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Chapter 1

Introduction

The present work is focused on the development of new Blind Source Separation

(BSS) techniques for specific problems and on their implementation in embedded

systems. The aim of such techniques is to extract in a “blind” fashion (i.e. with-

out making specific assumptions) meaningful signals that have been mixed linearly,

without knowing the original signals or the mixing coefficients. However, when we

deal with real-world signals, we are never completely “blind”, in that we do know (in

a more or less detailed and quantitative way) some or their characteristic features.

The “optimized” ICA algorithms presented in this work aim at enhancing separa-

tion of relevant signals by exploiting such a priori knowledge without renouncing

the advantages of a substantially blind approach.

Independent Component Analysis (ICA) is a recently developed technique whose

aim is to recover statistically independent signals that have been mixed linearly.

Loosely speaking, consider a set of sources, i.e. independent signals, s and a mixing

process that can be described in terms of a mixing matrix A. The aim of ICA is to

recover both s and A starting from the observation of the linear mixture

x = As

without making any particular assumptions other than statistical independence of

the sources. In Chapter 2 the principles underlying ICA will be revised, in order to

provide an inner sight to the problems that have been dealt with. In particular, the-

orems regarding identifiability, uniqueness and separability of the linear ICA model

will be provided, together with the most common approaches to solve the problem,

that are based on information theory or on non-linear decorrelation.

Since the need for fast independent component separation is crucial in some areas

1



CHAPTER 1. INTRODUCTION

(e.g. telecommunications), in Chapter 4 the problem of fast independent component

computation has been addressed, by designing optimized solutions on Digital Signal

Processor (DSP) developing boards. This investigation has been done also to evalu-

ate the possibility of embedding the ICA extraction unit into a dedicated processing

block. In particular, floating and fixed point architecture DSP implementations have

been explored, that may serve as the basis for a parallel (multi-threading) architec-

ture.

Due to the generality of its formulation, ICA is applied in many and diverse research

fields. In particular, in this work functional brain imaging and statistical electronic

device modeling have been considered.. In Chapter 3 a set of selected ICA applica-

tions will be described in detail.

Statistical modeling of transistor is a crucial issue for yield oriented design and usu-

ally equivalent-circuit-based models (ECM) are employed. Principal Component

Analysis has been proposed as suitable preprocessing for decorrelation and simplifi-

cation of the representation before a Monte Carlo simulation of the model. However,

ICA may be more suitable in representing data since it guarantees uncorrelatedness

and independence of the parameters, that are not equivalent unless parameters have

a Gaussian probability density. Therefore a population of High Electron Mobil-

ity Transistor (HEMT) Monolithic Microwave Integrated Circuit (MMIC) has been

generated starting from the physical parameters of the active devices, and subse-

quently the model has been validated by means of statistical testing and of PCA

and ICA. The results are described in Chapter 5.

Another investigation has involved brain imaging techniques. In particular func-

tional Magnetic Resonance Imaging (fMRI) and MagnetoEncephaloGraphy MEG,

that investigate inner brain activitiy by means of magnetic fields, together with

analysis techniques, are discussed. Both fMRI and MEG experiments in cognitive

neuroscience aim at individuating areas of the brain related to specific activities

of the brain. Usually a subject performs a task (designed to investigate particular

functionalities of cerebral areas), usually consisting of a block design of activity and

rest, and subsequently data are analyzed in several ways in order to point out the

functional areas involved in the execution of the task.

Since meaningful signals are embedded in unstructured noise, and other physiolog-

ical signals, it is troublesome to extract them by simple inspection. Techniques

employed for this purpose can be divided into hypothesis-driven and data-driven.

While the first are employed in confirmatory analysis, the latter are mainly used for

2



exploratory analysis; the differences between these two approaches are discussed in

detail in Chapter 3. One of the most employed data-driven techniques is ICA, due

to the assumption of independence among brain related activities, that therefore

can be separated blindly by maximization their independence. In particular, it is

applied in two different ways to fMRI data analysis, exploiting spatial or temporal

independence.

The work of this thesis is focused on exploiting intrinsic structure of the sources

for optimizing Blind Source Separation. In fact, in many applications where real-

world data are involved, and in particular with respect to physiological signals, we

do know that data display a regular structure in space and time, that is indeed

used (most often heuristically by physicians) to judge about relevance of results of

processing. Starting from these considerations, a new ICA approach has been de-

veloped to take prior information into account. The proposed methodology is based

on the maximization of a modified (with respect to standard ICA) contrast function

F = J + λH

where J is the contrast function whose maximization leads to independent compo-

nents decomposition, while H accounts for the prior information of the sources.

According to the weighting parameter λ it is possible to perform two different

kinds of optimization: constrained (when it makes the additional term much higher

than independence term) and multi-objective (when the two terms are compara-

ble). Moreover, since prior information on the sources may also be described by a

non-differentiable function, or even in a procedural way, the new contrast function

F was optimized by means of simulated annealing, that does not require the use of

derivatives, and performs global optimization, while gradient-based algorithms usu-

ally employed in independent component analysis only guarantee local optimization.

This new methodology will be described in Chapter 6.

The proposed methodology has been applied successfully to fMRI time-series and

MEG recordings, with different kinds of prior information. In particular, several

constraints have been added to independent component separation for fMRI data

analysis, regarding precise information about spatial and temporal features of the

target independent sources, in a semi-blind fashion that allows selecting relevant

sources first. This is an important advantage to save computation (and therefore

time), and to reduce expert work in assessment of results. Moreover, spatio-temporal

regularities have been successfully exploited using a multi-objective approach consid-

3



CHAPTER 1. INTRODUCTION

ering an additional contrast function related to spatial and temporal autocorrelation.

This application is discussed in Chapter 7. Precise prior information on “interest-

ing” signals have been also pointed out in MEG recordings, where a reactivity index

has been considered to constrain the extracted sources. A new procedure (Func-

tional Component Analysis) has been developed in order to extract more plausible

sources by means of functional constraints. Moreover, a new technique not based on

orthogonalization (Functional Source Separation) has been developed to deal with

spatially overlapping sources. These techniques will be described in Chapter 8.

4



Chapter 2

Independent Component Analysis:

General Principles

2.1 Introduction

A goal of many statistical techniques is to find a suitable representation of mul-

tivariate data. The new representation should allow to retrieve some information

that is hidden in original data. Blind Source Separation techniques aim at retrieving

some of this hidden information without making “strong” hypotheses on its nature.

In particular, Independent Component Analysis (ICA) looks for a linear represen-

tation of a collection of data such that the new signals are maximally statistically

independent. This can be seen as an extension of Principal Components Analysis

(PCA), that will be illustrated in detail in the following, as PCA is based only on

second order statistics, while ICA uses information from all the statistics.

To give an explicit formulation of the problem, let us consider the observed data

X ∈ ℜm×n, where m is the dimension of the multidimensional vector we are observ-

ing, while n is the number of realizations we have of it. In other words, X is an

m-dimensional vector and we have n observations.

In the case of a linear transformation of this dataset, we are considering a matrix

W ∈ ℜq×m, with q ≤ m, such that the signals Y = W · X have some desired

property. While performing an ICA extraction, in particular, the q rows of Y are

meant to be statistically independent.

The aim of these techniques is therefore to find a suitable linear transformation W

according to the problem we are dealing with. In particular, if q < n we are per-

5



CHAPTER 2. ICA: GENERAL PRINCIPLES

forming dimension reduction, that may be useful in applications where the number

of observed signals is greater than the “expected dimension” of the problem.

Several solutions to an ICA problem have been proposed in literature, based on

different criteria. In the following of the chapter some of the proposed algorithms

will be illustrated. In the next paragraph a well known example of an ICA problem

will be shown.

2.2 An example: the Cocktail Party Problem

While dealing with Blind Source Separation (BSS), it is usual to address the prob-

lem by means of a famous example called the “Cocktail Party Problem”. Let us

assume we are in a room where a party is going on and people are having some

conversations. Let us assume that two different conversations are held in different

points of the room. Two microphones are placed in the room, in two different posi-

tions. Each of the two microphones will record both conversations, but, according

to the distance between the microphone and the speaker, the two recordings will

be different. The signal from each microphone will consist of a mixture of both

conversations, but the two “observations”, if the microphones are placed in different

positions, will be different mixtures of independent signals.

The aim of ICA is to retrieve the original signals (i.e. the original conversations)

using only the two recordings from the microphones, without any further assump-

tion either on the nature of the sources or on the position of the microphones (i.e.

without knowing the mixing process).

This simple example is particularly helpful in illustrating the nature of ICA prob-

lems, and furthermore helps addressing some of the main principles underlying the

use of blind separation techniques. It is to be noted, in fact, that:

• The number of recordings is equal to the number of independent signals we

want to retrieve (this is a case of square mixing).

• The microphones are supposed to be placed in different positions, i.e. the

mixing matrix is not singular.

• The original signals are supposed to be independent. We have made the

assumption that conversations that are held in different places are statistically

independent.
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Some of the issues raised by this examples are absolutely non trivial (like the

assumption on independence), and will be addressed in the following sections, and

a rigorous formulation of the problem will be given in the next sections.

2.3 Mathematical Background

Before giving a precise definition of Independent Component Analysis it may be

useful to provide definitions of independence, uncorrelatedness and some properties

of linear transformations.

In particular, as independence is defined by means of probability density functions,

relations between second order and higher order statistics will be stressed. More-

over, some aspects and definitions from information theory, that will be used in the

chapter, will be recalled.

2.3.1 Statistical Independence

Given m random variables s1, s2, . . . , sm, those variables are said to be independent

if and only if :

ps1,s2,...,sm
(s1, s2, . . . , sm) = ps1(s1) · ps2(s2) · . . . · psm

(sm) (2.1)

that means that the joint probability distribution function (pdf) of those variables

can be expressed as the product of their marginal densities. In other words, those

m random variables are independent if the knowledge of any of them does not affect

in any way the knowledge of any other. For instance,

p(s2, . . . , sm | s1) = p(s2, . . . , sm). (2.2)

Considering a transformation of a random vector x such that y = g(x), and

such that the inverse x = g−1(y) exists and is unique, it is possible to express the

pdf of y in terms of the pdf of x:

py(y) =
1

| detJg(g−1(y)) |px(g
−1(y)) (2.3)

where Jg is the Jacobian matrix.

In the special case of a linear and nonsingular transformation such that y = Ax

and x = A−1y, eq. (2.3) becomes

7
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py(y) =
1

| detA |px(A
−1y) (2.4)

2.3.2 Uncorrelatedness

A less strict requirement for a multivariate, that is limited to second order statis-

tics, is uncorrelatedness. Starting from the scalar case, two random variables are

uncorrelated if

E{(x−mx)(y −my)} = 0 (2.5)

where mx = E{x} and my = E{y}.
Considering the multivariate case, the components of the vector x ∈ ℜm are said

to be uncorrelated if

E
{
(x−mx)(x−mx)

T
}

= D (2.6)

where D is a diagonal matrix whose nonzero elements are the variance of the cor-

responding components. As shown in equation (2.6), uncorrelatedness is related

only to second order statistics, whereas independence is related to the entire pdf, as

shown in (2.1). This difference is extremely important and will be pointed out in

the following sections.

If two signals are independent, they will be uncorrelated. On the other hand, it is

not true in general that two uncorrelated signals are independent. Uncorrelatedness

is a necessary but not sufficient condition for independence, and decorrelation is of-

ten used as a first step during an ICA extraction procedure, together with variance

normalization (whitening), as will be explained in section 2.6.

2.3.3 Multivariate Gaussian Variables

All the information on a multivariate random variable is “stored” in its probability

density function, that, in many cases, cannot be evaluated easily. If the kind of

distribution (e.g. Gaussian, Laplace, etc.) is known in advance, this evaluation is

considerably faster and reliable, as the estimation is performed only on the parame-

ters of the distribution. Among all “known” distributions, the Gaussian one plays

a central role, and needs to be illustrated in detail.

Consider a Gaussian multivariate x ∈ ℜm. Let us consider its mean vector and

covariance matrix, defined as:

8



2.3. Mathematical Background

mx = E{x}, Cx = E
{
(x−mx)(x−mx)

T
}

(2.7)

It is possible to express the probability density function in terms of mx and Cx:

px(x) =
1

(2π)n/2(detCx)1/2
exp

(
−1

2
(x−mx)Cx

−1(x−mx)
T

)
(2.8)

This means that higher order statistics (i.e. all the moments higher than 2) are

unnecessary in describing a Gaussian variable, as it is fully “fully” explained by

means of its mean and covariance matrix. All the other information contained in

higher order statistics is already in the first two moments.

Another important property is that a linear transformation of a Gaussian multi-

variate is still a Gaussian multivariate. Let us consider a linear transformation A

of x: y = Ax, then y will still be a Gaussian multivariate, with mean my = Amx

and covariance matrix Cy = ACxA
T .

Moreover, Gaussian multivariate has an additional property: independence is

equivalent to uncorrelatedness. This can be seen also from the fact that a Gaussian

multivariate is described only by its mean vector and its covariance matrix, therefore

there is no further information in higher order statistics.

2.3.4 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a well-known technique used for feature

extraction and compression in multivariate data analysis since the early work of

Pearson in 1901 [142]. Given a set of multivariate data, the aim is to find a smaller

set of variables, with less redundancy, that however gives a good representation of

data, under some suitable criterion. There is a close relationship between PCA and

ICA, as the first accounts for second order statistics, while the second involves also

higher order statistics.

PCA can be defined in several ways; the first formalization of a PCA criterion is

from Hotelling in 1933 [75], and it is related to variance maximization.

Consider a multidimensional vector x ∈ ℜm and a linear transformation w1 such

that

y1 =
m∑

k=1

wk1xk = w1x (2.9)
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The term y1 is called a principal component of x if its variance is maximally large.

As the variance depends both on the norm and the orientation of the vector w

and it increases unlimited as the norm increases, the constraint that the norm of w

should be properly normalized (usually equal to 1). Therefore the problem becomes

a constrained maximization:

JPCA
1 (w1) = E{y2

1} = E{(wT
1 x)2} =

= wT
1 E{xxT}w1 = w1Cxw1 (2.10)

with ‖w1‖ = 1 (2.11)

where the norm operator ‖·‖ is the Euclidean norm operator:

‖w1‖ = (wT
1 w1)

1/2 = (
m∑

k=1

w2
k1)

1/2 (2.12)

and the matrix Cx denotes the correlation matrix of x (that corresponds to the

covariance matrix in case of zero-mean). It is known from linear algebra ([48])

that the solution of the PCA problem is given in terms of unit-length eigenvectors

e1, e2, . . . , em of the matrix Cx, that correspond to the eigenvalues d1, d2, . . . , dm ,

ordered such that d1 ≥ d2 ≥ . . . ≥ dm. The solution that maximizes eq. (2.10) is

the eigenvector e1 associated to the first eigenvalue, that is the one that “explains”

the most variance.

It is possible to generalize the formulation of (2.10) and (2.11) to more dimensions,

and in this case there is the further constraint of uncorrelatedness. In general,

considering the n-th principal component yn = wT
nx, with 1 ≤ n ≤ m, we have that

its variance is maximized under the constraint that yn is uncorrelated with all the

previously found principal components:

E{ynyk} = 0, k < n (2.13)

Condition (2.13) can be expressed in terms of wi and x as follows:

E{ynyk} = E{(wT
nx)(wT

k x)} = wT
nCxwk = 0, k < n (2.14)

Consider the second component: as it is already known that w1 = e1, the vector

that explains the maximum variance must fulfill the following constraint:

E{y2y1} = wT
2 Cxw1 = d1w

T
2 e1 = 0 (2.15)
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therefore the solution is the second eigenvector. Recursively, it is easy to show that

wk = ek; for further details see [80, 48].

It is possible to see PCA from the point of view of minimum mean-square error

compression of original data x ∈ ℜm. Consider an orthonormal basis w1,w2, . . . ,wn

(meaning that wT
i wj = δij, where δij is the Kronecker’s delta) with n ≤ m. The

projection of x on the subspace generated by wi is
∑n

i=1(w
T
i x)wi. The mean square

error (MSE) criterion in this case becomes:

JPCA
MSE = E{‖x−

n∑

i=1

(wT
i x)wi‖2} (2.16)

The criterion, since the set of wi is orthonormal, can be further written as:

JPCA
MSE = E{‖x‖2} − E{

n∑

i=1

(wT
i x)2} =

= trace(Cx)−
n∑

i=1

wT
j Cxwj (2.17)

It can be shown (see [80]) that the minimum of the reconstruction error in (2.16)

can be obtained considering any orthonormal basis of the subspace spanned by the

first n eigenvectors e1, e2, . . . , en of the covariance matrix Cx. It can also be shown

that the value of the mean square error of (2.16) is:

JPCA
MSE =

m∑

i=n+1

di (2.18)

that means that the minimum achievable reconstruction error is related to the sum

of the last eigenvalues that have not been considered in reconstruction: the more

eigenvalues (i.e. the more dimensions for the compression subspace) one considers,

the better the reconstruction becomes. However, as the eigenvalues are ordered ac-

cording to their value, in most cases a large percentage (e.g. 95%) of the variance

will be explained by a limited number of eigenvalues. The principle of dimension

reduction lies in the previous observation: it is possible (of course, according to the

redundancy of data) to reduce the dimensionality of the problem without affecting

the effectiveness of the representation, within a given percentage. For this reason

PCA is often used as a pre-processing step of independent component extraction,

usually preserving a large percentage of original variance while reducing the num-

ber of dimensions of the problem. Consider the case where measured data x ∈ ℜm
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are reduced by means of PCA to a dimension n < m, with a reconstruction error

ǫ. If subsequently ICA is performed on this reduced data set, the reconstruction

error of the new representation will be the same, as ICA perfoms a linear invertible

transformation and therefore data are in the same subspace spanned by the first n

principal components.

There is an intimate connection between PCA and ICA: while PCA is based on

second order statistics, and is optimal in term of variance explained, ICA accounts

for higher order statistics, thus it enriches the representation in terms of informa-

tion theory. Consider now a Gaussian multivariate x ∈ ℜm: as seen in section

2.3.3, in this case uncorrelatedness is equivalent independence. Then, PCA will give

a independent representation of data, as it gives uncorrelated components. There

will be no improvement in further rotating the coordinates (i.e. looking for a linear

transformation), as independence is already ensured by the uncorrelatedness con-

straint. This suggests that for a Gaussian multivariate it may be troublesome to

look for independence by means of high order criteria. In sections 2.4 and 2.5 it will

be clearer why Gaussian distributions among the sources are in contrast with the

uniqueness and the identifiability of the ICA model.

2.3.5 Entropy of a random variable

Entropy H(x) (often called “Differential Entropy”, in the continuous case) of a

random variable x ∈ ℜ is defined as follows:

H(x) = −
∫ +∞

−∞

p(x) ln p(x) dx (2.19)

Differential entropy of a random variable can be interpreted as the degree of

information that the observation of that variable may give. Consider for instance

a variable whose probability density function is concentrated mainly in one point;

it is evident to see that in this case its entropy will be rather small if compared

with another one that has a pdf spread across a wider area. It is easy to generalize

the definition of entropy to the multidimensional case, where, considering random

vector x ∈ ℜn, we have:

H(x) = −
∫ +∞

−∞

. . .

∫ +∞

−∞

px(ξ) lnpx(ξ)dξ. (2.20)

A remarkable property of entropy, that makes it extremely useful while dealing

with ICA problems, is that a Gaussian variable has the largest entropy among all the
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random variables having the same mean and variance. The entropy of a Gaussian

random vector xGauss ∈ ℜm with covariance matrix Cx can be evaluated as:

H(xGauss) =
1

2
log | det(Cx) |+

m

2
[1 + log 2π] (2.21)

This is a particular result of the maximum entropy method [46], and its cen-

tral role in some of the most widely used ICA method will be seen later, since

non-Gaussianity leads to independence. Consider now a linear transformation of a

random vector x ∈ ℜm:

y = Wx. (2.22)

It is possible to characterize the entropy of the transformed variable y in terms

of the entropy of x

H(y) = H(x) + log | det(W) | (2.23)

For a rigorous proof, see [80].

Eq. (2.23) also shows that entropy is not scale-invariant. Consider a random vari-

able x and multiply it by a scalar α. The entropy will change into:

H(αx) = H(x) + log | α | (2.24)

To overcome this problems, and using the property of maximum entropy of a

Gaussian random vector, a modified version of entropy is often used. Negentropy

J(x) of random vector x is defined as the difference between the entropy of a

Gaussian random vector with the same covariance matrix Cx as x and the entropy

of x

J(x) = H(xGauss)−H(x) (2.25)

It is evident that negentropy is always nonnegative, and, due to the maximal

entropy property, it is zero only when x has a Gaussian distribution. Moreover it

is scale-invariant, and this makes negentropy particularly useful when dealing with

ICA.

2.3.6 Mutual Information

Mutual Information is closely connected with entropy, and it can be defined as a

measure of the information that some members of a set of random variables have
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on the other random variables in the set. According to [80], there are two ways

of computing Mutual Information: by means of Entropy or by means of Kullback-

Leibler divergence

Definition using Entropy

The mutual information between m scalar random variables xi, i = 1, 2, . . . , n is

defined as:

I(x1, x2, . . . , xn) =
n∑

i=1

H(xi) − H(x) (2.26)

If the xi are independent, it is straightforward to see that mutual information be-

comes zero.

Definition using Kullback-Leibler Divergence

Kullback-Leibler divergence is a sort of “distance” (even if it lacks the symmetry

property, mandatory for any kind of distance) between two probability density func-

tions. It is defined as:

δ(p1, p2) =

∫
p1(ξ) log

p1(ξ)

p2(ξ)
dξ (2.27)

It has to be noted that K-L divergence is always nonnegative, due to the convexity

of the negative logarithm and to Jensen’s inequality [46]. Mutual information can

be defined by means of K-L divergence, evaluating the “distance” in the following

way:

I(x1, x2, . . . , xn) = δ(px1,x2,...,xn
,
∏

i

pxi
) (2.28)

2.3.7 Maximum Likelihood Estimation

Maximum Likelihood (ML) estimation assumes that data are generated according to

a predefined model with unknown parameters θ, and is based on the maximization

of the likelihood function. In particular, the ML estimate θML is the parameter

vector θ that maximizes the probability of data, given the parameters:

θML = arg max
θ
p(x | θ) (2.29)

As usually many probability densities contain exponential functions, usually a log

likelihood function ln p(x | θ) is used. Due to the fact that natural logarithm is
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monotonic, all the maxima and minima of eq (2.29) will be preserved. Moreover, if

different observation of random vector x are independent, then likelihood function

factorizes into the product:

p(x | θ) =
∏

t

p(xt | θ) (2.30)

where t denotes the single realization of x.

Of course, considering the logarithm of the likelihood function, the factorization in

eq. (2.30) becomes a sum of marginal conditional probabilities. The maximum of a

ML estimation, will be usually found from the solutions of the likelihood equation:

∂

∂θ
ln p(x | θ)

∣∣∣∣
θ=θML

= 0 (2.31)

In the case of log-likelihood function, eq. (2.31) becomes a set of scalar equa-

tions. Unfortunately, the computational load for solving a ML estimation can be

prohibitive, therefore various approximations are employed.

2.4 Linear ICA definition

Let us consider an observed multivariate random variable x ∈ ℜm. Assume the

following statistical model:

x = As + ǫ (2.32)

where A ∈ ℜm×n, s ∈ ℜn and ǫ ∈ ℜm. Vector s is such that its components are

statistically independent, while vector ǫ represents noise. The goal of ICA is to

estimate both mixing matrix A and independent components s “blindly”, meaning

that no prior information on both sources and mixing, other than independence, is

available (or is employed).

Since noise ǫ is assumed to have an unknown distribution, it can only be treated as

a nuisance, and the ICA model we will consider becomes:

x = As (2.33)

where noise is considered together with components, and s is the vector that max-

imizes a suitable measure of independence. According to m and n we have three

different kind of ICA:

• If m = n, it is the case of square ICA
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• If m < n we are performing an undercomplete ICA

• If m > n we are performing an overcomplete, or underdetermined ICA

It is possible now to give a definition of Independent Component Analysis of a

random vector in the square case:

Definition 1. The ICA of a random vector x ∈ ℜm with finite covariance Cx is a

pair {F, D} of matrices such that:

1. The covariance matrix factorizes into:

Cs = FD2FT (2.34)

where D is diagonal real positive and F is full column rank m;

2. The observation x can be written as

x = Fz (2.35)

where z ∈ ℜm has covariance matrix D2 and its component are as much

independent as possible, in the sense that maximize a suitable contrast function

that indicates independence.

Since multiplying components by scalar values or changing their order does not

affect their independence, it is evident that ICA defines an equivalence class, more

than a unique solution. Therefore a suitable contrast function must account for this

indeterminacy.

Property 2. If a pair {F, D} is a solution of an ICA problem, then so is the pair

{F′,D′}, where

F′ = FSUP, D′ = PTS−1DP (2.36)

where S ∈ ℜm×m is a diagonal real positive scaling matrix, U ∈ ℜm×m is a diagonal

matrix with entries of unit modulus and P ∈ ℜm×m is a permutation matrix.

As clearly stated in Property 2, it is never possible to have a unique solution

to an ICA problem: a permutation and a scaling of the components will not affect

independence, nor it will be possible to define an ordering for the components (un-

like in PCA, where components are ordered according to the variance explained).

However, within the equivalence class, if at most one component has a Gaussian

distribution, the solution is unique. To show this property, it is necessary to define

a contrast function:
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Definition 3. A contrast is a mapping H from a set of densities {py,y ∈ ℜm} to

ℜ satisfying the following requirements:

- H(py) does not change if the components yi are permuted:

H(Ppy
) = H(py), ∀P permutation

- H is invariant by scale change:

H(pSy) = H(py), ∀S diagonal invertible.

If y has independent components, then

H(pAy) ≤ H(py), ∀A invertible.

Definition 4. A contrast H will be said to be discriminating over a set E if equality

H(pAy) = H(py) holds only when A is of the form A = SP, as defined in Property

2, when y is a random vector of E having independent components.

To show that if at most one component must be Gaussian in order to have

uniqueness of the solution, we will use the following theorem:

Theorem 1. Let y be a vector with independent components, of which at most

one is Gaussian, and whose densities are not reduced to a point-like mass. Let

C ∈ ℜm×m be an orthogonal matrix and z the vector z = Cy. Then the following

three properties are equivalent:

(i) The components yi are pairwise independent

(ii) The components yi are mutually independent

(iii) C = SP, with S diagonal and P permutation.

For a proof of this theorem, see [45].

In the following sections it will be clearer why Gaussianity of more than one com-

ponent makes it impossible to separate univocally sources. As shown in section

2.3.3, a linear combination of Gaussian random variables is still Gaussian, therefore

a contrast based on the pdf will not be able to discriminate effectively between two

different linear combinations of Gaussian signals. This is why, in the classical ICA
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model, it is assumed that no more than one source has a Gaussian pdf, even if in

real problems this limitation is not so strict.

To reduce indeterminacy, at least in scale, it is usually imposed that the columns of

F have unit norm. This is not such a strict constraint, and will be extremely useful

while dealing with the optimization algorithms employed.

To sum up, independent component analysis aims at finding a linear decompo-

sition of an observed vector x into a set of independent components, without prior

knowledge on the mixing matrix or on the original signals. Recalling eq. (2.33), the

problem becomes finding a suitable W ∈ ℜm×n such that vector y:

y = Wx (2.37)

has maximally mutually independent components .

From now on, the following notation will be considered:

- x: observed signals

- s: independent components (to estimate)

- A and W: respectively mixing and unmixing matrix

- y: estimate of the independent components

- z: whitened observed signals (will be explained in section 2.6)

2.5 Conditions for linear ICA model

In this section the concepts of indentifiability, separability and uniqueness for the

ICA model will be investigated, both for the case where the mixing is square (same

sources as observations) and for the overcomplete case (more sources than observa-

tions).

Let us recall linear ICA model presented in eq. (2.33), that is:

x = As

where x ∈ ℜm, s ∈ ℜn and A ∈ ℜm×n. We define a representation of x as the couple

(A, s). In the following the section we will refer to reduced representations, that

are those where columns of the mixing matrix are not pairwise linearly dependent

(this is done to ensure uniqueness, and it means also that, if we have two different
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representations, any column of the first mixing matrix will be linearly dependent on

only one column of the other mixing matrix, or on no one at all [51]). It is easy to

show that the noisy ICA model (2.32), where the noise is a multivariate Gaussian,

can be seen as special case of model presented in (2.33), where we have additional

sources (related to noise) in the model [51, 160].

It is possible now to define the concepts of identifiability, uniqueness and separability

for an ICA model, without reducing to the square mixing case:

Definition 5. The ICA model in (2.33) is said to be identifiable if in every reduced

representations (A, s) and (A1, s1) of x, every column of A is linearly dependent on

some column of A1 and vice versa.

Definition 6. The model in (2.33) is unique if it is identifiable and sources s and

s1 have the same distribution for some permutation and changes of scale or position.

Definition 7. The model in (2.33) is said to be separable if for every W ∈ ℜm×m

such that Wx has m independent components, we have that ΛmPms = Wx, for

some block diagonal matrix Λm with nonzero elements on main diagonal and per-

mutation matrix Pm. Moreover, matrix W has to always exist.

In the next sections some characterizing theorems will be provided in a general

approach, including the overcomplete case. In section 2.4 it has been shown that,

if there is at most one source with Gaussian probability density then the model

is identifiable. The generalization to the overcomplete case will give some further

conditions for those properties. It may be useful, however, to recall some theorems

presented in [51] and [160], that will be useful in the following.

Theorem 2. Let (A, s) and (A1, s1) be two representations of an n-dimensional

vector x, where A and A1 are constant matrices of dimensions n× k1 and n× k2,

and s ∈ ℜk1 and s1 ∈ ℜk2 are vectors with independent components. Then the

following properties hold:

i) If the i-th column of A is not linearly dependent on any column of A1, then

si has a Gaussian pdf.

ii) If the i-th column of A is linearly dependent on the j-th column of A1, then

the logarithm of the characteristic function of s and s1 differ by a polynomial

in a neighborhood of the origin.
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The characteristic function ψx(u) of a random vector x (also known as first

characteristic function or moment generating function) is defined as follows:

ψx(u) = E{e(juTx)} (2.38)

and in the case of ICA generative model (2.33), it can be expressed as the product

of the characteristic functions of the sources [160]:

ψx(u) =
k∏

i=1

ψsi
(aT

i u) (2.39)

It has to be noted that the characteristic function of a Gaussian random variable is

a polynomial of degree 2 [151].

To reduce the ambiguity presented in Theorem 2, it is possible to introduce some

structural constraints on representations. We introduce the (columnwise) Kathri-

Rao product ⊙ on matrices defined as matrix columnwise Kronecker product ⊗.

Therefore A ⊙ B = (α1 ⊗ β1, . . . , αn ⊗ βn), where αi are the columns of A and βi

are the columns of B, with the notation (A⊙)qA meaning A ⊙ . . . ⊙A, including

⊙ q times. Using this notation it is possible to state the following theorem:

Theorem 3. Let random vector x ∈ ℜn with nonvanishing characteristic function

have a representation (A, s), where A is a known n×m matrix and let q be the in-

teger such that the rank[(A⊙)qA] = m > rank[(A⊙)q−1A]. Then the characteristic

function of each component si of s is determined up to a factor exp(Pi,q(t)), where

Pi,q(t) is a polynomial of degree at most q.

In the following sections some theorems regarding indentifiability, separability

and uniqueness will be provided. For a proof of these theorems, see [51] and its

references.

2.5.1 Identifiability

As seen in previous section, the concept of identifiability is related to the unique-

ness of the mixing matrix, obviously up to permutation and scaling. We have seen

in section 2.4 that for the square case, we have identifiability if at most one inde-

pendent component has a Gaussian probability density function. It is possible to

generalize Theorem 1 to the overcomplete case: Theorem 4 states some conditions

for identifiability:
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Theorem 4. The model x = As is identifiable among all representations (A1, s1)

of x that:

i) do not contain any Gaussian source

ii) A1 is of full column rank and at most one source has a Gaussian pdf.

This theorem can be seen as a generalization of Theorem 1, and states once

more that Gaussianity of sources can be in most cases an obstacle for blind source

separation. Consider for instance a Gaussian multivariate with independent compo-

nents. As every orthogonal rotation applied to data does not change independence

of data, there will be no unique mixing matrix (up to permutation or scaling), and

therefore the model will not be identifiable (and subsequently not unique, as seen

in Definition 6).

As example of application of the theorem, consider two non-Gaussian signals s1 and

s2 and two Gaussian signals n1 and n2. Consider the following mixing model:

x =

(
1 1 0

1 0 1

)


s1

s2 + 2n1

2n2



 =

(
s1 + s2 + 2n1

s1 + 2n2

)
=

=

(
1 1 1

1 0 −1

)


s1 + n1 + n2

s2

n1 − n2



 (2.40)

Here the model is clearly unidentifiable, since the mixing matrix is not unique. This

is due to the fact that the representation has a Gaussian component, thus condition

(i) of theorem 4 is not fulfilled, and the mixing matrix is not full column rank,

meaning that also condition (ii) is not verified.

This shows also that, while in the square case, one component with Gaussian pdf

is allowed, in the overcomplete case it is mandatory not to have a Gaussian source

for identifiability to hold, as it will never be possible to have a full-column-mixing

matrix.

It should be clear that if an ICA model is identifiable, this does not mean that the

other two characteristics (uniqueness and separability) will automatically hold for

the model. An interesting example on this considerations is the following: consider

four non Gaussian signals si, i = 1 . . . 4 and consider two standard Gaussian and
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independent signals n1 and n2. Now consider the following mixing model:

x =

(
1 0 1 1

0 1 1 −1

)




s1

s2

s3 + n1

s4 + n2




=

(
s1 + s3 + s4 + n1 + n2

s2 + s3 − s4 + n1 − n2

)
=

=

(
1 0 1 1

0 1 1 −1

)




s1 + n1 + n2

s2 + n1 − n2

s3

s4




(2.41)

As n1 and n2 are Gaussian and independent, also n1+n2 and n1−n2 are independent.

The example shows that the model is identifiable, as the mixing matrix is unique

up to permutation and scaling (This is guaranteed by Theorem 4 (i), because no

source has a Gaussian pdf, even if some of the sources have a normal component).

However, it is clear that the model is not unique, as there are different sources for

the same mixing model. A source for the mixing model in (2.33) is said to have a

normal component if it is of the form s+ n, where only n has a Gaussian pdf.

2.5.2 Separability

As seen in Definition 7, separability concept is related to the recovery of the sources.

The following theorem is based on what presented in [45] and generalized in [51].

Theorem 5. An ICA model x = As is separable if and only if the mixing matrix

A is of full column rank and at most one source variable has a Gaussian pdf.

Useful considerations can be taken from the Theorem 5. Consider the two aspects

presented for separability to hold: mixing matrix being full-column rank and no

more than one source with Gaussian pdf. Consider now the two cases of square and

overcomplete ICA. In the first we know that, for the model to be identifiable, non

Gaussianity of all the sources is required, and, in the case of Gaussianity of only

one source, the model is still identifiable if the mixing matrix is of full column rank.

Therefore, in the square case identifiability and separability are both present in the

case of non-singular mixing, while in the case of singular mixing, the model is still

identifiable but not separable.

Consider now the overcomplete case: in this case the model will never be separable,
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2.5. Conditions for linear ICA model

as it is not possible for the mixing matrix to be of full column rank. Therefore there

is still chance for an overcomplete model to be identifiable, but not separable (that

means that there in no unique way of decomposing data, up to permutation and

scaling, in order to recover the sources).

2.5.3 Uniqueness

In sections 2.5.1 and 2.5.2 we have seen how to characterize a linear model in terms

of uniqueness of the mixing matrix and of possibility of recovering the sources.

Moreover, it has been shown that in the overcomplete case it is not possible to

recover the sources. However it could be possible to determine the distribution of

the sources, that means that the model is still unique (see Definition 6). Then

it would be possible to recover the sources in probabilistic sense (that is, using

a Maximum Likelihood approach, used in [103]). To ensure the uniqueness of an

overcomplete ICA model, the following Theorem proposed in [160] and generalized

in [51] will be presented.

Theorem 6. The ICA model x = As is unique if any of the following properties

hold.

i) The model is separable.

ii) All the cumulative functions (c.f.) of the sources are analytic (or are nonva-

nishing) and none of the c.f.’s has an exponential factor with a polynomial of

degree at least 2.

iii) All the sources have non-Gaussian probability distribution with nonvanishing

c.f.’s and rank[A⊙A] = m.

iv) All the sources have nonvanishing c.f.’s φ such that they cannot be expressed

as φ = ϕ exp(P), where P is a polynomial of degree n, with 1 < n ≤ q and

rank[(A⊙)qA] = m > rank[(A⊙)q−1A].

A characteristic function is analytic when the moment generating function exists

(that is, when all the moments exist). Moreover, part (ii) of the Theorem could be

reformulated by substituting the requirement for the degree of the polynomial with

the one of non-Gaussianity of the sources. For requirement (ii) the number of the

sources is unlimited, while for parts (iii) and (iv) the number is limited up to a

value related to the number of observations p ([51]).
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2.6 Standard ICA preprocessing

Before performing an independent component analysis, usually some steps are taken

in order to improve performances of extraction. They are basically two: centering

and whitening.

As in the model data are assumed to be zero-mean, it is necessary to remove the

input data mean, that can be added at the end of the extraction procedure. Consider

the (centered) vector x̃ = x−E{x} and the eq. (2.37). The independent components

of the new vector x̃ are s̃ = Wx̃. The relation between s and s̃ is straightforward:

s = s̃ + WE{x}, thus to perform ICA data mean is removed, and after extraction

it is added back (only in the cases where the mean matters). The other step of

preprocessing, namely whitening, is performed in most algorithms, and even in

those that do not require sphered data it may me useful to improve performances.

Whitening, or sphering, data vector x means linearly transforming it into a new

vector z such that its covariance matrix equals unity matrix.

z = Vx (2.42)

where V is called the whitening matrix.

Since the covariance matrix Cx = E{xxT} is positive semi-definite (and for most

cases where the components are greater or equal to the number of sources, positive),

it can always be decomposed by means of its eigenvalues, namely:

Cx = EDET (2.43)

where D = diag(d1, d2, · · · , dm) is a diagonal matrix with the eigenvalues on the

main diagonal, and E contains on its columns the eigenvectors related to those

eigenvalues. Then a linear whitening transform is given by:

V = D−1/2ET (2.44)

and it is easy to show why. Consider the transformed data z and compute its

covariance matrix Cz:

E{zzT} = VE{xxT}VT = D−1/2ETEDETED−1/2 = I (2.45)

as matrix E is orthonormal by definition.

It has to be noted that any orthonormal transformation of matrix V is still a whiten-

ing matrix. It can be shown easily considering the matrix UV and evaluating the
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a) b) c)

Figure 2.1: Example of whitening and ICA of a bidimensional random vector. a)

Raw bidimensional data, b) whitened data, c) independent components.

covariance matrix of z = UVx

E{zzT} = UVE{xxT}VTUT = UIUT = I (2.46)

It is evident that, at the end of whitening process, vector z will have uncorrelated

components. As shown in section 2.3.2, this does not mean that its components

will be independent. However the search for independent components, while start-

ing from whitened data, will consist just of a suitable orthogonal transformation of

whitened data, as we have assumed data to have unit norm.

To better clarify this concept, it may be useful considering a simple example involv-

ing a two dimensional random variable, whose marginal densities are uniform. In

left panel of fig. 2.1 raw data are plotted. Marginal densities of the bidimensional

vector are obtained considering data on X and Y axes. It is evident that the joint

density is not the product of the marginal densities (this can be also seen e.g. by

observing that knowing that x has a value in the left part of the two-dimensional

plot, gives a lot of information on possible y value). In the center panel the whitened

signals z are depicted. It is to be noted that in this case variance is normalized for

each signal, and they are uncorrelated, but still they are not independent. In the

last panel independent decomposition of original data is depicted. Now it is evident

how the knowledge on one variable cannot any more influence the knowledge on the

other one.

To sum up, whitening performs a rotation and a scaling of the original signals, such

that they are uncorrelated and have unit variance. There are infinite ways of per-

forming whitening, as shown in eq. (2.46), but only one is the overall transformation

that leads to independence.

There are some cases, especially while dealing with structured data like time-

series, where some kind of filtering before independent component separation may
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be useful. As a linear filter in the discrete domain can be obtained by multiplying

data by a suitable matrix, it is always possible to pre-filter data without alter-

ing the model properties. In fact, considering the data matrix X whose columns

are different time points of the observation (and thus different realizations of the

multidimensional random vector), the ICA model can be expressed as follows:

X = AS (2.47)

Filtering of X corresponds to multiplying X from the right by a matrix, let us call

it M. This gives:

X∗ = XM = ASM = AS∗ (2.48)

that means that the components are filtered by the same filtering that was applied

on the mixtures. They are not mixed up in S, however, because the matrix M is,

by definition, a component-wise filtering matrix. Since the mixing matrix does not

change, it is possible to use the filtered data to perform ICA estimation, and then

use the same mixing matrix on the original data to obtain the components.

2.7 Principles for solving an ICA problem

As shown in section 2.4, solving an ICA problem basically means finding a matrix

W such that y = Wx has components maximally statistically independent. As

usually it is rather difficult to estimate the joint probability density function, several

ways to estimate independence are employed. In general, to find an independent

decomposition of original data, an objective function that denotes independence

is defined, and an optimization procedure is chosen to maximize or minimize it.

Both the objective function and the optimization procedure account for the overall

performances of the ICA separation. In particular:

• The statistical properties, like consistency, asymptotic variance and robust-

ness, depend on the choice of the objective function

• the algorithmic properties, like convergence speed, memory requirement and

numerical stability, depend on the optimization algorithm

These two classes of properties are in most cases independent, meaning that different

optimization procedures may be employed in order to optimize a given objective

function.
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Focusing now on the objective functions, it is to be noted that there are mainly

two classes of functions, those who estimate all the components together, and those

that estimate one component at a time. Even if the first class seems to be more

“related” to the problem of estimating independence (as, obviously, independence is

defined among all the components), nonetheless the one-unit contrast functions have

some appealing properties. There are some advantages in using one-unit contrast

functions:

• In many applications, it is not necessary to estimate all the components. In

particular, if the maximization (or minimization) is carried out by means of

some global optimization procedure, extraction can be halted at a certain

point without considering all the components.

• It is not necessary to have a prior knowledge on the number of independent

sources in the problem, since the independent components can be estimated

one at a time.

• In some cases evaluation of the contrast function may be rather less compu-

tationally demanding, in terms of memory usage.

As previously stated, the intrinsic difficulty in directly estimating independence,

leads to the use of different criteria to achieve independence. Many of the objective

functions proposed in literature start from information theoretic criteria, or from

non-linear decorrelation principles. In the following sections, several objective func-

tions will be shown, starting from the multi-unit ones in sections from 2.7.1, to 2.7.5

and moving to one-unit ones in section 2.7.6.

2.7.1 Information Maximization (INFOMAX)

One of the most used approach, is based on a neural network implementation. As

show in 2.3.6, minimization of mutual information is a very “natural” way of looking

for independence. However the estimate of mutual information has the drawback of

needing the estimation of probability densities functions, that may be sometimes too

complex. To overcome this problem, a neural network approach has been proposed

in [24] where, by maximizing the differential entropy of the output, it is possible

to minimize mutual information, and thus to achieve independence. To simplify,

consider only a bi-dimensional vector y = (y1, y2), that is the output of a neural
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network with input x. The joint differential entropy (section 2.3.5) of the output y,

can be expressed in the following way:

H(y1, y2) = H(y1) +H(y2)− I(y1, y2) (2.49)

As seen in 2.3.6, if two random variables y1 and y2 are independent, their mutual

information is zero, otherwise it is positive. Therefore, by minimizing mutual infor-

mation between the output of the neural network one maximizes network output

entropy. According to [24], output entropy of the network, whose nonlinearity is

g(x), is obtained when the high density parts of probability density function of x

are aligned with the high sloping parts of nonlinearity g(x). In particular, a logistic

transfer function is chosen:

g(x) =
1

1 + e−u , u = wx+ w0 (2.50)

Thus output entropy maximization is performed by means a stochastic gradient

optimization, which leads to the learning rules for the two parameters of the transfer

function w and w0:

∆w ∝ 1

w
+ x(1− 2y), (2.51)

∆w0 ∝ x(1− 2y) (2.52)

Generalization to the multidimensional case is straightforward, and considering the

input x and the output y of a network whose transfer function is a multidimensional

sigmoid y = g(u),u = Wx + w0, we have the following learning rules:

∆W ∝ [WT ]−1 + (1− 2y)xT (2.53)

∆w0 ∝ 1− 2y (2.54)

There are some cases, however, where INOFMAX algorithm, in the version presented

in (2.53) and (2.54), fails to recover the sources. This happens especially in the

case of presence of sub-Gaussian sources. To overcome this drawback, in [102]

an extension of the algorithm has been proposed, based on maximum likelihood

estimation, that will be treated in section 2.7.2

2.7.2 Maximum Likelihood Methods

Maximum Likelihood (ML) estimation is a powerful tool widely used in statistical

estimation, and ML approaches have been employed in ICA literature, as well. The
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first approaches using ML principles can be found in [66, 145]. ML estimation has

some desirable properties in terms of consistency and asymptotic efficiency, but its

effectiveness rely on the choice of the parameters of the estimate. To illustrate this

aspect, it may be useful to remind eq. (2.33), and, by means of eq. (2.4), to derive

the likelihood for an ICA model:

x = As (2.55)

Considering unmixing matrix W and eq. (2.4), it is possible to express the pdf of

x in terms of the pdf of y:

px(x) = | detW | ps(s) = | detW |
∏

i

pi(si) (2.56)

where pi denotes the densities of the independent components. Eq. (2.56) can be

expressed in terms of x and W = (w1, . . . ,wm)T , giving:

px(x) = | detW |
∏

i

pi(w
T
i x) (2.57)

Assuming that we there are T observations available, then using eq. (2.30), the

likelihood function becomes:

L(W) =
T∏

t=1

m∏

i=1

pi(w
T
i x(t)) | detW | (2.58)

As shown in section 2.3.7, it is possible to use a logarithm of likelihood, as monotonic-

ity of logarithm preserves maxima of the likelihood function. Moreover, the log-

likelihood can be expressed in terms of sums rather than products:

logL(W) =
T∑

t=1

m∑

i=1

log pi(w
T
i x(t)) + T log | detW | (2.59)

To simplify notation, considering the expected value over time, it holds:

1

T
logL(W) = E{

m∑

i=1

log pi(w
T
i x(t))}+ T log | detW | (2.60)

One non trivial aspect of this approach is that the pi indicated in (2.56)- (2.60) is

the probability density function of the unknown sources. Therefore the pdf of the

sources has to be estimated and this may be a hard problem, since it is, in general,

a nonparametric problem. However there are some cases where the distribution of
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sources is known a priori, and in this case the log-likelihood would be a function of

the only unmixing matrix W. If this is not the case, it is possible to overcome this

problem by approximating the densities of the independent components by means

of a family of densities that are specified by a limited number of parameters. If

the number of parameters is considerably high, there is no gain in such approach.

However, it is possible to approximate almost any function by means of an extremely

simple family of densities, as stated in the following theorem.

Theorem 7. Denote by p̃i the assumed densities of the independent components

and

gi(si) =
∂

∂si

log p̃s(si) =
p̃i

′(si)

p̃i(si)
(2.61)

Constrain the estimates of the independent components yi = bT
i x to be uncorre-

lated and to have unit variance. Then the ML estimator is locally consistent, if the

assumed densities p̃i fulfill:

E{sigi(si)− g′(si)} > 0 (2.62)

for all i.

This theorem has been presented in different forms in [4], [39] and [80], and here

we are referring to the formulation presented in [80], where there is the constraint

of norm unit, that simplifies the theorem. The theorem shows also that small

misspecifications in the densities pi do not affect the consistency of the estimator,

since sufficiently small changes do not change the sign in (2.62).

Moreover, the Theorem shows also how to construct families consisting of only two

densities, so that the condition (2.62) is true for one of those densities. Consider

the following two log-densities:

log p̃i
+(s) = α1 − 2 log cosh(s) (2.63)

log p̃i
−(s) = α2 − [s2/2− log cosh(s)] (2.64)

where α1 and α2 are positive parameters that are fixed so that the two functions

are actually logarithms of probability densities.

It is easy to show that one of the two densities fulfills the condition of Theorem 7.

In fact, it can be shown that, for density in (2.63), condition (2.62) becomes:

E{sigi(si)− g′(si)} = 2E{− tanh(si)si + (1− tanh(si)
2)} (2.65)
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while for density in (2.64), condition (2.62) is:

E{sigi(si)− g′(si)} = 2E{tanh(si)si − (1− tanh(si)
2)} (2.66)

As the signs of the two expressions are always opposite, for almost any distribution,

one of the two densities will fulfill Theorem 7. Of course, for some distributions the

sign of (2.65) and (2.66) may be zero , but such cases are considered very rare (and

correspond to the case of perfect Gaussianity, that is reasonably unfrequent).

Performing a ML estimation of the ICA model consists of maximizing the likelihood

or log-likelihood function, as seen in this section. As guaranteed by Theorem 7,

it is possible to approximate almost any kind of density of the sources by means

of relatively simple density family. Moreover, it is possible to see the INFOMAX

algorithm as a ML estimation (see [38],[129] and [141]). In the following sections,

a ML formulation of the INFOMAX algorithm, presented in section 2.7.1, will be

presented, together with the natural gradient method.

INFOMAX Algorithm

It is possible to derive a simple form of a ML estimation by means of a gradient

method. Considering eq. (2.60) and differentiating with respect to W, we obtain:

1

T

∂ logL

∂W
= [WT ]−1 + E{g(Wx)xT} (2.67)

where g(y) = (g1(y1), . . . , gm(ym)) is a component-wise vector function that consists

of the negative score functions gi of the distribution of si, defined as:

gi = (log pi)
′ =

pi
′

pi

(2.68)

It is possible to derive an optimization algorithm based on a gradient optimization,

using (2.67):

∆W ∝ [WT ]−1 + E{g(Wx)xT} (2.69)

and, in case of stochastic optimization, where the expected value is omitted, we

have:

∆W ∝ [WT ]−1 + g(Wx)xT (2.70)

The eq. (2.70) is a generalization of eq. (2.51), where in this case g can be one

chosen using the two functions in (2.63) and (2.64), according to super-Gaussianity

31



CHAPTER 2. ICA: GENERAL PRINCIPLES

Figure 2.2: Score functions for Maximum Likelihood estimation: g+ in eq. (2.71) in

solid line and g− in eq.(2.72) in dashed line.

or sub-Gaussianity.

In case of super-Gaussian sources, using (2.63), we have

g+(y) = −2 tanh(y) (2.71)

while for sub-Gaussian sources, using (2.64), the score function is:

g+(y) = tanh(y)− y (2.72)

The two nonlinearity are depicted in Fig. 2.2 The choice between the two nonlin-

earities in (2.71) and (2.72) can be made by computing the nonpolynomial moment:

E{− tanh(si)si + (1− tanh(si)
2)} (2.73)

using some estimates of the components: if this polynomial moment is positive, the

nonlinearity in (2.71) should be used, otherwise the nonlinearity in (2.72) should be

used. This procedure has to be employed while performing iterations, and one may

switch between the two nonlinearities during the extraction.

This algorithm, however, converges very slowly, especially due to the inversion of

matrix W, that is needed in every step. To improve the convergence, one may use

whitened data (section 2.6), and especially use the natual gradient, that is explained

in next section.

32



2.7. Principles for solving an ICA problem

Natural Gradient

The Natural Gradient method simplifies the maximization of the likelihood con-

siderably, and makes it better conditioned. It is based on the observation that,

in an Euclidean orthogonal coordinate system, the steepest direction is the one of

the gradient, while if the parameter space has a Riemannian metric structure, the

steepest direction is given by the so called natural gradient. For further details, see

[3]. In our case, the use of this principle amounts to multiplying the right hand side

of (2.69) by WTW, obtaining:

∆W ∝W + (E{g(Wx)xTWT})W = (I + E{g(y)yT})W (2.74)

Interestingly, this algorithm can be interpreted as nonlinear decorrelation, that will

be treated in section 2.7.3

Bayesian formulation of the INFOMAX algorithm

It is possible to look at the INFOMAX algorithm from a different point of view.

In fact, in [93], Knuth proposed a Bayesian framework for blind source separation

that leads to the INFOMAX update rule. The natural starting point of a Bayesian

approach is, of course, the Bayes theorem, that in our case allows to express the

probability of the model in terms of the likelihood of the data and the prior proba-

bility of the model and the data:

P (model |data, I ) =
P (data |model, I )P (model |I )

P (data |I )
(2.75)

where I represents the prior information on data or model. For a source separation

problem, the model in eq. (2.75) becomes:

P (A, s |x, I ) =
P (x |A, s, I )P (A, s |I )

P (x |I )
(2.76)

With the assumptions of linear mixing, of independence of the sources si, expressed

in form of priors, the optimization process that leads to the solution is:

∆W = W +

(
p′i(ui)

pi(ui)

)
uTW (2.77)

where, as usual, pi denotes an estimate of the pdf of the source si.
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2.7.3 Nonlinear decorrelation

As shown in section 2.3.2, if two random variables are uncorrelated, this do not nec-

essarily imply that they are independent. On the contrary, if two random variables

are independent, they will surely be uncorrelated. In the following of the section

we will consider zero-mean random variables, whose correlation and covariance are

equal. Extending the concept of correlation, it is possible to define the nonlinear

correlation of two random variables y1 and y2 in the following way:

Efg = E{f(y1)g(y2)} (2.78)

where f and g are two functions of which at least one is nonlinear. The two ran-

dom variables y1 and y2 are said to be nonlinearly uncorrelated, if their nonlinear

correlation is zero, for a given couple of functions f and g:

E{f(y1)g(y2)} = 0 (2.79)

Considering two random variables, it is possible to infer something about their

independence starting from their nonlinear uncorrelatedness? There is a general

theorem (see [80]) that states that two random variables y1 and y2 are statistically

independent if and only if

E{f(y1)g(y2)} = E{f(y1)}E{g(y2)} (2.80)

for all continuous functions f and g that are zero ouside a finite interval. To

use the theorem in order to look for independence, it is necessary to make some

approximations, as f and g are completely arbitrary. In particular, in [88] it has been

proposed an approach to achieve independence by means of nonlinear decorrelation.

To overcome some of the drawbacks of this algorithm, in [43] a modified version has

been proposed. In the following sections, the two algorithms will be illustrated. It

has to be noted that the Jutten-Hérault algorithm is highly inefficient, if compared

with other algorithms, but is one of the first works in the ICA topic (together with

the work of Comon [45]), and thus it is worth explaining with some details its

properties

The Jutten-Hérault algorithm

Consider the two functions f and g considered in (2.78): assume that both have

derivatives of all order in the neighborhood of the origin. They can be expanded in

Taylor series:
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f(y1) = f(0) + f ′(0)y1 +
1

2
f ′′(0)y2

1 + . . . =
∞∑

i=0

fiy
i
1 (2.81)

f(y2) = g(0) + g′(0)y2 +
1

2
g′′(0)y2

2 + . . . =
∞∑

i=0

giy
i
2 (2.82)

where fi, gi is shorthand for the coefficients of the ith powers in the series. The

product of the functions is then

f(y1)g(y2) =
∞∑

i=0

∞∑

j=0

figjy
i
1y

j
2 (2.83)

Condition (2.79) now becomes:

E{f(y1)g(y2)} =
∞∑

i=0

∞∑

j=0

figjE{yi
1y

j
2} (2.84)

A sufficient condition for (2.84) can be:

E{yi
1y

j
2} = 0 (2.85)

for all indices i, j appearing in the series expansion.

There may be, however, some situations where higher order correlations are not

zero, but the coefficients fi and gi happen to be suitable to cancel the terms and

make the sum in (2.84) exactly zero. However, for nonpolynomial functions that

have infinite Taylor expansions, such spurious solutions can be be considered un-

likely.

A sufficient condition for (2.85) is that y1 and y2 are independent and one of E{yi
1},

E{yj
2} is zero ([80]). Let us require that E{yi

1} = 0 for all powers i appearing in its

series expansion: this is only possible when f is an odd function (in fact, unless y1 is

a constant, the moment of second order, i.e. its variance, cannot be zero, therefore

in order to satisfy the condition f must have a Taylor expansion such that even

coefficients f2k are zero). To conclude, a sufficient, but not necessary condition for

the nonlinear uncorrelatedness condition (2.79) is that y1 and y2 are independent,

and for one of them the nonlinearity is an odd function.

Guided by this principles, Jutten , Herault proposed in [88] a neural network archi-

tecture with feedback presented in the bidimensional case in Fig. 2.3.

The model of the ICA problem, in the bidimensional case, is the following:
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Figure 2.3: Jutten-Hérault feedback architecture for source separation

x1 = a11s1 + a12s2 (2.86)

x2 = a21s1 + a22s2 (2.87)

From Fig 2.3 we have:

y1 = x1 −m12y2 (2.88)

y2 = x2 −m21y1 (2.89)

Defining a matrix M with off-diagonal elements m12 and m21 and diagonal elements

equal to zero, equations (2.88) and (2.89) can be expressed as:

y = x−My (2.90)

therefore the input-output mapping of the network can be expressed as:

y = (I + M)−1x (2.91)

It has to be noted that if I+M = A, then the output of the neural network becomes

equal to the independent components. To obtain independence of the output, the

authors have proposed the nonlinear correlations criterion, and used the following
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learning rules:

∆m12 ∝ µf(y1) g(y2) (2.92)

∆m21 ∝ µf(y2) g(y1) (2.93)

where µ is the learning rate and f(y) = y3 and g(y) = arctan y, according to the

previous considerations in this section. The algorithm has several drawbacks, and

does not work efficiently if the sources are bad scaled or if the mixing matrix is

ill-conditioned. Moreover, the inversion of matrix (I+M) at each iteration is rahter

computationally demanding. To overcome these problems, in [43] has been proposed

an extension, and it will be presented in the next section

The Cichocki-Unbehauen algorithm

To overcome the problems of the feedback architecture proposed by Jutten and

Hérault presented in Fig. 2.3, Cichocki and Unbehauen proposed a feedforward

architecture with weight matrix B, with the mixture input vector x and the output

y = Bx. The aim of the optimization is to adapt the matrix B so that the output

elements are independent. The learning algorithm proposed is:

∆B ∝ µ[Λ− f(y)g(yT )]B (2.94)

where µ is, as usual, the learning rate, Λ is a diagonal matrix whose elements deter-

mine the amplitude scaling for the output, and f and g are two nonlinear functions,

where f(x) indicates a column vector whose elements are f(x1), f(x2), . . . , f(xn).

The authors proposed a polynomial and the hyperbolic tangent as a choice for the

nonlinearities.

Once we have convergence for this algorithm, the output will be nonlinearly uncor-

related, as it will hold:

Λ− E{f(y)g(yT )} (2.95)

and, as Λ is a diagonal matrix, it will hold:

E{f(yi)g(yj)} = 0, ∀ i 6= j (2.96)

As shown in section 2.7.2, this algorithm has a close relationship with the Max-

imum Likelihood method. In fact, choosing nonlinearities according to what stated

in 2.7.2, and using the natural gradient to optimize the log-likelihood, one obtains
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the same algorithm. In general, many of the ICA methods presented throughout

this chapter have some kind of theoretical connection, and it will be presented more

systematically in section 2.7.7.

2.7.4 Nonlinear PCA criterion

As seen in section 2.3.4, PCA is a powerful tool to have a representation of a

dataset in terms of minimum square compression error. PCA is based on second

order statistics, while ICA uses all the statistics. Therefore it is straightforward

the extension of the PCA criterion to a nonlinear version, such that higher order

statistics can be accounted for. It is useful to remind the linear PCA criterion for

minimum square compression error presented in eq. (2.16):

JPCA
MSE = E{‖x−

n∑

i=1

(wT
i x)wi‖2} (2.97)

The aim of the nonlinear criterion is to use a suitable nonlinear function such that

higher order statistics are considered while performing minimization. The nonlinear

PCA criterion ([133, 90]) can be formulated as the problem of minimizing a new

cost function related to data as in (2.16) but with an additional nonlinearity:

JNLPCA(W) = E{‖x−Wg(WTx)‖2} (2.98)

where g(x) is the vector obtained by applying a nonlinear function g(x) to the

vector x. In [133], it was proposed to use as nonlinearities some odd functions as

g(t) = tanh(t) or g(t) = t3, and it was proposed a minimization of the criterion by

means of a stochastic gradient descent, giving the following update rule:

∆W ∝ [x−Wg(WTx)]g(xTW). (2.99)

For this particular criterion, it is not necessary to perform whitening of data, as

the optimum solution Wopt is an orthogonal matrix, regardless of the whitening

constraint.

As the optimization criterion proposed in (2.99) is demanding in terms of memory

and time, in [89] it has been proposed a Least Square Method (LSM) to optimize

the contrast function. In section 2.7.7, it will be shown that the nonlinear PCA

criterion is intimately connected with Maximum Likelihood estimation.
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2.7.5 Use of Time-structure

The algorithms presented in this section are considerably different from the others,

and some of the considerations that lead to use this kind of algorithms will be done

also in Chapter 6. The basic idea behind these algorithm is that, while dealing with

structured signals, classical ICA techniques tend to neglect the structure of data,

therefore it could be useful to use the information about such structure during ex-

traction. These algorithms, actually, can perform extraction also in the cases where

classical ICA fails, but have some more limitation not present in other formulations.

Consider a random vector x ∈ ℜm and consider T realizations of such vector. Data

can be stored in a matrix X ∈ ℜm×T , where each row represents an observed signal,

and each column is a realization of the random vector at a given time point. Suppose

that data have a intrinsic structure (like, for instance, audio signals), and suppose

to shuffle all the columns such that this information is lost. Classic ICA techniques

will not be affected by this procedure, as the statistics will be preserved, however the

structure of data is lost in the shuffling process, and so some information available

will be unused. To overcome this drawback, some techniques have been proposed

to extract independent components with time structure.

The simplest form of time structure is given by linear autocovariances, that are the

covariances between the values of the signal at different time points: cov(xi(t)xi(t−
τ)), where τ is some lag constant. In addition to autocovariances, it is possible

to consider also covariances between two different signals: cov(xi(t)xj(t− τ)) with

i 6= j. To consider all these statistics in compact form, the time-lagged covariance

matrix can be considered:

Cx
τ = E{x(t)x(t− τ)T} (2.100)

As seen in sections 2.3.4 and 2.4, performing a whitening of data is not enough

to achieve independence. There is an infinite number of linear transformations

that give decorrelated components, therefore higher order statistics are used to

add some information to the separation to achieve also independence. The second

order statistics approaches, instead, do not take this additional information from

higher order statistics, but from the lagged covariance matrix Cx
τ , starting from the

consideration that if x1 and x2 are independent, not only their cross-covariance will

be zero, but also the lagged cross-covariances for any lag. This means that we are

looking for a linear transformation W of data x such that the vector y has these
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two properties:

E{yi(t)yj(t)} = 0 ∀i 6= j (2.101)

E{yi(t)yj(t− τ)} = 0 ∀i 6= j,∀τ. (2.102)

While (2.101) alone would lead to uncorrelatedness, the conbination of (2.101) and

(2.102) leads to independence, without using high order statistics. Two approaches

have been proposed, using these considerations, and are based on the use of a single

lag or a set of several lags.

Techniques with one lag

In the simplest case, one may consider only one lag in the lagged covariance ma-

trix, and find a linear transformation of data x such that (2.101) and (2.102) hold.

Suppose data have been whitened, so we have, instead of x, a data vector z whose

components are uncorrelated (at lag zero), as seen in (2.42). The target separating

matrix W is such that:

Wz(t) = s(t) (2.103)

Wz(t− τ) = s(t− τ) (2.104)

A modified version of the lagged covariance matrix seen in eq. (2.100) is used in

these algorithms, and precisely:

C
z

τ =
1

2
[Cz

τ + (Cz
τ )

T ] (2.105)

and, by linearity and orthogonality and eqq. (2.103)–(2.104) we have:

C
z

τ =
1

2
WT

[
E{s(t)s(t− τ)T}+ E{s(t− τ)s(t)T}

]
W = WTC

s

τW (2.106)

As s is the vector of the independent components, its lagged covariance matrix

C
s

τ will be diagonal, therefore we have that the lagged covariance matrix C
z

τ of

whitened data z can be decomposed by means of its eigenvalues and eigenvectors

C
z

τ = WTDW and its eigenvalues are the lagged autocovariances of the sources.

Some algorithms based on these criterion have been proposed in [124] and [165]

(AMUSE).

Although this approach is very simple and fast to compute, it only works if the

eigenvalues of the lagged covariance matrix are uniquely defined. If some of the

40



2.7. Principles for solving an ICA problem

eigenvalues are identical, the corresponding eigenvectors cannot be uniquely defined,

therefore the corresponding IC cannot be estimated. To overcome this problem, it

is possible to search for a suitable lag such that all the eigenvalues are distinct,

but it could be not possible in the case signals have the same power spectra (and,

subsequently, the same autocovariance).

Techniques with several lags

To overcome some of the problems presented in previous section, algorithms that

consider multiple lags have been developed, performing simultaneous diagonaliza-

tion of lagged covariance matrices. As it is highly unlikely that the eigenvectors

of different lagged covariance matrices are the same, a measure of how good the

diagonalization is must be introduced. One suitable choice is:

off(M) =
∑

i6=j

m2
ij (2.107)

that is the sum of the squares of the off-diagonal elements of matrix M.

Multiple lags algorithms are based on a set S of chosen lags, and are based on the

minimization of a contrast function related to eq. (2.107)

J1(W) =
∑

τ∈S

off(WC
z

τW
T ) (2.108)

Minimization can be performed by means of gradient descent, or by adapting the

existing methods for eigenvalue decomposition to this simultaneous approximate

diagonalization of several matrices. The algorithm called SOBI (Second-order blind

identification), that is based in these considerations, has been proposed in [26],

and also the algorithm called TDSEP (Temporal Decorrelation source SEParation)

has been proposed in [180]. Different improvements to these techniques have been

proposed, in particular in [175] an optimal way of weighting the different lags have

been proposed.

If compared with classical ICA techniques, second order methods have the advantage

of dealing also with Gaussian sources. However, if the sources have all the same

power spectra (and thus autocovariance), second order methods will fail in recovering

the sources, while higher order techniques will not suffer from this limitation.
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2.7.6 Maximization of Non-Gaussianity

As seen in sections 2.4 and 2.5, Gaussianity is “forbidden” while looking for inde-

pendent components. As seen before, if more than one component has a Gaussian

probability density, the model will not be identifiable and far from separable. This

information, combined with the Central Limit Theorem (CLT), can provide a useful

criterion to achieve independence in a linear mixture.

Consider n independent random variables {x1, . . . , xn} with mean and variance

{µ1, . . . , µn} and {σ2
1, . . . , σ

2
n} respectively. Consider now the random variable ob-

tained as a sum of xi:

x =
n∑

i=1

xi (2.109)

Due to the independence of the xi, the mean of x will be µ =
∑n

i=1 µi and the

variance will be σ2 =
∑n

i=1 σ
2
i . The Central Limit Theorem states that, under

certain general conditions ([151, 137]), the probability density function of x tends

to the normal density as the number of components n increases. The theorem can

be stated as a limit considering the new variable z = (x− µ)/σ, giving:

lim
n→∞

f(z) =
1√
2π

e−z2/2 (2.110)

For a proof, see [137]. The Theorem guarantees that, if the number of signals tends

to infinity, the probability density will be described as a Gaussian. However, if

the variables have the same distribution, around 30 signals will turn to be enough

such that the distribution of the sum is Gaussian. Moreover, in the case of smooth

densities, a value of n as low as 5 can be used ([137]).

Starting from the CLT, it is possible to consider a way of maximizing independence

by means of non-Gaussianity. Loosely speaking, consider a set of independent signals

s, and consider the observation x after the linear combination by means of mixing

coefficients A. To recover the sources one has to look for the combination of the

original data y = Wx such that the components of y are maximally statistically

independent. It is possible to see the problem of finding the best transformations

of data in terms of Gaussianity. Starting from what stated in 2.4 and 2.5, it is

necessary, for the ICA model to hold, that there are no Gaussian sources (at most

there can be only one). Therefore we can assume that the original sources have a

non-Gaussian distribution, and, by means of the Central Limit Theorem, state that

a linear combination of the sources will have a pdf that is closer to a Gaussian or
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at most equal to one of the sources. Consider a particular combination y of the

observations x by means of vector wT : y = wTx and consider its non-Gaussianity

(measured by some suitable criterion, that will be explained later). Knowing that

there is a generative model behing the observations x = As, it is possible to express

any linear combination of the observed (known) signals in terms of sources: y =

wTAs = bT s where b = ATw. The combination b that guarantees the maximum

non-Gaussianity is the one that considers a single source: in fact, a combination of

two or more non-Gaussian sources will have a pdf more Gaussian than the original

terms in the sum.

All that is needed to point out non Gaussianity is a function of random variable

that has a value f for a Gaussian pdf and a value f ′ for any other distribution, such

that it always holds f ≥ f ′ (or f ≤ f ′), where the equality holds only when f ′ has

a Gaussian density.

One candidate as a discriminating function over Gaussianity is kurtosis, that is

defined as the fourth order cumulant, and has the property of being always null

for Gaussian distribution and nonzero for (almost) all non-Gaussian distributions.

Another more information theory based way of looking for non-Gaussianity is to

maximize negentropy. Those two approaches will be discussed in the two sections.

Non-Gaussianity using cumulants

To define the concept of cumulant, recall the first characteristic function (c.f.) de-

fined in section 2.5, eq. (2.38). By considering the terms of the Taylor expansion

around 0 of the c.f. it is possible to estimate all the moments of a random variable

(in fact, the characteristic function is also called moment generating function).

The second characteristic function φ(ω) of a random variable x, called also cumulant

generating function, is given by the natural logarithm of the first c.f.:

φ(ω) = ln(ψ(ω)) = ln(E{(ejωx)}) (2.111)

and, expanding φ(ω) by means of Taylor series, we have:

φ(ω) =
n∑

k=0

κk
(jω)k

k!
(2.112)

where the k-th cumulant is obtained as the derivative

κk = (−j)k d
kφ(ω)

dωk

∣∣∣∣
w=0

(2.113)
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In general, the cumulants of all orders can be expressed as a combination of mo-

ments, but usually it is preferable to work directly with cumulants , because they

present in a clearer way the additional information provider by higher order sta-

tistics. Moreover, cumulants show additional properties not shared by moments

([80]):

• Given two independent random vectors x and y having the same dimension,

then the cumulant of their sum z = x+y is equal to the sum of the cumulants

of x and y. The property also holds for the sum of more than two independent

random vectors.

• If the distribution of the random vector x is multivariate Gaussian, then all

its cumulants of order three and higher are zero.

The fourth order cumulant, as defined before, is also called kurtosis, and for a zero

mean random variable it holds:

kurt(x) = κ4 = E{x4} − 3[E{x2}]2 (2.114)

According to the sign of kurtosis, it is possible to classify the distribution of a

random vector x. Consider κ = kurt(x), then:

• If κ = 0: x has a Gaussian distribution

• If κ > 0: x has a supergaussian distribution (Leptokurtic)

• If κ < 0: x has a subgaussian distribution (Platikurtic)

Supergaussian distributions, depicted in fig. 2.4.(b), have tipically a “spiky”

pdf with heavy tails, having larger values at zero and at at the tails, while being

smaller in the central values, if compared with a Normal density. On the other

hand, subgaussian pdfs (2.4.(c)) are rather constant near zero and very small for

larger values of the variable. A typical example of supergaussian variable is given

by Laplace density, while a uniform density is subgaussian. There are also some

nongaussian random variables that have zero kurtosis, but they can be considered

very rare ([80]).

The computation of kurtosis, in the case of zero mean and unit standard deviation

variables (that happens often while dealing with ICA after preprocessing), reduces to

the computation of the fourth order moment, and also all the analysis are simplified
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a) b) c)

Figure 2.4: Probability distributions at different kurtosis. a) Gaussian distribution

(κ = 0), b) Supergaussian distribution (κ > 0), compared with a Gaussian (dashed

line) c) Subgaussian distribution (κ < 0), compared with a Gaussian (dashed line).

by the fact that the sum of independent signals has a kurtosis that is the sum of the

kurtosis of the single variables. In general, for any linear combination y = b1s1+b2s2

of two independent random variables, it holds:

kurt(y) = kurt(b1s1 + b2s2) = b41kurt(s1) + b42kurt(s2) (2.115)

Therefore, the linear transformation that points out a local maximum in the absolute

value of kurtosis (i.e. considering both supergaussian and subgaussian sources),

leads to an independent component.

However, it is clear that a measure based on the fourth order moment can be rather

sensitive to outliers. In fact, considering a pdf centered around zero, if there is a

measurement error that leads to a value extremely outside the range of values of

the variable, the kurtosis, that is basically based on the fourth power of data, will

be heavily affected by this error. Therefore kurtosis is not a robust measure for

independence, and this could be a problem in real world problems, where usually

noise heavily affects measurements. Therefore a different approach has been pro-

posed in literature to overcome this problem, and it is the one based on Negentropy,

presented in the following section.
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Non-Gaussianity using Negentropy

Negentropy has been defined in section 2.3.5, eq. (2.25), and it has been shown

how it could be used as a measure of “distance” between a random variable density

and a Gaussian density with the same mean and variance. Moreover, negentropy is

invariant for linear invertible transformation, unlike classical entropy.

This properties make negentropy a suitable function for pointing out independence,

with a rigorous theoretical background and with more robustness with respect to

noise and outliers, if compared with cumulants. Of course, to properly estimate

the negentropy of a random variable, one needs to know exactly the probability

density of the variable, that in the majority of the cases is not feasible. Thus some

approximations of negentropy J(y) of a random variable y with zero mean and unit

variace have been provided.

The classical method of approximating negentropy is by means of cumulants, giving:

J(y) ≈ 1

12
(E{y3})2 +

1

48
(kurt(y))2 (2.116)

Of course, the approximation in eq. (2.116) does not give any help in terms of

robustness to outliers, as it is defined by means of moments and cumulants. In [80]

a different approximation of negentropy can be found, and it is based on expectations

on nonquadratic functions:

J(y) ≈ k1(E{Ga(y)})2 + k2(E{Gb(y)} − E{Gb(ν)})2 (2.117)

where Ga and Gb are two nonquadratic functions, with Ga odd and Gb even, ν is a

Gaussian variable with zero mean and unit variance (as the variable y), and k1 and

k2 are positive constants.

The previous approximation can be done also by means of a single function G in

the following way:

J(y) ≈ k[E{G(y)} − E{G(ν)}]2 (2.118)

The quality of the approximation heavily rely on the choose of G function, and

choosing a G that does not grow too fast helps making a more robust estimation.

Two good choices for G are the following:

G1(y) =
1

a
log cosh ay (2.119)

G2(y) = − exp(−y2/2) (2.120)
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Figure 2.5: Nonlinearities for negentropy approximation: G1(y) in solid line, G2 in

dashed line and G3(y) (kurtosis) in dash-dotted line

where 1 ≤ a1 ≤ 2 is some suitable constant, often taken as 1. Also kurtosis can

be expressed in the same form, choosing G3(y) = y4. These three approximating

functions are depicted in Fig. 2.5.

2.7.7 Connection between independence estimation princi-

ples

It is possible to find some connections between the different solutions to the ICA

problem presented from section 2.7.1 to 2.7.6. In fact many of the algorithms pre-

sented are related to the mutual information maximization approach.

Mutual information (see section 2.3.6) is related to the degree of independence of

a set of random variables. For a linear transformation y = Bx, equation (2.26)

becomes:

I(y1, y2, . . . , yn) =
∑

i

H(yi)−H(x)− log | det B | (2.121)

If we constrain the yi to be uncorrelated and of unit variance, the the last term

on the right hand side is constant. In fact it does not depend on B: consider the

covariance matrix Cy = E{yyT} = BE{xxT}BT , and for independence and unit

variance it holds: Cy = I. It is possible to show therefore that det B must be

constant:

det E{yyT} = det
(
BE{xxT}BT

)
= (det B)

(
det E{xxT}

)
(det BT ) = 1 (2.122)
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and, since det E{xxT} does not depend on the transformation B, detB must be

constant. Moreover, if yi has unit variance, its entropy and its negentropy will differ

only by a constant and the sign (see eq. (2.25)). Therefore, we obtain that:

I(y1, y2, . . . , yn) = const.−
∑

i

J(ji) (2.123)

that shows the relation between mutual information and negentropy: for a linear

transformation B, the minimization of mutual information leads to the maximiza-

tion of negentropy, and therefore to the maximization of non-Gaussianity of the

independent components. There is also a connection between mutual information

methods and ML based ones. In fact, consider eq. (2.60), that is reported for clarity

(inverting the position of the expected value and of the sum, always possible due to

the linearity of the two operators):

1

T
logL(B) =

m∑

i=1

E{log pi(b
T
i x(t))}+ T log | detB | (2.124)

If the estimates of the probability density of the sources pi was equal to the actual

densities, then the first term in the right hand side of the equation would be equal

to the entropy of those random variables (up to an additive constant and sign).

On the other side, it is possible to express the mutual information by means of an

approximation of the densities of the sources yi, and use this approximated densities

to evaluate the entropy. In this case, mutual information can be expressed as:

I(y1, y2, . . . , yn) = −
∑

i

E {Gi(yi)} − log | det B | −H(x) (2.125)

leading to almost the same algorithm as in the ML case.

It has been show in section 2.7.3 that the equations of the algorithms based on the

nonlinear decorrelation principle are of the same form of the ones of the ML case.

Thus, ML estimation gives a principle for choosing those nonlinearities.

It is possible to say, therefore, that almost all of the criteria here presented (excluding

second order methods) can be seen as different aspect of the same information

theoretic principles of mutual information or of maximum likelihood. Moreover also

non-Gaussianity search, derived from different principles (Central Limit Theorem)

is intimately connected with mutual information approach, and its validity is further

enforced by the rigorousness of the mutual information approach.
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2.8 FastICA algorithm

The algorithm known as FastICA [79] is one of the most popular ICA algorithms,

and both its speed and accuracy make it one of the most used in applications of

several kinds. The principle of FastICA is the maximization of non Gaussianity,

that is estimated by means of a negentropy approximation. As seen in section 2.7.6,

the maximization of non-Gaussianity leads to independence, as long as the original

sources do not have a Gaussian distribution (but it is not possible that more than

one component has a Gaussian pdf). It has been shown also that it is possible to

approximate negentropy in a robust way by means of nonlinear functions G.

Consider observed data vector x ∈ ℜm, and suppose that for x it holds the ICA

model (2.33): x = As, where s ∈ ℜm is the independent components vector, and

A ∈ ℜm×m is the mixing matrix. After performing the standard preprocessing (mean

removal and whitening, section 2.6), data will be represented by vector z ∈ ℜm,

with zero mean and with covariance matrix equal to identity matrix: Cz = I, where

z = Vs, as in eq. (2.42). In section 2.4 it has been shown that, due to double

indeterminacy both in sources and in the mixing matrix, sources are constrained to

be unit-norm, that is

‖s‖2 = 1. (2.126)

The aim of the algorithm is to find a linear transformation of data W such that

s = Wz. Considering eq. (2.126) and the fact that whitened data z are such that

‖z‖2 = 1 by definition, it holds for a single component s = wTz:

‖s‖2 = 1 = ‖wTz‖2 = ‖w‖2‖z‖ = ‖w‖2 (2.127)

therefore, equation (2.126) leads, for whitened data, to the constraint ‖w‖2 = 1.

Now it is possible to formulate the FastICA optimization in terms of whitened data

z and unmixing coefficients w for a single unit. The problem of maximizing an

estimate of negentropy J(wTz) becomes a problem of constrained optimization; in

fact, the problem can be formulated as

maximize JG(wTz)

under constraint ‖w‖2 = 1 (2.128)

where JG(wTz) = k
[
E{G(wTz)} − E{(ν)}

]
as seen in eq. (2.118).

The problem has 2n local constrained maxima. In fact if w is a solution, also −w
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will be a solution. In case of n component extraction, the additional constraint of

decorrelation for vectors wi must be added. Therefore, the complete problem can

be formalized as follows:

maximize
n∑

i=1

JG(wT
i z)

under constraint E{(wT
j z)(wT

k z)} = δj k (2.129)

The convergence of the algorithm to the independent components may not be en-

sured, since a “rough” approximation of negentropy is being used. However, it is

possible to prove that the approximation of negentropy of eq. (2.118) is good enough

for a wide class of functions G to guarantee convergence, as stated in the following

Theorem.

Theorem 8. Assume that the input data follows the ICA model with whitened data:

z = VAs, where V is the whitening matrix, and assume that G is a sufficiently

smooth even function. Then the local maxima (resp. minima) of E{G(wTx)} under

the constraint ‖w‖ = 1 include those rows of the mixing matrix VA such that the

corresponding independent component si satisfy

E{sig(si)− g′(si)} > 0 (resp. < 0) (2.130)

where g is the derivative of G and g′ is the derivative of g.

For a proof, see [80, 79]. The Theorem shows that practically any nonquadratic

function G may be used, as G divides the space of probability distributions into

two half-spaces: independent components whose distribution is in one of the half

spaces can be estimated by maximizing E{G(wTx)}, while those whose distribution

is in the other are estimated by minimizing the same function. The nonlinearities

g usually employed are the derivatives of the ones presented in eqq. (2.119) and

(2.120):

g1(y) = tanh(y) (2.131)

g2(y) = −y exp(−y2/2) (2.132)

g3(y) = y3 (2.133)

Those nonlinearities are depicted in Fig. 2.6.

Moreover, the previous theorem implies the following:
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Figure 2.6: Nonlinearities for FastICA algorithm: g1(y) = tanh(y) in solid line,

g2(y) = −y exp(−y2/2) in dashed line and g3(y) = y3 in dash-dotted line

Theorem 9. Assume that data follows the ICA model as in Theorem 8, and that

G is a sufficiently smooth even function. then the asymptotically stable points of a

gradient algorithm maximizing eq. (2.118) include the i-th row of the inverse of the

whitened mixing matrix VA such that the corresponding independent component si

fulfills:

E{sig(si)− g′(si)} [E{G(si)} − E{G(ν)}] (2.134)

where g is the derivative of G and ν is a standardized Gaussian variable

For a proof, see [80]. It has to be noted that if w equals the i-th row of (VA)−1,

the linear combination wTz equals the i-th independent component.

It is possible to formulate, now, a gradient algorithm to optimize (2.118) under the

constraint of ‖w‖ = 1:

∆w ∝ γE
{
zg(wTz)

}
(2.135)

w ← w/‖w‖ (2.136)

where the self adaptation constant γ can be chosen, according to Theorem 9 in the

following way:

γ = sign(E{yg(y)− g′(y)}) (2.137)
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However there is a faster way of performing this optimization, using a fixed

point algorithm. In fact, Newton methods are known to be faster than gradient

based techniques, as long as the computations performed at each iteration are not

excessively demanding, and this is the case. For the negentropy optimization, in

fact, it is possible to approximate the Hessian matrix in such a way that it is not

necessary to perform matrix inversion to reach the solution. Moreover, Newton

methods do not require the setting of learning parameters as gradient techniques,

and this makes the algorithms more “easy” to use. The fast fixed optimization of

negentropy starts from the use of Lagrange multipliers. Consider the problem of

looking for a maximum (in this case we are considering the one-unit case, so there

are 2n local maxima) of the function JG(wTz) =
[
E{G(wTz)} − E{G(ν)}

]2
, then

the maxima will be in certain optima of E{G(wTz)}. In fact, as stated by Theorem

8, both local maxima and minima of E{G(wTz)} are related to a solution of the

ICA problem, so the problem of maximizing independence becomes the problem of

finding the stable point of E{G(wTz)}. It is possible to look for these optima in a

very fast way by means of Lagrange multipliers. Consider the Lagrangian function

of the problem in eq. (2.128):

L(w, λ) =
[
E{G(wTz)} − E{G(ν)}

]
+ λ(‖w‖2 − 1) (2.138)

where the square sign in negentropy approximation has been removed due to the

fact that it does not alter the local optima. The desired points w∗ and λ∗ are those

where the gradient of the Lagrangian with respect to w and to λ is zero:





∂L(w, λ)

∂w

∣∣∣∣
(w,λ)=(w∗,λ∗)

= E{zg(w∗Tz)}+ 2λ∗w∗ = 0

∂L(w, λ)

∂λ

∣∣∣∣
(w,λ)=(w∗,λ∗)

= ‖w∗‖2 − 1 = 0

(2.139)

To obtain the points where the gradient is zero, it is possible to implement a Newton

iteration considering the gradient of the Lagrangian in equation (2.139) and the

Hessian matrix computed as:

∂2L(w, λ)

∂w2
= E{zzTg′(wTz)}+ 2λI (2.140)

The update rule for w is:

w← w −
(
∂2L(w, λ)

∂w2

)−1
∂L(w, λ)

∂w
(2.141)
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that in this case becomes:

w← w −
[
E{zzTg′(wTz)}+ 2λI

]−1 ·
(
E{zg(wTz)}+ 2λw

)
(2.142)

Since data are spehered, it is possible to do a key approximation in the algorithm,

that allows inverting easily the Hessian matrix (2.140):

E{zzTg′(wTz)} ≈ E{zzT}E{g′(wTz)} = E{g′(wTz)}I (2.143)

that allows eq. (2.142) to be written as:

w← w −
[
E{zg(wTz)}+ 2λw

]
/
[
E{g′(wTz)}+ 2λ

]
(2.144)

Remembering that vector w is constrained to be unit norm, at each iteration, its

standard deviation can be removed:

w← w

‖w‖ (2.145)

It is possible to further simplify the algorithm, considering the standard deviation

removal at each iteration, by multiplying at each iteration both sides of (2.144) by

the scalar E{g′(wTz)}+ 2λ, obtaining:

w
[
E{g′(wTz)}+ 2λ

]
= wE{g′(wTz)}+ 2wλ− E{zg(wTz)} − 2λw (2.146)

and, considering that at each iteration eq. (2.145) will be applied to w, eq. (2.146)

becomes:

w← wE{g′(wTz)} − E{zg(wTz)} (2.147)

Therefore the optimization procedure for a single unit can be done by means of a

very fast fixed point algorithm with normalization of vector w at each iteration.

In the case of multi-unit, two approaches have been proposed in [79]: the deflation

approach (where the components are extracted one at a time) and the symmetric

approach (where the components are extracted all together). For both approaches it

is necessary, in addition, to decorrelate the set of independent components from each

other, to avoid being trapped in the same maxima. To do this, in the deflationary

case, each component at each iteration is decorrelated by means of Gram-Schmidt

orthogonalization from the subspace generated by the components already found,

while in the symmetric approach, decorrelation is performed for all components at

the same time. It is possible to formulate now the algorithm in both the deflation

and symmetric approaches.
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For what concerns the deflation approach, the main iteration for pth component

consists of the following steps:

wp ← wpE{g′(wT
p z)} − E{zg(wT

p z)}

wp ← wp −
p−1∑

j=1

(wT
p wj)wj

wp =
wp

‖wp‖
(2.148)

until convergence for the p-th component, and then moving to component p + 1.

Convergence can be decided when the norm of the difference or of the sum of two

consecutive wp is below a suitable value ǫ (usually ǫ = 10−4). The advantage of

using a deflation approach are in terms of computational load, but a drawback is

that errors propagate from an extracted component to subsequent ones, making the

last extracted components a bit less reliable than in the symmetric case.

In the symmetric case decorrelation is done at each iteration and for all compo-

nents in a different way. The simplest way is to update unmixing matrix estimate

W in the following way ([79]):

W← (WWT )−1/2W (2.149)

where the inverse square root (WWT )−1/2 may be computed by means of eigenvalue

decomposition of (WWT ). Other more sophisticated ways of on-line decorrelating

matrix W may be found in [80]. The symmetric extraction procedure consists then

of the following steps:

wi ← wiE{g′(wT
i z)} − E{zg(wT

i z)} for i = 1, . . . , n

W ← (WWT )−1/2W (2.150)

It has the advantage of not “privileging” any component during extraction, but in

this approach it is necessary to know the exact number of sources.
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Independent Component Analysis

Applications

3.1 Introduction

The strength of Blind Source Separation approach comes from the possibility of

dealing with problem of completely different nature. Given a set of measurements

or signals, BSS techniques reveal the underlying hidden factors and therefore it is

possible to design a statistical generative model of the observations. This model can

be employed in such tasks as compression, denoising and pattern recognition.

In many cases the measurements are given as a set of parallel signals or images, like

mixtures of simultaneous sounds that have been picked up by several microphones,

brain images obtained by MRI, or several radio signals arriving at a portable phone.

Due to the generality and flexibility of the source separation framework, BSS tech-

niques have been employed in several research fields. In biomedical signal processing,

and in particular in brain imaging, BSS provides helpful insight to hidden indepen-

dent phenomena without making particular assumptions on their nature. BSS has

also been applied in telecommunication research. In particular by means of BSS it

is possible to enhance performances of code division multiple access (CDMA) re-

ceivers. In fact, the CDMA model can be interpreted as a noisy ICA model, and by

properly taking the effects of fading channels and delays into account it has been

shown in [149] how to enhance CDMA receiver capability of detecting desired user’s

symbol.

By means of BSS it is possible also to reveal hidden trends, that cannot be observed
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by direct investigation, in financial time series [92].

Due to the considerable number of BSS applications, for comprehensive reviews see

[80, 5, 37, 135].

Blind techniques have been applied to a statistical model of electronic devices to

perform yield-oriented design [146]. In this case, the use of Independent Compo-

nent Analysis comes as a natural evolution of the Principal Component Analysis

approach, that is commonly employed in statistical modeling, due to the fact that

parameters of the model do not have, in general, a Gaussian probability density.

ICA has been applied also to brain imaging techniques like functional Magnetic

Resonance Imaging (fMRI) and MagnetoEncephaloGraphy (MEG) to extract mean-

ingful spatial and temporal patterns related to cerebral activity in a blind fashion.

In fact physiological considerations allow to expect that brain activations related

to different activities are independent and observations yield linear mixing [118].

By means of independence, therefore, it is possible to extract and interpret signals

without making particular assumptions on the nature of the experiment. In fact, it

is known that assumptions used in hypothesis-driven methods are rather sensitive,

and inaccuracy in stating them results in artifacts, poor results, or even failure in

extracting the relevant activities.

In section 3.2 the statistical non-linear modeling of transistors in particular related

to High Electron Mobility Transistor (HEMT) Monolithic Microwave Integrated

Circuit (MMIC) will be briefly revised, while the results of modeling based on BSS

techniques like PCA and ICA will be discussed in chapter 5. In sections 3.3 and 3.4

two brain imaging techniques will be described, together with a review of the signal

processing strategies that are commonly employed to extract relevant information

from both fMRI time-series and MEG recordings. Enhancements of such tech-

niques, aided at “tailoring” Independent Component Analysis to specific problems,

exploiting both specific and loose prior information on the sources are proposed and

evaluated in Chapters 6, 7 and 8.
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3.2 Statistical Non-Linear Modeling of Transis-

tors

In recent years, several statistical models have been developed in order to perform

yield-oriented design [146] of MMIC’s by means of short-length GaAs and InP mono-

lithic technological processes. In fact, their enhanced performances, obtained thanks

to their very high fT values (> 100 GHz), are joined to strong process parameter

dispersion, and therefore an increased accuracy in yield evaluation and optimization

is usually required.

Recently several kinds of statistical models have been proposed in literature to ex-

plain the behavior of active devices both in linear and non linear operation, based on

physical description of HEMT and MESFET behavior and employing measurement

databases or empiric equivalent circuits. The proposed models can be divided in

two groups:

• Physics-based model (PBM).

• Equivalent-circuit-based model (ECM).

PBM models describe the behavior of the device by means of equations accounting

for physical parameters (like gate length, doping density, geometrical dimensions)

whose variability can be related to the production process [16]. To move from a

physical model to a statistical one, it is necessary to know the probability distribu-

tion of the parameters. Due to the closeness to the physical model of the transistor,

these methods are quite accurate, but they are in general excessively computation-

ally demanding.

ECM models, on the other hand, simulate the behavior of a device from a circuital

point of view [7]. The equivalent circuit representation may account for linear and

non-linear components (in this case, their behavior can be modeled by means of

empirical equations). To achieve an acceptable model accuracy, usually a measure-

ment database of S parameters is used. ECM models have the advantage of requiring

much less time than PBM ones, moreover they are easily implemented in MMIC

CAD design tools.

Since parameters of an ECM models are usually correlated, particular care has to be

taken while dealing with Monte Carlo simulations based on these models. In fact, if

correlation is not properly taken into account, the Monte Carlo method will sample
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parameter space in a way that is inconsistent with real parameter variations, there-

fore producing overtly pessimistic yield estimations. Principal Component Analysis

and Independent Component Analysis may be therefore employed to have an uncor-

related or even independent representation of data, in order to increase the accuracy

of the model.

In fact, since empirical statistical models require the extraction of the statistical

distribution of equivalent circuit parameters that are correlated, diagonalization of

the correlation matrix is usually done by means of Principal Component Analysis

[40, 159]. Since Independent Component Analysis performs correlation matrix di-

agonalization as well, with the additional characteristic of decomposing the data set

into independent rather than uncorrelated components, it is reasonable to expect

that the population obtained by letting IC vary according to a suitable distribution

can more accurately describe the real population. In 5 an ICA decomposition of

the empirical parameters has been performed, and the results have been compared

with Principal Component Analysis.
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3.3 Functional Magnetic Resonance Imaging (fMRI):

General Concepts

Nuclear Magnetic Resonance imaging, introduced by Lauterbur in 1973 [101], was

used, at first almost exclusively, for the study of neuroanatomy and neuropathology,

and two more decades passed before its application to the study of brain function.

One of the first approaches to MR-based brain mapping, developed at the Massa-

chusetts General Hospital in 1991, was based on the determination of cerebral blood

volume (CBV) through the quantification of the signal decrease that is brought

about by the dephasing effects induced by the first passage of an intravascular con-

trast medium (Gd-DTPA) in non-refocused (T2* weighted) MR images [150]. The

next step consisted in the determination of CBV changes induced locally by brain

activity. Again in 1991, the same group reported the first functional mapping results

in the visual cortex obtained during visual stimulation [25]. These findings led to

a marked acceleration of the research in the field of the functional applications of

MRI in the early 1990s.

The first approaches, which were based on the use of external contrast medium,

were soon supplemented by techniques that utilized “endogenous” contrast effects

to study activity-related MR changes. The rationale behind this non-invasive ap-

proach to fMRI was derived from the much earlier observation of Pauling [139] that

a modification of the oxygenation of hemoglobin resulted in an alteration of its mag-

netic properties.

In 1990, Ogawa and colleagues reported that MRI was sensitive enough to show

“blood-oxygenation-level-dependent” (BOLD) signal changes in vivo [131, 130]. In

1991, Turner et al. observed a similar effect during experimental anoxia [166]. This

effect was not confined to the macroscopic vessels but spread out to the brain tis-

sue itself. Since it was known that changes in neuronal activity were accompanied

by local changes in brain oxygen content [58], it became evident that a technique

based on the BOLD effect could potentially investigate neuronal activation through

changes induced in tissue oxygenation.

In 1992, three groups applied BOLD-based fMRI to the human brain ([132],

[98] and [14]). It rapidly became clear that with the new fMRI technique, which

provided better spatial and temporal resolution than PET, a new era in functional

neuroimaging had started [152]. The success of fMRI techniques depends on the

basic assumption of a relation between the BOLD signal and the underlying fun-
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damental neuronal activity. In this sense the study of Logothesis [106] has been of

fundamental importance. Before that, in fact, the relation between BOLD and neu-

ronal activity was investigated only performing fMRI studies in humans and single

cell recordings in monkeys and then trying to find a relation between the results. In

the pioneering study of Logothesis for the first time single cell activity and BOLD

signal were recorded simultaneously in monkeys.

3.3.1 Blood Oxygen Level Dependent (BOLD) signals

Hemoglobin (Hb) is the predominant macromolecule in blood. The attachment of

oxygen is dependent on the local partial pressure of oxygen (also known as oxygen

tension or pO2) and allows oxygen to be released at the tissue when local metabolic

activity causes local oxygen depletion [134].

The binding of oxygen molecules determines the magnetic properties of hemoglobin.

Deoxygenated hemoglobin (deoxy-Hb) has the typical properties of paramagnetic

materials. Without any external magnetic field the individual magnetic moments

interact weakly with one another and, due to thermal motion, are randomly oriented

and the deoxy-Hb has not net bulk magnetization. Conversely, when an external

magnetic field is applied the dipoles become partially aligned in the direction of

the field and act to increase the magnetic field. However, for ordinary external

fields strengths, and like the weaker nuclear magnetic properties, only a very small

fraction of the magnetic moments will be aligned with the field and, due to the

thermal motion, the contribution to the total magnetic field is very small.

The oxygenated hemoglobin (oxy-Hb) behaves like a diamagnetic material without

contributing to any applied external magnetic field. [139, 134]. The bulk relaxation

of blood can be assimilated to that of hemoglobin solutions, so the effects of cellular

membrane of red blood cell and of the proteins in plasma appear to be limited.

Deoxy-Hb does not affect the longitudinal relaxation time (T1) but enhances the

spin phase dispersion, and thereby affects the transverse relaxation time (T2) and

especially the non-refocused transverse relaxation (T2*).

In fact, the presence of the paramagnetic deoxy-Hb in red blood cells confers to them

a different magnetic susceptibility from near tissue and plasma. The application of

an external magnetic field produces microscopic magnetic inhomogeneities which

also depend from the geometry of the cell (Figure 2.1). The presence of this non-

uniform magnetic field, within a volume element (voxel), is known to influence both
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Figure 3.1: BOLD time-courses as detected at 4 T (x -axis: number of scans

TR=0.3s). Figure from [77]

T2*- and T2- relaxation times :

• T2*: the net signal is decreased because the tissue-water protons precess at

slightly different Larmor frequencies, depending on the local magnetic field

perturbations.

• T2: the net signal is decreased because of the irreversible dephasing of tissue-

water protons that takes place because of their diffusion in the inhomogeneous

magnetic field, during the time of image-acquisition.

Therefore, the class of sequences that do not use re-focusing pulse to cancel the spin

phase dispersion induced by the inhomogeneities (Gradient Echo - GRE), are very

sensitive to the T2* effect. Conversely, the class of sequences that use re-focusing

pulses (Spin Echo - SE) are more sensitive to the T2 effect [15, 13]. A sensory, motor

or cognitive stimulus produces a localized increase in neural activity, which in turn

induces an increase of oxygen extraction, cerebral blood flow (CBF), and cerebral

blood volume (CBV). The mechanism underlying these effects, caused either by the

production of metabolites or due to a more direct effect on local blood vessels is

poorly understood. Whatever the cause, because CBF (and hence oxygen delivery)

changes exceed CBV changes by two to four times, while blood oxygen extraction

increases only slightly [97], the total paramagnetic content of deoxy - Hb within
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Figure 3.2: BOLD signal changes for a periodic visual stimulation at 1.5 T and at

4.0 T. (Figure from [166])

brain tissue voxels decreases with brain activation. The resulting difference leads

to less intravoxel dephasing compared to a resting state and results in increased

signal on T2/T2* - weighted images. In BOLD fMRI terms, the initial increase in

deoxy-Hb content results in a signal decrease in T2* sensitive images, while the late

deoxy-Hb decrease is equivalent to a signal increase. This fits well with the typical

fMRI signal time-course, especially if experiments with high temporal resolution are

performed at high field strengths (4 T). In such a case [122, 77, 100], two different

regions were recognized inside the visual cortex. A smaller region accounted for 30%

of the total area of activation and showed a biphasic behaviour with a rapid (0.5-2s)

negative response of about 1% of the total signal intensity (the “initial dip”) and a

later positive change of about 2% (see Figure 3.1). The larger region of activation

occupied the remaining 70% of the total area and showed only a late (5-8s) positive

signal change, with a time-course of the positive response that was similar in shape to

that of the smaller area, but showed a higher amplitude (up to 6% of baseline level).

A similar finding of a rapid negative response to activation was described using MR

spectroscopy, but it is probably related to other mechanisms than BOLD, since this

study reported a decrease with increasing echo times, while the dephasing effects of

the deoxy-Hb should increase with echo time [52, 50]. A central question regarding

the possibility to perform BOLD - fMRI studies using clinical MR - scanner, is

related to the dependence of BOLD signal changes from the static magnetic field

intensity (B0). Several experimental and simulation studies, show that transverse

relaxation rate depend more than linearly from B0. Most of the fMRI studies are, at

the date, performed at 1.5 Tesla or 2.0 Tesla; reported mean percent signal changes
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values highly depend on the type, duration and intensity of the stimulus, ranging

between 1% and 8% in the case of sensory stimulation. Groups using 4.0 Tesla

magnets report from 5% to 20% mean percent signal changes. At field intensities

lower than 1.5 T the stimulus-related inhomogeneity effects may be too low to be

detected. The functional spatial resolution of BOLD-fMRI is ultimately limited

by the specificity of neurovascular system and of its local changes in response to

neural activity. Experimental evidences of optical imaging studies suggest that in

the cerebral cortex this specificity is smaller than 1 mm [70, 169, 122, 114]. Fast

imaging MR-techniques, such as Echo Planar Imaging, allow the collection of BOLD-

sensitive image time-series with a sampling rate sufficient to study the temporal

features of task-related haemodynamic response [177, 30]. Figure 3.3 shows the

time-course of the fMRI signal change in primary visual cortex (V1) in response to

a typical visual stimulus of 10 s duration (shown as box from 2 to 12 s) measured as

the average of 54 single trials at a magnetic field strength of 1.5 Tesla [121]. After

the stimulus presentation, the signal shows:

• a 2 - 3 s delay (i) that reflects the inertia of the local haemodynamics;

• a signal increase reflecting the stimulus-induced hyperoxygenation with a time-

to-peak (ii) that, in this case, is about 13 s.

• a signal decrease, after stimulus cessation, with a return to the baseline level,

that is about 9 s (iv-ii).

However, it must be emphasized that the fMRI response is proportional to the local

average neural activity, averaged over a small region of the brain and averaged over

a period of time and that this spatial and temporal averaging may be different in

different brain areas, particularly because the vascular system seems to be special-

ized in particular brain areas [31]. Therefore, the reported values of the delays are

not fixed and may highly change depending on stimulus type, contrast, duration

and the stimulated brain area. The limitations of temporal resolution in fMRI, like

the spatial resolution, are determined not by the lack of technological capabilities

but by the nature of the process underlying the neuronal-induced MR signal. In-

deed, the functional temporal resolution (defined as the smallest interval between

two detectable separate tasks for the same area) is limited by the duration of the

baseline-recovery after the stimulus offset. If individual stimuli are presented more
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Figure 3.3: The time course of fMRI signal change in visual cortex in response to a

visual stimulus. (figure from [121])

rapidly than the width of the hemodynamic response then contrast is reduced be-

cause the signal does not have sufficient time to return to the resting level. At 1.5

T, Bandettini et al in [12] were able to separate task-related BOLD time-courses

with a stimulus switching frequency of 0.062 Hz (i.e., 8.0 s movement and 8.0 s

control) but not with a stimulus switching frequency of 0.125 Hz, suggesting that

temporal resolution cannot be better than 8 s. Using high magnetic fields (4 Tesla)

with higher SNR and larger BOLD effects, the temporal resolution of the fMRI

signal from the motor area during repeated tasks was found to be about 5s [91]. In

addition to the activity evoked by the stimulus, both instrumental noise and fluc-

tuations of biological origin influence fMRI time-series. Instrumental noise includes

Johnson and thermal noise, which originate on the scanner hardware. This type of

noise, that can be correctly considered to be white, effects the background voxels

of the images as well as the intra-brain voxels and determines the intrinsic SNR of

the MRI images. Physiological noise include both periodic and non periodic signal

fluctuations and is the main limiting factor in most task-activation experiments. A

detailed understanding of the various sources of biological fluctuations, as would
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be necessary to get the full range of information from fMRI data, has up to this

time been lacking. However, an early report [172] experimentally analyzed the spec-

tral components forming the fMRI noise, using rapid single-slice EPI acquisitions

(TR=122 ms) without any stimulation. In background voxels, noise was wide-band

and well below the level of the noise in the cortical regions. At low frequencies (<

0.5 Hz), the noise fluctuations were larger in the grey-matter than in the white mat-

ter; at higher frequencies (> 2.5 Hz) these differences cancelled. High peaks at the

typical frequencies of the cardiac (0.8 - 1.2 Hz) and respiration (0.25 - 0.5 Hz) cycles

and at their harmonics were present in the power spectrum in all intra-brain voxels,

but mainly in the gray matter voxels. Periodic blood flow and pulsatile bulk motion

caused by the heart cycle and a generalized variation in blood oxygenation and bulk

displacement of the head in response to breathing are considered to be the main

origin of these periodic signal changes [76]. Beside respiratory and cardiac related

noise, an intense peak at low frequencies (∼ 0.1 Hz) is usually present in the gray

matter. Several interpretation have been proposed about the nature of these 0.1 Hz

oscillations. Hyde and Biswal [78] showed that there is a considerable amount of

synchrony of low-frequency physiological fluctuations during rest, and that perfor-

mance of the task increases the overall synchrony. Starting from this observation,

the authors correlate the low frequency fluctuations to the functional connectivity in

spatially distributed cortical patterns. Mitra et al. [123] also observed that these 0.1

Hz oscillations are characterized by a complex space-time structure, but concluded

that their origin was likely to origin on the vasomotor oscillations that exist ubiqui-

tously in blood vessels all over the body, and do not necessarily have any connection

with neural activity [123]. Non periodic noise components, typically manifesting as

“drifts and shifts” have been often observed in fMRI time series. These fluctuations,

at very low frequencies (0.0-0.015 Hz), have been attributed to long term physiolog-

ical shifts and/or to movement related noise remaining after re-alignment. Finally,

it must be pointed out that, if whole brain multislice EPI are used, the temporal

sampling rate is typically several seconds. This is above the Nyquist limit for both

cardiac and respiratory noise and so aliasing will occur, affecting the spectrum of

observed signals.
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3.3.2 fMRI Data Analysis

Introduction

Figure 3.4 depicts the flow-diagram of processing steps for the detection and rep-

resentation of functional and structural information. Input data are the 4D data

sets of functional time series that are collected with BOLD sensitive sequences, and

3D data sets that are collected with 2D or 3D conventional sequences and serve as

anatomical reference for the visualization of functional information. The left side

of the graph represents the steps which are required for extracting the functional

information. Some of them (e.g. realignment, spatial and temporal filtering) aim at

enhancing the effects of the stimulus-related signal and to reduce the influence of

the artifactual signal fluctuations. Others serve to detect localized task-dependent

signal changes as visualized by activation maps (3.3.3). Right side of the graph

in Figure 3.4 represents the steps which are required for the representation of the

functional information with respect to the individual brain anatomy. In fMRI, dif-

ferently than in PET or MEG, the functional and structural images, are recorded

within the same measurement session, therefore the respective data sets are easily

co - registered. Spatial normalization refers to the transformation of anatomical

and functional data in conventional reference spaces and is essential to compare the

results between different subjects and to facilitate communication among laborato-

ries.

Preprocessing

Realignment

Subjects’ motion poses a severe problem for the analysis of functional data. Despite

the use of physical constraints, head movements cannot be completely excluded

during functional scanning. Small head movements (< 1 mm) also produce effects

that can mask the relatively small BOLD signal changes and should be corrected

using re-alignment algorithms. Let us consider Ii(x) and Ik(x) as two images (2D or

3D) collected at time i and k within a series of T repeated functional measurements.

Let us suppose that Ii(x) and Ik(x) are related by a geometric transformation T[x],

so that:

Ik(T[x]) ≈ Ii(x) (3.1)
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Figure 3.4: Data-flow of processing steps for the detection and the representation

of functional and anatomical information
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The problem the realignment algorithms deal with is to find the transformation T

that minimizes the differences, due to the subject’s motion, between the two images.

The most commonly adopted algorithms are based on iterative computation of the

rotation-translation parameters that reduce the mismatch between a reference image

(e.g. the middle scan of the time-series) and the other images of the time-series

[173, 61, 71, 65]. These realignment procedures are based on the following steps:

• measure of the spatial discrepancy between the transformed image Ik(T[x])

and the reference image IT/2(x);

• evaluation of the parameters that define T ;

• evaluation of the new values of Ik after T has been determined (interpolation

method).

A robust method, commonly adopted in both PET and fMRI data analysis, consid-

ers T[x] to be a roto-translation transformation based on the rigid-motion hypothesis

[173]. With this hypothesis, transformation T[x] is defined by 3 parameters in the

case of realignment of 2D images (2 translation offsets and 1 rotation angle) and by

6 parameters, in the case of 3D images (3 translation offsets and 3 rotation angles).

Spatial and Temporal filtering

Spatial and temporal filtering of fMRI time series aim at enhancing the functional

contrast-to-noise ratio (see section 7.3.4), reducing the effects of the confounding

factors that arise from the instrumentation and from spontaneous physiological ac-

tivity. High-spatial-frequency noise, mainly from the scanner electronics, can be

attenuated by spatially “smoothing” the fMRI time-series with bidimensional low-

pass filters. Let us express the acquired data as:

Ii(k) = Si(k) + Ei(k) (3.2)

where k = (kx, ky) is the spatial frequency span, Si(k) is the frequency domain

representation of the desired image at scan i and Ei(k) is the noise contribution

(physiological and electronic). The underlying assumption of spatial smoothing is

that Si(k) is a monotonically decreasing function of k and thus there exists some

frequency kc such that

Si(k)≪ Ei(k) for k > kc (3.3)
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Figure 3.5: Effects of temporal and spatial smoothing: correlation maps and time-

courses for unfiltered (left) and for spatially (2D Gaussian filter with FWHM =

2 pixels) and temporally (1D Gaussian filter with FWHM= 3 samples) smoothed

(right) EPI time series. Green background indicates stimulation.
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Thus, a good filter would be a function H(k) such that:

H(k) ≈
{

1 for k < kc

0 for k > kc

(3.4)

Then, multiplying H(k) by Ii(k) would result in noise suppression with minimal

effect on the image function Si(k). However, the presence of regionally specific

activation implies that high-spatial-frequency components of the signal are present

in Si(k) as well and that, besides reducing the noise contribution, the effect of spatial

smoothing will be a decrease in effective spatial resolution. These two contrasting

effects will influence the detection of activation regions and have to be balanced.

Indeed, when the activated brain regions extend over clusters of several voxels, the

spatial smoothing, due to the correlation between the time-courses, will strengthen

the signal relative to the noise (Figure 3.5). Conversely, when focal regions of the

brain are activated, they might no longer be discernible after spatial smoothing.

Furthermore, according to the matched filter theorem, the signal is best detected by

smoothing with a filter whose width matches that of the signal. In practical cases,

however, since both focal and broad activation regions may be present in the same

data set and their real extension cannot be known, the width and type of spatial

filter is chosen on the basis of a trade-off between the spatial resolution and the

expected enhancement of functional contrast-to-noise ratio [107]. For inter - subject

studies, on the other hand, a high degree of spatial smoothing has to be applied in

order to reduce the anatomical differences between subjects and to allow the correct

use of statistical tools.

3.3.3 Hypothesis-Driven approach: introduction

Historically, the first methods to analyze fMRI datasets were based on correlation

analysis and subtraction. Since fMRI signals have no simple quantitative physio-

logical interpretation, usually the signal at a given voxel during the active part of

the experiment is compared with its value during a period of rest. The most simple

hypothesis-driven technique is a correlation procedure, followed by some statistical

test, to point out the voxels in the active areas (3.3.3), while, in the case of more

complex experimental paradigms, a General Linear Model (GLM) is used (3.3.4).
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Detection of activations using voxel-based methods

In the first fMRI studies a simple method based on image subtraction was used to

create descriptive images of the task-dependent brain areas [132, 98, 14]. According

to the “pure insertion” hypothesis, voxels with a high gray level in the “difference”

image, formed by subtracting the “control” from the “task” condition images, reflect

the areas with a task-induced differential activation. With this method, the value

of the intensity threshold between activated and non-activated voxels is arbitrarily

chosen. Furthermore, image subtraction is very sensitive to movement-related effects

and to other unexpected signal changes. More reliable activation maps are produced

by using statistical methods. The commonly used Student’s t-test maps are formed

by computing, on a voxel-by-voxel basis, the value of statistical significance for the

difference of the means between two conditions. Voxels with a significance value

below a given threshold (e.g. p < 0.001) are considered activated by the task [20].

The t-test method, may be regarded as a weighted subtraction method and the time

dependency of signal intensity, which might be potentially useful, is ignored [91].

Furthermore, it might be shown that the t-test method is a simple case of correlation

analysis, which will be discussed in the following.

Let the discrete random sequence ft, (t = 1, . . . , T ; T = number of scans) denote

the observed fMRI measurements (after pre-processing steps) at a given voxel. The

observed sequence is assumed to be of the form:

ft = µst + et (3.5)

where st is a deterministic (non-random) activation signal at the voxel under con-

sideration, µ is a non-negative constant factor and et represents added Gaussian

white noise with unknown variance σ2. Eq. (3.5) can be written in vector notation

as follows:

f = µs + e (3.6)

where f , s, and e are T - dimensional vectors that are represented by T ×1 (column)

matrices. When µ = 0, the voxel is not activated and the observed sequence is merely

noise (f = e). When µ > 0, the voxel is said to be activated. Given the observed

sequence f and the model in Eq. (3.6) the problem of deciding whether or not the

voxel under consideration is activated reduces to test the null hypothesis :

{H0 : µ = 0} (3.7)
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versus the alternative hypothesis:

{H1 : µ > 0 } (3.8)

In the so-called correlation maps, hypothesis testing is performed through the

computation of the cross-correlation coefficient (cc) between the time-course of the

voxel intensity (f) and a model of the BOLD response induced by stimulation s [12],

[64]. The cross-correlation coefficient is given by:

cc =

T∑

t=1

[(ft − µf ) · (st − µs)]

√√√√
T∑

t=1

(ft − µf )2 ·
T∑

t=1

(st − µs)2

(3.9)

where µf denotes the average value of vector f and µs the average value of vector

s. Equivalently, (3.9) can be written, in vector notation, as follows:

cc =
dT

f · ds

| df || ds |
(3.10)

where
df = f − µf

ds = s− µs

(3.11)

with µf and µs vectors of length T . The value of cc, which always varies between −1

and +1, represents a measure of the similarity between the shape of the gray level

time-course in the functional images time-series of the voxel and the expected BOLD

signal enhancement induced by the stimulus. Thus, a high value of cc is expected for

voxels related to activated brain areas; conversely a low value of cc is expected for

all the other voxels. Separation of activated and non-activated voxels and creation

of activation maps are achieved by imposing a threshold value TH for cc. In voxels

where cc < TH, the null hypothesis is accepted and the corresponding positions are

not displayed in the map; in voxels where cc > TH, the null hypothesis is rejected

and a color code is assigned to the map. The statistical significance for acceptance

of signals based on the selected threshold TH is determined by considering the

transformation:

t = cc

√
T − T0√
1− cc2

(3.12)
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Eq. (3.12) establishes a one-to-one correspondence between the cross-correlation

coefficient cc given in (3.10) and the values of a random variable t. Under the null

hypothesis {H0 : µ = 0}, t will have a central Student’s t-distribution with T − T0

degrees of freedom. Under the alternative hypothesis {H1 : µ > 0}, t will have a non-

central Student’s t-distribution with T − T0 degrees of freedom and non centrality

parameter µ
√

dT
s ds/σ. Therefore, for a given value TH, the probability of a type I

error (the probability of declaring a voxel activated when it is in fact not), is given

by :

p =

∫ ∞

tTH

ft(u)du (3.13)

where ft(u) is the Student’s t pdf with T−T0 degrees of freedom and tTH is the value

obtained by substituting cc = TH in (3.12). The reduction in degrees of freedom

(T0) is due to the number of free parameters in the model being employed. Assuming

that, in addition to the signal component and to the mean, a drift component has

been estimated and subtracted from the time-series, T0 = 3. [8]. Performance of

cross-correlation method strongly depends on the likeness between the reference

function s and the real shape of the BOLD response. A simple box-car (ON/OFF)

ideal vector which assumed a value of 0 during the resting period and 1 during the

stimulation response, was used in the earlier fMRI studies [12]. The vector obtained

by convolution of the ideal ON/OFF vector with an experimentally derived impulse

response of the hemodynamics have been shown to be a good approximation of

BOLD response, thus enhancing performance of correlation method. It might be

shown, using (3.10) and (3.12) that, when an ideal box-car vector is used as reference,

the cross-correlation coefficient cc and the t-test used in many fMRI studies (see

[20]) lead to coincident results, and there is no advantage from using one or another.

When a reference vector nearer to the actual stimulus-related signal changes is used,

the advantage of using correlation analysis relies on the possibility of appropriately

taking into account the transitions between the ON and OFF state and the shape

of the BOLD response. This information is conversely ignored with t -test. With

correlation analysis, maps of the hemodynamic delays in different activated areas

may also be produced. This is simply achieved by computing additional correlation

values between the time-courses and the reference vector shifted to the right of one

or more samples.
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3.3.4 General Linear Model (GLM)

The correlation analysis described above is adequate for fMRI paradigms with one

stimulation and one control condition. For some experiments, however, a more

general approach is required.

The General Linear Model (GLM) or Multiple Regression Analysis is a statistical

tool that was first introduced to functional imaging data analysis by Friston et

al. [62, 63]. A general linear model “explains” or “predicts” the variation of the

observed time-course in terms of a linear combination of several regressor variables

plus an error term:

yt = st1β1 + st2β2 + . . . stLβL + ej (3.14)

where yt, (t = 1, . . . , T ; T = number of measurements) is the observed signal

time course at a given voxel, stl , (l = 1, . . . , L;L < N) are a set of L explanatory

variables or predictors (functions of measurements), βl are the unknown parameters

(or regressor values), one for each predictor, and the ej are error terms which are

assumed to be independent and identically normally distributed with zero mean and

variance σ2.

Writing (3.14) for each observation t gives the equation system:






y1 = s11β1 + s12β2 + . . . s1L
βL + e1

y2 = s21β1 + s22β2 + . . . s2L
βL + e2

· · ·
yT = sT1β1 + sT2β2 + . . . sTL

βL + eT

(3.15)

or, in matrix notation:

y = Sβ + e (3.16)

Here, y is the T × 1 column vector of the observations, S is the T × L matrix

of the predictors (one row per observation, one column per model parameter);

β = [β1, . . . , βL]T is the L × 1 column vector of parameters, and e is the T × 1

column vector of error terms.

The matrix S is defined as the design matrix of the experiment. fMRI studies which

contain a baseline condition as well as several repetitions of one or more experimen-

tal conditions, may be easily expressed as a multiple regression problem through

defining an appropriate form for S. For instance, for an experimental design with

a baseline condition and five different stimulation conditions the design matrix S
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has five columns, and one row for each measurement time point. Each predictor

is build by convolution of the ideal ON/OFF response with a model of the hemo-

dynamic response. Other effects than expected task-related BOLD enhancement

may be modeled in the design matrix. Including one column consisting of 1’s for all

measurements will account for the mean value of the voxel time course; including

one column with linearly increasing values will account for linear trends in voxel

time-course. It can be shown that most methods, including simple t-test, ANOVA

and correlation can be regarded as a special cases of GLM analysis that, thus, in-

tegrates parametric voxel-based analysis into a general frame [74]. Once the design

matrix has been defined, next step of the GLM analysis is the estimation of the

regression weights βl such that the predicted values y′ are as close as possible to the

measured values y at each time point. Let us denote with y′ the estimate of the

time-course Y for the regression values β′ :

y′ = Sβ′ (3.17)

and indicate with

e = [e1, e2, . . . , eN ] = y − y′ = y − Sβ′ (3.18)

the residuals errors. In the GLM, the Least Squares method is used for estimating

the regression weights such that the residual sum of squares

Sr(β) =
T∑

t=1

(yt − st1β1 − . . .− stLβL)2 (3.19)

is minimized. This occurs when:

∂Sr

∂βl

=
T∑

t=1

(−stl) (yt − st1β1 − . . .− stLβL) = 0 (3.20)

If the model is correct and the errors are normal, the least squares estimates are

the maximum likelihood estimates and are the Best Linear Unbiased Estimates, i.e.

of all linear parameter estimates consisting of linear combinations of the observed

data whose expectation is the true value of the parameters, the least squares es-

timates have the minimum variance. The mean value and the variance of β′ are

respectively :

E{β′} = β (3.21)

Var{β′} = σ2
(
STS

)−1
(3.22)
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Once the regressor coefficients have been estimated, analogously to correlation

analysis, a statistical test is required to assess general linear hypotheses. The extra

sum of squares principle provides such a test. Let us suppose to have a full model

with parameter vector which can be partitioned into two:

β =
[
βT

a | βT
b

]
(3.23)

with corresponding partition of the design matrix

S = [Sa | Sb] (3.24)

Let us suppose we wish to test the hypothesis {Hb : βb = 0}, i.e. we wish to test

whether or not the conditions corresponding to the Sb predictors had some effect

on a voxel time-course. When Hb is true, the model reduces to

y = Saβa + e (3.25)

Let us denote the residual sum of squares for the full models by Sr(β) and for the

reduced models by Sr(βa) respectively. The extra sum of squares due to βb after

βb is then defined as

Sr(βa | βb) = Sr(βa)− Sr(β) (3.26)

UnderH0, Sr(βa | βb) ∼ σ2χ2 independently of Sr(β), with Lb = rank(S)−rank(Sa)

degrees of freedom.

Therefore, under H0, the ratio:

F =
(Sr(βa)− Sr(β)) /Lb

Sr(β)/(T − Lb − 2)
(3.27)

has a central F distribution with n1 = Lb and n2 = T − Lb − 2 degrees of freedom

[8, 74]. Again, the reason for subtracting the two extra degrees of freedom from

the denominator is that we are assuming that the mean and linear drift component

have been estimated and subtracted from the time- series. Note that when H0 is not

true then Sr(βa | βb) has a non central chi-squared distribution, still independent

of Sr(β). In summary, for a set of experimental conditions, statistical maps may be

produced using the following steps:

1. Calculate, for each voxel, the statistic F of Eq. (3.27)
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2. For a fixed value of false alarm rate p determined by :

p =

∫ ∞

F0

fF (u)du (3.28)

where fF (u) is an F distribution with n1 and n2 degrees of freedom, compare

F with F0.

3. Color - code the voxels where F > F0.

3.3.5 Data-Driven approach: introduction

Data-driven approaches are complementary to hypothesis-driven techniques, seen

in section 3.3.3. In fact, while the latter look for voxels that “behave” like a prede-

termined activation model, which means that they are substantially meant for ac-

cepting or rejecting currently formulated psychological models, the former are more

suited in “exploratory” analysis, meaning that no specific hypotheses are made on

spatio-temporal activity patterns.

The information on the activity of the voxels within an experimental paradigm may

not be precise and, moreover, a GLM will not be able to point out all those activ-

ities in the brain that are not modeled within its design matrix. This means that

unanticipated or counterintuitive time courses of activation of localized brain areas

are less likely to be found with such a technique. On the contrary, the strength of a

data-driven approach comes from the fact that no particular hypothesis is made on

the time courses, being able therefore to point out also those activities whose time

courses could not be anticipated before the experiment.

The most used exploratory approaches in fMRI are PCA (2.3.4), ICA (chapter 2)

and clustering in temporal domain. For what concerns temporal clustering, all the

voxel that have similar waveforms are collected together within a cluster, where the

“similarity” between two time-courses is estimated by means of some suitable mea-

sure [59]. In [144] a comprehensive review of data-driven techniques is provided.

Both PCA and ICA are based on a linear mixture model, i.e. the observed data

are interpreted as a linear mixture of some spatio-temporal patterns that can be

retrieved by means of some criteria. It is known from Chapter 2 that PCA is based

on the maximization of the explained variance within an orthogonal basis, while

ICA accounts for independence. For what concerns the interpretation of the prin-

cipal components of an fMRI dataset, it has been pointed out in [144] that their
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interpretation may be troublesome. In fact, it may be possible that a given princi-

pal component represents a mixture of effects, and understanding spatio-temporal

patterns that are constrained to be orthogonal may be challenging (unless the ob-

served variability has a natural elliptic structure); the purpose of PCA is, in fact,

to find components that explain the maximum variance, and this may not be the

best strategy, especially in fMRI where there are multitudes of effects that may be

grouped together.

ICA overcomes the limitations inherent to PCA decomposition, and since its first

introduction in [119] it has become a widely tool for fMRI data investigation. In

section 3.3.6 details about the extraction and the interpretation of independent

components of fMRI data will be given.

3.3.6 ICA applied to fMRI data analysis

Before dealing with linear mixtures, the dimensions of an fMRI dataset must be

changed, since the original dataset is 4D (three spatial dimensions and a temporal

one), while ICA is meant for linear mixture of monodimensional signals. Therefore

a whole 3D volume has to be converted to a row of the data matrix X ∈ ℜm×n,

where m is the number of time points (i.e. scans), while n is the number of volume

elements (voxels) for a given scan. Each row of the data matrix represents a whole

volume at a given scan, while each column of it contains the time-course of a given

voxel.

The linear model considered for the generation of the data matrix X is, like in (2.32):

X = AS + E (3.29)

where E is spatially and temporally white noise [144]. Usually the noiseless ICA

model is considered, (embedding the noise among sources), obtaining thus:

X = AS (3.30)

The double indeterminacy in both A and S gives two possibilities for the formulation

of the model. In fact, one may look for a decomposition where the rows of S are

independent, or to another one where the columns of S are independent. In other

words, it is possible to look to data matrix X ∈ ℜm×n in two ways, defining two

different techniques:
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Figure 3.6: Spatial and Temporal ICA of fMRI data. (Figure from [34])

- Spatial ICA: X is a made of n realizations of a random variable x ∈ ℜm.

Looking for independence means therefore looking for some linear combina-

tions of the observed spatial maps that are maximally independent. The

associated mixing coefficients A can be regarded as “time courses” of the

independent maps, and are unconstrained to be orthogonal.

- Temporal ICA: X is made of m realizations of a random variable x ∈ ℜn.

ICA decomposition leads to independent time courses with associated uncon-

strained spatial maps.

The two approaches are depicted in Fig. 3.6. It is easy to see that spatial ICA is

more efficient from a computation point of view, since there is a relatively limited

amount of time points (therefore of independent components) if compared with tem-

poral ICA, where the number of independent components is equal to the number of

voxels, that may be too computationally demanding.

The first application of ICA to fMRI data exploration is from McKeown in [119, 118],

where Spatial ICA based on INFOMAX algorithm (section 2.7.1) has been applied

to different experiments (Stroop color-naming, Brown and Peterson word/number

task) to extract independent spatial maps whose interpretation led to the individua-

79



CHAPTER 3. ICA APPLICATIONS

Figure 3.7: Spatial ICA or fMRI data: generative model (Figure from [119]).

tion of task-related maps. The spatial ICA mixture model is depicted in Figure 3.7:

each of the n independent maps (on the left) contributes with different weights to

the generation of the fMRI measurements (on the right). The weights of this mixing

process can be seen as temporal time courses of the whole map, and all the maps

with their associated time courses sum up linearly to give the measured signal.

The underlying assumptions to the use of ICA in fMRI data analysis have been

pointed out in [118]. Basically, for the model to be valid, some requirements have

to be made on the mixing model:

1. Maps associated with “independent” activity in the brain are sparse and

mostly non overlapping, although some overlap may occur.

2. The mixing coefficients are constant throughout the brain.

3. The components mix linearly to form the fMRI measurement.

4. The number of components contained in data are up to the number of time

points in the experiment.

These assumptions were examined for a Stroop color-naming task, and the original

dataset was decomposed into independent components that were interpreted and
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identified in the following classes

- Task-related activation map: the spatial pattern of a spatial map was

physiologically compatible with the results of a GLM and its temporal time

course was consistently related to the task of the experiment.

- Transiently task-related maps: the time course of these independent com-

ponents was “locked” to the stimulus only for a part of the stimulus, and

therefore they could not be detected with a GLM, that averages over repeti-

tions of the task.

- Movement related components: movement of the head of the subject

causes the presence of one or more components whose spatial map has a ring-

like activation area and whose time course suggests slow or abrupt movements

of the head

- Noise components: those components whose time course or spatial map

had no interpretation and could not be reproduced among repetitions of the

ICA extraction on the same dataset.

Moreover in this study, other spatial maps that did not belong to any of the men-

tioned classes were detected.

In [119] the authors tried to order the components according to the variance contri-

bution in the whole dataset (it has to be noted that both IC and mixing coefficient

have no intrinsic value due to the double indetermination, but their product is uni-

vocally determined), but there was no easy way of detecting the task-related map

from the amount of variance it explained. More sophisticated criteria have been

therefore used: in [126] a frequency content ordering for a periodic task was pro-

posed, ranking task-related components high. Information theoretic criteria like

kurtosis (and therefore sparseness) have demonstrated to be useful but not opti-

mal in terms of components ordering, since components corresponding to local flow

were also ranked high with this measure. In [56] more elaborate and more realistic

assumptions are invoked for identifying components with autocorrelation or spatial

clustering. In [57] an automatic classification algorithm for independent components

of fMRI time-series was proposed: by means of a multidimensional feature space,

based on spatial, temporal and spectral properties of the estimated sources, the

authors have shown how it is possible to discriminate between independent com-

ponents related to different activities and they have employed a Support Vector
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Machines (SVM) based classifier to automatically classify those sources.

From the work of McKeown, more and more studies involving the extraction of

independent components of functional images of the brain have been presented,

enhancing the capabilities of exploratory approaches (that are complementary to

the confirmatory ones, [60]). In [147] a comparison of classical hypothesis-driven

methods and ICA was made on clinical functional MR images, showing that both

techniques are able to identify spatio-temporal patterns of activity, with ICA being

more robust in case of data sets corrupted by motion or by incorrect task perfor-

mance. In [99] it was made a comparison of an ICA extraction (based on INFOMAX

algorithm) was compared to several other data analysis methods on simulated and

real fMRI data, proving that ICA was able to identify locations of activation not

accessible by simple correlation, t-test or general linear model based methods.

More complex experiments, like simulated driving [36] or visual ambiguous stimu-

lations [41] were investigated successfully with ICA, proving that blind separation

techniques are also able to deal with experiments where more than one task is per-

formed and where independent sources may partially overlap. Moreover, ICA has

been employed effectively in fMRI preprocessing: in [104] a motion correction algo-

rithm based on independent component analysis and entropy criterion was proposed

and it proved effective in increasing the informative content of the data in the pres-

ence of motion, without requiring the registration of the motion-corrupted volumes

to a single reference volume, as this procedure can introduce artifacts because it

does not account for variability due to the task-related components. Several ICA

algorithms have been employed to extract independent maps; the most used are Fas-

tICA (section 2.8) and INFOMAX (section 2.7.1). It has been shown in [53] that

whereas both algorithms produce accurate results, FastICA performs better than

INFOMAX in terms of spatial and temporal accuracy, while INFOMAX is superior

in terms of global estimation of the ICA model and noise reduction capabilities.

Both temporal and spatial ICA have been investigated [34, 29]. As said before, the

main problem of temporal ICA is that an extremely large number of components is

the result of the extraction, while the number of temporal samples is relatively small

compared with the spatial one. This leads to temporal components characterized

by spikes, that are almost zero everywhere else. In order to avoid such overlearning

dimension reduction techniques are employed.

In [116] a hybrid approach was proposed to mix the hypothesis- and data-driven

analysis. Time courses of the independent spatial maps extracted with ICA are
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used as reference function for a general linear model, with the possibility of giving

statistical significance to independent components. In that work, also the issue of

how many components to keep in the analysis is addressed. An hybrid approach was

also employed in [9], using ICA to remove the cofounds of task-related activation in

exploring functional connectivity.

ICA, unlike univariate methods (GLM), does not naturally generalize to a method

for drawing inferences about a group of subjects. Neverthless a method for making

such group analysis has been developed [33]. This kind of group analysis is based on

the main assumption that the data collected from different subjects are statistically

independent observations. Each subject is then treated as an observation of the

statistics of the population. The first stage of the processing sequence is standard

preprocessing and spatial normalization of the data into a standard space (which

can be Tailarach space or any other space that is chosen as common). The next

step is data reduction, two reduction steps are used to reduce the computational

load of simply entering all subjects’ data into an ICA analysis. One is taken on the

single subjects’ data and the second one is done on the aggregate data set. Then

the ICA is computed and group maps are formed. The most important step is the

data reduction one, in fact an optimal number of components that should be es-

timated is computed. If the independence between different subjects’ data holds,

single subject maps can be reconstructed after the group unmixing matrix is ob-

tained. Then there are two possibilities in order to obtain group maps: the first is

to compute z-maps over the group ICA maps obtained via the analysis; the second

is to compute the single subject maps and then compute the mean and the variance

of each component across subjects, where the variance across subjects can be used

as an estimate of the population variance. After this hypothesis test can be done to

provide a “random effects” inference [33, 158, 110]. A more sophisticated technique

based on self-organizing clustering has been recently proposed in [54].

Several improvements to classical ICA tailored to fMRI have been proposed. In

[156] a spatio-temporal independent component analysis is carried out by means

of a modified cost function, while in [157] a skewed contrast function, that can

account for asymmetry in independent components’ pdf, has been used to achieve

more precise results. However a procedure to extract spatial maps that enforcing

spatio-temporal regularities, that a physiologically plausible map must exhibit, has

not been addressed in literature.
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3.4 MagnetoEncephaloGraphic Signals: General

Concepts

MagnetoEncephalography (MEG) is a non invasive technique whose aim is to in-

vestigate neuronal currents by means of induced magnetic fields observation. It can

be considered, together with ElectroEncephaloGraphy (EEG), a technique comple-

mentary to functional Magnetic Resonance Imaging (fMRI). In fact, while the latter

has a high spatial resolution and a relatively low temporal resolution (related to the

BOLD effect), the former can reach a temporal resolution of the order of magnitude

of msec, but with somehow troublesome spatial localization.

The first indirect observation of neuronal electrical activity by means of non-invasive

measurement on the scalp has been made in 1929 by Berger [27]; in his work, Berger

analyzed potential differences among the scalp by means of electrodes, and was

able to identify and classify the two main rhythms of the brain (alpha and beta

activities). From that work, non-invasive exploration by means of induced field

observation became a widely used investigation technique. Although any electrical

current also induces a magnetic field, it has not been possible for a long time to

explore it since its magnitude is much smaller than environmental magnetic field

(induced magnetic field is around five orders of magnitudes smaller than urban mag-

netic noise, and nine orders smaller than earth magnetic field). The introduction

of Superconducting Quantum Interference Device (SQUID - for details, see [68])

made it possible to explore also magnetic fields too. In 1968, Cohen observed the

alpha rhythm with a SQUID-based measurement device [44]. Since that time more

and more complex architectures for detecting induced magnetic fields on the brain

have been developed, and now helmet sensors, that employ up to 150 channels and

can record the activity on the whole brain, are being used (in a magnetic shielded

environment).

The measured magnetic activity is the result of electrical currents in the neurons

within the cortex: each sensor stimulus or neural pulse moves through the nerve

system by means of a depolarization wave, generating an action potential. If the

head is assumed to be a spherical conductor, then it is evident that the only neu-

ronal currents that will produce an observable magnetic field outside the brain are

the ones that are parallel to the surface. Moreover, activity of a single neuron does

not cause a strong enough signal to be measured. Therefore, signals obtained will

be related to pools of neurons acting synchronously, or rather departing from the
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overall synchronous activity and so reducing its effect.

To model the measured field distribution Maxwell’s equations

∇ · E =
ρ

ε

∇× E = −∂B
∂t

∇ ·B = 0

∇×B = µ(J + ε
∂E

∂t
)

(3.31)

and current continuity equation

∇ · J = −∂ρ
∂t

(3.32)

are employed.

However some assumptions are usually made. In fact, since frequencies involved

are below 100 Hz, the quasi-static approximation can be made; moreover magnetic

permeability µ in biological tissues can be assumed to be equal to the one of empty

space (i.e. µ = µ0). The quasi-static assumption is fulfilled if the time-varying (i.e.

time derivatives) are smaller with respect to ohmic currents, and for the typical

values of MEG applications (ρ = 0.3Ω−1m−1, ε = 105ε0 and f = 100 Hz), this

assumption holds. This does not mean that time-varying phenomena are neglected,

but
∂B

∂t
is not considered in ∇×E evaluation, and so is

∂E

∂t
for ∇×B evaluation.

The electric field is such that, in the quasi-static approximation:

∇× E = 0 (3.33)

For what concerns current density J(r) produced by neuronal activity, it can be

modeled as the sum of two currents

J = Jp(r) + JV (r) (3.34)

where:

• Jp(r) is the primary current, caused by the ions movement within the mem-

brane, therefore it is connected to chemical activity of the cells.

• JV (r) is the volume current generated by passive movement of free charges

under the influence of primary current.
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MEG analysis aims at individuating primary currents, but induced volume currents

have to be accounted for in field computations.

Several techniques have been developed to find the primary currents in the brain

related to an experiment, but no unique solution can be provided. In section 8.2.1

the localization procedure that has been employed will be described.

3.4.1 ICA analysis

In the last decade ICA has been employed successfully to extract consistent infor-

mation from MEG recordings [167]. Several studies have proved its effectiveness in

removing artifacts and extracting relevant activations from MEG and EEG signals

[112, 168, 82, 17, 86].

A first challenging issue in Blind Source Separation neurophysiologic applications

is the choice of the contrast function used to extract sources: the non-Gaussianity

assumption in the ICA model and the imposition of an orthogonality constraint be-

tween extracted components (ICs) produce source estimates which are active during

short time intervals with minimal overlap. Therefore, ICA seems to be effective for

separating neuronal signals corresponding to sources that exhibit burst behavior,

coming from spatially distinct compact sources. The magnetic field patterns of

these ICs are close to those produced by isolated current dipoles [113, 125]. In

this way, ICA achieves both temporal and spatial separation of source activity and

can significantly enhance imaging accuracy [181, 125]. On the other hand, ICA is

insensitive to the time ordering of the data points; instead other BSS algorithms

have been recently claimed to be more suitable for cerebral sources separation, by

exploiting second-order statistics of the source signals to decompose the recorded

mixture, as for example minimizing a set of time-lagged cross-correlations [162]. At

present, many different BSS packages are available, implementing both high-order

ICA algorithms and second-order BSS techniques; validation of obtained results has

to be investigated case by case. A second key point in applications is how to as-

sign the neurophysiological and neuroanatomical meaning and interpretation to the

extracted sources, since often “interesting” characteristics are not effectively sepa-

rated in a single component but they can remain partially mixed, or split into more

than one component. Usually, a post-extraction analysis of spectral and spatial IC

properties is applied to select the relevant ones, leading to the definition of clusters

of “similar” components with respect to some criteria [113, 73, 18]. The necessity of
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Figure 3.8: MEG channels signals reconstructed by means of a single independent

component

this post-processing is the consequence of the blindness of the approach, since ICA

does not take other information into account than the statistics of the data; the

advantage is the generality of the assumptions, that make these techniques powerful

and flexible tools with respect to hypothesis-driven procedures, which are highly

dependent on the accuracy of a predefined model/template.

The ICA model for MEG data analysis is quite straightforward: each source of neural

activity is measured by different sensors with different weights, and all sources are

mixed up linearly, together with environmental noise. It is usual to consider noise

as an additional component, therefore the model can be described as:

x = As (3.35)

where x are the measured magnetic fields, s are as usual the independent components

and A, the mixing matrix, describes the mixing process. Although ICA does not

solve the inverse problem explicitly, it is to be noted that information contained

in the mixing process can be used to localize the sources. In fact localization for

independent sources is performed by spatial retro-projection, i.e. in order to localize

component si, its contribution to reconstructed data is found as follows:

XrpX
= ai × si (3.36)

where ai is the estimated mixing vector (i.e. the ith column of A) for the source
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si, and XrpX
is the retro-projection on the sensor channels of the estimated source.

Therefore each reconstructed channel has the same waveform but a different am-

plitude (see Figure 3.8, where an independent component contribution to signal

reconstruction is depicted for the different channels) related to mixing coefficients es-

timates. As a consequence of this, the field distribution obtained by retro-projecting

only one component is time-invariant up to a scale factor; consequently, the sub-

tending current distribution is time-independent.
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Chapter 4

Dedicated Architectures for fast

ICA Implementation

4.1 Introduction

The main principles and application fields of Independent Component Analysis have

been showed in Chapter 2. Since this technique is quite general and can be used

for different applications, there is an increased need for performance in both speed

and accuracy in independent components extraction. In fact, for what concerns

biomedical signal processing, accuracy of the separation, robustness to noise and to

outliers is a crucial aspect, while for other problems, like telecommunication signal

processing, the use of ICA algorithm is mainly focused on speed of extraction.

Another interesting aspect of the problem is the possibility of embedding the signal

extraction into a processing chain or a single device, so that this device may be

portable. The best solution to this task in terms of performances, power consump-

tion and space occupation would be to design a custom integrated circuit for the

application. However, this strategy could not be optimal in terms of design time

and cost, since the production of dedicated ASIC usually requires a high number of

produced pieces to justify the efforts to produce it.

The use of dedicated programmable architectures, like Digital Signal Processor

(DSP) and Field Programmable Gate Array (FPGA) units is in between the

two strategies of employing a custom ASIC and of employing a general purpose

microprocessor. DSP architecture, in particular, is especially suited for scientific

calculations that involve high numbers of “simple”and repetitive tasks with the re-
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quirement of real-time processing.

In this chapter some aspects of performances of ICA algorithms have been inves-

tigated, and the study of the feasibility of an embedded ICA separating algorithm

has been explored on a Digital Signal Processor (DSP) architecture.

The ICA algorithm employed is FastICA ([79],[80]), one of the most effective sep-

aration algorithms both for its accuracy and for its speed. As seen in Section 2.8,

FastICA is based on the maximization of an approximation of negentropy by means

of a fixed-point iteration; its speed comes from the approximation of the Hessian

matrix of the associated Lagrange optimization problem, with an identity matrix

multiplied by a scalar, making the extraction fast and precise. The optimization

can be carried out in two alternative ways: extracting one component at a time

(deflation approach) or extracting all the sources together (symmetric approach).

For an implementation on a dedicated architecture the first seems to be the most

suitable. In fact, consider the extraction of n independent components with T sam-

ples each. A symmetric approach would handle n ·T ·B bits of data, where B is the

number of bits assigned for the representation of a value, at each iteration, while in

the deflation scheme data dimension reduces to T ·B (for each component). On the

other hand, however, the deflation approach can encounter some problems in the

last extracted components, since errors do propagate from one component to all the

others.

The core of the FastICA algorithm is the update of the unmixing coefficient. Re-

calling eq. 2.148, at each iteration the algorithm must perform the following steps

for the p-th component:

wp ← wpE{g′(wT
p z)} − E{zg(wT

p z)}

wp ← wp −
p−1∑

j=1

(wT
p wj)wj

wp =
wp

‖wp‖
(4.1)

where the most time consuming operations in the computation are the evaluation of

non-linearities and the expected values. Moreover, it will be showed in the following

that also decorrelation and normalization steps may be troublesome for a fixed-

point architecture and they have to be implemented carefully to avoid overflows or

precision loss.

To test the performances of a DSP implementation of FastICA algorithm, we decide
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Figure 4.1: Test data set for independent component separation. (a) Original

sources, (b) observed signals (linear mixture of (a)), (c) whitened observed signals,

(d) recovered signals with FastICA
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to extract some “test”independent sources mixed by means of a random matrix.

Original independent signals s were generated with FastICA package (CITARE),

and mixed linearly by means of a matrix A whose elements are i.i.d. uniformly in

[−0.5, 0.5]. The observed signals, together with the real and estimated independent

components and whitened data are depicted in Figure 4.1.

We started our analysis by whitened data rather than from original one, to evaluate

the time employed only by the independent component extraction. To evaluate

the results some proper measures of effectiveness of the separation were employed,

and the algorithm was tested on a PC, on a floating point and on a fixed point

DSP architecture. In Section 4.2 the details of the implementation and the results

obtained will be discussed in detail.

4.2 DSP Implementation of FastICA

If compared with general purpose microprocessors, Digital Signal Processors (DSP)

are optimized for scientific computation, and are often employed as a stand-alone

processing unit or as co-processors associated to a microprocessor. To obtain real-

time performances, together with low power consumption and with the possibility of

being embedded in some environments, their architecture is particularly optimized

with respect to memory usage and transfer. Moreover, a high level of parallelization

can be achieved, together with the possibility of accessing to more than one memory

location within one cycle.

In the classical Von Neumann architecture the Arithmetic Logic Unit (ALU) and the

control unit are connected to a single memory that stores both the data values and

the program instructions. During execution, an instruction is read from the memory

and decoded, appropriate operands are fetched from the memory, and, finally, the

instruction is executed. The main disadvantage is that memory bandwidth becomes

the bottleneck in such an architecture. To overcome this limitation DSPs implement

a Harvard architecture, where instructions and data are stored in separate memories

and can therefore be trasferred in parallel. The difference between Harvard and Von

Neumann architectures is described in Figure 4.2.

The most common operation a standard DSP processor must be able to perform

efficiently is multiply-and-accumulate. This operation should ideally be performed

in a single instruction cycle. This means that two values must be read from mem-

ory (one of them might reside in a register) and (depending on organization) one
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Figure 4.2: Harvard (left panel) and Von Neumann (right panel) architectures

value must be written, or two or more address registers must be updated, in that

cycle. Hence, a high memory bandwidth is just as important as a fast multiply-and-

accumulate operation. Several memory buses and on-chip memories are therefore

used so that reads and writes to different memory units can take place concurrently.

Furthermore, pipelining is used extensively to increase the throughput. Current

DSP architectures use multiple buses and execution units to achieve even higher

degrees of concurrency. Chips with multiple DSPs processors and a RISC micro-

processor are also available.

One of the major strengths of DSP computation is the possibility of perform-

ing in one cycle the multiply-and-accumulate operation (Multiply And Accumulate,

MAC), that is particularly desirable while dealing with data processing in real-time.

For further details on DSP architecture and functionalities, see [111], [95] and [171]

FastICA algorithm implementation was explored on two different architecture, float-

ing and fixed point, on two DSPs from Texas InstrumentsTM of the family C6000.

Floating point architectures are more sophisticated than fixed point ones, and their

choice should be motivated by reasons of portability and embedding ability, since

they can be easily outperformed by general purpose microprocessor in terms of

speed. On the contrary, the major strength of fixed point architecture is their rela-

tively higher speed, since higher clock frequencies (if compared with floating point

ones) can be achieved.
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DSPs algorithms can be easily and reliably implemented on Texas InstrumentsTM

devices by means of Code Composer Studio (CCS), a software that allows C code

implementation on DSP platforms. Since Assembler is the native language in DSP

architecture, it is still possible to implement the algorithm in that language, but

this could not be the best solution in terms of developing time. In fact, CCS gives

the programmer a fully accessible environment allowing to compile, build and run

a C code on DSP, with the possibility of configuring memory allocation, interrupts

and libraries. Moreover, the efficiency of a C code implementation can be around

80− 100% of an assembler one, making C programming the best trade-off in terms

of time effort and performances. A C code was implemented therefore for FastICA,

and it was focused only on the independent components extraction. As said in 4.1,

some aspects of the algorithm implementation must be studied carefully to achieve

speed performances. In particular, the most expensive computation is the contrast

function evaluation, since an average on all the dataset has to be made for each

iteration. Another computationally expensive operation is decorrelation. For what

concerns fixed point implementation, another issue was the normalization step, that

had to be modified in an adaptive fashion to avoid overflow in the elaboration.

4.2.1 Texas Instruments C6000 Family

Before explaining in detail the floating and fixed point implementation of FastICA

algorithm, a brief description of C6000 family will be given. Among all of the DSP

families of Texas Instruments, we choose C6000 class since it is the most suitable

for complex calculus, even if it is the most expensive. There are some features

common to all the DSPs in C6000 families, mainly regarding the processing unit

scheme (Figure 4.3). As seen in Figure 4.3, right panel, the C6000 architecture has

8 independent functional units, and four of them can be employed to perform two

simultaneous MAC operation, allowing therefore a high level of parallelization that

can be exploited even at C level by means of CCS compiler; due to parallelization

C6000 family can perform in general from 200 to 2400 MMAC (Mega Multiply-and-

Accumulate) operations per second. Further real-time oriented design strategies

have been implemented on the internal bus, as seen in Figure 4.4. Five simultaneous

bus operations can be performed at a time:

- one program read

- two data read/write
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Figure 4.3: C6000 Family Block Diagram (left) and Architecture (right)

- one DMA write

- one DMA read

Direct Memory Access (DMA) allows to optimize memory usage, since it can move

data from and to memory, without use of CPU resources, by means of proper inter-

rupts.

The DSP has on-chip two-level cache. The first cache level is split into program

and data memory, consistently with the Harvard architecture implemented, while

second-level cache and main memory are shared between program and data, allowing

the flexibility in usage typical of von Neumann architectures. Each DSP used was

embedded in a Developer Starting Kit (DSK), which provided the DSP with inter-

faces, additional memory banks, A/D converters and ports for expansions. Usually

a DSK is connected to a PC, and the communication can hold via JTAG emulator

(by means of a parallel or USB port) or via Host Port Interface (HPI).

4.2.2 Floating Point Implementation

Floating Point realization of FastICA algorithm was implemented on a TMS320

C6711 DSP with a clock frequency of 150 MHz. This DSP was provided with a
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Figure 4.4: Texas Instruments C6000 internal buses

DSK whose interface is the parallel port. The DSP used has a floating point unit,

together with other units as shown in Figure 4.3, that allows a more precise number

representation, if compared with a fixed point one. Moreover, C6711 is provided

with additional features to speed-up the execution: memory mapping, depicted in

figure 4.5, has three different levels:

- First level cache (L1), separated for data and programs (4KB are provided for

each of them). Program cache can store up to 1000 instructions (each line of

512 bytes can store 16 instructions)

- Second level cache (L2), unified for program and data, with a dimension of

64KB. This memory module is divided in four blocks can be configured inde-

pendently as cache or RAM memory .

- External memory, that can account for additional memory modules.

The implementation of a FastICA algorithm for a floating-point architecture is

straightforward, therefore a preliminary version of the algorithm based on C code

has been realized and tested. By means of debug tools provided with Code Com-

poser Studio it is possible to quantify the amount of cycles needed for each part of

the code, therefore the average time elapsed. The next step has been to optimize the
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Figure 4.5: TMS320 C6000 memory (left) and cache (right) schemes

code structure and applying compilation optimization to the debugged code. Com-

piler optimization is based on massive parallelization of instructions that do not have

dependencies (two instructions are independent if one is not based on the output of

the other), but usually “manual”code changes that are oriented to parallelization

enhance compiler ability to recognize independent instructions dramatically.

To help pipelining of the instructions, some further modifications can be made to

the code. In particular, by means of compiler directive MUST ITERATE it is pos-

sible to “force”the program to run a cycle for at least a fixed number of iterations,

having a more efficient pipelining.

Further compiler directives to speed up execution are DATA ALIGN (for global vec-

tors) and DATA MEM BANC (for vectors defined locally), that force data vectors

to be aligned in 8 bytes groups in memory, so that cache transfers are optimized.

With these modifications, performances were evaluated again, and results will be

discussed in section 4.2.4.

4.2.3 Fixed Point Implementation

Fixed point version of FastICA algorithm was implemented on a TMS320 C6416

DSP from Texas Instruments. The DSK board consisted basically of:

- a DSP C6416 with fixed-point architecture, 600 MHz, 1 MB RAM

- 16 MB external SDRAM memory and a 512 KB flash memory
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- an A/D converter

- a JTAG emulator

The architecture of the DSK is depicted in Figure 4.6.

Memory map is similar to the one of C6711 depicted in Fig. 4.5, but it has greater

storing capabilities:

- The first level is still separate for data and instructions, and stores 16KB for

each of them. Each line of program cache contains 8 instructions.

- Second level cache is common for programs and data, and stores 1 MB. The

size of the line is 64 bytes.

The major issues of the fixed point representation if FastICA are precision and

overflow. In fact

- Data must be represented with the available bits, therefore particular care

must be taken in assigning bits to the significant digits of the numbers.

- The precision chosen for data may affect the convergence properties of the

algorithm

- Particular attention must be paid to internal computations of the algorithm,

that may cause overflow.

Denote now with WL the number of bits available for an integer representation

and let the number of integer part bits be IWL and the number of fractional part

bits be FWL: the number of bits needed for a value representation is IWL +FWL +1,

where the last term accounts for the sign. The range R of numbers representable

with IWL in fixed point notation is −2IWL ≤ R ≤ 2IWL . Of course, relative precision

of numbers is in any case 2−WL, while absolute precision is 2−FWL .

Taking a larger value FWL allows a more precise representation of the number, but

on the other hand it reduces the bits dedicated to the integer part, reducing the

range of admissible values: a trade-off between precision and range, taking into

account convergence properties of the algorithm, must be found.

The major issues in fixed point conversion iteration are:

1. Evaluation of nonlinearity: the chosen nonlinearity was G(y) = 1/4y4, there-

fore in (4.1) g = y3 and g′ = 3y2. Before taking the expected values of
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Figure 4.6: TMS320 C6416 Scheme

the nonlinearities on the whole dataset, values may go out of range, causing

overflow.

2. Products: any product in the algorithm may cause overflow

3. Normalization: the evaluation of the norm may be troublesome in terms of

overflow.

The following solutions were taken to avoid overflow:

1. Consider the computation

E{g′(wT
p z)} =

1

m

m∑

i=1

(wT
p z) · (wT

p z) : (4.2)

incorporating the term
1

m
into the summation operation in the following way

m∑

i=1

1√
m

(wT
p z) · 1√

m
(wT

p z) (4.3)

reduces the range of values needed to perform the computation. The same

procedure can be done for the term E{zg(wT
p z)}.
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2. According to the bits allocated for the integer part, the maximum value RMAX

for a number is evaluated. Even if the representation chosen is suitable for

input and output, it may happen that intermediate values of some variables

overflow. If the product of two terms a and b is grater than RMAX , the values

of a and b are scaled dividing by powers of 2 until their product becomes lower

that RMAX . The entity of the truncation is stored and then the result is scaled

back to the result once it is possible without causing overflow.

3. The norm evaluation is the most crucial part in the algorithm. In fact, at each

iteration unmixing coefficients vector w must be divided by its norm

‖w‖ =

√√√√
n∑

i=1

w2
i (4.4)

and errors in norm evaluation do propagate from an iteration to the other. We

decided to adopt an adaptive truncation, choosing the minimum truncation

that avoided overflow, avoiding thus to lose too much precision in the norm

evaluation.

The maximum dimension allowed for an integer representation in DSP C6416 is the

long format, that occupies 40 bits, i.e. signed integers from−239 (= −549755813888)

to 239 (=549755813888) can be represented with such format.

In a preliminary analysis, ranges of all the variables of the algorithm have been

evaluated by tracing on the example data described above. For each variable, its

mean, maximum and minimum value together with the standard deviation have been

estimated. The best trade-off between fractional part representation and overflow

has been the following: 20 bits were allocated for the fractional part, 19 for the

integer part and 1 for the sign. Fixed point representation of input data xFP is

obtained by multiplying the number by 220 (≈ 106) and discarding the fractional

part of xFP · 220.

By means of this choices, the algorithm was able to run without overflow and to

reach an estimate of the indepdent components. The results are presented in next

section, together with those of the floating point implementation.

4.2.4 Discussion

Evaluation of performances for both implementations has been conducted both on

accuracy and speed, and compared with a C code running on Personal computer

100



4.2. DSP Implementation of FastICA

with a AMD Sempron 1.8 GHz processor, with a a 512 KB cache and 512 MB RAM.

Evaluation of accuracy of the implementations

For what concerns accuracy, a typical performance index is the following:

E =
m∑

i=1

(
m∑

j=1

| pij |
maxk | pik |

− 1

)
+

m∑

j=1

(
m∑

i=1

| pij |
maxk | pkj |

− 1

)
(4.5)

where pij is the ijth element of matrix P = BA, with B being the estimate of the

unmixing matrix W. If the separation is “perfect”, P reduces to a permutation of

the identity matrix, and E is 0. Higher values of E1 denote some errors in indepen-

dent components extraction. The acceptable value of E depends on the number of

independent sources and on the sample size for the observations.

A Matlab implementation of the algorithm was considered first, and E1 was evalu-

ated for it. Then the same index was evaluated for the floating point implementation

and the fixed point one (for the fixed point implementation, data were converted to

floating point and compared on a PC, therefore on a floating point). Mean values

for the extractions are the following:

- MATLAB: E = 0.95

- Floating Point: E = 0.95

- Fixed Point: E = 0.6

The equivalence between MATLAB on a PC and C6711 in terms of performances is

rather intuitive, since they are based on the same architecture and perform basically

the same operations. On the contrary, it could seem quite surprising that a fixed

point implementation, that makes truncations and approximations, may perform

better than a floating point version. The explanation maybe is in the fact that

truncation in the values of w may reduce the effect of non optimal representation of

P as a permutation of identity matrix. Moreover it is to be noted that if the fixed

point implementation reaches a solution, this solution is the same as in the floating

point implementation, even if its representation is limited by the used precision.

Evaluation of time performances

Time execution performances were evaluated for the implementations on a PC with

MATLAB Code and C code, and for the two implementations in floating and fixed
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point. Time evaluation procedures were different for the two DSPs, since C6711 was

provided with debug options that enabled getting information on the cycles needed

for each code selection, while for C6416 this was not possible. MATLAB and C

codes speed were evaluated by averaging the execution time on several repetitions.

The results of this evaluation are the following:

- C6711 DSP: the average of the amount of cycles needed for an extraction was

considered. In particular, the code referring only to FastICA main iteration

needed an average amount of 1.064.535 cycles. Since the clock frequency of

C6711 is 150 MHz, the average time for the extraction is around 7.09 msec.

- C6416 DSP: in this case it was not possible to evaluate in debug mode the

amount of cycles needed for each code selection. Therefore the internal timer

of the DSP was employed, and the average amount of time needed for the

extraction was around 23 µsec.

- MATLAB: the MATLAB version of the algorithm was modified such that the

extraction procedure was repeated for 106 times, and the total elapsed time

was evaluated. Each independent component extraction lasted 6,26 msec on

average.

- C CODE on PC: the same procedure as the MATLAB case was imple-

mented, and the average execution time was 10.95 µsec.

4.3 Conclusions and future work

Two implementations on DSP architecture have been explored on a test dataset,

and a comparison in terms of speed and accuracy has been carried out for both the

fixed point and the floating point implementations. For what concerns the speed,

the fixed point solution has been proved as the most suitable, while the floating

point one seems to be highly inefficient. The reasons for this behavior may be sev-

eral: first of all, TMS C6711 is a first generation DSP, while TMS C6416 is a second

generation one, and therefore is better designed both in terms of memory usage

and in terms of architecture optimization. In fact the considerably larger amount

of cache memory and the higher level of parallelization, may have contributed to a

difference of elapsed time of roughly two orders of magnitude. Moreover, fixed point

DSPs show a promising trend for what concerns clock frequencies: in fact, the TMS
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C6416 employed in this work has a clock frequency of 600 MHz, but recently devel-

oped C64XX DSPs from Texas Instruments exceed 1 GHz frequency, this meaning

that the performances explored on this test case can be further enhanced (almost

doubled already on currently available HW) by means of more powerful architec-

tures.

However, a fixed point implementation has not been yet fully explored. In fact, data

precision may be a crucial issue while considering different and considerably larger

datasets. In this case whitened data were provided directly to the DSP. In a com-

plete independent component extraction procedure, this step should be performed

directly by the DSP, and this may cause some problems. In fact whitening procedure

(see section 2.6) transforms by means of a linear transformation the original dataset

into a new one that has a unity covariance matrix: this means that data variance

is reduced to 1, allowing a more precise representation in a fixed point architecture.

Therefore a suitable procedure for whitening the data within the necessary precision

should be implemented, to allow a complete processing from raw data to indepen-

dent components. Moreover, some troubles may be encountered in moving to larger

datasets (even if whitening procedure ensures that data variability will be somehow

bounded). Range evaluation for variables was performed on a rather limited dataset.

While whitening ensures a substantial limiting of range, more extensive evaluation

should be performed on other datasets from different application environments.

To sum up, the present exploration has proved that a fixed point implementation

of FastICA algorithm is feasible, and a trade-off between precision and overflow

may be found (also in adaptive fashion, like in the norm evaluation case). Some

important issues have still to be addressed, but the speed and the continuously

increasing performances of fixed point DSPs make them a suitable choice for em-

bedding the FastICA algorithm into a real-time processing chain. In any case, the

study reported shows that we cannot expect a single DSP to outperform a standard

PC significantly enough to justify the cost of designing such a solution. To further

increase the performances in terms of speed, a multi-threading architecture is at

present under study, since FastICA core iterations can be divided into concurrent

tasks and parallelized. A distributed computing architecture, made by several DSP

units embedded in a multiprocessor board with one DSP distributing computational

load to the others is currently under study. This architecture is scalable and may

significantly outperform a PC-based solution with contained cost, good portability

and ease of upgrading.
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Chapter 5

Statistical Non-Linear Model of

HEMT MMIC’s with BSS

5.1 Introduction

In the present work a rigorous validation procedure of a previously implemented

model [42] has been performed. In particular, a population of 196 HEMT devices

has been built by means of a Quasi-two-Dimensional (Q2D) simulation. Proper

statistical variation of the physical parameters, and distance-dependent device-to-

device correlation have been imposed. The generation of the HEMT population is

described in detail in section 5.2. The statistical non-linear model has been extracted

from DC IDS current and S-parameters of the devices. Further details of the model

and on the extraction procedure will be given in section 5.3. Finally, capability of

the model to account for physical parameters variation, and to reproduce statistical

distribution of the S-parameters has been checked by hypothesis testing, PCA and,

for the first time, ICA (section 5.4).

5.2 Database Generation

The nominal model of conventional HEMT transistor has been generated by means

of HELENA ([72]) software, that is designed for study of electric and noise prop-

erties of HEMT transistors. HELENA employs a Q2D (Quasi 2D) model to solve

the physical equations, that incorporates the most important bi-dimensional effects

into a mono-dimensional model with relatively small computational effort. The de-
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Figure 5.1: Geometrical and Physical parameters of the simulated HEMT device

vice considered for this simulation was the GaAs/AlGaAs HEMT proposed in [115].

The structure of the device is depicted in Figure 5.1. The device has a highly doped

(2 · 1018 atoms/cm3) cover layer, with a thickness of 500 Å, a 0.1 µm gate length,

while the 300Å AlGaAs layer is doped with a concentration of 1018 atoms/cm3, and

has a 20% mole fraction of Al. The spacer layer has a relative reduced thickness

(30 Å), while the buffer layer is not doped and has a thickness of 5000Å. The small

signal equivalent circuit of the HEMT employed is depicted in Figure 5.2 It consists

of an RLC network in input, a voltage driven current generator, an RLC network

in output and a coupling capacity between input and output. Cgs capacity is re-

lated to the charge in accumulation layer and is determined by the voltage variation

between gate and source, while Cgd is related to the charge in accumulation layer

between gate and drain. The current generator driven by voltage at Cgs is related

to the fact that current of the channel is modulated by gate voltage by means of

thickness of the accumulation layer, while time delay τ is due to the carriers and

to the signal propagation through gate, since its dimensions cannot be neglected at

the frequencies where the HEMT is employed. For a more detailed description of

the model, see [115].

The database has been generated by means of statistical variations of physical pa-
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Figure 5.2: Small signal equivalent circuit

rameters, taking also small scale variations into account. The procedure employed

is the following:

• A nominal model has been implemented for a single transistor, starting from

physical parameters.

• A sensitivity analysis has been carried out in order to select the statistical

variables of the model. Large scale and small scale variability have been taken

into account.

• A population of of devices has been generated by perturbation of physical

parameters of the nominal transistor.

• Statistical tests have been performed on the MMIC realization in order to test

if the specification on mean, variance and covariance matrix is fulfilled.

• A database of measures for S parameters and for IDS has been generated by

simulation in HELENA.

The small-signal model extracted by HELENA has been employed to simulate

the MMIC (Monolithic Microwave Integrated Circuit) consisting of 196 transistors,

on a square grid of 14× 14.

A preliminary sensitivity study has been conducted in order to decide which physical
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Physical Parameter Mean Value Standard Deviation

Thickness of the layer under gate 100 Å 3

Thickness of the 300 Å layer 300 Å 9

Thickness of the separation layer 30 Å 0.9

Gate length 0.1 µm 0.015

Carrier density in 300 Å layer 1018 atoms/cm3 316

Table 5.1: Statistical physical parameters of the model, together with their mean

value and their standard deviation

parameters influence the transistor circuital parameters the most. This sensitivity

study, together with some results already known from literature ([161, 10, 96]), has

led to the choice of the parameters described in Table 5.1. Each of the five statistical

parameters was assumed to have a Gaussian distribution with mean and standard

deviation of Table 5.1

To account for lack of manufacturing uniformity, statistical variation has been

imposed to some physical parameters. In particular, two kinds of variations have

been considered:

• Large Scale: the same devices belonging to two different MMICs may be

different

• Small Scale: the devices belonging to the same MMIC have some variability

that is related to their distance.

Both these variabilities were considered to generate the simulated measure data-

base. Each of the five statistical parameters was considered independent from the

others (this is consistent with MMIC production techniques), having a Gaussian

distribution, while correlation matrix relative to homologous parameters at differ-

ent positions in the same chip depended on distance (since neighbor devices should

be more “similar” than distant ones).

The correlation coefficient Y (d) between two transistors at distance d was computed

in the following way:

Y (d) = Y1(d) + Y2(d) (5.1)
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Figure 5.3: Distance-dependent correlation coefficient for statistical parameters.

Left panel: Y2. Right panel: Y and Y1

where
Y1(d) = Ae−k1d

k1 = − 1

d1

ln(
10−4

A
)

(5.2)

Y2(d) = (A− 1)e−k2d

k2 = − 1

d1

ln(
10−4

1− A)
(5.3)

with A = 0.75, d1 = 40µm and d2 = 4000µm. Values of Y , Y1 and Y2 are depicted

in Figure 5.3.

By means of this correlation matrix, it is possible to simulate a more realistic

database, since it is plausible that non-uniformities in manufacturing process affect

neighboring transistors in a very similar way.

To account for large scale variability, 50 realization of a chip consisting of 30 × 30

transistors have been generated for each of the five statistical parameters, having

thus 505 different MMICs. The next step of database generation has been to choose

one of those 505 realizations, and to test if it has been generated correctly. For each

of the five physical parameters statistical tests have been conducted satisfactorily

on mean, variance, on Gaussianity of the marginal distribution and on correlation

matrix.

The final step of measurement database has been to simulate each transistor to

obtain S parameters and Ids currents. By means of HELENA, it has been possible

to consider S parameters for different operation points: Vds ranged from 0.25 V
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to 3 V with a step of 0.25 V. Vgs, instead, ranged from a value α and 0 V, with

α depending on the transistor selected (usually from -0.9 V to -0.5 V). For each

operation point, parameters S were evaluated for frequency F, with F ranging from

1 to 25 GHz, with a step of 1 GHz. Each S parameter had an average of 14000

different measurements.

To implement IDS measurement, due to the problems encountered with HELENA

in performing this simulation, another simulation tool, Agilent ADS, has been em-

ployed. Starting from the non-linear models extracted with HELENA, it has been

possible to evaluate IDS with ADS considering a Vds and Vgs varying like in the

S-parameters simulation.

The final database has been restricted to a 14 × 14 chip for numerical problems

encountered with HELENA and for the reason that usually a larger measurement

database is rarely available.

5.3 Non-Linear Model

Starting from the measurement database discussed in 5.2, a non-linear model has

been extracted and subsequently validated.

The non linear model, described in [42] has been extracted from the current data-

base. An MMIC linear model consists of a non linear nominal model for a device

of the chip and of a covariance matrix that accounts for the relationship between

different parameters of the model for a single device and for different devices. the

model extraction procedure is depicted in Figure 5.4. An empirical non linear model

is chosen to describe the behavior of the devices, therefore only a limited number M

of the overall parameters set is chosen as “statistical” (only the parameters whose

variation influences in a relevant way the model are considered statistical). From

the device in the center of the chip the M parameters of the non linear model and

the non statistical ones are estimated. Subsequently statistical parameters are esti-

mated on the whole chip, and their mean and variance is evaluated. Once the model

of single device has been described by means of its mean and variance, the covariance

matrix of the MMIC is estimated. Considering all the couples at a given distance d,

the correlation among all feasible distances in the chip is evaluated, and therefore

the MMIC covariance matrix is evaluated. The nominal non linear model employed

is depicted in Figure 5.5. The model consists of intrinsic and extrinsic elements.

Moreover, it is possible to divide the parameter set into a class of linear elements,
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Figure 5.4: Statistical model extraction procedure
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Figure 5.5: FET Nominal model

whose value is independent from the polarization of the circuit, and a class of non

linear elements, containing Cgs, Cgd, Ids, DC IdsRF and Ri, whose value depends on

the polarization. Capacitors Cgs, Cgd and Cds account for charge on gate contact,

while IdsDC and IdsRF model frequency dispersion of transconductance and output

conductance. All the non-linear elements in the model are described by means of

empirical equations [6, 47, 42]. Statistical parameters are chosen considering:

• Empirical parameter p variance.

• S parameters sensitivity to p.

• Noise introduced by optimization techniques employed to estimate p.

According to these studies, a set of 11 parameters has been described as statistical

[42]:

• Ipk: DC current amplitude factor.

• vpk0: Vgs that gives the maximum DC transconductance.

• d: Linear dependence coefficient of vpk0 from Vds.
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• u: output DC conductance.

• Ipk1, Ipk2: amplitude factor of RF transconductance model.

• Ipk3, Ipk4: amplitude factor of RF output conductance model.

• Qogs: amplitude factor of Qgs

• Qods: amplitude factor of Qds

• Qogd: amplitude factor of Qgd

Non-linear model extraction can be summarized by the following steps:

1. Extraction of linear elements from parameters measures on different operation

points.

2. Extraction of multi-bias linear model by means of the solution of a set of

equations to obtain extrinsic parameters in different operation points.

3. IdsDC paramters extraction by means of Angelov empirical equation ([6]) for

the static current values measured.

4. Extraction of the parameters of the empirical equations that describe non-

linear components by means of fitting of the values obtained at points 1, 2

and 3. Usually this step is done by means of a Simulated Annealing-Gradient

mixed approach

MMIC covariance matrix is then estimate by considering different sets of transistor

couples at distance d (ranging from a minimum value dmin to a maximum value

depending on chip dimensions). For each distance, the correlation between all the

parameters of the two transistors of the couples is evaluated. It is evident that, as

the distance d increases, the number of couples at distance d decreases, therefore

suitable hypothesis tests to assess the reliability of such correlation for a given

distance are performed to set the maximum distance dmax that allows a significant

value of correlation.

The correlation matrix obtained by this procedure is a block matrix, where block

(i, j) is the correlation matrix of the parameters of transistor i and of transistor j.
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5.4 Model Validation

Once the model has been extracted, a validation procedure has to be implemented in

order to evaluate the correspondence between the modeled circuits and the real ones.

Usually a new database is generated starting from the model parameters by means

of a Monte Carlo simulation, and it is confronted to the measured one by means

of hypothesis testing. In particular, mean, standard deviation, autocorrelation and

cross correlation blocks of the MMIC covariance matrix are tested.

5.4.1 Statistical Testing

S parameters population in the measured database and in the simulated one are

confronted with statistical tests. The significance level is related to the probability

of false negatives (i.e. the probability of having an error between the two populations

while there is no error), and usually a significance level α ranging from 0.05 to 0.1 is

used. If the population examined consists of m variables, the probability of a false

negative is:

αcumul = 1− (1− α)m (5.4)

A different significance level α has to be employed to obtain αcumul = 0.1, according

to the hypothesis tested. In particular:

• Mean values and standard deviations: since the 4 scattering parameters

have both real and imaginary parts, there are 8 dimensions, therefore α =

0.013.

• Autocorrelation coefficients: the number of dimensions in this case is 64,

but the autocorrelation matrix is symmetric and its main diagonal elements are

equal to 1, therefore there are only 28 independent variables and α = 0.00263.

• Crosscorrelation coefficients: as before, the number of dimension is 64 and

the matrix is symmetric, but the main diagonal elements are not forced to be

1, therefore the number of independent dimensions is 36, and α = 0.00164.

For mean values testing, the following variable is employed:

Z =
| µmeas − µmod | −∆√

σMeas + σMod

Q

(5.5)
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where the null hypothesis is

H0 :| µmeas − µmod |= ∆ (5.6)

against the alternative hypothesis:

H1 :| µmeas − µmod |< ∆ (5.7)

and µ and σ are the mean values and standard deviations of the modeled and

measured distributions, z is a Gaussian variable and Q is the sample size. The

region where the hypothesis H1 is accepted is the one where:

Z < −Za (5.8)

where za is the cumulative distribution function of z for a suitable value of a.

For what concerns standard deviation, hypothesis testing is passed with a maximum

error ∆σ with a significance level α with the following test:

Zσ2 =
(| σ2

Meas − σ2
Mod | −∆σ2)√

σσ2
Meas

+ σσ2
Mod

Q

(5.9)

where the null hypothesis:

H0 :| σ2
Meas − σ2

Mod |= ∆σ2 (5.10)

is tested again the alternative hypothesis:

H1 :| σ2
Meas − σ2

Mod |< ∆σ2 (5.11)

, where Zσ2 is a Gaussian variable, σ and σσ2 are the variance and the variance of

the variance of the modeled distribution and Q is the sample size. The error on

variances is related to the error on standard deviations by means of the following:

∆σ2 =

{
2∆σ − (∆σ)2 ifσMeas > σMod

2∆σ + (∆σ)2 ifσMeas < σMod

(5.12)

The acceptability region for H2 is defined by:

Zσ2 < −Zσ2α (5.13)
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where Zσ2α is the cumulative distribution function of Zσ2 for a given significance

level α. Test on auto- and cross-correlation is done by means of Fisher’s Z, with

the following test:

Zc =
| cMeas − cMod | −∆c√

2

Q− 3

(5.14)

where the region of acceptance of the alternative hypothesis H1 :| cMeas−cMod |< ∆c

is defined as in (5.8)

5.4.2 Principal Component Analysis

Since the parameters of the model are correlated, before performing a Monte Carlo

simulation PCA (see section 2.3.4) is usually performed. In fact, by means of this

technique it is possible to:

• Transform the original dataset into a new one whose parameters are uncorre-

lated

• Reduce the dimensions to a specific value (defined, for instance, by the amount

of explained variance)

Moreover, since many CAD simulation tools are not able to perform a Monte Carlo

simulation on a set of correlated variables, it is possible to overcome this limitation

by performing orthogonalization by means of PCA. The main drawback of such a

technique is that the new parameters do not have a straightforward relationship

with physical parameters, making it difficult to interpret the results.

After performing PCA, each parameter of the model can be expressed in terms of

principal components in the following way:

p = µp + σp(

NPC∑

i=1

FiPCi) (5.15)

whereNPC principal components has been considered, and F and P are the principal

factors and principal components respectively.

5.4.3 Independent Component Analysis

Independent Component Analysis has been applied to the parameters of the model,

as a further step with respect to PCA. In fact, since uncorrelatedness is a looser
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requirement than independence, and they are the same only if the variables are

Gaussian, it is plausible to look for an independent representation rather than for

an uncorrelated one, once it is known that parameters do not have a Gaussian distri-

bution. While it is plausible to assume that technological parameters of the MMIC

exhibit Gaussian distribution, the extracted parameters of the model, since they are

related by empirical non-linear equations to the physical parameters, are in general

not Gaussian.

Therefore the following procedure has been implemented to estimate the indepen-

dent components:

• Data were preprocessed to remove the mean and to set the standard deviation

to 1

• Independent components were extracted by means of FastICA algorithm, with

a symmetric approach (to have better precision)

• Each independent component probability distribution has been estimated.

However the Monte Carlo simulation tool could not implement probability densi-

ties different from normal, uniform and log-normal, and therefore each independent

component density was approximated with one of these available functions. In par-

ticular, since the majority of components were super-Gaussian, independent compo-

nent ICi was first transformed into ICi1 by adding a suitable mean µi (to make the

probability density defined only for positive values), the corresponding log-normal

density was estimated with maximum likelihood, and then µi mean was subtracted.

This procedure, however, could be somehow troublesome since there were some in-

dependent components whose pdf could be fitted unsatisfactorily by a log-normal

density. The results of the ICA implementation for the parameters database will be

discussed in the next section. After performing ICA, each parameter of the model

can be expressed in terms of independent components in the following way:

p = µp + σp(

NIC∑

i=1

AiICi) (5.16)

where NIC is the number of independent components, and A and IC are the mixing

coefficients and the independent components respectively.
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5.4.4 Results and Discussion

Statistical validation on the model has been performed, together with PCA and ICA

preprocessing. Results of the statistical tests will be shown first, then an analysis

of Principal components relationship with physical parameters will be discussed.

Finally, a comparison between PCA and ICA simulation will be done in order to

evaluate the effectiveness of the two models.

Different part of the MMIC have been considered. In particular, tests have been

conducted on an MMIC consisting of 2 active devices at distance dmin and on an

MMIC consisting of two devices at distance 2dmin. The statistical test have been

performed on the real and imaginary part of S-parameters in the 1-25 GHz frequency

range, with a cumulative level of significance α = 0.1. Tests have been conducted

employing PCA analysis to reduce dimension such that the current representation

explains the 95 % of the overall variance. The results of the validation procedures for

the S-parameters in terms of mean, standard deviation, auto- and cross-correlation

are shown in Tabb. 5.2-5.4 for the case without PCA and in Tables 5.5-5.7 for the

case where PCA prerocessing has been performed. Statistical test on means and

standard deviations gives the percentage difference that has to be accepted in order

to have a given percentage of success (in this case 50 and 75 %). Statistical test

on auto- and cross-correlation instead gives the success percentage according to the

error accepted (in this case 0.3, 0.4, 0.5, 0.6)

Statistical test show that:

• The difference of the means of simulated and measured dataset is almost

identical for all S-parameters.

• The standard deviation difference is reduced in the case of PCA pre-processing.

In fact, S21 parameter fails both in its real and imaginary part without PCA,

while with PCA the imaginary part of it passes the test with probability 75%

with an accepted error of 94%.

• The auto- and cross-correlation show a smaller difference in the case of PCA

preprocessing.

To sum up, these results confirm the fact that PCA leads to a more efficient repre-

sentation, since its components are uncorrelated.
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S-parameters Mean Values Standard Deviations

50 % 75 % 50 % 75 %

Re[S11] 0.2 0.6 25 25.5

Im[S11] 0.7 0.8 25 25.5

Re[S12] 1.7 1.75 23 23.5

Im[S12] 1.6 1.7 31 34

Re[S21] 1.2 1.4 > 100 > 100

Im[S21] 2.5 2.6 > 100 > 100

Re[S22] 0.9 1.1 > 100 > 100

Im[S22] 1.9 2 91 98

Table 5.2: Statistical test on means and standard deviations of S-parameters: differ-

ence accepted between simulated and measured vales to obtain 50 and 75 % success

for hypothesis tests on mean and standard deviations in 1-25 GHz frequency range

Accepted Error 0.3 0.4 0.5 0.6

Autocorrelations 28.66 41.44 47.11 62.11

Autocorrelation signs 78.22 78.22 78.22 78.22

Table 5.3: Statistical test on S-parameters autocorrelation coefficients: percentage

of success of hypothesis test between simulated and measured parameters. The

accepted error is the accepted percentage difference

Accepted Error 0.3 0.4 0.5 0.6

Cross-correlations 39.37 50.12 69.25 82

Cross-correlation signs 87.87 87.87 87.87 87.87

Table 5.4: Statistical test on S-parameters cross-correlation coefficients: percentage

of success of hypothesis test between simulated and measured parameters. The

accepted error is the accepted percentage difference
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S-parameters Mean Values Standard Deviations

50 % 75 % 50 % 75 %

Re[S11] 0.1 0.4 18 18.5

Im[S11] 0.6 0.7 19 19.5

Re[S12] 2.3 2.4 16 16.5

Im[S12] 2.1 2.15 19 27

Re[S21] 1.5 1.6 > 100 > 100

Im[S21] 2.5 2.6 94 > 100

Re[S22] 1 1.1 17 17.5

Im[S22] 2.5 2.6 25 26

Table 5.5: Statistical test on means and standard deviations of S-parameters with

PCA: difference accepted between simulated and measured vales to obtain 50 and

75 % success for hypothesis tests on mean and standard deviations in 1-25 GHz

frequency range

Accepted Error 0.3 0.4 0.5 0.6

Autocorrelations 44.22 50.11 54.6 60.6

Autocorrelation signs 80.66 80.66 80.66 80.66

Table 5.6: Statistical test on S-parameters autocorrelation coefficients with PCA:

percentage of success of hypothesis test between simulated and measured parame-

ters. The accepted error is the accepted percentage difference

Accepted Error 0.3 0.4 0.5 0.6

Cross-correlations 56.62 70.68 88.75 87.75

Cross-correlation signs 88.50 88.50 88.50 88.50

Table 5.7: Statistical test on S-parameters cross-correlation coefficients with PCA:

percentage of success of hypothesis test between simulated and measured parame-

ters. The accepted error is the accepted percentage difference
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A further investigation has been conducted on the principal components of the

parameters of a single device, in order to check if it is possible to relate the extracted

component to the original physical parameters. In [94] such investigation had been

conducted in order to diagnose the physical mechanism limiting manufacturing uni-

formity of InP HEMT devices. Ten DC figures of merit were measured for 50 devices

and the principal components of the correlation matrix were extracted and related

to the physical parameters. Here, the principal components are evaluated for the

statistical non-linear model of the device, in order to check if the proposed model is

able to preserve the relations between extracted model parameters and original phys-

ical parameters. The analysis of the relative importance of each extracted principal

component PCi in accounting for the total variance shows that the first 3 compo-

nents account for 93, 2% of the total variance: in particular particular, PC1 accounts

for 48.2%, PC2 for 30.9%, PC3 for 14.1%. The contribution of each component PCi

to the variance of the 11 statistical parameters of the model is depicted in Figure

5.6. The association of the first three principal components to the model parameters

Ipk (DC current amplitude factor), Vpk0 (Vgs for maximal DC transconductance),

u (DC output conductance), allows to point out their relation to variations of the

physical parameters ns, the carrier concentration in the channel of the device mainly

depending in turn on the thickness and carrier concentration in the highly doped

layer, and of Lg. PC1 is associated with the variations of Lg: in fact, PC1 shows

negative correlation both with Ipk and Vpk0, and this suggests a relation between Lg

increase and transconductance drop due to velocity saturation. PC2 is associated

with ns, as it is strongly correlated both to Vpk0 (with the minus sign) and to Ipk0

(with the plus sign). Finally, PC3 is strongly correlated to the output conductance

u, but no association with any physical parameter has been found [94]. It has to

be noted that PC1 and PC2 explain also almost the totality of the dynamic model

parameters variance.

Further tests have been conducted on an MMIC to make a comparison between

ICA and PCA performances. In particular the database has been validated once

again by means of Monte Carlo analysis using the independent components of the

model rather than the principal components, this time for a single device. For what

concerns S-parameters auto-correlations, ICA-based model seems more accurate.

In fact, statistical validation yields a success percentage of 57.1 % for an accepted

error of 0.4, while for the PCA model it is 50.1%. The result of the validation

procedure in terms of mean and standard deviation of the S-parameters with an
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Figure 5.6: Contribution of each component PCi to the variance of the 11 statistical

parameters

Independent-Component-based single transistor model are described in Table 5.8.

A comparison between the measured database and the simulated one for both PCA

and ICA in terms of S-parameters population, mean and variance is depicted in Fig-

ures 5.7-5.18, where the PCA-based model analysis is on the left side of the figures,

while the ICA-based one is on the right. For what concerns S-parameters statistical

population, the comparison is carried out for both real and imaginary part. For

mean and standard deviation analysis the measured values are in red and violet

respectively, while the simulated ones are in blue and green respectively. From the

analysis shown, two considerations can be made. It is evident that ICA is more

effective in representing S21 parameters. In fact, in the correlated model and in the

PCA based model, almost all of the S21 parameters failed the statistical test, while

in the ICA based model an acceptable difference between simulated and measured

parameters was obtained for both real and imaginary parts of S21.

On the other hand, the ICA based model suffers from lack of precision on the other

parameters, if compared with PCA. One of the main reasons for this behavior may

be the fact that log-normal density approximation was based on heuristic parameter

choice that may reduce accuracy of the fitting. Moreover, the log-normal function

may lack the ability to represent the variability of the independent components, and

somehow “reduces” the set of values spanned by each component.
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S-parameters Mean Values Standard Deviations

50 % 75 % 50 % 75 %

Re[S11] 2 4 48 48

Im[S11] 5 5 52 53

Re[S12] 2.3 2.4 16 16.5

Im[S12] 5 6 45 45

Re[S21] 2 2 30 45

Im[S21] 6 7 18 20

Re[S22] 3 3 58 60

Im[S22] 6 6 67 70

Table 5.8: Statistical test on means and standard deviations of S-parameters with

ICA: difference accepted between simulated and measured vales to obtain 50 and

75 % success for hypothesis tests on mean and standard deviations in 1-25 GHz

frequency range

Based on these considerations, more precise density fitting by means of Gaussian

mixtures is currently under study. In fact, Gaussian mixtures have the additional

advantage that they can be easily implemented in any CAD tools capable of per-

forming Monte Carlo analysis, since each parameter can be treated as a linear sum

of Normal distributed parameters, whose mean, variance and weight is fitted by

means of maximum likelihood estimation. Moreover, Gaussian Mixture Models can

be extracted automatically, without resorting to heuristic parameter choices as in

the case of the log-normal distribution.
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Figure 5.7: Simulated and measured S11 parameter. Left panel: PCA results. Right

panel: ICA results
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Figure 5.8: Simulated and measured S11 parameter: mean values. Left panel: PCA

results. Right panel: ICA results
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Figure 5.9: Simulated and measured S11 parameter: standard deviations. Left

panel: PCA results. Right panel: ICA results
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Figure 5.10: Simulated and measured S12 parameter. Left panel: PCA results.

Right panel: ICA results
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Figure 5.11: Simulated and measured S12 parameter: mean values. Left panel:

PCA results. Right panel: ICA results
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Figure 5.12: Simulated and measured S12 parameter: standard deviations. Left

panel: PCA results. Right panel: ICA results
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Figure 5.13: Simulated and measured S21 parameter. Left panel: PCA results.

Right panel: ICA results
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Figure 5.14: Simulated and measured S21 parameter: mean values. Left panel:

PCA results. Right panel: ICA results
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Figure 5.15: Simulated and measured S21 parameter: standard deviations. Left

panel: PCA results. Right panel: ICA results
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Figure 5.16: Simulated and measured S22 parameter. Left panel: PCA results.

Right panel: ICA results
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Figure 5.17: Simulated and measured S22 parameter: mean values. Left panel:

PCA results. Right panel: ICA results
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Figure 5.18: Simulated and measured S22 parameter: standard deviations. Left

panel: PCA results. Right panel: ICA results
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Chapter 6

Incorporation of prior knowledge

in ICA

6.1 Introduction

In Chapter 2 the main principles underlying Independent Component Analysis

(ICA), together with the most used approaches to extract sources, have been shown

while in Chapter 3 some applications related to biomedical signal processing have

been discussed. The results from previous discussion lead to the consideration that

ICA is an effective technique as long as its assumptions are met, and it is possible

to recover the sources in most of the cases. However, as pointed out in section

2.7.5, this technique is not explicitly meant for “structured” data, meaning that no

ordering of the points of the observed signals or no regularities in original sources

are exploited while performing extraction, and one may want not to lose this infor-

mation while recovering sources.

Consider Fig. 6.1: the mono-dimensional signals in panels (a)-(c) are considerably

different if one looks at them as “signals”. However, if they are considered as real-

izations of a random variable, their histograms (an thus all statistics) are identical,

as depicted in panel (d). In fact, signals in panels (b)-(c) have been generated by

means of permutations of the points of signal in (a). Therefore, the use of an al-

gorithm based merely on statistics neglects information content that is present in

the signal structure. If some spectral characteristic of a particular source is known

a priori, it is not possible to point this out using classical algorithms. A solution

could be to use an approach based on second order statistics, presented in section
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a) b) c)

d)

Figure 6.1: Example signals that have different spectral properties (panels (a)-(c))

while having the same histogram (panel (d))

2.7.5; however this solution is not flexible enough to take into account several kinds

of prior information, as it points out only temporal regularities looking for lagged

decorrelation, and its results are strongly affected by the choice of the lag.

This considerations are also evident in the fMRI case: consider the spatial map of an

independent source (for instance, a single slice). It is known a priori that physiolog-

ical activities that are observed by means of ICA do not (usually) involve regions of

the brain described by a single voxel. Therefore an isolated active voxel in a spatial

map is usually considered a noise artifact. However, while performing ICA on fMRI

data, three-dimensional spatial data are considered neglecting the spatial ordering

of points: one could scramble all the points in the same way for all the volumes, but

the solution would be the same, in terms of mixing coefficients. This is at the same

time a strength and a weakness of the ICA approach: while, on the one hand, the

technique is completely blind and it is driven only by statistical independence, on

the other hand it neglects additional information available on data, that therefore
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a) b) c)

d)

Figure 6.2: Example images that have different spectral properties (panels (a)-(c))

while having the same histogram (panel (d))

cannot be considered in the extraction. Consider now figure 6.2: in panels (a)-(c)

three spatial maps with the same histograms are depicted. The first one (panel (a))

is the best candidate for a “realistic” activation, while the other two do not carry

any information that can be used by a human expert to evaluate the results of an

experiment. However, all the three maps have the same histogram, like the case

presented in figure 6.1, and thus they will have the same statistics.

In general this situation may not be a problem. Consider, in fact, an independent

component analysis using FastICA algorithm (Section 2.8) extracting one compo-

nent at a time: for a given linear combination of original data a cost function is

evaluated and it is maximized by means of a fixed point iteration. The fact that all

the three maps have the same histogram does not imply that they will be extracted

as sources: in fact, an independent source is pointed out by a local maximum in the

cost function, not by the value of the cost function itself. Therefore, in the noiseless

case, the fact that also a “meaningless” map has the same histogram as an “inter-

esting” one is not a problem, since it has been proved that ICA is able to recover

sources effectively. However, in presence of noise, that could be Gaussian, multi-
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dimensional, uncorrelated or correlated with some sources, the situation is not the

same: the non-gaussianity measure itself becomes less and less robust with respect

to that noise, and it may happen that meaningless activations can be considered as

sources. One may want to use the prior information on spatial regularity to make

the extraction more robust to noise, while preserving the strength of the blind ap-

proach.

Another situation where the use of prior information may help is the case when

some specific property of only one or a group of sources is known in advance. In

this case, if one is looking only for those independent components, it would be better

to extract only “desired”sources, avoiding performing a full ICA decomposition and

selecting a posteriori the components. This is particularly useful in problems where

the number of the sources is considerably high, and there are some requirements on

the extraction time.

In the next section the works presented in literature will be revised, while in section

6.3 a new framework to account for prior information in an ICA problem will be

presented.

6.2 Previous work

In the previous section it has been pointed out that there are some cases where

prior information on one or more sources is available and that it could be useful

not to discard this knowledge. This kind of prior information can be divided in two

classes: the case where the prior knowledge is “precise”, and the one where this

knowledge is rather “loose”, i.e. when there are some clues about some sources, or

about some properties of these sources. To give an example, knowing the spectrum

of one source, or knowing the time course of an experiment is a rather specific

knowledge, while for the signals presented in Figg. 6.1 and 6.2 the knowledge to

discriminate between the signals is not as precise as in the previous case: knowing

that the sources are “structured” may be enough to extract them effectively, even

without looking for a particular power spectrum, but moving through a wider class

of signals. It is possible to classify the work presented in literature on this topic

according to this distinction, and in sections 6.2.1 and 6.2.2 current techniques will

be revised.
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6.2.1 Precise Prior information on some sources

The situation where some specific knowledge on one or more sources is available has

been addressed in literature. To make the extraction more effective, i.e. to recover

those sources first, several techniques have been proposed.

The situation described in [136] and in [19] is the following: suppose that the au-

tocorrelation function of one source is known a priori, or at least an approximation

of it is available. In this case, the aim of the proposed techniques is to recover that

source first, since classical ICA algorithms do not order extracted components. It

may be useful, in fact, to extract only that source, without extracting all the sources

and identifying the desired one a posteriori. In [136] this is achieved by means of a

modified cost function that considers also an error ǫ defined as follows:

ǫ(w) =
K−1∑

τ=0

[rss(τ)− rmodel(τ)]
2 (6.1)

where K is the number of time points, rss(τ) is an estimate of the autocorrelation

function of the source s and rmodel(τ) is the known autocorrelation function. The

new cost function becomes:

J(w) = JG(w)− λǫ(w) (6.2)

where JG(w) is a one-unit non-Gaussianity measure (i.e. negentropy, see Section

2.7.6). The optimization is carried out by means of a gradient method with different

starting points (to avoid being always trapped in the same local maximum), and

convergence is evaluated according to the weighting factor λ. The set of starting

points that lead to the desired optimum are observed while increasing the value of

λ, and it has been observed that this set expands as λ increases until an optimum

value λo, and then it decreases.

Starting from the same assumption (i.e. some knowledge of the autocorrelation

function), in [19] the authors propose a different solution, using second order meth-

ods (see Section 2.7.5). In this case sources are assumed to be uncorrelated at any

time lag, such that:

E{si(k)si(k − τr)} 6= 0

E{si(k)sj(k − τr)} = 0 ∀i 6= j (6.3)

and sources must have different autocorrelation functions to guarantee the identifi-

ability of the model. Information on the autocorrelation of one source is exploited
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by means of an error function ǫ defined as follows:

ǫ(t) = y(t)− by(t− p) = y(t)− byp(t) (6.4)

where b is a coefficient of a FIR filter with delay z−pTs , with the sampling period

Ts is usually assumed to be one. Since sources are constrained to have different

autocorrelation functions, a suitable choice of the delay p allows to identify sources

whose autocorrelation has a peak for that delay. The algorithm proposed is based

therefore on the minimization of the expected value of eq. (6.4) with respect to

parameters w and b. The cost function is therefore:

ξ(w, b) = E{ǫ} = wT E{xxT}w − 2bE{ypw
Tx}+ b2E{y2

p} (6.5)

With the orthogonality constraint and some simplifications, the update rule be-

comes:

w← E{ypx} (6.6)

The ability of the algorithm to extract the desired source relies on the choice of

the delay p that allows to discriminate between sources. The authors propose a

methodology based on the autocorrelation rx of observed signals x, individuating

the optimal delays by means of the peaks of rx. Once the delay has been chosen,

they proved analytically that the optimization process extracts the desired source

first.

Another algorithm to extract a source on which there is some prior knowledge has

been proposed in [84]. The algorithm is called Principal Independent Component

Analysis (PICA), and it is based on a cumulant approach where the learning is

driven by a reference generator based on prior information on the source. It has

been proved analytically that such approach allows extracting the desired source

first. Another algorithm, presented in [105], that is based on Joint Approximate

Diagonalization of Eigen-matrices (JADE), allows accounting for prior information

that can be expressed in the form of a quadratic constraint.

The Bayesian approach, presented in section 2.7.2, makes it quite easy to express

the additional prior information in terms of a prior to the problem. In [93] it has

been shown how to incorporate some prior knowledge of the sources. The additional

information considered was about the decorrelation of the observed signals (that can

be obtained by whitening. section 2.6, and that is not required in a maximum like-

lihood approach), about the mixing coefficients and about the shape of the sources
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probability densities.

In [81] it has been shown how to account for prior information on the mixing ma-

trix, considered in the form of a probability, and how to include this information in

some of the most known ICA algorithms (like INFOMAX, [24], the Juttén-Herault

algorithm, [88]). It has been shown that this prior information helps the sources

extraction in terms of convergence and speed of the algorithms.

For what concerns biomedical data, the use of prior knowledge is particularly ap-

pealing, since often a considerably limited number of independent components is

considered after the extraction, and some information is available on them. Start-

ing from this consideration some approaches have been proposed to point out this

characteristic in biomedical signal processing. In [108] and [109] the problem is ad-

dressed by means of constrained ICA (c-ICA), a technique derived from Lagrange

multipliers optimization. In this way it is considered a constraint of correlation

between the time course of a temporal independent component of an fMRI dataset

and a “rough” template of the time-course of the experiment. Results presented in

[109] show that is possible to extract first the task-related components, with no need

of post-selection, by having some clue on their time course. The cICA framework

is particularly flexible in including constraints in a theoretical rigorous way. The

contrast function that points out independence is, as usual, negative entropy, and

the additional information is considered as a constraint. Therefore the problems

becomes:

maximize JG(W)

subject to g(W) ≤ 0 and/or h(W) = 0
(6.7)

where g ∈ ℜµ accounts for the inequality constraints and h ∈ ℜν for the equality

ones.

The problem as posed can be solved by means of Lagrange multipliers, introducing

the Lagrangian function L:

L(W, µ, λ, z) = JG(y) + µT ĝ(W) +
1

2
γ ‖ĝ(W)‖2 + λTh(W) +

1

2
γ ‖h(W)‖2 (6.8)

where ĝ = (ĝ1, ĝ2, . . . , ĝu), with ĝp = gp + z2
p , where zi is a set of µ slack variables

that transform the inequality constraints into equality ones; the vectors µ ∈ ℜµ and

ν ∈ ℜnu are the vectors of positive Lagrange multipliers; the two quadratic penalties

terms 1
2
γ‖ · ‖2 ensure that the in the minimization problem the condition of local

convexity holds (i.e. the Hessian matrix is positive-definite). The optima of the
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problem in eq. (6.7) are those where the gradient of the Lagrangian function L with

respect to W, µ and ν is zero. The authors propose a Newton-like algorithm for

the Lagrangian optimization, and a gradient ascent for multipliers update.

This algorithm was applied also in [85] to electromagnetic recordings of the brain

(EEG and MEG). For EEG signals, information from ocular artifact was taken di-

rectly by thresholding a particular channel where this artifact was mostly evident

generating a “reference” function for it. Therefore cICA with the aim of minimizing

the correlation between estimated component and the reference function was per-

formed, successfully extracting the artifact source first. The same technique was

also applied to MEG recordings to identify the ocular and ECG artifacts.

A different approach was used by Calhoun in [35], to include information about

the time course of fMRI activities in a spatial ICA extraction. The approach, called

Semi-Blind ICA (sbICA), takes its moves from the INFOMAX algorithm ([24]) with

the update rule based on the natural gradient (see Section 2.7.2 and [2]). Differ-

ently from [109] (where constraints are applied to time courses in a temporal ICA

extraction), in this case spatial independent maps are constrained to have a tem-

poral time courses that correlates up to a predefined amount with known reference

signals. Each column ai of matrix A (that is the estimate of the mixing matrix)

is updated according to this criterion: first the classical INFOMAX update rule

is applied, then at the next iteration, correlation ρi between each column and the

desired time course is computed, and according to a tolerance value ti defined by

user, the column is updated in the following way:

ai =

{
ai if ρi ≥ ti

ai + c[f(ai)] if ρi < ti
(6.9)

where f(ai) is a function that tries to correct to estimated time course according

to the prior information on it. In particular, after each iteration components are

resorted such that every time each column will correspond to a specific time course,

as the INFOMAX itself does not order components. The algorithm has proved

to be effective on simulated and real fMRI data, and it has been confronted with

GLM showing more robustness to a choice of the reference time-course (i.e. sbICA

performs better than GLM when the information on the reference function is not

perfect).
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6.2.2 Loose Information on the sources

For what concerns a loose prior information on all the sources, or on a subset of

the whole number, several works have been proposed in literature. In particular

some works of Stone ([155, 156]) explore the possibility of considering other cri-

teria together with independence. In [156], a new contrast function derived from

INFOMAX by means of a linear combination of temporal and spatial independence

for fMRI data analysis has been proposed. The starting hypothesis is that fMRI

activations may be independent in the spatiotemporal domain, better than in the

spatial or temporal domain alone. The algorithm proposed, called spatiotemporal

ICA, has been tested on simulated sources that did not fulfill exactly the ICA as-

sumptions ([118]) and was proved to be more effective than spatial or temporal

independence. Moreover, information on the asymmetric probability density func-

tion was accounted for by means of skewed functions as approximating functions in

the contrast function.

Another approach, presented in [155] is the use of temporal predictability as a regu-

larization term in the contrast function. Temporal predictability of y is defined in

this case as the log ratio of long term variance to short term variance of y, that is:

hp =
1

2
log

∑m
i=1(yi − yi)

2

∑m
i=1(ỹi − yi)2

(6.10)

where the quantities yi and ỹi are both exponentially weighted sums defined as

follows:

yi = λSyi−1 + (1− λS)yi−1 with 0 ≤ λS ≤ 1 (6.11)

ỹi = λLỹi−1 + (1− λL)yi−1 with 0 ≤ λL ≤ 1 (6.12)

with the half life hL of ỹ much longer (a ratio of 100 has been proposed) than the

corresponding half life of y. The term in (6.10) is added to the spatial independence

term with a weigh β = 0.5. Results on simulated overlapping maps showed that

this regularizing factor led to an improvement in the separation.

Another approach proposed for fMRI data analysis is the so called Probabilistic ICA,

proposed by Beckmann in [22, 23]. In this case, by means of a Bayesian framework,

it is possible to give a different weight to different voxels in the brain. The aim of

this approach is to improve the separation by imposing a smoothing factor in both

temporal and spatial domain, selecting moreover the voxels that contribute the most

to the activation maps.
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In [67], a Bayesian framework with some priors on the autocorrelation of the sources

have been proposed. The technique is applied to text recovery in linear mixtures,

and Gibbs priors are employed to account for the edges in the images and results

on simulated signals have been proposed, showing the effectiveness of the approach.

6.3 New approach to take information into ac-

count

As seen in section 6.2, several attempts have been made in order to incorporate prior

information into the ICA extraction. It has been shown that this prior information

can be rather “specific” or “loose”; according to this difference, several approaches

have been proposed. However, all of the proposed approaches, given the fact that

they are flexible within the class of prior information that the algorithm employed

itself allows to add into the extraction, lack the possibility to account for informa-

tion that cannot be differentiable, that cannot be expressed in a closed form, or

that is heterogeneous. To overcome this limitation, and to provide a comprehensive

framework for including almost “any”kind of prior information into an ICA extrac-

tion, a new approach has been developed.

As pointed out in section 2.7, to find an ICA decomposition, a contrast function

has to be defined and it has to be optimized by means of some procedure. The new

approach starts from FastICA algorithm (section 2.8), in the deflation approach,

i.e. one component is extracted at a time; for the FastICA algorithm the contrast

function is an approximation of negentropy (see eq. (2.118)), and the optimization

is carried out by means of a Newton iteration.

For what concerns the new proposed algorithm, before explaining it in detail, it is

possible to define which are both the contrast function and the optimization proce-

dure.

• Contrast Function: To account for prior information, the new proposed

contrast function is:

F = JG(w) + λH(w), (6.13)

with F : ℜm → ℜ.

• Optimization Procedure: optimization of F is carried out by means of

Simulated Annealing
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Therefore the prior information is included into the algorithm by means of an ad-

ditive term in the contrast function. The terms in eq. (6.13) will now be explained

in detail:

JG: this function is defined as in eq. (2.118), and is an approximation of negentropy

by means of a non linearity G: JG(w) = [E{G(wTz)}−E{G(ν)}]2. As shown

in section 2.7.6, maximization of JG leads to independence.

H: the prior information is taken into account by means of this additional term

in the contrast function. H can be related to some properties of the sources

or of the mixing process and it holds: H : ℜm → ℜ. According to the problem

faced, H can be of any form, also a non differentiable one. Moreover, H has

to be such that H(aw) = H(w), ∀a 6= 0 (a contrast function for ICA, as seen

in Definition 3, must preserve its value for a class of equivalence). However,

in this case, as w is constrained to have unit norm, the previous requirement

reduces to: H(−w) = H(w).

λ: this parameter weighs the two functions and its importance can be crucial for

the optimization.

The choice of Simulated Annealing, that will be explained in more detail is section

6.4, comes from the fact that additional contrast function H can be also non differ-

entiable, or it cannot be expressed in closed form, but only some measures of it are

available according to a specified value of the mixing coefficients w.

According to the value of λ and to H it is possible to perform two different types

of optimization; in fact, both constrained optimization, whose aim is to point out

a specific feature of a single component or of a group of components, and multi-

objective optimization, where a term is added to the measure of independence, can

be treated using the proposed algorithm.

Suppose that the values of F and H in the proximity of a negentropy optimum (i.e.

a solution of a classical ICA decomposition) are known: the optimization process

can be performed in two ways:

i) H is weighed by λ such that λH is greater (i.e. at least two orders of magni-

tude) than JG, and H is considered only until a threshold κ: the optimization

becomes a constrained optimization.

ii) λH and JG are weighed such that their values are similar. In this case, the

optimization can be considered multi-objective.
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These two cases need further investigation, and this is the topic of the next sections.

6.3.1 The Constrained Optimization case

Constrained optimization is employed when, in addition to the minimization (maxi-

mization) of a function f , some further requirements on the optimization landscape

are required. A constrained optimization problem can be expressed as:

minimize f(w)

subject to : h(w) = 0

g(w) ≤ 0

(6.14)

where f : ℜm → ℜ, h : ℜm1 → ℜn1 and g : ℜm2 → ℜn2 . Function h is related to

equality constraints, while g accounts for inequality ones.

It has to be noted that also FastICA can be seen as a constrained optimization,

where f is an approximation of negentropy, and h is the constraint of unit norm.

If the three functions are continuous and differentiable, it is possible to give an

elegant formulation of the problem by means of Lagrange multipliers [28], as seen

in [108, 109, 85]. However there may be some cases where the function f or the

constraints g and h are not differentiable, or cannot be defined in closed form but

are defined in a procedural fashion. For ICA applications, it could be useful to

account for prior information without the requirement to express this knowledge

with a differentiable function or in closed form.

To overcome these limitations, the approach presented in section 6.3 is capable to

deal with constrained optimization. In fact, it is possible to consider the additional

contrast function as a penalty term and transform the constrained problem into an

unconstrained one.

Penalty methods are particularly useful in looking for optimal solutions of a function

f in a feasible region S. The problem then becomes:

minimize f(w)

with w ∈ S
(6.15)

Suppose that is possible to define a continuous function ψ : ℜm → ℜ+ such that:

ψ(w)

{
= 0, if x ∈ S
> 0, if x /∈ S

(6.16)
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then a new function to find the optima of f within the feasible region S is:

P (w, λ) = f(w) + λψ(w) (6.17)

where λ often is called penalty factor. It will be shown that, as λ → +∞, the

unconstrained optimization of f in ℜm leads to the optimum of it in S. To show

this, consider a sequence of λi ∈ ℜ+ such that:

λk+1 > λk, lim
k→+∞

λk = +∞ (6.18)

and suppose that these two statements hold:

i) The problem of maximizing (6.17) has a solution, i.e. a point w∗ exists such

that

f(w∗) = min
w∈S

f(w) (6.19)

ii) ∀λk > 0 ∃ wk ∈ ℜm such that:

P (wk, λk) = min
w∈ℜm

P (w, λk) (6.20)

then the following theorem holds:

Theorem 10. Suppose that both f and ψ are continuous functions, and that it holds

(6.16), and that conditions (i) e (ii) are satisfied. Let λk be a sequence that fulfills

(6.18); consider the sequence of wk as defined in (ii). Then, ∀k it holds:

(a) P (wk, λk) ≤ f(w∗);

(b) ψ(wk+1) ≤ ψ(wk);

(c) f(wk + 1) ≥ f(wk);

(d) P (wk+1, λk+1) ≥ P (wk, λk).

Proof. Let us consider the four points (a)–(d) separately:

(a): wk is an unconstrained minimum for P (wk, λk). Since ψ(w) = 0 for w ∈ S,

it holds:

P (xk, λk) = min
w∈ℜm

(f(w) + λkψ(w)) ≤ min
w∈S

(f(w) + λkψ(w)) =

= min
w∈S

f(w) = f(w∗).
(6.21)
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(b): Since wk and wk+1 are the minima of P (w, λk) and P (w, λk+1) respectively,

it holds that:

f(wk) + λkψ(wk) ≤ f(wk+1) + λkψ(wk+1) (6.22)

f(wk+1) + λk+1ψ(wk+1) ≤ f(wk) + λk+1ψ(wk), (6.23)

and summing equations (6.22) and (6.23), after some algebraic manipulations,

we have:

(λk+1 − λk)ψ(wk+1) ≤ (λk+1 − λk)ψ(wk), (6.24)

and, as λk+1 − λk > 0, it holds that ψ(wk+1) ≤ ψ(wk).

(c): from eq. (6.22) it holds that

f(wk)− f(wk+1) ≤ λk(ψ(wk+1)− ψ(wk)), (6.25)

therefore (c) comes from (b).

(d): from eq. (6.22), considering that λk+1 > λk, it holds:

f(wk) + λkψ(wk) ≤ f(wk+1) + λkψ(wk+1) ≤ f(wk+1) + λk+1ψ(wk+1) (6.26)

therefore (d) is true.

By means of Theorem 10 that is related to the property of monotonicity, it is

possible to prove the convergence of the penalty method:

Theorem 11. Suppose that f and ψ are continuous functions, that psi fulfills condi-

tion (6.16), and that hypotheses (i), (ii). Let {λk} be a sequence of positive numbers

satisfying eq. (6.17), and {wk} be the sequence of unconstrained minimum points

of function P (w, λk). Suppose that all points wk stay in a compact set D ⊂ ℜm.

Then:

(c1) lim
k→∞

ψ(wk) = 0

(c2) lim
k→∞

f(wk) = f(w∗), lim
k→∞

P (wk, λk) = f(w∗);

(c3) Every accumulation point of {wk} is an optimum of problem (6.15);

(c4) lim
k→∞

λkψ(wk) = 0
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Proof. From points of (a) and (c) of Theorem 10, it comes:

f(w∗) ≥ P (wk, λk) = f(wk) + λkψ(wk) ≥ f(w1) + λkψ(wk), (6.27)

therefore, considering the superior limit:

f(w∗)− f(w1) ≥ lim
k→∞

supλkψ(wk). (6.28)

Now, since λ → ∞ and ψ ≥ 0, it holds that lim supψ(wk) = 0 (if this were not

true, then the second term of eq. (6.28) would tend to +∞ for some subsequence,

and this would be an absurd). As ψ ≥ 0, it holds:

lim
k→∞

ψ(wk) = 0 (6.29)

therefore (c1) is true.

From hypotheses D is a compact set and wk ∈ D ∀k, therefore the sequence {wk}
has accumulation points. Suppose that x is an accumulation point, i.e. a subse-

quence exists such that:

lim
k→∞,k∈K

wk = w (6.30)

From (c1) and since f and ψ are continuous functions, it will be ψ(w) = 0, therefore

w ∈ S. From Theorem 10, sequences {f(wk)} and {P (wk, λk)} are monotonic non

decreasing and upper bounded (in fact f(w∗) ≥ P (k, λk) ≥ f(wk)), therefore they

have a limit. From (a) of Theorem 10, considering the superior limit for k ∈ K, it

holds:

f(w∗) ≥ lim sup
k→∞,k∈K

P (wk, λk) = lim
k→∞

P (wk, λk) =

= lim
k→∞

f(wk) + lim
k→∞

λkψ(wk) =

= f(w) + lim
k→∞

λkψ(wk) ≥ f(w) ≥ f(w∗) (6.31)

where the last inequality comes from the fact that w is a feasible point. From

inequalities in (6.31), proposition (c2) is verified. Again from (6.31) come the fact

that f(w∗) = f(w), w is an optimal solution, thus (c3) and (c4) are verified.

Theorems 10 and 11 guarantee that the penalty method, under some conditions,

leads to a solution to the problem of optimizing f in a region S defined by means

of a penalty function ψ. For what concerns the ICA approach developed, penalty

methods are particularly useful, because it is not required for the constrains to be
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differentiable, a case where Lagrange multipliers optimization, that requires gradi-

ents, is not able to perform optimization.

If we define Uunc as the set of the solutions of a classical (unconstrained) ICA prob-

lem, the solution set of the constrained problem will be (Uunc ∩ S) ∪ Uc, where S

deontes the feasible region and Uc is the set of solutions of the constrained problem

that are at the edges of the feasible region.

Therefore, in the applications where there is some strong requirement on an in-

dependent component, the constrained approach for the contrast function can be

useful, as long as the feasible set S is well defined by the additional function H.

6.3.2 The Multi-objective case

The second way to modify ICA is the multi-objective case. In this way, the addi-

tional contrast function is not weighted much more than independence, but rather

it is considered together with it to reach the optimum configuration.

It is clear that, in this case, that the new optima of the problem will not be a subset

of the classical ICA solution: consider a solution of an ICA problem, where W is

the estimate of the unmixing matrix, estimated by maximizing the negentropy of

the estimated components y = Wx. If we consider a new contrast function F de-

fined as in (6.13), the solution of the optimization process will be a new unmixing

matrix W1. It is evident that the negentropy of y will be greater or equal to the

one of y1 = W1x, by definition, meaning that the solution in the multi-objective

approach is less “independent” than the classical one. The question why such an

approach could be an improvement to the extraction is not evident in most cases.

However, especially in real world applications, most of the times the measure of

independence may be “deteriorated” by the presence of noise, or the “interesting”

signals themselves may not be “completely” independent. Consider the example in

section 6.1, and in particular Figure 6.2: in that case, the three spatial maps related

to a simulated fMRI experiment have the same histogram. If no noise is present in

the environment, the sources will be retrieved correctly. However, if a source has a

poor Signal to Noise Ratio (SNR), its contrast value cannot be fully reliable, and it

may happen that the configuration that maximizes negentropy is not the optimal

one in terms of interpretation of the results. The starting point of this approach is

that in real world problems, there is much more than independence that one can

consider to extract the sources. Consider, for instance, the analysis of fMRI time
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series (Chapter 3): it is known that independent spatial maps, to be considered an

estimate of spatiotemporal activity in the brain, must entail some kind of regular-

ities in space and time. This is absolutely not pointed out by classical ICA, and

there is no reason to discard this information if it may make the source recovery

easier and allow extraction of more physically plausible independent components.

In Chapter 7 an example on a simulated fMRI dataset at different levels of SNR

will be shown to support such arguments.

6.4 Simulated Annealing

6.4.1 Introduction

Simulated Annealing (SA) is an optimization procedure inspired by statistical me-

chanics, particularly suitable in cases where a deterministic solution or a gradient

optimization cannot be used (like in combinatorial optimization problems, or when

no closed form for the contrast function is available). The basic idea behind the

use of simulated annealing is to simulate the behavior of condensed matter at low

temperature: consider the problem of growing silicon in the form of highly ordered,

defect free crystals for use in semiconductor manufacturing. This means coercing

a solid in into a low energy state, that (usually) means a highly ordered state. To

accomplish this, the material is annealed : it is heated to a temperature that allows

many atomic rearrangements, and then it is cooled slowly, until the material freezes

into a good crystal. If the material is not heated to a suitable temperature, or it

is not cooled slowly, the crystal formation process may present a great number of

imperfections. The aim of the slow cooling is to allow statistical equilibrium within

a single state associated with the temperature.

Simulated Annealing is inspired to this considerations, and performs a stochastic

global optimization of a (cost, or contrast) function, being quite general, in the sense

that different kind of functions can be optimized without changing the optimization

procedure. To perform global optimization by means of local search Ω, several solu-

tions have been proposed. As the optimization may be trapped in local maxima (or

minima) while performing local search, a so called multistart procedure is usually

implemented, where the algorithm starts from different points in order to find the

global optimum. Of course such a procedure could be extremely demanding, since

one has to explore many starting points, and the algorithm will be trapped several
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times in the same optimum. Theoretically, a local search procedure Ω should not

be called more than once for each region of attraction (the region of attraction of

a solution xk w.r.t. a local search procedure Ω is defined as the set of points from

which the local search Ω will converge to xk).

Simulated Annealing, as an alternative to multistart algorithms, performs a ran-

dom search technique, where the algorithm avoids getting trapped in local optima

by accepting not only all movements that lead to an increase in the contrast func-

tion value but also, with a finite probability, movements leading to a deterioration .

This probabilistic acceptance criterion is designed to avoid being trapped in a local

optimum, and leads to a global solution as the control parameter (related to the

acceptance probability) reaches values such that this probability tends to zero.

6.4.2 Simulated Annealing optimization

While dealing with SA, it is common to illustrate the search that is performed at a

fixed temperature, called Metropolis Algorithm, which consists of a number of simple

principles. As mentioned before, the search is random (in the sense that there is no

favorite direction of perturbation from the original state), but with the probabilistic

acceptance of “wrong” solutions.

Consider a state s from which the algorithm starts, then consider a perturbation s′.

If the contrast function value f(s′) is greater than f(s) it is accepted, otherwise it is

accepted with a probability pT (∆) = min(1, e−∆/T ), where ∆ = f(s′)− f(s) and T ,

often called temperature, is the control parameter that determines the probability

of transition. Consider the Metropolis procedure applied to the case of maximizing

function f over a state space X. The procedure can be summarized by this pseudo-

code:

1. Generate some random initial configuration s

2. REPEAT

3. Determine a neighbor state s′

4. Evaluate ∆ = f(s)− f(s′)

5. Evaluate pT (∆) = min(1, e−∆/T )

6. IF random[0, 1] ≤ pT (∆) THEN move to state s′
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7. UNTIL FALSE

8. END

If the new state s′ is such that leads to an improvement in contrast function value

(∆ < 0), then the new pT (∆) = 1, therefore the new state is accepted. On the

contrary, if ∆ ≥ 0, meaning that the new state is lower in terms of contrast function,

the new state is accepted with probability related to the temperature. Considering

the set of states Φs ∈ X such that φ ∈ Φ can be reached from s in one move

(perturbation), then each move must be reversible (φ ∈ Φs ⇒ s ∈ Φφ). Consider a

discrete problem and suppose that the probability of each move is 1/ω , following the

Metropolis procedure means moving through states according to a Markov process

with the following transition probability:

ΦT (s′|s) =





1

ω
pt(f(s′)− f(s)) ifs′ ∈ Φs

1−
∑

φ∈Φs

1

ω
pt(f(φ)− f(s)) ifs′ = s

0 otherwise

(6.32)

If T > 0 the process is irreducible, meaning that there is a nonzero probability that

state φ will be reached from state s, with φ, s ∈ X. The stationary distribution of

the process πT is:

πT (s) =
e(−f(s)/T )

∑

φ∈Φ

e(−f(φ)/T )
, ∀s ∈ Φ (6.33)

Simulated annealing starts from the Metropolis algorithm and introduces the

concept of temperature decrease to find the global optimum. In fact, as the tem-

perature decreases, fewer and fewer solutions will be accepted, and the optimization

will be “trapped” in the global optimum. With the same notation as before, it is

possible to express the optimization in terms of a pseudo-code:

1. Generate a random initial state s = s0

2. Consider a starting temperature T = T0

3. WHILE (stopping criterion is not satisfied) DO

4. WHILE (required number of states has not been generated) DO
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5. Generate a new state s′ by perturbing present state s

6. Evaluate ∆ = f(s)− f(s′)

7. IF (∆ ≤ 0) THEN

8. Move to state s′

9. ELSE

10. Generate a random variable α ∈ [0, 1]

11. IF α ≤ e(−∆/T ) THEN move to state s′

12. END

13. END

14. Update T (Decrement)

15. END

Even if the procedure, as seen in the pseudo-code, is rather simple, nonetheless many

issues are still open: both the generation of states and all the criteria in the code

are intentionally not defined, as they may change from application to application.

Fortunately, some guidelines can be given in order to setup a SA optimization.

Before showing the most used criteria, a convergence analysis will be given.

It has been shown that the Metropolis algorithm moves through states according to

a Markov homogeneous process. The homogeneity of a Markov process means that,

considering the conditional probability at step k

PSiSj
(k − 1, k) = P (S(k) = Sj|S(k − 1) = Si) , (6.34)

this probability does not depend on k; if is there any dependence, the process is

described by an inhomogeneous Markov process.

The convergence of Simulated Annealing can be formulated in terms of:

- a homogeneous algorithm: the algorithm can be described as a sequence

of homogeneous Markov chains, where each chain is generated at a fixed value

of Temperature, that is decreased in between subsequent chains.
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- an inhomogeneous algorithm: the algorithm in this case is described by

a single inhomogeneous Markov chain, where the value of Temperature is

decreased in between subsequent transitions.

Convergence issues in the homogeneous algorithm are related to the probabilistic

acceptance rule, while in the inhomogeneous case, the main convergence condition

is on the temperature decrease rate.

For what concerns the homogeneous algorithm, the convergence is proved when there

exists a stationary distribution, defined as the limit of the probability of being in a

state as the number of iterations tends to infinity, and that the limit of this stationary

distribution is a uniform distribution on the set of globally optimal configurations.

In [1] the main theorems regarding convergence of homogeneous Markov chains are

shown. It is possible to prove, by means of those theorems, that the probabilistic

acceptance criterion employed in Simulated Annealing allows to define stationary

distributions whose limits is the set of global optima of the problem. Moving to the

inhomogeneous case, assuming that temperature is changed at each transition, it is

possible to prove ([1]) that asymptotic converge holds if the temperature decreases

as:

Tn =
a

log(n+ k0 + 1)
, with k0 ≥ 1. (6.35)

From the theory of Markov chains it is possible to prove asymptotic convergence of

the Simulated Annealing optimization. However, for an efficient implementation, the

bounds imposed by Markov chains theorems are far too time consuming, therefore

some suitable choices have to made in order to guarantee limited amount of time

and at the same time the ability to reach a satisfactory solution.

Choice of initial Temperature

The choice of initial Temperature is a crucial step in a SA algorithm. In fact, if

the starting temperature is too low, the system will be trapped in local optima,

since the probability acceptance criterion will tend to reject all sub-optimal moves.

On the contrary, a starting temperature too high makes the algorithm excessively

slow, consuming much more time than necessary. Moreover, since the temperature

is present in the optimization scheme only in combination with the difference of cost

function values in the acceptance criterion, its values must be somehow related to

the contrast function: in general, starting temperature should be at least six times
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higher than the mean of ∆f among all moves. A suitable and more general criterion

to set up the temperature is the following:

I. Begin with a random T .

II. Consider a number of iterations of the Metropolis procedure at temperature

T , recording the number of accepted moves A and the number of rejected ones

R.

III. If A/(A+R) < 0.8 then raise the temperature (e.g. T1 = 2T ), and repeat the

process until the system is warm enough.

To improve the previous procedure, one may decide to avoid the ratio A/(A+R) be-

ing too high (for instance, higher that 0.95), by decreasing the starting temperature

for those ratios, thus avoiding the system being too “warm”.

Choice of the Temperature decrease schedule

The temperature decrease schedule is another crucial aspect of a SA optimization.

If the cooling scheme is too fast, it may lead to sub-optimal solutions, while if it is

too slow it may take too much time to perform optimization. It has been proved

that ([1]) a temperature schedule of the form:

Tn =
c

log(n+ k0 + 1)
(6.36)

for large values of n and for sufficiently large values of c, guarantees convergence.

However, the scheme is far too slow to be applied in most of the problems. A more

efficient procedure is the exponential decrease rate, where

Tn = Tn−1α, with α < 1 (6.37)

where the cooling rate is controlled by α, that is usually set between 0.5 and 0.99.

This scheme has the advantage of moving relatively fast at high temperature, while

focusing much more on low temperatures, near the halting of the optimization.

Conditions for algorithm termination

Various conditions for algorithm termination can be found in literature, and it was

found that the value of temperature for which no further improvements can be made

is:

Tf =
Em − Em′

ln ν
(6.38)
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where E(m) is the absolute maximum value for the contrast function (often is set

to some predetermined value that depends on the application) and Em′ is the next

smallest value of the contrast function (according to Em), and ν is the number of

moves that takes to get from Em′ to Em. The temperature determined is such a way

represents the worst case scenario, and other criteria can be used to increase the

speed of the algorithm. Another employed criterion is to stop the algorithm when

no new solution has been accepted after four consecutive temperature decreases.

Choice of number of states at each Temperature

A criterion to evaluate the number of iterations needed at each temperature is to

set it at a fixed temperature as:

Y (T ) = e(fmax−fmin)/T (6.39)

where fmax and fmin are the maximum and the minimum values found so far for the

contrast function f . However, Y (T ) gets too large as T decreases, thus requiring to

upper bound this number. Another criterion is to consider the number of states at

each iteration such that the ratio between accepted and rejected moves is 1:10 (but

also in this case, as the temperature decreases, the number of iterations may grow

too much).
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6.5 Simulated Annealing for Independent Com-

ponent Analysis

A Simulated Annealing optimization has been implemented for Independent Com-

ponent Analysis. The contrast function, whose global optimum is the solution of

the problem, is F , as defined in (6.13). The extraction can be done in two ways (like

FastICA): extracting one component at a time or extracting all the sources together.

Therefore, according to the extraction procedure used, the contrast function is:

• Deflation case: One component is extracted at a time. Therefore, a single

mixing vector w is considered during optimization, with the following contrast

function:

F = JG(w) + λH(w) (6.40)

• Symmetric case: In this case, all the components are considered together,

and a matrix W is optimized to produce the maximum of the following con-

trast function:

F (W) =
∑

i

JG(wi) +
∑

i

λiHi(wi) (6.41)

where wi denotes a column of W and the functions Hi are computed for each

estimated component.

The differences for the two extraction types are in the perturbation process, in the

decorrelation procedure and in the contrast function evaluation, while the main

iterations and the optimization scheme remains the same.

The main part of the optimization is the Metropolis algorithm (see 6.4.2), with

the acceptance criterion related to Temperature. To show how the optimization

process is carried out, it is useful to point out the main aspects of Simulated An-

nealing setup, that will be discussed in detail:

• Perturbation of the state

• Annealing schedule

• Stopping criterion

Perturbation, i.e. the generation of a new state from an existing one, will be exam-

ined according to the strategy employed:
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- Deflation The new state wk+1 is generated from the previous state wk ac-

cording to the following rule:

wk+1 = wk + (k0 + k1/l)δm (6.42)

where k0 and k1 are some suitable constants (decided according to the dimen-

sion of the problem and that may be changed if the optimization landscape is

too much or too little rugged), l is related to the temperature and to the num-

ber of accepted and rejected states (its purpose is to reduce the perturbation

step if the system is reaching the optimum) and δm is an m-dimensional vector

whose components are uniformly distributed in [−1, 1]. Usually, wk+1 is not in

the feasible region, since it must be ‖w‖2 = 1; moreover, if other components

have been already extracted, decorrelation from the subspace they generate

should be performed. Therefore, normalization and decorrelation steps are

performed before the evaluation of the contrast function in the new state.

- Symmetric The new state Wk+1 is generated in a way similar to (6.42):

Wk+1 = Wk + (k0 + k1/l)δm×m (6.43)

where k0, k1 and l are defined as before, and δm×m is an m×m matrix whose

components are uniformly distributed over [−1, 1]. Also in the symmetric

case, before evaluating the value of the contrast function in the new state,

symmetric decorrelation must be performed.

The annealing schedule is related to the number of states generated at a fixed

temperature and to the temperature decrease rate. The following choices were made

for the present implementation:

- Temperature Decrease Rate: A geometric decrease rate was implemented

as follows:

Tk+1 = Tkα = T0α
k+1 (6.44)

where α was usually between 0.7 and 0.99.

- States explored: An adaptive rule has been implemented to run across the

states at a fixed temperature. The required number of states was generated if

the ratio between the number of accepted states transitions and the number

of rejected transitions was at least 1 : 10. For low temperatures, close to the
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optimum, this requirement would tend to make the process extremely time-

consuming, therefore an upper bound related to the dimension of the problem

was introduced.

The choice of the initial temperature has been implemented as in 6.4.2, by evaluating

the ratio between the number of accepted moves and rejected ones, and setting the

temperature such that this ratio is greater than 0.8.

For what concerns the stopping criterion, the states at the end of iterations at

two consecutive temperatures were compared: if those two states were similar within

a certain range, the algorithm stopped. For the two types of algorithm, the stopping

criterion was therefore:

- Deflation: consider the two states wTk+1
and wTk

. The algorithm is termi-

nated if ∥∥wTk+1
−wTk

∥∥ ≤ ε or
∥∥wTk+1

+ wTk

∥∥ ≤ ε (6.45)

since both w and −w are related to the same component (even if it is unlikely

that the algorithm goes from w to −w during an iteration of the optimization

process). Usually ε = 10−4.

- Symmetric: Consider the two states WTk+1
and WTk

. The sum q of the

absolute value of the elements of the main diagonal of WTk+1
WT

Tk
is evaluated,

and the algorithm terminates if:

(1− q) ≤ ε (6.46)

where ε is defined as before and usually is 10−4. This criterion is the same

implemented in the FastICA algorithm.

The implementation of the Simulated Annealing procedure has been shown. Now,

according to the problem faced, and therefore to the approach employed, further

details will be given on the Independent Components extractions.

6.5.1 Multi-objective Case

Since the multi-objective approach takes its moves from the need of improving the

quality and the physical plausibility of the recovered sources, an exploratory ex-

traction with a classical ICA algorithm (or with the new algorithm with λ = 0, as

well) is performed, in order to evaluate the values of the maxima of negentropy,
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and let ICi, with i = 1, 2, . . . ,m be the estimated components. Then the following

procedure is employed:

1. Components are ordered according to Negentropy (if the algorithm employed

is not global, components are not ordered).

2. For each component ICk, the following steps are performed:

(a) the values of negentropy JG and of H are evaluated for estimated com-

ponent.

(b) if H(ICk) is not satisfactory (i.e., the estimated component do not fulfill

the requirements that are known a priori), then λk is set to a suitable

value, related to the values of Negentropy JG(ICk) and of H(ICk).

3. Optimization is run with Simulated Annealing with the contrast function F ,

with the deflation or symmetric approaches:

- Deflation: for the i-th component, the contrast function becomes

F (w) = JG(w) + λiH(w) (6.47)

- Symmetric: in this case, the contrast function evaluated is:

F (W) =
∑

i

JG(wi) +
∑

i

λiH(wi) (6.48)

For the problem dealt with in Chapter 7, λi was set such that H(ICi) weighed

approximately 10 times less than JG(ICi) in the proximity of a maximum of negen-

tropy.

6.5.2 Constrained Case

The constrained case is different from the previous one, since a preliminary extrac-

tion with classical ICA algorithms is not needed. In fact, it has been proved in 6.3.1

that, if the weight of the penalty term tends to infinity, then the optimization of

the function JG + λH leads to the constrained optimum defined by H.

Additional contrast function H accounts for equality or inequality constraints, and

the formulation presented in 6.3.1 need to be slightly modified since the problem is

a maximization and not a minimization (however, the same results would have been
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achieved by inverting the sign of negentropy and looking for the minima). In this

case the problem becomes, for the deflation approach:

Maximize JG(wi)

subject to Hi(wi) ≥ 0
(6.49)

while for the symmetric approach the problem is:

Maximize
∑

i

JG(wi)

subject to H(wi) ≥ 0

(6.50)

where H(wi) = (H1(w1), H2(w2), . . . , Hm(wm)) and 0 is an m-dimensional vector

of zeros.

To perform optimization, an initial guess on λ0 is made. Usually, since the range of

values for the additional contrast function H is known in advance, a suitable choice

for the initial λ0 is such that λ0Hmax is 102-103 times the maximum value of J . The

initial choice does not affect the final results of the independent component extrac-

tion, but a non optimal choice may lead to an unnecessary amount of computations.

Once the initial value of λ0 is decided, the optimization is performed following these

steps:

1. λ is set to the initial value λ0.

2. Optimization with Simulated Annealing is performed with the contrast func-

tion F = JG + λH.

3. Results are evaluated by checking if the constraints are satisfied (i.e. if the

value of H is positive for the solutions).

4. If the constraints are satisfied, then the solution has been reached, otherwise

λ is increased (for instance, λnew = 10λ), and the procedure goes back to step

2

Theorems 10 and 11 guarantee that, if λ is large enough, and in the worst case

tends to infinity, the solution of the unconstrained problem with a penalty function

is equivalent to the constrained solution. Therefore, the procedure shown converges

to the global constrained optimum. It has to be noted that it may be troublesome

to set too high the starting value of λ (with respect to the suggestion of three
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orders of magnitude), since the optimization process may encounter problems due to

computer precision, because the values of the penalty function and of the negentropy

are too different. Moreover, to avoid large variations for negentropy estimate JG,

it may be better to choose the nonlinear function G as in (2.119) and (2.120), i.e.

G1(y) = log cosh(y) or G2(y) = − exp(−y2/2), instead of kurtosis.
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Chapter 7

Use of prior information in ICA

for fMRI data

7.1 Introduction

In the following chapter the methodology presented in Chapter 6 will be applied in

both versions to fMRI data. In section 7.2 some examples of constrained optimiza-

tion will be provided, while in section 7.3 a study on how to modify ICA with some

“loose” information on the spatio-temporal nature of the sources will be shown in

detail.

The two approaches reflect basically the kind of prior information one has on one

or more sources. If this prior information is precise (i.e. it defines univocally an

independent source), then the constrained optimization case (section 6.5.2) is the

most suitable . In fact, by means of the inequality (or equality) constraints defined

in the penalty function H(w), it is possible to:

• Extract the “target” source first. This could be extremely useful when the

number of independent components is high, i.e. when the use of a simulated

annealing optimization on only one component is more efficient than the ex-

traction of all the component with a faster algorithm and subsequently the

selection a posteriori of the interesting component. This is, for instance, the

case of temporal ICA, where the number of independent components (without

dimension reduction) equals the number of the spatial points, that may be

even a hundred thousand for a whole volume.
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Figure 7.1: Example on constrained optimization in a mono-dimensional case. Left

panel: values of contrast function. Right panel: contrast function (solid line) and

penalty function (dashed line).

• If the presence of noise or if the “meaningful” signals are not completely inde-

pendent, it is possible to recover them by defining the feasible region S that

is known a priori to include the interesting source.

To clarify this aspect, consider the example in Figure 7.1: in the left panel a simple

mono-dimensional optimization landscape is depicted. Since there are several local

maxima, a local search optimization technique could reach one of them according

to the starting point. A global optimization algorithm (like Simulated Annealing),

instead, will reach M1 value for any starting point. Therefore local maximum M2

can be reached for some starting points with a local seach and will never be a solu-

tion for a global search technique.

However, due to noise presence or due to not full independence of the sources, it

may happen that the “meaningful” maximum is M2 rather than M1, and at the

same time that prior information on some of its features (which correspond some-

how to position in the optimization landscape) is available. Suppose that this prior

information can be expressed as a function H, i.e. it is known in advance that the

“target” maximum lies in the flat region of H depicted in the left panel of Figure

7.1 (dashed line). Therefore it is possible to reach local optimum M2 by performing

a constrained optimization on the contrast function with the inequality constraint

defined by values of function H. In the following section this considerations will be

employed to perform ICA analysis of fMRI datasets, to enhance performances in

accuracy and to avoid post-selection of the components.
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There are some situations, however, where selecting the proper maxima could not

be feasible. In fact, if the prior knowledge is general enough (like in the case of

spatio-temporal regularities), performing constrained optimization could be of no

help in recovering the meaningful sources, if this information is on all the sources.

In this case is preferable to “perturb” the local optima rather than selecting them,

to have more plausible solutions. Section 7.3 will focus on this aspect.

Another important issue is the extraction order using a deflation approach. In fact,

local search algorithms (like FastICA or Infomax) do not extract components in a

precise order, since the output of the optimization procedures depends on the start-

ing point. Consider now FastICA algorithm in deflation approach. Due to the fact

that optimization is performed on a component at a time, this solution is particularly

appealing for implementation issues, since only one vector of the unmixing matrix is

involved for each iteration and therefore data size reduces considerably and so does

memory occupation. The ordering of the components is not fixed (although it can

be observed that some components have wider attraction regions than others, and

therefore are more likely to be extracted first), so it is not possible to predict in ad-

vance, after the extraction of a subset of the components, if the “target”component

has been recovered. Global optimization techniques do not suffer from this draw-

back: the ordering of the components is always the same, regardless of the starting

point. This is a particularly appealing aspect while dealing with fMRI components,

since independent sources of brain activity are in most cases super-Gaussian ([118]).

It has been shown in [56] that it is not possible to detect “interesting” components

according to their ranking in a mono-dimensional space (i.e. based only on non-

Gaussianity of the spatial maps or to root mean square contribution of the IC to

the whole dataset). However, since a task-related independent source is expected to

have a high value of non-Gaussianity (even if it is not among the first ranked, that

usually may be related to artifacts or to non-task-related baseline activity), it is not

necessary to extract all the sources, but a reduced subset can be considered. In the

constrained case, moreover, only the components pointed out by prior knowledge are

extracted in a deflaction fashion, since the penalty term ensures that their contrast

function values will be the highest.
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7.2 Constrained optimization in fMRI data analy-

sis

In section 3.3.6 it has been shown how to perform ICA analysis of an fMRI dataset,

together with the advantages and drawback of the employment of such a technique.

Consider an observed fMRI dataset X ∈ ℜm×n where each row of X contains a

whole volume (or the part of volume where the analysis is performed), and each

column contains the time course of a given voxel (i.e. volume element, in analogy

to pixel). Spatial ICA looks for the independent components S of the dataset such

that

X = AS (7.1)

where S ∈ ℜm1×n is the matrix whose rows are the independent spatial maps and

A ∈ ℜm×m1 is the mixing matrix. When an independent spatial map is interpreted,

it is possible to consider both its spatial and temporal pattern. Consider Figure 7.2:

on the left panel an independent component of a single slice analysis of an experi-

ment is depicted, together with the original data (in gray scale) and with the relative

time course (independent components display is performed in general, contrary to

this simple case, with specific software, that superimposes on the anatomical scan

the activations obtained by thresholding the spatial map, to better relate the acti-

vations to the corresponding brain area).

Spatial maps and time courses are interpreted in a different way from the way Sta-

tistical Parametric Maps (obtained with an hypothesis driven analysis) are usually

considered. In fact, all the points of an independent component have the same time

course, even if usually extreme values of the distribution are considered, since the

majority of values is zero (On the other hand, this time course is realistic, in that

it is extracted from the data, while the SPM time course is imposed a priori). No

meaning can be given to the absolute values of the maps or of the mixing coefficients,

due to the double indeterminacy in the ICA model (see section 2.4), but they can

be considered together to evaluate the Root Mean Square (RMS) contribution they

give to the whole dataset (like in PCA). Information in independent components

lies in both their spatial maps and their temporal time courses. In fact, while the

former provides information about the spatial pattern of an activity, the latter in-

dicates how the spatial map “evolves” in time to form the dataset. Usually expert’s

evaluation is based on both spatial and temporal pattern. A simple criterion, pro-
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Figure 7.2: Example of spatial ICA on a fMRI slice

posed in [119], to point out task-related component(s) is to evaluate the correlation

of its time-course with the paradigm of the experiment (properly convolved with

an approximation of the Hemodynamic Response Function (HRF), to account for

delays in BOLD signal, as discussed in section 3.3.1).

Since both spatial independent maps and temporal time courses (that are re-

spectively the independent components and the mixing coefficients of (7.1)) carry

information on the spatio-temporal activity pattern, our investigation has been fo-

cused on both aspects. In fact, additional contrast function H defined in (6.13), to-

gether with Simulated Annealing optimization, allows including very general kinds

of constraints into the algorithm. Some applications of this technique with specific

prior information on data will be discussed, and compared with existing techniques

shown in 6.2. As discussed in the introduction, it is possible to recover a source first

by pointing out some peculiar feature, and it is also possible to “force”a component

to lie in a subspace S defined by a suitable penalty function, that is not reached by

a classical extraction (like shown in Figure 7.1). The first of the two cases will be

faced in section 7.2.1, while the second in section 7.2.2.

Contrast function H, that defines the constraint, is usually in the form of Figure

7.1, right panel, dashed line. In other words, if the inequality constraint g(w) > κ

holds, the following function is employed in the optimization:

H(w) =

{
g(w) if g(w) < κ

κ if g(w) ≥ κ
(7.2)

Such choice (rather than a function that is non-zero only when g(w) ≥ κ) comes from

a trade-off between the need to reach the global optimum and to keep the amount

of time to perform global optimization somehow limited. In fact, the feasible set,
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i.e. the set where g(w) ≥ κ is flat, may be narrow, if compared with the overall

dataset. Therefore, setting a sharp contrast function that takes non-zero values in

region S and zero elsewhere may need more iterations to span the whole dataset,

while a linear ramp tends to “guide”(at least in the last part of the optimization)

the optimization algorithm to the desired maximum. Of course, a sharp function

may be preferable in terms of effectiveness of the constraint, since a local maximum,

lying just outside the edge, may be the global maximum of the contrast function,

even if it is not in the feasible set. However, the procedure set up defined in 6.5.2,

by increasing the penalty factor λ, guarantees that in such a way it is possible to

select the maximum within the feasible set.

7.2.1 Recovering a source first

It is possible to extract a source first by exploiting some prior information on it.

This information can be related to spatial maps on to temporal source, both in

spatial and temporal ICA. Since there is no ordering of the components extracted

with classical ICA algorithms, it is possible to extract a source first rather than

extracting all the independent components and post-selecting the interesting one, if

it is possible to incorporate the post-selection criterion into the extraction.

Conventional hypothesis-driven techniques define spatio-temporal activity pat-

terns by means of correlation analysis between each voxel time course and a reference

function, that is related to the experimental activity that is investigated. Therefore

each voxel that correlates satisfactorily with the reference function is considered

involved in the activity.

Conversely, ICA provides a spatial map whose voxels all share the same time

course; usually one or more components exhibit a task-related time course, and it

not possible to predict in advance which is the position of those components among

the whole set of IC. It is therefore possible to “ constrain” the first(s) component(s)

to be “related” to the task by means of a suitable function H. For what concerns

temporal ICA this is quite straightforward, by means of correlation between esti-

mated independent component y and a reference function rf :

H(y) =

{
| corr(y, rf ) | if | corr(y, rf ) |≤ κ

κ if | corr(y, rf ) |> κ
(7.3)

The value of κ influences the effectiveness of the separation. As pointed out by

[109] for the constrained ICA framework, an iterative procedure can be performed
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varying κ to select properly the right maximum .It has to noted, however, that the

sources, i.e. the temporal time courses, are independent and therefore uncorrelated:

imposing to be near to one source automatically excludes all the others.

For what concerns a spatial constraint on spatial ICA, the procedure is the same as

in (7.3), since the additional function H is related to the independent component

estimate. In this case the prior information exploited could be related to the position

of the activation of an independent component (performing a Region Of Interest

(ROI) analysis).

On the other hand, some problems may arise in constraining the temporal time

course in spatial ICA and the spatial map in temporal ICA, if the threshold (κ)

is not properly set. In fact, as discussed in 3.3.6, the “dual” signal in the ICA

model for fMRI data analysis has no requirements of orthogonality. Temporal time

courses associated to independent spatial maps may be correlated, so may be spatial

maps associated to independent time courses. This considerations show that it

could be troublesome to detect the task-related source first by means of a single

extraction with a correlation constraint on its time course, if the threshold value is

not close enough to the “real” correlation value, since more than one independent

component may have a time course with a correlation at least of κ. In the next

section, constraints on temporal time courses of spatial maps will be employed, but

with different purposes, since in that case the threshold value κ is near or higher to

the one of the target independent source.

7.2.2 Enhancing ICA capabilities: a case study on real data

To show the possibility of enhancing ICA capabilities of detecting “interesting”

components, once some specific prior information is available on them, a study on

9 subjects performing an fMRI experiment has been conducted. In this case a pre-

liminary extraction has been conducted with FastICA, and then the extraction with

different constraints has been performed in order to evaluate their effectiveness.

Nine subjects performed a finger tapping experiment with the right hand: during

acquisition, the participant executed a simple motor task consisting of self-paced,

sequential finger-to-thumb opposition movements with the right hand, alternating

equally long activity and rest periods, as ruled by acoustic signals transmitted to

the subject through the scanner earphones. Time series of fMRI data were acquired

from 9 healthy individuals, using a Philips Vision Gyroscan MR system operating

165



CHAPTER 7. USE OF PRIOR INFORMATION IN ICA FOR FMRI DATA

at 1.5T and equipped for echoplanar imaging. A circular polarized volume head coil

was used for radio frequency transmission and reception. Head movement was min-

imized by mild restraint and cushioning. Functional T2∗ weighted images (25 axial

slices, thickness=4mm, TR=3000ms, TE=50ms, FA=90o, FOV=240cm, 64 × 64

matrix, voxel dimension = 3.75mm× 3.75mm× 4mm) were acquired from the par-

ticipants. One data acquisition run consisted of a series of 90 such BOLD sensitive

images. The 6 initial BOLD images were discarded to allow for magnet settlement.

Since no anatomical scan was available, it has not been possible to point out only

the voxels related to the cortex (i.e. the ones where the activation is present), and

therefore the analysis has been carried out considering volume pixels. The only

preprocessing performed has been removing the voxels outside the brain, to restrict

the analysis only to the portion of space that may be involved with the experiment.

This has been done by means of a threshold on intensity values, that allowed to

discard voxels outside the brain.

A preliminary extraction has been conducted with FastICA in deflation approach.

Therefore effectiveness of the separation has been evaluated in terms of correlation

between the time-course of the task-related component and the experimental para-

digm. Of course, being ICA an unsupervised technique, it has not been possible to

evaluate in an automatic fashion the spatial map. However, the spatial maps were

examined by an expert to state if they were meaningful and task related.

The next step has been testing the constrained version of the algorithm by adding

two different additional functions. The first is directly related to the experimental

paradigm rf (derived from the task time course after convolution with an estimate

of the hemodynamic response function), known a priori, and is:

H1(w) =

{
g1(w, rf ) if g(w, rf ) ≤ κ1

κ1 if g(w, rf ) > κ1

(7.4)

where g1(w, rf ) is defined as the absolute value of the correlation of the map tem-

poral time course ai (reconstructed from w by means of dewhitening matrix) and

the reference function:

g1(w, rf ) =| corr(ai, rf ) | (7.5)

The second contrast function employed was somehow similar, but more general. In

fact, the frequency bandwidth of the time course has been constrained to lay in the
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interval [ω1, ω2], defined according to the temporal paradigm of the experiment:

H2(w) =

{
g2(w, ω1, ω2) if g(w, ω1, ω2) ≤ κ2

κ2 if g(w, ω1, ω2) > κ2

(7.6)

where g2(w, ω1, ω2) is defined as the ratio between the spectrum power in [ω1, ω2]

and in the all the frequency domain (computed by means of FFT):

g2(w, ω1, ω2) =
PSDω1,ω2

PSDtot

(7.7)

Parameters [ω1, ω2] were chosen according to frequency spectrum of rf , in particular

ω1 = 0.0075 rad/s, while ω2 = 0.35 rad/s, defining a quite wide frequency band

centered around stimulus frequency. κ1 was set to 0.8 (i.e. at least a correlation

of 0.8 between temporal time-course and reference function was required), while κ2

was set as 0.95 (requiring thus that at least 95 % of the frequency spectrum of the

signal lay in the region defined).

Extraction comparison has been carried out in terms of correlation ρ and of non-

Gaussianity value, pointed out by kurtosis kurt and results are presented in Table

7.1.

Subjects 2 and 9 are considered as example of the methodology. The most physio-

logical independent component retrieved with FastICA for the second subject has a

correlation of 0.65 with the reference function, while the two proposed methodolo-

gies increase this value, losing some percentage value in kurtosis (i.e. independence).

The best IC extracted by FastICA from data of subject 9, on the other hand, has a

good correlation, therefore H1 constraint just “selects” the component, while con-

straint H2 reaches a higher value of correlation. Results relative to the analysis

on subject 2 are depicted in Figures 7.3, 7.4 and 7.5, the ones related to subject

9 are in Figures 7.6, 7.7 and 7.8 (it has to be noted that the scans of subject 9

are in radiological convention, meaning that left and right in the transversal plane

are flipped, therefore the activity in the controlater motor area appear on the other

side w.r.t subject 2). Since no anatomical information was available for the sub-

jects, the results are displayed with the activity superimposed to functional scans

(in gray), and the activations have been superimposed on a volume reconstructed

from the functional scans by means of MRIcro ( a free display tool for fMRI data

visualization, available at http://www.sph.sc.edu/comd/rorden/mricro.html).

The analysis performed suggest some important considerations. In fact, as it

is possible to infer from kurtosis level of the recovered sources, this constrained
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Figure 7.3: Results on 2nd subject with FastICA
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Figure 7.4: Results of the analysis on 2nd subject with constraint H1
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Figure 7.5: Results of the analysis on 2nd subject with constraint H2
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Figure 7.6: Results on 9th subject with FastICA
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Figure 7.7: Results of the analysis on 9th subject with constraint H1

172



7.2. Constrained optimization in fMRI data analysis

Figure 7.8: Results of the analysis on 9th subject with constraint H2

173



CHAPTER 7. USE OF PRIOR INFORMATION IN ICA FOR FMRI DATA

Subject FastICA JG +H1 JG +H1

ρ kurt ρ kurt ρ kurt

1 0.40 23.2 0.80 12.5 0.88 15.9

2 0.65 125.9 0.80 121.6 0.86 92.3

3 0.39 4.64 0.80 14.0 0.83 10.9

4 0.80 51.1 0.80 52.0 0.93 36.1

5 0.61 19.4 0.80 48.3 0.81 25.3

6 0.5 628 0.75 417.3 0.63 505.2

7 0.60 77 0.80 96.4 0.94 86.2

8 0.87 25.9 0.91 23.1 0.89 31.6

9 0.87 181.2 0.87 180.4 0.92 170

Table 7.1: Results of the analysis conducted with FastICA, H1 and H2

version of ICA finds “less” independent components, w.r.t FastICA. However, on

the other hand it is possible to force some of the sources to fulfill some requirements

(like correlation with a reference function or the presence in a specific band), having

more plausible sources. The aim of the work presented in this section has been

therefore to show how is it possible to constrain ICA to extract more “plausible”

sources from a dataset by exploiting some prior information on the sources.
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7.3 Multi-objective optimization

Another interesting application of the framework shown in Chapter 6 is the multi-

objective optimization. As pointed out in the introduction, there are some situations

where a constrained approach may not be suitable to point out some prior knowledge

on the sources, since this information is rather “loose”, and therefore cannot be

employed for all the components. An illustrative example for fMRI data has already

been shown in 6.2: the three spatial maps have the same histogram (i.e. the same

contrast function value), but they have different spectral properties. The example

is theoretical, yet is indeed representative of actual situations. Isolated voxels in an

ICA analysis are usually considered as false positives, but there is no way to prevent

ICA from finding them. As it has been stated several times throughout Chapter 6,

ICA is a technique not designed for structured data, since it looks only for statistical

independence, a property related to the whole sample space of the signals, but it

does not account for regularities. It has been shown that second order methods do

pursue independence starting from different criteria (i.e. decorrelation at different

lags), but this method is not flexible enough for the fMRI case. In fact, both

temporal time courses and spatial maps, that represent physiological independent

activity, show some kind of regularities that it would be useful not to ignore while

extracting independent components.

The issue of how useful this information could be is not trivial, since independence

still remains, in this case, the “guiding” principle for signal extraction. To prove

the effectiveness of this approach, a resting state experiment has been made and

some artificial fMRI-like activations have been superimposed, to show how noise

level affects independence measures and how it is possible to recover sources with

a modified contrast function in a way more effective than with pure negentropy

(7.3.4). Before moving to the experiment, it may be useful to point out which are

the principles that may be employed to recover fMRI sources and which are the best

choices for the additional contrast function H.

7.3.1 Non independent strategies for fMRI

As seen in section 3.3.5, several techniques can be employed in order to retrieve

information from fMRI scans. In particular, the assumption of statistical indepen-

dence among different activities in the brain has proved to be realistic in most of

the cases, and ICA has become a widely accepted technique for fMRI data analysis.
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Generally speaking, Blind Source Separation can be performed by means of criteria

other than independence. In [148] several strategies have been employed to recover

task-related sources that have been mixed linearly, in particular spatial predictabil-

ity and non stationarity. Spatial predictability can be seen as a measure of the

complexity of a spatial map ([5]), and the sources have a spatial predictability that

is higher (or equal) to those of their mixtures. It has to be noted, however, that

while spatial predictability forces the extracted signals to be smooth and of low

complexity, independence forces signals to be independent and, in case of positive

kurtosis, to have sparse representations. By assuming that all the sources have dif-

ferent autocorrelation structure and are spatially correlated, it is possible to model

them by means of an Auto Regressive (AR) process:

cj(p) = c̃j(p) +

Q∑

q=1

ailcj(p− q) (7.8)

where c̃j denotes i.i.d. innovative process and ail denote the linear filter coefficients.

Consider a linear predictor which gives the prediction error εj for the estimate of

the jth source:

εj(p) = yj(p)−
Q∑

q=1

bjlyj(p− q) (7.9)

where bj gives the coefficients of the FIR filter which performs the linear predic-

tion of the source signal yj. In [19] it has been shown that it is possible to recover

sources (by means of mixing coefficients w) and filter coefficients, if the sources have

a structure that can be modeled.

The second approach presented in the same work, non stationarity of the sources,

can be employed if the noise is white and all undesirable signals are stationary.

Both these approaches were able to recover the target sources in an artificial fMRI

dataset, and in an alternating checker board fMRI experiment, even if kurtosis-based

methods seemed to perform better than other techniques in terms of correlation be-

tween the experimental paradigm and the time course.

A similar approach, based on temporal predictability (TP), has been proposed (for

further details on temporal predictability, see section 6.2.2). TP has been employed

as a regularization factor for time courses in spatial ICA for fMRI by Stone in [155],

while it has been proposed as a general principle for blind source separation in [154],

starting from the conjecture that the independent sources have a TP greater or equal

to the TP of their mixtures. In [174] it has been demonstrated that such conjecture
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is wrong, and it has been proved that the TP of a mixture of independent signals is

bounded by the minimum TP and the maximum TP of the sources, and a new BSS

algorithm based on this principle has been proposed.

In [59], the Canonical Correlation Analysis (CCA) has been employed as an al-

ternative approach for data-driven analysis of fMRI data. The starting principle

is that “interesting” signals in fMRI are spatially and temporally autocorrelated,

while their mixtures, due to uncorrelated noise, are less autocorrelated than the

original sources. The algorithm proposed is able to extract task related signals,

together with other activites that are usually detected with ICA (like linear trends

and motion artifacts) that are highly autocorrelated.

All these works show that it is possible to employ several strategies involving other

properties that are not directly related to independence of the sources, but that

can be useful in retrieving task-related spatio-temporal activity patterns. The next

section will focus on the choice of the additional contrast function H to add to

negentropy in order to make a better extraction of sources that have remarkable

spatio-temporal regularities.

7.3.2 Spatial and Temporal regularities

In the previous section some of the strategies presented in literature to perform blind

source separation with a criterion different from independence have been presented.

It has been shown that it possible to recover independent sources of fMRI activity

also with other criteria involving some kind of knowledge of the spatio-temporal na-

ture of sources. However, one may not want to lose the “blindness” ability of ICA

to recover the source, i.e. it is not known in advance which is the linear or spatial

model of each of the sources, but the only knowledge one may want to exploit is the

fact that isolated active points are more likely to be false positive rather than the

result of an inner cerebral activity. In other words, the prior knowledge one may

want to incorporate in fMRI data analysis must be unspecific, in the sense that it

is not known a priori where a source is localized spatially, which time course the

activity has, or which is the frequency content both in space and time of each source.

Therefore an ideal contrast function H should give a “measure” of how much the

source is spatially and temporally regular, being insensitive to sign and amplitude

of the source (due to double indeterminacy). On the other hand, since Simulated

Annealing optimization requires the computation of F at each perturbation, there is

177



CHAPTER 7. USE OF PRIOR INFORMATION IN ICA FOR FMRI DATA

also the need to avoid defining too complex contrast functions H, since their compu-

tation may take too much time and the optimization may require an overwhelming

amount of time to reach the global optimum.

The functions H explored in present work are therefore spatial and temporal one-lag

autocorrelation, since they are relatively easy to evaluate for any linear combination

of observed signals, and they denote in a robust way the regularities over space and

time, regardless of the position of the activities. Both these functions are bounded

between -1 and 1, therefore it is easy to implement them as additional contrast

function H and to weigh them properly by means of λ.

Temporal one-lag autocorrelation

Temporal one-lag autocorrelation can be computed easily in the following way:

Ht(y) =
1

♯(T )

∑

t∈T

y(t)y(t+ 1) (7.10)

where ♯(T ) denotes the number of time points. Since the simulated annealing op-

timization is performed on whitened data, it is necessary to state the relationship

between mixing coefficients and time course of the spatial map. This is straightfor-

ward, considering the relationship:

A = DWMW (7.11)

where A denotes the estimate of the mixing matrix for the original dataset, DWM

denotes the dewhitening matrix (i.e. the inverse of the whitening matrix that trans-

forms original data into whitened ones), and W is the independent components

unmixing coefficients estimate for the whitened dataset.

Spatial one-lag autocorrelation

Spatial one-lag autocorrelation can be expressed, in a very general form, as:

Hsp(w) =
1

♯(I)

∑

i∈I

∑

qi∈Ni

F (i)F (qi)

♯(Ni)
(7.12)

where I denotes the set of all space points of a spatial maps, N (qi) denotes the set

of all the one-lag neighbors of point i, and ♯(I) and ♯(Ni) denote the cardinality of

the set of spatial points and of neighbors of spatial point i.

The procedure one has to implement to evaluate spatial one-lag autocorrelation

described in eq. (7.12) is the following:
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• For each point i of the spatial map:

– Find the set Ni of all the neighbors of i.

– Evaluate the sum of the products of the spatial map in i and in all of his

neighbors

– Average this sum by the number of neighbors of i

• Average the value of spatial autocorrelation for each spatial point over the

whole spatial map.

Although the procedure may seem quite expensive, from a computational point of

view, it is possible to evaluate it in a relative fast way due to the nature of the

problem.

Consider a spatial map y ∈ ℜm×1, with y = wTX, where w ∈ ℜn×1 is the unmixing

coefficient estimate and X ∈ ℜn×m is the whole fMRI dataset. Since a whole volume

is usually considered as a single row of data matrix, it is not possible to exploit

directly the neighbor relationships. To overcome this limitation, it is possible to

build a Neighbor matrix N ∈ ℜm×m to evaluate spatial autocorrelation easily. Each

element Nij of N is defined as follows:

Nij =






1

♯(Ni)
ifj ∈ Ni

0 ifj /∈ Ni

(7.13)

Neighbor matrix therefore points out the neighbors of each voxel in a spatial map,

and the quadratic form yNyT is, up to a constant (the number of spatial points in

the volume), equivalent to spatial autocorrelation, therefore:

Hsp(y) =
1

♯(I)
yNyT (7.14)

Considering that in each iteration of Simulated Annealing optimization, y = wTX,

it holds:

Hsp(w
TX) =

1

♯(I)
wTXNXTw = wTN1w (7.15)

where N1 ∈ ℜn×n and N1 = 1
♯(I)

XNXT , it is possible, if spatial autocorrelation has

to be considered for all the spatial points, to evaluate it in a fast and compact way.

In fact, matrix N1 has to be computed only once before the analysis (since it de-

pends only on problem topology and original data), and the spatial autocorrelation

evaluation consists only of a matrix multiplication.
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There are situations, however, when the spatial autocorrelation has to be com-

puted only considering a limited subset of the all dataset, i.e. only on the tails of

the distribution of a spatial map. In this case, since the thresholding procedure is

performed for each linear combination, it is not possible to incorporate data matrix

X into N1, and therefore N has to be employed at each iteration.

To test the proposed methodology, the algorithm has been employed on the artifi-

cial dataset and on a resting state experiment. There are some differences in the

two methodologies: in fact, while the artificial dataset is such that all the three

sources are highly autocorrelated, while the additive noise is i.i.d. with Gaussian

distribution, the resting state experiment allows to account for environmental fMRI

noise and for all the activities that are present in the brain regardless of the exper-

iment performed. In the first case, therefore, a constrained optimization has been

performed in order to point the task related sources, by imposing that they have

autocorrelations of at least a given value. For the resting state experiment, where

artificial activations have been superimposed to real brain activity, this has not been

possible, since in the high noise case it was not possible to detect the injected acti-

vations. This is related to the fact that autocorrelated noise and artifacts tend to

“cover” the artificial activity, and an unspecific constraint is not able to reveal the

low signal to noise ratio, as it tends to privilege “strong” sources. Therefore the

multi-objective approach has been implemented by adding additional terms to the

contrast function.

7.3.3 Test on Simulated Data

Evaluating the results of an ICA extraction may be sometimes troublesome due to

the fact that it is an unsupervised technique. In fMRI ICA data analysis, the eval-

uation is done by experts that may give a score to an independent spatial map and

to his time-course according to the physiological plausibility of the spatio-temporal

patterns, but, for a quantitative rather than a qualitative evaluation of results of a

new ICA extraction, usually artificial signals are employed. In fact, by means of an

artificial dataset, it is possible to:

• Evaluate the quality of the results by means of correlation with original sources

and mixing coefficients.

• Compare different techniques in terms of performances.
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Figure 7.9: Simulated fMRI dataset. Left: spatial maps. Right: associated time

courses

It has been therefore developed an artificial fMRI-like dataset and the algorithm

has been tested on it, and results have been compared with FastICA extraction.

The simulated dataset consisted of three spatial maps with associated time-courses,

fulfilling the ICA assumptions for fMRI data (discussed in [118]). The three spatio-

temporal patterns are depicted in figure 7.9: active voxels of each spatial map (that

consisted of 4096 points) are drawn in white, while temporal time courses of the

spatial map are partially overlapping and are physiologically plausible, since they

have been generated by convolving a fake experimental paradigm with three different

estimates of the hemodynamic response function, estimated according to Boynton

model ([31]).

To generate the whole dataset, the three spatial maps have been mixed linearly

and i.i.d. Gaussian noise has been added. Standard deviation σn of the noise has

been set to different levels, and performances have been evaluated at different noise

levels. Performances evaluations are carried out by means of correlation between

the recovered sources and the original ones, and between the recovered time courses

and original ones.
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The three artificial fMRI activations depicted in Figure 7.9 were mixed linearly

and Gaussian white noise with standard deviation σm, ranging from 0 to 2, was

superimposed. It has to be noted that artificial time courses range from 0 to 1 and

active pixels have a unit intensity value.

To evaluate the effectiveness of the source separation, a correlation analysis was

carried out. The correlation of the original map and the corresponding recovered

map was computed, together with correlation between original time course and

recovered one. Three different contrast functions have been tested: spatial auto-

correlation, temporal autocorrelation and a linear combination of them. The three

contrast functions considered are:

H1(w) =

{
Hsp(w) ifHsp(w) ≤ κ1

κ1 ifHsp(w) ≥ κ1

(7.16)

H2(w) =

{
Ht(w) ifHt(w) ≤ κ2

κ2 ifHt(w) ≥ κ2

(7.17)

H3(w) = H1(w) + αH2(w) (7.18)

where κ1 has been set as 0.5, κ2 as 0.4 and α, that weighs the two functions, has

been set as 0.2 (since it has been seen that temporal autocorrelation is the less effec-

tive of the three contrast functions). In Figures 7.10, 7.11 and 7.12 the correlations

between the recovered sources and the original ones are confronted with FastICA.

The red color denotes the spatial autocorrelation constraint H1, the green color is

related to temporal autocorrelation constraint H2, while the black line is related to

spatio-temporal autocorrelation H3.

Results of the simulation show that it is possible to recover the three sources also

in extremely noisy environment, when a classical ICA extraction fails to separate

correctly the sources. This is not surprising, since constraining the recovered sources

to have an autocorrelation above a fixed threshold enhances points out the main

difference between the three artificial activations and the noise, that has no auto-

correlation both in space and time.

The poor result obtained with temporal constraint H2 (that reflects also on the

small difference between spatial H1 and spatio-temporal H3 constraints) may be

due to the poor sample size (there were only 100 time points, while there were 4096

spatial points).
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Figure 7.10: Correlation analysis for the first source. Blue line: FastICA. Red line:

Spatial autocorrelation H1. Green line: temporal autocorrelation H2. Black line:

spatio-temporal autocorrelation H3
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Figure 7.11: Correlation analysis for the second source. Blue line: FastICA. Red

line: Spatial autocorrelation H1. Green line: temporal autocorrelation H2. Black

line: spatio-temporal autocorrelation H3
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Figure 7.12: Correlation analysis for the third source. Blue line: FastICA. Red line:

Spatial autocorrelation H1. Green line: temporal autocorrelation H2. Black line:

spatio-temporal autocorrelation H3
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7.3.4 Resting State Experiment

To evaluate the effectiveness of source separation in fMRI experiments, usually rest-

ing state experiments are conducted, and superimposed activities are injected at

different noise levels, to test if the technique employed is able to recover these activ-

ities in different conditions. In [53], both FastICA and INFOMAX have been tested

on a simulated fMRI dataset superimposed to a resting state experiment; in that

work it has been shown how the two most employed source separation algorithms

perform almost similarly according to different noise levels. In particular, it has

been observed that, when noise increases, ICA separating algorithm tend to deteri-

orate almost abruptly.

A resting state experiment has therefore been performed by a healthy volunteer. The

whole brain was acquired on a 3T Siemens Allegra (Repetition Time 1.5s, Interslice

time 46 ms, 32 slices, matrix 64×64, slice thickness 3mm, 210 volumes) at the Uni-

versity of Maastricht, department of Cognitive Neuroscience. The first two volumes

were skipped due to T2∗ saturation effects. Data were preprocessed by means of lin-

ear de-trending and high pass filtering with BrainVoyager (www.brainvoyager.com).

A single slice was selected and activations were superimposed at different noise lev-

els.

Usually the level of noise in fMRI activations is expressed in terms of Contrast

to Noise Ratio (CNR) [21]. In this case CNR was evaluated with the following

procedure:

1. Consider the set S of spatial points were the activity is going to be injected.

2. Evaluate the standard deviation of the time course of all the time points in S

and average it, obtaining σm.

3. The CNR is evaluated by considering the signal enhancement ∆t due to the

activity (i.e. the difference between the amplitude of the time course during

the rest condition and the activity one), having:

CNR =
∆t

σn

(7.19)

CNR is somehow similar to signal to noise ratio, and it can be considered as its

tailored version for fMRI analysis.

The analysis was performed by means of the three contrast functions defined in
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Figure 7.13: Resting state experiment, correlation for the first source. Blue line:

FastICA. Red line: Spatial autocorrelation H1. Green line: temporal autocorrela-

tion H2. Black line: spatio-temporal autocorrelation H3
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Figure 7.14: Resting state experiment, correlation for the second source. Blue line:

FastICA. Red line: Spatial autocorrelation H1. Green line: temporal autocorrela-

tion H2. Black line: spatio-temporal autocorrelation H3
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Figure 7.15: Resting state experiment, correlation for the third source. Blue line:

FastICA. Red line: Spatial autocorrelation H1. Green line: temporal autocorrela-

tion H2. Black line: spatio-temporal autocorrelation H3
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7.3.3, but this time they were not weighed in a constrained optimization fashion,

and spatial one-lag autocorrelation has been computed only on the 5% most active

voxels of each spatial map; this procedure aims at discarding the effects of noise

peaks and makes the autocorrelation estimate more robust; on the other hand, it

is now not possible anymore to express spatial autocorrelation as a quadratic form

of the unmixing coefficients w, since at each iteration the extremal values have to

be computed. The weight of Hi, i = 1, 2, 3, has been chosen as a 1/10 of the level

of negentropy for the sources, as described in section 6.5.1. Results of the extrac-

tion are shown in Figures 7.13, 7.14 and 7.15 (these figures should be interpreted

as specular to the ones presented in previous section, since in this case the noise

decreases while the x-axis increases).

Results are similar to those shown for the simulated dataset, showing an increased

ability to recover spatially autocorrelated sources even with considerably low Con-

trast to Noise ratio. Moreover the three modified contrast functions make the algo-

rithm converge to the right components if the contrast to noise level is greater than

2. Once again, temporal autocorrelation constraint has proved unable to modify

ICA measure in a way as effective as spatial constraint. This maybe due to the poor

sample size (this time 100 time-points were considered, while a single slice has 4096

points).

7.4 Discussion

It has been shown how it is possible to incorporate prior information about the

nature of fMRI data into the ICA extraction in a very general and flexible way. In

fact, by means of a modified contrast function, it is possible to account for both

specific information (i.e. the knowledge of spatial localization of a source, or of its

temporal time course) and general information about spatio-temporal regularities

of the sources.

It is possible, by means of the proposed approach, to perform a semi-blind ICA

analysis (like the one proposed by Calhoun et al. in [35]) by performing spatial

ICA considering the contrast function F = JG + H using a symmetric approach

and using a constraint H such that H(W) = H1(w1) + H2(w2) + . . . + Hn(w),

with Hi enforcing the similarity between the time course of the ith component and

the i-th reference function up to a threshold (i.e. the confidence level proposed in

[35]). In this way estimated sources are ordered according to the design matrix,
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since, among all the permutations of independent components, the one that fulfills

the constraints has the highest contrast function value and will be the solution of

Simulated Annealing optimization.

The ICA-R (ICA with reference) approach, proposed by Lu et al. in [109] can be

performed in a similar way, by considering temporal ICA in deflation approach and

imposing the correlation constraint on the time course by means of additional func-

tion H (as seen in section 7.2.1).

However, the strength of the proposed approach do not lie only in the fact that it is

particularly flexible and allows to perform substantially different analysis, but also

in the fact that the contrast functions are not forced to be differentiable or expressed

in closed form. This means that it is possible to employ more robust estimates, (like

seen in section 7.3.4), that have a procedural definition.

Another important issue is the implementation of the multi-objective optimization

that accounts for spatio-temporal regularities on the brain cortex rather than on

the whole volume. In fact, since the brain surface is rugged, with its gyri and sulci,

it is not possible to exploit correctly neighboring relationships by only consider-

ing volume neighborhood. By means of coregistration of anatomical and functional

scans related to the same subject, it is possible, using BrainVoyager software, to

exploit all the relationship among points of the volume, meaning that is possible to

build a neighborhood matrix Ncortex that accounts for the spatial structure of the

cortex voxels alone.

Due to the fact that the dataset obtained using all the cortex voxel is rather large,

a different implementation of the algorithm is currently under study. In fact, since

the ordering of the components is not interesting in this case (due to the fact that

artifacts and in general many activities not related to stimulus have a large spatial

autocorrelation and a high value of non Gaussianity and will tend to be extracted

first with a global optimization technique), it is currently under development a

hybrid approach, where a first optimization is performed on a differentiable approx-

imation of the contrast function, and therefore global optimization is performed in

a limited domain, performing a kind of “fine tuning”.

Another remarkable aspect is the choice of the weight λ in the optimization. In

fact, a large value of λ tends to make the optimization a constrained one, while a

relatively small one tends to make the additional term λH neglectable. A heuristic

trade-off has been employed for the current analysis, but the choice of the opti-

mal weight should be further investigated, also employing probabilistic techniques,
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like the Bayesian framework, that has been recently employed also in Independent

Component Analysis ([23]).

188



Chapter 8

Use of prior information in ICA

for MEG signals

8.1 Introduction

The algorithm presented in Chapter 6 has been applied also to MagnetoEncephalo-

graphic (MEG) recordings, in cooperation with “Fatebenefratelli”hospital in Rome.

A comparison has been made between this modified version of ICA and classical ICA

extraction. Prior information on one source, expressed in terms of reactivity to the

stimulus has been exploited together with independence, and two new separating

techniques have been implemented: Functional Component Analysis (FCA) and

Functional Source Separation (FSS). Both these two techniques have proved more

effective than classical ICA in recovering sources related to specific activity, for what

concerns reactivity itself (that has been incorporated into the algorithm) and also

for what concerns localization of the estimated sources (there was no constraint on

the spatial pattern of the sources). In section 3.4 a brief background on MEG data

analysis has been provided, therefore in section 8.2 the experiment analyzed will

be directly addressed, together with a classical ICA analysis, while in sections 8.3.1

and 8.3.2 the two versions of the algorithm will be shown, together with the results

of the analysis on the experiment.
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8.2 A case study on ICA applied to a MEG ex-

periment

8.2.1 Description of the experiment

An experiment has been conducted at hospital “Fatebenefratelli”in Rome on 15

healthy volunteers (7 females and 8 males, average age 31± 2 years), following the

declaration of Helsinki procedures. The experimental paradigm was divided into

four parts of 3 minutes each:

1. Stimulation:

(a) The median nerve was stimulated electrically with two metallic plates

with enough intensity to cause a painless contraction of the thumb. Elec-

trical pulses lasted for 0.2 ms, with an inter-stimulus interval of 631 ms.

(b) Thumb was stimulated by means of ring electrodes, with an intensity

double with respect to the subjective perception threshold. Stimulation

timing was the same as in the median nerve case.

(c) Little finger stimulation was made as in the thumb case.

2. Rest

(a) For a period of time of 3 minutes a recording with no activity was made

on the subject.

During the experiment, the subject had his eyes open. Magnetic fields were recorded

on the contralateral (with respect to the stimulated side) hemisphere (left rolandic

region), by means of an MEG equipment with 28 channels. The central positioning

was in C3 position (according to international positioning system 10-20 for EEG).

MEG sensors were divided as follows:

- 16 axial gradiometers with a 1.8 cm diameter, on two concentric circles.

- 12 magnetometers with a 81 mm2 area; 11 were on the outer circle, while one

was used for balancing and noise suppression.

Global sensitivity of the equipment was approximately 5− 7fT/Hz1/2.

Recorded signals are filtered during acquisition in 0.16− 250 Hz, and sampled at a
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frequency of 1000 Hz. Signals have been further filtered to reduce noise in frequencies

not related with the experiment (muscular and cardiac artifacts) and malfunction-

ing channels recordings were removed.

The evaluation of MEG recordings aims at individuating signals related to the ex-

perimental paradigm, and at localizing spatially those activities within the cerebral

cortex. The “interesting”signal is embedded in unstructured noise, related to mea-

surement procedure, to cardiac and breathing artifacts and to baseline cerebral

activity, therefore it is no easy task to retrieve the task-related activities by simple

visual inspection of the recordings. Several techniques have been employed to evalu-

ate the relevance of the measured activity, and to localize the extracted signal. The

one we will refer to in the following is Evoked Activity (EA), and a related evoked

activity index Rx. Moreover, the localization strategy employed will be discussed.

Evoked Activity

Since evoked response to a sensorial stimulation is embedded in brain baseline ac-

tivity, that usually has a greater intensity, one way to point out a signal related to

a somatosensor stimulus is to consider the periodicity of the experiment. In fact,

since brain response to stimuli is temporally synchronized to them while baseline

activity is not, it is possible, by means of averaging, to exclude most of the non

task-related brain activity. The following procedure is usually employed:

1. The signal is divided in segments of length δ (typically shorter than interstim-

ulus interval).

2. For every segment the signal is averaged, that is:

EAX(t) =
1

nr

nr∑

i=1

y(t+ Ti), with t ∈ [−Ta, Tb] (8.1)

where nr is the number of segments (i.e. the number of stimulations, therefore,

if δ equals the interstimulus interval, then nrδ is the length of the recording),

Ta + Tb = δ and Ti is the ith stimulus time defined by the trigger signal.

Subscript X means that the evoked activity can be evaluated for different

stimulations; in the following of the discussion, X will be M ,L and T to

denote median nerve, little finger and thumb stimulation respectively.

From a statistical study on the experimental paradigm, the ideal Evoked Activity for

the stimulations analyzed is depicted in Figure 8.1. It can be noted that often there
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Figure 8.1: Typical Evoked Activity time-courses for healthy subjects

are two amplitude spikes, corresponding at about 20 and 30 ms after every stimulus:

in the first case the active zone is the primary somatosensory area (connected with

talamus), while in the second the activation is mainly related to inhibitory structures

in somatosensor area and to primary motor area. It has to be noted, however, that

amplitudes and latencies have an inter-subject variability that can be related to

age and sex. The averaging process has the effect of removing uncorrelated noise,

but for the experiment considered it was not effective for all subjects. In fact,

consider Figure 8.2, relative to one case where averaging technique results were

not satisfactory. In this case the stimulus presentation (trigger event) time point

is at 30 ms. For the majority of the channels it is troublesome to point out the

expected peak 20 ms after the stimulus. Moreover, the stimulus presentation itself

is manifested almost in any recording as a stimulus artifact, since it is determined

by an external cause, rather than from neuronal activity.

To express in a quantitative rather than in a qualitatively way the amount of evoked

activity in the target intervals, a reactivity index Rx has been developed for the

three stimulations. The following considerations can be made:

• The response to the somatosensory stimulus considered in this experiment is

mainly concentrated in the time interval going from 20 to 50 ms after the
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Figure 8.2: MEG recordings averages related to different stimulations
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stimulus presentation (trigger event).

• In the time interval before the trigger event, evoked activity variability is

related to noise, since the effects of previous stimulation have ended.

Therefore, by comparing the evoked activity before and after the stimulus presenta-

tion it is possible to give a “score”to the reactivity of the recording. The following

procedure for evaluating reactivity index was adopted:

1. For each stimulation (M,T or L) the average of the evoked activity in the inter-

val from 30 to 10 ms before the trigger event has been evaluated (considering

the absolute value)

2. The activity in the interval from 20 to 40 ms after the stimulus presentation

have been evaluated (considering as before the absolute values, since polarities

of 20 ms and 30 ms responses may be inverted and their effect could be

reduced).

3. For each stimulation, the Reactivity index is evaluated as follows:

RX =
40∑

t=20

|EAX(t)| −
−10∑

t=−30

|EAX(t)| (8.2)

By means of RX index it is therefore possible to evaluate the amount of reactivity of

a MEG signal, making it possible to perform an independent component extraction

that may take reactivity into account, as a criterion for task-related components

identification.

Localization

To address the localization problem, i.e. to solve the inverse problem, several strate-

gies may be employed. In fact, the problem of individuating the sources of an

observed electromagnetic field has no unique solution and for this reason it is nec-

essary to acquire supplementary information ([69]), i.e. to define the parameters of

the “forward problem”, in order to obtain position, intensity and direction of the

modeled cerebral currents. Several methodologies have been proposed in literature:

in [153] a single and multiple dipole approach has been proposed, while in [128] and

[127] MUSIC algorithm has been employed. In [138] the LOw Resolution Emission

Tomography Analysis (LORETA) method has been developed; in [170] a Synthetic
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Aperture Magnetometry (SAM) methodology has been employed; for a review, see

[11].

In our case the localization was performed by means of moving equivalent current

dipole (ECD) model inside a homogeneous best-fitted sphere. This procedure looks

for a single primary density current Jp(r) such that the whole measured magnetic

field is generated by it. The single current dipole can be expressed as:

q =

∫

V

JP (r′)dν (8.3)

With the approximation of the head as a conductive sphere, it is possible to localize

the current dipole that has generated the magnetic field.

Coordinates are expressed in a coordinate system defined on the basis of three

anatomical landmarks (x-axis passing through the two preauricolar point directed

rightward, the positive y-axis passing through the nasion and the positive z-axis

consequently). Therefore goodness-of-fit is evaluated for each dipole estimate and

by means of a threshold (typically 80 %) a single model localization is accepted or

rejected.

FastICA analysis of MEG dataset

The 15 subjects’ recordings were analyzed with classical averaging methods and

with FastICA algorithm ([79]), and the results were evaluated in terms of reactivity

to the three stimuli and in terms of localization. For what concerns the localization

of averaged signals, the moving equivalent current dipole was considered only in the

most significant time points (20 and 30 ms after the trigger event).

Stimulation Time point Explained Variance EV x y z

L 22 0.812 -41 7 108

T 21 0.969 -37 10 95

M 19 0.977 -33 9 101

Table 8.1: Localization and goodness-of-fit for the activity at 20 ms using an ECD

model on averaged recordings

The dipole estimated on independent components is time-independent, therefore

it has been associated to a whole independent source. The explained variance of the

dipole modeling is denoted with EV , and a component with an explained variance
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Stimulation Time point Explained Variance EV x y z

L 33 0.923 -25 2 110

T 34 0.968 -30 8 95

M 30 0.992 -34 7 104

Table 8.2: Localization and goodness-of-fit for the activity at 30 ms using an ECD

model on averaged recordings

greater than 80 % is considered acceptable. Results of averaged model localization

are in Tables 8.1 and 8.2. For what concerns the ICA analysis, the results have

been evaluated in a slightly different way. In fact for each independent component,

that can be related to one of the stimuli, reactivity index, with respect to the

three experimental paradigms is evaluated, together with kurtosis (to evaluate the

distance from a Gaussian distribution), and the localization parameters (coordinates

and explained variance). Results for a single subject analysis are shown in Table 8.3.

In this case only three independent sources were localized satisfactorily (the ninth

component, although it had to be accepted because of the explained variance above

threshold, has been discarded because the dipole localization led to a physiologically

inconsistent position).

Results on different subjects, however, where not fully satisfactory. In fact, for

some subjects, the number of components that could be localized was different from

the number of stimulations (i.e. three). Moreover, reactivity indexes were not

satisfactory, meaning that it has not been possible to discriminate between different

stimulations across different components. In particular, for 6 subjects out of 15

it was possible to identify correctly the independent sources related to thumb and

little finger stimulation, while for 9 subjects the two stimulations were mixed in a

single component. A more detailed analysis will be presented in section 8.3.3.

8.3 Use of prior knowledge in MEG ICA

To overcome the problems encountered in FastICA extraction new procedures have

been developed. Specific information on reactivity to one of the stimuli has been

incorporated into ICA extraction. In fact, to avoid problems encountered in per-

forming analysis on some subjects with classical ICA, reactivity index has been
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Component RM RT RL Kurtosis EV x y z

1 9.29 2.56 4.68 5.1 0.984 -27 9 110

2 0.567 0.692 0.27 1.8 0.273

3 15.47 8.5 6.05 3.91 0.1

4 12.16 8.91 3.59 4.99 0.920 -50 -23 83

5 -0.12 0.41 1.94 3.38 0.778

6 4.27 6.46 3.67 4.36 0.971 -45 16 75

7 1.11 1.89 0.32 3.37 0.677

8 2.4 2.6 0.63 3.17 0.171

9 1.54 0.47 0.32 3.13 0.802

10 2.45 2.95 0.97 3.07 0.016

11 0.55 -0.54 0.83 3.07 0.100

12 0.7 -0.15 1.16 3.05 0

13 0.96 0.26 0.97 3.05 0.050

14 0.85 1.84 0.8 3.05 0.010

15 2.65 1.05 -0.03 3.04 0

16 0.67 0.64 0.24 3.03 0.480

Table 8.3: Localization and reactivity for the first 16 FastICA components

accounted for while performing analysis. Two new procedures have been employed

on the same dataset, and compared with averaging techniques and classical ICA

both in terms of localization and of reactivity. In section 8.3.1 the first of the two

techniques will be explained, while in section 8.3.2 the second procedure will be

discussed. In section 8.3.3 results will be discussed.

8.3.1 Functional Component Analysis (FCA)

To identify neural networks devoted to individual finger central representation, the

“reactivity”to the stimulus was incorporated into the separation algorithm. The

reactivity evaluation is carried out by means of RX index defined in eq. 8.2, here

presented again:

RX =
40∑

t=20

|EAX(t)| −
−10∑

t=−30

|EAX(t)| . (8.4)
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As said before, the subscript X denotes that the reactivity can evaluated for differ-

ent stimulations.

The functional information is included into the extraction by means of the algo-

rithm presented in 6.3, in the constrained version. Therefore negentropy has been

maximized in a domain defined by the function H(w), defined in (6.13).

The additional function considered in this analysis is:

HX(w) = ϕ (RX(w), κ) , (8.5)

where

ϕ (RX(w), κ) =

{
RX (w) /κ if RX (w) ≤ κ

κ elsewhere
(8.6)

And κ is the minimum allowed reactivity to the stimulus.

The optimization of F + λH using a deflation approach is carried out by means of

simulated annealing, as seen in Chapter 6, since H is not differentiable and therefore

gradient techniques cannot be employed.

The choice of parameters λ and κ is crucial to the effectiveness of the separation,

and so is the order of functional constraints enforced. The following choices were

made:

- λ: to avoid setting the weight parameter for each subject by means of sub-

sequent extractions (using the procedure explained in 6.5.2), we performed a

preliminary analysis on a subject, and therefore observed that the value of

negentropy were such that a choice of λ = 1000 was suitable to make the

constraint effective without having a reduced precision for negentropy repre-

sentation.

- κ: the threshold of the constraint parameter was defined for each subject

employing the following procedure: an extraction without thresholding is per-

formed on data, an the global maximum of reactivity RXmax is found; subse-

quently κ parameter is chosen as 0.95RXmax. This choice is motivated by the

fact that, together with the desire of having a high value of reactivity, there

is also the need for maximum independence within the domain defined by the

contrast function.

- Extraction Order: due to the fact that sources are partially spatially over-

lapped and thumb and median spatial representations are larger than little
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finger one, the weaker sources were extracted first. This procedure has been

motivated by the observation that extracting median or thumb component

first would tend to affect the little finger extraction. In Tables 8.4, 8.5 and 8.6

some results on a subject with three possible extraction orders are depicted.

It can be noted that in the first two case (M-L-T and T-L-M) it is not possible

to localize the little finger component, and its reactivity is considerably lower

than in the last case (L-T-M). The reason for this difference between orderings

lies in the fact that orthogonalization process tends to cancel the little finger

component that is partially overlapped to the thumb component and that is

considerably weaker.

Component Constraint RM RT RL Kurtosis EV x y z

1 Median 22.74 11.88 6.97 4.33 0.986 -33 7 101

2 Thumb 1.85 9.92 3,78 4.1 0.903 -48 17 108

3 Little Finger 0.6 0.35 6.48 3.4 0.609

Table 8.4: FCA extraction using the order M-T-L

Component Constraint RM RT RL Kurtosis EV x y z

1 Thumb 17.47 15.54 2.37 4.05 0.988 -32 14 97

2 Little Finger 10.81 0.987 9.79 3.71 0.249

3 Median 9.05 0.601 2.53 4.03 0.843 -35 15 110

Table 8.5: FCA extraction using the order T-L-M

Component Constraint RM RT RL Kurtosis EV x y z

1 Little Finger 16.1 5.01 10.5 3.83 0.883 -28 9 116

2 Thumb 13 14.7 0.294 3.89 0.986 -38 19 96

3 Median 9.08 0.717 2.44 3.92 0.83 -34 14 109

Table 8.6: FCA extraction using the order L-T-M

The implemented procedure has been called Functional component analysis

(FCA) to point out that its aim is to recover functional components with prior
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knowledge on some of their features (in the present case it is reactivity to the stim-

ulus). It is to be noted that in this approach independence of components is only

enforced in a strongly constrained solution set, so that its role is significantly less

important in the optimization than that of the constraint. This is also visible in

the fact that obtained components are indeed not independent. For this reason,

it is more appropriate to consider such approach as something different even form

a constrained ICA, which motivates the choice for a different name. By means of

this technique it has been possible to extract thumb related component for all the

subjects, while for 4 subjects out of 15 thumb component localization failed.

8.3.2 Functional Source Separation (FSS)

Functional Component Analysis (FCA) has been proved effective in recovering func-

tionally related sources. However, problems related to the decorrelation procedure

has been encountered. In fact, since the three stimulations of the experiment were

such that functional areas of the brain overlapped and one of them was consider-

ably weaker than the other, a new procedure has been implemented, by removing

the orthogonality constraint. Functional Source Separation (FSS) is therefore sim-

ular to FCA, with the difference that extracted components are not forced to be

orthogonal. From an ICA point of view, this is a really strong relaxation of the

basic assumptions, since extracted signals are not independent anymore. However,

for the experiment considered, stimulus-related brain activities showed features that

would have been removed by an independent extraction procedure, incorporating

two stimulations into a single component.

The non-orthogonal approach has already been introduced in literature ([176],[179]

and [83]), both from the a theoretical point of view, as a generalization of joint

diagonalization procedures to the case of a non-orthogonal diagonalization matrix,

and in applications, particularly in image modeling, to estimate overcomplete ICA

bases. In this work, after the extraction of a signal, the next component is searched

in a space “quasi-orthogonal”to the initial space. In fact, it could in principle hap-

pen that the new component extracted lies (almost) in the subspace spanned by

the previous ones, so that it would not be significant. Therefore, it is necessary

to enforce the condition that the angle between the new component and the said

subspace be large enough, or to check such condition a posteriori.

FSS was able to extract all stimulus-related components for all the 15 subjects, and
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all of these sources were validated successfully as far as localization is concerned.

The results of the analysis for the same subject of Tables 8.4-8.6 are depicted in

8.7. It is to be noted that the order of extraction in this case is arbitrary , since

extraction for each functional source is performed on the whole dataset, each time

with a different additional contrast function H. To test if the extraction process

found every time a different component, the angles between the basis vectors cou-

ples of the component related to little finger stimulation FSL and the one related to

thumb FST were computed across subjects. The median angle between them was 63
◦, with the interquartile range of the distribution being [42◦;79◦] and the minimum

25◦.

Component Constraint RM RT RL Kurtosis EV x y z

1 Little Finger 16.21 5.07 10.47 3.83 0.912 -22 10 112

2 Thumb 17.49 15.54 2.38 4.05 0.989 -31 14 96

3 Median 22.74 11.89 6.98 4.34 0.986 -33 6 101

Table 8.7: FSS separation evaluation on a subject

The evoked activities EA of the sources extracted with FSS are depicted in

Figure 8.3. It has to be noted that the scale is different for each signal, but this has

been done only for graphical reasons, since sources have no intrinsic amplitude.

More details on the analysis will be presented in the next section.

8.3.3 Discussion

A comparison between classical ICA, FCA and FSS has been carried out on the

15 subjects, in terms of spatial localization and of reactivity. The analysis focused

on thumb and little finger stimulation, since it would not be relevant a comparison

in terms of spatial localization or reactivity for the median and the fingers since

median stimulation induces activity also in fingers area. For each technique only

the components whose localization was successful have been considered, therefore

the number of subjects considered varies from a technique to another. In particular,

FastICA ([79]) was able to detect correctly the activations in 6 subjects out of 15. For

the remaining subjects, an independent source ICT ;Lthat accounted both for thumb

and little finger representation has been considered, as it was not possible to separate

them in two different components. Results of localization and reactivity index are
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Figure 8.3: Evoked Activity for FSS components related to different stimulation

accounted for in the algorithm
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8.3. Use of prior knowledge in MEG ICA

Sources Sub. Position (mm) Reactivity

EV x y z RL RT RM

FSS FSL 15 0.95±0.04 -33±10 6±12.9 9±14 12.7±4.9 7.7±5.6 18.8±12

FST 15 0.97±0.03 -38±10 10±13 90±10 6.3±5.1 13.4±4.8 18.3±12.6

FCA FCL 15 0.95±0.04 -33±10 5±12 99±13 12.7±4.9 7.7±5.5 18.9±12

FCT 11 0.95±0.05 -41±10 11±12 87±11 1.2±0.8 10.7±3.1 10.0±6.0

fast ICL 6 0.96±0.04 -36±12 9±23 96±11 7.5±5.9 4.4±5.1 11.4±11.3

ICA ICT 6 0.95±0.03 -41±14 16±43 79±20 2.5±3.9 6.3±2.7 11.1±14.2

ICT ;L 9 0.93±0.08 -39±13 7±10 97±12 7.9±3.7 7.3±5.1 16.7±16.6

Table 8.8: Spatial and reactivity characteristics of independent compo-

nents. Number of subject with successful localizations (> 80%, Successful cases),

mean ± s.d., explained variance (EV ) and mean ± s.d., coordinates (x, y, z, mil-

limetres) of ECDs; mean ± s.d. sources reactivity indexes to the three stimulations

(RL, RT , RM , pure numbers)

shown in Table 8.8. Localization obtained with classical averaging techniques in 20

and 30 ms after the trigger event are shown in Table 8.9.

To evaluate the level of residual finger response to the corresponding stimulation

after sources extraction an index of discrepancy in the response was considered. The

“discrepancy”index was defined as follows:

DiscrRX
=

∑
i(R

MEG
X −RMEGrecY

X )2

∑
i(R

MEG
X )2

(8.7)

where RX is defined as in (8.2), RMEG
X is the reactivity index computed on MEG

data during stimulation and R
MEGrecY

X is the reactivity index of reconstructed MEG

data with the Y finger (Y=L,T) data during its corresponding stimulation; the index

i runs upon the 4 channels of minimal and maximal amplitude at M20 and M30

latencies. In fact, the dipole field distributions generated at these peak latencies

are well described by their minimum/maximum values ([163]). Discrepancy values

for the three techniques are presented in Table 8.10, left panel, together with the

results of ANOVA test for the corresponding contrast.

Discrepancy reactivity resulted significantly lower for the FSS procedure with

respect to both its orthogonal version FCA and FastICA, indicating its more sat-

isfactory performance in extracting activity of interest; instead, not significant dif-

ference in DiscrRT
mean values was found between FCA and FastICA. Low mean

discrepancy reactivity values for FSS (6% of residual response for the little finger
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Sources Subjects Position (mm)

EV x y z

MEG Data M20L 12 0.94±0.06 -34±9 7±14 99±9

M20T 15 0.96±0.02 -42±8 11±11 91±10

M30L 11 0.97±0.02 -31±8 4±10 97±9

M30T 12 0.97±0.03 -33±8 6±13 89±12

Table 8.9: Spatial and reactivity characteristics of averaged signals. Number

of subject with successful localizations (> 80%, Successful cases), mean ± s.d.,

explained variance (EV ) and mean ± s.d., coordinates (x, y, z, millimetres) of

ECDs.

Method Mean ± s.d. Contrast p

DiscrRL
DiscrRT

DiscrRL
DiscrRT

FCA 0.06±0.07 0.22±0.21 FCA vs FSS - 0.04

FSS 0.06±0.07 0.03±0.04 FCA vs FastICA 0.004 0.3

FastICA 0.28±0.27 0.32±0.28 FSS vs FastICA 0.004 0.001

Table 8.10: Discrepancy response levels. Mean ± s.d. for the two finger discrepancy

indexes in the three algorithms. Results of ANOVA test (with Bonferroni correction

for multiple comparison in the thumb case) are summarized for the corresponding

contrast in the p values column.
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8.3. Use of prior knowledge in MEG ICA

Figure 8.4: Positions in one representative subject of thumb (solid circle area) and

little finger (dotted circle area) sources. M20 (empty circle), M30 (filled circle) and

the extracted source with the FSS procedure (star).

and 3% for the thumb with respect to the original averaged MEG data) indicated

that the two extracted finger sources described practically all the evoked response

contained in the original data matrix.

To have a benchmark for finger somatosensory source position, known markers of

signal arrival in the primary sensory cortex, occurring at around 20 and 30 ms from

the stimulus were calculated by averaging original MEG channel signals and com-

puting corresponding ECDs. In Figure 8.4 sources recovered with FSS and related

to thumb and little finger are depicted, together with M20 and M30 localization. It

could be noted from that FSL and FST lie in-between their respective M20 and M30

positions, in agreement with the constraint time window definition (see equation

(8.2)), that includes both M20 and M30 latencies.
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Chapter 9

Conclusions and Perspectives

In this work, development and implementation of new Blind Source Separation

(BSS) algorithms has been investigated. Such algorithms are capable of taking

known features of the signals that should be retrieved into account, while preserv-

ing blindness of the approach to avoid introducing unwanted constraints that may

cause artifacts or prevent the relevant solutions to be obtained.

While many applications of ICA are amenable to off-line computation, in some cases

fast computation is required because of real-time constraints, or just because the

large quantity of data would delay results excessively. For this reason, implemen-

tation of the FastICA algorithm on floating and fixed point DSP architectures has

been investigated. The results obtained in Chapter 4 indicate that a floating-point

architecture, due to the large amount of time needed for extract independent com-

ponents, is not a suitable choice. On the other hand, a fixed-point architecture

seems more able to extract independent sources in an amount of time that is com-

parable to that of ordinary general-purpose microprocessors. These results can be

used as the basis for development of embedded solutions for ICA computations and

of multi-processor multi-threading architectures, that may significantly outperform

ordinary microprocessors in terms of speed and of portability.

A new relevant application on ICA is considered in this work concerning corre-

lated equivalent-circuit-based statistical models (ECM) of electronic devices. In

fact in Chapter 5 a linear decomposition of circuital correlated parameters in in-

dependent components has been compared with a decomposition in uncorrelated

ones. This choice has been motivated by the fact that circuit parameters do not

have in general a Gaussian distribution, and therefore higher order statistics contain
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information that is usually discarded while employing Principal Component Analy-

sis. It has been shown that a ICA-based model simulation is more accurate than

a PCA-based one in describing autocorrelations of the device population, and in

dealing with the more sensitive elements of the scattering matrix, where the other

methods fail to represent data correctly, but on the other hand some deteriorations

in overall accuracy of S-parameters has been observed. This analysis has been per-

formed by approximating the independent component distribution with log-normal

ones, that exhibited some drawbacks in approximating data distribution. These

deteriorations may be avoided by means of different approximations of independent

components densities by means of Gaussian Mixture Models (GMM), that can be

easily implemented in CAD simulation tools. Another important issue that needs to

be addressed is the possibility of performing a non-linear mixing model, to account

for the relationship between the physical parameters and the circuital ones; Non-

linear ICA, that has been recently studied, could be promising in yield optimization

design, providing a physical level variability estimation by means of circuital para-

meters observation.

New methodologies have been developed in this work to order to incorporate prior

information in ICA analysis. In fact, in real world problems where ICA is usually

employed, additional information on the structure of the data is generally avail-

able, but neglected by current BSS algorithms. The new methodology proposed is

extremely flexible and it has been designed to account for specific and loose prior

information on the sources. In fact, by means of an additional contrast function it

is possible both to constrain some solutions of an ICA problem to lie in a particular

region of the multidimensional optimization landscape pointed out by prior infor-

mation and to account for loose information on all the components, by perturbing

the classical ICA solution. In Chapter 6 the principles of this technique have been

depicted together with some theorems that guarantee that the constrained optimum

is reached by means of penalty terms. The choice of Simulated Annealing optimiza-

tion comes from the need to deal with prior information of various kinds, that can

therefore also be non-differentiable. Simulated Annealing has the double advantage

of not requiring derivatives and of reaching the global optimum, even if it is slower

than gradient-based techniques.

The effectiveness and flexibility of this approach has been proved on both fMRI

and MEG data. In fMRI data analysis, spatial and temporal constraints have been

added to independent component separation, allowing to recover a source directly
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avoiding post-selection. Moreover, the constrained approach has been investigated

on a set of finger-tapping experiments, proving its effectiveness in extracting the

target source by means of some knowledge on its time course, like correlation with

the experimental paradigm or a specific frequency content. In this case it has been

shown that it is possible to outperform classical ICA approach by enhancing a spe-

cific feature of one of the independent components.

Moreover, a new approach has been developed in order to take spatio-temporal reg-

ularities into account. Classical ICA methods do not consider ordering of the points

in signals, while it is known that cerebral activities show regularities in both space

and time. Therefore the proposed methodology has been employed with an addi-

tional contrast function regarding spatial and temporal autocorrelation, and it has

been tested on a simulated fMRI dataset and on a real fMRI resting state experi-

ment with superimposed artificial activations. It has been shown that, by means of

this additional contrast function, source extraction is dramatically improved espe-

cially in high noise environments. However the choice of the weight of the additional

contrast function needs further investigation, also in a Bayesian framework fashion,

to determine which is the optimal weighting for prior information term. Another

important issue that is going to be addressed is an implementation of this algorithm

on the cerebral cortex, rather than on the whole volume. In fact, neighborhood

relationships are better pointed out on the cortex, since two neighboring voxels in

the volume may not represent neighboring cerebral areas.

Prior information has been also employed in MEG data analysis. In Chapter 8 it

has been shown that constraining sources by means of a reactivity measure helps

improving both localization and interpretability of the independent components and

two new algorithms (FCA and FSS) have been proposed and compared to classical

ICA algorithms.

The proposed methodology has proved to be flexible and accurate, as it has been

applied successfully in both constrained and multi-objective case to fMRI and MEG

data analysis. Many of the solutions proposed in literature can be obtained by

means of the proposed approach, that is therefore more general and can account

also for information that cannot be expressed by means of a differentiable func-

tion. In particular, the proposed algorithm can be employed also in audio signal

separation (one example is the classical cocktail party problem), where very specific

information is available on the sources. Moreover, investigations on overcomplete

ICA (i.e. when there are more sources than sensors) are currently under way. In
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fact, the overcomplete case is ill-posed due to the non square mixing process, but

available information may help in recovering the sources effectively.
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