
Università degli Studi di Roma

“La Sapienza”
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A young specialist in English Literature
lectured me severely on the fact that
in every century people have thought
they understood the Universe at last,

and in every century they were proved to be wrong.
It follows that the one thing we can say about
our modern “knowledge” is that it is wrong.

My answer to him was:
≪When people thought the Earth was flat, they were wrong.

When people thought the Earth was spherical, they were wrong.
But if you think that thinking the Earth is spherical

is just as wrong as thinking the Earth is flat,
then your view is wronger than both of them put together.≫

Isaac Asimov
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Introduzione

La scoperta nel 1965 da parte dei due premi Nobel Penzias e Wilson della presenza
di una radiazione diffusa avente lo spettro di corpo nero a TCMB = 2.725K è la più
evidente conferma sperimentale della teoria del Big Bang. Poiché questo segnale, diffuso
in tutto il cielo, ha il picco di emissione a lunghezze d’onda millimetriche (ν = 70 ÷
200GHz ), viene chiamato radiazione di fondo cosmico a microonde (Cosmic Microwave
Background, CMB). Esso fornisce, assieme alle sue anisotropie, importanti indicazioni
sulle fasi primordiali e sull’evoluzione dell’Universo. La prima verifica sperimentale della
presenza di anisotropie nello spettro della radiazione di fondo cosmico si è avuta nel 1992
grazie a COBE, ma solo nel 2000 grazie agli esperimenti BOOMERanG e MAXIMA sono
state risolte con alto rapporto segnale rumore la anisotropie a scale inferiori al grado,
mentre nel 2003 è stata portata a termine dal satellite WMAP la prima survey ad alta
risoluzione angolare a tutto cielo.

Lo spettro della CMB può venire deformato a causa dell’effetto Sunyaev-Zel’dovich,
cioè all’interazione tra il gas caldo presente negli ammassi di galassie e la radiazione di
fondo cosmico. Inoltre, all’allontanarsi delle lunghezze d’onda di massima emissione della
CMB, il contributo della polvere interstellare ed il segnale di fondo dovuto a sorgenti non
risolte ad alto redshift sono dominanti. Quelli che a prima vista sembrano dei disturbi da
rimuovere, sono in realtà degli “strumenti astrofisici” molto utili.

L’esperimento OLIMPO (Osservatorio nel Lontano Infrarosso Montato su Pallone Ori-
entabile) si propone di indagare porzioni di cielo selezionate, alle frequenze ν = 143,
217, 353 e 545GHz, con risoluzione migliore di ∼ 5′. Esso è costituito da un telesco-
pio Cassegrain di 2.6m di diametro e da quattro mosaici di bolometri (uno per banda)
all’interno di un criostato ad 3He che permette di raffreddare i rivelatori ad una tempe-
ratura di 300mK. L’esperimento viene agganciato ad un pallone stratosferico, per effet-
tuare voli circumpolari a lunga durata (10 ÷ 15 giorni), il primo dei quali è previsto per
luglio 2008.

L’alta risoluzione angolare e l’ampio intervallo di frequenze coperte da OLIMPO per-
mettono di realizzare i seguenti obiettivi scientifici:

• Rivelare le anisotropie della radiazione di fondo cosmico ad alti multipoli (ℓ & 600):
misure di alta precisione sono state effettuate solamente con interferometri a basse
frequenze (ν ∼ 30GHz ) e con bolometri a 140GHz dal polo sud. Grazie alla mag-
giore sensibilità ed alla copertura spettrale molto più estesa, OLIMPO migliorerà
sensibilmente questa misura, che permette lo studio della coda di smorzamento dello
spettro di potenza angolare della CMB (Silk damping).
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2 Introduzione

• Misurare l’effetto Sunyaev-Zel’dovich dovuto agli ammassi di galassie: non è pos-
sibile studiare le caratteristiche di ammassi ad alto redshift da misure nei raggi X,
poiché il segnale è troppo debole. La peculiarità dell’effetto Sunyaev-Zel’dovich di
essere indipendente dal redshift dell’ammasso lo rende uno strumento fondamen-
tale per misure cosmologiche. Con esso si potrà fare una statistica più completa
degli ammassi e della loro formazione, da cui ricavare informazioni sui parametri
cosmologici.

• Studio della radiazione di fondo nel lontano infrarosso (Far InfraRed Background,
FIRB), dovuto a galassie non risolte ad alto redshift, con relative implicazioni
riguardo la formazione di galassie e l’epoca immediatamente successiva alla ricom-
binazione.

Durante questi anni di lavoro di ricerca nell’ambito del Dottorato in Astronomia, mi
sono occupato principalmente della progettazione, ottimizzazione, sviluppo e realizzazione
delle ottiche dell’esperimento; ho inoltre effettuato delle simulazioni atte a verificare la
capacità di OLIMPO di separare le diverse componenti astrofisiche nonché di distinguere
tra diversi modelli fenomenologici.

La tesi è articolata in sei capitoli, che affrontano le seguenti tematiche:

Capitolo 1 Introduzione teorica sui processi fisici rilevanti nelle bande osservate dall’espe-
rimento OLIMPO : la radiazione di fondo cosmico a microonde e sue anisotropie,
l’effetto Sunyaev-Zel’dovich, le polvere interstellare ed il fondo cosmico infrarosso
extragalattico.

Capitolo 2 Descrizione generale dell’esperimento OLIMPO : telescopio, modulazione del
segnale, criostato e rivelatori.

Capitolo 3 Analisi e simulazioni di diverse configurazioni ottiche: di ognuna vengono
mostrati vantaggi e svantaggi, sia da un punto di vista ottico che meccanico e realiz-
zativo. Sono infine state svolte ulteriori analisi sulla configurazione definitiva.

Capitolo 4 Progettazione e realizzazione meccanica delle ottiche e della scatola che dovrà
contenerle; successivamente si sono analizzate e pulite le loro superfici; infine, si sono
effettuati i test di allineamento.

Capitolo 5 Introduzione all’analisi in ottica Gaussiana e disegno del profilo delle antenne
che verranno usate nei mosaici di bolometri.

Capitolo 6 Descrizione dei modelli usati per simulare i processi fisici dominanti nei quat-
tro canali di OLIMPO, tenendo conto dei suoi parametri sperimentali; generazione
delle mappe e successiva separazione delle componenti; infine, analisi dei segnali
estratti e loro sensibilità alla variazione dei modelli usati.



Introduction

The discovery in 1965 made by the two Nobel prizes Penzias and Wilson of the presence
of diffuse radiation with a black body spectrum at TCMB = 2.725K is the most relevant
experimental verification of the Big Bang theory. Since this signal emits in the whole
sky and has its emission maximum at millimeter wavelengths (ν = 70 ÷ 200GHz ), it is
called Cosmic Microwave Background (CMB). It provides, together with its anisotropy,
significant information on the primordial phases and on the evolution of the Universe.
The first experimental proof of the presence of anisotropies in the spectrum of the cosmic
background radiation was achieved in 1992 by COBE. Only in 2000 CMB anisotropy was
resolved at angular scales below 1◦ with a high signal to noise ratio by the BOOMERanG
and MAXIMA experiments. The first high resolution all sky survey was completed in 2003
by the WMAP satellite.

The CMB spectrum can be deformed by the Sunyaev-Zel’dovich effect, i.e. the inter-
action between the hot gas present in the cluster of galaxies and the photons of the cosmic
background radiation. Moreover, at shorter wavelengths in respect to the CMB emission
maximum, the contribution of the interstellar medium and the background signal due to
unresolved sources at high redshift dominates over the CMB anisotropy. Those that at
a first sight look like nuisance foreground signals, are instead very useful “astrophysical
tools”.

The purpose of the OLIMPO experiment (Osservatorio nel Lontano Infrarosso Mon-
tato su Pallone Orientabile) is to observe selected portions of sky at frequencies ν = 143,
217, 353 and 545GHz, with an angular resolution better than ∼ 5′. OLIMPO is composed
of a Cassegrain telescope of 2.6m of diameter with four arrays of bolometers in the focal
plane, cooled at 300mK by a long duration 3He cryostat. The experiment is mounted on
a stratospheric balloon payload, and uses long duration (10÷15 days) circumpolar flights:
the first of them is foreseen for july 2008.

The high angular resolution and the wide range of frequencies covered by OLIMPO
allow to achieve the following scientific goals:

• Measuring CMB anisotropies at high multipoles (ℓ & 600). High accuracy measure-
ments have been done only with low frequency (ν ∼ 30GHz ) interferometers and
with bolometers at 140GHz from the south pole. Taking advantage of the wider fre-
quency coverage and of the highest sensitivity, OLIMPO will significantly improve
this measurement, which allows to study the damping tail of the angular power
spectrum of the CMB (Silk damping).

• Measuring the Sunyaev-Zel’dovich effect due to cluster of galaxies. It is not possible

3



4 Introduction

to study the characteristics of high redshift clusters from X-Ray data, since the signal
is too faint. The Sunyaev-Zel’dovich effect, instead, is independent of the redshift
of the cluster: thus, it is a fundamental tool for cosmological measurements. The
survey of a number of clusters by OLIMPO will permit a more complete statistical
analysis of the cluster distribution and of their evolution.

• Studying the Far InfraRed Background (FIRB), due to unresolved galaxies at high
redshift. This measurement will improve our knowledge of the galaxy formation
process, and in general of the epoch immediately following recombination.

During these years of Astronomy Ph.D. research, I worked mainly on the design, op-
timization, development and manufacturing of the experiment’s optics; moreover, I made
detailed simulations devoted to verify the capability of OLIMPO in separating the various
components and in selecting between different phenomenological models.

Thesis is subdivided into six chapters, discussing the following topics:

Chapter 1 Theoretical introduction to the physical processes producing relevant signals
in the wavelength bands covered by the OLIMPO experiment: the cosmic microwave
background radiation and its anisotropies, the Sunyaev-Zel’dovich effect, the emis-
sion of the interstellar medium and of the extragalactic cosmic infrared background.

Chapter 2 General description of the OLIMPO experiment: telescope, signal modula-
tion, cryostat and receivers.

Chapter 3 Analysis and simulations of different optical configurations: advantages and
drawbacks of each solution are pointed out, from both optical, mechanical and man-
ufacturing points of view. Finally, a detailed analysis on the final configuration is
reported.

Chapter 4 Design and mechanical realization of the optical components and box that
will accommodate them. Analysis and optimization of the surfaces; polishing of the
surfaces; alignment tests.

Chapter 5 Introduction to Gaussian optics analysis and design of the profile of the feed
horn arrays for all the bolometers.

Chapter 6 Description of the models of the physical processes considered to simulate
the signals in the four channels of OLIMPO, taking into account the instrumen-
tal parameters; generation of maps and subsequent components separation; finally,
analysis of the extracted signals and of their sensitivity to variations of the models
used.



Chapter 1

The microwave sky

Only two things are infinite:
the Universe and human stupidity,

and I am not sure about the former.

Albert Einstein

This chapter describes the origin and the resulting emission spectra for the different
components relevant in the sky at millimeter, submillimeter and far infrared bands (ν =
30 ÷ 3000GHz, λ = 10 ÷ 0.1mm).

The extragalactic sky has three main sources of emission: the Cosmic Background
Radiation (CMB) and its primary anisotropy, the emission from clusters of galaxies that
give rise to Sunyaev-Zel’dovich (SZ) effect and the Far InfraRed Background (FIRB) due
to unresolved point-sources. The cosmological window extends roughly from 1 to 5mm
(ν = 300 ÷ 60GHz ): at lower frequencies, interstellar emission of spinning dust grains,
bremsstrahlung and synchrotron dominate over the anisotropy of the cosmological back-
ground; at higher frequencies the emission of interstellar dust distributed in clumpy cirrus
clouds dominates the sky brightness even at high galactic latitudes.

In particular, I will focus on the signals that are preeminent in the wavebands of
the OLIMPO experiment and at the same time constitute its scientific goals: CMB
anisotropies, SZ effect, galactic dust emission and FIRB.

1.1 Cosmic microwave background

The cosmic microwave background, first discovered in 1965 by Penzias & Wilson, is
the main signal in the millimeter band. This radiation and its properties are the strongest
confirmations of the standard cosmological model that describes the physical evolution of
the Universe in terms of its general characteristics, of elements composition and formation
of structures.

5



6 1.1. Cosmic microwave background

1.1.1 The evolution of the Universe

The standard cosmological model assumes that the Universe evolves from a hot, dense
and uniform state (called Big Bang) to the present cold, low-pressure and inhomogeneous
state.

In the hypothesis of isotropic and homogeneous Universe (cosmological principle), well
verified on large scales (100Mpc or more; 1Mpc ≃ 3 · 1022m), the space-time metric which
describes an expanding Universe is the so-called Robertson-Walker metric. In spherical
coordinates:

ds2 = (c dt)2 − a(t)2
[

dr2

1 −Kr2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
(1.1)

where a(t) is the scale factor or expansion parameter, and K is the curvature parameter,
specifying the geometry of the Universe.

We introduce the redshift z = (a0 − a)/a, where a0 ≡ a(t = t0): it is used to express
the distance of the object that emitted the photons and the time at which photons are
emitted.

Einstein equations of General Relativity give the relation between space-time metric
and matter energy-momentum tensor Tij. Idealizing the primordial Universe as a perfect
fluid, which has an energy-momentum tensor Tij = diag (̺,−p,−p,−p) where ̺ is the
energy density and p the fluid’s pressure, and given the metric described in eq. (1.1), we
obtain the Friedmann equations whose solution is the evolution of the scale factor:

(
ȧ

a

)2

=
8π

3
G̺− Kc2

a2
(1.2a)

ä

a
= −4π

3
G
(
̺+ 3

p

c2

)
(1.2b)

here c is the speed of light, G is the Newton’s universal gravitational constant and ȧ/a = H
is called Hubble constant. In first approximation, we can say that this parameter describes
the Universe’s horizon dimension: if we assume that the Universe expands at a constant
speed equal to the speed of light, its horizon radius will be rHubble = cH−1 (this derives
from the Hubble law on galaxy recession v = Hd). Usually, the Hubble constant is
expressed as H = 100h km/s/Mpc , where h ≃ 0.7 includes the experimental uncertainty
on the estimate of H0 [53, 88, 118].

̺ includes the energy densities of the different components that constitute the Universe:
baryons ̺B, photons ̺γ , neutrinos ̺ν , cold dark matter ̺CDM and dark energy ̺Λ. The last
component was originally introduced by Einstein in eqs. (1.2) as a cosmological constant
Λ to allow for a steady state solution a(t) = const , even if Λ is not necessary in General
Relativity equations. Nowadays, this constant (called dark energy) has been re-introduced
to explain the results coming from supernovae and CMB experiments. Λ and ̺Λ are related
by:

̺Λ =
Λ

8πG
(1.3)

Every component follows energy conservation equation of a perfect fluid that is ex-
panding adiabatically [58]:

˙̺ + 3H(p+ ̺) = 0 (1.4)
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Considering that the equation of state of fluids is p = w̺, normalizing the energy
density to its present value ̺0, the solution of eq. (1.4) is:

̺ = ̺0

(a0

a

)−3(1+w)
(1.5)

with w different for the various components: non-relativistic matter, relativistic matter
and dark energy.

• Non-relativistic matter is made of baryons, cold dark matter and non-interacting
particles with velocities much lower than c. This component is well described by a
fluid with no pressure, i.e. w = 0, that leads to ̺ ∝ a−3.

• Relativistic matter is made of photons and neutrinos and has a pressure p = ̺/3
which gives ̺ ∝ a−4.

• In the standard cosmological model (called ΛCDM) the energy density of dark energy
is constant, which implies that w = −1. Anyway, there are models in which w is a
function of redshift.

Let us consider a galaxy that is at a distance r from us: it has a kinetic energy
K = m(H0R)2/2, while gravitational potential energy is U = −4πGm̺R2. The critical
energy density, defined as the density zeroing the total energy, is:

̺c =
3H2

8πG
(1.6)

It is worth noting that if ̺0 < ̺c the expansion will continue, otherwise it will collapse.
We define the density parameter:

Ωi =
̺i

̺c
(1.7)

where the index i represents the Universe’s components (i = B, γ, ν, CDM , Λ). We can
also introduce a density parameter regarding the curvature component:

ΩK =
K

a2H2
(1.8)

ΩK can be rewritten as ΩK = 1 − (ΩB + ΩCDM + Ωγ + Ων + ΩΛ) = 1 − Ω0, where Ω0 is
the total energy density of the Universe. Given eqs. (1.6) and (1.7), it is now evident the
meaning of the curvature parameter:

• Ω0 < 1 (
∑

i ̺i < ̺c) ⇒ K < 0 ⇒ open space, negative curvature.

• Ω0 = 1 (
∑

i ̺i = ̺c) ⇒ K = 0 ⇒ Euclidean space, flat curvature.

• Ω0 > 1 (
∑

i ̺i > ̺c) ⇒ K > 0 ⇒ closed space, positive curvature.

Considering eqs. (1.5), (1.6) and (1.7), eq. (1.2a) becomes:

H2 = H2
0

[
(ΩB + ΩCDM )

(a0

a

)3
+ (Ων + Ωγ)

(a0

a

)4
+ (1 − Ω0)

(a0

a

)2
+ ΩΛ

]
(1.9)
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It is also possible to introduce a density parameter for relativistic matter, ΩR = Ωγ +
Ων , and one for non relativistic matter, ΩM = ΩB + ΩCDM .

This set of quantities (called cosmologica parameters, see Tab. 1.1) are needed to de-
scribed the evolution of the Universe. Many recent experiments (among others BOOME-
RanG [24, 71], MAXIMA [67, 110], Archeops [4] and WMAP [3, 105]) measured cos-
mological parameters; they agree that Ω0 = 1, as predicted by inflationary theory (see
§ 1.1.3).

The other important side of modern cosmology, strictly linked to the evolution of the
scale factor, is the study of the evolution of the large scale structure. This evolution is
studied by linear perturbation theories. Initial conditions are also included in the cosmo-
logical parameters and are expressed as the exponent in the power law of the perturbations’
power spectrum as they enter in the causal horizon, ns:

Pk = Akns (1.10)

where A is the overall amplitude of perturbations. Usually, this amplitude is given in
terms of galaxies fluctuation’s amplitude σ8.

Parameters WMAP only WMAP + 2dFGRS WMAP + SN Gold

100ΩBh
2 2.233+0.072

−0.091 2.223+0.066
−0.083 2.227+0.065

−0.082

ΩMh
2 0.1268+0.0072

−0.0095 0.1262+0.0045
−0.0062 0.1349+0.0056

−0.0071

h 0.734+0.028
−0.038 0.732+0.018

−0.025 0.827+0.045
−0.053

ΩM 0.238+0.030
−0.041 0.236+0.016

−0.024 0.276+0.023
−0.031

A 0.801+0.043
−0.054 0.799+0.042

−0.051 0.827+0.045
−0.053

τ 0.088+0.028
−0.034 0.083+0.027

−0.031 0.079+0.028
−0.034

ns 0.951+0.015
−0.019 0.948+0.014

−0.018 0.946+0.015
−0.019

σ8 0.744+0.050
−0.060 0.737+0.033

−0.045 0.784+0.035
−0.049

Table 1.1: Cosmological parameters of ΛCDM model as obtained by WMAP [105]. From
left to right: values obtained by WMAP data alone, joint likelihoods derived including data

from 2dFGRS survey [21] or from the supernovae gold sample [99].
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1.1.2 Primordial radiation

As already said, the Universe starts at a very high temperature and cools down due
to expansion. In the first seconds after the Big Bang, temperature and density are so
high that particles and anti-particles annihilate each other producing pairs of high-energy
photons. These γ’s are soon converted back into particles and anti-particles. In these
conditions there is a tight contact among all Universe’s components, that are in thermal
equilibrium (i.e. their temperatures are the same).

It is during these primordial phase that the asymmetry between matter and anti-
matter arises, resulting in the substantial amounts of residual matter that comprise the
Universe today. The hypothetical physical processes that produced this asymmetry is
called baryogenesis, the most important being electroweak and Grand Unification Theory
(GUT) baryogenesis.

There are three necessary conditions (called Sakharov conditions) that a baryon gen-
erating interaction must satisfy to produce matter and anti-matter at different rates:

1. Baryon number B violation.

2. C symmetry and CP symmetry violation.

3. Interactions out of thermal equilibrium.

While CP violation is found in the neutral kaon system, there is no experimental evidence
of particle interactions where the conservation of baryon number is broken: all observed
particle reactions have equal baryon number before and after. Mathematically, the com-
mutator of the baryon number quantum operator with the Standard Model hamiltonian
is zero: [B,H] = BH −HB = 0. This suggests physics beyond the Standard Model (like
Supersymmetry or Grand Unification Theories).

The last condition states that the rate of a reaction which generates baryon-asymmetry
must be less than the rate of expansion of the Universe. In this situation the particles
and their corresponding anti-particles do not achieve thermal equilibrium due to rapid
expansion decreasing the occurrence of pair annihilation.

The “size” of the asymmetry is quantified by the parameter η = (nB−nB̄)/nγ . In fact,
it relates the overall number density difference between baryons and anti-baryons (nB and
nB̄ respectively) and the number density of cosmic background radiation photons nγ .

During this first phase, the Universe is mainly made of relativistic matter. Hence
this is called the Radiation Dominated Era (RDE). As shown in eq. (1.9), during this
epoch the Universe expands as H−1 ∝ a2. Since ΩR ∝ a−4 while ΩM ∝ a−3, there will
be an epoch, called equivalence, in which ΩR = ΩM : this happens at z ≃ 11000. After
that, the Universe enters the Matter Dominated Era (MDE), during which it expands as
H−1 ∝ a3/2 while the temperature decreases as T ∝ a−3. The frequency of interactions
decreases and more complex elements are produced: first protons and neutrons, then
nucleus of deuterium, helium and lithium (Big Bang Nucleosynthesis (BBN), about three
minutes after Big Bang). The rate of elements production strongly depend on the value
of the baryon to photon ratio η: measurements of the concentration of elements produced
during BBN gives η ≃ 3 · 10−10.

Interactions between photons and matter continue until hydrogen recombines: this
phase, called recombination epoch, starts at a temperature T ≃ 4500K, much lower than
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the ionization temperature of hydrogen (T ≃ 156000K), because of the very small baryon
to photon ratio. Before recombination, the mean free path of photons is very short, due
to Compton scattering, and we can consider the primordial Universe as a hot plasma, is
opaque to radiation (and similar to the gaseous nucleus of a star). Only when Universe
reaches a temperature T ≃ 3000K (decoupling epoch (about 380000 years after the Big
Bang, or z ≃ 1100), almost all hydrogen recombines, and the mean free path of photons
becomes very large, larger than the causal horizon. Photons undergo their last scatter and
travel freely hereafter. The Last Scattering Surface (LSS) may be defined as the surface
where photons, that we see today as microwaves dominating the cosmic radiation, are last
scattered during the recombination phase.

After the decoupling, photons and matter evolve independently: this means that the
photon distribution today is an image of the primordial Universe. In fact, we see an almost
perfect blackbody spectrum at a temperature TCMB = 2.725 ± 0.004, (discovered in 1965
by Penzias & Wilson [89] and more recently (1990) measured by COBE satellite [39, 75, 76,
104]). This reflects the highly isotropic and homogeneous primordial state of the Universe
(see Fig. 1.1). Since a 3K blackbody has its maximum brightness in the microwaves band
and photons propagated from LSS in every direction, this background is called the Cosmic
Microwave Background Radiation (CMBR).

Figure 1.1: Blackbody spectrum at TCMB = 2.725K as measured by FIRAS, the spectrom-
eter mounted on the COBE satellite. The error bars are increased by a factor 500 in order

to be visible.

COBE firstly verified the homogeneity of CMB spectrum: this confirms the cosmolog-
ical principle, which predicts the isotropy and homogeneity of the Universe at large scales.
Nevertheless a perfect homogeneous spectrum cannot explain the highly inhomogeneity
at small scales of actual Universe: on CMB spectrum, at scales of 1◦ or less, there must
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be anisotropies, i.e. temperature’s fluctuations that differ from blackbody spectrum, even
if only for a part over 104. Structures, like galaxies and clusters of galaxies, form start-
ing from these small CMB inhomogeneities, as predicted by the theory of gravitational
collapse. The basic idea is that cold dark matter, that is the main matter component
in the Universe, is not homogeneous, so it perturbs the metric creating gravitational po-
tential wells into which normal matter falls when the interaction with radiation becomes
negligible.

1.1.3 The origin of CMB anisotropy

The origin of CMB anisotropy is explained by the theory of inflation [48]: in an epoch
prior to GUT (Grand Unification Theory, ∼ 10−35s after the Big Bang, at an energy scale
of ∼ 1015GeV ) there is a phase of ultrafast expansion of Universe due to a scalar field,
described by an equation similar to that of Klein-Gordon. Inflation is also needed to solve
flatness and horizon paradoxes.

Flatness paradox It regards the density of the Universe: different experiments verified
it is equal to critical density (Ω0 = 1), even if this is a very unstable solution of the
Friedmann equations. In fact the density contrast (or density fluctuations) δ = δ̺/̺
grows as the scale factor a(t) (so δ ∝ t1/2 in RDE and δ ∝ t2/3 in MDE) and
it increases of many orders of magnitude. The homogeneity of Universe implies
δ̺/̺ ≪ 1 today. In order to get this value, the density parameter at Planck epoch
must be Ω0 = 1 ± 10−44. Thus, there is a fine tuning problem. Inflation provides
a solution: during inflation the density contrast falls down as (δ ∝ e−t): when the
inflationary epoch ends, Ω0 = 1 independently of initial conditions.

Horizon paradox At z ≃ 1100 the causal horizon is ∼ 100h−1Mpc (which corresponds to
an angular scale of ∼ 1◦). This means that two regions that are more distant than ∼
1◦ at recombination are and have been previously causally disconnected. Radiation
starting from one region does not have enough time to reach the bother one. It is
thus impossible to explain how the whole sky has the same temperature T = 2.725K.
Inflationary theory predicts that these regions where causally connected prior to
inflation. With the superluminal expansion of space during inflation they get out of
causal contact (horizon crossing) and after the end of inflationary epoch they start
to reenter (see Fig. 1.2). In fact, scale dimensions always grow as the scale factor
a(t) while horizon’s expansion (i.e. H−1) depends on the epoch.

We now want to derive the spectrum of the perturbations. The most general perturbed

metric can be written as gµν = g
(0)
µν + a2g

(1)
µν , where g

(0)
µν = ηµν is the unperturbed metric,

while:

g(1)
µν =

(
−2ψ wi

wi −2φ δij + hij

)
(1.11)

ψ and φ are space scalars, wi is a 3-vector and hij is a traceless 3-tensor. Since General
Relativity equations are invariant with respect to a general coordinate change, we can
always choose a specific gauge in which wi = 0 (Newtonian gauge). The metric element
of the perturbed metric will be:

ds2 = a2[−(1 + 2ψ) dτ2 + (1 − 2φ) dxi dxj ] (1.12)
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Figure 1.2: Horizon H−1 and perturbations scales as a function of the scale factor at
various epochs.

where dτ = c dt/a(t) is the conformal time. We also introduce the perturbed quantities
δ = δ̺/̺, ϕ = δφ and θ = ikivi, where vi is the matter peculiar velocity with respect
to the general expansion and k is the mode in Fourier space: in fact, it is convenient to
Fourier expand the perturbed quantities δ, φ, ψ and δ. Now, we must perturb the Einstein
equations of General Relativity:

Rµν − 1

2
gµν R =

8π G

c4
Tµν (1.13)

Let us evaluate the Newtonian limit, i.e. small scales (k ≫ H). Fluctuations of a
pressureless fluid grow indefinitely because there is no counteracting force; however, the
Universal fluid has a finite pressure that will resist gravity and will stop the collapse.
Consider a fluid which is pressureless when unperturbed but has a finite velocity dispersion,
much smaller than the speed of light, otherwise the Newtonian approximation is not valid
anymore: cs = δp/δ̺ ≪ 1. After some computations we get:

δ̇ = −θ (1.14a)

k2φ = −3

2
H2δ (1.14b)

θ̇ = −Hθ + csk
2δ + k2φ (1.14c)

Deriving eq. (1.14a) and substituting into it eqs. (1.14b) and (1.14c) we obtain:

δ̈ +Hδ̇ +

(
k2c2s −

3

2
H2

)
δ = 0 (1.15)

It is worth noting that in the Minkowski limit, i.e. a steady Universe with H = 0,
eq. (1.15) reduces to fluid’s wave equation with a sound velocity cs. Eq. (1.15) shows
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perturbation does not grow when:

k2c2s −
3

2
H2 > 0 (1.16)

i.e. comoving perturbation scale λ = 2πa/k is smaller than the Jeans length λJ = cs
√
π/̺.

In this case, the perturbation undergoes damped oscillations: given the initial condition
δ̇(0) = 0 and δ(0) = −2φ/3, the solution is δ = φ/3 · cos(cskt), where φ ∝ a−1 because of
the expansion of the Universe. The various components have different trends:

Photons They have cs ≃ c/
√

3 so that λJ ≃ H−1a−1 . Growth is prevented on all scales
smaller than horizon.

Baryons Their sound velocity is comparable to γ’s velocity before decoupling, so that
their perturbations are damped out. The sound speed drops rapidly after decoupling:
baryons are free to fall inside dark matter gravitational potential wells and their
perturbation spectrum catches the CDM one.

CDM Its velocity dispersion is always negligible, hence putting cs = 0 in eq. (1.15) we get
that perturbations grow freely and that there are two modes: δ+ ∝ a and δ− ∝ a−3/2.
The decaying mode can be neglected for primordial perturbations.

In the large scale limit (k ≪ H), we have two trends: during the radiation dominated
era δ ∝ a2, while in the matter dominated era δ ∝ a. So perturbations always grow when
scales are larger than horizon.

Summarizing, since fluctuations are small, the quantitative way to approach the prob-
lem is to expand the small perturbations in Fourier modes and to compute the anisotropy
from each mode individually. After it enters the causal horizon, each Fourier mode follows
the equation of a forced and damped harmonic oscillator. Photons and baryons are tightly
coupled due to Compton scattering and primordial plasma is compressed by gravitation
and expanded by photon pressure. The resulting pressure oscillations are frozen at recom-
bination, each with its phase of oscillation. All modes are then combined and projected
on the last scattering surface to form the temperature distribution we can detect.

In 2000, the BOOMERanG [24, 55] and MAXIMA [67, 110] balloon experiments pro-
duced the first maps of CMB anisotropies on selected patches of sky (about 5% of the
whole sky); in 2003, the WMAP satellite [3, 51] made the first all sky measurement of
these fluctuations (see Fig. 1.3).

1.1.4 Anisotropy power spectrum

As seen in § 1.1.3, the density contrast of the perturbations grows until their dimension
becomes larger than the Jeans length; after that the perturbations start to oscillate. CMB
temperature fluctuations rely on the phase of these oscillations: smaller scales are damped
and perform several oscillations, larger scales have time to do only one; even larger scales,
that are outside the causal horizon do not oscillate at all (see Fig. 1.4).

Thus, the number of oscillations depend on the perturbation scale, i.e. the wavenumber
k. The power spectrum is thus computed in terms of k and then, since the CMB signal
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Figure 1.3: Image of the cosmic microwave background radiation from the WMAP satellite
(three years data). The data are plotted in galactic coordinates, mollview projection. The

image comes from the WMAP W-band at 94GHz.

Figure 1.4: Perturbation density fluctuations at different scales: in the primeval plasma,
photons and baryons density perturbations start to oscillate only when the sound horizon
becomes larger than their linear size. Small wavelength perturbations do more oscillations

than larger one.
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is projected onto a spherical surface, it is projected and expanded in spherical harmonics,
normalized in respect to mean temperature TCMB = 2.725K:

∆T

TCMB
(ϑ,ϕ) =

∞∑

ℓ=1

ℓ∑

m=−ℓ

aℓm Yℓm(ϑ,ϕ) (1.17)

In the hypothesis of a gaussian distribution of fluctuations [59], statistical informa-
tion is given by the standard deviation of the distribution, which in spherical harmonic
expansion has the form:

〈(
∆T

TCMB

)2
〉

=
1

4π

∫ ∣∣∣∣
∆T

TCMB

(ϑ,ϕ)

∣∣∣∣
2

dϑ dϕ

=
1

4π

∑

ℓℓ′

∑

mm′

〈aℓm a∗ℓ′m′〉
∫
Yℓm(ϑ,ϕ)Y ∗

ℓ′m′(ϑ,ϕ) dϑ dϕ

=
1

4π

∑

ℓℓ′

∑

mm′

〈aℓm a∗ℓ′m′〉 δℓℓ′ δmm′ =
1

4π

∞∑

ℓ=1

ℓ∑

m=−ℓ

〈|aℓm|2〉

=
1

4π

∞∑

ℓ=1

ℓ∑

m=−ℓ

Cℓ =
1

4π

∞∑

ℓ=1

(2ℓ+ 1)Cℓ (1.18)

Here brackets indicate ensemble averaging; moreover, due to isotropy, deviations are m-
independent. The quantity Cℓ = 〈aℓm a∗ℓ′m′〉 δℓℓ′ δmm′ is defined as the anisotropy angular
power spectrum. The best estimator we have for the ℓ component is:

Ĉℓ =
1

2ℓ+ 1

ℓ∑

m=−ℓ

aℓm a∗ℓ′m′ (1.19)

Due to the fact that we have only one realization of the Universe, errors on the measured
spectrum are theoretically limited (cosmic variance). Every Cℓ has its uncertainty that
cannot be reduced because it does not depend on the measurement procedure, but it is
intrinsic in the statistical nature of the theory. The standard deviation of the anisotropy
angular power spectrum is given by:

σ2
Cℓ

=
2

2ℓ+ 1
C2

ℓ (1.20)

It is worth noting that ℓ = 180/ϑ, where ϑ represents the angle (in degrees) under which
we see a given structure on the LSS. So, the relation between the multiple moment and
the perturbation scale is ℓ ∝ λ, because ϑ ∼ λ/∆t, where ∆t is the interval time between
reionization and today.

As we have seen in these paragraphs, the shape of this spectrum depends on both
the cosmological parameters and the initial conditions. These latter define the density
contrast of baryons, cold dark matter, photons and neutrinos when fluctuations reenter
the horizon, and are usually of two kinds: adiabatic and isocurvature.
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Adiabatic Characterized by the conservation of entropy per baryon fraction, thus the
conservation of particles’ number per unit volume of every species with respect to
the number of baryons: ni/nB = const . This implies that the total relative density
fluctuation is not zero, and that there is an exact proportion between the initial
density contrast for all the components. Inflationary models with simple scalar
fields predicts this kind of initial perturbations.

Isocurvature In this case, the relative densities in initial conditions are not proportional,
but the total energy density fluctuation is zero. Therefore gravitational potential is
zero as well (isocurvature).

As seen in § 1.1.3, the origin of the acoustic peaks is due to the fact that Universe
is filled with standing density waves. All modes with a given wavenumber k oscillate in
phase, and there is perfect coherence. This phase dependency produces the peaks in the
angular power spectrum. Phase coherence of all perturbations of a given wavenumber is
a consequence of the fact that these perturbations cross the causal horizon at the same
time, thus starting synchronous oscillations.

The best measurement of the anisotropy angular power spectrum to date has been
obtained by the WMAP satellite [59] and it is reported in Fig. 1.5. Cosmological param-
eters and initial conditions can thus be inferred from power spectrum measurements. For
example, the fact that the first peak is at ℓ ≃ 180 implies that Ω0h

−1 = 1: as already seen
in § 1.1.3, the horizon dimension at recombination is ∼ 100h−1Mpc, which corresponds to
an angular scale of ϑ ≃ 1◦, i.e. ℓ = 180/ϑ ≃ 180 in Euclidean space. Positions and heights
of the peaks constrain other cosmological parameters, such as ΩB, ΩΛ or H0. Stronger
constrains and other important parameters, like the reionzation redshift or the spectral in-
dex of the initial power spectrum of the perturbations, can be estimated by means of CMB
polarization measurements [22, 52, 56, 62, 61, 121]. The first CMB polarization detection
was obtained by the DASI experiment in 2002 [63, 69] and later by WMAP [57, 84] and
BOOMERanG [79, 91].

1.2 Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich effect is the inverse Compton scattering between CMB photons
and the hot gas of electrons present in the Intra-Cluster Medium (ICM) [113, 114, 122].
This effect causes a change in the apparent brightness of the CMB in clusters of galaxies,
and its measurement provide information about cluster’s properties complementary to
those coming from X-Ray images. Since the SZ effect is redshift-indipendent, it can
provide a unique probe of the structure of the Universe on the largest scales.

1.2.1 CMB comptonization

The presence of hot gas in intracluster medium is proved by the fact that clusters of
galaxies are luminous sources of X-Rays. The X-Ray spectrum has a strong continuum
component, due to photons produced in bremsstrahlung processes [102] of electrons on
nuclei. In these conditions, the electronic component of the gas is able to diffuse CMB



Chapter 1. The microwave sky 17

Figure 1.5: The WMAP three year power spectrum (in black) compared to other recent mea-
surements of the CMB angular power spectrum, including BOOMERanG [55], Acbar [64],
CBI [95] and VSA [28]. The data confirm the turnover in the third acoustic peak and

prove the presence of Silk damping.

photons efficiently: for a single event, given the angle φ12 between the scattered and the
incident γ (see Fig. 1.6), the kinematics of this process is described by Compton scattering :

ε′ =
ε

1 + (1 − cosφ12) ·
ε

me c2

(1.21)

where ε = hν is the incident photon energy, ε′ = hν ′ is photon energy after interaction
and me is electron’s mass. Eq. (1.21) is obtained in the electron rest frame before inter-
action and implies conservation of quadri-impulse between the initial and the final states
(relativistic extension of a classical elastic scattering).

For low-energy photons (like the CMB ones) and moderatly relativistic or non-relativi-
stic electrons, ε ≪ mec

2, so that electron is unperturbed. The process is almost elastic
(ε′ = ε) while the photon changes only its direction: in this limit, the process is simply a
Thomson scattering with cross section σT = 7.94 · 10−30m2/sr .

With reference to Fig. 1.6, the scattering probability of an incident photon with an
angle between ϑ and ϑ+ dϑ is [5]:

pIn(ϑ) dϑ = p(µ) dµ =
1

2γ4(1 − βµ)3
dµ (1.22)
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Figure 1.6: Compton scattering geometry, in the electron’s rest frame before interac-
tion. An incoming photon, at angle ϑ relative to the xe axis, is deflected by angle φ12,
and emerges after the scattering at angle ϑ′ with almost unchanged energy, as given by
eq. (1.22). In the observer’s frame, where the electron is moving with velocity ve along the
xe axis, the photon changes its energy by an amount depending on ve and on the angles ϑ

and ϑ′, as described in eq. (1.24).

where β = ve/c, ve is electron’s velocity and µ = cosϑ. The probability to have a scattering
at an angle between ϑ′ and ϑ′ + dϑ′ is [18, 119]:

pOut(µ
′;µ) dµ′ =

3

8

[
1 + µ2µ′

2
+

1

2
(1 − µ2)(1 − µ′

2
)

]
dµ′ (1.23)

where µ′ = cosϑ′. In the laboratory reference frame, the photons does not change only its
direction, but also its frequency and energy:

ν ′′ = ν · (1 + βµ′)

(1 − βµ)
(1.24)

In a classical Compton scattering process, when the photon hits the electron, the latter
absorbs part of the photon energy, and both particles change direction. In this case,
since the energy of the electron is much higher than photon’s one, the electron gives a
small part of its energy to the other particle, so that the photon frequency increases after
the scattering, and only the photon changes its trajectory. This is the so-called inverse
Compton scattering.

It is usual to express the scattering final state in terms of logarithmic frequency
shift [96, 111, 112]:

s = ln

(
ν ′′

ν

)
(1.25)

so that the probability to produce a shift between s and s + ds due to an interaction
between a photon and an electron of velocity ve is given by:

P (s;β) ds =

∫
pIn(µ) pOut (µ

′;µ)

(
dµ′

ds

)
dµ ds (1.26)
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Using eqs. (1.22), (1.23) and (1.24), eq. (1.26) becomes:

P (s;β) =
3

16γ4β

∫ µ2

µ1

(1 + βµ′)
[
1 + µ2µ′2 + (1 − µ2)(1 − µ′2)/2

]

(1 − βµ)3
dµ (1.27)

where µ′ can be expressed in term of µ and s: using eqs. (1.24) and (1.25), we get:
µ′ = [es (1− βµ)− 1]/β. The integral in eq. (1.27) must be calculated only on real angles,
hence:

µ1 =






−1 s ≤ 0
1 − e−s (1 + β)

β
s ≥ 0

(1.28a)

µ2 =






1 − e−s (1 + β)

β
s ≤ 0

−1 s ≥ 0
(1.28b)

Eq. (1.27) can be integrated for several values of β (see Fig. 1.7): non-zero initial
momenta imply a non-zero probability that a photon is diffused and changes energy (in
the limit β → 0, eq. (1.27) becomes a Dirac’s δ centered in the original frequency). As β
increases, the asymmetry of P (s;β) grows because of the relativistic effect on the angle
conversion between reference frames; also the width increases: the higher the electron’s
velocity, the larger the frequency’s shift.

1.2.2 Thermal SZ effect

The probability distribution of s for a single scatter is obtained integrating P (s;β)
over β, weighted on the electrons’ velocity distribution pe(β):

P1(s) =

∫
pe(β)P (s;β) dβ (1.29)

It is assumed that electrons’ velocity follows a relativistic Maxwellian distribution:

pe(β) dβ =

γ5 β2 exp

(−γ
Θ

)

ΘK2

(
1

Θ

) dβ (1.30)

where Θ is an adimensional variable which contains temperature information:

Θ =

(
kBTe

mec2

)
(1.31)

and K2 is a modified Bessel function of second kind and second order. Since the distor-
tion’s probability depends on the temperature of electrons gas Te, this interaction is called
thermal Sunyaev-Zel’dovich effect.

A photon that interacts with a population of electrons can be diffused many times.
Given an electronic cloud of density number ne, the optical depth τe is defined as:

τe = σT

∫
ne dl (1.32)
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Figure 1.7: The scattering probability function P (s;β), for β = 0.01, 0.02, 0.05, 0.10, 0.20,
and 0.50. The function becomes increasingly asymmetric and broader as β increases.

where the integration is made along the line of sight. The probability that a photon
passes through the electronic cloud without scatter is p0 = e−τe ; the probability to have
one interaction is p1 = τee

−τe ; the probability to be diffused N times will be described by
a Poisson function:

pN =
τN
e e

−τe

N !
(1.33)

Hence, the full frequency redistribution function from scattering is:

P (s) = e−τe

(
δ(s) + τeP1(s) +

1

2!
τ2
eP2(s) + . . .

)
(1.34)

where the function Pn(s) can be expressed as a convolution product of P1(s) with itself
for n times:

P2(s) =

∫
P1(t1)P1(s− t1) dt1 (1.35a)

P3(s) =

∫
P1(t1)P1(t2)P1(s− t1 − t2) dt1 dt2 (1.35b)

...

Usually, the optical depth of the electronic cloud is so thin (τe ≪ 1) that first order
approximation is valid: P (s) = (1 − τe) δs + τeP1(s).
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Starting from eq. (1.24), which describes the frequency shift of the radiation due to
a single scattering, it is possible to reconstruct the spectrum of the CMB after diffusion.
The spectrum of incident CMB photons is described by a blackbody at a temperature
TCMB = 2.725:

I0(ν) =
2hν3

c2
· 1

ehν/kBTCMB − 1
(1.36)

If the photon is diffused only once, its spectrum after the scattering becomes:

I(ν)

ν
=

∫ ∞

0
P1(ν, ν0)

I0(ν0)

ν0
dν0 (1.37)

where P1(ν, ν0) is the probability that a diffusion with a frequency shift between ν0 and ν
happens. Since P1(ν, ν0) = P1(s)/ν, from eqs. (1.25) and (1.29) it follows that eq. (1.37)
can be written in term of the variable s as:

Iν =

∫ +∞

−∞

P1(s) I0(ν0) ds (1.38)

Eq. (1.38) can be generalized for multiple scatterings, using the approximated form of
P (s) instead of P1(s). Taking eqs. (1.36) and (1.38), the frequency shift of the radiation
is finally:

∆IT (ν) ≡ I(ν) − I0(ν) =

=
2h

c2
τe

∫ +∞

−∞

(
ν3
0

ehν0/kBTCMB − 1
− ν3

ehν/kBTCMB − 1

)
P1(s) ds (1.39)

In Fig. 1.8 it is reported the numerical integration of eq. (1.39): it is worth noting
that ∆IT changes sign as frequency increases. Moreover, it is redshift-independent, while
depends only on the intrinsic properties of the scattering medium: these are described by
the factors τe and P1(s).

1.2.3 Kompaneets approximation

Under the hypothesis that the electrons gas is isotropic and non-relativistic, the scat-
tering process simplifies substantially and it is possible to approximate eq. (1.39) using the
Kompaneets equation [60, 88]: this describes the change in the n(ν) due to the diffusion
process. Given the electrons density ne and temperature Te, the radiation temperature
TCMB and for a given adimensional frequency x = hν/kBTCMB , in the limit Te ≫ T
(which is always valid for CMB photons and hot electrons), the Kompaneets equation has
the form:

∂n

∂t
=
kBTCMB

mec

σTne

x2

∂

∂x

[
x4

(
Te

TCMB

∂n

∂x

)]
(1.40)

Assuming that the radiation field is slightly diffused by the gas, the density occupation
number n(ν) can be substituted by the mean occupation number of a Planck spectrum
nP (x) = (ex − 1)−1. Integrating along the line of sight across the cluster, we obtain the
spectral distortion:

∆IT (x) =
2(kBTCMB )4

h3c2
· y · g(x) (1.41)
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Figure 1.8: The spectral deformation of the CMB caused by inverse Compton scattering by
a thermal population of electrons. The figure shows the result of the numerical integration
of eq. (1.39). The solid line represents the spectral deformation due to thermal SZ effect
in the Kompaneets approximation (see § 1.2.3) for a cluster having a comptonization pa-
rameter y = 10−4. The dashed line shows the SZE including relativistic corrections up to
the fifth order (see § 1.2.4) for a cluster with an electrons’ temperature Te = 15keV and
y = 10−4. The dot-dashed line is the contribution due to kinematic SZE (see § 1.2.5) for

a cluster with a peculiar velocity Vr = 500km/s.

The g(x) function includes the spectral dependence of the thermal SZ effect; its trend is
shown in Fig. 1.9 (solid line), while its analytic expression is:

g(x) =
x4ex

(ex − 1)2

[
x · e

x + 1

ex − 1
− 4

]
(1.42)

The y term is called the comptonization parameter ; it depends on cluster characteristics
and observation direction, and is given by:

y =

∫
kBTe

mec2
ne σT dl (1.43)

where integration is done along the line of sight, across the whole cluster’s extension.

It is usual to quantify the thermal SZ effect in terms of a CMB temperature variation,
as already done for CMB anisotropy :

∆T

TCMB
=

[
x · e

x + 1

ex − 1
− 4

]
· y = coth

(x
2

)
· xy − 4y (1.44)
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It is worth noting that in the Kompaneets approximation, the spectral distortion does
not depend on cluster parameters: it only depends on a scale factor, the comptonization
parameter y, as shown in eq. (1.41). So, the positions of the minimum, of the maximum
and of the zero (crossover point) of the SZ spectrum are fixed:

xMin = 2.26 ⇒ νMin = 128.73GHz

xZero = 3.83 ⇒ νZero = 218.16GHz (1.45)

xMax = 6.51 ⇒ νMax = 370.82GHz

As a final step we need a model for the cluster electronic density and temperature
profiles, in order to be able to estimate the comptonization parameter y. The model must
be compatible with surface brightness X-Ray data, which is given by:

bX(E) =
1

4π(1 + z)3

∫
n2

e(r)X(E,Te) dl (1.46)

here ne(r) and Te are density and temperature of the gas, X(E,Te) is gas spectral emissiv-
ity at observed energy E; the factor of 4π arises from the assumption that this emissivity
is isotropic, while the (1 + z)3 factor takes into account cosmological transformations of
spectral surface brightness and energy. It is not possible to obtain ne(r) and Te(r) from
eq. (1.46), because there is no unique inversion: thus it is not possible to predict accurately
the distribution of y on the sky, and hence the shape of the Sunyaev-Zel’dovich effect. It
is necessary to introduce a parameterized model for the properties of the scattering gas in
the cluster, and to fit the values of these parameters to X-Ray data. The most popular
model is the so-called isothermal β model, where it is assumed that electron tempera-
ture is constant inside the cluster and that electrons number density follows a spherical
distribution [15, 16]:

ne(r) = ne,0

(
1 +

r2

r2c

)− 3
2
β

(1.47)

where rc represents the typical length of the model, also known as core radius. From
eq. (1.47) follows expressions regarding optical depth, comptonization parameter and X-
Ray surface brightness:

τe(ϑ) = τe,0

(
1 +

ϑ2

ϑ2
c

) 1
2
− 3

2
β

(1.48a)

y(ϑ) = y0

(
1 +

ϑ2

ϑ2
c

) 1
2
− 3

2
β

(1.48b)

bX(ϑ) = bX,0

(
1 +

ϑ2

ϑ2
c

)1
2
−3β

(1.48c)
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which have central values:

τe,0 = ne,0 σT rc
√
π ·

Γ

(
3β

2
− 1

2

)

Γ

(
3β

2

) (1.49a)

y0 = τe,0 ·
kB Te

me c2
(1.49b)

bX0 =
1

4π(1 + z)3
· n2

e,0X(E,Te) rc
√
π ·

Γ

(
3β

2
− 1

2

)

Γ(3β)
(1.49c)

In eqs. (1.47) and (1.49), ϑ is the angle between the center of the cluster and the direction
of interest while ϑc = rc/DA is the cluster’s angular core radius as deduced from the X-
Ray data. DA is the angular distance of the cluster, that is a function of the cosmological
parameters [58, 83, 88]:

DA =
1

1 + z

c

H0

∫ z

0

dz√
ΩR(1 + z)4 + ΩM(1 + z)3 + ΩΛ + (1 − Ω0)(1 + z)2

(1.50)

1.2.4 Relativistic corrections

Many efforts have been spent to calculate the relativistic corrections for the thermal
Sunyaev-Zel’dovich effect [54, 97]. Introducing such corrections, the position of the max-
imum, minimum and crossover points of the spectrum vary with Te. Also the intensity
amplitude becomes a complicated function of Te. To first order in Θ, which is sufficient
for temperatures kBTe < 20keV (Θ < 0.04), the positions shift as:

xMin = 2.26

xZero = 3.83 · (1 + 1.13Θ) (1.51)

xMax = 6.51 · (1 + 2.15Θ)

Relativistic corrections are obtained by working to higher order in Θ from eq. (1.39) or
from Boltzmann equation. The resulting expressions for ∆n or ∆IT are usually written
as a series in increasing powers of Θ [17, 54]. The latest results give an approximation up
to the fifth term: they provide a useful analytical expression for the thermal SZ effect for
hot clusters for a wide range of frequencies. However, there are still approximations: these
rely on the assumptions that the cluster is optically thin and that the electron distribution
function is that of a single-temperature gas as given by eq. (1.30). Both assumptions are
still under discussion and we need more precise results, better than 1%.

It is worth noting that relativistic corrections can be used to estimate cluster charac-
teristics without using X-Ray data: as shown in Fig. 1.9, relativistic corrections break the
degeneracies between the comptonization parameter y and the cluster gas temperature
Te due to the positions shift described in eq. (1.52). Once the cluster comptonization
parameter y is obtained, it is possible to deduce the electrons number density ne.
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Figure 1.9: The g(x) function includes all the spectral dependence. In the non-relativistic
limit (Kompaneets approximation, see § 1.2.3), g(x) is independent of electrons tem-
perature Te (solid line), while it is only a function of the adimensional frequency x =
hν/kBTCMB . Dotted, dashed and dot-dashed lines represent the spectral distortions due to
electrons temperature of Te = 5keV, 15keV and 25keV respectively. Relativistic corrections

up to fifth order have been used for the computation (see § 1.2.4).

The thermal Sunyaev-Zel’dovich effect provides another potential probe for intracluster
gas: since this effect is proportional to the integral of ne along the line of sight, it should
be a more sensitive probe than the X-Ray emission for studying the diffuse gas especially
in the peripheral regions of the clusters.

1.2.5 Kinematic SZ effect

When a cluster has a non-zero peculiar velocity in the CMB reference frame, a second
effect adds to the purely thermal SZ effect previously described: the kinematic Sunyaev-
Zel’dovich effect. In the reference frame of the scattering gas, CMB radiation appears
anisotropic, and the effect of the inverse Compton scattering is to re-isotropize the radia-
tion slightly.

In the observer rest frame, the radiation field is no longer isotropic, but shows a
structure towards the scattering atmosphere with amplitude proportional to τeVz/c, where
Vz is the peculiar velocity’s component of the scattering atmosphere along the line of
sight [98, 114], positive or negative for approaching or receding cluster respectively.

Assuming that thermal and kinematic effect are independent (a well verified hypothe-
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sis), it is possible to calculate the kinematic correction to the spectrum:

∆IK(x) = −2 (kB T0)
4

h3 c2
· Vr

c
· τe · h(x) (1.52)

where τe is the optical depth defined in eq. (1.32) while h(x) is:

h(x) =
x4 ex

(ex − 1)2
(1.53)

Eq. (1.52) has the same form of eq. (1.41) while this time all the spectral dependence
is included in the h(x) term. However, the kinematic distortion is completely different:
as shown in Figs. 1.8 and Fig. 1.10, its maximum is roughly where the thermal SZ effect
has the crossover point. In principle, a photometric measure at x ≃ 3.83 (ν ≃ 220GHz )
is able to detect a non-zero cluster’s peculiar velocity along the line of sight: given this
parameter, it is possible to subtract the kinematic SZ signal at the other frequencies and
separate the thermal component. Therefore, this effect can be used to measure large scales
motion of objects that are at high redshifts. However, the spectrum of the kinematic SZ
is identical to the spectrum of primary CMB anisotropy: so it is almost impossible to
separate the two contributions on the same line of sight.

Figure 1.10: Spectral deformation due to kinematic SZ effect, compared to thermal com-
ponent. This figure shows only the functions g(x) (solid line, related to thermal SZ effect)
and h(x) (dashed line, kinematic SZ effect): these include the spectral dependence and,
in the non-relativistic limit, give the spectral deformations modulo multiplicative factors.

The full spectral distortion is shown in Fig. 1.8.
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1.3 Foregrounds

The term foreground defines all the galactic and extragalactic sources of diffuse emis-
sion of astrophysical (but not cosmological) origin. Their characteristics do not depend
on the cosmological parameters; on the contrary, they interact and deform the CMB
signal. Foreground sources have characteristic spectra, different from the spectrum of
the CMB: multi-frequency experiments are needed to disentangle such local contributions
from the cosmic microwave background anisotropy, which is subdominant at almost ev-
ery frequency. Foregrounds must be removed to obtain good estimation of CMB power
spectrum and cosmological parameters. Nevertheless, they hold informations on various
astrophysical process; also, they must be studied in order to be properly removed.

The most important contaminants are thermal bremsstrahlung (or free-free) and syn-
chrotron due to charged particles in the interstellar medium, thermal emission due to
dust, and emission by extragalactic sources. The latter form the so-called Far Infrared
Background (FIRB), since they are not resolved.

The dust and FIRB signals increase with frequency, and are expected to dominate the
OLIMPO channels at the higher frequencies (see Chap. 6): their origin will be discussed
in detail in § 1.4 and § 1.5, while the models used in the simulations of signals due to
dust and FIRB are described in § 6.1 and § 6.2. Instead, bremsstrahlung and synchrotron
decrease with frequency and dominate below 100GHz, so that they do not affect OLIMPO
measurements and will only briefly summarized.

Bremsstrahlung Free-free emission is due to the Coulombian scattering between hot
electrons (T > 104K) and ionized particles of interstellar gas. It happens typically
in the HII regions, i.e. zones of hydrogen ionized by stellar activity. This emission is
dominant in the range 25÷65GHz and has an power angular spectrum that decreases
as ℓ−β, with β ∼ 2.5 − 3.

Synchrotron It is produced by relativistic electrons accelerated in the galactic magnetic
field. It dominates at low frequencies (ν 6 50GHz ); its power spectrum depends on
the energy spectrum of charged particles. Its angular power spectrum is similar to
the bremsstrahlung emission one [2] but is not as steep.

Both these emissions can be polarized, only slightly for the free free (in anisotropic
regions) and quite strongly for synchrotron emission (up to 75%): its study can give
important information regarding the galactic magnetic field. The full spectrum of the
foreground components is shown in Fig. 1.11.

1.4 Galactic dust emission

InterStellar Medium (ISM) is supplied of matter by supernovae explosions, which scat-
ter the major part of the heavy elements formed during final phases of stars. Some of this
matter forms new stars; residual elements aggregate in small solid grains forming the
InterStellar Dust (ISD).

The components of the interstellar medium can be divided into material and energetic
elements. The former are dust and gas: dust consists of amorphous silicates, Polycyclic
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Figure 1.11: Comparison between the Cosmic Microwave Background spectrum (red line)
and spectra of foregrounds of different origin, in the microwave, millimeter and infrared
bands. Synchrotron (yellow line) dominates at lower frequencies (longer wavelengths),
while at higher frequencies (shorter wavelengths) the spectrum is dominated by diffuse
galactic dust emission (green line). The emission of interplanetary dust is also shown

(zodiacal light, blu line).

Aromatic Hydrocarbons (PAH), graphite and carbon; gas is mainly constitute by hydrogen
and helium. Dust and gas are distributed randomly in diffuse or molecular clouds, which
differ because of the presence or absence of H2 or CO molecules. These clouds have a
peculiar velocity of ∼ 10km/s . Denser regions have good conditions for star formation,
since they are inhomogeneous, with substructures or “condensations” forming protostars.

The energetic constituents of the interstellar medium are cosmic rays and radiation
coming from young stars, in particular UV photons. Their average number density is
nUV ≃ 6 · 10−9m−3: they are absorbed by dust which re-emits at lower frequencies (in
the infrared band). Cosmic rays also interact with dust, but their effect is negligible when
compared to the UV.

There are two types of interactions between dust and photons: extinction and emission.
The former happens when dust absorb or scatters photons, thus decreasing the flux coming
from stars in the background. Extinction it is very efficient for UV and blue radiation.
The latter is the thermal re-emission of the absorbed energy, in the far infrared.

Let us consider one or more particles hit by electromagnetic radiation with energy U0:
the energy received by a detector will be U < U0, because part of it has been extinguished
by dust. Energy conservation requires that the absorbed energy is re-emitted in all di-
rections. Extinction is measured using the couple method : it consists in a spectroscopic
comparison between two stars with the same spectral class. If one star has a negligible
dust foreground, while the other one is obscured, the comparison between the two spectra
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gives a measure of the extinction as a function of frequency. Stellar radiation passing
through a dust cloud is weakened as:

I(ν) = I0(ν) · e−τ(ν) (1.54)

where τ is the cloud optical depth, i.e. the sum of grains surfaces exposed to radiation per
unit area A, along the line of sight:

τ(ν) =
∑

i

CExt ,i(ν)

A
(1.55)

and CExt is the extinction cross section, defined as the ratio between the extinction power
and the intensity of incident radiation: CExt = WExt/IInc . The morphology of interstellar
dust is complex: it is made of obscure clouds and long filaments that cross the sky. The
discovery of ISD is due to obscuration or extinction of radiation emitted by stars lying
behind the clouds. The attenuation depends on the dimensions of the grains, on their type
and size distribution: studying the spectrum of dust allows us to deduce its characteristics,
such as the chemical composition and the density.

1.4.1 Infrared emission

Interstellar grains are heated primarily by absorbing stellar photons. A small fraction
of absorbed energy goes into photoluminescence or emits a photoelectron, while the major
part excites vibrational modes, i.e. it heats the grains.

Fig. 1.12 shows, as a function of time, the stimulated temperature of four grains ex-
posed to interstellar radiation. For grains with typical radius of r & 100Å, photon absorp-
tion is frequent and the thermal capacity is sufficiently high, so that temperature variation
consequent to absorption is relatively small. In this case it is reasonable to consider the
grain temperature as constant in time, at a value T ∼ 20K. These grains emit photons
only in the far infrared region, i.e. λ > 100µm (ν 6 3000GHz ). Grains with r . 50Å
have low thermal capacity: a single absorption increases their temperature far above the
mean value, and temperature decreases significantly between two subsequent events. In
this case, the emission occurs in the mid infrared, i.e. up to λ > 20µm.

Emission observed at 12µm implies temperatures as high as ∼ 200K, and consequently
very small grains: photons having an energy of 6eV (about 3 order magnitudes larger than
the energy of CMB photons) can heat a grain of N ∼ 280 atoms up to 200K. Emission
observed at smaller wavelength can be produced only by even smaller particles.

Fig. 1.13 shows the average emission spectrum of interstellar dust based on the ob-
servations in the mid infrared region at high galactic latitudes and in the galactic plane.
Approximately 21% of total power is emitted in the 3÷12µm band; another 14% between
12 and 50µm, needing many extremely small grains, since they contribute up to 35% of
the total absorbing stars’ radiation. The remaining 65% is radiated in the far infrared
region: observations confirm that this component is emitted by grains large enough to
keep their temperature constant.
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Figure 1.12: Temperature variations, of 4 carbonaceous grains exposed to the average
starlight background. τAbs is the mean time between photons absorptions.

Figure 1.13: Observed emission spectrum of diffuse interstellar dust in the Milky Way.
Crosses: IRAS [12]; squares: FIRAS [38]; diamonds: DIRBE [1]; heavy curve for 3 −
4.5µm and 5−11.5µm: IRTS [82, 116]. The total power ∼ 5.1 ·10−24erg/s/H is estimated

from the interpolated broken line.
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1.4.2 Microwave emission

Interstellar dust microwave emission was discovered by CMB experiments, which re-
vealed at these frequencies (30 ÷ 300GHz ) a strong brightness, correlated to thermal
emission of interstellar matter at 3000GHz. The spectrum of this emission does not fit a
synchrotron one [25], produced by relativistic electrons, and its intensity is higher than the
bremsstrahlung emission due to ionized gas (see § 1.3). The excess of signal, particularly
between 14 and 90GHz, can be generated only by dust.

There are three mechanisms which lead to dust emission in microwave region: vibra-
tional, magnetic and rotational emissions.

Vibrational emission It is due to thermal fluctuations in the distribution of charge,
i.e. vibrational emission of electric dipole. The major part of power irradiated by
interstellar dust comes from this emission, which has its maximum at ∼ 3000GHz,
but it is not observed below 60GHz.

Magnetic emission This is the magnetic dipole emission, and is related to thermal fluc-
tuation in the magnetization of the material near the position of minimum energy.
The intensity of the fluctuations of magnetic emission depends mainly on the mag-
netic properties of the grains. In fact, magnetization is due to electron spin align-
ment; the maximum frequency needed to rearrange spins is the precession frequency
of an electron subject to the magnetic field in the material : this frequency can be
as large as 20GHz. If the oscillation frequency of the magnetic field is similar to
the precession frequency of electron spin (∼ 10GHz ), magnetic emission becomes
considerable, especially if grain is strongly magnetic. In the latter case, magnetic
dipole emission dominates thermal emission in the microwaves [31].

Rotational emission This last mechanism is electric dipole rotational emission, due to
rotation of grains around their axis (spinning). Rotational emission is proportional
to the forth power of angular velocity, so that only extremely small grains can rotate
fast enough (angular velocity & 10GHz ) to produce detectable microwave emission.
If these grains have electric dipole momentum, there will be rotational emission in
the microwaves: this component is relevant for frequencies higher than 1GHz [30].

The observation of microwave radiation emitted by a dense dust cloud is a good way
to distinguish between emission due to grains spinning and magnetic one. Studies on the
extinction spectrum [77] tell that in dense regions small grains are fewer than expected,
so rotational emission in such clouds must be weak.

1.5 Far infrared background

The formation of structures in the primordial Universe is of great significance. Matter
aggregates into stars and galaxies; the evolution of these systems is related to gravitational
and nuclear processes, which lead to emission of radiative energy. Cosmic expansion and
absorption of radiation due to dust transform this radiative energy into a Cosmic Infrared
Background (CIB) emission: so, the CIB is the product of structure formation processes.
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Figure 1.14: Cosmic background radiation spectrum: the radio background (CRB) is repre-
sented by the spectral law νIν ∝ ν0.3, normalized at 170cm [13]. CMB is shown as a black-
body spectrum at TCMB = 2.725K. UV-optical (CUVOB) e infrared (CIB) backgrounds
estimates are obtained by [50]. X-Ray background (CXB) data are taken from [120], while
the analytic curve is described in [37]. γ-Ray background (CGB) is represented by a power

law [108].

As shown in Fig. 1.14, the microwave sky is dominated by CMB radiation, followed by
the Extragalactic Background Luminosity (EBL).

The discovery of this background is due to the IRTS satellite in the late 80’s, and
was later confirmed by the FIRAS and DIRBE experiments, both mounted on the COBE
satellite [94, 40]. An infrared background radiation was predicted many years before it
was measured [85] as the sign of first phases of galaxy and star formation. There are
some indirect evidences for the CIB, due to the attenuation of γ-Rays at TeV energies.
Fig. 1.15 shows the actual limits on CIB estimation: it is well known in the UV and optical
wavebands, while in the microwave bands there is still a lot of uncertainty.

There are two different methodologies to detect radiation coming from these galax-
ies: the first one is to resolve them; instead of doing a survey, it is possible to study
the integrated emission. This is made using submillimeter satellite telescopes: FIRAS
measured the spectrum at submillimeter wavelengths [94, 35, 50, 45], while IRAS and
ISO resolved fluctuations in the FIRB at high frequencies [66, 78]. Surveys can be done
with large, ground based, submillimeter telescopes [86], but they are hampered by at-
mospheric instability. Forthcoming experiments, like the 10m South Pole Telescope and
the ALMA interferometer will definitely improve submillimeter measurements. Higher
frequencies surveys must be made from space, like the MIPS for Spitzer satellite: it can
resolve primordial galaxies at 1.9THz, 4.3THz and 12.5THz (160, 70 and 24µm respec-
tively). Submillimeter surveys are dominated by diffuse emission due to interstellar dust,
particularly at small scales, as shown in Fig. 1.16.
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Figure 1.15: Measures of extragalactic background made with various methods. In the range
2.2 ÷ 3.5µm, they come from direct observations of sky brightness; at longer wavelengths,
there are only lower limits obtained by integrated flux of resolved extragalactic sources.
Curves shown in the range 200 − 1000µm are given by the analysis made in [40]. Yellow
region points out upper and lower limits of the CIB energy spectrum, based on all the

available measures.

Figure 1.16: Diffuse emission angular power spectrum at high galactic latitudes. Horizontal
lines P (ℓ) ∼ P0 are the FIRB spectrum, while diagonal lines P (ℓ) ∼ ℓ−3 represent the dust

spectrum, both superimposed at CMB anisotropies angular power spectrum.
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1.5.1 Extragalactic background luminosity

As shown in Fig. 1.15, there are two relative maximum in the EBL spectrum, one in
the infrared, the other in the optical band. This slope suggests that background is caused
by thermal radiation emitted by dust in the far infrared and star radiation redshifted,
i.e. radiation shifted from UV to optical and near infrared due to source redshift. The
existence of a peak at long wavelengths demonstrates that dust is the main source of EBL.
Remembering that brightness is defined as the radiative power per unit solid angle and unit
area, i.e. I ≡ dW/dΩ/dA, typical values (expressed in nW m−2sr−1) of the components
that constitute EBL at different wavelengths are (values in parenthesis indicate minima
and maxima estimations):

IStar = 54 (19 ÷ 100) λ = 0.16 ÷ 3.5µm
IDust = 34 (11 ÷ 58) λ = 3.5 ÷ 140µm
IDust = 15 ± 2 λ = 140 ÷ 1000µm
ICIB = 76 (36 ÷ 120) λ = 1 ÷ 1000µm
IEBL = 100 (45 ÷ 170) λ = 0.16 ÷ 1000µm

The EBL spectral intensity observed at frequency ν0, Iν0(ν0), is given by the integral
over all the sources [34, 88]:

Iν(ν) =
( c

4π

)∫ ∞

0
Lν(ν, z)

∣∣∣∣
dt

dz

∣∣∣∣ dz (1.56)

where Lν(ν, z) is the luminosity spectral density of all the radiative particles and luminous
objects in a comoving volume at redshift z; ν = ν0(1 + z) is the frequency in the source
rest frame, while:

H0

∣∣∣∣
dt

dz

∣∣∣∣ =
1

1 + z
· 1√

(1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ

(1.57)

Eq. (1.56) is obtained under the assumption that the Universe is optically thin at every
frequency of interest. In a Universe without dust, the spectral density Lν(ν, z) is simply
obtained by the emitted spectrum of the source; the presence of dust does not change
the total intensity, but it redistributes energy over the whole spectrum. The emitted
spectrum depends on the absorbed wavelength, on the spatial distribution of dust and
sources, on dust abundance and scattering properties: these depend on dust composition
and dimensions (see § 1.4). The total spectrum depends also on evolution factors, such
as history of the dust formation and the processes that destroy, modify and redistribute
dust.

Cosmic expansion reduces the contribution to the EBL due to sources with z > 2 [49],
even though high redshift, luminous infrared sources can dominate CIB in the submillime-
ter range, due to the negative K-correction effect.

1.5.2 The K-correction

Due to the expansion of the Universe, there is a clear relationship between source reces-
sion velocity and radial distance; furthermore, sources observed at different redshifts but at
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the same frequency cannot be compared. The transformation from observed photometric
measurements to rest frame ones is called K-correction.

Let us consider a source observed at redshift z. For this source photons observed at
frequency ν0 were emitted at frequency νe = (1 + z)ν0. The relationship between the
apparent flux of the source, observed in a band R, and the intrinsic luminosity, emitted
in a band Q, is given by the K-correction: observed and emitted bands can be different in
shape and in frequency position. Given a source with apparent magnitude mR, absolute
magnitude MQ, the K-correction KQR is defined as:

mR = MQ + DM +KQR (1.58)

where DM is the distance modulus DM = 5 log(DL/10 pc), with DL defined as the lu-
minosity distance of the source, which is related to the angular distance described in
eq. (1.50) as DL = DA · (1 + z)−2. The apparent magnitude of the source mR is related
to the flux spectral density fν(ν), i.e. the energy per unit time, area and frequency, by:

mR = −2.5 log





∫
dν0

ν0
fν(ν0)R(ν0)

∫
dν0

ν0
gR
ν (ν0)R(ν0)



 (1.59)

where gR
ν (ν) is the flux spectral density of the standard source, Vega; R(ν) describes the

signal measured by the detector for an incident photon of frequency ν.
The absolute magnitude MQ, defined as the apparent magnitude of the source when

this is at a distance of 10pc, is related to the specific luminosity of the source Lν(ν):

MQ = −2.5 log





∫
dνe

νe

Lν(νe)

4π(10pc)2
Q(νe)

∫
dνe

νe
gQ
ν (νe)Q(νe)



 (1.60)

where Q(ν) is equivalent to R(ν) for the Q band. As already said, in general the K-
correction does not require that Q = R or gQ

ν = gR
ν . It is worth noting that the integral

in eq. (1.59) is computed over the observed frequencies ν0, while the one in eq. (1.60) is
over the emitted frequencies νe.

If the source is at redshift z, its luminosity is related to flux by:

Lν(νe) =
4πD2

L

1 + z
fν(ν0) (1.61)

Substituting eqs. (1.59), (1.60) and (1.61) into eq. (1.58), we get the analytic expression
of the K-correction in the case of a source observed in the R band with absolute magnitude
MQ in the Q band:

KQR = −2.5 log
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Hence, in order to estimate accurately the K-correction, it is necessary to know the
flux density fν(ν), the flux density of the standard source in the R and Q bands, gR

ν (ν)
and gQ

ν (ν), and the bands R(ν) and Q(ν): in real life, all these functions are not properly
known.

The classic K-correction implies R(ν) = Q(ν) and gR
ν (ν) = gQ

ν (ν). These simplify
the integrals over the flux densities of standard sources, while an accurate knowledge
of source’s density flux fν(ν) is still needed. Many recent surveys are trying to obtain
R(ν) ∼ Q([1+z]ν) and to reduce the dependence on fν(ν): for high redshifts, this requires
a good knowledge of the absolute density flux of the standard sources, but this absolute
calibration is still uncertain.

1.5.3 Models of EBL spectrum

There are many models that try to explain the evolution of the spectral energy density
Lν(ν, z) as a function of redshift. Most of them are used to determine the galaxy counts
in deep photometric surveys, aiming to study galactic evolution. These models can be
divided into four groups, which differ in their degree of complexity, physical realism, and
ability to account for observations or to make predictions:

• Backward Evolution models (BE).

• Forward Evolution models (FE).

• Semianalytical models (SA).

• Cosmic Chemical Evolution models (CCE).

Backward evolution models

These models extrapolate spectral properties of local galaxies to higher redshifts, using
a parametric function for their evolution. In their simplest form, commonly referred to as
no-evolution models, they assume that neither the Spectral Energy Density (SED) nor the
comoving number density of galaxies evolve with time. This implies that the luminosity
spectral density is redshift independent: Lν(ν, 0) = Lν(ν, z). The EBL is then obtained
by integrating the local luminosity density up to a maximum redshift, zMax , the epoch
when the earliest galaxies formed. Fundamental differences exist between determinations
of Lν at UV, optical, and near infrared wavelengths, where the emission is primarily made
of starlight, and at mid to far infrared wavelengths, where the emission is dominated by
thermal emission from dust.

In the optical and infrared wavelengths, luminosity function is described by the Press-
Schechter function [92], with parameters that depend on the morphology and the spectral
classification of the galaxy. Galactic SEDs are constructed by fitting population synthesis
models to the observed UV-optical spectra or photometric data for each galaxy type.
The extension of this model to wavelengths λ > 10µm is not trivial, because the SED is
dominated by dust thermal emission.

Number counts predicted by no-evolution models are often used as benchmarks to
be compared with observations. In general, the predicted counts are much lower than
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the observed ones, requiring to abandon the simple assumptions made in these models.
Evolution can be introduced into BE models as pure luminosity evolution, manifested as
a global scaling of galaxy spectra as a function of redshift, or as pure density evolution,
manifested as a change in the comoving number density of galaxies with redshift. The
evolution is usually characterized by an empirical factor (1 + z)γ , where γ can vary with
redshift.

The Cosmic Star Formation Rate (CSFR) is characterized by the Rowan-Robinson
model. It includes four spectral components to describe the CIB’s sources: cirrus, Active
Galactic Nuclei (AGNs) and two types of starburst similar to M82 and Arp220. The
parameters are determined by fitting the color-luminosity relation obtained by IRAS :
galaxy counts at 60µm, 175µm and 850µm, CIB spectrum at 140µm and 750µm. BE
models implicitly assume a growth of CSFR for z & 1÷ 1.5, with a rate roughly constant
during primordial epochs. Fig. 1.17 shows a comparison between observations and the
extragalactic background luminosity predicted by a backward evolution models.

Figure 1.17: Extragalactic background luminosity as predicted by backward evolution mod-
els. Shaded region: experimental limits on EBL as described in Fig. 1.15. See [50] and

references therein.

Forward evolution models

Some of the imperfections of BE models are corrected in forward evolution models.
The key point of these models is a spectral evolution code that evolves stellar population
and calculates the stellar, gas, and metallicity content and SED of a galaxy as a function
of time, starting at the onset of star formation. These models were introduced in 1974 by
Tinsley and are now used to date SEDs of globular clusters and many galaxies types.

Models input parameters include a prescription for CSFR, stellar initial mass function
and chemical evolution. Models rely on a wide range of computational and observational
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data sets, such as stellar evolutionary tracks, libraries of observed and calculated stellar
atmospheres and the observed luminosity functions of galaxies. Models are then set in a
cosmological framework by specifying the values of H0, ΩM and ΩΛ. Assuming an ini-
tial formation epoch, these parameters are used to map the temporal evolution of galaxies
into redshift space, allowing direct comparison of the models predictions with observations.
Model parameters are adjusted to match the galaxy number counts, spectral energy dis-
tribution, colors, and metallicity as a function of redshift. In this sense, FE models are
essentially elaborate BE models that allow for a consistent “backward” evolution of galaxy
parameters with time.

Drawbacks of FE models reside in the assumption of a monolithic star formation rate,
i.e. galaxies form and at the same time evolve quiescently. Fig. 1.18 shows a comparison
between observations and the extragalactic background luminosity predicted by backward
evolution models.

Figure 1.18: Extragalactic background luminosity as predicted by forward evolution mod-
els. Shaded region: experimental limits on EBL as described in Fig. 1.15. See [50] and

references therein.

Semianalytical models

Some shortcomings of the FE models can be partially worked out using SA models for
structure formation to predict the observable characteristics of galaxies and the intensity
and spectrum of the EBL. Semianalytical models represent a useful formalism to describe
evolution of galaxies and galaxy clusters in a hierarchical scenario for galaxy formation [20].

These models take into account many physical processes to correctly reproduce the
observable properties of galaxies. These include the cooling of gas that falls into the halos,
a prescription on star formation, a feedback mechanism that modulates the star formation
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efficiency, a stellar initial mass function and a star formation efficiency during merger
events. Moreover, they require stellar spectra evolution and chemical evolution models
that are used in forward evolution models.

The use of SA models does not solve any of the fundamental problems associated
with computing the extinction and SED of galaxies. These quantities depend on dust
parameters, on the geometry of emitters and absorbers, and on the evolution of these
properties, none of which are provided by the models. The main advantage of SA models
is that, in spite of the many adjustable parameters, they provide a physical approach to
the formation and evolution of galaxies.

SA models divide star formation rate into two different components: a quiescent one,
which represents stellar formation into the galactic disc, and a stochastic one, which is the
contribution of star formation burst during galactic interactions and merging processes.
Since these events are more probable at high redshifts, semianalytical models should bet-
ter describe the source counts obtained by recent and upcoming experiments. Sources
discovered by SCUBA are presumably high redshift counterparts of local ultraluminous
infrared galaxies, most of which are mergers.

Even though SA models have great success, there are still discrepancies between predic-
tions and observations due to intrinsic difficulties of these models. Other critical elements
are the approximation on physical processes and the uncertainties on the input data.

Cosmic chemical evolution models

Because the EBL is an integrated measure of cosmic activity, summed over time and
over the wide variety of processes and systems that have populated the Universe, it can
only give information regarding global characteristics of the cosmic history. An approach
that deals with average properties of the Universe rather than the many complex details
involved, is naturally related to this background radiation.

CCE models use this approach, relating the history of a few global properties of the
Universe in a self-consistent way. The main advantage consists in the intrinsic simplicity
and global nature of this methodology. These models provide a picture of mean density
evolution of stars, interstellar gas, metals and radiation averaged on the whole galaxy
population in a comoving volume big enough.

Inputs to CCE models are tracers of stellar activity (emitted radiation) and of inter-
stellar medium in galaxies (absorbed radiation). Equations of cosmic chemical evolution
are solved to guarantee consistency between the global rates of interstellar gas depletion,
star formation and chemical enrichment. Models do not require a detailed knowledge of
the complex processes involved in galaxy formation, merging and evolution. Since they
use a global approach, CCE models do not predict galaxy number counts.

Fig. 1.19 shows comparison between current measurements and EBL spectrum pre-
dicted by semianalytical and cosmic chemical evolution models. The latter (red curve,
labeled PFH) clearly yields a double peaked spectral energy distribution: this is consis-
tent with far infrared and UV-optical emissivity data used as model’s input, although it
cannot explain the recently reported UV-optical and near infrared measurements, while
the low levels predicted in the mid infrared are still consistent with observations.
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Figure 1.19: Extragalactic background luminosity as predicted by as predicted by semiana-
lytical (PrB, DvG and BL) and cosmic chemical evolution (PFH) models. Shaded region:

experimental limits on EBL as described in Fig. 1.15. See [50] and references therein.

1.5.4 Submillimeter galaxies

There are two fundamental components of radiation due to galaxies at submillimeter
wavelengths: continuum thermal emission coming from dust grains (ISM solid state) and
emission lines generated by atomic and molecular transitions of interstellar gas.

Surveys of distant galaxies at millimeter wavelengths have so far been made using
cameras that detect only continuum dust emission, while the search for line emission is
becoming increasingly significant. The spectral resolution provided by line observations
reveals much more about the physical and chemical conditions in the interstellar medium,
to study kinematics, metallicity and excitation conditions. Molecular lines can also be
used to obtain a very accurate spectroscopic redshift for the ISM in high redshift galaxies.

The best studied regions of the Universe in the submillimeter waveband are Giant
Molecular Clouds (GMC) in the Milky Way, where ongoing star formation is taking place.
GMC are perhaps very low luminosity representative of distant dusty galaxies, although
these galaxies have far infrared luminosities that are up to four orders of magnitude greater
than that of the whole Milky Way.

Another class of galaxies well studied similar in luminosity, and perhaps in physical
properties, to high redshift submillimeter galaxies are the UltraLuminous InfraRed Galax-
ies (ULIRGs), first discovered by the IRAS all-sky survey in the mid 80s. IRAS only
discovered low redshift galaxies (z 6 0.3); the first high redshift ULIRG (z = 2.3) was
found in 1991 [100]. Fig. 1.20 shows the infrared spectral energy density of some low red-
shift ULIRGs and a synthesis of results for sampled SEDs of high redshift dusty galaxies.

About 99% of the energy released by galaxies in the submillimeter and far infrared
bands is produced by thermal emission from dust grains; the remainder comes from atomic
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Figure 1.20: Various observed restframe spectral energy distributions (SED) of galaxies
from the radio to the near infrared bands. White symbols (I): two examples of the most
luminous low redshift galaxies detected by IRAS; red symbols: four very luminous high
redshift galaxies directly detected in deep submillimeter surveys; green symbols (L): three
high redshift galaxies magnified by gravitational lensing effect of foreground galaxies; blue
symbols (H): five high redshift AGNs detected in optical or radio surveys. The lines
representing three SEDs template are shown. Dotted line includes properties of CO and
atomic fine structure emission lines at wavelengths from 100 to 3000µm [6]; dashed one in-
cludes polycyclic aromatic hydrocarbon (PAH) molecular emission features at wavelengths
∼ 10µm in the mid infrared band [47]; solid one is normalized to the typical SED of a

sample of low redshift IRAS galaxies [32].

and molecular rotational lines emission. However, the source of the energy that heats dust
is often unclear. Any intense source of optical or UV radiation, such as young high mass
stars or accretion disk surrounding black hole, would heat dust grains. Since dust emits a
featureless modified blackbody spectrum, submillimeter continuum observations can reveal
little information about the physical conditions within the sources. Regions of intense dust
emission are very optically thick, hence little information can be obtained by observing
optical or UV radiation.

Two parameters are necessary to describe emission due to dust grains: dust temper-
ature TD and emissivity function εν . Every galaxy has a temperature distribution that
represents the different nature and environment of the grains. In most cases, spatially and
spectrally resolved images of galaxies are not available, so it is reasonable to assume an
emissivity function averaged on a volume and function of frequency, εν ∝ νβ, where the
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spectral index usually assumes a value in the range β = 1 ÷ 2. Scattering theory predicts
β → 2 for low frequencies (ν . 100GHz ), while it is needed β ≃ 1 at high frequencies
(ν & 1000GHz ) in order to match the general slope of the interstellar extinction curve
describing the absorption properties of the ISM at optical and UV wavelengths.

The simplest form of emission spectrum fν is obtained assuming that fν ∝ ενBν , where
Bν is the Planck function. This formula implies that the emitting source is optically thin;
a more rigorous analysis must include an optical depth term:

fν ∝ (1 − e−τν )Bν (1.63)

where the optical depth term τν is proportional to the emissivity εν and depends on
the frequency. At lower frequencies, eq. (1.63) tends to the simpler ενBν function. It is
reasonable to assume that in the mid infrared, the SED can be interpolated by a blackbody
function modified by a power law fν ∝ να. There is a significant correlation between β
and TD when few datapoints are fitted. This makes difficult to associate dust mass and
dust temperature obtained by galaxy’s SED with real physical conditions of the galaxy
itself.

Galactic SEDs can be divided into two categories [33]: the first one includes galaxies
having a spectrum with a typical temperature of 40K, i.e. typically the most luminous
galaxies; the other one involves galaxies with a colder single temperature SED, much
more similar to normal spiral galaxies.

An alternative approach to determine SEDs consists in using the observed flux density
distribution of galaxies in the far infrared and submillimeter bands, which are sensitive to
objects at low, mid and high redshifts.

1.5.5 The observability of high redshift dusty galaxies

The flux density at observed frequency ν of a galaxy with bolometric luminosity L
(i.e. luminosity integrated on all frequencies), at redshift z and intrinsic spectral energy
density fν is given by:

Sν =
(1 + z) fν(1+z)

4πD2
L

∫
fν′ dν ′

· L (1.64)

where DL is the luminosity distance at redshift z.

Submillimeter observations of distant galaxies give the possibility of sampling galaxy
SEDs at wavelengths where the spectral energy density increases with frequency (Fig. 1.20).
This ensures that distant galaxies are observed at a rest frame wavelength closer to the
peak of their SEDs: thus, there is a strong, negative K-correction, which implies that high
redshift galaxies are relatively easy to detect at submillimeter wavelengths if compared
with their low redshift counterparts.

This effect is shown in Fig. 1.21: the K-correction effect applies for wavelengths longer
than 250µm. At these wavelengths the flux density from galaxies at z > 1 stops to decline
as the inverse square of distance, instead remains approximately constant with increasing
redshift. The effect is stronger at longer wavelengths: in the millimeter band more distant
galaxies are expected to produce greater flux densities than their closer counterparts.
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A submillimeter telescope that is sensible enough to detect a given class of galaxies
at redshift z ≃ 0.5, will be able to observe similar galaxies at z ∼ 10. K-correction can
be determined at redshifts for which sufficient heavy elements are present in the target
galaxy ISM to form enough dust to reprocess optical radiation. Besides, K-correction is
not able to hide the luminosity decrease due to cosmic expansion: it must be considered
the normal (1 + z)−4 reduction in surface brightness, even if it becomes relevant when
z > 5.

Figure 1.21: Expected flux density of a dusty galaxy as a function of redshift. The K-
correction in the millimeter and submillimeter bands, i.e. λ > 250µm, yields a flux density

that is almost independent of redshift [10].

1.5.6 Star formation rate

The epoch of galaxy formation is highly interesting for cosmology: using number counts
of galaxies or extragalactic sources it is possible to study the early phases that follow the
decoupling epoch. In the past years, galaxy counts were used to measure the Universe
geometry, even though they are more useful for the study of evolution history and galaxies
formation: counts models predict the evolution of galaxy population at redshifts greater
that one. Together with new observational data, number counts can discriminate between
different evolving theories. Galaxy counts can be divided into the two models already
cited:

• Backward models.

• Forward models.

The first model considers the luminosity function at present (z = 0) and evolves the
luminosity and density back in time, assuming a reasonable parameterization [8, 9, 87].
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The drawback of this analysis rely in the fact that most of data comes from the IRAS
survey, so they refer to low redshift sources (∼ 0.02 ÷ 0.2).

The alternative approach computes evolution starting from initial conditions of physi-
cal processes, chemical evolution and photometric of stellar population which heat dust [41].
The disadvantage of this model is due to the presence of many undefined parameters.

Millimeter and submillimeter extragalactic surveys will be able to study star formation
at all redshifts. Deep field observations were mainly made in the optical band, while recent
CIB measurements in the submillimeter and far infrared bands show the “dark side” of
galactic formation: in the “local” Universe, about 30% of the bolometric luminosity of
galaxies is emitted in the infrared band and a large amount of dust heating is due to
young stellar population activity, so that a substantial fraction of submillimeter and far
infrared emission is produced by stellar formation processes. Thus, part of stellar and
galactic formation signal is hidden by dust, which adsorbs stellar radiation in the UV and
optical bands and re-emits it thermally at longer wavelengths.

It is clear that the global Star Formation Rate (SFR) inside galaxies is higher than
what can be obtained by optical data alone. Fig. 1.22 summarizes existing data on SFR
history.

Figure 1.22: Star formation rate τSFR as a function of redshift, as inferred from UV, optical
and near infrared observations, in order of increasing redshift. See [7] and references
therein. The high redshift points are derived from analysis of the Hubble Deep Field. Solid
and dotted lines represent respectively a gaussian and a modified gaussian SFR model,

based on submillimeter wavelength data.

Nowadays, there are 100 submillimeter galaxies known, even if their redshift and phys-
ical properties are highly uncertain. Knowledge of their properties come from observation
made with SCUBA and MAMBO experiments, at wavelengths of 450, 850 and 1200µm.
Counts of distant galaxies in the far infrared at 95 and 175µm were obtained by ISOPHOT.
At even longer wavelengths (λ = 2.8mm), limits on galaxy counts were carried out by the
BIMA interferometer. Most relevant data are summarized in Fig. 1.23.
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(a) Source count at λ = 2800, 850 and 95mm (b) Source count at λ = 1200, 450 and 175mm

Figure 1.23: Summary of count data from several millimeter, submillimeter and far in-
frared surveys. The plotted curves are derived in models that provide good fits to this data
compilation, while errors are shown as 1σ: see [7] and references therein. Data points
in the range 2 ÷ 10mJy are consistent with an integrated source count N(> S) ∝ Sα,
with a power law index α ≃ −1.6. It is worth noting that counts at fainter flux densities
must have α < −1 to avoid divergence of background radiation intensity, while counts at

brighter flux densities fall steeply.

1.5.7 Confusion noise

One of the main problems of millimeter wavebands observations is related to the diffi-
culty in source resolving (confusion noise), i.e. the contribution to noise in an image due
to superimposed signals coming from faint sources, on the scale of the telescope beam.
This is a problem related to the instrument resolution. In fact, a significant fraction of
the noise in the deepest 850µm SCUBA image can be attributed to confusion noise: ac-
tual limits of SCUBA observations are ∼ 2mJy. This limit makes difficult to determine
accurate position of fainter galaxies, rendering follow-up observations more challenging.
Unfortunately, most of the high redshift galaxies known are typically fainter than actual
confusion limit.

Counts of dusty galaxies shown in Fig. 1.23 can be used to estimate the effect of source
confusion in observations made at a wide range of frequencies and angular scales. The
distribution of flux density values from pixel to pixel in an image due to confusion noise
depends on the detected galaxy counts. Confusion noise becomes relevant when source
density is higher than ∼ 0.03 beam−1.

The simulated confusion noise distribution can be represented quite accurately by a
logarithmic distribution, which fits the higher flux density values better than the gaus-
sian distribution (see Fig. 1.24). The central peak’s width of flux density distribution is
approximately the same as the flux density at which the sources count exceeds 1 beam−1.
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(a) Confusion noise: ideal instrument (b) Confusion noise: Gaussian instrument

Figure 1.24: Histograms showing the simulated effects of confusion noise in deep SCUBA
integrations at 850µm. The left panel shows the expected distribution of pixel flux den-
sities when the telescope samples the sky in a standard (−0.5, 1,−0.5) chopping scheme,
with overplotted gaussian distribution and no additional noise terms present. The flux
distribution is not Gaussian: this is particularly evident in the tails. In the right panel is
plotted the same confusion noise distribution convolved with a Gaussian beam and for a

sky noise RMS of 1.7mJy, which is the typical noise level of the SCUBA survey.

This provides a useful indication of the angular scales and frequencies for which confusion
noise is significant, and of the limit imposed for a specific instrument to the depth of the
survey (see Fig. 1.25).

The real problem of confusion for identifying sources and conducting multiband studies
of submillimeter galaxies is illustrated by the results of the first generation of surveys. It
is impossible to be certain that the correct source identification is made, simply using
optical or submillimeter observations. In many cases, faint radio galaxies can be associate
to submillimeter galaxies: observations in millimeter band of these radio galaxies made
with high resolution interferometers, together with long observational time, provide more
accurate measurements, thus reducing the effects of submillimeter confusion.

As already said, confusion noise is a signal degradation due to low angular resolution
(Fig. 1.26), i.e. the instrument ability in resolving two close sources. Predicting or mea-
suring confusion noise depends on the measurement purposes: realizing a far infrared or
submillimeter survey and obtaining a complete sampling has different requirements with
respect to measuring the SED or the photometric redshift of a source. In the first case,
it is necessary to control the statistical properties of the whole sample; in the second one,
the absence of completeness is irrelevant and low photometric accuracy is acceptable too.

Confusion noise predictions require the knowledge of the galaxies number counts dis-
tribution: it is required to choose a model. Since the slope in the log(N)− log(Sν) diagram
varies with the flux density Sν , fluctuations of faint sources below Sν must vary too. Con-
fusion noise can be estimated by the level of fluctuations, using photometric criteria. In the
infrared and submillimeter wavebands, below 300µm, confusion noise is better predicted
using source density; at longer wavelengths, it is more suitable the photometric criterion.

A sample of faint extragalactic sources is quite incomplete: this can give problems for
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(a) Contribution from extragalactic sources (b) Contribution from galactic sources

Figure 1.25: An approximate measure of the 1σ confusion noise expected as a function
of both observing frequency and angular scale from the millimeter to mid infrared bands.
Radio-loud AGNs may give a significant contribution to the top left of the jagged solid
line. It is assumed the presence of a galactic cirrus surface brightness of B0 = 1MJy/sr
at 100µm. The ISM confusion noise is expected to scale as B1.5

0 . Bands and beamsizes re-
ported are described in [7]. Circles: Planck; squares: BOOMERanG; empty stars: SuZIE;
triangles: BOLOCAM; filled stars: SCUBA; diamonds: Herschel; asterisks: SOFIA;
crosses: SIRTF. The resolution limits of the interferometric ALMA experiment lies far be-
low the bottom of the panels. Confusion from extragalactic sources is expected to dominate

that from the Milky Way ISM.

statistical studies, but it can be ignored in the case of photometry of known objects. Rela-
tive number counts derive both from data and models, which are based on the assumption
that sources follow a Poisson distribution. Most advanced models use an analytic formula
which takes into account source clustering: they reach a 90% confidence level [115].

Confusion noise in the infrared waveband is due to galactic cirrus, even if their complex
structure is not meaningful at small scales. Infrared cosmological surveys are realized at
high galactic latitudes sky regions, lacking of cirrus and where the neutral hydrogen column
density is as low as possible. Despite of this, only 2% of the sky has a hydrogen density
NHI 6 1.0 · 1020 cm−2. Tab. 1.2 shows the “clean” fraction of sky for a given column
density value.

Far infrared and submillimeter observations are interesting to characterize galaxies
responsible of cosmic infrared background at redshifts z > 1.3, but these analysis are
complicated by confusion noise. One solution consists in extrapolating far infrared and
submillimeter properties from radio or mid infrared spectral properties based on small sam-
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Figure 1.26: Effects due to confusion noise in far infrared on an observation of a 400×400
arcsec2 area. From left to right: 373mJy source observed with ISOPHOT at a 170µm
and 180s of integration time; observations at 160µm, 70µm and 24µm made with Spitzer
MIPS with 16s, 80s and 160s of integration time respectively. The source at 170µm is only
resolved at 160µm. The two sources in the lower left corner of the 160µm image produce
fluctuations in the ISO 170µm map, introducing the confusion noise when resolution is

limited.

NHI (cm−2) Sky Fraction

6 1.0 · 1020 2%
6 1.25 · 1020 5%
6 1.6 · 1020 10%
6 2.0 · 1020 17%
6 2.2 · 1020 20%
6 3.0 · 1020 30%
6 3.8 · 1020 40%
6 5.0 · 1020 52%

Table 1.2: Fraction of sky for a given column density value, as derived from [14], assuming
a full sky sampling.

ples. Another method is the selection of physically homogeneous samples, using shorter
wavelengths or high angular resolution data, where far infrared and submillimeter photom-
etry is extracted by. This technique is used to obtain color properties of SCUBA galaxies
at 70µm [42].

In conclusion, localized galaxies at different redshifts contribute to form the cosmic
infrared background, which has a peak in the far infrared. Most of these contributions are
due to ULIRGs between 0.5 6 z 6 1.5, while submillimeter waveband is dominated by
ULIRGs at z > 2. Infrared properties of these luminous galaxies are not known in detail
due to confusion noise present in this spectral region.
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The OLIMPO experiment

The whole problem with the world is
that fools and fanatics are always

so certain of themselves,
but wiser people so full of doubts.

Bertrand Russell

OLIMPO (Osservatorio nel Lontano Infrarosso Montato su Pallone Orientabile) is a
balloon-borne experiment devoted to cosmological and astrophysical survey in the mil-
limeter and submillimeter bands [73, 74, 80]. It implements many advanced technical
solutions: a large telescope, a long duration cryostat, a cold re-imaging optical system,
arrays of bolometric receivers sensitive in four bands.

OLIMPO is the successor of balloon-borne experiments like ARCHEOPS, BOOME-
RanG and MAXIMA. Thanks to its characteristics, OLIMPO will be able to improve our
knowledge of the signals in the so-called cosmological window, i.e. a wavelength band that
extends roughly from 1 to 5mm (ν = 300 ÷ 60GHz ). At lower frequencies interstellar
emission of spinning dust grains, bremsstrahlung and synchrotron from charged particles
in the ISM dominate the cosmological background; at higher frequencies the clumpy cirrus
dust foreground dominates the sky brightness, even at high Galactic latitudes, together
with the far infrared emission due to unresolved extragalactic sources.

A stratospheric balloon experiment has an excellent cost−performance ratio: the costs
and time necessary to develop are much less than those required by satellite experiments,
while the reduction of atmospheric emission in the microwave band boosts the quality of
measurements.

The OLIMPO payload described in this chapter is constituted by a 2.6m Cassegrain
telescope mounted on an attitude controlled stratospheric balloon payload. The experi-
ment is designed to perform a long duration circumpolar flight, up to 15 days long. The
four bands of OLIMPO, centered at ν = 143, 217, 353 and 545GHz (λ = 2100, 1400, 850
and 550µm respectively), are chosen to better disentangle the various cosmological signals
described in Chap. 1.

49
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2.1 Telescope

The telescope of OLIMPO is based on the classical scheme of an on-axis Cassegrain
system (see Fig. 2.1). It consists of two mirrors: the primary is a concave paraboloid,
the secondary in a convex hyperboloid. The two optical axes coincide [103] as well as the
focus of the primary and one of the two foci of the secondary mirror. Thus, the equivalent
focal distance of the telescope is:

fCassegrain = m · f1st (2.1)

where f1st is the focal length of the primary and m is the transverse magnification of the
secondary mirror. This is defined as the ratio between the distance of the hyperboloid
vertex from the focal plane of the telescope and the focal length f2nd of the secondary
mirror. Compared to other configurations, Cassegrain optical systems are very compact,
i.e. they have a great ratio between the equivalent focal length and their linear dimensions.
This is a fundamental advantage for a balloon-borne experiment.

Figure 2.1: Cassegrain telescope scheme: it is made of a primary parabolic mirror and a
secondary hyperbolic one. The dashed curves represents the conics, while the solid curves

are the used portion for the mirrors.

Signal modulation is strongly required for millimeter and submillimeter experiments
(see § 2.2). It can be achieved using three possible solutions: rotating the entire payload,
wobbling the primary or secondary mirrors. In the latter case, secondary mirror is slightly
smaller to avoid looking the edge of the primary. It has two drawbacks: it introduces an
offset due to thermal gradients on the primary surface; moreover, the image of the primary
mirror refocused on the Lyot Stop (see § 3.2.1) moves, thus the Lyot Stop dimensions must
be reduced to get the intersection of the various images.

The primary mirror can be wobbled around its focus, its barycenter or alternatively
the Lyot Stop can be wobbled. The optical performances of these three techniques are
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analyzed in detail in § 3.1. Wobbling Lyot Stop gives good optical performances, but it
introduces many drawbacks that cannot be solved (see § 3.1.1).

In order to avoid optical aberrations, the ideal solution is to wobble the primary around
its focus (see § 3.1.2). In practice, this cannot be done because the motion would produce
a transfer of the angular momentum to the payload, thus introducing microphonic noise
in the system and oscillations in the pointing. In fact, it must be noted that the mirror is
made of an aluminum alloy and weights ∼ 105Kg : together with its frame, the total weight
is ∼ 180Kg. Thus, wobbling the primary around its focus is very difficult because of the
huge value of the moment of inertia, which requires a very high torque. Furthermore, the
telescope will be coupled up the balloon using a chain of ∼ 100m: an unbalanced torque
would induce oscillations modulating the residual atmospherical emission. This emission
cannot be removed with the modulation of the primary, compromising the measurements.

The solution adopted is the best one from a mechanical point of view: the primary
mirror and its frame must rotate around their center of mas. It minimizes the angular
momentum transferred to the payload, thus avoiding microphonics on the receivers and
perturbations on the telescope pointing. However, as it will be pointed out in § 3.1.3,
optical performance degrades a bit.

In the final configuration, the primary mirror has a diameter of 2.6m (see Fig. 2.2):
it does a sky scan in cross elevation (i.e. the direction orthogonal to the elevation angle)
producing a linear modulation on fields having a small difference in elevation. The oscil-
lations have an amplitude up to ±3◦ with a scan velocity of 1◦/s. However, the optical
system is optimized for scans of ±0.15′: they produce a beamthrough equal to ±30′.

The secondary mirror has a diameter of 0.52m and it is suspended by a steel spider in
its position in front of the primary (see Fig. 2.3). Its parameters are chosen so that the
telescope focal plane is inside the cryostat, thus reducing the dimensions of the windows
as well as the heat load due to incoming radiation. Moreover, its focal length must be
long enough to have the required space between the primary vertex and the cryostat.

Tab. 2.1 summarizes the parameters of the the telescope, while Fig. 2.4 shows a model
of the telescope as given by the ray tracing program. The Full Width Half Maximum
(FWHM) of the beam is computed at 90 and 150GHz : note that the far field at these
frequencies is ∼ 20km. The measurements of the beam obtained at 150GHz are shown in
Fig. 2.5, compared to the expected Point Spread Function (PSF) at the same wavelength,
as defined by eq. (3.8).

The optimization of the system was made using the ray tracing algorithms of the ZE-
MAX optical design and analysis software. It is worth noting that aberrations are almost
absent in the on-axis configuration, as shown in Fig. 2.6: the primary being a parabolic
mirror, spherical aberration is negligible, while the chromatic aberration is completely
absent because there is no refractive element. When the telescope is off-axis, coma and
astigmatism aberrations arise: we optimized the optical design to keep the image of a point
source inside the dimensions of the Airy disc, i.e. dimensions of the image must be smaller
than the circumference that encloses the diffraction figure till the first minimum. The
radius of the Airy disc, for an incident radiation of wavelength λ is RAiry ≃ 1.22 · f/# · λ.
In the case of a single circular aperture, the Airy disc encloses ∼ 84% of the total incident
energy.

When the dimensions of the image produced by a point-like source (spot) are smaller
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Figure 2.2: Image of OLIMPO telescope mounted on its main frame.

than the Airy disc radius, the optical system is diffraction limited. As it will be described
in § 3.1, when the primary is tilted, the optical system is diffraction limited only for the
two longer wavelengths (λ = 2100 and 1400µm, ν = 143 and 217GHz respectively).

The main frame of the experiment (see Figs. 2.2 and 2.7) is made of aluminum alloys
and has been optimized to withstand vertical shocks up to 10g and horizontal shocks up
to 5g, which could happen at the end of the mission at parachute opening. The telescope
and the detector systems are mounted on an inner frame free to move in elevation, while
the azimuthal movement is made by rotating the entire payload around a top pivot. The
elevation of the inner frame can be set from 0◦ to 60◦: reaching low elevations is very
important for ground based calibrations of the telescope and in-flight calibration based on
planets.
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Figure 2.3: Image of the back of the OLIMPO secondary mirror and of the spider that
keeps it positioned in front of the primary mirror.

Figure 2.4: 3D scheme of the OLIMPO telescope obtained with the ZEMAX optical design
and analysis software. Only the primary and secondary mirrors, together with the focal

plane of the telescope, are shown.
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Figure 2.5: Measurement of the beam of the OLIMPO telescope at 150GHz normalized at
its maximum value. The plotted curve is the the predicted Point Spread Function at that

wavelength.

(a) On-axis spot diagram (b) Off-axis spot diagram

Figure 2.6: Spot diagrams on the focal plane of the telescope in the final configuration (see
§ 3.1.3). For each wavelength, the dimensions of the spots of the five fields are compared

to the radius of the Airy disc.
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Primary mirror

Outer diameter 2600mm
Inner diameter 150mm
Input pupil (portion of diameter used) 2000mm
Conical constant −1.009
Focal length 1247.25mm
Curvature radius −2494.5mm
f/# 0.48

Secondary mirror

Diameter 520mm
Portion of diameter used 500mm
Conical constant −2.114
Curvature radius −708.55mm

Telescope

Focal length 6901.6mm
f/# 3.45
Corrected focal plane diameter 70mm
Primary vertex − secondary vertex distance 957mm
Primary vertex − focal plane distance 659mm
Primary vertex − primary modulation axis distance 150mm

Table 2.1: Optical parameters of the Cassegrain telescope of OLIMPO. The primary is
sub-illuminated to reduce sidelobes contribution, as explained in detail in § 3.2.1

2.2 Modulation and scan strategy

Scanning strategy is crucial for millimeter and submillimeter experiments in order
to optimize the extraction of the signal from noise. In particular, spatial modulation
techniques are widely used for their great advantages:

• They allow to remove local background signals, like thermal emission from mirrors or
atmospheric emission and noise. The molecules of the atmosphere, at a temperature
of ∼ 250K, produce a strong emission in the far infrared spectrum due to rotovibra-
tional transitions. The resulting effect is that, apart two “windows” in the optical
and radio bands, celestial radiation is highly absorbed (see Fig. 2.8). Moreover, the
presence of water vapor emits absorbed radiation at millimeter and submillimeter
wavelengths, thus affecting cosmological measurements.

• Electronics can be coupled in AC, thus avoiding troubles due to low DC stability of
receivers and amplifiers; moreover, this permits the use of synchronous demodulation
which increases significantly the signal-to-noise ratio (S/N), thus it is possible to
extract a small signal from the overwhelming noise.

Let us suppose G(t) is the quantity to be measured and N(t) is its intrinsic noise.
Usually, the radiative signal is converted into an electric signal using a transducer, the
bolometric receiver in our case (see § 2.4): this has a responsivity R and noise NR(t). The
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Figure 2.7: 3D view of the OLIMPO main frame: the telescope, the spider system that
sustain the secondary mirror and the cryostat are shown.

electric signal is then processed by an amplifier having gain A and input noise NI(t). The
signal measured at the output of the amplifier is:

VA(t) = A{R[G(t) +NR(t)] +R(t) +NI(t)} (2.2)

The amplifier does not improve the S/N ratio, but it increases the signal so that it can
be easily measured. It can be shown that the total noise is the superimposition of a 1/f
term and a white noise one: the former has an intensity that is inversely proportional to
the frequency f ; the latter has an almost flat spectrum. The signal G(t) is modulated at
frequencies high enough so that the contribution of 1/f is negligible. Moreover, the signal
is measured with a synchronous demodulator (lock-in): it is a pass-band filter centered
on the modulation frequency fM which is able to “follow” the modulation frequency in
the case fM varies. Thus, only the noise present in the pass-band of the lock-in affects
measurements. If τ is the time constant of the filter, the width of the pass-band is 1/2τ .
Assuming that the spectrum of the input noise is WN and the integration time is τ , the
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Figure 2.8: Full spectrum of the atmosphere transmission: figure shows the altitude at
which the sky radiation is reduced to 50%. The physical mechanisms that produce this
absorption are also reported. It is clear that, in order to cover the frequencies above

ν ∼ 200GHz, balloon or satellite experiments are mandatory.

signal-to-noise ratio at the output of the lock-in is:

S

N
=

VOut√
〈∆V 2

Out〉
= VS

√
2τ

WN
(2.3)

where VS is the amplitude of the input signal at the lock-in, thus directly proportional
to G(t). It is worth noting that integrating over a long time constant τ , the S/N ratio
increases.

In order to modulate the anisotropic sky signal signal, the basic idea is to produce
sky-scans, thus separating the sky signal from the constant nuisance components, like
atmospheric and instrument emissions. The simplest sky-scan technique consists in alter-
natively pointing towards the source of interest and towards a region without sources (two
fields modulation). This modulation alternates the nuisance contributions and these con-
tributions plus the signal. An offset can still remain since it is not possible to distinguish
nuisance gradients along the scans from the real signal. This problem can be significantly
reduced using a three fields modulation, i.e. pointing alternatively towards the source, then
moving to one side, then again towards the source, finally to the other side. With this
technique, the only offset that remains is due to non-linear variations of the atmospheric



58 2.3. Cryostat

emission in the three fields. The methods used to modulate the signal are analyzed in
§ 2.1, while their optical performance are reported in § 3.1.

The strategy that will be used for OLIMPO is to move the entire payload in azimuth,
the inner frame in elevation and, in addition, to wobble the primary mirror in cross
elevation. Consequently, the illuminated region of the primary mirror remains always the
same, avoiding scan synchronous offset. There is still a danger in this scanning technique:
primary mirror oscillates in cross elevation, so the actual elevation changes a bit during
the scan. Signal from atmospheric emission changes with elevation angle, so there could
be a scan-synchronous noise left in the measurements.

The first flight foresees to select 40 known cluster of galaxies from a catalogue and
to observe them through spatial modulation. Using the IRAS data on the galactic dust
contribution and many available catalogues, we look for a sky region at high latitudes,
observable from North Pole during summer, poor of dust emission and rich of clusters.
The selection falls on an 10◦ × 10◦ area centered in 65◦ galactic latitude and 155◦ galactic
longitude. The selected clusters are reported in Tab. 2.2.

Scan velocity must be compatible with instrumental constraints: it should be high
enough to ensure as many samples as possible and to reduce the contribution of the 1/f
noise, but angular resolution and time response of receivers put an upper limit of about
1◦/s.

2.3 Cryostat

Photons at millimeter and submillimeter wavelengths have not enough energy to be de-
tected using classic quantum receivers, such as CCD cameras. The use of thermal receivers
is required: their characteristic is the integration of many incident photons thermalizing
their energy and converting it into an electrical signal. In the bands of the OLIMPO
experiment, the best available receivers are bolometers, whose operation principles will be
explained in § 2.4.

The introduction of a cooling system is necessary for two main reasons:

1. The Cooler is the temperature, the better is the sensitivity of the bolometers to
variations in the incident radiation. As will be analyzed in § 2.4, the best working
temperature of the receivers designed for OLIMPO is below 300mK.

2. The external background due to the atmosphere has a spectrum roughly similar to a
room temperature grey body, i.e. T ∼ 300K during ground calibration and T ∼ 30K
on flight. Thus, the energy of these photons is much greater than that contained in
the signal of interest saturating the receivers. Hence, they must be shielded as much
as possible.

The system that permits to cool down the receivers to 300mK is called cryostat. To
reach such a low temperature, the use of cryogenic liquids such as nitrogen, 4He and
3He is required. In order to reduce the heat load, the cryostat has to be designed in an
appropriate way, using various layers. The relation between the heat load Q̇ (measured in
W ), the duration of the cryogenic liquid t and its volume V is:

Q̇ =
LV

t
(2.4)
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Name Latitude Longitude Altitude Azimuth

Abell 1067 125.5039 125.5039 42.1719 94.2512
Abell 1074 118.0895 118.0895 48.1786 91.0387
Abell 1076 115.8231 115.8231 58.9391 83.9804
Abell 1077 114.3608 114.3608 47.9734 90.7570
Abell 1101 100.7626 100.7626 45.6784 90.4271
Abell 1110 95.2258 95.2258 43.6918 90.7449
Abell 1132 93.1985 93.1985 56.9974 81.8382
Abell 1133 87.8872 87.8872 50.4938 85.9004
Abell 1135 80.9196 80.9196 42.0777 89.6352
Abell 1143 83.3484 83.3484 50.7556 84.7495
Abell 1154 79.9054 79.9054 50.1120 84.3012
Abell 1156 77.4312 77.4312 47.8054 85.4168
Abell 1167 76.5722 76.5722 49.0428 83.9756
Abell 1169 71.2511 71.2511 44.3350 86.1115
Abell 1173 67.9015 67.9015 42.0031 86.7530
Abell 1174 69.6541 69.6541 43.6268 86.0646
Abell 1190 65.5462 65.5462 41.1604 86.4015
Abell 1193 67.2934 67.2934 42.6733 85.6896
Abell 1196 81.6714 81.6714 53.5273 80.2346
Abell 1202 73.6143 73.6143 47.4558 83.2767
Abell 1203 64.0963 64.0963 40.5185 86.0644
Abell 1222 79.3282 79.3282 46.7986 81.8155
Abell 1227 83.2155 83.2155 47.5646 81.1809
Abell 1229 81.4073 81.4073 45.7431 81.8707
Abell 1237 79.5642 79.5642 42.5101 82.8531
Abell 1240 80.4144 80.4144 42.7655 82.7323
Abell 1250 83.6449 83.6449 41.2810 82.9407
Abell 1261 110.3679 110.3679 47.5486 79.6340
Abell 1265 108.3534 108.3534 40.8301 82.2835
Abell 1282 138.5397 138.5397 39.3996 82.1429
Abell 1291 134.1236 134.1236 54.6028 74.5811
Abell 1298 147.5835 147.5835 43.9334 79.9431
Abell 1312 149.1171 149.1171 48.8613 77.2805
Abell 1318 150.1585 150.1585 53.3850 74.2287
Abell 1319 174.9659 174.9659 39.1940 80.7799
Abell 1324 149.3064 149.3064 55.3539 72.7785
Abell 1326 176.7359 176.7359 39.2309 80.5623
Abell 1349 159.8664 159.8664 53.4754 72.7345
Abell 1351 156.1065 156.1065 56.4259 70.6647
Abell 1355 179.4996 179.4996 40.6229 78.6119
Abell 1361 173.4791 173.4791 44.8473 76.6903
Abell 1368 167.2980 167.2980 49.4614 74.2445
Abell 1370 169.8600 169.8600 47.6252 75.0932
Abell 1374 169.4670 169.4670 47.9668 74.7282
Abell 1377 162.0959 162.0959 53.5952 71.4243
Abell 1383 163.5042 163.5042 52.4835 71.7886
Abell 1387 166.9434 166.9434 49.6130 73.1857
Abell 1394 175.9781 175.9781 40.6685 76.4748
Abell 1409 166.5892 166.5892 46.9277 73.1555
Abell 1415 156.5228 156.5228 55.1668 68.1976
Abell 1430 159.8352 159.8352 47.3539 71.6162

Table 2.2: List of selected clusters that will be observed during flight. We report the galactic
coordinates and azimuth and altitude computed on the 1th of July 2007 from the latitude

of Svalbard islands.
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where L is the latent heat. The heat load has three different origins:

Conductive heat load It is mainly due to the presence of a “solid” connection between
two layers at different temperatures T1 < T2. If the material that constitutes the
connection has length L, section S and thermal conductivity k(T ), the heat load is:

Q̇ =
S

L

∫ T2

T1

k(T ) dT (2.5)

Convective heat load It happens when there is a fluid (typically gaseous) in the cryo-
stat. The thermal input depends on its pressure and on a constant K which depends
on the kind of molecules forming the gas:

Q̇ = K a0 p (T2 − T1) (2.6)

Radiative heat load This is due to the emission of the outer and hotter layer. If we sup-
pose to have two surfaces S1 and S2 at temperatures T1 and T2, with S2 surrounding
S1 and T1 < T2, the heat load is:

Q̇ = F12A1 σ (T 4
2 − T 4

1 ) (2.7)

where A1 is the area, approximately equal, of the two surfaces and F12 is a form
factor that, for material having low emissivity, is about half their emissivity.

As shown in eqs. (2.5), (2.6) and (2.7), heat loads depend on the difference of the
temperatures between layers. Using a system of four cylindrical and concentric shells (see
Figs. 2.9 and 2.10), the thermal input is dramatically decreased. Starting from outside,
the first shell is the cryostat shield at room temperature (∼ 300K for ground based
measurements, ∼ 30K on flight); the second layer is a toroidal tank that contains liquid
nitrogen at 77K; the fourth shell is an aluminum shield in thermal contact with the 4He
tank; the third layer is a copper shield cooled at ∼ 30K using the 4He evaporated by the
tank.

The convective heat load is usually negligible, because the gas is pumped out the
cryostat: the residual pressure is ∼ 10−7mbar. Radiative thermal input between two
surfaces of the shells is reduced using many layers of superinsulation placed on the colder
surface. Superinsulation is a thin sheet of mylar, a material having an aluminum face,
which decreases emissivity and transparency, while the other face is insulator and opaque,
in order to avoid the thermal link between subsequent layers. Conductive heat load is due
to the filling tubes of the N2 and 4He tanks and to the thermal link between the various
layers: the former can be reduced increasing the lengths of the tubes and decreasing their
cross section; the latter is minimized using low conductive materials, such as fiberglass,
kevlar strings or vespel.

The liquid 4He has a temperature at room pressure (∼ 1010mbar) of 4.2K; decreasing
the pressure of the gas inside the tank, the temperature can be lowered till 1.6K, which
is not enough to reach the receivers working temperature of 300mK. This can be achieved
using a further cryogenic stage attached to the 4He tank, called fridge (see Fig. 2.9). This
is a “closed” system containing liquid 3He and made of two parts: an evaporator and a
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Figure 2.9: 3D model of the OLIMPO cryostat: all the stages are shown, from the external
300K shield to the 3He fridge at 300mK, together with the cryogenic re-imaging optical

system.

cryogenic adsorbing pump (cryopump). Both can be thermally connected or disconnected
to the 4He tank. The cryopump can be heated up to ∼ 25K using a resistor. The
cryopump is filled with active carbon, whose characteristic is the extremely high porosity
of its grains (surface−volume ratio ∼ 700m2/cm3). At high temperature (> 20K), the
probability that atoms of 3He are captured is very low, thus the gas is diffused in the whole
fridge. As the cryostat is cooled down and the cryopump is thermally linked to the 4He
stage, the probability of capture becomes very high, thus all the gaseous 3He is adsorbed:
the pressure can decrease till ∼ 10−3mbar.

The procedure to reach the 300mK is time-consuming and can be subdivided into
seven steps:

1. The gas present in the cryostat volume between the tanks is pumped out, until a
pressure of ∼ 10−7mbar is reached.

2. Both N2 and 4He tanks are filled with liquid nitrogen in order to thermalize the
whole system at 77K.

3. When the system is thermalized, which implies a constant consumption of the nitro-
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(a) External shell (b) N2 shell

(c) Vapor shell (d) Serpentine

Figure 2.10: Images of the various shells of the OLIMPO cryostat, starting from outside
to inside. The external shell is at room temperature; the N2 shell is thermally linked with
the liquid nitrogen, hence cooled till 2K during flight; vapor shell is made of copper and

cooled at ∼ 40K by the vapors of 4He using the serpentine welded on the shield.
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gen, N2 liquid is removed from the 4He tank and is replaced by is 4He liquid; thus
the inner shell reaches 4.2K.

4. Subsequent step consists in cooling the inner shell at 2K or less. At room pressure,
this must be done pumping on the 4He tank. When the experiment is on flight, the
external pressure is ∼ 3mbar, thus 4He reaches the 2K “unassisted”.

5. When the cryostat cools down to 2K, the cryopump, thermally linked with the 4He
tank, starts to adsorb the gas of 3He present in the system.

6. After disconnecting the cryopump from the stage at 2K, it is heated up to 25K
so that it desorbs the gas; it starts to condensate in the evaporator, still thermally
linked to the 4He tank.

7. While the gas is ejected by the cryopump, pressure increases until an equilibrium
between liquid and gaseous 3He is reached; then, disconnecting the thermal link
between the evaporator and the 2K stage and connecting the cryopump to the 4He
tank, the cryopump starts to adsorb the residual gas; pressure and temperature of
the 3He decrease to ∼ 300mK.

The particularity of the OLIMPO cryostat consists in the structure that sustains the
shells: since the cryostat will be mounted behind the telescope and, as described in § 2.1,
this can be tilted in elevation up to 60◦, we need a strong support. This cannot be achieved
using kevlar strings, as was done in the BOOMERanG experiment, while vespel would
be too expensive. The adopted solution consists in three concentric fiberglass tubes that
connect the three inner shells to the outer shield.

All the shells and tanks are made of aluminum, thus decreasing the weight. An ex-
ception is the shield cooled by the vapors of the 4He and a small flange that ensures
the thermal link between the fridge and the 4He tank (see Fig. 2.9). These are made of
Oxygen-Free High Conductivity (OFHC) copper, in order to increase as much as possible
the thermal conductivity.

The radiative load through the optical path is minimized by appropriate filters. On
each shell a low-pass frequency filter is mounted, thermalized at the temperature of the
shell. All the re-imaging optics, dichroics, neutral density filter and calibration lamp are
thermally linked to the 4He stage, together with the fridge. The receivers, their horns and
high-pass frequency filters are cooled down to 300mK, connected to the evaporator of the
fridge using copper strings with very high thermal conductivity.

2.4 Receivers

In the bands of the OLIMPO experiment, the energy of photons is too low to be
observed using quantum receivers: they work only for wavelengths shorter than ∼ 200µm.
In the millimeter and submillimeter bands quantic processes are not efficient enough, thus
the use of thermal receivers is required. These are able to absorb many low energy photons,
giving rise to a temperature variation of the receivers. This temperature variation produces
a variation in a thermometric quantity which, in the case of bolometers, is the electrical
resistance. In order to neglect the thermal energy fluctuations of the detector below the
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energy of the incident photons, cooling down the bolometers at a temperature of 300mK
or lower is required.

The bolometer is made of a strongly temperature dependent electric resistance. The
detector is thermally linked to the 3He bath at temperature T0 using a link with mean
thermal conductivity G. The receiver is fed by a bias circuit, whose purpose is to set
the working voltage V and current I. Furthermore, the bolometer dissipates a power
P due to the Joule effect (see Fig. 2.11) and is heated up by the background radiation.
Denoting with Q the radiative power due to the absorbed background radiation, the final
temperature of the bolometer is:

Q+ P = G (T − T0) (2.8)

Figure 2.11: Bolometer scheme: it is thermally linked to a bath at temperature T0 with
a thermal conductivity G, heated up at a temperature T > T0 due to the incident power

radiation Q that changes its resistance R and dissipated power P = I2R.

The main parameter that characterizes a bolometer is its responsivity R, i.e. the
ratio between the electric signal at the receiver output, computed in V , and the radiative
incident power, measured in W . There are three types of responsivity: static RStat ,
dynamic RDyn and optical ROpt . The second one is the ratio between output signal and
power absorbed by bolometer, while the latter is the ratio between the measured signal
and the incident power: thus, denoting with η the absorbing efficiency, ROpt = ηRDyn .
Both these responsivities are function of the frequency of the input signal, while the
static responsivity is defined as the dynamic one at constant dissipated power: RStat =
RDyn(ω = 0).

Let us suppose that a radiative signal, having power ∆Q, is superimposed to the
constant background one. Denoting with RL the resistance of the bias circuit, we get the
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relations:

∆Q = C
d∆T

dt
+GEff ∆T (2.9a)

GEff = G+
dG

dT
(T − T0) − Pα

2RL −R

2RL +R
(2.9b)

α =
1

R

dR

dT
(2.9c)

where α is the resistance parameter, which defines the variation of the resistance R of the
bolometer as a function of its temperature. Usually, α is negative, so that an increasing
heat load produces a decrease of the resistance. In this case, the bolometer operates with
an effective thermal conductivity GEff higher than the static one. Given the time constant
of the bolometer τEff = C/GEff , the dynamic responsivity is obtained by eqs. (2.9):

RDyn(ω) =
∆V

∆Q
=

αI

GEff

√
1 + ω2τ2

Eff

2RLR

R+ 2RL
=

RStat√
1 + ω2τ2

Eff

(2.10)

Note that it is necessary to find a compromise between high responsivity and short time
response of the bolometer. Moreover eqs. (2.9) and (2.10) provide the relation between
the thermal and effective time constants:

τTh =
C

G
= τEff

1

1 + Pα
2RL −R

(2RL +R) GEff

(2.11)

Thus, a bolometer with resistance parameter α < 0 has an effective time constant shorter
than the thermal one. As already described in § 2.3, one should decrease as much as
possible the bolometers working temperature: however, the background of the atmosphere
sets a lower limit on the sensitivity of the receivers. A temperature of 300mK is acceptable
for balloon experiments that fly at an altitude of ∼ 40km.

The values of the resistance parameter and of the time constant are not known a priori.
Hence, eq. (2.10) is not useful to analytically compute the static and dynamic resistance.
Instead, this can be estimated using the resistance R = V/I and the impedance Z = dV/dI
of the bolometer. These two quantities are identical in the case of isothermal resistors,
while for bolometers the relation between I and V is not linear and depends on the
dissipated power P = V I. It can be demonstrated that the relation between impedance
and dynamic responsivity is:

RDyn(ω) =
RL

IR

Z(ω) −R

Z(ω) + 2RL
(2.12)

This equation shows that a good bolometer should have the characteristic curve V − I
highly bended and a current as low as possible. The dynamic responsivity is computed
feeding the bolometer with an alternative bias current at the frequency of interest.

The best choice of the voltage bias is obtained considering both dynamic and optical
responsivity. The latter is measured observing alternatively two sources having known
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brilliance B, using a chopper to set the modulation frequency. Given the throughput AΩ
of the system, the responsivity is obtained by the relation:

ROpt(ω) =
∆V (ω)

AΩB
(2.13)

OLIMPO will use the next generation of bolometric receivers: Transition Edge Su-
perconductors (TES) [44, 68]. These consist of a “normal” metal absorber coupled to a
superconducting thermistor; energy of the incident radiation is rapidly thermalized in the
normal metal, leading to a prompt temperature rise in the superconducting film. This
film is voltage biased in the middle of its transition between superconducting and normal
states, so that the temperature increase produces a large change in film resistance. The
are three main differences between TES and composite bolometers:

1. TES are voltage biased so that they are kept at the transition temperature, hence
they are a null detector.

2. As the temperature increases, the impedance increases as well, thus the resistance
parameter α is positive (see Fig. 2.12).

3. The intrinsic impedance is of the order of few ohms, hence much lower than that of
composite bolometers.

Figure 2.12: Measured temperature dependance of the thermometer resistance. The largest
value of resistive parameter α is ∼ 1000.

These characteristics require the use of Superconducting QUantum Interference Devices
(SQUID) in place of of Junction Field Effect Transistors (JFET). SQUID are able to
measure the extremely small magnetic field produced by the bolometer and convert it
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into a detectable current. The drawbacks reside in their cost and their high sensitivity to
external magnetic fields, which requires very complex shields.

The main advantage of this new technology resides in the manufacturing process (see
Fig. 2.13). Classic bolometric receivers consist of two distinct parts, an absorber and
a thermistor; the two components are fabricated separately and are coupled during the
final process. Thus every bolometer is “handmade” and manufacturing many receivers for
large arrays is very time-consuming. TES are fully lithographed, so making large arrays
of detectors is relatively easy.

Figure 2.13: Photograph of a fully lithographed bolometer on a Si3N4 membrane. The
circular mesh is metallized to absorb radiation and is supported by eight radial legs. The
voltage biased trilayer thermistor is located on a continuous region of membrane in the

center and is electrically connected with superconducting leads.

It is worth noting that due to the large number of detectors, using separate bias circuits
for each bolometer is not possible, because that would increase too much the heat load
due to cryoharness and the cost of the readout electronics: thus, detectors multiplexing is
required, which can be done in two ways. Frequency domain multiplexing send a different
AC bias to each row of bolometers. Using the same techniques described in § 2.2, the
signal can be extracted at the same time for all the receivers: this would be the best
choice, but achieving a stable and low noise bias signal is very difficult. Time domain
multiplexing feeds one receiver per time, exploiting the time constant of the bolometers,
which is usually ∼ 0.1s: thus, feeding ten bolometers with one bias would require one
second. Time domain multiplexing is simpler but implies an upper limit on the scan
velocity.
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As already described (see § 2.1), OLIMPO has a Cassegrain telescope, with a 2.6m
parabolic primary mirror and a 0.52m hyperbolic secondary mirror. Inside the cryostat,
cooled down to ∼ 2K, there is a system of three mirrors (tertiary, Lyot Stop and quinary)
that re-focuses the image of the focal plane of the telescope onto the focal plane of the
experiment (image surface), as shown in Fig. 3.1.

Receivers used in millimeter and submillimeter experiments are highly sensitive ther-
mal detectors. In order to increase their sensitivity as much as possible, solid angle and
frequency selection of the radiation of interest is required. The introduction of re-imaging
optics has three main advantages:

1. Solid angle selection consist in rejecting primary edge effects, sidelobes and stray
light: this is achieved using a Lyot Stop, i.e. a mirror onto which the image of
primary mirror is focused in order to define the portion of primary mirror to be
used. Only light coming from the selected area reaches the bolometers (see § 3.2.1),
while light coming from the edges is focused on a cold absorber surrounding the Lyot
Stop.

2. OLIMPO has four frequency bands: incoming radiation is split by three dichroics
into four different focal planes (see Fig. 3.1), while it is filtered entering the cryostat
and again just before each focal plane. The presence of these dichroics between the
fifth mirror and the image surface implies an increase of the total focal distance, hence
the final f/# must be larger than the telescope’s one: due to space requirements,
this can be only realized using three mirrors in the refocusing system. The first one
(third mirror) is used to re-focalize radiation onto the Lyot Stop (fourth mirror) and
the third one (fifth mirror) recollects rays from the Lyot Stop to the bolometers.

3. There is also a thermal advantage, derived from cooling the re-imaging optics. The
small amount of spurious radiation that reaches the receivers is thermalized at 2K.
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Furthermore, the presence of a hole inside the Lyot Stop permits to disregard rays
coming from the hole of the primary mirror, which is a signal significantly higher
than that coming from the sky (see § 3.2.1).

Figure 3.1: Full design of the cold optical system: the focal plane of the telescope, the
tertiary and quinary mirrors, the Lyot Stop, the three dichroics which produce the beam
splitting, and the four focal planes of the experiment (image surface) are shown. The full

layout of the system is shown in Figs. 2.4 and 3.3.

In this chapter I will describe the optical solutions studied for the OLIMPO experi-
ment, including performance analysis, advantages and drawbacks of each solution. The
importance of signal modulation is described in § 2.2: the three solutions taken in consid-
eration differ in the way the signal is modulated.

3.1 Preliminary configurations

The standard procedure to design and optimize an optical system consists in creating a
preliminary configuration, determining the parameters that can be varied and looking for
parameters values which optimize the system (see Fig. 3.2). This is achieved by minimizing
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the merit function Ψ:

Ψ =

√√√√√√√

∑

i

wi (ci − ai)
2

∑

i

wi

(3.1)

where the sum is over all the operands defining the quality of the optical system. ci is the
actual value of every operand, while ai is the expected value and wi is the relative weight.P r e l i m i n a r y o p t i c a ls y s t e m

D e fi n i n g v a r i a b l e s &t h e i r l i m i t s D e fi n i n g m e r i t f u n c t i o n O p t i m i z a t i o n
E v a l u a t ep e r f o r m a n c e s

E x e c u t i v e p r o j e c tT o l e r a n c e s A s s e m b l i n g & t e s t s
F i n a l c o n fi g u r a t i o nY e sN o

Figure 3.2: General scheme of the optimization procedure.

The choice of the merit function is arbitrary, and depends on the quantity to optimize.
The spot is defined as the image on a given surface produced by a point-like source due
to the aberrations introduced by the optical system. Using this quantity as operand and
setting its expected value to zero, aberrations are minimized when Ψ is minimized. We
have considered five fields, hence the merit function is not computed only on the central
one, but also on the edge of the experiment field of view (see Tab. 3.1).
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Sky Coordinates Focal Plane
x (◦) y (◦) x (′) y (′) x (mm) y (mm)

Field #1 0 0 0 0 0 0
Field #2 0 +0.167 0 +10 0 −20
Field #3 0 −0.167 0 −10 0 +20
Field #4 +0.125 0 +7.5 0 −15 0
Field #5 −0.125 0 −7.5 0 +15 0

Table 3.1: Coordinates of the five fields of view using in optical analysis. We report the
corresponding coordinates of the spots on the focal plane of the experiment. The fields are
not the same in x and y because the dichroics partially limit the beam: since they are tilted

at 45◦ in respect to incident radiation, their projection on the beam is an ellipse.

Optics design and optimization were made using the ZEMAX optical design and anal-
ysis software. Given the telescope characteristics (see Tab. 2.1), every studied design is
realized in four main steps (see Fig. 3.3):

1. The properties of the tertiary mirror are determined by imposing that it reconstructs
the primary mirror image onto the Lyot Stop. During this procedure, the curvature
radius and the conic constant of the third mirror and its distance to the Lyot Stop
are assumed as free parameters.

2. Since we want all the receivers look at the same portion of the Lyot Stop, the quinary
mirror must focus parallel rays (i.e. emitted by an object at infinite distance) pass-
ing through the image surface onto the Lyot Stop. In this case, curvature radius
and conic constant of the fifth mirror are free to vary, while the distance Lyot
Stop−quinary is the same as tertiary−Lyot Stop. In fact, due to dimension con-
straints on the cryostat, it cannot be neither larger nor smaller: the latter would
decrease the f/# of the experiment, decreasing the total field of view, which would
be vignetted by the dichroics.

3. The whole system is designed and must be optimized. The only free parameters
will be the curvature radius and the conic constant of the Lyot Stop, the distances
between the focal plain of the telescope (i.e. the cryostat window) and the tertiary
mirror and between quinary and focal plane of the experiment (i.e. the image sur-
face).

4. The system is reversed, which means the receivers are now the source and the sky
is the image surface. Thus, radiation starts from the focal plane of the experiment
and propagates along the mirrors chain (from quinary to primary) until it reaches
the sky. This process is made to ensure that receivers see the desired portion of sky,
i.e. the optical system defines a good beam on the sky.

We now concentrate on three possible configurations: they differ in the way the signal
is modulated (see § 2.2). This can be achieved wobbling either the Lyot Stop or the
primary mirror around its focus or around its center of mass. The quality of a system can
be judged using two indicators:
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(a) Design of the tertiary mirror (b) Design of the quinary mirror

(c) Cold optics, including dichroics (d) Optical system, including telescope

(e) Cold optics, inverse design (f) Optical system, inverse design

Figure 3.3: Preliminary design procedure: it starts from the design of tertiary and quinary
mirrors, then the whole system is put together and finally it is reversed to ensure receivers

see the desired portion of sky.
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Spot Diagram It is the geometrical distribution of rays on the image surface:. The grid
of rays can be cartesian, polar or casual. A uniform grid of rays, passing through the
pupil entrance, reaches the image surface with a shape depending on the dominant
aberrations. A first image analysis compares the spots r.m.s. dimensions (defined
as the portion of the image including 68% of the total power of the source) with
the Airy disc at each wavelength. The Airy disc is defined as the circumference
enclosing the diffraction pattern up to the first minimum. In the case of a single
circular aperture, it includes ∼ 84% of the total energy of the incident radiation.
The radius of the Airy disc depends on the experiment f/# and on the radiation
wavelength:

RAiry ≃ 1.22 · f/# · λ (3.2)

When the spots produced by a point source on the image surface are smaller than
the Airy disc at that wavelength, the optical system is diffraction limited. As the
frequency increases, the dimension of the Airy disc decreases: the aberrations become
predominant and the system could be no more diffraction limited.

Encircled Energy This is a quantitative approach, because it defines the energy received
on the image surface: it is the fraction of total energy E included into a circle of
radius r0 centered around the chief ray :

EE =
1

E

∫ 2π

0

∫ r0

0
I(r, ϕ) dr dϕ (3.3)

The maximum fraction of the encircled energy cannot exceed the limit imposed by
diffraction. The efficiency of the optical system must be related to this maximum
value.

3.1.1 Lyot Stop modulation

The Lyot Stop is defined as the mirror where the image of the primary is focused on
(see § 3.2.1); its oscillation is equivalent to wobble the primary mirror. Since the Lyot Stop
is much smaller than primary mirror, the introduced aberrations are smaller as well. Image
quality is very high without using modulation techniques that require complex mechanical
systems, as described in § 3.1.2.

Fig. 3.4 shows the spot diagram, i.e. spots dimensions on the image surface for the four
frequencies and the five fields. It is clear that, with this configuration, the optical system
is always diffraction limited, at every frequency and even in the off-axis configuration.
Consequently, the collected energy is close to the maximum allowed value in all cases (see
Figs. 3.5, 3.6, 3.7 and 3.8).

Tabs. 3.2, 3.3, 3.4 and 3.5 report the encircled energy for different integration radii,
for each wavelength and both Lyot Stop positions. EE is computed at three different radii
(distances from the chief ray): half of the Airy disc (A); the radius of a circle enclosing
70% of the total incident power (B); the radius of the Airy disc (C).

The diffraction limit value of EE is also shown together with the corresponding field of
view. The diffraction limit is lower than the circular aperture case (∼ 84%): obstructions
(such as the holes of primary mirror and Lyot Stop) are present along the optical path [26].
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Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.14 53 ÷ 56 40 ÷ 46 55
B 1.66 68 ÷ 70 55 ÷ 61 70
C 2.28 71 ÷ 72 62 ÷ 66 72

Table 3.2: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case of
Lyot Stop wobbling around its barycenter. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.77 53 ÷ 55 47 ÷ 49 55
B 2.57 68 ÷ 70 59 ÷ 65 70
C 3.54 71 ÷ 72 65 ÷ 69 72

Table 3.3: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case of
Lyot Stop wobbling around its barycenter. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 2.90 52 ÷ 55 44 ÷ 51 53
B 4.22 68 ÷ 70 61 ÷ 66 70
C 5.80 71 ÷ 72 65 ÷ 70 72

Table 3.4: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case of
Lyot Stop wobbling around its barycenter. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 4.35 52 ÷ 55 45 ÷ 52 54
B 6.34 68 ÷ 70 61 ÷ 68 70
C 8.70 70 ÷ 72 66 ÷ 70 72

Table 3.5: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case of
Lyot Stop wobbling around its barycenter. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.
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(a) On-axis spot diagram (b) Off-axis spot diagram

Figure 3.4: Spot diagrams in the case of Lyot Stop wobbling around its barycenter. For
each wavelength, the dimensions of the spots of the five fields are compared to the radius

of the Airy disc.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.5: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case of
Lyot Stop wobbling around its barycenter. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 550µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.6: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case of
Lyot Stop wobbling around its barycenter. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 850µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.7: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case of
Lyot Stop wobbling around its barycenter. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 1400µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.8: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case of
Lyot Stop wobbling around its barycenter. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 2100µm.

(a) Footprint on telescope focal plane (b) Footprint on tertiary mirror

Figure 3.9: Footprint diagrams in the case of Lyot Stop wobbling around its barycenter.
It is clear the off-set introduced when the system is off-axis. The footprint on the tertiary
mirror is shown to see the effect better: on the focal plane all the five fields are shown,

while on the tertiary only the central is reported.
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However, this configuration has two drawbacks. The first is related to cryogenic con-
strains. The Lyot Stop is mounted inside the cryostat, thermally linked to the 4He stage
and thus cooled down to 2K. Mirror wobbling is carried out using appropriate actuators
that would increase the heat load on the 4He bath, reducing the hold time. The second
drawback is that the oscillation of Lyot Stop produces a movement of the telescope image
on its focal plane (Fig. 3.9). This introduces a large offset in the off-axis measurements;
moreover, the cryostat window should be enlarged, increasing the radiative input load and
cryostat endurance.

3.1.2 Primary mirror: focus modulation

The best solution from an optical point of view is obtained wobbling the primary
mirror around its focus, being at a distance R = 1247mm from the primary vertex, in the
direction of the secondary mirror (see Figs. 2.2 and 2.4). This solution requires oscillations
of ±15′ in order to get a sky scan of ±30′. Furthermore, it minimizes aberrations, because
the focus of the primary mirror is the neutral point of the off-axis optical system [26, 103].

Spot diagram for this configuration is shown in Fig. 3.10, while encircled energy curves
are reported in Figs. 3.11, 3.12, 3.13 and 3.14. Tabs. 3.6, 3.7, 3.8 and 3.9 report values of
EE for different distances from the chief ray, as described in § 3.1.1. It is clear that optical
performances are even better than with Lyot Stop modulation.

(a) On-axis spot diagram (b) Off-axis spot diagram

Figure 3.10: Spot diagrams in the case of primary mirror wobbling around its focus. For
each wavelength, the dimensions of the spots of the five fields are compared to the radius

of the Airy disc.

This configuration cannot be used due to power consumption, vibrations and size
issues. The focus is very distant from the center of mass of the primary mirror so the
moment of inertia of the wobbling system is very high. It is mandatory that the oscillation
is around a principal axis of inertia: this means that large and heavy counterbalancing
masses should be added, implying a bigger gondola. Moreover, this modulation would
introduce vibrations leading to microphonic noise on receivers, decreasing the quality of
measurements.
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Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.14 52 ÷ 54 52 ÷ 54 55
B 1.63 68 ÷ 70 68 ÷ 70 70
C 2.28 71 ÷ 72 70 ÷ 72 72

Table 3.6: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case of
primary mirror wobbling around its focus. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.77 53 ÷ 55 52 ÷ 55 55
B 2.57 69 ÷ 70 68 ÷ 70 70
C 3.54 71 ÷ 72 70 ÷ 72 72

Table 3.7: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case of
primary mirror wobbling around its focus. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 2.90 53 ÷ 55 52 ÷ 55 54
B 4.22 69 ÷ 70 68 ÷ 70 70
C 5.80 71 ÷ 72 71 ÷ 72 72

Table 3.8: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case of
primary mirror wobbling around its focus. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 4.35 52 ÷ 54 52 ÷ 54 54
B 6.34 69 ÷ 70 68 ÷ 70 70
C 8.70 71 ÷ 72 71 ÷ 72 72

Table 3.9: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case of
primary mirror wobbling around its focus. It is computed for different values of integration
radius. Intervals mean that spots are different in the five fields, thus the collected energy

can be different even in the case of same distance from the chief ray.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.11: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case of
primary mirror wobbling around its focus. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 550µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.12: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case of
primary mirror wobbling around its focus. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 850µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.13: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case of
primary mirror wobbling around its focus. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 1400µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.14: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case of
primary mirror wobbling around its focus. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of the Airy disc at λ = 2100µm.



Chapter 3. Optics design and optimization 83

3.1.3 Primary mirror: barycenter modulation

The simplest configuration from a mechanical point of view is obtained wobbling the
primary mirror around its center of mass. We have computed its position numerically.
Computations do not take into account the rib structure of the primary mirror, nor inho-
mogeneities eventually present in the structure. Nevertheless, it is important that oscilla-
tions take place around the point considered during the optical system optimization, even
if it does not coincide exactly with the barycenter. From the optical point of view, every
offset from the neutral point of the system decreases the image quality. The computed
oscillation point is much closer to the vertex of the primary mirror than the focus; with
the approximations made, the center of mass results to be at a distance R = 146mm from
vertex, still in the direction of the secondary mirror.

This wobbling solution produces fewer vibrations than focus modulation; furthermore,
since the moment of inertia around this axis is much smaller, the required power is ac-
ceptable. These are the reasons that lead to the choice of this configuration, even if it is
the worst one, but still acceptable, from an optical point of view.

Unfortunately, as already pointed out, the offset from the neutral point of the system
decreases the image quality when the system is off-axis. Aberrations increase and the
optical system is diffraction limited only for the two longer wavelengths (λ = 1400 and
2100µm, ν = 217 and 143GHz respectively).

The spot diagram for this configuration is represented in Fig. 3.15, while Figs. 3.16,
3.17, 3.18 and 3.19 show the encircled energy at various wavelengths. As already done
before, Tabs. 3.10, 3.11, 3.12 and 3.13 report values of EE for different radii.

(a) On-axis spot diagram (b) Off-axis spot diagram

Figure 3.15: Spot diagrams in the case of primary mirror wobbling around its barycenter.
For each wavelength, the dimensions of the spots of the five fields are compared to the

radius of the Airy disc.
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Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.14 52 ÷ 54 16 ÷ 19 54
B 1.66 68 ÷ 70 31 ÷ 36 70
C 2.28 70 ÷ 72 51 ÷ 54 72

Table 3.10: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case
of primary mirror wobbling around its barycenter. It is computed for different values of
the integration radius. Intervals mean that spots are different in the five fields, thus the

collected energy can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 1.77 52 ÷ 55 32 ÷ 34 55
B 2.57 68 ÷ 70 52 ÷ 54 70
C 3.54 70 ÷ 72 65 ÷ 66 72

Table 3.11: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case
of primary mirror wobbling around its barycenter. It is computed for different values of
the integration radius. Intervals mean that spots are different in the five fields, thus the

collected energy can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 2.90 52 ÷ 55 44 ÷ 45 54
B 4.22 68 ÷ 70 62 ÷ 63 70
C 5.80 71 ÷ 72 69 ÷ 70 72

Table 3.12: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case
of primary mirror wobbling around its barycenter. It is computed for different values of
the integration radius. Intervals mean that spots are different in the five fields, thus the

collected energy can be different even in the case of same distance from the chief ray.

Integration On-axis Off-axis Diffraction
Radius Encircled Energy Encircled Energy Limit
(mm) (%) (%) (%)

A 4.35 52 ÷ 54 48 ÷ 50 54
B 6.34 68 ÷ 70 66 ÷ 67 70
C 8.70 70 ÷ 72 70 ÷ 71 72

Table 3.13: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case
of primary mirror wobbling around its barycenter. It is computed for different values of
the integration radius. Intervals mean that spots are different in the five fields, thus the

collected energy can be different even in the case of same distance from the chief ray.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.16: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) in the case of
primary mirror wobbling around its barycenter. Various curves describe the trend for each
field of view; the black one represents the diffraction limit. The integration is computed

up to the radius of the Airy disc at λ = 550µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.17: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) in the case of
primary mirror wobbling around its barycenter. Various curves describe the trend for each
field of view; the black one represents the diffraction limit. The integration is computed

up to the radius of the Airy disc at λ = 850µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.18: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) in the case of
primary mirror wobbling around its barycenter. Various curves describe the trend for each
field of view; the black one represents the diffraction limit. The integration is computed

up to the radius of the Airy disc at λ = 1400µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.19: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) in the case of
primary mirror wobbling around its barycenter. Various curves describe the trend for each
field of view; the black one represents the diffraction limit. The integration is computed

up to the radius of the Airy disc at λ = 2100µm.
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3.2 Final configuration

A general expression for a rotationally symmetric aspheric surface is:

z =
c r2

1 +
√

1 − (1 + k) c2 r2
+

N∑

i=1

Ai r
i (3.4)

where z and r are sagittal and radial coordinates respectively, c is the curvature (defined
as the inverse of curvature radius Rc), k is the conic constant and Ai are the aspheric
coefficients that describe the surface deviation from conic surface, using a polynomial
expansion. The other parameters defining the portion of mirror used are their dimensions
and decenterings. The latter is defined as the distance between the center of the conic and
the incoming chief ray of the central field, i.e. the ray coming from the center of Field 1
of Tab. 3.1 (see Fig. 3.20).

(a) Decentering definition: 2D design (b) Decentering definition: 3D design

Figure 3.20: Definition of the ZEMAX decentering parameter, defined as the distance
between the center of the conic and the incoming chief ray of the central field. In red, the

portion of mirror used (tertiary or quinary, since they are identical) is shown.

Many possible designs have been studied in these years. The final one, shown in
Fig. 3.1, is constituted by three spherical mirrors. The third and fifth mirrors are identical,
while the Lyot Stop has a curvature radius being half the others, obviously changed in
sign: in fact, tertiary and quinary mirrors must concentrate radiation, which means they
must be convex and have a positive curvature radii, while the Lyot Stop diverges the beam,
so a concave mirror with a negative radius of curvature is required.

The centers of Lyot Stop and quinary mirrors are aligned: defining the z-axis as the
one orthogonal to the image surface, these two centers differ only by the z coordinate.
If the tertiary mirror is aligned too, i.e. it lies on the same sphere that defines the fifth
mirror, the telescope focal and final image planes would lie on the same plane: without any
offset, the system is perfectly symmetric, the telescope focal plane and the image surface
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are interchangeable. The introduction of an offset of 1.5mm in height between the centers
of tertiary and Lyot Stop mirrors shifts behind the image surface, increasing the f/# of
the experiment and the available room to place dichroics, filters, horns and receivers.

Since the mirrors of OLIMPO are spherical, they have Ai = 0 and k = 0. The only
free coefficient describing the surface mirror is the curvature. In the case of the third
and fifth mirrors, the dimensions are determined observing the beam illumination on each
mirror. In order to avoid diffractive effects due to the edge of the mirror, their minimum
dimensions are increased by 10%. As pointed out by the Footprint Diagrams of the two
mirrors (see Fig. 3.21), the quinary might be smaller than the tertiary, but we decided to
make them identical to simplify the construction process. Moreover, with this choice the
mirrors are interchangeable: since the machined mirror could have curvature and conic
constant different from the nominal ones, it could be necessary to distinguish the third
and fifth mirrors during the alignment process (see § 4.5).

(a) Footprint on tertiary mirror (b) Footprint on quinary mirror

Figure 3.21: Footprint on the tertiary and quinary mirrors. The different colors represent
the five fields defined in Tab. 3.1 while the wobbling of the primary mirror has roughly no
effect. The footprint on the tertiary is a little bit smaller than that on the quinary, but
the mirrors are identical to simplify the construction process. It is worth noting that the

position of the fields is reversed between the tertiary and quinary.

3.2.1 Lyot Stop design

The introduction of a cold stop is of fundamental importance in millimeter experiments,
even if it degrades optical system performances. The use of highly sensitive thermal
receivers requires the reduction of all the spurious signals, mainly stray light radiation
and sidelobes.

Stray light This is the radiation that arrives onto receivers without passing through the
whole mirrors chain. It can be reduced using appropriate optical solution, such as
some “turns” in the radiation path, so bolometers do not directly see the window of
the cryostat.



Chapter 3. Optics design and optimization 89

Sidelobes Every time an incident infinite plane wave with wavevector ~kIn encounters
an aperture (in our case, optical elements such as mirrors), the outgoing wave is
no more plane due to diffraction and has wavevectors ~k in different directions. For
small angles ϑ, the vector ~q = ~k − ~kIn is in the plane of the aperture and ~q = ϑ~k
is valid. The diffracted component is the sum of contributions from all the surface
elements dS of the aperture, each with its own phase:

uq =

∫∫

S
u0 e

−i~q·~r dS = u0

∫ R

0

∫ 2π

0
e−iqr cos ϕ r dϕdr =

= 2πu0

∫ R

0
J0(qr) r dr = u0

2J1(Rq)

Rq
(3.5)

where J0 and J1 are first type Bessel function of order zero and one. The intensity
is the square of the field:

dI

dΩ
= I0

[
2J1(Rϑk)

Rϑk

]2

(3.6)

The first zero is for ϑ0,1 = 1.22λ/2R and the value of the Full Width Half Maximum
(FWHM) is similar. The envelope of the off-axis response scales approximately as
ϑ−3, starting from the FWHM. The slope of eq. (3.6) is shown in Fig. 3.22 in the
case of R = 2m and λ = 1mm and 10mm (black and red curves respectively). In
the case of mirrors, the main contribution to sidelobes comes from edge effects.

The radiation reaching the receivers is given by the sum of the signal of interest and
spurious signals:

W = A

[∫

M

BSky(ϑ,ϕ)RA(ϑ,ϕ) dΩ +

∫

S

BNoise(ϑ,ϕ)RA(ϑ,ϕ) dΩ

]

≃ A

[
BSky(ϑ,ϕ) 〈RAM (ϑ,ϕ)〉ΩM +BNoise(ϑ,ϕ) 〈RAS (ϑ,ϕ)〉ΩS

]
(3.7)

where A is the area of the telescope, RA is the angular response, the subscript M indicates
calculations are made over the mainlobe of the experiment while subscript S indicates the
sidelobes. In balloon-borne experiments the main contribution to spurious signal is due
to ground radiation (BNoise ⇋ 300K), while the signal of interest has a much lower
temperature (BSky ⇋ 1mK).

Since sidelobes and stray light cannot be cancelled, the solution is to decrease as much
as possible the term BNoise of eq. (3.7). This is achieved inserting an optical stop cooled
down to cryogenic temperature. In particular, we used a Lyot Stop thermally linked with
the 4He bath, i.e. cooled to 2K. The Lyot Stop is defined as a mirror onto which the
image of the primary is focused: it subsists the same relation that there is between the
image of the sky and the focal plane. Its dimensions define the portion of primary mirror
used: the Lyot Stop will cut the sidelobes due to the primary mirror, but it will introduce
its sidelobes. The advantage consists in the fact that it is cold, so BNoise ⇋ 2K, and it is
enclosed in a cold absorbing cavity with very low and constant emission. The contribution
of this radiation in the sidelobes will be very small (see § 5.3.4) and perfectly constant
during the scans of the sky, so that it will be easy to remove from the interesting signal(sky
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Figure 3.22: Typical shape of angular response for a millimeter experiment: the sidelobes
are visible at large angles. The white curve represents the predicted angular response in
the case of a mirror with R = 2m and wavelength of incident radiation λ = 1mm. The red

one is for λ = 10mm.

brightness fluctuations). Moreover, stray light radiation cannot reach directly the receivers
and it will be thermalized to the optics box temperature (see § 4.4).

The primary mirror is a parabolic one with a diameter of 2.6m (see Tab. 2.1). Since
the profile of the mirror can be slightly different from the center to the edge and in order
to reduce sidelobes of the primary, a portion of 2m is used. It must be noted that the
five fields move on the Lyot Stop (see Fig. 3.23): the dimensions of the fourth mirror are
determined choosing the portion of the mirror that includes the intersection of the five
fields (see Tab. 3.1), so the Lyot Stop is uniformly illuminated on the whole surface during
scans. This is achieved with a Lyot Stop having an outer diameter of 54mm.

The Lyot Stop has another main feature: it rejects radiation due to the so-called
Narcissus effect. Since the Cassegrain telescope is an on-axis system, rays from the whole
mirror, i.e. including its hole, reach the secondary and are focused onto the focal plane.
But rays coming from the hole of the primary originates in the focal plane, so an observer
situated in the telescope image surface would see his own image. In other words, the
receivers see the primary surface, including its hole, that is a source at a temperature
much different than the signal of interest.

The solution is to put a hole into the Lyot Stop, whose dimensions depend on those
of the primary (see Tab. 2.1), hence bolometers will see only 2K radiation: however, a
small fraction of the sky radiation is also rejected. Considering the hole of the primary
as the source and calculating the encircle energy as a function of the increasing radius of
the Lyot Stop hole, the ratio of disregarded rays is obtained. The constrains are to reject
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(a) Lyot Stop design: setup (b) Intersection of 5 field

Figure 3.23: Design of the Lyot Stop. It must focus the image of the primary mirror,
select its diameter and reject rays coming from its hole. On the left, the design of the
hole follows the same line of reasoning: in this case, the rays come from the hole of the
primary mirror, instead of coming from its surface. The picture on the right shows how
the images coming from different fields shift on the Lyot Stop, thus the fourth mirror is

the intersection of the various fields.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 3.24: Design of the hole of Lyot Stop. It must reject as many “hole rays” as
possible, without neglecting “sky rays”. The two figures show the total geometric and
diffractive encircled energy, i.e. the sum of the energy from all the field of view taken into
account, in the on-axis and off-axis configurations (see Tab. 3.1). They are compared to
the diffraction limit and encircled energy due to sky radiation, which is small because we

are considering only the portion of primary mirror near its hole (see Fig. 3.23).
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at least 85% of “hole rays” and to reduce as much as possible the “sky rays” neglected.
Arguments used to choose the Lyot Stop diameter apply here as well: the hole must
include the intersection of the three configurations. Choosing a hole diameter of 14mm,
between 87% and 92% of spurious radiation is rejected (off-axis and on-axis configuration,
respectively), while less than 2% of signal radiation is lost (see Fig. 3.24).

3.2.2 Performance analysis

There are two further analysis done to study the performance of the final optical
system: they consist in evaluating the Point Spread Function (PSF) and of the Modulation
Transfer Function (MTF).

Point Spread Function It represents the intensity distribution on the image surface of
the diffraction image formed by the optical system. In the case of a circular aperture,
it consists of concentric rings, gradually darker (Airy profile). Rays coming from a
point-like source are spread when they pass through an optical system, due to both
diffraction and aberrations. The image will be no more point-like, but its distribution
will be described by the PSF. In the case of a circular aperture with diameter D and
an obstruction with diameter εD, i.e. a ring-like aperture (which is the case of the
Cassegrain telescope configuration), the PSF is given by:

PSF (r, ϕ) =
I(r, ϕ)

I0
=

1

(1 − ε)2
·
[
2J1(v)

v
− ε2

2J1(εv)

εv

]2

(3.8)

where r and ϕ are the polar coordinates on the image surface, J1 is the Bessel function
of the first type of order one and v is an adimensional variable being generally equal
to:

v =
2π

λ

a

R
r = k

a

R
R (3.9)

where 2a is the diameter of the exit pupil, k is the wavenumber and R is the radius
of the wavefront coming out of the pupil. In the hypothesis of a distant source
(2a/R ⇒ D/f) and of an aperture without obstruction (ε = 0), previous equations
simplify and the minimum of the PSF is given by the radius of the Airy disc RAiry .
The instrument resolving power is related to the value of the Airy disc radius: two
point-like sources are considered angularly resolved when the luminosity maximum
of the first one coincides with the first minimum of the other one (Rayleigh criterion,
shown in Fig. 3.25). With this simplification, the minimum angular resolution α1 is
given by:

α1 = 1.22
λ

D
(3.10)

A quantitative way to verify the optical system performance using the PSF is com-
puting the Strehl ratio (SR), defined as the ratio between the intensity peak of the
real PSF and the one of an ideal PSF (the one obtained in the absence of aberra-
tions). It is assumed that a system is diffraction limited when SR > 0.8.
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Figure 3.25: Rayleigh criteria: the minimum separation between two point-like sources in
order to distinguish them.

Modulation Transfer Function The Optical Transfer Function (OTF) is defined as
the normalized PSF Fourier transform:

OTF (u, v) =

∫ +∞

−∞

∫ +∞

−∞

PSF (x, y) e2πi (ux+vy) dx dy

∫ +∞

−∞

∫ +∞

−∞

PSF (x, y) dx dy

(3.11)

where the spatial coordinates x and y are associated to u and v wavenumbers. If the
distribution of luminous intensity of the object is described by DO(x, y) and DI(x, y)
is the same for the image, they are related by the relation:

DI(x, y) = DO(x, y) ⊗ PSF (x, y) (3.12)

where the symbol ⊗ represents the convolution product. Applying the Fourier trans-
form to both terms of eq. (3.12), the convolution becomes a simple product, simpli-
fying a lot the analysis:

dI(x, y) = dO(x, y) · OTF (x, y) (3.13)

The physical interpretation of this quantity is that an object can always be decom-
posed into an infinite number of bright and dark Fourier components of increasing
spatial frequency. The optical transfer function describes the response of the optical
system in spatial frequencies. Let us consider an object with sinusoidal distribution
of luminous intensity, amplitude A = IMAX /IMIN , period l and spatial frequency
1/l: the image of the object will remain sinusoidal, while its contrast will degrade
due to the optical system. The OTF modulus, defines as the modulation transfer
function, represents the contrast degradation:

MTF (u) =

√
Re2[OTF (u)] + Im2[OTF (u)] (3.14)
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In the simplest case of a circular aperture, MTF (β) = 2 (β − cos β sin β)/π with
β = arccos(λ · u · f/#). So, the MTF decreases with u and there is a contrast until
the spatial frequency is higher than:

uCut−Off =
1

λ · f/# (3.15)

PSF (see Figs. 3.26, 3.28, 3.30 and 3.32) and MTF (see Figs. 3.27, 3.29, 3.31 and 3.33)
are computed for each wavelength and both primary positions, on-axis and off-axis. The
performances are evaluated using the Strehl ratio in the case of PSF, while MTF is com-
pared to the diffraction limit. Once again, the optical system is always diffraction limited
at λ = 1400 and 2100µm, while shorter wavelengths require the on-axis configuration to
reach the same performance.
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(a) On-axis point spread function (b) Off-axis point spread function

Figure 3.26: Point spread function for λ = 550µm (ν = 545GHz ) in logarithmic scale.
It is shown only the central field (i.e. the Field 1 of Tab. 3.1) in both primary positions:

on-axis and off-axis. The Strehl ratio is 0.913 and 0.519 respectively.

(a) On-axis modulation transfer function (b) Off-axis modulation transfer function

Figure 3.27: Modulation transfer function for λ = 550µm (ν = 545GHz ) of all the five
fields of Tab. 3.1 compared to the diffraction limit case. The MTF is computed for both

primary positions: on-axis and off-axis.
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(a) On-axis point spread function (b) Off-axis point spread function

Figure 3.28: Point spread function for λ = 850µm (ν = 353GHz ) in logarithmic scale.
It is shown only the central field (i.e. the Field 1 of Tab. 3.1) in both primary positions:

on-axis and off-axis. The Strehl ratio is 0.971 and 0.722 respectively.

(a) On-axis modulation transfer function (b) Off-axis modulation transfer function

Figure 3.29: Modulation transfer function for λ = 850µm (ν = 353GHz ) of all the five
fields of Tab. 3.1 compared to the diffraction limit case. The MTF is computed for both

primary positions: on-axis and off-axis.
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(a) On-axis point spread function (b) Off-axis point spread function

Figure 3.30: Point spread function for λ = 1400µm (ν = 217GHz ) in logarithmic scale.
It is shown only the central field (i.e. the Field 1 of Tab. 3.1) in both primary positions:

on-axis and off-axis. The Strehl ratio is 0.990 and 0.891 respectively.

(a) On-axis modulation transfer function (b) Off-axis modulation transfer function

Figure 3.31: Modulation transfer function for λ = 1400µm (ν = 217GHz ) of all the five
fields of Tab. 3.1 compared to the diffraction limit case. The MTF is computed for both

primary positions: on-axis and off-axis.
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(a) On-axis point spread function (b) Off-axis point spread function

Figure 3.32: Point spread function for λ = 2100µm (ν = 143GHz ) in logarithmic scale.
It is shown only the central field (i.e. the Field 1 of Tab. 3.1) in both primary positions:

on-axis and off-axis. The Strehl ratio is 0.998 and 0.973 respectively.

(a) On-axis modulation transfer function (b) Off-axis modulation transfer function

Figure 3.33: Modulation transfer function for λ = 2100µm (ν = 143GHz ) of all the five
fields of Tab. 3.1 compared to the diffraction limit case. The MTF is computed for both

primary positions: on-axis and off-axis.



Chapter 4

Optics tests

I am not young enough
to know everything.

Oscar Wilde

All the re-imaging optics are mounted inside an optics box thermally linked to the
4He tank: both mirrors and optics box are made with the same aluminum alloy in order
to ensure homologous deformations for all the elements as the temperature decrease. As
already pointed out, cooling down the re-imaging optics minimizes the thermal radiation
they emit, thus reducing the spurious signal on the receivers. Furthermore, painting
the walls of the optics box with an absorbing material, stray light and other spurious
radiation are absorbed, thermalized to 2K and then reemitted outside the bandwidths of
the detectors.

The design of the whole system must take into account the dimensions of the cryostat
and the available space at the 4He stage. Moreover, the total weight and the thermal
dissipation should be as low as possible. The choice of an aluminum alloy represents a
good compromise between lightness, thermal capacity, cost of the material and easiness of
manufacturing.

After the design process, mirrors were fabricated in the machine shop of the De-
partment of Physics, University of Rome “La Sapienza”. Apart of the prototypes, three
samples of the Lyot Stop were made, while the identical tertiary and quinary mirrors came
in five copies. The tests consist in verifying that the machined surface is comparable to
the designed one and eventually computing the parameters of the mirror; measuring the
roughness of the surface; choosing, mounting and aligning the best set of three mirrors;
finally, evaluating the optical performance of the system.

4.1 Executive project of the mirrors

After designing the reflecting surface of the mirrors using ZEMAX, their executive
project must take into account two important constraints:

1. The mirrors have to be as light as possible: in fact, the total weight of the system

99
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(tanks, shields and elements inside them) determines the thickness of the fiberglass
tubes that support the inner shells of the cryostat (see § 2.3); an increase of the
thickness implies a growth of the conductive heat load, as described by eq. (2.5).

2. The re-imaging optics will be mounted inside a shield thermally linked to the 4He
bath; it has a radius equal to 240mm, thus the back of the third and fifth mirrors
must fit in such a shield.

These two requirements are achieved using an appropriate shape for the back structure
of the third and fifth mirrors. A main cut of 25.6◦ decreases the mirrors weight and two
side cuts of 10.0◦ and 29.0◦ allow to fit in the shield. On the back of the mirrors is designed
a rib structure, maintaining an effective thickness of 5mm (see Fig. 4.1): this allows to
further increase the lightness of the mirror without affecting its rigidity. A plane base is
present in order to attach the mirrors to the optics box: on each mirror, two reference
holes define the alignment of the mirror using pins, while it is kept in position by three
M5 screws. The base is filled to increase the thermal conductivity between the mirror and
the 4He stage.

The Lyot Stop does not need such a structure, since it is considerably smaller and
lighter than the tertiary and quinary mirrors; moreover, it is placed at the center of the
cryostat, thus it is not necessary to shape its back. Only the design of the hole is of interest:
a calibration lamp is required for on-flight calibrations and we decided to place it in the
hole of the Lyot Stop. The lamp must illuminate the receivers with a beam having focal
distance equal to that of the experiment: this is achieved using a Winston cone fabricated
by IRLabs sloping of 57◦ so that it illuminates directly the quinary (see Fig. 4.2). Thus,
the hole of the Lyot Stop must be designed to accommodate the calibration lamp and its
cone (see Fig. 4.3).

The mirrors cannot be fabricated in a single shot, since both front and back must
be machined. Hence, it is necessary a precise reference frame in order to reposition the
material during the different phases of production. Moreover, the spherical surfaces of
these elements require a high tridimensional accuracy, since they are going to be used
as mirrors. Hence, the finishing given by the machine is crucial, because it reduces the
handmade polishing process thus preserving the correct shape of the machined surface. In
order to achieve a good finishing, there are a few requirements that the alloy and machine
used have to accomplish:

Prerequisites on the alloy Structural stability in presence of rough machining; dimen-
sional and formable stability in respect to temperature variation; sufficiently com-
pact to allow very high cutting velocities in order to favor mirrors polishing (this
minimizes the subsequent handmade operations that could alter the shape of the re-
flecting surface); properly manufacturable material, which means choosing an alloy
easy to be polished.

Prerequisites on the machine Structural rigidity of the devices involved, such as move-
ment axes or machine equipment, which is achieved using a machine in optimal
conditions and equipment sufficiently stiff; high strength of the tools, realized using
a diamond tool; low width for each pass, hence an accurate programming of the
machine; high cutting velocity, obtainable with high rotation velocity.
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Figure 4.1: Drawing of the tertiary and quinary mirrors. It shows the angles of the main
cut and of the two side cuts.

Figure 4.2: Drawing of mount of the calibration lamp. The Winston cone will be placed
inside the hole of the Lyot Stop.
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Figure 4.3: Drawing of the Lyot Stop: the particular design of the hole permit to place the
Winston cone of the calibration lamp.

The front part of the mirror is fully occupied by the reflecting surface, which requires
a finishing as precise as the used machine can do: thus, this part was the last to be man-
ufactured. The machining of tertiary and quinary mirrors is realized with the controlled
numerical milling cutter C.B.Ferrari managed using a CAD/CAM/CAE software (Com-
puter Aided Design, Manufacturing and Engineering): the advantage is that machining is
fully automated, the operator has to input only the type of material and the cutting tool
to be used.

The manufacturing of the tertiary and quinary mirrors had many troubles. The partic-
ular form of the mirrors back, with two tilted surfaces forming an obtuse angle, produces
an unstable base; moreover, a complication is given by the absence of a surface suited
to clamp the material, excluding the planar back surfaces dedicated to this task. Thus,
choosing as unique frame this planar surface, half of the mirror would be suspended fa-
voring oscillations and vibrations. This problem was solved using a custom construction
support to sustain and give reference, thus allowing a precise repositioning. This was
made with two flat surfaces that perfectly fit the two planes of the back of the tertiary
and quinary mirrors. Fastening and reference are given by appropriate holes and pins.

The first part of the manufacturing process starts from the rough piece of alloy, a 45mm
thick plate: firstly it is rough machined, then rib structure, holes and external cylindrical
contour are produced; finally, the two side cuts are made using a belt saw. This process
can be subdivided in seven steps:

1. Removal of most of the material with a “step” process using a “candle” cutter of
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diameter ø = 20mm.

2. Rough machining of the nests of the rib structure with a spherical cutter with ø =
8mm and leaving a layer of 0.5mm of stock.

3. Removal of the enduring crests on the ribs using a “candle” cutter with ø = 8mm;
the persisting stock is 0.3mm.

4. Finishing machining of the nests with a spherical cutter of ø = 8mm.

5. Manufacturing of the pre-holes on the tilted surface, then camber, drilling, tapping
and boring.

6. Smoothing of the back tilted planes in finishing machining with a leveling cutter of
ø = 63mm.

7. Finishing machining of the external profile: the two side cuts are made.

In second part of the manufacturing process, the third and fifth mirrors are fixed on
the construction support and the reflecting spherical surfaces are machined using spherical
cutting tools fitting the tridimensional shape of the surfaces; finishing machining foresees
a gradual approach to the nominal quote with decreasing cutting width and lateral shift.

C.B.Ferrari cannot reach the rotation velocities required for a good finishing of the
reflecting surface: this implies a proper choice of the cutting tool. Manufacturing a tridi-
mensional surface imposes the use of a spherical or toroidal tool. Since it must be increased
as much as possible the tool diameter, it is chosen the latter with a small radius (0.4mm)
mounted on a flattening machine of 85mm. This choice permit to reach quite high cutting
velocities having a spindle of 5000r.p.m. while the small radius of the toroidal tool ensures
a small thickness of the metal shaving, thus reducing the vibrations during machining.

The creation of the reflecting surface, which takes about 10 hours of machine continuum
working time, can be subdivided into four steps:

1. Removal of most of the material with a “step” process using a “candle” cutter of
diameter ø = 20mm.

2. Rough machining with a spherical cutter of ø = 8mm.

3. Semi-finishing machining with a toroidal diamond tool having diameter ø = 85mm,
radius of curvature R = 0.4mm and making ∼ 1000 passes.

4. Finishing machining with the same toroidal diamond tool as before, but making
∼ 4000 passes; after this process, the thin layer of stock left is removed.

The manufacturing of the Lyot Stop is different: it is an axis-symmetric surface, i.e.
its revolution axis is perpendicular and passes through the center of its back plane. Thus,
its reflecting, spherical, front surface can be machined using a lathe instead of a milling
machine.

First, the piece of alloy is placed on the C.B.Ferrari : here, the rough machining is
made; furthermore, the sloped hole and the holes for fastening and positioning the mirror
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are manufactured. The finishing machining of the reflecting surface is made mounting the
Lyot Stop on the lathe Shaublin, where a very good surface roughness is achieved in a time
much smaller than that required by the third and fifth mirrors.

4.2 Mirrors characterization

Once the mirrors are machined, the first test regards the comparison between nominal
and real characteristics: parameters of the reflecting surface, thickness of the mirror and
positions of the holes. This is achieved using the tridimensional measuring machine Poli
Galaxy Diamond. This machine, placed in a room at a constant temperature of 21±0.5 ◦C,
has a movable granite plane which gives the movement along the z axis, while a movable
arm provides the motion along the x and y axes. At the end of the arm is mounted an
interchangeable touch probe free to rotate in any direction. The measuring machine is
controlled by a CAD software, on which the 3D design of the mirror is uploaded: once a
reference frame is provided manually touching the holes on the back, the touching process
is fully automated.

For each of the five tertiary and quinary mirrors 184 points are taken, while 132 points
are taken on the three Lyot Stop samples. A first fit is made directly by the measuring
machine, comparing the theoretical and manufactured surface: hence, it can highlight only
the differences between the two spherical surfaces, showing if there are any systematic
deviations due to the machining process (see Fig. 4.4).

(a) Surface comparison on mirror #4 (b) Surface comparison on mirror #5

Figure 4.4: Surface comparison computed directly by the measuring machine. It compares
the theoretical and manufactured surfaces. Turquoise region is in the tolerance limit, i.e.
each point deviates less than 10µm from the expected position; blue region indicates a
negative deviation, yellow and red regions a positive deviation. However, the maximum

deviation is 20µm.
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The resolution of the measuring machine is very high, less than 1µm. Nevertheless,
each measured point has a higher uncertainty due to the errors in the definition of the
reference frame and in the finite dimensions of the probe. Neglecting the inaccuracy due
to the latter, a wrong definition of the reference frame could introduce three offsets x0, y0

and z0 and three rotations around the x, y and z axes, i.e. the yaw ψ, pitch ϑ, and roll ϕ
angles respectively.

Thus, a more accurate surface fitting must take into account such rotations and trans-
lations together with a variation in the radius of curvature of the surface RC , and conic
constant k. The three rotation matrices are:

MYaw =




1 0 0
0 cosψ − sinψ
0 sinψ cosψ



 (4.1a)

MPitch =




cos ϑ 0 sinϑ

0 1 0
− sinϑ 0 cos ϑ



 (4.1b)

MRoll =




cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1



 (4.1c)

Hence, the total rotation matrix is:

MTot = MRoll ·MPitch · MYaw =




cosϕ cos ϑ cosϕ sinϑ sinψ − sinϕ cosψ cosϕ sinϑ cosψ + sinϕ sinψ
sinϕ cos ϑ sinϕ sin ϑ sinψ + cosϕ cosψ sinϕ sinϑ sinψ − cosϕ sinψ
− sinϑ cos ϑ sinψ cosϑ sinψ



 (4.2)

The corrected position in x and y coordinates is simply given by the subtraction of the
offsets and the correction of the rotations:

xErr ,i = (xMeas,i − x0) cosϕ cos ϑ+

+ (yMeas,i − y0) sinϕ cos ϑ+

− (zMeas,i − z0) sinϑ (4.3)

yErr ,i = (xMeas,i − x0) (cosϕ sinϑ sinψ − sinϕ cosψ) +

+ (yMeas,i − y0) (sinϕ sinϑ sinψ + cosϕ sinψ) +

+ (zMeas,i − z0) cos ϑ sinψ (4.4)

Instead, the correction on z depends on the errors on the reference frame and on the
parameters of the reflecting surface:

zErr ,i = (xMeas,i − x0) (cosϕ sinϑ cosψ + sinϕ sinψ) +

+ (yMeas,i − y0) (sinϕ sinϑ sinψ − cosϕ sinψ) +

+



 x2
Err ,i + y2

Err ,i

RC +
√
R2

C − (k + 1) (x2
Err ,i + y2

Err ,i)
− z0



 cos ϑ sinψ (4.5)
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Thus, the χ2 function to minimize is:

χ2(RC , k, x0, y0, z0, ψ, ϑ, ϕ) =
∑

i

(zMeas,i − zErr ,i )
2

σ2
i

(4.6)

where σi is the error on each measurement, given by the resolution of the measuring
machine. The χ2 is computed for all the eight manufactured mirrors, both varying the
conic constant k and taking it fixed: while the machining of the tertiary and quinary
mirrors can diverge from a spherical surface because they are off-axis, this is improbable
for the on-axis Lyot Stop machined on a lathe. Moreover, the Lyot Stop is a small portion
(d = 54mm) of a sphere having a large radius (RC = 175mm), thus the sampling is not
accurate enough to measure a deviation from the spherical shape.

Tab. 4.1 reports the fit on the three samples of Lyot Stop: it is clear that mirror #2 is
the best one. Tab. 4.2 shows the results of the computation on the five samples of tertiary
and quinary mirrors. The ones that best fit the nominal surface are #3 and #4: both
these mirrors have a positive conic constant which degrades a lot the optical performances.
The only mirror with k < 0 is #5: it counterbalances the aberrations introduced by the
deviation of the #4 by a perfect spherical surface. However, it is worth noting that the
nominal parameters of the eight mirrors are always within 1σ of the experimental value.
Fig. 4.5 shows the likelihood computed as a function of the conic curvature.

RC (mm) k RC |k=0 (mm)

Lyot Stop #1 178.7 ± 3.3 0.2 ± 2.2 174.5 ± 3.4
Lyot Stop #2 178.5 ± 3.2 0.0 ± 2.2 174.2 ± 3.3
Lyot Stop #3 178.6 ± 3.2 1.2 ± 2.0 174.3 ± 3.4

Table 4.1: Parameters of the three Lyot Stop samples obtained by the χ2 fit of eq. (4.6).
The nominal values are RC = 175mm and k = 0.

RC (mm) k RC |k=0 (mm)

Mirror #1 −351.5 ± 1.1 +0.04 ± 0.15 −349.5 ± 1.3
Mirror #2 −351.0 ± 1.2 +0.04 ± 0.08 −350.0 ± 1.3
Mirror #3 −350.5 ± 1.2 +0.04 ± 0.18 −349.6 ± 1.3
Mirror #4 −350.9 ± 1.1 +0.01 ± 0.12 −350.0 ± 1.2
Mirror #5 −352.2 ± 1.1 −0.02 ± 0.07 −351.6 ± 1.2

Table 4.2: Parameters of the five tertiary and quinary mirrors samples obtained by the χ2

fit of eq. (4.6). The nominal values are RC = −350mm and k = 0.
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Given the experimental parameters obtained by fitting the surface of the mirrors, we
compute again the spot diagram and the encircled energy with ZEMAX. Fig. 4.6 shows
the spots diagram, while Figs. 4.7, 4.8, 4.9 and 4.10 show the encircled energy computed
within the Airy disc at that wavelength.

(a) Fit on Mirror #1 (b) Fit on Mirror #2 (c) Fit on Mirror #3

(d) Fit on Mirror #4 (e) Fit on Mirror #5

(f) Fit on Lyot Stop #1 (g) Fit on Lyot Stop #2 (h) Fit on Lyot Stop #3

Figure 4.5: Fit on the surface of the three Lyot Stop and five tertiary/quinary mirrors
samples. The fit is computed varying the conic constant of the surface.
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(a) On-axis spot diagram (b) Off-axis spot diagram

Figure 4.6: Spots on the image surface using the parameters obtained by fits on mirrors
surface. The chosen mirrors are Lyot Stop #2 and tertiary and quinary mirrors #4 and

#5.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 4.7: Encircled energy at a wavelength λ = 550µm (ν = 545GHz ) using the param-
eters obtained by fits on mirrors surface. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of Airy disc at λ = 550µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 4.8: Encircled energy at a wavelength λ = 850µm (ν = 353GHz ) using the param-
eters obtained by fits on mirrors surface. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of Airy disc at λ = 850µm.

(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 4.9: Encircled energy at a wavelength λ = 1400µm (ν = 217GHz ) using the param-
eters obtained by fits on mirrors surface. Various curves describe the trend for each field
of view; the black one represents the diffraction limit. The integration is computed up to

the radius of Airy disc at λ = 1400µm.
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(a) On-axis encircled energy (b) Off-axis encircled energy

Figure 4.10: Encircled energy at a wavelength λ = 2100µm (ν = 143GHz ) using the
parameters obtained by fits on mirrors surface. Various curves describe the trend for each
field of view; the black one represents the diffraction limit. The integration is computed

up to the radius of Airy disc at λ = 2100µm.

4.3 Mirrors polishing

The cutting width of the finishing machining process is ∼ 30µm for the tertiary and
quinary mirrors and ∼ 10µm for the Lyot Stop. At millimeter and submillimeter wave-
lengths this is not an issue, but it prevents to do any sort of test at optical wavelengths.
Optical methods are particularly suitable because they can be realized at room tem-
perature, without the necessity of cooling down imposed by microwave measurements.
Moreover, the provide a direct, “visual” test of the optical system performance.

Hence, we decided to manually polish the mirrors surfaces using suspensions of poly-
crystalline diamonds of decreasing diameter: 15, 9, 3 and 1µm. Between each step, the
mirror must be cleaned dipping it in an ultrasonic tank filled with isopropyl alcohol. A
special polishing cloth is used in order to minimize the abrasion unrelated to diamond
suspensions and it is attached to a piece of styrodur: this material is a good compro-
mise between hardness and flexibility to follow the shape of the surface. The polishing
procedure can be split into four cycles, each of which is subdivided into four steps:

1. The mirror is mounted on an appropriate stand; a small piece of Buehler ULTRA-
POL polishing cloth is attached to the styrodur support.

2. Buehler METADI SUPREME polycrystalline diamond suspension of 15µm is sprayed
on the mirror and the polishing procedure starts; if necessary, the suspension is
sprayed more times: this step requires ∼ 60min for tertiary and quinary mirrors,
∼ 10min for a Lyot Stop.

3. The mirror is cleaned with water to remove most of the polishing residuals, then it is
placed inside an ultrasonic tank filled with isopropyl alcohol: this solution removes
all the small residuals of a polishing step.
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4. After ∼ 5min in the ultrasonic tank, the mirror is dried with compressed air, avoiding
the use of paper which can leave impurities.

Once finished the first cycle, the machining groves are not visible anymore and only ca-
sual grooves are present. The procedure starts again from the first point changing the
suspension to 9µm; the third and forth cycles (3 and 1µm suspensions respectively) use
the Buehler TRIDENT polishing cloth, which has a lower roughness with respect to the
ULTRA-POL.

The result we want to obtain is a random surface roughness, i.e. without the machining
grooves, with a maximum width of ∼ 1µm and a r.m.s. value of ∼ 0.1µm. Before pre-
senting the results of the roughness measurements we carried out, we introduce a simple
theory of the effect of surface roughness in optical measurements.

4.3.1 Theory of surface roughness

Surface roughness is the standard deviation of the real profile from the theoretical
one, measured on scales much smaller than the dimensions of the surface. Furthermore,
periodic grooves remain on materials machined with lathes or milling cutters: in the
case of radiation of appropriate wavelength, they behave like a low efficiency diffraction
grating. Together with this regular component, there is a casual one due to vibrations of
the cutting tool and irregularities in the material. The roughness can be subdivided into
three components:

1. Regular, periodic, unidimensional component.

2. Casual, unidimensional component.

3. Casual, bidimensional component.

The simplest method of measuring the surface roughness consists in using a probe
similar to the gramophone needle: it moves on the surface measuring its profile. The
drawback is that it scratches the surface; moreover, the measure is unreliable on curved
surfaces.

Another method consists in studying the Kirchhoff diffraction, i.e. the pattern of the
incident radiation scattered by the mirror at a far distance. The quantity that describes
the scattered radiation is the Bidirectional Reflectance Distribution Function BRDF =
f(ϑi, ϕi;ϑs, ϕs), which is a function of the radiation wavelength and of the incidence and
scattering angles (subscripts i and s respectively). If we suppose to illuminate with a
plane wave a small portion of the mirror, so that it can be considered flat, the intensity
of the light scattered into the solid angle element dΩs is [19, 117]:

(
dI

dΩ

)

s

dΩs = Ii f cos ϑs dΩs (4.7)

where Ii is the total incident intensity and dΩs = sinϑs dϑs dϕs. The BRDF is generally a
complicated function: in the case of a strong specular reflection characterized by a narrow
diffraction cone, the reflected intensity Ir is equal to the incident intensity Ii multiplied
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by the Fresnel intensity coefficient R(ϑ) of the surface: Ir = Ii · R(ϑ). The leading term
in the expansion of the BRDF outside the specular cone is:

f = 4 k2 cos ϑi cos ϑsQW (p, q) (4.8)

where k = 2π/λ, Q depends on the surface material and W is the bidimensional power
spectral density of the surface roughness, which contains the entire dependence of the
scattering on the topography of the source. W is a function of the deviation Z(x, y) of
the surface contour from its average. For a square scatterer of side 2L it is:

W (q, p) =
1

(2L2)

∣∣∣∣
1

2π

∫ +L

−L

∫ +L

−L
ei(px+qy) Z(x, y) dx dy

∣∣∣∣
2

(4.9)

W is seen to be the square magnitude of the bidimensional Fourier transform of the surface
contour at wavenumbers p and q: these can be viewed as the x and y components of the
momentum given by the scattered photons by the surface roughness, and W (p, q) is the
“strength” of those components. The connection between p and q and the scattering angles
are given by:

p = k (sin ϑs cosϕs − sinϑi) (4.10a)

q = k (sin ϑs sinϕs) (4.10b)

The factor Q contains the dependences of the scattering on the permittivity of the
surface material and the incident and final states of polarization of the radiation. In
the limit of small scattering angles, Q equals the Fresnel intensity reflection coefficient of
the surface. Hence, the scattering theory result permits to determine the power spectral
density, which is purely a function of the surface topography.

It is important for practical purposes to characterize the properties of the surface
topography deduced from scattering measurements in terms of quantitative roughness
parameters. The most important of them is the surface height variance, i.e. the zeroth
moment of the power spectral density:

σ2 =

∫ +∞

−∞

∫ +∞

−∞

W (p, q) dp dq =
1

(2L)2

∫ +L

−L

∫ +L

−L
Z2(x, y) dx dy (4.11)

Periodic roughness

As already pointed out, machined surfaces show a highly structured surface topogra-
phy, the most conspicuous feature of which is the presence of periodic tool marks. If the
machined grooves are taken to be parallel to the y axis, their contribution to the total
surface roughness may be expanded in Fourier series:

Z(x, y) =

∞∑

n=1

an cos
(
2π

nx

d
+ ψn

)
(4.12)

where d is the fundamental period of the tool marks. If the size of illuminated area is much
larger than the period (2L ≫ d), thus ensuring adequate sampling, the spectral density
becomes:

W (p, q) =
1

4

∞∑

n=1

a2
n δ
(
p± 2π

n

d

)
δ(q) (4.13)
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where δ(z) = L sin2(Lz)/(πLz)2 is the characteristic diffraction line shape of the square
scatterer. The detector aperture must be large enough to average over unwanted detail in
the scattering spectrum, but small enough to preserve information about the structure of
the surface power spectral density.

The form of W given by eq. (4.13) shows that the scattering from periodic surface
roughness is bunched into discrete regions of the scattering spectrum at positions given by
the familiar grating equation sinϑs = sinϑi + Nλ/d. The integrated intensities of these
diffraction lines are seen to be proportional to the square of the amplitudes an of the
harmonics of the surface contour. In the perturbation limit of small grating amplitudes,
each harmonic diffracts only to first order and there is a one to one correspondence between
the intensity of the nth diffraction line and the amplitude of the nth harmonic of the surface
contour. However, all informations about the phase angles is lost, so it is impossible to
reconstruct the original contour from scattering data alone.

Random roughness

It can be viewed as a superposition of a large number of surface periods which have no
simple relationship between each other. These lead to scattering in the form of diffraction
spots or lines which are more or less continuously distributed in the scattering spectrum
(speckle), rather than being bunched into well separated and intense peaks as for the
periodic component.

The distribution of the intensity contains detailed information about the roughness of
the surface examined. We do not need any particular detail, but want to extract only
general features of the scattering spectrum. This is done by smoothing the scattering
spectrum with a detector aperture which is large compared to the speckle size but small
compared to the important structural features of the smoothed spectra.

The contribution of the random unidimensional roughness to the total power spectrum
of the surface may be separated in the form W (p, q) = W (q) · δ(q). For a finite turning
radius the factor δ is factorized out; instead, the form of W (p) must be determined em-
pirically for the surface of interest. Usually, it can be expressed as:

W (p) =
1

π

σ2
1 l1

1 + (l1 p)2
(4.14)

where σ1 is the vertical r.m.s. roughness and l1 is the transverse length of the surface.
When (l1p) ≫ 1 the small scattering angle approximation implies:

W (p) ≃ 1

π

σ2
1

k2 l1

1

(ϑs − ϑi)2
(4.15)

Machined surfaces also show a bidimensional random roughness, which is the only
component expected for conventional polished surfaces. Its contribution to the total power
spectral density can be written as W (p, q) = W (r) with r =

√
p2 + q2. The bidimensional

analogue of eq. (4.14) is:

W (r) =
1

2π

σ2
2 l

2
2

[1 + (l2 r)2]3/2
(4.16)
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When (l22r)
2 ≫ 1, eq. (4.16) approximates as:

W (r) ≃ 1

2π

σ2
2

k3 l2

1

|ϑs − ϑi|3
(4.17)

It is worth noting that the contribution of unidimensional roughness to the total scat-
tering falls off as the second power of the scattering angle away from the specular direction,
while the contribution of bidimensional roughness falls off as the third power.

4.3.2 Measuring setup and results

As already described in § 4.3.1, a first measuring method consist in using a probe
similar to the gramophone needle. We used the Federal Pocket Surf surface roughness
tester, which has a resolution of 0.01µm; it can measure the peak to peak amplitude or
the r.m.s. value of along the path. If the probe covers a length lm along the x direction,
the computed r.m.s. roughness is:

σrms =

√
1

lm

∫ lm

0
Z2(x) dx (4.18)

The results range from σrms ≃ 7µm (σpp ≃ 30µm) for the finishing machined surface to
σrms ≃ 0.1µm (σpp ≃ 1µm) for the 1µm polishing.

Studying Kirchhoff diffraction involves scatterometers, which are made of three basic
elements: a light source, the scatterer and a detector. We used a monochromatic λ =
633nm He−Ne laser as source, thus minimizing chromatic aberrations and reducing the
illuminated area. Mirrors are positioned near the laser so the illuminated area can be
considered flat and the incident and reflected angles are equal to 45◦. Light is then
recollected by a photodiode and produces an electric signal that can be easily analyzed.
The detector is mounted on a motorized controlled sledge in order to evaluate the whole
scattering pattern (see Fig. 4.11).

The scattered intensity Is is the integral over the detector aperture of the differential
scattered intensity (dI/dΩ)s defined in eq. (4.7); in the limit of small aperture of area A
this gives:

Is(ϑi;ϑs, ϕs) = Ii · 4 k2 cos ϑi cos ϑsQ

∫∫

A
W (p, q) dp dq (4.19)

where the angles on the left are those of the center of the aperture and the integral on the
right is taken over the aperture itself. The evaluation of the aperture integral depends on
the class of surface roughness being examined. Given the geometry used in our setup, it
is useful to express the scattered angle as ϑs = 45◦ ± ξ, while ϑi = 45◦. Hence, eq. (4.19)
becomes:

Is(ξ)

Ir
= 2 k2 cos(2ξ)

Q(ξ)

R(45◦)

∫∫

A
W (p, q) dp dq (4.20)

where we used the relation Ir = Ii · R(ϑ) introduced in § 4.3.1; the aperture integral is
centered around the wavenumbers p = −

√
2 k sin ξ and q = 0. It is worth noting that in

the limit of small scattering angles (ξ ≪ 1), R(45◦) ≃ Q.
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(a) Measurements setup

(b) Lyot Stop before polishing (c) Lyot Stop after polishing

Figure 4.11: Roughness measurements: the setup, the Lyot Stop surface before and after
polishing are shown.
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In the case of periodic roughness, substituting eq. (4.13) into eq. (4.20) the integrals
over the δ functions may be carried out immediately. The results show that the diffraction
peaks are located at discrete angles ξN given by:

sin ξN = − N√
2

λ

d
(4.21)

where d is the fundamental period of the tool marks. Hence, the positive and negative
orders of a given order number n = |N | appear at equal and opposite values of ξ and the
successive orders are approximately linearly spaced in ξ.

Unidimensional roughness can be analyzed using eq. (4.20) and remembering that
W (p, q) = W (q) · δ(q), which lead to:

W (ξ) =
Is(ξ)

Ir
· 1

k3
√

2
· 1

∆
· R(45◦)

Q(ξ)
· (1 + tan ξ)−1

cos ξ cos(2ξ)
(4.22)

where ∆ is the transverse angular width of the detector aperture in radians. Finally, from
eq. (4.11) we get the expression for the height and slope variances:

σ2 =
√

2 k

∫
W (ξ) cos ξ dξ (4.23)

We used two setups for the measurements: the first is based on modulating the radi-
ation by means of a chopper, so that the electric signal can be measured using a lock-in,
thus significantly decreasing the noise (see § 2.2); the second setup makes a continuos data
acquisition. All the mirrors in each of the five “states” (finishing machining, polishing till
15, 9, 3 and 1µm) are measured with these two setups and the results are consistent.

Figs. 4.12 and 4.13 show the scattered radiation as a function of the angle ξ =
arctan(x/l), where l = 795 ± 1mm is the distance between the mirror and the photo-
diode and x the position of the receiver on the sledge, referred to the maximum. Peaks
are normalized to unity so that it is easier to see how the tails drop down as the roughness
decreases.

Five measurements are taken on each mirror, one on the center and four near the edge:
the average values are reported in Tabs. 4.3.

4.4 Optics box

A great part of this thesis work consisted in projecting, designing and manufacturing
the optics box that will contain all the elements thermally linked to the 4He bath: reimag-
ing mirrors, beam splitters, filters, horns and receivers, together with the 3He fridge. All
the executive drawings are reported in App. A; all parts were machined by Cecom S.n.c.
The optics box is designed to satisfy the following requirements:

• It must fit inside the 4He Shield, a cylinder having inner diameter D = 478mm and
thickness 1mm (see Fig. A.13); on this shield, it is welded the mounting ring of the
2K filter (see Fig. A.12).
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(a) Machined surface scattering pattern (b) 15µm surface polishing scattering pattern

(c) 9µm surface polishing scattering pattern (d) 3µm surface polishing scattering pattern

(e) 1µm surface polishing scattering pattern (f) Comparison between scattering patterns

Figure 4.12: Patterns of scattered radiation due to surface roughness of the Lyot Stop,
after the different polishing steps. It is worth noting that the peak is broad, because the
Lyot Stop diverges the beam, and that the 15µm pattern is worse than the one related to

machined surface: this demonstrates that the initial roughness was less than 15µm.
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(a) Machined surface scattering pattern (b) 15µm surface polishing scattering pattern

(c) 9µm surface polishing scattering pattern (d) 3µm surface polishing scattering pattern

(e) 1µm surface polishing scattering pattern (f) Comparison between scattering patterns

Figure 4.13: Patterns of scattered radiation due to surface roughness of the tertiary and
quinary mirrors, after the different polishing steps. It is worth noting that the peak is

narrow, because the mirror concentrates the beam.
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Raw 15µm 9µm 3µm 1µm

Mirror #1 7.82 ± 0.73 5.32 ± 0.54 3.95 ± 0.18 0.485 ± 0.062 0.115 ± 0.015
Mirror #2 7.55 ± 0.77 5.43 ± 0.59 3.24 ± 0.13 0.454 ± 0.066 0.121 ± 0.017
Mirror #3 7.12 ± 0.71 5.39 ± 0.51 3.12 ± 0.15 0.419 ± 0.063 0.118 ± 0.013
Mirror #4 6.94 ± 0.75 5.32 ± 0.49 2.81 ± 0.13 0.393 ± 0.060 0.108 ± 0.011
Mirror #5 7.03 ± 0.70 5.35 ± 0.47 3.01 ± 0.11 0.401 ± 0.059 0.102 ± 0.010

Lyot Stop #1 5.35 ± 0.57 5.25 ± 0.51 3.44 ± 0.15 0.454 ± 0.066 0.123 ± 0.016
Lyot Stop #2 5.48 ± 0.53 5.32 ± 0.53 3.11 ± 0.11 0.485 ± 0.062 0.105 ± 0.011
Lyot Stop #3 5.42 ± 0.51 5.40 ± 0.49 3.52 ± 0.19 0.419 ± 0.063 0.119 ± 0.018

Table 4.3: R.m.s. roughness in µm for the eight mirror samples: first column reports the
average values obtained from machined mirrors, the other refer to mirrors polished with
diamond suspensions of different grain size. It is worth noting that the machined Lyot

Stop had a better surface roughness than the other machined mirrors.

• Distances between Lyot Stop, tertiary and quinary mirrors must be the ones decided
with the optical optimization: this is achieved reducing as much as possible the
number of mirror holders. The elements Reggetta Plane (see Fig. A.17) set the
horizontal distance between Lyot Stop and the other two mirrors; moreover, all the
other elements (calibration lamp, dichroics and horns holders) are attached to it,
so that this element is a sort of “optical bench”. Tertiary and quinary mirrors are
mounted on the same strap (Reggetta Mirrors, see Fig. A.16), which ensures the
correct vertical distance.

• The element 4He Cover is attached to the 4He tank: apart from the fridge, it gives
the thermal link and sustains the whole system. 4He Cover, Reggetta Plane, Reggetta
Mirrors and Splitter Plane #1 are connected to form a rectangular box: hence, this
design establishes the correct positioning between mirrors.

• All the holder elements are made of the same aluminum alloy the mirrors are made
of: Ergal 7075. This guarantees that all the parts behave in the same way when
cooling. The thinner parts, mainly shields, are made of Peraluman 5754.

• The fridge is mounted to the 4He by means of its own strap, Fridge Cover (see
Figs. A.8 and A.9), made of Oxigen Free High Conductivity (OFHC) copper. This
solution has two advantages: OFHC copper has a thermal conductivity much higher
than aluminum, which is of fundamental importance for the 3He cooling cycle; fur-
thermore, it permits to dismount the whole optics box without uninstalling the
fridge.

• The optical axes of the four channels of OLIMPO are at 90◦ from each other, thus
dichroics must be tilted at 45◦: this is achieved using the Splitter Plane #1, #2, and
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#3 (see Figs. A.22, A.23 and A.24). The main complication resides in the dimensions
of the ring that holds the beam splitters, which is 20% larger than the dichroics
diameter (120mm for an effective diameter of 100mm) and has a total thickness of
25mm (20mm for the ring itself, plus 5mm for the holders of the splitter planes).
Using an on-axis configuration, the three rings would touch: the solution is to move
the two second dichroics orthogonally to incident radiation, which is allowed because
they are underilluminated. Finally, the dichroics must be mounted on the splitter
planes using only three fastening points, hence the use of single clamps.

• The four horn arrays and pass band filters will be mounted on the Box 10mm #1
(143GHz channel), #2 (353GHz channel) and on the Reggetta Plane (217GHz and
545GHz channels). The horn arrays, shown in Figs. 5.10 and fig:horns:1400, will
be made of OFHC copper and cooled down to 300mK : consequently, they must be
thermally insulated by means of kevlar strings or vespel bars.

• Reggetta In (see Fig. A.15) will hold a motorized neutral density filter. This is
necessary for ground tests since, as described in § 2.4, bolometers are optimized for
balloon measurements. During ground tests the background would be too high.

• All the elements have a rib structure which minimizes the total weight keeping the
stiffness. The whole system has a mass of ∼ 20kg: since it must resist 10g vertical
accelerations, a detailed stress analysis has been done for the 4He Cover, which will
support all the optics box. The results, shown in Fig. 4.14, reveal that 4He Cover
would suffer a maximum deformation of 0.198mm.

Figure 4.14: Stress analysis on the 4He Cover. Considering that the whole optics box,
mirrors and horns weight ∼ 20Kg, applying a vertical acceleration of 10g and imposing
that the edge of 4He Cover is screwed on the 4He tank bottom, the maximum deformation

is 0.198mm in the center.
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• The whole optics box is closed and painted using absorbing microwave material, such
as lampblack loaded stycast epoxy. Only the radiation reflected by the mirrors and
passing through the dichroics can reach the detectors. In particular, Shield Dx Sup,
Shield Dx Inf, Shield Sx, Box 1mm #1 and Reggetta Bottom shield from fridge and
unwanted incoming radiation; Shield Lyot Stop and the thin layer on the Reggetta
Plane select only rays coming from the portion of sky observed; finally, Box 1mm
#2 and Splitter Plane #1, #2 and #3 themselves shield the receivers from stray
light and contamination from the other channels.

(a) External 4He shield (b) Fridge and 4He Cover (c) Inner optics box parts

(d) Beam splitting system (e) Optical system

Figure 4.15: 3D design of the optics box: it is shown the whole system and its inner
elements, together with the 3He fridge.

4.5 Alignment tests

The last test made at room temperature is the alignment of the optics box and of the
mirrors. The optics box is designed so that every part, including mirrors, must fit in the
proper way: there are no adjustable parts. The advantage is that the is no danger of
losing the alignment during transportation or launching of the experiment; the drawback
is that it would be very difficult to fix any misalignment.
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(a) External 4He shield (b) Optics box: right view

(c) Optics box: left view (d) Optics box: back view

Figure 4.16: Pictures of the optics box: external shields. It is also shown the two copper
bars that will sustain the 3He fridge. The whole optics box will be mounted upside down.
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(a) Splitting system (b) Internal shielding

(c) Optical system: front view (d) Optical system: back view

Figure 4.17: Pictures of the optics box: internal shields. Around the Lyot Stop and between
the quinary and the first dichroic are mounted shields which prevent stray light to reach

the focal plane.
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The use of high accuracy, controlled numerical milling cutters strongly reduces possible
misalignments. Despite of this, it is fundamental to verify the correct positioning of every
element: this is achieved making two tests, one mechanical and one optical.

The first test uses the same tridimensional measuring machine Poli Galaxy Diamond
used to verify the machined mirrors (see § 4.2). In particular, we measured the angles
between Reggetta Plane and Reggetta Mirrors, which is fundamental since it defines the
distance between the Lyot Stop and the tertiary and quinary mirrors. The other angles
checked are those between the Reggetta Plane and the three Splitter Plane: they define
the position and the angle of beam splitting, hence have to be as accurate as possible.
The nominal and measured values are reported in Tab. 4.4.

Reggetta Plane

Nominal Measured

Reggetta Mirrors 90◦ 89◦ 55′ ± 10′

Splitter Plane #1 90◦ 90◦ 03′ ± 10′

Splitter Plane #2 45◦ 45◦ 05′ ± 30′

Splitter Plane #3 45◦ 45◦ 14′ ± 30′

Table 4.4: Measured angles referred to the Reggetta Plane. They are computed using the
same tridimensional measuring machine Poli Galaxy Diamond used to verify the machined
mirrors (see § 4.2). The errors, calculated directly by the machine software, depend on the
number of samples points: Splitter Planes #2 and #3 are more difficult to touch with the
probe, thus only three points (the minimum required to define a plane) have been measured.

The second test consists in simulating the beam coming from the telescope and veri-
fying that it is refocused on the four focal planes. The radiation is generated by the same
monochromatic laser He−Ne at λ = 633nm used to measure the mirrors surface rough-
ness; then a suitable optical setup, made of a beam expander and a lens (see Fig. 4.18), is
used to simulate the f/# = 3.45 of the telescope.

The lens has a diameter dLens = 25.4mm and a focal distance fLens = −75mm, which
is negative because we used a diverging bi-concave spherical lens. Assuming that the
incident beam is parallel, i.e. it comes from infinity, the f/# produced by the lens is
f/# = fLens/d, where d is the portion of lens diameter used: hence, f/# > 2.95.

The beam expander enlarges the wavefront of the radiation generated by the laser, so
that it illuminates the whole lens. Moreover, beam expander should produce parallel rays,
but we found that this is not the case in practice. We must conclude that the effective focal
distance fEff of the lens differs from the nominal one; they are related by the equation:

1

fEff

=
1

fBeam
+

1

fLens
(4.24)
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Figure 4.18: Alignment measuring setup: the lens diverges the radiation coming from the
beam expander, which is refocused by the optical system on the four focal plane of the

experiment, where the receiver is positioned.

where fBeam is the focal distance of the beam generated by the beam expander. We
measured fBeam = 1200mm, which gives fEff = −80mm. However, the imperfection of
the beam expander has an advantage: dimension of the beam at its exit is too small to
fill the lens diameter; hence, moving the lens far away the expander permits to illuminate
its whole surface, obtaining the desired f/#.

Since the telescope focal plane is placed between the 4He window and the Reggetta In,
all the distances are taken from the latter. A first measurement showed that placing the
lens in the nominal position, i.e. 80mm from the focal plane, is not the best choice: the
dimensions of the spots on the image surface are larger than expected. Consequently, we
decided to move the lens back and forward to find the optimal position, that is 2mm in
the direction of the Reggetta In, hence an offset that can be adjusted when integrating the
cryostat and the telescope.

The following measurements consist in verifying the refocusing properties at the edge of
the telescope focal plane and on the four image surfaces; moreover, we want to characterize
the total field of view, which is limited by the dimensions of the beam splitters. These
results are reported in Tab. 4.5
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Signal (mV )

143GHz 217GHz 353GHz 545GHz

Field #1 59.92 ± 0.11 56.19 ± 0.19 54.14 ± 0.13 55.45 ± 0.18
Field #2 60.91 ± 0.15 56.77 ± 0.16 50.69 ± 0.19 56.49 ± 0.14
Field #3 67.24 ± 0.13 51.19 ± 0.13 49.54 ± 0.12 55.78 ± 0.19
Field #4 60.58 ± 0.12 50.22 ± 0.11 56.54 ± 0.10 51.22 ± 0.13
Field #5 56.28 ± 0.10 51.16 ± 0.14 50.11 ± 0.15 53.31 ± 0.11

Table 4.5: Alignment and refocusing tests results. For reference, the signal obtained ob-
serving directly the laser is 109.22 ± 0.14mV: note that this is obtained without the beam
expander and the lens, which scatter a lot of radiation. Hence, the efficiency of the opti-
cal system is very high even at optical wavelength. The coordinates of the five fields are

described in Tab. 3.1.
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Focal plane design

An expert is one who knows
more and more about less and less,

until he knows everything about nothing.

Max Weber

Geometrical Optics deals with radiation in the limit λ/D → 0, i.e. small wavelength if
compared to the typical dimensionsD of the optical elements. Starting with the basic rules
of propagation of rays, this theory includes rigorous and complete methods for analyzing
an optical system having elements (such as lenses, mirrors or apertures) large enough with
respect to the wavelength.

At the opposite corner is Diffractive Optics: diffraction is the tendency of source
radiation to change its distribution as the distance from the source varies. When the
dimensions of the optical components are much smaller than the wavelengths (λ/D → ∞),
diffraction effects dominate the propagation of radiation: this is the case of the near field of
an aperture or antenna. In this situation, a complex formalism to analyze characteristics
of the beam is required, and performing accurate computations is time-consuming and
sometimes impossible.

When the dimensions of the optical components and radiation wavelengths are com-
parable (λ ∼ D), beam propagation can be studied using Gaussian Optics or Quasiopti-
cal Physics. This theory uses the formalism of Gaussian Beam, taking in consideration
diffractive effects and wavelengths dependance, while it is still a fast computing method.
Quasioptics converges to geometrical optics in the limit λ→ 0.

As seen in § 2.4, from far infrared to millimeter bands, experiments use receivers that
integrate the incident signal, instead of measuring the energy and direction of each photon:
these experiments do non-imaging photometry. Given the very small energy of photons, it
is more important to concentrate incoming radiation on the receiver as much as possible,
even at the cost of loosing information on the photons origin: this is achieved using feed
horns.

The design of horns that will be used in OLIMPO experiment has been done using
Gaussian beam analysis, because the dimensions of antennas and waveguides are com-
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parable to radiation wavelengths in each band. As it will be shown in this chapter, the
characteristics of the feed horn define how the beam propagates. The analysis consists in
propagating the beam from the horn to the Lyot Stop and studying its energy distribution
and angular resolution as a function of horn characteristics.

5.1 Gaussian beam propagation

Let us consider a beam that propagates from a starting point S along the z direction.
In the geometrical optics approximation, the beam is characterized in each point P by
a radius of curvature R and a beam half width ω. The former is equal to the distance
between S and P , while ω = R · sinα where α is the angle of divergence of the beam (see
Fig. 5.1).

Figure 5.1: Geometric beam propagation: the radiation starts from a point and the wave-
front has a “step” shape.

In Gaussian optics, the electrical field of a beam propagating along the z direction has
a Gaussian distribution along the axes perpendicular to z. In each propagation point, a
Gaussian beam is characterized by a beam width (beam radius), equal to the distance from
the axis of propagation where the electric field is 1/e of its maximum (see Fig. 5.2). It is
also possible to define a beam radius of curvature R, which defines the equiphase surfaces
of radiation: in the limit of far field, R → ∞, the radius of curvature characterizes the
distance between the origin and the point of interest. Moreover, a Gaussian beam cannot
be neither focused nor have origin in a single point: it propagates from a region of minimum
dispersion called beam waist, whose dimensions depend on wavelengths. A Gaussian beam
is assumed to have an infinite radius of curvature in the beam waist (see Fig. 5.2).
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(a) Gaussian beam propagation in 2D (b) Gaussian beam propagation in 3D

Figure 5.2: Schematic of Gaussian beam propagation. On the left, cut through beam
showing equiphase surfaces (broken lines), beam radius ω and radius of curvature R. On
the right, propagating beam indicating increase in beam radius and diminution of peak

amplitude as distance from the beam waist increase.

5.1.1 Gaussian optics from paraxial equation

A single component ψ of the electric field ~E or of the magnetic field ~B of an electro-
magnetic wave propagating in a uniform medium satisfies the Helmholtz equation:

(∇2 + k2)ψ = 0 (5.1)

where k = 2π/λ is the wavenumber. For a plane wave, the amplitudes of electric and
magnetic fields are constant, their direction are mutually perpendicular and perpendicular
to the propagation vector. For a beam of radiation similar to a plane wave but has
some variation perpendicular to the axis of propagation, we can still assume that electric
and magnetic fields are mutually perpendicular and perpendicular to the direction of
propagation. Assuming that the direction of propagation is in the positive z direction, we
can write the distribution for any component of the electric field in exponential form:

E(x, y, z) = u(x, y, z) e−jkz (5.2)

where u is the complex scalar function that defines the non-plane wave part of the beam.
In rectangular coordinates, eq. (5.1) is:

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
+ k2E = 0 (5.3)

and substituting eq. (5.2) into eq. (5.3), we obtain the reduced wave equation:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2jk

∂u

∂z
= 0 (5.4)
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The paraxial approximation consists in assuming a small variation of u along the
direction of propagation, so that it can be neglected when compared to the variations
perpendicular to it: this allows to neglect the third term of eq. (5.4). In cylindrical
coordinates, considering the symmetry properties of complex scalar function u(r, ϕ, z) =
u(r, z), the simplified eq. (5.4) becomes:

∂2u

∂r2
+

1

r

∂u

∂r
− 2jk

∂u

∂z
= 0 (5.5)

The simplest solution of eq. (5.5) is:

u(r, z) = A(z) exp

[
− jkr2

2q(z)

]
(5.6)

where A and q are two complex functions of z, still to be determined. It is worth noting
that the dependence of u(r, z) with r is obtained in closed form and has a Gaussian shape.
Substituting eq. (5.6) in eq. (5.5), we obtain:

−2jk

(
A

q
+
∂A

∂z

)
+
k2r2A

q2

(
∂q

∂z
− 1

)
= 0 (5.7)

Since the two functions A and q are completely independent, this implies:

∂q

∂z
= 1 (5.8a)

∂A

∂z
= −A

q
(5.8b)

Solution of eq. (5.8a) is q(z) = q(0) + z and it is called the complex beam parameter.
Since q is a complex function, it can be decomposed in a real and an imaginary part:

1

q
=

(
1

q

)

ℜ

− j

(
1

q

)

ℑ

(5.9)

Substituting in eq. (5.6), the result is:

exp

[
−jkr

2

2q

]
= exp

[
−
(
jkr2

2

)(
1

q

)

ℜ

−
(
kr2

2

)(
1

q

)

ℑ

]
(5.10)

In eq. (5.10), the imaginary part of the exponent has the form of a phase variation
produced by a spherical wavefront. In fact, if the equiphase surface has radius of curvature
R and φ(r) is defined as the phase variation relative to a plane for a fixed value of z as
a function of r (see Fig. 5.3), in the limit r ≪ R, phase delay is approximately equal to
φ(r) ≃ πr2/λR. Hence, the real part of 1/q is related to the radius of curvature by:

(
1

q

)

ℜ

=
1

R
(5.11)

The second part of eq. (5.10) is real and has a Gaussian variation as a function of
the distance from the axis of propagation. Taking the standard form for a Gaussian
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Figure 5.3: Phase shift of spherical wave relative to the plane wave. The phase delay of
the spherical wave, at a distance r from the axis defined by the propagation direction of

the plane wave, is φ(r).

distribution to be N (r) = N (0) exp(−r2/r20), we see that the quantity r0 represents the
distance to the 1/e point relative to the on-axis value, i.e. the beam radius ω. To make
the second part of eq. (5.10) have this form it must be:

(
1

q

)

ℑ

=
2

kω2(z)
=

λ

πω2
(5.12)

Since q is a function of z, both beam and curvature’s radii will depend on the position
along the axis of propagation. With these definitions, eq. (5.9) becomes:

1

q
=

1

R(z)
− jλ

πω2(z)
(5.13)

The beam waist radius ω0 will be obtained imposing z = 0 so that ω0 =
√
λq0/jπ and

considering the relation q(z) = z + q(0) we get:

q = z +
jπω2

0

λ
= z + j zc (5.14)

where zc = πω2
0/λ is defined as the confocal distance or confocal parameter. Moreover,

using eqs. (5.13) and (5.14) we find the relations:

R = z +
1

z

(
πω2

0

λ

)2

= z +
z2
c

z
(5.15)

ω = ω0

√

1 +

(
λz

πω2
0

)2

= ω0

√

1 +

(
z

zc

)2

(5.16)



132 5.1. Gaussian beam propagation

As already said, ω0 is the minimum value that beam radius can assume and it occurs at
the beam waist, where the radius of curvature is infinite (plane wavefront). Considering
eqs. (5.8a), (5.8b) and (5.14), the solution of eq. (5.8b) is:

A(z)

A(0)
=

1 + jλz/πω2
0

1 + (λz/πω2
0)

2
=

1 + jz/zc
1 + (z/zc)2

(5.17)

Defining the Gaussian beam phase shift φ0 so that tan(φ0) = λz/πω2
0 , previous equation

becomes:
A(z)

A(0)
=
ω0

ω
· ejφ0 (5.18)

and substituting in eqs. (5.2) and (5.6), we find the expression of the electric field of the
beam as a function of r and z:

E(r, z) =
ω0

ω
· exp

(
− r2

ω2
− jkz − jπr2

λR
+ jφ0

)
(5.19)

Finally, it is possible to normalize the equation of electric field, 2π
∫
|E|2 r dr = 1, so that

eq. (5.19) becomes:

E(r, z) =

√
2

πω2
· exp

(−r2
ω2

− jkz − jπr2

λR
+ jφ0

)
(5.20)

5.1.2 Edge Taper

Eq. (5.20) shows the characteristics of the distribution of a Gaussian beam, the trans-
ported energy during its propagation (increasing z) and its removal from the axis of prop-
agation (increasing r).

The field distribution is maximum in the beam waist (z = 0) and on the axis of prop-
agation (r = 0). For each value of z, the energy transported by the beam monotonically
decreases as r increases with a Gaussian shape. When r 6 ω0/

√
2, energy transported

by beam monotonically decreases as z increase; instead, when r > ω0/
√

2 the shape is no
more monotonic: a relative maximum as a function of z is observed. This is due to the
distribution effect: the Gaussian distribution that describes the beam is less concentrate
in the center as z increase.

For each z, the Gaussian shape of the electric field can be described as:
∣∣∣∣
E(r, z)

E(0, z)

∣∣∣∣ = exp

[
−
( r
ω

)2
]

(5.21)

while the distribution of power density is proportional to the square of the previous quan-
tity:

P (r)

P (0)
= exp

[
−2

( r
ω

)2
]

(5.22)

It is possible to characterize the Gaussian beam in terms of the relative power level at
a specified radius. The edge taper Te is the relative power density at a radius re and it is
given by:

Te(re) =
P (re)

P (0)
= exp

[
−2

r2e
ω2

]
(5.23)
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Usually, the edge taper is expressed in decibels:

Te(dB ) = −10 log(Te) = 20
r2e
ω2

log(e) (5.24)

Radius corresponding to a given level of relative power is:

re
ω

= 0.3393 ·
√
Te(dB) (5.25)

Finally, from the above equations the fraction of power Fe(re) enclosed in a radius re is:

Fe(re) = 2π

∫ re

0
|E(r)|2 r dr = 1 − Te(re) (5.26)

Thus, the fractional power that falls outside radius re is equal to the edge taper at that
radius: so, Te describes the portion of energy loss. A summary of the main Gaussian beam
parameters and formulas to compute them is reported in Tabs. 5.1 and 5.2.

Transverse field distribution E(r, z) =

√
2

πω2(z)

(
− r2

ω2
− jkz − jπr2

λR
+ jφ0

)

Beam radius ω = ω0

√

1 +

(
λz

πω2
0

)2

Radius of curvature R = z +
1

z

(
πω2

0

λ

)2

Edge taper Te(re) = exp

(
−2

r2e
ω2

)

Table 5.1: Summary of main Guassian beam formulas. It is assumed a symmetric Gaus-
sian beam with waist radius ω0 located at z = 0 and propagating along the z axis. The
transverse coordinate is r, which is limited by the edge radius re for a truncated beam.

5.2 Gaussian beam transformation

A quasioptical system is a tool used to modify, direct and restrict a beam of elec-
tromagnetic radiation according to the requirements of the experiment. This process is
carried out in a manner similar to that employed in “traditional” optical systems, i.e.
using lenses or mirrors that modify the beam radius of curvature in order to converge
or diverge it. The process of altering the properties of a Gaussian beam is called beam
transformation.

The analogy between the real part of the complex q parameter and the radius of
curvature, characteristic of a beam in the geometrical optics approximation, suggests to
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ω0 z ω = ω0

√

1 +

(
λz

πω2
0

)2

R = z

[
1 +

(
πω2

0

λz

)2
]

R z ω2
0 =

λ

π

√
z(R − z) ω from ω0 and z

ω z ω2
0 =

ω2

2



1 ±
√

1 −
(

2λz

πω2

)2


 R from ω0 and z

ω ω0 z =
πω0

λ

√
ω2 − ω2

0 R from ω0 and z

ω0 R z =
R

2



1 ±
√

1 −
(

2πω2
0

λR

)2


 ω from ω0 and z

ω R ω0 =
ω√

1 +

(
πω2

λR

)2
z =

R

1 +

(
λR

πω2

)2

Table 5.2: Relationship between main Gaussian beam parameters: these formulas permit
to determine every parameter given only a known pair of them.

extend the formalism used in geometrical optics to systems that require Gaussian beam
propagation. In this approach, the location and the slope of a ray at the output plane of
a paraxial system are defined to be linear functions of the parameters of the input ray.
Denoting the position as r and the slope as α, the linear relationship between input and
output position and slope of a ray is:

rOut = A · rIn +B · αIn (5.27a)

αOut = C · rIn +D · αIn (5.27b)

Using the matrix formalism, eq. (5.27) can be written as:

(
rOut

αOut

)
=

(
A B
C D

)
·
(
rIn
αIn

)
(5.28)

A succession of elements is handled by multiplication of the appropriate 2×2 matrices
to find the overall system matrix. Since the radius of curvature is defined as the ratio
between the position and the slope, R = r/α, the relationship between the input and
output radii of curvature is:

ROut =
A ·RIn +B

C ·RIn +D
(5.29)
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The extension of eq. (5.29) to Gaussian optics leads to the ABCD law in which the
four parameters operate on the complex parameter q:

qOut =
A · qIn +B

C · qIn +D
(5.30)

The four parameters A, B, C and D are the same for the geometrical optical system
element, so that all of the geometrical optics theory can be applied to Gaussian beams.

In multielements systems, we place the matrices in the matrix equation from right to
left in the order that the beam encounters the constituent parts of the system, i.e. the
right-most matrix represent the first distance or interface encountered, the next to its left
describes the following distance or interface, and so on. Hence, from eqs. (5.11) and (5.12),
we get:

R =

[
Re

(
1

q

)]−1

(5.31)

ω =

√√√√√
λ

π Im

(
−1

q

) (5.32)

5.2.1 Transformation matrices

The most basic ray transfer matrix is the translation one, which describes the beam
propagation in a uniform material of a uniform refraction index for a distance L. As shown
in Fig. 5.4, it changes the offset of the ray from the axis by an amount proportional to
αIn but does not change its slope. It is described by the matrix:

MDist =

(
1 L
0 1

)
(5.33)

A second fundamental ray transfer matrix is the interface between media of different
indices of refraction na and nb: passing trough this interface changes the slope of a ray
but does not affect its position (see Fig. 5.4). The matrix is found by applying the Snell
law to a ray incident on the surface. If the surface has a radius of curvature R (so that
flat interface is given by R→ ∞), the corresponding matrix is:

MRef =




1 0

nb − na

nbR

nb

na



 (5.34)

Given these two transformation matrices, it is possible to construct matrices for more
complex quasioptical systems.

Lossless dielectric This is a flat plate of material having refraction index nb and thick-
ness L embedded in a medium having refraction index na so that it satisfies the
equation:

MDiel = MRef (b→ a,R→ ∞) ·MDist(L) · MRef (a→ b,R → ∞) (5.35)
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(a) Transformation in free space (b) Transformation between different media

Figure 5.4: Gaussian beam transformation in the two simplest cases. On the left, ray
propagation in free space as described by eq. (5.33): the distance of the ray from the axis
of propagation is r, and its slope is α. On the right, ray propagation at interface between
two media having different indices of refraction na and nb: the corresponding matrix is

given in eq. (5.34).

and the result is:

MDiel =



 1
Lna

nb
0 1



 (5.36)

Thin lens It is a focusing element that consist of one or two curved interfaces. Beam
crosses from outside to inside the lens (a→ b) passing through a surface of radius Ra,
then it travels inside the lens and crosses it again (b→ a with exit surface radius Rb).
The thin lens approximation consist in neglecting physical separation and thickness,
i.e. the translation of the beam inside the lens. Transformation matrix will be:

MThin = MRef (b→ a,R = Rb) · MRef (a→ b,R = Ra) (5.37)

thus obtaining:

MThin =




1 0

nb − na

na

(
1

Ra
− 1

Rb

)
1



 (5.38)

Note that a biconvex lens has Ra < 0 and Rb > 0 and thus for nb > na the matrix
element C is always negative. Usually, the thin lens is described by its focal length f ,
thus the slope of the beam is proportional to −1/f . In fact, if the beam propagates
parallel the z axis, it will crosses the z axis at a distance f after passing through the
lens. Thus, the matrix describing thin lens can be written as:

MThin =




1 0

− 1

f
1



 (5.39)
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which gives the relationship between focal length of thin lens and its properties:

1

fThin

=
nb − na

na

(
1

Rb
− 1

Ra

)
(5.40)

Spherical mirror In the paraxial limit, this mirror is equivalent to a thin lens of focal
length f = R/2, where R is the mirror radius of curvature. So, the matrix describing
a spherical mirror is:

MSphe =

(
1 0

− 2

R
1

)

(5.41)

5.2.2 Transformation by a thin lens

Let us suppose to have a thin lens with focal length f at a distance dIn from the origin
of the beam (z = 0): we want to study how the beam is transformed at a distance dOut

from the lens (see Fig. 5.5). The resulting matrix is:

MTot = MDist(L = dOut ) · MThin ·MDist (L = dIn) =

=

(
1 dOut

0 1

)

·
(

1 0

− 1

f
1

)

·
(

1 dIn

0 1

)

=

=




1 − dOut

f
dIn + dOut

(
1 − dIn

f

)

− 1

f
1 − dIn

f



 (5.42)

Since the input is a beam waist, eq. (5.14) implies qIn = j zc; from eq. (5.30) we get
that the output complex parameter qOut is:

qOut =

(
1 − dOut

f

)
j zc + dIn + dOut

(
1 − dIn

f

)

(
1 − dIn

f

)
− j

zc
f

(5.43)

This equation gives the following information:

• At the entrance of the lens (f = ∞ and dOut = 0), the beam radius of curvature
RLIn

is:
1

RLIn

=
dIn

d2
In + z2

c

(5.44)

• At the exit of the lens (dOut = 0) the beam radius of curvature is:

1

RLOut

=
dIn

d2
In + z2

c

− 1

f
=

1

RLIn

− 1

f
(5.45)



138 5.3. Gaussian beam analysis

Figure 5.5: Schematic of Gaussian beam transformation by a thin lens.

• Eq. (5.43) gives the beam properties at every distance dOut from the lens. For
example, position and value of the beam waist exiting the lens are:

dω0, Out
= f +

dIn − f
(
dIn

f
− 1

)2

+
z2
c

f2

(5.46)

ω0,Out =
ω0, In√(

dIn

f
− 1

)2

+
z2
c

f2

(5.47)

5.3 Gaussian beam analysis

As explained in the previous paragraphs, in Gaussian optics, a beam does not have a
unique point of origin, but rather a beam waist ω0 where the beam is minimized and its
wavefront is flat. As the beam propagates, it expands and its wavefront has a Gaussian
distribution (see Fig. 5.2).

Since microwave experiments use receivers that integrate the incident signal, the in-
coming radiation is concentrated using feed horns. Reversing the optical system, the
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beam originates in the horn and starts propagating along the mirrors chain. Gaussian
beam analysis permits to choose the best characteristics of the horns.

5.3.1 Feed Horn

A feed horn is a radiation collector of conic or pyramidal shape that allows to efficiently
couple the receivers to the Gaussian beam of radiation coming from optical system. Usu-
ally, feed horns are corrugated: the teeth inside the horns typically have a depth of λ/4,
where λ is the wavelength of the radiation of interest. Corrugated horns of the kind shown
in Fig. 5.6 have many advantages: the beam that originates from these horns is an almost
perfect Gaussian, conic, symmetric beam without sidelobes; moreover, they preserve the
polarization of the incoming radiation. The coupling efficiency between the optical sys-
tem and a corrugated feed horn can reach 95%. The main drawbacks are the cost and
difficulties of machining such horns.

Figure 5.6: Cross section of corrugated feed horn. The input from the left is assumed to
be a smooth-walled circular waveguide.

A feed horn having an aperture radius a and a slant length Rh produces a Gaussian
beam with a radius of curvature at the horn aperture Rh. The position of the beam waist
is obtained maximizing the energy emitted by the horn: given the aperture a and Gaussian
beam radius at horn aperture ωa (see Fig. 5.7), their ratio is constant and depends only
on the characteristics of the horn [46].

From eqs. (5.11) and (5.12), obtaining the position of the beam waist referred to the
aperture of the horn (waist offset z = d0) and its value ω0 is straightforward:

d0 =
Rh

1 +

(
λRh

πω2
a

)2 (5.48)

ω0 =
ωa

1 +

(
πω2

a

λRh

)2 (5.49)
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Figure 5.7: Gaussian beam originated by a feed horn. The figure also shows the main
parameters of the horn. It is worth noting that the slant length Rh is the whole length of

the horn, i.e. that obtained propagating the horn wall inside the waveguide.

5.3.2 Horn design

As shown in Fig. 5.7, the beam waist is inside the horn, at a distance d0 from the
entrance. Eqs. (5.48) and (5.49) show that ω0 and d0 depend on four parameters:

1. Wavelength λ of the radiation of interest, i.e. the radiation exiting the horn.

2. Entrance aperture radius a of the horn.

3. Coupling between horn and outgoing beam, described by the ratio between the horn
aperture a and the Gaussian beam radius at the horn aperture ωa.

4. Horn slant length Rh.

ωa/a is a constant that depends only on the type of the chosen horn: in our case, we
have a smooth-walled conical feed horn, which has ωa/a = 0.768 [46]. This horn has not
the advantages of a corrugated one, but it is much cheaper and it is good enough for our
purposes, since beam selection is made using a cold Lyot Stop and we are not interested
in preserving information on polarized radiation.

As the beam starts propagating from the beam waist inside the horn, it expands until
it reaches the fifth mirror, which refocuses the beam on the Lyot Stop (see Fig. 3.1). As
shown in § 5.2.1, a spherical mirror acts on a Gaussian beam in the same way as a thin
lens acts and the relation fThin Lens = f5th = R5th/2 subsists. The propagation of the
beam from the horn to the Lyot Stop follows the calculations done in § 5.2.2 for a thin
lens. In the case of the OLIMPO optical system, dIn is the distance between the quinary
mirror and the image surface, i.e. beam waist (d5th−ω0

), while dOut is the one between the
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Lyot Stop and the fifth mirror (dLS−5 th ). Thus, eq. (5.42) becomes:

MLS−ω0
= MDist (L = dLS−5 th ) ·MThin (f = f5th ) · MDist(L = d5th−ω0

) =

=

(
1 dLS−5 th

0 1

)

·
(

1 0

− 1

f5th

1

)

·
(

1 d5th−ω0

0 1

)

=

=




1 − dLS−5 th

f5th

d5th−ω0
+ dLS−5 th

(
1 − d5th−ω0

f5th

)

− 1

f5th

1 − d5 th−ω0

f5th
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Considering eq. (5.30) and starting the beam starts from the beam waist, where qIn = j zc,
the qLS parameter on the Lyot Stop is:

qLS =

(
1 − dLS−5 th

f5th

)
j zc + d5th−ω0

+ dLS−5 th

(
1 − d5th−ω0

f5th

)

(
1 − d5th−ω0

f5th

)
− j

zc
f5th

(5.51)

and from eq. (5.32) we get the beam radius on the Lyot Stop:

ωLS =
ω0

zc

√

f2
5th

[
1 −

(
1 − d5th−ω0

f5th

)(
1 − dLS−5th

f5th

)]2

+ z2
c

(
1 − dLS−5th

f5th

)2

(5.52)

We can also calculate the edge taper on the Lyot Stop, i.e. the power at the edge of
the mirror relative to its central value:

Te(RLS) = exp

[
−2R2

LS

ω2
LS

]
(5.53)

Finally, we want to compute the angular resolution given by the chosen horn. As
already described in § 3.2.1, the Lyot Stop is the mirror onto which the image of the
primary is focused: thus, properties of the beam are almost equal on the Lyot Stop and
the primary mirror. The relation between the shape of the beam on the sky and the one
on the primary mirror is obtained using Fraunhofer diffraction.

5.3.3 Far field diffraction

Fraunhofer diffraction is also known as the far field diffraction. Essentially it repre-
sents the electromagnetic field produced by an aperture at a very large distance from the
aperture. Given the field in the aperture plane E(x0, y0), i.e. the primary mirror, the field
in the observation plane E(x1, y1), i.e. the sky, at a distance z from the aperture plane is
given by the convolution:

E(x1, y1) =

∫∫

A(x0,y0)
h(x1 − x0, y1 − y0)E(x0, y0) dx0 dy0 (5.54)
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where

h(x1 − x0, y1 − y0) = exp(jkr01) ·
1

jλr01
(5.55a)

r01 =
√

(x0 − x1)2 + (y0 − y1)2 + z2 (5.55b)

The term r01 in the exponential cannot be approximated by z because it is multiplied
by k, which is big, so small changes in r01 can produce large differences. This can be done
in the denominator, while the term in the exponential can be expanded to first order, thus
obtaining:

E(x1, y1) =

∫∫

A(x0,y0)

1

jλz
e
jk

»

z+
(x0−x1)2

2z
+

(y0−y1)2

2z

–

E(x0, y0) dx0 dy0 (5.56)

which can be rewrite multiplying out the squares and factoring out the quantities inde-
pendent of x0 and y0:

E(x1, y1) =
1

jλz
e
jk

„

z+
x2
1+y2

1
2z

«

·
∫∫

A(x0,y0)
e
jk

»

−2x0x1−2y0y1
2z

+
(x0+y0)2

2z

–

E(x0, y0) dx0 dy0 (5.57)

Let D = x2
0+y

2
0 be the size of the aperture: the far field approximation implies kD2/2 ≪ 1,

so that the quadratic term in the integral of eq. (5.57) can be neglected:

E(x1, y1) =
1

jλz
e
jk

„

z+
x2
1+y2

1
2z

«

·
∫∫

A(x0,y0)
e−

jk

z
(x0x1+y0y1)E(x0, y0) dx0 dy0 (5.58)

It is worth noting that the far field approximation is valid when z ≫ kD2/2 = πD2/λ: in
the case of the OLIMPO experiment, D = 2000mm and λ = 2.1 ÷ 0.5mm, which implies
z ≫ 6 ÷ 25km. Since the incident radiation is a plane wave, E(x0, y0) is constant with
respect to x0 and y0 and can be factorized out of the integral. Expliciting the aperture
function A(x0, y0) and ignoring the phase factors in front of the integral, we get:

E(x1, y1) ∝
∫ +∞

−∞

∫ +∞

−∞

exp

[
−jk
z

(x0x1 + y0y1)

]
A(x0, y0) dx0 dy0 (5.59)

which is clearly a Fourier transform from the position x0 on the aperture to another
position variable x1 in another plane: thus, the far field radiation is the Fourier transform
of the aperture field. The conjugate variables here are x0 and kx = k x1/z, which have
reciprocal units.

Using the properties of Fraunhofer diffraction, it is possible to estimate the resolution
as a function of the horn characteristics. The beam on the Lyot Stop is:

ALS (x0, y0) = exp

[
−2

r2(x0, y0)

ω2
LS

]
(5.60)
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and we assume it is the same (apart from a scale factor) on the primary mirror. Thus, the
beam on the sky in the Fourier transform of the beam on the primary. The position of the
first minimum is ϑ = RLS/R1th ·λ/x0: this set the scale of the far field coordinates. Then,
computing the corresponding full width half maximum of the beam is straightforward.

5.3.4 Results

The Gaussian beam analysis was computed for λ = 2.1mm (143GHz ). In principle,
the best solution minimizes the power loss (and so the edge taper) and gives the best
resolution.

The latter is almost independent of the horn parameters while it depends strongly on
the wavelengths (see Fig. 5.8): it is ϑFWHM = 5.6′ at λ = 2100µm, ϑFWHM = 3.7′ at
λ = 1400µm, ϑFWHM = 2.3′ at λ = 850µm and ϑFWHM = 1.5′ at λ = 550µm.

Instead the edge taper decreases as the aperture a and the length Rh of the antenna

(a) Beam at ν = 143GHz: ϑFWHM = 5.6′ (b) Beam at ν = 217GHz: ϑFWHM = 3.7′

(c) Beam at ν = 353GHz: ϑFWHM = 2.3′ (d) Beam at ν = 545GHz: ϑFWHM = 1.5′

Figure 5.8: Beam of OLIMPO in the four bands. It is clear its dependence on the frequency:
as the wavelength decreases, the beam full width half maximum decreases as well, thus the
angular resolution of OLIMPO increases. Note that x and y axes change scale between

the four figures.
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increase: its variation as a function of the horn aperture and length is shown in Fig. 5.9. In
order to minimize the power loss one should decrease the beam radius on the Lyot Stop: it
reduces the portion of the mirror illuminated, thus diminishing the collected power. This
effect is emphasized by the presence of the hole on the Lyot Stop. The best compromise
is a horn that produces a beam having Te(RLS ) ∼ 10dB [46].

Figure 5.9: Edge taper on the Lyot Stop as a function of the aperture length of the feed
horn for ν = 143GHz (λ = 2100µm): units are decibels. As explained in § 5.3.4, horns
cannot have an aperture larger than 5mm and cannot be longer than 40mm. It is clear

that ideal value Te ≃ 10dB [46] is inaccessible with these constrains.

In choosing the parameters of the OLIMPO feed horns, it must be noted that:

• The horn aperture must be larger than the Airy disc at that wavelength: DAiry (λ =
2.1mm) ≃ 7mm ⇒ DHorn = 2a > 7mm.

• At λ = 2.1mm there will be 19 bolometers, 5 in the central row (see Fig. 5.10); the
diameter of the focal plane is 52mm, so DHorn = 2a < 10mm.

• Because of space issues in the cryostat, the feed length must be Rh < 45mm. Note
that Rh is the total length of the horn, where the horn would “finish” if there was
no waveguide (see Fig. 5.7).

• The horn finishes in a circular waveguide, whose length and diameter define the
cut-off wavelength and select the modes that can propagate. The higher cut-off
wavelength for a particular transverse-electrical (TE) or transverse-magnetic (TM)
mode in circular waveguide is given by:

λCut−Off , mn =
π dOut

fmn
(5.61)

The fundamental mode, i.e. the one having the highest cut-off wavelength, is TE11

(f11 = 1.841). If the waveguide is long at least 2λ and has a diameter of dOut ≃ λ/1.7,
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only the TE11 mode can propagate. We choosed to use single mode horns: the
advantage is an almost perfect Gaussian beam shape, the drawback is the loss of
energy related to the higher modes.

These constraints define the parameters of the horns at 143GHz, as reported in Tab. 5.3:
the edge taper is Te(RLS ) = 4.52dB. It is worth noting that the contribution due to
sidelobes is negligible, because the Lyot Stop is enclosed in a cold absorbing cavity with
very low and constant emission (see § 3.2.1). Assuming the reflectivity is 10−3, the edge
taper outside the Lyot Stop is Te ∼ 35dB.

Regarding the 217GHz channel, the dimensions of the horns roughly scale proportion-
ally to the wavelength. Thus, the receivers are 37 (instead of 19), 7 in the central row
(see Fig. 5.11), and the horns dimensions must decrease of ∼ 33% in order to fill the focal
plane. The exact properties are chosen imposing the conservation of the edge taper.

143GHz 217GHz

Number of receivers (mm) 19 37
Horn Aperture (mm) 9.00 6.42
Horn Slant Length (mm) 40.00 28.00
Waveguide Diameter (mm) 1.50 1.00
Waveguide Length (mm) 6.67 3.91

Table 5.3: Chosen dimensions of the OLIMPO horns for 143 and 217GHz channels.

Regarding the two higher frequency channels, the layout is still under discussion. The
number of receivers will be the same of the 217GHz channel, so there are three possible
solutions:

1. We scale the dimensions of the horns proportionally to the wavelength and increase
their number in order to fill the focal plane: the drawback is that each receiver
sees many horns, thus we cannot estimate the shape of the beam and the angular
resolution.

2. We scale the dimensions proportionally to the wavelength but we keep the same
number as for the 217GHz channel (i.e. 37 horns): we control the shape of the beam
and the angular resolution but we do not fill the focal plane, hence we reduce the
collected power.

3. The aperture of the horns remains the same as the 217GHz channel and we change
only their length so that the edge taper is the same at all the wavelengths: we can
predict the shape of the beam and the angular resolution, but the latter will be
different in the four bands.
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Figure 5.10: Executive project of the horns for first OLIMPO channel (ν = 143GHz,
λ = 2100µm). Their characteristics are reported in Tab. 5.3.

Figure 5.11: Executive project of the horns for second OLIMPO channel (ν = 217GHz,
λ = 1400µm). Their characteristics are reported in Tab. 5.3.



Chapter 6

Simulations

Theory is when someone knows everything,
but nothing works.

Practice is when everything works,
but no one knows why.

Hermann Hesse

As described in Chap. 1, the main components that contribute in the four OLIMPO
bands are cosmic microwave background, Sunyaev-Zel’dovich effect, galactic dust emission
and far infrared background. In this chapter, we want to predict the maps in the four
bands and see if OLIMPO is able to separate the signals, reconstruct the input maps and
disentangle between different models.

Contributions due to cosmic microwave background and Sunyaev-Zel’dovich effect are
well known, hence producing maps due to these signals at different frequencies is quite
simple.

The former is an almost gaussian distribution of anisotropies having the angular power
spectrum shown in Fig. 1.5; the full sky map, as obtained by WMAP, is displayed in
Fig. 1.3.

The latter, in the Kompaneets approximation, is described by eq. (1.44), hence it
is the product between the analytic expression of the spectrum and the comptonization
parameter y. The former is a function of the temperature of the intracluster gas only,
and it is shown in Fig. 1.9. Comptonization parameter is obtained from hydrodynamical
simulations [11, 106]: they follow the process of formation and evolution of galaxy clusters
in a cosmological framework. These simulations include a advanced treatment of several
processes, such as radiative cooling, star formation, thermal conduction, release of metals
and energy feedback from supernovae type Ia and II. The result of these simulations is a
box containing a very high number of particles (∼ 1010 in the largest one, the Millennium
Simulation [107]): integrating along the line of sight, it is possible to obtain an accurate
simulation of a map of the comptonization parameter.

Galactic dust emission and far infrared background are not well known yet, in particu-
lar at millimeter and submillimeter wavelengths. Thus, models of these contributions are
still uncertain: we will explain and use two of the most appreciated. Upcoming ground,

147
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balloon and satellite experiments such as OLIMPO will put stronger constraints.

6.1 Galactic dust model

The model #8 by Schlegel, Finkbeiner and Davis [38] is thought to be the most accurate
model that describes the far infrared and microwave emission from the diffuse interstellar
dust in the Galaxy. It starts from the high resolution, far infrared IRAS data and calibrates
it with the DIRBE data (ν = 3000GHz ). This model is then extended to FIRAS and
DMR frequencies, 100 ÷ 2100GHz and 31.5 ÷ 90GHz respectively. The outputs of the
model are full sky maps at submillimeter and microwave bands.

This is a multicomponent model, because it takes into account the presence in the
interstellar medium of many types of molecules and dust grains, and it fits all the available
data in the range 200 6 ν 6 3000GHz. The previous model has a single component and
estimates a ν2 dust emissivity power law: this is inconsistent with the FIRAS data below
800GHz.

The model analyzes only the sky regions where the far infrared emission is expected
to be dominated by diffuse interstellar medium. Hence, a spatial mask that excludes the
Galactic plane below |b| = 7◦ is created, the Magellanic Clouds and the HII regions in
Orion and Ophiuchus. Another 1.3% of the sky is masked where the FIRAS coverage
is missing or incomplete, and a further 15% where the FIRAS pixel weight is less than
0.4. Overall, 4378 pixels are included: they cover ∼ 71% of the sky observed by FIRAS,
at 123 frequencies, thus a total of ∼ 540000 data. Moreover, a fit on each frequency is
made considering an unbound starting point: this avoids that the solution is influenced
by uncertainties in the infrared background radiation.

This model has been developed in the limit of quite big grains, 0.01 < a < 0.25µm,
where a is the grain radius: they are not heated up for a small amount of time, but remain
in thermal equilibrium with the surrounding radiation field (see § 1.4). Furthermore,
since the grain’s emission wavelength scales proportionally to its volume a3, bigger grains
dominate the submillimeter emission. Smaller grains, a < 0.01µm, can be heated up
temporarily at very high temperatures and dominate the emission at λ . 100µm (ν &

3000GHz ), but they do not contribute significantly to submillimeter emission, nor are
important in the FIRAS frequencies interval.

6.1.1 Multicomponent models

Assuming for each component an emissivity following a power law in the FIRAS bands,
it is possible to sum all the elements in order to construct a multicomponent model:

Ip,ν =

∑
k
fkQk(ν)Bν(Tpk )

∑
k
fkQk(ν0)Bν0(Tpk )K100(αk, Tpk )

· Ip,100 (6.1)

where fk is the normalization factor for the kth component; Tpk is the temperature in the
pixel p of the component k; Ip,100 is the flux in the pixel p of a DIRBE calibrated map at
λ = 100µm.
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Qk(ν) is the emission efficiency, i.e. the ratio between the grain cross section and the
geometric one. Since the grains taken in consideration are very small in respect to the
emission wavelength, Q(ν) ∝ a: this is due to the fact that the grains are so small that all
the parts of the grains are close enough to the grain surface to take part in the emission.

K100(α, T ) is the color correction factor of the DIRBE filter at 100µm, when observing
a spectrum ναBν(T ). The emissivity εν of the dust and the DIRBE frequency response
W (ν) are combined to form the color correction factor Kb in the band b. Using an
emissivity model ε = να, we get:

Kb(α, T ) =

∫
Bν(T ) ναW (ν) dν (6.2)

These correction factors are well approximated by the function:

K(α, T ) =

∑
n
an(α) τn

∑
m
bm(α) τm

= log T (6.3)

where the a and b coefficients depend only on α. Moreover, we can define the emission
opacity as the emission cross section per unit mass:

κ(ν) =
π a2

̺V
Q(ν) =

3

4̺ a
Q(ν) (6.4)

Since in the limit a ≪ λ, Q/a does not depend on a, the opacity κem (ν) does not
depend on the dimensions of the grains too. The frequency dependance is a power law:

κem(ν) = κem(ν0)

(
ν

ν0

)αk

(6.5)

where αk is the emissivity index of the kth component and κem(ν0) is the opacity of the k
species at the reference frequency ν0 = 3000GHz.

fk can be interpreted as the fraction of power absorbed by the interstellar medium and
re-emitted in the far infrared band by the kth component, so that

∑
k fk = 1.

In order to decrease the degrees of freedom of the model, the components are assumed
to be in thermal equilibrium with the InterStellar Radiation Field (ISRF) that is assumed
to have everywhere a constant spectrum varying only in intensity. Thus, the total power
per unit mass absorbed by the species k is:

U in
k = κ∗k

∫ ∞

0
IISRF (ν) dν (6.6)

where κ∗k represents the effective absorption opacity (cross-section per mass) to the ISRF
in the limit of low optical depth, i.e. the one integrated over the whole band. The absorbed
power is then re-emitted at infrared wavelengths:

Uout
k =

∫ ∞

0
κem

k Bν(Tk) dν (6.7)
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If every species is in thermal equilibrium with the external field, the equality U in
k =

Uout
k holds and it is possible to obtain the temperature of a component as a function of

that of the other components temperature:

T 4+αi

i =
qj Z(αj)

qi Z(αi)

(
hν0

kB

)αi−αj

T
4+αj

i (6.8)

where q = κem(ν0)/κ
∗ is the ratio of far-IR emission cross section to the UV/optical

absorption cross section. The integrals are included in the function Z(α).

In conclusion, every component is described by three global parameters (fk, qk and αk)
and a parameter that varies with the position on the sky, Tk(x, y, z). From eq. (6.8), it
follows that there is only one independent temperature per line of sight, related to the
100µm/200µm DIRBE flux ratio. Temperatures of the various species are coupled, so
that they all correspond to the same interstellar radiation field.

6.1.2 Results

Thermal emission of galactic dust is well estimated in the millimeter and submillimeter
bands by a model with only two components with temperatures varying on the sky. The
best estimation of the model is obtained for α1 = 1.67, α2 = 2.70, f1 = 0.0363, f2 = 1−f1

and q1/q2 = 13.0 and gives χ2 = 1.85 · DOF . For such a model, the relation between the
temperatures of the two components is:

T1 = 0.352T 1.18
2 (6.9)

The mean temperatures are 〈T1〉 = 9.4K and 〈T2〉 = 16.2K for the 71% of the sky used
for the model. The colder component is related to amorphous silicates with emissivity ν1.7

and the hotter one to carbon having emissivity ν2.7.

Even if there is good agreement between the best fit model and FIRAS data, there
are some differences on some sky regions: in order to find them, the sky is divided in
many areas according to the observables. If the subdivision is made according to the
temperature or dust column density, no discrepancy is found. Sectioning according to the
dust-to-gas ratio, regions where the dust-to-gas ratio exceeds the high-latitude average by
more than a factor of 2 are designated “molecular” (14% of the sky), while remaining pixels
are designated “atomic”. Since the full sky fits are dominated by the molecular sky, the
model fits that zone with a correlation slope near unity at all frequencies. However, atomic
regions show deviations relative to the model that approach ∼ 15% at low frequencies.
Presumably, the difference between molecular and atomic areas depends on the intrinsic
characteristic of the grains. Since there is a degeneration of parameters, it is possible to
vary their values in the fit in order to fit data better (see Fig. 6.1).

As the model agrees with FIRAS data at 500GHz, we can assume this model to be
a good representation of the sky emission. Hence, it will be used to simulate the dust
emission in the OLIMPO bands.

Nevertheless, this model underestimates the dust emission at DMR frequencies: at
90GHz, the excess is only a factor 1.2, while it increases to 2.5 and 20 for 53 and 31.5GHz
respectively. This excess microwave emission is clearly correlated with the dust, but not
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(a) Sky division based upon dust temperature
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(b) Sky division based upon dust to gas ratio

Figure 6.1: FIRAS versus best fit model correlation slopes. On the left, the sky is divided
into three zones based upon temperature: cold regions (R = I100µm/I240µm < 0.62), warm
regions (0.62 < R < 0.69), and hot regions (R > 0.69). On the right, sky is divided into
two zones based upon dust to gas ratio: full sky, areas dominated by molecular clouds, and
areas dominated by atomic gas. In this latter case, modified best fit models are overplotted.
Solid line: f1 = 0.0465; dashed line: q1/q2 = 15.0. The vertical line is drawn at 240µm

(ν = 1250GHz), where the models are constrained to fit the DIRBE measurements.

due to its thermal (vibrational) emission. There are three possible causes, not well un-
derstood yet: magnetic dipole emission from paramagnetic grains, electric dipole emission
from rapidly spinning dust grains or correlation between dust and bremsstrahlung emis-
sion; galactic synchrotron emission is not a favored explanation because it is unlikely to
be highly correlated with the dust.

6.2 Far infrared background model

As described in § 1.5, the origin of the cosmic infrared background is due to unresolved
point sources: this signal is expected to dominate the two higher channels of OLIMPO,
together with the galactic dust emission. There is not a universally accepted model, since
the far infrared background is still not well understood.

Among others, the model made by Lagache, Dole and Puget [65] has the advantage of
being simple, with a low number of parameters and components and to fit the available
observations. It constrains in a simple way the galaxy luminosity function evolution with
redshift, fits the existing source counts and redshift distributions, CIB intensity and ob-
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servations of fluctuations, from the mid infrared to the submillimeter bands. The model is
based on local template spectra of starburst and normal galaxies, and on the local infrared
luminosity function.

6.2.1 Ingredients of the model

The originality of this model consists in distinguishing the sources of CIB in two
categories, starburst and normal galaxies, and in empirically separating their evolution.

At long wavelengths, resolving the sources is quite difficult; thus, the characterization
of the galaxies is a time-consuming process. The FIRBACK survey at 170µm detected
about 200 galaxies [29], which constitute about 10% of the CIB. Sources detected by
FIRBACK can be subdivided into two population:

• One cold and faint (L ∼ 109 ÷ 1011L⊙).

• One cold or hot, but bright (L ∼ 1012L⊙), with redshift z . 1.2.

Optical spectroscopy reveals that the brightest FIRBACK sources have a starburst nature
with a moderate star formation rate (10M⊙/yr).

In the submillimeter band, most of the indications come from the SCUBA deep surveys:
they suggest that faint 850µm sources are ultraluminous galaxies at redshift between 1
and 4 [36] and are related to merging processes [70]. The results show that the integrated
power of the luminosity function, at z & 0.5, must be dominated by sources having a
luminosity L ∼ 1011L⊙, while the local luminosity function is dominated by sources with
L ∼ 5 · 1010L⊙.

At low redshifts, most of the infrared sources are starburst; the AGNs contribution
dominates only at very high luminosities: L > 2 · 1012L⊙. The AGNs background energy
is ∼ 10% of that of stars: this is obtained considering the whole CIB energy budget, and
based on the assumptions that 10% of the mass accreting into black hole is turned into
energy and that the black hole masses measured in the Hubble Deep Field are typical for
all galaxies. Nevertheless, starburst galaxies evolve more rapidly than AGNs, which give
a negligible contribution to the CIB.

It is clear that AGNs do not dominate the output energy of the infrared band; thus, we
can conclude that infrared galaxies are dominated by processes of star formation and that
it is correct to use a spectral energy density typical of these star forming galaxies. The
differences in SEDs for the small fraction of AGNs neglected does not affect significantly
the results of the model, which is built with only two galaxy populations, normal and
starburst, defined by their SEDs [65].

Starburst galaxies These galaxies emit more than 95% of their energy in the far in-
frared. Their spectra are predicted using the emission model of the dust [27] and the
observational correlation for the Bright Galaxy Sample of IRAS between the flux
ratios 12/60, 25/60 and 60/100 and the infrared luminosity. The model used here
starts from the latter, which is modified on the basis of newer constraints coming
from recent observations. The significant improvements are:
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1. The substitution of the PAH templates, keeping the same amount of the energy
in the mid infrared: the original model uses a template by [27], now replaced
by that of [23].

2. The shape of the spectrum is modified in the near and mid infrared: the pro-
portions between PAH and small grains are increased by a factor ∼ 2, adding
extinction terms slowly increasing with luminosity.

3. At longer wavelengths, spectrum has been flattened and the infrared peak
broadened.

The representation of the adopted galactic SED assigns only one spectrum per lu-
minosity, neglecting the color dispersion observed for a given luminosity. This is due
to the fact that there are not enough measured colors to do an accurate statisti-
cal analysis of their variation with luminosity. The resulting template is shown in
Fig. 6.2.

Figure 6.2: Starburst model spectra for different luminosities. Solid line: L = 3 · 1012L⊙;
dotted line: L = 5 · 1011L⊙; dashed line: L = 1 · 1011L⊙; dot-dashed line: L = 1 · 1010L⊙.

Normal galaxies Normal galaxies are defined as the standard infrared counterpart of
spiral galaxies, which emit more than half of their energy in the optical band. They
are described by a unique spectrum, mainly derived from the ISOPHOT survey [109].
Data of the normal galaxies are well fit by the “cold” template presented in Fig. 6.3.
In the mid infrared part of the template, the spectral signature that applies to the
majority of star forming galaxy is used. More observations around the maximum
intensity (∼ 100 ÷ 200µm) and in the submillimeter band are needed in order to
improve the template and describe its variations with luminosity.

Luminosity function A detailed comparison between the luminosity function of bright
infrared galaxies and that of other extragalactic objects is described by Sanders &
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Mirabel [101]: it shows an excess in the expected values with respect to the Press-
Schechter function. Moreover, below ∼ 1011L⊙, most of the objects selected in
the optical band are faint far infrared sources. The infrared luminosity function
can be subdivided in two parts: one at “low luminosity”, dominated by normal
galaxies, which follow the form of the optical luminosity function; the other at “high
luminosity”, dominated by starburst galaxies. The luminosity function used in the
model is shown in Fig. 6.4.

It is worth noting that the evolution with redshift of sampled spectra is neglected,
both for normal and starburst galaxies. Available data of the high redshift galaxies in the
far infrared band do not reveal any evidence for a strong evolution in the characteristic
temperature of the color distribution over 0 < z < 3.

Cosmic infrared background intensity

Given a source at redshift z, its flux Sν at a certain wavelength λ = λ0 can be written
as a function of the rest frame luminosity Lν (expressed in W/Hz ):

Sν(L, z, λ = λ0) =
(1 + z)K(L, z)Lν(L, λ = λ0)

4π D2
L

(6.10)

where DL is the luminosity distance, which is related to the angular distance defined in
eq. (1.50) by DL = DA · (1 + z)2. K(L, z) is the K-correction factor (see § 1.5.2), defined
as:

K(L, z) =
Lν(1+z)

Lν(z=0)
(6.11)

This correction is specific for the spectrum of the considered population given the values
of L and z. Hence, the rest frame luminosity Lν is convolved with the pass band filter
centered on λ = λ0.

The number of sources per solid angle and redshift interval is:

dN

dz d logL
(L, z) = N0(L, z) (1 + z)3

dV

dz
(6.12)

where dV/dz is the differential element of volume, once the cosmological parameters are
fixed; N is the number of sources per unit volume and luminosity interval as a function of
redshift; N0 is given by the luminosity function.

Differential and integrated counts for a given flux S and at wavelength λ = λ0 can be
written as:

dN

dS
=

∫

L

∫

z

dN

dz d logL
(L, z)

dz

dS
(L, z) d log L (6.13)

N(> S) =

∫
dN

dS
dS (6.14)

Hence, the intensity of the cosmic infrared background ICIB produced by sources with flux
S < SMax , expressed in Jy/sr, is:

ICIB =

∫ SMax

0
S
dN

dS
dS (6.15)
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Figure 6.3: Comparison between the template spectrum for the normal galaxies, represented
by the solid line, and the template spectrum for the starburst galaxies, dot-dashed line, for

the same luminosity L = 5 · 1010L⊙.

Figure 6.4: Bolometric luminosity function at z = 0. Dot-dashed line: normal galaxies;
dashed line: starburst galaxies; solid line: total.
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while the fluctuation densities (shot noise) due to the sources below the observational flux
limit S0, which corresponds both to the confusion noise (see § 1.5.7) and to the sensibility
limit of the experiment, are given by:

Pfluc =

∫ S0

0
S2 dN

dS
dS (6.16)

thus Pfluc is expressed in Jy2/sr.

Cosmological parameters are set joining measurements of distance−luminosity rela-
tion from type Ia supernovae [90, 99], galaxy distances using Cepheids [43] and CMB
anisotropies (see Tab. 1.1). Then, the sampled spectrum of the normal and starburst
galaxies must be computed: a spectrum is associated for each population and luminosity.
Finally, the best evolution of the luminosity function, described by eq. (6.12), is deter-
mined, in order to reproduce the number counts, the CIB and its fluctuations (eqs. (6.13),
(6.14), (6.15) and (6.16) respectively). The luminosity function is assumed to have an
independent evolution for the two populations.

The intensity of the cosmic infrared background at various wavelengths is shown in
Tab. 6.1 and Fig. 6.5, compared to recent observations. It is worth noting the good
agreement between the estimates at 170µm and the measurements of FIRAS.

λ Predicted CIB Predicted CIB Measured CIB
(µm) (MJy/sr ) (Wm−2/sr ) (Wm−2/sr )

15 1.25 · 10−2 2.5 · 10−9 > 2.4 ± 0.5 · 10−9

60 0.12 2.5 · 10−9 −
100 0.35 6.1 · 10−8 ∼ 1.5 · 10−8

170 0.76 1.3 · 10−8 1.4 ± 0.3 · 10−8

350 0.76 6.5 · 10−9 5.63+4.30
−2.80 · 10−9

850 0.20 6.9 · 10−10 5.04+4.31
−2.61 · 10−10

Table 6.1: Predicted intensity of the cosmic infrared background at 15µm (ISOCAM),
60µm and 100µm (IRAS), 170µm (ISOPHOT), 350µm and 850µm (SCUBA) compared

to measurements: see [65] and references therein.

6.2.2 Confusion noise

As already described in § 1.5.7, the confusion noise is defined as the fluctuation of the
sky brightness due to the sources that cannot be individually resolved. These fluctuations
are caused by the intrinsically discrete nature of the source: in the far infrared, submil-
limeter and millimeter bands, due to the limited dimensions of the telescope if compared
to the wavelength, confusion noise plays a fundamental role in the total noise budget. In
fact, it is usually larger than instrument noise, thus it limits the survey depth. The total
variance σ2 of the signal, due to the extragalactic sources having a flux lower than Smin ,
is given by:

σ2 =

∫
f2(ϑ,ϕ) dϑ dϕ

∫ Slim

0
S2 dN

dS
dS (6.17)
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Figure 6.5: Cosmic infrared background intensity in the mid infrared and millimeter bands.
The CIB derived by model at selected wavelengths is represented by colored squares.

where f(ϑ,ϕ) is the bidimensional beam profile in sr, S in the flux measured in Jy and
dN/dS are the differential counts in Jy−1 sr−1 given by eq. (6.13); Slim is called the
confusion limit.

Confusion noise is determined using a photometric criterion: it is related to the quality
of photometry of the sources having a measured flux near Slim . It is defined by the
equation:

Slim = qphot σ(Slim) (6.18)

where qphot measures the photometric accuracy and it is usually taken between 3 and 5.

Confusion limits are computed using Ω rather than the integral of the bidimensional
beam profile of eq. (6.17). This leads to an overestimate of σ by a factor 1.33.

6.3 Map making

OLIMPO will produce four maps, one for each band: in order to increase the signal-to-
noise ratio, each small patch of sky will be scanned many times, resulting in an integration
time of ∼ 30s per beam. Producing maps from real, noisy data is a difficult and time-
consuming task [81]: in the following, we assume the maps have been already produced,
calibrated and smoothed to have the same beam size at each frequency.

Once the models are chosen, the next step consist in simulating the maps of the
four components (CMB, SZ, galactic dust and FIRB) in the four bands of OLIMPO and
summing them together with a noise map for each frequency. Each map is subdivided
into many pixels, each of which corresponds to an angular dimension usually taken to be
ϑpixel = ϑFWHM /3, where ϑFWHM is the value of the full width half maximum of the beam
in arcmin.
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Maps are generated by inserting in the models described in the previous paragraphs
the OLIMPO characteristics: beam size, integration time, observed region in the sky,
number and noise of the receivers. Here we describes the results for a simulation of an
observation of 10◦ × 10◦ using the following specifications:

Beam size We assume it is the same at each frequency; with real data, this can be
achieved by smoothing the higher resolution maps to the largest beam size. In our
case, it is ϑFWHM (ν = 143GHz ) = 5′.

Integration time We take it to be Tint = 1h = 3600s per deg2, hence for a map of
10◦ × 10◦ = 100deg2 it is Tint = 100h.

Observed region This input defines the central position of the map. It is required by
the program that simulates the galactic dust component. Choosing a clean region,
i.e. one at high galactic latitudes, is important. The choice is made together with
the cluster selection (see § 2.2), and leads to a galactic latitude of 65◦ and longitude
155◦.

Receivers They are 19 at 143GHz and 37 in the other channels. The noise of each
receiver is obtained by interpolating to our frequencies the ones measured with
BOOMERanG 2003 flight [72]. The computed Noise Equivalent Temperature (NET)
for each bolometer of the four bands is reported in Tab. 6.2.

BOOMERanG OLIMPO

ν (GHz ) 145 245 345 143 217 353 545

NEP (10−17 W/
√

Hz ) 2.49 3.89 8.95 2.46 3.50 9.35 19.07

NET (µK/
√

Hz ) 137.0 281.0 309.0 137.2 240.7 316.4 828.3

Table 6.2: Estimated Noise Equivalent Power (NEP) and Temperature (NET) values for
the OLIMPO experiment. They are obtained interpolating to our frequencies the values

measured in the BOOMERanG 2003 flight [72].

Once the parameters are set, maps of each component at the four frequencies are
computed. These are expressed in µK, so that the CMB anisotropy signal is the same in
each channel: hence, the other maps must be divided by the derivative of the black body
function computed at TCMB = 2.735K. Then, the signal of each pixel is convolved with
the pass band filter function. Finally, the map is convolved with the beam experiment
function.
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Cosmic microwave background anisotropies map

Since we decided to express the maps in µK, i.e. in terms of thermodynamic tempera-
ture fluctuations of a 2.725K blackbody, the signal due to CMB anisotropies is frequency
independent. The map is Gaussian random realization having a null average value and
the angular power spectrum measured by WMAP, shown in Fig. 1.5 and defined by the
cosmological parameters reported in Tab. 1.1. Then, the map is spatially convolved with
the beam function:

f(ϑ,ϕ) =
1√
2π σ

exp

(
1

2

ϑ2 + ϕ2

σ2

)
(6.19)

Hence, it is a Gaussian function with a symmetric shape; the standard deviation is related
to the full width half maximum as σ = ϑFWHM /

√
8 ln 2. Finally, the convolution is

computed:

SCMB (ϑ,ϕ) =

∫ ϑ

0

∫ ϕ

0
∆CMB(ϑ′, ϕ′) f(ϑ′, ϕ′) dϑ′ dϕ′ (6.20)

Sunyaev-Zel’dovich effect map

In order to realize this map, we calculate the SZ spectrum in the Kompaneets approx-
imation, as given by eq. (1.41). This is due to the fact that hydrodynamical simulations
are computed in the non relativistic limit, hence the map of the comptonization parameter
has the same approximation.

As a consequence, the spectrum of all the clusters present in the map is independent
of the gas temperature. With these approximations, spatial information are given by the
map of the comptonization parameter y(ϑ,ϕ), which multiplies a constant signal that, in
µK, is given by:

∆SZ ,B =
2(kBT0)

4

h3c2

∫ ∞

0
106 T0EB(ν)

g(ν)

∂B (ν, T )

∂T

∣∣∣∣
T=T0

dν

= 106 T0

∫ ∞

0
EB(ν)

[
hν

kT0
· coth

(
hν

2kT0

)
− 4

]
dν (6.21)

where EB(ν) represents the pass band filter spectrum of the four channels. ∆SZ is multi-
plied by the map of the comptonization parameter y(ϑ,ϕ) and then normalized in respect
to EB(ν), i.e. it is divided by the integral of its spectrum. Finally, the map is convolved
with the beam as done for the anisotropies’ map in eq. (6.20):

SSZ ,B(ϑ,ϕ) =

∫ ϑ

0

∫ ϕ

0
∆SZ ,B · y(ϑ′, ϕ′) f(ϑ′, ϕ′) dϑ′ dϕ′ (6.22)

Galactic dust map

The model described in § 6.1 comes with a complete IDL program, which rescales the
IRAS 100µm map to the desired frequency. It requires as inputs the galactic latitudes and
longitudes of the pixels and the frequency of each band.
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The region of sky to observe is chosen so that the dust contribution is as small as
possible and it is rich of known clusters (see § 2.2). Since the program requires a lot of time
to run (∼ 3min for a map of 10◦ × 10◦ and one frequency), we cannot compute the signal
on the whole pass band filter spectrum. Hence, in order to compute the mean frequency
of each band, we convolve a priori the filter transmission function with a simplified dust
model having a ν2 emissivity:

〈νB〉 =

∫ ∞

0
EB(ν)B(ν, TDust )

(
ν

νDust

)2

ν dν

∫ ∞

0
EB(ν)B(ν, TDust )

(
ν

νDust

)2

dν

(6.23)

where TDust = 20K and νDust = 300GHz. Finally, the resulting map is convolved with the
beam as done before, obtaining SDust ,B(ϑ,ϕ).

Far infrared background map

The far infrared background map is computed assuming a Gaussian random distribu-
tion N (∆FIRB ,B , σFIRB ,B , ϑ, ϕ) which is then convolved with the experiment beam func-
tion. The model described in § 6.2 requires the flux limit, the redshift and luminosity
intervals of integration, together with the OLIMPO characteristics.

The flux limit Flim , or confusion limit, can be expressed as:

Flim =
∆WB

Atel

·Nσ (6.24)

where ∆WB is the power variance of the receivers in each band, Atel = π 22m2 is the area
of the telescope and Nσ defines the threshold limit. Thus, from eq. (6.28), considering
that ∆WB is expressed in W so that we must use the Noise Equivalent Power (NEP)
instead of the NET, we get:

Flim =
3

5

NEPB

Atel

·Nσ (6.25)

Together with the flux limit and band, the model requires appropriate redshift and
luminosity intervals: 0.008 6 z 6 8 and 109 6 L/L⊙ 6 1014. We used the values of
the fluxes and differential counts dN/d lnL/dz (source number per unit luminosity and
redshift) obtained by the simulations on the Planck surveys. The values obtained for the
source counts as a function of flux (logN − logS) of the two populations are shown in
Fig. 6.6.

Choosing a threshold flux small enough, Slim = 10−8mJy (where 1Jy = 10−26 W m−2

Hz−1), it is possible to obtain the total signal of the far infrared background, at a given
frequency, due to the contribution of all the sources (starburst and normal galaxies) and
their fluctuations.

The program returns the average FIRB signal ∆FIRB ,B in Jy/sr and its standard
deviation σFIRB ,B in Jy/

√
sr for each galaxy population. The total signal is just the sum

of the two populations, while the total fluctuation is computed summing in quadrature
the two contribution.
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Figure 6.6: Distribution of the source counts as a function of the flux (logN − log S).
Dashed line: source counts distribution due to starburst galaxies; dot-dashed line: (logN−

logS) due to normal galaxies; solid line: it represents the sum of the two populations.

The total signal is then converted in µK using the same integral of eq. (6.21). Since
the fluctuations are given in Jy2/sr, in order to express them in µK, they must be divided
by the beam computed in sr : ΩBeam = λ2/Atel . Hence, eq. (6.21) becomes:

σFIRB ,B [µK] =

∫ ∞

0
106 T0EB(ν)

√
σFIRB ,B [Jy2/sr]

√
ΩBeam

∂B (ν, T )

∂T

∣∣∣∣
T=T0

dν (6.26)

Then, the final signal is the convolution between the beam experiment and the Gaus-
sian distribution of the FIRB sources:

SFIRB ,B (ϑ,ϕ) =

∫ ϑ

0

∫ ϕ

0
N (∆FIRB ,B , σFIRB ,B , ϑ

′, ϕ′) f(ϑ′, ϕ′) dϑ′ dϕ′ (6.27)

Noise map

The final map to generate is the noise one. We assume that the noise has a Gaussian
random distribution, which is a strong constrain since real data are usually affected by
correlated noise between pixels. Obviously, the noise has a null average value, while the
standard deviation is:

∆Noise,B =
NETB Npixel√
Tint Nbolo,B

=
3

5

NEPB√
Nbolo,B

(6.28)

where NETB is the noise in µK/
√
Hz of each bolometer, Nbolo,B is the number of receivers

in each channel, Tint is the integration time and Npixel is the number of pixel in a row (or
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column) of the map, hence:

Npixel√
Tint

=
3 · 60′ · deg

5′ ·
√

3600s · deg2
=

3

5

1√
s

(6.29)

Results

Tab. 6.3 shows the total signal, in Jy/sr, coming from the two populations, while the
fluctuations, in Jy2/sr, are summed in quadrature. The analysis is done using the flux
limit per unit frequency, i.e. Flim,ν = Flim/ν, with Nσ = 5 and Atel = 22πm2.

Figs. 6.7 and 6.8 show the spectra of the four components, representing brightness
and temperature respectively. Tab. 6.4 reports the minimum and maximum values of the
different components at each frequency band. The produced maps are shown in Fig. 6.9.

(a) CMB anisotropies spectrum in MJy/sr (b) SZ effect spectrum in MJy/sr

(c) Galactic dust spectrum in MJy/sr (d) FIRB background spectrum in MJy/sr

Figure 6.7: Brightness spectra of the four components simulated. The four frequency bands
of OLIMPO are also shown. The Sunyaev-Zel’dovich effect is computed for a cluster having

y = 10−4, both with and without relativistic corrections.
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(a) CMB anisotropies spectrum in µK (b) SZ effect spectrum in µK

(c) Galactic dust spectrum in µK (d) FIRB spectrum in µK

Figure 6.8: Temperature spectra of the four components simulated. The four frequency
bands of OLIMPO are also shown. The CMB anisotropies spectrum is flat, while dust and
far infrared background models do not work below 100GHz. It is worth noting that the rel-
ativistic corrections to Sunyaev-Zel’dovich effect diverges from classic thermal component
at high frequencies, but they are much smaller than galactic dust contribution at the same

frequency.
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ν (GHz ) 143 217 353 545

Number of sources 4.24 · 109 4.58 · 109 4.47 · 109 4.33 · 109

Flim,ν (mJy) 0.50 0.63 1.04 1.37

∆FIRB (Jy/sr) 2.20 · 104 6.67 · 104 2.04 · 105 4.50 · 105

σFIRB (Jy2/sr) 2.02 11.46 145.78 1043.59

∆FIRB (µK) 58.20 132.12 675.32 9286.52
σFIRB (µK) 2.92 5.37 31.26 532.82

Table 6.3: Expected values of far infrared background component for the OLIMPO ex-
periment, assuming an integration time of 100h on a region of 10◦ × 10◦. Signal and
fluctuations of the FIRB data is computed in the case of the OLIMPO flux limit. These
quantities are then convolved with the pass band filter function to express them in µK.

ν (GHz ) 143 217 353 545

SCMB (µK) −130÷ 125 −130÷ 125 −130÷ 125 −130÷ 125
SSZ (µK) −305÷−3 −12÷ 0 6÷ 623 15÷ 1578
SDust (µK) 13÷ 46 43÷ 150 339÷ 1193 6560÷ 23076
SFIRB (µK) 55÷ 61 127÷ 137 646÷ 705 8787÷ 9787
SNoise (µK) −164÷ 166 −262÷ 257 −347÷ 386 −711÷ 792

Table 6.4: Expected values of the different components for the OLIMPO experiment, as-
suming an integration time of 100h on a region of 10◦ × 10◦. Table reports the maximum

and minimum values for each component at every frequency.
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(a) CMB anisotropies input map (b) Sunyaev-Zel’dovich input map

(c) Galactic dust input map (d) Far infrared background input map

Figure 6.9: Input maps of the four components at 143GHz. Signals are expressed in µK.
At this frequency, apart from the biggest clusters that produce intense Sunyaev-Zel’dovic

effect, the main contribution is due to CMB anisotropies.
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6.4 Map extraction

Once the maps of each component, for each frequency band, are made, they are
summed, obtaining the four maps shown in Fig. 6.9. Thus, we finally get four maps,
one per each channel, having a signal given by:

STot ,B (ϑ,ϕ) = SCMB(ϑ,ϕ) + SSZ ,B(ϑ,ϕ) +

+ SDust ,B(ϑ,ϕ) + SFIRB ,B (ϑ,ϕ) + SNoise,B(ϑ,ϕ) (6.30)

(a) Total map at 143GHz (b) Total map at 217GHz

(c) Total map at 353GHz (d) Total map at 545GHz

Figure 6.10: Total maps predicted at the four frequency bands of OLIMPO: these are the
sum of the CMB anisotropies, SZ effect, dust and FIRB components plus the expected
noise in the four bands. Signals are expressed in µK. It is worth noting how the CMB
anisotropy component dominates the 143 and 217GHz channels, while the 353 and 545GHz

channels are dominated by galactic dust.

It is clear how the signal due to Sunyaev-Zel’dovich effect is subdominant in each band;
the cosmic microwave background anisotropies dominate the two lower channels, while
galactic dust is the main component at 353 and 545GHz. The far infrared background
contribution is comparable to the galactic dust one, but seeing it is more difficult since it
lacks of structures at scales larger than beam size.
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In order to separate the various components, we compute a χ2 and minimize it: this
method requires the assumption that all the components, including noise, are uncorrelated;
moreover, having an a priori knowledge of the models that describe the four components
is required. The χ2 is then computed varying the parameters on each pixel of the four
maps, obtaining:

χ2(PCMB ,PSZ ,PDust ,PFIRB , ϑ, ϕ) =
4∑

B=1

1

∆2
Noise,B

·
[
STot ,B (ϑ,ϕ) −

(
PCMB + PSZ · RSZ ,B + PDust · RDust ,B + PFIRB · RFIRB ,B

)]2
(6.31)

where P are the parameters varied to evaluate the χ2, while R represents the scale factor
of the various component: obviously, the CMB component does not change with frequency.

The range of variation of the parameters is defined by the expected range of values that
a component will have at a given frequency (see Tab. 6.4): it is evident that the signal due
to SZ effect cannot be positive at 143GHz, as well as the dust and FIRB components must
be always positive; as a consequence, it would be useless to calculate the χ2 outside these
ranges. Hence, we are assuming a flat prior on the interval of definition of the parameter.

The probability distribution associated to the χ2 is called likelihood, defined as L =
exp(−χ2/2). Thus, the best estimation of a component at 143GHz in a given pixel is:

SCMB ,Ext(ϑ,ϕ) =

∫ PMax
CMB

Pmin
CMB

∫ PMax
SZ

Pmin
SZ

∫ PMax
Dust

Pmin
Dust

∫ PMax
FIRB

Pmin
FIRB

PCMB exp

(
−χ

2

2

)
d4P

∫ PMax
CMB

Pmin
CMB

∫ PMax
SZ

Pmin
SZ

∫ PMax
Dust

Pmin
Dust

∫ PMax
FIRB

Pmin
FIRB

exp

(
−χ

2

2

)
d4P

(6.32)

and the same for the other three components. This integral is computed using an optimized
routine based on the direction set method described in [93]. The results of this extraction
are shown in Fig. 6.11: it is clear that cosmic background anisotropies are well extracted,
as well as the Sunyaev-Zel’dovich map. Instead, galactic dust and far infrared background
are not separated, since their spectra are too similar: a possible solution is to remove the
scales larger than ∼ 1◦, which are related to the dominant dust component.

The main advantage of using a model dependent separation criterion is the control you
have on the calculations. The drawback is that you must be confident with your models.
Moreover, you do not consider the angular power spectra of the components, i.e. their
spatial distribution.

CMB anisotropies and Sunyaev-Zel’dovich effect spectra are well known and experi-
mentally confirmed; even the galactic dust model of Schlegel, Finkbeiner and Davis [38]
is widely accepted and fits data for ν & 300GHz, while the dust contribution to lower fre-
quencies is not precisely known yet. The FIRB emission is the less known component of
the four considered, hence we decided to slightly change the parameters of the simulation
to verify if OLIMPO can distinguish between different models.



168 6.4. Map extraction

(a) CMB anisotropies extracted map (b) Sunyaev-Zel’dovich extracted map

(c) Galactic dust extracted map (d) Far infrared background extracted map

Figure 6.11: Extracted maps of the four components at 143GHz. Signals are expressed in
µK. The anisotropies map is the best extracted; the SZ map clearly shows the brighter
clusters; the dust and FIRB component are not separated each other, because their spectra

are too similar.
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6.4.1 Variation of the FIRB model

In order to verify if OLIMPO is able to distinguish between different models of the
FIRB, we modified some of the assumptions of model used, in order to get difference source
counts and luminosities. This is achieved with two different hypothesis:

1. We consider one redshift interval ∆z = 1 in the range z = 0 ÷ 6 and we double the
number of sources with respect to the original model; this simulates a higher value
of the star formation rate in that redshift interval.

2. We consider one redshift interval ∆z = 1 in the range z = 0 ÷ 6 and we double
the luminosity of sources with respect to the original analysis, while the number of
sources remains the same.

In the first case, we modify the number of sources, their luminosities and their fluxes:
in fact, doubling the number of sources requires to double the considered luminosity and
the flux as well. The modified signals of the FIRB is computed again in each frequency
band and reported in Fig. 6.12: it is clear the strong dependency on the star formation
rate of the ratios between the signals due to modified and original models.

Variations are always larger than the confusion limit and OLIMPO intrinsic noise:
hence, in principle it is possible to disentangle between different models and obtain a good
estimation of the star formation rate and luminosity function at different redshifts. The
main issue remains the separation of the FIRB and galactic dust components.

6.4.2 Analysis of the SZ map

The last analysis done regards the counts of clusters which produce Sunyaev-Zel’dovich
effect. As shown in Fig. 6.11, the extraction of the SZ signal from the total maps is quite
good, thanks to the OLIMPO characteristics.

We use the SExtractor program to select the clusters present in the original map and
in the extracted one. The complete analysis of an image is done in two passes through
the data. During the first pass, a model of the sky background is built and two statistical
estimators are computed. During the second pass, the estimated background of the image
is subtracted, then the map is filtered and thresholded. Detections are then deblended,
pruned, photometered, classified and finally written to the output catalog. The main
inputs required by this program are:

• The full width half maximum of the experiment that produced the map to analyze,
in arcsec; hence, for OLIMPO we have: ϑFWHM = 5′ = 300′′.

• The size associated to the pixel in arcsec: ϑpixel = ϑFWHM /3 = 100′′.

• The definition of a threshold, computed in units of standard deviation of the map
background.

• a minimum area of detection, i.e. the area above the threshold, given in pixel2.

As a consequence, a source is identified only if its signal is above the threshold over a
region larger than the minimum area of detection.
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Figure 6.12: Modifications to FIRB model, doubling the luminosity or number of the
sources in each redshift interval. Ratios between the original signal and that obtained

by the modified model in the four bands are reported.
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The dimensions of this area are related to the physical dimensions of the pixel and
of the source we want to extract. A cluster of galaxies has a typical core radius of ∼ 4′,
which implies a minimum area of detection equal to 16pixel2. Setting the threshold to be
3σSky , where σSky is the variance of the local background, 268 sources are extracted: if we
use the same parameters for the SZ map extracted by the total maps, we find 89 clusters.
Decreasing the threshold to 2.5σ, the number of detected sources increases up to 423 in
the original map and 152 in the extracted one (see Fig. 6.13).

(a) Original map with σThre = 3σSky (b) Extracted map with σThre = 3σSky

(c) Original map with σThre = 2.5σSky (d) Extracted map with σThre = 2.5σSky

Figure 6.13: Source detected in the SZ map using the SExtractor algorithm: with a thresh-
old of 3σSky and detectable minimum area of 16pixel 2, the identified clusters are 268 in
the original map, 89 in the extracted one. Lowering the threshold to 2.5σSky , the detected

sources become 423 and 152 respectively.

Finally, we computed the temperature differences for the clusters detected in both the
original and extracted maps (see Fig. 6.14). With σThre = 3σSky , the error is ∼ 15µK.
Lowering the threshold to 2.5σSky , we detect many clusters that has a temperature lower
than the original one (see Fig. 6.14c, second peak centered on ∼ 80µK): this is due to the
higher background present in the extracted map. Since SExtractor removes it from the
whole map, part of the clusters signal is also removed.
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The temperature difference is then converted into the difference of the comptonization
parameter, obtaining an error on its estimation that is ∼ 5 · 10−6: note that it is still
convolved with the beam, hence the error on the real comptonization parameter is about
five times higher.

(a) ∆T with σThre = 3σSky (b) ∆y with σThre = 3σSky

(c) ∆T with σThre = 2.5σSky (d) ∆y with σThre = 2.5σSky

Figure 6.14: Difference between original and extracted signal for the clusters detected in
both maps. It is clear the lowering the threshold to 2.5σSky , the errors on temperature and

comptonization parameter estimation increase.



Conclusioni

La prima parte del lavoro si è focalizzata sulla progettazione del sistema ottico crio-
genico, il quale è in contatto termico con lo stadio a 2K. Si sono studiate diverse pos-
sibili configurazioni, che differiscono per il sistema di modulazione adottato: oscillazione
del Lyot Stop, oscillazione dello specchio primario attorno al proprio fuoco e al proprio
baricentro. Quest’ultima si è infine rivelata l’unica soluzione effettivamente realizzabile
meccanicamente, benché comporti l’insorgere di aberrazioni nella posizione di massima
oscillazione dello specchio. Esse sono state però minimizzate introducendo un opportuno
schema ottico in grado di contenerle all’interno del limite diffrattivo per i due canali a 143
e 217GHz. Alla fine del processo di ottimizzazione, le prestazioni del sistema ottico sono
eccellenti sia nella configurazione in asse, sia in quella fuori asse. L’efficienza del progetto
è stata valutata attraverso l’analisi delle funzioni caratterizzanti il sistema ottico: Spot
Diagram, Encircled Energy, Point Spread Function, Modulation Transfer Function.

La seconda parte del lavoro ha riguardato il realizzazione degli specchi e della scatola
delle ottiche: per la progettazione di quest’ultima non è stato facile ottenere il giusto
compromesso tra i diversi requisiti spesso in conflitto. Nel momento in cui tutti gli ele-
menti erano pronti, sono stati assemblati ed eseguiti i test per verificare l’allineamento
delle ottiche: la radiazione viene rifuocheggiata in spot aventi una dimensione inferiore al
millimetro. Possiamo perciò affermare che le ottiche criogeniche sono pronte.

Ci si è poi occupati del progetto del profilo delle antenne: la scelta delle loro caratte-
ristiche è fondamentale per ottimizzare l’accoppiamento tra bolometri e radiazione inci-
dente. Poiché le dimensioni di queste antenne sono confrontabili con la lunghezza d’onda
della radiazione in esame, tale studio è stato effettuato in ottica Gaussiana.

Infine, si sono effettuate delle simulazioni dettagliate sulle componenti presenti nelle
quattro bande di OLIMPO (ν = 143, 217, 353 e 545GHz ): radiazione di fondo cosmico
e sue anisotropie, effetto Sunyaev-Zel’dovich prodotto da ammassi di galassie, polvere in-
terstellare e fondo infrarosso dovuto a sorgenti non risolte ad alto redshift. Le simulazioni
dimostrano come OLIMPO sia in grado di separare le diverse componenti, requisito fonda-
mentale per effettuare misure di precisione: tra le possibili analisi, si è studiata la capacità
dell’esperimento di distinguere diversi modelli per l’emissione del fondo infrarosso, oltre
ovviamente alla precisione nella misura dell’effetto Sunyaev-Zel’dovich dovuta agli am-
massi presenti nella regione di cielo osservata. Con una soglia limite pari a 3σ vengono
rilevati 268 cluster nella mappa iniziale, 89 in quella estratta, senza “falsi positivi”.

Sebbene tali analisi devono essere ulteriormente ottimizzate, queste prime simulazioni
dimostrano la bontà dell’esperimento OLIMPO.
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Conclusions

The first part of this work is focused on the design of the optical cryogenic system,
which is thermally linked to the 2K stage. I analyzed three possible configurations, which
differ by the modulation system adopted: wobbling of the Lyot Stop, wobbling of the
primary mirror around its focus and its barycenter. The latter is the chosen one, since it
is the simplest to mechanically realize, even if it implies the presence of aberrations when
the telescope is tilted. These have been minimized introducing a suitable optical system
that keeps them in the diffraction limit for the two channels at 143 and 217GHz. At the
end of the optimization process, optical system performances are excellent both in the
on-axis and off-axis configurations. The efficiency of the design was evaluated analyzing
the functions that characterize the optical system: Spot Diagram, Encircled Energy, Point
Spread Function, Modulation Transfer Function.

The second part of this work regards the machining of mirrors and optics box: regard-
ing the design of the latter, it was not easy to get the best compromise between different
requirements often conflicting. When all the elements were ready, they were assembled
together and tested to verify the correct alignment of the optics: radiation is refocused
in spots having dimensions below one millimeter. Hence, we can say that the cryogenics
optics are ready.

Later on, I designed the profile of the feed horns: the choice of their characteristics is
fundamental to optimize the coupling between bolometers and incident radiation. Since
the dimensions of these antennas are comparable to the wavelength of the radiation of
interest, this study was computed in Gaussian optics.

Finally, I realized detailed simulations on the components that dominate the four bands
of OLIMPO (ν = 143, 217, 353 e 545GHz ): cosmic microwave background radiation and
its anisotropies, Sunyaev-Zel’dovich effect produced by cluster of galaxies, galactic dust
and far infrared background due to unresolved sources at high redshift. Simulations show
how OLIMPO is able to separate the different components, a fundamental requirement in
order to achieve accurate measurements: among the possible analysis, I studied the ability
of the instrument to distinguish between various models of the far infrared background
emission, as well as the accuracy in the measure of the Sunyaev-Zel’dovich effect due to
the clusters present in the observed region of sky. With a threshold of 3σ, 268 clusters are
detected in the input map, 89 in the extracted one, without “false positives”.

Even if these analyses must be improved, these preliminary simulations demonstrate
the quality of the OLIMPO experiment.
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Appendix A

Optics box executive drawings

Fig. A.1: External Assembly
Fig. A.2: Internal Assembly
Fig. A.3: Splitters Assembly
Fig. A.4: Box 10mm #1
Fig. A.5: Box 10mm #2
Fig. A.6: Box 1mm #1
Fig. A.7: Box 1mm #2
Fig. A.8: Fridge Cover − Part A
Fig. A.9: Fridge Cover − Part B
Fig. A.10: 4He Bottom Shield
Fig. A.11: 4He Cover
Fig. A.12: 4He Filter
Fig. A.13: 4He External Shield
Fig. A.14: Reggetta Bottom
Fig. A.15: Reggetta In
Fig. A.16: Reggetta Mirrors
Fig. A.17: Reggetta Plane
Fig. A.18: Shield Dx Inf
Fig. A.19: Shield Dx Sup
Fig. A.20: Shield Lyot Stop
Fig. A.21: Shield Sx
Fig. A.22: Splitter Plane #1
Fig. A.23: Splitter Plane #2
Fig. A.24: Splitter Plane #3

Table A.1: List of the optics box executive drawings reported.
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Figure A.1: Optics box: external assembly.
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Figure A.2: Optics box: internal assembly.
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Figure A.3: Optics box: splitters assembly.
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Figure A.4: Box 10mm #1.
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Figure A.5: Box 10mm #2.
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Figure A.6: Box 1mm #1.
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Figure A.7: Box 1mm #2.
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Figure A.8: Fridge Cover − Part A.
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Figure A.9: Fridge Cover − Part B.
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Figure A.10: 4He bottom shield.
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Figure A.11: 4He cover.
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Figure A.12: 4He filter.
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Figure A.13: 4He external shiels.
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Figure A.14: Reggetta Bottom.
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Figure A.15: Reggetta In.
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Figure A.16: Reggetta Mirrors.
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Figure A.17: Reggetta Plane.
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Figure A.18: Shield Dx Inf.
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Figure A.19: Shield Dx Sup.
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Figure A.20: Shield Lyot Stop.
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Figure A.21: Shield Sx.
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Figure A.22: Splitter Plane #1.
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Figure A.23: Splitter Plane #2.



Appendix A. Optics box executive drawings 201

Figure A.24: Splitter Plane #3.
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