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Abstract

We study a Renormalization Group transformation that can be used also for mod-
els with quenched disorder, like spin glasses, for which a commonly accepted and
predictive Renormalization Group does not exist. We validate our method by ap-
plying it to a particular long-range model, the hierarchical one (both the diluted
ferromagnetic version and the spin glass version), finding results in agreement with
Monte Carlo simulations. In the second part we deeply analyze the connection be-
tween long-range and short-range models that still has some unclear aspects even
for the ferromagnet. A systematic analysis is very important to understand if the
use of long range models is justified to study properties of short range systems like
spin-glasses.
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Chapter 1

Introduction

Since their discover, at the end of 60’s, spin-glasses received a great attention be-
cause they show a very rich and unusual phenomenology. They are disordered
magnetic systems that show a specific heat decreasing linearly with temperature at
small temperatures, unexplained with conducting electrons, a cusp in the suscep-
tibility at a certain temperature, chaos, memory effects and so on. At the critical
temperature TSG, they undergo a phase transition from a paramagnetic phase to
a state in which the local spins freeze, but without a regular structure. Many ef-
forts were done to create a theory that could interpret the experimental evidences
and characterize the new phase detected. The the Edward-Anderson model [1] was
introduced as a simple finite dimensional model for disordered systems, in which im-
portant properties as quenched disorder in the Hamiltonian and frustration are the
main ingredients. They lead to a great computational complexity and after thirty
years there is still not a solution for it, despite all the works that have been done.
The Sherrington-Kirkpatrick (SK) model [2] has been introduced as the mean field
version of the EA model. After many works, a solution for the SK model was found
[3]. It is based on a new kind of spontaneous symmetry breaking, the replica sym-
metry breaking, and it is a beautiful as far as non-trivial scenario, rich of interesting
implications.

We want to point out that the great interest that has received this subject in
the last decades is not unjustified. The theoretical work, arising from the study of
spin-glasses has now an independent life. In fact concepts and techniques developed
in the spin-glass field, have found a wide application in recent years not only in
statistical physics, but also in economics, biology, optimization problems, computer
science and so on.

The renormalization group (RG) [4] [5] is an important tool to study and char-
acterize phase transitions in different models, allowing to extract critical properties,
like universality classes and critical exponents. However when disorder is introduced
in the models, it is not obvious how to generalize the concepts and the procedures
used in the pure/homogeneous case. Indeed, for disordered systems, like spin glasses,
there have been several attempts to find a good renormalization/decimation scheme,
but none with satisfactory results. In particular a real space RG has been applied
with good results only to disordered models on particular lattices, the hierarchical
diamond ones [6], in which the so-called Migdal-Kadanoff (MK) approximation [7]
for decimating spins is exact; however it is known that this kind of lattices can not
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2 1. Introduction

always reproduce the correct physical behavior of the same models on a regular
finite-dimensional lattice. Moreover, for the case of the Edward-Anderson model on
a D-dimensional lattice, a (replica) field theory exists, but doing the corresponding
ε-expansion around the upper critical dimension DU = 6 has proved to be cum-
bersome, without leading to reasonable values for the critical exponents [8, 9, 10].
Nonetheless, Monte Carlo (MC) simulations provide accurate estimates of critical
temperatures and critical exponents for disordered systems [11, 12, 13]. Thus there
is a need to find a (semi-)analytical method, able to reproduce and validate these
numerical results. This would be of particular importance for those models, like the
EA one, for which there is no analytical solution below the upper critical dimension,
and for which the existence of a phase transition, and its characterization, has not
been proved yet. We think that the failure of previous (real space) renormalization
group schemes may be due to the fact the decimation procedure was applied sep-
arately on each sample. However, being the important observables those averaged
over the disorder (because sample to sample fluctuations are typically largest than
thermal ones), it would be more correct to renormalize the whole ensemble into
another ensemble of smaller systems. In fact, in the latter case, samples are treated
according to their weight in the quenched partition function, while in the former
this may not be true. Although the first method is often chosen because it requires
a smaller computational effort, we propose a method of the latter type.

In Part I of this Thesis we review the most important RG methods and their
applications to SG, and develop a new renormalization group approach that can be
generalized without particular difficulties to disordered systems. In principle it can
be applied to every disordered system, however the model we study is a particular
long range (LR) one dimensional model, the hierarchical model (HM) [14]. It is a
fully connected model in which the intensity of the interaction between two spins
i and j decays as r

−(1+σ)
ij with their binary distance rij . We have used this model

because the renormalization group equations can be written exactly on it. Moreover,
changing the parameter σ, the effective dimension of the system can be changed. In
this way, changing only one parameter, we can analyze the behaviour of the model
inside and outside the range of validity of the mean-field approximation.

In fact LR models can emulate a short range (SR) model in higher dimension for
certain values of the couplings. In particular, for a LR model in dimension d = 1,
when the couplings decay slowly enough (σ < σU = 1/2), the behaviour of the
system is mean-field like. It is the analogous of a SR system in dimension D > DU .
Above a certain threshold (σ > σU = 1/2), the behaviour is non mean field, with
critical exponents that change continuously with σ. Increasing σ is thus equivalent
to lowering the dimension in a SR model. When the lower critical exponent is
reached (σ > σL = 1), the couplings decay too slowly and the model recovers the
SR behaviour, even if it is still a fully connected one. Different relations between
σ and the effective dimension D of a short range model can be written [15, 16, 17],
however it is still not clear which is the best one and its range of validity, even
for ferromagnetic LR models. In particular a σ − D relation for LR models in
d > 1 dimensions has been never proposed. There is also a debate on the value
of the threshold σL where the SR behaviour is recovered, especially for d > 1 [18].
Moreover the differences between various kinds of LR models are not clear enough.
For this reason in Part II of this Thesis, we analyze systematically the connection
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between LR and SR ferromagnetic models, for different dimensions and different
models, trying to find the answers to all these fundamental questions. These are
very important questions if we want to understand how good are LR models to
emulate SR models, and if the use of LR models is justified to study properties of
SR systems like spin-glasses.





Part I

Renormalization Group and
Spin Glasses
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Chapter 2

Basic concepts

2.1 Phase transitions

The macroscopic state of a system is determined by some external parameters such
as the temperature or the pressure. Sometimes it happens that systems can abruptly
change their macroscopic behaviour varying smoothly the external parameters. The
point of this change is called a critical point and it is often characterized by a phase
transition in the state of the system. There are two main type of transition: the first
and the second order one. A system approaching a second order phase transition
is characterized by the range of the correlations between the microscopic variables
that grows, until it becomes practically infinite approaching the critical point. This
happens even if the interactions between the variables are at finite range. This
phenomenon is present in very different systems but maybe the simplest one is the
Ising model, that is a simplified model for a uniaxial ferromagnet. The microscopic
variables are spins, that are local magnetic moments, taking values σ = ±1, placed
at the vertexes of a regular lattice. N is their number, and the Hamiltonian of the
system is the following:

H = −
∑
(i,j)

Jijσiσj . (2.1)

The interactions are ferromagnetic Jij > 0, and between pairs of nearest neighbours
(i, j), thus at low temperature spins tend to align to each others to minimize the
energy. Starting at temperature sufficiently high, the system will be in the so called
paramagnetic state, characterized by null magnetization: M =

∑
i σi = 0. Gener-

ally, the correlation between the spins decay exponentially fast with the distance.
However, lowering the temperature, the range of the correlation between the spins
grows. At the critical point Tc, it becomes infinite, and below this temperature, the
system changes its state, entering in the ferromagnetic state, characterized by mag-
netization different from zero M 6= 0. The magnetization is the order parameter of
the transition, that takes different values in the different states. The Hamiltonian in
Eq. (2.1) is clearly symmetric under the change of all the spins: σi → −σi, however,
below the critical temperature, in the thermodynamic limit (N → ∞) the system
will have a preferred direction. The spins are mostly positive, or negative, produc-
ing M 6= 0. This phenomenon is called spontaneous symmetry breaking. There are
two stable phases in the system, with positive or negative magnetization, and the

7



8 2. Basic concepts

system chooses one of them. If a magnetic field h is added in the Hamiltonian, with
a term of type Hh = −h

∑
i σi, one can select one of this two states, and the limits

h → 0+ or h → 0− are different. This is called a first order phase transition where
the controlling parameter is the field.

A very similar behaviour is present also for a liquid. Below the critical point Tc,
varying slightly the pressure, (that takes the role of the magnetic field) the system
can be in the liquid or in the gas state. Here the role of the magnetization is assumed
by the density of the system, that is different in the gas and in the liquid: ρG 6= ρL.
When T reaches Tc, the difference ρG 6= ρL approaches zero, like the magnetization
in the Ising model. The density difference is the order parameter of this transition.
Above Tc two different states no longer exist.

2.1.1 Critical exponents

Let us now see, more rigorously, how to characterize a second order phase transition.
As said, the main characteristic is the divergence of the correlation length ξ. To
define it, generally, one can identify a local variable s(x), whose average M is the
order parameter, and its local fluctuation δs(x) with respect to the mean is analyzed.
For ferromagnets s(x) is the local magnetic moment, while for the liquid it is the
difference of the density with respect to that at the critical point. ξ is defined
looking at the correlation function G(x) as

G(x) = 〈δs(x)δs(0)〉 = e−x/ξ

xa
,

where 〈·〉 indicates the thermal average over all the configurations. The correlation
length diverges with a power law approaching the critical point:

ξ ∝
{

(T − Tc)−ν T > Tc

(T − Tc)−ν′
T < Tc

However various other quantities vanish or diverge at the critical point with power
laws, and one can define some characteristic exponents that are called critical ex-
ponents, ν and ν ′ are two of them. For example one can define the susceptibility
χ = dM

dh |h=0 that is the response of the order parameter to a perturbation in a field
h coupled linearly with it. Also the susceptibility diverges at the critical point:

χ ∝
{

(T − Tc)−γ T > Tc

(T − Tc)−γ′
T < Tc

For the liquid, χ is the compressibility, while in the ferromagnet it is the magnetic
susceptibility.

Another critical exponent, called the anomalous dimension η is defined looking
at the behaviour of the correlation function at the critical point:

G(x) ∝ |x|−(d−2+η)

where d is the dimension of the space.
For the specific heat

C ∝
{

(T − Tc)−α T > Tc

(T − Tc)−α′
T < Tc
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Sometimes α = 0, it means that there is a discontinuity or a logarithmic divergence.
The order parameter, that is different from zero below the critical point, vanishes

at the critical point, with a power law:

M ∝ (Tc − T )β

As said, for the ferromagnetic case, the order parameter is the averaged magnetiza-
tion, that is different from zero in the ferromagnetic phase (for T < Tc) and it is
null in the paramagnetic phase (for T > Tc). For the gas-liquid transition, the role
of the order parameter is played by the difference between the density of the liquid
and the gas ρL − ρG, that disappears above the critical point, where the two phases
do not exist.

At the critical point, the order parameter in the presence of an external field
h 6= 0 is non-null, and vanishes with the field as:

M ∝ h1/δ

For the gas-liquid transition, the magnetic field is replaced by the variation of the
pressure from the critical one: p − pc.

2.1.2 Scaling laws

At the end we can identify nine different critical exponents: ν, ν, γ, γ′, η, α, α′, β, δ.
However, under particular assumptions, relations among them can be found.

The idea proposed by Widom [19] is to write the asymptotic part of the free energy,
or the equation of state, as a homogeneous function of the variables. For exam-
ple, in general the equation of state describing the relation between magnetization,
temperature and magnetic field, can be written as

h = M δf(M, t)
with t = |T − Tc|. However one can suppose that f depends only on one variable,
obtaining:

h = M δf(t/M1/β).
The same thing can be done also for the singular part of the free energy:

F (t, h) = t2−αΦ(t/h1/βδ) (2.2)

or for the correlation function at M = h = 0:

G(r, t) = |r|−(d−2+η)g(r/t−ν)

This hypothesis has been verified with good accuracy experimentally, and also in
some soluble models. In this way relations among the exponents can be found, the
so called scaling laws:

2β + γ = 2 − α

2βδ − γ = 2 − α

γ = ν(2 − η)
νd = 2 − α

(2.3)

and also α = α′, ν = ν ′, γ = γ′. In this way, it is sufficient to know only two
exponents to obtain all the others. The scaling laws will be a consequence of a more
general theory that is the renormalization group.
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2.1.3 Universality

In second order phase transitions, the variables are strongly correlated, thus it is
difficult to study them. However many simplifications appear. In fact for example
the critical exponents do not depend on the details of the system. For example
the Ising model and a gas-liquid transition at the same spatial dimension d have
the same critical exponents and the same happens for the Ising model on a squared
lattice or in a triangular lattice with the same d. This property is called universality:
the critical exponents do not depend on the details of the system, but only on the
symmetries of the Hamiltonian, on the spatial dimension and on the dimensionality
of the order parameter. The ones that change are the non universal quantities like
the critical temperatures. The reason of this simplification will be explained by the
renormalization group theory.

2.1.4 Mean field theory and critical dimensions

There is a special case, the mean field (MF) one, in which the models can be solved
analytically. If in the Hamiltonian of Eq. (2.1) the sum runs over all the pairs i, j
and not only among nearest neighbors, and the couplings between the spins take the
value J , the model is easily soluble, leading to the following self consistent solution
for the order parameter at equilibrium:

M = tanh [β(JM + h)] (2.4)

and the following critical exponents can be found:

ν = 1
2

, β = 1
2

, α = 0, γ = 1, δ = 3, η = 0. (2.5)

The scaling laws are satisfied, except the one involving d. In this mean field model
there is no spatial dimension or equivalently it corresponds to a model with d =
∞. Moreover each spin is connected to all the others, thus each spin is perfectly
equivalent to all the others because they see the same things around themselves.
This corresponds to a model without fluctuations. The mean field approximation
can be applied also to the Hamiltonian of Eq. (2.1) in d dimensions, neglecting
the fluctuations. In fact the term σiσj can be rewritten with an identity as σiσj =
(M + (σi − M))(M + (σj − M)) and expanded in the first order in the fluctuation
δσ = σ − M : σiσj = M2 + Mδσi + Mδσj + O(δσ2). In this way, also in a regular
lattice, the Eq. (2.4) is recovered. The mean field approximation, that is to neglect
the fluctuations, can be applied to all the models. The application to the liquid-gas
transition model leads to the famous Van der Waals equation of state, that implies
the same exponents of Eq. (2.5), confirming universality.

Even if for a d dimensional model the mean field solution is an approximation,
the given results are exact if the spatial dimension of the model is higher than the
so called upper critical dimension du that corresponds to d = 4 for the Ising model
universality class. Above du, the fluctuations are not so important because each
spin has a “sufficient” number of neighbours. Below du, the values of the critical
exponents do not correspond to the mean field ones and change with the dimension,
until the lower critical dimension dL is reached, and the transition disappears. For
the Ising model dL = 1 for discrete variables, while it is dL = 2 if the spins can take
continuous values.
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2.2 Renormalization Group

2.2.1 The main idea

The renormalization group (RG) is a fundamental tool in theoretical physics [4] [5].
It allows to characterize phase transitions and critical phenomena, by computing
critical exponents and universality classes. When a phase transition occurs, the
partition function of a system

Z = lim
N→∞

∑
{σ}

exp(−βH(σ))

becomes singular at the critical point. Thus in the 1970’s there was the need to find
a theory that could explain how a singularity can emerge, in the thermodynamic
limit, from a partition function that is a sum of positive terms. The renormalization
group is a non-linear transformation group and the infinitesimal transformations will
lead to differential equations. Its advantage is that it allows the singularities at the
critical point to occur naturally. Moreover concepts like universality and scaling
find an elegant explanation. The concept of universality says that details of the
system are not important for the critical properties. This is related with the grow-
ing correlation length, that is the important lenghtscale of the system. Then one
can think to integrate over the short wave-length degrees of freedom, to simplify
the problem without changing its physics. The real space RG can be viewed as a
decimation procedure that takes a system made of N dynamical variables and re-
duces it to a smaller system, in a way which preserves, or scales appropriately, some
important physical observables. Such a decimation induces a RG transformation on
the system couplings, and the study of such a transformation allows one to identify
critical points and critical exponents. The Real Space Renormalization Group (for
a review see [20]) is based on the idea to evaluate the partition function by steps.
In each step a block of spins, described by the Hamiltonian H(σ) with couplings J ,
is replaced by an equivalent system with fewer spins and Hamiltonian H(σ′), with
new, renormalized couplings J ′ following the equation:

e−βH′(σ′) =
∑

σ

P (σ′, σ)e−βH(σ) (2.6)

and
∑

σ′ P (σ′, σ) = 1 in such a way that the partition function of the original and
of the renormalized systems are the same.

2.2.2 The one-dimensional Ising model

For example for a one dimensional Ising spin chain with nearest neighbor interac-
tions, one can think to build blocks of b spins and substitute them with a single
new spin. Applying Eq. (2.6), the recurrence relation

J ′ = Rb(J) = tanh−1[(tanh J)b] (2.7)

is obtained and the new couplings are again only between nearest neighbours. The
form of the Hamiltonian H ′ is the same as the original one H, a part from a constant
term, independent on the spins. The factor β has been included in the couplings,
and, calling x = tanh(J), Eq. (2.7) simply becomes x′ = xb. The limit x → 0
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corresponds to high temperatures and the limit x → 1 to small temperatures. If we
iterate the process many times, starting at T > 0, that is x < 1, the renormalization
flow goes towards x = 0, that corresponds to a renormalized system with a high
effective temperature. In the RG language, we can say that there are two fixed
points of the recursion relation. x = 1 is an unstable fixed point: if we start near
it, the iteration will lead the coupling far from it. The other fixed point, at x = 0,
is a stable, attractive one in the whole region 0 ≤ x < 1. Thus the whole region
0 ≤ x < 1 will be in the same phase. x = 0 corresponds to an effective temperature
T = ∞, and thus the phase of the system in whole region will be the paramagnetic
one. This corresponds to the well known fact that the Ising model in one dimension
does not have a phase transition. With this renormalization procedure we have
eliminated the degrees of freedom at small distances, but we have imposed that
the large scale physics must remain the same. Thus, near the critical point the
renormalized correlation length will remain the same. However the lattice spacing
has changed by a factor b. Thus, if we measure the correlation length in units of
the lattice spacing, the following relation will hold:

ξ(xb) = b−1ξ(x)

that has the solution
ξ(x) = cost

ln tanh(J)
.

This is the correct expression of the correlation length for the 1D Ising model, and
this is a proof of the usefulness of the RG even when there is no phase transition.
The correlation length remains finite, but grows exponentially in the limit T → 0.

2.2.3 The general case

The one-dimensional model is a special case, because usually renormalization in Eq.
(2.6) can not be carried out explicitly. In fact the Hamiltonian does not remain of
the same form after the reduction of the degrees of freedom, because new couplings
terms arise. Moreover, for systems in higher dimensions, where a transition exists,
in general, there will be more fixed points. For example for the Ising model in two

K1

K2

FP

Phase I

Phase II

Figure 2.1. RG flows for a two couplings example. There is a critical fixed point, one
attractive direction and one unstable direction (the critical surface) that divides the
space in two different phases.
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dimensions, that has a second order phase transition at h = 0 and T = Tc, there are
three fixed points. Two of them are trivial, and, as in the one-dimensional case, they
correspond to the high and low temperature fixed point. Both of them are stable.
However there is another fixed point that is called the critical one and is unstable
in some directions as we will see in the following. To develop a general theory, we
can write the most general Hamiltonian with couplings between any subsets of spins
and we will indicate with {J} the ensemble of all the couplings. At the beginning
only the one between nearest neighbours will be different from zero. We can build
blocks of spins and define some new block variables, as the sum of the spins inside
a block, properly scaled with a factor to leave the partition function invariant as in
Eq. (2.6). We observe how {J} evolve, writing recursion relations like that in Eq.
(2.7), of the type {J ′} = Rb({J}). They will depend on the kind of transformation
that we choose and on the scale parameter b. In general it will not be simple to solve
them, because they are an infinite number and we must do some approximations,
depending on the problem (some examples are presented in next chapter). Then we
suppose that one or more fixed points of these recursion relations {J∗} = Rb{J∗}
exist and that the transformation R is differentiable around them. If it is so, we
can linearize the transformation around the fixed point (the non-trivial, critical one
is the interesting one):

J ′
a − J∗

a ∝ Tab(Jb − J∗
b )

with Tab = ∂J ′
a

∂Jb

∣∣∣
J=J∗

. The matrix T will have left eigenvectors {φi} associated with
eigenvalues λi: ∑

a

φi
aTab = λiφi

b

(Generally the matrix T is not symmetric and left eigenvectors will be different
from right ones). From these eigenvectors we can construct scaling variables ui =∑

a φi
a(Ja − J∗

a ) that identify some directions from the fixed points in the space of
couplings. The scaling variables will evolve multiplicatively with the transformation:

u′
i = λiui.

The eigenvalues can be written as a power: λi = byi where yi are related to the
critical exponents. There are three possible cases:

• if yi > 0, ui is relevant: during the renormalization its value will grow, leading
it away from the critical point value.

• if yi < 0, ui is irrelevant: starting near the critical point, it will renormalize
toward zero

• if yi = 0, ui is marginal: we do not have enough information to predict its
behaviour during the renormalization. This is for example the case of the Ising
model in four dimensions in which α, the critical exponent of the specific heat
is null, and the specific heat has a logarithmic behaviour with temperature.

If we have n couplings, n′ relevant variables and n − n′ irrelevant ones, if we look at
the n-dimensional space of the couplings, we will find n − n′ attractive directions,
and n′ unstable directions. The n − n′ irrelevant scaling variable will define a
surface called critical surface. If the system is on it, during the renormalization
it will approach the critical point. The critical surface divides the region of space
attracted by the other trivial and stable fixed points. (See Fig. 2.1).
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2.2.4 Universality and scaling revisited

How many relevant variables will exist? For example for the Ising model the im-
portant parameters for a system to determine which is its phase are two: the tem-
perature and the magnetic field. All the couplings will depend in some way on
them. Thus we will expect that also the relevant variables will be only two. Also
for the liquid-gas system the important parameters are two: the temperature and
the pressure, and we expect two relevant variables.

From this picture universality emerges: the critical properties of a system are
determined by the critical fixed points. If the Hamiltonian of two different systems
have different couplings, but their fixed points are the same, the critical properties,
like critical exponents, of the two systems will be the same, no matter if the original
systems were different. We have required the renormalization group transformation
to leave invariant the partition function of the system. Thus the free energy density
will renormalize as:

f({J}) = g({J}) + b−df({J ′}).

The factor b−d takes into account the fact that the number of spins of the renor-
malized system changed from N to Nb−d while g({J}) is the contribution to the
free energy that comes from the integrated degrees of freedom and the interactions
among them. For this reason it does not depend on the new couplings but only
on the old ones, thus it is finite and not important when considering the singular
part of f . The free energy density will depend only on the relevant variables, in the
Ising universality class it will depend on the temperature and magnetic field like
variables: ut and uh, where t is the deviation from the critical value t = T − Tc

(for h it is not necessary because hc = 0). Near to the critical point we can use the
linearized transformations to express the n-th renormalization step of the singular
part of f :

fs(ut, uh) = b−ndfs(bnytut, bnyhuh).

The linearized transformation can not be used too far from the critical point, say
until a certain value ut0 = |bnytut|. Thus, evaluating the renormalized f up to this
final n we find:

fs(ut, uh) = (ut/ut0)d/ytfs(ut0, uh(ut/ut0)−yh/yt).

Note that the scaling factor b has disappeared. If we are able to carry out the
renormalization exactly, as we are supposing, the final results will not depend on b.
The variables ut and uh must vanish at the critical point, thus, taking into account
their symmetries, we can write them as:

ut = t/t0 + O(t2, h2), uh = h/h0 + O(ht).

Rewriting fs as a function of the physical observables t and h, and incorporating
ut0 in the scale factor t0 we obtain:

fs(t, h) = (t/t0)d/ytΦ
[

h/h0
(t/t0)yh/yt

]
. (2.8)

where Φ is a scaling function. It can not depend on ut0 because the left-hand side
does not depend on it. From Eq. (2.8) we can obtain the critical exponents in
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terms of yh and yt, using thermodynamic relations as: m = ∂f/∂h|h=0 or χ =
∂2f/∂h2|h=0, and obtaining the critical exponents:

β = d − yh

yt
, γ = 2yh − d

yt
, α = 2 − d

yt
, δ = yh

d − yh
. (2.9)

Analogous arguments to the scaling of the free energy can be applied also to the
renormalization of the correlation length, leading to the determination of the other
two exponents as a function of yt and yh:

ν = 1
yt

, η = d + 2 − 2yh. (2.10)

Eq. (2.8) has the same form of Eq. (2.2), and Eq. (2.9) and (2.10) lead to the same
scaling laws of Eq. (2.3). Before the introduction of the RG theory, scaling, as uni-
versality, was only an hypothesis, supported by experimental validations. However
both of them emerge naturally inside the renormalization group theory in a very
elegant way. A last remark is required. Not all the scaling laws implied by the RG
are valid in the mean field region, as we have seen. This is caused by an irrelevant
variable that is dangerous and modifies the values of the critical exponents for d > 4.

2.2.5 Irrelevant variables and the correction to scaling

Let us analyze the effect of the irrelevant variables in more detail. We consider only
the most important one and we call it u, and its exponent will be yu. It will be a
function of the relevant fields: u = u0 +at+bh2 + ..., however, if we are near enough
to the critical point we can keep only the first term u0. We can rewrite Eq. (2.8)
including the irrelevant variable:

fs(t, h) = (t/t0)d/ytΦ
(
(h/h0)(t/t0)−yh/yt , u0(t/t0)|yu|/yt

)
.

Near to the critical point we know that u0(t/t0)|yu|/yt is small, thus we can think
to expand the free energy in this parameter. Let us put for simplicity h = 0. We
will obtain:

fs(t, h) = (t/t0)d/yt

(
a1 + a2u0(t/t0)|yu|/yt + ...

)
where a1 and a2 will be some non universal constants.

Thus the effect of the irrelevant variable will be to add corrections to the scaling.
The exponent yu associated to the most important irrelevant variable defines another
universal exponent ω = −yu. It is very important to consider the effect of the
corrections when the critical exponents are extracted from systems of finite size, see
for example Appendix A. There are also other correction terms associated with the
dependence of u from t and h that we have neglected. However, usually they are
not important.

We have expanded the free energy in the variable u0, assuming that it is analytic
in the limit u → 0. However this is not always obvious. When the limit u → 0 is
not well defined, the variable u is said dangerous, as it happens above the upper
critical dimension.
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2.2.6 The functional integral formulation and the ε-expansion

In the previous sections we have introduced the renormalization group as a decima-
tion of the degrees of freedom in the real space. In particular the number of the spins
is reduced in each iteration by forming blocks and introducing new block-spins and
new couplings. This procedure is called Real Space Renormalization Group. We
have seen that this operation can not be carried out explicitly in more than one
dimension, and particular approximations are reviewed in the next chapter. How-
ever the RG procedure can be carried out also in the momentum space, performing
a Fourier transformation. In this vision, high impulses are integrated out and the
important physics is that at small impulses [21]. This particular point of view is
very common when the problem is represented with functional integrals, taking the
inspiration from quantum field theory where renormalization was firstly introduced.
As said before, a phase transition is characterized by an order parameter φ(x). Once
we have identified it (for example the magnetization for the Ising model), we can
think to define a statistical weight for a given spatial distribution of the order pa-
rameter field to define a measure over the space of these distribution. One possible
way is to identify all the possible symmetries of the order parameter, for the Ising
model the only symmetry is the φ → −φ invariance. Then, all the possible invari-
ants of the symmetry group are constructed from the field and its derivatives, and
a Lagrangian density L(φ) is made with the sum of them with arbitrary coefficients.
The weight of a certain distribution of the field will be:

W (φ) = exp
(

−
∫

dxL [φ(x)]
)

.

For the Ising model, there will be only even powers of the fields leading to:

L(φ) = A0(∇φ)2 + A1φ2(x) + A2φ4(x) + hφ(x) (2.11)

where h is the magnetic field. We have stopped at the quartic term, because it can
be demonstrated that all the terms with higher powers of the fields are irrelevant.
If we perform a Fourier transformation, Eq. (2.11) becomes:∫

dxL(φ) =∑
k

[(k2 + µ2)φ(k)φ(−k) + h(k)φ(−k)] + u
∑

k1k2k3

φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3)

(2.12)
where the translational invariance in real-space imposes to the sum of the impulses
in each term to be null. In field theory the µ coefficient corresponds to the mass
of the particle associated to the field. Indeed Eq. (2.12) can be obtained also from
the Hamiltonian of Eq. (2.1) with the magnetic field term. To reach this result the
Hubbard-Stratonovich transformation:

c exp(siVijsj) =
∫ ∞

−∞

N∏
i=1

dxi exp(−1
4

xiV
−1

ij xj + sixi). (2.13)

is used to eliminate the quadratic term in the spins. Then it is Fourier transformed
and an expansion of the couplings for small impulse is performed.
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At this point we can perform our renormalization, letting the distance-unit a →
ba and asking how the coefficients must change to leave the Lagrangian

∫
dxL(φ)

invariant. There is one trivial fixed point h = A1 = A2 = 0. Above four dimensions
the scaling variable associated to the quartic term is irrelevant, and this fixed point is
the important one. This corresponds to the so called Gaussian fixed point, because
the partition function is a Gaussian integral in the impulse space. At this second
order phase transition, in the field theory language, there is a particle with zero
mass µ = 0. It can be shown that the coefficient µ = ξ−1, that goes to zero at the
critical point. The critical exponents associated to this fixed point are the mean
field ones of Eq. (2.5). Indeed the Gaussian solution corresponds to the mean field
approximation, where fluctuations are ignored.

Below four dimensions A2 becomes relevant and a new fixed point arises, different
from the Gaussian one. However, if we define a parameter ε = 4−d, for small values
of ε the two fixed points are sufficiently close, and the properties at the non-trivial
fixed point can be deduced from the properties at the Gaussian fixed point. For
example the critical exponents can be calculated as a power expansion in ε around
the mean-field value, as it was done for the Ising model in Ref. [22]. The ε-expansion
can be used only if the non-trivial fixed point can be reached perturbatively from
the Gaussian one, as in the case of the Ising model. However if the non-trivial fixed
point is of a completely different nature than the Gaussian one, this method can
not be used.

Let us mention that an ε-expansion can be developed also near the lower critical
dimension.

2.3 Spin Glasses
In nature, there exist also magnetic materials, in which the interactions between
local magnetic moments are random both positive and negative. Some example
of these amorphous magnets are AgMn, CuMn, and AuFe, with the magnetic mo-
ments that are vectors (they are called Heisenberg spins). There are also Ising-like
materials, like FexMn1−xTiO3, with uniaxial spins. All these materials are called
spin-glasses. The simplest model to describe them is the Edward-Anderson (EA)
model [1]. The Hamiltonian is the same as in Eq. (2.1), but the couplings Jij can be
positive or negative. We can assume them to be independent identically distributed
random variables extracted from a distribution P (J), that can be for example a
Gaussian with zero mean. In this case it is not possible to find a spin configuration
that is able to satisfy all the interactions. The system is frustrated. One would like
to calculate the free energy density of the system for a given coupling realization,

fJ = 1
βN

log ZJ = 1
βN

log
∑
{σ}

exp(−βHJ [σ])

and also its average over the disorder, indicated by the overbar:

f = fJ =
∑

J

P (J)fJ .

This is the so called quenched average. It is different from the annealed one:

fA = 1
βN

log ZJ ,
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that is simpler to solve. In the annealed mean, the couplings can change at the
same level of the spins in order to minimize the free energy. However, this is not
what happens in real spin glasses where the couplings are fixed for each sample. We
may ask if it is a good idea to calculate the quenched free energy to understand the
properties of a given sample. For a model with short range interactions it is easy
to demonstrate that the free energy is self-averaging, namely in the thermodynamic
limit it assumes the same values for all the realizations of the couplings that have
non null probability. When a spin interacts with all the others, in the so called
Sherringhton Kirkpatrick (SK) model [2], that is a mean field model, the prop-
erty of self-averageness is not rigorously demonstrated, but it has many numerical
validations.

2.3.1 The replica symmetric solution

There is not a solution for the EA model, however there is a solution for the SK
model (for a complete review see Ref. [23]). To calculate the quenched mean, one
uses the mathematical property:

log(x) = lim
n→0

xn − 1
n

.

Instead to calculate log ZJ , one can calculate (ZJ)n. In practice, for integer n the
mean of n uncoupled replicas of the original system with the same distribution of
the disorder is calculated:

(ZJ)n =
∑
{σ1}

∑
{σ2}

...
∑
{σn}

exp{−
n∑

a=1
βHJ [σa]}

and the average of f is obtained with an analytical continuation at n = 0 done only
at the end of the calculation. The equation for the free energy is thus:

f = lim
N→∞

− 1
βN

lim
n→0

∑
{σ1...σn}

∫
dP [J ]e

∑
ij

(βJij

n∑
α=1

σα
i σα

j )
− 1

n

and the main steps of the calculation are the following. After that the average
over the disorder is performed, the quadratic term in the spins is eliminated using a
generalization of Eq. (2.13). In this way the quadratic term disappears, but we have
introduced some new auxiliary fields, that will be called Qab. It is a nxn matrix.
Thanks to the limit N → ∞, a saddle point is performed and, at the end of the
calculation, the result is:

fn = −1/(βn) min
Q

A[Q] with A[Q] = −nβ2/4 + β2/2
n∑

a≤b=1
(Qab)2 − log Z[Q]

and Z[Q] =
∑

σ

exp{−βH[Q, S]}

H[Q, S] = −β
n∑

a≤b=1
QabSaSb − h

n∑
a=1

Sa
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where H[Q, S] is a single site Hamiltonian. In the original formula, the thermo-
dynamic limit was preceded by the the limit in the number of replicas going to
zero. Here the two limits are inverted. However this can be done without causing
problems. The minimization of A can also be written as a self-consistent equation:
Qab = 〈SaSb〉H[S,Q]. The replica indices have been introduced as a pure mathemati-
cal trick, and the previous equations are symmetrical for the exchange of the replica
indices, thus naively the right form for the matrix Qab seems to be the symmetric
one:

Qa 6=b = q, Qaa = 0.

This is called the replica symmetric (RS) ansatz. Once inserted in the previous
equation, it is found that for T > Tc the solution is at q = 0, while for T <
Tc, the solution is at q 6= 0. There is a transition. However, for this solution,
the entropy results to be negative (that is impossible for a system with discrete
degrees of freedom), and a more careful analysis shows that the solution for T <
Tc is not stable [24] (the Hessian ∂2A/∂Q∂Q calculated at the replica symmetric
solution has negative eigenvalues and its square root, that is imaginary, enters in
the proportionality coefficient and in the O(1/N) corrections of the leading result
of the saddle point approximation). In fact in the region 0 ≤ n < 1, the minimum
of A becomes a maximum. Thus a different solution must be found for the low
temperature phase. The new solution must satisfy the equation ∂A/∂Q = 0 and
limn→0 ∂2A/∂Q∂Q > 0. The new solution is not necessarily a minimum of the free
energy, indeed it will be a maximum.

2.3.2 The replica symmetry breaking

The correct solution is the Replica Symmetry Breaking (RSB) one that has been
proposed in Ref. [3]. k + 1 integer numbers are introduced: mi with i = 0, 1, ..., k.
The n replicas are divided in n/m1 groups of m1 replicas, each of these groups is
divided in m1/m2 groups of m2 replicas and so on. Qab = qi if the replicas a and b
are in the same group at level i but not at level i + 1. This ansatz for the matrix
is introduced in the Eq. ∂A/∂Qab = 0 and the qi are determined. Then the free
energy is calculated. At the end the limit n → 0 is taken. When k → ∞, the qi’s
become a continuous function q(x). The fact that Q is a nxn matrix, and mi are
integer numbers smaller than n can look strange in the n → 0 limit. However there
are no particular difficulties in the application of the prescription, that is to perform
the limit n → 0 at the end of the calculation, even if the analytical continuation is
not rigorous. Naturally, this matrix breaks the symmetry of the replicas, even if the
free energy is symmetric under the replicas exchange. It is a spontaneous symmetry
breaking.

2.3.3 The overlap as order parameter

What is the meaning of this particular matrix? Under the critical temperature Tc

the phase space is divided in many different equilibrium pure states, separated by
extensive barriers. Different replicas of the system will fall in different states. Each
pure state α has a certain weight wα in the partition function and it is characterized
by certain magnetizations {mα

i }. In fact, while above Tc the state is paramagnetic
and 〈σi〉 = 0, below Tc the spins of the system will freeze in their position, but
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there will be no preferential orientation, and M = 0. The overlap parameter qαβ

measures how much two different states are similar:

qαβ = 1
N

∑
i

mα
i mβ

i , −1 ≤ qαβ ≤ 1.

To characterize a phase of a system, one can use the overlap distribution, that
measures if the system has different states and how much they are similar:

P (q) =
∑
αβ

wαwβδ(qαβ − q).

The moments of this distribution can be obtained as:

qk =
∫ 1

−1
P (q)qkdq.

It is easy to show that

P (q) = lim
n→0

1/[n(n − 1)/2]
∑
a,b

δ(Qab − q) (2.14)

qk = lim
n→0

1/[n(n − 1)/2]
∑
a,b

Qk
ab

In these equations the physical meaning of the Q matrix is enclosed.
In the ferromagnet, there are only two states of equilibrium, with opposite mag-

netization. Thus the P (q) is trivial; it has two peaks, at m2 and −m2, related by
the obvious Z2 symmetry. For the spin glass the order parameter is no more the
magnetization but the overlap distribution that is not trivial [25]. In fact, when the
saddle-point solution Qab is inserted in Eq. (2.14), the P (q) is obtained. It has a
continuous support q ∈ [0, qEA], where qEA = 1

N

∑
i mα

i mα
i is the self-overlap inside

a state. Looking at this function we can learn that there are many states, with
different distances. Moreover the block structure of the RSB ansatz for Qab implies
the ultrametricity property: if we take three states, and we identify the mutual
overlap as the distance between them, it can be demonstrated that the property

qαβ = max(qαγ , qγβ)

holds. This naturally leads to a hierarchical organization of the states: in fact some
states are grouped in a family with a certain overlap, then families are grouped in
bigger families with a smaller overlap and so on. The practical consequence of such
a complicated free-energy landscape is that in the low temperature phase there is
a strong non-ergodicity and it is quite impossible to equilibrate large systems. In
practice numerical simulation of spin-glasses for large sizes and low temperature, are
out of equilibrium. This mean field theory is called the Replica Symmetry Breaking
(RSB) theory, and it predicts a thermodynamic transition also in magnetic field h
at a finite temperature [3]. In this framework, a transition line, called deAlmeida-
Thouless (AT) [24] line, can be identified in the T −h plane between a paramagnetic
and a spin glass phase. It starts at (T, h) = (Tc, 0) and it ends at (T, h) = (0, hc).
hc = ∞ for the SK model while it is finite when the dimension of the space is finite.
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2.3.4 SG in finite dimensions

For the EA model in finite dimension (below the upper critical one D = 6), there
is no analytical solution. Two main scenario are supposed: the first one is that the
mean field solution remains valid also in finite dimension. The critical exponents
will change below the upper critical dimension but the qualitative landscape of the
free energy will remain the same. At sufficiently low dimensions (i.e. below the lower
critical dimension, DL ) the transition disappears. The value of DL is not known,
but it is quite possible that in a field DL is higher than for h = 0 (as it happens
for a ferromagnet in a random field). There are some numerical evidences [26] (and
analytic results[27]) supporting DL = 2.5 at zero field. Indeed a non-integer lower
critical dimension is a strange, unique thing. For h > 0, some recent works, revised
in the next section, argued that the AT line can be continued below D = 6.

The second scenario is the droplet one [28]. In this theory, instead, no transition
is predicted to remain as soon as an infinitesimal field is switched on, independently
from the value of D. At null field, there are only two stable states, linked by the
reversal symmetry, and the P (q) is delta-shaped.

Extensive numerical works on the Edwards-Anderson model in 4D and 3D
yielded evidence both in favor of a transition in field [29] [30] [31] and against it [32]
[33] [34]. Unfortunately, finite size corrections are very strong in the presence of an
external field and it is hard to say whether these simulations were really testing the
thermodynamic limit.

For what concerns real materials, in the most common Heisenberg-like amor-
phous magnets, e.g., AgMn, CuMn, and AuFe, a SG phase has been detected also
in presence of an external field [35]. In Ising-like materials, instead, it is still a
matter of debate whether or not a SG phase occurs when the system is embedded
in a magnetic field [35], [36].

2.4 Attempts to renormalize Spin Glasses

To solve the important problem of the spin-glass phase in finite dimensions, a useful
instrument can be the RG. Unfortunately, while RG transformations have been
studied in great detail for homogeneous models, much less is known for disordered
models, that contain quenched randomness in the Hamiltonian (either random fields
and/or random couplings). This is specially true for frustrated models, like SG, for
which a satisfying RG transformation is still lacking. For example, for the Edwards-
Anderson SG model on a D-dimensional lattice all the attempts to develop a field
theory by performing an ε-expansion around the upper critical dimension Du = 6
have proved to be very complicated [37, 8]. These studies have led to the discovery
of fixed points different from the mean-field (MF) ones, however the implications of
that are not completely clear.

We have seen how the mean field free energy can be expressed as a function of
uniform replica fields Qαβ , in a n(n − 1)/2 dimensional replica space. If we are in
finite dimension, we can not forget spatial fluctuations. For this reason, if we want
to construct a perturbation expansion around the mean field critical value, we can
consider a replica field for each site, that can be divided into the mean-field value,



22 2. Basic concepts

and the fluctuations around it:

Qαβ
i = Qαβ + φαβ

i .

Ising spin glass transition in an external magnetic field can be studied with the
generic replica symmetric field theory developed in [8], with a Lagrangian L =
L(2) + LI . The quadratic term has three different masses:

L(2) = 1
2
∑

p

(1
2

p2 + m1)
∑
αβ

φαβ
p φαβ

−p + m2
∑
αβγ

φαγ
p φβγ

−p + m3
∑

αβγδ

φαβ
p φγδ

−p


while the interaction term has eight different cubic terms and the interaction with
the magnetic field. The Lagrangian can be rewritten in the basis of the eigenvector
of the mass part, that are called replicon, anomalous and longitudinal. In the mean
field region, above D = 6 the fixed points are well identified: the fixed point at zero
external field is characterized by the three masses becoming null together, while if a
small external field is present, the AT line is identified when only the replicon mass
becomes critical. The existence of replica symmetry breaking (RSB) fixed points
in the non-mean field region D < Du is more difficult to demonstrate, and it has
been shown only very recently [9]. In this work the AT line is obtained with an
ε-expansion below 6 dimensions, reviewing and confirming the results in Ref. [10].
However the range of validity of this expansion is very limited, and nothing is said
about the lower critical dimension. It is possible that the lower critical dimension
in field is higher than D = 3. Thus much is still missing, like for example estimates
of critical exponents are still not reliable.

In this framework the development of a (semi-)analytical real space RG for dis-
ordered models would be very welcome. The outcome of such a RG transformation
could be well compared with Monte Carlo (MC) simulations, that provide accurate
estimates of critical temperatures and critical exponents for disordered models. A
new kind of real space RG for disordered models will be proposed in next chapters.



Chapter 3

Real Space Renormalization
Group and Hierarchical Model

We have seen that the real-space renormalization group (RSRG) transformation
consists in integrating out the degrees of freedom at small distances creating blocks
of spins, defining block variables and looking at the flow of the new couplings among
them, that leave the partition function invariant. The beautiful aspect of RSRG
is that the physical meaning of the steps is clear, and there is not the risk to
forget the point that we want to reach. This is not so obvious when other methods
like field theoretical analysis, or ε-expansion are used, especially when disorder
is present because the replica action averaged over the disorder contains all the
physical information but in a somehow implicit form. This is one of the reasons
under our choice to apply a RSRG to disordered systems. However we have seen that
RSRG can not be carried out exactly in more than one dimension because couplings
between any subset of spins are created. For this reason many approximations have
been developed. These approximations do not leave the partition function invariant,
as in Eq. (2.6), however they can give good results.

3.1 The Migdal-Kadanoff approximation

Among these approximations, there are the lower bound transformations, invented
by Kadanoff [38]. The Hamiltonian of the system that we want to renormalize is
H(σ) but we replace it by H(σ) + V (σ) where V (σ) is chosen so that the sum over
the spins configurations can be evaluated explicitly and the new renormalization

J bJ J’

Figure 3.1. MK renormalization for a block of size b = 3.
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equation becomes
eH′(σ′) =

∑
σ

P (σ′, σ)eH(σ)+V (σ) (3.1)

For the partition function one obtains∑
σ′

eH(σ′) =
∑

σ

eH(σ)+V (σ) ≥
∑

σ

eH(σ)[1 + V (σ)]

Z[H ′] = Z[H + V ] ≥ Z[H](1+ < V >H)
(3.2)

If we choose a potential with < V >H= 0, the free energy of the renormalized
system is a lower bound to the free energy of the original system. For the nearest
neighbor Ising model, one good choice for V (σ) is the bond moving potential. One
example is V (σ) = J(σ3σ4 − σ1σ2). The property < V >H= 0 is satisfied thanks
to the translational invariance. The effect of this kind of potential is to move some
couplings between two spins to other spins, and in this way some of the spins can be
decoupled. When a spin has only interactions in one direction it can be renormalized
exactly as shown in Section 2.2.2.

Let us see how the Migdal-Kadanoff renormalization [39] works on a nearest
neighbour Ising model on a 2-dimensional lattice, as explained in Fig. 3.1. The
spins are divided in blocks of size b. Then all the couplings are moved to the spins
at the edges of the blocks, their sum being bJ . At this point a decimation of the
spins at the edges except that on the corners is performed obtaining J ′ = Rb(bJ),
where the function Rb has been defined in Eq. (2.7). The recursion relation is easily
generalized to J ′ = Rb(bd−1J) in d-dimensions. The final result will depend of our
choice of b, because we are not taking an exact RG. For this reason the best choice
is to take the infinitesimal transformation. The limit b → 1 can be analyzed setting
b = 1 + δl and obtaining

dJ

dl
= (d − 1)J + sinh J cosh J ln tanh J.

For d = 2, the fixed point of the infinitesimal transformation is the correct one
J∗ = ln(1+

√
2)

2 , thanks to the fact that the 2D square lattice is self dual. The same
good results are not found for the critical exponents for which, in the limit b → 1,
one finds 1/ν = 0.754 [39] instead of 1/ν = 1.

3.2 The Hierarchical diamond lattices
There are some particular lattices, the hierarchical diamond lattices, for which the
Migdal-Kadanoff renormalization procedure is exact, as pointed out by Berker and
Ostlund [6]. They can be generated iteratively as in Fig. 3.2. The procedure starts
at the step G = 0 with two spins connected by a single link. At each step G the

Figure 3.2. Construction of a Hierarchical Lattice with b = 3 and s = 2.
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construction in Fig. 3.2 is applied to each link of step G−1. For each link, b parallel
branches, made of s bonds in series each, are added, with b · (s − 1) new spins. The
effective dimension of this model is d = 1 + ln(b)/ ln(s). In fact in a standard d
dimensional lattice, if the length grows of a factor L, the number of links grows
with a factor Ld. If in the hierarchical lattice the length grows of a factor s, the
number of links grows of a factor b · s. However for example if b = s, it corresponds
to d = 2. But for various values of b = s, the results are different. It means that d
is not sufficient to identify the lattice. Starting from a lattice at the G generation,
summing over the spin introduced in the last generation, one can obtain a lattice of
the G − 1 generation with renormalized couplings. In fact each s-tuple of couplings
in series produces an effective coupling J̃ = Rs(J) = tanh−1[(tanh J)s]. Then each
b-tuple of effective couplings in parallel linking the same pair of variables is summed
together, giving the renormalized coupling J ′ = b·J̃ . Repeating this renormalization
procedure, one can exactly renormalize the whole lattice. For this property, the
hierarchical lattices have been widely used, also recently, to analyze RG flows of
the systems, even when the disorder is included [41, 40, 42, 43]. Unfortunately,
the hierarchical lattices do not always have the same characteristics as the usual
short range lattices. In particular, as shown rigorously in Ref. [44], spin glasses
on hierarchical lattices are replica symmetric. The low temperature phase is thus
different from that in usual lattices.

3.3 The Hierarchical model

3.3.1 Definition of the model and general properties

Another particular model for which the renormalization group equations can be
written in a closed form is the hierarchical model (HM). It is a particular one-
dimensional long range model, firstly introduced by Dyson [14] (for a review see
[15]). It is a fully connected model, where each spin is connected to all the others
with interactions decaying as a power with a special distance. For short range
models we have seen that the lower critical dimension is D = 1. For long range
models however it is possible to have a transition even in D = 1 as in this case.
The Hamiltonian of the HM for N = 2n spins can be constructed iteratively in the
following way:

Hn(s1, ..., s2n) = Hn−1(s1, ..., s2n−1)+

+ Hn−1(s2n−1+1, ..., s2n) − cn
2n∑

i<j=1
Jij si sj . (3.3)

C

C

C

3

2

Figure 3.3. The HM with three levels
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In practice Hn is the sum of interactions at n different levels, of intensity ck =
2−k(1+σ), where k is the index of the level, see Fig. 3.3. If the system is decimated
by a standard block-spin transformation, the new Hamiltonian does not contain
any new term (at variance to what happens on finite dimensional lattices). So,
considering only pairwise interactions of the same type of the original ones in the
RG is not an approximation for the HM. Moreover the ferromagnetic (FM) version,
with Jij = 1, can be exactly solved in a time growing only polynomially with N ,
since the probability distribution of the magnetization satisfies the equation

pn(m) ∝ eβcnm2 ∑
mL,mR

pn−1(mL) pn−1(mR) δmL+mR,m

where mL and mR are the magnetizations of the half systems.
By properly tuning the topological factor c that controls how fast the couplings

intensity decays with distance, the HM can emulate a D-dimensional short range
(SR) model: c ' 2−1− 2

D (see next section). This relation is exact at the upper
critical dimension because the long range HM and the SR D-dimensional model
have the same field theory at leading order.

In order to have a phase transition from a paramagnetic to a ferromagnetic
phase at a finite temperature, the c parameter must satisfy 1

4 < c < 1
2 . The lower

bound value of c corresponds to the lower critical dimension (and thus Tc = 0),
while if c reaches the upper bound the energy is no longer extensive (thus Tc = ∞).
For c > 2− 3

2 = cU , the model shows mean field critical properties (like for D > DU

in SR models). So, tuning a single parameter in the HM, we can move from the MF
region to a non-MF one.

3.3.2 Gaussian fixed point and c-D relation

The HM has been constructed in such a way that we can write exact, analytical RG
equations on it. In fact, the procedure to blockspin is very simple. The blocks will
be made of two neighbouring spins,

s′
i =

√
c(s2i−1 + s2i) (3.4)

where the rescaling factor
√

c is introduced to leave the partition function unchanged
in the thermodynamic limit. The energy of the total system is rewritten as

Hn(s) = H ′
n−1(s′) − 1

2

2n−1∑
i=1

(s′
i)2. (3.5)

In other words we can blockspin without thinking about H and then include the
second term of Eq. (3.5) to take into account the contribution of the integrated
spins in the partition function. The problem is identical to the original one, except
from the fact that we pass from n to n − 1 levels and we use a different weight for
the distribution of the field (that we will call φ from now on). The change in the
weight can be expressed through the recursion relation:

Wn+1(φ′) = e(β/2)φ′2
∫ ∞

−∞
dξWn( φ′

2
√

c
− ξ)Wn( φ′

2
√

c
+ ξ) (3.6)
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where φ′ is the rescaled field. If we start with a Gaussian measure:

W0(φ) ∝ e−Aφ2 (3.7)

the renormalized measure will always be Gaussian:

Wn(φ′) ∝ e−Anφ′2

with An+1 = −β
2 + 1

2cAn. The fixed point of this recursion relation is A∗ = βc
1−2c that

leads to An = ( 1
2c)n(A−A∗)+A∗. Thus the local measure for the original field after

nmax iterations can be expressed as Wnmax ∝ e−[(A−A∗)+(2c)nmax A∗]φ2
. When A = A∗,

we are at the critical point in the infinite volume limit. At finite volume and A = A∗

the mass (that is, the coefficient of the quadratic term in the field) is m2 = (2c)nmax .
If we compare this result with a short range Gaussian theory for a D-dimensional
system, at finite size L, at the critical point the mass is m2 = (ξ−1)2 = L−2.
Equating the two masses and comparing the volume: Ω = LD = 2nmax , the c − D
relation is obtained:

c = 2−1−2/D. (3.8)

The upper critical cU = 2− 3
2 corresponds to DU = 4, as expected. This relation

has been obtained from the Gaussian fixed point, thus it can be inexact below the
upper critical dimension. This point will be discussed in Part II. Usually the field
scales during the renormalization with a factor b

D+2−η
2 . On the other hand, in Eq.

(3.4) the rescaling factor is 1/
√

c, and b = 2. Recalling that c = 2−(1−σ) and the
dimension of the system is D = 1, the relation

η = 2 − σ (3.9)

is obtained. This equation for η is thus valid in the mean-field region. However,
for long-range systems, it is commonly believed that it remains valid also in the
non-mean field region [45]. Again this point will be discussed in Part II.

3.3.3 The non trivial fixed point in high temperature expansion

Below cU the Gaussian fixed point is no longer stable and a new fixed point arises.
There are various methods to calculate it numerically, here we will review the one
based on polynomial truncation. The recursion relation in Eq. (3.6) for W (φ), can
be rewritten for its Fourier transform R(k) as:

Rn+1(k) ∝ e− 1
2 β ∂2

∂k2
(
Rn(

√
ck)
)2

. (3.10)

A good approximation for Rn(k) in the symmetric phase is:

Rn(k) = 1 + an,1k2 + an,2k4 + ... + an,lmaxk2lmax ,

that can be viewed as a high temperature expansion. When introduced in Eq.
(3.10), the recursion formula becomes a lmax-dimensional map with variables an,i, i ∈
{1, ..., lmax}. The fixed points will be determined by coefficients {a∗

i }, and critical
exponents are extracted from the linearized transformation around the fixed point,
taking the first eigenvalue Λ of the matrix Ml,m = ∂an+1,l

∂an,m

∣∣
{a∗

i }. In fact ν = log 2
log Λ ,

where the factor 2 is our scaling factor b. Knowing the exact value of η from 3.9, in
Ref. [46] the value γ = 1.299140730159 is obtained for a value of c corresponding
to D = 3 following the relation 3.8. Also the critical temperature can be extracted,
leading to βc = 1.179030170 in D = 3 [47].
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3.3.4 The ε-expansion around cU

The fixed points for c < cU can be obtained also with an ε-expansion around cU as
explained in Sec. 2.2.6. We will briefly sketch here the important passages of the
calculation. Let us add to the local measure a quartic term, that is the next term
that can be added, invariant for the symmetry φ → −φ of the system:

W0(φ) ∝ e−Aφ2−wφ4
. (3.11)

This new measure is inserted in Eq. (3.6). Now, if we suppose that for c sufficiently
near to cU the new fixed point will be near enough to the Gaussian one, we can
suppose that w is small and will remain small during the iteration. For this reason
we can perform an expansion around w = 0 and find the recursion relations for the
parameters An+1, wn+1 as a function of An, wn.

If we call ε = σ − 1
2 , from these relations one can note that for ε < 0 the

parameter w becomes smaller at each iteration. In this region it is an irrelevant
variable, in fact the Gaussian measure is the stable one. If ε > 0, wk grows at each
iteration, thus it is a relevant variable. From the recursion relations one can also
find the fixed point (A∗

k, w∗
k) = (A∗

k+1, w∗
k+1), that differs from the Gaussian one to

order ε: w∗ = O(ε). At this point the critical exponent ν can be extracted from the
first eigenvalue Λ of the 2x2 matrix M = ∂(An+1,wn+1)

∂(An,wn)
∣∣
(A∗,w∗) as ν = log 2

log Λ . For the
Gaussian fixed point the calculation is exact and leads to the result:

ν = 1
σ

. (3.12)

For the non trivial fixed point, the critical exponent will be a series expansion in
ε. In Ref. [48] this series is showed to be not convergent. However the application
of the Borel resummation method yields to a convergent series for ν. At the end
the value γ = 1.2986 is obtained for c equivalent to D = 3. The quality of the
result is tested comparing the results with those obtained with other methods, for
example the one in the previous section. The agreement is very good, confirming
the applicability of the ε-expansion, that is the possibility to go perturbatively from
the Gaussian fixed point to the non-trivial one.

3.4 Disordered HM
The spin-glass version of the Hierarchical Model was firstly introduced in Ref. [49].
The Hamiltonian is always the one in Eq. (3.3), and the couplings at level k are
independent identical distributed random variables, distributed with a Gaussian law
of zero mean and variance σ2

k = 1. This time we will define c = 2− 1+σ
2 . The sum

of the squares of the interactions at the last level is 2−n(1+σ)∑2n

i<j=1 J2
ij ∝ 2n(1−σ).

This is of the order of the volume for σ = 0, thus this case corresponds to the infinite
range Sherrington-Kirkpatrick model. The SG HM model has a finite temperature
spin-glass transition for σ ∈ [0, 1), and the c − D relation is the same of Eq. (3.8).
When the disorder is introduced, a recursion relation like the one in Eq. (3.3.1) for
the magnetization can be written for the distribution of the new order parameter
of the system, that is the overlap matrix Q:

Zk[Q] = exp
(

β2

4
Tr[Q2]

)
·
∫

[dP ]Zk−1

[
Q + P

2(1−σ)/2

]
· Zk−1

[
Q − P

2(1−σ)/2

]
. (3.13)
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∫
[dP ] indicates the functional integral over the matrices Qab. As in the ferromag-

netic case, the recursion relation can be solved exactly in the mean field region and
perturbatively in the non-classical one. This has been done in Ref. [50]. First of all
one can assume that the overlap distribution is Gaussian: Zk[Q] = exp(−rkTr[Q2]).
Inserting it into Eq. (3.13) the recursion relation is obtained: rk = 2rk−1

21−σ − β2

4 . This
is the mean field solution of the model characterized by the Gaussian fixed point
r∗ = β221−σ

4(2−21−σ) .
Non Gaussian solutions can be constructed perturbatively introducing an extra-

term in the overlap distribution, consistent with the symmetries of the model:
Zk[Q] = exp(−rkTr[Q2] − wk

3 Tr[Q3]).
At this point recursion relations can be obtained for the parameters of the

function rk and wk, performing an expansion around the new term wk, supposing
it to be small. At the end of the calculation the limit n → 0 has to be taken. For
σ < 1/3 the Gaussian solution is the stable one. In fact the new term wk will flow
to zero during the renormalization. Instead for σ > 1/3 a new fixed point arises
with wk different from zero. Thus cU = 2− 2

3 and it corresponds, using Eq. (3.8),
to DU = 6 as expected. The ν critical exponent can be computed in the standard
way from the first eigenvalue of the matrix that linearizes the transformation near
to the critical fixed point. For the Gaussian FP the solution is exact:

ν = 1
σ

(3.14)

while for the non-trivial fixed point it is obtained as an ε-expansion, leading to the
result:

ν = 3 + 36ε +
[
432 − 27(50 + 55 · 21/3 + 53 · 22/3) log 2

]
ε2 + O(ε3) (3.15)

with ε = 3
2(σ − 1/3). The exactness of the result has been verified with a different

method based on a field theoretical approach. Analysing the coefficient of the O(ε2)
term, that is quite big, we can think that probably the series is non-convergent,
thus it is not predictive without the use of some resummation technique. However,
looking at the first order in the expansion, in the vicinity of the critical c, the
exponent grows lowering c. If higher orders of the series are computed, and a
resummation scheme yields to a convergent series for the ν exponent we can say
that the spin-glass fixed point beyond mean-field region is qualitatively similar to
the Gaussian one, confirming thus a scenario mean-field like. If the series is not
convergent, neither after resummation, it means that the ε-expansion is not a good
instrument, probably due to a different nature of the non-trivial fixed point, for
example due to a finite dimension scenario droplet-like.





Chapter 4

A new Renormalization Group
scheme

In this chapter, we want to introduce a new RG scheme, that can be applied also to
disordered systems. The model that we use is the Hierarchical one. In particular,
we have studied three versions of this model: the ferromagnet (FM), where Jij = 1;
the diluted ferromagnet (DFM), where a random fraction 1−p of FM couplings are
set to zero; and the SG version, with Gaussian couplings P (J) ∝ e−J2/2.

4.1 RSRG for the ferromagnetic version

We describe now in detail how to apply a new RS-RG scheme to the HM. The
FM version, that has been solved analytically, is a benchmark for our numerical
implementation of this new approach. We want to find the new parameters of the
Hamiltonian, the new couplings that make a smaller system equivalent to a bigger
one. In particular we want the physics of the two systems to be the same. For this
reason we require the value of some chosen observables in the two systems to be the
same.

We allow couplings to assume different values at each level: in the original HM all
couplings are equal to 1, but we have seen that the RG iteration produces different
couplings at different levels. We start from a system with n levels that we want to
reduce to an “equivalent” smaller system of n − 1 levels.

1. First we compute (n − 1) observables 〈Ok〉 in the larger system.

2. Then we identify the values of couplings in the smaller system by requiring
that 〈Ok〉 = 〈O′

k−1〉 for any k ∈ {1, 2, ..., (n − 1)}.

3. Finally we join two smaller systems with couplings of the original intensity, to
obtain again a system of the original size.

J3=1

J1

J2 ’
’J1=1

J2=1

J3=1O3

O2 J2

J1

’

’

’

’O2=O1

O3=O2

Figure 4.1. The three steps of the renormalization procedure
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Figure 4.2. Renormalized couplings J ′ in a FM system with n = 10 levels versus the
number of RG steps, for temperatures slightly bigger (left) and smaller (right) than Tc.

In the previous steps, angular brackets are thermal averages with respect to the
Gibbs-Boltzmann distribution and primed quantities refer to the smaller system.
The first two steps are the true renormalization steps, while the latter is required to
obtain a final system size, that will allow us to iterate the method, until convergence.
A graphical representation of the three steps is in Fig. 4.1. Thermal averages are
computed exactly: this is easy to do in the FM, as explained in Sec. 3.3.1.

The observables Ok that we use in the RG equations are the correlation of the
magnetization at level k + 1, normalized by those at level k, with k ∈ {1, . . . , n − 1}:

〈Ok〉 = 〈mLk
mRk

〉
〈mLk

mLk
〉

.

mL and mR are the magnetization in the left and right sub-systems. The denomi-
nator is necessary to reduce finite size effects and to ensure that a solution to the
RG equations always exists. This is not true in general for other observables. For
example if we use the magnetization as observable it is not possible to find a solution
for all the n − 1 equations at the same time.

Applying the previously described procedure, the flux of couplings and correla-
tions can be followed, see Fig. 4.2. If T ' Tc, renormalized couplings stay for a
while close to the critical fixed point (FP), and then go towards the high tempera-
ture (HT) FP if T > Tc or the low temperature (LT) FP if T < Tc. We estimate
the critical temperature as the temperature dividing the flows towards the two dif-
ferent FP. Please note that the HT and LT fixed points are not characterized by
the usual J = 0 and J = ∞ coupling values: the reason is that in step 3 of our
procedure we put new couplings of original intensity. Nonetheless couplings flows
clearly differentiate HT and LT behaviors.

In order to extract critical exponents from the RG equations, we focus on the
early regime, when the coupling flows leave the critical FP. From the Wilson relation
an equation relating renormalized coupling after x RG steps can be obtained:

J(x)
T

− 1
Tc

=
( 1

T
− 1

Tc

)
b

x
ν ,

where b = 2
1
D is the scaling factor in our case. To eliminate the dependence from
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Figure 4.3. Difference between the renormalized couplings at T1 = 0.84571 and T2 =
0.845716 versus the renormalization step in the FM HM with n = 13 levels and c = 2− 5

3 .
The fit estimates the ν exponent.

the unknown critical temperature, the renormalized couplings at two different tem-
peratures can be compared, leading to a slightly different equation:

J1(x)
T1

− J2(x)
T2

=
( 1

T1
− 1

T2

)
b

x
ν .

Thus, the ν exponent can be estimated from a fit like the one in Fig. 4.3. The
values obtained for the critical temperature and the critical exponents for c = 2− 5

3

(in the non-classical region) are the following: Tc extrapolates to 0.8478(1) in the
large n limit and the measured ν exponent is 2.076(6) for n = 13 (although the
extrapolation of ν to the n → ∞ limit is much harder due to strong finite size effects).
They can be compared with those in the literature finding a good agreement: the
critical temperature is Tc = 0.848154717 [15], and the critical exponents are η = 4

3 ,
γ = 1.299140730159(1) [46], leading to ν = 1.948711095 using the scaling relations.

Moreover we have checked that our numerical RG recovers the right bounds on
c, namely Tc → 0 for c → cL = 1/4 and Tc → ∞ for c → 1/2. In particular these
limits are recovered for each number of levels n. This happens for the choice of
the observables in Eq. (4.1). If we used as observable the magnetization, or the
correlation without the normalization, the right bounds on c would be recovered
only in the limit n → ∞. Our choice does not suffer of these finite size effects.

4.2 RSRG on disordered HM
When the disorder is introduced, the couplings become independent random vari-
ables extracted from a given distribution P (J) and the important observables be-
came those averaged over the disorder. Previous attempts of developing such a
real space RG for disordered systems, and in particular on the HM [51], focused on
transformations mapping a single sample of size N to a smaller system. In formulae,
we can write the mapping {Jij} → {J ′

ij} as the one solving a set of equations like

〈Ok({Jij})〉 = 〈O′
k({J ′

ij})〉 , (4.1)

where the number of observables Ok are enough to determine the new couplings
{J ′

ij}. Given an ensemble of systems of size N , the above transformation can be



34 4. A new Renormalization Group scheme

applied to each of them in order to obtain an ensemble of systems of size N/2. In
this way the renormalized distribution of the couplings can be deduced. However
we believe that such a mapping is suboptimal for models with quenched disorder
and a better RG transformation should consider explicitly the average over the
quenched disorder (as was done in Ref. [52]). What we are proposing is a map-
ping between probability distributions of couplings P (Jij) → P ′(J ′

ij) such that the
following equations hold

〈Ok({Jij})〉 = 〈O′
k({J ′

ij})〉 . (4.2)

The overbar represents the average over the quenched disorder (i.e. the couplings
in the present case). The rationale beyond this choice is that in models with strong
disorder (like SG) sample-to-sample fluctuations may dominate thermal ones.

Two simple examples may help elucidating the limits of the RG transformation
working sample by sample, Eq.(4.1), and thus justify the use of the one in Eq.(4.2),
that we will call Ensemble RG (ERG). In a diluted ferromagnet, where couplings
are positive with probability p and null with probability 1 − p, a single step of the
decimation procedure induced by Eq.(4.1) typically generates all non-zero couplings
(i.e. p = 1). And this is clearly not very useful if one is willing to follow the RG flow
in the p−T plane. Moreover, in frustrated models the decimated system is typically
much less frustrated than the original one if open boundary conditions are present:
the extreme case is the transformation of a 4-spins system in a 2-spins system, being
the latter unfrustrated for any coupling choice! This tendency to reduce frustration
makes the RG using Eq.(4.1) clearly unfit to describe SG fixed points.

In principle, our ERG scheme can be applied to any disordered system, however
we choose to apply it to the HM with disorder.

Each coupling distribution is parametrized by K ∈ {1, 2} few numbers (that is
the mean for FM, the variance for SG and the fraction of non-zero couplings and
the mean for DFM), otherwise the search for a solution to Eq.(4.2) would become
too difficult. The renormalization of Section 4.1 revisited for disordered systems is
the following:

1. First we compute (n − 1)K observables 〈Ok〉 in the larger system.

2. Then we identify the parameters of the renormalized couplings distributions
P ′(J ′

ij) in the smaller system by requiring that 〈Ok〉 = 〈O′
k〉 for any k ∈

{1, 2, ..., (n − 1)K}.

3. Finally we construct a new ensemble of systems, building two smaller systems
with couplings extracted from the renormalized distribution P ′(J ′

ij), and join-
ing them with random couplings extracted from the original distribution, to
obtain again an ensemble of systems of the original size.

Again, we allow the parameters of the distribution to be different at each level,
but for simplicity we assume couplings at different levels to remain independent
during the RG. Correlations between couplings will be considered in a future work.

Thermal averages are again computed exactly. However because the disorder
is present, there are no recursive relation to compute them in a fast way. In the
DFM and in the SG we do it by exhaustive enumeration, thus limiting us to a
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small number of levels. The average over the disorder is not exact, but taken over
∼ 105 samples. Step 2 is actually accomplished by minimizing

∑
k(〈Ok〉 − 〈O′

k〉)2,
and we have checked that the minimum reached is always very close to zero. Since
couplings distributions are different at each level, we do not see any better option
than extracting the new couplings in step 3 from the original distribution.

4.2.1 RSRG on diluted HM

We consider now the DFM. At our knowledge, nobody has previously introduced
and studied this kind of HM. The Hamiltonian of the model is always the one in
Eq. (3.3), but the couplings at level k are independent random variables extracted
from the distribution

Pk(J) = pk δ(J − Jk) + (1 − pk) δ(J) .

At the beginning pk = p and Jk = 1 for any k, while under the RG they will
differentiate. The number of parameters to be determined in the ERG is 2(n − 1),
and we use the following observables, with k ∈ {1, . . . , n − 1}, to fix them:

 〈mLk
mRk

〉
〈
√

m2
Lk

m2
Rk

〉

 ,

 〈mLk
mRk

〉
〈
√

m2
Lk

m2
Rk

〉

2

.

Applying the same procedure as for the pure model, we are able to draw a flow
diagram in the p − T plane for c = 2− 5

3 (that corresponds to D = 3 following
Eq. (3.8)) and to determine the critical line dividing the ferromagnetic and the
paramagnetic region (see Fig. 4.4). The validity of the phase diagram found with
the ERG is confirmed by a set of MC simulations [56] whose Tc estimates are also
shown in Fig. 4.4. The differences between the two estimates of Tc are due to finite
size effects. In fact, for the ERG we can not go to n bigger than 4, because we
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compute thermal averages exhaustively. Instead for the MC estimate we analyze
systems of sizes up to n = 10.

The only disappointment about this phase diagram is that we do not find an un-
stable FP along the critical line. This fixed point is expected because, for the Harris
criterion [54], if the α exponent for the pure model is positive, the introduction of a
small amount of disorder will change the universality class of the system. In D = 3
SR model, the new fixed point is placed at p ' 0.8, looking at the point where
scaling corrections are smaller [55]. However this can be explained by noticing that
the α exponent of this model is very small, α = 0.051288905, and so the crossover
from the pure behavior can be extremely long.

4.2.2 RSRG on spin-glass HM

Finally we study the SG version. The Hamiltonian is always the one in Eq. (3.3),
and the couplings at level k are distributed with a Gaussian law of zero mean and
variance σ2

k (at the beginning σ2
k = 1 for any k). The assumptions that the renormal-

ized couplings are independent and normally distributed can be released by adding
extra terms in the coupling distributions [52], but we leave these generalizations for
future works. In the SG case the observables used to fix the n − 1 variances are
SG correlations at different levels, normalized with the correlations within the two
sub-blocks:

〈Ok〉 =
∑

i∈Lk, j∈Rk
〈sisj〉2√∑

i,j∈Lk
〈sisj〉2∑

i,j∈Rk
〈sisj〉2

.

Again the normalization is very important. It takes into account the change of frus-
tration changing the size of the system. If we use as observables the non-normalized
correlations, no spin glass phase can be found. Indeed we think that the useful



4.2 RSRG on disordered HM 37

 1

 0  1  2  3  4  5  6  7  8

J 1
(x

)/
T

1 
- 

J 2
(x

)/
T

2

x

D = 3 < Du

T1 = 0.47    T2 = 0.57

 1

 0  1  2  3  4  5  6  7  8

J 1
(x

)/
T

1 
- 

J 2
(x

)/
T

2

x

D = 8.2 > Du

T1 = 1.6    T2 = 2.1

Figure 4.6. Difference between the renormalization flux of the couplings at two different
temperatures in a semi-log scale for D ' 3 < Du (left) and D ' 8.22 > Du (right). The
first part, not affected by finite size effects, has been used to extract the ν exponent,
through a power law fit.

observables are the dimensionless one (like in numerical simulations, where Binder-
like observables are used). Because of the computational costs we use n ≤ 4, so
the early regime leaving the critical FP is rather short, and the stationary regime
is soon reached (with respect to the FM case). This effect is also enhanced by
the disorder: indeed, even exactly at criticality, the SG ensemble contains many
samples which are not critical, and the couplings of these samples flow away from
critical values very fast. So, it seems unavoidable that disorder increases the insta-
bility of critical FP and consequently the uncertainty on the estimates of critical
exponents. Nonetheless we can distinguish two temperature regions separated by
a critical temperature TSG (see Fig. 4.5 for c = 2− 5

6 that corresponds to an effec-
tive dimension D ' 3 using Eq. (3.8), with TSG = 0.58(1)), such that above TSG

correlations and couplings decay towards zero, while below TSG correlations and
couplings variances grow, suggesting that the system is in a SG phase. In Fig. 4.5
we have plotted only couplings and correlations variances measured at the lowest
level k = 1, but (as in the FM, see Fig. 4.2) the renormalized variances at the other
levels are related to those at k = 1: for example, σ2 > σ1 if T > TSG and σ2 < σ1
if T < TSG (remember that parameters at the lowest level are those which are less
influenced by the choice to put original couplings at the highest level, and for this
reason they are more free to grow or to lower under renormalization). Also in the
SG case we are able to estimate the ν exponent from the flux of the couplings at
early times. The procedure used is the same of that in the FM case and typical
fits are shown in Fig. 4.6 for c = 0.65 (D ' 8.22) in the mean-field region and for
c = 2− 5

6 (D ' 3) below the upper critical dimension. We obtain ν = 4.34(6) in
c = 2− 5

6 and ν = 4.15(10) for c = 0.65. The mean field value is known analytically
from Eq. (3.14) (νT (0.65) = 4.11562), in good agreement with our result.
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4.3 Algorithmic implementation
To implement the renormalization procedure previously described, we have written
a C code, we report here the pseudo code.

Define P (J) with variances σi = 1 , i = 1, ..., n
for x = 1, ..., steps do

Oj = 0 j = 1, ..., K(n − 1)
for i = 1, ..., N do

create a random sample with n levels from P (J)
for j = 1, ..., n − 1 do

Oj+ = exact thermal average of the j-th observable of this sample
end for

end for
while the minimum is not found do

change {σ′} following the Nelder-Mead method
Initialize P ′(J) with {σ′}
O′

j = 0 , j = 1, ..., n − 1
for i = 1, ..., N do

create a random sample with n − 1 levels from P ′(J)
for j = 1, ..., n − 1 do

O′
j+ = exact thermal average of the j-th observable of this sample

end for
end for
calculate the function to minimize f =

∑
k(〈Ok〉 − 〈O′

k〉)2

verify if it is at the minimum
end while
Print correlations and variances of the x-th step
Redefine P (J) with σi = σ′

i, i = 1, ..., n − 1 and σn = 1
end for

To search for the minimum, the Nelder-Mead downhill simplex method has been
used, with the support of the Gnu Scientific Libraries. The algorithm stops when
the gradient of the function is smaller than the threshold 10−7.

4.4 Comparison with earlier results
In Fig. 4.7 we report the estimates of ν for several effective dimensions D: we see
that in the mean-field region results are compatible with linear behavior ν = D/2
that is obtained using Eq. (3.14) and Eq. (3.8). More interestingly, the critical
exponent ν have a minimum around the upper critical dimension Du = 6. This
minimum was not observed in previous RG studies [51], while it is present in SR
models, although nobody has never highlighted it until now: in Fig. 4.7 we report
the νD estimates for the EA model in D = 4 as found from numerical simulations
[13] and in D = 5 as found from high temperature expansion series [57] (We did
not succeed to find numerical estimates in the literature). The EA values of the
exponents are close to the ERG estimates for the hierarchical model. The same
cusp-like behavior for the ν exponent has been also seen numerically in a 1D SG
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model with power law decaying interactions [59]. The relation between the critical
exponents in hierarchical model, SR models and power law long range models will
be studied deeply in the second part of this work.

In Fig. 4.7 we have added also the ε-expansion of Eq. (3.15) [50]. As can
be seen, the first order term makes a cusp at the upper critical dimension. The
second order term is in the opposite direction, however the coefficient is great, thus
probably the series is non convergent and needs a resummation to be predictive.
This work solves an apparent inconsistency problem between the ε - expansion and
the other real space RG approach recently proposed in Ref.[51], where the νD
exponent was found to decrease linearly with D, with no minimum at all around
the upper critical dimension. In this work we have shown that such a minimum in
νD, predicted by the ε-expansion and present in all the other SG models, exists if
a better RG transformation is used.

4.5 Comparison with Monte Carlo results

For the diluted ferromagnetic version there are no previous results in the literature
since the model has been introduced in this Thesis. For the SG version of the HM,
results of Monte Carlo simulations in Ref. [49], but they refers to a slightly different
model, a diluted version of the one analyzed in this work (for details see Sec. 5.3).
However we expect it to be in the same universality class. For c = 2−0.707, in the
non-classical region the authors of Ref. [49] measure ν = 3.09, confirming the non
monotonic behaviour of ν at the upper critical c.

In order to check critical temperatures and the critical exponent ν in the non-
mean-field region, we have run MC simulations for the fully connected SG version
of the HM at different values of c, for couplings extracted from a Gaussian and
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from a binary ±J distributions. We have used the parallel tempering algorithm
[58], running simultaneously at 20 different temperatures. Two replicas have been
simulated in parallel, to measure the overlap distribution P (q) between them. We
have checked the equilibration dividing the first measurements into bins with a
logarithmically growing size, and we have assumed that the system has reached
the equilibrium when the average of the energy and of the second moment of the
overlap are the same in two neighbouring bins within the error. We have found
that the equilibration time is τ ' 105 − 106 MC steps for the largest sizes at
smaller temperatures and we have acquired data for 5 · τ MC steps. For the model
with Gaussian couplings we have used n = 6, 7, 8, 9, 10, while for the one with ±J
couplings, that is easier to simulate, n = 6, 7, 8, 9, 10, 11. Averages were performed
over 400 samples for the larger systems up to 2000 samples for the smaller ones.

First of all we have verified that below the critical temperature determined with
the ERG method the system is in a SG phase. In Fig. 4.8 the overlap distribution
P (q) for different sizes 2n is plotted for a HM with c = 2− 5

6 (in the non mean field
region) and a Gaussian distribution of the couplings at a temperature T = 0.43
(for this system the ERG method gives Tc = 0.58(1)). It has the typical shape of
systems with RSB. In fact it has a finite support, with two symmetric peaks and it
is different from zero at q ' 0. From Fig. 4.8 it seems that data for n = 10 are still
too noisy and we have to increase the number of samples.

To verify the exactness of the critical temperatures extracted from the ERG
method we look at some scale-invariant observables that have the property to cross
at different sizes L = 2n at the critical temperature as explained in Appendix A.
In particular we analyze the dimensionless Binder parameter B = 1

2

[
3 − 〈q4〉

〈q2〉
2

]
.

We can construct also another scale-invariant observable from the SG susceptibility
χSG = q2L 1 because we know analytically its dimension 2−η. Thus if we divide χSG

1with qk we indicate the k-th moment 〈qk〉
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by its dimension the result q2L−1+η should remain finite at the critical temperature.
We can apply the same argument to the fourth moment susceptibility, obtaining
another scale-invariant observable q4L−2+2η.

In Fig. 4.9, we plot the three scale-invariant observables, B, q2L−1+η and
q4L−2+2η for different sizes L = 2n as a function of the temperature for a HM with
c = 2− 5

6 and a Gaussian distribution of the couplings. The crosses of the curves
should approach the critical temperature that we estimate to be Tc = 0.55(1). The
data are not so accurate to permit the estimate of the correction to scaling effects
and to measure the critical exponent ω. However we can see that the Binder param-
eter is the observable that has greater finite size effects. The critical temperature
can be compared with the one obtained from the ERG Tc = 0.58(1). The two esti-
mates are in good agreement, considering that the one from ERG is obtained with
a small number of levels n = 4. However the ERG estimate has been obtained in a
time much much faster.

To measure the critical exponent ν we have used the more accurate data for the
model with ±J interactions. However, despite critical temperatures can be different
for models with Gaussian and ±J interactions (they are non-universal quantities),
the critical exponents should be the same, because the two models are in the same
universality class. We use the same observables previously described to determine
the critical temperature that we estimate Tc = 0.545(10) for c = 2− 5

6 . Then we
look at the values of d(q2L−1+η)/dT at this critical temperature. The dimension of
this observable is 1/ν and its finite size scaling form at leading order around Tc is
described by the Eq.:

d(q2L−1+η)/dT = L1/νF (L1/ν(T − Tc)).



42 4. A new Renormalization Group scheme

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4  4.5  5  5.5  6  6.5  7  7.5  8

lo
g

(d
(q

2
L

η-
1
)/

d
T

)

log(2
n
)

Figure 4.10. d(q2L−1+η)/dT at Tc = 0.545 for different sizes as a function of the size of
the system in a log-log scale. The straight line is the best fit to extract the exponent ν.
The system has ±J interactions and c = 2− 5

6 .

In Fig. 4.10 the values for d(q2L−1+η)/dT at Tc = 0.545 for different sizes are
plotted as a function of the size of the system in a log-log scale. We have chosen
this particular observable because we have seen that it has the smallest finite size
effects. In this scale 1/ν can be extracted via a linear fit as the angular coefficient.
The straight line is the best fit that leads to ν = 3.50 ± 0.02. This result should
be compared with the ERG estimate ν = 4.34(6). They are different. However we
know that for the estimate of ν exponent with the ERG method we have very large
finite size effects (we have them already for the ferromagnetic case). Nevertheless
the important thing is that the non monotonic behaviour of ν with c is confirmed.

In Fig. 4.11 we have plotted the three scale-invariant observables B, q2L−1+η

and q4L−2+2η for different sizes as a function of L1/ν(T − Tc), with ν = 3.5 and
Tc = 0.545. We can see that curves at different sizes collapse quite well.
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Chapter 5

Basic concepts

5.1 Long-Range models
It is known for a long time that ferromagnetic systems of discrete spins with a
finite range of interaction have a lower critical dimension D = 1. It means that a
uni-dimensional chain of spins can not undergo a phase transition [60]. However
one can also define long-range (LR) models [14] in d dimensions. They are fully
connected models, with an Hamiltonian:

H = −1
2

N∑
i,j=1

Jijσiσj . (5.1)

The range of interactions is infinite and the intensity of the coupling Jij decays as
a power law with a certain distance of the spins: Jij ∝ |rij |−(d+σ). One can also
define spin glasses on LR models, taking Jij as independent identically distributed
random variables, extracted from a distribution P (J) (like for example a binary or
Gaussian distribution), requiring that the variance of P (J) decays as a power law:
J2

ij ∝ |rij |−(d+σ) [61]. These models can have a transition at dimensions smaller than
the lower critical one for usual short range (SR) models. Indeed a ferromagnetic LR
model can have a transition also in d = 1 as we have seen in Part I. Furthermore,
varying σ, the behaviour of the system (such as for example the critical exponents)
can vary from a mean field to a non mean field one until it reaches a certain value
σL and the behaviour of the corresponding SR system is recovered. In fact one can
write down a relation between σ and the effective dimension D of an equivalent SR
model. At σL, the effective dimension D reduces to the real dimension d of the LR
system. The behaviour in and out the range of validity of mean field approximation
can thus be observed varying only a parameter, and this is very useful if one wants
to simulate the system numerically because the complexity of the model does not
change with the effective dimension. Different LR models have been introduced, and
they have been studied by many people with many different methods. Moreover,
more than one relation σ − D exists. However, no-one has clarified the differences
between various LR models, the exactness of the σ − D relations and their limits.
In Part I we have analyzed one particular LR model (the hierarchical model) and
we have compared the results of our renormalization group method with SR models
exponents. However we have not specified whether this operation was really justified.
The purpose of this Part is to summarize the previous works on LR models, and to

47
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answer some crucial questions on how good are LR models to simulate SR models,
which is the best σ − D relation, what is its range of validity and how similar are
different LR models.

5.2 Algorithms: single spin flip versus cluster algorithms
The long range models are fully connected models, thus every spin interacts with
all the others N − 1 spins. If we want to simulate a LR model with a standard
single spin flip Monte Carlo method, for every update of a single spin, we have to
calculate its energy difference and it costs O(N) operations. A single update of the
whole system costs O(N2) operations.

However a version of the cluster algorithm proposed by Wolff in Ref. [91] has
been generalized to FM fully connected models in Ref. [92], allowing to reduce the
computational cost of a single Monte Carlo step to O(N). The cluster methods are
Monte Carlo algorithms that permit to overcome (or to reduce) the problem of the
critical slowing down in ferromagnetic models around the critical temperature. In
the following we will consider always Ising spins taking values σ = ±1. Firstly a
spin σi is chosen randomly, then the cluster is expanding by adding the neighbors
σj having the same sign, each with a probability

pj = 1 − e−2βJij . (5.2)

The procedure is repeated trying to add in the cluster all the neighbors of the spins
that are already in the cluster with the same rules as before. When no more spins
can be added, the whole cluster is flipped. The choice of the probability in Eq. (5.2)
assures that the detailed balance is satisfied with an acceptance rate of the flipping
of the cluster that is always equal to 1. Near the critical temperature, when the
correlation between spins grows, the size of the constructed cluster grows too, and
this permits to reduce the critical slowing down. Unfortunately, when this algorithm
is used in fully-connected models, it requires O(N2) steps, because every spin has
N neighbors. In Ref. [92], the use of cumulative probability distribution for adding
a neighbor at distance r from the spin in analysis allows to check all the neighbors
of a given spin with the correct probability with O(1) operations (as long as T 6= 0).
The probability that the first spin to be included in the cluster is the j-th from the
original one is:

P (j) = pj(1 − pj−1)...(1 − p1). (5.3)

Now we define the cumulative bond probability as:

C(j) =
j∑

n=1
P (n). (5.4)

At this point we extract a random number r uniformly in [0, 1]: if C(j − 1) < r ≤
C(j), then the first spin included in the cluster is the j-th. The condition on the spin
being parallel to those in the cluster is checked after the selection. If the selected
spin is antiparallel to those in the cluster, it is not added. After the first step, we
want to include in the cluster spins at distance k > j. Eq. (5.3) is generalized as

Pj(k) = pk(1 − pk−1)...(1 − pj+1) (5.5)
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and it leads to a cumulative bond probability:

Cj(k) =
k∑

n=j+1
Pj(n). (5.6)

When Eq. (5.2) is inserted in the previous one, it simplifies to:

Cj(k) = 1 − exp

 k∑
n=j+1

−2βJn

 , (5.7)

where Jn is the coupling between spins at distance n. A new random number is
extracted and a new spin is selected. Spins are added in this way until the maximum
distance N/2 is reached. Then we try to add neighbors starting from all the other
spins already inserted in the cluster in the same way. Naturally in this procedure we
have to take into account that there are more than one spin at distance k (especially
in dimensions higher than 1), and we must ensure that every spin is counted with
the right probability.

Given Cj(k) two are the possibilities to calculate the distance k. The first one is
to construct a look-up table. In fact the cumulative probability is calculated only at
the beginning and it is the same for all the spins, because the system is homogeneous.
Moreover only C(j) has to be calculated. In fact Cj(k) can be derived from it as:

Cj(k) = C(k) − C(j)
1 − C(j)

.

Once the random number is extracted, we search in the look-up table to determine
k. This operation has a cost O(log(N)). However the advantage of this method is
that it is exact.

The second possibility is to approximate the interaction Jij = |i − j|−(σ+d) into
a continuous form:

Jij =
∫ |i−j|+ 1

2

|i−j|− 1
2

x−(d+σ)dx. (5.8)

With this definition, Eq. (5.7) becomes:

Cj(k) = 1 − exp
(

−2β

∫ k+ 1
2

j− 1
2

x−(d+σ)dx

)
. (5.9)

The integral is exactly soluble, thus we can solve the equation Cj(k) = r, where r is
the extracted random number and we can calculate k directly. This method is fast,
and not expensive in terms of computational memory, however it is approximated.
It differs from the original version by terms that are powers higher than σ + d.
For this reason the choice of the approximated version should not imply changes
in the universality class of the model. If the memory cost of the look-up table is
too high, for example when large sizes in dimensions higher than 1 are studied, one
can choose also to use the look-up tables at small distances and to approximate the
couplings for distances greater than a cut-off, because the differences between the
approximated and the original couplings decay very fast with the distance. With
this cluster algorithm the computational cost is O(N), and it allows to study larger
sizes.
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5.3 Dense versus sparse LR models
Unfortunately, the cluster algorithm can not be used when the system is not homo-
geneous, namely when Cj(k) is not the same for all the spins. This includes the case
in which the disorder is present. In fact we can not memorize a different look-up
table for each spin, and if the couplings are random the integral in Eq. (5.9) is no
more soluble. However the problem of the O(N2) time of simulations for SG LR
models was overcome in Ref. [59] with the introduction of a diluted version of LR
models.

In the new version the quenched random couplings Jij are again independent
and identically distributed random variables, but they take a non zero value with
a probability decaying with the distance between spins σi and σj as P (Jij 6= 0) ∝
|rij |−(d+σ).

Non-zero couplings take values from a P (J), that is for example a Gaussian
with zero mean and unit variance. An average coordination number z is introduced.
Authors of Ref. [59] use z = 6. The universality class depends on the value of the
exponent σ, and for σ > 0 it turns out to be equal to the one of the fully connected
version of the model previously introduced, where bonds are Gaussian-distributed
with zero mean and a variance depending on the distance as J2

ij ∝ |rij |−(d+σ). For
−d ≤ σ < 0 the model behaves like a SG on a Bethe lattice [62][63], that is
perfectly recovered when σ = −d, at variance with the fully connected version that
is ill-defined for any σ < 0 because the energy is no longer extensive.

The diluteness of the model permits to simulate larger sizes and to limit the
strong finite size effects that are the strongest problem to the numerical analysis of
LR SG models.

Even if in principle the diluted version can be applied to every LR model, it has
been introduced only for models with quenched disorder. No one has used it for
the FM LR model, because for homogeneous model there are ways to reduce the
computational complexity without changing the model, like the algorithm explained
in the previous section.



Chapter 6

Known results on LR models

6.1 Analytical and numerical results for ferromagnetic
models

The simplest LR model that can undergo a paramagnetic/ferromagnetic phase tran-
sition is a one-dimensional chain of spins that has the Hamiltonian in Eq. 5.1 with
Jij ∝ 1

|i−j|1+σ . For this model, Dyson demonstrated analytically that there is a
standard second order phase transition if 0 < σ < 1 [14]. For σ ≤ 0 the energy is
no longer an extensive quantity.

This model can be easily generalized to d dimensions, redefining the couplings
as Jij ∝ 1

|rij |d+σ where rij is the euclidean distance rij =
√∑d

x=1 |(rx)i − (rx)j |2.

6.1.1 ε-expansion for LR models

The FM version of this model has been analyzed using a renormalization group
approach in Ref. [45] and we review here the most important results of this work.
The field theory in the momentum space (for n-dimensional spins) can be written
as:

∫
dxL(φ) =

∑
k

u2(k)φ(k)φ(−k) + u
∑

k1k2k3

φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3)

(6.1)
where u2(k) = r + jσkσ + j2k2, and the parameter r varies linearly with the tem-
perature as usual. If σ > 2, the leading term in u2(k) is the k2 one, then the usual
short range behaviour in d dimensions is recovered.

When σ < 2, the leading term in u2(k) is the kσ one, the k2 term can be ignored
and a new behaviour is present. In this latter case, supposing u to be small, in
differential form the renormalization-group equations for r and u to leading order
are

dr

dl
= σr + (n + 2) u

j + r

du

dl
= εu − (n + 8) u2

(j + r)2

where j depends on jσ and we have defined the parameter ε = 2σ − d.
The Gaussian fixed point u∗ = r∗ = 0 is stable if ε < 0. The critical exponents

are easily calculated, leading to ν = 1/σ, η = 2 − σ, γ = 1. At ε = 0, this fixed
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52 6. Known results on LR models

point is marginally stable and logarithmic behaviour appears for the correlation
length and susceptibility. This point corresponds to the upper critical exponent
σU = d

2 . For ε > 0 the Gaussian fixed point is unstable with respect to u and a new
fixed point u∗ = O(ε) is found. The critical exponents can be obtained as a series
expansion in ε:

1
γ

= 1 − n + 2
n + 8

ε

σ
+ O(ε2)

The second order term has been calculated too [45]. η is found to be not renormal-
ized up to third order in ε and it is commonly believed that it will have the mean-field
value at all orders because under renormalization new kσφ(k)φ(−k) terms are not
generated. This has been also verified numerically with good accuracy in Ref. [64].

6.1.2 Problems at the lower critical σ

The picture that emerges from the work of Ref. [45] is very simple and intuitive:
for 0 < σ < σU = d

2 the system is in a mean-field region, for d
2 = σU < σ < σL = 2

the exponents are different from the mean field ones and change continuously with
σ, for σ > σL = 2 the SR behaviour is recovered. However there are some debated
points. For example from this ε expansion, the lower critical exponent is σL = 2,
for all the dimensions 1. However in d = 1, at σ = 1 the transition becomes
of the Kosterlitz-Thouless (KT) type [66], characterized by a discontinuous jump
of the order parameter at the critical temperature Tc and by a correlation length
that diverges exponentially approaching Tc and remains infinite below Tc. The KT
transition picture is supported by analytical [67] [68] evidences. This is a very
curious thing: the one-dimensional LR model was the first model in which a KT
transition was supposed, even if this kind of transition became famous only after that
it was found in the two dimensional XY short range model. Numerical evidences
of this kind of transition [69] were found only after decades, when the new cluster
algorithm of Sec. 5.2 was developed.

In Ref. [65] the ε-expansion for the one-dimensional model has been performed
around the lower critical exponent σL = 1. The lowest order expansion leads to

ν = 1√
2 (1 − σ)

(6.2)

for the Ising model that has n = 1. The behaviour is qualitatively different if n > 1.
For σ > 1 the transition disappears.

The problem of the inconsistency of the results of [45] near σ = 2 is not related
only to the one-dimensional case. In fact, according to the picture of Ref. [45],
η = 2 − σ for σ < 2 and η = ηSR, for σ > 2. This would imply a jump discontinuity
in η at σ = 2, and a non-monotonic behaviour in σ. While this phenomenon is
not forbidden by thermodynamic arguments (which only require η ≤ 2 + σ), it has
attracted considerable attention over the past decades, because it is quite singular.

1In SR systems the lower critical dimension is the dimension at which there exists no more a
phase transition. In LR models, we call as lower critical exponent the value of σ for which the SR
behaviour is recovered. If the SR model has a transition in d dimensions, thus there is a transition
also for σ > σL, while if the SR model does not have a transition in d dimensions, there is no
transition for σ > σL



6.1 Analytical and numerical results for ferromagnetic models 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.5  1.6  1.7  1.8  1.9  2

η

σ

Picco

Fisher et al.

Sak

Figure 6.1. Behaviour of η(σ) as proposed in different works: in the work of Fisher et al. of
Ref. [45], η = 2−σ up to σ = 2, in the work of Sak of Ref. [71] η = max(2−σ, ηSR = 1

4 ),
in the data of Picco of Ref. [18] η seems to interpolate smoothly between 2 − σ and
ηSR = 1

4 .

In Ref. [71] a different scenario was proposed. In fact, if the term j2k2 is not
ignored in Eq. (6.1) when σ < 2, as done in Ref. [45], it can be seen that the non-
trivial fixed point is characterized by j∗

2 = O(ε2) 6= 0. Even if one starts with j2 = 0,
SR forces appear after the renormalization, determining the critical behaviour. As
a consequence, for d < 4 the boundary between the intermediate and the SR regime
was found to shift from σL = 2 to σL = 2 − ηSR. In particular, for σ < 2 − ηSR, the
introduction of j2 6= 0 does not change the critical exponents, that remain those
of Ref. [45]. When σ > 2 − ηSR, all the exponents become the SR ones, without
discontinuity, and without loosing the monotonicity in σ. In fact in this regime the
fixed point is characterized by j∗

σ = 0, and the field theory is the usual SR one.
In support to this picture, in a field-theoretic approach, Honkonen and Nalimov

[72] proved, to all orders in perturbation theory, the stability of the SR fixed point
for σ > 2 − ηSR and of the LR one for σ < 2 − ηSR. Within this new scenario, the
theory is also consistent with the exact results for the one-dimensional case. In fact,
for d = 1, ηSR = 1. In this way the lower critical exponent is σ = 1, as expected.
However, the analysis of [71] has also been the subject of criticism: in Ref. [73] the
results for n ≥ 2 are contested, in Ref. [74] the absence of the kink at σ = 2 − ηSR

is hypothesized, in Ref. [75] the picture of Ref. [45] is supported. All this works
on the subject are related to the importance to understand how to treat systems in
presence of different, competing fixed points.

There are also numerical studies. In Ref. [64] a Monte Carlo study of a LR
model in d = 2, using cluster algorithms, supports the scenario of Ref. [71] where
η = max(2−σ, ηSR = 1

4), excluding definitively the picture of Ref. [45]. In particular
they affirm to find logarithmic corrections to scaling at σ = 1.75, clear indication
of a crossover between different critical points. Very recently, in Ref. [18] the
same study has been improved. In fact, the measurement of η for a LR system in
d = 2 has been repeated, close to the region where its behavior is changing, i.e. for
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σ ' 2 − ηSR, obtaining more precise results. The author confirms that there is no
discontinuity but a clear deviation from the behavior predicted by Sak in Ref. [71]
is measured. In particular in the intermediate regime up to σ ' 1.5 the results
are in agreement with the prediction η = ηLR = 2 − σ. For σ > 2, η is in perfect
agreement with the value for a SR model. In the remaining part for 1.6 ≤ σ ≤ 2
the results do not agree with the prediction of the RG analysis [45][71]. On the
contrary, η seems to interpolate smoothly between these two behaviors. Moreover
logarithmic corrections are not found in this region. The results in Ref. [64] are
compatible with those in Ref. [18], due to the larger error bars. Concluding, the
scenario at lower critical exponent is far to be clear. The three proposed behaviours
are summarized in Fig. 6.1.

6.1.3 Comparison between Hierarchical and Long Range models

The hierarchical model [14] (see [15] for a review) is a particular one-dimensional
LR model, in which the Hamiltonian of 2n spins can be constructed iteratively, as
explained in Sec. 3.3.1. The intensity of the interactions decreases with the level
by a factor c = 2−(σ+1). One expects the model to behave like the usual LR one,
with the same exponent σ, because the decaying at large scales of the coupling
intensity is the same. Indeed the model undergoes a standard second order phase
transition if 2−1 > c > 2−2 [14] (i.e. 0 < σ < 1). For 2−1 > c > cU = 2−3/2 (i.e.
0 < σ < σU = 1/2), the Gaussian solution of the field theory associated to this
model is the stable one and the critical exponents are the mean-field ones as for
usual LR systems. Again, for 2−3/2 > c > cL = 2−2 (i.e. 1/2 < σ < σL = 1) the
exponents differ from the classical ones, but nobody has checked if and how much
they differ from the LR ones. The first order term in the ε-expansion of the two
models is the same, while the second order one differs slightly, the coefficients being
4.445 for the HM and 4.368 for the LR model [88].

One crucial difference between the two models is that for the borderline case
σL = 1 there is no KT phase-transition for the HM. Indeed in the HM all the
interactions are weaker than in the usual LR model. For this reason if the HM has
a transition, it implies that the LR model has a transition too, but the vice-versa is
not necessarily true. However there is a KT phase transition in the HM for σ = 1
if interactions at level n, Jn = 2−2n, are made slightly stronger: Jn = 2−2n log(n)
[70].

6.2 Analytical and numerical results for SG models

In this section, we review the most important works on disordered SG LR models,
following the previous line of FM LR models.

6.2.1 ε-expansion for LR SG models

The SG LR model is a d dimensional model that has the Hamiltonian (5.1) with
couplings extracted from a probability distribution with zero mean and variance
J2

ij ∝ |rij |−(d+σ). It has been introduced and analyzed using a renormalization
group approach in Ref. [61]. The field theory in the momentum space (for n-
dimensional spins) can be written as:
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∫
dxL(φ) =

∑
k

u2(k)Qab(k)Qab(−k) + u
∑
k1k2

∑
abc

Qab(k1)Qbc(k2)Qca(−k1 − k2)

(6.3)
where Q is the replica field, a, b, c, are replica indices, u2(k) = r + jσkσ + j2k2, and
the parameter r varies linearly with the temperature as usual. If σ > σL = 2, one
can think naively that the leading term for u2(k) is the k2 one, then the usual short
range behaviour in d dimensions is recovered. However, as for the FM case, this is
not really true, see next Section. When σ < σL, the leading term for u2(k) is the
kσ one, the k2 term can be ignored and a new behaviour is present.

Supposing u to be small, the renormalization-group equations for r and u can be
written. Defining the parameter ε = 3σ − d, the Gaussian fixed point u∗ = r∗ = 0 is
found to be stable if ε < 0. This defines the upper critical exponent as σU = d

3 . The
mean field critical exponents are easily calculated, leading to ν = 1/σ, η = 2 − σ
in the region 0 < σ < σU = d

3 . For ε > 0 the Gaussian fixed point is unstable with
respect to u and a new fixed point u∗ = O(ε) is found. The critical exponents can
be obtained as a series expansion in ε: ν = 3

d−2ε . As in the FM case, η is found
to be not renormalized. This has been verified numerically with good accuracy in
Ref. [59] using the diluted version of LR models introduced in Sec. 5.3. Because of
strong finite size effects, this check failed in previous works [76].

6.2.2 Problems at the lower critical σ

While ferromagnetic models have an exponent ηSR > 0, models described by a
cubic field theory, like SG, have in general ηSR < 0. For these systems, some works
[77] [78] predict that the LR fixed point is the important one as long as σ < 2.
When σ = 2, the SR behaviour is restored, inducing a discontinuous jump in the
exponent η to its SR value. At difference with FM models, this scenario preserve
the monotonicity with σ. However, as in FM case, this scenario is not the correct
one in the one-dimensional case, where for σ > 1 there is no transition. For σ = 1
in Ref. [61] a KT transition is supposed, as in the FM version. Alternatively a
simple T = 0 transition can be present. However there are no numerical studies in
support of one of this pictures. Like in the FM case, more recent papers [79][80]
show that also in the case ηSR < 0 the long-range interaction dominates as long as
2 − σ = ηLR > ηSR. At ηLR = ηSR the exponents change continuously to their SR
values that hold everywhere for σ > σL = 2 − ηSR. In the SG case there are no
numerical simulation to confirm predictions due to the fact that one should simulate
a LR SG system in d = 3 (the lower critical dimension is d ' 2.5), with a quite big
computational effort.

6.3 σ − D relations

6.3.1 The different relations

Comparing the field theory of a LR model in one dimension with that of a SR model
above its upper critical dimension (D > DU ), the relation

σ = 2
D

(6.4)
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can be obtained, in the same way of Sec. 3.3.2. The upper critical dimension for
the FM SR model, DU = 4, thus corresponds to the upper critical exponent for
the FM LR model σU = 1/2. In the same way, the upper critical dimension for
the SG SR model, DU = 6, corresponds to the upper critical exponent for the SG
LR model σU = 1/3. Moreover σ = 0 corresponds to D = ∞, as one can expect.
However, this relation has a problem. In fact, the exponent for which there is no
more a phase transition, σL = 1, will correspond to a lower critical dimension in SR
models DL = 2. But we know that the lower critical dimension for a SR model (with
discrete degrees of freedom) is DL = 1. This problem can be overcome modifying
slightly the matching relation [16]:

σ = 2 − ηSR(D)
D

(6.5)

Eq. (6.4) and (6.5) coincide in the mean-field region where ηSR = 0 but differ in
the non classical region. In Eq. (6.5) σ = 1 corresponds to DL = 1, as required.
If Eq. (6.5) holds, then one expects that γSR(D) = γLR(2−ηSR(D)

D ) if a perfect
matching holds between a d = 1 LR model with σ = 2−ηSR(D)

D and a SR model in D
dimensions. As a consequence of Eq. (6.5), using the scaling relation ν = γ/(2 − η)
and the known value of ηLR = 2 − σ in the region σ < 2 − ηSR, the relation for the
ν exponent of the correlation length will be:

νSR(D) = γSR(D)
2 − ηSR(D)

= 1
Dσ

γLR(2 − ηSR(D)
D

) = 1
D

νLR(2 − ηSR(D)
D

). (6.6)

Another σ − D matching formula can be constructed [17] directly imposing that

DνSR(D) = νLR(σ) (6.7)

One may ask if Eq. (6.5) and (6.7) are equivalent. They are equivalent in the mean-
field region, at the lower critical dimension and in the first order of the ε-expansion
around σU .

6.3.2 A more general formulation

Eq. (6.5) and (6.7) can be justified both in a more general formulation [81]. As
said in Sec. 2.2.4, the singular part of the free energy density for a system in D
dimensions has the scaling form:

fs = 1
LD

Φ(Lytt, Lyhh, Lyuu),

where u is the irrelevant operator that gives the leading corrections to scaling and
yu = −ω. If we suppose that there is a connection between a LR model in one-
dimension and a SR model in D dimensions, we can equate the singular part of
their free energy densities:

1
LD

ΦSR(LySR
t t, LySR

h h, LySR
u u) = 1

L
ΦLR(LyLR

t t, LyLR
h h, LyLR

u u). (6.8)

In order to compare the exponents, we want to eliminate the different prefactors,
and we can obtain this result writing everything in terms of the total number of
spins N , where N = LD in the SR model and N = L in the LR one. We obtain

1
N

ΦSR(NySR
t /Dt, NySR

h /Dh, NySR
u /Du) = 1

N
ΦLR(NyLR

t t, NyLR
h h, NyLR

u u).
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Thus the connection between the exponents is

yLR(σ) = ySR(D)
D

.

If we recall the relations with the critical exponents of Eqs 2.9 and 2.10, the previous
equation becomes:

νLR(σ) = DνSR(D); 2 − ηLR(σ) = σ = 2 − ηSR(D)
D

;

γLR(σ) = γSR(D); ωLR(σ) = ωSR(D)
D

.

(6.9)

The first relation is Eq. (6.7), while, knowing the value for η in LR systems,
and substituting it in the second relation leads directly to Eq. (6.5). Thus each
relation among the four in Eq. (6.9) defines a σ − D correspondence. If Eq. (6.8)
holds, then all the four correspondence in Eq. (6.9) are equivalent. If they are not
equivalent, it means that the free energy of SR and LR models are not exactly the
same.

Please note that the useful aspect of our definitions of the models is that all the
σ − D relations of this Section are valid both for the FM and the SG versions of the
models.

6.3.3 Numerical tests of the σ-D relations

If one want to test the exactness of the equivalence between a D-dimensional SR
model and a one-dimensional LR model, one has to simulate a LR system at a value
of σ that corresponds to D following for example Eq. (6.5), and verify if there is
the correspondence between all the exponents as in Eq. (6.9). For the FM there
is not a systematic study of the correspondence, while, only during the writing of
this Thesis, this has been analyzed for SG in Ref. [81] for D = 3 and D = 4, using
the diluted LR version. In D = 4 the authors measure ηSR(4) = −0.320(13) that
corresponds to σ = 0.58. For this value νLR(0.58) = 4.41(19) is measured, to be
compared with 4·νSR(4) = 4.272(20) and ωLR(0.58) = 0.277(8) to be compared with
ωSR(4)/4 = 0.26(4). In D = 3 the value ηSR(3) = −0.375(10) has been measured in
Ref. [82]. It leads to σ = 0.792. For this value they measure νLR(0.792) = 8.7(1.9)
to be compared with 3 · νSR(3) = 7.35(45) but they can not measure ω, because of
the small finite size corrections. In summary, for D = 4 the matching between LR
and SR model seems very good. For D = 3 the data are evenly compatible, however
errors are bigger and the answer is not definite. Anyhow it is reasonable that the
correspondence between SR and LR models becomes weaker approaching the lower
critical dimension. Indeed at the upper critical dimension the field theory is exactly
the same, while at the lower critical dimension for the FM model we know that SR
and LR models have even qualitatively different behaviours. In fact the SR model
has a T = 0 transition, while the LR model has a KT transition.





Chapter 7

New results on the connection
between LR and SR models

In this Chapter we report our new results on the relation between LR and SR
models. We have focused on FM models, where many things are still unclear. The
same work on SG systems is left as a very interesting future generalization.

7.1 The one dimensional LR model

We were not able to find estimates of the critical exponents in d = 1 for values of
σ corresponding to D = 2 and D = 3 following Eq. (6.5) neither for the power law
LR models nor for the HM. For this reason we have done Monte Carlo simulations
at these values of σ. Indeed Eq. (6.5) was introduced recently studying SG models,
and was never applied to FM, for which the relation (6.4) was often used. Moreover
we want to see how similar is the HM with respect to the power law LR model
because to our knowledge there is not a systematic study of the differences between
these two models.

7.1.1 Details of the simulations

We have simulated the d = 1 LR model using the cluster algorithm proposed in Ref.
[92] in the version with the look-up table for the cumulative bond probability of a
spin to be inserted in the cluster, as explained in Sec. 5.2. We have put periodic
boundary conditions, in this way two spins i and j interact with a single coupling
that depends on the minimum distance between them: rij = min(|i − j|, L − |i − j|),
where L is the size of the system. We have performed a Monte Carlo simulation
with a number of cluster flips going from N = 106 for the largest sizes up to
N = 107 for the smallest ones. We have checked the equilibration dividing the first
measurements into bins with a logarithmically growing size, and we have assumed
that the system has reached the equilibrium when the average of the magnetization
of two neighbouring bins is the same within the error. We have found that the
equilibration time is τ ' 105 cluster MC steps for the largest sizes. We want to
compute the susceptibility and the Binder parameter, thus we need the second and
fourth moments of the magnetization. We have obtained two different estimates of
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this quantity. The first is the usual one:

m2 = 〈
(

1
N

∑
i

σi

)2

〉, m4 = 〈
(

1
N

∑
i

σi

)4

〉.

The second one uses the improved estimators that can be defined when cluster
algorithms are used [83]. We can think to the cluster algorithm proposed by Wolff,
and here used, in a slightly different way. We try to construct clusters, with the rules
explained before, until each spin is in a cluster, like in the Swedsen-Wang algorithm
[84]. The number of clusters will be NC . Then we choose a spin randomly and we
flip the cluster of the chosen spin. The probability to choose a certain cluster will
be proportional to its size |C|: PC = |C|

N . The average size of the cluster flipped
in the Wolff algorithm is thus 〈|C|〉 = 〈

∑NC
x=1

|Cx|
N |Cx|〉. Using this relation we can

write the squared magnetization as:

m2 = 1
N2 〈

∑
i,j

σiσj〉 = 1
N2 〈

∑
i,j

NC∑
x=1

δi,j(Cx)〉 = 1
N

〈
NC∑
x=1

|Cx|
N

|Cx|〉 = 1
N

〈|C|〉 (7.1)

The function δi,j(C) is 1 if the two spins σi and σj are in the same cluster C,
otherwise it is 0. The first passage is justified by the fact that in a cluster algorithm,
two spins are correlated only if they are in the same cluster.

In an analogous way we can derive the relation between the fourth moment and
the cluster sizes:

m4 = 1
N4 〈

∑
i,j,k,l

σiσjσkσl〉 = 1
N4 〈

∑
i,j,k,l

NC∑
x=1

δi,j,k,l(Cx) + 3
NC∑

x,y=1
x 6=y

δi,j(Cx)δk,l(Cy)

〉 =

= 1
N4 〈

∑
i,j,k,l

3
NC∑

x,y=1
δi,j(Cx)δk,l(Cy) − 2

NC∑
x=1

δi,j,k,l(Cx)

〉 =

=〈 3
N2

NC∑
x,y=1

|Cx|2|Cy|2

N2 − 2
N3

NC∑
x=1

|Cx|4

N
〉 = 3

N2 〈|C||C ′|〉 − 2
N3 〈|C|3〉.

(7.2)
Operatively, we compute 〈|C||C ′|〉 in the following way: we choose randomly a

spin and, starting from it, we construct a cluster. We call |C| the number of spins of
this first cluster. Then we choose a second spin randomly. If it is in the constructed
cluster, we put |C ′| = |C|. If it is not in the cluster, we construct a new cluster
starting from it, and we call the new cluster size |C ′|. C and C ′ are disjoint (i.e. non
overlapping). Please note that we can not compute the average 〈|C||C ′|〉 simply as
〈|C|2〉 because in this way we do not take into account the condition |C| + |C ′| ≤ N .

Eq. (7.1) has been already introduced [83], while we believe Eq. (7.2) is new.
The improved estimators have been introduced because they have a reduced

variance with respect to the usual estimators. In fact the average is performed
using the observable δi,j(C) that takes values 0 or 1, at difference with the usual
method that uses the observable σiσj , that assumes values -1 and 1. However,
the measure of δi,j(C) can be more correlated with respect to the measure of σiσj .
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Figure 7.1. Scale invariant observable χL/Lσ (left) and Binder cumulant (right), com-
puted at different n = log2 L, as a function of the temperature T , at σ = 0.654533.
The curves at different sizes should cross at a temperature that approaches Tc when L
grows.

For this reason, it is not obvious that the final error is smaller for the improved
estimators, especially when bigger clusters are present [85]. This can be the case of
the LR model, where we expect clusters to be bigger with respect to the usual SR
one.

We have computed the susceptibility and the Binder parameter and their error
with the jackknife method separately for the two methods. The error for the cluster
method is slightly bigger than that for the usual spin method. At the end we have
taken the weighted average between the two values. In this way we are conscious that
we are underestimating a little the error because the two measures are correlated
but we assume them to be uncorrelated when we perform the weighted average.

7.1.2 Determination of the critical exponents

We have used this method to simulate a one-dimensional LR model with values of
σ corresponding to D = 2 and D = 3. In D = 2 we know exactly the exponent
η = 1

4 and it corresponds to σ = 2−1/4
2 = 0.875. In D = 3, η = 0.0364(5) as found

in Ref. [87] and it corresponds to σ = 2−0.0364
3 = 0.65453. We have computed the

critical exponents ν and ω using the Finite Size Scaling (FSS) analysis explained in
Appendix A. Here we look in detail at the case with σ = 0.65453, but the analysis
is the same for all the other systems (except for some special ones that will be
mentioned specifically).

A great advantage of LR models is that the η exponent is not renormalized in
the non-classical region as explained before. Thus we know its analytical expression:
η = 2 − σ. For this reason we can compute the susceptibility χ = N

T 〈m2〉 and we
can construct a scale-invariant quantity just dividing it by its dimension: χL/Lσ.
Another quantity that we look at is the dimensionless Binder parameter: B =
1
2 [3 − 〈m4〉

〈m2〉2 ]. Both observables should cross at Tc for large sizes.
In Fig. 7.1 the two observables χL/Lσ and BL are plotted as a function of the

temperature, around the critical temperature Tc, for different sizes L = 2n of the
systems. We have extracted the temperatures T ∗

L of the crossing of χL/Lσ for sizes
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Figure 7.2. Left: quotient of the Binder parameter for L and 2L at T ∗
L, computed at the

crossing temperature of χL/Lσ. The straight line is the best fit using Eq. (A.6) with
ω left as a free parameter. Right: quotient of the derivative of the Binder parameter
at T ∗

L. The straight line is the best fit as a function of L−ω using Eq. (A.7), with ω
determined from the previous fit and the intercept 21/ν left as a free parameter.

L = 2n and L′ = 2L = 2n+1. They should approach the critical point following
Eq. (A.4). We have computed the values of the Binder parameter B(L, T ∗

L) and
the quotient Q = B(2L,T ∗

L)
B(L,T ∗

L) at the previously extracted temperatures T ∗
L. Q should

behave as in Eq. (A.6). Thus we have performed a log-log linear fit with ω left as
a free parameter. The results are shown in the left side of Fig. 7.2. Once we have
determined ω, we extract the derivative of the Binder parameter at T ∗

L, B′(L, T ∗
L),

as the angular coefficient of the straight line passing through the data. We compute
the quotient Q = B′(2L,T ∗

L)
B′(L,T ∗

L) that should follow Eq. (A.7), with sxD/ν that in this case
is simply 21/ν . Thus, using the value of ω previously determined and performing a
linear fit as a function of L−ω, we extract the value of ν from the intercept. The
results are shown in the right panel of Fig. 7.2. At this point, fitting with a line
the values of T ∗

L as a function of L−ω−1/ν , with the previously determined ω and ν,
we can extract Tc as the intercept, using Eq. (A.4), as shown in Fig. 7.3.

7.1.3 Results for the 1d LR models

The results in d = 1 for σ = 0.875 corresponding to D = 2 and σ = 0.654533
corresponding to D = 3 are the following:

1
νLR(0.875)

= 0.4124(13), Tc(1.875) = 2.10589(1)

1
νLR(0.65453)

= 0.506(14), ωLR(0.65453) = 0.201(11), Tc(0.65453) = 3.19289(2).

For σ = 0.875 it is quite impossible to determine ω because we see very little evolu-
tion of T ∗

L with L and the quotient of the Binder parameter is nearly independent
of the size.
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function of L−ω−1/ν , where ω and ν have been determined as in Fig. 7.2. The straight
line is the best fit using Eq. (A.4), leaving the intercept Tc as a free parameter.

For the hierarchical model, we performed the same analysis. The only difference
is that we computed the Binder parameter and the susceptibility exactly using Eq.
(3.3.1). The results are:

1
νHM (0.875)

= 0.3841 ± 0.0009, ωHM (0.875) = 0.462 ± 0.003

1
νHM (0.65453)

= 0.5186 ± 0.0072, ωHM (0.65453) = 0.212 ± 0.005.

Naturally for the HM, many other methods can be used to obtain more precise
results. However, for the exponent ω only an estimate is available [94]

ωHM (2/3) = 0.2185787,

consistent with our results. The values for the ω exponents of LR and HM for
σ = 0.65453 are in perfect agreement. If we compare them with the SR values [87]

ωSR(D = 3) = 0.84(4), ωSR(D = 2) = 2

and remembering the supposed relation between them, ωSR(D) = DωLR(σ), it
seems that LR models have bigger finite size effects (smaller ω) than SR models.
Thus, looking at the ω exponent, Eq. (6.9) in not satisfied, especially for D = 2.

In Fig. 7.4 1/ν is plotted as a function of the parameter σ in the non mean-field
region, for the HM model as found in Ref. [88], and for the LR one-dimensional
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model, from Ref. [89] and [90]. For the LR model, our results for D = 2 and
D = 3 are reported too. From Fig. 7.4 it is clear that the two analyzed one-
dimensional models (HM and the LR one) are not in the same universality class.
While their critical exponents are quite similar near to the upper critical σU = 1/2,
the differences grow approaching the lower critical σL = 1. This is reasonable,
because we know that the two models have very different behaviours at σL = 1. We
have reported also the ε-expansion at the second order around σU = 1/2 of the two
models. They are indeed very similar. Moreover we have added the ε expansion of
the LR model around σL = 1 as in Eq. (6.2).

To verify the exactness of Eq. (6.6), in Fig. 7.4 the values of the exponent
of the SR model are placed at the correspondent value of σ as in Eq. (6.5): in
D = 2, νSR(2) = 1 is placed at the correspondent σ = 0.875, for D = 3 the
point at νSR(3) = 0.6301(4) [87] corresponds to σ = 0.65453. Eq. (6.6) is a good
approximation near to the upper critical dimension (it is good for D = 3) but it is
no more good for D = 2. Remembering also the results for the ω exponent, we can
assert that it is not possible to find a single value of σ that verifies the equivalence
for all the critical exponents as in Eq. (6.9).
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7.2 In more than one dimension

7.2.1 Generalization of the σ − D relations

How can we generalize the σ − D relations of Sec. 6.3 if the LR model is defined in
more than one dimension? Let us first remark the notation: d is the real dimension
of the LR model while D is the dimension of an equivalent SR model. If we use
the same arguments of the one-dimensional case in Sec. 6.3.2 for the scaling form
of the free energy, the relation

σ

d
= 2 − ηSR(D)

D
(7.3)

is obtained.
However Eq. (7.3) can be also obtained from another way. In fact one can

think that an approximate super-universality exists. The conjecture is that the
exponent γLR(d, σ) and other quantities are approximately functions only of σ̂ =
σ/d. This conjecture is exact in all the mean-field region. In fact, γLR = 1 in the
same region 0 < σ̂ < 1

2 , independently on d. The SR model is recovered when
σ = σL(d) = 2 − ηSR(D = d) [64] [71]. If now we use this information, we obtain
that γSR(D) = γLR(σ̂ = 2−ηSR

D ) = γLR(σ
d ). Thus the new relation between a LR

model in d dimensions and an effective SR model in D dimensions is Eq. (7.3). In
this way we have connected two problems: the determination of the σ − D relation
and the threshold σL where the SR behaviour is recovered. These problems are
often viewed as disconnected, however we think that they are closely connected.

Please note that the value of σL is not universal: σL(1) = 1, σL(2) = 7
4 [86],

σL(3) = 2 − 0.0364 = 1.9636 [87], σL(4) = 2. In the same way, σ̂ = σ̂L is not
universal: σ̂L(1) = 1 , σ̂L(2) = 0.875 , σ̂L(3) = 0.65453, σ̂L(4) = 0.5. For the
exponent of the correlation length, using the scaling relation ν = γ/(2 − η), the
known value of η = 2 − σ in the LR region and Eq. (7.3), one obtains:

νSR(D) = γSR(D)
2 − ηSR(D)

= d

Dσ
γLR(2 − ηSR(D)

D
) = d

D
νLR(2 − ηSR(D)

D
) (7.4)

In analogy with Eq. (6.9), one can thus suppose that there exists a value of σ
that satisfies all the following relations for the critical exponents:

νLR(σ) = D

d
νSR(D); 2 − ηLR(σ) = d

D
(2 − ηSR(D)) ;

γLR(σ) = γSR(D); ωLR(σ) = d

D
ωSR(D).

(7.5)

Please note that the two dimensions enter only with their ratio.

7.2.2 Simulations in d = 2

Unfortunately there were not previous estimates for the ν exponent for the LR
model in more than one dimension, only during the writing of this Thesis in Ref.
[18] the value νLR = 0.96(2) for σ = 1.6 in d = 2 was reported, extracted from a
Monte Carlo simulation. For this reason we have also done simulations in d = 2 to
extract the exponents at values of σ = 1.20, 1.60 and in particular at σ = 1.30906
that corresponds to D = 3 and σ = 1.75 where the SR behaviour in D = 2 should be
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recovered. For σ = 1.2 and σ = 1.30906, the simulations have been performed with
the same cluster algorithm and the same analysis method as for d = 1, described
in Sec. 7.1.1 and 7.1.2. The obtained values for the νLR(σ) and ωLR(σ) exponents
and for the critical temperatures are:

1
νLR(1.2)

= 1.024(34), ωLR(1.2) = 0.480(25), Tc(1.2) = 6.83427(1),

1
νLR(1.30906)

= 1.014(33), ωLR(1.30906) = 0.32(15), Tc(1.30906) = 6.32546(4).

The value of νLR at σ = 1.30906 is compatible with the one for the D = 3 SR model
νSR = 0.6301(4) [87] following Eq. (7.5). The value of ωLR at σ = 1.30906 is very
difficult to extrapolate because there are strange non-monotonic finite size effects.

For σ = 1.6 and σ = 1.75 the finite size effects seem too strong. In fact the
“apparent“ critical temperature at which the Binder at different sizes cross changes
very quickly, and it is not possible to extract the critical Binder value B(∞, Tc).
For this reason we choose to use a slightly different model, that does not consider
only the minimum image but also all the others:

Jij =
∞∑

x=−∞

∞∑
y=−∞

(
(xi − xj + Lx)2 + (yi − yj + Ly)2

)−(d+σ)/2

as done in Ref. [64]. In the thermodynamic limit the two models are the same.
In Ref. [64] they can compute the contribution of all the images exactly because
they use the couplings defined with the integral of Eq. (5.8). Instead we use the
exact definition of the couplings, thus in principle it is not possible to include all the
images exactly. To overcome this problem, we estimate the error that we commit
including only the first 4a images in the coupling between two points at distance 0:∫

|x|>a
|y|>a

dxdy
(
(Lx)2 + (Ly)2

)−(2+σ)/2
< 2πL−(2+σ)

∫ ∞

a
drr−(1+σ),

and we impose that it is smaller than 10−9, in this way we obtain a. At this point we
compute the new coupling between two spins as the sum of the couplings between
the 4a images. We have replaced the sum over the images with an integral, and we
have changed the integration bound from a square to a circle. This is not a problem
because we simply overestimate the computed error. Due to the large values of σ,
the number of images considered is always small. If it results to be smaller than
10, we put always a = 10. Adding the images, the observables show a reduced
dependence from the size, and the analysis is easier.

We have not used the dimensionless quantity χL/L2−η because there is not
agreement on the values of η in this region. For this reason we have performed the
following analysis. We have looked at the temperatures T ∗

L at which the Binder
parameters for L and 2L cross each other. They scale again with Eq. (A.4). Then
we have fitted the values of B(L; T ∗

L) with a power law function of the type in Eq.
(A.5), determining ω. For σ = 1.75, assuming that the Binder parameter at the
critical point should recover the SR value, we have used the value of the Binder
parameter B∞(Tc) = 0.91588... [97] in the fit to reduce the uncertainty in the
determination of ω. At this point we have computed the quotient of the derivative
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of the Binder parameter at T ∗
L and extracted the exponent ν. Knowing ν and ω, we

have extracted Tc.
The obtained results are the following:

1
νLR(1.6)

= 0.996(33), ωLR(1.6) = 0.130(45), Tc(1.6) = 5.29321(4),

1
νLR(1.75)

= 0.98(10), ωLR(1.75) = 0.213(8), Tc(1.75) = 4.89455(17).

We do not see logarithmic corrections, as said in Ref. [64]. The value of ωLR at
σ = 1.75 is much smaller than that for a SR model in D = 2, an explanation will be
given in the next section. The value for νLR(1.75) is compatible with the SR one.

7.2.3 Near to the lower critical σ

In addition to the verification of the σ − D relations, we have concentrated our
attention to the problems arising when approaching the value of σ where the SR
behaviour is recovered. In particular we want to verify if the scenario of Ref. [71]
holds, with η = max(2 − σ, ηSR = 1

4), or if, for 1.6 ≤ σ ≤ 2, η interpolates smoothly
between 2 − σ and ηSR as stated in Ref. [18]. Firstly we want to stress that if the
second scenario holds, the superuniversality conjecture can not be verified in the
region near to σL(d) where the η exponent interpolates smoothly between the two
behaviours. Instead superuniversality is compatible with the first scenario.

We have tried to measure η in d = 2 approaching σ = 1.75. We have performed
a MC simulation in σ = 1.6 and σ = 1.75, on systems with a single image. We
have looked at the two points correlation at the critical point that decays as G(x) =
〈σ(0)σ(x)〉 = |x|−(d−2+η) = |x|−η. If we identify the spin variables with the two
indices i and j of the positions in the x and y direction, we have measured

G(x) = 1
N2

∑
i,j

(〈σi,jσi+x,j〉 + 〈σi,jσi,j+x〉) .

In Fig. 7.5 we have plotted the spin-spin correlation function for different sizes. As
it can be seen, G(x) seems to decay as the sum of two different powers. It decays
faster at small distances and slower at large distances. The same feature is not
present at smaller σ, near to the upper critical σ = 1, nor in the SR model in D = 2.
This is not a finite-size effect because it persists at large sizes.

Despite the large sizes simulated (up to L = 1536, N = 2359296), it seems that
the correlations have still not reached the asymptotic behaviour. This effect makes
the extraction of the critical exponent η from the correlation function very difficult
in this regime. We have focused the analysis on the larger size in the region where it
coincides with the second largest one, that is the region not effected from finite-size
effects. We have performed a fit with a function of the type f(x) = ax−η + bx−η′ ,
where η = 2−σ and a fit with a function g(x) = ax−ηP +bx−η′ , where ηP is the value
reported by Picco in Ref. [18], ηP (1.6) = 0.42, ηP (1.75) = 0.332. η′ is left as a free
parameter. The results are shown in Fig. 7.6. Both the scenarios are compatible
with the data and much larger sizes are needed to exclude one of the two. The
values of η′ obtained from the fit are η′(1.6) = 0.839(1), η′(1.75) = 0.628(1) using
f(x) and η′(1.6) = 0.932(3), η′(1.75) = 0.846(3) using g(x).
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Figure 7.5. Log-log plot of the spin-spin correlation function for different sizes, at σ = 1.6
(top) and σ = 1.75 (bottom), d = 2. The gray line is the expected behaviour x2−σ, that
can be recovered only at large distance, while the red one is the fit for the short distance
behaviour with a different power.

The effect of the two power-laws in G(x) is reflected also in the measure of the
η exponent from the susceptibility. Indeed the susceptibility is the integral over x
of G(x). This means that if we measure χ as a function of the size of the system, it
will not follow the usual scaling form of Eq. (A.2) with xD/ν = 2 − η. Instead, it
will be of the form:

〈χ(L, t)〉 =
(
aL2−η + bL2−η′) [

Fχ(L1/νt) + L−ωGχ(L1/νt) + . . .
]

. (7.6)
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Figure 7.6. Log-log plot of the spin-spin correlation function for the two larger sizes, at
σ = 1.6 (left) and σ = 1.75 (right), d = 2. Two fits with f(x) = ax−η + bx−η′ and with
g(x) = ax−ηP + bx−η′ are performed. Both are compatible with the data and we can
not determine η.

The contribution of the L2−η′ term is a new correction to the asymptotic be-
haviour. Moreover it is much bigger than the correction that comes from the usual
L−ω term. In fact, the correction to scaling term takes into account the fact that the
correlation function saturates at large distances as can be seen in Fig. 7.5, while the
L2−η′ term estimates the area between the correlation function and the asymptotic
regime L2−η. The latter area is much bigger than the former, as shown in Fig. 7.5.

If this new correction term is not considered properly, η can be overestimated.
This can be the reason of the fact that in Ref. [18] the exponent η is found to
be bigger than the one predicted by the RG analysis. The presence of this new
correction term can be the cause of the small ω exponent found in the analysis of
the previous Section, that is not in agreement with the large value of the SR model.
Actually, we think that we are measuring η′ − η instead of ω.

We have measured the connected susceptibility at the maximum, that is at the
apparent critical temperature for different sizes of the system. Analogously to what
done for the correlation function, we have performed a fit of the susceptibility as
a function of the size, with a function of the type f(x) = aL2−η + bL2−η′ , where
η = 2 − σ and a fit with a function g(x) = aL2−ηP + bL2−η′ , where ηP is the
value reported by Picco in Ref. [18]. η′ is left as a free parameter. We have
ignored the corrections term L−ω because, as seen, it is much smaller than the one
considered. The results are shown in Fig. 7.7. The values of η′ obtained from the
fit are η′(1.6) = 0.760(7), η′(1.75) = 0.661(8) using f(x) and η′(1.6) = 0.788(8),
η′(1.75) = 0.763(8) using g(x). The values are similar to the ones obtained from
the correlation function. Again, both scenarios are compatible with the data and
much larger sizes are needed to exclude one of the two.

The simulations of this Section have been performed on systems with periodic
boundary conditions and minimum image convention. The use of the images is not
useful in this case because it changes the intensity of the couplings when L is varied.
Consequently G(x) varies with L even at small distances. In particular correlations
in small systems is bigger than that in bigger systems, and the curves are no more
overlapping at small distances for different sizes. For this reason it is difficult to
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Figure 7.7. Log-log plot of the susceptibility at the maximum as a function of the size,
at σ = 1.6 (top) and σ = 1.75 (bottom), d = 2. Two fits with f(x) = aL2−η + bL2−η′

and g(x) = aL2−ηP + bL2−η′ are performed. Both are compatible with the data and we
can not determine η.

identify the region where there are not finite size effects.

The two powers behaviour is a very strange feature of the correlation length,
because it is not present in the usual SR models and in the LR ones far from the lower
critical σ. For this reason it should be the object of a future work to understand
the physical origin of this phenomenon and to have an analytical description of it.
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work. The SR values follow the matching formula 7.3.

7.3 Check of the superuniversality conjecture

At this point we want to verify the superuniversality conjecture or, equivalently, Eq.
(7.3) and (7.4). For this reason we summarize the results for the critical exponents
in the literature.

In Fig. 7.8 1/(dν) is plotted as a function of the parameter σ̂ in the non mean-
field region, for the HM model as found in Ref. [88], and for the LR one-dimensional
model, from Ref. [89] and [90]. For the LR d = 1 and d = 2 model, our results
are reported too. To verify the exactness of Eq. (7.4), in Fig. 7.8 the values of the
exponent of the SR model as found in Ref. [87] are placed at the corresponding
value of σ̂ as in Eq. (7.3): D = 2 corresponds to σ̂ = 0.875, D = 3 corresponds to
σ̂ = 0.65453. Eq. (7.4) is a good approximation near to the upper critical dimension
(it is good for D = 3) but it is no more good for D = 2. This means that it is not
possible to find a single value of σ that verify the equivalence for all the critical
exponents as in Eq. (7.5). The lines are the third order ε-expansion for d = 2 and
d = 3 as found in Ref. [45], where the third order has been fixed imposing that the
curves recover the SR value at σ̂L(d), and the second order ε-expansion for d = 1.
For d = 1 we have not fixed the third order because at σL(1) = 1 there is not a
second order phase transition. For this reason the curve for 1/ν as a function of σ
does not approach the point σL(1) = 1 continuously, but with a divergent derivative.
Our data for d = 2 are in agreement with the ε-expansion.

In Fig. 7.9 1/γ is plotted as a function of σ̂ in the non mean-field region. The
super-universality conjecture is not exact but it is a good approximation near σU .
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Figure 7.9. 1/γ as a function of the exponent σ in the non mean-field region as found in
various works and in this work.

In fact 1/γ for d = 1 and d = 2 is nearly independent from d and the two curves
are near when plotted versus σ̂. The values for the SR model should be the end
point of the line for γ(σ̂) with d = 2 and d = 3, placed at σ̂L(2), σ̂L(3). The straight
lines are the third order epsilon-expansion as found in Ref. [45], where the third
order has been fixed (as previously) imposing that the curve recover the SR value
at σ̂L(d).



Chapter 8

Conclusions

In Part I of the present Thesis, we have developed a semi-analytical real space RG
method that can be generalized in a straightforward way to disordered systems
considering it as a RG transformation between ensembles. This new RG scheme
improves over previously available RG transformations for disordered systems es-
sentially because:

• it is a real space one, thus it s very intuitive and the physics beyond it is clear,

• it considers averages over the disorder as the important physical observables,
because we know that sample to sample fluctuations are stronger than thermal
ones,

• it is predictive, in fact we can extract critical temperatures and critical expo-
nents.

The method has been applied to the LR hierarchical model and in particular to its
ferromagnetic, diluted and spin-glass versions. The reliability of the method has
been tested comparing the values of critical temperatures and critical exponents
with those obtained from MC simulations and the agreement is satisfactory for all
the versions we have studied.

The HM can emulate a SR model in D dimensions changing the exponent σ
that controls the power-law decay of the couplings with the distance. For the SG
version, we have succeeded in identifying the critical temperature and the critical
exponents, both in the mean-field and in the non-classical region at values of the
parameter σ that correspond to effective dimensions D = 3, 4, 5.

In particular we have found that the critical exponent ν has a non monotonic
behaviour passing from the mean-field to the non mean field region, confirming the
results of the ε-expansion [45], in contrast with another real space RG approach
recently proposed in Ref. [51]. This result confirms the importance to consider RG
transformation between ensemble rather than between single samples for disordered
models.

In Part II of this work, we have analyzed the connection between LR and SR
systems. For simplicity we have considered the ferromagnetic version of the models,
given that the connection we are interested in is still not well understood even in
this simple case. First of all we have analyzed the d = 1 LR ferromagnetic model,
for which the couplings have a power-law decaying with exponent σ, and we have
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compared it with a SR system in D dimensions. We have reviewed all the σ − D
relations proposed in the literature and we have analyzed their accuracy performing
Monte Carlo simulations to measure the exponents of the LR model through finite
size scaling. We have compared them with the exponents of SR systems available
in the literature. We have found that near to the upper critical dimension a reliable
σ − D relation exists: it means that, for example, for D = 3 a value of σ exists for
which all the exponents of the LR and SR models are comparable, while near to the
lower critical dimension, for example for D = 2, it is not possible to find a value of
σ for which all the exponents of the LR model corresponds to those of the SR one.

Then we have generalized the σ − D relation for LR systems in d dimensions
showing that the dimensions D of the SR system and d of the LR one enter only
through their ratio. The σ−D relation can be deduced also from a superuniversality
conjecture. It asserts that LR models properties depend only on σ̂ = σ/d. It means
that for example the curves of the critical exponents as a function of σ for LR
models in different dimensions collapse when plotted versus the parameter σ̂. We
have verified this property performing Monte Carlo simulations at various values of
σ for d = 2 to measure the critical exponents. The superuniversality conjecture is a
good approximation near to the upper critical dimension and becomes worst going
towards the lower critical one.

We have then analyzed the region near to the lower critical dimension σ = 1.75
for the d = 2 LR model, because we want to verify if the scenario of Ref. [71]
holds, with η = max(2 − σ, ηSR = 1

4), or if, for 1.6 ≤ σ ≤ 2, η interpolates smoothly
between 2 − σ and ηSR as stated in Ref. [18]. We have discovered that in this
region the correlation function has a very strange behaviour, characterized by two
decaying power-laws . This makes difficult to measure with high precision the
critical exponents and the lower critical dimension. We think that this phenomenon
can lead to overestimate η if a proper fit with a double power-law is not performed,
as can be the case of Ref. [18]. It is very difficult to identify the right value of the η
exponent, and thus to identify the lower critical σ numerically, thus we think that it
is important to better understand the causes of the double power-law phenomenon
from a theoretical point of view.



Appendix A

MC Finite Size Scaling analysis

The measure of the critical exponents in a Monte Carlo simulation is based on the
Finite Size Scaling (FSS) ansatz, that is the application of the RG ideas to systems
of finite size L. Let 〈O(L, T )〉 be the thermal average of the operator O, measured
for a lattice of size L, and at temperature T . The observable is a dimensionless
one if it remains finite at the critical point in the thermodynamic limit and if it is
also universal, it means that it is invariant under the RG transformation. For these
observables the FSS ansatz says that

〈O(L, t)〉 = FO(L1/νt) + L−ωGO(L1/νt) + . . . . (A.1)

The dots stand for higher order scaling corrections. One example of these ob-
servables is the Binder parameter: B = 1

2

[
3 − 〈m4〉

〈m2〉2

]
[93] for a FM and B =

1
2

[
3 − 〈q4〉

〈q2〉
2

]
for the SG.

If the observable diverges at the critical point in the thermodynamic limit with
dimension xD, D(∞, t) = t−xD , where t = |T −Tc|

T , it is a dimensionfull observable,
and Eq. (A.1) becomes:

〈D(L, t)〉 = LxD/ν
[
FD(L1/νt) + L−ωGD(L1/νt) + . . .

]
. (A.2)

Thus, when the size of the systems is finite, there are no thermodynamic singularities.
For example the susceptibility will have a rounded off peak, that diverges with the
size of the system as Lγ/ν . To calculate the critical exponents we can apply the
quotient method [95], following the scheme of Ref. [81]. For small t and large L,
Eq. (A.1) can be rewritten as:

〈O(L, t)〉 ' FO(0) + L1/νtF ′
O(0) + L−ωGO(0). (A.3)

Now we can determine the finite size critical temperature T ∗
L where the observ-

able takes the same value for size L and sL. s is a scale factor that can be freely
chosen. It follows the law:

T ∗
L = T ∗

∞(1 + As,OL−ω− 1
ν ) (A.4)

where As,O = (1−s−ω)GO(0)
(s1/ν−1)F ′

O(0) . If now we compute a second dimensionless quantity P

at t∗
L = |T ∗

L−Tc|
Tc

, obtained from the previous observable, we have:

P (L, t∗
L) ' FP (0) + As,O,P L−ω, (A.5)
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with As,O,P = As,OF ′
P (0) + GP (0). If we take again the quotient between the result

for sizes L and sL we obtain:

QP = P (sL, t∗
L)

P (L, t∗
L)

= 1 + Bs,O,P L−ω. (A.6)

In this way we can determine ω with a log-log linear fit.
To determine the other exponents, e.g. ν or η we need dimensionfull observables

D that scale as in Eq. (A.2).
Calculating the quotient of the chosen observable at the intersection tempera-

tures t∗
L of the dimensionless observable O defined previously, we obtain:

QD = D(sL, t∗
L)

D(L, t∗
L)

= sxD/ν + Bs,O,DL−ω. (A.7)

Knowing ω we are able to compute xD through a new linear fit with variable L−ω.
Once the ν and ω exponents are computed, the critical temperature can be

extracted from Eq. (A.4) through a linear fit with variable L−ω−1/ν .
For the LR model that we have studied, we have extracted t∗

L as the crosses of
the scale-invariant quantity χ

Lσ . In this way we have divided a divergent quantity
by its dimension xχ = 2 − η = σ, and the result remains finite at the critical
temperature. We can do this for the LR model because we know exactly the value
of η. To determine ν we have used as observable the derivative of the Binder
parameter, which scales as L

1
ν . We can not do the opposite, namely we can not

use the derivative of χ
Lσ to extract ν because it is not a dimensionless quantity [96],

it does not remain constant under the renormalization group. Thus for this kind
of observable the scaling form is not the one in Eq. (A.1), and, while Eq. (A.4)
remains the same, Eq. (A.7) changes.

There are many ways to do FSS analysis. The one explained here is a good
method because the exponents are extracted not from the same observable. In this
way the estimates are less correlated. Moreover exponents and critical temperature
can be extracted only via linear fits.



Appendix B

An approximate description of
HM using correlations

In this chapter we try to exploit the hierarchical structure of the HM to obtain an
approximate description of the system. One of the advantages of the HM is that
couplings at higher level have a smaller intensity than the previous ones, so one can
try to do a high temperature expansion in these new couplings.

Indeed the partition function of the model with n + 1 levels can be written as
a function of the probability of the left and right block at level n, (Pn({σL}) and
Pn({σR}) ) as

Zn+1 =
∑
{σ}

Pn+1({σ}) =
∑
{σ}

Pn({σL})Pn({σR})
∏

i∈L,j∈R

eβcn+1Jijσiσj =

=
∑
{σ}

Pn({σL})Pn({σR})
∏

i∈L,j∈R

[
cosh

(
βcn+1Jij

) (
1 + σiσj tanh

(
βcn+1Jij

))]

Now, if tanh(βcn+1Jij) ≡ tij is small, that is in high temperature, one can expand
the product in the last term, keeping only the first orders:

Zn+1 =
∑
{σ}

Pn({σL})Pn({σR})

 ∏
i∈L,j∈R

cosh(βcn+1Jij)

 ·

·

1 +
∑

i∈L,j∈R

σiσjtij +
∑

i,k∈L,j,l∈R
(i,j)6=(k,l)

σiσjtijσkσltkl + O(t3)


At this point the thermal average can be performed separately for the observables
in the right and left blocks that are uncorrelated before the level n + 1, leading to:

Zn+1 =

 ∏
i∈L,j∈R

cosh(βcn+1Jij)

 ·

·

1 +
∑

i∈L,j∈R

〈σi〉〈σj〉tij +
∑

i,k∈L,j,l∈R
(i,j) 6=(k,l)

〈σkσi〉tij〈σjσl〉tlk + O(t3)
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Now we can introduce the vectors of the magnetizations inside each block ML
n =

{〈σi∈L〉} and MR
n = {〈σj∈R〉} and the matrices of the correlations CL

n = {〈σi∈Lσk∈L〉}
and CR

n = {〈σj∈Rσl∈R〉} and of the couplings t = {tij} In terms of these matrices
the previous equation becomes:

Zn+1 =

 ∏
i∈L,j∈R

cosh(βcn+1Jij)

 ·
(
1 + ML

n tMR
n + Tr

(
CL

n tCR
n t − t2

)
/2 + O(t3)

)
where the −t2 in the second order term takes into account the fact that (i, j) 6= (k, l),
considering that (CL

n )ii = (CR
n )jj = 1 and the factor 2 removes the degeneracy

(i, j), (k, l) ↔ (k, l), (i, j). Similarly one can express correlations and magnetizations
at level n + 1 calculating the correction to correlations and magnetizations at level
n in the left and right block due to the new couplings, stopping in the expansion at
first orders.

For example the magnetization of a spin σi in the left block will change after
the introduction of the couplings at level n + 1 following the equation:

(ML
n+1)i = 1

Z

[
(ML

n )i + (CL
n tMR

n )i + Tr
(
(Ci

3)L
ntCR

n t − (ML
n )it

2
)

/2 + O(t3)
]

.

We have introduced the matrix of the three point correlations (Ci
3)L

n = {〈σiσjσk〉n},
where σj and σk are in the left block. Analogously, for the magnetization of the
right block it is sufficient to change the index L with R.

In the same way we can write the equation for the correlation between two spins
i and j that are both in the left block:

(CLL
n+1)ij = 1

Z

[
(CL

n )ij + (Cij
3 )L

ntMR
n + Tr

(
(Cij

4 )L
ntCR

n t − (CL
n )ijt2

)
/2 + O(t3)

]
We have introduced the vector of the three point correlations (Cij

3 )L
n = {〈σiσjσk〉n},

where σk is in the left block and the matrix of the four point correlations (Cij
4 )L

n =
{〈σiσjσkσl〉n}, where σk and σl are again in the left block. The correlation for two
spins i and j that are in different blocks is:

(CLR
n+1)ij =

1
Z

[
(ML

n )i(MR
n )j + (CL

n tCR
n )ij + Tr

(
(Ci

3)L
nt(Cj

3)R
n t − (ML

n )i(MR
n )jt2

)
/2 + O(t3)

]
Thus the whole matrix of the correlations at level n + 1 will be composed of 4
submatrices: CLL, CLR, CRL, CRR.

In this way, one can approximate correlations and magnetizations (in principle at
each order in t) in a time polynomial in N instead of calculate them exhaustively in
a time exponential in N . This is particularly important for SGs in which equilibrium
properties are very difficult to obtain.

Please note that with this method the self-correlation Cii is always 1, as expected,
because the numerator is exactly canceled by the denominator. This property is
generally not verified by other approximations.

In the previous equations there are three and four point correlations that are
in principle not known in our approximate description that considers only magne-
tizations and two point correlations. However in some specific cases 3 and 4 point
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Figure B.1. Correlations obtained from our method plotted versus correlations obtained
from a Monte Carlo simulation. The system is a n = 6 c = 2−5/6 SG HM at T = 1.6.

correlations can be expressed in terms of two point correlations and magnetizations.
For example in the mean field approximation connected correlations are null. This
fact permits to obtain the following relations when the field is null:

〈σiσjσkσl〉 = 〈σiσj〉〈σkσl〉 + 〈σiσk〉〈σjσl〉 + 〈σiσl〉〈σjσk〉 (B.1)

In a tree instead the correlations can be computed exactly as:

〈σiσjσkσl〉 = max (〈σiσj〉〈σkσl〉, 〈σiσk〉〈σjσl〉, 〈σiσl〉〈σjσk〉) (B.2)

We can choose to use both of them and to verify a posteriori which is the best
approximation comparing the results with the exact ones (or with the ones obtained
from MC simulations).

B.1 Comparison with Monte Carlo simulations
Operatively, if we want to calculate the magnetizations and correlations of a system
with n levels, we start to analyze 2n−1 uncorrelated blocks of 2 spins considering
only the couplings at level 1. For them we can write correlations and magnetizations
exactly. Then we add the couplings at level 2 between pairs of near blocks and we
compute the correlations and magnetizations for the 2n−2 blocks of 4 spins following
the previous equations. We repeat this procedure until we reach the n-th level.

We have compared our results with the ones obtained from a Monte Carlo simu-
lation. In Fig B.1 we have plotted the correlations obtained from the approximate
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description as a function of the correlations obtained from the Monte Carlo simu-
lations for a SG HM system with Gaussian couplings, no external field, n = 6 and
c = 2−5/6, at T = 1.6 (Tc ' 0.54 for this model). One can notice that the approx-
imate description underestimates the correlations. This fact is not present in high
temperature, but things get worse approaching the critical temperature when the
correlations grow. It could be useful to see if this phenomenon is reduced when the
third order in the expansion in t is added.

There are no significant differences if one uses the MF approximation in Eq.
(B.1) or the tree approximation in Eq. (B.2) to approximate 4 points correlations.
We have seen that the better results are obtained if the correlations are the mean
over the terms:

〈σiσjσkσl〉 = 1
3

(〈σiσj〉〈σkσl〉 + 〈σiσk〉〈σjσl〉 + 〈σiσl〉〈σjσk〉) (B.3)

although we have no explanation for this choice.

B.2 Comparison with mean-field approximations

We can compare our method with the other approximations present in the literature.
We report here the estimates for the connected correlations given by the naive Mean
Field approximation (nMFA), the TAP and the Bethe approximation (BA) [53] in
the case of null magnetizations:(

C−1
nMF

)
ij

= δij − Jij(
C−1

T AP

)
ij

=
[
1 +

∑
k

J2
ik

]
δij − Jij

(
C−1

BA

)
ij

=
[
1 +

∑
k

t2
ik

1 − t2
ik

]
δij − tij

1 − t2
ij

(B.4)

We have compared the estimates for the correlations in a given sample obtained
by this three method and by our method with the correlations obtained by a Monte
Carlo simulation for the SG HM with Gaussian couplings without external field,
and c = 2−5/6. The results are shown in Fig. B.2. The nMFA is the worst
approximation, as happens also for other models. The best ones are the TAP
and the present approximation. This approximation has some divergences when
approaching the critical temperature (Tc ' 0.54 for this model).

B.3 Future developments

The fact that the present approximation stops to give good results near to the critical
temperature is expected because, near to the critical point, many different states
with different magnetizations and correlations arise. Instead, our approximation
considers that there is only one state characterized only by the averages M and
C. However, at difference with the other mean-field approximations, the present
approximation can easily be generalized to deal with many states. A future work can
consider that different states can exist. In the region below the critical temperature,
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Figure B.2. Error made by three existing MF approximations and by the method pro-
posed in this work, in estimating correlations given the couplings. The model is a n = 7
SG HM.

we do not know how many states there are, so one can try to count them. For each
state a vector of magnetizations and a matrix of two points correlations can be
defined. The magnetizations and three point correlations can be different from zero
even if there is a null external field. In particular, three point correlations can be
written exactly in the mean field approximation by:

〈σiσjσk〉 = 〈σi〉〈σjσk〉 + 〈σk〉〈σiσj〉 + 〈σj〉〈σiσk〉 − 2〈σi〉〈σj〉〈σk〉

and Eq. B.1 is slightly modified to take into account terms with non null three
point correlations. When a new level is added, one can take magnetizations and
correlations of the two right and left blocks from an ensemble, and try to modify
them with the new interactions. Some combinations of the states will generate other
states, and some other will collapse in an existing one. In this way one can study the
number of states and their properties. The transition below and above the critical
dimension can be analyzed (just changing the scaling factor) and one can check if
the spin glass phase is of the same type or of a different one.





Appendix C

Side projects

In this chapter two works are reproduced; their subjects are a bit disconnected from
the main topic of this Thesis, however they have been included because they have
been done during this Ph.D. The first work has been submitted to the 50th Annual
Allerton Conference on Communication, Control, and Computing.
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Abstract— In the context of the compressed sensing problem,
we propose a new ensemble of sparse random matrices which
allow one (i) to acquire and compress a ρ0-sparse signal
of length N in a time linear in N and (ii) to perfectly
recover the original signal, compressed at a rate α, by using
a message passing algorithm (Expectation Maximization Belief
Propagation) that runs in a time linear in N . In the large
N limit, the scheme proposed here closely approaches the
theoretical bound ρ0 = α, and so it is both optimal and
efficient (linear time complexity). More generally, we show that
several ensembles of dense random matrices can be converted
into ensembles of sparse random matrices, having the same
thresholds, but much lower computational complexity.

I. INTRODUCTION

Compressed sensing is a framework that enables an N -

dimensional sparse signal s = (si) to be recovered from

M(< N) linear measurements of its elements, y = Fs,

by exploiting the prior knowledge that s contains many

zero elements [1]. A simple consideration guarantees that

ℓ0-recovery,

ŝ = argmin
x

||x||0 subj. to y = Fx, (1)

where ||x||0 denotes the number of non-zero elements in x,

is theoretically optimal in terms of minimizing the number

of measurements M necessary for perfectly recovering any

original signal s. However, carrying out ℓ0-recovery for

a general measurement matrix F is NP-hard. To avoid

such computational difficulties, an alternative approach, ℓ1-

recovery

ŝ = argmin
x

||x||1 subj. to y = Fx, (2)

where ||x||1 =
∑N

i=1
|xi|, is widely employed, as (2) is

generally converted into a linear programming problem, and

therefore, signal recovery is mathematically guaranteed in an

O(N3) computational time through the use of the interior

point method. Nevertheless, the O(N3) cost of computation

can still be unacceptably high in many practical situations,

and much effort is being put into finding more computation-

ally feasible and accurate recovery schemes [2]–[7].

Among such efforts, the recovery scheme recently pro-

posed by Krzakala et al. [7] is worth special attention. Their

scheme basically follows the Bayesian approach. Namely, the

signal recovery problem is formulated as one of statistical

inference from the posterior distribution,

P (x|F , y) =
δ(Fx − y)P (x)

Z(F , y)
, (3)

where Z(F ,y) is a normalization factor imposing the con-

dition
∫

dxP (x|F ,y) = 1 and a component-wise prior

distribution P (x) =
∏N

i=1
[(1−ρ)δ(xi)+ρφ(xi)] is assumed.

ρ and φ(x) represent the density of the non-zero signal

elements and a Gaussian distribution, respectively. Exactly

inferring s from (3) is NP-hard, similarly to (1). However,

by employing the belief propagation (BP) in conjunction

with the expectation-maximization (EM) algorithm for es-

timating ρ and the parameters of φ(x), they developed an

approximation algorithm, termed EM-BP, which has better

recovery performance than (2) with a computational cost of

only O(N2). Furthermore, they showed that, by employing a

peculiar type of “seeded” matrix F , the threshold of the com-

pression rate α = M/N of EM-BP, above which the original

signal is typically recovered successfully, can approach very

close to that of ℓ0-recovery, αs−EMBP = ρ0, where ρ0 is the

actual signal density of s and s−EMBP stands for ‘seeded

EM-BP’. The seeded matrix is composed of blocks along the

diagonal densely filled with Gaussian random variables. It is

important to remember that this result is achieved for the

first time with an approach different from ℓ0-recovery, being

the threshold for ℓ1-recovery that is much higher than the

optimal one: αℓ1 > ρ0. The optimality of the ℓ0-recovery

is guaranteed for EM-BP, which means that this scheme

can practically achieve the theoretically optimal threshold

of signal recovery with an O(N2) computational cost. This

remarkable property was recently proved in a mathematically

rigorous manner in the case that the matrix entries satisfy

certain conditions concerning their statistics [8]. However,

it is still unclear whether their scheme is optimal in terms

of the computational complexity; there might be a certain

design of the measurement matrix F that makes it possible

to further reduce the computational cost while keeping the

same signal recovery threshold.

The purpose of the present study is to explore such a

possibility. For this, we focus on a class of matrices that

are characterized by the following properties:

• sparsity: The matrix F has only O(1) non-zero el-

ements per row and column. This implies that the
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measurements can be performed in a time linear in

the signal length. This situation is highly preferred for

the sake of practicality, given that such an operation

typically needs to be done in real time, during data

acquisition.

• integer values: The matrix elements are not real valued,

but take on small integer values. This means that an

optimized code for the measurements can work with

bitwise operations, thus achieving much better perfor-

mance without any loss of precision.

• no block structure: The block structure used in [7]

may not be necessary for reaching the optimal thresh-

old. As an alternative possibility, we study a structure

made of a square matrix in the upper left corner (the

seed) plus a stripe along the diagonal. This structure is

much more amenable for analytic computations, since it

corresponds to a one-dimensional model homogeneous

in space.

The use of sparse matrices for compressed sensing has al-

ready been suggested in several earlier studies [9]–[13]. Our

approach is particularly similar to that of [13] in the sense

that both sides are based on the Bayesian framework and use

integer-valued sparse measurement matrices. Nevertheless,

these two approaches differ considerably in the following

two points. Firstly, we adopt EM-BP, which updates only

a few variables per node for the signal recovery, while

the recovery algorithm of [13] involves functional updates

and needs significantly more computational time than ours.

Secondly, we thoroughly explored a simple design of F that

achieves nearly optimal recovery performance. In contrast,

the problem of the matrix design is not fully examined in

[13]. By carrying out extensive numerical experiments in

conjunction with an analysis based on density evolution [15],

we show that a threshold close to the theoretical limit α = ρ0

can be achieved by using matrices with the above properties

with an almost linear computational cost in the measurement

and recovery stages.

This paper is organized as follows. In Section II, the

EM-BP algorithm is briefly explained and the results for

dense matrices are summarized. The algorithm is applied

to homogeneously sparse matrices in Section III and to

structured sparse block matrices in Section IV. A new type

of “striped” sparse matrix without blocks is introduced in

Section V. The last Section summarizes our work, focusing

on its importance for practical use, and touches on future

issues.

II. EXPECTATION MAXIMIZATION BELIEF PROPAGATION

The new algorithm based on BP in conjunction with the

EM proposed in Ref. [7] starts from Eq. (3). A similar idea

was also proposed in Ref. [14]. In order to solve it with

BP, O(MN) messages for the probability distributions of

the variables xi are constructed in the following way:

mµ→i(xi) =
1

Zµ→i

∫

∏

j 6=i

dxjmj→µ(xi)δ
(

yµ −
∑

k

Fµkxk

)

mi→µ(xi) =
1

Zi→µ

[

(1− ρ)δ(xi) + ρφ(xi)
]

∏

γ 6=µ

mγ→i(xi)

where Zi→µ and Zµ→i are normalization factors. This EM-

BP equations are very complicated because the messages are

distribution functions. In order to make them simpler, the

messages can be approximated by assuming that they are

Gaussian, thus obtaining the equations for the mean ai→µ

and the variance vi→µ of mi→µ(xi). This approximation

was introduced for sparse matrices in Refs. [16]–[19], and

it becomes asymptotically exact if F is dense. In fact, it is

derived from an expansion in small Fµi, and in the dense

case Fµi = O(1/
√

N). Supposing that the elements of the

original signal follow a Bernoulli-Gaussian distribution with

parameters ρ0, x0 and σ0, the update rules for the messages

are the following:

ai→µ = fa





∑

γ 6=µ

Aγ→i,
∑

γ 6=µ

Bγ→i





ai = fa

(

∑

γ

Aγ→i,
∑

γ

Bγ→i

)

vi→µ = fc





∑

γ 6=µ

Aγ→i,
∑

γ 6=µ

Bγ→i





vi = fc

(

∑

γ

Aγ→i,
∑

γ

Bγ→i

)

Aµ→i =
F 2

µi
∑

j 6=i F 2
µjvj→µ

Bµ→i =
Fµi

(

yµ −
∑

j 6=i Fµjaj→µ

)

∑

j 6=i F 2
µjvj→µ

(4)

where fa and fc are some analytical functions depending on

the parameters ρ, x and σ. For details, see Ref. [7].

In general, the original ρ0, x0 and σ0 are not known, but

one can use EM to derive the update rules for them, using

the property that the partition function

Z(ρ, x, σ) =

∫

dxP (x)δ(y − Fx)

is the likelihood of the parameters (ρ, x, σ) and is maximized

by the true parameters ρ0, x0, and σ0. Thus, after the update

of all the messages, the inferred parameters of the original

distribution are updated following these rules:

x←
1

ρN

∑

i

ai , σ2 ←
1

ρN

∑

i

(vi + a2
i )− x2 ,

ρ←

∑

i
1/σ2+Ui

Vi+x/σ2 ai

∑

i

[

1− ρ + ρ

σ(1/σ2+Ui)
1
2
e

(Vi+x/σ2)2

2(1/σ2+Ui)
− x2

2σ2

]−1 ,
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with Ui =
∑

γ Aγ→i and Vi =
∑

γ Bγ→i. If the algorithm

converges to the correct solution, ai = si and vi = 0.

To reduce the number of messages from O(NM) to

O(N), one can see that in the large N limit, the messages

ai→µ and vi→µ are nearly independent of µ. Thus, we

can derive the equations involving only a variable per each

measurement node and a variable per signal node, if we are

careful to keep the correcting Onsager reaction term as in

the TAP equations of statistical physics [20]. This method

was introduced in the context of compressed sensing in Ref.

[6] and is called approximated message passing (AMP).

In general, the correct distribution of the original signal

is unknown. However, in Ref. [7], it is demonstrated that if

α > ρ0, the most probable configuration of x with respect to

P (x) =
∏N

i=1
[(1− ρ)δ(xi) + ρφ(xi)] with ρ < 1, restricted

to the subspace y = Fx, is the original signal s, even if the

signal is not distributed according to P (x). So our choice

of a Gaussian distribution for φ(x) should be perfectly fine

even if the original signal has a different distribution.

The free entropy Φ(D) at a fixed mean square error

D = (1/N)
∑N

i=1
(xi − si)

2 can be computed if a dense

matrix is used. For α > ρ0, the global maximum of the

function Φ(D) is at D = 0, that corresponds to the correct

solution. However, below a certain threshold α < αBP that

depends on the distribution P (s), the free entropy develops a

secondary, local maximum at D 6= 0. As a consequence, the

EM-BP algorithm can not converge to the correct solution

for ρ0 < α < αBP , because a dynamical transition occurs.

Nonetheless, the threshold αBP is lower than αℓ1 .

III. EM-BP WITH A SPARSE MATRIX

First of all, we want to verify if the use of a sparse matrix

can reach the same results as the use of a dense one. For a

sparse random matrix, the AMP equations can not be used;

thus, we can use the update rules in Eq. (4) for inferring

the original signal s. In particular, we choose the matrix F

to have only K = O(1) elements different from zero in

each row and H = αK = O(1) elements in each column,

extracting them from the distribution,

P (Fµi) =
1

2
δ(Fµi − J) +

1

2
δ(Fµi + J) (5)

with J = 1. The use of the messages ai→µ and vi→µ

instead of the AMP equations does not involve an extra cost

in memory, because the number of the messages is O(N)
from the sparsity of the matrix. In principle, the messages

mi→µ(x) are not Gaussian if the matrix is sparse, so the

use of only the two parameters ai→µ and vi→µ is not exact.

However, the convolution of K messages (with K = 20 in

a typical matrix we use) is not far from a Gaussian, and

indeed, we can verify a posteriori that this approximation is

valid, because it gives good results.

In all our numerical simulations, we use a Bernoulli-

Gaussian distributed signal and a compression rate α = 0.5.

Figure 1 (top) shows the probability of perfect recovery as

a function of the sparsity of the signal ρ0 for different sizes,

by applying the EM-BP algorithm using a sparse matrix
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Fig. 1. Top: Probability of perfect recovery versus the signal sparsity ρ0

using sparse matrices with α = 0.5 and K = 20. The threshold is the same
as with dense matrices. Bottom: Probability of perfect recovery computed
with density evolution has the same threshold. Here, N is the population
size.

with K = 20. The threshold for perfect recovery in the

thermodynamic limit (N → ∞) is ρBP ≃ 0.315, which

is the same as the one obtained in Ref. [7] with a dense

matrix. We can not analytically compute the free entropy

Φ(D) as in [7], because we use sparse matrices and cannot

use methods such as the saddle point one. However, we

performed a numerical density evolution analysis, as shown

in Fig. 1 (bottom), and found that the threshold is almost the

same as the one computed with the matrices F .

Next, we will verify that the correct solution is always the

global maximum of Φ(D) and it is locally stable up to α ≃

ρ0 when using EM-BP with a sparse matrix. Since we can

not analytically compute the free entropy, we must resort to a

numerical method. We start EM-BP with an initial condition

very close to the correct solution: a0

i→µ = si + δi→µ, with

δi→µ a random number uniformly distributed in [−∆, ∆]. In

this way, we have verified (see Fig. 2) that if ∆ is sufficiently

small, the correct solution can be found up to α ≃ ρ0, as in

the case of a dense matrix.

For the algorithms based on the ℓ1 minimization, it is

known that the threshold with a sparse matrix is lower than

that with a dense one. However, these algorithms are not

optimal, because the correct solution disappears below the

threshold αℓ1 . In this sense, the EM-BP algorithm is optimal,

because the global maximum of the free entropy is always

on the correct solution. Thus, one can expect that, if the rank

of the sparse matrix is the same as that of the dense one, a
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Fig. 2. Stability check of the solution determined by the EM-BP message
passing algorithm. Starting the recovery process with a sparse matrix from
an initial condition differing less than ∆ from the correct solution, the latter
is recovered as long as ρ0 < αstab(∆). In the limit ∆ → 0, the stability
limit αstab(∆) tends to the theoretical bound α (which is 0.5).

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  0.05  0.1  0.15  0.2  0.25

ρ
c

N
 -a

α

block structured s-EMBP

EMBP

l
1

Fig. 3. ρc(N) with a sparse, structured matrix with blocks, for different
sizes N and values of L (see text). The thresholds for the ℓ1-recovery and
for EM-BP without any structure are also drawn. For comparison with the
data in Fig. 5, we used the exponent a ≃ 0.18 best fitting those data.

similar threshold can be reached (as we have demonstrated

numerically).

In summary, we can say that the EM-BP algorithm of

Ref. [7] seems to reach the same threshold αBP , either

using a dense Gaussian matrix or a sparse binary one

if the numbers of non-zero elements per row/column are

O(1) but sufficiently large. However, the use of a sparse

matrix is computationally much faster than the use of a

dense one. Moreover, the use of binary elements, instead

of Gaussian real values, allows for better code optimization

and eventually for hard-wired encoding of the compression

process.

IV. BLOCK-STRUCTURED SPARSE MATRICES

To avoid the secondary maximum of the free entropy, in

Ref. [7], the authors use a structured block matrix that helps

to nucleate the correct solution. The idea is that the correct

solution is found for the first variables, and then it propagates

to the whole signal. This idea is similar to the so-called

spatial coupling that is very useful for solving many different

problems [21]. With this trick, the authors of Ref. [7] reach

perfect recovery for almost any α > ρ0 in the large N limit

while Ref. [22] reports that the gain is quite small when

different recovery algorithms are used. Here, we try to use a

matrix with the same block structure, but sparsely filled. We

divide the N variables into L groups of size N/L and M
measurements into L groups of size Mp = αpN/L in such

a way that M =
∑L

p=1
Mp = αN and 1/L

∑L

p=1
αp = α.

In this way, the matrix F is divided into L2 blocks, labeled

with indices (p, q). Each block is a sparse binary matrix with

k elements different from zero for each row and hp = αpk
elements for each column, distributed according to Eq. (5),

with J = Jp,q . As in Ref. [7], we choose Jp,p−1 = J1,

Jp,p = 1, Jp,p+1 = J2, and Jp,q = 0 otherwise. The

important ingredient to nucleate the correct solution is that in

the first block α1 = (M1/N)L > αBP holds. For simplicity,

we can choose α1 = 1 and αp = (Lα − 1)/(L − 1) for

p 6= 1. The recovery strongly depends on the parameters J1

and J2, and the best results for α = 0.5 are obtained around

J1 = 4 and J2 = 1. Moreover, we used these two values in

the experiments described below because we wanted to work

with matrices with elements having small integer values.

Similarly to the dense case, the use of a sparse structured

matrix with blocks allows to overcome the dynamical tran-

sition at αBP and to nucleate the correct solution until α is

very close to ρ0. Figure 3 shows the mean critical threshold

ρc(N) for different signal lengths at a fixed compression

rate α = 0.5. The x axis uses the same scaling variable as in

Fig. 5, and the best parameter a obtained from the fit of data

in Fig. 5 also interpolates the data in Fig. 3 quite well. In the

thermodynamic limit, ρc extrapolates to a value compatible

with the optimal one, α, and it is certainly much higher than

the thresholds for ℓ1-recovery and for EM-BP without any

structure. We have also done a density evolution analysis that

confirms this result.

For each value of N and L, the mean critical threshold

ρc is computed as follows. We randomly generate a block

structured matrix F with the given N and L. We start

with a sufficiently sparse original signal s, which has been

recovered by the algorithm; we then add non-zero entries to

the signal and check whether the new signal can be recovered

by the algorithm; we go on adding non-zero elements to

the signal until a failure in a perfect recovery occurs. The

previous to the last value for ρ0 is the critical threshold for

the matrix F . The mean critical threshold is obtained by

averaging over many different random matrices and signals,

with the same values of N and L. The number of such

random extractions goes from 103 for the largest N value

up to 104 for the smallest N value.

The values of (N, L, k) used for the simulations shown

in Fig. 3 are the following: (2250, 10, 9), (19000, 20, 19),
(31200, 40, 39), and (49000, 50, 49). We need to increase

both N and L if we want to obtain good results in the

thermodynamic limit. However, if we change L, we must

change k too. Indeed, in order to have the same number of
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Fig. 4. A nearly one-dimensional sparse matrix with a square block of size
L×L at the top left and non-zero elements in the stripes around the diagonal
can achieve compression and perfect recovery close to the theoretical bound
in linear time.

elements per row and column for each of the L2 blocks,

we must satisfy the conditions: (N/L)/Mp = k/hp with

k and hp integer valued. Here, we have used the smaller

possible value for k, that is k = L − 1. The fact that it is

impossible to keep k constant while increasing L implies

that these kinds of block-structured matrices always become

dense in the thermodynamic limit. This is a limitation of the

block structure that we want to eliminate with the matrix

proposed in the following Section.

V. AND WITHOUT BLOCKS?

The matrix proposed in Ref. [7] is not the only one

that allows the optimal threshold to be reached. Reference

[23] analyzes the use of other good dense, block-structured

matrices. However, the block-structure is not so simple to

handle if one wants to do analytical calculations in the

continuum limit. Moreover, in making these block-structured

matrices sparse, one has to be careful to find the right values

of L,M, N, Mp, αp, k. For these reasons, we want to know if

the block structure is crucial, and, if not, we want to eliminate

it.

We tried a different structured sparse matrix (see Fig. 4),

that we called a striped matrix. It has one sparse square

block of size L on the top left of the matrix with K =
O(1) elements for each row and column extracted from (5)

with J = 1. This arrangement is fundamental for nucleating

the correct solution. Apart from this first block, the residual

compression rate is α′ = M−L
N−L

. Then, we construct a one-

dimensional structure around the diagonal of the remaining

matrix. For each column c > L, we randomly place 2Kα′

non-zero elements, again extracted from (5), in the interval

of the width 2Lα′ around the diagonal. One element with

J = 1 is always placed on the diagonal (actually on the

position closest to the diagonal). For the remaining elements,

we use the following rules. If the element is at a distance

d ≤ Lα′/3 from the diagonal, we use J = 1. Otherwise,

if its distance is d > Lα′/3, we use J = J1 below the
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Fig. 5. ρc(N) with a sparse, striped matrix, as described in Section V
for different sizes (from N = 2000 to N = 40000). The thresholds for
ℓ1-recovery and for EM-BP without structure are drawn for comparison.
The best fitting parameter is a ≃ 0.18, and it leads to an extrapolation of
ρc(N) in the thermodynamic limit compatible with α.

diagonal and J = J2 above the diagonal. In this way, the

number of elements per column is constant, while the number

of elements per row is a truncated Poisson random variable

with mean 2K: indeed, there are no empty rows, thanks to

the rule of placing the first element of each column closest to

the diagonal. When constructing the matrix, we apply exactly

the same rule to each column, but in the last L columns it

may happen that a non-zero element has a row index larger

than M : these elements are then moved below the first square

matrix by changing the row and column indices as follows:

r ← r − (M − L) and c← c− (N − L).
In this way, we have some kind of continuous one-

dimensional version of the block-structured matrix discussed

in the previous Section. Within this striped matrix ensemble,

the thermodynamic limit at a fixed matrix sparsity can be

calculated without any problem, by sending N, L→∞ at a

fixed L/N and fixed K = O(1). In Fig. 5, we show the

mean critical threshold reached by using striped matrices

with a fixed ratio L/N = 1/50 (the same used in the plot

of Fig. 4) and different signal lengths. Perfect decoding up

to ρc is again achieved by using the EM-BP algorithm. We

extrapolated the ρc(N) data to the thermodynamic limit by

assuming the following behavior in the large N limit:

ρc(N) = ρc(∞)− bN−a (6)

The data in Fig. 5 are plotted with the best fitting parameter

a ≃ 0.18, and the extrapolated value ρc(∞) is perfectly

compatible with the theoretical bound α.

Hence, we can conclude that the important ingredient to

reach optimality is not the block structure, but the nearly

one-dimensional structure, associated with the initial block

with α1 > αBP to nucleate the correct solution.

It is worth noticing that the corresponding statistical

mechanics model for these striped random matrices is a

one-dimensional disordered model with an interaction range

growing with the signal length, as in a Kac construction.
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Fig. 6. Actual time (in seconds) for recovery of a signal with dense and
sparse matrices for different data lengths N . The data are fitted respectively
by a quadratic and a linear function.

Models of this kind are analytically solvable and have shown

very interesting results [24].

The use of our striped sparse matrices allows for a

great reduction in computational complexity. Indeed, the

measurement and recovery times grow linearly with the

size of the signal if sparse matrices are used, while they

grow quadratically if dense matrices are used. Figure 6

shows the measurement and recovery times of a signal for

different signal lengths N . For this test, we used dense block-

structured matrices and sparse striped matrices. The number

of EM-BP iterations to reach the solution is roughly constant

for different N . A quadratic fit for the dense case and a linear

fit for the sparse one perfectly interpolate the data.

VI. CONCLUSIONS AND FUTURE DEVELOPMENT

We introduced an ensemble of sparse random matrices F

that, thanks to their particular structure (see Figure 4), allow

us to perform the following operations in linear time:

(i) measurement of a ρ0-sparse vector s of length N by using

a linear transformation, y = Fs, to a vector y of length αN

(ii) perfect recovery of the original vector s by using a

message passing algorithm (Expectation Maximization Be-

lief Propagation) for almost any parameter satisfying the

theoretical bound ρ0 < α.

These striped sparse matrices that have such good per-

formance because there is a ‘seeding’ sparse square matrix

in the upper left corner that nucleates a seed for the right

solution and the one-dimensional structure along the diagonal

propagates the initial seed to the complete right solution.

Both seeding and a one-dimensional structure have been used

in the past [7], [21], but in our new ensemble, the matrices

are sparse, and this permits us to perform all the operations

in a time linear in the signal length.

We also checked that sparse matrices perform as well as

dense ones in the case of block-structured matrices and for

matrices with no structure at all.

Apart from the compressed sensing case, several other

applications require a sparse matrix or equivalently linear

time complexity [10]

In data streaming computing, one is typically interested

in doing very quick measurements in constant time. For

example, if the task is to measure the number of packets si

with destination i passing through a network router, it is not

possible to keep a vector s because it is generally too long.

Instead, a much shorter sketch of it, y = Fs, is measured

in such a way that a very sparse vector s can be recovered

from y. The matrix F must be sparse in order to be able to

update the sketch y in a constant time for each new packet

passing through the router.

Another interesting application is the problem of group

testing, where a very sparse vector s ∈ {0, 1}N is given and

one is interested in performing the fewest linear measure-

ments, y = Fs, that allow for detection of the defective

elements (si = 1). In this case, the experimental constraints

require a sparse matrix F : only if the tested compound

yµ =
∑

i Fµisi is made of a very few elements of s, the

linear response holds and non-linear effects can be ignored.

However, in the more general case, one does not directly

observe the sparse signal s but rather a linear transformation

of it, x = Ds, made with a dictionary matrix D (which

is typically a Fourier or wavelet transformation, and thus

is a dense matrix). In this more difficult case, one would

like to design a sparse measurement matrix A such that

the measurement/compression operation, y = Ax, is fast,

and the resulting observed data y is short, thanks to the

sparseness of s. The conflicting requirement is to have a

fast recovery scheme, because, now, to recover the original

signal one should solve ŝ = argmin ||s||0 subject to y =
(AD)s, where AD is typically dense (e.g. in case of Fourier

and wavelet transformations). So a very interesting future

development of the present approach is to extend it to this

more complex case.
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using exact reduction algorithms, we prove that there exists a region of the phase
diagram (at zero temperature and low enough link density), where spins are long
range correlated, even if the ground state energy stiffness is null. In other words,
in this region twisting the boundary conditions costs no energy, but spins are
long range correlated by means of pure entropic effects.
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Entropic long range order in a 3D spin glass model

The low temperature phase of frustrated spin models is a very interesting and much
debated subject [1]. Especially in models with discrete couplings, on lowering the
temperature the frustration may produce surprising effects. For example, the classical
‘order by disorder’ effect discovered by Villain et al [2] shows up in 2D frustrated spin
systems, where the ground states (GSs) have no magnetization, while a spontaneous
magnetization is present at any positive temperature smaller than the critical one, 0<T <

Tc (and this is a rather counterintuitive result!). In this case, the explanation is simple: due
to the frustration, two subsets of GS exist, having ferromagnetic and antiferromagnetic
long range order respectively; these GSs have exactly the same energy and so, at zero
temperature (T = 0), they perfectly compensate each other, leading to null global
magnetization; nonetheless, at positive temperatures, the energy of the ferromagnetic
state is lower than the antiferromagnetic one and a long range (ferromagnetic) order is
recovered. This example evidences the importance of exact cancelations at T = 0 in
frustrated models.

Among frustrated models, spin glasses (SGs) [3] have a very complex low temperature
phase. Entropy fluctuations in SGs with discrete couplings are known to play an important
role and are most probably the main mechanism for making the free-energy spectrum
gapless [4].

In this work we study 3D spin glasses with binary couplings (J = ±1) at T = 0,
showing that frustration in SGs generates an effect even more impressive than the one
found by Villain et al : a long range order only due to entropic effects. More precisely, in
this entropically ordered SG phase, a typical SG sample has many GSs with exactly the
same energy, such that, summing over all these GSs, no long range order is found in the
system at T = 0. However, on a closer look, all these GSs are not really equivalent and
taking into account also the entropic contribution to the T = 0 exact computation, we
find that a subset of GSs is dominating the Gibbs measure and thus leads to long range
order in the system.

In order to explain the entropic long range order more simply, we consider a pair of
spins, σi and σj , at a very large distance, |i − j| ≃ L (with L the system size) and try to
estimate their thermodynamic correlation 〈σiσj〉 at T = 0 by computing the probabilities
of being parallel or antiparallel, P[σi = ±σj ]. The method that is typically employed
computes the GS energy at fixed (relative) values of σi and σj : if the resulting GS energy
difference |EGS(σi = σj) − EGS(σi = −σj)| (the so-called energy stiffness) does not grow
with L the system is believed to have no long range order. But this conclusion is wrong!
Indeed, even if EGS(σi = σj) = EGS(σi = −σj), the relative orientation of σi and σj still
depends on the number of GSs, NGS, with given values of σi and σj :

P[σi = ±σj ] ∝ NGS(σi = ±σj) ∝ exp[SGS(σi = ±σj)],

where SGS is the GS entropy. If the entropy difference |SGS(σi = σj) − SGS(σi = −σj)|
grows with L, then |〈σiσj〉| → 1 in the thermodynamical limit and the system shows an
entropic long range order (the energy stiffness being null). Please note that the present
entropic effect is taking place also at T = 0, while Villain’s ‘order by disorder’ requires a
positive temperature because it is due to an energy difference.

We are going to show, by exact reduction algorithms, that such an entropic long
range order exists in SGs with discrete couplings on regular lattices in finite dimensions.
We consider a link-diluted 3D Edwards–Anderson model defined by the Hamiltonian
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Entropic long range order in a 3D spin glass model

H = −
∑

<ij> σiJijσj , where the sum is over all the nearest neighbor pairs of a 3D simple
cubic lattice of length L. The couplings Jij are quenched, independent and identically
distributed random variables extracted from the distribution

PJ(J) = (1 − p)δ(J) +
p

2
[δ(J − 1) + δ(J + 1)], (1)

where p ∈ [0, 1] is the density of non-zero couplings.
This model has a critical line in the (p, T ) plane that separates the paramagnetic phase

from the SG phase. It was already shown by Bray and Feng [5] that, while in a model with
a continuous coupling distribution this critical line ends for T = 0 at the geometric link
percolation threshold pc [7], for discrete couplings the paramagnetic phase does extend
beyond pc, because of exact cancellations between positive and negative couplings. Let
us call pSG the critical value separating the paramagnetic from the SG phase at T = 0. A
tentative estimation of pSG has been provided by Boettcher [6] by considering the ‘defect’
energy ∆EGS between the GS energies obtained by swapping between periodic and anti-
periodic boundary conditions along one direction. He found that for p > p∗ = 0.272(1)
the variance of ∆EGS grows with L (the mean being null by symmetry) thus leading to
a SG long range order. After the work of Boettcher the threshold p∗ has been identified
with pSG, but this is not generally true (as we are going to show now). In general only
the inequality pSG ≤ p∗ holds. Recently in [8] the same model has been solved exactly on
the hierarchical lattice, showing that T = 0 computations can lead to misleading results.
Indeed, while at T = 0 the model shows a phase transition at p∗, the exact solution at
positive temperatures predicts a critical line in the (p, T ) plane ending in (pSG, 0), with
pc < pSG < p∗ (strict inequalities hold). The right critical point pSG is clearly sensitive to
entropic effects, that are neglected in the computation of p∗. The determination of the
pSG value can be made by simply considering first order corrections in temperature to the
T = 0 computations. Thus, in the rest of the paper, we are going to work in this T = 0+

limit.
On a 3D cubic lattice the model cannot be solved exactly and Monte Carlo methods

are very inefficient at low temperatures. To determine the right critical point pSG, we are
going to apply some exact decimation rules that reduce the system to a much smaller size,
which can then be easily solved by numerical methods.

We consider periodic boundary conditions in the x and y directions, while spins in
z = 0 and z = L−1 are linked respectively to two different external spins, with quenched,
independent and identically distributed random couplings extracted from the distribution
in equation (1). The addition of these external spins does not modify the thermodynamic
limit but it is very useful: to check for percolation it will be enough to find a path of
non-zero couplings between these two external spins, while to check for the presence of
long range order one can just measure the correlation between these two spins. So, in
general, one will be satisfied with the computation of the effective coupling between the
two external spins.

Given that the model is link diluted, we can eliminate recursively weakly connected
spins, generalizing what was done in [6, 8]. In the original model the couplings are T -
independent, but, by decimating spins, effective couplings are created whose intensity will
depend on temperature. If we want to find entropic effects, the first order correcting
term in T cannot be neglected, even when studying the system in the T = 0 limit. For
infinitesimal T , we can write the effective coupling as J = sgn(I)(|I| − TK) if I 	= 0 or

doi:10.1088/1742-5468/2011/02/P02002 3
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Entropic long range order in a 3D spin glass model

J = TK if I = 0, where I and K are the energetic and entropic coupling respectively.
The choice for the relative sign is dictated by the fact that thermal fluctuations decrease
the coupling intensity. Spins and bonds are decimated using the following five rules.

(R1) A zero- or one-connected spin is eliminated.

(R2) A two-connected spin σ is eliminated and an effective coupling J12 is created between
the two neighboring spins, σ1 and σ2, satisfying the equation

∑

σ=±1

e(J1σσ1+J2σσ2)/T ≡ AeJ12σ1σ2/T ,

for any choice of σ1 and σ2. Expanding at first order in T the two members, we have for
the energetic component

I12 = 1
2

(
|I1 + I2| − |I1 − I2|

)
,

and for the entropic component

K12 = K1 if |I1| < |I2|,
e2K12 = e2K1 + e2K2 if |I1| = |I2| 	= 0,
tanh(K12) = tanh(K1) tanh(K2) if I1 = I2 = 0.

(R3) Two bonds J1
ij and J2

ij between two spins i and j can be replaced by an effective

coupling Jij with components Iij = I1
ij + I2

ij and Kij = K1
ij + K2

ij.

(R4) A three-connected spin σ is eliminated and effective couplings are created between
the three neighboring spins σ1, σ2 and σ3, satisfying the equation

∑

σ=±1

e(J1σσ1+J2σσ2+J3σσ3)/T ≡ Ae(J12σ1σ2+J23σ2σ3+J31σ3σ1)/T ,

for any choice of σ1, σ2 and σ3. Expanding at first order in T the two members, and

introducing the couplings J̃0 = J1 + J2 + J3 and J̃k = J̃0 − 2Jk with k = 1, 2, 3, we get for
the energetic components

I12 = 1
4

(
|Ĩ0| − |Ĩ1| − |Ĩ2| + |Ĩ3|

)
, (2)

I13 = 1
4

(
|Ĩ0| − |Ĩ1| + |Ĩ2| − |Ĩ3|

)
, (3)

I23 = 1
4

(
|Ĩ0| + |Ĩ1| − |Ĩ2| − |Ĩ3|

)
, (4)

and for the entropic components

K12 = 1
4

(
f(J̃0) − f(J̃1) − f(J̃2) + f(J̃3)

)
, (5)

K13 = 1
4

(
f(J̃0) − f(J̃1) + f(J̃2) + f(J̃3)

)
, (6)

K23 = 1
4

(
f(J̃0) + f(J̃1) − f(J̃2) − f(J̃3)

)
, (7)

where f(J) = |K| + ln(1 + e−2|K|) if I = 0 and f(J) = sign(I)K if I 	= 0.

doi:10.1088/1742-5468/2011/02/P02002 4
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Entropic long range order in a 3D spin glass model

(R5) A spin σ of any connectivity is eliminated if the number nI of its couplings with
a non-zero energetic component (I 	= 0) does not exceed three (nI ≤ 3). If
i, j = 1, . . . , nI index the spins connected to σ by couplings with I 	= 0, and if k
indexes the other neighbors (for which Ik = 0), then the new couplings Jij are com-
puted following previous rules, while the new couplings Jik = sgn(Ji)Jk, i.e. Iik = 0
and Kik = sgn(Ii)Kk.

We have applied recursively the above five rules in the order they are listed: i.e., at
each decimation step, we try to use rule R1, and, only if it does not apply, we try to
use rule R2, and if it does not apply, we try to use rule R3, and so on. The decimation
process stops when it reaches a reduced graph where none of the above five rules can
be applied. This reduced graph does depend on the order in which the above rules are
applied (because rules R4 and R5 increase the degree of neighboring spins), and the order
we have chosen is the one producing the smallest reduced graph.

If the couplings have a discrete spectrum then rule R3 may produce exact
cancellations, thus leading to null effective couplings: this is the reason why pSG > pc

holds in general for models with discrete couplings. Applying the above rules recursively
it is possible that, starting with only energetic couplings, the final effective coupling has
only the entropic component (the energetic one being null). In this situation it is clear
that entropic couplings are essential even in the T = 0 limit.

First of all we study percolation properties of the networks of I and K effective
couplings that result from the recursive application of the above rules to all bonds and
spins (except the external ones, that we want to keep). We are mainly interested in the
percolation thresholds, pI

c
and pK

c
, for the energetic and the entropic components. These

percolation thresholds do depend on the set of reduction rules and increase if more rules are
used3. In figure 1 we show the percolation probabilities of the networks of I and K effective
couplings for many different lattice sizes as a function of the link density p. By studying
the crossing points pL1,L2

of these probabilities for sizes L1 and L2 = rL1 with fixed r (we
use r = 3/4, 3/2, 2) we have been able to estimate the percolation thresholds pI

c
and pK

c

through fits including the first scaling correction [9]: pL,rL = pc + ArL
−1/ν−ω, as shown

in the inset of figure 1. The resulting values are pI
c = 0.264 75(10) and pK

c = 0.251 61(5).
The value of pI

c
is correctly lower than p∗ = 0.272(1), the threshold value where a positive

energy stiffness emerges: the fact that pI
c

and p∗ in general differ can be easily understood
by considering the 2D EA model, which is clearly percolating, but has negative energy
stiffness. Moreover pK

c is lower than pI
c because the applied decimation rules leave the

energetic component rational, while the entropic one may become real, thus leading to
much less exact cancellations. Please note that pK

c
provides a lower bound to pSG given

that geometrical percolation of the effective couplings is a necessary, but not sufficient,
condition to have SG long range order.

In the thermodynamic limit, for densities smaller than pI
c , the energetic component I

is not percolating and cannot induce any long range order. Therefore, in the link density
region pK

c
< p < pI

c
an eventual thermodynamic phase transition can be due solely to

entropic effects.

3 The five rules that we use are all those that keep the interactions pairwise. Indeed decimating a four-connected

spin would produce a four-spins effective interaction.

doi:10.1088/1742-5468/2011/02/P02002 5



96 C. Side projects

J.
S

ta
t.

M
e
c
h
.

(2
0
1
1
)

P
0
2
0
0
2

Entropic long range order in a 3D spin glass model

Figure 1. Percolation probability for different lattice sizes L as a function of the
link density p for the energetic (right) and the entropic (left) part of the effective
couplings. Inset: the infinite volume extrapolation for pI

c
.

To search for such an entropic phase transition, we further reduce the decimated
graph. For pK

c
< p < pI

c
, with high probability in the large L limit, the decimated graph

is percolating solely in K, while the I couplings form clusters of finite size (similarly to
what happens in standard percolation below pc). An example of the resulting graph after
the decimation process is shown on the left side of figure 2, where full (respectively dashed)
lines represent couplings with (respectively without) a non-null energetic component I.
The two circles represent what we call I-clusters, that is groups of spins connected by
couplings with a non-null energetic component I (note, however, that inside these I-
clusters also couplings with only the entropic component K may exist, as in the rightmost
circle in figure 2). The connections between any two different I-clusters have only entropic
components.

Our idea is to map the original problem to a smaller and simpler one, where the
variables are the I-clusters, that interact only through entropic couplings, as on the right
side of figure 2.

Given that we are interested in the T = 0 limit, each I-cluster must be in a ground
state (GS) configuration. So, for each I-cluster C, we compute with an exact branch and
bound algorithm all its NC GSs. We introduce then a Potts variable τC for that I-cluster,
taking values in [1,NC]. We call {σC

i (τC)} the GS configurations of the C cluster.
Working at T = 0, the GSs are calculated by taking into account solely the energetic

component I of the couplings. Afterwards we consider also the entropic components K,
that give rise to two different interacting terms. K bonds connecting two spins in the
same I-cluster produce a self-interaction term

EC(τC) =
∑

i,j∈C

Kijσ
C

i (τC)σ
C

j (τC).

doi:10.1088/1742-5468/2011/02/P02002 6
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Entropic long range order in a 3D spin glass model

Figure 2. On the left we show an example of the system after the decimation.
Full lines represent couplings with I 	= 0, while dashed lines represent couplings
with I = 0. The two I-clusters are enclosed in circles and are connected only by
purely entropic couplings. On the right, the system is mapped on a Potts model
where each variable represents an I-cluster. These Potts variables are connected
by effective entropic couplings taking into account all the interactions originally
connecting the I-clusters. Please note that our decimation rules always produce
a reduced system with degree not smaller than four, but here we have drawn
fewer lines for the sake of figure readability.

This quantity may bias the choice among degenerate GSs even in the T = 0 limit. In the
new Potts model, it can be interpreted like an external field acting on the Potts variable
τC that may bias its value.

K bonds connecting spins in different I-clusters generate the interaction between the
Potts variables. This interaction depends on the configurations of both clusters, and so
must be represented as a matrix

MC,C′

(τC, τC′) =
∑

i∈C,j∈C′

Kijσ
C

i (τC)σ
C′

j (τC′).

The Gibbs–Boltzmann measure for the reduced Potts model is then

µ
(

{τC}
)

∝ exp
[

∑

C,C′

MC,C′

(τC, τC′) +
∑

C

EC(τC)
]

. (8)

It is important to note that this measure does not depend on the temperature, because
entropic couplings have a linear dependence on T that cancels the 1/T term in the
Boltzmann factor. The Potts measure in equation (8) is an exact effective description
of the original SG model at temperature T = 0+, having many fewer variables and a
smaller complexity with respect to the original model.

In order to locate a possible SG transition, we compute the correlation between the
external spins under the measure µ in equation (8). If the effective Potts model has a
linear topology, namely each variable has at most two neighbors, we solve it exactly by
the transfer matrix method (the probability P to have these ‘linear’ systems is rather
high: e.g., around the critical density pSG, P > 0.9 for L ≤ 24, P ≃ 0.7 for L = 32,
P ≃ 0.6 for L = 36 and P ≃ 0.2 for L = 48). Otherwise we use a Metropolis Monte Carlo

doi:10.1088/1742-5468/2011/02/P02002 7
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Entropic long range order in a 3D spin glass model

Figure 3. Average of square (below) and absolute value (above) of correlations
at distance L, for different lattice sizes, as a function of link density p. The errors
are not larger than the symbols.

method to sample the measure in equation (8), and the equilibration of the Markov chain
is not an issue given the small number of variables. Since the Gibbs–Boltzmann measure
in equation (8) does not depend on temperature, one can think of it as that of a Potts
model at β = 1. Thus, for equilibrating the corresponding Markov chain, we perform a
simulated annealing from β = 0 to 1, with steps ∆β = 0.1 and different cooling rates
(100, 300 and 1000 Monte Carlo steps per temperature). We checked that the average of
the interesting quantities, like the correlations, does not depend on the cooling rate.

For the very few samples that show percolation in the energetic components, we
assume a correlation between external spins equal to one. This approximation makes no
error in the thermodynamical limit as long as p < pI

c
.

Being interested in a SG long range order, we show in figure 3 the average over the
samples of the square and of the absolute value of the correlation between the external
spins (which are at distance L in the original model) as a function of the link density p.
This quantity should decrease with L in a paramagnetic phase, while it should grow with
L if a SG long range order is present: thus the crossing point of the curves in figure 3
roughly identifies the critical density pSG. Our best estimation for pSG has been obtained
by the finite size analysis of the crossing points of the correlations measured in systems
of sizes L and sL, that should scale as

pcross(L, sL) = pSG + BsL
−1/ν−ω.

In figure 4 we show the values of pcross obtained with s = 1.5 and 2, together with the best
fits. In the abscissa we have used the scaling variable L−2 that provides the best joint fit
to all the data shown in the figure. However the uncertainty on this scaling exponent is
large given the very small spread of pcross around pSG for the sizes we have studied. Our
final estimation for the SG critical threshold is pSG = 0.254 73(3).

doi:10.1088/1742-5468/2011/02/P02002 8
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Entropic long range order in a 3D spin glass model

Figure 4. Crossing points of the data shown in figure 3 with sizes L and sL as a
function of L

−2.

By studying the slopes of the data shown in figure 3 at the critical point pSG as a
function of the system size we have been able to obtain an estimation of the exponent ν
controlling the shrinking of the critical region and we get ν = 0.9(1). This value for the ν
exponent does not coincide with the one measured at criticality for the undiluted (p = 1)
or weakly diluted (p = 0.45) EA model, which is νT = 2.2 (the subscript T should remind
us that this exponent is related to the shrinking of the critical region in temperature).
However a simple argument gives the connection between the two exponents: if the critical
line close to the T = 0 fixed point behaves like TSG(p) ∝ (p − pSG)φ, then 1/νT = φ/ν.
Our results thus suggest a value φ ≃ 0.4 for the shape of the critical line.

We have shown that in 3D spin glasses frustration and coupling discreteness may
induce an entropic long range order: in this phase the energy stiffness is zero (i.e. boundary
conditions can be changed at no energy cost), but the states with largest entropy dominate
the Gibbs measure. This dramatic effect of entropic contributions to the Gibbs states has
been extensively studied in mean-field models of spin glasses with finite connectivity at
T = 0, especially in the context of random constraint satisfaction problems [10]–[12].
However in the present work we have proved the existence of such an entropic phase in
a 3D spin glass model. Moreover this entropy dominated SG phase should persist also at
positive temperatures as long as p � p∗ and the energy stiffness is null (see figure 5).

One may question why perfectly discrete couplings are difficult to find in Nature.
Nonetheless if one considers a model with quasi-discrete couplings (e.g. integer values
plus a small Gaussian term of variance σ2

≪ 1) the critical line looks like the dotted
curve in figure 5: it mainly follows the critical line of the corresponding model with
discrete couplings and only for T � σ moves towards pc. It is clear that the identification
of such a critical line is based on the correct estimation of pSG in the model with discrete
couplings.

doi:10.1088/1742-5468/2011/02/P02002 9
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Entropic long range order in a 3D spin glass model

Figure 5. A schematic phase diagram in the (p, T ) plane, showing that entropic
long range order must exist also at positive temperatures. The dotted curve is
the critical line of a model with quasi-discrete coupling.

Figure 6. Conjectured phase diagram at T = 0+ by varying the level of
frustration ϕ in the model. The entropically long ranged phase should exist
for any frustrated model, ϕ > 0, with discrete energy levels.

One more comment about the generality of our results regards what happens when
couplings have a ferromagnetic bias. Indeed perfectly symmetric coupling (i.e. with a null
mean, Jij = 0) are again difficult to find in Nature, and it is important to check whether
the entropic long range order is stable with respect to the addition of a ferromagnetic
bias in the couplings. The answer is contained in the pictorial phase diagram shown in
figure 6, where the link density p is reported as a function of some degree of frustration
ϕ. A quantitative measure for ϕ on a regular lattice can be, for example, the fraction of
frustrated elementary plaquettes: for ϕ = 0 we have a pure ferromagnetic model, while
for ϕ = 1/2 we have the spin glass model studied in this work. In this phase diagram,
the addition of a ferromagnetic bias in the couplings corresponds to reducing the value
of ϕ with respect to the value ϕ = 1/2 it takes in a spin glass model with symmetrically
distributed couplings. The phase diagram shown pictorially in figure 6 contains, in general,
three different phases: a paramagnetic one (P), a spin glass one (SG) and a ferromagnetic

doi:10.1088/1742-5468/2011/02/P02002 10



101

J.
S

ta
t.

M
e
c
h
.

(2
0
1
1
)

P
0
2
0
0
2

Entropic long range order in a 3D spin glass model

one (F). Moreover, along the SG–F boundary a mixed phase can exist [13], containing a
diverging number of states with a non-null magnetization (but here we do not want to
enter the long-standing debate about the nature of the spin glass phase in 3D models). In
figure 6 the gray region is our educated guess about the location of the entropically long
range ordered phase: in other words we conjecture the presence of such a phase in any
frustrated model (ϕ > 0) with discretized energy levels.

An important comment regards the implications of our results on the studies of the low
temperature phase of SG models made by means of GS computations. In these numerical
studies one or few GSs are usually computed per sample, under different boundary
conditions, and only the GS energies are considered. Unfortunately this kind of study
is not able to identify the entropic long range order. In the light of our results, this kind
of numerical studies should be modified either by considering the first order correction in
temperature when decimating the variables, or by computing many (or all) GS per sample,
so as to identify the state which is entropically dominating. Some steps in this direction
have been already taken in [14], where it has been recognized that a correct estimation of
the GS clusters’ entropy is necessary to extend predictions at positive temperatures.

Last, but not least, the present best estimation for the lower critical dimension in
SGs, dL ≃ 2.5, is based on GS energy stiffness computations [6], which ignore entropic
effects. Most probably this result needs to be modified to a lower value due to the entropic
long range order.
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