a spanning tree with many leaves is NP hard. On the
positive side we know that it can be approximated with a ratio of 2 in polynomial time. Our
contribution to this topic consisted in studying an alternative formulation proposed in the literature,
where the input graphs are d-regular (i.e., all nodes have degree d) and bipartite, and the goal is to
find a spanning tree maximizing the number of leaves in one of the sets composing the partition.
We proved that this variation of the problem is NP hard for any d ≥ 4, and developed linear time
approximating algorithms providing an approximation ratio of 2− 2/(d− 1)2 for d-regular bipartite
graphs, for any d ≥ 3.

Chapter 4 is devoted to two different communication tasks.
Section 4.2 considers a labeling problem related to radio networks. We already briefly mentioned

that the main issue to solve in order to achieve fast communication in radio networks is the problem
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of collisions. The methods we used, e.g., in Section 2.3, in order to achieve fast broadcasting are
based on time shifts to avoid simultaneous transmissions of interfering nodes and require the network
to be synchronous. As a result, communication protocols tend to be complex and task oriented (e.g.,
broadcasting protocols rely in some cases on the possibility of having a distinguished node, namely
the source, in order to trigger some subtasks). A different approach to solve the problem of collisions
is based on splitting the available radio spectrum into disjoint channels, in such a way that nodes
assigned to different channels can transmit simultaneously and be heard by their recipients even
though they are close to each other.

One of the main advantages of such a technique is that it is independent of the specific commu-
nication task. Communication protocols using radio-frequency assignment can neglect the problem
of collisions. This makes it possible, e.g., to adopt protocols developed for wired networks, with
point to point communication, having moreover the possibility to broadcast to all neighbors of a
node in a single message.

The radio-frequency assignment problem can be modeled as a node coloring problem. However,
differently from the usual definition of node coloring, which requires adjacent nodes to be assigned
different colors, a typical channel assignment problem has more strict requirements.

A very general definition of node colorings arising from the radio-frequency assignment problem
is the one of the L(δ1, . . . , δσ)-labelings. Colors are integers and the coloring constraints require to
assign colors which are at least δi apart to nodes at distance i from each other, for 1 ≤ i ≤ σ.

The drawback of splitting the radio spectrum in disjoint channels consists in the reduced band-
width available for each channel, and consequently in a reduced speed of communication. It is thus
fundamental to use as few channels (i.e., colors) as possible.

Our contribution to this topic consisted in a linear time algorithm for L(h, 1, 1)-labeling of
outerplanar graphs. We present a lower bound on the number of colors needed to perform an
L(1, 1, 1)-labeling of some outerplanar graphs, depending on the maximum node degree. Then we
present a linear time coloring algorithm that finds an L(1, 1, 1)-labeling of any outerplanar graph
using a number of color that is within a small additive constant from the lower bound provided.
The algorithm is then extended to perform L(h, 1, 1)-labelings, for h ≥ 2.

It should be noted that the L(1, 1, 1)-labeling problem is polynomial time solvable in outerplanar
graphs, nevertheless the hidden constants in the execution time of the existing algorithm are too
big to consider its implementation.

Section 4.3 addresses the acknowledged broadcast operation in radio networks. Acknowledged
broadcasting is a communication task consisting in transmitting a message from the source to all
other nodes of the network and making this fact common knowledge among all nodes. This task
has been proved to be infeasible when nodes are unable to distinguish collisions in transmissions
from silence (i.e., collision detection is not available), even when the network topology graph is
symmetric. The infeasibility proof, however, was based on the assumption that the acknowledged
broadcasting algorithms have to be correct on all networks, including the network composed only
of the source. Uchida et al. showed an acknowledged broadcasting algorithm, without collision
detection, working in time O(n4/3 log10/3 n) for all strongly connected networks of size at least
2 (for networks which are not strongly connected acknowledged broadcasting is infeasible). We
improved the existing results for acknowledged broadcasting by showing algorithms that have the
same time complexity as the best known broadcasting algorithms without acknowledgement, both
with and without collision detection.

Reliability is an important factor to consider when we address problems related to network
communication. In Chapter 5 we provide a brief introduction to fault tolerance. The contribution
we present in Section 5.2 is a distributed protocol coordinating the self deployment of mobile sensors
in a given area of interest. Such a deployment should guarantee complete sensing coverage of the
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area and network connectivity among sensor. The deployment has a good behavior from the point
of view of tolerance to faults, if both sensing and connectivity are maintained even in presence of
a given number of defective sensors. We propose two variants of the protocol. In the first one,
redundant sensors are used to perform self healing, adjusting their positions to fill sensing holes
and to recover network connectivity after detection of a fault. In the second variant, redundant
sensors are more uniformly spread and the resulting deployment maintains sensing coverage and
connectivity even in presence of faults. In the latter case we provide a lower bound on the number
of faults tolerated depending on the number of available sensors and the extension of the area of
interest.

Section 5.3 considers proxy assignment schemes in 2-dimensional grid networks. Proxies are
used to simulate defective devices and restore the network functionality, thus providing self healing
capabilities. No redundancy is assumed, hence self healing is achieved at the cost of reduced
performance in terms of computation and communication speed.



Chapter 2

Information vs. Efficiency Trade-offs in
Broadcasting

7
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2.1 Introduction

In this chapter we study the relation between information availability and efficiency of the broadcast
operation in three different models.

The broadcast is a task initiated by a distinguished node called the source which has to dissem-
inate a message to all nodes in the network. Remote nodes get the source message via intermediate
nodes, along paths in the network. The importance of the broadcast operation is witnessed by the
interest it gathered in the scientific community in the last more than twentyfive years.

The first two models we consider share the common assumption of having synchronous com-
munication. This assumption is one of the most frequently used in the literature (see, e.g., [10, 11,
49, 50, 55, 56]). It requires all nodes to be equipped with internal clocks ticking at the same rate.
Clocks measure consecutive time steps, called rounds. All clocks show the same round number at
any given time. We assume that each node can send a message of arbitrary size in each round.

We are interested in broadcasting time. The performance metric we consider neglects the time
spent in local computation. We analyze the communication time, in terms of the numbers of rounds
needed to complete broadcasting. Depending on the further assumptions we make in the model of
communication, we need to address different problems in order to achieve fast broadcasting.

In Section 2.2, we adopt the synchronous one-port model (also called the whispering model),
introduced in [157]. In this model, every node can send an arbitrary message to at most one neighbor
in each round. Moreover, we assume that only nodes that have already received the source message
can transmit (this model is called conditional wake up model as opposite to the spontaneous wake
up model, that allows nodes to transmit before being woken up). The latter assumption makes
broadcasting equivalent to waking up the network, when in the beginning only the source is awake
and other nodes are dormant, and has been also used for other models of communication (cf.
e.g., [119,145]).

We consider networks with a tree topology; the source message is thus available at the root of
the tree and it is passed from parents to children along the tree. Under this set of assumptions, the
speed of broadcasting is determined by the order chosen by nodes to inform their children. Indeed,
if every node informs its children in decreasing order of optimal completion time of their respective
subtree, broadcasting is completed in the optimal time.

The synchronous one-port model is a good way to model wired networks, where point to point
transmissions are natural, but it is inadequate to model radio networks. In radio networks,
addressed in Section 2.3, nodes do not have the ability to choose the recipients of their messages, as
the communication media is shared and antennae are in general omnidirectional. A node can thus
choose, in any round, either to act as a transmitter or as a receiver. A node acting as a transmitter
in a given round sends a message delivered to all of its neighbors in the same round.

An important distinction from the receiver’s point of view is between a message being just
delivered and being heard, i.e., received successfully by a node. A node acting as a receiver in a
given round hears a message if and only if a message from exactly one of its neighbors is delivered
in this round. The message heard in this case is the one that was sent by the unique transmitting
neighbor. If two neighbors v and v′ of u transmit simultaneously in a given round, none of the
delivered messages is heard by u in this round. In this case we say that a collision occurred at
u. This model of communication was proposed in [41], where it was called conflict-embodied. In
order to achieve fast broadcasting in radio networks, it is thus necessary to allow simultaneous
transmissions of different nodes while minimizing collisions. This task can be simplified to a great
extent when nodes have the availability of positional information [59], as, e.g., coordinates given by
a GPS device.

The third model, considered in Section 2.4, drops the assumption of having synchronous com-
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munication. A good reason to assume communication happens in an asynchronous way comes
from the consideration that nodes in the network may be involved in more tasks than the lonely
communication protocol, and thus they can insert unpredictable delays in transmissions, depending
on the workload. Moreover, the assumption of having clocks agreeing on round number may be
difficult to realize in practice (especially when we allow spontaneous transmissions of nodes that
did not receive any message).

We model asynchrony by mean of an adversry that can insert an arbitrary delay between sched-
uled transmission time and actual transmission time. In such a setting, communication time is not
a good measure of performance for broadcasting anymore. The model we used has been introduced
in [46], together with a performance metric called work, i.e., the total number of transmissions made
by nodes in the network in order to complete broadcasting.

The main focus of this chapter is on information, and how the availability of information can
influence the efficiency of broadcasting.

The impact of available information about the network on the efficiency of communication
algorithms is an important and well studied problem.

In [8] the authors showed a trade-off between the radius within which each node knows the
topology of the network and the message complexity of broadcasting in the message passing model.

Algorithmic aspects of radio communication were mostly studied modeling a radio network as
an arbitrary (directed or undirected) graph. These results can be partitioned into two subareas. In
the case of radio networks, two parallel streams of research concerning communication algorithms
have been recently very active: one assuming complete knowledge of the network (centralized com-
munication) and the other assuming that each node knows only its own label (ad hoc networks).

Existing results concerning broadcasting time in radio networks show a significant difference
between these two scenarios. The first paper to study deterministic centralized broadcasting in
radio networks, assuming complete knowledge of the topology, was [41]. The authors also defined
the graph model of radio network subsequently used in many other contributions. In [42], an
O(D log2 n)-time broadcasting algorithm was proposed for all n-node networks of diameter D. This
time complexity was then improved to O(D+log5 n) in [84], to O(D+log4 n) in [66], toD+O(log3 n)
in [92], and finally to O(D+ log2 n) in [121]. The latter complexity is optimal. On the other hand,
in [4] the authors proved the existence of a family of n-node networks of constant diameter, for
which any broadcasting algorithm requires time Ω(log2 n).

Investigation of deterministic distributed broadcasting in radio networks whose nodes have only
local knowledge of the topology was initiated in [10]. The authors assumed that each node knows
only its own label and labels of its neighbors. Several authors [22, 43, 44, 49, 50, 54, 56, 120] studied
deterministic distributed broadcasting in radio networks under an even weaker assumption that
nodes know only their own label (but not labels of their neighbors). In [43] the authors gave a
broadcasting algorithm working in time O(n) for all n-node networks, assuming that nodes can
transmit spontaneously, before getting the source message. A matching lower bound Ω(n) on
deterministic broadcasting time was proved in [120] even for the class of networks of constant
radius.

In [43, 44, 49, 50, 56] the model of directed graphs was used. The aim of these papers was to
construct broadcasting algorithms working as fast as possible in arbitrary (directed) radio networks
without knowing their topology. The currently fastest deterministic broadcasting algorithms for
such networks have running times O(n log2D) [56] and O(n log n log logn) [57]. On the other hand,
in [54] an Ω(n logD) lower bound on broadcasting time was proved for directed n-node networks of
radius D.

Randomized broadcasting algorithms in radio networks were studied in [10, 56, 119, 125]. The
authors do not assume that nodes know the topology of the network or that they have distinct
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labels. In [10] the authors constructed a randomized broadcasting algorithm running in expected
time O(D log n + log2 n). In [125] it was shown that for any randomized broadcasting algorithm
and parameters D ≤ n, there exists an n-node network of diameter D requiring expected time
Ω(D log(n/D)) to execute this algorithm. The lower bound Ω(log2 n) from [4], for some networks
of radius 2, holds for randomized algorithms as well. A randomized algorithm working in expected
time O(D log(n/D) + log2 n), and thus matching the above lower bounds, was presented in [119]
(cf. also [56]).

Another model of radio networks is based on geometry. Stations are represented as points in the
plane and the graph modeling the network is no more arbitrary. It may be a unit disk graph, or one
of its generalizations, where radii of disks representing areas that can be reached by the transmitter
of a node may differ from node to node [59], or reachability areas may be of shapes different than
a disk [62, 122]. Broadcasting in such geometric radio networks and some of their variations was
considered, e.g., in [59,62,68,89,122,150,155]. The first paper to study deterministic broadcasting
in arbitrary geometric radio networks with restricted knowledge of topology was [59]. The authors
used several models, also assuming a positive knowledge radius, i.e., the knowledge available to a
node, concerning other nodes inside some disk. In [68] the authors considered broadcasting in radio
networks modeled by unit disk graphs, analyzing the differences between the spontaneous wake up
model and the conditional wake up model.

Randomized broadcasting algorithms in geometric radio networks, where each node knows its
position in the plane and the total number of nodes only, have been studied in [67]. In this work
power consumption is also considered. The authors show that by assigning transmitting ranges to
nodes in the network according to a power law distribution it is possible to achieve exponentially
faster broadcasting, with respect to the model where all nodes have the same range, with an energy
efficient algorithm.

If we consider a node receiving a message contemporaneously from more than one neighbor, we
can chose one of the following two models. Either we can assume that the recipient of the messages,
without being able to hear any of the messages sent, can distinguish the collision from silence,
or we can assume it cannot. In the first case we say that collision detection is available, in the
second case that it is not. Most of the above papers used the assumption that collision detection is
not available. The paper [43] compared feasibility and efficiency of broadcasting with and without
collision detection. The impact of collision detection on the efficiency of broadcasting for geometric
radio networks was also discussed in [59].

The wakeup problem in radio networks was first studied in [91] for single-hop networks (modeled
by complete graphs), and then in [45, 48] for arbitrary networks. In [110] the authors studied
randomized wakeup algorithms for radio networks. In all these papers it was assumed that a
subset of all nodes wake up spontaneously (possibly at different times) and have to wake up other
(dormant) nodes. Waking up a radio network from a single source was studied in [145], in the case
of anonymous networks. This is equivalent to broadcasting in the conditional wake up model.

Another network problem for which the impact of information on the efficiency of algorithms
has been studied is network exploration, both in the anonymous [15] and in the labeled [58] setting.
More generally, relations between knowledge concerning the environment and solution efficiency have
been investigated in many areas of distributed computing: in [70, 132] a lot of impossibility results
and lower bounds for distributed computing are surveyed, many of them depending on whether or
not the nodes are provided with partial information concerning the topology of the network.

Asynchronous radio broadcasting was considered, e.g., in [46, 145]. In [46] the authors studied
three asynchronous adversaries and investigated centralized oblivious broadcasting protocols work-
ing in their presence. They concentrated on finding broadcast protocols and verifying correctness of
such protocols, as well as on providing lower bounds on their work. In [145] attention was focused
on anonymous radio networks. In such networks not all nodes can be reached by a source message.
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It was proved that no asynchronous algorithm unaware of network topology can broadcast to all
reachable nodes in all networks.
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2.2 Broadcasting with Advice in Trees

2.2.1 The Model and the Problem

In the papers cited in the introduction of this chapter, information about the network was of some
particular kind, ranging from a numerical parameter, like (an upper bound on) the size of the
network or its diameter, to the topology of the network within some radius from a node, and finally
to the entire topology of the network which in fact makes distributed algorithms equivalent to
centralized ones.

A different approach to the problem of evaluating the impact of information on the performance
of network algorithms was adopted in [74], where the framework of network algorithms with advice
has been introduced. The paradigm of network algorithms with advice can be described as follows.
A priori, nodes of the network know only their own label and are able to distinguish ports leading
to incident links. All other information about the network is coded as advice. An oracle knowing
the entire network can give some strings of bits (advice) to some nodes (or to mobile agents in the
case of exploration problems). Then a distributed algorithm is executed without knowing in which
network it operates, using the provided advice. The total number of bits given by the oracle is the
size of advice.

In this section we are concerned with broadcasting in trees, using advice.
A tree is a natural structure to perform broadcasting: even if the underlying network is more

dense, some precomputed spanning tree of it, for example a minimum spanning tree, is often used
to broadcast, for economy reasons. (A further discussion on this topic can be found in Chapter 3.)

The model of communication we assume is the synchronous one-port model. We recall that in
this model, time is divided in rounds; nodes have individual clocks ticking at the same rate and
showing the same round number. Every node can send an arbitrary message to at most one neighbor
in a round. We also assume a conditional wake-up model, i.e., the source is the only node awake
since round 1, while other nodes in the network become awake and can start to send messages after
getting the source message.

All nodes have distinct labels 1, ..., n, where n is the number of nodes. (Our results remain valid
if distinct node labels are taken from a set 1, ..., N , where N ∈ O(n). Notice that some models in
radio networks allow larger labels, i.e., from a polynomial range, see, e.g., [90]; the size of labels
contributes only in a form of the logarithmic function.) We assume that, a priori, each node knows
only its own label and can perceive ports 1, ..., d leading to its incident edges, where d is the degree
of the node.

As opposed to papers on network algorithms with advice cited in Subection 2.2.2 below, we
assume that the oracle can give advice not to all nodes but only to the root of the tree which is
the source of broadcasting. In the case of the broadcasting task this is a natural assumption: it is
easier to provide additional information about the network to one node only and, due to the nature
of the broadcasting process and to the model assumptions, this information can be appended to the
source message and be available at any node at the same time as the source message, hence as soon
as the node is woken up and ready to use it.

Formally, an oracle is a function O : T −→ F , where T is the set of all finite rooted trees and
F is the set of finite binary sequences. The advice given by oracle O to the root of the tree T is the
binary string O(T ). The length of this string is the size of advice.

Since we want to evaluate the quality of a broadcasting algorithm using advice of given size and
working for arbitrary trees, we have to define the measure of efficiency that we adopt. Intuitively,
we seek algorithms that are fast in the worst case. However, adopting as a measure, say, the worst-
case broadcasting time on the class of n-node trees does not seem appropriate. Broadcasting time
is n − 1 on a n-node line or on a n-node star, regardless of the chosen algorithm, not because the
algorithm is inefficient or the advice too small but because these trees are intrinsically long to inform
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in the model of communication we assumed. Hence a more appropriate measure of efficiency of a
broadcasting algorithm using advice but not knowing the tree should compare the time used by the
algorithm to the optimal broadcast time that can be achieved using full knowledge of the tree.

This notion is similar to the competitive ratio used to evaluate on-line algorithms. In both
cases, the performance of an algorithm lacking some essential knowledge about the environment is
compared to that of an algorithm that has this knowledge: in the case of on-line algorithms, this
knowledge concerns future events, and in the case of broadcasting in trees, it concerns the topology
of the tree and its labeling.

Having such a definition of efficiency, the problem of measuring the impact of information on
broadcasting time in trees can be formalized as finding the best competitive ratio of a broadcasting
algorithm using advice of given size, for n-node trees.

2.2.2 Related Work

Broadcasting in the synchronous one-port model has been extensively studied in the literature. It
is known that the problem of finding a minimum time broadcasting scheme for arbitrary graphs
(with total information about the graph) is NP hard. Approximation algorithms for this problem
were studied by numerous authors: in [117] an additive approximation with approximation summand
O(
√
n) was given, and [65] gave the first approximation algorithm with sublogarithmic multiplicative

approximation factor. In [148,157] it was shown that a minimum time broadcasting scheme for trees
can be found in polynomial time (assuming full knowledge of the tree).

Research on network algorithm with advice has been quite active in the last few years. In [74]
the framework of network algorithms with advice has been introduced and used to study the task
of broadcasting with a linear number of messages, in the message passing model. Subsequently,
this approach has been used to investigate various network problems: in [75] to study efficient
exploration of networks by mobile agents, in [73] to study distributed graph coloring, in [76] to
study the distributed minimum spanning tree construction, in [139] to study graph searching, and
in [108] to study optimal time of broadcasting in radio networks.

It should be noted that a similar approach has been also used previously in the context of
informative labeling schemes, cf. [1, 87,112,116,160].

In [73–76,108,139] the authors studied the minimum size of advice required to solve the respective
network problem in an efficient way. Thus the framework of advice permits to quantify the amount
of information needed for an efficient solution of a given network problem, regardless of the type of
information that is provided.

However, in all papers concerning the advice paradigm, the minimum size of advice was estab-
lished only at some fixed level of efficiency of an algorithm solving the given problem.

In [74] the authors compared the minimum size of advice required to solve two information
dissemination problems using a linear number of messages. In [75] the authors established the size
of advice needed to break competitive ratio 2 of an exploration algorithm in trees. In [76] it was
shown that advice of constant size permits to carry on the distributed construction of a minimum
spanning tree in logarithmic time. In [73] the authors established lower bounds on the size of advice
needed to beat time Θ(log∗ n) for 3-coloring of a cycle and to achieve time Θ(log∗ n) for 3-coloring
of unoriented trees. It was also shown that, both for trees and for cycles, advice of size Ω(n) is
needed to 3-color in constant time. In the case of [139] the issue was not efficiency but feasibility: it
was shown that Θ(n log n) is the minimum size of advice required to perform monotone connected
graph clearing. Finally, in [108] the authors analyzed radio networks for which it is possible to
perform broadcasting in constant time, proving that O(n) bits of advice allow to obtain optimal
time in such networks, while o(n) bits do not suffice.

Hence, if we consider the curve representing the dependence of the cost of solving a network
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problem (measured by time, by the number of messages, by the competitive ratio, etc.) on the size
of advice, each of the above papers plotted only one or two points on the respective curve. Since
such a curve represents the trade-off between available information and the efficiency of solving a
given network problem, it is natural to ask for the entire curve, or at least for its approximate shape:
the shape of the curve shows how sensitive to information the given problem is.

The concept of information sensitivity was introduced in [73]: a problem is information sensitive
if few bits of advice suffice to drastically improve the efficiency of solving it. Since the authors
of [73] proved a very large lower bound on the size of advice needed to improve time of 3-coloring
in cycles, as compared to the time without advice, they concluded that this problem is information
insensitive. Such a conclusion from only two points plotted in the curve is rare: it is justified only if,
as in the case of 3-coloring of cycles, a large left segment of the curve is flat. In general, in order to
learn how sensitive to information is a given network problem, we have to establish an approximate
shape of the whole curve by giving close upper and lower bounds on the solution cost for all sizes
of advice.

2.2.3 Original Contribution

Our goal is to find a trade-off between the size of advice given by the oracle to the source of
broadcasting and the best competitive ratio of a broadcasting algorithm for n-node trees. We
establish such a trade-off with an approximation factor of O(nε), for an arbitrarily small positive
constant ε. It turns out that for q bits of advice the best competitive ratio is roughly Θ(

√
n) for

q up to
√
n, and it is roughly Θ(n/q) beyond this threshold. More precisely, we show that for any

advice of size q ≤
√
n, the competitive ratio of any broadcasting algorithm using this advice is

Ω(nγ), for any γ < 1/2. On the other hand, any broadcasting algorithm (even without advice) has
competitive ratio O(

√
n).

For larger advice, when q >
√
n, we get a lower bound Ω(n1−ε/q) on competitive ratio, for an

arbitrarily small positive constant ε, and we show an oracle giving advice of size q and an algorithm
using this advice with competitive ratio O((n log2 n)/q).

Hence, for any size q of advice, the gap between our upper and lower bounds on the corresponding
best possible competitive ratio is O(nε). In terms of information sensitivity of broadcasting time
in trees our results show that this problem is information insensitive for low size of advice (up to
Θ(
√
n)) and becomes information sensitive beyond this threshold.
We also study the minimum size of advice required to broadcast in optimal time (i.e., to achieve

competitive ratio 1). For general n-node trees, we show an upper bound O(n log n) and a lower
bound Ω(n) on this minimum size of advice. Moreover, we prove a tight bound O(n) for two
subclasses of trees.

2.2.4 Terminology and Preliminaries

Let T be a tree rooted at node r which is the source of broadcasting. Notions of children and parent
of a node are used with respect to this rooted tree. The down-degree of an internal node v of T is
the number of its children and it is denoted by δ(v). For any broadcasting algorithm A and any
internal node v of T , we denote by A(v) the time taken by algorithm A to complete the broadcast
on the subtree of T rooted at v. The time taken by the algorithm to complete the broadcast in the
whole tree is A(T ) = A(r). We denote by opt(v) the optimal time to complete the broadcast on
the subtree rooted at v, with the full knowledge of its topology. The optimal broadcast time for the
entire tree T is opt(T ) = opt(r).

As we previousy stated, our notion of efficiency for a given algorithm A is based on the compet-
itive ratio between the time taken by A to complete the broadcast and the optimal broadcasting
time. In particular, we seek for algorithms having good performance in the worst case, thus we
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Figure 2.1: An instance of a (5, 4)-tree. Special nodes are surrounded by a circle.

consider, for a given algorithm A and a given number n, the worst case ratio of the time taken by
A on a tree T over the optimal broadcasting time in T , where T is an arbitrary n-node tree. In the
following we formally define our notion of competitive ratio, which we denote as cr (A,n).

Definition 2.2.1 For a given broadcasting algorithm A and a fixed n, cr (A,n) is the the maximum
of A(T )/ opt(T ) over all n-node trees T .

The surplus of an algorithm A on a tree T is A(T ) − opt(T ). Denote by N(v) the number of
nodes in the subtree of T rooted at v; the number of nodes in the whole tree T is N(T ) = N(r).

2.2.5 Lower Bounds

In this subsection we prove lower bounds on the competitive ratio of a broadcasting algorithm using
advice of a given size. For this purpose we will use the following class of trees. A tree T with
n = (k+1)d+1 nodes is called a (k, d)-tree, if and only if, it is of height k+1 and has k+1 internal
nodes of down-degree d. We call special the internal nodes of T having a child that is not a leaf.

Notice that in a (k, d)-tree every internal node has exactly d children and at most one of them
is an internal node. There are exactly k special nodes in a (k, d)-tree.

An instance of a (k, d)-tree is an assignment of a port p ∈ {1, . . . , d} leading to the non-leaf
child at all special nodes (see Fig. 2.1, where ports are numbered left to right). It follows that there
are dk instances of a (k, d)-tree.

Lemma 2.2.1 For any broadcasting algorithm A using
o(k log d) bits of advice, for any α < 1 and for sufficiently large n, there exists a n-node (k, d)-tree
T such that A(T ) is at least:

kdα, if k ≤ d
dkα, if k ≥ d

Proof: We will use the following combinatorial fact.
Claim: The number of representations of an integer s > 0 as an ordered sum of r positive integers
is
(
s−1
r−1

)
.
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Proof of the claim: Every such representation S = a1 + . . .+ar can be coded as the following binary
sequence with s zeros and r − 1 ones inserted between them:

00 . . . 0︸ ︷︷ ︸ 1 00 . . . 0︸ ︷︷ ︸ 1 . . . 1 00 . . . 0︸ ︷︷ ︸
a1 a2 ar

which proves the claim (e.g. 10 = 5 + 1 + 3 + 1 can be coded as 00000 1 0 1 000 1 0).
Let T (s, k) be the number of ways to put s identical balls into bins labeled {1, . . . , k}. In view

of the claim we have, for s ≥ 1,

T (s, k) =
min(s,k)∑
r=1

(
s− 1
r − 1

)(
k

r

)
(2.1)

because the number r of non empty bins can range from 1 to min(s, k), there are
(
k
r

)
ways to choose

the non empty bins and, for any such choice, the number of ways to put the s balls is equal to the
number of representations of s as an ordered sum of r summands. We also have T (0, k) = 1.

Suppose that we have q bits of advice at the root of a n-node (k, d)-tree. (Recall that n =
(k+ 1)d+ 1.) Hence all instances are colored with 2q colors. Fix an algorithm A using this advice.
For a fixed instance I and a fixed color there is a fixed surplus pattern σ(I) associated with I,
where the surplus pattern is defined as follows: σ(I) = (a1, . . . , ak), where ai ≥ 0 is the number of
leaves that the i-th special node (counting from the root) has informed before informing its only
internal child. In other words, ai is the time spent by the i-th special node before informing its
child corresponding to the largest subtree. It is easy to see that if I 6= I ′ are given the same color,
then σ(I) 6= σ(I ′). The total surplus corresponding to the surplus pattern (a1, . . . , ak) is defined as
s = a1 + . . .+ ak.

For a given color and a total surplus s, we say that an instance I causes this surplus if a1 +
. . . + ak = s, where σ(I) = (a1, . . . , ak). Hence, for a given color, the number of instances causing
the surplus s is at most T (s, k).

Let T̃ (S, k) be the number of instances causing surplus at most S. We have

T̃ (S, k) ≤
S∑
s=0

T (s, k)

and

T (s, k) =
min(s,k)∑
r=1

(
s− 1
r − 1

)(
k

r

)
≤

k∑
r=1

(
s

r

)(
k

r

)
≤

k∑
r=1

(
s

r

)(
k

k/2

)
=
(
k

k/2

) k∑
r=1

(
s

r

)
.

(For k odd, we denote by
(
k
k/2

)
the number

(
k
bk/2c

)
=
(

k
dk/2e

)
.)

For s ≥ 2k we have (
k

k/2

) k∑
r=1

(
s

r

)
<

(
k

k/2

)
k

(
s

k

)
and for s ≤ 2k we have

(
s
r

)
≤
(
s
s/2

)
≤
(

2k
k

)
.

Since, for S < S′, guaranteeing surplus at most S is not easier than guaranteeing surplus at
most S′, it is enough to restrict attention to the case S ≥ 2k. Under this assumption we have(

2k
k

)
≤
(S
k

)
and thus we obtain

T̃ (S, k) ≤ 1 +
S∑
s=1

T (s, k) = 1 +
2k∑
s=1

T (s, k) +
S∑

s=2k+1

T (s, k) ≤
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≤ 2k · k
(
k

k/2

)(
2k
k

)
+ (S − 2k) k

(
k

k/2

)(
S
k

)
≤

≤ Sk
(
k

k/2

)(
S
k

)
≤ Sk

(
2ke
k

)k/2(Se
k

)k
= Sk

(
S
k
e
√

2e
)k

,

where we used the inequality
(
x
y

)
≤
(
xe
y

)y
.

In order to show that with q ∈ o(k log d) bits of advice it is impossible to guarantee surplus at
most S, it is enough to prove (for sufficiently large n):

2qSk
(
S
k
e
√

2e
)k

< dk (2.2)

because this will show that, using the provided advice, the number of instances causing surplus at
most S is smaller than the total number of instances, and hence, for any algorithm using this advice,
the adversary can choose one of the exceeding instances, thus causing the algorithm to exceed the
surplus. Let C = e

√
2e and consider two cases:

• case 1: k ≤ d. If k is constant, then the lemma is true, so suppose k → ∞. Let S ≤
kdα, for any α < 1. For sufficiently large n we have

q + log(Sk) + k log
(
S
k

)
+ k logC ≤

≤ q + log
(
k2dα

)
+ kα log d+ k logC < k log d

because q ∈ o(k log d) and α < 1. This proves (2.2) in this case.

• case 2: d < k. If d is constant, then the lemma is true, so suppose d → ∞. Let S ≤
dkα, for any α < 1. For sufficiently large n we have

q + log(Sk) + k log
(
S
k

)
+ k logC ≤

≤ q + log
(
dkα+1

)
+ k log

(
d

k1−α

)
+ k logC < k log d

because q ∈ o(k log d) and

k log
(

d

k1−α

)
< k log

(
d

d1−α

)
= αk log d.

This proves (2.2) in this case.

�

Corollary 2.2.1 Let k be in Ω (
√
n) and in O(nγ), where γ is any constant such that 1/2 ≤ γ < 1.

For any broadcasting algorithm A using o(k log n) bits of advice, there exists a tree T , such that
A(T ) ∈ Ω

(
nβ
)
for any β < 1 and opt(T ) ∈ O (k). Hence cr (A,n) ∈ Ω

(
n1−ε

k

)
, for any ε > 0.

Proof: Recall that for a n-node (k, d)-tree we have kd ∈ Θ(n). Thus, under the assumption
k ∈ O(nγ), it follows from Lemma 2.2.1 that, for any broadcasting algorithm A using o(k log n) bits
of advice, for any α < 1 and for sufficiently large n, there exists a n-node (k, d)-tree T such that
A(T ) ∈ Ω (dkα) (if k ≥ d) or Ω (dαk) (if k ≤ d). When k ∈ Ω (

√
n), the optimal broadcasting time

in any n-node (k, d)-tree is in Θ(k). Finally, α < 1 implies that (kd)α ≤ kαd and (kd)α ≤ kdα. It
follows that A(T ) ∈ Ω

(
nβ
)
, thus proving the corollary. �
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Corollary 2.2.2 No broadcasting algorithm A using o(n) bits of advice can achieve constant com-
petitive ratio.

Proof: Suppose that q ∈ o(n) and that there exists a broadcasting algorithm A with competitive
ratio β ∈ Θ(1) using q bits of advice. Let d be a sufficiently large constant and consider a (k, d)-tree
T . Since opt(T ) ≤ k + d ≤ 2k, in order to guarantee constant competitive ratio we would need to
guarantee a surplus S ≤ 2βk. Similarly as above this is impossible because

q + log(Sk) + k log
(
S
k

)
+ k logC ≤

≤ q + log(2βk2) + k log(2βC) < k log d,

for sufficiently large d. (Notice that, if d is constant, k is in Θ(n), so q must be in o(k log d).) �

2.2.6 Upper Bounds

In this subsection we establish upper bounds on the best competitive ratio of a broadcasting algo-
rithm using advice of given size. We do this by constructing an oracle which, for every tree, provides
advice of given size, and an algorithm using this advice whose competitive ratio serves as the upper
bound. For any size of advice, our upper bounds exceed the lower bounds from Section 2 only by
a factor O(nε), for an arbitrarily small positive constant ε.

We start with the observation that
√
n is an upper bound on the competitive ratio of any

broadcasting algorithm for n-node trees. This upper bound is within the promised approximation
ratio for advice of size up to

√
n.

Lemma 2.2.2 The time of any broadcasting algorithm A (even using no advice) is at most h times
larger than optimal on any tree of height h.

Proof: Let T be a tree of height h, and let v be the last leaf informed by algorithm A. Let k be the
length of the branch of v, and let d1, . . . , dk be the down-degrees of the internal nodes in this branch.
Let dM = max{d1, . . . , dk}. We have A(T ) ≤ D = d1 + . . . + dk ≤ kdM and opt(T ) ≥ dM ≥ D/k.
Hence

A(T )
opt(T )

≤ D

D/k
= k ≤ h.

�

Lemma 2.2.3 The competitive ratio of any broadcasting algorithm A for n-node trees (even using
no advice) is at most

√
n.

Proof: Let T be any n-node tree and let h be its height. If h ≤
√
n then A(T )

opt(T ) ≤ h ≤
√
n by

Lemma 2.2.2. If h >
√
n then opt(T ) >

√
n. On the other hand A(T ) ≤ n thus proving the lemma.

�

In order to get good upper bounds on competitive ratio of algorithms when the size of advice is
large, we will use d-wise algorithms, defined as follows. A broadcasting algorithm A is d-wise if, for
every tree T and any node v of down-degree greater than d, node v informs first its child w for which
A(w) = max {A(w′) : w′ child of v}. Hence a d-wise algorithm disregards the order of informing
children of nodes of down-degree at most d, and for nodes of larger down-degrees it first informs
the child that is the root of the “most expensive” subtree while disregarding the order of informing
other children of such nodes. Intuitively, disregarding the order at nodes of small down-degree is a
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“wise” decision, as not much harm can be done even when the order of informing children of such
nodes is completely wrong. Informing first the “most expensive” child while disregarding the order
of other children at nodes of large down-degree limits the damage done at such nodes, even if the
order of informing other children is not optimal. It turns out that these two decisions permit to
save a lot of advice bits while keeping the competitive ratio under control.

Lemma 2.2.4 The competitive ratio of a d-wise algorithm for n-node trees is at most d log n.

Proof: We prove the inequality A(T )/ opt(T ) ≤ d log n by induction on the height of the tree. For
any tree of height 1 the ratio on the left-hand side of the inequality is 1. As any tree of height 1
has at least 2 nodes, we have log n ≥ log 2 = 1.

By the inductive hypothesis, for any tree T ′ with n′ nodes and height ≤ h, we can assume
d log n′ ≥ A(T ′)/ opt(T ′).

For any node v, let vM be a child of v that maximizes A(w′), over all children w′ of v. Moreover
for any v of down-degree at least 2, let vm be the child of v that maximizes A(w′), over all children
w′ 6= vM of v.

Let T be a n-node tree of height h+ 1, with root r. We consider several cases:
Case 1. δ(r) > d.

In this case A(T ) ≤ max {A(vM ) + 1, A(vm) + δ(r)}.
If A(vM ) + 1 ≥ A(vm) + δ(r) then

A(T )
opt(T )

≤ A(vM ) + 1
opt(vM ) + 1

≤ A(vM )
opt(vM )

≤ d logN(vM ) < d log n,

as A(vM ) ≥ opt(vM ) and (a+ 1)/(b+ 1) ≤ a/b when a ≥ b.
If A(vm) + δ(r) > A(vM ) + 1 then:

• if A(vM )
opt(vM ) ≥

A(vm)
opt(vm) then

n > 2
A(vM )

d opt(vM ) + 2
A(vm)

d opt(vm) ≥ 2
A(vm)

d opt(vm)
+1
.

We have

A(T )
opt(T )

≤ A(vm) + δ(r)
opt(T )

=
A(vm)
opt(T )

+
δ(r)

opt(T )
<

A(vm)
opt(vm)

+ 1 ≤ A(vm)
opt(vm)

+ d < d log n,

as δ(r) ≤ opt(T ) and opt(vm) < opt(T );

• if A(vm)
opt(vm) >

A(vM )
opt(vM ) then

n > 2
A(vM )

d opt(vM ) + 2
A(vm)

d opt(vm) ≥ 2
A(vM )

d opt(vM )
+1
.

We have

A(T )
opt(T )

≤ A(vm) + δ(r)
opt(T )

=
A(vm)
opt(T )

+
δ(r)

opt(T )
<

A(vm)
opt(vM )

+ 1 ≤ A(vM )
opt(vM )

+ d < d log n,

as A(vM ) ≥ A(vm), δ(r) ≤ opt(T ) and opt(vM ) < opt(T ).
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Case 2. δ(r) ≤ d.

If δ(r) = 1 then
A(T )

opt(T )
=

A(v1) + 1
opt(v1) + 1

≤ A(v1)
opt(v1)

≤ d logN(v1) < d log n.

If δ(r) ≥ 2 then we have A(T ) ≤ A(vM ) + d.

• If A(vM ) ≥ d opt(vM ) then

A(T )
d opt(T )

≤ A(vM ) + d

d opt(T )
≤ A(vM ) + d

d opt(vM ) + d
≤ A(vM )
d opt(vM )

≤ logN(vM ) < log n.

• If A(vM ) < d opt(vM ) then A(vM )/ opt(vM ) < d and we have

A(T )
opt(T )

≤ A(vM ) + d

opt(T )
≤ A(vM )

opt(vM )
+ 1 ≤ d+ 1 ≤ d log n,

as n ≥ 4. �

Lemma 2.2.5 There exists a d-wise algorithm A using O
(
n logn
d

)
bits of advice for n-node trees.

Proof: Consider a n-node tree T and a sequence (`1, p1), (`2, p2), . . . , (`m, pm), where `i : i ≤ r are
the labels of nodes of T of down-degree > d, and pi are port numbers. Let algorithm A be such that,
at any node v with label `i, it informs first the child corresponding to port pi, for i ∈ {1, . . . , r},
and uses the order of increasing port numbers to inform the remaining children of v and to inform
all children of nodes of down-degree ≤ d.

The advice given to the root is a binary string of the form:

S = [ 11 . . . 1︸ ︷︷ ︸ 0]_`1_p1
_ . . ._ `m

_pm

dlog ne

where the length of the representation of all `i and pi is dlog ne and _ stands for concatenation of
sequences.

Now we define algorithm A using string S as advice. Any node v with label ` reads the unary
representation of dlog ne from S and searches for its label in S. Since the length of the representation
of all `i and pi is dlog ne, this can be easily done. If ` = `i for some i ∈ {1, . . . , r}, node v uses
the port pi first and then proceeds in the order of increasing port numbers to inform its remaining
children. If ` 6= `i for all i ∈ {1, . . . , r} (i.e. δ(v) ≤ d), node v informs its children in the order of
increasing port numbers. Each node receives the whole string S from its parent when it is informed.

The sequence S is wise if, for every node v with label `i, port pi leads to a child vM of v such
that A(vM ) = max {A(w′) : w′ child of v}. If, for any tree T , the root of T is provided with a wise
advice sequence, then A is d-wise.

As the number m of nodes with down-degree > d is in O (n/d), a wise sequence S has length in
O(n logn

d ). A wise sequence, given to the root, for every tree T , is the advice satisfying the lemma.
�
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Figure 2.2: Approximate trade-off between the size of advice and competitive ratio (log-scale).

2.2.7 The Trade-off Curve

In this subsection we summarize our results concerning the trade-offs between the size of advice
and the competitive ratio of broadcasting algorithms using it. Corollary 2.2.1 and Lemmas 2.2.3,
2.2.4, and 2.2.5 imply the following theorem.

Theorem 2.2.1 If q ≤
√
n, competitive ratio O(

√
n) can be achieved for n-node trees, using q bits

of advice; the best possible competitive ratio that can be achieved for n-node trees using q bits of
advice is Ω (nγ), for any constant γ < 1/2.

If q >
√
n, competitive ratio O

(
n log2 n

q

)
can be achieved for n-node trees, using q bits of advice;

the best possible competitive ratio that can be achieved for n-node trees using q bits of advice is
Ω
(
n1−ε

q

)
, for any constant ε > 0.

Hence, up to a nε-approximation factor, the best competitive ratio is Θ(
√
n) for advice of size

q ≤
√
n, and it is Θ (n/q) for advice of size q >

√
n.

For a fixed n, the trade-off between the size of advice and the competitive ratio of broadcasting
algorithms in n-node trees is represented in Fig. 2.2 in logarithmic scale, with an approximation
factor of nε, for any ε > 0.

2.2.8 Information Cost of Optimal Broadcasting

In this subsection we study the size of advice needed to achieve time opt(T ) of broadcasting on any
tree T (i.e., broadcasting with competitive ratio 1). As follows from Corollary 2.2.2, o(n) bits of
advice are not sufficient to broadcast in optimal time in some trees. In fact, the class of (k, d)-trees
requires advice of size Ω(n) even to achieve constant competitive ratio.

We first observe that O(n log n) bits of advice are always sufficient to perform broadcasting in
optimal time.

Proposition 2.2.1 There exists an algorithm A using O(n log n) bits of advice for n-node trees,
and achieving time opt(T ) for any n-node tree T .

Proof: As follows from Cayley’s theorem [39], (n−2) log n bits are enough to code all n-node trees,
with nodes labeled by integers from 1 to n.

The Cayley’s code of a given tree T is produced by concatenating to the label of the parent of
the minimum labeled leaf ` the code produced by the tree T ′, obtained by pruning ` from T . The
pruning process ends when the residual tree only contains 2 nodes.



22 CHAPTER 2. INFORMATION VS. EFFICIENCY TRADE-OFFS IN BROADCASTING

In our setting, nodes need not only know the topology of the tree, but also the port numbers
leading from a node to each of its children. This information can be added to the code, associating
it with the label of the parent, thus doubling the length of the code. Notice that the parent relation
in the Cayley’s code assumes that the root of the tree is the node with label n, while the port
information associated with the corresponding edge has to reflect the parent relation given by the
root of the broadcasting tree, which not necessarily has label n.

If the advice given to the source is the Cayley’s code of the tree, augmented by port information,
then all nodes can obtain full knowledge of the tree from the advice string transmitted from the
source, and consequently perform the optimal algorithm. �

It is natural to ask if the size Θ(n log n) of advice is optimal. This would mean that performing
optimal broadcasting in some trees requires an amount of information of the same order of magnitude
as that needed to have complete knowledge of the tree. We do not believe that this is the case.
Indeed we would like to propose the following conjecture.

Conjecture The minimum size of advice needed to achieve optimal broadcasting time in all n-node
trees is Θ(n).

Intuitively, (k, d)-trees are difficult instances for the problem of broadcasting with advice. In-
deed, all our lower bounds (including the one of Corollary 2.2.2) used this class of trees. The class
of (k, d)-trees is the intersection of two well known classes of trees: caterpillars and d-ary trees.
Caterpillars are trees in which all internal nodes form a line, while d-ary trees are trees whose inter-
nal nodes have down degree d. To support our conjecture, we show that these two classes of trees
satisfy it.

Proposition 2.2.2
1. O(n) bits of advice suffice to broadcast in optimal time in n-node caterpillars.

2. O(n) bits of advice suffice to broadcast in optimal time in n-node d-ary trees, for any d.

Proof:

1. A broadcasting algorithm is optimal on any caterpillar, if every internal node informs first
its only internal child. Hence it is enough to concatenate, on the advice string, the binary
representations of port numbers leading to internal children. Each node of down degree larger
than 1, knowing its down degree, is able to identify such information from the beginning of
the string it obtains from its parent, then remove the corresponding bits, and pass the rest of
the string to its internal child.

It follows that
∑

v: δ(v)>1dlog δ(v)e ≤
∑k

i=1dlog(n/k)e ≤ n (where k < n/2) bits of advice, are
enough to achieve broadcasting in time opt(T ) on any n-node caterpillar T .

2. First suppose that advice can be given to all nodes, not only to the source. Then, for each node
vi having k ≤ d internal children, we could provide a string si of length kdlog de, indicating
the permutation of internal children corresponding to the optimal order of transmissions (the
order of leaf children is irrelevant). As there are at most n/d internal nodes, this would give
a total of S ≤ (n/d)dlog de ∈ O(n) bits of advice.

Now return to our scenario where advice is given by the oracle only to the root of T , and
relayed down the tree together with the source message. The advice given to the source is
constructed as follows. The first n+ 1 bits are 1’s, followed by one 0, indicating the value of
n. The following n bits are either 1 or 0, depending on whether the node with a given label
i has internal children or not. The rest of the advice string is given by the concatenation of
the strings si, separated by strings of dlog de zeroes.
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Each node with label ` receives the full advice string from its parent. It reads the value n
and it counts how many nodes with labels smaller than ` are provided with advice. This in
turn indicates the (possibly empty) segment in the advice string corresponding to string s`,
indicating the optimal permutation of internal children of node `. The length of the whole
string is at most 2n+ 1 + 2S ∈ O(n).

�

2.2.9 Conclusion

We established trade-offs between the amount of advice given to the source and the best competitive
ratio of a broadcasting algorithm in tree networks. Our results give the shape of the entire trade-
off curve, but they are approximate: the gap between our upper and lower bounds on the best
competitive ratio for a given size of advice is O(nε), for an arbitrarily small positive constant ε. A
natural open problem is to tighten these bounds, ideally establishing the exact order of magnitude
of the best competitive ratio for any size of advice. As far as the size of advice required for optimal
broadcasting is concerned, we conjectured that this size is linear in the number of nodes and proved
this property for two large subclasses of trees. Determining the status of our conjecture for all trees
remains open.

Another open problem concerns the way in which advice is provided. In our case the entire advice
is given to the root of the tree which is the source of broadcasting. While this is a natural way to
proceed in the case of broadcasting, it would be interesting to study how the results change when
portions of advice can be given by the oracle to all nodes, as was done in other works concerning
network algorithms with advice. This way of giving advice, while more difficult to implement, could
be potentially more efficient because it permits to save the bits identifying the node to which advice
is given. However, we conjecture that the improvement of competitive ratio for a given size of
advice, obtained in this way, would not be very significant.
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2.3 UDG Radio Networks with Missing and Inaccurate Information

2.3.1 The Model and the Problem

In this section we assume a radio network consists of stations with identical transmitting and
receiving capabililities. The model of communication is synchronous. In a given round each station
can act either as a transmitter or as a receiver. We do not assume the availability of collision
detection, thus a receiver is unable to distinguish a collision from silence.

The network is modeled as an undirected graph called a unit disk graph (UDG) whose nodes
are the stations. These nodes are represented as points in the plane. Two nodes are joined by an
edge if their Euclidean distance is at most 1. Such nodes are called neighbors. It is assumed that
transmitters of all stations have equal power which enables them to transmit at Euclidean distance
1. It is also assumed that communication proceeds in a flat terrain without large obstacles. Hence
the existence of an edge between two nodes indicates that transmissions of one of them can reach
the other, i.e., these nodes can communicate directly. We refer to radio networks modeled by unit
disk graphs as UDG radio networks.

The network topology is assumed to be unknown, namely, each node is unaware of the coordi-
nates of any other node including its neighbors. Likewise, nodes do not know any bound on the size
of the network or on its diameter. Such networks are often called ad hoc networks.

We assume that all stations are awake from round 1, and may contribute to the broadcasting
process by transmitting control messages even before they heard the source message. In order for
the broadcasting to be feasible, we assume that the unit disc graph underlying the UDG radio
network is connected.

The above described scenario was adopted in [68] (under the name of the spontaneous wake up
model) with two additional assumptions. It was assumed that the nodes are aware of (a linear lower
bound on) the density d of the network, which is the minimum Euclidean distance between any two
nodes, and that each node knows its exact position in the plane, i.e., is aware of the exact values
of its Euclidean coordinates in a global coordinate system.

Each of these two assumptions may be difficult to satisfy in practical applications. If nodes
of a radio network, e.g., sensors equipped with transmitters, are dynamically added to a network
at unknown times and locations, it may be difficult or impossible to estimate the density of the
network at any given time. On the other hand, reading Euclidean coordinates of a position, e.g.,
using a GPS, seems to be inherently prone to inaccuracies. Hence it is important to determine to
what extent these two additional assumptions influence the time of broadcasting, and in particular,
whether optimal broadcasting time changes if these two assumptions are removed.

We work in the above described model from [68] modified by removing the assumptions of
density knowledge and of availability of exact positions of nodes. Instead, if the real position of
the node is (x, y), we assume that the node perceives its position as being (x′, y′), where (x′, y′) is
chosen by an adversary. The distance between (x, y) and (x′, y′) is bounded by the error margin
ε, a positive real parameter of the model. The point (x′, y′), is called the perceived position of the
node v = (x, y) and is denoted by P (v). It should be stressed that we do not assume the knowledge
of ε either. All other characteristics of the model are as mentioned before, and as adopted in [68].
In particular, the topology, size and diameter of the network are unknown to nodes.

We consider only deterministic broadcasting algorithms and do not assume any central monitor
of the broadcasting process. Thus the decision made by a node on whether to transmit or to receive
in a given round, and what message to transmit, if any (some control messages can be transmitted
on their own or be appended to the source message) is based exclusively on its perceived position
and on the messages it heard so far. The execution time of a broadcasting algorithm in a given
radio network is the smallest round number after which all nodes of the network have heard the
source message and no other messages are sent.
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It should be noted that our definition of the time complexity of a broadcasting algorithm is
slightly different from the one adopted in [68] and the same as, e.g., in [43]. In [68] time was defined
simply as the smallest round number t after which all nodes of the network have heard the source
message. Hence the messages could be subsequently sent indefinitely by various nodes without any
possibility of stopping and the algorithm would be still considered correct and running in a given
time t. The difference between these two definitions is negligible if parameters of the network (in the
case of [68] the diameter of the network and its density) are known to nodes. In this case the time
of informing all nodes can be precomputed and the source can send a termination message after this
time, without changing the order of magnitude of the total time of broadcasting. However if the
diameter and/or the density are unknown, the difference between an algorithm that stops and one
that does not is not trivial, and so is the difference between the two above definitions of execution
time. We will see in the sequel that the requirement of total silence after the end of the algorithm is
crucially used in our lower bound on the execution time. We consider the restriction to broadcasting
algorithms that stop and the definition of time requiring silence after the last round to be more
natural and useful: algorithms that do not stop require an external “help”, e.g., user’s intervention,
to be implemented and thus cannot be considered to be autonomous algorithms. Hence we use this
definition rather than that from [68]. However, it is an easy consequence of our result that the
algorithm from [68] can be converted to a stopping algorithm and it will have the same order of
magnitude of its running time according to our more demanding definition. In view of this, we refer
to the time of the algorithm in [68], without distinguishing between the two definitions of running
time of a broadcasting algorithm.

It was proved in [68] that the optimal broadcasting time (with each node knowing the density
and its own exact position) is Θ

(
min

{
D + g2, D log g

})
, where D is the diameter of the network

(in the number of hops, which should not be confused with the Euclidean diameter of the set of
points representing the stations, that is usually not the same), and g is the inverse of the density,
called the granularity of the network (thus knowing d is equivalent to knowing g). The aim of the
present section is to establish whether this optimal broadcasting time changes when the additional
assumptions are removed.

2.3.2 Original Contribution

It turns out that the combination of missing and inaccurate information (unknown density and
unknown error in perceiving positions) substantially changes the problem with respect to the easier
scenario from [68]. The main challenge in our setting becomes fast broadcasting in sparse networks
(with constant density), when optimal time is O(D). (This was an easy task in the previous
scenario.) A new difficulty comes from the fact that with unknown constant density d and unknown
error margin ε possibly close to d/2, nodes with arbitrarily close perceived positions may be unable to
communicate with each other. This invalidates election techniques used in [68]. Another component
of difficulty is the stopping problem combined with ignorance of network parameters, in particular
of the density and of the diameter. Not knowing these parameters makes it impossible to predict
when the entire algorithm or its particular procedures will finish. Thus simple time-out conditions
used in [68] are no more available and special care must be taken to explicitly stop the algorithm
at the proper time.

Nevertheless, under our very weak scenario, we construct a broadcasting algorithm that main-
tains optimal time O

(
min

{
D + g2, D log g

})
for all networks with at least 2 nodes, of diameter

D and granularity g = 1/d (a time previously obtained with exact positions and known density),
assuming that each node perceives its position with error margin ε = αd, for any unknown con-
stant α < 1

2 . Somewhat surprisingly, the minimum time of an algorithm working correctly for all
networks, and hence stopping if the source is alone, turns out to be Θ(D + g2). Thus, the mere
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Figure 2.3: Impossibility of broadcast for ε ≥ d/2.

stopping requirement for the special case of the lonely source causes an exponential increase in
broadcasting time, for networks of any density and any small diameter, e.g., polylogarithmic in g.
Finally, we observe that the above upper bound on the error margin is necessary: indeed, if ε ≥ 1

2d,
then broadcasting turns out to be impossible in many networks.

2.3.3 Terminology and Preliminaries

We may assume that the (unknown) density d of the network is at most 1, otherwise all nodes would
be isolated. The granularity of the network is g = 1/d. Throughout the section we assume that
the error margin ε on the perception of node positions is at most αd, for some (unknown) constant
α < 1/2; this implies ε < 1/2. We first observe that the above upper bound on ε is necessary.

Proposition 2.3.1 For error margin ε ≥ 1
2d there exists a 4-node UDG radio network of density

d in which broadcasting is impossible.

Proof: Consider the UDG radio network based on the following four points: (0, 0), (2/3, d/2),
(2/3,−d/2), (4/3, 0), and let the point (0, 0) be the source (see Fig. 2.3). Suppose that ε ≥ d/2
and that the perceived positions of nodes are as follows: P (0, 0) = (0, 0), P (4/3, 0) = (4/3, 0),
P (2/3, d/2) = P (2/3,−d/2) = (2/3, 0). Consider any broadcasting algorithm A for this network.
Since there exists an automorphism carrying node (2/3, d/2) onto (2/3,−d/2) and fixing the other
nodes, and the perceived positions of nodes (2/3, d/2) and (2/3,−d/2) are identical, it follows by
induction on the round t that the behavior of nodes (2/3, d/2) and (2/3,−d/2) will be identical in
every round t: they will either both transmit or both receive in every round t. Since node (4/3, 0)
is adjacent only to these two nodes, it follows that it cannot get any message in any round t, and
hence the algorithm A is incorrect. �

Algorithms proposed in [68] are based on three types of grids, whose definition we recall in the
following.

Each of the three grids is composed of atomic squares with generic name boxes. The first grid is
composed of boxes called tiles, of side length d/

√
2, the second of boxes called blocks, of side length

1/
√

2, and the third one of boxes called 5-blocks, of side length 5/
√

2. All grids are aligned with
the coordinate axes, each box includes its left side without the top endpoint and its bottom side
without the right endpoint. Each grid has a box with the bottom left point with coordinates (0, 0).
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Tiles are small enough to ensure that only one node can belong to a tile. Blocks are squares
with diameter 1, i.e., the largest possible squares such that each pair of nodes in a square are able
to communicate. 5-blocks are used to avoid collisions during communication: messages originating
from central blocks of disjoint 5-blocks cannot cause collisions.

In our setting a node can decide if it is in a region of the plane only depending on its perceived
position, which can be at distance ε from its real position.

We say that a node inhabits a given box if its perceived position belongs to this box. Two boxes
are potentially reachable from one another, if they can be inhabited by a pair of nodes with real
positions at distance at most 1. Two boxes are reachable from one another, if they are inhabited by
such a pair of nodes.

If d can be as large as 1, any constant side length of a box is too large to ensure the property
that nodes which inhabit the same box have real positions at distance at most 1, and hence that
they can communicate. Indeed, let d = 1 and let ` be an arbitrary constant. Take ε such that
1/2 > ε > (1− `)/2 and consider a pair of nodes u and v at distance δ where 1 < δ < `+ 2ε. The
distance between perceived positions of nodes u and v can be as small as δ − 2ε < `, hence they
may inhabit a box of side length `/

√
2, but be unable to communicate. It follows that we cannot

partition the plane into boxes guaranteeing full communication within a box. This motivates the
design of separate algorithms for d below some threshold, when such a communication is possible,
and for d above this threshold, in which case full communication within a box will not be needed.

Let ∆ =
√

2−1
2(
√

2+1) . We will take 2∆ as the threshold for d. We call a network sparse if d ≥ 2∆

and dense otherwise.
Both in the algorithm for sparse networks and in algorithms for dense networks we will heavily

use the concept of multiplexing of procedures. By multiplexing we mean that the execution of
a procedure, described as a sequence of consecutive steps, will be interleaved with the execution
of other procedures needed to complete the task. In general, only one step of each procedure is
executed in a round robin fashion, unless explicitly stated. Divisions in blocks and (as we will see
in the next subsection) assignment of colors are again used to interleave the execution of the same
task in different rounds (depending on colors, on blocks or on a combination of both) in order to
avoid collisions. Multiplexing will also be used on a higher level, in order to interleave the execution
of different algorithms developed below. Indeed, as we are unaware of the value of d, we are unable
to determine in advance if the network is sparse or dense, thus we have to run concurrently the
algorithms for dense and sparse networks. This allows us to always complete the task in optimal
time, by stopping slower algorithms after completion of the one that is the best for a given network.

2.3.4 Broadcasting in Sparse Networks

In this subsection we describe Algorithm Color&Transmit, working correctly for sparse networks.
We call block a box with side length 1. (Notice the difference from [68], where blocks had side

length 1/
√

2.) Blocks are used to build a grid in the same fashion as mentioned in Subsection 2.3.3.
One more grid is composed of 5-blocks, i.e., boxes of side length 5. Nodes which inhabit a block
must have real position within distance ε ≤ 1/2 from the block. It follows that any transmission
made by a node inhabiting the central block of a 5-block can only be heard by nodes which inhabit
the 5-block.

In sparse networks, γ =
⌈
π√
3
·
√

2+1√
2−1·

(
2 +

√
2−1√
2+1

)2
⌉
is an upper bound on the number of nodes

which can inhabit a block (we use π√
12

as the upper bound on the ratio of the sum of areas of
pairwise disjoint circles of radius ∆ in a square of side length 2 + 2∆ to the area of this square).

We reserve a total of 25γ distinct colors. Nodes in block Bi of a 5-block, 1 ≤ i ≤ 25, can be
colored with colors from set Ci, where |Ci| = γ and sets Ci are pairwise disjoint.
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In our algorithm we will use a grid refinement process in order to perform various tasks. Nodes
participating in grid refinement are inhabitants of a box. As it is impossible to guarantee full
communication in a box with any constant side length, we use a distinguished node, called witness,
which coordinates the process and determines the set of participants depending on the condition
whether they are able to communicate with the witness or not.

The grid refinement process proceeds in phases. In the first phase, the whole box is divided in
4 square tiles, numbered from 1 to 4 proceeding left to right, top to bottom.

In successive phases, the side length of tiles is halved, thus quadrupling the number of tiles in
the grid. Tiles are allotted rounds in a round robin fashion. A participating node with perceived
position in the i-th tile, transmits during rounds allotted to its tile. Rounds allotted to the witness
are interleaved with those of the tiles.

If only one participating node inhabits a tile, its transmissions will be heard by the witness (which
thus learns the perceived position of the participating node). The witness sends a confirmation to
the node immediately after.

If more than one participating node inhabits a tile, transmissions collide, thus the witness hears
silence and does not send any confirmation.

At the end of each phase, it may be needed to check if the grid refinement has correctly ter-
minated. If needed, such a check is performed as follows. First, one distinguished node u within
communication range of the witness must be provided (such a node will be always explicitly defined
whenever needed).

Once node u is fixed, it transmits together with all participating nodes that did not receive a
confirmation during the current phase. The witness is thus able to distinguish whether the process
is completed or not; if it hears the message from u, this means that the grid is fine enough to have at
most one participating node in each tile and the process is complete. Otherwise, the grid is further
refined by halving the side length of tiles, and a new phase begins.

Notice that only a constant number of phases are needed to complete the process because ε ≤ αd,
for some constant α < 1/2, and hence the distance between perceived positions of distinct nodes is
lower-bounded by a positive constant.

Upon completion of grid refinement, the witness and all participating nodes know the complete
set of participants (participating nodes learn this set through confirmations of the witness).

Now we are able to describe Algorithm Color&Transmit. The dissemination of information from
the source is based on a coloring of nodes in the network. The coloring algorithm defines a spanning
tree of the network, whose height is in O(D). The parent and child relations will always refer to
this tree.

The coloring satisfies the following conditions: for every pair (v1, v2) of nodes having the same
color, the set of children of v1 in the spanning tree does not contain any neighbor of v2 (i.e., v2 is
at distance greater than 1 from any children of v1). Moreover, the parent of v1 (respectively v2) is
not adjacent to v2 (respectively v1).

Siblings in the spanning tree have different colors and each node has a color different from the
one of its parent. Notice that we are not enforcing the assignment of different colors to neighbors
in the graph.

Once a coloring satisfying the above conditions is available, it is possible to ensure that trans-
missions from a parent (child) reach all its children (its parent) without collisions, by allotting
distinguished rounds to nodes of different colors. The bounded height of the spanning tree ensures
termination of broadcasting in time O(D), provided that the total number of colors is bounded by
a constant.

Procedure Assign-Color
Input: a pair of blocks Bi, Bj in a 5-block, and a color c in Ci.
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The procedure assigns, in constant time, colors from set Cj to those nodes in Bj that are yet
uncolored and have a neighbor with color c in block Bi, respecting the coloring conditions.

We say that a node is out of the tree if it does not know its parent. During the coloring process
we mantain the invariant that nodes with the same color do not share neighbors out of the tree.

In the first round of Procedure Assign-Color, all nodes with color c in block Bi transmit.
Next, out of the tree neighbors of each node w with color c in block Bi, inhabiting block Bj , start
a grid refinement process with w as a witness. (Thus, many grid refinement processes may be
simultaneously active.) Node w becomes the parent of participants of the grid refinement process.

In order to check termination of each grid refinement process, we need one more distinguished
node u: this node is the parent of the corresponding node w.

Notice that each node w has a different parent, as siblings do not get the same color. Consider
two nodes, w and w′, with color c in block Bi. Let p be the parent of w and p′ be the parent of
w′. The coloring must satisfy that w is not a neighbor of p′, thus transmissions made by p and p′

cannot collide at w.
In constant time, all children of w, inhabiting block Bj (and w itself) know the full list L of

perceived positions of children of w inhabiting block Bj . (Recall that children of w inhabiting block
Bj may be unable to hear each other directly, so they rely on w to learn the list L.)

Subroutine Conflict-Detection
Input: a quadruple (Bi, Bj , c, c′) where Bi and Bj are blocks and c ∈ Ci and c′ ∈ Cj are colors.

The subroutine allows each node v in block Bj seeking color c′, whose parent w in block Bi has
color c, to distinguish between three possible outcomes:

1. node v can win color c′;

2. node v can lose color c′;

3. node v can make a draw on color c′.

All nodes seeking color c′ are called competitors.
Subroutine Conflict-Detection works in 4 consecutive rounds (the usual interleaving between

procedures is not respected for subroutine Conflict-Detection as interleaving different runs of
the subroutine could cause unexpected behavior. As the number of rounds used by Subroutine
Conflict-Detection is 4, the whole execution can be allotted a segment of 4 consecutive rounds,
increasing the delay in the execution of other procedures by a constant factor only.).

In the first round of Subroutine Conflict-Detection each node v that has not yet lost color c′

transmits, claiming color c′.
In the second round, all parents w of competing nodes transmit. At the same time, all non-

competing nodes that did not hear any claim for color c′ in the previous round transmit. If a
competitor v heard the message from its parent w in the second round, no node v′ sharing a non-
competing neighbor with v is competing for color c′.

In the third round, all nodes w in Bi with color c transmit together with all non-competing
nodes which know about a previous winner of color c′. If node v heard the message from its parent
w in the third round, it means that none of its non-competing neighbors knows about a previous
winner.

Node v wins color c′, if it heard the message from its parent w in the second and third rounds.
Node v loses color c′, if it did not hear the message from its parent w in the third round (color c′

was already won by a node sharing a non-competing neighbor with v). Node v makes a draw on
color c′ if it did not hear its parent w in the second round, but heard it in the third round.

Notice that children of v will be selected among out of the tree nodes, and thus are non-compe-
ting. Parents of nodes competing with v during the same execution of Procedure Assign-Color,
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have the same color as the parent of v. It follows that they cannot be adjacent to v, as v would have
been an out of the tree node when they were assigned a color, and thus either they or the parent of
v would have lost the color.

In round 4, each competitor v announces the result: win, lose or draw, informing all its non-
competing neighbors in case of victory and at least its parent w in other cases. ♣

Once the list L is known to a parent w with color c in block Bi, the first node v in lexicographic
order of perceived positions in the list L starts competing for the first available color c′ ∈ Cj (a
color is available if the parent does not know about a previous winner). This is done by calling
Subroutine Conflict-Detection. If node v wins, Procedure Assign-Color removes v from list L
and color c′ from available colors for all remaining nodes in L. Then, the first node in list L starts
competing for the first available color.

If node v loses, Procedure Assign-Color removes color c′ from available colors for all nodes in
L and v starts competing for the next available color.

If node v makes a draw, it still needs to compete for color c′. When a draw occurs, we say that
nodes are in conflict; conflicts are resolved using Subroutine Conflict-Resolution.

Each competing node participating in Subroutine Conflict-Resolution will either win or lose
the color it was competing for. Multiple runs of Subroutine Conflict-Resolution can be executed
at the same time with the same block arguments if more than one parent w is present in block Bi.
Resolution of conflicts is achieved by ensuring that each of the conflicting nodes becomes the only
competitor in a run of Procedure Conflict-Detection, within constant time from the first draw.
The latter is enough to ensure there is no draw.

This result is achieved by using a grid refinement process that delays successive executions of
Subroutine Conflict-Detection by increasing amounts of time, as described below.

Subroutine Conflict-Resolution
Input: a quadruple (Bi, Bj , u, v), where u ∈ Bi, v ∈ Bj and u is the parent of v.

Subroutine Conflict-Resolution proceeds in consecutive phases. Consider phase i for a con-
flicting node v. Let pi(v) be the number of the tile inhabited by node v in the i-th grid of the
grid refinement process of block Bj . Clearly 1 ≤ pi(v) ≤ 4i. Let Sv be the time when node v
started participating in Procedure Conflict-Resolution. In step Sv + wi + 4i+1 + pi+1(v), where
wi =

∑i
j=1 2 · 4i and w0 = 0, node v starts participating in Procedure Conflict-Detection for the

(i + 1)-th time. If the outcome of this procedure for node v is a draw, the grid is further refined
and a new phase begins. ♣

After resolution of a conflict, node v either wins or loses color c′. The actions of Procedure
Assign-Color where already described in both these cases. �

Lemma 2.3.1 Procedure Conflict-Resolution operates in constant time.

Proof: Consider nodes v1, . . . , vk. Node vi starts participating in Procedure Conflict-Resolution
in time Svi , Sv1 ≤ Sv2 ≤ . . . ≤ Svk . Let δk be the sequence (v1, . . . , vk, Sv1 , . . . , Svk). Let i(δk) be
the smallest phase such that

∣∣pi(δk)+1(vm)− pi(δk)+1(vn)
∣∣ > Svm − Svn , for all k ≥ m > n ≥ 1.

We first show that each node participating in Procedure Conflict-Resolution will be the only
competitor in the (i(δk) + 1)-th run of Procedure Conflict-Detection.
By contradiction, assume that a node vm is conflicting in its (i(δk) + 1)-th run of Procedure Con-
flict-Detection. Let vn be one of the nodes that are conflicting with vm.

The (i(δk) + 1)-th attempt of node vm occurs in time ρ = Sm +wi(δk) + 4i(δk)+1 + pi(δk)+1(vm).
In order to have a conflict, we must have Sn + wj + 4j+1 + pj+1(vn) = ρ for some value j.

Consider three cases:
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Case 1. j < i(δk).

ρ = Svm + wi(δk) + 4i(δk)+1 + pi(δk)+1(vm) > Svm + wi(δk) + 4i(δk)+1 >

Svn + wj+1 > Svn + wj + 4j+1 + pj+1(vn)

as j + 1 ≤ i(δk) and |Svm − Svn | <
∣∣pi(δk)+1(vm)− pi(δk)+1(vn)

∣∣ < 4i(δk)+1. Contradiction.

Case 2. j = i(δk).

ρ = Svm + wi(δk) + 4i(δk)+1 + pi(δk)+1(vm) = Svn + wi(δk) + 4i(δk)+1 + pi(δk)+1(vn),

hence |Svm − Svn | =
∣∣pi(δk)+1(vn)− pi(δk)+1(vm)

∣∣, which contradicts our assumption on i(δk).

Case 3. j > i(δk).

ρ = Svm + wi(δk) + 4i(δk)+1 + pi(δk)+1(vm) < Svm + wi(δk)+1 <

Svn + wi(δk)+1 + 4i(δk)+1 < Svn + wj + 4j+1 + pj+1(vn),

as |Svm − Svn | <
∣∣pi(δk)+1(vm)− pi(δk)+1(vn)

∣∣ < 4i(δk)+1. Contradiction.

Hence, in all cases, each node participating in Procedure Conflict-Resolution will be trans-
mitting alone in its (i(δk) + 1)-th execution of Procedure Conflict-Detection.

Now we show that the completion time of Procedure Conflict-Resolution is bounded by a
function f(k), where k is the number of participants. This is enough in view of k ≤ γ. We construct
the values f(k) by induction. Suppose that f(k) has been already constructed.

Let σk = Svk − Sv1 . Since distances between perceived positions of nodes are lower-bounded
by a positive constant, there exists an increasing function F such that i(δk) ≤ F (σk). We now
construct f(k + 1). We may assume σk+1 ≤ f(k), for otherwise the procedure would end before
the start of participation of node vk+1, and hence we could take f(k + 1) = f(k). We already
showed that the duration of Procedure Conflict-Resolution for nodes v1, . . . , vk+1 is at most
maxk+1

j=1(σj + wi(δk+1) + 4i(δk+1)+1 + pi(δk+1)+1(vj)). The latter is at most:

σk+1 + 4i(δk+1)+2 ≤ σk+1 + 4F (σk+1)+2 ≤ f(k) + 4F (σk+1)+2 ≤ f(k) + 4F (f(k))+2.

Hence we can take
f(k + 1) = f(k) + 4F (f(k))+2.

Thus the function f (depending only on the number k of participants) is constructed, which
concludes the proof of the lemma. �

In order to complete Algorithm Color&Transmit, we need to describe how to initialize the whole
process starting from the source s. The source is precolored with the first color avaiable for the block
it inhabits. Using a grid refinement process, s can elect a distinguished node in its neighborhood in
constant time and assign it a color. (If there is no neighbor of the source, i.e., the source is the only
node in the network, the source transmits only once.) This distinguished node allows the source to
check the correct termination of the grid refinement process. From now on, using Procedure As-
sign-Color, the whole network can be colored with 25γ colors. Notice that the time taken to assign
a color to a node is constant. Once a node is colored, all its neighbors are colored after a constant
time. It follows that the coloring ends in time O(D) and thus the height of the induced spanning
tree is in O(D). After getting the source message, a node waits until the first round assigned to its
color and transmits the message, informing all its children. Confirmation messages are sent back to
the source along this tree, starting from the leaves, again using colors to avoid collisions on parent
nodes. Each transmission is delayed by a constant time only, and the whole process is completed
in time O(D). Confirmation will be used in the main algorithms in Subection 2.3.6.

Theorem 2.3.1 There exists a deterministic algorithm that completes broadcast in time O(D) in
any UDG radio network of unknown diameter D and unknown density d ≥ 2∆.
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2.3.5 Broadcasting in Dense Networks

Our algorithm for sparse networks was based on the assumption that d ≥ 2∆. Now we assume
d < 2∆. We call ∆-block a box with side length 1−2∆√

2
. ∆-blocks are used to build a grid in

the same fashion as before. One more grid is composed of 5∆-blocks , i.e., boxes of side length
5√
2
(1− 2∆). Under the current assumption on d, the distance between the actual positions of two

nodes in a ∆-block is < 1.

Lemma 2.3.2 If ε < ∆, transmissions made by nodes inhabiting the central ∆-block of a 5∆-block
can only reach nodes inhabiting the 5∆-block.

Proof: The minimum distance between a node inhabiting a central ∆-block of a 5∆-block B and a
node not inhabiting B is at least

√
2 (1− 2∆)−2ε >

√
2 (1− 2∆)−2∆ >

√
2
(

1−
√

2−1√
2+1

)
−
√

2−1√
2+1

=
√

2+1√
2+1

= 1. �

It follows that there are 24 ∆-blocks potentially reachable from any ∆-block.

An O
(
D + g2

)
-time Algorithm

The algorithm Elect&Transmit proposed in [68] is based both on the perfect knowledge of positions
and on the knowledge of the density of the network. This algorithm elects a pair of adjacent nodes
called ambassadors for each pair of neighboring blocks in a preprocessing phase of time complexity
O(g2). When all nodes know d, by fixing an order between blocks and between tiles in each block,
it is possible to let each node transmit alone and reveal its position in 25g2 rounds. This is the first
phase of preprocessing. In a second phase, the knowledge acquired by each node in the first phase
is spread (in the same fashion) to all its neighbors.

As the time taken to complete transmissions in each block is identical and known in advance
when d is known, this is enough to elect a pair of ambassadors for each pair of neighboring blocks.
(Any fixed strategy, such as choosing the first pair in lexicographic order allows to reach the goal.)
Once the pairs of ambassadors are defined, broadcasting can be completed in time O(D).

In our setting d is unknown and we only have inaccurate knowledge of positions, hence it is
impossible to use algorithm Elect&Transmit from [68]. In what follows, we provide a new algorithm
working in time O

(
D + g2

)
, called Algorithm Dense-1.

Recall, from Subsection 2.3.4, the description of the grid refinement process. Taking advantage
of full communication within a ∆-block, we can mimic the grid refinement process in dense networks
without having a predefined witness, as the role of the witness can be played by the first node that is
able to transmit alone. Indeed, such a node is heard by all participants in the ∆-block; its perceived
position is then appended to all the subsequent messages sent during the execution of the process,
thus informing it of its role of witness as soon as a second node is able to transmit alone. In any
∆-block containing at least two nodes the grid refinement process ends in time O(g2) (the second
node transmitting alone is used to check termination). Nodes that are alone in their ∆-block, would
be involved in the grid refinement process forever, unless external help allows them to stop. (In our
algorithm such help will be, of course, provided.)

In [68] the authors developed a procedure called Conquer. This procedure elects a pair of
neighboring nodes in two blocks in time O (log g). The input of Procedure Conquer consists of two
blocks, B1 and B2, and a node b1 in B1. Procedure Conquer can either be successful or unsuccessful,
depending on whether a pair of adjacent nodes exists in the two blocks or not. Termination of
Procedure Conquer was based on the assumption that d is known. Nodes elected by procedure
Conquer can be used as ambassadors to spread information from one block to another, but in our
setting we need to take additional care in order to guarantee termination.
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Logarithmic time is achieved in Procedure Conquer thanks to the ability of electing a neighbor
of a given node c in a region R (of diameter at most 1) in time O (log g). This result is based on
the procedure Echo from [118]. Procedure Echo allows all nodes at distance one from c and from
all points in R to know if there are 0, 1 or more than one nodes in R, and can be used to perform
elections of a node in a set in logarithmic time. The latter is achieved by using a halving process
exponentially decreasing the area of the region where the node can be elected. The knowledge of d
allows the node c to precompute the duration of an unsuccessful election (i.e., an attempt to elect a
node from the empty set). In our setting this is impossible, thus we need to avoid involving nodes
in unsuccessful halving processes while electing ambassadors for neighboring ∆-blocks.

In our algorithm, election of ambassadors is performed using Procedure Safe-Conquer detailed
below.

Procedure Safe-Conquer
Input: two ∆-blocks, B1 and B2, a node a in B1, and a node b adjacent to a.

Procedure Safe-Conquer elects a pair (u, v) of adjacent nodes such that u ∈ B1 and v ∈ B2

in time O(log g) whenever such a pair exists, otherwise it stops in constant time. We say that
Procedure Safe-Conquer is successful if such a pair is elected, otherwise it is unsuccessful.

In the first round of execution of Procedure Safe-Conquer, all nodes in B2 transmit together
with b. If a cannot hear the message from b, it means that a node b2 in B2 exists such that b2 is
adjacent to a. If this is the case, a node v adjacent to a in B2 is elected, completing the pair (a, v).

If no such a node b2 exists, we need to verify if a pair (b1, b2) of adjacent nodes exists such that
b1 ∈ B1 and b2 ∈ B2. This is done as follows: first a transmits a control message together with all
nodes in B2. Then all those nodes in B1 which did not hear a, transmit. Simultaneously b transmits.
Notice that node b can be inside B1. If this is the case, it has to declare when transmitting if it
heard a in the previous round. If a does not hear b or if the message from b states that it did
not hear a previously (and thus it can communicate with a node in B2), it means that there exists
a pair (b1, b2) that we were searching for. Therefore we can apply Procedure Conquer (using ∆-
blocks instead of blocks) and successfully elect such a pair (u, v). If the pair (b1, b2) does not exist,
the two ∆-blocks are unable to communicate and no pair will be elected. In this case Procedure
Safe-Conquer stops after 3 steps. �

Now we have all the tools we need to describe Algorithm Dense-1.
In the first round, the source transmits alone. The source will not transmit any other message

unless it hears a message from another node, allowing the protocol to end in time 1 when the whole
network consists only of the source.

Starting from round 2, all ∆-blocks start the grid refinement process. Let B be a ∆-block in
which the process ends, and let a and b be the first two nodes that transmitted alone in B. For
any such block, Procedure Safe-Conquer is applied using as parameters B,B′, a, and b, for every
∆-block B′ potentially reachable from B (there are at most 24 such ∆-blocks).

As soon as the source hears a message (which happens after time O
(
g2
)
in networks with more

than one node), it starts participating in two tasks. The first task is the grid refinement in its own
∆-block. The second task is the election of a node b among those informed during the first round,
based on halving. This election is performed for each of the 25 ∆-blocks potentially reachable from
the source, including its own ∆-block (using multiplexing). Election will be successful in one of
these ∆-blocks and it will be completed in time O(log g). Let S be the ∆-block inhabited by the
source s. As soon as node b is elected, Procedure Safe-Conquer is applied using as parameters
S, T, s and b, for any ∆-block T potentially reachable from S (again, there are at most 24 such
∆-blocks).

For any ∆-block with at least 2 nodes (and for the ∆-block inhabited by the source), election
of all ambassadors is completed in time O

(
g2 + log g

)
= O

(
g2
)
.
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Whenever a pair of ambassadors (u, v) for a pair of blocks (B,B′) is elected, if B′ is a ∆-block
where grid refinement is still running, node v verifies if it is alone in B′. This is done by reserving
a round where each node in B′, except v, transmits together with u. If v can hear u, it is alone in
B′ and it stops executing grid refinement, otherwise other nodes are present and grid refinement
will eventually terminate. It follows that after O

(
g2
)
time, the only ∆-blocks that are still running

grid refinement are those ∆-blocks containing only one node that have no neighbors in ∆-blocks
with 2 or more nodes. For any such ∆-block B, the election of ambassadors for the 24 pairs of
blocks (B,B′), where B′ is potentially reachable from B, can be completed in constant time using
Procedure Safe-Conquer. In each case, the parameters of this procedure will be B, B′, the unique
node u inhabiting B, and the node v that first informed u.

The source message is then passed through ambassadors. Let (u, v) be a pair of ambassadors
for ∆-blocks B,B′. If v is newly informed by u, it informs B′ and informs u that B′ has been newly
informed by B. In this case we say that (u, v) is the informing couple of B′. Otherwise v does not
transmit. A ∆-block is a leaf if it does not newly inform any other ∆-block. Confirmation of broad-
cast completion proceeds from leaf ∆-blocks to the source, again using ambassadors. Confirmation
will be used in the construction of the main algorithms in Subection 2.3.6.

Theorem 2.3.2 There exists a deterministic algorithm that completes broadcast in time O
(
D + g2

)
in any UDG radio network of unknown diameter D and unknown density d = 1/g < 2∆.

An O (D log g)-time Algorithm

In order to obtain an algorithm running in time O (D log g) we restrict attention to networks with
at least two nodes. In Subection we will show that this restriction is necessary.

Algorithm Dense-2, is designed for networks of size at least 2 and works in time O (D log g).
In such networks, we are guaranteed that there exists a node b adjacent to the source s, thus we
can elect such a node b in logarithmic time in the same fashion as we did in Algorithm Dense-1,
without waiting for the source to receive any message. Procedure Safe-Conquer is then used to
elect pairs of ambassadors for any pair of ∆-blocks (B,B′), where B is inhabited by the source and
B′ is reachable from B. In general, fix a ∆-block B1 not reachable from B. Consider the informing
couple (u, v) of ambassadors for B1. Nodes u and v are then used as parameters of Procedure
Safe-Conquer for any ∆-block B2 potentially reachable from B1.

Election of ambassadors and spreading of the source message proceeds by a wave originating
from the ∆-block inhabited by the source. Confirmation is done as previously. Since each election
takes time O (log g), broadcasting is completed in time O (D log g).

Theorem 2.3.3 There exists a deterministic algorithm that completes broadcast in time O (D log g)
in any UDG radio network with at least two nodes, unknown diameter D and unknown density
d = 1/g < 2∆.

2.3.6 The Main Algorithms

Algorithms Dense-1 and Dense-2 developed for dense networks, may fail when applied on a sparse
network, as the assumption of having full communication inside a ∆-block may not hold. On the
other hand, Algorithm Color&Transmit, developed for sparse networks, can fail on dense networks,
as it can run out of colors when there are more than γ nodes in a block. In order to develop an
algorithm that is suitable for all networks, we multiplex the execution of algorithms conceived for
dense and for sparse networks and use confirmation in order to stop the execution of the slower ones
after the completion of the fastest. (Notice that such stopping is crucial because grid refinement
for dense networks could run forever on sparse networks.) The only nodes that send confirmation
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back to the source in algorithms for dense networks are the ambassadors. We need to ensure that
whenever an algorithm for dense networks fails, at least one of the ambassadors becomes aware
of the error, thus not sending confirmation back to the source. On the other hand, in algorithm
Color&Transmit all nodes send confirmation, and thus failures are readily detected.

Procedure Error-Detection
Input: a ∆-block B.
Let (u, v) be the informing couple of B. (If B is the ∆-block inhabited by the source s, the

informing couple is replaced by the pair (b, s), where b is the elected neighbor of s.) Procedure
Error-Detection flags an error whenever a node at distance (in hops) at most 2 from v is not
informed.

In the first round, v transmits together with all uninformed nodes. Let x be an informed node
adjacent to v. x hears v in the first round, if and only if, it has no neighbors that are not informed.
In the second round of the procedure, u transmits together with all neighbors of v that did not hear
v in the previous round. The ambassador v flags an error (and does not send confirmation), if it
does not hear u in the second round. �

Procedure Error-Detection is called by algorithms Dense-1 and Dense-2 in any ∆-block B as
soon as the following two conditions are satisfied:

1. confirmation from all ∆-blocks newly informed by B were obtained;

2. if B1 is a ∆-block reachable from B and B2 is a ∆-block reachable from B1, then B2 was
informed.

(In particular, Procedure Error-Detection is not called in the singleton network.)

Lemma 2.3.3 Let A be either Algorithm Dense-1 or Dense-2. If A fails to inform all nodes, then
A does not provide confirmation to the source.

Proof: In order for A to fail, there must exist a node x that never received the source message.
First suppose that a neighbor y of x is informed: it follows that there exists an ambassador v that
informed y, and hence the distance in hops between x and v is equal to 2 and an error is flagged
in the ∆-block inhabited by v. If all neighbors of x are not informed, let x′ be the first node on
a shortest path between x and an informed node. Repeat the reasoning replacing x with x′. As
the graph is connected and the source is informed, such a shortest path always exists. The lemma
follows by induction on the length of this shortest path. �

Lemma 2.3.4 Let A be either Algorithm Dense-1 or Dense-2. If A is executed in a dense network,
then A provides confirmation to the source.

Proof: Let B be the input of Procedure Error-Detection, v ∈ B the ambassador which informed
B, and x an uninformed node. Let B2 be the ∆-block inhabited by x. B2 must be unreachable
from B and from any ∆-block B1 which is reachable from B, as otherwise x would have been
already informed. It follows that none of the neighbors of v has x as a neighbor, hence Procedure
Error-Detection does not flag an error on B. This proves the lemma. �

We propose two main algorithms: Algorithm Universal Broadcast that works for all net-
works, and Algorithm Company-Aware Broadcast that works for all networks of size at least 2.
Algorithm Universal Broadcast consists of multiplexing Algorithm Color&Transmit with Algo-
rithm Dense-1, while Algorithm Company-Aware Broadcast consists of multiplexing algorithms
Color&Transmit, Dense-1, and Dense-2.
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The running time of Algorithm Universal Broadcast is O
(
D + g2

)
. Indeed, if confirmation

is provided to the source by Algorithm Dense-1, the source can stop the execution of Algorithm
Color&Transmit, in time O(D), using the already elected ambassadors to spread the termination
message to the whole network. On the other hand, if confirmation is provided to the source by Al-
gorithm Color&Transmit, the execution of Algorithm Dense-1 can be stopped, again in time O(D),
using the already defined coloring to avoid collisions while spreading the termination message from
the source to the whole network. Algorithm Universal Broadcast is successful on any network,
and its running time is always bounded by the minimum of the running time of Algorithm Co-
lor&Transmit and Algorithm Dense-1, thus it is O

(
D + g2

)
. Notice that, if the network contains

only the source, the source will never receive any confirmation. Nevertheless, neither Algorithm
Color&Transmit nor Algorithm Dense-1 would use the source to transmit more than once, thus
allowing the combined algorithm to end in constant time. Hence we have the following result, which
will be proved optimal in Subection 2.3.7 by providing a matching lower bound.

Theorem 2.3.4 There exists a deterministic algorithm that completes broadcast in time O
(
D + g2

)
in any UDG radio network of unknown diameter D and unknown density d = 1/g.

If we neglect networks with only one node, Algorithm Company-Aware Broadcast can be used.
Stopping of the slower component algorithms by the fastest is done as previously, thus guarantee-
ing time O

(
min

(
D + g2, D log g

))
. However, Algorithm Company-Aware Broadcast runs forever if

executed on a network containing the source only, hence it is not a correct algorithm for all net-
works. Since the lower bound Ω

(
min

(
D + g2, D log g

))
from [68] also holds in our case, Algorithm

Company-Aware Broadcast is optimal whenever it is correct. Hence we have the following result.

Theorem 2.3.5 The optimal time of a broadcasting algorithm working correctly on all UDG ra-
dio networks with at least two nodes, unspecified diameter D and unspecified density d = 1/g, is
Θ
(
min

(
D + g2, D log g

))
.

2.3.7 Lower Bound on Universal Broadcasting Time

In this subsection we assume that the source does not have any information whether it is the
only node in the network or not. We want to establish optimal time of a broadcasting algorithm
working correctly for all networks. In particular, this algorithm must stop after some fixed time
when the source is the only node in the network. We show that this forces a lower bound Ω(g2) on
broadcasting time for some UDG radio networks of constant diameter and from there we derive the
lower bound Ω(D + g2) on broadcasting time for the class of UDG radio networks with unknown
diameter D and unknown diameter d. This matches the time O(D + g2) of Algorithm Universal
Broadcast from Subection 2.3.6, thus establishing Θ(D+ g2) as optimal broadcasting time for the
class of arbitrary networks.

Consider two squares: A with corners (3
5 ,−

1
10), (3

5 ,
1
10), (4

5 ,−
1
10), (4

5 ,
1
10) and B with corners

(6
5 ,−

1
10), (6

5 ,
1
10), (7

5 ,−
1
10), (7

5 ,
1
10) (see Fig. 2.4).

For any positive constant d, consider a d-grid inside each of those squares defined as the set of
points in A (respectively, in B), including the lower-left corner and forming a grid with square side
d. Let S be the d-grid in A and T the d-grid in B. Note that, for any d, the size σ(d) of both sets
S and T is the same and it is Ω(g2). For any S′ ⊆ S and any T ′ ⊆ T define a UDG radio network
N(S′, T ′) whose set of stations is {(0, 0)} ∪ S′ ∪ T ′ and whose source is the point (0, 0). Let N
be the class of all networks N(S′, T ′), for all d = 1/g, where g is an integer greater than 4, and
for all S′ ⊆ S and T ′ ⊆ T . Note that networks of the class N have a simple structure: they are
composed of two cliques, one on the set {(0, 0)} ∪ S′ and the other on the set T ′, with all possible
edges between sets S′ and T ′. A network obtained for a given d has density d and diameter 2.

In the proof of our result we will use the following lemma (cf. Procedure Modify from [120]).
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Figure 2.4: A network of the class N .

Lemma 2.3.5 For any sequence of sets A1, A2, . . . , Ak of subsets of V , where |V | = n, there exists
a set R ⊆ V such that |R| ≥ n− k and |R ∩Aj | 6= 1, for all j ≤ k.

Proof: Define recursively the following sequence of sets:
R1 = V ;

for any i ≤ k, Si = {x ∈ Ri : |Ri ∩Aj | = 1 for some j ≤ k};
Ri+1 = Ri \ Si.

Now the set R = Rk+1 has the desired properties. �

Theorem 2.3.6 For any broadcasting algorithm A working correctly on all networks of the class
N , and for every g > 4, there exists a network of density d = 1/g in the class N , for which the
algorithm A uses time Ω(g2).

Proof: Fix a broadcasting algorithm A working correctly on all networks of the class N . For some
constant α > 0 and for all g large enough we will construct a network N(S∗, T ∗) of density d = 1/g
in the class N for which the algorithm A uses time at least αg2. (This is sufficient, as for smaller
g we can simply take the network N(S, T ).) First notice that the network O consisting only of
the source (0, 0) is a member of the class N . Hence algorithm A must work correctly on network
O, which implies that after c rounds, for some positive constant integer c, the source must stop
transmitting messages, if it is in the network O. Now suppose that the source is in some other
network of the class N . If during the first c rounds it does not hear any message, it cannot transmit
any message in subsequent rounds, until it gets another message, because after c rounds without
hearing any message it cannot distinguish if it is in the network O or in the other network and hence
(assuming that it did not hear any messages later on) it must behave like it did in the network O.
Let π be the pattern of behavior of the source during the first c rounds, if it does not hear any
message during these c rounds. π can be represented as a binary sequence of length c, where 1 in
the ith position indicates that the source transmits, and 0 that it does not. (The content of the
transmitted message is irrelevant for our considerations.)

Consider the set T from the definition of the class N and suppose that g is large enough to
guarantee |T | > c+ d|T |/2ce − 2. Let t = c+ d|T |/2ce − 2. Let A1, . . . , At be the set of nodes from
T that transmit in rounds 1, . . . , t, respectively, assuming that they did not hear any message in
any of the rounds 1, . . . , t. Let T ∗ be the set R from Lemma 2.3.5 obtained by taking k = t and
V = T . The set T ∗ is non-empty and has the property that in any network N(Y, T ∗), if nodes from
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T ∗ do not hear any messages from Y in rounds 1, . . . , t then, in each of those rounds, either no node
from T ∗ transmits (call such a round T ∗-silent), or at least two nodes from T ∗ transmit (call such
a round T ∗-loud). The construction of T ∗ is completed.

Now we proceed with the (somewhat more complicated) construction of the set S∗. Consider the
set S from the definition of the class N and suppose that g is large enough to guarantee |S| ≥ 2c+1.
Let S0 = S and let S′0 be the set of those nodes in S0 that transmit in the first round, according
to algorithm A. If |S′0| ≥ |S0|/2 then let S1 = S′0, otherwise, let S1 = S0 \ S′0. In the first case
call round 1 dense, in the second case call it sparse. Now suppose that the outcome of round 1
was the following for nodes in S1: if round 1 was dense then nodes in S1 did not hear anything;
if round 1 was sparse and either π(1) = 0 or round 1 was T ∗-loud then nodes in S1 did not hear
anything; if round 1 was sparse, π(1) = 1 and round 1 was T ∗-silent then nodes in S1 heard a
message from the source. Let S′1 be the set of nodes in S1 that transmit in round 2 according to
algorithm A under the above assumption. If |S′1| ≥ |S1|/2 (round 2 was dense) then let S2 = S′1,
otherwise (round 2 was sparse), let S2 = S1 \ S′1. Continuing in this way we define by induction
sets S0, S1, . . . , Sc, at each step taking as Si+1 the set of those nodes in the previously defined set
Si that exhibited the majority behavior under the previously assumed history, (which is composed
of sequences of messages – including the empty message – assumed to be heard by each node in
consecutive rounds). The assumptions on the history before round i are satisfied in any network
N(S∗, T ∗) for which S∗ ⊆ Si and |S∗| ≥ 2. Indeed, in any such network, in dense rounds prior to i
at least two nodes from S∗ would transmit and in sparse rounds prior to i no node from S∗ would
transmit. Consequently the source and the nodes in T ∗ would not hear any message from S∗ and
would behave as described before.

Now let S̄ = Sc. By our construction, the set S̄ has size at least z = d|S|/2ce ≥ 2. It has the
property that in any network N(S∗, T ∗) for which S∗ ⊆ S̄ and |S∗| ≥ 2, no node can hear any
message from a node in S∗ in or before round c. This is due to the fact that in all these rounds the
number of transmitting nodes from S∗ is either 0 or at least 2. In particular, in any such network,
the source cannot hear any message in the first c rounds. By the definition of c, in any such network
the source will not transmit after round c unless it hears a message.

We can now finish the construction of S∗. Let k = z − 2 and let B1, . . . , Bk be sets of nodes
in S̄ transmitting, respectively, in rounds c + 1, c + 2, . . . c + k, provided that they did not hear
any message after round c. Let S∗ be the set R from Lemma 2.3.5 obtained by taking V = S̄ and
substituting sets Bi for Ai. This concludes the entire construction. It is now enough to prove that
the network N(S∗, T ∗) has the desired properties.

First note that S∗ ⊆ S̄ and |S∗| ≥ 2. As remarked before, the source cannot hear any message
in the first c rounds. Hence it will not transmit after round c unless it hears a message. Moreover,
in the first c rounds, nodes in T ∗ cannot hear any message from a node in S. Let us now consider
rounds c+ 1, c+ 2, . . . c+ z − 2. By induction on the round number the following invariant can be
shown to hold in all these rounds:

• the source does not transmit;

• no node of the network hears any message.

We conclude that nodes in T ∗ cannot hear the source message in any of the rounds 1, . . . , c+ z− 2.
Consequently, broadcasting in the network N(S∗, T ∗) takes time at least c + z − 1, because T ∗

is non-empty. This holds for g large enough to guarantee both σ(d) > c + dσ(d)/2ce − 2 and
σ(d) ≥ 2c + 1 (recall that |S| = |T | = σ(d)). Now take β = 2−(c+1). Since, for sufficiently large g,
we have c+ z− 1 = c+ dσ(d)/2ce− 1 ≥ β ·σ(d), and σ(d) is in Ω(g2), we conclude that there exists
a constant α > 0 such that, for sufficiently large g, algorithm A uses time at least αg2 to broadcast
in network N(S∗, T ∗). �
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It is easy to generalize the above lower bound to UDG radio networks of arbitrary diameter
D and density d. Instead of networks of the class N that consist of a source (0, 0) and d-grids in
squares A and B, we take the source (0, 0) followed by D− 1 squares of side 1/5, arranged in a line
with distances 3/5 between consecutive square centers. In each of the squares we insert d-grids as
before. It is easy to see that the Ω(g2) lower bound can be proved as above, while the diameter D
is a trivial lower bound on broadcasting time. Hence we get the following corollary.

Corollary 2.3.1 For any broadcasting algorithm A working correctly on all UDG radio networks,
there exist networks of diameter D and density d = 1/g, for arbitrary D and g, for which algorithm
A uses time Ω(D + g2).

It should be noted that the above lower bound remains true even when nodes know exactly their
positions, i.e., for error margin 0. Theorem 2.3.4 and Corollary 2.3.1 imply the following result.

Corollary 2.3.2 The optimal time of a broadcasting algorithm working correctly on all UDG radio
networks with unknown diameter D and unknown density d = 1/g is Θ(D + g2).

2.3.8 Conclusion

In this section we studied broadcasting time in radio networks, modeled as Unit Disc Graphs, under
a more realistic set of assumptions with respect to the ones previously adopded in the literature.

Two impractical assumptions have been removed:

• the knowledge of the density;

• the ability of nodes to perceive their exact position in the plane.

Our work shows that optimal broadcasting time does not change in this modified setting, but
new difficulties arose, in particular for sparse networks.

We also introduced more strict requirements for termination of the algorithms. The requirement
of silence, combined with ignorance of network parameters like the density and the diameter, can
cause an exponential gap in optimal broadcasting time for all networks of small diameter, unless we
allow our algorithms to run forever in the singleton network.
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2.4 Impact of Information on Asynchronous Radio Broadcasting

2.4.1 The Model and the Problem

A radio network consists of stations with transmitting and receiving capabililities. The network is
modeled as a directed graph with a distinguished node called the source. Each node has a distinct
identity (label) which is a positive integer. If there is a directed edge from u to v, node v is called
an out-neighbor of u and u is called an in-neighbor of v.

At some time t a node may send a message to all of its out-neighbors. It is assumed that this
message is delivered to all the out-neighbors simultaneously at some time t′ > t decided by an
adversary that models unpredictable asynchronous behavior of the network. The only constraint
(cf. [46, 145]) is that the adversary cannot collate messages coming from the same node, i.e., two
distinct messages sent by the same node have to be delivered at different times. We consider two
types of asynchronous adversaries. The strong adversary, called the node adversary in [46], may
choose an arbitrary delay t′ − t between sending and delivery, possibly different for every message.
The weak adversary chooses an arbitrary delay for a given node (possibly different delays for different
nodes), but must use this delay for all messages sent by this node during the protocol execution. The
motivation for both adversaries is similar and follows the one given in [46]. Nodes of a radio network
execute a communication protocol while concurrently performing other computation tasks. When a
message arrives at a node, it is stored (prepared for transmission) and subsequently transmitted by it,
the (unknown) delay between these actions being decided by the adversary; storing for transmission
corresponds to sending and actual transmission corresponds to simultaneous delivery to all out-
neighbors (at short distances between nodes the travel time of the message is negligible). The delay
between storing and transmitting (in our terminology, between sending and delivery) depends on
how busy the node is with other concurrently performed tasks. The strong adversary models the
situation when the task load of nodes may vary during the execution of a broadcast protocol, and
thus delay may vary from message to message even for the same node. The weak adversary models
the assumption of a constant occupation load of each node during the communication process: some
nodes may be more busy than others but the delay for a given node is constant.

At time t′, a message is heard, i.e., received successfully by a node, if and only if, a message
from exactly one of its in-neighbors is delivered at this time. If messages from two in-neighbors v
and v′ of u are delivered simultaneously at time t′, we say that a collision occurs at u. Similarly
as in most of the literature concerning algorithmic aspects of radio communication, we assume that
in this case u does not hear anything at time t′, i.e., we assume that a node cannot distinguish
collision from silence.

While in general the network is modeled as an arbitrary directed graph, we also consider two
smaller classes of networks. The first is the one of symmetric networks, modeled by symmetric
directed graphs, or equivalently by undirected graphs. The second, still smaller class of networks is
the one of UDG networks. In the case of UDG networks, each node knows its Euclidean coordinates
in the plane. These coordinates also play the role of the label (similarly as, e.g., in [68, 69] and in
the previous section, nodes in UDG networks are not equipped with integer identities).

2.4.2 Centralized vs. Ad Hoc Broadcasting

We assume that only stations that have already received the source message can send messages
(conditional wake up model). In order for the broadcasting to be feasible, we assume that there is
a directed path from the source to any other node. For symmetric networks this is equivalent to
connectivity. As in the rest of this chapter, we consider only deterministic broadcasting algorithms.

Two alternative assumptions are made in the literature concerning broadcasting algorithms. It is
either assumed that the topology of the underlying graph is known to all nodes, in which case nodes
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can simulate the behavior of a central monitor scheduling transmissions (centralized broadcasting), or
it is assumed that the network topology is unknown to nodes (ad hoc broadcasting). Moreover, in the
latter case, some crucial parameters of the network, such as the number n of nodes, may be known
or unknown to nodes. In the case of UDG radio networks, an important parameter is the density d
of the network, as widely discussed in the previous section. We will see how information about the
topology of the network and knowledge of its parameters influence the efficiency of broadcasting
protocols. In particular, for UDG networks, optimal work of broadcasting protocols may depend
on the granularity g of the network, which we recall is defined as the inverse of the density.

2.4.3 Adaptive vs. Oblivious Protocols

We consider two kinds of broadcasting protocols: oblivious and adaptive. In an oblivious protocol
every node has to send all its messages as soon as it is woken up by the source message. More
precisely, a node has to commit to a non-negative integer representing the number of messages it
will send during the broadcasting process, prior to the execution of the protocol. This number may
depend only on the label of the node or on its position in the case of UDG networks. (In [46] only
oblivious protocols were considered.) By contrast, an adaptive protocol is more powerful, as a node
can decide on the number and content of messages it sends, depending on its history, i.e., depending
on the sequence of messages received so far. Hence, while the total number of messages sent by an
oblivious protocol is the same for each of its executions, for an adaptive protocol this number may
differ depending on the behavior of the adversary.

We define the work of a broadcasting protocol as the worst-case total number of messages sent
until all nodes are informed. The worst case is taken over all possible behaviors of an asynchronous
adversary under consideration. Work is a natural measure of complexity of an asynchronous radio
broadcast protocol. It was introduced in [46] for oblivious protocols. We will see that in some
cases the rigidity of oblivious protocols may cause exponential increase of their work as compared
to adaptive ones.

2.4.4 Original Contribution

In the first part of this subsection we present our results on optimal work of asynchronous broad-
casting against the strong adversary (i.e., the node adversary from [46]), see Table 1.

For UDG networks with known topology we get a tight result: the optimal work is Θ(τ), where
τ is the number of blocks containing at least one node. (Recall the definition of blocks, from [68],
given in the previous section – here the side length for a block is 1/

√
2.) The result holds both

for adaptive and for oblivious algorithms. Our upper bound is constructive: we show an oblivious
broadcasting algorithm with work O(τ). For UDG networks with unknown topology the results
significantly change and they depend on whether (a lower bound on) the density d of the network
is known or not. If it is known, then optimal work depends on the number τ of occupied blocks and
on the granularity g = 1/d. We show an oblivious broadcasting algorithm with work O(ταg

2
), for

some constant α > 1. On the other hand, we show that any broadcasting algorithm, even adaptive,
must use work Ω(τβg

2
), for some constant β > 1. If d is unknown, we show that broadcasting

against the strong adversary is impossible in UDG networks.
We now summarize our results for networks modeled by graphs that need not come from confi-

gurations of points in the plane. (For such networks we assume that all nodes have distinct positive
integer labels and each node knows its label.) Symmetric radio networks with known topology are
those in which optimal work of asynchronous broadcasting significantly depends on the adaptivity
of the algorithm. Indeed, we prove that for adaptive algorithms the optimal work is Θ(n), where n
is the number of nodes in the network. The upper bound is again constructive: we show an adap-
tive broadcasting algorithm with work O(n) working for any n-node symmetric network of known
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topology. By contrast, using techniques from [46], it can be proved that any oblivious algorithm
uses work Ω(cn), for some constant c > 1, on some symmetric n-node network, and that there
exists an oblivious algorithm working for any symmetric n-node network of known topology, using
work O(2n). Hence we prove an exponential gap between optimal work required by adaptive and
by oblivious broadcasting in symmetric networks of known topology. It should be noted that for
arbitrary (not necessarily symmetric) networks, broadcasting with linear or even polynomial work
is not always possible, even for adaptive algorithms. Indeed, it follows from [46] that exponential
work (in the number n of nodes) is needed for some networks, even when the topology is known
and the algorithm is adaptive. It is also shown in [46] that, for radio networks of known topology,
work O(2n) is always enough.

For networks of unknown topology we have a tight result on optimal work of asynchronous
broadcasting. This work is Θ(2N ), where N is the maximal label of a node, and this result does not
depend on whether the networks are symmetric or not, whether the algorithm is adaptive or not,
and whether the maximal label N is known to nodes or not. More precisely, we show a lower bound
Ω(2N ) on the required work, even for symmetric networks with known parameter N , and even for
adaptive algorithms. On the other hand, we observe that an (oblivious) algorithm described in [46]
and working for arbitrary networks without using the knowledge of N has work O(2N ).

In Subsection 2.4.9 we present our results on optimal work of asynchronous broadcasting against
the weak adversary. Introducing this adversary was motivated by the following remark in [46]: “It
would be interesting to define a weaker, but still natural, model of asynchrony in radio networks,
for which polynomial-work protocols always exist.” We show that if nodes are equipped with clocks,
then oblivious broadcasting algorithms using work O(n) for n-node networks can always be provided
in the presence of the weak asynchronous adversary. This is optimal, as witnessed by the example
of the line network. Local clocks at nodes need not be synchronized, we only assume that they
tick at the same rate. In fact, even this assumption can be removed in most cases: our algorithm
works even when the ratio of ticking rates between the fastest and the slowest clock has an upper
bound known to all nodes. The exception is the case of UDG networks of unknown density (for
which broadcasting against the strong adversary was proved impossible). In this special case, our
algorithm against the weak adversary assumes the same ticking rate of all clocks and relies on
the availability of an object obtained non-constructively: if this object is given to nodes, they can
perform oblivious broadcasting with work O(n).

2.4.5 Terminology and Preliminaries

A set S of positive integers is dominated if, for any finite subset T of S, there exists t ∈ T such that
t is larger than the sum of all t′ 6= t in T .

Lemma 2.4.1 Let S be a finite dominated set and let k be its size. Then there exists x ∈ S such
that x ≥ 2k−1.

Proof: The proof is by induction on the size k of S. If k = 1 then 20 = 1 and the basis of induction
holds.

If a set is dominated, all its subsets are dominated. By the inductive hypothesis every subset of
S of size i < k contains an element x ≥ 2i−1. It follows that arranging elements in S in increasing
order we have xi ≥ 2i−1, for 1 ≤ i ≤ k − 1. Then

∑k−1
i=1 xi ≥

∑k−1
i=1 2i−1 = 2k−1 − 1. As xk is

the largest element in S and S is dominated, we have xk ≥
∑k−1

i=1 xi > 2k−1 − 1, which proves the
lemma. �

Any oblivious broadcasting algorithm is fully determined by the number of messages sent by
each node of the network. This non-negative integer is called the send number of the node. For any
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UDG networks Symmetric Networks Arbitrary Networks
adaptive: Θ(n) adaptive or oblivious [46]:

known adaptive or oblivious: oblivious [46]: O(2n)
topology Θ(τ) O(2n) Ω(cn), for some c > 1

Ω(cn), for some c > 1
known density d

adaptive or oblivious:
unknown O(ταg

2), for some α > 1 adaptive or oblivious:
topology Ω(τβg

2
), for some β > 1 known or unknown N :

unknown density d Θ(2N )
adaptive or oblivious:

impossible

Table 2.1: Optimal work of broadcasting against the strong asynchronous adversary. τ is the number
of non-empty tiles, n is the number of nodes, N is the maximal label and g is the granularity of the
UDG network (g = 1/d); c, α and β are constants.

execution of a broadcasting algorithm, a talker is a node that sends at least one message in this
execution. Hence, for an oblivious algorithm, a talker is a node with positive send number. The
following lemma is a consequence of Lemma 1 from [46].

Lemma 2.4.2 Consider any oblivious broadcasting algorithm A. Let u be a node in the network.
Let T be the set of talkers in the in-neighborhood of u. If at least one element in T is informed by
A and the set of send numbers of T is dominated, then u is eventually informed by A.

2.4.6 UDG Radio Networks

Recall the tilings of the plane defined in [68]. Let τ be the number of non-empty blocks (i.e., blocks
which contain at least one node). Every 5-block contains 25 blocks, while every block contains
Θ
(
g2
)
tiles. Blocks inside a 5-block and tiles inside a block are numbered with consecutive integers

(starting from 0) left to right, top to bottom. Hence every tile is assigned a pair of integers (i, j)
where i is the block number in the 5-block and j is the tile number in the block. (Tiles lying in
more than one block are assigned more than one such pair. This is the case when

√
2/n 6= d for all

n.)
As in Section 2.3, we say that two (distinct) blocks are potentially reachable from each other if

they contain points at distance ≤ 1. Two blocks are reachable from each other if they contain nodes
at distance ≤ 1. There are exactly 20 blocks that are potentially reachable from any given block.

Known Topology

The following algorithm is oblivious, as it consists in an assignment of send numbers to nodes.

Algorithm UDG1
For any pair of blocks (B,B′) that are reachable from each other, Algorithm UDG1 elects a pair

of talkers (b, b′) s.t. b ∈ B, b′ ∈ B′, and b is at distance at most 1 from b′. Any fixed strategy (e.g.,
taking the smallest such pair in lexicographic order of positions) is suitable to perform the election.
Notice that at most 20 talkers can be elected in every block.

Each elected talker in a 5-block is assigned a distinct label from the set L = {0, 1, . . . , 499}.
This is done by partitioning the set L into 25 sets Li of 20 labels each (in an arbitrary but fixed
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manner). Talkers in the i-th block of any 5-block are assigned labels from set Li. Labels in each
block are assigned to talkers in increasing order according to lexicographic order of their positions.

Assignment of send numbers is done as follows: each elected talker with label i is assigned send
number 2i. If the source has not been elected, it is assigned send number 1. All other nodes are
assigned send number 0. �

Lemma 2.4.3 Algorithm UDG1 successfully performs broadcast in any UDG radio network of known
topology, with work in O(τ).

Proof: We first prove the correctness of the algorithm. As the network is connected, either τ = 1
or, for any non-empty block B, there must exist a sequence of block pairs 〈(S,X1), (X1, X2), . . . ,
(Xk−1, Xk), (Xk, B)〉 such that S is the block containing the source and blocks in each pair are
reachable from each other. If τ = 1, all nodes in the unique non-empty block will be informed
as soon as the message transmitted by the source is delivered, and algorithm UDG1 successfully
completes broadcasting with work 1. If τ > 1, any non-empty block has at least one talker, and
thus any node has a talker in its neighborhood. Moreover, every talker is connected to a talker
located in S by a path containing only talkers.

Consider an arbitrary node v and its block B, and consider the 5-block that has B in its center
(this 5-block is not necessarily part of the 5-block grid). All neighbors of v are inside this 5-block.
Blocks in this 5-block are assigned distinct numbers, and thus the set of send numbers assigned
to talkers in the neighborhood of v is dominated. It follows from Lemma 2.4.2 that node v will
eventually receive the source message provided that at least one of the talkers in its neighborhood
will receive it. Hence it is enough to show that all talkers receive the source message. This follows
by induction on the length of a shortest path, in the subgraph induced by talkers, between a talker
in the block S and a talker in the neighborhood of v.

In order to estimate the work of the algorithm, notice that only a constant number of nodes in
each block have a positive send number, and each send number is bounded by a constant. It follows
that the total work is linear in the number τ of non-empty blocks. �

Lemma 2.4.4 The work required to complete broadcast in any UDG radio network is in Ω(τ).

Proof: The proof follows from the fact that at least one node in every non empty 5-block has to
transmit at least once. �

Lemma 2.4.3 and Lemma 2.4.4 imply the following theorem.

Theorem 2.4.1 The optimal work required to complete broadcast in any UDG radio network of
known topology is Θ (τ).

Unknown Topology

When the topology of the network is unknown, elections of talkers cannot be performed without
message exchanges. Here the scenario is different depending on whether (a lower bound on) the
density d of the network is known or not.

The following algorithm assumes that each node is provided with the value of d. Similarly as
Algorithm UDG1 it is oblivious.

Algorithm UDG2
The algorithm is based on the tilings from [68] defined in the beginning of Subection 2.4.6, and

works in a similar manner as Algorithm UDG1. The set L of labels is now composed of integers
from the interval

[
0, . . . , 25 ·

(⌈√
2/d
⌉

+ 1
)2 − 1

]
, and it is partitioned in 25 sets Li, each of size
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distance 1

sourceradius 1/2

distance 1

target

Figure 2.5: A network of the class N used in the proof of Theorem 2.4.2 .

(⌈√
2/d
⌉

+ 1
)2. All nodes in the network are talkers, and each node in a 5-block gets a distinct

label according to the numbering of the tile and the block it belongs to. More precisely, a node in
the tile that is assigned the pair of integers (i, j) gets the label that is the jth element of Li. Recall
that there can be tiles which are partially contained in more than one block. In any case, the only
node which can be contained in the tile belongs to only one block and thus its label is uniquely
determined.

The send number of each node with label i is set to 2i. �

Proposition 2.4.1 Algorithm UDG2 successfully performs broadcast in any UDG radio network of
unknown topology and known density d with work in O

(
ταg

2
)
, for some constant α > 1.

Proof: The correctness of the algorithm follows from Lemma 2.4.2 by induction on the length of a
shortest path from the source to an arbitrary node v.

The work of the algorithm in every block is upper bounded by 2(d√2/de+1)2

. As
⌈√

2/d
⌉
∈ Θ (g),

the lemma follows. �

We now turn attention to the lower bound on the work of a broadcasting algorithm.

Theorem 2.4.2 The work required to complete broadcast in any UDG radio network of unknown
topology and known density d is in Ω

(
τβg

2
)
, for some constant β > 1.

Proof: Consider the class N of networks depicted in Figure 2.5. The source occupies position
(0, 1.2) and the target occupies position (0, 0). Nodes in the central part of the network are situated
in an arbitrary subset of vertices of the largest regular square grid of side length d, contained in the
intersection of the circles of radius 1 centered in the source and in the target, and of the circle of
radius 1/2 centered in (0, 0.6). Notice that there are Θ

(
g2
)
vertices in the grid.

The set Q of nodes situated in the grid forms a clique, and each node in Q is within distance 1
from the source and from the target. It follows that a network in N is connected if and only if Q
is nonempty.

All nodes in Q become informed as soon as the first message sent by the source is delivered.
When the first message from an informed node in Q is delivered without colliding with any delivery
from other nodes in Q, broadcasting is completed successfully.

It follows that, until the completion of broadcasting, the only events that are perceived by nodes
in Q are determined by deliveries of messages sent by the source. The source and the target will
not receive any message until the completion of broadcasting.



46 CHAPTER 2. INFORMATION VS. EFFICIENCY TRADE-OFFS IN BROADCASTING

distance 1

sourceradius 1/2

distance 1

target

S

Figure 2.6: A network of the class C used in the proof of Theorem 2.4.3.

Consider an arbitrary adaptive algorithm A. A is forced to provide a send number for the
source, and it is not able to modify this number until the end of the execution (no event is perceived
by the source). The adversary delays all deliveries of nodes in Q until all messages from the source
have been delivered, thus guaranteeing that no node in Q can perceive an event between the first
delivery of one of its messages and the end of broadcasting.

This allows us to treat A as an oblivious algorithm, which is obliged to provide send numbers
to all nodes in the network once and forever. In fact we can assume that the algorithm assigns send
numbers to vertices in the grid (a node occupying vertex p is assigned the respective send number).

Now consider a vertex p of the grid. If algorithm A assigns send number 0 to p, then A is
unsuccessful in the network N ∈ N where the set Q contains only the node in vertex p. It follows
that all vertices in the grid have to be assigned positive send numbers.

If the set of send numbers, assigned by A to vertices of the grid, is not dominated, then there
exists a set T of vertices for which the largest send number x, corresponding to vertex p0, is at most
equal to the sum of all others. The adversary can make A unsuccessful on the network N ∈ N in
which nodes in Q occupy exactly vertices from T , by letting all deliveries collide. This can be done as
follows. The deliveries of messages from the node in vertex p0 are done at times t1 < t2 < . . . < tx.
Every other message can be delivered at one of those time points, so that at each time point ti at
least two messages are delivered.

This contradiction shows that the set of send numbers, assigned by A to vertices of the grid
must be dominated. As the set of vertices in the grid is of size Θ

(
g2
)
and, by Lemma 2.4.1, any

dominated set on k elements contains a number ≥ 2k−1, it follows that any algorithm working
correctly on all networks in N requires work in Ω

(
βg

2
)
, for some constant β > 1. By arranging

networks of class N in a chain of length τ , we get a lower bound on work in Ω
(
τβg

2
)

�

All results of this subsection remain valid if, instead of density d of the network, only a lower
bound d′ on d is known to nodes. In this case, in the formulae for the upper and lower bounds on
the work, the parameter g = 1/d should be replaced by g′ = 1/d′. If nothing is known about d,
however, broadcasting in UDG radio networks turns out to be impossible, as shown in the following
theorem.

Theorem 2.4.3 Broadcast in UDG radio networks of unknown topology and unknown density is
impossible.

Proof: Consider the class C of networks depicted in Figure 2.6. Networks in C are similar to
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networks in class N , defined in the proof of Theorem 2.4.2. In particular, the source and the target
are located in the same positions, while the set Q of nodes is an arbitrary finite set of points in the
plane, contained in the square S of side 1/2, centered at (0, 0.6). A network C ∈ C is connected if
and only if Q is non empty. By following the reasoning of the proof of Lemma 2.4.2, we can show
that any adaptive algorithm A can be treated as an oblivious one when working on a network in
C. Algorithm A can then be identified with a function f : S 7→ N which assigns send numbers to
points in the square.

First assume that the range of f is infinite and suppose that broadcasting ends with work T .
This leads to a contradiction, as we can always choose a network C ∈ C with 2 nodes in Q located
in two points of S that are mapped to values larger than T . By scheduling the first T deliveries
of messages sent by these two nodes in the same time points, the adversary can delay completion
of broadcasting until the overall work of nodes in C is at least 2T + 1, while we assumed the total
work to be exactly T .

Hence the range of f must be finite. If f(z) = 0, for some point z ∈ S, then broadcasting is
unsuccessful on the network C in which Q contains only one node located in z. It follows that all
points of S have to be mapped by f into positive integers. Then there must exist two points, x and
y, such that f(x) = f(y). If this is the case, the adversary can make the algorithm unsuccessful
on the network C where Q contains two nodes, one in the point x and the other in the point y, by
delivering messages sent by these two nodes at the same time points. �

2.4.7 Symmetric Networks of Known Topology

In symmetric networks of known topology we prove an exponential gap between the work of adaptive
and oblivious algorithms. Indeed, while an adaptive algorithm can complete broadcasting on n-node
symmetric networks with work in O(n), an oblivious algorithm requires work in Ω (cn), for some
constant c > 1 (cf. [46]).

Adaptive Broadcast

The following algorithm is adaptive. Each node decides if it sends a message, after each perceived
event.

Algorithm SYM
Knowing the topology of the network, all nodes compute the same spanning tree T , rooted at

the source. Notice that, even assuming that the source is unknown to other nodes in the network,
this information can be appended to the source message and thus it can be made available to each
node when it is woken up by the first received message.

All internal nodes of the spanning tree T are then explored in a depth first search manner, using
token-based communication in order to avoid collisions. A message is sent only after the previous
message has been delivered. Algorithm SYM ends when the token is sent back to the source by its
last internal child. �

Lemma 2.4.5 Algorithm SYM successfully performs broadcast in any n-node symmetric radio net-
work of known topology with work in O(n).

Proof: We first prove correctness of Algorithm SYM. Since any message is sent only after the
previous message has been delivered, it follows that no collision can occur during the execution of
broadcasting. As all internal nodes in T transmit at least once, and T is a spanning tree of the
network, all nodes will eventually receive the source message.

Since the token traverses every edge of T either 0 or 2 times, the total work of the algorithm is
smaller than 2n ∈ O(n). �
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As the optimal work to perform broadcasting on the n-node line is n− 1, we have the following
theorem.

Theorem 2.4.4 The optimal work required to complete broadcasting in any n-node symmetric radio
network of known topology is Θ(n).

Oblivious Broadcast

An oblivious algorithm, performing broadcasting in any n-node connected radio network of known
topology (not necessarily symmetric) can be obtained by arranging nodes in increasing order of
labels, and assigning send number 2i−1 to the ith node. Such an algorithm can be proved to be
correct by induction on the length of a shortest path connecting the source to an arbitrary node v,
using Lemma 2.4.2. The work required to complete broadcasting by this algorithm is in O(2n).

In [46], the following network class has been introduced in order to prove that oblivious broad-
casting algorithms against a more powerful adversary require work in Ω (cn), for some constant
c > 1.

Networks in the above mentioned class contain
(
k
3

)
+ k+ 1 nodes, for integers k > 0. Nodes are

partitioned in three layers: the first layer contains the source, the central layer contains k nodes,
while the third layer contains the remaining

(
k
3

)
nodes. Edges in these networks connect the source

to all nodes in the second layer, while each node in the third layer is connected to a distinct subset
of 3 nodes chosen among those in the second layer. Even though edges were oriented away from the
source in [46], the same proof remains valid for oblivious algorithms even if the network is made
symmetric, and even against our strong adversary (which was called the node adversary in [46]).

Since the upper bound O (2n) holds for arbitrary networks and the lower bound Ω (cn) holds
even for symmetric networks, we have the following theorem.

Theorem 2.4.5 The optimal work of an oblivious algorithm, which completes broadcasting in radio
networks of known topology, is in O (2n) and in Ω (cn), for some constant c > 1, both for symmetric
and for arbitrary networks.

2.4.8 Networks of Unknown Topology

For networks of unknown topology we prove matching upper and lower bounds on the optimal
work of broadcasting algorithms. The upper bound we show is based on the oblivious algorithm
described below, which works correctly on any network (not necessarily symmetric) containing a
directed path from the source to every node. The lower bound, on the other hand, holds even on
symmetric networks and for all algorithms, including the adaptive ones.

An oblivious algorithm performing broadcasting in any connected radio network of unknown
topology, is obtained by assigning to node with label i send number 2i−1. The algorithm works in
the same manner as the one for known topology networks introduced in the previous section, but
its work, instead of depending on the number of nodes of the network, depends on the largest label
N appearing in the network. (N need not be known to nodes.) Thus the work of this algorithm is
in O

(
2N
)
. This work is proved to be optimal by the following lemma.

Lemma 2.4.6 The work required to complete broadcasting in any symmetric radio network of un-
known topology is in Ω(2N ), where N is the largest label that appears in the network.

Proof: To prove the lemma, consider the following class Z of networks. Networks in the class Z
contain a source, a target and a set R of nodes. Each node in R is connected to the source s and
to the target t. The source has label 1. Nodes in R ∪ {t} are labeled with distinct integers larger
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than 1, and N is the largest label appearing in R ∪ {t}. R has to be non-empty, as otherwise the
network would be disconnected.

The rest of the proof is based on the same idea as the proof of Lemma 2.4.2. Labels larger than
1 play the role of vertices in the grid.

As soon as a node in R delivers a message to the target without collisions, broadcasting in any
network Z ∈ Z is completed. Hence, we can treat any adaptive algorithm A as an oblivious one,
when working on networks in Z. It follows that algorithm A has to assign a send number to any
integer larger than 1 (which is a potential label of a node in R).

If there exists a label ` > 1 such that A assigns send number 0 to `, then A is unsuccessful on
the network Z ∈ Z where the only node in R is labeled `. It follows that A has to assign positive
send numbers to all integers larger than 1. (Even if the maximum label N is known to A, there is no
guarantee that any particular label is assigned to a node in R, as N can be assigned to the target.)
If the set of send numbers is not dominated, the adversary can make the algorithm A unsuccessful
on the network Z ∈ Z where the (finite) set of send numbers assigned to nodes in R does not
contain an element which is larger than the sum of all others (cf. the proof of Lemma 2.4.2).

As R ∪ {t} can contain up to N − 1 nodes, the lemma follows from Lemma 2.4.1. �

2.4.9 Broadcasting Against the Weak Adversary

In this section we present our results on the work of asynchronous broadcasting against the weak
adversary. Recall that this adversary may delay delivery of messages sent by various nodes by
arbitrary and unknown time intervals that may vary between nodes, but are equal for all messages
sent by a given node. In this section we assume that nodes are equipped with local clocks. These
clocks need not be synchronized. In one algorithm, working for UDG networks with unknown
density, we assume that they tick at the same rate, and in the other, working for UDG networks
with known (lower bound on) the density and also working for arbitrary networks with distinct
positive integer labels, we weaken even this assumption and require only that all nodes know an
upper bound on the ratio of ticking rates between the fastest and the slowest clock.

The idea of broadcasting algorithms working against the weak adversary comes from the obser-
vation that since delivery delay must be the same for all messages sent by a given node, if a node
sends two messages at some time interval t, this interval may only be shifted by the adversary when
delivering messages, but its length must be kept intact. Thus, using exponential intervals between
just two messages sent by every node (where the exponent depends on the node label), blocking
of messages can be prevented similarly as sending an exponential number of messages permitted
preventing blocking by the strong adversary. (This is a similar work-for-time trade-off as, e.g., that
in the Time-Slicing algorithm for leader election on the ring.) Due to the above possibility we can
restrict the number of messages sent by every node to just 2, and thus use linear work.

We first describe an oblivious broadcasting algorithm working for networks of unknown topology
whose nodes are labeled with distinct positive integers. In this algorithm we make a very weak
assumption: not only clocks of nodes need not be synchronized, but they need not tick at the same
rate, as long as the upper bound α on the ratio of ticking rates between the fastest and the slowest
clock is known to all nodes. Without loss of generality we may assume that α ≥ 2.

Algorithm Time-Intervals
The source sends the message once. Upon receiving the source message, any node with label i,

different from the source, sends two messages at time interval 4iα on its local clock. �

Theorem 2.4.6 Algorithm Time-Intervals successfully performs broadcast in an arbitrary n-node
network, with work in O(n).
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Proof: Since any node sends at most two messages, the work used is in O(n). It remains to prove
the correctness of the algorithm.

Fix the slowest ticking rate among all local clocks and call it universal. In the rest of the proof
we will use only the universal ticking rate. Since α is the ratio of ticking rates between the fastest
and the slowest clock, the (universal) time interval used by node with label i is Ti = 4iα

β , where
1 ≤ β ≤ α. Fix a node u and its in-neighbors v1, . . . , vk that got the source message. Without
loss of generality, assume that nodes vi are ordered in increasing order of interval lengths Ti. The
delivery times of messages sent by nodes vi are xi, xi+Ti, for i = 1, . . . , k. In order to prove that at
least one of these messages will be heard by node u, it is enough to show that Tk > T1 + · · ·+Tk−1.
Hence it is enough to show that

4kα

α
> 4α + 42α + · · ·+ 4(k−1)α. (2.3)

We have α1/α < 3, hence
4k

α1/α
>

4
3
· 4k−1 > 41 + · · ·+ 4k−1,

hence
4kα

α
> (41 + · · ·+ 4k−1)α > 4α + 42α + · · ·+ 4(k−1)α,

which proves inequality (2.3) and concludes the proof by induction on the length of the shortest
path from the source to a given node. �

We now turn attention to broadcasting against the weak adversary in UDG networks. First
notice that if the topology of the network is known, then Algorithm UDG1 clearly works correctly
against the weak adversary as well, and it uses the same work O(τ), which is at most O(n) for n-node
networks. Thus we may restrict attention to networks with unknown topology. If a lower bound on
the network density is known to all nodes, then we may use the same tiling as in Algorithm UDG2 to
obtain integer labels of all nodes of the network. Subsequently we use Algorithm Time-Intervals
and the same argument as before proves its correctness and work complexity.

The only remaining case is that of UDG radio networks in which nothing is known about
the density. Recall that in this case we proved that broadcasting against the strong adversary is
impossible. Somewhat surprisingly, we will show that if the adversary is weak, then broadcasting in
n-node UDG networks with unknown density can be performed with work in O(n). Our algorithm,
however, is only of theoretical interest: its main goal is to show a situation when broadcasting
is impossible against the strong adversary, but can be done using linear work against the weak
adversary. The impracticality of the algorithm has two reasons. First, since it works on networks of
arbitrarily small density, it requires infinite precision of the perception of Euclidean coordinates by
nodes. Second, the algorithm is non-constructive: it relies on the availability of a function whose
existence we prove, but which is not constructed. Once this function is given to nodes, they can
perform easy broadcasting with linear work. More precisely, our algorithm relies on the following
set-theoretic lemma.

Lemma 2.4.7 There exists a function f : R×R −→ R+ such that any distinct elements v1, . . . , vk
and w1, . . . , wr from R×R satisfy the inequality ±f(v1)± · · · ± f(vk) 6= ±f(w1)± · · · ± f(wr).

Proof: Let κ be the cardinal of the continuum. Hence the cardinality of sets R×R and R+ is κ.
Using the axiom of choice (this is the non-constructive ingredient in the definition of the function
f), order the set R × R in ordinal type κ. Let xγ : γ < κ be this ordering. We now define the
function f by transfinite induction. Suppose that f(xγ) is already defined, for all γ < δ. Consider
the set Z of all reals ±f(xγ1)± · · · ± f(xγd), for any finite set {xγ1 , . . . , xγd} of elements of R×R,
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such that γ1, . . . , γd < δ. The set Z has cardinality equal to the maximum of the cardinality of δ
and of ℵ0 (the latter is the cardinality of the set of natural numbers). Hence the cardinality of Z is
strictly less than κ, and consequently there exists a number z ∈ R+ \ Z. We put f(xδ) = z.

Thus the function f is defined by transfinite induction. It remains to verify that it has the
desired property. Suppose by contradiction that some elements v1, . . . , vk and w1, . . . , wr from
R×R satisfy the equality ±f(v1)± · · · ± f(vk) = ±f(w1)± · · · ± f(wr). Let ξ be the largest index
of all these elements in the ordering xγ : γ < κ. It follows that f(xξ) = ±f(xγ1)± · · · ± f(xγd), for
some γ1, . . . , γd < ξ, which contradicts the definition of f(xξ). �

The broadcasting algorithm for UDG networks with unknown density assumes that all nodes
have clocks ticking at the same rate. Given the function f whose existence follows from Lemma
2.4.7, the algorithm can be formulated as follows.

Algorithm Non-Constructive
The source sends the message once. Upon receiving the source message, any node with Euclidean

coordinates (x, y), different from the source, sends two messages at time interval f(x, y). �

Theorem 2.4.7 Algorithm Non-Constructive performs correct broadcasting in an arbitrary n-node
UDG network, using work O(n).

Proof: As before, the complexity of the algorithm is straightforward. It remains to prove its
correctness. Suppose that there exists a network with a node u that has in-neighbors v1, . . . , vk
that got the source message. Suppose that there exist delays such that the adversary can shift
time segments of lengths f(v1), . . . , f(vk) between messages sent by these nodes, so that all message
deliveries are blocked by collisions. This implies that, for some nodes w1, . . . , wr, u1, . . . um ∈
{v1, . . . , vk} we must have f(w1)+ · · ·+f(wr) = f(u1)+ · · ·+f(um), which contradicts the property
of the function f established in Lemma 2.4.7. This contradiction shows that all nodes in every UDG
network will eventually get the source message. �

2.4.10 Conclusion

We established upper and lower bounds on the optimal work of asynchronous broadcasting al-
gorithms working against two types of adversaries in several classes of networks: symmetric and
arbitrary directed networks and networks represented by unit disc graphs. While the complexity of
most presented algorithms has been proved optimal by showing matching lower bounds, in two cases
gaps between upper and lower bounds on the optimal work required by asynchronous broadcasting
still remain. These gaps concern the strong adversary (bounds against the weak adversary are tight
in all cases). For broadcasting in UDG radio networks of unknown topology but known density, our
upper and lower bounds on optimal work are O(ταg

2
) and Ω(τβg

2
), respectively, for some constants

α > β > 1. This gap concerns both adaptive and oblivious algorithms. On the other hand, for
symmetric networks of known topology, the upper and lower bounds on optimal work of oblivious
algorithms are O(2n) and Ω(cn), respectively, for some constant 1 < c < 2. This latter gap is
“inherited” from [46], where it concerned arbitrary directed networks of known topology. Closing
these gaps is a natural open problem.
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3.1 Introduction

In this chapter we consider the problem of power optimization in network communication. As in
the previous chapter, the communication primitive we consider is the broadcast operation.

Minimization of the power consumption is the first goal we can think of when we consider
power efficiency. We will discuss the minimum energy broadcast problem further below in this
introduction.

Radio networks are often composed of small devices with batteries of limited capacity. Indeed
the ability to communicate without wires is less interesting when we depend on wires to connect
to a power source. In such a scenario, one of the most important aspects in power efficiency is
the ability to keep the network functional for the maximum possible amount of time, as this in
turn makes the network maintenance cheaper by minimizing the need for replacing/recharging the
batteries.

The lifetime maximization problems vary depending on the condition defined for the network to
be considered “alive” and on the connectivity condition required by the task to be performed over
the network.

In the case of broadcasting, the connectivity condition requires all nodes to be reachable from
the source, while other tasks like, e.g., gossiping, may impose stronger connectivity requirements.
The network can be considered alive up to the time when the first node is completely drained of
energy, or it can be allowed to drain a certain percentage of nodes, or even an arbitrary number of
nodes, as long as the connectivity condition is respected in the residual graph composed of functional
nodes (graceful degradation).

Section 3.2 considers a lifetime problem for repeated broadcast operations originating from a
fixed source. The model assumed for the network topology is based on geometry and probability.
Nodes are points in a given region of the Euclidean plane: the position of each node is chosen
uniformly at random in that region. The condition we used to consider the network alive is that it
has to be possible to find a directed spanning tree rooted at the source covering all nodes, without
exceeding the residual battery charge of transmitting nodes.

Turning attention back to power minimization, we have that minimum energy broadcast on wire-
less networks has a strong connection with the spanning tree with many leaves problem. Spanning
trees have been widely used in order to achieve power efficient broadcasting.

In wired networks (with point to point communication), the minimum overall power needed
to perform broadcasting is achieved by performing it on a minimum weight spanning tree. The
minimum weight spanning tree, rooted on the source of broadcasting, has to be computed on the
(directed) topology graph, augmented with edge weights representing the energy needed to send a
message along the edge. Thus the minimum energy broadcast problem is easily solvable in wired
networks by applying well known algorithms like Chu-Liu’s [51] or Edmonds’s [64].

In a radio network the situation is different. Let p(u, v) be the power needed by node u to send
a message to node v. If u transmits with power p(u, v), its message can be heard at the same time
by all nodes v′ such that p(u, v′) ≤ p(u, v). It follows that, if we consider the edge set resulting from
the power assigned to nodes in the directed topology graph of our radio network, all nodes pay the
price of the heaviest outgoing edge only. This difference between wired and radio networks makes
the minimum energy broadcast problem NP hard on radio networks.

If the model of communication is such that the reachability relation is symmetric and nodes are
homogeneous and unable to adjust their transmitting power (thus they can only choose whether
to transmit or be silent), the minimum energy broadcast problem requires to minimize the number
of transmitting nodes and thus it can be addressed by mean of a spanning tree with many leaves.
Having such a tree allows indeed to find a solution to the minimum energy broadcast problem which
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is either optimal (if the source is an internal node in the spanning tree), or distant from the optimum
by the cost of a single transmission (this may happen if the source is a leaf in the spanning tree and
there is an alternative optimal solution of the spanning tree with many leaves problem where the
source is internal).

Finding a spanning tree with many leaves is NP hard, thus it is interesting to study this problem
on restricted classes of graphs, and to study variations on its definition.

In Section 3.3 we study a recently proposed variation of the spanning tree with many leaves
problem, for bipartite graphs. We consider a particular subclass of graphs, i.e., regular bipartite
graphs; the variation of the problem requires to maximize the number of leaves in one of the two
sets composing the partition.

A more detailed definition of the problems addressed in this chapter, the related bibliographic
references and a complete description of our contributions are given in the respective sections.
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3.2 Random Geometric Radio Networks: Broadcast Lifetime

3.2.1 The Model and the Problem

In static ad hoc radio networks, nodes may have the ability to vary their transmitting ranges (and,
thus, their energy consumption) in order to provide good network connectivity and low energy
consumption at the same time. More precisely, the transmitting ranges determine a (directed)
communication graph over the set V of nodes. Indeed, a node v, with range r, can transmit to
another node w if and only if w belongs to the disk of radius r centered in v. The transmitting
range of a node depends, in turn, on the energy power supplied to the node. In particular, the
power Pv required by a node v to correctly transmit data to another station w must satisfy the
inequality (see [142]):

Pv
dist(v, w)2

≥ η

where dist(v, w) is the Euclidean distance between v and w, while η is a constant that, without
loss of generality, can be fixed to 1.

In several previous theoretical works [5, 52, 114, 165] it is assumed that nodes can arbitrarily
vary their transmitting range over the set {dist(v, w) | v, w ∈ V }. However, in some network models
(like sensor networks), the adopted technology allows to have only few possible transmitting range
values. For this reason, we assume that nodes have the ability to choose their transmitting range
from a finite set Γ = {0, r1, r2 . . . , rk}, 0 < r1 < r2 < ... < rk, Γ depending on the particular
adopted technology (see [35,36,142]). Clearly, the maximal range value rk in Γ must be sufficiently
large to guarantee that at least one feasible solution exists. Further technical constraints on Γ will
be given and discussed in Subsection 3.2.3.

A fundamental class of problems, underlying any phase of a dynamic resource allocation algo-
rithm in ad hoc radio networks, is the one known as range assignment problems. Given a connectivity
property Π, the objective of these problems is to find a transmitting range assignment r : V → Γ
which induces a communication graph satisfying Π and minimizing the cost(r) =

∑
r(v)2, i.e., the

overall energy power required to deploy the assignment [114,165].
Several research papers [5,52,165] have been devoted to the case where Π requires the transmis-

sion graph to contain a directed spanning tree rooted at a given source s ∈ V (a broadcast tree from
s). The relevance of this problem, denoted as Min Energy Broadcast, is due to the fact that
any communication graph satisfying the above property allows the source to perform a broadcast
operation.

Min Energy Broadcast is known to be NP hard even when |Γ| = 3 and r1 is a small positive
constant [52]. A series of constant-factor approximation algorithms are available in the literature
(see, e.g., [5, 52,72,162]). The best known approximation factor is close to 4 and it is given in [34].
A more general version of Min Energy Broadcast is given in [30], where a not uniform node
efficiency function e : V → R+ is considered. Hence, the energy cost required to transmit from node
v to w is given by dist(v, w)2/e(v). This non-symmetric version of Min Energy Broadcast seems
to be harder: the best known algorithm is given in [30] and yields approximation ratio Θ(log n).

The power assignment problems do not consider some important ad hoc radio network scenarios
where nodes are equipped with batteries of limited capacity and the goal is to maximize the number
of broadcast operations. This important range assignment problem has been first analytically
studied in [30] and it is the subject of this section.

We work in a synchronous model of communication (each node can transmit an arbitrary message
in one round, nodes share a global clock). Time is divided in time periods. Time period t is devoted
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to broadcasting the t-th message from the source s. Each node may transmit in one round only for
each time period. All nodes are initially equipped with the same battery charge B > 0.

Definition 3.2.1 A range assignment schedule S is a set of functions {rt : V → Γ, t = 1, . . . ,m}.

A range assignment schedule is said to be feasible if, at any time period t, rt yields a broadcast tree
from s and, for any v ∈ V , it holds that

m∑
t=1

βrt(v)2 ≤ B.

The length of a range assignment schedule is the number of time periods. At every time period
t, the battery charge of each node v is reduced by amount β rt(v)2, where rt(v) denotes the range
assigned to node v during t and β > 0 is a fixed constant depending on the adopted technology. In
this section, we assume β = 1, however, all our results can be easily extended to any β > 0.

The Max LifeTime problem requires to find a feasible range assignment schedule of maximal
length m.

In [30], Max LifeTime is shown to be NP hard. In the same paper, by means of a rather
involved reduction to Min Energy Broadcast with non uniform node efficiency, a polynomial
time algorithm is provided, yielding approximation ratio Θ(log n). This positive result also holds
when the initial node battery charges are not uniform.

A static version of Max LifeTime has been studied in [111]: the broadcast tree is fixed during
the entire schedule and the quality of solutions returned by the MST-based algorithm is investigated.
Such results and techniques are not useful for solving Max LifeTime problem, as the broadcast
tree may change at each time period.

Several other problems concerning network lifetime have been studied in the literature [35, 36,
111]. Their definitions vary depending on the particular node technology (i.e., fixed or adjustable
node power) and on the required connectivity or covering property. However, both results and
techniques (mostly of them being experimental) are not related to ours.

3.2.2 Original Contribution

To the best of our knowledge, previous analytical results on Min Energy Broadcast and Max
LifeTime concern worst-case instances only. Some experimental studies on Min Energy Broad-
cast have been done on random geometric instances [53, 72]. Such input distributions turn out to
be very important in the study of range assignment problems. On the one hand, they represent the
most natural random instance family where greedy heuristics (such as the MST-based one, see [165])
have a bad behavior [72]. On the other hand, random geometric distributions provide a good model
for well-spread networks located on 2-dimensional regions [35,36,111,165].

We study Max LifeTime in random geometric instances of arbitrary size: the set V is formed
by n nodes selected uniformly and independently at random from the 2-dimensional square of
side length

√
n. Such instances will be simply denoted as random sets. Notice that the maximal

Euclidean distance between two nodes in random sets is
√

2n, so the maximal range value rk can
be assumed to be at most

√
2n.

A natural and important open question is to establish whether efficiently-constructible range
assignment schedules exist for Max LifeTime, having provably good length on random sets. More-
over, the design of efficient distributed implementations of such schedules is of particular relevance
in ad hoc radio networks.

To this aim, as a first step we provide an upper bound on the length of an optimal range
assignment schedule S for any finite set V in the 2-dimensional plane. Notice that this upper
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bound holds for any instance, not only for random sets. When V is a random set we present an
efficient centralized algorithm that, with high probability, returns a feasible schedule of length T ,
and T is not smaller than 1/12 of the optimum. Here and in the sequel the term with high probability
means that the event holds with probability at least 1− 1/nc for some constant c > 0.

Starting from our centralized algorithm, we design a fully distributed protocol for Max Life-
Time. The protocol assumes that every node initially knows n and its Euclidean position only.
This assumption is reasonable in static ad hoc radio networks since the position of each node can be
either stored on it during deployment or it can be locally computed using a GPS system in a set-up
phase. This operation is not too expensive in terms of energy consumption since it is performed
only once during the set-up phase. We then show that the resulting schedule is equivalent to the
one yielded by the centralized version and hence, when applied to random sets, it achieves constant
approximation ratio with high probability as well. We thus get the first distributed algorithm for
Max LifeTime having provably good performance.

We remark that in the analysis of our protocol we consider the costs related both to the con-
struction of the range assignment schedules and to the execution of all broadcasts. Our protocol is
designed to completely avoid collisions, thus no hidden cost is neglected in the analysis.

The Max LifeTime problem does not impose any constraint on the completion time of each
broadcast operation, nevertheless we also provide an analysis of the amortized completion time of
each broadcast operation produced by our protocol. If the length of the range assignment schedule
generated by the protocol is T , the amortized completion time is given by the overall number of
elapsed rounds divided by T .

It turns out that our protocol has amortized completion time

O

(
r2n
√
n

T
+ r2

2 +
√
n

r2

)
.

Assume that r2 ∈ Γ is close to the connectivity threshold of random geometric graphs [59,98,146,154],
i.e., r2 = Θ(

√
log n). Then, the worst scenario for our protocol is when the initial battery charge

B is very small so that T is small as well. Indeed, if T ∈ O(1), from the previous formula we get
an amortized completion time O(n

√
n log n), which is a factor

√
n log n larger than the best known

deterministic distributed broadcasting time in geometric radio networks without collision detection,
i.e., O(n) [59]. However, this protocol does not take into account node energy costs and, thus, the
lifetime of the network. Our protocol, instead, trades completion time of each broadcast operation
with global network lifetime. This fact clearly arises whenever B is large enough to allow T ∈ Ω(

√
n)

number of broadcast operations: in this case, we get O(n
√

log n) amortized completion time, which
is very close to the completion time of the best known distributed broadcasting algorithm.

3.2.3 Terminology and Preliminaries

A random set V is formed by n nodes selected uniformly and independently at random from the
square Q of side length

√
n. The source node s can be any node in V . The length of a maximum

feasible range assignment schedule (in short, schedule) for an input (V, s) is denoted as opt(V, s).
Given a set V of n nodes in the 2-dimensional Euclidean plane and a positive real r, the disk

graph G(V, r) is the symmetric graph where two nodes in V are linked if dist(v, w) ≤ r. When V
is a random set, the resulting disk graph distribution is known as geometric random graph model,
which is the subject of several important studies related to radio networking [59, 98, 146, 154]. In
particular, it is known that, for sufficiently large n, a random geometric graph G(V, r) is connected
with high probability if and only if r ≥ µ

√
log n, where µ = 1+ε for any constant ε > 0 [98,146,154].

The value CT(n) = µ
√

log n is known as the connectivity threshold of random geometric graphs.
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We recall that Γ = {0, r1, r2 . . . , rk} is such that 0 < r1 < r2 < ... < rk ≤
√

2n. In addition we
assume that 1 ≤ r1 < CT(n).

We define Cs to be the connected component containing s in the disk graph G(V, r1).
If r1 ≥ CT(n) then Max LifeTime on random sets admits a trivial schedule which is, with high

probability, a constant factor approximation. As the source must transmit at every time period
with range at least r1 and Cs, with high probability, contains all nodes, then a feasible schedule is
obtained when all other nodes are assigned the range r1 at every time period. This motivates our
assumption on r1.

Other values in Γ can be arbitrarily fixed, provided that all of them are not smaller than CT(n)
and at least one of them is larger than 2

√
2c
√

log n, where c > µ is a small constant that will be
defined in Lemma 3.2.2. Informally speaking, we require that at least one value in Γ is a bit larger
than the connectivity threshold. This is reasonable and relevant in energy problems related to
random geometric radio networks since this value is the minimal one achieving global connectivity
with high probability. Further discussion on such assumptions can be found in Section 3.2.7.

3.2.4 The Upper Bound

In this subsection, we provide an upper bound on the length of any feasible range assignment
schedule for a set V .

Lemma 3.2.1 Given a set V and a source s ∈ V , it holds that opt(V, s) ≤ B/r2
1. Furthermore, if

the size k1 of Cs is less than n, then

opt(V, s) ≤ min
{
B

r2
1

,
B

r4
2

(
k1r

2
2 + r2

1 − k1r
2
1

)}
.

Proof: Since the source must transmit with range at least r1 at any time period, the first upper
bound follows easily.

If k1 < n then consider any feasible range assignment schedule S. Let l1 and l2 be the number
of time periods where the source transmits with range r1 and with range at least r2, respectively.
It must hold that

l1r
2
1 + l2r

2
2 ≤ B.

Since k1 < n then, in each of the l1 time periods of S, there is at least one node in Cs−{s} having
radius at least r2. This yields

l1r
2
2 ≤ (k1 − 1)B.

The maximum value of l1 + l2 is achieved when l1 = (k1− 1)B/r2
2 and l2 = B/r2

2 − (k1− 1)Br2
1/r

4
2.

As l1 + l2 is the length of the schedule, we obtain the following upper bound on the number of time
periods of S.

l1 + l2 ≤ min
{
B

r2
1

,
B

r4
2

(
k1r

2
2 + r2

1 − k1r
2
1

)}
.

�

Notice that, when V is a random set, k1 < n with high probability as r1 < CT(n).

3.2.5 The Algorithm

In this subsection we present a simple and efficient algorithm for Max LifeTime and then we an-
alyze its performance. For the sake of simplicity, we restrict ourselves to the case r2 ≥ 2

√
2c
√

log n.
Nevertheless, it is easy to extend all our results to the more general assumption described in Sec-
tion 3.2.3.
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The following algorithm partitions Q into square cells and selects, for every time period, a set
of pivots, i.e., nodes which are assigned range r2. Each set of pivots is responsible for spreading
the message of its time period. This message is delivered to one of the pivots from the source only
using transmissions with range r1, exploiting the subgraph Cs.

Algorithm 1 : BS (Broadcast Schedule)
Input: Set V ⊆ Q of n nodes; a source s ∈ V ; a battery charge B > 0; the range set Γ =
{0, r1, r2 . . . , rk}.
Output: A range assignment schedule S.
Partition Q into square cells of side length r2/(2

√
2);

for any cell Qj , let Vj be the set of nodes in Qj ;
construct an arbitrary ordering in Vj ;
let Cs be the connected component in G(V, r1) that contains s;
if |Cs| ≤ r2

2 then
Ws ← Cs;

else
Ws ← any connected subgraph of Cs s.t. |Ws| = r2

2 and s ∈Ws;
end if
construct an arbitrary ordering of Ws;
for any time period t = 1, . . . do
if node with index t mod |Ws| in Ws has remaining battery charge at least r2

2 then
it is selected as pivot and range r2 is assigned to it;

else
the algorithm stops;

end if
for any cell Qj do
if node with index t mod |Vj | in Qj has remaining battery charge at least r2

2 then
it is selected as pivot and range r2 is assigned to it;

else
the algorithm stops;

end if
end for
all nodes in Ws not selected yet have radius r1;
all nodes in V \Ws not selected yet have range 0.

end for

In order to analyze the performance of Algorithm BS, we will use the following lemma.

Lemma 3.2.2 There exist two positive constants, c and γ, such that the following holds. Given
a random set V ⊆ Q of n nodes, and a partition of Q into square cells of side length `, where
c
√

log n ≤ ` ≤
√
n, every cell contains at least γ`2 nodes with high probability. The constants can

be set as c = 12 and γ = 5/6.

Proof: Given a fixed cell, let Xi be the random variable describing the probability for the i-th node
to be inside the cell. As the ratio between the cell surface and the total surface is `2/n, Xi = 1 with
probability `2/n and Xi = 0 with probability 1 − `2/n. The random variables Xi, for 1 ≤ i ≤ n,
are independent.

Let X =
∑n

i=1Xi. The expected value of X, which describes the average number of nodes in a
cell of side `, is E[X] = `2.
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Applying the Chernoff bound we have

Pr[X < γ`2] < e−`
2(1−γ)2/2.

There are at most b
√
n/`c2 ≤ n/`2 cells fully contained in Q, and thus the probability of having one

such cell with less than γ`2 nodes can be bounded from above by (n/`2)e−`
2(1−γ)2/2 by applying

the Union Bound. As ` ≥ c
√

log n, this probability is at most

e−c
2 logn(1−γ)2/2+ln(n/(c2 logn)) < e−c

2 logn(1−γ)2/2+log(n/(c2 logn)).

Fixing γ = 5/6, if c ≥
√

144 = 12 we have

Pr[X < γ`2] < e−144/72 logn+log(n/(144 logn)) ≤ e−2 logn+log(n/(144 logn)) < 1/n

which proves the lemma. �

Theorem 3.2.1 Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node. Then,
with high probability, the range assignment schedule returned by Algorithm BS is feasible and it has
length at least β opt(V, s), where β = 1/12.

Proof: Consider a fixed time period. Ws is non empty as it contains at least s. Hence it contains
a pivot which is connected to s by a path only using range r1. From Lemma 3.2.2, all cells are
non empty with high probability. Hence a pivot is selected in every cell with high probability.
This implies that, with high probability, the set of pivots forms a strongly-connected subgraph that
covers all nodes in V . Moreover, Algorithm BS assigns, to every node, an energy power which
is never larger than the current battery charge of the node. So the range assignment schedule is
feasible with high probability.

We now evaluate the length T of the scheduling produced by Algorithm BS. Observe that T is
the last time period of the run of Algorithm BS on input (V, s).

Let w be any node in V \Ws; then, from Lemma 3.2.2, in its cell there are at least γ r2
2/8 nodes

with high probability. So, w spends at most energy(
8T
γ r2

2

)
r2

2.

Hence T can be any value such that

T ≤ γ B

8
. (3.1)

During the schedule, every node v in Ws will have range either r1 or r2. Let |Ws| = k, then the
energy spent by v is at most (

T

k
+

8T
γ r2

2

)
r2

2 + Tr2
1. (3.2)

Indeed in (3.2) we have to consider that a node in Ws can have range r2 because it has been
selected as pivot either of its cell or of Ws.

Now, two cases may arise:

• If k ≥
(
r2
r1

)2
, since r1 ≥ 1, from (3.2) the amount of spent energy is at most 2Tr2

1 + 8/γ ≤
Tr2

1 (2 + 8/γ). We require B to exceed the latter value, so, T can be any value such that
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T ≤ B

r2
1 (2 + 8/γ)

. (3.3)

Observe that every value T that satisfies (3.3) also satisfies (3.1). So T can assume value
B

r21(2+8/γ)
and, from Lemma 3.2.1, we have that

T ≥ opt(V, s)
2 + 8/γ

.

• If k <
(
r2
r1

)2
, according to the definition of Ws, we have k = k1. From (3.2) and some simple

calculations, the energy spent by v ∈Ws is at most

T
r4

2 + k1r
2
1r

2
2 + (8/γ)k1r

2
2

r2
2k1 + r2

1 − k1r2
1

where we used the fact that r2
1 − k1r

2
1 ≤ 0. Observe also that, since k1 <

(
r2
r1

)2
and r1 ≥ 1,

we have

k1r
2
1r

2
2 + (8/γ)k1r

2
2 ≤ r4

2

(
1 +

8
γr2

1

)
≤ r4

2

(
1 +

8
γ

)
.

It thus follows that the energy spent by v is at most

T
r4

2(2 + 8/γ)
r2

2k1 + r2
1 − k1r2

1

Hence, T can be any value such that

T ≤ r2
2k1 + r2

1 − k1r
2
1

r4
2(2 + 8/γ)

B. (3.4)

Also in this case, every value T that satisfies (3.4) also satisfies (3.1). Finally, by combining
(3.4) and Lemma 3.2.1, we get again

T ≥ opt(V, s)
2 + 8/γ

.

So, the Theorem is proved for β = 1/(2 + 8/γ) > 1/12. �

We conclude this subsection observing that the time complexity of Algorithm BS is in Θ
(
nr2

2+
T (n/ log n)). Indeed, partitioning nodes into cells, depending on their coordinates, and assigning an
arbitrary order to nodes in each cell requires linear time. The construction of Ws can be performed
by a search, and then is completed in O(nr2

2) time. Finally, for each time period t, a constant time
is required to activate the right pivot for each of the Θ(n/ log n) cells. Notice that, in the interesting
cases in which r2 is close to CT(n), the time complexity is O (n log n+ T (n/ log n)).
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3.2.6 The Distributed Protocol

In this subsection, we present the distributed version of Algorithm BS. To do this, we detail the
associated protocol. Our protocol is based on the same partition in cells as Algorithm BS. Cells are
numbered with consecutive integers.

The aim of our protocol is to replicate the behavior of Algorithm BS in a distributed fashion.
In order to do so, nodes need to acquire some knowledge of the network, with the minimum cost in
terms of spent energy.

We adopt the synchronous model of node communication, i.e., the protocol acts in homogeneous
rounds. The protocol does not require nodes to transmit spontaneously, as each node but s starts
transmitting only after being woken up. We assume that every node v knows the number n of
nodes, its own position (with respect to an absolute coordinate system) and, clearly, Γ.

Let h(Ws) be the eccentricity of the source s in Ws, i.e. the maximum distance between s and
a node in Ws. The t-th message sent by s is denoted as mt. We assume that mt contains the value
of time period t. The described protocol is detailed in Algorithm DBS.

Our protocol has the following properties that are a key-ingredient in the performance analysis.

Fact 3.2.1 Even though they initially do not know each other, all nodes in the same cell are activated
(and disactivated) at the same round, so their local counters share the same value at every round.
Furthermore, after the first (γ/8)r2

2 broadcast operations, all nodes in the same cell know the set P
of pivots of their cell and the relative order of its elements.

Proof: A node in a cell is activated when it receives a message from the pivot of a neighboring cell,
and disactivated when it receives the message sent by the pivot of its cell. As each point in a cell is
within distance r2 from all points in the same cell and in the neighboring cells, and pivots transmit
with range r2, it follows that activations and deactivations of nodes in a cell happen in the same
round. This proves the first part of the claim.

The set of pivots is learnt by all nodes in a cell as a consequence of the transmissions made by
the pivots. As this set is bounded to the size (γ/8)r2

2, the proof of the claim is completed. �

In order to evaluate the length of the broadcast schedule yielded by Algorithm DBS, observe that
the distributed version performs, in parallel, two tasks: (1) it constructs a broadcast communication
subgraph starting from the source and (2) transmits the source message along this subgraph to all
nodes. We emphasize that all node costs due to both the above tasks are taken into account:
whenever a node transmits any message with range r, its battery charge is decreased by r2.

The following lemma states the equivalence between performance of Algorithm BS and Algo-
rithm DBS. A comparison between the transmissions made by each of the two algorithms will be
used in order to prove the lemma.

Lemma 3.2.3 Given a random set V ⊆ Q and any source s ∈ V , if the length of the broadcast
schedule yielded by Algorithm BS is T , then the length of the broadcast schedule yielded by Algorithm
DBS is at least T − 2.

Proof: Notice that the only difference in terms of power consumption between Algorithms BS and
DBS lies in the Preprocessing phase required by the latter one. In that phase, at most two messages
with range r1 are sent by a node to discover Ws. Indeed, thanks to Fact 3.2.1, the if branch of the
Broadcast procedure for nodes in V spends time instead of power in order to discover the set of
Pivots of each cell. Hence, in the worst case, the distributed version performs two broadcasts less
than the centralized algorithm. �

Corollary 3.2.1 Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node. Then, with
high probability, the range assignment schedule yielded by Algorithm DBS is feasible and it has a
length at least β opt(V, s)− 2 where β = 1/12.
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Algorithm 2 : DBS (Distributed Broadcast Schedule)
Preprocessing: construction of Ws ⊆ Cs such that h(Ws) ≤ r2

2

One-to-All
Starting from s, use round robin and transmitting range r1 to inform all nodes in Cs that are at
most within r2

2 hops from s: such nodes will form Ws.
The one-to-all operation induces a spanning tree Tree of Ws rooted at s.
All-to-One
By a simple bottom-up process on Tree and using round robin on each level, s collects all node
labels and the structure of Tree.

Initialization:
Every node sets a local counter counter = −1. Furthermore, each node has a local array P of
length (γ/8)r2

2 where it will store the ordered list of the first (γ/8)r2
2 labels belonging to its own

cell. This array is initially empty.
Let us observe that at the end of the Preprocessing phase, s has full knowledge of Ws.

Broadcast operations:
for t = 0, 1, . . . /* time periods */ do

Execute Procedure Broadcast(mt)
end for

Procedure Broadcast(mt)

Nodes in Ws only:

• s selects the (t mod min{|Ws|, r2
2})-th node in Ws as pivot (range r2 will be assigned to

it);
s transmits, with range r1, 〈mt, P 〉 where P is the path in Tree from s to the pivot.

• When a node inWs receives 〈mt, P 〉, it checks whether its label is the first in P . If this is
the case, it transmits, with range r1, 〈mt, P

′〉 where P ′ is the residual path to the pivot.

• When the selected pivot p of Ws receives 〈mt, P = (p)〉, it transmits, with range r2,
〈mt, i〉 where i is the index of its cell.

All nodes: (included the ones in Ws)

• If (t ≤ (γ/8)r2
2) then

– When a node v receives for the first time 〈mt, i〉 in the time period t from the pivot
of a neighbor cell i, it becomes active.

– An active node, at every round, increments counter by one and checks whether its
label is equal to the value of its counter. If this is the case, it becomes the pivot of
its cell and transmits, with range r2, 〈mt, i〉 where i is the index of its cell.

– When an active node in cell i receives 〈mt, i〉, it (so the pivot as well) records in P [t]
the current value of counter c, i.e. the label of the pivot, and becomes inactive.

• else (i.e. (t > (γ/8)r2
2))

– When a node v receives for the first time 〈mt, i〉 in time period t from the pivot of a
neighbor cell i, it checks if its label is equal to P [t mod (γ/8)r2

2]. If this is the case,
it becomes the pivot of its cell and transmits, with range r2, 〈mt, j〉 where j is the
index of its cell.
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Proof: By Lemma 3.2.3, if T is the length of the schedule yielded by Algorithm BS, Algorithm
DBS produces a schedule of length at least T − 2. As by Theorem 3.2.1 the lengh of the schedule
yielded by Algorithm BS is, with high probability, at least 1/12 of the optimum, the proof follows.
�

We now evaluate the message and the time complexity of Algorithm DBS.

Lemma 3.2.4 The overall number of node transmissions (i.e. the message complexity) of Algorithm
DBS is O(|Ws|+ T · ((n/r2

2) + r2
2)), where T is the length of the schedule.

Proof: Observe that in the Preprocessing phase only nodes in Cs can exchange messages. In
particular, s and all nodes in Cs at r2

2 hops from s send only one message; all other nodes within 1 and
r2

2 − 1 hops from s send two messages. It follows that the message complexity of the Preprocessing
phase is Θ(|Ws|). During each broadcast, exactly one message per cell is sent (see Fact 3.2.1).
As there are O(n/r2

2) cells, in each time period O(n/r2
2) messages are exchanged. The only other

messages which are sent are the ones required to reach the designated pivot in Ws, which number
is bounded by r2

2, thus proving the lemma. �

Theorem 3.2.2 The overall number of rounds required by Algorithm DBS to perform T broadcast
operations is

O(r2n
√
n+ T · (r2

2 +
√
n/r2)).

Proof: For a single broadcast operation performed by Algorithm DBS, we define the delay of a cell
as the number of rounds from its activation time to the selection of its pivot. Observe that the sum
of delays introduced by a cell during the first (γ/8)r2

2 broadcasts is at most n − (γ/8)r2
2. Indeed,

when a pivot transmits, one position in the pivots array is fixed, while each round during which
there is silence allows nodes in the cell to learn that the node with the corresponding label is not in
the cell. As each cell contains at least (γ/8)r2

2 nodes with high probability, the delay introduced by
each cell before completing the set is at most n− (γ/8)r2

2. Once the set of pivots is completed (i.e.,
after the first (γ/8)r2

2 broadcasts), the delay of any cell becomes 0 for all the remaining broadcasts.
Moreover, a broadcast can traverse at most O(

√
n/r2) cells (as the side length of each cell is Θ(r2),

while the diameter of Q is Θ(
√
n)). By assuming that a maximal length path (this length being

Θ(
√
n/r2)) together with maximal cell delay can be found in each of the first min{(γ/8)r2

2, T}
broadcasts, we can bound the maximal overall delay with O(r2n

√
n) rounds.

In the Preprocessing phase, Algorithm DBS uses round robin to avoid collisions. During the
All-to-One phase, each node needs to collect all messages from its children before sending a message
to its parent in Tree. Hence, the whole phase is completed in O(nr2

2) rounds, as the height of Tree
is bounded by r2

2.
Finally, the number of rounds required by every broadcast without delays and the preprocessing

time is O(r2
2 +
√
n/r2), since r2

2 is the upper bound on the height of Tree and the length of any
path on the broadcast tree outside Ws is O(

√
n/r2).

By combining the three contributions, we get the theorem bound without considering collisions
among cell pivots. In order to avoid such collisions, we further organize Algorithm DBS into
iterative phases: in every phase, only cells with not colliding pivot transmissions are active. Since
the number of cells that can interfere with a given cell is constant, this further scheduling will
increase the overall time of DBS by a constant factor only. This iterative process can be efficiently
performed in a distributed way since every node knows n and its position, so it knows its cell. �

From Theorem 3.2.2, the amortized completion time of a single broadcast operation performed
by Algorithm DBS is

O

(
r2n
√
n

T
+ r2

2 +
√
n

r2

)
.
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Since our protocol returns an almost maximal number T of broadcast operations with high
probability, unless the available battery charge of nodes is small, the analysis we made at the end of
Subsection 3.2.2 on the amortized completion time of Algorithm DBS is likely to fall in a scenario
in which T is large enough to shrink the gap between our solution and the best known broadcasting
time [59].

3.2.7 Conclusion

In this section, we studied the Max LifeTime problem on random sets. Further interesting future
studies should address other basic operations as, for instance, the gossiping operation which is
known to be NP hard as well [30]. A more technical problem, left open by our research, is the study
of Max LifeTime when Γ contains more than one positive values smaller than the connectivity
threshold CT(n) of random geometric graphs. This case seems to be very hard since it concerns the
size and the structure of the connected components of such random graphs under the connectivity
threshold [98,146].
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3.3 Spanning Trees with many Leaves in Regular Bipartite Graphs

3.3.1 The Model and the Problem

The problem of finding spanning trees with many leaves has been thoroughly investigated [16,19,63,
78,85,95,96,115,126,129–131,158]. It is known to be NP hard [63]. Lu and Ravi [130,131] provided
3-approximation algorithms and a 2-approximation algorithm was presented by Solis-Oba [158]. It
is known that the problem remains NP hard even if the input is restricted to d-regular graphs (i.e.,
graphs whose nodes have degree d) for any fixed d ≥ 3 [126]. A 7/4 approximation algorithm for
cubic graphs is presented in [129]. Finding approximation algorithms with ratio less than 2 for
d-regular graphs remains an open problem for d ≥ 4.

The NP hardness of the optimization problem leads to seek constructive proofs for related
extremal problems. A constructive proof that all graphs in a particular class have spanning trees
with at least m leaves becomes an algorithm to produce such a tree for graphs in this class. Let
l(n, d) be the maximum integer m such that every connected n-nodes graph with minimum node
degree at least d has a spanning tree with at least m leaves. The value l(n, d) is known for d ≤ 5.
Trivially l(n, 2) = 2. Storer [159] proved that l(n, 3) = dn/4 + 2e. Griggs and Wu [96] and Kleitman
and West [115] proved l(n, 4) =

⌈
2
5n+ 8

5

⌉
. In [96] it is also proved that l(n, 5) =

⌈
3
6n+ 2

⌉
. For

d ≥ 6 the exact value of l(n, d) remains unknown. For more information about this topic see [37].
In [149] a variation of the maximum leaf spanning tree problem has been introduced. This

variation restricts the problem to bipartite graphs and asks to find a spanning tree having the
maximum number of leaves in one of the sets composing the partition.

In [127] it is proved that this variation of the problem is NP hard for planar bipartite graphs.
In this section we study the variation of the spanning tree with many leaves problem proposed

in [149], restricted to the class of regular bipartite graphs.

3.3.2 Original Contribution

We prove that the variation for bipartite graphs of the spanning tree with many leaves problem is
NP hard for d-regular bipartite graphs for any fixed d ≥ 4. We remark that our proof of NP hardness
relies on a construction involving non planar regular bipartite graphs. It remains an open problem
to determine if the problem is NP hard for regular planar bipartite graphs.

We present greedy algorithms with linear time complexity that find, for any d-regular graph, a
spanning tree having a constant fraction of the maximum number of black leaves. Our algorithm
for d-regular bipartite graphs provides an approximation ratio of 2 − 2/(d − 1)2. The analysis of
the performance ratio is based on the assumption that d ≥ 4: in order to reach approximation
ratio 1.5 on cubic bipartite graphs we present a refinement on our base algorithm based on local
optimization.

Define lB(n, d) as the maximum m such that every d-regular bipartite graph with n black
nodes has a spanning tree with at least m black leaves. Trivially lB(n, 2) = 1. We prove that
lB(n, 3) = dn/3e + 1. For d ≥ 4 the exact value of lB(n, d) remains unknown, however we provide
upper and lower bounds. More precisely we prove that

⌈
d−1
2d n+ (d−1)2

2d

⌉
≤ lB(n, d) ≤

⌈
d−2
d n

⌉
+ 1.

3.3.3 Terminology and Preliminaries

Let G be a graph; we use V (G) to denote the set of nodes in G and E(G) to denote the set of edges
in G. For a node v in V (G), ΓG(v) denotes the set of neighbors of v in G. We denote by Gd a
d-regular bipartite graph. We use colors black and white to identify the two sets of the partition.
Thus given a graph Gd, we seek for a spanning tree maximizing the number of black leaves. As in
any regular bipartite graph the number of black nodes is equal to the number of white nodes, we
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use the letter n to denote the number of black (white) nodes in Gd (clearly, the total number of
nodes in Gd is equal to 2n).

Given a spanning tree T of Gd, λi(T ), 1 ≤ i ≤ d, denotes the number of black nodes of degree i
in T . We omit T when it is clear form the context.

Lemma 3.3.1 Let T be a spanning tree of Gd, we have

λ1(T ) = 1 +
d∑
i=3

(i− 2)λi(T ). (3.5)

Proof: As T spans all the nodes in Gd, it holds that
∑d

i=1 λi = n. Any edge in T connects a black
node and a white node, thus the total number of edges is given by the sum of the degree of the
black (or white) nodes. Hence we have that

∑d
i=1 iλi = 2n−1. From these two equations we obtain

Equation 3.5. �

3.3.4 Regular Bipartite Graphs

We start our analysis from the general case of regular bipartite graphs, while in Subsection 3.3.5
we focus on cubic graphs to refine our results in this restricted case.

Lemma 3.3.2 Let T be a spanning tree of Gd, then λ1(T ) ≤
⌊

(d−2)n+1
d−1

⌋
.

Proof: From Equation 3.5, as
∑d

i=1 λi = n, we have that λ1 is maximized when λ1 + λd = n and
λ2, λ3, . . . , λd−1 are all 0. Thus λ1 ≤ (d−2)n+1

d−1 and the thesis follows from the fact that we search
for integer solutions. �

We now describe the algorithm Span that, given a graph Gd, produces a spanning tree TA for
Gd. The algorithm first builds a forest F , then it connects the trees in F and the isolated nodes to
form TA. Every tree Ti in F is built by first choosing a black node v such that ΓGd(v)∩ V (F) = ∅.
Each tree Ti is augmented as long as a new black node w with at most d− 2 neighbors in Ti can be
found. When a tree Ti cannot be augmented, the algorithm starts building a new tree Ti+1.

In the following we formalize Algorithm Span by providing its pseudo code.

Algorithm 3 Span(Gd)
1: F ← ∅
2: i← 1
3: while ∃ a black node v ∈ Gd \ V (F) such that ΓGd(v) ∩ V (F) = ∅ do
4: E(Ti)← {(v, x) such that x ∈ ΓGd(v)}
5: V (Ti)← {v} ∪ ΓGd(v)
6: while ∃ a black node w ∈ Gd \ (V (F) ∪ V (Ti)) and a white node y ∈ V (Ti) such that

|ΓGd(w) ∩ (V (F) ∪ V (Ti)) | ≤ d− 2 and (w, y) ∈ E(Gd) do
7: E(Ti)← E(Ti) ∪ {(w, y)} ∪ {(w, z) such that z ∈ ΓGd(w) \ ΓTi(w)}
8: V (Ti)← V (Ti) ∪ {w} ∪ ΓGd(w)
9: end while

10: F ← F ∪ Ti
11: i← i+ 1
12: end while
13: build TA by connecting F and all the nodes in V (Gd)− V (F) in a tree
14: return TA
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Lemma 3.3.3 For any Gd with d ≥ 4 there exists a spanning tree TA such that

λ1(TA) ≥
⌈
d− 1

2d
n+

(d− 1)2

2d

⌉
.

Proof: The proof of this lemma consists in the performance evaluation of Algorithm Span.
Let T1, T2, . . . , Tk be the trees built by the algorithm with input Gd. Any black node in a tree

Ti has degree at least 3 and all the black nodes that do not belong to any tree have at least d− 1
neighbors belonging to one tree Th for some value 1 ≤ h ≤ k. Let bi be the number of black nodes
in V (Gd) \ V (F) having at least d− 1 neighbors in Ti. Obviously,

n =
k∑
i=1

bi +
d∑
j=3

λj(Ti)

 . (3.6)

Now we bound the number bi with
⌊
d(1+

Pd
j=3(j−2)λj(Ti))
d−1

⌋
noting that Ti contains 1 +

∑d
j=3(j −

1)λj(Ti) white nodes and hence there are d(1 +
∑d

j=3(j − 2)λj(Ti)) edges from nodes in V (Ti) to
nodes in V (Gd) \ V (Ti).

From Equation 3.6 we have n ≤ dk+
Pd
j=3(dj−d−1)λj(TA)

d−1 and as in the forest each tree Ti has at
least one node of degree d (i.e. the root) we have that

n ≤
dλd(TA) +

∑d
j=3(dj − d− 1)λj(TA)
d− 1

. (3.7)

If d ≥ 4, d2 − 4d+ 1 > 0, and as λd(TA) ≥ 1 the following chain of inequalities holds:

dλd(TA) +
d∑
j=3

(dj − d− 1)λj(TA) =

= dλd(TA) +
d∑
j=3

2d (j − 2)λj(TA)−
d∑
j=3

((j − 3)d+ 1)λj(TA) ≤

≤ dλd(TA) + 2d (λ1(TA)− 1)− ((d− 3)d+ 1)λd(TA) =

= 2dλ1(TA)− 2d− λd(TA)(d2 − 4d+ 1) ≤
≤ 2dλ1(TA)− 2d− (d2 − 4d+ 1) = 2dλ1(TA)− (d− 1)2 .

Hence from Inequality 3.7 we have

n ≤ 2dλ1(TA)− (d− 1)2

d− 1
and the thesis follows. �

Combining Lemma 3.3.3 and Lemma 3.3.2 we state the following theorem:

Theorem 3.3.1 The problem of finding a Spanning Tree with the maximum number of black leaves
for a d-regular bipartite graph Gd, d ≥ 4, can be solved approximately by an algorithm running in
linear time with approximation ratio at most 2− 2/(d− 1)2.

Proof: Let T ∗ be a spanning tree of Gd with the maximum number of black leaves and let TA be
the spanning tree of Gd produced by Algorithm Span. From Lemma 3.3.2 we have that λ1(T ∗) ≤⌊

(d−2)n+1
d−1

⌋
and from Lemma 3.3.3 we have λ1(TA) ≥ d−1

2d n + (d−1)2

2d . It follows that λ1(T ∗)
λ1(TA) ≤

2
(

d(d−2)n+d

(d−1)2n+(d−1)3

)
< 2d(d−2)

(d−1)2
= 2− 2/(d− 1)2. �
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Figure 3.1: Worst case example for Algorithm Span on cubic graphs.

y

t
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z

Ti Ti

(a) (b)

Figure 3.2: a) Pattern for local optimization in Algorithm Span3. b) Performance analysis case.

3.3.5 Cubic Bipartite Graphs

Algorithm Span can obviously be applied to a graph G3. An analysis for the case d = 3 gives
λ1(TA) ≥ n/4 and combining this with Lemma 3.3.2 we obtain an approximation ratio of 2.

Now consider the example in Figure 3.1: the graph in the example is a necklace composed by
l repetitions of the same block. A run of Algorithm Span can produce a forest where every tree Ti
contains a black node only (thick edges in figure represent the edges in the forest). In such a case,
λ3 = l and so λ1 = l + 1, while the optimum solution can assign degree 3 to all but one the black
nodes on the bottom, thus achieving 2l black leaves.

As suggested by the example above, the performance ratio of Algorithm Span on cubic bipartite
graphs can be improved by adding a procedure that tries to reduce the number of trees with only
one black node in F . We call Span3 the modified version of Algorithm Span. If a tree Ti has only
one black node at the end of the while loop of line 6 of Algorithm Span, Span3 searches in Gd \ F
for the pattern depicted in Figure 3.2.a. If such a pattern is present, Ti is destroyed and rebuilt
starting from node x. Then, the augmenting process of lines 6 to 9 of the original algorithm is
applied, resulting in a tree with at least 2 black nodes.

Lemma 3.3.4 For any G3 there exists a spanning tree TA such that λ1(TA) ≥
⌈
n
3

⌉
+ 1.

Proof: The proof of this lemma consists in the performance evaluation of Algorithm Span3. In
the following we assume G3 has at least 5 black nodes (if n = 3 or n = 4, the lemma trivially
holds as any spanning tree having one black node of degree 3 and 2 black leaves is optimal). Let
T1, T2, . . . , Tk be the trees built by Algorithm Span3 with input G3. All black nodes in V (F) have
degree 3 while black nodes in V (G3) \ V (F) have 2 neighbors in some tree Ti ∈ F . Let bi be the
number of black nodes outside F that have at least 2 neighbors in the tree Ti ∈ F . It holds that

n =
k∑
i=1

(
bi + λ3(Ti)

)
.
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Figure 3.3: Gε3.

Figure 3.4: Worst case example for Algorithm Span3.

Now we prove that bi ≤ 2λ3(Ti) for all 1 ≤ i ≤ k: notice that this is enough to prove the lemma
since it implies that n ≤ 3λ3(TA) = 3λ1(TA)− 3.

Using the same reasoning as in Lemma 3.3.3, we can bound bi with
⌊

3λ3(Ti)+3
2

⌋
. If λ3(Ti) ≥ 2

it holds bi ≤ 2λ3(Ti) so the only case we need to analyze is when λ3(Ti) = 1.
Assume by contradiction that b1 = 3: there must be 3 black nodes, say x, y, and z, such that

each of them has two white neighbors in Ti. Now consider the setW of white neighbors of x, y, and z
outside Ti. The condition |W | ≥ 2 is not achievable otherwise the pattern of Figure 3.2.a would
have been detected by Algorithm Span3 and Ti would have been a tree with at least 2 black nodes.
On the other hand, |W | = 1 is also not possible as the only G3 where this happens is the one
depicted in Figure 3.2.b: this graph has 4 black nodes only while we assumed n ≥ 5. It follows that
bi ≤ 2 and the proof is completed. �

Remark 3.3.1 The lower bound given in Lemma 3.3.4 is tight. For a given value n we can build a
graph composed by l = bn/3c subgraphs closed on a necklace. The first l−1 subgraphs are repetitions
of k3,3 − e while the last one can have 3, 4 or 5 black and white nodes depending on the value of
n mod 3 (see Figure 3.3 for an example where n mod 3 = 0).

Any spanning tree has to assign degree greater than 1 to at least 2 black nodes in any subgraph
but one. It follows that λ1 ≤ n− 2 bn/3c+ 1 = dn/3e+ 1.

It follows from the above remark that Algorithm Span3 is optimal with respect to the number
of guaranteed black leaves.

Lemma 3.3.2 and Lemma 3.3.4 imply the following theorem.

Theorem 3.3.2 The problem of finding a Spanning Tree with the maximum number of black leaves
for a cubic bipartite graph G3 can be approximated by an algorithm running in linear time with
approximation ratio ≤ 3/2.
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Remark 3.3.2 The analysis of Algorithm Span3 is tight. Consider the example in Figure 3.4: the
graph in the example is a necklace composed by l repetitions of the same block. A run of Algorithm
Span3 can produce a forest where every tree Ti contains two black nodes only (thick edges in figure
represent the edges in the forest). In such a case, λ3 = 2l and so λ1 = 2l + 1, while the optimum
solution can assign degree 3 to all but one the black nodes on the bottom, thus achieving 3l black
leaves.

3.3.6 NP Hardness

In this subsection we prove that the problem of finding a spanning tree with the maximum number
of black leaves on a 4-regular bipartite graph is NP hard. Some details of the extension of the proof
for any fixed d ≥ 4 are omitted. Our proof relies in a reduction to a restricted version of the well
known NP complete problem 3-exact cover. 3-exact cover (in short 3EC) requires, given a universe
U and a collection S of 3-subsets of U , to determine if there exists a subcollection S ′ of pairwise
disjoint sets in S that forms a partition of U .

We consider instances of 3EC where each element of U occurs in exactly three subsets of S and
|U| = 4 · 3i, i ≥ 1. We denote 3EC∗ this restricted version of 3EC.

Lemma 3.3.5 3EC∗ is NP complete.

Proof: It is known that 3EC remains NP complete when each element of U occurs in at most 3
subsets of S (see, e.g., [86] pag. 222). In order to prove the lemma we show that 3EC is polynomially
reducible to 3EC∗: given any instance in 3EC we produce, in polynomial time, an instance in 3EC∗

which admits a solution if and only if the original instance admits a solution.
Let sia be the number of sets containing the element a. The missing inclusions of a are given by

3− sia. The missing inclusions of an instance in 3EC are given by the sum of the missing inclusions
of the elements appearing in the instance. Any instance in 3EC∗ has 0 missing inclusions.

As long as the missing inclusions in the instance are more than 2, we can reduce them as follows.
Let a, b, and c be three elements having missing inclusions larger than 0. The elements need not be
distinct: we can pick the same element twice if its missing inclusions are equal to 2. Introduce 3
new elements x, y, z and 4 new sets {x, y, z}, {x, y, a}, {x, z, b}, {y, z, c}. The new elements appear
in 3 sets each. The resulting instance is in 3EC and its number of missing inclusions is reduced by
3. The satisfiability of the starting instance does not change with these additions as the set {x, y, z}
has to be selected in all possible solutions of the new instance.

If the number of missing inclusions in the instance is equal to 1, we can build 3 copies of the
instance, each of them with disjoint sets of elements, thus creating an equivalent instance with 3
missing inclusions. Then we can obtain an instance with 0 missing inclusions applying the previous
technique.

If the number of missing inclusions in the instance is equal to 2, again we build 3 copies of the
instance on disjoint sets of elements. The resulting instance is equivalent to the original one and
has 6 missing inclusions. By applying the previous technique twice we can obtain an equivalent
instance with 0 missing inclusions.

Once we have an instance with 0 missing inclusions and n ≤ 3i elements, we can build an
equivalent one having 4 ·3i or 4 ·3i+1 elements using techniques similar to the ones used above, thus
proving the lemma. �

Theorem 3.3.3 The problem of determining, given G4, if there exists a spanning tree T of G4 such
that λ2(T ) = λ3(T ) = 0 is NP complete.
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(a) (b)

Figure 3.5: a) Gadget Ga1. b) Gadget Ga2.
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Figure 3.6: Construction of the graph used for the reduction. Edges between black nodes repre-
senting sets in S and white nodes representing elements of U are omitted.

Proof: Starting from any instance I of 3EC∗, we construct in polynomial time a graph G4, and
the thesis follows from the fact that G4 admits a spanning tree T with λ2(T ) = λ3(T ) = 0 if and
only if I admits a solution.

To build G4, we create a black node for each set in S. We add new nodes to form a tree whose
leaves are the 4 · 3i black nodes representing sets in S. The tree is made by white nodes of degree 4
and internal black nodes of degree 2. More precisely the tree is rooted in a white node; even levels
contain white nodes while odd levels contain black nodes. By construction, the tree will have 2i+ 1
levels and at level 2j+ 1, j ≥ 0 there will be 4 ·3j black nodes (i.e., the levels with black nodes have
an even number of nodes). Then we create a white node for each element of the universe U and we
put an edge between the white node representing element ui ∈ U and the black leaf representing
set Sj ∈ S if ui ∈ Sj .

To complete the construction, we connect each of the white nodes representing elements in U
to the outgoing edges of a gadget Ga1 (see Figure 3.5.a) and we connect each of the black nodes
with degree 2 with a gadget Ga2 twice (see Figure 3.5.b): this operation can always be done as the
number of internal black nodes in the tree is even. The resulting graph is outlined in Figure 3.6.

Given a solution for I, it is easy to derive a spanning tree for G4, having black nodes of degree
4 and 1 only, by assigning degree 4 to all the black nodes connected to gadgets Ga2 and to the
black nodes representing sets forming the solution for I. On the other hand, if a spanning tree T ∗

of G4 exists having black nodes of degree 4 and 1 only, a solution for I can always be found. First
notice that in any such T ∗, all the black nodes connected to gadgets Ga2 must have degree 4, as
nodes inside the gadgets must be connected to the tree and black nodes inside the gadgets cannot
be assigned degree 4 without resulting in some black node of degree 2 or 3. As a result, all the black
nodes representing sets of S in G4 that have degree 4 in T ∗ are connected from above, thus they
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cannot be adjacent in T ∗ to the same white node representing an element of U without creating a
loop (i.e., if we consider the sets represented by black nodes of degree 4 in T ∗, they are pairwise
disjoints). Finally, all the white nodes representing elements in U need to be connected from above
in T ∗, as connecting a white node from below means passing trough a gadget Ga1, thus producing
at least a black node of degree 2 or two of degree 3. It follows that starting from T ∗, a solution for
I can be found by taking all sets of S corresponding to black nodes of degree 4 in T ∗. �

Corollary 3.3.1 The problem of finding a spanning tree with the maximum number of black leaves
is NP hard for 4-regular bipartite graphs.

Proof: Define the BLST problem as follows: given Gd and an integer k, determine whether it exists
a spanning tree T of Gd such that λ1(T ) ≥ k. It is easy to show that BLST on 4-regular bipartite
graphs is NP complete. Indeed, from Theorem 3.3.3, we know that it is NP complete to determine
if a given G4 has a spanning tree T such that λ2(T ) = λ3(T ) = 0. It follows that the BLST problem
is NP complete when k = (d−2)n+1

d−1 . Having an algorithm that resolves in polynomial time the
problem of finding a spanning tree of a given G4 with the maximum number of black leaves, would
allow us to solve BLST in polynomial time, thus proving the problem to be NP hard. �

All the proofs in this subsection can be extended to any d ≥ 5. Generalizations of gadgets Ga1
and Ga2 for any value of d are straightforward. For even values of d, each of the d(d− 1)j internal
black nodes at level 2j+1 in the graph Gd (corresponding to the graph G4 previously defined) have
d− 2 edges going toward generalized gadgets Ga2 (thus (d− 1)j(d− 2) gadgets are needed at level
2j + 1), respecting the condition that each black node is connected to a gadget at least twice. The
instance of (d−1)EC∗ contains d(d−1)i elements (and thus white nodes corresponding to elements
are connected to (d− 1)i generalized gadgets Ga1).

For d odd, the construction of Gd differs slightly. The tree used in the construction is rooted
on a black node of degree d. Internal black nodes have degree bd/2c or dd/2e, while internal white
nodes have degree d. Every pair of internal black nodes of the tree, on level 2j (j ≥ 1) is connected
to a generalized gadget Ga2: one node dd/2e times, and the other bd/2c times (notice that as d ≥ 5,
bd/2c ≥ 2). Level 1 contains d white nodes, thus level 2 contains d(d− 1) black nodes, which is an
even number. In general, level 2j+ 1 contains ((d−2)/2)jd(d−1)j white nodes, while level 2(j+ 1)
contains ((d− 2)/2)jd(d− 1)j+1 black nodes. It follows that all even levels larger than 0 contain an
even number of black nodes. Moreover, the number of black nodes in each of these levels is divisible
by d.

The ((d−2)/2)i−1d(d−1)i black leaves on level 2i represent sets of the instance S of (d−1)EC∗.
The same amount of white nodes, each of them connected once to one of the ((d− 2)/2)i−1(d− 1)i

generalized gadget Ga1, represent elements of S.
Hence we have the following theorem.

Theorem 3.3.4 The problem of finding a spanning tree with the maximum number of black leaves
is NP hard for d-regular bipartite graphs for any fixed d ≥ 4.

3.3.7 Conclusion

Spanning trees of connected graphs are a major topic of research in the area of graph algorithms. In
this section we studied the problem of finding a spanning tree with the maximum number of black
leaves in regular bipartite graphs.

We proved that the problem is NP hard for any fixed d ≥ 4 and we presented a linear time
algorithm that achieve approximation ratio 2− 2/ (d− 1)2.
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It is an interesting question whether this problem is NP hard or polynomial time solvable in the
case of cubic bipartite graphs. Our contribution for this class of graphs is a linear time algorithm
with approximation ratio 1.5.

Our proof of NP hardness relies on a construction involving regular bipartite graphs that are non
planar. It remains an open problem to determine if the problem remains NP hard for regular planar
graphs also. In [127] it is shown that the problem is NP hard for planar non regular bipartite
graphs.

Finally, define lB(n, d) to be the maximum m such that every Gd with n black nodes has
a spanning tree with at least m black leaves. Obviously lB(n, 2) = 1. From Lemma 3.3.4 and
Remark 3.3.1 we have l(n, 3) = dn3 e + 1. It would be interesting to determine precisely the value
lB(n, d) for any d ≥ 4. We know that⌈

d− 1
2d

n+
(d− 1)2

2d

⌉
≤ lB(n, d) ≤

⌈
d− 2
d

n

⌉
+ 1

where the lower bound follows from Lemma 3.3.4 and the upper bound can be obtained by gener-
alizing Remark 3.3.1, using as a building block for the necklace the graph kd,d − e.
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4.1 Introduction

This chapter is devoted to two different problems concerning communication over networks.
The first problem, addressed in Section 4.2, is a radio-frequency assignment problem; in Sec-

tion 4.3 we consider acknowledged broadcasting. While a radio-frequency assignment can be used
as a building block to simplify the development of any communication protocol over a radio net-
work, acknowledged broadcast is a specific task, which requires nodes in the network to be aware
of the completion of the dissemination of the source message, i.e., the completion of the broadcast
operation. This introduction is thus divided in two subsections, each of which provides an overview
of the respective task.

Radio-frequency Assignment

The communication task we address in Section 4.2 is a radio-frequency assignment problem. Radio-
frequency assignment problems require to find frequency assignments to nodes in the network in a
way such that communication among nodes can be performed concurrently without the problem of
collisions. In order to do so, the available radio spectrum is divided in non overlapping channels.
This subdivision of the available radio spectrum however reduces the bandwidth available for each
channel and thus it reduces the speed of communication. It follows that it is important to use as
few channels as possible.

The formulation of the problem as a graph coloring problem is natural, but it requires to carefully
consider the constraints such a coloring has to comply to.

Forbidding the assignment of the same color to nodes at distance 2 is motivated by the problem
of hidden collisions, which could arise on common neighbors of nodes sharing the same color and
thus operating on the same radio-frequency. This problem is called L(1, 1)-labeling problem but
is also known as the distance-two coloring of a graph or coloring of the square of the graph, and
has been well-studied [2, 128, 136]. In general, in order to impose the assignment of distinct colors
to nodes up to distance d from each other, we could work on the dth power of the topology graph
without modifying the usual node coloring constraint of assigning distinct colors to neighbors.

Adjacent channels are more likely to cause interferences in communication due to imprecision
in modulation of the transmitters. Differently from the usual definition of node coloring which
does not consider any distance metric among colors, the radio-frequency assignment problem thus
requires to define such a metric among frequencies. This makes it reasonable to define new coloring
constraints which depend on the distance between nodes, allowing to require the assignment of
distant frequencies to close nodes.

The first coloring problem with distance constraints defined in the literature is the one known
as λ-coloring, proposed by Roberts and first studied by Griggs and Yeah [97]. A λ-coloring is a
L(2, 1)-labeling, i.e., it imposes to assign radio-frequencies which are 2 apart to neighboring nodes
and to assign different radio-frequencies to nodes at distance 2. This definition has been generalized
to the L(h, k)-labeling problem, and it has been widely studied in the literature (see, e.g., [23, 166]
for a comprehensive survey).

A further natural generalization of the L(h, k)-labeling problem is the L(δ1, . . . , δσ)-labeling
problem. This problem requires to assign colors δi apart to nodes at distance i ≤ σ. Notice that,
if δi < δj for some i < j, we should use as a condition the existence of a path of a given length
in order to define the constraints, as the shortest path between two nodes could lead to a weaker
constraint than a longer one.

For what concerns the NP hardness, we have that the L(2, 1)-labeling problem is NP hard even
for graphs of diameter 2, planar graphs, bipartite graphs, split graphs, and chordal graphs (see [23]
for references and a wider discussion). The more general L(δ1, . . . , δσ)-labeling problem does not
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seem easier but, because of its generality, NP hardness proofs valid for all values of σ and δis seem
rather difficult to achieve. The L(11, . . . , 1σ)-labeling problem, i.e., the distance-σ labeling problem
has been proved to be NP complete by McCormic [136] for all σ ≥ 1.

Our contribution addresses outerplanar graphs. Outerplanar graphs are planar graphs which
admit an embedding in the 2-dimensional plane where all nodes lie on the external (infinite) face.
Similarly to planar graphs, outerplanar graphs have a characterization by minors. A graph is
outerplanar if and only if it does not contain K4 (i.e. the complete graph on 4 nodes) or K2,3 (i.e.,
the complete bipartite graph with partitions with 2 and 3 nodes) as minors.

An important characteristic of outerplanar graphs is that they are graphs of bounded treewidth.
The notions of treewidth has been introduced by Robertson and Seymour [151]. In the following
we report the definition of treewidth used by Bodlaender in [17]. This definition is based on tree-
decompositions, thus the definition of tree-decomposition is also reported.

“A tree-decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) with
{Xi | i ∈ I} a family of subsets of V , one for each node of T , and T a tree such that:

• ∪i∈IXi = V ,
• for all edges (v, w) ∈ E, there exists an i ∈ I with {v, w} ∈ Xi,
• for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The treewidth of a tree-decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The
treewidth of a graph G is the minimum treewidth over all possible tree-decompositions
of G.”

The contribution given by Bodlaender in [17] is a linear time algorithm to find tree decomposi-
tions for graphs of constant treewidth. (The decision problem “is the treewidth of a given graph at
most k?” is NP complete if k is not a constant [7].)

A graph of treewidth 1 is a tree, thus the treewidth somehow measures the “distance” of the given
graph from being a tree. An equivalent formulation of the treewidth of a graph can be obtained
using k-trees. If a graph has treewidth ≤ k, then there exists a k-tree containing it as a subgraph.
The treewidth of outerplanar graphs is at most 2. The concept of treewidth is interesting as it plays
an important role on graph minors results from Robertson and Seymour (see, e.g., [151–153]) and
because many well known NP complete problems admit a polynomial (in some cases even linear)
time solution on graphs of bounded treewidth given together with a tree-decomposition (see [17]).
This kind of solutions however, apart from the theoretical interest, are far from being applicable
in practice, as hidden constant are usually huge. This is the case of distance-σ labeling of graphs
of bounded treewidth (for constant σ) [169]. The availability of an (impractical) polynomial time
algorithm, however, is promising for the possibility to achieve a good level of approximation with
an efficient one.

Acknowledged Broadcast

Section 4.3 considers acknowledged broadcasting.
There are two alternative definition in the literature for acknowledged broadcasting; the weaker

one requires the source only to be aware of the completion of the broadcast. The stronger one
requires this awareness in all nodes composing the network. Having an acknowledged broadcasting
algorithm for the weaker definition of the task, however, allows us to easily obtain an acknowledged
broadcasting algorithm for the stronger definition as well. The completion time of the derived
algorithm would be twice the time required by the original one, thus the time complexity of the two
tasks is the same.
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Informing the source that broadcasting has been completed is important, e.g., when the source
has to send several messages and no node should learn a given message before all nodes learned the
previous one. The strong version of acknowledged broadcasting is essential, e.g., when the source
message is an order to accomplish some simultaneous action of all nodes (the Firing Squad Problem,
cf. [133]).

If the size of the network is unknown, feasibility of acknowledged broadcasting requires the
network to be strongly connected. (For networks of known size, acknowledged broadcasting could
be achieved even in non strongly connected networks, using time-out.)

Working in a spontaneous wake up model, Chlebus et al. [43] proved that acknowledged broad-
casting is impossible, if collision detection is not available, and gave an algorithm using collision
detection that works in time O(nD), where n is the number of nodes and D is the eccentricity of
the source. Uchida et al. [161] showed an acknowledged broadcasting algorithm without collision
detection working in time O(n4/3 log10/3 n) for all strongly connected networks of size at least 2. In
particular, it follows that the impossibility result from [43] is really caused by the singleton network
for which acknowledged broadcasting amounts to realize that the source is alone.

Acknowledged broadcasting algorithms presented in the above mentioned papers have time com-
plexities which are quite distant from the ones of the best known broadcasting algorithms without
acknowledgement, i.e., O(n log2D) from [56], and O(n log n log logn) from [57]. This gap is not jus-
tified by a matching lower bound, thus it is interesting to study whether more efficient acknowledged
broadcasting algorithms can be developed.
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4.2 L(h, 1, 1)-Labeling of Outerplanar Graphs

4.2.1 The Model and the Problem

In this section we focus on L(h, 1, 1)-labeling of outerplanar graphs. An outerplanar graph is a graph
that has a planar embedding such that all the nodes lie on the external face. A formal definition of
an L(h, 1, 1)-labeling is given below.

Definition 4.2.1 Let G be a graph and h ≥ 1 be a non-negative integer. An L(h, 1, 1)-labeling of
G is an assignment of colors (integers) to the nodes of G from the set of integers {0, · · · , λ} such
that nodes of distance 1 have colors that differ by at least h, and nodes of distance 2 or 3 have colors
that differ by at least 1.

The aim of the L(h, 1, 1)-labeling problem is to minimize λ, denoted by λh,1,1 and called the
span of the L(h, 1, 1)-labeling. The minimum number of colors used by the labeling is denoted by
χh,1,1 = λh,1,1 + 1. This definition of used colors is motivated by the fact that, when h > 1 some
of the colors in {0, · · · , λ} could not be assigned to any node even in an optimal L(h, 1, 1)-labeling.
Using the set {1, · · · , λ} instead of {0, · · · , λ}, the span and number of used color would have been
exactly equal, but all the literature on the argument adopts this notation.

We start our study by addressing the L(1, 1, 1)-labeling problem, i.e., the distance three coloring,
where colors are distinct for nodes that are within distance three of each other, then we move to
L(h, 1, 1)-labelings, for any h ≥ 2.

The distance-σ coloring problem, where all nodes within distance σ ≥ 1 must have distinct
colors, have been studied in the literature. This problem contains as a subcase the L(1, 1, 1)-
labeling problem. In [169], Kanari et al. gave an O(n3) time algorithm to L(1σ)-label a graph with
n nodes of bounded treewidth k. Outerplanar graphs are graphs of treewidth at most 2, thus the
algorithm from Kanari et al. can be used to achieve an optimum coloring of any outerplanar graph
with n nodes in time O(n3). However, the multiplicative constant of the algorithm (which depends
on the treewidth) is already too big on graphs of treewidth 2. Indeed, for graphs of treewidth 2, the
multiplicative constant is α231 , where α is the chromatic number of the third power of the graph to
be colored.

For outerplanar graphs, the L(h, 1)-labeling problem for h ≥ 1 has also been studied. The
L(1, 1)-labeling problem appeared in [18,29] and the L(2, 1)-labeling in [18,21,29,109]. To the best
of our knowledge, nothing is known for the L(h, 1, 1)-labeling of outerplanar graphs for h ≥ 2.

4.2.2 Original Contribution

For an outerplanar graph G of maximum degree ∆ we present lower bounds of 3∆ − 3 for the
maximum number of colors that are needed to perform the L(1, 1, 1)-labeling. We show that by
using a simple greedy first fit approach, 4∆−7 colors are necessary to L(1, 1, 1)-label an outerplanar
graph with maximum degree ∆. Then we give a linear time approximation algorithm to L(1, 1, 1)-
label any outerplanar graph of maximum degree ∆ ≥ 6, using no more than 3∆+9 colors. Thus our
lower bound on the number of colors needed and the number of colors used by the L(1, 1, 1)-labelings
defined by our algorithm are within a small additive constant.

Finally, we extend our algorithm in order to L(h, 1, 1)-label an outerplanar graph using no more
than 3∆ + 2h + 7 colors, for ∆ ≥ 4h + 7, h ≥ 2. Our lower bound can be applied to L(h, 1, 1)-
labelings as well, but as h appears in the number of colors used by our L(h, 1, 1)-labeling algorithm,
the additive constant separating our lower bound and the upper bound provided by the algorithm
depends on h.
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Figure 4.1: a) An Outerplanar embedding of G. b) The resulting OBFT (G).

4.2.3 Terminology and Preliminaries

Let G = (V,E) be a graph with node set V and edge set E. The number of nodes of the graph is
denoted by n and the maximum node degree by ∆. Throughout the section we assume our graph
connected, loopless and undirected.

We first state some known facts about outerplanar graphs, of which the first two are well-known.

Characterization by Minors: A graph G is outerplanar iff it does not contain the complete
graph K4 nor the complete bipartite graph K2,3 as minors. (A minor of a graph is obtained by edge
contractions, edge deletions or deleting isolated nodes.)

Degree 1 or 2: An outerplanar graph G has a node of degree 1 or 2.

OBFT(G) [29]: An outerplanar graph G has an ordered breadth first tree graph OBFT(G), con-
structed in the following manner. Choose a node r and induce a total ordering on the nodes clockwise
on the exterior face of a planar embedding of G. Perform a breadth first search starting with the
root r and visit the nodes in order of the given ordering. We end up with an OBFT(G) with possibly
some non-tree edges which have the following properties. Denoting as vl,i the ith node from the left
at level l, a non-tree edge can only exist between nodes x and y if:

1. x and y are adjacent nodes on the same level, i.e. x = vl,i and y = vl,i+1 for some level l ≥ 1
and i ≥ 1;

2. x and y are nodes on adjacent levels, x = vl,i and y = vl+1,j , and y must be the rightmost
child of its parent w = vl,k and k = i − 1, i.e. node x must be the next node after w on the
same level in the OBFT(G).

See Figure 4.1 for an example of OBFT(G), where dotted lines denote non-tree edges.

Given as input an outerplanar embedding of G, an OBFT(G) can be computed in O(n) time.
We prove the following results concerning an OBFT(G) that will be useful to prove the upper

bound on performance of our algorithms.

Lemma 4.2.1 Let G be an outerplanar graph with its associated OBFT(G), and two siblings x and
y, x < y, in OBFT(G). Any node u in the subtree of OBFT(G) rooted at x is less than any node w
in the subtree of OBFT(G) rooted at y.
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(a) (b) (c)

Figure 4.2: Proof of Lemma 4.2.1. Lines with double bars stand for paths while simple lines
represent edges.

(a) (b) (c)

Figure 4.3: Proof of Theorem 4.2.1. Lines with double bars stand for paths while simple lines
represent edges.

Proof: First observe that the parent of x and y, say p, can assume three possible relative positions
with respect to x and y: p < x < y, x < p < y and x < y < p (see Figure 4.2).

In the first case (Figure 4.2.a), node u can lie either between p and x or between x and y,
otherwise a crossing would be generated. Assume by contradiction that there exists a node w < u.
Now, w cannot lie between root 1 and p (path w ; y would cross path 1 ; p); w cannot lie between
p and x (path w ; y would cross edge (p, x)); so the only feasible interval for w is between x and
y. Nevertheless, also in this interval, w < u implies a crossing between paths x ; u and y ; w.
So u < w.

In the second case (Figure 4.2.b) 1 < u < p as there is necessarily a path connecting root 1 to
p, and w > p for similar reasons. So u < w.

Finally, in the third case (Figure 4.2.c) u is either between root 1 and x or between x and y.
With similar reasoning as in the first case, u < w. �

Theorem 4.2.1 Any OBFT(G) of an outerplanar graph G is an outerplanar embedding of G.

Proof: First observe that, in view of the definition of outerplanar graph, if the embedding is not
outerplanar, then either there exists some node embedded inside an internal face, or there is some
node on the boundary of internal faces only.

Given an OBFT(G), let us suppose first that there is a node v embedded inside an internal face
f . In fact, if a whole subtree is embedded inside f then we can contract it to its root, say v. We
will prove the claim by contradiction. The boundary of f is the cycle created in the OBFT(G) by
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Figure 4.4: Proof of Theorem 4.2.1. Lines with double bars stand for paths while simple lines
represent edges.

at least one non-tree edge (u,w) (see Figure 4.3). Let us consider the lower common ancestor of u
and w on the boundary of f , and call it lca(u,w). Since v is embedded inside f then lca(u,w) 6= v.
Let x and y be the two children of lca(u,w) on the boundary of f . By the OBFT(G) construction,
it must be x < y. In view of the properties of the non-tree edges of an OBFT(G), for v to be inside
f one of the following three configurations must occur:

a) v is in the subtree rooted at x (see Figure 4.3.a);

b) v is in the subtree rooted at y (see Figure 4.3.b);

c) v is a child of lca(u,w) (see Figure 4.3.c).

Since in all three cases we have u < v < w by Lemma 4.2.1, we get a contradiction as it is
impossible to place in the outerplanar embedding of G the tree-path 1 ; v not crossing edge (u,w)
as shown in Figure 4.4. It follows that v does not exist.

Let us suppose now that a node v lies on the boundary of internal faces only and consider the
simple cycle C constituted by the boundary of the union of all such faces. By construction, if v
lies on level l of the OBFT(G), then on C there must be a node w on a level strictly greater than l
and a node u on a level strictly less than l such that there exist paths w ; v and u ; v not using
nodes of C. As u and w both lie on C, then there are two distinct paths inside C connecting u
and w both passing through a node at level l. This leads to an absurdity as we can construct the
forbidden minor K2,3: v represents the internal node, u and w are the degree 3 nodes and the two
nodes on level l are the remaining degree 2 nodes. �

Corollary 4.2.1 In an OBFT(G) of an outerplanar graph G, for each node c, there exists at least
one of c’s children not having non-tree edges on both sides.

Proof: The claim trivially holds if c is the root of the OBFT(G), as the rightmost child of c cannot
have non tree edges on its right. In general the claim directly follows from Theorem 4.2.1 as node
c would be internal (see Figure 4.5). �

4.2.4 L(1,1,1)-Labeling

In this subsection we deal with the L(1, 1, 1)-labeling of outerplanar graphs. The technique used
here will be generalized in the next subsection in order to handle the L(h, 1, 1)-labelings for h ≥ 2.

Let us begin by providing a lower bound on the number of colors needed.

Theorem 4.2.2 There exists an outerplanar graph of degree ∆ that requires at least 3∆− 3 colors
to be L(1, 1, 1)-labeled.
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Figure 4.5: Proof of Corollary 4.2.1. Lines with double bars are paths while simple lines represent
edges.

(a) (b)

Figure 4.6: a) Lower bound. b) Greedy first-fit lower bound.
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(a) (b)

Figure 4.7: a) Color set assignment. b) Fixed right color set.

Proof: Consider the graph shown in Figure 4.6.a; x, y and z are nodes of degree ∆. As all adjacent
nodes of x, y and z are at mutual distance ≤ 3, it is easy to see that it requires at least 3∆ − 3
colors. �

The greedy first-fit approach is a frequently used technique for labeling nodes of graphs and
usually performs rather well in practice. This technique consists in considering nodes one by one in
any order and assigning them the first color not used by any of their labeled neighbors satisfying
the L(1, 1, 1)-labeling condition. If there is a tree-like structure, the followed order is typically the
top-down left to right one. In our case, we can state the following theorem.

Theorem 4.2.3 There exists an outerplanar graph G of degree ∆ such that the greedy first-fit
approach requires at least 4∆− 7 colors to L(1, 1, 1)-label G.

Proof: We refer to Figure 4.6.b. A greedy first-fit algorithm assigns label 0 to the root; labels from
1 to ∆ to the root’s children; labels from ∆ + 1 to 3∆−5 to the root’s grandchildren, in view of the
edge connecting their parents. The first ∆ − 2 nodes of the last level can assume colors from the
set {3, . . . ,∆}, while the remaining nodes must use new labels from the set {3∆− 4, . . . , 4∆− 8}.
Figure 4.6.b where there are 4∆− 3 nodes that are within distance 3 of a node v. �

Since the gap between the lower bound on χ1,1,1 and the guaranteed performance of the greedy
first-fit approach is rather large, we now present an algorithm that, given an outerplanar graph G
of maximum degree ∆ ≥ 6, finds an L(1, 1, 1)-labeling of nodes of G using at most 3∆ + 9 colors,
and hence is almost optimal as the lower bound is at least 3∆− 3.

Let A be the color set {0, 1, . . .∆ + 2}, B the color set {∆ + 3,∆ + 4, . . . 2∆ + 5} and C the color
set {2∆ + 6, 2∆ + 7, . . . , 3∆ + 8}; each set has size ∆ + 3. The first step of the algorithm is to build
an OBFT(G), rooted on a node of degree 1 or 2. Then the algorithm proceeds to assign a set of
colors to the children of each node. Finally, it colors each node with a color from its color set.

Before describing how to assign sets of colors, we first introduce some definitions.
For a node v, let Cv denote the children of v in the OBFT(G) and S(Cv) be the color set that is

assigned to Cv. S(v), where v is a single node, denotes the color set assigned to the set composed by
v and its siblings. At each step we assign color sets in a way such that conflicting sets are avoided.
By conflicting sets we mean that the colors in the sets may violate the L(1, 1, 1)-labeling condition.

Let v be a node assigned to a specific set of colors (refer to Figure 4.7.a). All grandchildren of
v are at distance ≤ 3 from Cv, hence we must forbid set S (Cv) to all grandchildren of v and, in
general, we are free to choose between the two remaining sets. Since v and possibly its left and
right siblings (if they are adjacent to v), are at distance ≤ 3 from the grandchildren of v, we prefer
to choose the color set different from the one already assigned to v and its siblings when possible.
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(a) (b)

Figure 4.8: a) Alternate color sets. b) Fixed left color set.

Occasionally, we will have no choice but to assign a specific color set because it is the only color
set left that can be assigned without causing conflicts. This can occur for the grandchildren of v
that are children of either a leftmost or rightmost child of v. We call these color sets fixed (see
Figure 4.7.b and Figure 4.8.b).

We now describe how to assign a color set. The color sets are assigned level by level top down
from the root to the leaves and from the left to the right within each level of the tree, except in
some special cases that will be explained later.

After we have assigned two separate color sets to the root and its children, we have two levels
that are fully assigned and we have to assign color sets to the third level. Assume that we have
already assigned color sets to level h and h + 1, h ≥ 1; we are now ready to assign color sets to
level h+ 2. Suppose v and its children Cv have been assigned sets, (refer to Fig 4.7.a). In order to
assign color sets to v’s grandchildren we first have to check Cr, where r is the rightmost child of v.
The only case in which we do not follow the left to right order is depicted in Figure 4.7.b: if there
is non-tree edge (r, x) (i.e. the distance between any node in Cr and any node in Cx is ≤ 3) and
the color sets S (Cv) 6= S (Cx) then we have no choice but to assign the only color set available to
Cr.

Afterwards, we have to check if node r is connected to its left sibling by a non-tree edge. If
so, we have to assign sets from right to left, alternating with the only color set left available (see
Figure 4.8.a), until there is a missing non-tree edge, which will occur due to Corollary 4.2.1. Next, we
check the leftmost child l of node v. Again, if the color set to be assigned to Cl is fixed (Figure 4.8.b),
we have to assign the only available set and then check if node l is connected via a non-tree edge
to its right sibling. If so, repeat the alternating set assignment as before (until a missing non-tree
edge is encountered). After the two boundary sets have been assigned, we try to assign color sets
from left to right using a color set that is different from S(v) if possible, alternating color sets from
left to right for any non-tree edge that is present.

A more formal description is given in Algorithm 4.

Theorem 4.2.4 There exists a linear time algorithm that L(1, 1, 1)-labels any outerplanar graph
with 3∆ + 9 colors, where ∆ ≥ 6.

Proof: We have already described the first two steps of the algorithm (i.e. the construction of
OBFT(G) and the color set assignment), so it remains to detail how to assign to each node a color
from its color set satisfying the L(1, 1, 1)-labeling condition.

Given a node group and its assigned color set, we can arbitrarily choose a different color for
each node, paying attention only to nodes that are at distance ≤ 3 from a node group having the
same color set. So, we first assign colors to such nodes (there are no more than four: the leftmost,
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Algorithm 4 : Assign Color Set
Let A, B and C be the three sets of distinct colors, each of size ∆ + 3;
construct OBFT(G) tree T of an outerplanar graph G, rooted on a node of degree 1 or 2;
assign S({root})=A and S(Croot)=B;
suppose color sets have been assigned to nodes at levels h and h+ 1, h ≥ 1;
visit nodes of T top down, left to right starting from the root;
for each node v on level h ≥ 1 do

let r be the rightmost child of v and l be the leftmost;
if S(Cr) is fixed (see Figure 4.7) then

assign the only available color set to Cr;
proceed right to left (see Figure 4.8.a), assign color set to Cx alternating between the two
available until there is a missing non-tree edge between x and y, or until a color set has beed
assigned to Cl;

end if
if S(Cl) is fixed (see Figure 4.8) then

assign the only available color set to Cl ;
proceed left to right (see Figure 4.8.a), assign color set to Cy alternating between the two
available until there is a missing non-tree edge between x and y, or until a color set has beed
assigned to Cr ;

end if
let z be the leftmost node in Cv such that S(Cz) is not assigned;
while there is such a node z do

assign to Cz the available color set not assigned to the parent of z ;
proceed from left to right alternating color sets as in Figure 4.8.

end while
end for

its right sibling, the rightmost and its left sibling) avoiding conflicts, and then we proceed with all
other nodes.

It is straightforward to see that this algorithm correctly labels the graph in linear time. It
remains to show that ∆ + 3 colors in each group are always enough.

Let us fix any node x on an OBFT(G) and its set of children Cx. Without loss of generality, let
our algorithm assign color set A to Cx . It is easy to see that the worst case for the cardinality of
A is when Cx is at distance ≤ 3 from as many nodes as possible, all colored with a color in A. This
happens when there are as many non-tree edges as possible, as they somehow shorten the distances
computed on the tree. For this reason, let x be the rightmost sibling as this configuration allows
the presence of non-tree edge (s,m) (refer to Figs. 4.9.a and 4.9.b for the notation) .

Two cases are possible, according to the existence of non-tree edge (x, y).
According to the algorithm, if such an edge exists (see Figure 4.9.a) both Cx and the group of

nodes to which t belongs to receive the same color set A. In order to maximize the number of nodes
at distance ≤ 3 from Cx, let us consider the case in which the algorithm assigns color set A to the
group to which y belongs to and to the group of nodes children of the left sibling of x. It is easy
to see that, according to our algorithm, no other nodes at distance ≤ 3 can receive a color from
the color set A. Hence, exactly |Cx| nodes must be labeled using colors from A, avoiding the color
assigned to nodes t, t′, y y′ and l. Since |Cx| ≤ ∆− 2, ∆ + 3 colors in A are sufficient.

If edge (x, y) does not exist the algorithm assigns color sets as shown in Figure 4.9.b. (note that
the group of nodes to which m belongs to has a fixed left color set due to the non-tree edge (t, y)).
Hence, nodes in Cx must be labeled using colors from set A avoiding the colors assigned to nodes
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(a) (b)

Figure 4.9: Proof of Theorem 4.2.4.

m, l, w and v all at distance ≤ 3 from nodes in Cx. Since |Cx| ≤ ∆− 1, ∆ + 3 are sufficient.
Furthermore, observe that the color assigned to j cannot be used in p, the color assigned to k

cannot be used neither in p nor in q, and similarly the color assigned to o cannot be used in s and
the color assigned to n cannot be used neither in r nor in s. It follows that, after removing the 4
colors forbidden by m, l, w and v, the ∆−1 remaining colors must be at least 4. In the special case
in which the color assigned to k is the same as the color assigned to n, one color more is necessary.
Hence we need the precondition ∆ ≥ 6. �

We conclude this subsection observing that if ∆ ≤ 6, the algorithm requires anyway 27 colors
to perform the labeling.

4.2.5 L(h,1,1)-Labeling

In this subsection we show how to generalize the results of the L(1, 1, 1)-labeling to the L(h, 1, 1)-
labeling for h ≥ 2.

First, observe that Theorem 4.2.2 provides a lower bound of 3∆ − 3 for χh,1,1, for any h ≥ 1.
Also Theorem 4.2.3 on the greedy first-fit approach applies to the general case h ≥ 1.

In the following, we detail how to get an L(h, 1, 1)-labeling by exploiting Algorithm Assign
Color Set and then by labeling nodes with colors from the assigned set. Color sets are separated
by a gap in order to address the requirement of spacing adjacent nodes by at least h colors apart.
More precisely, set A contains colors {0, 1, . . .∆+2}, set B colors {∆+h+2,∆+h+3, . . . 2∆+h+4}
and set C colors {2∆ + 2h+ 4, 2∆ + 2h+ 5, . . . , 3∆ + 2h+ 6}. The h− 1 colors in the gaps between
color sets guarantee that the distance 1 constraint between adjacent groups of nodes is respected.

As a building block for L(h, 1, 1)-labeling outerplanar graphs, we need to be able to perform a
labeling of paths as stated in the following lemma.

Lemma 4.2.2 Given any integer h ≥ 2, it is possible to label with l ≥ 2h + 1 consecutive colors
any path having at most l nodes, respecting the following constraints:

• each color must be assigned to at most one node;

• adjacent nodes must receive colors that are at least h apart.
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0 1 2 3 4 5 6

20 4 31 5 6

0 1 2 3 4 5 6 107 8 9 11

0 8 3 9 4 11 5

(a) (b)

Figure 4.10: Path labeling: a) consecutive colors, b) colors with holes.

Proof: Without loss of generality, suppose we have colors from 0 to l− 1. Assign to the first node
of the path any color x, to nodes in position 2i, i = 1, . . . , b l2c color (x+ b l−1

2 c+ i)mod l, to nodes
in position 2j − 1, j = 1, . . . , d l2e color (x + j − 1)mod l (see Figure 4.10.a). It is easy to see that
this labeling respects the constraints if and only if l ≥ 2h+ 1. Moreover, this labeling has minimum
span.

�

Remark 4.2.1 Modifying the algorithm described in the proof of Lemma 4.2.2 in a way such that
it assigns the i-th color in an ordered list of l ≥ 2h + 1 non necessarily consecutive colors, it will
still find a valid assignment for a path of length l (see Figure 4.10.b).

Note that once we have assigned a color set to each group of siblings, each such group induces
a subgraph of a path. Moreover, we already know that in the worst case scenario, we will have
∆ − 1 nodes to label with exactly ∆ − 1 available colors. Nevertheless as it may happen that the
end points on both sides of the resulting path are not freely choosable, we need some refinement in
order to apply Lemma 4.2.2.

Consider the worst case scenario depicted in Figure 4.11, where the ∆ − 1 children of node x
have to be labeled with the remaining ∆ − 1 colors. In such a configuration, in view of Corollary
4.2.1, at least one non-tree edge connecting two siblings must be missing. Consider the path from
l1 to the leftmost node missing its right non-tree edge and the path from r1 to the rightmost node
missing its left non-tree edge; without loss of generality, let the path starting from r1 be the shortest
one. We label first r1 using the first available color, keeping into account the constraints induced
by already colored nodes. Then we label r2 with a color at least h apart from the color assigned to
r1. Now we complete the labeling of the path by using Lemma 4.2.2.

It is not restrictive to assume that all the remaining uncolored siblings constitute a unique
path, as otherwise the constraints are weaker; so we repeat the same procedure to label the path
starting from l1. Observe that the produced labeling is feasible and we are always able to perform
it, provided that enough colors are available.

Theorem 4.2.5 For any h ≥ 2, there exists a linear time algorithm that L(h, 1, 1)-labels any out-
erplanar graph with 3∆ + 2h+ 7 colors if ∆ ≥ 4h+ 7.

Proof: As Algorithm Assign Color Set does not depend on h, we have already proved in Subsec-
tion 4.2.4 that it can be run successfully, guaranteeing that at least ∆−1 colors are always available
to label at most ∆− 1 siblings. The claim is proved if we show that the available colors are always
enough to complete the labeling of each group of siblings.

Refer to Figure 4.11. First observe that the labeling of the paths starting from l1 and r1 are
subject to equivalent constraints, and that when we label the first path we have much more colors
to chose from, so it is enough to prove that the remaining colors are sufficient to label the second
path.

To label the first node, l1, at most 2h (distance 1 from a) plus 2 (distance ≤ 3 from b and c)
colors cannot be used. The shortest path consists of at most b∆−1

2 c nodes, so there is at least one
color available as ∆− 1− b∆−1

2 c − 2h− 2 ≥ 1 when ∆ ≥ 4h+ 7.
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Figure 4.11: L(h, 1, 1)-labeling worst case.

In order to label l2, we have at least ∆− 1−b∆−1
2 c− 1 colors, from which we have to eliminate

at most 2h (distance 1 from l1) +1 (distance 3 from b) colors, so at least d∆−1
2 e − 1 − 2h − 1 ≥ 1

colors. Finally, l2 is also the first node of the path labeled using Lemma 4.2.2; hence we must prove
that there are at least 2h + 1 available colors. This is always true as, among the ∆ − 1 colors, we
used at most b∆−1

2 c to label the shortest path and 1 color to label l1, so the remaining colors are at
least 2h + 2. Observing that the length of the longest path never exceeds the number of available
colors, the claim follows.

�

We conclude this subsection by observing that even in the general case of the L(h, 1, 1)-coloring,
there is a threshold for values of the maximum degree; in this case, if ∆ ≤ 4h + 7, the algorithm
requires anyway at most 14h+ 28 colors.

4.2.6 Conclusion

In this section we provided very close upper and lower bounds on the number of colors, χh,1,1, that
are needed to L(h, 1, 1)-label an outerplanar graph for h ≥ 1. We showed that the greedy first-fit
technique does not work well in this case. In the literature there is an algorithm that optimally
L(1, 1, 1)-labels outerplanar graphs running in time O(n3) [169], but the multiplicative factor is too
large to be of practical use. Our algorithm produces an approximate solution that only differs from
the optimal solution by a constant additive factor, and it is linear.

Some open problems arise from this work. First, there is a gap between the upper bound
provided by the algorithm and the lower bound shown. It would be nice to close the gaps between
the bounds.

Furthermore, the upper bounds we found are rather large for small values of ∆, and can probably
be improved: our aim was to find an algorithm with a good asymptotic behavior.

Finally, for L(h, 1d) = L(h, 1, · · · , 1), we have only studied the case when d = 2. It would
be interesting also to study the L(h, 1d)-labeling problem of outerplanar graphs for d ≥ 3 . The
same technique of using color group assignments can be applied, but the number of cases to be
considered increases quite a bit. The problem here is to find good estimates for f(h, d) and g(h, d)
in the inequality χh,1d ≤ f(h, d)∆d

d
2
e + g(h, d).
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4.3 Acknowledged Broadcasting in Ad Hoc Radio Networks

4.3.1 The Model and the Problem

A radio network consists of stations that can transmit and receive messages. Stations have synchro-
nized clocks showing the same round number. The network is modeled as a directed graph with
a distinguished node called the source. If there is a directed edge from u to v, node v is called an
out-neighbor of u and u is called an in-neighbor of v. In a given round each station can act either
as a transmitter or as a receiver. Two alternative assumptions are made about radio networks:
either nodes can distinguish collision from silence or they cannot do it. In the first case we say that
collision detection is available, in the second case - that it is not.

We assume that each node knows only its own label but is unaware of the topology of the
network, or of any bound on its size or diameter. Labels of a n-node network are distinct integers
from the set 1, . . . , N , where N is O(n). To simplify notation, we will assume that N = n but all
our results hold without this additional assumption.

We consider only deterministic communication algorithms and do not assume any central mon-
itor of the broadcasting process. Thus the decision made by a node on whether to transmit or
to receive in a given round, and what message to transmit, if any (some control messages can be
transmitted on their own or be appended to the source message) is based exclusively on the label
of the node, the round number, and on the messages it heard so far.

Acknowledged broadcasting is a communication task consisting in transmitting a message from
the source to all other nodes of the network and making this fact common knowledge among all
nodes. Acknowledged broadcasting was defined in [43] as the task of completing broadcasting and
informing the source about it. More precisely, there must exist a round t at which all nodes know
the source message and the source is aware of this. Notice that after round t the source may broad-
cast another message “done at round 2t”, using the same algorithm. This message is guaranteed
to reach all nodes by round 2t, and precisely at this round the source message becomes common
knowledge [101] in the network, i.e., all nodes know it, all nodes know that all nodes know it, all
nodes know that all nodes know that all nodes know it, etc. (arbitrarily many times). Since this
common knowledge can be achieved in twice the time needed to inform the source that broadcast-
ing is completed, both tasks have the same time complexity. We will use the term acknowledged
broadcasting and the abbreviation AB, for the stronger task. However, the results we present apply
to both versions of AB.

The execution time of a broadcasting algorithm in a given radio network is the smallest round
number after which all nodes of the network have heard the source message and no other messages
are sent. Likewise, the execution time of an AB algorithm is the smallest round number after which
all nodes of the network have common knowledge of the source message. Having this information
they do not transmit any further messages. We recall that in the spontaneous wake up model, it
was proved in [43] that AB is infeasible without collision detection, even for symmetric networks.
On the other hand, assuming collision detection, the authors provided an AB algorithm working
in time O(nD), for arbitrary strongly connected n-node networks, where D is the eccentricity of
the source (the maximum length of all shortest paths in the graph from the source to all other
nodes). Uchida et al. [161] showed an AB algorithm without collision detection working in time
O(n4/3 log10/3 n) for all strongly connected networks of size at least 2.

4.3.2 Original Contribution

We improve the above results from [43] and [161] by presenting two generic AB algorithms for
the spontaneous wake up model using a broadcasting algorithm without acknowledgement, as a
procedure. For a large class of broadcasting algorithms the resulting AB algorithm has the same
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time complexity. Using the currently best known broadcasting algorithms, we obtain an AB al-
gorithm with collision detection working in time O(min{n log2D,n log n log log n}), for arbitrary
strongly connected networks, and an AB algorithm without collision detection working in time
O(n log n log logn) for all strongly connected networks of size n ≥ 2. Moreover, we show that in the
conditional wake up model, AB is infeasible in a strong sense: for any AB algorithm there exists an
infinite family of networks for which this algorithm is incorrect.

4.3.3 AB in the Spontaneous Wake Up Model

Availability of Collision Detection

Here we present an AB algorithm AckBroadcast1 working correctly for all strongly connected
n-node networks with source eccentricity D, where n and D are arbitrary and unknown. We
assume the spontaneous wake up model with collision detection. The algorithm works in four
stages. The first two of them are the same as in Algorithm Bound-Broadcast-Check from [43]:
in the first stage all nodes learn an upper bound on n within a factor of 2, and in the second
stage each node learns its distance from the source. The rest of the algorithm contains a crucial
difference which permits us to improve the time O(nD) of Algorithm Bound-Broadcast-Check to
the currently best known time of broadcasting without acknowledgement, which is the minimum
of O(n log2D) [56] and O(n log n log logn) [57]. Instead of interleaving phases of broadcasting and
phases of acknowledgement, as it was done in Algorithm Bound-Broadcast-Check and which was a
time-consuming procedure, we first try to learn an approximate value of D and only then broadcast.
More precisely, in Stage 3 all nodes learn an upper bound on D within a factor of 2, and in Stage
4 broadcasting is performed, using approximate knowledge of n and D to time-out the process. A
more detailed description of the algorithm follows. We use the following terminology, introduced
in [43]. A node v acting as a receiver in a given round hears signal µ, if at least one of its in-neighbors
acts as a transmitter, i.e., if v hears a message or if there is a collision at v in this round. Otherwise
(if no in-neighbor of v acts as a transmitter), v hears nothing. A contact message is a fixed one-bit
signal.

Algorithm AckBroadcast1
Stage 1. This stage proceeds in phases numbered by consecutive positive integers. The kth

phase lasts 2k+1 rounds, numbered 1, . . . , 2k+1, and each phase immediately follows the preceding
one. A node is active after the jth phase, j > 1, if it acted as a transmitter in some round of this
phase. All nodes are active in the first phase. It was proved in [43] that after each phase either
all nodes are active or all are not active. In the first round of phase k all active nodes with labels
larger than 2k send a contact message and all others act as receivers. In round i > 1 of the kth
phase, each active node that heard signal µ in round i − 1 of this phase and has not heard it in
any previous round of this phase, sends a contact message. All other nodes act as receivers. The
first phase after which all nodes are not active is the last phase of the first stage. Each node can
identify this phase as the first phase after which it is not active. Call this phase j0. At this point
all nodes know that 2j0−1 < n ≤ 2j0 . Let x = 2j0 . At the end of Stage 1 every node knows j0 and
hence knows x.

Stage 2. This stage is initiated by the source immediately following phase j0 of Stage 1. This
stage lasts x rounds. In round 1 of Stage 2 the source acts as a transmitter sending the contact
message, and all other nodes act as receivers. In round i > 1 those nodes that heard signal µ in
round i − 1 act as transmitters, sending a contact message, and all others act as receivers. Each
node learns its distance from the source as the round number of Stage 2 in which it heard the signal
µ for the first time. Each node knows when Stage 2 ends.

Stage 3. This stage starts immediately after the end of Stage 2 and proceeds in phases numbered
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by consecutive positive integers. Each phase lasts x rounds. In round 1 of phase k all nodes whose
distance from the source is larger than 2k transmit a contact message and all others act as receivers.
In round i > 1 of the kth phase, each node that heard signal µ in round i− 1 of this phase and has
not heard it in any previous round of this phase, sends a contact message. All other nodes act as
receivers. The first phase r in which the source does not hear the signal µ is the last phase of this
stage. Each node can identify this phase as the first phase in which it has not heard the signal µ.
At this point all nodes (and in particular the source) know that 2r−1 ≤ D < 2r.

Stage 4. Immediately following the end of Stage 3 starts a broadcasting algorithm for ad
hoc networks with known parameters x (the upper bound on the number of nodes), y = 2r (the
upper bound on the eccentricity of the source), and known upper bound T (x, y) for completion of
broadcasting for all networks with these parameters. Every node waits until the (T (x, y))th round
of Stage 4. At this point common knowledge of the source message is achieved. �

Remark. If the broadcasting algorithm used in Stage 4 is such that T (x, y) depends only on x
and not on y, (e.g., the O(n log n log logn) algorithm from [57]), Stage 3 can be deleted, with Stage
4 following Stage 2.

Theorem 4.3.1 There exists an AB algorithm working correctly for all strongly connected networks
with collision detection, and using time in O(min{n log2D,n log n log log n}), for networks with n
nodes and source eccentricity D.

Proof: Stage 1 takes time O(x) = O(n). Stage 2 takes time x ∈ O(n). Stage 3 takes time
O(xr) = O(n logD). Stage 4 lasts as long as the broadcasting algorithm used for ad hoc networks
with (approximate) parameters learned in the previous stages. Taking the best of the algorithms
O(n log2D) [56] or O(n log n log log n) [57] for the given pair of parameters implies the claimed
result. (Knowing both parameters within a factor of 2 does not change the final complexity). �

Non-Availability of Collision Detection

Here we present an AB algorithm working correctly for all strongly connected n-node networks
without collision detection, where n ≥ 2 is arbitrary and unknown. We assume the spontaneous
wake up model without collision detection. Our algorithm works in the currently best known time of
broadcasting without acknowledgement for networks of unknown size n, which is O(n log n log logn)
[57]. We present the algorithm in a generic form, using as a procedure an arbitrary algorithm B(r)
for broadcasting (without acknowledgement) in networks without collision detection, of size at most
r, with a known upper bound B(r) on completion time for such networks.

Algorithm AckBroadcast2
The algorithm proceeds in phases: each phase consists of four stages. During phase i, we call

small a node with a label at most 2i and big a node with a label greater than 2i. Fix a phase i ≥ 1.
Stage 1. This stage consists of 2i rounds. Each small node transmits its label once in a round-

robin fashion: the node with label x transmits in the xth round of the stage. Big nodes transmit
during all rounds of this stage. At the end of the stage, each small node without big in-neighbors,
knows the complete set of its in-neighbors (notice that this set cannot be empty for a small node
with this property because the network is strongly connected and has at least two nodes). Small
nodes with at least one big in-neighbor, either know the label of their in-neighbor, if it is unique,
or hear silence for the whole duration of the stage, otherwise. At the end of this stage, each small
node knows whether it has a big in-neighbor.

Stage 2. Apply algorithm B(2i). Small nodes participate in it, while big nodes are silent. A
small node which receives the source message is called informed. The second stage lasts B

(
2i
)

rounds.
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Stage 3. Small nodes which are either uninformed or aware of a big in-neighbor, transmit a
failure message, in a round-robin fashion. This stage lasts 2i rounds.

Stage 4. This stage lasts B
(
2i + 1

)
rounds. Only small informed nodes participate (all other

nodes are silent). The stage consists in disseminating the failure message, from all nodes aware of
the failure, to all informed nodes. We show in Lemma 4.3.1 that this can be done in B

(
2i + 1

)
rounds.

If the source receives the failure message during the fourth stage of phase i, then phase i+ 1 is
initiated, otherwise broadcasting is acknowledged: all nodes get common knowledge of the source
message by time-out, if they obtain no failure message by the

(
B
(
2i + 1

))
th round of Stage 4.

(Any node that did not get the failure message by this round knows that no node got the failure
message.) In this case the algorithm ends. �

Lemma 4.3.1 Any algorithm performing broadcast for all n-node networks within time B(n) can
be modified to disseminate the same message from multiple sources in any n-node network, within
time B(n+ 1).

Proof: The fact that disseminating the same message from more than one source is not more difficult
than broadcasting from a single source has been stated in [49,50]. For the sake of completeness, we
provide a proof of this assertion (cf. [88]).

Consider any algorithm A, completing broadcasting on all n-node networks within time B(n).
Consider a n-node network N , not necessarily strongly connected. We are given a set S =
{s1, . . . , sk} of nodes in N , chosen by an adversary respecting the condition that each node in
N is reachable from some node in S (as otherwise disseminating a message from S would be impos-
sible). Nodes in S share a message m to be disseminated to the whole network. Now consider the
network N ′, obtained by adding a new node s′ to N and all oriented edges (s′, si), for 1 ≤ i ≤ k.
Every node in N is reachable from s′, so algorithm A must complete broadcast from s′ in N ′ within
time B(n + 1). As s′ has no in-neighbor, its communication pattern during the execution of algo-
rithm A is independent of the network N , and thus it is completely predictable once A is known.
It follows that an algorithm A′, disseminating message m from S in time at most B(n + 1), can
always be obtained from algorithm A by simulating the actions of algorithm A for nodes in S in
the presence of the fixed communication pattern of node s′, and executing algorithm A on all other
nodes in N . �

The following two lemmas establish the correctness of Algorithm AckBroadcast2.

Lemma 4.3.2 If broadcast in Stage 2 of phase i of Algorithm AckBroadcast2 informs all nodes in
the network, then this fact becomes common knowledge by the end of phase i.

Proof: For broadcasting to be successful in phase i, no node in the network can have a label larger
than 2i, thus no failure can be signalled. This fact becomes common knowledge at the end of phase
i. �

Lemma 4.3.3 If broadcast in Stage 2 of phase i of Algorithm AckBroadcast2 fails to inform all
nodes in the network, then all nodes in the network become aware of it by the end of phase i.

Proof: Any node with a label larger than 2i knows that phase i will be unsuccessful (by looking
at its label). All nodes with an in-neighbor with label larger than 2i become aware of failure of
phase i during the first stage of this phase. Small nodes which remain uninformed at the end of
stage 2 of phase i, learn that the phase is unsuccessful by time-out (because they don’t get the
source message). In order to prove that all other nodes become aware of the failure by the end of
phase i, we will show that after the third stage of phase i, the failure message is available to some
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node inside the strongly connected component C, containing the source s, in the subgraph induced
by informed small nodes. This is enough to prove that dissemination of the failure message can
be performed in the subgraph induced by informed nodes. The latter, together with Lemma 4.3.1,
implies that all nodes become aware of the failure within time B(2i + 1).

Let x be a node aware of the failure before the third stage of phase i, and let p = x ; p1 ;

. . . ; pk ; s be a shortest path from x to the source s. We can assume that all internal nodes
in p are small in phase i, as otherwise we can repeat the reasoning by taking instead of x, the big
internal node in p which is the closest to s. We can also assume that all nodes in p are informed, as
if a node pj in p is uninformed, then it is aware of the failure, and again we can use such a node pj
instead of x. Node p1 receives the failure message from x during the execution of the third stage of
phase i. As p1 is informed, there must be a path from s to p1 containing only small nodes in phase
i. On the other hand, there is a path from p1 to s containing only small nodes, and thus p1 is in C.
If the path p contains only s and x, then the source s has x as an in-neighbor and thus it becomes
aware of the failure by the time of completion of the third stage of phase i. �

Theorem 4.3.2 There exists an AB algorithm working correctly for all strongly connected networks
of size at least 2 without collision detection, and using time O (n log n log logn) for networks with n
nodes.

Proof: Stages 1,2, and 3 of phase i take time 2i and Stage 4 takes time B
(
2i + 1

)
. Since

B
(
2i + 1

)
≥ 2i, phase i takes time O(B

(
2i + 1

)
). Taking the broadcasting algorithm from [57]

with B(r) in O (r log r log log r) gives the claimed result. �

Remark 4.3.1 It should be noted that (as opposed to Algorithm AckBroadcast1) Algorithm Ack-
Broadcast2 cannot guarantee time O(n log2D) because nodes do not learn any approximation of the
source eccentricity D. In fact, learning such an approximation without collision detection seems to
be much more time-consuming than when collision detection is available. Thus, for shallow networks
(with D polylogarithmic in n), Algorithm AckBroadcast1 is (slightly) faster than Algorithm Ack-
Broadcast2.

4.3.4 Impossibility of AB in the Conditional Wake Up Model

In this section we prove that performing AB for all strongly connected networks is impossible in the
conditional wake up model. As opposed to the impossibility result from [43] for the spontaneous
wake up model, our negative result is not linked with any particular network (the singleton network
in the case of [43]) but holds in a strong form: we show that any AB algorithm is incorrect for
infinitely many networks.

Theorem 4.3.3 For any AB algorithm there exists an infinite family of strongly connected networks
for which this algorithm is incorrect.

Proof: Consider any AB algorithm A and let m be an arbitrary positive integer. Let C be the
m-node clockwise oriented cycle. Suppose that A takes time x to be completed on C. Let v be a
node in C different from the source. Attach to v an oriented cycle C ′ of length x+ 1 that has only
the node v in common with C. Call the resulting network Q. Let w be the node preceding v in the
cycle C ′. Node w can be woken up in round x + 1 at the earliest. Hence by round x the behavior
of all nodes belonging to C must be identical in networks C and Q. Since algorithm A completes
AB in network C by round x, the nodes in C must also complete AB in network Q by round x. In
particular, at round x the source in Q considers broadcasting to be completed in network Q, which
is false because node w has not yet obtained the source message at this point. It follows that A is
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incorrect either in C or in Q. Since both these networks have size at least M , this concludes the
proof. �

4.3.5 Conclusion

In this section we proved that acknowledged broadcasting can be completed with the same time
complexity of the best known broadcasting algorithms without acknowledgment, both with and
without collision detection (in the latter case the network must contain at least two nodes).

An open question remains in the case when collision detection is not available. As stated in
Remark 4.3.1, in this setting we are unable to take advantage of the O(n log2D) time algorithm
from [56] for networks of small diameter, as we are unable to estimate the diameter of the network
fast enough.
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5.1 Introduction

Addressing communication problems over networks it is fundamental to consider reliability. The
vulnerability to faults of a communication network grows with its size; the higher is the number of
components, the higher is the probability that some of them are defective.

Modern networks are composed of a huge number of nodes. Large scale sensor networks are
expected to contain several thousands of devices; millions of cellular phones - which are quickly
evolving from single purpose, voice communication devices, to general purpose machines, with
fairly good computational and memory capabilities - are constantly connected in a network. Modern
supercomputers, built from leading companies like IBM, are massively parallel machines, with tens
of thousands processing units operating over an interconnection network. Even cheap desktop
computers are turning into parallel machines, with the wide diffusion of multi-core architectures for
the processing units.

It is thus evident that fault tolerance capabilities are becoming more and more important. Fault
tolerant algorithms and architectures indeed are needed in order to keep this impressive plethora of
networks functional and effective.

The models developed to study the problem of faults are in constant evolution. Faults may
happen on nodes or on links, and they can be transient or permanent. The types of faults that are
more widely considered in the literature are crash faults and Byzantine faults. Crash faults model
hardware failures, either at node level or at link level; faulty nodes stop transmissions and faulty
links do not deliver the messages sent over them, thus the functionality of the fault-free part of the
network is not altered. In the Byzantine fault model, faulty nodes and links can instead actively
operate to tamper the functionality of the fault-free ones. This kind of faults hardly arises from
hardware or software malfunctioning, but represents a useful method to investigate the vulnerability
of the network to hostile agents.

Different models have been developed for what concerns the distribution of faults over the
network as well: faults have to be constrained somehow, as if all the components of the network are
faulty, nothing can be done in order to complete any meaningful task. The first models for fault
distribution where mostly combinatorial: algorithms and architectures capable of tolerating up to
a given number k of faulty components of the networks where sought. Correctness of such solutions
has to be guaranteed in the worst case. A probabilistic model for fault distribution gained popularity
as it represents more faithfully the behavior of real networks, where worst case distributions of faulty
components have a very small probability to arise. A slightly outdated but still interesting survey
on the subject of fault tolerance (focusing on fault tolerant broadcast and gossip) can be found
in [144].

The first probabilistic models developed to study fault distributions assigned a given probability
to network components to be (or become) defective, thus faults where distributed randomly and
independently. Recent efforts have been made to develop probabilistic fault distribution models
where the failure probability of close nodes are correlated (see [123], for an analytic study of such
a model and references to other empirical works which justify this choice in modeling).

A different approach to handling faults is the one of diagnose and repair. Self-stabilizing sys-
tems [60, 61] can be considered an optimistic approach to fault tolerance [93], which can be very
effective when faults are transient. The ability to correctly operate in spite of the presence of faults
indeed, in algorithms like in architectures, is mainly based on redundancy and thus can considerably
increase costs and reduce the efficiency. When temporary failures of the system are acceptable it
may be more cost effective to (automatically) perform reconfigurations (self healing) after detection
of a fault than relying on fault tolerance.

In this chapter we consider both approaches to fault tolerance. The contribution we present in
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Section 5.2 considers the problem of self deployment of mobile sensors. Tolerance to faults in this
case is considered with respect to sensing coverage of the area of interest and radio connectivity
of sensing devices. We propose two variations of our self deployment protocol, one exhibiting self
healing capabilities, and the other providing guaranteed tolerance to a given number of faults, where
this number depends on the sensors available and the extention of the area of interest. Redundant
sensors are either used to perform reconfigurations after detection of a fault or uniformely spread
over the area of interest in order to guarantee sensing coverage and radio connectivity in presence
of faults.

In Section 5.3 we focus on self healing properties of a network where nodes are connected in
a 2-dimensional grid. We assume that each internal node in the grid can communicate with its
left, right, top, and bottom neighbor directly, but some nodes can be defective. When defective
nodes are detected, the network must be reconfigured, in a way such that defective nodes are
simulated by correctly working ones and the functionality of the network is restored. As in this
case no redundancy is available, we focus on reconfigurations of fault free nodes having the goal to
minimize the performance loss.
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5.2 Autonomous Deployment of Mobile Sensors

5.2.1 The Model and the Problem

We are given an area of interest (in short AoI) with arbitrary shape (the only constraing beeing
that the AoI has to be connected). n sensors are arbitrarily deployed in this AoI; sensors are
homogeneous devices, described by a unique label, a transmitting range, a sensing range, and a
moving speed.

We do not assume any central monitor; each sensor is capable of sensing its position and knows
its label. Moreover, each sensor knows the boundaries of the AoI and the total number of deployed
sensors. We also assume that all sensors are equipped with synchronized clocks. We do not assume
a subdivision of time in rounds, but we rely on such clocks in order to produce time-stamps. No
other knowledge is initially provided to nodes, which have to coordinate themselves in order to
achieve complete sensing coverage of the AoI and network connectivity.

Our aim is to provide a fully distributed protocol to coordinate the movements of sensors,
trying to minimize and balance the travelling distance of each device (in order to minimize power
consumption and maximize the lifetime) and trying to achieve a uniform coverage of the AoI.

We develop such protocol at the application level of the OSI stack, i.e., we assume each message
sent from a sensor at a given time is correctly heard by all sensors within its transmitting range.

5.2.2 Related Work

There is an impressively growing interest in self-managing systems, starting from several industrial
initiatives from IBM [107], Hewlett Packard [105] and Microsoft [137]. Various approaches have been
proposed to self-deploy mobile sensors although few of them can be actually considered autonomic.

The principles of autonomic computing [9], require the proposed solutions to exhibit some basic
self-* capabilities, i.e., self-configuration, self-adaptation and self-healing, while most of the existing
approaches require fine tuning of arbitrary parameters and thus external human intervention.

The virtual force approach (VFA) [40, 102, 170] models the interactions among sensors as a
combination of attractive and repulsive forces. This approach requires the definition of thresholds
to determine the magnitude of the force one sensor exerts on another. As shown in [40], the
VFA presents oscillatory sensor behavior. This problem is addressed by defining further arbitrary
thresholds as stopping conditions. The tuning of such thresholds is laborious and relies on an off-line
configuration. In addition, it influences the resulting deployment, the overall energy consumption
and the convergence rate. Moreover, this approach does not guarantee the coverage in presence of
narrows in the AoI.

A variation of the VFA is presented in [147] where the introduction of two virtual forces guar-
antees better uniformity by providing at least k neighbors to each sensor. Other approaches are
inspired by physics as well, such as [141] and [113]. In [141] the sensors are modelled as particles
of a compressible fluid and regulates their movement by mimicking a diffusive behavior. In [113]
two approaches that make use of gas theory to model sensor movements in presence of obstacles are
proposed. However the last three approaches still suffer from oscillatory sensor behavior.

The Voronoi approach (VORMM) is detailed in [164]. According to this proposal, each sensor
iteratively calculates its own Voronoi polygon, determines the existence of coverage holes and moves
to a better position if necessary. In this approach the relation between the transmitting and the
sensing range influences the obtained performances by either moving sensors toward already covered
positions or reducing the resulting covered area. Furthermore, this approach is not designed to
improve the uniformity of an already complete coverage. According to [134] each sensor makes a
rough evaluation of the local density and calculates the movements needed to reach a final position
that is as close as possible to the points of a hexagonal tiling. This approach suffers from similar
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limitations to the VFA and does not guarantee oscillation avoidance if proper threshold parameters
are not set.

In [163] the authors analyze the problem of sensor deployment in a hybrid scenario, with both
mobile and fixed sensors in the same environment. They introduce the general concept of logi-
cal movements. Instead of moving iteratively, sensors calculate their target locations based on a
distributed iterative algorithm, move logically, and exchange new logical locations with their new
logical neighbors. Actual movement only occurs when sensors determine their final locations, thus
sparing energy by avoiding zig-zag motions at the expense of some more messaging activity.

5.2.3 Original Contribution

The main contribution of this section is a fully distributed algorithm for mobile sensor deployment
called Push&Pull. Our approach differs from the ones of the previously cited contributions, and
has the merit of being simple and effective. Its design follows the grassroots approach [9] to auto-
nomic computing. Self-organization emerges without the need of external coordination or human
intervention as the sensors autonomously adapt their position on the basis of their local view of
the surrounding scenario. This way our algorithm shows the basic self-* properties of autonomic
computing of self-configuration, self-adaptation and self-healing.

Algorithm Push&Pull produces a hexagonal tiling by spreading sensors out of high density
regions and attracting them towards coverage holes. Decisions regarding the behavior of each
sensor are based on locally available information and do not require any prior knowledge of the
operative scenario nor any manual tuning of key parameters.

We formally prove that our algorithm terminates and provides a complete coverage regardless of
the particular shape of the area of interest; moreover, we propose a variant that exploits redundant
sensors to produce a k-coverage, where k depends on the number of the available sensors and on
the shape and extension of the AoI.

We ran numerous simulations to evaluate the performance of our algorithm and compare it to
existing solutions. Experimental results show that our algorithm reaches a complete and stable
coverage, within reasonable time and with moderate energy consumption, even when the AoI has
an irregular shape, outperforming one of the most acknowledged and cited algorithms [164]. Fur-
thermore, it improves previous approaches producing, when possible, a redundant coverage with
guaranteed uniformity.

5.2.4 Algorithm Push&Pull

In order to make the exposition clearer, we outline the algorithm, before giving deeper details.

The Idea

Sensors aim at realizing a complete and uniform coverage of the AoI by means of a hexagonal tiling.
Notice that the hexagonal tiling corresponds to a triangular lattice arrangement, that is the one
that guarantees optimal coverage and density, as discussed in [20], and connectivity, as we detail
in Subsection 5.2.6. The algorithm starts with the concurrent creation of several tiling portions.
Every sensor not yet involved in the creation of a tiling portion gives start to its own portion in an
instant which is randomly selected in a given time interval.

In the following we refer to any starter as sinit.
The algorithm is based on four main activities, concurrently executed in an interleaved manner.

The combination of the described activities expands the tiling and, at the same time, does its best
to uniformly distribute redundant sensors over the tiled area, avoiding oscillations.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Snap and Push example.

Snap activity
The sensor sinit elects its position as the center of the first hexagon of its tiling portion. It

selects at most six sensors among those located within its transmitting range Rtx and makes them
snap to the center of adjacent hexagons. Newly repositioned sensors, in turn, give start to an
analogous selection and snap activity, thus expanding the boundary of the current tiling portion.
This process goes on until no other snaps are possible, either because the whole AoI is covered, or
because all sensors located at boundary tiles do not have any non-snapped sensor to snap.

Push activity
After the completion of their snapping activity, snapped sensors may still be surrounded by

non-snapped sensors located inside their hexagon. In this case, they proactively push such non-
snapped sensors towards lower density areas located within their transmitting range. Consequently,
non-snapped sensors being in overcrowded areas migrate to low density zones, thus accelerating the
coverage process and enhancing its uniformity.

Pull activity
Snapped sensors may detect a coverage hole adjacent to their hexagon and may not find available

sensors to snap. In this case, they send hole trigger messages, thus proactively attracting non-
snapped sensors in order to make them fill the hole.

Tiling merge activity
The possibility that many sensors act as starters can give rise to several tiling portions with

different orientations. In order to characterize and distinguish each tiling portion, the time-stamp
of each starter is included in the header of all messages. As a result, messages coming from sensors
located in different tiling portions will be characterized by different starter time-stamps. Our algo-
rithm provides a mechanism to merge all these tiling portions into a unique regular and uniformly
oriented tiling. Loosely speaking, when the boundaries of two tiling portions come in radio prox-
imity with each other, the one with older starter time-stamp absorbs the other one by making its
snapped sensors move into more appropriate snapping positions.

Figure 5.1 shows an example of the execution of the first two activities. Namely, Figure 5.1.a
depicts the starting configuration, with nine randomly placed sensors and Figure 5.1.b highlights
sinit starting the hexagonal tiling. In Figure 5.1.c the starter sensor sinit selects six sensors to
snap in the adjacent hexagons, according to the minimum distance criterion. Figure 5.1.d shows
the configuration after the snap activity of sinit. In Figure 5.1.e, a deployed sensor starts a new
snap activity while sinit starts the push activity sending a slave sensor to a lower density hexagon.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Tiling merge activity example.

In Figure 5.1.f the deployed sensor snaps the sensor just received from the starter, reaching the
final configuration. Figure 5.2 shows an example of the execution of the tiling merge activity. In
particular, Figure 5.2.a shows two tiling portions meeting each other. The portion on the left has
the oldest time-stamp, hence it absorbs the other one. Two nodes of the right portion detect the
presence of an older tiling and abandon their original tiling (Figure 5.2.b) to honor snap commands
coming from a sensor of the left portion (Figure 5.2.c). These just snapped nodes, now belonging
to the older portion, detect the presence of three nodes belonging to the right one (Figure 5.2.d)
and snap them as soon as they leave their portion (Figures 5.2.e-f).

We defer the introduction of the example regarding the pull activity to the next subsection,
when more details will be available to clarify the explanation.

Details of Push&Pull

In order to describe the algorithm in more detail, we provide some terminology and notation.
Let V be a set of equally equipped sensors able to determine their own location, endowed with

boolean sensing capabilities. We set the hexagon side length lh to the sensing radius Rs. This setting
guarantees both coverage and connectivity when Rtx ≥

√
3Rs. This requirement is not restrictive

as most radio devices can adjust their transmitting range by properly setting their transmitting
power.

A sensor being positioned in the center of a hexagon is referred to as a snapped sensor. Given
a sensor x snapped to the center of a hexagon, we call slaves of x all the other sensors lying in its
hexagon. All sensors that are neither snapped nor slaves are called free. We denote by S(x) the set
of slaves of x and by Hex(x) the hexagonal region whose center is covered by x. We define L(x)
the set composed by the free sensors located in radio proximity from x and by its slaves S(x).

We now give additional details on the previously sketched activities composing Algorithm
Push&Pull.
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Snap activity
At the beginning of the deployment process, each sensor may act as starter of a snap activity

from its initial location at an instant randomly chosen over a given time interval. In order to
propagate a tiling portion, a snapped sensor x performs a neighbor discovery, that allows x to
gather information regarding S(x) and all the free and snapped sensors located in radio proximity
from x. As a consequence of the neighbor discovery, x determines whether some adjacent snapping
positions are still to be covered and acts as leader of the corresponding snap activity. To give start
to new snap activities, x selects the sensor in L(x) which is the closest to each uncovered position
and snap it there. A snapped sensor leads the snapping of as many adjacent hexagons as possible.
If all the hexagons adjacent to Hex(x) have been covered, x stops any further snapping and gives
start to the push activity. If some hexagons are left uncovered but no more sensors in L(x) are
available, x starts the pull activity instead.

Push activity
Given two snapped sensors x and y located in radio proximity from each other, x may offer

one of its slaves to y and push it inside its hexagon if |S(x)| ≥ |S(y)| + 1. Notice that, when
|S(x)| = |S(y)| + 1, the flow of a sensor from Hex(x) to Hex(y) leads to a symmetric situation
in which |S(x)| + 1 = |S(y)| possibly causing endless cycles. In such cases we restrict the push
activity to only one direction: x pushes its slave to y only if id(y) < id(x), where id(·) is a function
initially set to the unique label of the sensor (notice that this is not the only possibility, id(·) could
be set for example to a random non negative value). We formalize these observations by defining
the following Moving Condition, that enables the movement of a sensor from Hex(x) to Hex(y):

{|S(x)| > |S(y)|+ 1} ∨ {|S(x)| = |S(y)|+ 1 ∧ id(x) > id(y)}.

The snapped sensor x executes a push action by sending one of its slaves s towards the hexagon
of a snapped sensor y.

The destination hexagon Hex(y) is selected in a way such that x verifies the moving condition
with respect to y. In particular, as a destination of the push action, x selects the closest hexagon
among those with the lowest number of slaves. Among the sensors which can be pushed to the
destination, x selects the closest to Hex(y).

If a snapped sensor receives a neighbor discovery request while involved in a push activity, it
replies as if the ongoing movements were already concluded. Indeed a snapped sensor communi-
cating its own number of slaves without keeping into account the ongoing movements may cause
inconsistencies (for example either too many sensors may move to the same hexagon or the same
sensor may be offered to several snapped sensors). The snapped sensors involved in a push activity
always alert their neighborhood of the changed number of slaves.

Pull activity
The sole snap and push activities are not sufficient to ensure the maximum expansion of the

tiling. This may happen when there exists a direction in which the density decreases of at most
one sensor, but the Moving Condition is false because of the order relationship induced by function
id(·). The same problem may cause also not uniform coverage. For this reason, we introduce the
pull activity that makes use of a trigger mechanism when some holes occur.

Namely, let x be a snapped node detecting a hole in an adjacent hexagon, with L(x) = ∅. If
x does not have the possibility to receive any slave from its neighbor hexagons, i.e., the Moving
Condition is not verified for any of them, then it activates the following trigger mechanism. Sensor x
temporarily alters the value of its id function to 0 and notifies its neighbors of this change by mean
of a trigger notification message. This could be sufficient to make the Moving Condition true with
at least a snapped neighbor, so x waits until either a new slave comes into its hexagon or a timeout
occurs. If a new slave enters in Hex(x), x sets back its id value and snaps the new sensor, filling
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(a) (b) (c) (d) (e)

Figure 5.3: Pull activity example.

the hole. If the timeout expires and the hole has not been covered yet, the trigger mechanism is
extended through a trigger extension message to the adjacent hexagons of x, whose snapped sensors
set their id value to 1 and send the related trigger notification message.

This mechanism is iterated by x over snapped sensors at larger and larger distance in the tiling
until the hole is covered. Each snapped sensor involved in the trigger extension mechanism sets
its id to a value that is proportional to the distance from x. All the timeouts related to each new
extension are set proportionally to the maximum distance reached by the trigger mechanism. At
this point, as a consequence of timeouts, each involved node sets back its id to the original value.

In order to better detail the trigger mechanism, we show the following example. Figure 5.3.a
shows a tiled AoI with a coverage hole in the bottom left corner. Snapped nodes detecting the hole
set their id to 0 and send a trigger notification message. As their neighbors do not have slaves,
they need to send a trigger extension message, provoking a propagation of the id modification (see
Figure 5.3.b). As soon as the unique snapped sensor with a slave sets its id to a new value, the
Moving Condition is satisfied and therefore the slave is pushed towards a snapped sensor that is
closer to the hole, as shown in Figure 5.3.c. In Figure 5.3.d the hole coverage is highlighted and,
after the timeouts expire, all ids are set back to the previous values (Figure 5.3.e).

Notice that more snapped nodes adjacent to the same hole may independently activate the
trigger mechanism, possibly at different times. In this case, if a node receives a trigger extension
message from two or more nodes, it honors only the one with the lowest id. The detection of
several holes may cause the same node y to receive more than one trigger extension message. These
messages are stored in a pre-emptive priority queue, giving precedence to the messages related to
the closest hole.

Tiling merge activity
The fact that many sensors act as starters implies that several tiling portions with different

orientations can be generated. In contrast our algorithm aims at covering the AoI with a perfectly
regular tiling thus minimizing overlaps of the sensing disks and enabling a complete and uniform
coverage. Hence, we design a merge mechanism according to which as soon as a sensor x receives
a neighbor discovery message from another tiling portion it chooses to belong to the oldest one (it
discriminates this situation by evaluating the time-stamp of the starter action). Notice that the
detection of the sole neighbor discovery messages is sufficient to ignite the tiling merge activity
because such messages are sent after any tiling expansion and, if two tiling portions come in radio
proximity, at least one of them is increasing its extension. In the following, we call Gold and Gnew
the tiling portions with lower and higher time-stamp, respectively. We distinguish three possible
cases:
1) x belongs to Gnew:

if x is a slave, it switches its state to free and communicates the new state to the neighborhood.
From now on x honors only messages from Gold and ignores those from Gnew. This proactive
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communication is needed to advertise the presence of Gnew when there is no message exchange
within Gnew perceivable by the sensors in Gold. This way, the snapped sensor which x belonged to
can properly update its slave set. If x is instead a snapped sensor, it cannot immediately switch
its state to free because of its leading role inside Gnew (e.g. it leads the slave sensors in S(x) and
performs push and pull activities). Hence, x temporarily assumes a hybrid role: it advertises itself
as free to the nodes of Gold and, at the same time, acts as snapped node in Gnew until it receives
a snap command coming from Gold. After the reception of such a snap command, x moves to the
new snap position electing one of its slave as a substitute. If no slave is available, x advertises its
departure to its neighbors in Gnew.
2) x belongs to Gold:

if x is a slave, it ignores all messages from Gnew. If x is snapped, it performs a neighbor discovery,
ignores all messages coming from Gnew (of course apart from the neighbor discovery replies) and
honors only messages from Gold. Observe that the neighbor discovery is necessary to ignite the
merge mechanism. The neighbor discovery allows each snapped sensor in Gold to collect complete
information on nearby sensors that previously belonged to Gnew.
3) x is free:

x honors only messages from Gold and ignores those from Gnew.

Balancing Energy Consumption

According to the previous description of Push&Pull, slaves consume more energy than snapped
sensors, because they are involved in a larger number of message exchanges and movements. We
introduce a mechanism to balance the energy consumption over the set of available sensors
making them exchange their roles. Namely, any time a slave has to make a movement across a
hexagon as a consequence of either push or pull activities, it evaluates the opportunity to substitute
itself with the snapped sensor of the hexagon it is traversing. As a result, the energy balance is
greatly enhanced, though the role exchange has a small cost for both the slave and the snapped
sensor involved in the substitution. Indeed, the slave sensor has to reach the center of the current
hexagon and perform a profile packet exchange with the snapped sensor that has to move towards
the destination of the slave. A profile packet contains the key information needed by a sensor to
play its new role after a substitution. The criterion at the basis of this mechanism is that two
sensors exchange their role whenever the energy imbalance is reduced.

The Sensors Coordination Protocol

The implementation of our algorithm requires the definition of a protocol for the coordination of
activities among locally communicating sensors. The coordination protocol provides the rules to
solve contentions that may happen in several cases. For example, two or more snapped sensors can
decide to issue a snap command to more than one sensor towards the same hexagon tile or a low
density hexagon can be selected by several snapped sensors as candidate for receiving redundant
slaves. These contentions are solved by properly scheduling actions according to message time-
stamps and by advertising related decisions as soon as they are made. This protocol is designed
to minimize energy consumption entailing a small number of message exchanges, which is possible
because the algorithm decisions are only based on a small amount of local information.

5.2.5 A Discussion on Uniformity Implications

The execution of Push&Pull guarantees coverage uniformity only if the number of available sensors
is exactly the minimum for the given orientation of the final grid. If redundant sensors are available,
their movements are regulated by the moving condition, that impedes the flow of redundant sensors
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Figure 5.4: Local formation of a stairwise density distribution.

from high density to low density hexagons if the difference between the local densities is only
one. This may cause local formation of a stairwise density distribution when the order function is
monotonically increasing in the impeded flow direction. An example of such situations is depicted
in Figure 5.4, where for each hexagon the elements of the pairs represent respectively the order
value and the number of sensors belonging to that hexagon.

The length of these formations is usually very short due to the random distribution of the
order value over the set of sensors. The worst case, albeit improbable, happens when a stairwise
distribution is as long as the diameter of the AoI.

In order to guarantee the uniformity of the sensor deployment even in presence of redundant
sensors, we introduce a shrinked grid mode as a variant of the Push&Pull algorithm. From now on,
we will refer to the basic version with the name PP1 and to the shrinked grid mode with the name
PP2. In Section 5.2.6 we prove that PP2 enables a uniformly redundant coverage, and provide
metrics and related formulae to calculate the guaranteed redundancy level.

In order to formally describe such mode we introduce the following definition: the tight number
of sensors is the maximum number of hexagons of side length lh necessary to cover the AoI for
each possible initial position of the sensor set and each possible tiling orientation. We denote this
number with Ntight(lh,AoI), for short Ntight(lh), as the AoI is clear from the context. An upper
bound on this number can be calculated by increasing the AoI with a border whose width is the
maximal diameter of the tiling hexagon that is 2lh and dividing the area of such a region (call it
AoI’(lh)) by the hexagon area. Formally:

Ntight(lh) ≤
⌈
Area(AoI’(lh))

(3
√

3/2)l2h

⌉
(5.1)

Notice that this upper bound is valid in the general case but its calculation can be improved if
the AoI has a particularly regular shape.

PP2 is executed with a shorter hexagon side length. Namely, lh is set to reduce as much as
possible the number of slave sensors in the whole deployment, and is calculated as the value that
makes the number of sensors equal to the tight number for that side length, and therefore is the
inverse function of Ntight(·), calculated in N , where N is the number of sensors. More formally,
lh = N−1

tight(N). Since function Ntight(·) is not known, we calculate an upper bound on lh as the
inverse of the upper bound on Ntight(lh), because Ntight(·) is a decreasing function of lh.

PP1 and PP2 produce sensor deployments with different performance in terms of energy con-
sumption and fault tolerance. The choice between them depends on the particular application
requirements, as discussed below here.

In terms of energy consumption, PP2 performs worse than PP1, as we will show and motivate in
Section 5.2.7. Nevertheless, as it guarantees a uniformly redundant coverage, it makes possible the
use of topology control algorithms [143] that permit selective sensor activation saving energy during
the operative phase, which, in turn, follows the deployment phase of the network. Moreover, this
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(a) (b)

(c) (d)

Figure 5.5: Self-healing capability of PP1.

mode is beneficial when the application requires enhanced environmental monitoring and strong
fault tolerance capabilities. From the fault tolerance point of view, PP1 may be endowed with a
periodic polling scheme to detect new possible coverage holes determined by sensor failures. This
way, the detection of new holes causes the restart of the algorithm and the execution of the pull
activity that attracts redundant sensors possibly located far from the coverage hole. An example of
such a mechanism is shown in Figure 5.5. Overall, PP1 presents self healing properties which are
not found in previous solutions.

PP2, instead, can tolerate a number of co-located failures proportional to the redundancy level
before leaving a coverage hole but is not able to fill newly detected holes, because (almost) all
sensors are snapped and do not take part in the movements determined by the pull activity. For
this reason we do not introduce any polling mechanism in PP2, as there are too few slaves available
and it would produce an inefficient pull activity in case of a hole detection. On the other hand

Figure 5.6: Fault tolerance of PP2.
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such version guarantees a uniform redundant coverage, if a sufficient number of sensors is availbale,
tolerating even numerous sensor failures, as shown in Figure 5.6.

5.2.6 Algorithm Properties

In this section we prove some key properties of the Push&Pull algorithm: coverage, connectivity
and termination.

Coverage Completeness

In the following we prove that both variants of Algorithm Push&Pull guarantee complete sensing
coverage of the AoI.

Theorem 5.2.1 Algorithm Push&Pull guarantees complete sensing coverage of the AoI, provided
that at least the tight number of sensors Ntight(lh) are available.

Proof: Let us assume that a coverage hole exists. As our algorithm is designed, this hole will
eventually be detected by a sensor x. Furthermore, by the hypothesis on the number of sensors,
it certainly exists a hexagon with at least one redundant slave. Let us call Cx the connected
component containing sensor x. Two different cases may occur depending on the position of the
redundant slaves with respect to Cx.

If a redundant slave exists in Cx, snapped sensor x starts the trigger mechanism that eventually
reaches a redundant slave so that it is pushed towards x and consequently it fills the hole.

If all redundant slaves are located in connected components different from Cx, the area sur-
rounding each connected component is in fact a coverage hole that will eventually be detected by a
snapped node located at the boundary. According to the previous case, all the separated connected
components containing redundant slaves will expand themselves to fill as many coverage holes as
possible. Since, by hypothesis, the number of sensors is at least Ntight(lh), it certainly exists a
component containing redundant slaves that will eventually merge in Cx, leading to the situation
described in the first case, thus proving the theorem. �

Notice that, having Ntight(lh) sensors is a sufficient condition to guarantee the coverage com-
pleteness, but this number is not also necessary. Indeed, Ntight(lh) is calculated as the maximum
among all the minimum numbers of sensors necessary to cover the AoI, for each orientation of the
final grid with side length lh. So it is possible that Ntight(lh) is larger than the number of sensor
strictly necessary for fixed orientation and position of the oldest starter.

Coverage Uniformity

We consider two different coverage redundancy metrics. The first metric evaluates the coverage
only in correspondence of the hexagonal grid points. This metric, named grid coverage level, is of
interest for the applications that do not require a continuous sensing of the area of interest but
rely on interpolation of local measurements. On the contrary, the second metric, named continuous
coverage level, is more restrictive and is introduced to evaluate the coverage redundancy at each
point of the area of interest.

Definition 5.2.1 The grid coverage level is the minimum number of sensors covering each point
of a regular grid.

Definition 5.2.2 The continuous coverage level is the minimum number of sensors covering any
point of the area of interest.
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Figure 5.7: Calculus of the grid coverage level.

In order to compute such metrics for PP1 and PP2, we introduce the following lemma.

Lemma 5.2.1 Given a triangular lattice of side lh, any circle of radius R and centered in a point
of the lattice contains

n(R) =

j
R√
3lh

k∑
i=−

j
R√
3lh

k
(

1 + 2

⌊√
R2 − 3l2hi2

3lh

⌋)
+ 2

j
R√
3lh
− 1

2

k∑
i=0

2

1 +


√
R2 − 3l2h

(
i+ 1

2

)2
3lh

− 1
2


points of the lattice.

Proof: We observe that the points inside the circle of radius R and centered in any point of the
lattice always lie in the same position with respect to the center of the circle (see Figure 5.7), then
we can slightly modify the reasoning for the well known Gauss’ circle problem, dealing with squared
grids.

Let the center of the circle be the origin of a Cartesian plane with axis aligned with the grid.
We count the points inside the circle considering them as arranged by horizontal rows.
The number of points in interval (0, R] of x axis is

⌊
R
3lh

⌋
and similarly in interval [−R, 0). So,

counting the origin, there are 1 + 2
⌊
R
3lh

⌋
points in interval [−R,R].

Now we count the number of sensors lying on the rows having a sensor on the y axis.
Let us consider one such row lying on the line y = c, it contains 1 + 2

⌊√
R2−c2
3lh

⌋
points. As

two such consecutive rows in the same semiplane are
√

3lh far, it follows that the whole number of
sensors on all the rows having a sensor on the y axis and lying on the positive semiplane is

j
R√
3lh

k∑
i=1

(
1 + 2

⌊√
R2 − 3l2hi2

3lh

⌋)
.

Finally, we count the number of sensors lying on the rows not having a sensor on the y axis.
Let us consider one such row lying on the line y = d; the sensor closest to the y axis has x-

coordinate 3
2 lh, so we consider the interval

√
R2 − d2 − 3

2 lh long. Hence, the number of sensors on

this row is 2
(

1 +
⌊√

R2−d2− 3
2
lh

3lh

⌋)
. With arguments similar to the previous case, we have that the
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Figure 5.8: Continuous coverage example.

number of sensors lying on these rows in the positive semiplane is:
j

R√
3lh
− 1

2

k∑
i=0

1 + 2


√
R2 − 3l2h

(
i+ 1

2

)2 − 3lh
2

3lh

 .

By summing up all the contributions, the result follows. �

Theorem 5.2.2 Algorithm Push&Pull guarantees a k grid coverage level, where k = n(Rs), pro-
vided that at least the tight number of sensors Ntight(lh) are available and the shrinked grid mode
is enabled.

Proof: The definition of lh and lemma 5.2.1 imply that, under the given assumptions, algorithm
Push&Pull provides a complete coverage. Given the geometric regularity of the obtained deploy-
ment, every sensing circle surrounding a snapped sensor contains at least a fixed number k of
snapped sensors belonging to the triangular lattice determined by the hexagonal grid deployment.
As all sensors have the same sensing radius, the sensing redundancy level at the center of the circle
is at least k. �

In order to estimate the continuous coverage level of any sensor deployment, in [106] the authors
introduce the notion of perimeter coverage. They define a sensor s to be k-perimeter covered if all
points in the perimeter of the sensing circle of s are covered by at least k sensors (not counting s).

The same authors also prove (see Theorem 1 in [106]) that the sensor deployment provides a
continuous coverage level k if and only if each sensor is k-perimeter covered.

Theorem 5.2.3 Algorithm Push&Pull guarantees a k continuous coverage level, where k ≥ n(Rs)−1
3 +

n(
√

3Rs)−n(Rs)
6 , provided that at least the tight number of sensors Ntight(lh) are available and the

shrinked grid mode is enabled.

Proof: According to the above cited theorem [106], the level of continuous coverage enabled by the
algorithm Push&Pull can be calculated as the minimum perimeter coverage over all the snapped
sensors. In order to calculate such coverage level, we distinguish two main contributions, the first
one coming from sensors located inside the sensing circle of s, and the second one, coming from the
sensors located outside.

All sensors located inside the sensing circle of s contribute to the perimeter coverage with a
circular sector of amplitude α, with 2

3π ≤ α < π. Since any of these sensors is symmetric to other
five sensors inside the circle, with a rotation of π/3 centered in the position of sensor s, all the six



114 CHAPTER 5. FAULT TOLERANCE

of them contribute to at least a double coverage of the sensing circle perimeter of s. The sensors
forming this first contribution amount to n(Rs) − 1 (not counting the sensor s itself), and all of
them globally guarantee 2

⌊
n(Rs)−1

6

⌋
-perimeter coverage.

The second contribution is related to the sensors located outside the sensing circle of s. Notice
that the sensing circle of sensors located farther than 2Rs from s do not intersect the sensing circle of
s, while the sensing circle of sensors located at a distance d such that

√
3Rs < d ≤ 2Rs intersect the

sensing circle of s, determining a circular arc of amplitude less than π/3. Since we are calculating
a lower bound on the minimum perimeter coverage, we do not consider the contribution of this
latter sensors as it does not guarantee a complete perimeter coverage and therefore may not affect
its minimum value.

For this reason, as a second contribution to the perimeter coverage, we only consider the sensors
located inside the circular crown determined by the radii Rs and

√
3Rs. This sensors contribute

to the perimeter coverage with a circular sector of amplitude β, with π/3 ≤ β < 2
3π. Since any of

these sensors is symmetric to other five sensors inside the crown, with a rotation of π/3 centered in
the position of sensor s, all the six of them contribute to at least one single coverage of the sensing
circle perimeter of s. The sensors forming this second contribution amount to n(

√
3Rs) − n(Rs)

and all of them globally guarantee a
⌊
n(
√

3Rs)−n(Rs)
6

⌋
-perimeter coverage. Notice that the particular

3-axis symmetry, induced by the hexagonal tiling, make it possible to remove the floor operator
from the two terms, as n(R)− 1 is always divisible by 6.

By summing up the two contribution to the perimeter coverage, we derive the claimed lower
bound. �

Coverage and Connectivity

In this subsection we motivate the choice of the hexagonal tiling and the assumption that the sensors
operate with Rtx ≥

√
3Rs, that is a less restrictive condition than what is usually required in the

literature.
In [168], the authors demonstrate that coverage implies connectivity if and only if Rtx is twice the

value of Rs. This statement is generally valid regardless of the particular distribution of the sensors
over the AoI, whether it is a regular geometrical mesh or a random deployment. A hexagonal tiling
with side length Rs is the one that minimizes node density while ensuring coverage completeness
at the same time, as argued in [20]. Since our algorithm works exactly with this kind of tiling,
which corresponds to a triangular lattice, we can relax the relationship between Rtx and Rs. If the
sensors are regularly deployed on a hexagonal tiling, the distance between any two tiling neighbors
is exactly

√
3Rs, implying the following result.

Theorem 5.2.4 Under a complete triangular lattice coverage with side length Rs, a necessary and
sufficient condition to guarantee connectivity is that Rtx ≥

√
3Rs.

Termination of Push&Pull

We conclude this subsection by proving the termination of our algorithm.
Let L = {`1, `2, . . . , `|L|} be the set of snapped sensors.

Definition 5.2.3 A network state is a vector s whose i-th component represents the number of
sensors deployed inside the hexagon Hex(i) governed by the snapped sensor i. Therefore s =<
s1, s2, . . . , s|L| > where si = |S(i)|+ 1, ∀i = 1, . . . , |L|.

Definition 5.2.4 A state s =
〈
s1, . . . , s|L|

〉
is stable, if the Moving Condition is false for each

couple of snapped sensors in L located in radio proximity from each other.
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Theorem 5.2.5 Algorithm Push&Pull terminates in a finite time.

Proof: As long as new sensors are being snapped, the covered area keeps on growing. This process
eventually ends either because the AoI has been completely covered or because the sensors have
reached a configuration that does not allow any further expansion of the tiling. Due to Theorem
5.2.1 the latter can only happen when all sensors are snapped and thus the state of the network
is stable. In order to prove the theorem, it suffices to prove that, once the AoI is fully covered,
the algorithm reaches a stable configuration in a finite time. Therefore we can consider the set of
snapped sensors L as fixed. The value of the order function related to each snapped sensor, id(`i),
is set during the unfolding of the algorithm, it can be modified only temporarily by the pull activity
a finite number of times and remains steady onward. Let us define f : N|L| → N2 as follows:

f(s) =

 |L|∑
i=1

s2
i ,

|L|∑
i=1

si · id(`i)

 .

We say that f(s) � f(s′) if f(s) and f(s′) are in lexicographic order. Observe that function f
is lower bounded by the pair (|L|,

∑|L|
i=1 id(`i)), in fact 1 ≤ si ≤ |V |. Therefore, if we prove that the

value of f decreases at every state change, we also prove that no infinite sequence of state changes
is possible. To this purpose, let us show that every state change from s to s′ causes f(s) � f(s′).
Let us consider a generic state change which involves the snapped sensors x and y, with x sending
a slave sensor to Hex(y). We have that si = s′i ∀i 6= x, y, and s′x = sx − 1 and s′y = sy + 1. As
the transfer of the slave has been done according to the Moving Condition, two cases are possible:
either sx > sy + 1, or (sx = sy + 1) ∧ (id(x) > id(y)). In the first case, the inequality sx > sy + 1
implies that

∑|L|
i=1 s

2
i >

∑|L|
i=1 s

′2
i . In the second case, since sx = sy + 1 and id(x) > id(y), lead

to
∑|L|

i=1 s
2
i =

∑|L|
i=1 s

′2
i and

∑|L|
i=1 si · id(`i) >

∑|L|
i=1 id(`i)s′i. Therefore in both cases f(s) � f(s′).

The function f is lower bounded and always decreasing by discrete quantities (integer values) at
any state change. Thus, after a finite number of steps, it is impossible to perform a further state
change, i.e. the network reaches a stable state in a finite time. �

5.2.7 Simulation Results

In order to evaluate the performance of Push&Pull and to compare it with previous solutions, we
developed a simulator using the wireless module of the OPNET modeler software [140].

We compare our method to one of the most understood and cited algorithms [164], which is
based on the construction of the Voronoi diagram determined by the current sensor deployment.
According to this approach, each sensor adjusts its position on the basis of a local calculation of
its Voronoi cell. This information is used to detect coverage holes and, consequently, calculate new
target locations according to three possible variants. Among these variants we chose Minimax,
that gives better guarantees in terms of coverage extension. Of this algorithm we adopted all the
mechanisms provided to preserve connectivity, to guarantee the algorithm termination, to avoid
oscillations and to deal with position clustering [164]. In the rest of this section this algorithm will
be named VORMM.

We set the parameters Rtx = 11 m and Rs = 5 m. Such values satisfy the VORMM requirement
Rtx > 2Rs detailed in [164] and do not significantly affect the qualitative evaluation of Push&Pull.
The sensor speed is set to 1 m/sec.

Examples of mobile sensor deployment

We show some examples of deployment evolution under the two Push&Pull modes: PP1 and PP2.
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(a) (b)

(c) (d)

Figure 5.9: Coverage of an irregular AoI under PP1.

(a) (b)

(c) (d)

Figure 5.10: Coverage of an irregular AoI under PP2.
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(a) (b)

(c) (d)

Figure 5.11: a) Trail initial deployment. b) PP1. c) PP2. d) VORMM.

Figures 5.9 and 5.10 give a synthetic representation of how the sensor deployment evolves under
PP1 and PP2 respectively, when 400 sensors are initially located in a high density region. The
AoI has a complex shape in which a narrow connects two square regions 40 m × 40 m. Notice
that previous approaches fail when applied to such irregular AoIs. For example, VORMM does not
contemplate the presence of concavity in the AoI, while the virtual force based approaches are not
able to push sensors through narrows [104].

As a second example of sensor deployment, we show experiments conducted with three different
starting configurations over an AoI which is a square 80 m × 80 m. More precisely, in the first
experiment, the initial deployment evidences a trail of sensors which crosses the AoI, as shown in
Figure 5.11.a. In the second experiment the sensors are densely placed in a corner of the AoI, as
shown in Figure 5.12.a. In the third experiment the initial deployment consists in a high density
region at the center of the AoI, as shown in Figure 5.13.a.

Notice that the first two initial deployments reflect the realistic scenarios in which sensors are
dropped from an aircraft and sent from a safe location at the boundaries of the AoI. The third
deployment is introduced as is widely studied in the literature, see for example [164] and [134].

In Figures 5.11, 5.12 and 5.13, the subfigures indicated with b, c and d show the final deployments
achieved by PP1, PP2 and VORMM respectively.

Performance Comparisons

In the following we compare the performance of PP1, PP2 and VORMM when executed over a squared
AoI, 80 m × 80 m.

In order to make reliable performance comparisons, we show the average results of 30 simulation
runs (conducted by varying the seed for the generation of the initial deployment).

We compare the behavior of the three algorithms with respect to several performance objectives:
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(a) (b)

(c) (d)

Figure 5.12: a) Safe location initial deployment. b) PP1. c) PP2. d) VORMM.

(a) (b)

(c) (d)

Figure 5.13: a) Central initial deployment. b) PP1. c) PP2. d) VORMM.
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Figure 5.14: Coverage density. Initial deployment: a) trail; b) safe location; c) central.

energy consumption, coverage uniformity, termination and coverage completion time.
All the figures from 5.14 to 5.18 contain three plots each. Plot (a) describes the performance

obtained when starting from the trail initial deployment, plot (b) refers to the case in which sensors
are initially deployed in a safe corner while plot (c) is related to the case of a dense initial deployment
in the center of the AoI. For a better readability, we adopt different scales of the vertical axis for
the three scenarios.

Coverage uniformity
The three algorithms give different importance to the uniformity of the coverage. Indeed,

Push&Pull aims at making the coverage as uniform as possible.
In particular, PP1 builds a coarse grained grid, then it tries to uniform the coverage only on the

basis of a local satisfaction of the Moving Condition.
Instead PP2 constructs a fine grained grid by setting the hexagon side at the minimum length

which guarantees the full coverage of the AoI, thus making sensors traverse longer distances than
other solutions.

On the contrary, VORMM aims at covering the AoI regardless of the uniformity of the final
coverage, and sensors stop moving when the AoI is fully covered.

In order to evaluate the coverage uniformity, we compute the coverage density as the number of
sensors covering the points of a squared mesh with side 1 m.

Figure 5.14 shows the standard deviation of the coverage density. Notice that we do not show
the average coverage density because it is not significant, since it only depends on the number of
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Figure 5.15: Average traversed distance. Initial deployment: a) trail; b) safe location; c) central.

available sensors.
The standard deviation of the coverage density achieved by PP1 and PP2 is smaller than the

one obtained by VORMM. In particular, VORMM terminates as soon as the AoI is completely covered,
without balancing the density of the sensor deployment, while PP1 and PP2 keep on moving until
they balance the coverage.

This result is particularly important as a uniformly redundant sensor placement provides self-
healing and fault tolerance capabilities. In the case of PP1, the presence of quite uniformly dis-
tributed slaves ensures the self-healing capability of the deployment, while for what concerns PP2,
the guaranteed continuous k-coverage gives tolerance up to k − 1 faults.

Energy consumption
We show an analysis of the energy consumption of the three algorithms in terms of average

traversed distance per sensor and average number of starting/braking actions. Finally we give an
overall evaluation which also comprises the communication costs.

Average traversed distance per sensor
The different weight that the three algorithms give to the uniformity objective is reflected in the
different trends of the average traversed distance shown in Figure 5.15.

The average traversed distance of VORMM decreases with the number of sensors. This is due
to the fact that more and more sensors maintain their initial positions when no coverage holes are
detected. On the contrary, in both modes of Push&Pull, all sensors contribute to realize a quite
uniform coverage, hence the average traversed distance becomes approximately constant for large
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numbers of sensors. This implies that VORMM spends less energy in movements than Push&Pull
at the expense of the uniformity of the final coverage, in all the considered settings of the initial
deployment.
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Figure 5.16: Average number of starting/braking. Initial deployment: a) trail; b) safe location; c)
central.

Average number of starting/braking actions per sensor
We now consider the number of starting/braking actions as they require a high energy con-

sumption [164]. Figure 5.16 highlights that, when the number of sensors is relatively small, VORMM
performs a number of starting/braking actions higher than PP1 and PP2. On the contrary, when
the number of sensors increases, VORMM apparently performs better, showing a rapid decrease of
the number of starting/braking actions. This is due to the presence of a growing fraction of sensors
which does not move at all, generating a final non uniform coverage as well as a high energy imbal-
ance among sensors. The most critical scenario for the VORMM algorithm is the safe location initial
deployment (notice the different vertical scales in Figure 5.16).

Average energy consumption
We now analyze the overall energy consumption of the three algorithms. We utilize a unified

energy consumption metric obtained as the sum of the contributions given by movements, start-
ing/braking actions and communications. The energy spent by sensors for communications and
movements is expressed in energy units. The reception of one message corresponds to one energy
unit, a single transmission costs the same as 1.125 receptions [6], a 1 meter movement costs the same
as 300 transmissions [164] and a starting/braking action costs the same as 1 meter movement [164].
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Figure 5.17: Average energy consumption. Initial deployment: a) trail; b) safe location; c) central.
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Figure 5.17 shows the energy consumption of PP1, PP2 and VORMM in the three considered
scenarios.

PP1 presents a stable energy consumption even when the number of sensors varies significantly.
Indeed, although only a fixed number of them are snapped, all sensors are involved in the push and
pull activities, thus improving the coverage density and uniforming the energy consumption.

PP2 instead, shows that the consumed energy increases as the number of sensors grows. Indeed,
the more numerous are the sensors, the finer is the grid adopted by PP2. Therefore, in order to
reach their destination, the slaves traverse more hexagons, and are involved in a higher number of
push activities than in the case of PP1. This increases the number of starting/braking actions as
shown in Figure 5.16 and also increases the consumed energy consequently .

VORMM consumes more energy than PP1 and PP2, when the number of sensors is close to
the tight value. Although sensors do not traverse long distances (as shown in Figure 5.15), the
limit on the maximum moving distance per round required by VORMM increases the number of
starting/braking actions (see Figure 5.16), thus resulting in a high energy consumption. This effect
is particularly evident in the case of the safe location scenario shown in Figure 5.17(b).

The average energy consumption of VORMM decreases when increasing the number of sensors.
Notice that this is not due to a better behavior of the algorithm but to the fact that a greater and
greater fraction of sensors do not move at all. This implies that a considerable number of sensors
consume a large amount of energy to move from overcrowded regions toward uncovered areas. As
soon as all the coverage holes are eliminated, VORMM stops, leaving some zones with very low density
coverage. These zones are prone to the occurrence of coverage holes in case of failures, as the sensor
density is very scarce and the only sensors located in proximity have already consumed much energy
during the network deployment.

Although PP2 consumes more energy when the number of the available sensors grows, it guar-
antees a more uniform coverage with respect to VORMM and PP1. Moreover, the regularity of the
final deployment enables the use of topology control algorithms [143] that permit a selective sensor
activation, saving energy during the operative phase which follows the deployment.

Coverage completion and termination time

Figure 5.18 shows the coverage and termination time for the three algorithms. Notice that for
VORMM the termination and coverage completion times coincide, while for Push&Pull some more
movements are still executed even after the coverage completion.

In the three considered scenarios, if the number of sensors available is close to the minimum
needed to cover the AoI, VORMM requires a very long time to complete the coverage, while Push&Pull
terminates much earlier. When the number of available sensors grows, VORMM has a shorter ter-
mination time, which instead remains stable under PP1. On the contrary, the termination time of
PP2 grows when the number of available sensors increases. In particular, VORMM generally requires
more time than PP1 to achieve its final coverage. Only in the case of the central initial deployment,
and for a high number of available sensors (N greater than 320) VORMM terminates in a shorter time
if compared with PP2 (see Figure 5.18(c)). This is due to the fact that the termination time of PP2
is delayed by the numerous hole triggers generated by the pull activity.

It is worth noting that as already discussed, the safe location deployment, constitutes a critical
scenario for VORMM as this algorithm works at its best for more uniform initial sensor distributions.
Indeed, Figure 5.18(b) shows that VORMM requires much more time than in the other sets of exper-
iments, (a) and (c), to achieve its final deployment (16000 sec in the case of safe location vs. 1400
sec in the case of trail, and 900 sec in the case of central initial deployment).
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Figure 5.18: Termination and coverage time. Initial deployment: a) trail; b) safe location; c) central.

5.2.8 Conclusion

We proposed an original algorithm for mobile sensor self deployment named Push&Pull. According
to our proposal, sensors autonomously coordinate their movements in order to achieve a complete
and uniform coverage with moderate energy consumption. The execution of Push&Pull does not
require any prior knowledge of the operating conditions nor any manual tuning of key parameters, as
sensors adjust their positions on the basis of locally available information. The proposed algorithm
leads to a guaranteed final static and uniform coverage, provided that there is a sufficient number
of sensors. As experiments show, Push&Pull outperforms previously proposed approaches thanks
to its ability to cover target areas of even irregular shape.

Mechanisms for obstacle detection and avoidance are being investigated and considered as future
extensions of this work.
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5.3 Proxy Assignments for Filling Gaps in Wireless Ad-hoc Lattice
Computers

5.3.1 The Model and the Problem

We consider a collection of devices, arranged on a 2-dimensional grid. Each device has computing
capabilities and is able to communicate directly with its left, right, top, and bottom neighbor in
the grid. Some of the devices can be defective, and thus inable to correctly communicate to some
of the neighbors or to perform computation. Defective devices have to be simulated by correctly
working devices, acting as proxies.

The proxy assignment we search for has the main objective of minimizing the delay (computed
in number of hops) inserted in simulated communication between two adjacent devices, at least one
of which is defective.

The motivation that lead us to study this problem comes from the proposal of Gupta et
al. [99, 100], of using a collection of small devices capable of radio communication, like PDAs
and cell phones, in order to perform simulation of physical phenomena. (The same formulation
of the problem, however, applies to parallel computer architectures in which processing units are
connected via a 2-dimensional mesh.) Based on the foundations of cellular automata and lattice
computers [38,103,135], Gupta et al. [99,100] proposed the use of such an ensemble of radio devices
to create a wireless ad-hoc lattice computer (WAdL). The goal of a WAdL is to harness the collective
computing capabilities of the devices for the common cause of scientific computing via analogical
simulations. The methodology, formalised by earlier work on lattice computers, is (1) to represent,
by computing devices logically arranged as a part of a lattice, the region of Euclidean space in which
a phenomenon unfolds, and (2) to have the computing devices analogically simulate the unfolding
of the phenomenon in this representation of Euclidean space.

In analogical simulations on a lattice computer (and hence on a WAdL), the motion of an object
across Euclidean space is carried out as a sequence of steps, in time proportional to real time, where
in each step the representation of the object may move from one processing element to a neighbor,
as defined by the underlying lattice of the lattice computer [156]. (See Subection 5.3.3 for a brief
discussion of analogical simulations.)

Clearly, the accuracy of the results of these simulations is directly dependent on the resolution
of the underlying lattice of a WAdL. Moreover, since the devices in a WAdL are logically, but not
necessarily physically, at lattice points (in the underlying lattice), the communication distance
between devices is not proportional to the physical distance between lattice points represented by
those devices. To ensure analogical simulations that unfold in time proportional to the real time
unfolding of the phenomenon being simulated, additional adjustments have to be made (see [99,100])
to the lattice computer algorithms described in the literature [38].

Radio devices are moreover prone to errors, as they can move during the execution of the
simulation thus loosing connectivity with their logical neighbors, they can run out of battery charge,
or simply be turned off. Thus it is necessary to develop self healing mechanisms in order to make
WAdLs effective.

5.3.2 Original Contribution

The problem we address in our contribution, is the problem of bridging “gaps”, created by faulty
devices, in the underlying lattice of a WAdL. We adopt the approach proposed by Moore et al. [138],
i.e., to assign, for each faulty device x, an active device, l(x), in the WAdL to serve as a proxy for
x.

As a consequence, the communication between two neighboring faulty devices x and y will be
carried out as a communication between the two proxy devices l(x) and l(y). These proxy devices,
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though, may not be neighbors, and thus analogical simulations being carried out on such a WAdL
will run slower than on a WAdL with no faulty devices. Moore et al. [138] presented assignment
schemes for square gaps. We extend that work and study gaps of more general shapes. As in [138],
our primary goal is to devise assignment schemes for bridging gaps so that the communication time
between proxies for any pair of neighboring faulty devices is minimized. We provide lower bounds
on the minimum delay caused by gaps with a convex shape, and we develop proxy assignments
matching these bounds for lines and rectangles. Our assignments are also optimal with respect to
load balance of the proxies.

5.3.3 Analogical Simulations

A physical phenomenon is a development in a region of Euclidean space over a period of time. At
each instant in time (in a given time period), the set of objects participating in the phenomenon,
together with their attribute values (such as speed, spin, etc.) at that time, completely describes a
snapshot in the unfolding of the phenomenon. Most problems in scientific computing are about phe-
nomena whose unfolding involves the motion of participating objects in Euclidean space. Solutions
to these phenomena usually involve determining (predicting) the attribute values of objects over
time. Some phenomena can be solved analytically using closed form functions of time. On the other
hand, there are phenomena where the only apparent method for predicting the attribute values of
participating objects at any instant in time, is to simulate the unfolding of the phenomenon up
through that instant of time [94].

When carried out on a digital computer, such simulations necessarily develop in a discretized
representation of a region of Euclidean space, and over discrete time units. Moreover, such sim-
ulations must use, at any given instant of simulation time, only information available locally, at
a discrete point in the represented Euclidean space, to compute the attribute values of participat-
ing objects at the next instant of simulation time. Cellular automaton machines [103] and lattice
computers [38] provide the necessary framework for a discretized representation of Euclidean space
in which to carry out such simulations. Several physical phenomena, including spherical wavefront
propagation and fluid flow [77, 167], have been successfully simulated on such a framework where
the simulation algorithms do not use the traditional analytical models for the phenomena.

5.3.4 Terminology and Preliminaries

Consider a collection of devices arranged on a subset of the cells of a square grid, one device per
cell.

Definition 5.3.1 A device collection is said to be row convex (respectively, column convex) if every
row (resp. column) of devices forms a contiguous interval of devices within that row (resp. column).
The collection is said to be row-column convex if it is simultaneously row convex and column convex.

The notion of row-column convex collections is similar to the notion of hv-convex polyominoes
discussed in the literature [47,124].

As discussed in earlier work on WAdLs [100], the expectation is to harness the collective power
of mobile devices in a given geographic region, say a few blocks in the downtown area of a city.
It is quite likely that some buildings in that area do not have wireless coverage, or that the office
occupying some building is closed on a particular day, and thus there are no mobile devices in the
physical space occupied by that office. Such situations leads to gaps in a WAdL in that area, and
such gaps can be faithfully modeled by a row-column convex collection of devices. Indeed, here we
assume that the collection of faulty devices in a WAdL is row-column convex. We refer to such a
collection of faulty devices in a WAdL as a gap or a hole in the WAdL.
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Thus the overall picture is of a row-column convex device collection consisting of active devices
surrounding a row-column convex gap of defective devices. The set of active devices that are imme-
diately adjacent to the defective ones form a contiguous contour that we call the active perimeter
of the gap.

As mentioned in Section 5.3.1, to simulate lattice computations completely, we now seek to
assign to every defective device, a corresponding device on the active perimeter that will serve as its
proxy in the computation; for convenience, we think of active perimeter devices as being trivially
their own proxies. Consider a device x and its proxy l(x). If device x were active, it would have
been able to communicate directly with adjacent devices along its row and its column. However, if
device x is defective, communication for x is now handled instead by the proxy l(x). Additionally,
communication takes place along paths whose individual hops (edges) only connect active devices.

Accordingly, in the presence of a hole, the distance in hops, d(x, y), between any two active
devices at positions x and y in the square grid is the length of the shortest path between x and y
that is composed entirely of horizontal hops (along a row) or vertical hops (along a column) between
adjacent active devices. In general, we expect that the communication between two proxies l(x)
and l(y) takes place along the shortest path on the active perimeter between l(x) and l(y). Indeed,
if the active perimeter encloses a row-column convex gap, then the shortest distance between any
two active devices x and y on the active perimeter equals the length of the shortest path that only
uses the perimeter edges.

Definition 5.3.2 For any proxy assignment that maps a device x to a proxy l(x) on the active
perimeter, we define the dilation, load and congestion of the assignment as follows:

Dilation: The maximum distance in hops, d(l(x), l(y)), taken over all pairs of adjacent devices x
and y. (Notice that, in the literature, the notion of dilation is not restricted to neighboring
devices.)

Load: The maximum number of devices assigned to any active perimeter device.

Congestion: The maximum, over every active perimeter edge e, of the number of distinct proxy-
communication paths that simulate one-hop communications between two devices, at least one
of which is defective.

Henceforth, for convenience, we use proxy assignment to mean “proxy assignment of defective
devices to the active perimeter devices”. Our problem can be stated as follows: for any row-column
convex collection, C, of defective devices in a WAdL, find a proxy assignment such that the dilation,
load and congestion of the assignment are minimized. If the dilation of a proxy assignment is the best
possible we call that assignment a dilation-optimal assignment (similarly, load-optimal assignment
and congestion-optimal assignment).

Definition 5.3.3 For any row-column convex collection C, R(C) is the unique, smallest rectangle of
cells such that R(C) contains C and each border row and column of R(C) contains at least one element
of C. r(C) and c(C) denote the number of rows and columns, respectively, of R(C), containing C.
p(C) denotes the number of active perimeter devices around C.

When the context is clear, we refer to the above quantities as simply r, c and p. Without loss
of generality, we assume that the top left corner cell of R(C) has coordinates (1, 1), and the bottom
right corner cell of R(C) has coordinates (r, c). We refer to the devices by the coordinates of the
cell that the device occupies.

Figure 5.19 illustrates the above definition. Figure 5.19 also illustrates our reference coordinate
system for naming devices. The active perimeter devices are shown shaded.

It is, then, easy to verify the following two lemmas.
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Figure 5.20: Numbering of devices for a single-row gap.

Lemma 5.3.1 For any row-convex collection C,

p(C) = p(R(C)) = 2(r(C) + c(C)) + 4.

Lemma 5.3.2 For any gap, the load of any proxy assignment is at least the ratio of the number of
defective devices to the number of active perimeter devices.

5.3.5 Single Row Gaps

In this subsection we deal with the special case of connected gaps where r = 1. Clearly, such gaps
are row-column convex. We first establish a lower bound on the dilation of any proxy assignment for
such a gap. Then we discuss a dilation-optimal and load-optimal assignment scheme for single-row
gaps.

Lower Bound on Dilation

If a gap contains a single row that has one defective device, i.e., r = c = 1, then it is easy to verify
that the dilation of any proxy assignment must be at least 3. The following theorem establishes a
lower bound on the dilation of proxy assignments for single-row gaps with more than one defective
device.

Theorem 5.3.1 In a WAdL containing a collection C of defective devices such that r(C) = r = 1
and c(C) = c ≥ 2, every proxy assignment of active perimeter devices to the defective ones has
dilation at least D = d(2c+ 5)/3e.

Proof: Given a collection C of defective devices such that r(C) = r = 1 and c(C) = c ≥ 2, the active
perimeter p(C) = p = 2c+ 6. We denote the defective devices as f1, f2, . . . , fc proceeding from left
to right and the active perimeter devices as 0, 1, . . . , 2c + 5 starting from cell (0, 0) and proceding
clockwise (see fig 5.20 for an example). For convenience, for every x ∈ [1, c], we denote the devices



5.3. PROXY ASSIGNMENTS FOR FILLING GAPS IN WIRELESS AD-HOC LATTICE
COMPUTERS 129

2c+ 4−x as b(x); with this notation, the defective device fx has device x as its neighbor above and
device b(x) as its neighbor below. Thus, in any proxy assignment l that assigns active device l(x)
to the defective device fx, the dilation is lower bounded by the maximum taken over the following
four sets of distances:

1. {d(l(x), x) | x ∈ [1, c]},

2. {d(l(x), b(x)) | x ∈ [1, c]},

3. {d(l(x), l(x+ 1)) | x ∈ [1, c− 1]},

4. {d(2c+ 5, l(1)), d(l(c), c+ 2)}.

LetD = d(2c+5)/3e (about a third of the active perimeter), and assume, by way of contradiction,
that L has dilation at most D − 1. Let A(x) denote the possible range of values that l(x) can take
if d(l(x), x) and d(l(x), b(x)) both respect the assumed dilation bound, i.e. if both these distances
are not more than D− 1. Consider the specific defective devices fx and fy where x and y are given
by:

y = D − 1 = d(2c+ 5)/3e − 1

and
x = (c+ 1)− y = b(c+ 1)/3c.

Note that x and y are equi-distant from the left and the right ends of the defective row. From the
definition of y, it is easy to see that the distance to b(y) from any device in the range [0, y − 1] is
greater thanD. Similarly, the distance to y from any device in the range [b(y)+1, 2c+5] is at leastD.
Consequently, A(y), the allowable range for l(y), is the interval [y, b(y)] that consists of the devices
to the right of (and including) y (respectively, b(y)) in the row above (respectively, row below) the
defective row. Similar reasoning yields the complementary fact that A(x), the admissible range for
l(x), is the interval [b(x), x] (in the circular ordering in clockwise order around the perimeter). Note
that A(x) contains exactly those devices to the left of (and including) x (respectively, b(x)) in the
row above (respectively, row below) the defective row.

In fact, a more general characterization can be given for A(x + i) as i ranges from 0 through
(y−x): A(x+ i) consists of two disjoint intervals (not both empty) containing the left and the right
ends of the perimeter. Specifically, the proxy l(x+ i) either lies in the interval Al(x+ i) = {2c+ 4−
(x− i), . . . , x− i} (in circular clockwise order) or in the interval Ar(x+ i) = {c+3− i, . . . , c+1+ i};
we have

A(x+ i) = Al(x+ i)
⋃
Ar(x+ i)

for all i ∈ [0, (y − x)]. For the extreme values of i in its range, we have A(x) = Al(x) with Ar(x)
empty, and have A(y) = Ar(y) with Al(y) empty. So as one considers the proxies proceeding from
fx towards fy, there must come a point where l(x+ i) is from the left admissible interval Al(x+ i)
but the next proxy, l(x+ i+ 1), is from the right admissible interval Ar(x+ i+ 1), i.e. the proxies
are from opposite sides of the perimeter.

But we require d(l(x+ i), l(x+ i+1)) to be at most the assumed dilation. However, the shortest
perimeter distance between any such pair of proxies is no less than the distance between the closest
pair of devices from Al(x+i) and Ar(x+i+1) respectively, viz. the distance between x−i ∈ Al(x+i)
and c+ 3− i ∈ Ar(x+ i+ 1). In summary,

d(l(x+ i), l(x+ i+ 1)) ≥ d(x− i, c+ 3− i)
= c+ 3− x
= D + 1.

This contradicts the assumed dilation bound of D − 1, and yields the result. �
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Note that the same argument also works for a gap consisting of a single column, and, with minor
modifications, for any row-convex gap consisting of connected single rows and columns such that
each device in the gap has no more than two neighbors in the gap.

Dilation-Optimal Assignment

The following theorem states that the lower bound for dilation for a gap of one row and c ≥ 2
columns given in Section 5.3.5 is tight. The proof is constructive as it provides a dilation-optimal
and load-optimal proxy assignment.

Theorem 5.3.2 There exists a dilation-optimal and load-optimal proxy assignment for a gap with
one row and c ≥ 2 columns.

Proof: Let d = d(2c+ 5)/3e and x = b c2c+ 1 + d.
Assign l(b c2c+ 1) = x, and l(b c2c) = x+ d.
Complete the proxy assignment l as follows:

• l(b c2c+ i+ 1) = x− i for 1 ≤ i ≤ d c2e − 1;

• l(b c2c − j) = (x+ d+ j) (mod 2c+ 6) for 1 ≤ j ≤ b c2c − 1.

It is easy to see that l is feasible and load-optimal, and its dilation is equal to d(2c+ 5)/3e.
From this result and Theorem 5.3.1, the claim follows. �

5.3.6 Row-Column Convex Gaps

In this subsection we first establish a lower bound on the dilation of proxy assignments for general
row-column convex gaps with r, c > 1. Specifically, we show that every proxy assignment has dilation
greater than or equal to about one-fourth of the active perimeter (rather than about one-third for
the case discussed in the case of single-row gaps (see Theorem 5.3.1 above)).

Then we restrict our attention to rectangular gaps with r, c > 1 and present an algorithm for a
dilation-optimal and load-optimal proxy assignment for such gaps.

Lower Bound on Dilation

Theorem 5.3.3 establishes a lower bound on the dilation of any proxy assignment for row-column
convex gaps. The idea of the proof for the theorem is inspired by the proof of Sperner’s lemma in
Aigner et al. (see [3], page 148).

Theorem 5.3.3 In a WAdL containing a row-column convex hole with r, c > 1 and active perimeter
p, every proxy assignment of active perimeter devices to the defective ones in the hole has dilation
at least D = dp/4e.

Proof: Any row-column convex hole of defective devices can be easily shown to have an even
number of devices on its active perimeter. Hence, consider a row-column convex hole with active
perimeter p. Starting at an arbitrary position on the perimeter and proceeding clockwise, we color
the active perimeter devices as follows:

• The first dp/4e devices are colored A.

• The next dp/4e devices in order are colored B.

• The next bp/4c devices in order are colored C.
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Figure 5.21: a) Coloring induced by a proxy assignment. b) Dual graph.

• The last bp/4c devices are colored D.

Consider any proxy assignment l that assigns an active perimeter device l(x) to a defective device
x within the gap. As usual, this proxy device is now responsible for simulating the communication
that would have ordinarily been initiated by the device x, now defunct. The proxy assignment
induces - in a natural way - a coloring of the defective devices: the device x is given the same color
(A,B,C or D) as that given to its active proxy l(x).

Given assignment l, let Gl be the corresponding induced subgraph of the mesh consisting of
cells corresponding to the active perimeter devices and the defective devices in the row-column
convex gap enclosed by the active perimeter. The edges of Gl replicate the mesh connectivity
among adjacent devices and each vertex of Gl is assigned the same color (A,B,C or D) as its
corresponding device.

Clearly, Gl is a planar graph with square faces, except for the outer face that traces the active
perimeter contour. We now define a special kind of planar dual of Gl as follows. Every face f of
Gl (including the outer face) corresponds to a unique vertex uf in the dual graph Gdl . However,
unlike the standard planar dual, vertices uf and uf ′ are connected by an edge in Gdl iff f and f ′

are adjacent faces and the shared edge between the adjacent faces f and f ′ has its endpoints colored
AB or BC or CD. (Note that Gl is not the standard planar dual.)

Figure 5.21(a) shows a row-column convex gap with r = 3 and c = 2, and the coloring induced
by a proxy assignment. Note that p = 14, and so there are 4 active perimeter devices colored A,
4 colored B, 3 colored C and 3 colored D. Figure 5.21(b) shows the connectivity graph of the
devices in dotted lines and the dual graph as defined above in bold lines. The dual graph vertex
corresponding to the outer face is labelled u0.

Consider the dual vertex u0 that corresponds to the outer (perimeter) face of Gl. Since the
perimeter is colored in sequence with contiguous As, Bs, Cs and Ds, it follows that u0 has degree
3 witnessed by the unique edges colored AB, BC and CD at the color transitions. All other
dual vertices correspond to square faces of Gl and hence have degree at most 4. Moreover, by
the handshake lemma for graphs, it follows that among the remaining dual vertices (excluding the
odd-degree vertex u0), there must be an odd number of vertices of odd degree. In particular, there
must be at least one dual vertex uf that corresponds to a mesh square (face) f and has degree 1 or
3.
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It is easy to verify that up to rotational and mirror symmetries, a dual vertex uf has degree 3 if
and only if the four corners of face f in Gl are colored ABCD in cyclic order. Also, a dual vertex
uf has degree 1 if and only if face f in Gl has corners colored ABBD, ABDA, ABDD, BCAD,
CDAC or CDDA in cyclic order (modulo rotations and mirror symmetries).

However, recall that the colors identify groups of active perimeter devices that serve as proxies
for defective devices in the gap. Hence, any edge of Gl whose endpoints are colored AC or BD
corresponds to a pair of proxies that must be at least dp/4e apart along the perimeter. Since the
shortest distance between any two perimeter devices is indeed along the perimeter, we immediately
see from the preceding paragraph that all the faces f whose dual vertices uf have degree 1 witness
a dilation of at least dp/4e for the assignment l.

This leaves the only remaining possibility of a face f with corners colored ABCD in cyclic
order. Noting that the corners correspond to four proxies ā, b̄, c̄ and d̄ colored A,B,C and D,
respectively, along the perimeter. Again, noting that the shortest distance between proxies is along
the perimeter, we have

d(ā, b̄) + d(b̄, c̄) + d(c̄, d̄) + d(d̄, ā) = p,

and hence, at least one of the distances must be greater than or equal to dp/4e. �

Dilation and Load Optimal Assignment for Rectangular Gaps

Here we provide a constant time algorithm for a dilation-optimal proxy assignment when the gap
is rectangular with at least 2 rows and 2 columns. Our proxy assignment is load-optimal as well
when the number of rows and the number of columns are even.

Theorem 5.3.4 There exists a dilation-optimal proxy assignment for rectangular gaps with r, c > 1.
Moreover, this proxy assignment is load-optimal when r and c are even.

Proof: The assignment scheme when r > 1 must take into account the parity of both r and c. We
give three different schemes for the following three cases:

1. r and c are even;

2. r + c is odd;

3. r and c are odd.

Recall that for each 0 ≤ a ≤ r + 1 and 0 ≤ b ≤ c + 1, (a, b) denotes the devices in the a-th
row and b-th column. Of these, the devices (a, b) where 1 ≤ a ≤ r and 1 ≤ b ≤ c are the defective
devices. We number the p = 2(r+ c) + 4 active perimeter devices sequentially from 0 starting with
the device (0, 0) and proceeding clockwise (see Figure 5.22 for an example).

Case 1:
Compute d = c+r

2 + 1.
For 1 ≤ i ≤ c

2 assign:

• defective device
(
r
2 , i
)
to active perimeter device i for 1 ≤ i ≤ c

2 ;

• defective device
(
r
2 ,

c
2 + i

)
to active perimeter device c

2 + d+ 1− i;

• defective device
(
r
2 + 1, c2 + i

)
to active perimeter device c

2 + 2d+ 1− i;

• defective device
(
r
2 + 1, i

)
to active perimeter device 3d+ i.
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Figure 5.22: Assignment scheme applied to a rectangular gap of 8 rows and 14 columns.

For 1 ≤ j ≤ r
2 − 1 assign:

• defective device
(
r
2 − j,

c
2

)
to active perimeter device 2c+ 3

2r + 3 + j;

• defective device
(
r
2 − j,

c
2 + 1

)
to active perimeter device c

2 + j;

• defective device
(
r
2 + 1 + j, c2 + 1

)
to active perimeter device c+ r

2 + 1 + j;

• defective device
(
r
2 + 1 + j, c2

)
to active perimeter device 3

2c+ r + 2 + j.

The assignemt can be completed by assigning defective devices from the north-west quadrant
to active perimeter devices whose number correspond to an A, north-east with B etc. Note that
as these assignment can be freely done, it is possible to balance the number of defective devices
assigned to active perimeter devices in the contour of the gap, and thus the assignment witnesses
an optimal load.

It is easy to see that the assignment can be computed in constant time and has dilation d =
r+c

2 + 1.
An example of applying this scheme for a gap of 8 rows and 14 columns is depicted in fig. 5.22.
For cases 2 and 3 we give a sketch of the assignment that deals only with the most critical

positions. The schemes are easy to complete but tedious to describe in details.

Case 2:
Compute d = c+r+1

2 + 1.
Suppose w.l.o.g. that r is even and c is odd.
For 1 ≤ i ≤ r, assign the defective device (i, c) to active perimeter device c+ 1 + i.
Assign:

• the defective device
(
r
2 , b

c
2c
)
to active perimeter device b c2c;

• the defective device
(
r
2 , b

c
2c+ 1

)
to active perimeter device b c2c+ d;

• the defective device
(
r
2 + 1, b c2c+ 1

)
to active perimeter device b c2c+ 2d− 1;

• the defective device
(
r
2 + 1, b c2c

)
to active perimeter device b c2c+ 3d− 1.

To complete the assignment, the scheme for case 1 can be applied with minor changes.

Case 3:
Compute d = r+c

2 + 1.
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For 1 ≤ i ≤ r, assign the defective device (i, c) to active perimeter device c+ 1 + i.
For j ≤ 1 < c assign the defective device (r, j) to active perimeter device 2c+ r + 3− j.
Assign:

• the defective device
(
b r2c, b

c
2c
)
to active perimeter device b c2c;

• the defective device
(
b r2c, b

c
2c+ 1

)
to active perimeter device b c2c+ d;

• the defective device
(
b r2c+ 1, b c2c+ 1

)
to active perimeter device b c2c+ 2d;

• the defective device
(
b r2c+ 1, b c2c

)
to active perimeter device b c2c+ 3d.

Also in this case, the assignment can be completed by applying the scheme for case 1 with minor
changes.

As the dilation obtained by the assignments given by these schemes equals the lower bound
given in Theorem 5.3.3, the thesis follows. �

5.3.7 Conclusion

In this section we studied the problem of bridging gaps in wireless ad-hoc lattice computers by
assigning active devices on the perimeter of the gap as proxies to the defective devices in the gap.
We established lower bounds on the communication dilation witnessed by such proxy assignments
for single-row gaps and general row-column convex gaps. We presented dilation-optimal, constant
time algorithms for computing proxy assignments for single-row gaps and gaps that are rectangular
in shape. Moreover, we also showed that our proxy assignments are load-optimal.

Establishing bounds and studying the optimality of proxy assignments with respect to congestion
(defined in Section 5.3.4) is an interesting open problem.
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