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Introduction

This thesis consists of two parts. A newer dynamic approach to the well-

known static variational method for the time-series medical images is pre-

sented, and a graphic software applications for synchronization between car-

diac movement and electric signals (ECG) are developed.

Many approaches have been built up to process such digital images, and it

is di�cult to say which one is more e�ective than the other. Many sophisti-

cated tools have been developed; here we focus on PDE-based and variational

methods. Many issues concerning models in scienti�c disciplines deal with

partial di�erential equations (PDEs). Especially, Image Processing, Com-

puter Vision and Pattern Analysis have undergone a great development. [2],

[15], [16], [33], [27].

In PDE integration, often it is not possible to get global explicit solutions, so

working up methods for approximated solutions and implementing numerical

codes is generally needed.

The elaboration image sequences, which represent our main topic, concerns

the identi�cation of contours of an object for segmentation and study of its

movement over time.

Papers by S. Osher and J. A. Sethian [32], [34], [36] et al. have contributed

to the development of numerical methods for the solution of variational prob-

lems in segmentation of images, reconstruction of surfaces and other conven-

tional techniques of Image Processing, which prove useful in various �elds of
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Introduction

scienti�c investigation.

We have studied the feasibility of applying some segmentation techniques for

the determination of cardiac e�ciency parameters such as the percentage of

blood expulsion and the internal pressure of the left ventricle cycle. To face

this �rst issue in order to structure, to patient's advantage, inexpensive and

not invasive medical technique of analysis [38] and to build up an automatic

protocol for image sequence analysis.

Standard snake models of closed curve evolution, pertaining to the Level-

Set Method, have been implemented to characterize the internal ventricular

area over time. We have applied standard �nite di�erence techniques for the

approximation solution of the involved eikonal equations for front evolution.

Well-known techniques of Gaussian regularization, such as heat equation,

have highlighted the loss of de�nition of ventricular edge. Thus we now

present a numerical frame preprocessing technique, based on a variational

model, that consists of functional minimization with a Mumford-Shah (M-S)

time-dependent energy term, which is suitable to enhance ventricular edge

and regularize initial data for curve evolution. This one, unlike the stan-

dard convolution with a regularizing operator, allows to compute the bright-

intensity gradient of the image for velocity term of the curve evolution.

Theoretical results for closed-curve evolution on bidimensional domain our

analysis is setup on are due to M. Falcone [23], [11], [12], [13], [33] et al.

Approximation of the M-S functional [29] is based on work by Ambrosio and

Tortorelli, instead [1], [2], [3], [4], [5].

Here we present results for di�erent choices of parameter values, both terms

of threshold values for the front evolution and favor for regularity of the con-

tours in the minimization of the functional.

It was an Echo-Cardio-Graphic Instrument (Esaote MyLab30) to provide

movie for data from real patients (Clinical Sciences Department of Umberto

I General Hospital, Sapienza University).

Introduction 2



Introduction

The present thesis illustrates, in the �rst chapter, the formulation of the

standard model problem for image segmentations by curve evolution. The

Gaussian regularization of initial data and a newer approach of pretreat-

ing model by functional minimization. The applicability of the resolution

method is discussed and an open mathematical problem for a new functional

involving time-dependence are presented.

The second chapter presents the approximation of the above mentioned mod-

els, the stability of numerical model and the parameter choice.

Finally the last chapter describes the digital format of movies, the adapta-

tion of single frames, the step that characterizing elaboration protocol, the

quality of the results obtained with the preprocessing on a test problem. As

well as the choice and implementation of reduced numerical methods in the

real case and their computational cost. We compare results obtained by vari-

ous preprocessing methods identi�ed areas, curve evolution beyond the edge,

ventricular area his trends over time and the evaluated Ejection Fraction.

A static picture of the implemented graphic application is presented at the

end of the chapter, as well as the principal use of the signal-synchronizing

software. A future �eld of study is in the open problem subsection of the

�rst chapter.

In the appendix a brief recall of H-J equation, Γ-convergence and SBV space

function are presented.

In conclusion the aim of this work consists in generating a protocol for med-

ical investigation to produce time-dependent pro�les of the ventricular area,

which could turn useful for diagnostic and research, as well as a graphical

tool to synchronize and study these signals.

Introduction 3



Chapter 1

The Active-Contours model

problem

In the problem model for the individualization and recognition of contours,

the front of a parametrized curve evolves from an allocated initial con�gura-

tion, of the domain Ω ⊂ R2, to stops its evolution on the external or internal

edge of the object.

If instantly, the initial curve, is positioned on the external edge of the image,

really to a very small distance from the edge, or is little regular closed curve

in the domain and it according to the normal to every point of the curve,

it will evolves to halt itself on the, external or internal, contour of the set

when the local growth of the gradient of the image's bright intensity, become

less than a threshold parameter. That determines the presence of the object

contour in the represented set. (references in [17], [36], [34] and appendix).

Let us now recall some basic de�nition for a curve as isovalues of surface and

its speed of propagation to which we refer the edge detection model problem.
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1. The Active-Contours model problem

Figure 1.1.0.a: Echocardiographic frame and its recognized Area

1.1 Ventricular area recognition

Our pourposes is the automatic detection of the internal area of the ven-

tricular cavity. This suggest us to perform the curve evolution as an initial

value problem. A typical results that represent our goal is presented in the

�gure 1.1.0.a. In the next part we focus the attention concerning the choice

of the �lter function for the edge-detection and the related applicability of

the speed term formulation in the continuous model problem.

1.1.1 Edge-detection

Given an image, in particular an echocardiographc image, we need to au-

tomatically detect the internal contour of object for clinical pourposes. We

focus ours attention to a ventricular cavity. We consider a closed subset Ω

of R2, having ∂Ω as the external edge of the rectangular image and being

I : Ω→ [0, 1] the brightness intensity. The "edge-detector" (detector of con-

tours) for segmentation of the image is a positive real coe�cient, which is

dependent of I(x)'s gradient at every point of the curve. In particular, the

model is represented by a �lter function such that

g : R+ −→ R+

1.1. Ventricular area recognition 5



1. The Active-Contours model problem

Figure 1.1.0.b: Curve at isolevel at t = 0

where

g(z) =
1

1 + z

decreasing with z and

lim
z→∞

g(z) = 0

such that 0 6 g and g(0) = 1.

1.1.2 Segmentation case

For front evolution the level − set standard model is adopted (see Sethian

[36], [34], [27]et al.). A curve in R2 can be represented as the zero-level line

of a function in higher dimension. More precisely, let us suppose that there

1.1. Ventricular area recognition 6



1. The Active-Contours model problem

exists a function u : R2 × R+ → R solution of the initial value problem: ut(x, t)− gI(x)|∇u(x, t)| = 0 x ∈ Ω, t ≥ 0

u(x, 0) = u0(x) x ∈ Ω
(1.1.1)

which is the model of eikonal equation for front evolution for segmen-

tation problem, typically involved in the detection for edges of objects con-

tained in an image. We have to note that the evolving function u(x, t) always

remains a function as long as gI is smooth. So we choose a di�erent expres-

sion for the speed terms in order to limit the loss of image de�nition of

Gaussian smoothing and by new approach with functional minimization to

preserve this property. For ours pourposes we intend enough smooth a func-

tion C2(Ω).

1.1.3 Speed choice for image processing

The speed term is dependent of the brightness intensity at every pixel and

is directed along the outward normal, starting from an initial elliptic pro�le

E centered in Ω. Insofar we de�ne the composite function

gI(|∇I(x)|) = g(|∇(Gσ ∗ I(x))|) =
1

1 + |∇(Gσ ∗ I(x))|
, (1.1.2)

where Gσ* I(x) is the convolution of the image I(x) with a regularizing op-

erator Gσ whose algorithmic implementation we are going to explicit later.

The operator Gσ is a �lter that allows, by heat equation, to calculate the

brightness-intensity gradient of the image in the presence of discontinuous

data.

The discretization of the problem is performed by building a rectangular lat-

tice, which is made �ne-grained according to image's pixel de�nition. The

curve is parametrized by means of a Lipschitz function. Therefore, the dif-

ferential problem to be numerically solved will look as follows:

1.1. Ventricular area recognition 7



1. The Active-Contours model problem

considering the built-in function u0(x) such that E = {x ∈ R2 : u0(x) = 0} ut − gI(|∇I(x)|)|∇u| = 0 x ∈ Ω ⊂ R2 × [0, T ]

u(x, 0) = u0(x) x ∈ Ω ⊂ R2
(1.1.3)

where T is the time horizon.

In the numerical tests the algorithm predicts a stop of the evolving curve at

a threshold value th for the speed term, such that, if gI(x) 6 th⇒ gI(x) = 0,

then the threshold parameter allows curve evolution to stop in the presence

of di�erent gradient values for the regularized image.

1.1.4 Gaussian regularization of the image by heat equa-

tion

The problem representing di�usion, or transfer, of heat in a given mate-

rial from an assigned initial con�guration can be modeled with the aid of a

second-order parabolic partial derivative equation.

If a source is present, distributed in the domain, and an initial pro�le is given,

in the bidimensional domain the modeling follows the Cauchy's problem: ut −∆u(x, t) = f(x, t) (x, t) ∈ Ω× [0, T ]

u(x, 0) = u0(x) x ∈ Ω

with boundary conditions ∂Ω × [0, T ], where f(x, t) is the source function

and u0(x) describes the pro�le at t = 0. We are not interested in the explicit

solution that can be easily found in literature, but rather in its regularizing

properties on the given image in the domain Ω. In this case we will assume

f(x, t) = 0 and bounds �xed on the external edge of the image. This way

the model problem becomes: ut −∆u(x, t) = 0 (x, t) ∈ Ω× [0, T ]

u(x, 0) = u0(x) x ∈ Ω
(1.1.4)

1.1. Ventricular area recognition 8



1. The Active-Contours model problem

with Dirichlet boundary conditions. The numerical implementation makes

use of a �nite-di�erence scheme of approximation. Solving (1.3.1) is equiva-

lent to carring out a Gaussian linear �ltering, which was widely used in signal

processing. More precisely, let u0 in L1([−1, 1]). Then the explicit solution

of 1.1.4 (1.3.1) is given by

u(x, t) =

∫
R2

G√2t(x− y)u0(y)dy = (G√2t ∗ u0)(x),

where Gσ(x) denotes the two-dimensional Gaussian Kernel

Gσ(x) =
e−
|x|2

2σ2

2πσ2
.

Convolution by a positive kernel is the basic operation in linear image �l-

tering. It corresponds to low-pass �ltering. This formula gives the corre-

spondence between the time t and the scale parameter σ of the Gaussian

kernel. See page 56-57 and 85-87 of [6] for better reference on molli�cation

properties.

1.1.5 Curve evolution on image

As an anticipation of what we are going to do in the case of a movie, now

we want to recall in brief the evolution of a closed curve on a single image.

Some results are presented here in order to assess the action of a Gaus-

sian regularization operator in terms of its number of iterations and choice

of the threshold parameter that characterizes the stopping function of the

edge detector. Such results are both from test-images and echocardiographic

image frames, with di�erent CPU time needed for the frame case on di�erent

hardware systems with and without MPI parallel elaboration.

1.1. Ventricular area recognition 9



1. The Active-Contours model problem

Test images

In this test case, we can see the modeled problem applied on real and syn-

thetic images.

Test curve evolution on cut paraboloid

Test curve evolution on synthetic vase.

1.1. Ventricular area recognition 10



1. The Active-Contours model problem

Test curve evolution on real vase.

The curve stops its evolution on the edge of the object contained in the

image. We use threshold values around 0.1 for curve evolution on these

test-problems.

1.1.6 Real test case: Echographic image

The ventricular contour of the cardiac muscle behaves like an elastic gum, so

inducing a good performance of the model for a large part of image frames,

but, at its maximum expansion, the ventricle reveals low echo response from

thin tissue at various locations, so causing the image-frame to be a�ected by

the presence of a hole in the edge delimitation and the curve to go out. This

kind of limit in recognition of the internal area is emphasized by Gaussian �l-

tration of the image, which is needed to calculate the gradient for the velocity

term in the model problem. A lot of curve evolution results on echocardio-

graphic images are reported below. There we can compare di�erent choices

of threshold value and number of smoothing iterations. A detailed explana-

tion of eikonal results from front evolution with di�erent choices of threshold

parameter for images smoothed in a variable number of heat iterations is

1.1. Ventricular area recognition 11



1. The Active-Contours model problem

presented below:

Figure 1.1.6.c: Smooth-iteration=1, Time-Horizon=3

(a) Threshold=0.125 (b) Threshold=0.15

(c) Threshold=0.175 (d) Threshold=0.2

1.1. Ventricular area recognition 12



1. The Active-Contours model problem

Figure 1.1.6.d: Smooth-iteration=3, Time-Horizon=3

(a) Threshold=0.125 (b) Threshold=0.15

(c) Threshold=0.175 (d) Threshold=0.2

1.1. Ventricular area recognition 13



1. The Active-Contours model problem

Figure 1.1.6.e: Smooth-iteration=5, Time-Horizon=3

(a) Threshold=0.125 (b) Threshold=0.15

(c) Threshold=0.175 (d) Threshold=0.2

1.1. Ventricular area recognition 14



1. The Active-Contours model problem

The standard choice of threshold-parameter value at variable number of

smoothing iterations, as we can see, is insu�cient to give a correct stop

of the curve within a small range of the pixels neighboring the ventricle edge.

Indeed, this kind of image, with its amount of noise so overlapping with the

studied signal, suggests us to apply a di�erent technique in the frame analy-

sis. Many methods and di�erent approaches are currently available and lots

of papers were written about this speci�c topic. An exhaustive work, due

to Stanley Osher et al., is [31]. As a large part of other scientists, expert in

image analysis, we choose here to investigate a newer approach including a

preprocessing step, based on functional minimization, to enhance the border,

following the idea that image noise is quite static over time, while studied

signal (ventricle border, in our case) is rhythmically moving. Thus, let us

try to apply the Mumford-Shah functional to this dynamic problem.

1.2 New approach to regularize and enhance

Image

Analysis of images through variational methods �nds application in a number

of �elds such as robotics, elaboration of satellite data, biomedical analysis and

many other real-life cases. By segmentation is meant a search for constituent

parts of an image, rather than an improving of its quality or characteristics.

Our aim is to develop a criterium for enhancing movie frame in two pos-

sible ways by functional minimization. First, we adopt the M-S functional

and its approximated form proposed by Ambrosio Tortorelli [5] to regularize

data frame for curve evolution method, instead of Gaussian regularization.

We call it �classic functional� since the function space the variational inte-

gral converges over contains functions that have the regularity needed for

image gradient calculus. Second, we present a numerical scheme, where a

1.2. New approach to regularize and enhance Image 15



1. The Active-Contours model problem

time-dependent parameter is inserted, precisely in the second integral part

of functional distinguished by a �time gradient�, for enhancing the internal

moving parts of the object. A detailed analytical treatment and a numerical

scheme for minimization of the functional, which involves some delicate con-

jectures and re�ned mathematical steps, can be found in [6]. In the following

section we recall in brief the essential formulation of the model problem used

to regularize and enhance image. Other particular on numerical approxima-

tion and function space are explained in the next chapter and in appendix.

The reader can look up, for a complete review, the book by Morel and Soli-

mini [30].

1.2.1 The M-S Functional

First, the formulation introduced by Mumford and Shah in 1985 is presented.

It consists of an energy-based method. For a given image g, we search for a

function u : Ω −→ R and a set K ∈ Ω (the discontinuity set) minimizing

F (u,K) =

∫
Ω

(u− g)2 + λ

∫
ΩrK

| ∇u |2 dx + α

∫
K

dσ.

To obtain the existence of a minimizer and to compute it, following Ambrosio

[1; 2; 3], these conditions, assuming the following regularity hypotheses to

stand true:

(C1) K consists of a �nite number of C1,1-curves, meeting ∂Ω and meeting

each other only at the endpoints.

(C2) u is C1 on each connected component of Ω−K.
Mumford and Shah conjectured that the functional admits a minimizer sat-

isfying (C1), (C2). [29]

1.2. New approach to regularize and enhance Image 16



1. The Active-Contours model problem

Approximation of the M-S functional by Γ-convergence

The numerical minimization of the M-S functional is a di�cult problem be-

cause of the presence of unknown discontinuity set Su. The approximation of

the functional F by means of Γ-convergence is an useful tool for the numerical

computation of minimizers [5; 35]. Brie�y, in Ambrosio Tortorelli's theorem

the functional F is approximated by a sequence of elliptic functionals. Let

the functional de�ned by

F̂ (u, S) =

 F (u) if u ∈ SBV (Ω), S ≡ 1,

+∞ otherwise.

Let {Kε} be a sequence of positive numbers converging to zero such that

lim
ε→ 0+

Kε = 0

The approximating functional Fε are de�ned [5; 35]:

F (u) = µ

∫
Ω

(u− g)2+

∫
Ω

(S2+Kε) | ∇u |2 dx +α

∫
Ω

(
ε | ∇S |2 +

1

4ε
(1− S)2

)
dx.

Where the above term (S2 +Kε) is near to the approximation of the sequence

of functional in A-T theory in its means of tubular neighbourhood and its

skrinking when ε→ 0+ (see [5; 35]).

1.2.2 Ambrosio-Tortorelli algorithm ('90)

This section refers to M-S algorithm for the approximation of F (u,K) with

a sequence Fε of regular functionals de�ned on a Sobolev space. We focus

our attention on the Ambrosio-Tortorelli approximation, which is among the

most used in image analysis. In this particular approach, the set K (or Su)

is replaced by an auxiliary variable S (a function) which approximates the

characteristic function (1− χK).

Fε (u, S) =

∫
Ω

(u− g)2 dx+

∫
Ω

S2 | ∇u |2 dx +

∫
Ω

(
ε | ∇S |2 +

1

4ε
(1− S)2

)
dx

1.2. New approach to regularize and enhance Image 17



1. The Active-Contours model problem

If (uε, Sε) minimizes the functional Fε, then the following result holds ([5]) :

L2

uε −→ u ed Sε −→ 1− χK per ε −→ 0+

We gather from the problem of minimun related to the Ambrosio-Tortorelli

functional, the Euler equations, than by an appropriate approximation will

give us an algorithm for minimization.

When we apply Euler equation system, if u0 = g is chosen, an enough rapid

continuation method will give good results even though contours are not well

de�ned.

1.2.3 Euler equation of the approximated functional

Given ∫
Ω

ψ(u,∇u)dx,

the associated Euler equation is

div (∇ξψ(u,∇u))−
(
∂ψ

∂u

)
= 0.

Using Neumann boundary conditions, we get:

F (u) = µ

∫
Ω

(u− g)2+

∫
Ω

(S2+Kε) | ∇u |2 dx +α

∫
Ω

(
ε | ∇S |2 +

1

4ε
(1− S)2

)
dx.

Euler equation system for u, considering that the quadratic gradient 2(S2 +

Kε)∇u2 is transformed into the Laplacian, looks as follows: div(2(S2 +Kε)∇u) = µ(u− g) ∂u
∂n

= 0 in ∂Ω

αε∆S = S | ∇u |2 − α
4ε

(1− S) ∂S
∂n

= 0 in ∂Ω

where the non linear terms S2 and ∇u cause the system to be non-linear and

elliptic, with such a structure that, when S is known, the �rst equation gets

linear, while, if it is u to be known, it is the second equation to be linear.

This suggests the adoption of a two-stage iterative scheme. Where we �x the

discrete step of convergence that is enough to give back a regularized image,

enhanced in its content edge, as we present in the next section.

1.2. New approach to regularize and enhance Image 18



1. The Active-Contours model problem

1.3 Open problem

In course of development, with R. March and G. Riey, there is a new and

more sophisticated functional that involves the time-dependent integral. The

new formulation is: let

g : Ω× [0, T ] , Ω ∈ R2

u ∈ R2 × [0, T ],

F (u) =

∫ T

0

dt

∫
Ω

∣∣∣∣u− g · ϕη,L(∣∣∣∣∂g∂t
∣∣∣∣)∣∣∣∣2 dx+

∫ T

0

dt

∫
Ω

∣∣∣∇̃xu
∣∣∣2 dx+

∫ T

0

dt·H1
(
Su(t)

)
+

where ϕη,L is a cut function. Time regularization parts

+

∫ T

0

dt

(
∂u

∂t

)2

dx+

∫ T

0

dt

∫
Ω

∣∣∣∣∇̃x

(
∂u

∂t

)∣∣∣∣2 dx+

∫ T

0

dt · H1
(
S ∂u
∂t

)
Discretization in Ambrosio Tortorelli format.

Fε (u) =

∫ T

0

dt

∫
Ω

∣∣∣∣u− g · ϕη,L(∣∣∣∣∂g∂t
∣∣∣∣)∣∣∣∣2 dx+

∫ T

0

dt

∫
Ω

S2 |∇xu|2 dx+

∫ T

0

dt

∫
Ω

{
ε |∇xS|2 +

1

4ε
(1− S)2

}
dx

+

∫ T

0

dt

(
∂u

∂t

)2

dx+∫ T

0

dt

∫
Ω

Z2

∣∣∣∣∇x

(
∂u

∂t

)∣∣∣∣2 dx+

∫ T

0

dt

∫
Ω

{
ε |∇xZ|2 +

1

4ε
(1− Z)2

}
dx

So the second part of the functional presents the form:

Fε (u(x, t)) =

∫ T

0

dt

∫
Ω

Z

(
u,∇xu,

∂u

∂t
,∇x

(
∂u

∂t

))
dx.

We write the Euler equation for integral functional that depends to the func-

tion u and its �rst derivative and also to the superior order derivative. Euler

equation of the functional become:

u− gϕη,L
(∣∣∣∣∂g∂t

∣∣∣∣)− div (S2∇xu
)
− ∂2u

∂t2
+
∂

∂t

[
div

(
Z2∇x

∂u

∂t

)]
= 0.
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1. The Active-Contours model problem

Than we obtain the system: S | ∇xu |2 −ε∆xS − 1
2ε

(1− S) = 0

Z | ∇x

(
∂u
∂t

)
|2 −ε∆xZ − 1

2ε
(1− Z) = 0.

The existence of minimum and the approximation are in course of develop-

ment.
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Chapter 2

Numerical approximation of the

models

We are going to describe, in this chapter, the numerical approximation of the

models introduced above. In details, our aim is to present the semilagrangian

scheme for curve evolution by numerical solution of eikonal eq. The standard

molli�er is constructed by a Gaussian operator as a numerical scheme for

heat eq. in two dimensions. The last section reports the procedure to build

the approximation of the Mumford-Shah functional by Ambrosio-Tortorelli

scheme.

2.1 Semi-Lagrangian (SL) scheme for Eikonal

eq.

Semi-Lagrangian (SL) schemes try to mimic the continuous behavior by con-

structing the solution at each grid point by back integration along the char-

acteristic trajectory passing through the point and reconstructing the value

at the foot of the trajectory by interpolation. The numeric dependence of

21



2. Numerical approximation of the models

the domain contains its continuous dependence without any additional con-

dition on ∆t and ∆x (space lattice is usually de�ned for �nite di�erences

as the pixel resolution of images). This allow a larger time steps than other

schemes where the CFL condition has to be imposed for stability guaranty.

The numerical method for eq. (1.1.3) following the semilagrangian scheme

by M. Falcone and M. Sagona [21]. In our implementation we use a thresh-

old value that has been chosen and discussed in a work cited earlier [33].

The SL-scheme is strictly connected with Hopf-Lax representation formula

(A.1.5) for exact solution of (HJ1). The Hamiltonian, for eikonal equation,

we consider is H(p) = |p|, is continuous and convex but the assumption

(A.1.4) is not satis�ed, in fact

H(p)

|p|
→ 1 when |p| → +∞. (2.1.1)

So the trasformated H∗(p) is de�ned only on a subset of the space where

we search the solution. When The typical SL-scheme, for D=2 such as a

rectangular domain, is de�ned in terms of a lattice L(∆x,∆y,∆t) such that

L ≡ {(xi, yj, tn) : xi = i∆x, yj = j∆y, tn = n∆t; i, j ∈ Z, n ∈ N}

where (xi, yj, tn) ∈ R2 × R+, ∆x,∆y and ∆t are space and time steps. In

case of images, the step is equivalent to space de�nition (since a grid based

on image resolution is taken), while ∆t is the time step. We can write (HJ1),

�rst order equation as follows:

ut + sup
a∈R2

{∇u · a−H∗(a)} = 0 (2.1.2)

To obtain the SL-scheme we consider the approximation :

−∇u(xi, yj, tn) · a =
u(xi − a1∆t, yj − a2∆t, tn)− u(xi, yj, tn)

∆t
+O(∆t)

If we denote an approximation of u(x, y, t); i, j ∈ Z by standard uni,j and make

use of forward �nite di�erences and directional derivatives from previous

2.1. Semi-Lagrangian (SL) scheme for Eikonal eq. 22



2. Numerical approximation of the models

equation as [23], then we obtain:

un+1
i,j − uni,j

∆t
= min

a∈B2(0,1)

[
un(xi − a1∆t, yj − a2∆t, tn)− un(xi, yj)

∆t
+H∗(a)

]
which leads to the time explicit scheme

un+1
i,j = min

a∈B2(0,1)
[un(xi − a1∆t, yj − a2∆t) + ∆tH∗(a)]

Several steps are needed, in general, to compute the solution, since the value

of u on the right-hand side has to be computed �rst by an interpolation

procedure on the nodes and then H∗(a) must be determined in order to

�nally compute the minimum for a ∈ R2. Really the search for a minimum

can be reduced to a bounded set in many cases, as shown in the explicit

scheme, to the minimum on the unit ball. The reconstruction step makes

use of a calculation procedure at foot of characteristics on grid-nodes. A

high-order polynomial interpolation cannot be used since it could introduce

oscillations in non-regular solutions; we, thus, apply the scheme by M. Rorro

(CASPUR) using ENO, WENO interpolation. We construct the protocol

step of curve evolution by an oriented adaptation to medical application of

HJPACK parallel OpenMp Fortran programming language.

2.2 Gaussian image smoothing

The multidimensional model for parabolic partial derivative eq. in a rectan-

gular domain, where x ∈ [a, b] and y ∈ [c, d] for the linear problem (1.1.4)

and Ω ≡ [a, b]× [c, d] , is resumed according to steps exposed in the following

discussion.

We proceed by creating a space mesh of the domain, dividing abscissas into M

parts and ordinates in N parts spanning ∆x = (b−a)/M and ∆y = (d−c)/N,
respectively. A subdivision of time axis is created with spacing ∆t. At this

point, the method performs the calculus of u-values in every node of the
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2. Numerical approximation of the models

space mesh. At the n-th step, the computation of the approximate value at

the n+1-th step is performed according to the scheme:

un+1 = un + ∆t
uni+1 − 2uni + uni−1

∆x2
+ ∆t

unj+1 − 2unj + unj−1

∆y2
(2.2.1)

This is a �ve-point approximation scheme performed for t ∈ [0, ε] with a time

step ∆t. The stability of the explicit scheme is assured by speci�c conditions

concerning the space mesh taking in relation to the time-step unit between

two successive approximations.

2.2.1 Stability and convergence of the explicit scheme

The stability of the explicit scheme is in�uenced by a convenient choice of

mesh parameter values in connection with the established time step. The

truncation error is measurable and is not increased during computation, so

it does not cause the numerical solution to diverge. Stability is assured by

Courant-Friedrichs-Lewy (CFL) condition

∆t ≤ ∆x2. (2.2.2)

The illustrated explicit scheme is convergent if the calculated solution has

the right value at each pixel within the selected mesh.

The numerical scheme of the Gaussian-�lter operator

The convolution of the image with the operator Gσ decribed in section (1.1)

is realized by discretized heat equation reported above, by putting:

Imgsmooth := G√2 ∗ I(x)

through which is regularized I(x) given for the computation. Where Ω ∈ R2,

∀x ∈ Ω/∂Ω for x = (x1, x2) we obtain:
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2. Numerical approximation of the models

Let I(x1, x2) = img(h, k)

The numerical scheme that performs the convolution is:

DO l=1,ItNum Iteration of the heat eq.

DO k=nys,nyd Steps in the domain image

DO h=nxs,nxd

u(h,k)=img(h,k)+(img(h+1,k)-2img(h,k)+img(h-1,k))+

+(img(h,k+1)-2img(h,k)+img(h,k-1))

ENDDO

ENDDO

img=u

ENDDO

At every iteration we allocate the smoothed image u for the successive

smoothing iteration step.

Where σ =
√

2ItNum Than results ImgItNumbersmooth where ItNumber is the

values of ItNum in the code. From the relation between the number of

iteration given to the code we wont to remark that the values of the kernel

for Gaussian �lter is established by considering at every time step ∆t the

values of σ =
√

2∆t than for the given CFL condition it implies the values

of the (∆x,∆y).

2.3 Ambrosio-Tortorelli approximation of the

M-S functional

The numerical scheme is made by dividing in two coupled parts with u0 = g

and S0 = 1.

At every step we calculate u1 for S0 = 1 solving a linear elliptic equation

and, this way, we �nd S1 from the second equation; this process is repeated

for a �xed number of iterations.
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2. Numerical approximation of the models

2.3.1 System discretization

We use a numerical scheme based on explicit �nite di�erences, over the rect-

angle Ω with step h; this way we obtain (x, y) = (ih, jh) for 0 6 i, j 6 N.

Reducing Ω to a square of side 1 and taking h = 1
N
, discrete coordinates

will become: u(ih, jh) ∼= ui,j and S(ih, jh) ∼= Si,j. We use an approximated

scheme that is enough to enhancing little areas, characteristic of the echo-

graphic image. Some scheme for the Ambrosio-Tortorelli segmentation prob-

lem can be found on Spitaleri et al. article [35].

In order to determine the minimum of the functional we adopt the schema

given, for a �nite element, in Birindelli and Finzi Vita [10] to a �nite di�er-

ence meshgrid through the following iterative scheme:

given a maximum number of iteration Nit and a tolerance ε, then we con-

struct:

-S0 = 1, u0 = g

-for n = 1, 2, ...., Nit �nd un, by solving: div(2(S2
n−1 +Kε)∇un) = µ(un − g) in Ω

∂un
∂n

= 0 in ∂Ω

and Sn by solving: αε∆Sn = Sn | ∇un |2 − α
4ε

(1− Sn) in Ω

∂Sn
∂n

= 0 in ∂Ω

-stop for n = Nit.

From minimization theorem 3.1 Proposition 2.1 in [10], it respectively follows

that:

Su is a piecewise C2 submanifolds of R2

for any n > 1 there exists un an Sn solution of the respective system which

satisfy the bounds:

‖un‖L∞ ≤ ‖g‖L∞ .
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2. Numerical approximation of the models

Then we discretize the equations by �nite di�erences.

The discreet Divergence

In a numerical scheme a function u ∈ R2 can be approximated by �nite

di�erence, its �rst order variation on the x direction is:

∂u

∂x
∼=
ui+1,j − ui,j

h

and for y direction is:
∂u

∂y
∼=
ui,j+1 − ui,j

h
.

The divergence of a function Z(x, y) by second order of centered di�erence

is given by

div(Z(x, y)∇u(x, y)) ∼=

∼= Zi+ 1
2
,j(ui+1,j − ui,j)− Zi− 1

2
,j(ui,j − ui−1,j)+

+Zi,j+ 1
2
(ui,j+1 − ui,j)− Zi,j+ 1

2
(ui,j−1 − ui,j).

where

Zi+ 1
2
,j =

1

2
(Zi+1,j + Zi,j) ; Zi− 1

2
,j =

1

2
(Zi,j + Zi,−1j)

Zi,j+ 1
2

=
1

2
(Zi,j+1 + Zi,j) ; Zi,j− 1

2
=

1

2
(Zi,j + Zi,j−1)

By applying to the system of Euler equation for the nth approximated item

of the sequence of the Ambrosio-Tortorelli functional we obtain: the term

Z(x, y) = (S2(x, y) +Kε) become by �xing every direction of the space, with

Kε neglected as in [35], we get: for x

∂

∂x

((
S2 +Kε

) ∂u
∂x

)
∼=

1

2h2

[
(S2

i+1,j + S2
i,j)(ui+1,j − ui,j) + (S2

i,j + S2
i−1,j)(ui−1,j − ui,j)

]
,

for y
∂

∂y

((
S2 +Kε

) ∂u
∂y

)
∼=
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1

2h2

[
(S2

i,j+1 + S2
i,j)(ui,j+1 − ui,j) + (S2

i,j + S2
i,j−1)(ui,j−1 − ui,j)

]
.

In Image Processing the lattice has a spatial density which is equivalent to

image resolution, so we use here �nite di�erences with node resolution equal

to the spatial grid-step, so the discretized equation will look as follows

(S2
i+1,j + S2

i,j)(ui+1,j − ui,j) + (S2
i,j + S2

i−1,j)(ui−1,j − ui,j)+
+(S2

i,j+1 + S2
i,j)(ui,j+1 − ui,j) + (S2

i,j + S2
i,j−1)(ui,j−1 − ui,j) =

= µh2(ui,j − gi,j)
The discreet laplacian for a function u

∆u(x, y) := uxx + uyy ∼=

∼=
1

h2
[ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1]

Within Ω, the second equation, using a �ve-point stencil, will look

αε (Si+1,j + Si−1,j + Si,j+1 + Si,j−1 − 4Si,j) = h2Si,j|∇u|2i,j − h2 α

4ε
(1− Si,j)

Being the problem elliptic, we use a discretization such that we get centered

�nite di�erences; therefore for 2 points stencil: let |∇u|2i,j := |∇̃u|2i,j

|∇̃u|2i,j ∼=
1

4h2

(
(ui+1,j − ui−1,j)

2 + (ui,j+1 − ui,j−1)2
)

for nodes inside Ω. Or by other formulation by 3 points stencil: let |∇u|2i,j :=

| ˜̃∇u|2i,j
| ˜̃∇u|2i,j ∼= 1

4h2

(
(ui+1,j − ui,j)2 + (ui,j − ui−1,j)

2

2
+

(ui,j+1 − ui,j)2 + (ui,j − ui,j−1)2

2

)
then

Si,j =
αε Ŝi,j + αh

2

4ε

4αε+ h2|∇u|2i,j + αh
2

4ε

. (2.3.1)

where Ŝi,j = Si+1,j + Si−1,j + Si,j+1 + Si,j−1.

The discretized u become:

ui,j =
(S2

i,j)(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

(µh2 + 4S2
i,j + S2

i+1,j + S2
i−1,j + S2

i,j+1 + S2
i,j−1)

+ (2.3.2)
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+
(S2

i+1,j)(ui+1,j) + (S2
i−1,j)(ui−1,j) + (S2

i,j+1)(ui,j+1) + (S2
i,j−1)(ui,j−1) + µh2gi,j

(µh2 + 4S2
i,j + S2

i+1,j + S2
i−1,j + S2

i,j+1 + S2
i,j−1)

.

Boundary conditions

In this context we impose that Neumann boundary conditions are satis�ed at

the edge. Null derivatives at the border are generated by introducing dummy

nodes along the perimeter, for j=0 and i=1,..,N with j=-1 and y=-h
ui,0 − ui,−1 = 0

i = 1, .., N − 1

Si,0 − Si,−1 = 0

and in the same way for the remaining sides.

The equation is written the same way for nodes on the edge. In this case,

symmetrical terms disappear in correspondence to dummy nodes introduced.

A linear algebraic system with 2(N+1)2 unknown variables is then obtained.

By �xing S �rst and then U, we would get a system of the type: AU = b

BS = e

We use a recurrent two-step algorithm, which uncouples the system at every

iterative step and calculates the �rst equation, replaces it in the second one

and then replaces the result back into the �rst equation.

In summary, an iterative process give us, at one of its step, two equations to

compute the non-linear elliptic problem related to the minimum conditions

proper of the discrete approximated functionals sequence which converge to

�x point.

Matrix row sorting

For the equations pair an algorithm is used, which allows a transformation

of the associated matrix into a vector by performing a row sorting for U ∈
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RN+12
. Aligning rows back to back, an array: A ∈M((N +1)2, (N +1)2; R),

with PENTA-DIAGONAL structure, is obtained. A �ve-point cross scheme

appears in respect to the variable ui,j:

A =



0 a12 0 . . . 0 a1,N+1 0 . . . 0 0

a21 a22 a23 0 . . . 0 a2,N+2 0

0 a22
. . . . . . 0 . . . 0 a3,N+3

... 0
. . . . . . . . . 0

0
...

. . . . . . . . .

aN+1,1 0
. . . . . . . . .

0 aN+2,2

... 0
. . .

0


The system can be solved by an iterative method.

Jacobi or Gauss-Seidel relaxation scheme

The choice of the iterative method to be adopted for the computation of the

functional does not involve analytical considerations. We can equally use

either one scheme or the other, the choice depending upon computational

resources available and the chance to parallelize the code. Indeed, Jacobi

method is directly parallelized within cycles, while Gauss-Seidel method can

be parallelized at a lower level for a limited number of cycles. Nevertheless,

the general interest here is just the applicability of an iterative method and

its convergence. Jacobi method looks: AU = b

BS = e

U
(n+1)
k =

1

ak,k

− (N+1)2∑
l=1
l 6=k

ak,lU
(n)
l + bk

 (2.3.3)
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If we consider U
(n+1)
k the matrix of the kth item of the functional sequence of

the function ui,j such that i, j = 1, .., n for square image, where n + 1 is the

iteration order, and set u = g, S = 1 starting from the initial instant Iter=0,

we notice that diagonals are not null for both equations (ak,k 6= 0); in fact

positive quantities, with minus sign, remain in the sum. For the variable u
(n)
i,j

and 1 < i, j < N , we �nd that the k-th row in the �rst equation is:

u
(n+1)
i,j (µh2 + 4S2

i,j + S2
i+1,j + S2

i−1,j + S2
i,j+1 + S2

i,j−1 + 8Kε) =

+(S2
i,j +Kε)(u

(n)
i+1,j + u

(n)
i−1,j + u

(n)
i,j+1 + u

(n)
i,j−1)+

(S2
i+1,j +Kε)(u

(n)
i+1,j) + (S2

i−1,j +Kε)(u
(n)
i−1,j)+

+(S2
i,j+1 +Kε)(u

(n)
i,j+1) + (S2

i,j−1 +Kε)(u
(n)
i,j−1) + µh2gi,j

We notice that, over the edge, one or two terms disappear from the numerator

and one from the coe�cient of u
(n)
i,j .

The following quantity will occupy the denominator

µh2 + S2
i,j + S2

i+1,j + S2
i−1,j + S2

i,j+1 + S2
i,j−1 + 8Kε.

Moreover:

Dk,k = S2
i,j + S2

i+1,j + S2
i−1,j + S2

i,j+1 + S2
i,j−1 + 8Kε

Convergence of the numerical scheme

To establish convergence of the method we use Array Diagonal Dominance,

instead of estimating spectral ray. We have to demonstrate that:

|ak,k| >
(N+1)2∑
l=1
l 6=k

|ak,l| (2.3.4)

, that is, the diagonal is strictly dominant, and this is su�cient for conver-

gence.

Excluding the principal diagonal, called

A = C − D − µh2I

2.3. Ambrosio-Tortorelli approximation of the M-S functional 31



2. Numerical approximation of the models

then (
C − D − µh2I

)
U = µh2G

Where D is the coe�cient of u
(n+1)
i,j and occupies the denominator.

C given from
∑
S2
k,k that is the four points scheme, in cross, plus 8Kε that

is really Dk,k

Dk,k =
∑
l 6=k

|ak,l|.

Thus, µh2-term assures, for the �rst equation, diagonal dominance and con-

vergence of Jacobi method.

For the second equation we get,

when Ŝ
(n)
i,j = Si+1,j + Si−1,j + Si,j+1 + Si,j−1 is set,

S
(n+1)
i,j =

αε Ŝ
(n)
i,j + αh

2

4ε

4αε+ h2|∇u|2i,j + αh
2

4ε

. (2.3.5)

The denominator is strictly positive with no null ak,k-terms. Diagonal domi-

nance is established dividing operator Ŝ into two parts, the diagonal and the

o�-diagonal part with null sub-diagonal:

C −M;

this way, we get: (
αε(C −M)− T − αh2

4ε
I

)
S = −αh

2

4ε
Q

where Si,j|∇u|2i,j = T is de�ned as diagonal array

and Q = (1, .., 1) dim(N + 1)2

We want to evaluate the C −M matrix that discretized the laplacian and

consider C as the only o�-diagonal contribution.∑
l 6=k

|ak,l| = 4αε |M |k,k = 4αε.
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The arrays have positive elements, which establish, with the contribution

from other terms, diagonal dominance in the strong sense. The second equa-

tion also converges.

We observe that edge terms remove elements from the diagonal, preserving

diagonal dominance in the strong sense.

Several stopping criteria for iterative methods exist : iterations can be stopped

by counting a certain number of steps, for example 20 or 30, or setting a dis-

tance criterium between two successive solutions, such as:

max
i,j
| u(n+1)

i,j − u(n)
i,j |< δ

Gauss-Seidel algorithm

As mentioned above, Gauss-Seidel numerical iterative scheme is a sophistica-

tion of Jacobi method where the computation of the solution is anticipated

to (N+1)-th iteration, just considering pre-computed values.

U
(n+1)
k =

1

ak,k

− (k−1)2∑
l=1

ak,lU
(n+1)
l −

(N+1)2∑
l=k+1

ak,lU
(n)
l + bk

 (2.3.6)

so we get:

u
(n+1)
i,j =

1

Dk,k

[
(S2

i,j +Kε)(u
(n)
i+1,j + u

(n)
i−1,j + u

(n)
i,j+1 + u

(n)
i,j−1) + µh2gi,j

]
+

+
1

Dk,k

[
(S2

i+1,j +Kε)(u
(n)
i+1,j) + (S2

i−1,j +Kε)(u
(n)
i−1,j)

]
+

+
1

Dk,k

[
(S2

i,j+1 +Kε)(u
(n)
i,j+1) + (S2

i,j−1 +Kε)(u
(n)
i,j−1)

]
.

where the terms U
(n+1)
l = (u

(n+1)
l,1 , .., u

(n+1)
l,M ) when l < k and U

(n+1)
l =

(u
(n)
l,1 , .., u

(n)
l,M) when l > k and M is the height of the image i.e. the size

of column. and the same for the values of discretized S

S
(n+1)
i,j =

αε Ŝ
(n)
i,j + αh

2

4ε

4αε+ h2|∇u|2i,j + αh
2

4ε

. (2.3.7)
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which represents the numerical scheme for this method, which, computational

resources being equal, converges more quickly than Jacobi scheme.

2.3.2 Criteria for parameter choice

In the above numerical schemes some parameters are chosen conveniently in

order to make correct approximations stand true. The choice of ε-parameter

involves the amplitude of the tubular neighborhood; the �throat�, used in

determination of convergence, varies according to image type and values be-

tween 2.0 · 10−3 and 2.0 · 10−4 are quite reasonable, in general.

Image rescaling brings to larger gradient values, which force to modify both

µ- and α-parameter. Due to Γ-convergence, the �throat� consists of two ex-

ponential branches and the function u does not change.

Just as a hint, we say the inequality of the Γ lim-sup is always greater than

every other choice and it results squeezing under that, so we can state that the

sequence which is computed numerically is the best in case of Γ-convergence.

Numerical stability requires the grid step size to be equal to the resolution

of given image, which is a common choice in many of Image Processing

methods. The grid must sample correctly the exponential branch, that is:

exp(− t−bε
2ε

) and the exponential dies out for about 10ε(20ε in the presence of

two branches), therefore we set 20ε = mh ,with m grid steps.

For high m, large ε-values and large tubular neighborhoods are found. A

minimum choice is m = 1 ⇒ h = 20ε; in this case, the �throat� is sam-

pled with just two nodes at terminal points and under these threshold values

contours are lost.
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2.3.3 Comment to the code

Let us consider the functional as approximated starting from the numerical

code

F (u) =

∫
Ω

(u− g)2 + λ

∫
Ω

| ∇u |2 dx + α H1(K)
1

λ
→ µ

let's transform it into:

F̃ (u) =
1

λ

∫
Ω

(u− g)2 +

∫
Ω

| ∇u |2 dx +
α

λ
H1(K)

α

λ
→ α

Let us set 20ε = mh, from which ρ = h
ε

= 20
m
. Kε-parameter is present in the

energy term
∫

(S2 +Kε)|∇u|2 of Euler equation, so we get div((S2 +Kε)∇u,
and preserves Euler equation from degeneration and makes the M-S func-

tional coercive in Sobolev spaces. According to March ([28]), we must choose

Kε = o(ε); in practice, choosing Kε = 1
10
ε proves su�cient. By this method,

image processing produces out a regularized image U and a jump set S. We

will see, in the next chapter, how the choice of both λ- and α-parameter

implies a di�erent selection of contours and a di�erence between regularized

images.
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Chapter 3

Applicability of methods and

simulation results

Recent scienti�c literature suggests several methods for recognition of ven-

tricular area, but most of them are focused on semi-curve evolution from two

�xed points, which is only suitable for single images. The method adopted

here makes use, instead, of an ellipse as the initial pro�le, with no �xed

points. This choice is justi�ed by the chance of processing a multi-image

sequence in order to derive the needed area at every frame. The above-

mentioned protocol consists of applying segmentation models and methods

to a rhythmically moving object.

We focus on the left ventricle of cardiac muscle since, in some clinical cases,

the volume of blood introduced into the arterial net by the ventricle (esti-

mated as its ejection fraction) has to be determined. This low-invasive tech-

nique gives us a chance to identify the area delimited by ventricular walls

over time. Also expulsion time can be assessed by means of our technique,

which proves useful to make new analytical hypotheses about blood internal

pressure.

Ventricle internal area can be determined by curve-evolution from an as-
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3. Applicability of methods and simulation results

signed position by means of Hamilton-Jacobi PDE model. Other models,

which make use of �xed points near to the atrial valve of the muscle, do

not prove suitable to treat image sequences because would force to manually

draw �xed points on every image in the sequence, due to variability in probe

position and muscle movements. We assign, instead, an initial elliptic pro�le

to the curve, centered in the frame.

We apply here a preprocessing method for frames in order to emphasize ven-

tricle contours. Mumford-Shah functional minimization technique has been

chosen due to its processing speed and sophistication, which make it suitable

for reconstruction of images and several other real-life applications [2], [14],

[15], [16], [17], [19], [20].

3.1 Applicability of the approximation meth-

ods

As shown above[27], the applicability of the evolutionary method based on

curve evolution is conditioned, in the presence of discontinuous data, by re-

strictive hypotheses the punctual dependence of the speed term. Then the

existence of the spatial gradient of the brightness-intensity function requests

the convolution, in Ω-domain, with a standard molli�er. In the approxima-

tion of the functional, the sequence of functional minima are iterated by the

system by Ambrosio Tortorelli method. The technique to �x every equa-

tion arise to a quasi-linear class of elliptic systems explained in the paper of

Birindelli and Finzi Vita [10]. At every iteration we obtain a regularized pair

of approximated functions dependent from ε. This suggests to leave Gaus-

sian regularization aside, with smaller loss of details, using the function of

the Kε item of the iteration sequence as the brightness-intensity function for
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curve evolution. u-function can directly be used in the eikonal eq. for front

evolution. This technique is used in [17], but optical �ow theory is left aside

(see [6]); This choice provides the needed regularity in the fracture (see [26])

that represents the critical points of brightness-intensity function gI of the

given image.

A further step of technique re�nement, in order to make ventricular walls get

emphasized, consists, as mentioned above, of making the second term of the

functional dependent of the gradient over the time [15].

The square gradient is point by point calculated over function u as the di�er-

ence in brightness intensity between the preceding and the following frame.

Globally, the variability of this term is mostly due to movements of ventricu-

lar walls. In the presence of a continuous movement in the same �scene�, we

are in condition to assume regularity for function gI over time.

3.1.1 Regularity of the speed term in the eikonal equa-

tion

The method of eikonal eq. assures solvability in the presence of discontinu-

ous data by convolution with a regularizing operator to control the gradient

explosion of the brightness-intensity function I(x) in the speed term of the

eikonal equation 1.1.1 and the lipschitz continuity of the initial data u0(x).

v(x) =
1

1 + |∇I(x)|
,

instead of the gaussian convolution

v(x) = v(|∇(Gσ ∗ I(x))|) =
1

1 + |∇(Gσ ∗ I(x))|
.

As mentioned above, for a Hamiltonian H(x,∇u), when the element uh(x)

represents the solution at every step of the elliptic system, the following

proposition stands true:
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Prop. If ukε represents a solution at kth iteration of the Ambrosio-Tortorelli

sequence ([5]) given from alternate solution of the elliptic system for �xed

number of iteration, then ukε is enough smooth to calculate |∇ukε(x)| .

Indeed, in the internal points of the domain Ω the amplitude of the fracture

is ε's proportional, then we can found, at every step of the iterative solution

of ATε algorithm, a costant C such that

|∇ukε(x)|≤ C

ε

then

v(x) =
1

1 + |∇ukε(x)|
≥ 1

1 +
C

ε

> 0,

we can observe that the function ukε has in every direction passing to the

internal point x ∈ Ω, a pro�le regularized by a C2 arcs in the fracture as we

can see in [26] as explained in the �gure 3.1.1. For the lipschitz continuity

needed for the initial condition for the eikonal equation, we choose a regular

ellipse centered in the ventricular cavity.

From a computational point of view the discretized image has bounded in-

tensity pro�le and the di�erence beetween two neighbor points is at most:

max(I(x1))−min(I(x2))

|x1 − x2|
≤ 256

1
∀x1, x2 ∈ Ω

for [0,..,255] gray levels images and spatial mesh-grids equal to the image

de�nition.

3.1.2 Convergence and Existence

The extension of existence results for the minimum for the M-S functional,

when function u is time-dependent, is currently in progress. Nevertheless, the

basic idea consists of considering the �uid change that would ideally result
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Figure 3.1.1.a: Approximation of the one dimensional fracture

from a continuous movie of some cardiac movement. We try here to recon-

struct, from this point of view, the demonstrative steps mentioned above.

We are brought to conjecture a tubular neighborhood, on which is based, the

Γ-convergence is interpretated as it is in movement; then, for a su�ciently

small time, we could imagine that the regularity of u over time is such to

assure convergence of the functional sequence to the minimum. Anyway, the

analytical problem is still open and, therefore, only some conjectures are al-

lowed.

In the �rst tests as to the numerical approximation, for the temporal and spa-

tial gradient calculus, we use the formulation we use the two-point following

formula:

(|∇u|(f)
i,j )2 =

1

4h2

(
(ui+1,j − ui−1,j)

2 + (ui,j+1 − ui,j−1)2 + (u
(f−1)
i,j − u(f+1)

i,j )2
)

It has a quite like good performance on the ventricular walls, but a successive

application with tree-point stancil, suggested by Professor Stanley Osher evi-

dence a more reliable de�nition of the pixel, especially in the time dependent
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elaboration:

(|∇u|(f)
i,j )2 =

1

4h2

(
(ui+1,j − ui,j)2 + (ui,j − ui−1,j)

2

2

)
+

+
1

4h2

(
(ui,j+1 − ui,j)2 + (ui,j − ui,j−1)2

2

)
+

+
1

4h2

(
(u

(f−1)
i,j − u(f)

i,j )2 + (u
(f)
i,j − u

(f−1)
i,j )2

2

)
.

This formulation has better results and is adopted to all tests.

3.2 Echocardiographic movie format

Modern instruments used in hospitals, as well as portable echocardiographic

instruments, usually allow data exportation in various video formats. The

method adopted here makes use of movies in AVI (Audio Video Interleave)

format; a typical example of AVI-�le characteristics follows:

Filename 'avi�lename1.avi' 'avi�lename2.avi'

FileSize 134158336 19728384

FileModDate ' 25-Jun-2007 14:09:10' ' 05-Oct-2007 10:06:14'

NumFrames 1602 1269

FramesPerSecond 27 26

Width 800 800

Height 600 652

ImageType 'truecolor' 'truecolor'

VideoCompression 'Cinepak' 'MP42'

Quality 0 0

NumColormapEntries 0 0
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Data �les can be exported and read in DICOM (Digital Imaging and Commu-

nication in Medicines) format, the world standard for all medical applications

dealing with patient data and further detailed information. The standard

DICOM is composed of di�erent parts and storage levels, suitable for data

exchange in the medical context.

At the present level of work, we opt for AVI format in performing image

extraction, since, being supported by various operating systems with public

licenses, it allows an easiest manipulation of movies. Esaote MyLab30 in-

strument, currently used by the team lead by Prof. Mario Curione in the

Department of Clinical Sciences of �Umberto I� University Hospital, when in-

terfaced with a PC supporting Windows o.s., exports data in di�erent image

compression formats, in terms of size and sampling frequency. A single frame

looks like:

In particular, sampling frequency (FramesPerSecond:26, 27), allows medical

researchers to compare data from areas with the Electro-Cardio-Graphic lay-

out. We shortly mention here the computational protocol that handles the

two phases, M-S Preprocessing and H-J Processing of images, which makes

use of the well-roundness of a MatLab application in the preprocessing stage

and of a FORTRAN code with better performance on single frames during

processing.

Being the elaboration system implemented on a Linux system, a format con-

version algorithm with no video compression is needed (compressed formats

are licensed). This involves a further step in preprocessing of the entire �le.

3.2. Echocardiographic movie format 42



3. Applicability of methods and simulation results

Figure 3.2.0.b: Entire echo image frame

3.3 Frame adaptation

The algorithm selects the part of the image to be cropped (�cropping� step);

see Figure 3.3.0.c

After gray levels are inverted, brightness intensity di�erence gets positive in

the presence of edges.

This way we obtain the image of the selected frame (Figure 3.3.0.d), to be

later preprocessed using M-S algorithm with various parameter choices.
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Figure 3.3.0.c: Cropped frame
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Figure 3.3.0.d: Inverse cropped frame

3.3.1 Presence of edges for H-J PDE

Preprocessed images are then uniformly distributed within the interval [0,1],

in terms of gray-tone intensity (double �oat numerical representation). Curve

evolution starts from an initial elliptic con�guration u0, centered in the frame

at t=0, and goes on along the external normal direction, with speed propor-

tional to the brightness-intensity gradient of the image at every pixel. The

computation of the gradient is corrected by means of a convolution with a

regularizing operator (standard Molli�er). Ref. [27], [33], [34]

The regularization is made by the di�usion heat equation, this operation is

essential for the gradient evaluation, but the image lose important details
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even with a limited number of iterations, therefore the curve evolution does

not found a gradient value to determine its velocity shutdown [17].

To highlight the problem we show in �gure 3.3.1.e the evolution in a frame on

which the Gaussian smoothing was repeated for 10 iterations. Clearly, curve

Figure 3.3.1.e: Curve evolved on 10 iteration Gaussian smoothing

evolution is not able to �nd a gradient value that, in respect to a stopping

threshold th=0.125, can cause its stop. Even with a single Gaussian step,

the gradient is not able, in some regions of the ventricular contour, to stop

curve evolution (see Figure 3.3.1.f).
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Figure 3.3.1.f: Curve evolved on 1 iteration Gaussian smoothing frame
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3.3.2 Preprocessing by the M-S functional

As previously stated, segmentation by solution of H-J equation fails when

the probed tissue gives back a small signal represented by a small brightness-

intensity gradient. Brightness-intensity gradients along ventricle edges (that

is, edge info) could happen not to be visible in all regions of the given frame;

in general, small signals come are generated by pixels along ventricular walls,

if compared to image noise. Therefore, we decide here to improve the elabo-

ration protocol by introducing a preprocessing phase which makes use of the

M-S method. Let us illustrate our attempt to apply the M-S model, whose

e�ciency strongly depends on the choice of parameters λ, α (see [28]). This

is particularly true for echo-graphic images, probably most due to the den-

sity of signal detector in the probe, which causes a limited spatial de�nition.

Consequently, images from each sequence frame show very discontinuous ven-

tricular contours.

Parameters involved in the �rst step of M-S application

λ-parameter is directly proportional to smoothness and regularity of u-functions.

On the other hand, α-parameter is directly proportional to the size of the

selected region along the edge.

The presence of discontinuous and localized signal has suggested us to apply,

in a �rst step, the M-S method to emphasize image details, choosing param-

eter values which favored small edges (therefore, a small λ and a small α ).

Let us look to some results:
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Variation of λ-parameter at �xed α:
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Parameter choice proves very important in order to balance selection of image

contours in respect to background noise. When small parameter values are

chosen, small areas are privileged, thus we can enhance local peculiarities of

Echo-Graphic images.

When parameter values are large, ventricle walls are emphasized and larger

areas are selected. This suggests, as mentioned above, to perform an iterated

search for edges in the preprocessing stage, in order to select small areas �rst

and, subsequently, to reconstruct, starting from previous selection, more reg-

ular edges by means of parameters value that privilege smoother and longer

contours. Therefore, we choice the following intervals: (0.02− 0.8) for λ and

(0.001− 0.000001) for α.

Parameters involved in the second step of M-S application

After treating images by the above-mentioned choice of M-S parameters,

we now go on to treat them again using the same method, but di�erent

values. In substance, the procedure is repeated over the jump subset S; this

produces the approximation of those parts of the image which are identi�ed

as local areas, while the search for longer contours and wider areas is made

with the aid of suitable parameters. This way, edges get more evident and

continuous, allowing to limit the evolution of H-J model more e�ectively by

using an optimal threshold value. In the course of the second step of M-S

application, after some tests, parameters values are taken such that only a

direct veri�cation of the out coming images can be used as a measure of

goodness of results (in a few words, the method requests to set parameters

�with a screwdriver� ). Repeated M-S algorithm.

The following paired lines of images report results from the second application

of M-S method, in relation to parameter values appearing in image headings.
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Time dependence

Good results are obtained with prudent choices of parameters, but the pre-

sence of some interruptions of the ventricular pro�le walls results a big ob-

stacle, to the right evolution of the curve, modeled by eikonal eq., avoiding

the evolution outside the ventricular border.

Having a whole sequence of consecutive images at our disposal, we make here

a sophistication of our scheme in order to enhance moving parts of ventric-

ular walls. Those pixels, which, when comparing two consecutive images,

show a variability in terms of brightness intensity, represent moving parts

ventricular walls. To this aim, we put dependence on time gradient into the

functional, calculated between the frame preceding the one in elaboration

and the following.

As to the numerical code, various simpli�cations have been made in order

to directly insert time dependence ∇ut into the computation of the spatial

gradient ∇u . This all has to be demonstrated in analytical terms.

The contribution ∇ut is inserted into the computation of the gradient of

function u at every spatial pixel (x, y, t̄).

In the context of �nite-di�erence numerical scheme with time step (frame to

frame), the natural choice consists of centering the current frame in respect

to those adjacent. Then, for every frame f :

(|∇u|(f)
i,j )2 =

1

4h2

(
(ui+1,j − ui−1,j)

2 + (ui,j+1 − ui,j−1)2 + (u
(f−1)
i,j − u(f+1)

i,j )2
)

;

with this change gradient value is increased, as well as the minimum, as

testi�ed by larger presence of contours. In general, the jump set S �nds

more contours, mainly located where, proportionally, a greater variability of

brightness intensity is present. The practical comparison reveals the empha-

tization of mobile pro�les of ventricular walls. Some examples, with di�erent

choices of parameters, are shown below.
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where the resulting U , regularized by the M-S method, appears at the left of

the �gure, while, at the right side, we can see the di�erence in the selection

of the edges in comparison to the classical algorithm.

We can appreciate how edge portions not selected by the classical method are

now emphasized. We notice that less mobile parts of the image - for example,

pixels near to the vertex of the echographic cone - present a decrease in

selection, thus hypothetically proving less representative of moving edges; on

the contrary, ventricle walls get emphasized, since characterized by greater

time variability in its brightness-intensity square gradient. Di�erent choices

of parameters are reported for comparison:
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3.3.3 Algorithm code

The function performing the calculus of minima, with a term that depends

on the time gradient, is a coe�cient appended to the space gradient. We

furnish, in input, to function the parameters and tree image-frame.

function [U,S] = ambrt(m,n,lamb,alpha,p,keps,iter,A0,A1,A2)

** AMBRT Ambrosio and Tortorelli's approximation of Mumford-Shah functional

** Conversion of the image frame and initialization of U and S

G0 = double(A1);

G1 = double(A0);

G2 = double(A2);

U = G0;

U1= G1;

U2= G2;

S = ones(m,n);

** Solution by nonlinear Gauss-Seidel method

for k = 1:iter

** Neumann boundary conditions

U(1:m,1)=U(1:m,2);

U(1:m,n)=U(1:m,n-1);

U(1,1:n)=U(2,1:n);

U(m,1:n)=U(m-1,1:n);

S(1:m,1)=S(1:m,2);

S(1:m,n)=S(1:m,n-1);

S(1,1:n)=S(2,1:n);

S(m,1:n)=S(m-1,1:n);

for i = 2:m-1

for j =2:n-1

**Computation of U
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U(i,j)=(lamb*((S(i+1,j)2+keps)*U(i+1,j)+(S(i-1,j)2+keps)*U(i-1,j)+...

+(S(i,j+1)2+keps)*U(i,j+1)+(S(i,j-1)2+keps)*U(i,j-1))...

(S(i,j)2+keps)*(U(i+1,j)+U(i-1,j)+U(i,j-1)+U(i,j+1)))+G0(i,j)/...

(1.+lamb*(4.*S(i,j)2+S(i+1,j)2+S(i-1,j)2+S(i,j+1)2+S(i,j-1)2+8.*keps));

**Computation of grad(U)

Ux=(U(i+1,j)-U(i-1,j))/2.;

Uy=(U(i,j+1)-U(i,j-1))/2.;

Ut=(U1(i,j)-U2(i,j))/2.; temporal gradient term

**New Computation of the grad(U)

Ux=((U(i+1,j)-U(i,j))2+(U(i,j)-U(i-1,j))2)/2.;

Uy=((U(i,j+1)-U(i,j))2+(U(i,j)-U(i,j-1))2)/2.;

Ut=((U1(i,j)-U(i,j))2+(U2(i,j)-U(i,j))2)/2.; temporal gradient term

** Computation of S

S(i,j) = (4.*(S(i+1,j)+S(i-1,j)+S(i,j+1)+S(i,j-1))+p2)/ ...

(p2+16.+4.*lamb*p*(Ux2+Uy2+Ut2)/alpha);

end

end

end.

3.4 Code implementation and experimental re-

sults

The methods exposed for image-sequence movies numerically calculate the

level-zero surface, which subtends the ventricular area in an optimal way

according to the selected criterion. Area pro�les represent an indicator of

ventricular �lling over time. The area of the evolved curve can be estimated

in terms of number of internal pixels.
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Iterating this procedure for a certain number of frames, we can estimate how

area values give the variability in the periodic rhythmic ventricular move-

ment, which is useful in medical diagnostics.

The elaboration protocol handles frames, performs the preprocessing step,

lets fronts evolve and allows to appraise the change in areas over time, with

a degree of de�nition that is almost equivalent to sampling ability of the

human eye.

Sampling depends on the characteristics of the video format used for expor-

tation by the system that controls EchoCardioGraphic acquisition. A time

de�nition of 26-27 frames per second is common. This allows to get pro�les

with a resolution of 26−1- 27−1 seconds.

3.4.1 Algorithmic e�ciency and parallel calculus

To determine the e�ciency of the computational system, it is necessary to

control the algorithm components and their dependencies on the method,

the implementation of the code and the possibility of parallelization, either

direct or optimized within code compilation.

Something on computational complexity of methods exposed

We will not enter into the details of method complexity, which can be re-

trieved in scienti�c literature; nevertheless, we are able to make some con-

jecture to assess its order. If the pixel grid is assumed square, of size N x

N=N2, in every frame, the method for computation of the minimum of the

M-S functional must iteratively solve a penta-diagonal array of size N2x N2

for a number of iterations about ten; therefore, we get a complexity of o(N4)

per iteration.

Thus, in the case of sparse arrays, a complexity of about o(N2) is considered

at each iteration. Using di�erent implementations the number of iterations
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can be reduced.

In terms of computational cost, the algorithmic complexity for the solution

of eikonal equation in H-J model, resolves, at every time step, l smoothing

iterations with cost N2, calculates the gradient in N2 computational steps

and makes a function convolution in N2 steps. Thus, every iteration involves

a cost which can be approximated by T · o(N2). All steps are performed on

full arrays containing �oating-point numbers.

Changes in calculus of the minimum of the M-S functional, translated into

the numerical scheme, is a simpli�ed algorithm prove useful for border en-

hancing.

It can be constructed as follows. Let us write U- and S-array into a single

vector

(U, S) = X.

Let the discrete system be

f(X) = 0 with X ∈ R2(N+1)2

,

with map f : R2(N+1)2 −→ R2(N+1)2

xn+1
k = xnk −

fk(x
(n))

( ∂fk
∂xk

)x(n)

the relaxation scheme with Jacobian at the denominator, becomes an itera-

tive method for non-linear systems. If we verify that:

f(x) = Ax− b ≡ JACOBI

then the simpli�cation of the method will look as follows:

xn+1
k (x) = xnk(x)− J−1(x(n))f(x(n))

with J−1, Jacobian matrix of punctual f ,such that o�-diagonal elements are

cleared out.
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This means that, with a single step, the method for uncoupled equations is

implemented; possible changes are introduced considering xk's already cal-

culated by Gauss-Seidel scheme applied to non-linear method.

Method convergence is not analytically insurable; nevertheless, in elabora-

tion of images the solution allows a direct veri�cation of results.

The introduction of the term dependent of the time gradient makes the choice

of relaxation algorithm reasonable in view of the non-linearity of the elliptic

system. Thus, the maximum estimation of code complexity is o(N2)-order,

which, in the case of sparse arrays, decreases to o(N).

Cpu time and OpenMP parallel computing

We use di�erent hardware platforms and software applications for our calcu-

lus.

The preprocessing step is performed over: PIII 800 Mhz, 800 MByte Ram,

supporting Windows 2000 Server, Matlab R14; PIV 2000 Mhz, 1GByte

Ram, supporting Linux RedHat Fedora core 2, Matlab R14b and Fortran90;

CASPUR Cluster Power5, including nodes of type IBM System p5 575, 8

CPU, 1.9 GHz, 4x32 GB Ram, supporting AIX Fortran90. Preprocessing

computational times are about one second quite platform-independent.

Front evolution, using the semi-Lagrangian method, requests times of the

order of 300 seconds on each frame, that is, at least two orders of magnitude

larger than the case of minimization of the functional.
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CPU Table Power5 PIV PIII 800 Mhz

H-J F90 OpenMP 239.8 sec. 288.0 sec. 312.0 sec.

M-S Matlab 1.06 sec.

M-S gradt(2 point) 3 frame 1.34 sec.

M-S gradt(3 point) 3 frame 1.61 sec.

Total matlab for 6 �g to H-J 5.08 sec.

In order to save computer time, possible re�nements can be performed by

structuring a mesh containing �nite triangular elements, which proves useful

to perform domain cropping delimited on the circular sector that is typical

of the echographic cone. Mesh re�nement techniques are in progress; their

application would improve performances, but implies interpolation of data,

which often cause accumulation of numerical errors. Further improvements

are, therefore, possible for the above-mentioned methods.

3.5 Results from front evolution for various types

of PreProcessing methods

The block diagram summarizing the protocol is reported in the above �gure.

Next sections explains the di�erent kinds of preprocessing and the consequent

selected area in frame.
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Figure 3.5.0.g: Diagram of the protocol for each Type of elaboration proce-
dure
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Type 1: Original image

Protocol of elaboration:

Cropping: Frame[800,652]  Frame[501,411] [pixel]

Preprocessing: n/a

Processing:

Smoothing: eq. Heat 1 iteration

H-J: Threshold (th=0.125) Time-Horizon (3, step 0.03)

Spatial mesh (0 ..5.0,0 ..4.1) Step (0.01,0.01)

The curve leaks out of the left and the right side of the ventricle, so we have

to discard this choice for the protocol of area representation graph.
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Type 2: Temporal gradient

Protocol of elaboration:

Cropping: Frame[800,652]  Frame[501,411] [pixel]

Preprocessing: M-S Grad Temp (λ = 0.02, alpha = 0.0001)

(UOrig(f − 1, f, f + 1)) (Ureg1(f), S1(f))

Processing:

Smoothing: n/a

H-J: Threshold (th=0.125) Time-Horizon (3, step 0.03)

Spatial mesh (0 ..5.0,0 ..4.1) Step (0.01,0.01)

With this choice of parameters we obtain the best ventricular area recogni-

tion. The precision of this curve evolution is due to a correct balance between

preprocessing and processing phase. In this case we apply M-S Time Grad

algorithm and use the preprocessed U for curve evolution. A single step of

M-S is made.
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Type 3: Classical M-S on original image

Elaboration protocol:

Cropping: Frame[800,652]  Frame[501,411] [pixel]

Preprocessing: Step1, M-S Time Grad (λ = 0.02, α = 0.0001)

(UOrig(f − 1, f, f + 1)) (Ureg1(f), S1(f))

Step2, Classic M-S (λ = 50, α = 0.02)

(Ureg1(f), S1(f)) (Ureg2(f), S2(f))

Processing:

Smoothing: n/a

H-J(Ureg2(f)): Threshold (th=0.125) Time-Horizon (3, step 0.03)

Space mesh (0 ..5.0,0 ..4.1) Step (0.01,0.01)

In this case two steps of M-S algorithm are used with a di�erent choice of

parameters at each step. However, the curve evolves outside the ventricular

border. Also this choice is not suitable for area recognition.
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Type 4: M-S algorithm iterated on the jump set S

Elaboration protocol:

Cropping: Frame[800,652]  Frame[501,411] [pixel]

Preprocessing: Step1, M-S Time Grad (λ = 0.02, α = 0.0001)

(UOrig(f − 1, f, f + 1)) (Ureg1(f), S1(f))

Step2 M-S Classic (λ = 50, α = 0.02)

(Ureg1(f), S1(f)) (Ureg2(f), S2(f))

Processing:

Smoothing: n/a

H-J(S2(f)): Threshold (th=0.125) Time-Horizon (3, step 0.03)

Space mesh (0 ..5.0,0 ..4.1) Step (0.01,0.01)

Curve evolution has a good performance on the ventricular area, but it not

�lls the entire cavity. This kind of choice is better than the one presented

in Type2 in the case of low resolution of the image frame. The comparison
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between these preprocessing methods selects which is the most viable for

front evolution. The reported experiments are indicative of suitable methods

for ventricular area recognition. Some of the above tests reveal how much

edge emphatization is useful for moving edge recognition. The Preprocessing

step allows to use small threshold values, so that front evolution �ts the

ventricular edge in an optimal way. Therefore, we choose to adopt Type2

and Type4 protocol for the analysis of image sequences.

3.6 Ventricular area trend in the frames

Some real-case results for ventricular areas in the case of Type2 and Type4

elaboration protocol are presented below. A graph of the CPU time is shown

at the end of the paragraph.

Area results

Processed movie of 300 frames (10 sec)
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3.7 Development of an application for signal

synchronization

Medical research is interested in investigating the interaction between me-

chanic and electrical properties of cardiac muscle. To this aim, we build

a Matlab graphic software (Graphic User Interface). This software is user-

interactive and presents a box o�ering several control buttons. The main

window shows an AVI video of the echographic data frame, an axis repre-

senting a multi-track of the Electrocardiographic signal over time and another

axis showing the above-mentioned value of ventricular area and its related

ejection fraction parameter over time expressed in seconds. The MATLAB

application looks as follows.

Figure 3.7.0.h: Echo ECG Synchronizer application
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3.7.1 Commands box

The box o�ers buttons, a control slider and a check box for interactive ma-

nipulation of results. See �gure 3.7.0.h

More detailed explain of the application components are reported below:

Control box

Movie playing control composition:
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Loop check box

if checked, it restarts, after the last frame, the echo movie.

Play control

Each button controls, like a recorder, the movie playing forward or

backward.

Frame slider

Used to search for a frame in the movie by mouse dragging.

Echo movie

Visualize the Echo Cardio Graphic movie.
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Play speed slider

It sets the pause value between two successive frames

ECG graphic axis

It displays the Electro-Cardio-Graphic signal with relative green mark line

for synchronization

Double delay ECG slider

It sets both coarse and �ne value for the delay between the �rst sample and

the green mark re�nement control; the upper slider sets a delay of 1 to 10

seconds, the lower one increases the position of the green marker with a step

of one frame (i.e, typically 1/26 - 1/27 sec.).

Save and Peak buttons

The Save button allows to write out a text �le containing synchronization

data; the Peak button is aimed to a future development of a real-time ECG-
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peak search function.

Area and peak trends

This main graphic axis shows results from the elaboration representing the

main goal of this work: the trend of ventricular area over time. The max

and min peak of expulsion for the diastolic cycle and the calculated Ejection

Fraction are shown as well. We want to remark that a non-conventional infor-

mation is provided: time needed for expulsion, which o�ers a possible �eld of

investigation about internal ventricle pressure. In cardiovascular physiology,

ejection fraction (Ef ) is the fraction of blood pumped out of a ventricle with

each heart beat. By de�nition, the volume of blood within a ventricle imme-

diately before a contraction is known as the end-diastolic volume. Similarly,

the volume of blood left in a ventricle at the end of contraction is end-systolic

volume. The di�erence between end-diastolic and end-systolic volumes is the

stroke volume, the volume of blood ejected with each beat. Ejection fraction

(Ef ) is the fraction of the end-diastolic volume that is ejected with each beat;

that is, it is stroke volume (SV) divided by end-diastolic volume (EDV):

Ef =
SV

EDV
=
EDV − ESV

EDV

In the last �gure the values of Ef is represented by the dark green line, the

red one is the maximal value of EDV and the cyan one is ESV, These values

are only an appraisal, because referable to an area and not to a volume

information.
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This thesis is a �rst step of an extended project whose �nal target is the ana-

lysis of EchoCardioGraphic image sequences for non-invasive and a-posteriori

medical diagnostics of heart left-ventricle diseases. The medical protocol re-

quires the determination of local pressure and internal volume of the left

ventricle during its cyclic work.

In this �rst step, which has many upgradable features, a speci�c method

has been developed, based on mathematical models of image processing, for

the recognition of ventricular area in di�erent frames of EchoCardioGraphics

images.

The exposed methods and their applications are an approach to answer to

requests from medical diagnostics.

From the point of view of applied mathematics, numerical techniques have

been used in order to obtain results which �t the problem. In echocardio-

graphic images very ragged contours are usually available and pixel de�ni-

tion is low, but the described sophistication of the M-S method does not

require the use of onerous numerical algorithms for convergence to the func-

tional minimum. Indeed, those methods are typically applied in literature to

skip approximation errors due to triple junctions or object occlusions in the

treated images. Ref. [2],[17] et al.

The mathematical framework has been focused on some open problems about
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the applicability of variational methods to time-dependent image streams.

The proposed arguments have been developed in a preprint paper about

segmentation and denoising of image time series by P. Barone and R. March

[9]. It deals with small images of biological tissues a�ected by cancer growth

and o�ers a theorical study on Bounded-Variation functions which is close to

our speci�c interest in the existence of global minima, in order to develop a

theory for the dynamic contribution of time gradients in the formulation of

the M-S functional.

In the numerical solution of H-J equation, we have applied �partially stan-

dard� techniques suggested by articles [21], [36]. The approximation of front-

evolution methods in the implementation of numerical codes has produced

satisfactory results. The precision of results from eikonal eq. requires, ac-

cording to image type, a very large elaboration time, if compared to the

preprocessing phase obtained with the M-S method.

In order to reproduce a reliable contour of ventricular walls, closed-curve evo-

lution requires a processing time which is one order of magnitude larger than

the preprocessing phase. A further development of H-J technique could be

obtained by means of the implementation of Fast-Marching methods [37]. In

the preprocessing and processing phase, the direct examination of resulting

images for the evolved curves and edge-enhancing allows back-regulation of

parameters and veri�cation the quality of our choices.

Various cardiologists are already trying to use our time-evolving image-

processing technique by synchronization with the ECG signal in order to

validate some medical hypotheses on ventricular diseases. In agreement with

cardiologists involved in this project, future developments could be:

-The elaboration of ventricular areas by a ventricular �short and long side�

approach, in order to obtain a better volumetric reconstruction.

-The validation of theories which allow the interpretation of correspondences
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between the electric signal (ECG) and ventricular volume �lling (ejection

fraction).

-The implementation of this protocol for an Internet service for reconstruc-

tion of the ventricular area pro�le, which would prove useful for modern

e-healthcare.

-The study of mobility pro�les of ventricular walls to draw speed vector-�eld

curves during cardiac periodical movement; this would prove useful for the

individuation of muscular portions a�ected by diseases.

-The possibility to model, by �nite-element analysis, the ventricular pump to

make internal pressure and volume �t experimental results in the comparison

between real data and simulation.

From a computational point of view, Fast Marching Methods are a possible

improvement to reduce CPU time for curve evolution by eikonal eq.

In conclusion, in this thesis I have developed a project which �ts reasonably

well the aims of my PhD school in mathematical methods and models for

technology and society.
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Appendix A

Mathematical recall

A.1 Hamilton-Jacobi equation and Hopf-Lax for-

mula

A.1.1 Fronts motion by normal direction speed

Let {Γt}t∈[0,T ) a family of regular surfaces in R3, the speed in the outward direction of a given point

x ∈ Γt is de�ned by:
V (x, t) = n(x, t)C′(t)

where C : [0, T )→ R2 is a regular curve such that C(t) = x and C(s) ∈ Γs for every s ∈ [0, T ) and n(x, t)
is the outward normal direction versor of Γt at point x.
Suppose that the family (Γt)t∈[0,T ) evolve from an initial con�guration Γ0 with assigned speed

V (x, t) := v(x, t, n(x, t)), ∀x ∈ Γt, t ∈ [0, T ) (A.1.1)

where v is a given function on R2× [0, T )×S1. If exists a regular function u(x, t) and if for every t ∈ [0, T )
the open set Ωt ⊆ R2 with Γt its frontier such that

Ωt =
˘
x ∈ R2 : u(x, t) > 0

¯
, Γt =

˘
x ∈ R2 : u(x, t) = 0

¯
if, at least ∇u(x, t) 6= 0 on Γt. Then we have

n(x, t) =
−∇u(x, t)

|∇u(x, t)|
.
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So for every t ∈ [0, T ), if C : [0, T )→ R2 is a regular curve such that C(t) ∈ Γt we obtain, by di�entiation
with respect to t:

0 = ut(x, t) +∇u(x, t)C′(t) = ut(x, t)− |∇u(x, t)|n(x, t)C′(t).

This give us the relation between the front speed V and the function u; level set at the 0 level of Γt

V (x, t) =
ut(x, t)

|∇u(x, t)|
, ∀x ∈ Γt.

Than we obtain the Eikonal equation

ut − v(x, t,
−∇u(x, t)

|∇u(x, t)|
)|∇u(x, t)| = 0

A.1.2 First-order H-J and viscosity solution

We consider the following �rst-order evolutionary equation. Let Ω be an open subset of R2, with boundary
∂Ω C1, 

ut(x, t) +H(∇u(x, t)) = 0 x ∈ Ω, t ≥ 0
u(x, 0) = u0(x) x ∈ Ω

(HJ1)

where H : Ω→ R is a convex and continuous function[22]. Being the initial data element u0 discontinuous
and H non-linear, the problem has no solution in the classical sense. Nevertheless the problem admits
more solutions among di�erentiable functions that satisfy (HJ1) for x almost everywhere, that is weak
solutions. In particular, we are interested to viscosity solutions of the type u(x, t) that

u(x, t) = lim
ε→0

uε(x, t)

which

uεt(x, t) +H(∇uε(x, t))− ε∆uε(x, t) = 0 x ∈ Ω, t ≥ 0. (A.1.2)

The viscosity solution will be the only weak solution such that:
for every test function φ ∈ C1(RN) , when (u− φ) has
a local maximum at the point (x0, t0), then φt(x0, t0) +H(∇φ(x0, t0)) ≤ 0
when it has a local minimum at the point (x0, t0),
then φt(x0, t0) +H(∇φ(x0, t0)) ≥ 0.
Thus the viscosity solution is de�ned as an extreme of functions, which are not necessarily regular and
uniformly continuous, but satisfy these rules for every test function φ.
We now shortly recall Legendre-Fenchel Transformation (see [25]), which is necessary to the formalization
of the representation formula for viscosity solution to H-J equation.

H∗(p) = sup
q∈RN

{ p · q −H(q) }. (A.1.3)

For a convex continuous function H

H(p)

p
→ +∞ when |p| → +∞. (A.1.4)

H∗(p) can be found such that (H∗(p))∗ = H(p) for every p ∈ Ω ⊂ RN . We can use, for convex and
continuous H , Hopf-Lax-Oleinik representation formula:

u(x, t) = inf
y∈RN


u0(y) + tH∗

„
x− y
t

«ff
(A.1.5)

A detailed discussion about this kind of problems with Hamiltonians of the form H(x,∇u) can be found
in [7].

A.1. Hamilton-Jacobi equation and Hopf-Lax formula 81



A. Mathematical recall

A.2 Functional minimization

A.2.1 The mathematical model for image segmentation

In the analysis of variational problems with free discontinuity the discontinuous solution (discontinuity
curves which are not a-priori known and geometric problems) induces a search for minima and approxima-
tions of the M-S functional through non-standard methods such as Γ-convergence [1], [2], [3]. In images
analysis, which is reported here, we consider Ω as an open and limited subset of R2 (rectangular images).
We de�ne the image as the brightness-intensity function (the brightness-intensity of an image is indicated
here by a di�erent notation than in previous paragraphs):
g : Ω −→ R
(that is the same as the previous I(x) scaled between 0, .., 2s − 1 , for s gray-tone) considered in gray
scale; for color images a vector �eld could be used in R3. Then let g ∈ L∞(Ω) be ess. limited.
In general, the identi�cation of contours inside Ω domain allows the reconstruction of edges for recognition
of contours of the represented object. We build the mathematical model which, when g is given, �nds K,
that is, the expected result.

Approximation of the image according to a metrics

We individualize the problem model for u ∈ C1 (Ω rK) with

K =
[
i

γi, γi ∈ C1

to determine, when g is known,(u,K)-couple by optimization.
We then de�ne a functional cost that measures the optimization of the couple (u,K) with distance L2.
Let us set

F (u,K) =

Z
Ω

(u− g)2 + λ

Z
ΩrK

| ∇u |2 dx + α | K |

to minimize, for λ > 0 and α > 0, the tree addenda, which, in order, can be explained as follows :
1) L2-distance of u from the given g, which evaluates how much our image solution is �near� to the given
image.
2) To make small areas, delimited by small contours, not distinguishable, our u must be C1 in large sub-
sets. This corresponds to an energy criterium for the functional. The presence of λ-parameter allows us
to smooth function u as much as we like. Following the optical �ow model (see page 184 [6], we introduce
dependence on time in the gradient term (|∇u|2). In particular, the gradient of u is calculated both at
the instant that precedes the examined frame and at the one that follows.
3) In this addendum only essential parts of contours are allowed to survive, that is, we add a measure of
segmentation spread by considering the length of curves. When the value of parameter α is very small,
small contours are privileged, while larger values privilege large subsets. Thus, values of α-parameters are
usually chosen to allow a correct recognition of forms according to expectations and type of image. Many
di�erent choices of α-parameter values have been made in our application in order to extrude data in the
best way to favor the recognition of the interested area.
The integration of the second addendum over Ω rK , instead of the entire Ω , is needed to avoid gradient
computation for a discontinuous function with no null measure (as if it would be a square Dirac-delta).
So the approximation is considered on a SBV space (see appendix).

A.2.2 Euler equation for the M-S functional

We apply to the functional the rules for determination of Euler equation.

F (u) =

Z
Ω
ψ(u,∇u)dx, Ω ⊂ R; u : X → R with enough regularity

We suppose that F has minimum in a metric space, as well as that its Gateaux's derivative exists and has
zero-value: F (u, tv) = ϕ(t), ϕ′(0) = 0.
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Calculating:

F (u+ tv) =

Z
Ω
ψ(u+ tv,∇u+ t∇v)dx ,t parameter dependent integral;

we derive under the integral sign (assuming the necessary regularity of the integrand) and, working
withψ(x, ξ)

ϕ′(0) =

Z
Ω

„
∂ψ

∂u
(v) +

˙
∇ξψ(u,∇u),∇v

¸«
.

Let us expand the scalar product. Being: div(ψA) = ψ div(A)+ < A,∇ψ >, we obtain:Z
Ω

„
∂ψ

∂u
(v) + div

`
v∇ξψ(u,∇u)

´
− div

`
∇ξψ(u,∇u)

´
v

«
dx =

with regular frontier Ω, by Gauss-Green theorem; if we collect the �rst and third term together, we obtain
∀v ∈ X

=

Z
Ω

„
∂ψ

∂u
− div

`
∇ξψ(u,∇u)

´«
v dx+

Z
∂Ω

v
˙
∇ξψ(u,∇u) , n v

¸
dσ = 0,

We now choose a test function v, which is enough regular, not null in the neighborhood of point x and
null outside. Let n be the outward normal of ∂Ω. Choosing initially a compact-support test-function in
domain Ω, in distributions sense, formally we obtain the equation in the Ω, therefore the homogeneous
Neumann boundary condition follows using generic test functions. Then we obtain the following system:( “

∂ψ
∂u

”
− div

“
∂ψ

∂(∇u)

”
= 0 ∀x ∈ Ω

n
T∇ξψ(u,∇u) = 0 ∀x ∈ ∂Ω

stand true. Where the second equation becomes from the second integral calculated the frontier of Ω,
taken with test functions, in a neighborhood of the point.

Application to the Mumford-Shah functional

We consider the non-geometric part, susceptible of easy generalization, so we get:

F (u,K) =

Z
Ω

(u− g)2 +

Z
Ω
| ∇u |2 dx from which ψ(u,∇u) = (u− g)2+ | ∇u |2 .

Considering that:

∂ψ

∂(∂∇u)
=

 
∂ψ

∂( ∂u
∂x

)
,
∂ψ

∂( ∂u
∂y

)

!
= 2

„
∂u

∂x
,
∂u

∂y

«
= 2∇u⇒

∂ψ

∂u
= 2(u− g)

we get: 
∆u− u+ g = 0 x ∈ Ω
n
T∇u = 0 x ∈ ∂Ω

(A.2.0)

which has null normal derivative, with Neumann conditions at the border, and is numerically solvable.

The geometric part of the functional

When we consider the functional in its geometric part, we have to refer to the above-mentioned discussion
on weak function space and associated distance, which can be easily found in a large part of analytical
literature (see [6])

F (u,K) =

Z
Ω

(u− g)2 +

Z
ΩrK

| ∇u |2 dx + | K | .
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In investigating criteria for the existence of a minimum of the functional, we need to make some conjectures
on the space and induced metrics.
We look for a space where to locate the functional; nevertheless, whatever metrics we decide to use
for (u,K)-couples we are not successful in getting compactness, although K consists of regular curves
(compactness would implicate completeness and convergence of Cauchy sequences).
Thus, we need to locate functions in a special Bounded-Variation (BV) function space and to adopt a
speci�c measure for |K|-lengths, which allows us to extend the geometric part of the functional to the
entire Ω for the numerical approximation contained in Ambrosio-Tortorelli theorem. See references for an
explanation of analytical treatment of the functional and its numeric computation by Euler equation [1],
[2], [3], [4].

A.2.3 Approximation of the M-S Functional

The approximation of the M-S functional to search for minima by Euler equation has been presented so
far. The numerical solution of the equation is just a guarantee for local minima, while Γ-convergence
assures the existence of global minima for the functional.
Let us consider the weak form:

F (u) =

Z
Ω

(u− g)2 dx+

Z
Ω
| ∇u |2 dx+H1(Su)

Non-convexity is given by the geometric part for
R
Ω S

2 | ∇u |2 dx .
Nevertheless, parameters generate di�erent weights for individual addenda; their role, for limit values,
determine how much the jumps for geometric part matter. Let us consider α-parameter in the original
functional:

F (u) =

Z
Ω

(u− g)2 dx+

Z
Ω
| ∇u |2 dx+ αH1(Su).

When α→ +∞, the term αH1(Su) vanishes over the jump set. Consequently, the functional gets convex

Fα=∞ (u) =

Z
Ω

(u− g)2 +

Z
Ω
| ∇u |2 dx.

By a continuation method, if α0 = 106 is taken, we obtain a convex functional again.
For geometric part a very large parameter α and S = 1 are typically used

α

Z
Ω

„
ε | ∇S |2 +

1

4ε
(1− S)2

«
dx

The procedure consists in solving Euler equation system for α-values which are progressively reduced, for
example αk = α0ck with 0 < c < 1 . Thus, heuristically, one goes down along the functional gradient
until the global minimum is reached, with a functional slightly deconvexed.
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