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Introduction

Before the advent of telescopes in the XVII century nothing was known about
the Saturn system apart from the presence of the planet itself. Galileo first ob-
served Saturn’s rings but he thought they were two moons orbiting the planet. The
main satellites of Saturn were later discovered by Christian Huygens and Giovanni
Domenico Cassini who respectively observed Titan and the other moons Iapetus,
Rhea, Tethys and Dione. Since then the knowledge of the Saturn system struc-
ture and dynamics improved and new questions rose about the internal structure
and composition of Saturn’s main satellites. The observations made by the NASA
probes Pioneer 11 and Voyager 1 and 2 brought the first close images of Saturn and
most of its satellites demonstrating the complexity of the Saturn’s world.

The arrival of Cassini-Huygens mission in the Saturn system in 2004 marked the
beginning of an extensive period of observations that helped in answering ques-
tions about the dynamics and structure of Saturn and its main satellites. In this
context radio science observations played a crucial role providing fundamental in-
formation about the structure and composition of Saturn’s rings, its atmosphere
and ionosphere and the gravity fields of Saturn and its main satellites.

The determination of the gravity field of the main satellites of Saturn relies on
the analysis of the accelerations induced on Cassini as it flies by the selected body.
These velocity variations can be detected thanks to a state-of-the-art instrumenta-
tion on board, that can provide range-rate data accurate up to 12 µ/s at 60 s integra-
tion time under favorable geometric conditions. Although Cassini performed more
than 80 flybys of Saturn’s major moon Titan and several flybys of the other moons,
mainly Enceladus, Rhea and Dione, only a small number of them were devoted to
gravity science. This limitation was due to the lack of a scan platform for optical
remote sensing instruments that prevented simultaneous gravity and remote sens-
ing observations. In fact, radio science observations requires Cassini High Gain
Antenna to be precisely pointed towards the Earth at all times.
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From July 2004 to December 2011 Cassini performed six flybys of Titan, three of
Enceladus and one of Rhea and Dione dedicated to gravity science. The analysis of
the data acquired during these close flybys allowed the first determination of the
quadrupole gravity fields of Titan, Rhea, Dione and Enceladus. For Titan and Ence-
ladus, the only Saturn’s moons that have been visited more than once for gravity
investigations, it was also possible to estimate the degree-3 harmonics. All the in-
formation collected were then used to constraint the internal structure and derive
models of evolution and composition of these bodies. The work presented in this
thesis is focused on the analysis of Cassini tracking data for the determination of
the gravity field of Titan, Enceladus and Dione.

Titan is Saturn’s largest moon and hosts a variety of peculiar features such as
dune fields, hydrocarbon lakes and a dense atmosphere. The latter prevents the
optical instruments to directly probe the surface of the satellite which is accessible
only through radar observations. These observations have revealed the presence of
a complex topography which may be the indication of endogenic processes active
in Titan’s interior. The first determinations of Titan’s gravity field (Iess et al., 2010)
and rotational state (Stiles et al., 2008) were used to infer the axial Moment of Iner-
tia (MOI). The strong disagreement between the MOI values, determined in these
two analyses, is an indication that Titan’s interior is somehow decoupled from the
surface crust. To confirm this hypothesis it was crucial to determine the tidal defor-
mations of Titan. The estimate of the tidal Love number k2 can give an indication of
how the mass redistribute in Titan’s interior in response to the forcing potential ex-
erted by Saturn which varies along the orbit due to a non-negligible eccentricity. By
combining data from the six Titan gravity flybys completed so far we determined
the Love number with a 10% relative accuracy (Iess et al., 2012). The large esti-
mated value is consistent with the presence of a global ocean under the surface of
the satellite.

Enceladus is instead one of the smallest satellites of Saturn but it is one of the
most intriguing objects in the Saturn system as well. The discovery of active resur-
facing processes at the South Pole (Porco et al., 2006) made the determination of
Enceladus’ gravity an important objective of the Cassini mission extensions that
started in 2008. The two dedicated gravity flybys of April and November 2010 al-
lowed to infer the presence of a gravity anomaly (a negative J3) at the South Pole.
The analysis carried out in this thesis contributed to this result which is consistent
with the presence of a subsurface concentration of liquid water at the South Pole
that can be the source of the active geysers observed by Cassini.
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The determination of Dione’s gravity field was instead crucial to complete the
characterization of the internal structures of the main Saturnian satellites. Data
acquired during the gravity flyby of December 2011 were used to determine for the
first time Dione’s quadrupole gravity field. A single flyby with tracking at closest
approach does not allow an independent measurement of J2 and C22 and in order
to infer the Moment of Inertia Factor the hydrostatic equilibrium hypothesis has
to be made. Despite these limitations, data from the only Dione’s flyby dedicated
to gravity have demonstrated that it is a differentiated body. The exact degree of
differentiation and the composition of the different layers cannot be assessed with
the available data but an important constraint has been derived anyway.

The work is organized as follows: Chapter 1 presents an overview of the Cassini
mission with particular focus on the Radio Science instrumentation and describes
the current knowledge of the main satellites of Saturn whose gravity was analyzed
in this work. Chapter 2 reviews the basic concepts of planetary geodesy and all
the geophysical models used in the analysis. Chapter 3 is dedicated to the de-
scription of the mathematical formulation of the orbit determination problem. It
includes a detailed description of the approach used and the data on which the
analysis is based. Chapter 4 describes with more details the general characteristics
of the analysis methods used to derive the geodesy of the main Saturnian satellites
and includes the description of the dynamical model and all the key points of the
analysis. Chapter 5 reports the results of the data analysis process with possible
interpretations. Finally, Chapter 6 gives conclusions and future work perspectives.



Chapter 1

Cassini-Huygens unveils Saturn’s
system

The Cassini-Huygens mission is probably the most ambitious project ever at-
tempted in the history of space exploration. Named after both the Italian-French
astronomer Giovanni Domenico Cassini (1625-1712) and the Dutch scientist, dis-
coverer of the moon Titan, Christiaan Huygens (1629 - 1695), it was conceived in the
early eighties as a joint mission between NASA and ESA. After a seven-years tour
begun on 15 October 1997 the spacecraft reached the Saturn system. Since then, dur-
ing the 4 years nominal mission and the following solstice and equinox extended
phases, Cassini-Huygens has unveiled hundreds of Saturn mysteries shining a new
light on fundamental questions about the development of planetary systems as well
as the entire Solar System.

This chapter is organized as follows: section 1 gives an overview of the Cassini-
Hyugens mission. Sections 2, 3 and 4 are dedicated to the main satellite of Sat-
urn and describe their main physical characteristics as well as the improvements
brought by Cassini observations to a more complete knowledge of their composi-
tion and evolution. Section 4 describes with more detail the radio science instru-
mentation used for gravity analyses.

1.1 Cassini mission

Cassini-Huygens was lunched on October 15, 1997 from Cape Canaveral with
a Titan IV-B Centaur rocket. During its seven years cruise to Saturn, four gravity
assists were employed to increase the spacecraft velocity and allow reaching Saturn.

1
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They included two Venus flybys (26 April 1998 and 24 June 1999), an Earth flyby
(18 August 1999) and a Jupiter flyby (30 December 2000). The 627 m/s SOI (Saturn
Orbit Insertion) maneuver of July 1, 2004 marked the beginning of the tour phase
that was scheduled to last for four years. The exceptional results obtained during
these four years granted Cassini two further mission extensions that should carry
the mission up to 2017.

Figure 1.1: Cassini interplanetary trajectory

The spacecraft was designed and equipped to study several aspects of the Sat-
urn system. The main scientific mission objectives included the study of Titan, the
rings dynamics and composition, the icy satellites, Saturn itself and its magneto-
sphere. In particular some of the main scientific objectives related to Titan and the
icy satellites are related to the study of their internal structure and composition. The
determination of the mass and the gravity fields of Titan and the main icy satellites
(Enceladus, Dione and Rhea) is then a crucial element to address these objectives.
To reach all these objectives Cassini/Huygens is equipped with eighteen instru-
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ments, twelve on the Orbiter and six on the Huygens Probe. Tables 1.1, 1.2 and 1.3
list the instruments and the associated mission objectives.

The remote-sensing pallet and the particles and field pallet are the two body-
fixed platforms that host most of the scientific instruments. Magnetometers sensors
are installed on the 11 meters long boom while the Radio and Plasma Wave Science
experiment uses the three thin electrical antennae that point in orthogonal direc-
tions. Atop the spacecraft there is the 4-meter-diameter High Gain Antenna used
by RSS (for further discussions about RSS see section 1.6). Two smaller low-gain
antennae are used as backup and are located at the top of the HGA and near the
bottom of the spacecraft. The Deep Space Network provides the communication
with Cassini by means of a multiple frequency link which is received by the High
Gain Antenna or by one of the low gain antennae.
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Instrument Technique Scientific Objective
Cassini Plasma
Spectrometer
(CAPS)

Particle detection and spec-
troscopy. Electron spec-
trometer; Ion mass spec-
trometer; Ion beam spec-
trometer

In situ study of plasma
within and near Saturn’s
magnetic field

Cosmic Dust An-
alyzer (CDA)

Impact induced currents In situ study of ice and dust
grains in the Saturn system

Dual Technique
Magnetometer
(MAG)

Magnetic field measure-
ment. Flux gate magne-
tometer; Vector/scalar
magnetometer

Study of Saturn’s magnetic
field and interactions with
the solar wind

Ion and Neutral
Mass Spectrome-
ter (INMS)

Mass spectrometry In situ compositions of neu-
tral and charged particles
within the Saturn magneto-
sphere

Radio and
Plasma Wave
Science (RPWS)

Radio frequency receivers. 3
electric dipole antennas; 3
magnetic search coils; Lang-
muir Probe current

Measure the electric and
magnetic fields and electron
density and temperature in
the interplanetary medium
and within the Saturn mag-
netosphere

Magnetospheric
Imaging Instru-
ment (MIMI)

Charge-energy-mass spec-
trometer

Global magnetospheric
imaging and in situ mea-
surements of Saturn’s
magnetosphere and solar
wind interactions

Table 1.1: Cassini orbiter instruments for in situ measurements (Matson et al., 2002)

Instrument Technique Scientific Objective
RADAR Synthetic aperture radar; ra-

diometry with a microwave
receiver

Radar imaging, altimetry,
and passive radiometry of
Titan’s surface

Radio Science
Subsystem (RSS)

X- and Ka-band transmis-
sions to Cassini; Ka-, S- and
X-band transmissions to the
Earth

Study of atmospheric and
ring structure, gravity
fields, and gravitational
waves

Table 1.2: Cassini orbiter radio remote sensing instruments (Matson et al., 2002)
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Instrument Technique Scientific Objective
Composite
Infrared Spec-
trometer (CIRS)

Spectroscopy using 3 inter-
ferometric spectrometers

Temperature and compo-
sition of surfaces, atmo-
spheres, and rings within
the Saturn system

Imaging Science
Subsystem (ISS)

Imaging with CCD detec-
tors; 1 wide angle camera
(61.2 mr fov); 1 narrow an-
gle camera (6.1 mr fov)

Multispectral imaging of
Saturn, Titan, rings, and the
icy satellites to observe their
properties

Ultraviolet Imag-
ing Spectrograph
(UVIS)

Imaging spectroscopy, 2
spectrometers

Spectra and low resolution
imaging of atmospheres and
rings for structure, chem-
istry, and composition

Visible and In-
frared Mapping
Spectrometer
(VIMS)

Imaging spectroscopy, 2
spectrometers

Spectral mapping to study
composition and structure
of surfaces, atmospheres,
and rings

Table 1.3: Cassini orbiter optical remote-sensing instruments (Matson et al., 2002)

With a mass of 5636 kg at the time of launch and a height of 6.8 meters Cassini
is the biggest spacecraft ever built by NASA (Henry, 2002). The dry mass is about
2523 kg and 3132 kg were propellant at launch. The spacecraft is made of several
sections (see Fig. 1.2). Starting at the top of the spacecraft and moving downwards
there is the High Gain Antenna (HGA), the twelve-bay electronics compartment,
the upper equipment module, the propellant tanks with the engines and the lower
equipment module. Until its release in December 2004 attached on one side there
was the three-meter diameter Huygens probe.

Cassini is a three-axis stabilized spacecraft with the origin of the coordinate sys-
tem located at the center of the plane which divides the principal electronic bus
from the surrounding structure. The remote sensing platform is mounted on the
+X side of the probe, the magnetometer boom extends in the +Y direction and the
+Z axis completes the orthogonal triad by pointing in the direction of the main en-
gine. Attitude control is performed either through three reaction wheels or by a
set of 0.5 N thrusters. The instruments are body-fixed, therefore, in order to point
them, attitude changes are often required. As a consequence real-time communi-
cation with the Earth is rarely possible and most of the observations have to be
recorded and later sent to Earth. For the same reason, gravity observations that
require the antenna to be pointed towards the Earth are usually incompatible with
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other kind of observations.

Figure 1.2: The Cassini spacecraft

Three Radioisotope Thermoelectric Generators (RTG) provide electrical power
for the Cassini spacecraft and instruments. RTGs are electrical generators that con-
vert the heat generated by the decay of a suitable radioactive material into electricity
by means of solid-state thermoelectric converters. On Cassini RTGs power comes
from the decay of plutonium (Pu-238, a non-weapons-grade isotope).

The spacecraft temperature is controlled by several means:

• multilayer thermal blankets that can provide also protection from micromete-
oroids.

• reflective coatings like the HGA painted surface that has an allowable tem-
perature range of about -200 to +125 degrees Celsius.

• electrical heaters

• small radioisotope heater units
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• waste heat produced by some device operation

• surfaces used to shade other parts of the spacecraft. The HGA is the most
important one and was used to shade the spacecraft from the Sun during the
cruise phase.

1.2 Cassini Tour in the Saturn System

Cassini-Huygens entered the Saturnian system on 1 July 2004 when, after the
SOI (Saturn Orbit Insertion) maneuver, it was inserted on a highly eccentric orbit
around Saturn. This event marked the beginning of the 4 years nominal mission.
Six months later, on 25 December 2004, Cassini orbiter released the Huygens probe
into Titan’s atmosphere where it entered 20 days later and landed on the surface
after a two hour parachute descent.

The nominal mission included 75 orbits of Saturn, 44 targeted Titan flybys and
several encounters with the other icy satellites. In order to save propellant targeted
flybys of Titan have been used to change the orbiter trajectory throughout the mis-
sion. A single Titan flyby can in fact change the Saturn relative velocity by up to 850
m/s (Wolf, 2002). To understand the propulsive power of Titan this value can be
compared to the 627 m/s �V of the SOI maneuver and the 500 m/s �V available
for the entire tour. Therefore, by properly selecting the flyby geometry, Cassini tour
designers were able to build an extraordinary complex tour that allowed countless
observations and produced a wealth of scientific discoveries.

The first mission extension, called ”Cassini Equinox Mission” began in July 2008
and ran until October 2010. The name of this extended phase refers to the fact
that during the mission period the Sun passed the equatorial plane for the Saturn
equinox. This extended mission tour was designed to answer the open questions
that the Primary Mission had left either in terms of scientific investigations or in
missing geometric conditions. During this phase Cassini performed an additional
27 Titan flybys and other icy moons flybys. In particular, after observations in the
Primary Mission have revealed the presence of active cryovolcanism, seven flybys
of Enceladus were scheduled to study in depth the phenomenon.

To date Cassini is in its second mission extension called the ”Cassini Solstice
Mission” that will run until the Saturnian Summer Solstice. In May 2017 the Sun
will reach its highest elevation on the northern hemisphere. The Solstice mission
will focus on the study of seasonal effects in the Saturnian system. Being the most
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Figure 1.3: Overview of the Cassini tour from 2004 to 2017 with all the flybys performed in
each mission phase (David Seal, NASA)
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intriguing objects, Titan and Enceladus will be the most visited moons with 56 and
12 targeted flybys respectively.

The thirteen-year tour can be split into phases based upon the inclination of
Cassini’s orbit with respect to Saturn. The low inclination orbits, near the ring
plane, permitted Cassini to have close encounters with icy moons while high in-
clination orbits resulted in fewer moon flybys. The high inclination orbits allow
instead to look onto the rings and atmosphere and permit the in-situ instruments
to explore all parts of the magnetic field and the energetic particle environment. Of
course, Titan is always used to change the orbit of Cassini in every phase.

The Cassini mission is scheduled to end in September 2017 when the spacecraft
will vaporize into Saturn’s atmosphere. Before that, from April 2017 the spacecraft
will be injected into the so-called ”proximal orbits” with a periapsis between Saturn
cloud top and the innermost D ring. These final 42 orbits are similar in many ways
to the Juno mission at Jupiter and will enable unique science such as the determi-
nation of Saturn’s internal structure from gravity measurements.

1.3 Titan

With a mean radius of 2574 km Titan is Saturn’s biggest moon and the second
in size, after Ganymede, among the satellites of the Solar System. It was discovered
in 1655 by the Dutch scientist Christiaan Huygens and has always been one of the
most studied objects among scientists. In 1908 a Catalan astronomer made the first
observations of Titan atmosphere (Solá, 1908). In 1944 Gerald Kuiper confirmed
previous observations using a spectroscopic technique (Kuiper, 1944). Only in 1980,
when Voyager 1 visited Titan, the atmosphere composition was determined. It
turned out that it is composed primarily by nitrogen with the presence of methane,
many complex hydrocarbons and nitriles. However, the complex organic chemical
activity produce an orange-colored haze which is opaque in the optical range and
prevents direct observation of the surface. For this reason, prior to Cassini radar
observations, only large surface features were observed such as North-South atmo-
spheric asymmetries and cloud systems. Data acquired during the single Voyager
1 encounter with Titan were crucial to answer some of the questions about Titan’s
origin, evolution and present structure. Moreover they contributed to increase the
level of interest in Titan and posed new questions to be answered by the Cassini-
Huygens mission.

Titan likely formed from a disk of material around Saturn, probably less massive
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than the one that led to the formation of the Galilean satellites, given their higher
density with respect to Titan. Cassini measurements have not detected a magnetic
field on Titan yet, thus its interior is constrained only through gravity measure-
ments (Iess et al., 2010). These measurements have allowed the construction of new
models of Titan’s interior structure that suggest the presence of a silicate core with a
partially differentiated structure made of a water-rich mantle and an internal ocean
a few tens of kilometers below the surface.

Titan has a complex morphology with many features resembling to an Earth-
world like. Some features are similar to the other icy satellites while others are
present only on Titan. Observations made by VIMS, ISS and the RADAR showed
that Titan’s surface is extremely young and dynamically active with tectonic, plu-
vial, fluvial, lacustrine, aeolian and cryovolcanic processes that result in a very com-
plex surface morphology and composition. Titan’s surface is fairly smooth with re-
liefs ranging from a few tens to a couple of hundred meters and depressions that
were interpreted as old lakebeds (Langhans et al., 2012). Titan also hosts vast ero-
sional and depositional features. There are dunes, especially in the equatorial re-
gions, vast channel systems that cross big areas. Some of these channels are dry (re-
sulting in brighter radar images) while other may contain small amounts of liquid.
Lakes, probably composed of liquid methane, ethane and other simple hydrocar-
bons have been observed near Titan’s north pole. There are evidences suggesting
that these lakes are at least partially seasonal. Their changes are caused by volatile
transport between polar regions and this is the reason why at least one lake, called
Ontario Lacus and made only by ethane, has been observed in the south-polar re-
gion. Titan’s surface hosts a small number of impact craters and only a few have
been successfully identified. The lack of small craters can be explained because the
small impactors may have been burned in Titan’s thick atmosphere. However, the
lack of bigger craters can only be explained by erosional and relaxation processes.

Titan has a dense, nitrogen-rich atmosphere with some other minor constituents.
It is the only moon in the Solar System to have more than a trace of atmosphere
since it extends more than the Earth’s atmosphere. Methane is the second most
abundant molecule with a relative presence of 5% near the surface and 1.4% in the
stratosphere. Data from the Huygens Atmospheric Structure Instrument (HASI)
provided evidences that Titan’s atmosphere is essentially isothermal from 500 to
1100 km with a temperature of ⇠ 170 K (Lorenz et al., 2006). The troposphere is
also fairly stable with a well defined tropopause at around 44 km of altitude. Zonal
winds have been observed to be mostly in the sense of Titan’s rotation. The winter
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circumpolar vortex can have winds of up to 190 m/s at 300 km of altitude. Titan has
also an ionosphere that starts at altitudes below 1000 km. Solar ultraviolet, x-rays
and magnetospheric electrons produce a variety of ion species that have an impor-
tant effect on Titan’s lower atmosphere. The majority of ion species is constituted
by nitrogen and methane but other molecules such as hydrogen and other organic
molecules have been identified.

1.3.1 Physical characteristics and interior structure

Titan is the largest satellite of Saturn (2575.5 ± 0.2 km1) and intermediate in size
between the Galilean satellites Callisto (241032 ± 1.5 km1) and Ganymede(2631.2 ±
1.7 km1). Its mean density is 1.882 ± 0.001 g/cm3 and the gravitational parameter
GM 8.978.19 ± 0.06 km3/s2 (for a complete list of physical and orbital characteristics
see table 1.4). Titan is in synchronous rotation around Saturn, which means that
its orbital period is equal to the rotation period, and therefore tidally-locked. The
rotation axis is inclined with respect to the normal to the orbital plane of 0.3� (Stiles
et al., 2008).

Semi-major axis1
1221865 km

Orbital Period1
15.95 d

Rotation Period Synchronous
Eccentricity1

0.0288
Inclination1

0.306�

Mean Radius2
2574.73± 0.09 km

GM2
8978.1382± 0.0020 km3/s2

Mean Density2
1.882± 0.001 g/cm3

Albedo1
0.2

Table 1.4: Orbital and physical characteristics of Titan

The observations used to constrain the interior structure come essentially from
gravity measurements and orbital data such as the eccentricity, obliquity and rota-
tion rate. The main question about Titan’s interior is about its degree of differen-
tiation and whether there is a liquid layer under the surface. While the study of
Titan’s dense atmosphere is crucial to provide important constraints on its origin
and evolution, geophysical observations are severely limited since the surface can-
not be observed in the visible light spectra. Therefore information about the interior

1from Solar System Dynamics website: http://ssd.jpl.nasa.gov
2from Jacobson et al. (2006)
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structure come mainly from gravity field measurements. But again, the atmosphere
of Titan prevents flybys at low altitudes thus limiting the sensitivity to the grav-
ity signal (since it decrease inversely with the square of the distance). Nonetheless
Cassini data provided valuable constraints to build up geophysical models of Ti-
tan’s interior structure.

An icy satellite is supposed to be composed by several layers which could be a
a core surrounded by a silicate shell, a high-pressure ice-shell, an ocean and a low-
pressure surface ice layer. However not all these layers may be present and they can
have different densities and composition. The mean density is derived from mea-
surements of the GM and the shape. The observed value of 1881 kg/m3 probably
means that Titan’s interior is roughly made by 60% rock by mass with the remain-
ing being water ice (Grasset et al., 2000). The degree of differentiation can instead
be inferred by determining the moment of inertia factor (MoIF) C/MR2. If there is
no differentiation and the satellite has only one layer the moment of inertia factor
is 0.4. The moment of inertia can be obtained from the degree-2 gravity coefficients
(see Chapter 2). Iess et al. (2010) determined a MoIF of about 0.34 which, combined
with the mean density of Titan indicates that the satellite is partially differentiated
and the density of its core is low. Castillo-Rogez and Lunine (2010) and Fortes
(2011) explained it with the presence of highly hydrated silicate minerals while Iess
et al. (2010) postulated an incomplete separation of rock from ice. The low internal
temperatures required to maintain the hydrated silicate or the ice-rock mixture in-
teriors are not fully compatible with the presence of a small iron core even though
it cannot be completely ruled out.

In summary the most likely present-day structures are either a low density rock
core consisting mainly, but not entirely, of hydrated silicate minerals surrounded
by H2O or a pure rock core, mostly anhydrous, surrounded by a mixture of ice and
rock, surrounded by pure water ice. Both these structures are compatible with the
presence of a liquid water layer between a high-pressure ice mantle and an outer
ice shell (Fig. 1.4)

The MoIF can also be retrieved from orbital characteristics. A measurement of
Titan’s obliquity can in fact be directly related to its MoIF. By analyzing three years
of Cassini SAR images of Titan, Stiles et al. (2008) provided a value of Titan’s obliq-
uity of 0.3. Bills and Nimmo (2008) showed that the MoIF inferred from this value
(see figure 1.5) is not compatible with the gravity measurements. However they
suggested that this can be an indication of the presence of a liquid layer that decou-
ples the interior from the outer shell thus leading to this apparent inconsistency.
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Figure 1.4: Internal structure of Titan (Credits: A. Tavani)
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Figure 1.5: Titan’s MoIF inferred from gravity and rotation

The last constraint on the internal structure comes from the high value of Titan’s
eccentricity. With a value of 2.9%3 it is much larger than those of Ganymede (0.15%)
and Europa (1%). However, while for Europa and Ganymede there is a Laplace res-
onance with Io that maintains their eccentricity, no such resonance exists for Titan
and the eccentricity should be reduced by internal dissipation over time. Tobie
et al. (2005) showed that if Titan’s interior were dissipative the orbit would became
circular in less than 300 Myr. This suggests that Titan’s interior is not dissipative
thanks to the presence of ammonia in the ocean that would lower the temperature
of the ice crust reducing the dissipation rate by increasing the viscosities. Figure 1.4
shows a possible internal structure for Titan that take into account all the constraints
previously described.

3from Solar System Dynamics website: http://ssd.jpl.nasa.gov
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1.4 Enceladus

Despite its small size of only about 505 km in diameter, Enceladus is one of the
most intriguing objects in the Saturn system and probably in the whole Solar sys-
tem. It has been known to have unusual features since it was first visited by the
Voyager probes in 1980 and 1981. They revealed an exceptionally high albedo and
a surface with craters and fractures (Smith, 1982). In 1981, from ground-based ob-
servations, Baum et al. (1981) observed that the E-ring was located around the orbit
of Enceladus. A geyser-like activity was suggested as a continuous source of supply
for the E-ring particles. Subsequently, further observations from the Hubble Space
Telescope confirmed that Enceladus appeared to be the source of the E-ring. The
Cassini mission was therefore planned to study in depth this moon with three tar-
geted flybys in the nominal mission and more than fifteen in the extended phases.

Enceladus orbits around Saturn at about 238000 km from the planet’s center in
an almost circular orbit. Like the other main satellites of Saturn it is tidally-locked
with its rotation period of about 32 hours equal to the orbital period. Enceladus is
the only icy satellite on which geological activity has been observed. It is probably
caused by the tidal heating induced by the 2:1 mean motion resonance with Dione
which also helps in maintaining Enceladus’ orbital eccentricity (⇠ 0.0047).

Semi-major axis4
238042 km

Orbital Period4
1.370 d

Rotation Period Synchronous
Eccentricity4

0.0047
Obliquity4

0.3�

Mean Radius5
252.10± 0.10 km

GM5
7.2027± 0.0125 km3/s2

Mean Density5
1.608± 0.003 g/cm3

Albedo4
1.375± 0.008

Table 1.5: Orbital and physical characteristics of Enceladus

The mean density of Enceladus means that there is a significant fraction of sil-
icates in its interior. So far, there are not direct evidences of differentiation but the
presence of a core surrounded by a liquid layer (globally distributed or concen-
trated at the South Pole) and a thick ice shell has been postulated. The resolution of

4from Solar System Dynamics website: http://ssd.jpl.nasa.gov
5from Jacobson et al. (2006)
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this issue is one of the objectives of this thesis and will be discussed in section 5.2.
Enceladus’ surface is very heterogeneous with cratered terrains in the northern

hemisphere and relatively smooth regions in the south polar region. This region
is tectonically active and covered by fractures and ridges. The geyser activity is
concentrated along four fractures called ”tiger stripes”. The plumes eject up to 200
kg/s of water vapor along with significant amounts of N2, CO2, CH4, NH3 and
other minor components at a temperature of at least 167 K. It is not yet clear how
the plumes are powered and if there is a liquid water deposit under the South Pole
which provides the required amount of water. The presence of water along with a
complex organics chemistry makes Enceladus a promising potential habitat for life
in the outer solar system.

Figure 1.6: False-color view of Enceladus taken by ISS on July 2005 flyby. From Cassini
Press Release PIA06254
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1.4.1 Enceladus’ plume

In 2005, during an Enceladus’ flyby, Cassini magnetometer detected a tenuous
atmosphere that was distorting the magnetic field of Saturn. The discovery of an at-
mosphere composed of water group molecules and ions suggested Cassini project
to lower the closest approach altitude of the third flyby from 1000 km to 168 km to
better investigate the south polar region. This flyby, which took place on 14 July
2005 confirmed with certainty the active nature of Enceladus. Multiple Cassini in-
struments contributed in the various aspects of this discovery. Images taken by
Cassini ISS revealed the presence of jets of tiny icy particles and water vapor (Porco
et al., 2006). The CIRS instrument detected 3 to 7 GW of thermal emission com-
ing from the south polar trough the so called “tiger stripes” (Spencer et al., 2006).
Also UVIS, by observing a stellar occultation, detected water vapor over the South
Pole (Hansen et al., 2006). After subsequent observations by INMS and CDA, the
presence of erupting plumes at the South Pole of Enceladus was clear.

In order to understand the phenomenon of the south polar plumes, different
observations were used trying to answer several questions about the plumes’ ori-
gin and composition. By measuring the speed, size and composition of the gas
and of the particles ejected, the rate of vapor and particle loss, it can be inferred
at what depth and how the plumes are generated. Moreover, the composition of
the plumes can also tell if liquid water is involved in the process. The analysis of
the correlations between the plumes location and the surface features can help in
understanding how deep are the surface cracks and how long is the active period
of the plumes.

On the basis of Cassini observations plausible models of the mechanisms that
originate the plumes have been proposed. The main question is whether a liquid
water source is required to generate the plume and how close it must be to the
surface in order to avoid freezing. The observed heat on the surface can in fact be
transported by water vapor that condensates in some subsurface location due to
the high pressures or by a flow of liquid water. However, in order to maintain the
warm surface temperatures (⇠ 180 K), the liquid water deposit would have to be
very close to the surface if the thermal conduction is the only heat loss mechanism.
In this case the ice would melt at only 4 m depth (Spencer et al., 2006). Moreover
the latent heat lost by evaporation of the water at the surface cannot be replenished
quickly enough by the heat transported upwards through the water by conduction
or convection (Postberg et al., 2009). The water column would in fact rapidly freeze
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at the surface.
Another way to bring heat to the surface is through water vapor transport that

travels up from vertical fractures in the tiger stripes (Nimmo et al., 2007). The shape
of the thermal emission measured by CIRS (see figure 1.7) is consistent with these
fractures delivering heat to the tiger stripes’ walls. The vapor transport mechanism
would not require the presence of liquid water near the surface. The most likely
plumes origin is then from vapor-filled chambers that overlay relatively large liquid
water deposits from which the vapor reaches the surface through narrow fractures.

Figure 1.7: Thermal map of cracks near South Pole of Enceladus (NASA)

The speed of the ejected gases was inferred from the observations of its shape
made by UVIS. The estimated velocity of ⇠ 600 m/s is higher than the thermal
speed (RT )1/2 but lower than its maximum theoretical value of ⇠ 816 m/s at 180
K surface temperature (if the gases initial enthalpy is entirely converted in kinetic
energy). This implies the presence of a significant thermal gradient along the frac-
tures (Spencer et al., 2009). The plume composition is dominated by water vapor
and water ice particles which form by direct condensation of the water vapor before
it is ejected on the surface (Schmidt et al., 2008). However it includes also numerous
gas species and salts, mainly CO2 and CH4, which are in a ⇠1:10 molar ratio with
the water vapor (Waite et al., 2009).
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1.5 Dione

Discovered by Cassini in 1684 Dione is the fifteenth largest moon in the solar
system. It was imaged for the first time by the Voyager probes in 1981. Cassini
spacecraft visited Dione for the first time on October 11, 2005, allowing the deter-
mination of its mass (Jacobson et al., 2006). Using data from the Cassini Imaging
Science Subsystem (ISS), Thomas et al. (2007) determined Dione’s shape and in-
ferred its mean radius (561.7 ± 0.9 km) and density (1476 ± 7 kg/m3). It turned out
that Dione has the highest bulk density among the airless icy satellites. Since the
largest mass fraction can be attributed to water ice the high density can be explained
by the presence of a silicate rocky core. However, more detailed information about
its internal structure, such as core dimensions and composition require the knowl-
edge of at least the degree-2 gravity field. This issue has been addressed in this
thesis and the results are discussed is section 5.3.

Figure 1.8: Image of Dione taken by Cassini during the April 2010 flyby (NASA-JPL)
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The surface of Dione has very different regions in terms of crater density and
surface features. There are highly cratered areas mainly in the trailing hemisphere
and smooth plains on the leading one. This indicates that after the end of the accre-
tion period, a significant geological activity endured the early bombardment. On
the trailing hemisphere there is a surface structure that has been observed only on
Dione. It is a pattern of high albedo fractures called ”wispy terrain”. Images taken
by Cassini in the 2005 flyby (see figure 1.8) revealed that the ”wisps” are bright ice
cliffs created by tectonic fractures.

Semi-major axis5
377415 km

Orbital Period5
2.737 d

Rotation Period Synchronous
Eccentricity5

0.0022
Inclination5

0.028�

Mean Radius6
561.4± 0.4 km

GM6
73.1146± 0.0015 km3/s2

Mean Density6
1.478± 0.003 g/cm3

Albedo5
0.998± 0.004

Table 1.6: Orbital and physical characteristics of Dione

5from Solar System Dynamics website: http://ssd.jpl.nasa.gov
6from Jacobson et al. (2006)
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1.6 Radioscience instrumentation

The radio science instrument is the ensemble of several subsystems distributed
between the spacecraft and the ground stations that allow to obtain the required
measurements for gravity observations. The complete description of the instrument
and the experiments it carried out during the Cassini mission is given in Kliore et al.
(2004). A functional block diagram of the complete instrumentation architecture is
shown in figure 1.9.

Figure 1.9: Overview of the radio science instrument (Kliore et al., 2004)

1.6.1 System overview

The instrument can operate in two-way and one-way mode. In the first configu-
ration the uplink signal at X-band (⇠ 7.2 GHz) and Ka-band (⇠ 34 GHz) is generated
by the station frequency standard which is given by a Hydrogen Maser. In actual
operation mode the transmission frequencies are usually adjusted to compensate
for the main part of the Doppler effect due to the relative motion between Cassini
and the Earth. The spacecraft receiver collects the carrier signal with the High Gain
Antenna (HGA), amplify and coherently transmits it back to Earth at one or more
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downlink frequencies (see table 1.7 for the commonly used frequencies). The sig-
nal is received by the ground receiving equipment and recorded for later analysis.
When the downlink is received at a different ground station the measurement tech-
nique is called three-way. One-way measurements are instead obtained by produc-
ing the signal source on board Cassini using the ultrastable oscillator (USO) and
sending it to the ground station at S-band, X-band, or Ka-band. This technique is
used essentially for atmospheric and rings occultation in which, especially for the
egress phase, it is not possible to lock to an uplink signal.

Band Uplink Frequency (MHz) Downlink Frequency (MHz)
S 2110-2120 2290-2300
X 7145-7190 8400-8450

Ka 34200-34700 31800-32300

Table 1.7: Uplink and downlink frequencies used for deep-space communications

For gravity observations two-way transmission can provide the most accurate
data thanks to the use of a very stable frequency standard at the ground station to
reference the frequency measurements. Beside this, three-way data are also widely
used when the geometric configuration do not allow continuous tracking from the
same antenna.

1.6.2 Spacecraft segment

The radio science subsystem (RSS) is the spacecraft subsystem that performs
the operations required for data acquisition. It is composed of three elements, two
of which are not exclusively used for radio science: the Antenna subsystem, the
Radio Frequency Instrument Subsystem (RFIS) and the Radio Frequency Subsystem
(RFS).

The Antenna Subsystem

The antenna subsystem consists of one high-gain antenna (HGA) and two low-
gain antennas (LGA). All the antennas can operate at X-band, but only the HGA
can transmit all the radio science frequencies. The HGA is used for every com-
munication with Earth as well as for radio science purposes. Moreover the HGA
also transmits and receives data for the Cassini Radar. Funded by the Italian Space
Agency and built by Thales Alenia Space, Cassini HGA is probably one of the most
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complex antenna ever flown on a deep-space probe. It is capable of functioning
at S-band, X-band, Ka-band, and Ku-band. All signals received and transmitted
are circularly polarized. Cassini is able to receive and send both Right Hand and
Left Hand Circulary Polarized Signals (RHCP and LHCP). Table 1.8 summarizes
the main antenna subsystem functions and operational modes.

Antenna Mode Polarization Frequency (MHz) Function
HGA X-band Transmit RHCP 7175 Telecom
HGA X-band Receive RHCP 8425 Telecom

HGA Ka-band Transmit RHCP 32028 Science
HGA Ka-band Receive RHCP 34316 Science

Table 1.8: Cassini antenna subsystem operational modes

The Radio Frequency Subsystem

The Radio Frequency Subsystem (RFS) is primarily used to support spacecraft
telecommunications and it is therefore a redundant subsystem to avoid any critical
failure that could prevent sending commands to the probe. Commands and teleme-
try are received and transmitted at X-band whose carrier is also used to generate
radio science signals. The main components of the RFS used for radio science ex-
periments are: the two deep space transponders (DST), the X-band traveling wave
tube amplifiers (X-TWTA) and the USO. The USO is the only non-redundant com-
ponent since it is used only for radio science purposes.

During tow-way mode operations a 7.2 GHz uplink signal from the HGA or one
of the two low gain antennas (LGAs) is received by the operating DST (the other one
is used as backup if the first fails), amplified and multiplied by the turn around ratio
of 880/749 to generate an 8.4 GHz downlink. The DSTs have a receiving band of
about 50 MHz and are capable of locking onto signals as low as -155.8 dBm (Kliore
et al., 2004). However, since the received frequency depends on the Doppler shift
experienced by the signal during its transit from the Earth, the frequency of the
uplink signal must be ramped accordingly to the predicted Doppler shift in such
a way that the signal frequency received from the spacecraft is inside the 50 MHz
bandwidth. The DST is also responsible for the generation of input signals for the
S-band transmitter (SBT) and the Ka-band exciter (KEX) in the RFIS. The X-TWTA
amplifies the X-band downlink from the DST to 15.8 W. Then the signal is sent to
Earth through the HGA or one of the two LGAs. The beam width of the HGA is
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approximately ⇠ 0.5 degrees at X-band and ⇠ 0.16 degrees at Ka-band. Therefore,
when the spacecraft is not precisely Earth pointed it cannot use the HGA. In this
configuration, when communication is provided through one of the LGAs, X-band
is the only frequency available for radio science experiments.

The Radio Frequency Instrument Subsystem

The RFIS is the key subsystem for radio science experiments. The elements in
the RFIS are devoted exclusively to radio science. The main elements of the RFIS
are:

• the S-band transmitter (SBT)

• the Ka-band exciter (KEX)

• the Ka-band translator (KAT)

• the Ka-band travelling wave tube amplifier (K-TWTA)

The SBT and the KEX are used almost exclusively in one-way mode operations even
if the KEX can also work in two-way (X-up, Ka-down) mode. The KAT was instead
designed for two-way mode operations and its task was to enable the Ka-up Ka-
down radio link by turning the 34 GHz uplink signal from the HGA into a coherent
32-GHz downlink. During Cassini cruise to the Saturn system the KAT proved to
be capable of generating downlink signals with an Allan standard deviation (see
section 3.2.3) of 3 ⇥ 10

�15 @ 1000 s. The K-TWTA provided the required amplifi-
cation for the output signals from both the KEX and the KAT. When the input is
only one carrier the amplifier produces a total output power of 7.2 W, while when
operating in dual-carrier mode an output power of 5.7W can be attained.

On Cassini, the combined capabilities of RFS and RFIS allowed the establish-
ment of a triple link with ground: X-up X-down, X-up Ka-down, Ka-up Ka down.
The simultaneous use of these three links allows the complete cancellation of solar
plasma noise (Bertotti et al., 1993). During the cruise phase Cassini radio science
experiments exploited the full system capabilities but in 2003 an unrecoverable fail-
ure on the KAT caused the loss of the Ka-up Ka-down link. The attainable accuracy
achieved by Doppler data during Saturn tour was then reduced significantly.
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1.6.3 Ground segment

The ground segment is a fundamental part of the radio science instrument as
the accuracy of acquired data is directly related to the optimal performances and
calibrations of the ground stations. Spacecraft tracking is accomplished by the
Deep Space Network (DSN), a worldwide network of large antennas and commu-
nication facilities. It comprises three complexes located near Canberra, Australia,
Madrid, Spain and Goldstone in the Mojave desert, South California evenly dis-
tributed around the globe with a longitude of approximately 120 degrees between
each other. Each complex is equipped with several antennas, among which there
are one 70 m diameter station, at least one 34 m beam-wave-guide (BWG) station
and one 34 m high-efficiency (HEF) station. Table 1.9 reports the DSN station that
are more often used for radio science experiments.

Location Type Name

Goldstone 70 m DSS 14
34 m BWG DSS 25, DSS 26

Madrid 70 m DSS 63
34 m BWG DSS 54, DSS 55

Canberra 70 m DSS 43
34 m BWG DSS 34

Table 1.9: DSN antennas

Transmitting and receiving facilities

The 70 meters diameter stations are equipped for transmission and reception at
S- and X-band frequencies and allows the reception of both right circular and left
circular polarized signals. These tracking stations are not used for tracking Cassini
throughout the closest approach of a gravity flyby because Ka-band reception is
not available. Nonetheless, 70 meters antennas are often used for X-band track-
ing passes before and after closest approach. The 34-meters diameter BWG sta-
tions have the full operating capabilities for radio science gravity experiments. The
transmitting and receiving facilities can operate at X- and Ka-band. Moreover, the
34-meters BWG antennas in Goldstone and Madrid are equipped with advanced
systems for tropospheric path delay calibration.

The transmitted signal is generated using a reference frequency, ramped to ac-
count for the Doppler shift on the uplink and then translated to the requested chan-
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nel frequency for the selected spacecraft. The transmitted frequencies are recorded
for later processing of two-way Doppler data. After the signal has been sent back
to the Earth from the spacecraft two types of receivers are available at the DSN
tracking stations to process the acquired data:

• The open-loop receivers that record directly the received signal in a selected
bandwidth around the carrier signal using a tunable local oscillator whose
frequency is selected according to the predicted downlink frequency. The ad-
vantage of open-loop receivers is the flexibility provided by the possibility of
non-real time data processing.

• The closed-loop receivers that are the most used at the DSN stations for receiv-
ing telemetry and tracking data. They estimates the signal phase and ampli-
tude in real time by locking to the signal carrier through a Phase Locked Loop
(PLL). On the basis of the closed-loop receiver output the tracking subsystem
provide the measurements of Doppler shifts and ranging.

Time and frequency standards

The accuracy of radio science data is highly dependent on frequency and timing
metrology. Tracking signals must in fact be generated by very stable, accurate and
precise clocks as well as all received signals must be referenced against the same
high performance clocks. The frequency stability is granted at each Deep Space
Complex by a complement of two hydrogen masers and two cesium-beam clocks.
The H-masers along with a clean-up oscillator are used as the reference timing
source to drive the local oscillators throughout the complex. For typical tracking
times of deep space probes (⇠ 8 hours) H-masers provide their best stability (Al-
lan deviation of ⇠ 10

�15 for integration times between 1000 and 10000 seconds). To
achieve short-term stability the H-masers are usually cleaned up with the best avail-
able quartz oscillators. Moreover, when available, a Cryogenic Sapphire Oscillator
(CSO) is used for phase noise cleanup during radio science activities with Cassini.
Cesium beam clocks are instead used as backup to support basic communication
with the tracked spacecraft when there is a failure on the H-masers. However, their
frequency stability is not adequate to be used for radio science activities (Fig. 1.10).
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Figure 1.10: Allan deviation of DSN frequency standards (Tjoelker, 2010)

Media Calibration System

The Earth’s troposphere is a major source of noise on phase and amplitude of the
radio signal received from the spacecraft (see section 3.2.3). Doppler measurements
are significantly affected by path delay variations due to the water vapor, especially
at low elevation angles. The Tracking System Analytical Calibration (TSAC) allows
a good calibration of the dry component of the tropospheric delay by using a com-
bination of multidirectional, dual frequency GPS measurements and weather data
at each station complex. However it cannot detect accurately the wet component of
the tropospheric path delay associated with short-term variations of the columnar
water vapor content. For this reason a new media calibration system was imple-
mented starting from Cassini radio science cruise experiments (Resch, 2002). The
Advanced Media Calibration (AMC) system was installed near the 34 m BWG an-
tennas DSS 25 in Goldstone and DSS 55 in Madrid and comprises for each unit a
water vapor radiometer, a digital pressure sensor and microwave temperature pro-
files. This system improve the accuracy of the path delay induced by the wet part
of the troposphere providing an improvement in the final data quality.



Chapter 2

From gravity to interior structure

In this chapter is given the description of the theoretical background and anal-
ysis methods used to retrieve information about the interior structure of the main
saturnian satellites. The determination of the interior structure of a celestial body
relies mainly on two different methods. The first one is through the analysis of the
deviations of the gravitational field from the monopole term GM/r, while the sec-
ond one is based on the analysis of the rotation of the body. None of these methods
can provide complete information about the interior but nonetheless they can put
important constraints thus giving the possibility to infer the origin and evolution
of a celestial body. Here we focus on how retrieving information about the interior
structure from the gravity field.

2.1 The gravity field of an isolated body

The gravitational potential energy outside an isolated body of any internal struc-
ture can be described by the full Poisson’s integral:

U(r

0
) = �G
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|r� r

0|⇢(r
0
)dV (2.1)

The most used mathematical tool to solve this integral and to express the grav-
itational field of any non-spherical body is by using a multiple series of spherical
harmonic functions (Bertotti et al., 2003). For an isolated body, supposing the center
of mass coinciding with the center of the reference system, we have (Kaula, 1966):
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Where M is the body mass, G is the gravitational constant. With respect to the center
of mass the spherical coordinates r, ✓, � are respectively the radial distance, latitude
and longitude on the equator. Plm is the associated Legendre polynomial of degree
l and order m; and Clm and Slm are the corresponding harmonic coefficients.

The quadrupole term (l=2) gives the first deviation from spherical symmetry.
The five quadrupole gravity coefficients can be easily related to the inertia tensor I.
In fact it is defined as:

I =

Z
[1r02 � (r

0
r

0
)]⇢(r0)dV (2.3)

On the other hand the quadrupole term of the Poisson’s integral in equation 2.1 is
given by:
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Z
[3(r

0
r

0
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By comparing equations 2.3 and 2.4 we can derive the MacCullagh formula:
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1

3

TrI� I (2.5)

If we express both the quadrupole tensor and the inertia tensor in the same refer-
ence frame and at the same time the following relations can be derived (Milani and
Gronchi, 2010):
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Given that we have five equations and six unknowns is clear that, using gravity,
we can determine only the difference between the moments of inertia (i.e. the mass
unbalance) but not their single value. However quadrupole gravity can provide the
principal axes of inertia. In fact, the linear relationship between I and Q (equation
2.5) means that they share the same eigenvectors. Therefore the principal axis of
inertia can be retrieved by diagonalizing the quadrupole tensor Q which has the
following expression:
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2.2 The degree-2 gravity potential for synchronous rotating
bodies

In the case at hand, in which we deal with the main satellites of Saturn, some
simplifications can be made due to the particular dynamical configuration of the
problem. In fact all the major satellites of Saturn are in synchronous rotation around
the central body and they move on nearly circular orbits that lie in the orbital plane
of Saturn (i = 0). Moreover their rotation axis is almost coinciding with the normal
to the orbital plane. In this configuration, if we add the hypothesis that the body in
exam is in hydrostatic equilibrium, it is possible to assume that the deviations from
the spherical symmetry (the quadrupole gravity) are only due to rotation and tides.
The centrifugal potential energy of a body rotating with a constant angular velocity
! is (Kaula, 1966):

Ur = �1

2

!2r2 sin ✓ = �1

3

!2r2(1� P20(cos ✓)) (2.8)

Where r is the radial distance from the center of the satellites and ✓ is the colati-
tude. The constant term is absorbed in the total GM and can thus be neglected.

The degree-2 potential due to the central body is:
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where a is the semimajor axis of the satellite’s orbit, M is the mass of the primary
body (Saturn in our case) and  is the angle from the direction connecting the satel-
lite and the primary body. For a synchronous rotating satellite rotational and orbital
period can be related using Kepler’s III law:
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In order to characterize the effect of the tidal and rotational field the following pa-
rameters can be defined:
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where m and R are respectively the mass and the mean radius of the satellite. The
tidal parameter qt represents the ratio between Saturn tidal field and the satellite
surface gravity. The rotational parameter qr is instead the ratio between the cen-
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trifugal acceleration at the equator and surface gravity acceleration. For a syn-
chronous rotating body where the mean motion is equal to the angular velocity
(equation 2.10) there is a linear relationship between the two parameters: qt = �3qr.
The total perturbing potential at the surface of the satellite can then be expressed
as the sum of tidal and rotational potentials (eqs 2.8 and 2.15). If we assume that
the reference frame has the x axis pointed along the direction of the central body
barycenter and it is coinciding with the principal axes of inertia, only J2 and C22 are
not equal to zero. A further hypothesis is that the rotational axis of the satellite is
coinciding with the normal to the orbital plane (i.e. i = 0) which is a valid approxi-
mation for the main satellites of Saturn. Therefore, given that cos = sin ✓ cos�, the
total perturbing potential is given by:

U2 = U2r + U2t =
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The static part U2s causes a permanent deformation of the planet which is pro-
portional to the perturbing potential. The proportional coefficient that gives the
induced potential is the fluid Love number kf . This number reaches its theoretical
upper limit of 3/2 for a fluid body but can be significantly smaller in case of differ-
entiated bodies. By comparing eqs. 2.11 and 2.2 the degree-2 gravity coefficients J2
and C22 of the induced potential assume the following expression:
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Therefore, for a synchronous rotating satellite in hydrostatic equilibrium, in a refer-
ence frame coinciding with the principal axes of inertia, the following relationship
holds:

J2
C22

=

10

3

(2.13)

2.3 The Radau-Darwin equation

To infer information about the interior structure of a synchronous rotating satel-
lite we make use of the Radau-Darwin equation. This equation allows to relate the
moment of inertia factor of a body (C/MR2) to the quadrupole gravity coefficients
J2 or C22. On the basis of the work done by Clairaut (Clairaut, 1743), this relation
was first derived by Radau (Radau, 1885) and some years later Darwin (Darwin,
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1899) gave also his contribution. The Radau-Darwin relation is an approximation
which is valid only for bodies in hydrostatic equilibrium. There are several form
of this equation but here is reported the one in terms of the fluid Love number kf

(Jeffreys, 1962):
C
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The first step is to measure J2 and C22. The best way would be to obtain an in-
dependent estimation of the two parameters and then verify if their ratio satisfy
the hydrostatic equilibrium hypothesis (eq. 2.13). If this is the case, the fluid Love
number kf can be computed either from J2 or C22 (eq. 2.12) and used to deter-
mine the Moment Of Inertia Factor using 2.14. The inferred MoiF can be be used
to give a first estimation of the interior structure of the body. Given that a MoiF of
0.4 indicates a uniform density body, if a lower value is found it possible to infer
the presence of a certain degree of differentiation in the interior. This information
along with the knowledge of the mean density (retrieved from the estimation of the
satellite’s GM) and shape can be used to infer the composition and the stratification
of the interior structure.

2.4 Satellite tides

If the satellite orbit has a non-negligible eccentricity the tidal perturbing poten-
tial has also a periodic term that has to be added to the total perturbing potential
(Rappaport et al., 1997):
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where f is the true anomaly of the satellite with respect to the central body. The pro-
portionality coefficient between Up and the induced periodic potential of degree-2
is the tidal Love number k2 (Love, 1906.). Therefore the quadrupole coefficients J2

and C22 vary along the orbit and a periodic term has to be added to the static values
in eq. 2.12:
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In case of an elastic response to the tidal perturbation the Love number k2 is a real
number. If there is a phase lag � between the perturbing force and the resulting dis-
placement, k2 is a complex number. In general the periodic part of the quadrupole
gravity coefficients assumes the following expression (Rappaport et al., 2008):
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Where the complex Love number is:

k2 = <(k2) + i=(k2), with
<(k2) = k2 cos �

=(k2) = �k2 sin �
(2.18)

2.5 Gravity from topography

The gravity field cannot be always measured with the required accuracy due
to the limited number of flybys devoted to gravity science. At the same time the
inversion problem can be degenerative thus preventing to retrieve a unique grav-
ity solution. Therefore it can be useful to constraint the estimate of the gravity
field coefficients by using a different kind of information such as topography. In
fact, supposing that the only non-uniformity in the body is given by topography,
an exact relationship between the spherical harmonics expansion of gravity and to-
pography can be retrieved. The approach presented here was derived by Wieczorek
(Wieczorek and Phillips, 1998).

The Poisson’s integral in equation 2.1 can be expressed in terms of Legendre
polynomials by using the identity:
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The Legendre polynomials can be expressed by means of the addition theorem
(Arfken, 1985):
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Ylm is the spherical harmonic function of degree l and order m normalized to
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where �ll0 is the Kronecker delta, d⌦ = sin ✓d✓d� is the infinitesimal volume element
and ✓ and � are colatitude and longitude.

Suppose to have a topography H(✓,�) in the crust with density ⇢c, referenced to
a radius D. Substituting eqs. 2.19 and 2.20 in the general expression of the Poisson’s
integral (eq. 2.1) yields:
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The last term can be expanded using the binomial theorem
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where powers of topography have the following expression:
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By inserting equations 2.23 and 2.24 into 2.22, using the orthogonal properties of the
spherical harmonics functions and simplifying we obtain an exact relation between
the gravity coefficients Clm and the topography coefficients hlm:
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It can be easily shown that the magnitude of each successive term in the above
sum is decreasing. For this reason it can be truncated after the needed precision
has been achieved. In the case at hand we only need to constraint the low degree
harmonics of the gravity field by using the corresponding long wavelength topog-
raphy. For this kind of problem the first term of equation 2.25 is enough. The
simplified relation is then:

Clm = C
3⇢c

⇢(2l + 1)

hlm (2.26)

where ⇢ is the mean density of the body. The proportionality coefficient C takes
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into account the possible presence of compensated topography. If the topography is
fully compensated, any mass increase due to a relief on the surface is balanced by a
decrease in the density of the underlying material at some depth in such a way that
there is no gravity anomaly associated with that relief. On the other hand, if there is
no compensation, the topographic relief directly produces a gravity anomaly. The
degree of compensation is a crucial parameter to put constraints on the internal
structure of a planetary body or to infer the presence of density anomalies (e.g.
water deposits) under the surface.



Chapter 3

Mathematical formulation

This chapter describes the mathematical formulation used to model the prob-
lem of estimating the geodesy of the Saturnian satellites. The analysis of Cassini
tracking data is accomplished through an orbit determination process that allows
to estimate the unknown model parameters. When more flybys of a satellite are
available they can be combined into a multi arc fit to retrieve a global and coherent
solution that is based on the whole data set. Observables play a crucial role in this
process since their accuracy is directly related to the uncertainties in the estimated
parameters. A description of the kind of observables used in this work and the
main error sources that affect them is given is section 3.2.

3.1 The orbit determination problem

The gravity field estimation of the main satellites of the Saturnian system is part
of a more complex orbit determination problem. With this name we mean the pro-
cess that allows the estimate of the relative motion of a space probe in a given refer-
ence frame starting from a set of so called observables. In the general case, in order
to correctly solve this problem, you have to take into account all the dynamical ef-
fects that act on the spacecraft (both of gravitational and non-gravitational origin),
and consider all the error sources in the observables and dynamical models.

The dynamical model includes at least the six elements of the position and ve-
locity vectors at a given epoch but is usually expanded with dynamic and mea-
surements parameters to improve the model accuracy and thus the estimate of
the spacecraft trajectory. In this context the main problem is that the estimation
of the spacecraft initial state has to be computed using a dynamical model which

36
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is not fully correct, and a set of observations affected by measurement and sys-
tematic errors. Therefore, even though the number of observations is greater then
the unknown model parameters, orbit determination problems have usually more
unknowns (observational and model errors) than observations thus requiring a sta-
tistical approach to obtain a solution. This is done by using an iterative least square
approach that allows obtaining the ”best” solution which will be the solution that
minimize a given cost function.

The orbit determination problem can be carried out by processing the observa-
tional data sequentially or by doing the analysis once all data have been collected.
The sequential processing algorithm (usually called Kalman filter (Kalman, 1960))
is useful when real time knowledge of the spacecraft state is needed. In our case
the long transmitting time (around 1.5 hours) from Saturn to Earth will prevent in
any case a real time estimation. For this reason we always process data with a batch
algorithm after all measurements have been collected.

3.1.1 The orbit determination process

The orbit determination process involves two main elements: the spacecraft tra-
jectory and the observations (Milani and Gronchi, 2010). The trajectory can be de-
fined as the solution of the following non-linear differential equation (Tapley et al.,
2004):

˙

X = F (X, t) (3.1)

with the initial condition X(tk) = Xk. X is the m-dimensional state vector which in-
cludes the spacecraft position and velocity vectors along with all the model param-
eters to estimate and Xk is the state vector at the time tk. The observation equation
which relates the l-dimensional vector of the observations Yi to the model parame-
ters has a non-linear expression as well:

Yi = G(Xi, ti) + ✏
i

i = 1, . . . n (3.2)

where ✏
i

are the observation errors. Generally at each time the number of observa-
tions is less than the unknown parameters to estimate (l < m) and therefore it is
necessary to have observations at different times so that l ⇥ n >> m.

The orbit determination problem can be simplified by linearizing the dynamic
and observational equations. A Taylor series expansion truncated at first order can
be used if a reference trajectory X

⇤ is available and sufficiently close to the true
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trajectory X in the time interval of interest. The non-linear problem expressed in
equations 3.1 and 3.2 can then be described by a set of linear equations:

ẋ(t) = A(t)x(t) (3.3)
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(t) is the n-dimensional observation deviation vector also
called residual vector and representing the difference between the observed ob-
servables (actual data) and the computed observables calculated on the basis of the
reference trajectory.

The general solution of equation 3.3 can be expressed as:

x(t) = �(t, tk)x(tk) (3.5)

�(t, tk) is the state transition matrix and allows mapping the state vector at any
time t with respect to a reference state at time tk. It can be determined by solving
the differential equation

˙

�(t, tk) = A(t)�(t, tk) (3.6)

with the initial condition �(tk, tk) = I (Tapley et al., 2004).
Using equation 3.5 the residuals y

i

(t) that are generally computed at different
times can be all expressed in terms of the deviation of the state xi computed at the
same time thus reducing the number of unknowns from m⇥ n to m:

y1 =
˜H1�(t1, tk)xk + ✏1

y2 =
˜H2�(t2, tk)xk + ✏2

...

yn =

˜Hn�(tn, tk)xk + ✏n

(3.7)
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The observation equation assumes then the following simplified expression:

y = Hx+ ✏ (3.8)

where
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The problem is however still undetermined because there are p = l ⇥ n ob-
servables and p + m unknowns that are the m components of the state vector and
the p components of the error vector ✏. A possible solution comes from the least
square method that provides us with conditions on the p observation errors allow-
ing a solution for the m state variables x at the time tk. Due to the fact that we are
dealing with a linearized problem, the least square method will have to be applied
recursively in order to reach convergence.

The least square method was first proposed by Gauss (1809) and is based on the
estimation of the state x that minimizes a given cost index. The most logical choice
for the cost index is the sum of the squares of the residuals. This prevents the
possibility that contribution with opposite signs will cancel out since it can vanish
only if all the elements of the residuals vector are identically zero. We also define
a weighting matrix W that accounts for the different accuracy of each observation.
It has usually the form of a diagonal matrix which means that the observations are
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not time-correlated but this is not a necessary condition:

W =

2

66666666666664

2

664

w11

. . .
w1l

3

775

. . . 2

664

wn1

. . .
wnl

3

775

3

77777777777775

(3.10)

The weighting matrix is computed by inverting the covariance matrix of the
observations: W = P�1. Therefore a higher weight reflects a better measurement
confidence and make the solution more sensitive to the information content of that
data.

The cost function to minimize is then:

J(x) =
1

2

✏TW ✏ (3.11)

By substituting the expression of the residuals in eq. 3.8 into 3.11 yields:

J(x) =
1

2

(y �Hx

k

)

TW (y �Hx) (3.12)

To minimize the cost function we impose that its first derivative with respect to
x is null:

@J

@x
= 0 = �(y �Hx)

TH = �HT
(y �Hx) (3.13)

By rearranging eq. 3.13 we obtain:

(HTWH)x̂ = HTWy (3.14)

If (HTWH) is positive definite the best estimate of x is then:

x̂ = (HTWH)

�1HTWy (3.15)

The above formulation does not take into account any available a priori infor-
mation on the estimated parameters. For common orbit determination problems an
a priori knowledge of the model parameters is always present. It may come from
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physical constraints, as the results of other experiments, or from previous solutions.
If we indicate with an overbar the a priori information, eq. 3.15 become:

x̂ = �

0
x(H

TWy +

¯Wxx̄) (3.16)

where
�

0
x = ⇤

�1
= (HTWH +

¯Wx)
�1 (3.17)

Matrix ⇤ is called the information matrix. Matrix �

0
x is related to the accuracy in

the estimate of x̂ and represents the estimated parameters covariance matrix if W is
properly selected. In fact overestimating the accuracy of the observations can result
in a too optimistic estimate of the parameters in terms of their associated covariance.
However in the case of white gaussian noise the observations can be weighted by
taking the variance of the post fit residuals which should represent their actual ac-
curacy thus avoiding any bias in the solution. ¯Wx =

¯P�1
x is the weighting matrix

of the a priori information that are considered as additional observations. If the
parameters are excessively constrained by too small uncertainties associated with
the a priori information the resulting solution may be driven too much by them
without representing the real data information content. The form in equation 3.16
is usually referred to as the normal equation and the matrix HTWH in eq. 3.17 is
called the normal matrix.

One of the advantages of using a priori information is that the inclusion of ¯Px in
the information matrix can reduce its ill-conditioning thus improving the inversion
process. Moreover the constraints posed by a priori information can prevent the
solution from walking away during the iteration process. At the beginning of the
orbit determination process the initial conditions X⇤

(t0) are set such that ¯P0 reflects
their accuracy and x̄

0

= 0. In the subsequent iterations x̄

0

is selected to maintain
the sum X

⇤
0 + x̄

0

constant. At each iteration the estimated state deviation is added
to the initial condition vector:

(X

⇤
0)n = (X

⇤
0)n�1 + x̂

n�1

(3.18)

Using 3.18 it is possible to determine x̄

0

at each iteration in such a way that the
a priori values of the state parameters are kept constant:

(x̄

0

)n = (x̄

0

)n�1 � x̂

n�1

(3.19)
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The Square-root formulation

The inversion of the information matrix in the normal formulation (eq 3.14) can
pose numerical problems if it is ill-conditioned. The condition number C of a matrix
A can be defined as follows (Lawson and Hanson, 1974):

C(A) = �max/�min (3.20)

where �max is the maximum eigenvalue of A and �min is the minimum eigenvalue.
In base 10 arithmetic with l significant digits, numerical difficulties with matrix in-
version may arise when C(A) ! 10

l. Unfortunately, in the orbit determination
problems at hand, this is often the case. For this reason a numerically superior
method, the square-root formulation, has been implemented in the orbit determina-
tion software to overcame problems due to the inversion of the information matrix.
This formulation, described by Moyer (1971) utilizes the Householder transforma-
tions to convert the matrix HTWH +

¯P�1 into the triangular matrix R whose order
is the same of HTWH +

¯P�1. The parameters estimates will then require the in-
version of R instead of HTWH +

¯P�1. The condition number of R is exactly the
square root of that of HTWH+

¯P�1 thus giving less numerical error in the inversion
process.

The QR factorization of the information matrix allows obtaining the solution in
terms of the square-root of the information matrix with the advantage of inverting
an upper triangular matrix. The QR decomposition uses a series of Householder
orthogonal transformations to decompose a m ⇥ n matrix into an an orthogonal
matrix Q and an upper triangular matrix R. The latter can be easily inverted by
using backward substitution or singular value decomposition methods. Given that
the square root of a matrix A is defined as A = A

T
2 A

1
2 , the square root of the infor-

mation matrix can be written in terms of the matrices Q and R as follows:

⇤

1
2
=

2

6664

W
1
2H

¯W
1
2
x

3

7775
= QxRx (3.21)

To obtain the Least-Squares solution the residuals y and the a-priori solution x̄
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must be transformed accordingly pre-multiplying by QT
x , obtaining:

Rz = QT
x

2

6664

W
1
2
y

¯W
1
2
x x̄

3

7775
(3.22)

The solution vector and the covariance matrix will then be simply given by:

x̂ = R�1
x Rz �

0
x = ⇤

�1
= R�1

x R�T
x (3.23)

Consider parameters

The constant parameters on which the dynamical model is based are not al-
ways accurately known. However, the error associated with their values used in
the model can be taken into account. Consider parameters are used to accomplish
this job. To take into account also the consider parameters they are included in the
generalized state vector. The state transition matrix will also include the partial
derivatives of the observables with respect to the consider parameters. Let us sup-
pose to have an a priori estimate of the state vector x̄ and the consider parameters
vector c̄.

z =

2

6664

x

c

3

7775
ỹ =

2

66666664

y

x̄

c̄

3

77777775

Hz =

2

66666664

Hx Hc

I 0

0 I

3

77777775

✏̃ =

2

66666664

✏

⌘

�

3

77777775

(3.24)

where Hc is the consider parameters mapping matrix. ⌘ and � are the error
associated with the a priori values of the state vector x̄ and consider parameters c̄
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and have the following properties (Tapley et al., 2004):

E[⌘] = E[�] = 0

E[⌘⌘T] = ¯Px

E[��T] = ¯Pcc

E[⌘✏T] = E[�✏T] = 0

E[⌘�T] = ¯Pxc

(3.25)

The cost index to minimize is then:

J =

1

2

✏̃ ˜R�1✏̃T (3.26)

where

˜R =

2

66666664

R 0 0

0

¯Px
¯Pxc

0

¯Pcx
¯Pcc

3

77777775

˜R�1
=

2

66666664

R�1
0 0

0

¯Mx
¯Mxc

0

¯Mcx
¯Mcc

3

77777775

(3.27)

is the extended a priori observation error covariance matrix and the corresponding
weighting matrix.

The corresponding solution is then:

2

6664

(HT
x R

�1Hx +
¯Mx) (HT

x R
�1Hc +

¯Mxc)

(HT
c R

�1Hx +
¯Mcx) (HT

c R
�1Hc +

¯Mcc)

3

7775

2

6664

x̂

ĉ

3

7775
=

2

6664

HT
x R

�1y + ¯Mxx̄+

¯Mxcc̄

HT
c R

�1y + ¯Mcxx̄+

¯Mccc̄

3

7775

or, in a more compact form:
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6664

Mxx Mxc

Mcx Mcc

3

7775

2

6664

x̂

ĉ

3

7775
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2

6664

Nx

Nc

3

7775
(3.28)
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The estimate of the state vector x̂ is obtained by choosing not to compute ĉ and
Pcc but to fix them at their a priori value c̄ and ¯Pcc respectively. The final solution is
then:

x̂ = PxNx + Sxcc̄ (3.29)

with the associated covariance matrix
2

6664

Pxx Pxc

Pcx Pcc

3

7775
(3.30)

where:

• Px = M�1
xx

• Sxc = �M�1
xx Mxc

• Pxx = Px + Sxc
¯PccST

xc

• Pxc = Sxc
¯Pcc

• Pcx = P T
xc

• Pcc =
¯Pcc

The matrix Sxc is the sensitivity matrix and describes how the best estimate of
the state variables vector is affected by the consider parameters.

3.1.2 The multi arc approach

The determination of the gravity field of the Saturnian satellites is usually car-
ried out using data from multiple flybys. In principle, it would be possible to con-
sider the spacecraft trajectory between these flybys as a single orbit, thus estimat-
ing only one spacecraft state vector. However, two consecutive flybys are usually
months apart in the most favorable condition. The spacecraft dynamics during this
period cannot be determined with the required accuracy mainly due to difficul-
ties in modeling complex non-gravitational interactions (solar radiation pressure,
maneuvers) (Milani and Gronchi, 2010). In essence there is no single determinis-
tic model able to reliably capture the entire complexity of the phenomenon of non
gravitational perturbations (Somenzi, 2006).
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The multi arc approach allows overcoming this problem by dividing the space-
craft orbit into different arcs of non-overlapping time intervals. This approach re-
sults in an over-parameterization of the problem with six additional parameters
(the spacecraft initial conditions) for each arc. In this way each arc is independent
from the others because the spacecraft orbit propagation depends only on its own
initial conditions. However model parameters which do not vary with time and
are common to all arcs can be estimated more accurately by using data from dif-
ferent arcs. The estimated parameters vector is then divided into a vector of local
parameters and a vector of global parameters. The first one includes the spacecraft
state vector and other dynamical model parameters peculiar of a particular arc (e.g.
atmospheric drag for a low altitude flyby). The second one is the vector of the pa-
rameters common to all arcs such as the mass and the gravitational harmonics of
the body under investigation.

The implementation of the multi arc method relies essentially on the correct
construction of the design and weight matrices. Once accomplished this task, the
least square filtering is performed using the same method described in section 3.1.1.
Four groups of parameters can be generally defined:

• x

k
=

"

xk1 · · · xknk

#T
is the vector of the nk local parameters in the k-th arc

• g =

"

g1 · · · gn

#T
is the vector of the ng global parameters

• c

k
=

"

ck1 · · · ckmk

#T
is the vector of the mk local consider parameters in the

k-th arc

• c =

"

c1 · · · cm

#T
is the vector of the mc global consider parameters

In general nk and mk are different for each arc. The vector of solve-for paramters
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x and the vector of consider parameters z have n and m elements respectively:

x =

2

6666666666664

x

1

...

x

N

g

3

7777777777775

n = ng +
PN

k=1 nk

z =

2

6666666666664

c

1

...

c

N

c

3

7777777777775

m = mc +
PN

k=1 mk

(3.31)

By defining as yki the i-th residual in the k-th arc and lk the total number of
observables in that arc, the residuals vector y has l elements:

y =

2

66666664

y

(1)

...

y

(N)

3

77777775

l =

PN
k=1 lk

(3.32)

where y

k
=

"

yk1 · · · yklk

#T

The partial derivatives of one arc with respect to local parameters of the other
arcs are zero by definition. Thus the mapping matrices of solve-for and consider
parameters Hx and Hc assume the following V-like block structure:

Hx =

2

66666664

H(l1)
x

· · · 0 H(g1)
x

... . . . ...
...

0 · · · H(lN )
x

H(gN )
x

3

77777775

(3.33)
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Hc =

2

66666664

H(l1)
c

· · · 0 H(g1)
c

... . . . ...
...

0 · · · H(lN )
c

H(gN )
c

3

77777775

(3.34)

where the matrices that appear in the above expressions are respectively:

• H(lk)
x

is the lk⇥nk mapping matrix of k-th arc observables with respect to local
parameters.

• H(gk)
x

is the lk ⇥ ng mapping matrix of k-th arc observables with respect to
global parameters.

• H(lk)
c

is the lk ⇥ mk mapping matrix of k-th arc observables with respect to
local consider parameters.

• H(gk)
c

is the lk ⇥ mg mapping matrix of k-th arc observables with respect to
global consider parameters.

The weighting matrix of the k-th arc assume the following expression:

W k
=

2

66666664
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1 · · · 0
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0 · · · wk
lk

3

77777775

=
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1
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0 · · · 1
(�k
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)2

3

77777775

(3.35)

wk
i =

1
(�k

j )
2 is the weight associated to the i-th observable in the k-th arc and �ki

is the standard deviation of the observable. Since the observations in one arc are
assumed to be independent from those of the other arcs the weighting matrix has a
block-diagonal structure:

W =

2

66666664

W 1 · · · 0

... . . . ...

0 · · · W (N)

3

77777775

(3.36)
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A priori values and their covariances can be included in the multiarc formula-
tion. In principle it would be possible to consider cross-correlations between local
parameters of different arcs. However since the multiarc approach is used to try to
absorb un-modeled phenomena by over-parameterizing the problem the inclusion
of cross-correlation between different arcs would invalidate this purpose. Therefore
a priori covariance matrices are defined on an arc-by-arc basis. The a priori covari-
ance of each arc ˜

�

k
x|c can be a full symmetric matrix. Global and local parameters

can have an a priori correlation while local parameters of different arcs are always
uncorrelated from an a-priori point of view.

3.2 Observables

The most commonly used methods for high precision orbit determination are
based on the transmission of radio signals. Radio tracking systems can provide
information about distance, velocity and angular position of a spacecraft. Cassini
navigation is accomplished mainly using range and range rate measurements while
during a target approach phase, onboard optical images may be used to provide a
direct measurement of the spacecraft position relative to the target body. The range
observables are essentially a measurement of the signal one way or two-way light
time. According to the notation in figure 3.1 the spacecraft topocentric slant range
can be approximately expressed in terms of the one-way light time ⌧ as ⇢ = ⌧c with
c being the speed of light. The time derivative of the range is the range rate, often
referred to as Doppler, which can be expressed approximately as ⇢̇ = c (1� fR/fT )

where fR and fT are respectively the received and transmitted frequency (Thornton
and Border, 2000).

The following sections will give an overview of range and Doppler character-
istics along with a description of the main error sources affecting this type of data.

3.2.1 Range observables

Range observables are based on the measurement of the propagation time of
an electromagnetic wave traveling at the speed of light. To avoid clock synchro-
nization issues the most used type of range measurement is the two-way coherent
ranging. The uplink carrier phase is modulated by a ranging signal consisting of
a series of discrete sines or square tones. A phase locked loop within the space-
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Figure 3.1: Spacecraft and station coordinates (Thornton and Border, 2000)

craft transponder locks on the uplink signal and coherently transmits back a phase
modulated downlink carrier. The word coherent means that the downlink signal is
coherent in phase with the uplink but translated in frequency of a given ratio (see
table 3.1). Two-way ranging is preferred over one-way ranging because the latter
relies on the synchronization between the station and the spacecraft clock whose
lack directly translates into an error on the measured delay.

Uplink Band Downlink Band Transponding Ratio

S S 240/221

S X 880/221

X X 880/749

X Ka 3344/749

Table 3.1: Spacecraft Turnaround Ratio

The actual measurement is obtained by sending a ranging signal to the space-
craft and measuring the phase difference between the transmitted and received sig-
nals that gives information about the Round Trip Light Time. This difference is
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measured in units of phase called range units (RUs). Their value depends on the
highest ranging signal frequency and is currently about 28 cm (Thornton and Bor-
der, 2000).

Let us consider a modulation A cos!t. The modulation received at time t will
be:

B cos!

✓
t� ⇢u + ⇢d

vg

◆
(3.37)

where ⇢u and ⇢d are respectively the distances travelled by the signal on the uplink
and downlink paths. vg is the group velocity of the propagating wave that depends
on the transmission media. By cross-correlating the uplink and downlink signal we
get:

⌘ =

1

T

Z t0+T

t0

A cos!tB cos!

✓
t� ⇢u + ⇢d

vg

◆
dt ⇡

⇡ AB

2

cos

!

vg
(⇢u + ⇢d) if T >>

1

!

(3.38)

⇢u + ⇢d =

vg
!


arccos

2⌘
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+ 2⇡N

�
=

�

2⇡
arccos

2⌘

AB
+N� (3.39)

The determination of the ranging measurement has an ambiguity of an integer
number of wavelengths � = 2⇡vg/!. Each ranging system uses a different tech-
nique to solve the phase ambiguity. The available methods are:

• Tone ranging system that employs a series of tones

• Code ranging system that employs Pseudo-Random codes

• Hybrid ranging system that combines both tone and code ranging properties

Here we give a brief description of the ranging system used by Cassini which is
based on a series of tones that modulate the carrier. The highest frequency of the
ranging signal is called range clock and is proportional to the carrier frequency by
a rational number � =

221
749 · 2�7�R at X-band. R is an integer number called the

component number of the range clock. The other components of the ranging signal
have a frequency half of its predecessor. The a priori knowledge of the delay (i.e.
the a priori estimate of spacecraft trajectory) determines the lowest frequency com-
ponent. For example, if the spacecraft position is known within 1000 km, a lower
frequency component of about 100 KHz (� = 300000 km) will be enough to resolve
the ambiguity being its wavelength greater than the uncertainty in the position of
the spacecraft. The higher frequency components set the maximum accuracy at-
tainable by the ranging system. Typically a clock frequency of about 1 MHz is used
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for deep-space navigation and has an average accuracy of ⇠ 3 m (typically, 1/100
of the tone period).

One of the problems affecting every ranging system is the motion of the space-
craft during the integration. For a deep space probe the integration may last several
minutes given the low SNR and during this time the distance travelled by the space-
craft can amount to thousands of kilometers. At the DSN stations the problem is
solved with the Doppler rate aiding method. On ground, the spacecraft range rate
is continuously measured. Therefore the phase of the replica of the transmitted tone
stored on ground is advanced by an amount dictated by the measured range rate
to take into account the spacecraft motion. The ranging system described above is
known as sequential ranging and is currently used for Cassini navigation and radio
science experiments.

3.2.2 Range-rate observables

The rate-of-change of range, or range-rate is obtained by measuring the Doppler
frequency which is the frequency difference between the transmitted and received
signals:

⇢̇ =

fR � fT
fT

c =
�f

fT
c (3.40)

Doppler measurements provide information on the spacecraft topocentric range
rate. The measurement is obtained by mixing a replica of the uplink signal with the
received downlink signal. A low-pass filter gives the difference between the uplink
and downlink frequencies that is called the Doppler tone. The Doppler counter
measures the integrated Doppler that represents the change in range of a spacecraft
over a count time Tc. This is done by monitoring the phase change due to the space-
craft radial motion. The acquisition process is schematically displayed in figure 3.2.

The 1-way integrated Doppler can be expressed as:

�⇢(Tc) =

Z t+Tc

t
vRdt = ⌥ c

fT

Z t+Tc

t
fDdt (3.41)

where vR is the spacecraft radial velocity and fD is the frequency of the Doppler
tone. The last integral term represents the Doppler cycle count which is accumu-
lated every count time Tc at the ground station. The count time can vary from 0.1
s to about half a day but typical count times have durations of 10-1000 s (Moyer,
2000). For interplanetary cruise phases longer count times are used while for en-
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Figure 3.2: Doppler acquisition process (Thornton and Border, 2000)

counters with celestial bodies, like Saturn satellites flybys, count times of about
10-60 s are more often used. The time tag T of a Doppler observable is the midpoint
of the interval count time Tc.

3.2.3 Error sources

The attainable accuracy of range and Doppler measurements is highly depen-
dent on several error sources. There are delays introduced by the electronic instru-
mentation and errors due to the frequency instability of local oscillators. Moreover
the signal propagation is affected by the transmission medias that introduce delays
and dispersions. Finally, the non perfect knowledge of the tracking system geome-
try, which involves errors in the station location or in the Earth orientation have to
be considered.

A widely used figure of merit to evaluate the stability of frequency standards in
the time domain is the Allan deviation �y (Barnes et al., 1971):

�2y(⌧) =
1

2

h(ŷ(t+ ⌧)� ŷ(t))2i (3.42)

where hi denotes an infinite time average and ŷ is the average of the relative fre-
quency shift �f/f over an integration time ⌧ . This quantity is unaffected by linear
frequency drifts and is thus particularly suitable to characterize the frequency sta-
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bility of oscillators and radio systems. An overview of the main effects that can
degrade Doppler measurement is given in table 3.2 for a Cassini-like transmission
system in terms of Allan deviation.

Error source Doppler (�y @ 1000s)

Frequency standard ⇠ 8⇥ 10

�16

Antenna mechanical ⇠ 2⇥ 10

�15

Ground electronics ⇠ 2⇥ 10

�16

Plasma phase scintillation up to 8.1⇥ 10

�14 at SEP=30�

Stochastic spacecraft motion ⇠ 2⇥ 10

�16

Receiver thermal noise few ⇥ 10

�16

Spacecraft transponder noise 10

�16

Tropospheric scintillation (calibrated) < 1.5⇥ 10

�15 to 3⇥ 10

�15

Table 3.2: Error sources in Cassini tracking system

Instrumental effects

The instrumental effects are due to several factors related to the particular in-
strumentation used for the measurement. The main effects are due to:

• Thermal noise which is due to the finite SNR on the radio link that causes
phase fluctuations. This white phase noise depends on the lowest SNR el-
ement in the link that, in current two-way measurements, is the downlink
path. This contribution, in terms of Allan deviation, can be written as:

�y =

1

2⇡f0⌧

s
3B

(S/N0)UL + (S/N0)DL
(3.43)

for 2-way Doppler measurements where B is the signal loop bandwidth, f0
the carrier frequency and ⌧ the integration time. A similar expression holds
for the error on range measurements due to thermal noise but for the Cassini
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telecommunication system they both have a negligible contribution to the
overall noise budget.

• Ground electronics that is specifically designed to minimize the instabilities
on the frequency and phase of the signal. In the current-era observations it is
not a dominant noise source.

• Spacecraft transponder noise which is also a negligible contribution for Cassini
transponders KEX and KAT. Their frequency stability in terms of Allan devi-
ation was tested both on ground and in flight and resulted as low as 10

�15 at
1000 s integration time.

• Un-modeled spacecraft motion that can directly introduce Doppler noise.
These un-modeled motion can arise from different causes but can be indepen-
dently determined by monitoring Cassini attitude and control system. For
f > 0.0001 Hz the measured spectra show that Cassini motion has a negligi-
ble contribution to the overall Doppler data accuracy.

• Antenna mechanical noise causes a Doppler effect due to a time-dependent,
un-modeled motion of the ground antenna’s phase center, resulting in a change
of the signal path length and, therefore, in an error in the signal phase estima-
tion. It is mainly generated by the ground antenna’s structure deformations
under the effects of gravity, winds and temperature gradients. These kind of
loads have to be estimated by means of experimental test campaigns or nu-
merical analyses, and then compensated when possible.

Transmission media

The propagation of the signal through solar coronal plasma, and planetary at-
mospheres and ionospheres produces variations in its amplitude, phase and fre-
quency. These variations can be frequency dependent (dispersive media) or inde-
pendent (non-dispersive media). For interplanetary missions, effects on the signal
amplitude are usually negligible in every condition thanks to the large SNR. The ef-
fects of the propagation media are thus a shift of the carrier frequency for Doppler
measurements and a time varying group delay for range measurements.

The main non-dispersive effect is due to the Earth troposphere. In fact this
medium is frequency independent up to 15 GHz. Therefore increasing the fre-
quency of the signal does not increase the information about the delay or the pos-
sibility to calibrate it. The effect of the troposphere can result in a signal-path delay
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of about 2 m at zenith and 20 m at 6� elevation angle (Thornton and Border, 2000).
The tropospheric delay can be written as (Tapley et al., 2004):

�t = 10

�6
Z

Nds (3.44)

where N is the refractivity:
N = (n� 1)10

6 (3.45)

with n being the refractive index. Refractivity is usually considered as the sum of a
dry component Nd and a wet component Nw. About 95% of the total effect is made
up by the dry component which can be modeled by assuming that the atmosphere
is an ideal gas in hydrostatic equilibrium, thus requiring only the knowledge of the
surface pressure. The dry component can be calculated to an accuracy of a few mil-
limeters from measurements of surface barometric pressure (Thornton and Border,
2000). The wet component, on the other hand, is more difficult to model due to
the instability of the water vapor density along the signal path. Local meteorogical
data are able to provide an accuracy on the wet component of about 4 cm in the
zenith direction (Elgered, 1992). The tropospheric delay is also dependent on the
elevation angle of the viewing direction. Mapping functions are thus used to map
the zenith effect at any elevation angle E. Using a simple mapping function, zenith
delay measurement errors are magnified by approximately a factor 1/ sinE, thus
giving accuracies at 10� of elevation of about 6 cm. In order to obtain better accu-
racies, the total zenith delays have to be computed by means of other systems like
the GPS calibration system or the Advanced Media Calibration System (AMC).

The GPS calibration system uses GPS data and the JPL GIPSY-OASIS II soft-
ware to produce calibrations of the zenith troposphere delay at the DSN tracking
stations. Users can then map the zenith calibrations to their lines of sight using
appropriate elevation mapping functions. The accuracy of this calibration system
depends strongly on the accuracy of the GPS orbit and clock parameters, which in
turn depends on the quality and global distribution of the available GPS data from
the ground tracking network (Bar-Sever et al., 2007).

The AMC system was developed specifically for Cassini radio science experi-
ments. To this end an advanced water vapor radiometer (AWVR) was developed
by JPL. AWVRs measure the thermal radio emissions of water vapor near a res-
onance at 22 GHz. The radio path delay is then inferred from these data using
models and estimates of the atmospheric temperature and pressure. These are pro-
vided by a microwave temperature profiler that retrieves the vertical distribution
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of atmospheric temperature along with surface sensors for temperature, pressure,
and relative humidity, which add further constraints to the path delay retrieval pro-
cessing. The ensemble of these sensors and models constitute the Advanced Media
Calibration System which is able to provide improved calibrations of the wet tro-
pospheric path delay.

The main dispersive media is the Earth’s ionosphere, the portion of the Earth’s
atmosphere characterized by the presence of charged particles. The interplanetary
plasma is also cause of dispersive propagation delays. Th ionosphere effect has
a seasonal and diurnal modulation while the effect due to interplanetary plasma
depends on the solar cycle and the Sun-Earth-Probe (SEP) angle. In fact the effect is
greater near solar conjunction when the signal path is closer to the Sun. The effect of
these dispersive media is dependent on the frequency and the total electron content
along the signal path (Tapley et al., 2004):

�t =
↵

f2
(3.46)

where ↵ is proportional to the TEC (total electron content) per unit area along the
signal path. ↵ is a positive term for group delays so a ranging code modulated on
the carrier signal will experience a delay. It is instead negative for carrier phase.

Since the effect is frequency dependent, the use of a dual-frequency radio link,
allow the complete cancellation of the induced delays. On Cassini it was originally
implemented a multi-frequency system enabling simultaneous communication at
X/X, X/Ka and Ka/Ka bands. This configuration allowed an almost complete can-
cellation of ionospheric and plasma noise (Tortora et al., 2004). However, in 2003,
the KaT transponder suffered an unrecoverable malfunction that causes the loss of
the Ka/Ka link. For this reason the accuracy achieved by Doppler data during the
cruise was not available during the Saturnian tour.

Numerical noise

The numerical error affects the calculation of computed observables. It is caused
by the fact that the JPL’s OD software use the floating point arithmetic representa-
tion of numbers which means that numbers are represented with a finite number
of digits. Every real number used in the process is thus affected by this kind of er-
ror which propagates when mathematical operations are applied to those numbers.
The use of quadrupole precision representation of numbers can decrease this effect
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but never cancel it. In the OD process the total numerical error in the computation
of radiometric observables is mainly the sum of the effects of the rounding errors in
the representation of times and distances.

Numerical noise is dependent upon the integration time and the epoch (being
related to time representation used in OD codes). On range rate measurements it
is inversely proportional to the Doppler count time Tc because the actual measure-
ment is essentially computed as a range difference over a given count time Tc. The
average numerical noise on Cassini Doppler X-band data at 60 s integration time
in terms of Allan deviation amounts to about 3⇥10

�14 which is a significant error
source which put a lower limit in the achievable Doppler measurements accuracy
(Zannoni and Tortora, 2012).



Chapter 4

Analysis methods

4.1 Dynamical model

The dynamical model used in our analyses accounts for several forces acting on
the spacecraft. The gravitational forces act indifferently on all the bodies in the so-
lar system and on the spacecraft. Forces of non-gravitational origin affect, instead,
only the spacecraft motion. In this section we give a brief description of all the
forces models used in the integration of Cassini trajectory during the flybys of Sat-
urn system satellites. Mathematical details of the implementation of these models
in the Orbit Determination Program (ODP) can be found in Ekelund et al. (1996)
and Moyer (1971).

4.1.1 Gravitational forces

The gravitational perturbations include a variety of acceleration models to take
into account all the possible dynamical effects acting on the spacecraft. The main
contribution is the Newtonian n-body point mass acceleration from planets, Sun,
and Moon whose orbital elements are retrieved from JPL’s planetary ephemerides
DE419. The gravitational acceleration acting on the center of mass of the spacecraft
(p) is written with respect to the origin of the Solar System Barycenter reference
frame (b):

�̈!r
N

bp = � µc

r3cp

�!r cp �
X

i 6=PCB

µi

✓ �!r ip

|rip|3
+

�!r bi

r3bi

◆
(4.1)

where c is the center of the i-th planet that is considered as a point mass.
Relativistic accelerations only caused by the Sun, Jupiter and Saturn are also

taken into account and computed in the Solar System Barycenter reference frame.
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The accelerations of the n-bodies are related to the relativistic parameters � and �

(� = � = 1 in general relativity).
Of course, we also consider the Saturnian satellites Newtonian point mass accel-

erations and the accelerations caused by tides and Saturn rings. Gravity anomalies
of any of the n-bodies due to the oblateness are modeled through the spherical har-
monics representation of the gravity field. Finally, mass concentrations (mascons)
can be added to the dynamical model and represented as flat disks or as points.

4.1.2 Tides

The JPL’s Orbit Determination Program (ODP) allows the estimation of a vari-
able gravity field only for planets but not for satellites. Therefore, in order to es-
timate a variable gravity field and the related degree-2 Love number (see section
2.4), a dedicated procedure was developed. Actually, the last version of the ODP
incorporated the tides model but the dedicated code is still in use because it allows
a better control of the mathematical model and the partial derivatives computation.

This procedure entails two fundamental steps. The first step is to compute the
partial derivatives of the observables with respect to k2. This can be accomplished
by using quantities already computed in the ODP when only a static gravity field is
used. Since the harmonic coefficients vary linearly with respect to the Love number
k2 (see equation 2.17), the partial derivative of the observable z with respect to k2

can be easily expressed by applying the chain rule (see SOM Iess et al. (2012)):

@z

@k2
=

X

m

@z

@C2m

@C2m

@k2
(4.2)

The first term on the right side of the above equation is the partial derivative of the
observable with respect to the gravity coefficient that includes both static and tidal
contribution. It can be directly retrieved from the ODP provided that the dynamical
model has been properly set-up with the coefficient total value. The remaining term
can be easily computed by the model equations 2.17 and is a function of the satel-
lite’s mean anomaly at the time of the closest approach. Note that the Love model
we are using assumes that the same quadrupole Love number is shared among all
the coefficients. Therefore the actual partial derivative is computed as the sum of
the three partials from J2, C22 and S22 coefficients. The key point is that when the
ODP integrates the variational equations to generate the spacecraft trajectory, the
satellite degree-2 gravity model is represented by the total value of the coefficients
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for the current arc. The gravity field is considered as constant during the time-
span of integration, being its variations negligible. This is applicable in the case
at hand where the duration of a typical flyby is small compared to the orbital pe-
riod. Each data arc has a typical duration of about 24 hours centered on the closest
approach. However data on the inbound and outbound are mainly used to better
estimate the spacecraft state vector and are sensitive only to the point-mass gravity
perturbations. Only data across the C/A bear information about the quadrupole
coefficients.

Once the partial derivatives of the Love number are computed they must be in-
cluded into the information matrix along with the partial derivatives for the static
component of the gravity field coefficients. The latter are exactly equal to the par-
tials of the total coefficients and are therefore directly available from the ODP:

@z

@Cs
=

@z

@Ctot

@Ctot

@Cs
=

@z

@Ctot
(4.3)

Where Cs is the static gravity coefficient and Ctot is the total one. From equation
2.17 is straightforward to demonstrate that @Ctot/@Cs = 1.

Clearly, in order to successfully estimate k2 is necessary to combine data from
multiple flybys to detect a variation in the gravity field. Therefore a multi arc ap-
proach is used to combine the information matrix from each flyby. To perform this
task a specific software has been developed to perform a least-square inversion
with the gravity field coefficients and the Love number as global solve-for parame-
ters. This software is written in Fortran 95/2003 and has been validated against the
ODP. It allows estimating both the static part of the coefficients and the Love num-
ber in a single global fit. The filter uses an iterative weighted least-square model
implemented by a batch square-root algorithm to improve the numerical stability
(Racioppa, 2012).

4.1.3 Non-gravitational accelerations

Cassini spacecraft is subject to different kind of non-gravitational forces. The
most important effect is due to the trajectory correction maneuvers used to vari-
ate the spacecraft orbit but our data arcs never include this kind of accelerations.
Gravity flybys are also designed to avoid the presence, during the closest approach
phase, of other kind of maneuvers. These include the unbalanced thrust from the
attitude control system and the reaction wheels desaturation maneuvers. The main
non-gravitational effects during gravity flybys are then due to the anisotropic ther-
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mal emission of the RTGs, the solar radiation pressure and the atmospheric drag
for Titan’s flybys at altitudes lower than 1200 km.

The three on board RTG’s provide power to the spacecraft through the de-
cay of an isotope of plutonium (see section 1.1). The spacecraft bus is insulated
from the RTG’s thermal radiation through an insulating blanket. This produces an
anisotropic thermal emission along the spacecraft +Z axis due to the radiation re-
flected by the blanket. Smaller but relevant accelerations are induced also along
Cassini’s X- and Y-axis due to the asymmetric spacing of the RTGs. In the Orbit de-
termination software the effect of the RTG’s is modeled as an exponential decaying
acceleration (Ekelund et al., 1996):

�!a = MR(Ar
ˆ

Z+Ax
ˆ

X+Ay
ˆ

Y)e�↵�t (4.4)

where the exponential scale factor ↵ is 2.5�10s�1 and MR is the ratio between the
spacecraft mass at the beginning of the mission and the current mass.

The non-gravitational acceleration due to the solar radiation pressure is caused
by the transfer of energy and momentum from the solar photons to the impact sur-
face. The amount of the induced acceleration depends on what fraction of the inci-
dent radiation is absorbed or reflected. The thermo-optic coefficients of the exposed
surfaces are difficult to infer and this make the acceleration due to the solar radia-
tion pressure somewhat uncertain. However, during tracking periods, the main re-
flecting surface is given by the HGA which accounts for 90% of the total frontal area.
HGA thermo-optical coefficients were measured during ground tests and their vari-
ations during the mission are inferred from temperature measurements from two
sensors mounted on the HGA back side (Clark, 2008). The mathematical formula-
tion of the solar radiation pressure in the orbit determination software can be found
in Ekelund et al. (1996).

For Titan’s flybys with a closest approach altitude as low as 1200 km the effect
of the atmospheric drag cannot be neglected. Titan’s atmosphere is depicted as a
scale height driven exponential model. In this model the atmospheric density ⇢ is a
function of altitude and time (Ekelund et al., 1996):

⇢j = ⇢ijexp[(hi � h)/Hij ] (4.5)

where:

• hi is the reference altitude (km).



CHAPTER 4. ANALYSIS METHODS 63

• tj is the reference epoch, either in solar local time or absolute time.

• ⇢ij is the atmosphere density at epoch tj and altitude hi (g/cm3
).

• Hij is the exponential scale height at time tj for the i-th layer of the atmo-
sphere (km).

• h is the spacecraft altitude (km).

• t is the current epoch.

The resulting acceleration acting on the spacecraft is given by:

�!a
D

=

⇢V 2
b

2m
CD

 
X

i

Ai

!
ˆVb (4.6)

where:

• ⇢ is the atmospheric density.

• CD is the drag coefficient.

• Ai is the cross-sectional area of spacecraft component i in the direction of the
body-fixed spacecraft velocity vector.

• m is the mass of the spacecraft.

• Vb is the magnitude of the body-fixed spacecraft velocity.

• ˆVb is the direction of the body-fixed spacecraft velocity.

4.1.4 Gravity from topography

As described in section 2.5 spherical harmonics expansion of topography can be
used to constraint the gravity field estimate. This approach can be particularly use-
ful when the small amount of data available prevents the estimation of the gravity
coefficients with the required accuracy.

Let us consider a case in which the available data allow only a good estimation
of the quadrupole field without giving access to the degree-3 harmonics. If a spher-
ical harmonics expansion of the topography is available, it can be used to directly
derive the degree-3 gravity coefficients using equation 2.26. However, in order to
take into account the presence of isostatic compensation, we need to estimate the
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compensation factor C. Even in this case there is an evident advantage in the use
of this approach because the number of estimated parameters is reduced (from 7
degree-3 gravity coefficients to 1 compensation factor).

The estimate of the compensation factor C is carried out using an approach sim-
ilar to the one described in section 4.1.2. As in that case we need to compute the
partial derivatives of the observables with respect to C. This can be easily accom-
plished by using the chain rule:

@z

@C
=

X

l,m

@z

@Clm

@Clm

@C
(4.7)

where @z/@Clm are quantities directly available from the ODP and @Clm/@C can be
computed from 2.26.

These partial derivatives are then included in the information matrix which is
inverted using the Oracle filter (Racioppa, 2012). Once the compensation factor
has been estimated, it is used to calculate the resulting gravity coefficients starting
from the spherical harmonics expansion of topography. The updated trajectory of
the spacecraft will be computed taking into account the full gravity model. This
process is iterated until convergence is attained.

4.2 The ephemerides update process

The ephemerides of the Saturnian satellites are provided by Cassini Naviga-
tion Team in the form of a set of Chebyshev polynomials whose coefficients are
given typically every 18 days. The state of the satellite relative to the Saturn system
barycenter is then retrieved by interpolating the Chebyshev coefficients (Jacobson,
2003) at the required time. Satellite ephemerides are generated starting from a time
history of the bodies’ positions and velocities. These are obtained by numerically
integrating the equations of motion of the bodies using the classical Cowell method,
a special perturbations technique (Peters, 1981).

The ephemerides of the Saturnian satellites have a different level of accuracy
for each body. For example, Titan ephemerides are more accurate than that of
Enceladus thanks to the greater number of observations available. Moreover, the
ephemerides of a certain body, are less accurate when propagated far ahead of the
last observation time. For this reasons it is often necessary to update the ephemerides
of a given body when a new flyby is performed, to correctly fit the data. In addition,
when more flybys spanning over a quite long time (typically 3-4 years for Cassini
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tour) are combined together in a multi arc solution, the ephemerides update process
is required to ensure that the body under examination is on a coherent trajectory.

The ephemerides are updated by first estimating a new initial state (position,
velocity and mass) at a time that is before the first flyby. On the basis of this new
set of initial conditions the ephemerides of all Saturn system bodies are integrated
and used to generate new satellite ephemerides files.

4.3 The estimation process

The estimate of the model parameters of interest is accomplished through a data
fitting process. In this process raw data are compared to the data predicted using
the initial estimated spacecraft trajectory and model parameters are estimated in
order to compute a trajectory that minimize the difference between the predicted
data and the realized observations. The data fitting process consists in the sequen-
tial execution of the following steps:

1. An initial trajectory is integrated on the basis of a given initial state (position,
velocity and model parameters) in a time interval when real observations are
available.

2. The state transition matrix is computed to relate state changes at different
times to changes of the initial state or other dynamical model parameters
(satellites ephemerides, gravity)

3. Predicted observables are computed at the same times of the real observa-
tions.

4. The partial derivatives of the observables with respect to the spacecraft state
and model parameters are computed. These are combined with the weighting
matrix and the state transition matrix to produce the information matrix (see
section 3.1)

5. The real observations are corrected with proper calibrations to take into ac-
count the transmission media effects. The residuals are then computed as the
difference between the calibrated observables and the computed ones.

6. A square-root filter approach is applied to retrieve the estimate of the param-
eters of interest that minimize the residuals.
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7. The resulting initial state estimate may be used to recursively run the process
from step 1 until convergence is reached when the adjustment of the trajectory
(i.e the state vector) approaches zero.

4.4 Analysis setup

4.4.1 Data selection

Data used in our analyses includes 2-way and 3-way Doppler, both X/X and
X/Ka and two-way X/X range data. When available, 2-way is always preferred
over 3-way to reduce the errors in clock synchronization between the transmitting
and receiving station. X/Ka data are preferred over X/X band due to the smaller
sensitivity of Ka band downlink to plasma noise.

Range data are used only in the analysis of non-gravity flybys. In these cases
range data are in fact useful to better constraint the spacecraft position and estimate
the ephemerides of the Saturn system. However, the use of range data poses some
problems. In fact, a range observable, being an absolute measure of distance, is
sensitive to measurement biases. The accuracy of the current system is limited by
the knowledge of delays through station and spacecraft electronics that can be up
to 2 m (Thornton and Border, 2000). This bias is usually unknown and has to be
estimated to correctly fit range data. Therefore a range bias for each pass has to be
added to the list of estimated parameters. On gravity flybys this may lead to a bias
in the estimated gravity coefficients if the estimated bias is absorbing other effects
other than the instrumental one. Therefore, during gravity flybys, range data are
neglected since Doppler data can provide all the required information content.

4.4.2 Data correction

Data corrections are applied to account for the phase and time delay due to the
dispersive media and the troposphere. When available, data from the AMC (Ad-
vanced Media Calibration) system are used to best compensate for the tropospheric
dry and wet delay, otherwise standard calibrations (TSAC) based on ground mea-
surements are used.
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4.4.3 Data weighting

Data weighting of Doppler measurements is performed grouping the observ-
ables on a pass-by-pass basis. In the assumption of white noise, weights are as-
signed to each pass through an iterative process in order to be compatible with the
rms value of the post fit residuals for that pass. By defining the Sum of Square of
the residuals as follows:

SOS = y

TWy =

NX

k=1

yok � yck
�2k

(4.8)

where y is the residuals vector and �k the observables variance, this procedure
allows obtaining an SOS that is equal, or a bit less, than the number of observables.
The SOS is kept lower than the number of points such that data are never over
weighted. In this way the estimated uncertainties are never underestimated.

4.4.4 Data filtering

Data filtering is performed by means of the JPL’s ODP software (Orbit Deter-
mination Program). The software minimize, in the least square sense, the Doppler
residuals (computed observables minus observed observables) in order to solve for
the model parameters of interests. The filter operates in the batch mode, and uses
the square root formulation in order to minimize the bad-conditioned information
matrix. Given a set of solve-for parameters, the estimation process provides cen-
tral values of these quantities along with their uncertainties in the form of a full
covariance matrix, obtained by inversion of the information matrix. Given the lim-
ited amount of data, not all the model parameters can be estimated. However the
ODP allows putting model constants as consider parameters. This means that the
uncertainties of their modeled values are taken into account in the data reduction
process although the values themselves are not solved-for.



Chapter 5

Data analysis and results

This chapter presents all the analyses carried out for the estimate of the gravity
fields of the main saturnian satellites. It is organized as follows: section 5.1 de-
scribes the measurement of the eccentricity tides on Titan. Part of the content of
this section was published in June 2012 on the journal Science (Iess et al., 2012). Sec-
tion 5.2 covers all the aspects related to the estimate of the gravity field of Enceladus
and the detection of a mass anomaly at the South Pole as the origin of the observed
geysers. Section 5.3 presents the first estimates of Dione’s quadruple gravity field
determined during the first Cassini flyby dedicated to gravity science in December
2011.

5.1 Titan

While all previous analyses were carried out assuming a purely static gravity
field (Iess et al., 2010), the non-negligible eccentricity of Titan’s orbit implies that
the tidal stress from Saturn varies along the orbit, causing a change also in the
quadrupole coefficients. Considering only the first order terms in the eccentricity,
and in the hypothesis of null obliquity and synchronous rotation, the gravity field
harmonics can be modeled as the sum of a static and a periodic part proportional
to the orbital eccentricity and the dynamical Love number k2 (see section 2.4). The
analysis carried out in this thesis aimed to determine the tidal Love number k2, a
crucial quantity to infer the presence of a global ocean under Titan’s surface. The
results were published in 2012 on Science in a paper entitled “The Tides of Titan“
(Iess et al., 2012).

The gravity field of Titan and its tidal variations were inferred from range-rate

68
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measurements. These measurements were obtained during the six flybys that have
been dedicated so far to gravity science. According to the numbering used by the
Cassini project they were T11, T22, T33, T45, T68 and T74 (see table 5.1 for their
characteristics). These flybys were favorably distributed along Titan’s orbit to in-
crease the sensitivity to the variations of the gravity field induced by Saturn tidal
stresses. Two of them were near Titan pericenter (T33, T45), three of them near Titan
apocenter (T11, T22, T74) and T68 was in quadrature at nearly 90� of mean anomaly
(Fig. 5.1).

Figure 5.1: The distribution of Titan’s flybys along its orbit around Saturn
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5.1.1 Analysis setup

The data set included 2-way and 3-way Doppler, both X/X and X/Ka. When
available, 2-way data were preferred over 3-way and X/Ka was preferred over X/X
band due to the smaller sensitivity of Ka band downlink to plasma noise. Data from
the Advanced Media Calibration (AMC) system were used to correct the Doppler
data from the time delay due to the troposphere. Data were weighted by group-
ing the observables on a pass-by-pass basis according to the scheme presented in
section 4.4.3.

The dynamical model included a variety of forces acting on the spacecraft. The
primary forces are the gravitational accelerations due to Titan’s GM and the higher
degree field harmonics. The degree of the field used in the orbital solution was
selected as the lowest capable of fitting the data without producing signatures at
closest approach. A 3x3 field resulted adequate. However, we also produced a 4x4
field with the goal of assessing the stability of the estimated parameters to changes
in the solution rank. The reference solution for Titan’s static gravity uses a full 3x3
harmonic expansion, for a total of 12 coefficients (J2, C21, S21, C22, S22, J3, C31, S31,
C32, S32, C33, S33).The a priori uncertainties used for the gravity coefficients were
on average two orders of magnitude larger than the formal uncertainties at the end
of the estimation process. Increasing by one order of magnitude the a priori uncer-
tainties of all estimated parameters did not change the solution in any statistically
significant way. Since the obliquity of Titan is well determined by SAR data, tighter
constraints were used for C21 and S21 in order to allow an obliquity variation three
times larger than the estimated value of 0.3� (Persi del Marmo et al., 2007). The
adopted rotational model is shown in table 5.2. Nominal values of the largest grav-
ity coefficients (J2 and C22) follow from the assumption of hydrostatic equilibrium
while all the other coefficients were initially set to zero. However, the hydrostatic
constraint (J2/C22 = 10/3) was never used.

↵0 = 38.�242151� 0.�04229T

�0 = 83.�768864� 0.�004444T

W0 = 189.�861726 + 22.�5769791934d

Table 5.2: Titan’s rotational model adopted for the gravity solutions. T is given in Julian
centuries (of 36525 days) past J2000 and d are days past J2000.
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The variable part of the gravity field (i.e the Love number k2) was estimated
according to the model presented in section 2.4 and the procedure described in 4.1.2.
For Titan, the peak-to-peak variations of the gravity coefficients J2 and C22 can be
respectively of 4% and 7% if k2 is supposed to be 0.4. If its values is increased to
0.6 the relative variations are up to 6% and 10.5% respectively. Since the estimated
uncertainties of the static gravity coefficients is much lower (in the order of 1% for
J2 and 0.2% for C22 (Iess et al., 2010)) a good sensitivity at least to the real part of the
Love number was expected. Because the flybys and their geometry were selected
to maximize the sensitivity to the real part of k2, the estimate of imaginary part was
more difficult and led to less stable solutions than for the real counterpart.

The dynamical model included also other forces such as the point mass accelera-
tions due to all the other bodies of the solar system (mainly Saturn and its satellites,
the Sun and Jupiter), the RTGs (Radio-isotope Thermoelectric Generators) thrust,
the solar radiation pressure and relativistic effects. Moreover we had to take into ac-
count the effect of Titan’s atmosphere for flybys whose altitude at closest approach
was lower than 1350 km. No drag acceleration was thus accounted for in all fly-
bys except T22. A 2-layers exponential model was used to describe the atmosphere
for T22 flyby. The orbit determination software allows the estimation of the atmo-
spheric density ⇢0 at a reference height and the scale heights H1 and H2 of the first
and second layer. The time dependence of the density was neglected (for a detailed
description of the model see section 4.1.3). Since it is not possible to estimate the
density profile from the few Doppler data of a flyby, only the reference density was
solved-for while the two scale heights were taken as consider parameters. The es-
timated density value is not absolute measurement because it is dependent on the
assumed value of the Cassini drag coefficient (the drag acceleration is proportional
to the ⇢CD product).

The solution also included the estimate of Cassini’s state vector (position and
velocity) for each arc. Initial conditions for the spacecraft orbit were based on the
navigation reconstruction of the Cassini trajectory during the flyby arc. A-priori
constraints for the Cassini state vector were set as a diagonal covariance matrix
with a 1-sigma uncertainty of 1 km in position (for each component) and 0.3 mm/s
in velocity (for each component), consistent with the nominal navigation accuracy.
Moreover, as the orbit of Titan is not perfectly known, the satellite state vector at
a reference epoch (18-JAN-2004 00:00:00 UTC) was also estimated. The adjustment
of Titan’s orbit and mass required also an update of the ephemerides of the major
Saturn’s satellites in the same iteration.
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Parameter Value Uncertainty

GM 8.9781397⇥10

3km3/s2 3.00⇥10

�3

J2 3.33 ⇥10

�5 2.91 ⇥10

�5

C22 1.00 ⇥10

�5 8.40⇥10

�6

S22 0.00 1.50⇥10

�6

C21 0.00 1.20⇥10

�7

S21 0.00 7.90⇥10

�7

J3 0.00 3.40⇥10

�5

C31 0.00 1.40⇥10

�5

S31 0.00 1.40⇥10

�5

C32 0.00 4.40⇥10

�6

S32 0.00 4.40⇥10

�6

C33 0.00 1.80⇥10

�6

S33 0.00 1.80⇥10

�6

Re(k2) 0.5 0.5

Im(k2) 0.0 1.0

⇢0 7.0⇥10

�15g/cm3 1.0⇥10

�12g/cm3

H1 86 km 10 km

H2 101 km 20 km

Table 5.3: A priori values and uncertainties for Titan gravity model
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Clearly, in order to maximize the sensitivity to the tidal variations of the gravity
field, all data were processed in a single global fit estimating a full degree-3 static
gravity field and both real and imaginary part of the Love number.

5.1.2 Results

Different solutions were produced to assess the stability of the estimated values
of k2 to variations in the solution rank. In the Science paper only two of them were
presented and are also reported here along with other cases analyzed. In summary
the following cases have been analyzed:

1. Sol1: Estimate of full degree-3 gravity field and <(k2) only

2. Sol2: Estimate of full degree-4 gravity field and <(k2) only

3. Sol3: Estimate of full degree-3 + J4 gravity field and <(k2) only

4. Sol4: Estimate of full degree-3 gravity field <(k2) and =(k2)

5. Sol5: Estimate of full degree-4 gravity field <(k2) and =(k2)

Convergence was always attained after three iterations but five iterations were
performed to verify the stability of the solution. The resulting post-fit residuals
show no signatures and a RMS value compatible with the expected noise level for
each flyby. Figures 5.2 and 5.3 report the post-fit residuals only for Sol1 but for the
other cases the residuals look almost the same.

(a) T11 (b) T22

Figure 5.2: Post-fit Doppler residuals for Titan’s gravity flybys T11 and T22
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(a) T33 (b) T45

(c) T68 (d) T74

Figure 5.3: Post-fit Doppler residuals for Titan’s gravity flybys T33, T45, T68 and T74

The estimates of the tidal Love number k2 are stable despite of the variations in
the dynamical model and in the solution rank. In particular all the estimated values
of <(k2) are compatible at 1-sigma level and are determined with a good relative
accuracy of about 12%. Because the flybys and their geometry were selected to
maximize the sensitivity to the real part of k2, the estimate of =(k2) is less stable
than the real counterpart. The determination of =(k2) is not enough reliable given
the different central values and high uncertainties even though =(k2) is compatible
with zero at 2-sigma level (see table 5.4).

A 3x3 gravity field is adequate to correctly fit the data without producing any
signature in the post-fit residuals. The inclusion of higher degree field do not mod-
ify significantly the quadrupole and the degree-3 terms. In table 5.5 are reported
the estimated gravity coefficients for cases 1 to 3.

An interesting analysis was carried out to demonstrate that the inclusion of a
variable gravity field improve the previous solution and is fully justified even if a
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Solution <(k2) =(k2)

Sol1 0.589 ± 0.075 -

Sol2 0.670 ± 0.090 -

Sol3 0.646 ± 0.076 -

Sol4 0.596 ± 0.075 0.280 ± 0.105

Sol5 0.677 ± 0.092 -0.095 ± 0.143

Table 5.4: Titan’s Love number estimates using different gravity models

solution with only a static gravity field is still possible. In the first Titan’s gravity
analysis (Iess et al., 2010), the even distribution of the four flybys between pericen-
ter and apocenter of Titan’s orbit averaged out the effects of eccentricity tides in the
combined solution. Therefore it was estimated only a static gravity field. However
we cannot exclude that the effect of variable gravity was absorbed by other param-
eters thus resulting in a bias of some components of the solution (e.g. the spacecraft
state vector). The dynamical model adopted in the current analysis is clearly more
appropriate given the strong geophysical arguments militating in favor of a signif-
icant time-dependent gravity (driven by the large eccentricity). The inclusion of k2
in the solution does not corrupt the solution in any way and its only effect could
be an increasing in the gravity field uncertainties. However, the inclusion of two
new flybys compensated this effect. Table 5.6 reports the rms of the post-fit resid-
uals around closest approaches of the gravity flybys when different constraints are
applied. We analyzed the following cases:

1. Estimate of 3x3 static field (k2=0), Titan and Cassini state vectors.

2. Estimate of 3x3 static field (k2=0). Titan and Cassini SV constrained to the
values of Sol1

3. Estimate of 3x3 static field (k2=0) and Titan SV. Cassini SV constrained to the
values of Sol1

4. Estimate of 3x3 static field (k2=0) and Cassini SV. Titan SV constrained to the
values of Sol1 If k2 is forced to zero the residuals of most passes near closest
approach have a quite significant degradation, with an increase of about 7%.
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Gravity coefficients
Value ±1�(⇥10

6
)

Sol1 Sol2 Sol3

J2 33.599 ± 0.332 34.227 ± 0.477 33.726 ± 0.332

C21 0.186 ± 0.101 0.125 ± 0.111 0.089 ± 0.104

S21 0.664 ± 0.246 0.816 ± 0.351 0.522 ± 0.249

C22 10.121 ± 0.029 10.263 ± 0.069 10.137 ± 0.029

S22 0.194 ± 0.033 0.111 ± 0.055 0.159 ± 0.034

J3 -1.097 ± 0.606 -1.635 ± 0.838 -0.765 ± 0.611

C31 0.595 ± 0.174 0.681 ± 0.207 0.809 ± 0.176

S31 1.062 ± 0.286 -0.073 ± 0.475 0.110 ± 0.364

C32 0.275 ± 0.069 0.150 ± 0.125 -0.021 ± 0.098

S32 0.072 ± 0.048 0.104 ± 0.114 0.095 ± 0.048

C33 -0.222 ± 0.008 -0.221 ± 0.016 -0.211 ± 0.008

S33 -0.264 ± 0.011 -0.232 ± 0.016 -0.238 ± 0.013

J4 - 2.043 ± 0.759 2.985 ± 0.683

C41 - 0.175 ± 0.203 -

S41 - 0.033 ± 0.250 -

C42 - 0.059 ± 0.080 -

S42 - 0.093 ± 0.058 -

C43 - 0.026 ± 0.015 -

S43 - 0.008 ± 0.020 -

C44 - -0.007 ± 0.002 -

S44 - -0.014 ± 0.002 -

Table 5.5: Titan’s gravity field from different solutions
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Any other constraint always results in large signatures in the residuals and
therefore in large post-fit RMS values.

± 30 min Sol1 Case 1 Case 2 Case 3 Case 4

T 11 2.15 2.30 6.31 6.03 2.43

T 22 1.84 1.88 8.15 7.11 2.28

T 33 2.05 2.20 11.5 5.70 2.39

T 45 8.67 8.93 9.93 19.5 13.3

T 68 3.68 3.55 11.0 7.47 5.87

T 74 6.78 7.20 8.21 13.6 8.11

Table 5.6: RMS value of the residuals (in mm/s x 100) at +/-30 min from closest approach
when different constraints are applied to the solution

5.1.3 Interpretation

The analysis carried out has confirmed that Titan is in a relaxed shape. The
moment of Inertia factor, that we derived using the Radau-Darwin equation is
0.3431±0.0004 in Sol1 and 0.3438±0.0005 in Sol2. These values are perfectly com-
patible with previous determinations (Iess et al., 2010). Moreover the inclusion of
a variable gravity field (i.e. a non.zero value of k2) did not modify in any statisti-
cally significant way the degree-3 gravity field previously determined. The degree-
3 geoid (Fig. 5.4) shows in fact the same global features that were present in the one
published in 2010 (Iess et al., 2010). The degree-4 geoid (Fig. 5.5) has more deep
depression and a higher variability range but also in this case the main features are
confirmed. The errors associated with the good heights (Fig. 5.6) give an important
indication on the degree of confidence we have reached at this point. Since most of
the flybys were nearly equatorial the geoid is more accurate in this region. Nonethe-
less, the error in the polar regions is less than 2.5 meters. This value will probably
be improved thanks to the upcoming Titan’s gravity flyby that will sample the po-
lar region areas. All the solutions we have derived provide consistent values of k2
and gravity harmonics at 3-sigma for quadrupole gravity coefficients and 1-sigma
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Figure 5.4: Titan’s geoid heights for Sol1

Figure 5.5: Titan’s geoid heights for Sol2
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Figure 5.6: Titan’s geoid heights error for Sol1

for k2. A value of k2 larger than 0.5 indicates that Titan is highly deformable over
a time scale of the order of the orbital period. Previous analyses (Rappaport et al.,
2008) expected a lower value for a silicate core and a subsurface ocean. The esti-
mated value of k2 lies within its physically likely range that for Titan goes from the
purely elastic value (⇠ 0) to the perfectly hydrostatic value of about 1.0. Accord-
ing to our result the elastic value is clearly excluded since we are much closer to
the hydrostatic one. This result is consistent with the presence of some global layer
that deformates like a fluid under the stresses exerted by the tidal field on orbital
timescales. This strongly suggest either the presence of a subsurface global ocean
beneath the surface ice shell or the presence of a low viscosity deep interior. How-
ever, in order to explain the large value of k2, a combination of the two effects have
to be invoked.

5.2 Enceladus

The determination of Enceladus gravity plays a crucial role in the definition of
its internal structure and can help in explaining the origin of the geysers that were
observed at the South Pole. However, during the prime mission (2004-2008) Ence-
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ladus was not selected as a primary objective for gravity observations and no flybys
with tracking at closest approach, required for the determination of the quadrupole
gravity field, were scheduled. The only data available were from the first Enceladus
flyby in 2005 (named E0) when a small amount of range and Doppler X/X data were
acquired before and after the encounter. These measurements led to the determi-
nation of Enceladus mass (Rappaport et al., 2007) with a significant improvement
with respect to the results obtained by Voyager (Campbell and Anderson, 1989).

After the discovery, in 2006, (see section 1.4.1) of a plume ejecting vapor from
fractures at the South Pole three flybys with tracking at C/A were scheduled for the
equinox and solstice mission phases.

The first gravity flyby, E9, was specifically designed to detect the presence of
gravity anomalies at the South Pole. Cassini, in fact, passed right under Enceladus
South Pole at around 100 km altitude. The spacecraft was tracked in X- and Ka-
band from the DSN stations with the closet approach over Madrid complex. The
high Sun-Earth-Probe (SEP) angle along with the use of the Advanced Media Cal-
ibration System allowed obtaining low noise data that provided the first estimate
of Enceladus quadrupole gravity field. However a single, highly inclined flyby did
not allow a good determination of C22 and more data were required to obtain a
better estimate.

Six months later the second gravity flyby, E12, was instead almost equatorial. In
this case data quality was poorer due to the lower SEP angle. Moreover the C/A
pass was tracked in 3-way mode from the DSN stations in Madrid and Goldstone.
Despite of these limitations this low altitude flyby provided fundamental data to
improve the gravity field estimation. The analysis of these data combined with
data from E0 and E9 has revealed interesting characteristics of Enceladus gravity
that will be discussed in the following sections. It is however important to un-
derline that this analysis revealed a gravity field more complex than expected. A
gravity model with at least a quadrupole field and a J3 was in fact required to cor-
rectly fit the data of both flybys. In addition to the gravity flybys we also used data
from other flybys not explicitly dedicated to gravity science. Among the 9 available
flybys we selected those that had at least a tracking pass before and after Enceladus
closest approach without having any maneuver between them that would be dif-
ficult to model. We therefore selected the flybys named E4, E5 and E7. Table 5.7
reports the main characteristic of the Enceladus flybys dedicated to gravity science.
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E0 E9 E12

Date 17-FEB-2005
03:31:33 ET

28-APR-2010
00:11:23 ET

30-NOV-2010
11:55:06 ET

SEP 142.8� 141.0� 53.7�

Altitude (km) 1176 100 48

Latitude 50.1� -89.3� 61.8�

Longitude 119.2� 206.2� 307.3�

Inclination 50.1� 90.0� -0.1�

N. of points 295 1494 831

Noise (mm/s) 0.031 0.032 0.044

Table 5.7: Geometric and orbital parameters of the three flybys used for Enceladus gravity
determination

5.2.1 Model of Enceladus gravity field

Before the first flyby dedicated to gravity science in 2010 no information about
Enceladus internal mass distribution was known. The presence of a geologically ac-
tive region at the South Pole pointed towards the presence of some mass anomaly
in that region, presumably a deposit of liquid water under the surface. Therefore a
gravity field composed by at least a quadrupole component ad a north-south asym-
metry (J3) or a mass concentration (Mascon) under the South Pole was expected.

The quadrupole field of Enceladus is determined by the average tidal field ex-
erted by Saturn and by the centrifugal field associated to the rotation about the
polar axis (see section 2.2). The effects of these two perturbing fields on Enceladus
are controlled by the tidal parameter qt which is the ratio between Saturn tidal field
and Enceladus surface gravity and the rotational parameter qr which is the ratio be-
tween the centrifugal acceleration at the equator and surface gravity acceleration.
For a satellite tidally locked like Enceladus these two parameters are related such
that qt = �3qr. By assuming that the satellite is in hydrostatic equilibrium, in the
principal axes frame J2 and C22 (the only non-null quadrupole coefficients) are a
function only of the fluid Love number kf (cfr. eq. 2.12). The putative quadrupole
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coefficients used as a priori values in the analysis are then computed by using a
kf = 3/2 (fluid body):

J2 =
5

6

kfqr = 7.84⇥ 10

�3

C22 =
1

4

kfqr = 2.35⇥ 10

�3
(5.1)

Enceladus rotational state is defined according to the IAU reference frame def-
inition for a synchronous rotating satellite. The spin axis is perpendicular to the
orbital plane with the prime meridian defined by the eccentricity vector (i.e. by
Saturn direction at pericenter). Right ascension and declination of the pole and
longitude of the prime meridian are defined in table 5.8.

↵ = 40.�577807� 0.�0444741438T + 0.�000028 sinS1� 0.�000001 sinS2

+0.�076554 sinS3 + 0.�037284 sinS4

� = 83.�537932� 0.�0046159437T + 0.�000016 cosS1 + 0.�000001 cosS2

+0.�008612 cosS3 + 0.�004198 cosS4

W = 2.�266834� 262.�7318982667d� 0.�249101 sinS1� 0.�186661 sinS2

�0.�075831 sinS3� 0.�037007 sinS4

Table 5.8: Enceladus rotational model adopted for the gravity solutions. T is given in Julian
centuries (of 36525 days) past J2000 and d are days past J2000.

A priori uncertainties on the estimated parameters were set in order to avoid
any constraint on the final solution that we wanted to be driven only by the data
information content. However, due to the limited sensitivity to the pole and the
prime meridian positions, coefficients C21 and S21 were constrained in order to al-
low a maximum obliquity of 1�. The following equations were used to compute the
a priori uncertainty on C21, S21 and S22 given a maximum displacement angle �a
from the position of the axes defined by the IAU reference frame.

�C21 = �2a

q
(C20 + 2C22)

2
+ 16C2

22 (5.2)

�S21 = �a|C20 + 2C22| (5.3)

�S22 = �a(2
p
2C22) (5.4)
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Different gravity models have been used depending on the number of flybys
used for the analysis. In fact, when analyzing data from only one flyby, a gravity
model composed by a pure quadrupole field was sufficient to correctly fit the data.
When data from a second flyby were added, in order to obtain a good fit, a more
complex model with at least a J3 or a Mascon located at the South Pole was needed.
Finally, when all flybys were used for the gravity estimation a model with a full
degree-3 gravity field was required to fit coherently the whole data set. Table 5.9
shows all the a priori values and uncertainties used in the analysis.

In all the analyses we also estimated Enceladus GM and state vector. In fact, the
limited amount of data available for the determination of its ephemerides and the
perturbations exerted by Saturn and its rings during its 32 hours revolution, make
Enceladus ephemerides quite uncertain. This uncertainty increase when propagat-
ing the ephemerides long time after the last observation. For this reason, in order
to correctly fit the data, we had to update Enceladus ephemerides in the single arc
analyses as well as in the multi arc ones.

5.2.2 Results

The data analysis of Enceladus flybys started soon after the first pass (E9) on
April 2010. The first solution was then produced using only these data. When
Cassini performed the other flyby (E12) these data were added to improve the es-
timated dynamical model. However, before producing a global solution, E12 was
analyzed separately to obtain a first solution to use as a starting point in the com-
bined one. The purpose of this work was to avoid the presence of un-modeled
effects that, if not identified in the single arc solution, would be difficult to isolate
in a global fit.

Single arc analyses

E9 and E12 were first analyzed separately to identify the best setup for the fol-
lowing multi arc analysis. In order to fit data from these flybys a gravity model
made of a pure quadrupole was enough. Moreover, due to a lack of sensitivity, the
coefficients C21 and S21 were not estimated and were considered always zero. The
estimated parameters included also Cassini state vector and Enceladus’ GM and
state vector. The update of Enceladus’ ephemerides was required to get a consis-
tent solution. Data were weighted according to the scheme presented in section
4.4.3 on a pass-by-pass basis giving to each pass a weight that is proportional to
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Parameter Value (⇥10

3) Uncertainty(⇥10

3)

J2 7.83 13.00

C22 2.35 3.50

S22 0.00 0.74

C21 0.00 0.30

S21 0.00 0.14

J3 0.00 1.00

C31 0.00 0.80

S31 0.00 0.80

C32 0.00 0.30

S32 0.00 0.30

C33 0.00 0.10

S33 0.00 0.10

GMMascon(km3/s2) 0.00 0.10

Table 5.9: A priori values and uncertainties for Enceladus gravity model
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the rms of the post-fit residuals of that pass. For the single arc estimation of E12 we
used the updated Encleadus’ ephemerides to exploit the information obtained from
previous flybys.

Table 5.10 shows the results obtained for the different single arc analyses. For
E9, J2 is estimated with better accuracy than C22 due to the high inclination (almost
polar) of the flyby. E12 confirmed the estimates of J2 and significantly improved
those of C22.

Flyby J2(⇥10

6
) C22(⇥10

6
) S22(⇥10

6
) Correlation J2/C22

E9 5206.7 ± 111.9 919.9 ± 698.7 463.7 ± 259.0 -0.56

E12 5558.0 ± 134.7 1574.3 ± 56.6 -103.7 ± 38.2 -0.36

Table 5.10: Enceladus single arc gravity solutions

All the results are compatible at 2-sigma level (see figure 5.7) between each other
and with the hydrostatic equilibrium condition represented by the red dashed line.
Among the two gravity passes E12 has the best combination of geometry and data
quality that allows a good sensitivity both to J2 and C22.

The post-fit residuals (Figures 5.8 and 5.9) do not show any signature at closest
approach and the rms is compatible with the expected noise level given the SEP
angle of each flyby.

The consistency of these results was further tested by combining all available
data in a single global fit thus reducing the degree of freedom of the problem (see
next section). In particular Enceladus was put on a coherent trajectory by estimating
its state vector at the same epoch while in the single arc analyses its orbital elements
vary from flyby to flyby. Nonetheless, the compatibility of the single arc solutions
is a good indication of the appropriateness of the dynamical model used in the fit.

Multiarc analyses

Data from E9 and E12 were then combined along with data from E0 to retrieve
a coherent gravity field capable of fitting all data at the same time. A first solution
was produced using a gravity model made of a full-degree-2 and a J3 (Sol1). A pure
quadrupole gravity field was not adequate to obtain a good fit in a global solution
and the addition of a J3 was consistent from a geophysical point of view to model
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Figure 5.7: Enceladus J2-C22 2-sigma error ellipses
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Figure 5.8: X/Ka Doppler Post-fit Residuals for E9 single arc solution
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the north-south asymmetry. Results are shown in table 5.11.

Degree Order Gravity coefficients

n m Cnm(⇥10

6
) Snm(⇥10

6
)

2 0 -4887.7 ± 64.7

2 1 -16.6 ± 7.2 256.5 ± 27.3

2 2 1430.6 ± 49.6 204.3 ± 9.7

3 0 404.3 ± 34.3

Table 5.11: Enceladus multi arc gravity solutions based on E0, E9 and E12 data (Sol1)

In order to strengthen the results a second multi arc solution was produced
(Sol2). In this case a full degree-3 gravity model was used for the global solution.
Moreover data from three other flybys were added to better constraint Enceladus’
trajectory from 2005 to 2010. These flyby are named E4, E5 and E7 and provided
X/X-band data before and after their respective closest approaches with Enceladus.

In this solution, coefficients C21, S21 and S22 are small compared with J2 and
C22 (Table 5.12). This is an indication that tidal and rotational forces dominate and
that the adopted rotational model is substantially correct. The estimated value of
the J3 gravity coefficient is compatible at 1-sigma level for both Sol1 and Sol2, a
clear indication of the presence of a north-south asymmetry in the gravity field. In
both multi arc analyses the post-fit residuals do not show any systematic effect and
their rms is compatible with the expected noise level. Figures 5.10 to 5.13 show the
post-fit residuals for E9 and E12 for both Sol1 and Sol2.

Gravity from topography

The multi arc analysis has shown that a gravity model made of a full degree-3
field is necessary to fit correctly the data. However, the available data set is not
enough to retrieve a reliable estimate of all degree-3 coefficients. They can ab-
sorb some dynamical effects leading to a better solution but their value may not
be directly related to mass inhomogeneities in the interior of Enceladus. Therefore,
in order to reduce the number of estimated parameters and to retrieve a degree-3
gravity related to the physical mass distribution of the satellite a gravity estimate
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Figure 5.10: X/Ka Doppler Post-fit Residuals for E9 multi arc solution Sol1
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Figure 5.11: X/Ka Doppler Post-fit Residuals for E12 multi arc solution Sol1
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Degree Order Gravity coefficients

n m Cnm(⇥10

6
) Snm(⇥10

6
)

2 0 -4667.3 ± 112.0

2 1 0.7 ± 7.5 0.4 ± 52.0

2 2 1449.2 ± 221.1 258.6 ± 55.8

3 0 443.7 ± 90.2

3 1 -115.5 ± 56.0 280.4 ± 35.6

3 2 121.9 ± 81.0 -72.1 ± 37.9

3 3 -6.9 ± 14.8 -14.6 ± 30.0

Table 5.12: Enceladus multi arc gravity solutions based on E0, E4, E5, E7, E9 and E12 data
(Sol2)
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Figure 5.12: X/Ka Doppler Post-fit Residuals for E9 multi arc solution Sol2
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Figure 5.13: X/Ka Doppler Post-fit Residuals for E12 multi arc solution Sol2

driven by information about Enceladus topography was carried out. This approach
is also useful because topography of degree-3 and higher, if uncompensated and
not properly accounted for may bias the estimates of Enceladus quadrupole grav-
ity coefficients (Nimmo et al., 2011). In this way we therefore take into account
another possible source of error in our previous solutions.

As described in section 2.5 there is an exact relation between gravity and to-
pography. If a low-degree expansion of the topography in spherical harmonics is
available it may be used to directly determine the gravity coefficients. The only
unknown parameter in the process is the compensation factor C (see eq. 2.26).
Following the scheme described in section 4.1.4 a dedicated code was developed to
compute the partial derivatives of the observables with respect to the compensation
factor. The total number of estimated gravity parameters was then reduced from 12
(5 degree-2 + 7 degree-3 coefficients) to 6 (5 degree-2 coefficients + 1 compensation
factor). This approach allows retrieving a more accurate solution since the reduc-
tion of the number of the estimated parameters increases the sensitivity. Moreover
the degree-3 gravity that is derived from the compensation factor is directly related
to the topography of the satellite. The main limit of this method is that a global
compensation factor may not be fully adequate to describe a body like Enceladus
that has a great geological variability between the north and south hemispheres.
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Despite of this it is worth trying this approach in a condition where the available
data set is limited.

In our case we applied this technique starting from the degree-3 topography
coefficients given in Nimmo et al. (2011). We determined a degree-2 gravity field
and a compensation factor for Enceladus which are perfectly compatible with the
results obtained by directly estimating the gravity field (see table 5.13).

Degree Order Gravity coefficients

n m Cnm(⇥10

6
) Snm(⇥10

6
)

2 0 -4858.5 ± 51.0

2 1 -133.0 ± 18.5 406.8 ± 30.5

2 2 1421.0 ± 48.0 244.4 ± 10.2

Compensation factor 0.936 ± 0.020

Table 5.13: Enceladus multi arc gravity solutions starting from topographic data

5.2.3 Interpretation

The estimated gravity field is dominated by large quadrupole terms as expected
for a tidally-locked body. The different multi arc solutions are compatible at 2-sigma
level between each other. The values of J2 and C22 are fully compatible with those
of a relaxed body in hydrostatic equilibrium (see figure 5.14). The small deviations
from hydrostaticity are not so large to rule out the applicability of Radau-Darwin
equation. Despite of the still rather large uncertainties the values of C/MR2 derived
both from C22 and J2 show that Enceladus is a differentiated body (see table 5.14).

The geoid height determined from the multi arc solutions are shown in figures
5.15 to 5.17. The global features are essentially the same in every figure but there
is a variability of the depth and height of depressions and elevations. However it
is important to take into account that, given the small amount of data, these geoids
are quite uncertain. As an example, figure 5.18 shows the errors associated with the
geoid heights for the full degree-3 gravity field case. As expected, the geoid is more
accurate in the areas sampled during E9 and E12 flybys where the associated error
is between 10 and 20 meters. The uncertainty in the other areas can be up to 60
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Figure 5.14: Enceladus J2-C22 2-sigma error ellipses for multi arc solutions

Solution Hydrostatic ratio C/MR2 (from C22) C/MR2 (from J2)

Deg-2 + J3 3.417 ± 0.127 0.3272 ± 0.0045 0.3305 ± 0.0058

Full Deg-3 3.220 ± 0.497 0.3289 ± 0.0200 0.3245 ± 0.0104

Grav from topo 3.419 ± 0.121 0.3264 ± 0.0044 0.3297 ± 0.0046

Table 5.14: Enceladus’ Moments of Inertia computed from multi arc solutions
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meters thus making the degree-3 geoid fully compatible with the others. Of course,
a more complete coverage would be desirable but the errors in the most interesting
areas (i.e. the South Pole) are small enough to get some useful indications also at
this stage.

Figure 5.15: Enceladus’ geoid heights for multi arc solution deg-2 + J3

The presence of a negative J3 in all gravity solutions is consistent with a negative
mass and gravity anomaly in the south polar region. The geoid heights show in
fact the presence of a depression at the South Pole in the range between -50 and
-200 meters that points towards the presence of a negative mass anomaly. A mass
anomaly at the South Pole should in fact be negative since it necessary contributes
to the moments of inertia tensor as well as to J3. Where it positive it could not be at
the South Pole and it would tend to move to the equator. A negative mass anomaly
can be physically explained by the presence of a subsurface concentration of liquid
water not isostatically compensated. This means that the mass increase in the south
polar region due to the presence of liquid water (whose density is greater than the
ice in the crust) is compensated by a surface depression in the same area in such a
way that the overall effect is a negative mass anomaly. The gravity field estimate
carried out using topographic data as starting point can help in confirming this
hypothesis. The estimated compensation factor is in fact around one. This means
that the topography is essentially uncompensated and that the estimated negative
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Figure 5.16: Enceladus’ geoid heights for multi arc solution full deg-3

Figure 5.17: Enceladus’ geoid heights for multi arc solution gravity from topography
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Figure 5.18: Enceladus’ geoid heights errors for multi arc solution full deg-3

J3 can confirm the presence of a subsurface concentration of liquid water at the
South Pole as the origin of the observed plumes.
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5.3 Dione

The determination of Dione’s gravity field was carried out using data from three
Cassini flybys (see table 5.15). However, during only one of them, namely D3,
Cassini was tracked throughout its closest approach to the satellite allowing the
determination of the quadrupole gravity field. D1 flyby was performed in the early
phases of the mission to determine the GM of Dione (Jacobson et al., 2006) in order
to better characterize the dynamics of the Saturn system and its ephemerides for the
definition of the tour trajectory. Range and Doppler measurements in X-band were
acquired only before and after closest approach thus preventing the possibility of a
first estimation of Dione’s quadrupole gravity field. The December 2011 flyby pro-
vided instead the first opportunity to detect the signal of gravity field higher har-
monics. With a closest approach altitude of about 100 km, D3 data allowed the first
estimation of Dione’s J2 and C22. This arc spanned roughly ±24h from C/A during
which the spacecraft was tracked in X- and Ka-band from Goldstone, Madrid and
Canberra DSN stations. C/A occurred during tracking from Madrid at a sun elon-
gation angle (SEP) of about 53�. This condition is not particularly favorable because
data are marred significantly by plasma noise. Nonetheless by using data from D3
only, or by combining them with the other flybys, we were able to obtain the first
estimate of Dione’s quadrupole gravity field.

5.3.1 Model of Dione gravity field

Before the arriving of Cassini at Saturn, the knowledge of Dione’s gravity was
limited to its mass whose most recent value had been determined by Jacobson
(2004). In his work the estimation of the mass of the Saturn system bodies was
carried out using a combination of data from the Voyager missions and data from
Earth-based astrometric observations. After the first Dione’s flyby an improved
estimate of its mass was provided by Jacobson et al. (2006). However, no informa-
tion on the quadrupole gravity field based on real data was available before the D3
flyby. The model of Dione gravity used for the analysis is then based on geophysi-
cal assumptions that come from reasonable hypothesis on its internal structure and
composition. A useful reference for the gravity model definition can be found in
Zharkov et al. (1985). Dione, which is synchronously rotating around Saturn, is
supposed to be in hydrostatic equilibrium and two different interior models are
proposed. Table 5.16 reports the proposed models whose only difference is the den-
sity of the ice-layer overlaying the hydrous silicate core (of radius Rc). The a priori
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D1 D3

Date 11-OCT-2005
17:53:04 ET

12-DEC-2011
09:40:29 ET

SEP 68.8� 53.2�

Altitude (km) 498 100

Latitude -60.4� 4.8�

Longitude 91.9� 267.9�

Inclination 119.6� 175.2�

N. of points 373 1253

Noise (mm/s) 0.045 0.054

Table 5.15: Geometric and orbital parameters of the two flybys used for Dione gravity de-
termination

gravity model used in our analysis is then set according to the ”Dione B” two-layer
model. Higher degree harmonics are not considered in the analysis because they
would not be detectable using the available data set.

Model R (km) Rc/R Core density Ice-layer desnsity J2 C22

Dione A 560 0.597 3.0 g/cm3 1.0 g/cm3 1.32 0.396

Dione B 560 0.597 3.0 g/cm3 0.9 g/cm3 1.20 0.361

Table 5.16: Dione interior structure and gravity model from Zharkov et al. (1985)

The rotational state of Dione comes from the IAU reference frame definition.
The spin axis is perpendicular to the orbital plane and the prime meridian is aligned
with the direction of Saturn at pericenter. Right ascension and declination of the
pole and longitude of the prime meridian are defined in table 5.17. In this condition,
given also the hypothesis of hydrostatic equilibrium, the gravity coefficients C21,
S21 are considered always zero and never estimated. Their estimation would be
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↵ 40.�660� 0.�0360T

� 83.�520� 0.�0040T

W 357.�600 + 131.�3493160d

Table 5.17: Dione rotational model adopted for the gravity solutions. T is given in Julian
centuries (of 36525 days) past J2000 and d are days past J2000.

anyway very difficult given the limited amount of data available and the scarce
sensitivity.

A priori uncertainties on the estimated parameters were set in order to avoid
any constraint on the final solution (see table 5.18) that we wanted to be driven
only by the data information content.

Parameter Value (⇥10

3) Uncertainty(⇥10

3)

J2 1.20 1.00

C22 0.361 1.00

S22 0.0 0.10

C21 0.0 -

S21 0.0 -

Table 5.18: A priori values and uncertainties for Dione gravity model

5.3.2 Analysis methods

Data analysis was carried out using the approach described in section 4. For
Dione the estimated parameters included the quadrupole gravity field harmonics
and Cassini state vector and Dione’s GM and state vector. A different state vector
was estimated for Cassini in each arc while Dione state vector was estimated only
once at a given reference epoch (21-SEP-2005 00:00:00 UTC) to grant the coherence
of its trajectory during the different flybys. Saturn system ephemerides were then
updated to take into account the new Dione’s trajectory. Data were weighted ac-
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cording to the scheme presented in section 4.4.3. AMC calibrations were available
only for D3, while for the other flybys TSAC were applied.

Data count time was selected as a trade off between the need of sensitivity and
the need to avoid numerical noise. To satisfy the sensitivity requirement a count
time of 10 s or even lower would be desirable. In fact, during the D3 encounter, for
example, the interaction time was about 130 s given a relative velocity of 8.7 km/s
(t ⇠ 2RD/Vrel). However, as described in section 3.2.3, numerical noise is higher at
lower count times. For this reason a count time of 60 s was selected. Using a lower
count time would in fact prevent the possibility of seeing remaining signatures in
the fit bringing to the wrong conclusion that a reliable solution has been achieved.

A single flyby with tracking at C/A may not bear enough information to de-
termine independently J2 and C22 especially if the flyby is equatorial (higher sen-
sitivity to C22) or polar (higher sensitivity to J2). Although an approach based ex-
clusively on the data would be desirable as pointed out for Rhea (Mackenzie et al.,
2008), the imposition of some constraint may be an alternative approach (Anderson
and Schubert, 2007). In the case of Dione we produced two different solutions us-
ing both the possible approaches. In the first one we forced J2 and C22 to satisfy the
hydrostatic equilibrium (J2 = 10/3C22, see section 2.2), while in the second one we
produced an unconstrained solution.

A first solution was produced using data from only D3. The inclusion of data
from the other arcs, in fact, bears almost no information on the quadrupole gravity
field while it can be useful to improve the estimation of Dione state vector thus
constraining better its trajectory. As a consequence a general improvement in the
solution (both central values and estimated uncertainties) may be expected but a
single arc analysis is a better starting point to obtain a first reliable solution for the
quadrupole gravity coefficients. Moreover D1 flyby was not designed for gravity
observations and can have some criticalities to take into account such as maneuvers
during the tracking passes. The following cases were analyzed and are presented
here:

1. Single arc solution with data from D3 only. Hydrostatic equilibrium con-
straint applied.

2. Single arc solution with data from D3 only. No hydrostatic equilibrium con-
straint applied.

3. Multiarc solution with data from D1 and D3. No hydrostatic equilibrium con-
straint applied.
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5.3.3 Results

The orbit determination process converged in all cases after four iterations. The
post-fit Doppler residuals do not show any systematic effect and the overall rms is
compatible with the expected noise level given the SEP angle of each flyby. Figures
5.19 to 5.21 report the post-fit residuals at ± 2h from C/A of the D3 flyby which
should present signatures if the estimated gravity field was unreliable. The rms of
the C/A pass is however almost constant in the cases analyzed suggesting that no
solution can be preferred over the others in this phase.

As expected for an almost equatorial flyby, C22 is determined with much better
accuracy than J2. The good determination of C22 results from a combination of the
D3 flyby favorable geometry and low Doppler noise (thanks to the Ka-band radio
link and the high signal-to-noise ratio).

The addition of more data (Case 3) do not improve the estimated uncertainty of
C22 which is fully determined by the most sensitive D3 data. However the addition
of D1 data helps in constraining Dione’s ephemerides leading to a more coherent
solution.

Solution J2(⇥10

6
) C22(⇥10

6
) S22(⇥10

6
) J2/C22 Correlation J2/C22

Case 1 1269.8 ± 7.0 380.5 ± 2.1 -23.7 ± 3.0 3.337 ± 0.026 1.00

Case 2 1443.3 ± 17.3 361.0 ± 2.6 -24.2 ± 3.0 4.001 ± 0.056 -0.23

Case 3 1433.6 ± 9.5 364.9 ± 2.6 -23.5 ± 3.0 3.929 ± 0.038 -0.40

Table 5.19: Dione gravity solutions

5.3.4 Interpretation

Figure 5.22 shows the different solutions plotted in the plane J2-C22 with their
1-sigma error ellipses. Solutions that are on the red dashed line or cross it are com-
patible with the hydrostatic equilibrium. For Case 1 the error ellipse is reduced to
a line that lies on the hydrostatic line since this solution was strongly constrained
to the hydrostatic equilibrium. Cases 2 and 3 are instead more than 3-sigma apart
from the hydrostatic line suggesting that a significant departure from hydrostaticity
cannot be excluded on the basis of the available data set.
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Figure 5.19: X/Ka Doppler Post-fit Residuals for Case 1 solution

Figure 5.20: X/Ka Doppler Post-fit Residuals for Case 2 solution
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Figure 5.21: X/Ka Doppler Post-fit Residuals for Case 3 solution

For the hydrostatic solutions the Radau-Darwin equation may be used to deter-
mine the moment of inertia factor C/MR2. The same equation can be applied also
to the non-hydrostatic solutions but in this case, since the 10/3 ratio between J2 and
C22 is not satisfied, one of the two coefficients has to be selected as starting point to
compute the fluid Love number kf and then the Moment of Inertia Factor (MoIF).
C22 is the best choice because its determination is more accurate than J2 given the
flyby geometry. Recall, however, that the use of Radau-Darwin equation may led to
significant errors in the determination of the MoIF if the body is not in hydrostatic
equilibrium (Gao and Stevenson, 2012). Table 5.20 reports the MoIF computed for
the different solutions.

Solution C/MR2

Case 1 0.3245 ± 0.0007

Case 2 (from C22) 0.3177 ± 0.0009

Case 3 (from C22) 0.3191 ± 0.0009

Table 5.20: Dione’s MOIF computed for the different solutions
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Figure 5.22: J2-C22 1-sigma error ellipses
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Given the current uncertainties and the fact that the hypothesis of hydrostatic
equilibrium may be not fully consistent it is not possible to assess the degree of dif-
ferentiation that is determining radius and density of the different layers. However,
even though the value of the Moment of Inertia Factor (MoIF) can vary up to 20% if
the hydrostatic hypothesis is not satisfied (Gao and Stevenson, 2012), the estimated
value of ⇠ 0.32 indicates that Dione’s internal structure is significantly differenti-
ated. Variations of this value can bring to different conclusions about the degree
of differentiation but it is already possible to exclude that Dione is homogeneous
(MoIF = 0.4). This is an important point because it can give useful indications on
the formation and accretion processes of Dione. As a useful example we suppose
that the MoIF is 0.32 and compute the radii of the layers for a simple two-layers
model. We consider an interior with density 3.0g/cm3 composed of hydrated sili-
cates and a mantle made of ice with two different levels of impurity. The results are
reported in table 5.21

Model R1(km) R2(km) ⇢1(g/cm3
) ⇢2(g/cm3

)

Ice I 222 339 3.0 0.9

Ice II 232 329 3.0 1.0

Table 5.21: Two-layer Dione internal structure

The depth of the different layers varies of about 10 km depending on the density
of the ice. A large core made of hydrous rocks is probably present on Dione given
the estimated MoIF.

Although some conclusions can be drawn, there remain some open questions re-
garding Dione’s gravity field. First of all the hypothesis of hydrostatic equilibrium
has to be confirmed or disproved to guarantee that the inferred MoIF is correct.
This will need an independent estimation of the quadrupole gravity field and in
particular of J2. Data from the next Dione flyby, scheduled for August 2015, will
help to solve this issue and improve the current results.



Chapter 6

Conclusions and perspectives

The geodesy of the Saturnian satellites Titan, Enceladus and Dione has been
inferred from the analysis of Cassini tracking data acquired during a series of fly-
bys performed from 2004 to 2011. Thanks to the radio science instrumentation on
board Cassini, very accurate range and range-rate data were available and used to
estimate the gravity fields of the satellites under investigation. The definition of a
dynamical model, that takes into account a variety of forces acting on the spacecraft,
has been the fundamental premise for the solution of the orbit determination prob-
lem at hand. Every dynamical effect has been modeled deterministically according
to the available models of the dynamics of the Saturn system and of the selected
satellites. The analysis process involved also the determination and update of the
ephemerides of the investigated satellites to produce a better characterization of the
Saturn sistem dynamics. Range and Doppler data available were calibrated for the
delays introduced by the transmission media (Earth’s troposphere and ionosphere
and interplanetary plasma) and weighted on a pass-by-pass basis to account for
their intrinsic quality. From a data analysis point of view, all the solutions pre-
sented can be considered reliable. In fact, the orbit determination process always
converges and, in every case analyzed, the post-fit residuals are always compatible
with the expected noise level. However, from a geophysical point of view, the relia-
bility of the various solutions needs to be analyzed in more detail for every satellite
of Saturn to confirm their compatibility with the available models of their chemical
composition and evolution processes.

On Titan, precise measurements of the acceleration of the Cassini spacecraft dur-
ing six close flybys have revealed that the satellite responds to the variable tidal field
exerted by Saturn with periodic changes of its quadrupole gravity field, at about 3-

107
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4% of the static value. We have estimated the real part of the tidal Love number k2
(Iess et al., 2012) which indicates how Titan is deformed due to the tidal stresses.
The large estimated value (⇠ 0.6) is consistent with the presence of a subsurface
ocean under the ice shell. However, to reconcile the estimated value with a reliable
geophysical model a low viscosity interior has to be invoked. The estimation of the
imaginary part of k2, which measures the internal dissipation due to the tidal poten-
tial, can help in improving the interior model. However the limited amount of data
prevented us to obtain a reliable estimate of the imaginary part whose uncertainty
is still too high to draw any significative conclusion. The updated gravity field of
Titan retrieved from the analysis of the six gravity flybys completed so far is com-
patible with the previous determinations (Iess et al., 2010). Apart from the standard
degree-3 gravity solution we also produced a degree-4 field to assess the sensitivity
to higher degree harmonics and to verify the Love number solution stability. The es-
timated Moment Of Inertia Factor of 0.3431±0.0004 confirms the previous estimates
and the differentiated internal structure. However, the chemical and thermal prop-
erties of the different layers postulated in the geophysical models published so far,
may have to be revised to take into account the implications of the estimated value
of the Love number. The next three gravity flybys of Titan scheduled respectively in
2013, 2014 and 2016 will help in confirming the current result and estimate higher
harmonics of the gravity field. Comparisons of gravity with topography to assess
the degree of compensation will in fact require the degree-4 gravity which is not
enough accurately estimated with the current data set. Moreover, these data will be
valuable to improve the estimate of the imaginary part of k2 to better understand
the origin of the observed eccentricity in Titan’s orbit.

The combined analysis of three Enceladus flybys has revealed a complex gravity
field. In fact we detected the presence of degree-3 gravity anomalies that prevented
us to obtain a reliable fit using a gravity model made up of a pure quadrupole.
We determined that Enceladus’ quadrupole gravity field is close to the hydrostatic
equilibrium and its Moment of Inertia Factor derived from the Radau-Darwin equa-
tion suggests that its interior is differentiated. The presence of a hydrous rocky core
overlaid bean ice layer was in fact expected given the endogenic active processes
that take place on Enceladus. Moreover, the estimate of a negative J3 suggests the
presence of a mass anomaly at the south pole. This asymmetry in the gravity field
is compatible with the presence of a subsurface concentration of liquid water which
can be interpreted as the origin of the observed geysers in the south polar region.
A gravity field estimation driven by topographic data has revealed that there is al-
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most no isostatic compensation in that region. The geoid depression at the south
pole (about 100 meters) is comparable with the topography depression in the same
area. This is an important confirmation that the gravity anomaly we detected is due
to a water deposit under the surface. Our results cannot rule out, however, the pos-
sibility that there is a global ocean under the surface and not only a concentration
of water in the south polar region. Cassini performed the last Enceladus’ flyby ded-
icated to gravity measurements on May 2, 2012. Data from this flyby are currently
under analysis and will help in confirming the previous solutions and lower the cur-
rent estimation uncertainties. No other gravity flybys of Enceladus are scheduled
up to the end of the mission in 2017 but data retrieved so far have already given us
important indications about Enceladus’ internal structure and composition.

The determination of the quadrupole gravity field of Dione has given the first in-
dications on its internal structure. Data from the only available flyby with tracking
at closest approach are not sufficient to fully disentangle the estimates of the gravity
coefficients J2 and C22. We therefore produced a first estimate by constraining J2

and C22 to the hydrostatic equilibrium (J2 = 10/3C22) and a second one in which
we left them independent. From a data analysis point of view the two solutions are
equally reliable given that the post-fit residuals do not show systematic effects in
both cases. However, the unconstrained solution shows a significant deviation from
the hydrostatic equilibrium (more than 3-sigma). In this case the use of the Radau-
Darwin equation to derive the Moment of Inertia Factor can lead to a wrong value
if applied to the unconstrained solution. Nonetheless, even by accounting for this
possible error, the Moment of Inertia Factor is in the range 0.316-0.325 indicating
that Dione is significantly differentiated. We also derived a possible interior model
made up of a hydrous silicate core of about 220 km radius surrounded by an ice
layer. Next Dione’s flyby dedicated to gravity measurements in 2015 will be crucial
to confirm or disprove the hydrostatic equilibrium hypothesis. The more inclined
flight path should allow a better estimation of J2 with a significant improvement
on the overall gravity field estimation.

In conclusion, the analysis carried out in this thesis has provided fundamental
constraints about the geodesy of the main Saturnian satellites. The high quality
Cassini data allowed for the first time the estimation of the tidal Love number k2

for a major planetary satellite. The presence of a subsurface ocean on Titan, fore-
seen by many geophysical models, is now supported by experimental data. Sim-
ilarly, the analysis of Enceladus gravity confirms the hypothesized presence of a
water deposit under the south pole that supplies the ejecting geysers. Finally, the
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inferred constraints on Dione’s internal structure demonstrate that the major Satur-
nian satellites are all differentiated thus giving fundamental indications about the
formation and accretion processes in the Saturn system. Data that will be collected
up to the end of Cassini mission in 2017 will help in confirming the results derived
here and in decreasing the uncertainties but we do not expect significant variations
of the conclusions presented in this work.
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