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INTRODUCTION 

In 1977 Fred Sanger published the method for a rapid determination of DNA sequence, which 

would go on to transform biology as a whole by providing a tool for deciphering complete 

genes and later entire genomes [1]. Subsequently, the introduction of reduced handling of 

toxic chemicals and radioisotopes rapidly made Sanger sequencing the only DNA sequencing 

method used for the next 30 years. 

The paradigm of DNA sequencing changed with the advent of the first forms of Next-

generation sequencing (NGS) that greatly reduced the necessary reaction volume while 

dramatically extended the number of sequencing reactions [2, 3].  NGS technologies 

constitute various strategies that rely on a combination of template preparation, sequencing 

and imaging, and genome alignment and assembly methods, which make it possible to 

process hundreds of thousands to millions of DNA templates in parallel, resulting in a low 

cost per base of generated sequence and a throughput on the gigabase scale [4].   

Primarily through linkage mapping and candidate gene resequencing, loci underlying about 

one-half to one-third of all known or suspected Mendelian disorders have been discovered [5]. 

Genome-wide linkage analysis followed by positional cloning have been very successful in 

identifying causal variants for Mendelian disorders because of the perfect segregation of the 

causal variant with the disease-phenotype according to Mendelian inheritance patterns, due to 

complete or almost-complete penetrance of the mutation. On the other hand, homozygosity 

mapping has been a more powerful and effective approach to study recessive disorders in 

consanguineous families [6]. However, for those disorders that are not amendable to these 

two conventional approaches, their causal variants remain elusive. Several factors limit the 

power of traditional gene-discovery strategies: for example, the availability of only a small 

number of cases or families to study, reduced penetrance, locus heterogeneity and 

substantially diminished reproductive fitness [7]. 

The development of methods for coupling targeted capture and massively parallel DNA 

sequencing has made it possible to determine cost-effectively nearly all of the coding 

variation present in an individual human genome, a process termed exome sequencing. This 

technique has become a powerful new approach for identifying genes that underlie Mendelian 

disorders in circumstances in which conventional approaches have failed [8]. Even where 

conventional approaches are eventually expected to succeed – for example, in homozygosity 

mapping – exome sequencing provides a means for accelerating discovery [9]. 
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Despite the fundamental limitation that exome sequencing does not currently assess the 

impact of non-coding alleles, it is a well-justified strategy for discovering rare alleles 

underlying Mendelian phenotypes. The exome represents for several reasons a highly 

enriched subset of the genome in which to search for variants with large effect sizes. First, 

positional cloning studies focused on protein-coding sequences have, when adequately 

powered, proved to be highly successful at identifying variants for monogenic diseases. 

Second, most alleles that are known to underlie Mendelian disorders disrupt protein-coding 

sequences. Third, a large fraction of rare, protein–altering variants are predicted to have 

functional consequences and/or to be deleterious [10]. 

Thus, since protein coding genes constitute only approximately 1% of the human genome, but 

harbor 85% of the mutations with large effects on disease-related traits, efficient strategies for 

selectively sequencing complete coding regions - the whole exome - have the potential to 

contribute to the understanding of rare and common human diseases.  

 

NEXT-GENERATION TECHNOLOGIES 

Sequencing technologies include a number of methods that are grouped broadly as template 

preparation, sequencing and imaging, and data analysis. 

 

1. Template preparation: target-enrichment strategies  

Template preparation requires robust methods that produce a representative, non-biased 

source of nucleic acid material from the genome under investigation. Generally it involves 

randomly breaking genomic DNA into smaller sizes from which fragments templates or mate-

pairs are created. While the fragment library is prepared by randomly shearing genomic DNA, 

mate-pair templates are obtained cutting the circularized sheared DNA selected for a given 

size.  

Since 2007, there has been tremendous progress in the development of diverse technologies 

for capturing arbitrary subsets of mammalian genome at a scale commensurate with that of 

massive parallel sequencing [11]. Current techniques for targeted enrichment can be 

categorized according to the nature of their core reaction principle. 
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Polymerase-mediated capture 

Although all capture methods use polymerase to amplify captured fragment, in this case 

polymerase chain reaction (PCR) is directed toward the targeted regions of interest by 

conducting multiple long-range PCRs in parallel, a limited number of standard multiplex 

PCRs or highly multiplexed PCR methods that amplify very large numbers of short 

fragments.  

A strikingly elegant application is the micro-droplet PCR technology developed by 

RainDance, where each microdroplet can be made to contain a single primer pair along with 

genomic DNA and other reagents. The entire population of droplets represents thousands of 

distinct primer pairs and is subject to termal cycler, after which this emulsion is broken and 

products are recovered. 

Hybrid capture 

The hybrid capture principle is based upon the hybridization of selected fragments of DNA or 

RNA representing the target region against a shotgun library of DNA fragments from the 

genome to be enriched. Two alternative strategies are used to perform the hybrid capture: 

reactions on a solid support and in solution. 

- Solid-phase hybridization methods generally utilize probes complementary to the 

sequences of interest affixed to a solid support, such as microarrays or filters. The total 

DNA is applied to the probes, where the desired fragments hybridize. The non-

targeted fragments are subsequently washed away and the enriched DNA is eluted for 

sequencing. Even if it is quicker than PCR-based approaches, it is necessary to start 

library preparation with a large amount of DNA (around 10-15 g) in order to 

obtained a suitable DNA library prepped. 

- Liquid-phase hybridization is similar to solid phase, but in this method the probes are 

not attached to a solid matrix, but instead are biotinylated. Following hybridization, 

the biotinylated probes – with the complementary desired genomic DNA – are bound 

to magnetic streptavidin beads and are separated from the undesired DNA by washing. 

Whereas an on-array target enrichment uses a vast excess of DNA library over probes, 

solution capture has an excess of probes over template, which drives the hybridization 

reaction further to completion using a smaller quantity of sequencing library.  

Molecular inversion probes (MIP) 
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In the MIP technique single-stranded oligonucleotides, consisting of common linker flanked 

by targeted sequences, anneal to their target sequence and become circularized by a ligase. 

Uncircularized species are digested by exonucleases to reduce background, while circularized 

species are PCR amplified via primers directed at the common linker.  

 

All three major targeted enrichment techniques differ in terms of sample library preparation 

workflow enabling sequencing on any of the current NGS instruments. Enrichment by hybrid 

selection relies on short fragment library preparations which are generated before 

hybridization. In contrast, enrichment by PCR is performed directly on genomic DNA and 

thereafter the library primers are added. Enrichment by circularization offers the easiest 

library preparation for NGS because the sequencing primers can be added to the 

circularization probe, thus eliminating the need for any further preparation steps. 

A series of metrics need to be considered in order to evaluate the performance of each target 

enrichment approach (Table 1):  

- sensitivity, or the percentage of the target bases that are represented by one or more 

sequence reads; 

- specificity, or the percentage of sequences that map to the intended targets; 

- uniformity, or the variability in sequence coverage across target regions; 

- reproducibility, or how closely results obtained from replicate experiments correlate; 

- cost; 

- ease of use; 

- amount of DNA required per experiment, or per megabase of target. 

 PCR 
On-array 

hybrid capture 

In-solution 

hybrid capture 
MIP 

Cost High Medium Low Low (>100 samples) 

Ease of use Low Medium High High 

Mass DNA 8 g (5 kb amplicons) 10-15 g (30 Mb target) 1-3 g (50 Mb target) 200 ng 

Sensitivity > 99.5% 98.6% > 99.5% > 98% 

Specificity 93% 70-80% 80-90% > 98% 

Uniformity 80% 60% 60-70% 60% 

Reproducibility 100% 95% 96% 92% 

Table 1. Performance of target-enrichment methods (Adapted from Mamanova L et al. Nat Methods 7:111-118). 
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A major obstacle for targeted enrichment is posed by repeating elements, including 

interspersed and tandem repeats as well as elements – such as pseudogenes – located within 

and outside the region of interest. Furthermore, at extreme values, the GC content of the target 

region has a considerable impact on the evenness and efficiency of the enrichment, affecting 

in particular the analysis of the 5’-UTR/promoter region and the first exon of genes. 

Therefore, expectations regarding the outcome of the experiment require the evaluation of the 

appropriate enrichment method [12]. 

 

1.1 Enrichment workflow in exome sequencing 

Among the methods described for targeted capture, only the hybrid capture can handle large 

target regions, therefore in the last years the target of the human exome has largely converged 

on the in-solution capture by hybridization approach (Figure 1). 

Genomic DNA is randomly sheared and 1-3 g are used to construct an in vitro shotgun 

library, whose fragments are flanked by adaptors. Next, the library is enriched for sequences 

corresponding to exons: the fragments are hybridized to biotinylated DNA or RNA baits in 

the presence of blocking oligonucleotides that are complementary to the adaptors. Recovery 

of the hybridized fragments by biotin-streptavidin based pull-down is followed by 

amplification and massively parallel sequencing of the enriched, amplified library and the 

mapping and calling of candidate causal variants. It is possible to sequence more than one 

sample in a single sequencing lane introducing barcodes, that allow sample indexing, during 

the initial library construction or post-capture amplification. Key performance parameters 

include the degree of enrichment, the uniformity with which targets are captured and the 

molecular complexity of the enriched library. 

In the workflow for exome sequencing there are some critical parameters with a large 

influence over the outcome of a target-enrichment experiment, including the fragment size, 

the PCR amplification and the pre-hybridization cleanup.  

There are a variety of methods available to fragment nucleic acids, but the mechanical 

shearing remains the method of choice for achieving high sensitivity and unbiased results. 

Using a sonicator it is possible to generate a sufficiently narrow fragment-size distribution 

that the size-selection step can be omitted. It is very important to control the fragment size 

since longer fragments are captured with lower specificity than shorter ones because they 

contain a higher proportion of off-target sequence. There is also a lower size limit to 
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fragments for efficient capture, but in practice the minimum size is determined by the length 

of the wished final sequences. Longer reads would be expected to map to the reference 

sequence with lower ambiguity than shorter ones and can reduce the overrepresentation 

toward the ends of capture probes [13]. 

 

                           

Figure 1. Protocol of the in-solution based method for target enrichment.(Adapted from Roche NimbleGen 

brochure) 

1. Genomic DNA: The oligo pool is 

made against target regions in the 

genome. 

 

2. Library Preparation: Standard 

shot-gun sequencing library is made 

from genomic DNA. 

 

3. Hybridization: The sequencing 

library is hybridized to oligo pool. 

 

4. Bead Capture: Streptavidin beads 

are used to pull down the complex of 

capture oligos and genomic DNA 

fragments. 

 

5. Washing: Unbound fragments are 

removed by washing. 

 

6. Amplification: Enriched fragment 

pool is amplified by PCR. 

 

7. Enrichment QC: The success of 

enrichment is measured by qPCR at 

control loci. 

 

8. Sequencing-ready DNA: The end 

product is a sequencing library enriched 

for target regions, ready for high 

throughput sequencing. 
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Most imaging systems have not been designed to detect single fluorescent events, so 

amplified templates are required. But it has been noted a negative influence of PCR 

amplification on the uniformity of enrichment: performing 18 cycles of PCR amplification of 

libraries both before and after hybridization can introduce severe bias toward neutral G+C 

content in the resulting sequences. So it is desirable to keep PCR amplification to a minimum 

and only performing it after hybridization. However, an amplification-free library preparation 

tends to lack robustness [14]. 

Salt concentration is an important factor in determining the specificity and efficiency of 

hybridization. Therefore, it is convenient to use solid-phase reversible immobilization (SPRI) 

beads, to which nucleic acids can bind reversibly and capture DNA can be eluted in water 

[15]. 

One particular challenge for applying exome sequencing has been how best to define the set 

of target that constitute the exome. Considerable uncertainty remains regarding which 

sequences of the human genome are truly protein coding.      

There are currently three major exome enrichment platforms: Agilent’s SureSelect Human All 

Exon Kits, Roche/Nimblegen’s SeqCap EZ Exome Library and Illumina’s TruSeq Exome 

Enrichment. The technologies differ in their target choice, bait lengths and density, and 

molecule used for capture (DNA for Nimblegen and Illumina, RNA for Agilent). There are 

substantial differences in the density of oligonucleotide baits between the three platforms. 

Nimblegen contains overlapping baits that cover the bases it targets multiple times, making it 

the highest density platform of the three. Agilent baits reside immediately adjacent to one 

another across the target exon intervals. Illumina relies on paired-end reads to extend outside 

the bait sequences and fill the gaps. The exome enrichment platforms also have different 

target regions. Numerous databases of mRNA coding sequences exist, including RefSeq, 

coding and untranslated region (UTR) [16], UCSC KnownGenes [17] and Ensembl, total and 

coding sequence (CDC) [18]. They contain different numbers of noncoding RNA genes, and 

the start and end positions of some transcripts differ between them. Each commercial platform 

targets particular exomic segments based on combinations of the available databases. A large 

number of bases (29.45 Mb) are targeted by all three platforms. Nonetheless, each platform 

does not target specific regions: the majority of the Illumina-specific 27.73 Mb targets UTR 

regions; Nimblegen covers a greater portions of miRNAs; Agilent better covers Ensembl 

genes (Figure2).   
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Moreover, input genomic DNA ranges from 1 g (Illumina) to 3 g (Nimblegen and Agilent). 

The total procedure time before sequencing and the pre- and post-hybridization PCR cycles 

vary across platforms [19].  

Nevertheless, all existing targets have limitations since current capture probes can only target 

exons that have been identified so far; efficiency of capture probes varies considerably and 

some sequences fail to be targeted by capture probe design altogether. 

 

                       

 

Figure 2. (a) Bait design details for each commercial platform. (b) Venn diagram showing the overlap of 

targeted genome regions for all three  platforms. (c, d e) Venn diagram showing coverage of RefSeq coding 

exons, Ensembl CDS and RefSeq UTR exons respectively, and overlap between platforms. (From Clark MJ, et 

al. Nat Biotechnol 29:908-914) 
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2. Sequencing and imaging 

DNA sequencing-by-synthesis (SBS) technology has been incorporated in several next-

generation DNA sequencing systems with significant performance. A common SBS strategy 

is to use DNA polymerase or ligase enzymes to extend many DNA strands in parallel. 

Nucleotides or short oligonucleotides are provided either one at time or modified with 

identifying tags, so that the base type of the incorporated nucleotide or oligonucleotide can be 

determined as extension proceeds. 

SBS strategies may be categorized as either single molecule-based (involving the sequencing 

of a single molecule) or ensemble based (involving the sequencing of multiple identical 

copies of a DNA molecule, amplified together on isolated surfaces or beads). There are 

fundamental differences in sequencing clonally amplified and single-molecule templates. 

Clonal amplification results in a population of identical templates, each of which has 

undergone the sequencing reaction. Upon imaging, the observed signal is a consensus of the 

nucleotides or probes added to the identical templates for a given cycle. A downside of 

ensemble-based SBS architectures is that sample preparation passes the analyte molecules 

through a single-molecule stage, only then to re-amplify them. The amplification from single 

molecules makes the process sensitive to amplification errors and products must be strictly 

isolated to reduce contamination of other libraries under construction. All SBS schemes 

involve the use of surface-bound components that provide a mean for parallel synthesis of 

DNA molecules and a structure for optimizing imaging and for flowing-in substrates and 

removing products. The challenges of surface chemistry include providing surfaces 

compatible with enzymatic processing of nucleotides along with the DNA, eliminating stray 

sticking of dye molecules and maximizing the density of SBS features over the surface. For 

this reason, structures are typically coated with a hydrophilic, functional surface layer, 

designed to tightly or covalently bind the molecules of interest – to minimized loss of 

molecules and thus signal – but to be inert to binding other materials during sequencing. 

SBS is based on the stepwise enzymatic synthesis of DNA complementary to the template 

DNA to be sequenced. To obtain reads using ensemble-based SBS, repeated additions must 

be accommodated with virtually the total stepwise yields, so that chain extension is 

synchronous over all the molecules of the sample. This includes both the enzymatic addition 

and any subsequent chemical, enzymatic or photolytic, steps that may be needed to unblock 
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the substrate or remove the dye for the next addition. Several polymerase-based SBS schemes 

require using blocking groups that allow the addition of a single nucleotide at a time [20]. 

These technical challenges have been accommodated to varying degrees in commercially 

available systems, based on different sequencing and imaging strategies (Table 2). At the core 

of most next-generation sequencing methods is the use of dye-labeled modified nucleotides: 

ideally, these nucleotides are incorporated specifically, cleaved efficiently during or following 

fluorescent imaging, and extended as modified or natural bases in ensuing cycles [21, 22]  

Cyclic reversible termination (CRT) 

As the name implies, CRT uses reversible terminators in a cyclic methods that comprises 

nucleotide incorporation, fluorescence imaging and cleavage [23]. In the first step, a DNA 

polymerase, bound to the primed template, adds or incorporates just one fluorescently 

modified nucleotide, which represents the complement of the template base. The termination 

of the DNA synthesis after the addition of a single nucleotide is an important feature of the 

application. Following incorporation, the remaining unincorporated nucleotides are washed 

away. Imaging is then performed to determine the identity of the incorporated nucleotide and 

it is followed by a cleavage step, which removes the terminating/inhibiting group and the 

fluorescent dye. Additional washing is then performed before starting the next incorporation 

step. The key to the CRT method is the reversible terminator, of which there are two types: 3’ 

blocked and 3’ unblocked. 

Currently, the Illumina sequencing platforms dominate the whole-exome sequencing market: 

it uses the clonally amplified template method, coupled with the four-color CRT strategy [24]. 

The four colors are detected by total internal reflection fluorescent imaging using two lasers. 

The slide is partitioned into eight channels, which allows independent samples to be run 

simultaneously (Figure 3). 
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Figure 3. Outline of the Illumina sequencing platform. (I) Attached DNA fragments form “bridge” molecules 

which are amplified via an isothermal amplification process, leading to a cluster of identical fragments that are 

subsequently denatured for sequencing primer annealing. (II) Amplified DNA fragments are subjected to 

sequencing-by-synthesis using 3’unblocked labeled nucleotides. (Adapted from the Illumina Genome Analyzer 

brochure). 

 

Sequencing by ligation (SBL) 

In its simplest form, a fluorescently labeled probe hybridizes to its complementary sequence 

adjacent to the primed template. DNA ligase is then added to join the dye-labeled probe to the 

primer. Non-ligated probes are washed away, followed by fluorescence imaging to determine 

the identity of the ligated probe. The cycle can be repeated either by using cleavable probes to 

remove the fluorescent dye and regenerate a 5’ –PO4 group for subsequent ligation cycles or 

by removing and hybridizing a new primer to the template.  

Applied Biosystems has commercialized its SBL platform called SOLiD (support 

oligonucleotide ligation detection), characterized by a colour-space imaging system that is a 

linear sequence of colour calls from the ligation round [25]. 

1 2 3 4 

5 6 7 

I. 

II. 

1. Attached DNA to flow cell 

2. Perform bridge amplification 

3. Generate clusters 

4. Anneal sequencing primer 

5. Extend first base, read and 

deblock 

6. Repeat step above the extend 

strand 

7. Generate base calls 
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Pyrosequencing 

Pyrosequencing is a non-electrophoretic, bioluminescence method that measures the release 

of inorganic pyrophosphate by proportionally converting it into visible light using a series of 

enzymatic reactions. Unlike other sequencing approach that use modified nucleotides to 

terminate DNA synthesis, the pyosequencing method manipulates DNA polymerase by the 

single addition of a dNTP in limiting amounts. The order and intensity of the light peaks are 

recorded as flowgrams, which reveal the underlying DNA sequencing.  

The first platform using pyrosequencing was commercialized by Roche/454, which, unlike 

other instruments that produce shorter read lengths, does not require the run to be doubled for 

the sequencing of mate-pair templates. For homopolymeric repeats of up of six nucleotides, 

the number of DNTs added is directly proportional to the light of signal [26]. 

Differences in chemistries and raw data collection require individualized data processing 

pipelines and hinder combining output from different next-generation platforms. The Illumina 

sequencing instruments generate base-specific signal intensities, with basic algorithms needed 

to determine the most likely template-directed base being incorporated and the output is 

readily obtained as simple base sequence. In contrast, the Roche GS FLX adds only one type 

of nucleotide at a time, allowing multiple base incorporations across mononucleotide stretches 

in a single cycle, resulting in a signal proportional to the number of bases incorporated. The 

resulting flowgram can be readily converted to bases, but with some uncertainty surrounding 

the length of long mononucleotides repeats. SOLiD uses dibase encoding, whereby two 

adjacent template bases at a time are interrogated by the incoming labeled oligonucleotide 

destined for ligation. The sequencing output is encoded not as single bases but as numbers 

from 0 to 3 representing four possible dinucleotides [27]. 
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Illumina 

Genome Analyzer/HiSeq 

Applied Biosystems 

SOLiD 

Roche/454 

Genome Sequencer 

FLX 

NGS chemistry Reversible terminator Sequencing by ligation Pyrosequencing  

Total output data 20 Gb 20 Gb 0.5 Gb 

Read length Up to 150 bp Up to 75 bp Up to 700 bp 

Base calling Nucleotide space Color space Flow space 

Error profile 

Substitutions, 

underrepresentation of AT-

rich and GC-rich regions 

Substitutions, 

underrepresentation of AT-

rich and GC-rich regions 

Insertions and deletions, 

especially in long 

stretches (>6) of the same 

nucleotide 

Table 2. Comparison of next-generation sequencing platforms used in exome sequencing. 

 

3. Data analysis 

Compared to Sanger sequencing, next-generation sequencing produces much more sequences, 

but of much shorter length and inferior quality; this has a tremendous impact on how the 

resulting readouts have to be processed in a downstream analysis. The short length of the 

DNA sequences imposes computational challenges for the detection of specific variations. 

As mentioned above, an image-capturing device records the light signals generated by the 

synthesis or ligation processes at the newly generated strands. After acquisition of the image 

data, these recorded signals have to be converted into nucleotide bases. Furthermore, 

statistical models provides a measure of certainty of each base call in addition to the 

nucleotide itself. These statistical models base their error estimate on information such as 

signal intensities from the recorded image, the number of the sequencing cycle and distances 

to other sequence colonies. These certainties are usually expressed as Phred-like quality 

scores, which represent the decadic logarithm of the expected error probability of the base 

call:  

Qphred = -10 log10 P(error) 

The preliminary step of base calling is usually automatically performed by the sequencing 

platform itself and it is specific since each sequencing platform has to solve challenges unique 

to the underlying methodology. 
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3.1 The SNP calling pipeline 

In a common SNP calling pipeline the base calling is followed by an initial quality control of 

the generated reads, succeeded by the alignment of the reads to a reference sequence and a 

post-processing of the alignment. While these steps are shared by nearly all NGS applications, 

the remaining steps – quality score recalibration, SNP calling and filtering of SNP candidates 

- are more specific to the SNP calling pipeline (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Workflow of the SNP calling pipeline. 
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Step 1: Quality control 

Most platforms provide the read data directly in a flat file format such as FASTQ [28] or at 

least provide tools for conversion of the native output format into the quasi-standard FASTQ. 

The distribution of the quality scores at each position is one of the most interesting quality 

parameters for the overall quality of the run. Regarding the quality of the raw reads, there are 

noticeable difference between platforms. Illumina reads, for instance, undergo a quality 

control by the manufacturer’s software. In case of the SOLiD platforms, no quality control is 

provided: it relies on the fact that reads of insufficient quality will not align to the reference 

sequence.  

 

Step 2: Alignment/mapping 

The next step in the processing pipeline for almost all applications involves alignment and 

assembly. There are two fundamental considerations when designing alignment and assembly 

algorithms for sequence analysis: first, the amount of data produced; second, the techniques 

produce data with different error profiles which must be addressed at the algorithmic level to 

obtain the maximum information from the data. A central challenge to the analysis of these 

data is sequence alignment whereby sequence reads must be compared to a reference. 

Alignment programs normally follow a multistep procedure to accurately map sequences. 

Using heuristic techniques in the first step, effort are made to quickly identify a small set of 

places in the reference sequence where the best mapping is most likely. Once the smaller 

subset of possible mapping locations has been identified, slower  and more accurate alignment 

algorithms are run on this limited subset [29] (Figure 5).  

Alignment is the process of mapping the reads to a reference sequence. Two approaches are 

commonly used: many sequence alignment software tools apply the lossless Burrows-

Wheeler transform (BWT) for efficient data compression [30]; other algorithms rely on 

hashing to accelerate the alignment step. While the use of hashing allows quick access to the 

information on the location of subsequences in the reference sequence, the clear advantage of 

the BWT-based algorithms is the processing speed, as they are much faster at the same 

sensitivity level [31]. BWT algorithms typically create a suffix array from the BWT 

transformed sequence, rather than from the original sequence. First, the sequence order of the 

reference genome is modified using the BWT, a reversible process that reorders the genome 
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grouping together in the data structure the sequences that appear multiple times. Next, the 

final index is created and it is used for rapid read placement on the genome. 

On the other hand, assembly starts from aligned reads to reconstructed the original DNA 

sequence computationally, which generates large, continuous regions of DNA sequence. 

Many alignment software provide tools to perform the assembly after the read alignment. De 

novo assembly is the suggested approach for reads mapping in regions prone to 

rearrangements, rapidly evolving, or where the reference genome might not be informative. 

 

 

Figure 5. Two of the most fundamental computational issues in the context of sequencing analysis: alignment 

and assembly. Alignment is the process of determining the most likely source within the genome sequence for 

the observed DNA sequencing read. Assembly leads to the generation of large, continuous regions of DNA 

sequence. A resequencing application requires reads that can be accurately mapped in such a way that both 

nucleotide and structural variation can be reliably assessed. 

 

In general, the choice of alignment tool and the corresponding settings significantly affect the 

outcome. This holds especially true for SNP calling, as wrongly aligned reads may result in 

artificial deviations from the reference. These deviations in turn may falsely be classified as 

SNPs in the downstream processing. 

Once the reads have been aligned to the reference, many algorithms allow to store the results 

in the sequence alignment/map (SAM) format [32]. Briefly, the SAM format stores 

information about each aligned read, in particular, the position of the reference contig, the 
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orientation of the read, quality of the alignment and potential further alignment possibilities of 

the read. The SAM format, and its binary version the BAM format, are by now a quasi-

standard for storing the result of the alignment step. 

After the mapping step, it is advisable to check the alignment again by generating a mapping 

statistic, which is the computing fraction of reads that was successfully mapped to the 

reference, the fraction of reads that was rightly paired and the distribution of the insert size. 

 

Step 3: Alignment post-processing 

Prior to the actual variant calling, the algorithms require the alignments to be sorted with 

respect to their chromosomal position. Next, since the PCR used for amplifying the library 

and adding adapters may introduce artifacts, in form of reads or read pairs starting at exactly 

the same position and having the same length, it is common practice to remove or simply 

mark such PCR artifacts. The next post-processing step is the removal of all non-unique 

alignments, i.e. reads with more than one optimal alignment, since in these cases it cannot be 

determined from which site the read really originates. Then, it is common to realign reads 

around small indels, since difference in resolving small insertions and deletions may cause 

artificial SNPs in the downstream analysis. 

 

Step 4: Quality score recalibration 

The first software to provide recalibration of quality scores was SOAPsnp [33]: the approach 

exploits sites in the reference genome without any reported SNPs. On these sites SOAPsnp 

computes the empirical mismatch rate as an estimate for the true base quality. For a given 

machine provided quality score, sequencing cycle (in other terms, the position of the base in 

the read) and the substitution type, it calculates the average mismatch rate with respect to the 

reference, then used as the recalibrated quality score. Based on a similar concept, the GATK 

software [34] also provides a recalibration function: first, bases are grouped with respect to 

several features, as raw quality and dinucleotide content; second, for each category, the 

empirical mismatch rate is computed and used to correct the raw quality score. 

 

Step 5: Variant and genotype calling 
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Recent SNP calling approaches integrate several sources of information within probabilistic 

framework. This procedure facilitates SNP calls in medium to low coverage regions and 

provide a way to quantifying uncertainty about the variant call. One major advantage of the 

statistical framework is the use of prior probabilities for a SNP at a given position. These 

prior probabilities can be derived from databases listing of confirmed SNPs or by carrying out 

SNP calling in multiple individuals at the same time [35]. 

Furthermore, the field of computational methods for discovering structural variation on NGS 

data is still an open bioinformatics challenge. The copy number variations (CNVs) discovery 

methods operate following a framework that allows detecting anomalous patterns, then calls 

the related variants using mainly four different approaches: read-pair methods, read-depth 

methods, split read approaches and de novo assembly [36]. 

 

Step 6: Filtering SNP candidates 

Filtering is an essential step in reducing the number of false-positive SNP calls. Typically 

applied filters check for deviations from the Hardy-Weinberg equilibrium, minimum and 

maximum read depth, adjacency to indels and strand bias. While filtering might also remove 

real SNPs from the candidate list, it is an important tool for minimizing SNP calling artifacts.  

Most SNP calling tools have the option to generate the data in the VCF format [37], which 

records for each identified SNP candidate basic information, such as the chromosomal 

position, the reference base, the identified alternative base or bases in case of triallelic SNPs. 

Furthermore, information on the quality of the SNP call as well as the amount of sequence 

data available for the call are stored. 

Tools for automated variant annotation have been developed. Most of them offer a command 

line interface for annotating variants from different species. Basally, they rely on information 

available via the UCSC genome browser and offer in addition precomputed scores for 

predicting the likely functional consequences of non-synonymous amino acid exchanges and 

they allow to easily filter already known SNPs using information from public controls 

databases. The outcome of a SNP pipeline is not set in a stone. A recommended strategy is the 

use of different aligners and SNP callers for generating independent SNP candidates, since the 

most reliable are those appearing in more than one setting [38]. 
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NOVEL DISEASE-GENE DISCOVERY 

A key challenge of using exome sequencing to find novel causal genes for Mendelian diseases 

is how to identify disease-related alleles among the background of non-pathogenic 

polymorphism and sequencing errors. 

The SNP calling process on the whole exome data generates on average 20,000 variants as 

compared with the genomic reference sequence, although the numbers have varied between 

different studies, which presumably reflects differences in the technologies and analysis 

strategies [39] . Thus, the post-processing and interpreting the generated huge amount of data 

are now the substantial challenges in the next-generation era. 

More than 95% of these variants are already known as polymorphism in human populations. 

Strategies for finding causal alleles against this background vary, as they do for traditional 

approaches to gene discovery, depending on factors such as: the mode of inheritance of a trait; 

the pedigree or population structure; whether a phenotype arises owing to de novo or inherited 

variants; and the extend of locus heterogeneity for a trait. Such factors also influenced both 

the sample size needed to provide adequate power to detect trait-associated alleles and the 

selection of the most successful analytical framework. 

 

1. Filtering for rare variants 

The sequencing of only a modest number of affected individuals and then applying discrete 

filtering to the data to reduce the number of candidate genes is an important advantage that 

exome sequencing has over conventional approaches (Figure 6). In fact, this strategy alone 

can be exceptionally powerful for very rare Mendelian disorders. Rare diseases, by definition, 

have an individual incidence of less than 1/2000 in the population [40] and it is expected that 

mutations causing them will be at correspondingly rare frequencies, and most likely private to 

affected subjects. This is especially true for mutations that are highly penetrant, that are not 

expected to be found in the population at large and, hence, will not be seen in genome-wide 

scans for variants nor in polymorphism repositories. 
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Figure 6. Filtering strategy for the analysis of Mendelian disorder through exome sequencing. 

 

 

Therefore, novelty is assessed by filtering the variants against a set of polymorphisms that are 

available in public databases, such as dbSNP (http://www.ncbi.nlm.nih.gov/SNP) and 1000 

Genome Project (http://www.1000genomes.org) and those found in a set of unaffected 

controls. This discrete filtering step is used to reduce the list of candidate genes by assuming 

that any allele found in the “filter set” cannot be causative. This approach is powerful because 

only a small fraction of the variants identified in an individual exome is novel.  

Fundamental in this method is the assumption that the filter set contains no alleles from 

individuals with the phenotype being studied. This assumption can be problematic for two 

reasons. First, dbSNP is contaminated with an appreciable number of pathogenic alleles [41, 

42]. Second, as the number of sequenced exomes and genomes increases, the filtering of 

observed alleles in a manner that is independent of their minor allele frequency (MAF) runs 

the risk of eliminating truly pathogenic alleles that are segregating in the general population at 

low frequency. This risk is especially relevant for recessive disorders, in which carrier status 

will not result in a phenotype that might otherwise exclude an individual from a control 

population. A lower MAF cutoff of 0.1% is helpful for dominant disorders, as the estimated 
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prevalence of the condition (generally well below 0.1%) provides an upper bound on the 

MAF. 

2. Filtering based on function, effect and conservation 

Candidate alleles can be further stratified on the basis of their predicted impact or 

deleteriousness, by giving greater weight to non-synonymous variants, frameshifts, stop 

codons and disruptions of canonical splice sites. However this is an oversimplification that is 

insensitive to causal alleles that do not directly alter protein-coding sequences. The main 

rationale given for this filter is that these kind of variants tend to be of larger effect than non-

coding variants and also because it is difficult to predict the effects of non-coding and 

synonymous variants with any certainty. As such, in order to reduce noise when analyzing 

possible disease-causing variants, non-coding and synonymous variants are often ignored or 

greatly down-weighted. For some disorders, it is possible to filter variants even further, by 

focusing only on those that are loss-of-function (as nonsense and frameshift). Since there are 

only limited number of such mutations in any genome (<50), the candidate list is shortened 

very quickly [43]. 

Additionally, candidate alleles can be stratified by existing biological pathway or its 

interactions with genes or proteins that are known to cause a similar phenotype.  

Variants can also be ranked by potential effect on protein structure and function, and 

conservation scores using quantitative estimates which exploit the observation that regions of 

genes and genomes in which mutations are deleterious tend to show high sequence 

conservation as a result of purifying selection. Sites that have experienced purifying selection 

can be identified by quantifying rates of mammalian evolution at the nucleotide level. 

Computational prediction of functional SNP effect often employs evolutionary conservation 

as well as physicochemicals properties of the affected amino acid in the protein. 

Implementations of this strategy include phyloP and Genetic Evolutionary Rate Profiling 

(GERP) [44] to predict the impact of potential causal variants that are either coding or non-

coding. Approaches that stratify non-synonymous alleles – for example, Sorting Intolerant 

From Tolerant (SIFT) [45], Polymorphism Phenotyping v2 (PolyPhen2) [46] – also explore 

the predicted changes in proteins caused by specific amino acids substitutions. All of these 

strategies enrich for functional sites at which observed variants are more likely to affect 

phenotype, but have limited specificity and sensitivity [47]. Thus, these rankings are normally 

used in conjunction with other strategies and not as stand-alone filter. 
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3. Effect of mode of inheritance and pedigree information 

The mode of inheritance of a monogenic disorder strongly influences both the experimental 

design (for example the number and selection of the most informative cases to be sequenced 

in multiplex families) and the analytical approach. Intuitively, discrete filtering should be 

more efficient for recessive disorders – since they require sequencing of fewer cases – than 

for dominant cases, because the genome of any given individual has around 50-fold fewer 

genes with two rather than one novel protein-altering alleles per gene [10]. This conclusion is 

supported by simulation studies and by the greater rate at which exome sequencing is 

identifying genes for recessive relative to dominant disorders. 

For Mendelian phenotypes the use of pedigree information can substantially narrow the 

genomic search space for candidate causal alleles (Figure 7). Which individuals are the most 

informative ones to sequence depends on the frequency of a disease-causing allele and the 

nature of the relation-ship between individuals. For every rare alleles, the probability of 

identity-by-descent given identity-by-state is high even among distantly related individuals. In 

the absence of mapping data, sequencing the two most distantly related individuals with the 

phenotype of interest can substantially restrict the genome search space. When mapping data 

are available, the most efficient strategy is to sequence a pair of affected individuals whose 

overlapping haplotype produce the smallest genomic region. If the haplotype shared by all 

affected subjects is sufficiently short that the candidate interval is unlikely to include multiple 

candidate causal alleles, then a single individual may be sequenced. For consanguineous 

pedigrees in which a recessive mode of inheritance is suspected, sequencing just the one 

person with the smallest region (or regions) of homozygosity, as determined by the genome-

wide genotyping data, should be sufficient. 

Exome sequencing of parent-child trios is a highly effective approach for identifying de novo 

coding mutations, as a multiple de novo events occurring within a specific gene (or within a 

gene family or a pathway) is an extremely rare event [48]. This study design may be 

particularly applicable to gene discovery in disorders for which most cases are sporadic and 

when a dominant mode of inheritance is suspected or substantial locus heterogeneity is 

expected.  
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4. Filtering using tests of association 

For identifying likely causal variants, an alternatively strategy to discrete filtering is to apply 

tests of association. The use of two-sample tests that compare cases (unrelated individuals 

with the same Mendelian phenotype) to a set of controls can either eliminate some of the 

problems of discrete filtering or provide estimates of the sample size needed for adequate 

power in the presence of complicating factors, such as genetic heterogeneity. As long as false 

positive are equally probable both in cases and in controls, the expected number of variants in 

any gene will be the same both in cases and in controls under any distribution of mutations. 

When genetic heterogeneity is known to be present, as indicated for example by the presence 

of complementing groups of mutations, or suspected, this information can be taken into 

account when performing power calculations to ensure that enough individuals are included in 

the study. 

Furthermore, the growing number of well-documented exome data sets available will allow 

for the use of thousands of control chromosomes, which can increase the power to detect 

causal alleles, even when the number of available cases is limited. 

      

 

Figure 7.  Strategies for finding disease-causing rare variants using exome sequencing. (a) Sequencing and 

filtering across multiple unrelated, affected individuals (b) Sequencing and filtering among multiple affected 

individuals in a pedigree. (c) Sequencing parent-child trios for identifying de novo mutations. (d) Sampling and 
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comparing the extremes of a distribution for a quantitative phenotype (From Bamshad MJ et al. Nature Rev 

Genet 12:745-755). 

 

Considering that exome sequencing has been proved to be a powerful and cost-effective new 

tool for dissecting the genetic basis of diseases, I have applied different strategies to sift 

through variants in order to determine causal mutations and candidate genes in Mendelian 

disorders, such as six sporadic cases of Noonan syndrome, a family with Teebi syndrome, a 

consanguineous family showing agammaglobulinemia, and monogenic forms of complex 

diseases, as autosomal-dominant atrial septal defect or common variable immunodeficiency. 

My focus is to show some of the experimental and analytical options for employing massively 

parallel sequencing as a tool for disease-gene discovery and to highlight the key challenges in 

using this approach both within and without the paradigm of conventional approaches. 

Moreover, I was involved in the development of a new consensus-calling and SNP-detection 

method from high-throughput sequencing data. 
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MATERIALS AND METHODS 

 

SUBJECTS 

I analyzed a total of six sporadic cases and four families affected by different Mendelian 

diseases (Table 3). 

Disease Model # individuals genotyped #individuals sequenced 

Noonan syndrome Autosomal dominant 6 parents-child trios 6 parents-child trios 

Teebi syndrome Autosomal dominant 6 affected, 3 unaffected 

and 1 obligated carrier 
3 affected 

Atrial Septal Defect Autosomal dominant - 4 affected 

Common Variable 

Immunodeficiency 
Autosomal dominant 

9 affected and 8 

unaffected 
3 affected  

Agammaglobulinemia Autosomal recessive 2 affected siblings 1 affected 

Table 3. Individuals included in genotyping and sequencing analysis. 

For exome sequencing, I selected 6 individuals of European ancestry with Noonan syndrome 

and their unaffected parents (Figure 8). Even if Noonan syndrome features were present in all 

patients studied, each of them had unique and divergent manifestations collected in the 

clinical heterogeneity which characterizes the disorder. 

                

 

 

 

 

 

 

Figure 8 Parents-child trios with Noonan syndrome. F: father; M: mother; C: child. 
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The second set of analyses was of a moderate-sized multi-generational kindred with several 

cases of Teebi syndrome (Figure 9), with a substantial phenotypic heterogeneity: all affecteds 

had ptosis, but they showed various grades of other facial dysmorphism and cardiac defects. 

The individual II-1 seemed to lack strong symptoms, but her son and the grand-daughter were 

affected, having probably inherited the causative mutation from her. Thus, I strongly 

suspected incomplete penetrance of the causative allele in this family. All 10 subjects whose 

DNAs were available, both affected and unaffected, were included in the linkage study (II.1, 

III.1, III.2, III.3, III.5, III.7, III.8, IV.1, IV.9, IV.10), while 3 affected individuals (III.5, IV.1 

and IV.10) were sequenced by the exome approach.       

             

 

Figure 9. Pedigree of the studied family with Teebi syndrome. 

 

Then, I studied an American family that was strongly suggestive for dominant transmission of 

atrial septal defect (ASD) (Figure 10). It was a five-generation family comprising 11 affected 

and 23 unaffected individuals including 2 obligated carriers (III.1 and IV.6). Phenotypic data 

were collected from review of medical records, phone interviews and photographs. Genome-

wide linkage analysis was previously performed using microsatellite markers in all available 

subjects. This approach allowed the identification of a single candidate genomic interval on 

chromosome 15q23-q24.3  (Data not reported). The chosen strategy in this family was to 
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sequenced the whole exome of 4 affected individuals in the family (IV.20, V.4, V.10 and 

V.12) to give priority to the variants within the linkage interval. 

 

Figure 10. Pedigree of the family affected by ASD. The pedigree structure suggests the incomplete penetrance 

of the disease. 

 

In order to identify the gene responsible for common variable immunodeficiency (CVID) in a 

large family with autosomal dominant inheritance of the disease (Figure 11), the DNA 

extracted from 8 unaffected and 9 affected members of the family was used to perform 

genome-wide genotyping (II.2, III.2, III.7, III.10, IV.2, IV.10, V.1, V.3, III.4, III.6, III.11, 

IV.1, IV.6, IV.7, IV.8, IV.11, V.2), while the exome data were obtained and analyzed in 3 

affected subjects (III.7, IV.2 and IV.10). 
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Figure 11. Pedigree of a large Italian family with CVID. 

 

Finally, my study included a consanguineous Italian family, composed by two affected 

siblings from a first cousins marriage affected by an autosomal-recessive form of 

agammaglobulinemia (Figure 12). Of the two affected sisters, both genotyped, only one was 

evaluated by exome sequencing. 

                                                              

Figure 12. The consanguineous family with an autosomal-recessive form of agammaglobulinemia. 

 

Genomic DNA was extracted from peripheral blood lymphocytes of each participating 

individual using Gentra Systems Puregene DNA purification kit (Qiagen), obtaining samples 

of high quality with an OD 260/280 ratio ranging from 1.8 to 2.0. The concentration and the 

quality parameters of extracted DNAs were measured by a spectrophotometer (NanoDrop 

ND-1000, NanoDrop Technologies). 
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WHOLE-EXOME SEQUENCING AND BIOINFORMATICS 

1. Targeted capture and massively parallel sequencing 

Genomic DNA samples were processed by in-solution hybridization using initially the 

NimbleGen SeqCap EZ Exome Library v2.0 method and, as the designed improve to capture 

additional exons and previously unannotaded  genes, the v3.0 was substituted. The Illumina 

GAII and HISeq 2000 platforms were used to obtained paired end 76 bp and 101 bp 

sequencing reads as technology progressed. 

In order to achieve informative exome sequencing results, DNA samples followed a multistep 

library preparation procedure: 

 Fragmentation: 3 µg of DNA from each designed participating individual was 

firstly sheared by sonication (Covaris, MA, USA) at fixed conditions in order to obtain the 

majority of fragments of 200-300 bp in length: 

- duty cycle: 10% 

- intensity: 10 

- cycles per burst: 200 

- time: 250 s  

- temperature: 25°C 

 End-repair and A-tailing: the fragmentation step produced double-stranded 

DNA with a mixture of blunt ends, recessed 3’ and 5’ends, with and without phosphate 

moiety. To uniform the genomic fragments, they were treated with the NEBnext End 

Repair Enzyme mix to generate 5’-phosphorilated blunt ends, and Klenow Fragment 

(3’→5’ exo
-
), an N-terminal truncation of DNA Polymerase I which retains polymerase 

activity but lacks 5’→3’ exonuclease activity, with dA-Tailing buffer to add a dAMP to 

the 3’ end at a blunt DNA fragment. Addition of a single A nucleotide to the 3’ ends of 

fragments deterred concatemerization of templates and increased the efficiency of the next 

step 

 Adapter ligation: adapter oligonucleotides – linker 1 and 2 – were annealed and 

ligated to the fragment ends using a Quick T4 DNA Ligase (NEBNext
TM

 DNA sample 

prep master mix set 1, New England BioLabs Inc.). Adapter ligation to fragments must be 

as efficient as possible, but at the same time, ligation of adapter to one another must be 

suppressed: adapter dimers will also generate clusters that can be sequenced and will 

reduce the total proportion of desired sequence obtained from a run 
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 Size selection: in order to give a DNA library with a particular insert size range 

and allow the removing of majority of adapter dimers, the adaptor-ligated templates were 

fractionated by agarose gel electrophoresis and fragments of the desired size were excised 

and gel purified on Qiagen purification columns 

 PCR: extracted DNA was amplified using the primers complementary to the 

previously ligated linkers by ligation-mediated (LM) PCR for 12 cycles to selectively 

enrich for properly ligated template strands, to generate enough DNA for accurate 

quantification and to add oligonucleotide sequences to the template strands that allow 

hybridization to the flow cell surface. The amplified product was then purified using the 

QIAquick PCR Purification kit (Qiagen) according to the manufacturer’s 

recommendations 

 Library hybridization, hybrid capture selection and amplification: each library 

was hybridized for target enrichment, followed by washing, elution from magnetic beads 

and additional LM PCR 

 Quality assessment: the Agilent 2100 Bioanalyzer was used to assess quality, 

quantity and size range of the enriched libraries, that were diluted to a working 

concentration of 10 nM 

 Cluster amplification: paired-end cluster generation on the flow cells was 

performed on the Cluster Station (Illumina Inc. CA USA). During this step, single DNA 

fragments with Illumina supplied adapter sequences ligated at both ends (the template) 

were attached to the surface of the oligonucleotidide-coated flow cell  and amplified to 

form a surface-bound colony (the cluster). The result was a heterogeneous population of 

clusters, with each cluster consisting of many identical copies of the original template 

molecule 

 Sequencing-by-synthesis: hybridized flow cells containing the captured, 

purified and clonally amplified libraries targeting the exome were, finally, transferred 

from the Cluster Station to the sequencing platform for 76 or 101 cycles of nucleotide 

incorporation, imaging and cleavage. 
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2. Next-generation sequencing data analysis 

Bioinformatic analysis of Next-generation sequencing data include all the processes needed to 

extract biological information from the sequenced reads.  

For each of the sequenced sample, I performed the following steps (Table 4): 

1. Reads quality check. Reads generated with the sequencing technology were 

checked using the FastQC program 

(http://www.bioinformatics.babraham.ac.uk/publications.html) 

2. Alignment. Raw reads were aligned with BWA [49] against the reference 

genome hg19, and a bam file containing the aligned reads was generated with 

SAMtools [50] 

3. Local realignment around indels. Aligned reads from every bam file were 

realigned locally with the GATK package (www.broadinstitute.org) [34], in order to 

transform regions with misalignments into clean reads containing a consensus indel 

suitable for variant discovery 

4. Duplicate reads removal. PCR duplicate reads were removed with the 

Picardtools MarkDuplicates utility (picartools.sourceforge.net) 

5. Quality score recalibration. Base quality scores of aligned reads from every 

bam file were recalibrated with the GATK package, in order to obtain more accurate 

base quality scores 

6. Alignment and Coverage metrics. Metrics of every sample's alignment were 

collected from bam files with SAMtools, in order to check whether the alignment 

process gave a consistent output. Metrics of the coverage obtained on the targeted 

exome were calculated using the GATK package, in order to obtain all the available 

information about the reliability of the variant calling results 

7. Variant calling. Variant positions with respect to the reference sequence hg19 

were called in the targeted exome in order to obtain a vcf file with all the sample's 

variants 

8. Variant filtering. A filter tag was assigned to every variant in the vcf file in 

order to discriminate between good and bad quality variants 

9. Variant annotation. All the variants have been annotated according to NCBI 

RefGene (www.ncbi.nlm.nih.gov) and UCSC KnownGene (genome.ucsc.edu) 

databases. 
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Step Analysis Tool Output 

1 Reads quality control FastQC Assessment of the quality of the reads 

2 Alignment to hg19 BWA Reads aligned to the genome 

3 Local realignment GATK Artifacts due to indel misalignment solved 

4 Duplicates marking Picardtools PCR duplicated reads removed 

5 Base quality recalibration GATK Biases in base quality solved 

6 Final aligment statistics GATK Assessment of the quality of the alignment 

7 Variant calling GATK Variants discovered 

8 Variant filtering GATK Filtered variants based on quality criteria 

9 Variant annotation Annovar Variants annotated against RefSeq 

10 Gene prioritization Manual A list of most likely candidate genes 

Table 4. Summary of the data analysis pipeline with the tools used and a short description of analyses performed  

and output obtained. 

 

2.1 Step 1: Reads quality check with FastQC 

Before analyzing NGS reads, some simple quality control checks of the raw data are needed. 

Most sequencers generate a QC report as part of their analysis pipeline, but this is usually 

only focused on identifying problems which were generated by the sequencer itself. FastQC 

provides a QC report which can spot problems originated either in the sequencer or in the 

starting library material. 

Reads generated by NGS sequencers are usually stored in FastQ format, which contains 

information about sequence content and quality. Paired-end reads are stored in two different 

files, the one containing all the '+' strand reads, the other containing all the '-' strand reads. I 

checked the quality of '+' and '-' strand reads contained in the FastQ files with FastQC. 

The analysis in FastQC is performed by a series of analysis modules. For the most of these 

modules, FastQC reports a warning or a failure message if some problem is encountered 

across the reads. 

Basic Statistics 

The Basic Statistics module generates some simple composition statistics for the file 

analyzed, such as the filename, the filetype (base-space or color-space), the encoding (which 

ASCII encoding of quality values is used) the count of the total/filtered sequences (in Casava 
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mode, sequences flagged to be filtered are removed from all analyses), the sequence length 

and the %GC. 

Per Base Sequence Quality 

This module shows an overview of the range of quality values across all bases at each 

position in the FastQ file. 

A warning is issued if the lower quartile for any base is less than 10, or if the median for any 

base is less than 25. It raises a failure if the lower quartile for any base is less than 5 or if the 

median for any base is less than 20. 

Per Sequence Quality Scores 

The per sequence quality score report allows to see if a subset of sequences have universally 

low quality values. If a significant proportion of the sequences in a run have overall low 

quality, this could indicate some kind of systematic problem - possibly with just part of the 

run (for example one end of a flow cell). A warning is raised if the most frequently observed 

mean quality is below 27 - this equates to a 0.2% error rate. An error is raised if the most 

frequently observed mean quality is below 20 - this equates to a 1% error rate. 

Per Base Sequence Content 

Per Base Sequence Content plots out the proportion of each base position in a file for which 

each of the four normal DNA bases has been called. 

In a random library it is expected that there would be little to no difference between the 

different bases of a sequence run, so this module issues a warning if the difference between A 

and T, or G and C is greater than 10% in any position. This module fails if the difference 

between A and T, or G and C is greater than 20% in any position. 

Per Base GC Content 

Per Base GC Content plots out the GC content of each base position in a file. Since in a 

random library it is expected no difference between the bases of a sequence run, the overall 

GC content should reflect the GC content of the underlying genome. 

This module issues a warning it the GC content of any base strays more than 5% from the 

mean GC content; it fails if the GC content of any base strays more than 10% from the mean 

GC content. 

Per Sequence GC Content 
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This module measures the GC content across the whole length of each sequence in a file and 

compares it to a modeled normal distribution of GC content. An unusually shaped distribution 

could indicate a contaminated library or some other kinds of biased subset. A normal 

distribution which is shifted indicates some systematic bias which is independent of base 

position. If there is a systematic bias which creates a shifted normal distribution then this 

won't be flagged as an error by the module since it doesn't know what the genome GC content 

should be. A warning is raised if the sum of the deviations from the normal distribution 

represents more than 15% of the reads, while it indicates a failure if the sum of the deviations 

from the normal distribution represents more than 30% of the reads. 

Per Base N Content 

If a sequencer is unable to make a base call with sufficient confidence then it will normally 

substitute an N rather than a conventional base call. This module plots out the percentage of 

base calls at each position for which an N was called. This module raises a warning if any 

position shows an N content of >5% or raises an error if any position shows an N content of 

>20%. 

Sequence Length Distribution 

Some high throughput sequencers generate sequence fragments of uniform length, but others 

can contain reads of wildly varying lengths. In my case, I did not used this module since a 

fixed read length is used by Illumina platform. 

Duplicate Sequences 

In a diverse library most sequences occur only once in the final set. A low level of duplication 

may indicate a very high level of coverage of the target sequence, but a high level of 

duplication is more likely to indicate some kind of enrichment bias (e.g. PCR over 

amplification). 

This module counts the degree of duplication for every sequence in the set and creates a plot 

showing the relative number of sequences with different degrees of duplication. There is a 

warning if non-unique sequences make up more than 20% of the total and an error if non-

unique sequences make up more than 50% of the total. 
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Overrepresented Sequences 

A normal high-throughput library contains a diverse set of sequences, with no individual 

sequence making up a tiny fraction of the whole. Finding that a single sequence is very 

overrepresented in the set either means that it is highly biologically significant, or indicates 

that the library is contaminated, or not as diverse as expected. 

This module lists all of the sequence which make up more than 0.1% of the total and it issues 

an error if any sequence is found to represent more than 1% of the total. 

Overrepresented Kmers 

The analysis of overrepresented sequences will spot an increase in any exactly duplicated 

sequences, but it does not work with very long sequences with poor sequence quality, where 

random sequencing errors dramatically reduces the counts for exactly duplicated sequences, 

and with a partial sequence which is appearing at a variety of places because it has not be seen 

either by the per base content plot or the duplicate sequence analysis. 

This module counts the enrichment of every 5-mer within the sequence library. It calculates 

an expected level at which this k-mer should have been seen based on the base content of the 

library as a whole and then uses the actual count to calculate an observed/expected ratio for 

that k-mer. In addition to reporting a list of hits, it draws a graph for the top 6 hits to show the 

pattern of enrichment of that Kmer across the length of the reads. Any k-mer showing more 

than a 3 fold overall enrichment or a 5 fold enrichment at any given base position will be 

reported by this module. To allow this module to run in a reasonable time only 20% of the 

whole library is analyzed and the results are extrapolated to the rest of the library. There is an 

error issued if any k-mer is enriched more than 10 fold at any individual base position. 

 

2.2 Step 2: Alignment to the reference genome hg19 with BWA and visualization of the 

alignments using IGV 

Burrows-Wheeler Aligner (BWA, http://bio-bwa.sourceforge.net/) is a fast light-weighted 

tool that aligns relatively short sequences (queries) to a sequence database (target), such as the 

human reference genome. It implements an algorithm designed for short queries up to ~200bp 

with low error rate (<3%). It does gapped global alignment, supports paired-end reads, and is 

one of the fastest short read alignment algorithms to date while also visiting suboptimal hits. 

BWA allows alignment of paired-end reads in two steps: 
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1. The paired reads are aligned to the reference genome independently (their coordinates are 

mapped to the reference genome) with the command: 

bwa aln [-n maxDiff] [-o maxGapO] [-e maxGapE] [-d nDelTail] [-i 

nIndelEnd] [-k maxSeedDiff] [-l seedLen] [-t nThrds] [-cRN] [-M 

misMsc] [-O gapOsc] [-E gapEsc] [-q trimQual] <in.db.fasta> 

<in.query.fq> > <out.sai> 

The 'aln' command is used for each of the two fastq files ('+' and '-' strands). The options of 

this first command (in square parentheses) can be used to control the way BWA map the 

single-end reads to the reference genome. Of all these possible options, I changed only the '-q' 

one, trimQual. This option is useful for trimming reads which have poor quality. Trimming 

allows to keep the “good” part of a read (usually the first part) while discarding the “bad one” 

which is rich of poor quality bases. To do this, trimQual calculates the maximum argument of 

the Phred-like quality score function along every single read and discards all the bases after 

the one at which the function reaches its maximum. The trimming value was set to 20.  

The 'aln' command requires two input files: <in.db.fasta> and <in.query.fq>. The first is the 

reference genome sequence in fasta format, the second is the fastq file. The output of this 

command is in the binary 'sai' format, designed for BWA use only.  

2. Alignments in the SAM format given paired-end reads are generated with the command: 

bwa sampe [-a maxInsSize] [-o maxOcc] [-n maxHitPaired] [-N 

maxHitDis] [-P] <in.db.fasta> <in1.sai> <in2.sai> <in1.fq> <in2.fq> 

> <out.sam> 

The 'sampe' command requires as input files the two 'fastq' files, the two 'sai' files and again 

the reference genome in fasta format. BWA outputs the final alignment in the SAM 

(Sequence Alignment/Map) format.  

SAM file can be finally compressed into binary BAM format by  SAMtools 

(http://samtools.sourceforge.net/). The general command is the following: 

samtools view -bt ref_list.txt -o aln.bam aln.sam.gz 
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The BAM file is the final product of the alignment process. It contains all the data needed to 

localize a pair of reads on the reference genome and provides detailed information about the 

accuracy of the paired-end read mapping.  

Alignments stored in the BAM file can be visualized using the Integrative Genomics Viewer 

(IGV) tool (www.broadinstitute.org/igv/). The IGV is a high-performance visualization tool 

for interactive exploration of large, integrated genomic datasets. It supports a wide variety of 

data types, including array-based and next-generation sequence data, and genomic 

annotations. Visualization of the aligned reads can give a general overview of the alignment 

outcome. Biases such as poor quality of reads or high percentage of duplicate reads are easily 

highlighted by direct visualization. Also, visualization can be useful when looking at the 

variants, since it gives an idea of how much a variant is reliable of it is affected by classical 

biases that make it a likely false-positive signal. 

 

2.3 Steps 3, 4, 5: Local indel realignment, duplicate  removal and base quality score 

recalibration with GATK 

Once a BAM file is generated, three key processes are used: 

 Local realignment around indels. Reads that align on the edges of indels often 

get mapped with mismatching bases that might look like evidence for SNPs. I used GATK 

to look for the most consistent placement of the reads with respect to the indel in order to 

clean up these artifacts. The local realignment tool is designed to consume one or more 

BAM files and to locally realign reads such that the number of mismatching bases is 

minimized across all the reads. In general, a large percent of regions requiring local 

realignment are due to the presence of an insertion or deletion (indels) in the individual's 

genome with respect to the reference genome. Such alignment artifacts result in many 

bases mismatching the reference near the misalignment, which are easily mistaken as 

SNPs. Moreover, since read mapping algorithms operate on each read independently, it is 

impossible to place reads on the reference genome such that mismatches are minimized 

across all reads. Consequently, even when some reads are correctly mapped with indels, 

reads covering the indel near just the start or end of the read are often incorrectly mapped 

with respect the true indel, also requiring realignment. Local realignment serves to 

transform regions with misalignments due to indels into clean reads containing a 

consensus indel suitable for standard variant discovery approaches. Following local 
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realignment, the GATK tool Unified Genotyper can be used to sensitively and specifically 

identify indels. 

There are two steps to the realignment process: 

1. Determining (small) suspicious intervals which are likely in need of realignment 

(RealignerTargetCreator tool) 

2.   Running the realigner over those intervals (IndelRealigner). The following general 

command is used to run the indel realigner: 

java -Xmx4g -jar GenomeAnalysisTK.jar 

   -I input.bam 

   -R ref.fasta 

   -T IndelRealigner 

   -targetIntervals intervalListFromRTC.intervals 

   -o realignedBam.bam 

   [-known /path/to/indels.vcf] 

 Mark Duplicates. Duplicately sequenced molecules shouldn't be counted as 

additional evidence for or against a putative variant. By marking these reads as duplicates 

the algorithms in the GATK know to ignore them. GATK exploits the MarkDuplicates 

utility of Picard tools (http://picard.sourceforge.net/command-line-

overview.shtml#MarkDuplicates) with the command: 

java -jar MarkDuplicates.jar I= input.bam O= output.bam 

METRICS_FILE= output.metrics.markdup.stats 

REMOVE_DUPLICATES=true CREATE_INDEX=true VALIDATION_STRINGENCY= 

LENIENT 

 Base quality score recalibration. The per-base estimate of error known as the 

base quality score is the foundation upon which all statistically calling algorithms are 

based. It has been found that the estimates provided by the sequencing machines are often 

inaccurate, and worse, biased. Through recalibration an empirically accurate error model 

is assigned to the bases to create an analysis-ready bam file. After recalibration, the 

quality scores in the QUAL field in each read in the output BAM are more accurate in that 

the reported quality score is closer to its actual probability of mismatching the reference 

genome. Moreover, the recalibration tool attempts to correct for variation in quality with 

machine cycle and sequence context. This process is accomplished by analyzing the 

covariation among several features of a base, for example, the reported quality score,  the 
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position within the read, the preceding and current nucleotide (sequencing chemistry 

effect) observed by the sequencing machine. These covariates are then subsequently 

applied through a piecewise tabular correction to recalibrate the quality scores of all reads 

in a BAM file.  

The general command line used for this end is:  

java -jar GenomeAnalysisTK.jar \ 

-T PrintReads \ 

-R reference.fasta \ 

-I input.bam \ 

-BQSR recalibration_report.grp \ 

-o output.bam 

 

2.4 Step 6: Alignment and coverage metrics 

With the GATK Depth of Coverage utility, I performed metric calculations of the NGS 

exome sequencing experiment yields. Version 3.0 of Depth of Coverage is a coverage profiler 

for a (possibly multi-sample) BAM file. It uses a granular histogram that can be user-

specified to present useful aggregate coverage data. It reports the following metrics over the 

entire .bam file: 

- Total, mean, median, and quartiles for each partition type: aggregate 

- Total, mean, median, and quartiles for each partition type: for each interval 

- A series of histograms of the number of bases covered to Y depth for each 

partition type  

- A matrix of counts of the number of intervals for which at least Y samples 

and/or read groups had a median coverage of at least X 

- A matrix of counts of the number of bases that were covered to at least X 

depth, in at least Y groups (e.g. # of loci with ≥15x coverage for ≥12 samples) 

- A matrix of proportions of the number of bases that were covered to at least X 

depth, in at least Y groups (e.g. proportion of loci with ≥18x coverage for ≥15 

libraries) 
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The general command line used for this end is: 

 java GenomeAnalysisTK.jar -T DepthOfCoverage -R ucsc.hg19.fasta -I 

input.realign.markdup.recal.srt.bam -L target.bed -o coverage.stats 

-omitBaseOutput -ct 5 -ct 10 -ct 20 

 

2.5 Steps 7, 8: Variant calling and quality filtering with GATK Unified Genotyper 

The GATK Unified Genotyper is a multiple-sample, technology-aware SNP and indel caller. 

It uses a Bayesian genotype likelihood model to estimate simultaneously the most likely 

genotypes and allele frequency in a population of N samples, emitting an accurate posterior 

probability of there being a segregating variant allele at each locus as well as for the genotype 

of each sample. The system can either emit just the variant sites or complete genotypes 

(which includes homozygous reference calls) satisfying some phred-scaled confidence value. 

The genotyper can make accurate calls on both single sample data and multi-sample data. The 

input is represented by the read data from which to make variant calls, while the output is a 

raw, unfiltered, highly sensitive callset in VCF format. 

Generic command for variant calling is the following: 

 java -jar GenomeAnalysisTK.jar 

-R resources/Homo_sapiens_assembly19.fasta 

-T UnifiedGenotyper 

-I sample1.bam [-I sample2.bam ...] 

--dbsnp dbSNP.vcf 

-o snps.raw.vcf 

-stand_call_conf [50.0] 

-stand_emit_conf 10.0 

-dcov [50 for 4x, 200 for >30x WGS or Whole exome] 

[-L targets.interval_list] 

The above command calls all of the samples in the provided BAM files [-I arguments] and 

produce a VCF file with sites and genotypes for the samples. Several arguments have 

parameters that should be chosen based on the average coverage per sample in the data. This 

command can get a dbSNP data as input, as well as a target list file to restrict search to those 

regions that are within the target. 
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After performing local realignment around indels and base quality score recalibration using 

GATK, I called Single Nucleotide Variants (SNVs) and small insertions/deletions (indels) 

using GATK Unified Genotyper, and filtered out the variants by quality using GATK 

VariantFiltrationWalker with the following parameters:   

--clusterWindowSize 10  

--filterExpression "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)"  

--filterExpression "QUAL<30||QD<5.0||HRun>5||SB>-0.10"  

for SNVs and   

--filterExpression "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)"  

--filterExpression "SB >=-1.0"   

--filterExpression "QUAL<10"  

for indels.  

 

The resulting Variant Call Format file has the following general format with information 

fixed fields: 

- CHROM (chromosome): an identifier from the reference genome (Alphanumeric String, 

Required). All entries for a specific CHROM should form a contiguous block within the VCF 

file  

- POS (position): the reference position, with the first base having position one (Integer, 

Required). Positions are sorted numerically, in increasing order, within each reference 

sequence CHROM  

- ID: semi-colon separated list of unique identifiers where available (Alphanumeric String). If 

this is a dbSNP variant it is better to use the rs numbers  

- REF (reference bases): each base must be one of A, C, G, T and N in uppercase, with 

multiple bases permitted (String, Required). The value in the POS field refers to the position 

of the first base in the string. For InDels, the reference string must include the base before the 

event, which must be reflected in the POS field 

- ALT: comma separated list of alternate non-reference alleles called on at least one of the 

samples (Alphanumeric String; no whitespace, commas, or angle-brackets are permitted in 

the ID String itself). Options are base strings made up of the bases A, C, G, T and N, or an 

angle-bracketed ID String (”<ID>”). If there are no alternative alleles, then the missing value 

should be used  
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- QUAL: phred-scaled quality score for the assertion made in ALT (Numeric). High QUAL 

scores indicate high confidence calls. This field is permitted to be a floating point to enable 

higher resolution for low confidence calls if desired  

- FILTER: PASS if this position has passed all filters, i.e. a call is made at this position 

(Alphanumeric String) 

- INFO: additional information (Alphanumeric String) 

- If genotype information is present, then the same types of data must be present for all 

samples. First a FORMAT field is given specifying the data types and order. This is followed 

by one field per sample, with the colon-separated data in this field corresponding to the types 

specified in the format. The first sub-field must always be the genotype (GT). 

VCF records use a single general system for representing genetic variation data composed of: 

- Allele: representing single genetic haplotypes  

- Genotype: an assignment of alleles for each chromosome of a single named sample at a 

particular locus 

- VCF record: a record holding all segregating alleles at a locus (as well as genotypes for 

multiple individuals containing alleles at that locus). VCF records use a simple haplotype 

representation for REF and ALT alleles to describe variant haplotypes at a locus. ALT 

haplotypes are constructed from the REF haplotype by taking the REF allele bases at the POS 

in the reference genotype and replacing them with the ALT bases. 

 

2.6 Step 9: Variant annotation with ANNOVAR 

Variants were annotated from the VCF file, against the NCBI RefSeq 

(http://www.ncbi.nlm.nih.gov/RefSeq/) and UCSC KnownGene (http://genome.ucsc.edu/) 

databases with ANNOVAR ( www.annovar.org) [51]. ANNOVAR is an efficient software 

tool to utilize update-to-date information to functionally annotate genetic variants detected 

from diverse genomes (including human genome hg18, hg19). Given a list of variants with 

chromosome, start position, end position, reference nucleotide and observed nucleotides, 

ANNOVAR can perform: 

1. Gene-based annotation: identify whether SNPs or indels cause protein coding 

changes and the amino acids that are affected.  
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2. Region-based annotations: identify variants in specific genomic regions, 

including conserved regions among 44 species, predicted transcription factor binding 

sites, segmental duplication regions, GWAS hits, database of genomic variants, DNAse I 

hypersensitivity sites, ENCODE H3K4Me1/H3K4Me3/H3K27Ac/CTCF sites, ChIP-Seq 

peaks or RNA-Seq peaks 

3. Filter-based annotation: identify variants that are reported in dbSNP, or 

identify the subset of common SNPs (MAF>1%) in the 1000 Genome Project, or identify 

subset of non-synonymous SNPs with SIFT score>0.05, or find intergenic variants with 

GERP++ score>2, or many other annotations on specific mutations. 

SUMMARIZE_ANNOVAR.pl is a script within the ANNOVAR package: given a list of 

variants from whole-exome, it generates an Excel-compatible file with gene annotation, 

amino acid change annotation, SIFT scores, PolyPhen scores, LRT scores, MutationTaster 

scores, PhyloP conservation scores, GERP++ conservation scores, dbSNP identifiers, 1000 

Genomes Project allele frequencies, NHLBI-ESP 5400 exome project allele frequencies and 

other information. I used SUMMARIZE_ANNOVAR to annotate variants in the exomes I 

analyzed. Information given by this annotation process is in table format and is like the 

following: 

Column Name Description 

1 Func Impact at the gene level 

2 Gene Gene name 

3 ExonicFunc Impact at the coding level 

4 AAChange Amino acid change 

5 Conserved Consevation of the genomic element (phastCons LOD) 

6 SegDup Score for segmental duplication (0-1) 

7 ESP 5400 Frequency in ESV 

8 1000G_ALL Frequency in 1000 genomes (Feb.2012) 

9 dbSNP135 Presence in dbSNP135 
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10 SIFT SIFT score (the closest to 0 the most deleterious) 

11 PolyPhen2 Polyphen2 score (the closest to 1 the most deleterious) 

12 LJB_PhyloP PhyloP score (the closest to 1 the most conserved) 

13 LJB_MutationTaster MT score (the closest to 1 the most deleterious) 

14 LJB_LRT LRT score (the closest to 1 the most deleterious) 

15-END Additional fields Various sequencing metrics 

 

2.7 Step 10: Gene prioritization 

In order to identify disease-related alleles among the background of non-pathogenic 

polymorphisms and sequencing errors I applied a discrete filtering approach: 

 Novelty: predicting that the causative variant would be rare and therefore likely to be 

previously unidentified in public databases or control sequencing data, novelty was 

assessed by filtering the variants against a set of polymorphisms that are available in 

public databases, i.e. dbSNP build 135 (http://www.ncbi.nlm.nih.gov/snp), 1000 

Genome Project  (http://www.1000genomes.org) and Exome Variant Server Project 

(http://evs.gs.washington.edu/EVS) 

 Stratification: candidate alleles were stratified on the basis of their predicted impact or 

damage. To distinguish potentially pathogenic mutations from other variants, I 

focused on nonsynonymous variants, splice acceptor and donor site mutations and 

short coding indels. Additionally, candidate alleles were stratified by existing 

biological or functional information about a gene or on the basis of the sequence 

conservation  

 Intrafamilial segregation (Teebi syndrome, agammaglobulinemia, ASD and CVID 

cases): the candidate variants were tested by Sanger sequencing for segregation among 

other members of the family, whose DNAs were available 

 De novo origin: in Noonan trios I considered only those variants present in the 

proband and not in the unaffected parents.  

 

 

http://www.ncbi.nlm.nih.gov/snp
http://www.1000genomes.org/
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3. Mutation validation 

Sanger sequencing of PCR amplicons from genomic DNA was used to confirm the presence 

of variants in the candidate genes identified via exome sequencing and to screen the candidate 

genes in additional cases.  All primers were designed using the informatic tool Oligo 6 

(Molecular Biology Insights, Inc). 

 

 

GENOME-WIDE GENOTYPING FOR LINKAGE ANALYSIS AND 

HOMOZYGOSITY MAPPING 

 

1. SNP chip array 

10 individuals from Teebi family, the two affected siblings in the consanguineous kindred 

with agammaglobulinemia, 17 from the CVID pedigree and each Noonan-trio were genotyped 

with the Affymetrix® Genome-Wide Human SNP Array 6.0 Nsp/Sty Assay (Santa Clara, CA, 

USA). This platform uses over 900,000 SNP probes and 900,000 2-naphthalenecarbonitrile 

(NPCN) probes with a median spacing of 7.0 kb. A total amount of 500 ng of genomic DNA 

for each sample was used for the experiment. The protocol was divided in stages: 

 Genomic DNA preparation: each sample was diluted to 50 ng/µl using reduced EDTA 

TE buffer and 5 µl were used for each of the two following digestion steps 

 Sty restriction enzyme digestion, ligation and PCR:  the genomic DNA was digested 

with the restriction enzyme Sty I, it was ligated to a common adaptor with T4 DNA 

ligase and the template underwent PCR using TITANIUM
TM

 Taq DNA polymerase. 

The corrected amplification was confirmed by running 3 µl of each PCR product on a 

2% TAE agarose gel 

 Nsp restriction enzyme digestion, ligation and PCR: as for Sty I, 5 µl of genomic 

DNA were digested with Nsp I, ligated and amplified 

 PCR product purification with AMPure XP beads 

 Quantification: the templates had an OD between 0.9 and 1.2, which was equivalent to 

a final PCR product concentration of 4.5 to 6.0 µg/µl 
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 Fragmentation: the purified PCR products were fragmented using Fragmentation 

reagents (DNAse I) and the result was checked by running 1.5 µl of each reaction on a 

4% TAE agarose gel  

 Labeling: the fragments were end-labeled using terminal deoxynucleotidyl transferase  

 Target hybridization: after denaturation, each sample was load onto a Genome-Wide 

Human SNP Array 6.0 – one sample per array. The arrays were then placed into a 

hybridization oven preheated to 50°C for 18 hours 

 Washing and staining arrays: I used a three-stage protocol for mapping arrays: (1) a 

streptavidin phycoerythin (SAPE) step; (2) an antibody amplification step; (3) a final 

stain with SAPE. 

Finally, I used Affymetrix GeneChip® Command Console (AGCC) to operate the fluidics 

station and the scanner. The genotype calls of each individual were determined by the 

Birdseed genotyping calling algorithm, embedded in the Affymetrix Genotyping Console 2.0 

software. The number of samples used to determine the genotype calls varied depending on 

the examination.  

 

2. Linkage data analysis 

I performed linkage data analysis using PedStats [52] and Merlin [53] softwares. PedStats 

allows to verify that the information about  individual relatedness and SNP marker alleles is 

correct. General command line for PedStats is: 

pedstats -p input.ped -d input.dat  

PedStats provides statistics about the family structure, the marker genotypes and allele 

frequencies. Markers showing non Mendelian inheritance, inconsistent genotypes and 

deviation from Hardy-Weinberg equilibrium can be excluded from downstream analysis. 

Moreover, dense set of marker SNPs - as the ones I used - likely introduce additional biases in 

linkage analysis. In fact, linkage analysis assumes linkage equilibrium between adjacent 

markers. Linkage disequilibrium (that is, the non-random association of marker alleles on the 

same haplotype) can inflate LOD score, which is the statistical measure of linkage between a 

marker and the trait (the disease). Linkage disequilibrium is a genetic force that act in a range 

of up to 500 Kb. To eliminate the effect of linkage disequilibrium, I used custom scripts in 
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Perl language in order to select a sparser set of markers (inter-marker distance > 500 kb). 

Then, I converted the original files to formats which were suitable for linkage analysis. 

The program I used for linkage analysis was Merlin. Merlin allows parametric linkage 

analysis with the following command: 

merlin -d parametric.dat -p parametric.ped -m parametric.map --model 

parametric.model 

Input files are a ‘ped’ file containing the pedigree and marker allele information, a ‘map’ file 

containing the chromosome map and ‘dat’ file containing the list of markers used. A model 

file is used to specify the mode of inheritance parameters. I used Merlin to calculate both 

single-point and multi-point LOD scores. I set model parameters for autosomal dominant 

disorders in the ‘parametric.model’ file. I set phenocopy rate - the probability of being 

affected if carrier of two  wild-type alleles, P(affected/aa) - equal to 0.001 and penetrance - 

the probability of being affected if carrier of at least a mutated allele A, P(affected/aA) and 

P(affected/AA) - equal to 0.99.  

 

2.1 Fine mapping 

To better define the critical region identified in the CVID family, 10 dinucleotide repeats were 

typed in the available samples: D3S1262, D3S3570, D3S3600, D3S1580, D3S1294, 

D3S1314, D3S2747, D3S2418, D3S2748, D3S1262. Primers for all markers were prepared 

by labeling the forward primers with FAM fluorescent dye. PCR were carry out under 

standard conditions. Amplification product were loaded in an automated sequencer AB3730 

and allele size defined using the Genescan software. 

 

3. CNVs analysis 

Affymetrix 6.0 genotyping data sets from the six probands with Noonan syndrome and their 

parents were also analyzed for CNVs using a commercial software package (Partek Genomics 

Suite; Partek Incorporated, St. Louis, MO).  Raw intensity signals data in form of .CEL files 

were normalized, then a CNV was defined as a genomic region of consistent copy number 

variation spanning ten or more adjacent SNPs. Moreover, the CNV calls were required to 

have LOD scores (probability of the segment being the stated copy number versus the copy 
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number of the flanking region) ≥5 for inclusion. In order to validate de novo CNVs found in 

Noonan cases, quantitative PCR was performed using the TaqMan® PCR kit with a standard 

protocol, in conjunction with the 7900HT Real-time PCR system from Applied Biosystems 

(ABI, Foster City, California, USA). Primers and probes (probe set) were designed using 

Primer Express® software from ABI. Test probe sets were designed to be within each 

respective CNV to be validated. 

 

4. Homozygosity mapping analysis 

An alternative to linkage analysis in consanguineous families is homozygosity mapping. 

Homozygosity mapping is not a statistical measure, but rather an observation of the 

homozygous identical-by-descent regions in an individual genome. I performed homozygosity 

mapping with the Runs of Homozygosity utility implemented in PLINK [54]. This algorithm 

takes a window of X SNPs and slides this across the genome. At each window position 

determine whether this window looks 'homozygous' enough (i.e. allowing for some number of 

hets or missing calls). Then, for each SNP, calculate the proportion of 'homozygous' windows 

that overlap that position.  

The exact window size and thresholds, relative to the SNP density and expected size of 

homozygous segments, is obviously important: sensible default values are supplied for the 

context of dense SNP maps. In general, this approach will ensure that otherwise long runs of 

homozygosity are not broken by the occasional heterozygote.  

The general command is the following: 

plink –bfile mydata –homozyg 

 

And to define the 'window' that slides across the genome I used the options: 

 (to define the sliding window) 

--homozyg-window-kb 5000 

--homozyg-window-snp 50 

 

(to set the number of heterozygotes allowed in a window) 

 --homozyg-window-het 1 
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(to set the number of missing calls allowed in window) 

 --homozyg-window-missing 5 

 

(to define the proportion of overlapping windows that must be called homozygous to define 

any given SNP as 'in a homozygous segment') 

  --homozyg-window-threshold 0.05 

While to define the final segments that are called as homozygous or not, I used: 

  --homozyg-snp 100 

 --homozyg-kb 1000 

 

And to specify the required minimum density  

 --homozyg-density 50 
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RESULTS AND DISCUSSION 

The total set of sequenced exomes comprised 29 individuals. Before aligning the sequenced 

reads to the reference genome, all the samples were evaluated with FastQC. All the statistics 

passed the quality check (Figure 13). Using Nimblegen SeqCap EZ Exome as enrichment 

platform, I obtained a mean total of 7.9 Gb of sequence per individual as paired-end 76 or 101 

bp reads from one lane of an Illumina Genome Analyzer II and HiSeq 2000 and a mean 

coverage of more than 100 fold, with 68.13% of bases mapping to the targeted exome (Table 

5). The enrichment of reads that unambiguously mapped to regions outside the targeted bait 

intervals was approximately 9.3%, a percentage that correlated strongly with the general 

enrichment trend. Reads generated by hybrid selection tend to extend into sequences beyond 

the target region and the longer fragment library is, the more of these “near-target” sequences 

will be recovered. Moreover, off-target regions may be enriched if there is high sequence 

similarity between those regions and bait regions. In fact, a higher fraction of off-target reads 

mapped to repeat elements and segmental duplications than did on-target reads. 

BWA mapped 99% of reads to human DNA; 98.6% of the targeted bases were covered at 

least once, and 96.8% showed a coverage greater than 10 folds.  A major consideration in data 

analysis is the coverage needed to reliably identify sequence variants, which depend on 

multiple factors, such as the nature of the region of interest, the method used for targeted 

enrichment. I discarded reads with identical start and end sites. In fact, one technical artifact 

of capture-sequencing procedures is the generation of duplicate DNA sequencing reads that 

represent the repeated sequencing of copies of the same molecule. Detection of the duplicate 

reads by computational analysis is not trivial and generally relies on observation of the 

alignment positions. The presence of duplicate clones significantly influences the randomness 

of the sequencing process: some regions will have an unexpected high depth. This can also 

result in large frequency differences between the two alleles of an heterozygous site. 
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(Continued to the next page) 

(C) Per base sequence content 

(B) Per sequence quality 

(A) Per base quality 
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(F) Per base N content 
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Figure 13. Graphical outcome of the FastQC analysis for sample S1. 

(I) Kmer profiles 

(H) Duplication level 

(G) Sequence lenght distribution 
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Although enrichment efficiency is a function of read-depth, it does not necessary correlate 

with the ability to identify variants. SNPs represent the most numerous sequence variations in 

the human exome [55] and their accurate and comprehensive identification is a major goal of 

exome sequencing. To evaluate the generic SNP detection performance, I called variants in 

each dataset using GATK and, when possible, I compared the results analyzing the same 

samples with the Affymetrix 6.0 SNP Chip. Heterozygous positions in the chip were 

compared to the genotype calls in the exome sequencing data with a Phred-based quality 

score ≥30: the concordance rate was 99.5%. All nonconcordant genotype calls were calls of 

homozygous reference and SNP chips also have their own error rates that could account for 

some of the discordances. 

 

Feature Average 

Total Gb content 7.9 Gb 

Mean coverage 100.1X 

% on target 68.13% 

Paired reads duplicate 6.8% 

Mean error rate 0.56% 

Table 5. Summary of original exome sequencing data obtained on average per sample. 

 

Identification of disease-causing gene among the variants generated by exome sequencing 

requires the separation of candidates with high pathogenic potential from variants that have a 

low-probability for disease causation. Biological source of low-interest variants include both 

common and rare population variation. On the other hand, high throughput sequencing 

techniques also generates unimportant variants in the form of genotype false positives. Errors 

can arise from biases in the library construction or errant polymerase reactions [56], difficulty 

making genotype calls at the end of short reads, loss of synchrony among DNA sequencing 

reactions within a cluster [57] or manufacturer/platform-specific mechanistic problems [58].  

The errors occurred during sequencing often are not random; this is especially true for low 

quality bases and those near the 3’-end of reads. Illumina sequencing technology uses two 

lasers to excite the dye attached to each of the four nucleotides: A and C use the same laser, 

while G and T use another laser. As result,  A-C and G-T substitution errors are significantly 

overrepresented. 
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Another problem is the misalignment of short reads to a reference sequence: since NGS read 

lengths are quite short, there is a higher probability of incorrectly mapping reads to loci with 

minimally divergent sequences, thus creating incorrect SNP calls [33]. Moreover, the 

reference sequence itself may be an additional source of variants: for some base positions, the 

reference sequence specifies a minor allele in most large human populations. Such biases 

occur because of the limited number of individuals on which the original reference sequence 

was based, sequencing an alignment errors. As a result, the NCBI human genome reference 

sequence includes minor or unique variants and, possibly, disease-causing mutations [59]. 

A transition mutation involves a change between two purines or two pyrimidines, while a 

transversion mutation involves a change from pyrimidine to purine or vice versa. This makes 

a transversion event twice as favourable as a transition event for any random mutation. Hence, 

the transition/transversions ratio (Ti/Tv) is a critical parameter for systematic errors in the 

sequencing technology, alignment artifacts and data processing failures. In my study, there 

was a slight increase in G→A/C→T transitions and slight decrease in non-G→C/C→G 

transversions because in the Nimblegen enrichment platform a larger percent of its target 

bases are in coding regions, which have a higher GC content and therefore different 

nucleotide substitution rates from the rest of the genome [60]. The Ti/Tv of total variants 

ranged from 2.53 to 2.67 and was slightly lower than estimates of 2.8 from the exome based 

on 1000  Genome data [61]. 

Among the sequenced samples, I found a mean of 19,279 exomic variations from the 

reference sequence per subject (Table 6). These variants included 18,871 coding SNPs, of 

which there were 8,918 missense variants, 85 premature termination codons, 79 canonical 

splice site variants and 9,789 synonymous substitutions. Splice sites included the 20 bp within 

exon boundaries (10 bp intronic and 10 bp exonic for each exon boundary). Small insertions 

and deletions (indels) were detected at a frequency of 12.5-14.5% that of SNPs. As expected 

[62], the frequency of indels present in the protein coding segments was much lower than in 

the total covered regions, which contains introns, UTRs and intergenic sequences. There was 

a strong bias toward indels of a size equal to multiple of three bases in coding regions. This 

pattern was presumably due to selective pressure against deleterious frameshift mutations in 

the coding regions. 
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Variant type  Mean number of coding variants 

 Total variants  

Missense 8918 

Nonsense 85 

Synonymous 9789 

Splice 79 

Indels 408 

Total 19279 

 Novel variants  

Missense 162 

Nonsense 2 

Synonymous 103 

Splice 3 

Indels 122 

Total 389 

 Non-novel variants  

Missense 8756 

Nonsense 83 

Synonymous 9686 

Splice 76 

Indels 286 

Total 18887 

Table 6. Mean outcomes from exome analysis. 

 

As thousands of single nucleotide variants and short indels have been detected in the 

sequencing of the exomes, I applied multiple robust filtering criteria to discern the causal 

variants (Table 7). I mainly focused on nonsynonymous variants, splice acceptor and donor 

site mutations and short coding insertions or deletions (indels), anticipating that synonymous 

variants would be far less likely to be pathogenic. Nonsynonymous mutations and splice-site 

disruptions are often assumed to be deleterious, but have a broad range of potential fitness 

effects to be evaluated.  

Since I was studying rare pathogenic conditions, I also predicted that the putative causal 

variants would be as rare and therefore likely to be previously unidentified in public databases 

or control sequencing data, such as dbSNP, 1000 Genomes project and Exome Variant Server. 

However a caveat to note is that phenotypic information is not always available for the 

samples used in these data sets, and it is possible that pathogenic mutations are present in 
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them. Particularly, in case of recessive mutations there is a chance that a normal carrier could 

have been genotyped and the recessive disease-causing mutation deposited in the data base. 

Thus, in the agammaglobulinemia study I envisaged this possibility. 

As homozygosity mapping in the consanguineous family, integration with linkage data had 

greatly facilitated the discovery of candidate genes in the families analyzed because it 

narrowed down the searching space. Moreover, sequencing multiple individuals from one 

family allowed me to hypothesize that in autosomal-dominant pattern – as in Teebi syndrome, 

ASD and CVID - all affected members should share the same causal variants. 

To account for genetic and phenotypic heterogeneity in Noonan syndrome approach, I applied 

a less stringent strategy looking for candidate genes not only seen in all or in a subset of 

affected individuals, but also arisen de novo, unique to each case. 
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Mendelian disorder and 

sample 

Variant filtering methodology and 

analysis strategies 
Major results 

 Exome sequencing of unrelated individuals 

Noonan syndrome  

Six unrelated parents-child trios 

- Focused primarly on heterozygous 

nonsynonymous coding variants 

- Removed presumably common 

variants 

- To allow for genetic heterogeneity, 

looked for de novo variants, unique 

to each trio 

- in trio NS01 identified a nonsense 

mutations in FOXC2, associated to 

LD  

- in trio NS07 identified a del16p11.2  

already described as pathogenetic 

- in trio NS06 identified a candidate 

variant in PPP1R26 to be screened in 

a larger cohort of patients 

 Exome sequencing in families with linkage analysis 

Teebi syndrome 

Three affected individuals  

- Performed linkage analysis using 

multiple individuals from the 

pedigree and found 5 regions with 

significant positive LOD score 

- Focused primarily on exomic and 

flanking intronic variants within the 

putative linkage regions 

- Resulted in a list of 4 novel shared 

variants: 1 intronic, 1 in an evolving  

pseudogene and the other 2 already 

found in public databases 

ASD 

Four affected individuals 

- Considered primarly all 

nonsynonymous coding variants 

- Removed presumably common 

variants 

- Focused on variants in the linkage 

candidate region  

- Restricted the variants to those 

shared among all samples in 

heterozygous state, according to the 

inheritance pattern 

 

- Identified a missense mutation in 

SCAMP2  

- Confirmed the cosegragation of the 

candidate variant with the phenotype, 

allowing incomplete penetrance 

CVID 

Three affected individuals  

- Considered primarly all 

nonsynonymous coding variants 

- Removed presumably common 

variants 

- Focused on variants in the linkage 

candidate region 

- Restricted the variants to those 

shared among the affected 

individuals in heterozygous state, 

according to the inheritance pattern 

 

Not found any rare heterozygous 

variants  in the linkage region shared 

among the affected members of the 

family 

 Exome sequencing coupled with homozygosity mapping 

Agammaglobulinemia 

One individual from a 

consanguineous family 

- Focused on variants in the six 

homozygous segments 

- Considered primarly all 

nonsynonymous coding variants 

- Included the novel and low-

frequency (<0.001) variants already 

reported  in control databases 

 

- Identified a homozygous variants in 

BNIP1 

- Confirmed the inheritance of each 

allele in the affected  siblings from 

each parent 

Table 7. Summary of the variant filtering methodology, analysis strategy and major results according to 

different study designs. 
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 NOONAN SYNDROME 

Noonan syndrome (NS, OMIM 163950) is a pleiomorphic and genetically heterogeneous 

autosomal dominant disorder predominantly characterized by distinctive facial dysmorphism, 

congenital heart defects, postnatally reduced growth, ectodermal and skeletal defects and 

variable cognitive deficits. 

NS is caused by germline mutations that affect components of the RAS-MAPK pathway, 

accounting for approximately 70% of affected individuals [63]. To date, all mutations have 

had complete penetrance. As with most human autosomal dominant disorders, 1/3-1/2 of 

cases arise through de novo mutations.  

In the Noonan project, I evaluated the use of Next-generation sequencing to provide genetic 

diagnosis using six parent-child trios in which the child had Noonan syndrome due to 

unexplained molecular mutations. Importantly, the patients were chosen to be representative 

of the 30% of patients with clinical diagnosis of NS but without mutations in the known genes 

previously associated to the disorder and they were not selected for phenotypic homogeneity. 

The rationale for this approach was the ability to reduce the number of candidate variants that 

we expected to detect in the affected individual to only those that were not observed in either 

parent. For autosomal dominant disorders, this strategy can discover de novo coding variants, 

as neither the parent is predicted to have a mutation that causes a fully penetrant dominant 

disorder [64].  

Parental and proband alignments were examined for all potential de novo variants. The 

majority was ruled out for one of the following reasons: low coverage in the parents (<10X), 

variant was visibly present in parental alignments by not called by GATK, alignments 

presented multiple mismatches in same read or the variant was at the very end of reads in 

probands and/or parents. 

After the filtering procedure, I found a possible candidate variant in one case, a causative 

mutation in FOXC2 and a chromosomal deletion already associated to other diseases in two 

distinct probands, and no candidate gene containing previously unknown coding, novel, de 

novo, heterozygous variants in the remaining three trios. 

The putative candidate variant in trio NS06 was a de novo Serine to Leucine substitution at 

position 1161 in one of the regulatory subunits of the protein phosphatase 1. PPP1R26 shows 

ubiquitous expression, which is consistent with the multisystemic defects in individuals with 

Noonan syndrome. Relatively little is known about the function of the encoded protein, 
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except that it seems to inhibit the phosphatase activity of protein phosphatase 1 (PP1) 

complexes, positively regulating cell proliferation [65]. A serine phosphorylation site was 

predict at this position by several in silico predictor tools, such as NetPhos 2.0 Server 

(http://www.cbs.dtu.dk/services/NetPhos/). 

Even if the functional role of the variant in the Noonan pathology do not appear so clear from 

what we know about the PPP1R26 protein, since it has been proven that in a given trio the 

overall rate of de novo germline mutations is very low [66], it would be worth to further 

screen the candidate gene in a cohort of cases with clinical diagnosis of Noonan syndrome 

without mutations in known genes already associated to the disorder. In fact, the finding of 

independent de novo mutations in the same gene among even a small number of affected 

subjects would constitute compelling evidence of disease causation.  

More interesting, a de novo non-synonymous mutation was identified in FOXC2 in trio NS01, 

resulting in a premature truncated protein at amino acid position 99 (Y99X), confirmed by 

Sanger sequencing. This variant has already been reported to be causative in Lymphedema 

distichiasis syndrome (LD, OMIM 153400), a clinically heterogeneous and rare 

developmental disorder [67]. LD is characterized by lymphedema of the limbs with variable 

age of onset and double rows of eyelashes (distichiasis). There is a wide variation of 

associated secondary features including cleft palate and extradural cystis. Some of the patients 

with a well characterized FOXC2 lesion have complex congenital heart disease and ptosis, 

suggesting additional overlap with Noonan syndrome [68]. 

At the first clinical inspection, the proband presented the typical features of Noonan syndrome 

including facial dysmorphism (hypertelorism, epicanthic folds and downward slanting 

palpebral fissures, low-set posteriorly rotated ears and a low posterior hairline), webbed neck, 

pectus carinatum superiorly and pectus excavatum inferiorly and lymphedema of the limb. 

After identification of the mutation in FOXC2 suggested the diagnosis, a follow-up clinical 

evaluation revealed also mild distichiasis, further confirming the molecular indication for the 

diagnosis of LD. The phenotypical differentiation between Noonan and LD syndrome is quite 

difficult, as in both conditions a large variety of common signs, as webbed neck, 

lymphedema, ophthalmic and heart deformities, are known. However, distichiasis is only 

found in LD. Therefore, my data suggest that in all cases with Noonan-like features and 

lymphedema, lacking in a proven direct check for distichiasis, LD should always be 

considered as a differential diagnosis. For this reason, I screened 6 additional Noonan patients 
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with lymphedema, but they did not show any mutations in the entire coding sequence of 

FOXC2.   

A parallel SNP-array analysis on the NS07 trio revealed a de novo 500-kb deletion on 

chromosome 16p11.2 in the affected proband. This alteration was first described in 2010 [69] 

and a more accurate clinical investigation on the affected offspring revealed an effectively 

Noonan-like phenotype, which perfectly fit the main symptoms associated to the deletion. 

Although prenatal history, facial dysmorphism, post natal sucking difficulty, obstructive 

hypertrophic cardiomyopathy and Chiari malformation type 1 alone were suggestive for NS, 

it emerged that together with other peculiar symptoms, such as macrocephaly, behavior 

disorders (attention deficit, speech delay) and syringomyelia, the phenotype was strictly due 

to the deletion, as already reported [70]. 

I found causal or candidate variants in ½ patients and in the two cases (NS01 and NS07) 

where we found a clear cause of the condition, this conclusion depended on the knowledge of 

the involvement of the variants in other Mendelian diseases. In particular, the FOXC2 case 

together with that of the 16p11.2 deletion illustrate how that 30% of Noonan patients lacking 

in the molecular diagnosis could include a broader range of  Mendelian conditions and shows 

how a wrong diagnosis can easily be corrected by whole-exome sequencing. 

There are many reasons for having missed the causal variants in half of the trios. One 

potential explanation includes the fact that NS is genetically heterogeneous and it is hard to 

identify an heterozygous de novo mutation with only few affected individuals: heterogeneity 

clearly increases the number of candidate genes that must be considered.  

On the other hand, it is possible that a mutation was located in a poorly covered exon and thus 

escaped detection. In fact, I achieved a coverage of the targeted region for up to about 70% 

for each sequenced exome. If the mutations were located in poorly covered exons, the 

candidate gene would falsely be removed from further consideration.  

Beside the fail in detecting the causal variants because of missing sequence or annotation, 

another important factor is that we don’t have a comprehensive understanding of the function 

of most genes; it is also possible that causal variants may exert their effects through more 

complex inheritance patterns. Alternative models of inheritance include: 

1) X-linked inheritance: two of the three affected probands sequenced were male, so I looked 

for recessive variants on chromosome X passed from the mother to the child; 

2) Autosomal recessive model: 

- simple: I looked for homozygous variants in each child inherited from both parents 
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- compound heterozygosity, which refers to the presence of two different heterozygous 

variants occurring in two positions in the homologous chromosomes. There are two possible 

combinations: 

      - the child inherited a variant from each parent 

      - one variant was inherited from a carrier parent and the other one arised de novo. 

Analyses founded on these alternative inheritance models still failed to identify causative 

variants in the three remaining trios.  

 

 

TEEBI SYNDROME 

Teebi syndrome (TS, OMIM 145420) is a rare condition first described in 1987 [71] 

characterized by hypertelorysm with a facial appearance that can resemble craniofrontonasal 

dysplasia, limb anomalies, urogenital anomalies, cardiac defects and umbilical hernias. The 

facial features are striking and include a prominent forehead, pronounced ocular 

hypertelorism, heavy and broad eyebrows and a high and broad nasal bridge. 

Autosomal dominant inheritance has been established on the basis of male-to-male 

transmission, an equal number of affected males and females and an absence of more severely 

affected males compared to females. In cases where chromosome analysis has been 

performed, no cytogenetic abnormality has been identified and the molecular genetic basis for 

TS remains unknown [72].  

I analyzed a moderate-sized multi-generational kindred with several cases of TS with a  

substantial phenotypic heterogeneity and a strongly suspected incomplete penetrance of the 

causative allele. I sequenced the exomes of three individuals with clinical diagnosis of TS, 

who were as far apart as possible in the pedigree in order to minimize the number of shared 

variants among the exomes. 

Again, I focused my analysis primarily on nonsynonymous variants, splice-site mutations and 

coding indels shared by all three samples because the disease is autosomal dominant, rare and 

they are relatives, so it is likely that their causative mutation was inherited from a common 

ancestor. 

There were only three missense mutations shared in the three exomes (Table 8), all confirmed 

by direct sequencing. Then, I checked the segregation of two of the variants codifying for 

functional proteins among all members of the family whose DNA was available. I found that 
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the variant in RBM28 was heterozygous in all affecteds, while among the three unaffected 

individuals analyzed, only one showed the variation, in accordance with the incomplete 

penetrance model suggested from the pedigree structure. But the RBM28 variant was also 

been reported at low frequency in control databases, strongly suggesting that it was a rare 

polymorphism. The variant in RSPH1 was reported to be homozygous in two cases, thus its 

causative role in the disease was excluded. In fact, it was already found in the control 

population at a frequency higher than 9%.   

 

Gene Position (hg19) Effect Function 

RBM28 Chr7:127,950,437-127,983,962 missense p.M243L 
Nucleolar component of the spliceosomal 

small nuclear ribonucleoprotein (snRNP) 

complexes 

RSPH1 Chr21:43,892,597-43,916,401 missense p.G248R Male meiotic metaphase chromosome-

associated acid protein 

TYW1B Chr7:72,023,729-72,298,813 missense p.G27S 
This locus appears to be an evolving 

pseudogene, but may still be functional in 

some members of the population 

Table 8. Final candidate SNPs in Teebi syndrome study. 

 

The exome sequencing data for the Teebi family were analyzed in parallel at Yale University 

by R. Lifton’s group. This analysis indicated an intronic variation in PTPRZ1 as the only 

novel heterozygous variants shared among all three affected individuals. This variant was not 

a good disease causative mutation because it was intronic, localized 36 bp upstream of exon 

14, far from the splice-site region. Of interest, however, this variant resided on chromosome 

7, about 6 Mb away from the variant in RBM28, showing the same pattern of segregation 

among the family. Taken together, these results indicated possible genetic linkage of TS to 

this genomic locus. In order to delineate the extension of the putative linkage region, as a first 

step I used the exome data for known SNPs as linkage markers; in this way I was able to 

delineate a region in which all three affecteds shared at least one allele for each marker. 

   As validation, I performed linkage analysis using multiple individuals from the pedigree (7 

affecteds and 3 unaffecteds). After genotyping with a set of about 900,000 SNPs, multipoint 

linkage analysis was performed using the Merlin linkage software assuming a rare 

susceptibility allele (frequency 0.0001) and a dominant model with reduced penetrance (set at 
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0.8). Setting the minimal inter-marker distance at 0.5 cM, I obtained a map of 200,000 SNPs. 

Allelic frequencies were those found in the general population. Five candidate regions with 

positive LOD scores were found. In particular, those on chromosomes 10 and 18 reached 

scores higher than 2, evidence for suggestive linkage. Of note, I confirmed the shared region 

on chromosome 7 because it overlapped almost perfectly with that delineated by exome data 

(Figure 14).  

 

 
(A) 

   

(B) 

                 

 
 

Figure 14.  (A) Maximum LOD scores across the genome. (B) Extension of the putative linkage region on 

chromosome 7 according to exome processed data (red) and classical linkage analysis (blue). 

 

 

No causative mutation in the linkage intervals was identified by exome sequencing, even after 

deeper analysis of the candidate regions. Several reasons may explain the failure to identify 

the gene responsible for Teebi syndrome in this family, including the inability to capture 

regulatory or evolutionary conserved sequences in non-coding regions and, most significantly, 

incomplete capture or inadequate sequencing depth of all target sequences.  

 

 

Chr  Max LOD  Mb tot  Region  

6  1.85  3.66  6p25  

7  1.85  12.9  7q31-32  

8  1.85  8.73  8p23-22  

10  2.53  16.14  10q21-22  

18  2.48  1.73  18q22.3  
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ATRIAL SEPTAL DEFECT 

Atrial septal defect (ASD) is one of the most common types of congenital heart diseases, 

accounting for about 33% of all congenital cardiovascular deformities, and is associated with 

a significant increase in the morbidity and mortality of affected individuals. ASD is clinically 

classified into 5 types by whether they involve other structures of the heart, but in general it is 

defined by an anatomically deficient interatrial septum allowing blood to flow directly 

between the left and right atria. Although the aberrant development of the atrial septum is 

implicated in a heterogeneous and complex biological process associated with environmental 

and genetic risk factors, accumulating evidence indicates that genetic defects play important 

roles in the pathogenesis of the disease. ASD is genetically heterogeneous: mutations in 

transcription factors, such as GATA4, GATA6, NKX2, TBX5 and TBX20, and cardiac 

structural proteins, such as MYH6 and ACTC1, were identified in familial cases. 

Nevertheless, the molecular etiology responsible for ASD in most affected individuals 

remains to be identified [73].  

I used a combined strategy of exome sequencing and linkage analysis to identify a novel ASD 

causative gene in an American four-generation ASD family. Sequencing multiple affected 

individuals from one family allowed to hypothesize that all affected individuals should share 

the same causal variant, as ASD was inherited in an autosomal-dominant pattern in this 

family.  

To localize the disease-causing gene, after exclusion of known ASD loci, previously a 

genome-wide linkage analysis using multiple individuals in the family was performed, which 

led to the identification of a single shared region on chromosome 15 (q23-q24.3) with a LOD 

score of 2.8 (This locus was found to span about 6 Mb of genomic DNA and 

include 52 reference genes. Then, I sequenced the whole exome of 4 affected individuals in 

the family. 

Although this study applied almost similar variant filtering strategies as with the Teebi 

analysis, comparison of the exome data among the four cases to find the shared variant in the 

linkage region was sufficient to identify SCAMP2 as the sole candidate gene containing a new 

nonsynonymous variant (p.R292Q) predicted to be possibly damaging with a score of 0.818 

(sensitivity 0.84; specificity 0.93) by PolyPhen-2 v2.1. 

Genetic scanning of the family members available displayed that the gene variant we found 

was  in the heterozygous state in all affected and among five unaffected subjects, two of 
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which obligated carriers,  in accordance with the incomplete penetrant model suggested from 

the pedigree structure.  

SCAMP2 encodes a 329-amino acid secretory carrier membrane protein which shows the 

highest expression in heart, placenta, and skeletal muscle [74]. It is not well characterized on 

the functional side, but it seems to act as a recycling carrier to the cell surface in post-Golgi 

recycling pathways. 

As a further test of the significance of the variant found, I amplified and Sanger sequenced all 

9 coding exons and associated splice sites of SCAMP2 in an additional cohort of 54 

individuals with a similar phenotype, but unfortunately the screening did not revealed any 

pathogenic mutations within the coding region of the gene. 

This study was in partnership with the Pediatric Cardiac Genomic Consortium (PCGC), a 

group of clinical research teams collaborating to identify genetic causes of human congenital 

heart disease and to relate genetic variants present in the congenital heart disease patient 

population to clinical outcomes, which is currently involved in ongoing experiments to verify 

if the candidate genetic variant may cause the disease and in a mutational screening on a 

larger cohort of patients, since the need for functional work will decreases as the same variant 

or different nonsynonymous variants are shown to occur in multiple patients with similar 

presentations. 

Functional analyses of the candidate variant may ultimately establish SCAMP2 as a new gene 

responsible for dominantly inherited ASD. To date, there is not yet sufficient arguments on 

the functional effects of SCAMP2 mutations in congenital heart defects and further work will 

be required to determine the molecular mechanism by which SCAMP2 contributes to the 

formation of aberrations in the atrial septum. 

 

COMMON VARIABLE IMMUNODEFICIENCY 

Common variable immunodeficiency (CVID) is a clinically and genetically heterogeneous 

group of disorders characterized by antibody deficiency, hypogammaglobulinemia, recurrent 

bacterial infections, and an inability to mount an antibody response to antigen. The defect 

results from a failure of B-cell differentiation and impaired secretion of immunoglobulins. 

CVID represents the most common form of primary immunodeficiency disorders and is the 

most common form of primary antibody deficiency [75]. The heterogeneity of the CVID 

phenotypes suggests a complex etiology, which is likely to include different monogenic 
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defects, as well as the combined effects of several susceptibility alleles together with 

environmental factors, including chronic infections. The majority of CVID cases are sporadic; 

approximately 20% are familial with a predominance of autosomal dominant over recessive 

patterns of inheritance [76]. Rare autosomal recessive mutations in ICOS, BAFF-R, CD19, 

CD20, CD81 coding genes have been recently reported and mutations in the TACI gene – 

TNFRSF13B - have been found in about 15% of cases. However, the underlying genetic 

defects remain unknown in the majority of cases [77]. 

In order to identify genetic variants responsible for CVID, genome-wide linkage scan was 

performed in a five-generation family with autosomal dominant inheritance of the disease.  

Linkage analysis revealed a single shared region on chromosome 3q27.2-29 flanked by SNP 

markers  rs62291969 (proximally) and rs3219697 (distally) with a maximum LOD score of 

3.9 at marker rs3221020, while no other chromosomal loci achieved a LOD score higher than 

2.0. The linkage result was further confirmed using ten additional microsatellite markers. The 

highest probability haplotype in the CVID pedigree was reconstructed using the Haplotyping 

option of Merlin and two key recombinant events were identified: recombination between 

D3S2748 and D3S1265 in individual IV-11 set the telomeric border on D3S1265; another 

recombination event was present between D3S3570 and D3S3600 in patient II-2, mapping the 

disease centromeric border to marker D3S3570 and affected descendents III-2, IV-2 and V-1 

of this individual inherited this recombinant chromosome (Figure 15). According to these two 

key recombinations, a particular single haplotype, comprising identical alleles spanned by 

microsatellite markers D3S3570 and D3S1265 was identified to cosegregate with the disease 

phenotype in all examined affected family members with CVID. This locus was found to span 

9.2 Mb of genomic DNA and included 47 genes.  

One of the genes in the CVID locus is BCL6, mapping in the linkage interval between 

markers D3S3600 and D3S1580. BCL6 is involved in the gene regulatory network that 

controls the B cell terminal differentiation in the germinal center [78]. Since affected 

individuals may suffer from a block of the germinal center development, BCL6 might be a 

good candidate for CVID in our family. The analysis of the BCL6 gene was performed by 

direct sequencing of the 10 exons and exon/intron junctions on genomic DNA from two 

patients belonging to the family with recurrence of CVID. No causative alterations in the 

coding regions or in the splicing sites have been identified except a synonymous variant 

(p.N387N) reported at high frequency in the control population. 
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Then, I performed exome sequencing in three affected individuals whose overlapping 

haplotype produces the smallest shared genomic region.  

After a three-step filtering procedure to extract heterozygous variants located in the linkage 

region and with low frequency (<0.01) in the general population, I did not find any candidate 

disease-causing allele shared among the three affected subjects analyzed. Several different 

reasons for failing in the identification of a strong disease candidate mutation have been 

mentioned above in this chapter. Here, linkage analysis yielded a single convincing signal on 

chromosome 3, thus allowing the narrowing of candidate variants to only those that are 

located within the 9.2 Mb linkage interval. As in other whole-exome sequencing projects in 

autosomal dominant families, it could be expected to identify only a single candidate gene in 

the LOD score region. However, the fact that no mutation was detected highlighted that some 

causative variants could escape identification by exome sequencing simply because they lied 

outside the coding regions. In those projects in which the search for disease-related genes can 

be limited to a specific region, whole genome sequencing should be considered the strategy of 

choice to capture non-coding variations that might underlie human disorders. 
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Figure 15. Pedigree and haplotype reconstruction of the CVID family. The light blue bar indicates the haplotype 

assumed to carry the disease allele (markers  D3S3600, D3S1580, D3S1294, D3S1314, D3S2747, D3S2418, 

D3S2748, alleles 1-4-5-4-3-3-2). Recombinant chromosomes are colored accordingly to their chromosomes of 

origin. 
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AUTOSOMAL-RECESSIVE AGAMMAGLOBULINEMIA 

Agammaglobulinemia is a rare congenital immunodeficiency characterized by absence of 

circulating B cells and low or absent serum immunoglobulin levels. In 86% of cases, 

childhood-onset agammaglobulinemia is an X-linked condition (XLA) affecting male 

offspring. XLA is caused by mutations in BTK, which encodes a signaling molecule 

downstream of the B cell antigen receptor. In the remaining patients affected by the 

autosomal recessive form of the disease, mutations in the components of the pre-B cell 

receptor, such as heavy chain, lambda5, Ig or downstream signaling elements have been 

described, but there are also patients without a definitive genetic diagnosis [79]. 

Since exome sequencing has also been swiftly integrated with homozygosity mapping to 

accelerate the investigation of recessive disorders in consanguineous families [80], I 

combined homozygosity mapping and whole exome sequencing in a consanguineous Italian 

family, composed by two affected siblings from a first cousins marriage. A two-step approach 

have been applied: the first step used the genome wide SNP genotyping to identify 

autozygous regions to narrow down the search space for possible loci; the second step 

examined exome sequences to identify genetic variations at base-pair resolution. 

Genome-wide SNP genotyping was performed in the affected sisters using Affymetrix 6.0 

array, defining 6 homozygosity regions longer than 2 Mb in chromosome 2, 5, 6, 8, 11 and 22 

(Table 9).  

In order to identify the responsible variant, genomic DNA of one patient was evaluated by 

exome sequencing. The subsequent comparison with the homozygosity mapping results 

identify a total of 7 variants in the candidate regions. Among them, after filtering out variants 

already reported in SNP databases at a frequency higher than 0.005 and variants with un 

uncorrected segregation pattern in the family, there was only one homozygous 

nonsynonymous variant that was previously unreported on chromosome 5, located in exon 2 

of BNIP1 and representing a likely candidate (Table 10). The mutation was confirmed to be 

homozygous in both affected subjects and to be heterozygous in both parents using Sanger 

sequencing. In silico analysis of the p.R55H substitution was performed with different 

bioinformatics tools: both SIFT and PolyPhen2 predicted that the mutation is deleterious. 

Moreover, multiple alignment of homologs from several species showed that the arginine in 

that position was a highly conserved residue. 
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SNP_start SNP_end Pos_start Pos_end kb SNPs 

     Chromosome 2 

rs11894732 

rs4973472 

rs4075737 

rs12478296 

50,684,575 

232,550,160 

66,530,723 

243,048,760 

15846 

10498 

3774 

2487 

    Chromosome 5 

rs11749351 

rs4973472 

rs1423115 

rs12478296 

37,865,461 

167,749,878 

55,641,683 

176,040,365 

14436 

4290 

2950 

1358 

    Chromosome 6 

rs1264344 rs13201350 30,800,577 44,033,168 13232 3364 

    Chromosome 8 

rs7815277 rs9324551 131,960,656 142,562,774 10602 3283 

    Chromosome 11 

rs4930358 rs4980619 66,133,311 70,439,839 4306 598 

    Chromosome 22 

rs1006015 rs3761430 17,722,536 31,538,002 13790 3018 

Table 9 Results of the homozygosity mapping. 

 

Little is known about the exact function of the encoded protein in human biology, except that 

BNIP1 is a member of the BCL2/adenovirus E1B 19 kd-interacting protein (BNIP) family. It 

interacts with the E1B 19 kDa protein, which protects cells from virally-induced cell death. 

The encoded protein also interacts with E1B 19 kDa-like sequences of BCL2, another 

apoptotic protector. In addition, this protein is involved in vesicle transport into the 

endoplasmic reticulum and autophagy.  

A further suggestion to the involvement of BNIP1 in the pathogenesis of 

agammaglobulinemia came from the recent association of mutations in LRBA (LPS-

responsive vesicle trafficking, beach and anchor containing) with hypogammaglobulinemia 

[81]. As BNIP1, LRBA is more expressed in cancer cells and it has been suggested that the 

protein acts as a positive regulator of cell survival by promoting proliferation and by 

preventing apoptosis; in the published work, the authors showed that individuals with 
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homozygous LRBA mutations have severe defects in B cell development, due to increased cell 

death.  

Therefore, the next step will consist in the determination whether mutations in this gene might 

account for additional cases of agammaglobulinemia. In fact, a major problem in studying 

rare diseases is that one can never be entirely certain that a given gene is the sought after 

disease-gene until a second unrelated individual or family are described with a mutation in the 

same gene and a comparable phenotype. Since the mutation is predict to be very rare, I will 

primarily focus on products of consanguineous unions; then, I will use population-matched 

controls, i.e. unaffected individuals coming from the same geographical area, as filter for 

common regional variants.  

 

Gene Position Effect EVS freq 
1000G 

freq 
dbSNP ID Sanger confirmation 

HJURP Chr2:234,749,399 
missense 

H676R 
- - - 

Siblings homozygous 

Father homozygous  

C7 Chr5:40,977,888 
missense 

S308W 
- - - 

Siblings homozygous 

Mother homozygous 

BNIP1 Chr5:172,573,948 
missense 

R55H 
- - - 

Siblings homozygous 

Parents heterozygous 

DAAM2 Chr6:39,865,007 
missense 

I856T 
0.0041 0.0014 rs61748650 

Siblings homozygous 

Parents homozygous 

CUL7 Chr6:43,021,587 
missense 

G4S 
0.0003 - - 

Siblings homozygous 

Mother homozygous 

MICAL3 Chr22:18,364,065 
missense 

R749Q 
0.0004 - - 

Siblings homozygous 

Mother homozygous 

CLTCL1 Chr22:19,263,266 
missense 

V44F 
0.0055 0.0023 rs34869740 

Siblings homozygous 

Parents homozygous 

Table 10. Variant filtering results in the consanguineous family with agammaglobulinemia. 
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A NEW SNP CALLING PIPELINE 

Although methods for calling single nucleotides substitution are maturing, there is 

considerable room for improving efficient bioinformatics algorithms, necessary for analyzing 

the next generation sequencing data. Thus, I contributed to the development of a new tool for 

variant detection in deep sequencing datasets: MiST, the Mount Sinai SNP toolkit [82]. 

Several software pipelines that analyze the data from NGS are currently available: broadly, 

most approaches involve mapping the sequences to the reference genome to generate 

BAM/SAM files. These aligment files are subsequently analyzed to infer variants and SNPs 

[83]. 

In contrast, MiST  - a new variant calling platform building on a previously published tool, 

Geoseq [84] - closely mimics the experimental technique, using exonic sequences as bait to 

identify sequences that can potentially map to the exon. A subsequent fine mapping step, 

which aligns the selected reads against the exon, permits a more sensitive and accurate 

identification of SNPs and variants. This approach reduces the computational complexity and 

allows for more sensitive mapping.  

Our SNP calling pipeline is a six-step framework capable of discovering high-quality 

variation using diverse sequencing machines and experimental designs (Figure 16): 

1. Reference sequence pre-processing. The exons of RefSeq mRNAs from the latest 

build of the genome are retrieved from the UCSC genome browser 

(http://genome.ucsc.edu/), augmented with other exons that are on the target list for 

the capture kit. Exons with overlapping genomic intervals are merged into super-

exons. Each exon is extended by 70 bp on the 5’ and 3’ end to capture reads that can 

reach into introns (the length of extension depends on the average insert sizes, which 

is determined by the experimental protocol).  

We indexed sequence sets to facilitate rapid mapping, using Suffix-array 

implementation and BLAST [85]: the suffix-array index is used to rapidly find exact 

matches; the BLAST index is used to search for map locations with mismatches. 

2. FASTQ pre-processing. Sequences containing ambiguous bases (usually marked as 

Ns) or with stretches of poor sequence quality (any 16-nt window with an average 

quality score less than 10) are removed. If either of the reads in a read-pair fails the 

quality check, the pair is discarded. We do not consider the quality scores beyond this 

step because the quality values are inaccurate and difficult to correct as they are a 
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moving target with manufacturers upgrading their algorithms for quality score 

calculations. 

3. Sequence retrieval and filtering. Using Geoseq, tiles of a selected word size from the 

reference exon are used to retrieve matching reads from each of the subsets. Matching 

reads are then validated by identifying the approximate locus for each read-pair and 

keeping only those pairs that originate within a window (determined by the insert size) 

of the ends of the target exon. 

Matching reads are then validated by identifying the approximate locus for each read-

pair and keeping only those read-pairs that originate within a window (determined by 

the insert size) of the ends of the target exon. To determine the approximate location, 

up to four non-overlapping tiles (subsequences) with the same length as the Geoseq 

word size are chosen from each read in a pair, then the suffix-array index of the 

reference genome is used to retrieve all potential position for each tile, while tiles 

containing stretches of mononucleotide or dinucleotide repeats are discarded. 

Moreover, tiles with greater than five potential mappings to the genome are discarded. 

For the remaining tiles, a 500-nt window around each of the mapping positions is 

marked as potential origin of the read-pair. If the selected window does not contain the 

end of the target exon, or if multiple windows share the same maximum match-

number assigned to the read-pairs, the read-pairs are respectively discarded. 

The surviving read-pairs are split into their constituent reads and placed consecutively 

in a FASTA file in preparation for alignment.   

4. Alignment of reads to genomic fragments. Each read is aligned against the reference 

sequence for the genomic region containing the exon using BLAST, to create an 

accurate alignment. 

5. Variant calling. Using Sanger sequencing of the data from trios (parents and child), 

we found that the false positives predominated when the coverage was below 15 

and/or the minor allele frequency dropped below 0.2. Based on this experience, we 

require variants to have a coverage greater than 15X and a mutation (mismatch) 

frequency higher than 0.2.  Then, since the sequencing is independent of the strand, 

we expect approximately equal contributions from the two strands towards any variant 

call. As the depth of sequencing increases, the skew in contributions from the two 

strands becomes an indicator of a potential error. 

Clonal reads are identified and removed at this stage.  
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6. Variant annotation. We identify variants in our list that occur in dbSNP, 1000 

Genomes  or private collections to highlight the novel variants likely involved in rare 

diseases gene discovery. A potential difficulty in this process is that various databases 

reference different versions of the genomes. Thus, in order to be consistent, the 

variants are identified by their flanking sequence, 10 nt on each side. Variants and 

their host genes with known disease phenotype associations in dbGAP [86], OMIM 

(www.omim.org), PhenCode [87], SNPedia [88], and PharmGKB [89] are annotated. 

Missense variations are checked against the Polyphen predictions made on the UniProt 

protein database (www.uniprot.org) for severity of the mutation. Variants are also 

checked for their effect on protein function using a local installation of SNAP [90] and 

SIFT [91]. 
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Figure 16. The MiST pipeline is based on an exon-centric approach to process NGS data. Paralogous and clonal 

reads are removed before calculation of coverage and calling variants. 

 

The quality of this method has been evaluated processing by exome sequencing data from the 

same sample with GATK as well as our pipeline in order to compare and contrast the two 

approaches, after having genotyped it with a Human Exome SNP array. The GATK pipeline 

was the one implemented at the Yale genome center. We considered several features in 

GATK and MiST: 

- Total number of variants. MiST called more variants than the GATK pipeline, but also had 

more in common with dbSNP and the SNP array (Figure 17). 
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- Coverage on calls. We expected lower coverage on calls, on average, from MiST, compared 

to GATK, due to stringent handling of clonal/paralogous reads and this was confirmed by the 

distribution of coverage across variants common to both platforms. 

- Transitions (Ti) versus transversions (Tv). The ratio Ti/Tv is expected to be 2.0 for neutral 

SNPs. In coding regions this ratio has been empirically shown to be closer to 3.0 [92]. The 

majority of the variant calls are common to the two programs, which does not allow for major 

differences in these measures between them. 

 

                                             

Figure 17. Comparison of MIST and GATK. Each box has three set of numbers, which refer to variant calls 

unique to MiST, common to both platforms and unique to GATK, respectively. After the filtering procedure, 

there were 37 calls private to GATK that were not called by MiST due to the exclusive use of RefSeq by MiST, 

which misses potentially valid exons, but avoids the noise arising from many spurious exons.  
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We have proven as MiST is an efficient and sensitive platform for variant detection from deep 

sequencing, comparable to the more-commonly used programs: it can work on data derived 

from a variety of platforms and techniques and works well on both single and paired-end data 

from whole-exome capture and sequencing. Since MiST is highly configurable, it allow 

handling changes in the experimental protocol, such as insert sizes, to keep pace with the 

throughput of sequencing technologies. 
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