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Chapter 1

Introduction

1.1 Why this work?

In the recent years there was an increasing interest in smart structures. This general definition

include all those systems able to detect their own state and to change it in order to satisfy

some given specifications. A large number of devices characterized by a huge set of physical

phenomena can be classified as smart stucture. A typical example, widely studied in the

literature in the last few years, is represented by those systems able to automatically damp

vibration phenomena acting on them. The majoriry of those systems are realized by using

piezoelectric transducers coupled with suitable electric network.[Lesieutre (1998)]. During the

past years a large number of solution has been proposed in this direction. Among them we’d like

to highlight the strategy used in the piezoelectromechenical (PEM) structures, where a given

structure is connected to an electrical network through an array of piezoelectric transducers. It is

required to this network to achieving the most efficient multimodal energy transduction from the

given structure to the electrical network itself. In [Vidoli et al.(2000)], there was heuristically

proven that in order to guarantee the maximum energy transfer between the given structure and

the electrical network they must be governed by the same differential operator. This requirement

can be expressed more precisely by saying that the electrical network must be the analogue of

the hosting structure, meaning that the two must share the same spectral properties and,

cosequently, their evolutions must be governed by the beam equation. The problem of design

a circuit analogue to an Euler beam has been initially solved in [Alessandroni et al. (2002)]

8



where it has been proposed a circuital network able to impose the same differential equation

governing the evolution of the beam,between the adjacent nodes of the circuit. By the way

the problem of finding suitable termination analogue to a general boundary conditions (BC)

has been only partially addressed. A different solution which take into account for the most

general BC has been proposed in [Andreaus et al. (2004)] and [Porfiri et al. (2004)], however

those works don’t offer a physical interpretation of each components of the circuit but stands

same relations that must be fulfilled among their nominal values. The basic feature of this

approach is in the possibility to establish a multimodal resonance between the hosting beam

and electrical circuit connected to it. This property can be summarized by saying that, using

this methodology, it is possible to realize a complete energy transfer from the hosting beam to

the electrical network.

The basic idea of the present work can be summarized in the following question-It is possible

to apply this methodology to a larger number of systems?- More precisely :- it is possible to

design a circuit able to absorb the whole energy of a given system connected to it trough an

array of transducers?- It is quite easy to understand that this kind of systems could be fruitfully

used for a large set of applications. Among them we had cited the vibration damping but we can

imaging application like the harvesting the insonorizzation or even application more oriented

to the elaborations as the damage detection. By the way the main purpose of this work is the

development of a theory able to describe those systems and to give a precise methodology in

order to design a circuit analogue to a given physical system rather than the investigation of a

particular application.

In this work we will show how it is possible generalize the result obtained in multimodal

vibration damping to a huge class of problems described by means of a single partial differential

equation (PDE) depending on an integer index n.This PDE is given below.

K
∂nF (x, t)

∂xn
+ (−1)nρ∂

2F (x, t)

∂x2
(1.1)

where F (x, t) is a generic scalar field defined over the domain [0, L] ×R+, where the scalar
x ∈ [0, L] represents the space variable and it is measured in [m] and scalar t ∈ R+ represents
the time variable and it is measured in [s]. K and ρ are generic scalar quantities whose ratio
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K/ρ must assume the physical dimensions of [m2n/s2]. Looking at eq. (1.1) it can be easily

realized that it assumes a well known form for some special values of n. For example when

n = 0 it becomes, for a specified values of the space variable x, the well known equation of

an harmonic oscillator able to describe a huge number of problem once the parameters F,K

and ρ assume an actual meaning different, in general, for each particular system. Moreover

the ratio ρ/K measured in [s−2] assumes the meaning of the natural oscillation frequency of

the system. Another class of problems can be obtained by choosing n = 1, in this case eq.

(1.1) becomes the well known wave equation able to describe a very large number of physical

phenomena once the parameters F,K and ρ assume an actual meaning different, in general,

for each particular application. Moreover the ratio ρ/K measured in [m2/s−2] assumes the

meaning of the velocity of propagation of the wave. Similarly for n = 2 eq. (1.1) becomes

after a suitable specification of the parameters F,K and ρ the well known Elastica equation

describing the transversal vibration on a shear undeformable beam. All the given examples are

related with an oscillating behavior so that we will call the whole set of physical phenomena

described by eq. (1.1) generalized ondulatory phenomena.

In this work will be described how it is possible to design a circuit analogue to a generic

system whose evolution is described by eq. (1.1) and how it is possible to conect it to the

given physical system through an array of transducers in order to absorb from it the energy

associate with the oscillations. The complete system obtained in this way will include the

given physical system the array of transducer and the analogue circuit and will be called hybrid

coupled system. This hybrid system will be described in this work by means of a generalized

version of the notions used by the classical circuit theory. This methodology of analysis will

result in an algebrical description of the system very suitable for digital elaborations purpose.

1.2 Overview

In this section we will give some information about the structure of this work. The whole work

is constitued by seven chapters, being this introduction the first of them and the last one a

report of the conclusion and an opportunity to list some possible ideas for future work on this

subject. The remaining five chapters must be splitted in two subcathegories. The first of them,
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including chapters two to five, must to be considered the main core of this work and include

the modelling of some circuits analogue of eq. (1.1) (chapter 2 and 4), the circuital modelling

of the transducers (chapter 3) and the circuital model of a whole hybrid gyroscopically coupled

systems (chapter 5). The second subcathegory including the sixth chapter only is devoted to

the RC-active synthesis of the electric circuit analogue of eq. (1.1).

More precisely this work has the following structure:

Chapter 1: This introduction.

Chapter 2: First of all it is performed a discretization of the spatial domain and it is defined over

it a finite difference equation approximating eq. (1.1). Then it is given a brief recall

on a generalized version of some basic notion of the classical circuit theory in order to

define the notion of lumped circuit in a general contest. This recall wants to point out on

the fact that the analogue circuit derived has no be restricted to the electrical case only.

A first synthesis technique, based on the algebrical manipulation of the finite difference

equation, it is given. It is put in evidence as this simple technique is not able to give

any information about the circuital implementation of the BC prescribed at the border

of the domain. A variational approach it is used in order to derive the BCs consistent

with eq. (1.1). A more sophisticated synthesis technique, based on the structure of those

BCs it is given. This technique has to be considered general and it seems reasonable to

successfully apply it to the circuital synthesis of different differential operator. A new

technique devoted to the design of suitable termination networks able to reproduce the

most general BCs for the first kind of synthesis is introduced. This new technique is based

on the external characterization of the system.

Chapther 3: The circuital modelling of a transducer is treated. Based on the general circuital notions

given in the second chapter the generic transducers is thought as an hybrid two ports

network, where the word hybrid want to describe the different physical nature of the two

port. The notion of monodirectional ideal transducers and bidirectional ideal transducers

are introduced. A bidirectional real transducers is modeled as an ideal bidirectional

transducers having some parasitic constitutive effect on each port. Finally some examples

is proposed. In this contest it is given a circuital model of an extensional a bending and
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a torsional piezoelectric transducer.

Chapter 4: Here we apply the theory developed in the second chapter in order to derive some exam-

ples. We point out on the fact that the derivation of a circuit analogue of a generalized

ondulatory phenomena is independent from the actual meaning of the parameters F,K

and ρ that effect only the nominal value on the components and the physical interpre-

tation of the quantities defining the circuit. This chapter has been positioned after the

transducers modelling in order to highligth the opportunity to recognize in a system of

order 2n (for n ≥ 2) n− 1 arrays of ideal transducers embedded in the system itself.

Chapter 5: Here we give a precise definition of hybrid gyroscopically coupled system. First of all

we define a one dimensional hybrid coupled system and we study its properties in both

the frequency and the time domain showing how it is possible to completely transfer

the energy from a part of the hybrid system to the other part. Then we study how the

complications rising from the use of a real transducer can be solved. Then those results

are extended to the M dimensional case. Finally it is given a example for systems of order

zero two and four.

Chapter 6: First of all we give a brief overview on the classical solution historically proposed in the

circuit theory in order to design synthetic floating positive and negative inductor negative

impedance and ideal transformers. This research is restricted to the use of operational

amplifiers (OPA) capacitors and resistor. Based on those notions it is given a valutation

on the number of OPAs needed to design an analogue circuit of order 2n. Some new

strategy of synthesis it is proposed. It is shown how it is possible to realize an analogue

circuit of order 2n by using two OPAs only for each module. Finally it is proposed a

stability analysis of those circuits when the ideal OPAs are replaced with a more realistic

model including some not ideal features of those components.

Chapter 7: Here we get the conclusion of our work and give some possible ideas for future work on

this subject.
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Chapter 2

Derivation of a circuit analogue of a

generalized ondulatory phenomena

2.1 Introduction

In the previous chapter we have introduced a general PDE able to describe a large number of

problems by giving an actual meaning to some parameters. In this chapter we will introduce a

discretization of the spacial domain in order to derive a finite difference equation approximating

the differential operator. Then we will introduce a generalized version of some basic notions of

the circuit theory, those notions will be used to design a lumped circuit analogue to the discrete

differential operator governing a generalized ondulatory phenomena. First of all we will describe

a synthesis technique based on the algebrical manipulation of differential operator. Then we

will put in evidence the lack of a clear methodology to impose the most general BC at the

edge of the domain for this simple kind of synthesis. In order to overpass this problem we

will introduce a more sophisticated synthesis technique. Based on this novel technique we will

derive a methodology to impose the most general BC for the first synthesis technique too. It

should be noted that this sophisticated synthesis technique is general and can be applied in

order to obtain the synthesis of different differential operators.
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2.2 Discrete formulation

As we have said before, we want to derive a lumped circuit analogue of the PDE formulated by

eq. (1.1). The first step we need to walk is to project the continuous space domain [0, L] in a

finite dimensional space. So it is needed to introduce a mesh of M nodes uniformly separated

by an incremental step ∆ = L
M approximating the spacial domain [0..L].

Δ=x Δ= 2x LMx =Δ=0=x

Δ Δ Δ

Δ=x Δ= 2x LMx =Δ=0=x

Δ Δ Δ

Figure 2-1: Discretization of the spacial domain.

Once we have introduced the mesh shown in fig. (2-1) the scalar field F (x, t) will be described

by its samples F (0, t), F (∆, t), .., F (M∆, t). More precisely we want to derive a lumped circuit

governed by the following equation1:

KF
(2n)
k (t) + (−1)nρd

2Fk(t)

dt2
= 0 (2.1)

Now in order to express the discrete space derivatives of the scalar field F (x, t) we need to

introduce a finite difference scheme. Many choices can be made, however in order to obtain

a symmetric discrete equation it is useful to introduce a centered finite difference scheme as

shown in fig.(2-2).

x-3 x-2 x-1 x0 x1 x2 x3F

F(IV)

F(III)

F(II)

F(I)

x-3 x-2 x-1 x0 x1 x2 x3F

F(IV)

F(III)

F(II)

F(I)

Figure 2-2: Cenetered finite difference scheme.

1 in this work the expression ¤(j)k has the meaning of a discrete version of the quantity ∂j¤
∂xj x=k∆

. Moreover

the expressions ¤(0)k and ¤k must be thought as equivalent.
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Looking at fig. (2-2) it is clear that we need to add a new sample for each order of derivation so

that the derivative or order zero (i.e. a sample of the function it self) at the kth node is defined

by means of a single sample, the discrete derivative of order one is defined by means of a linear

combination of two samples and so on. In general the derivative of order j at a generic node

k will be a linear combination of j + 1 samples centered around the kth node. The weight of

this linear combination can be found by using the simple rule offered by the Tartaglia triangle2,

with alternate minus signs. This scheme is shown below:

1

1 −1

1 −2 1

1 −3 3 −1

1 −4 6 −4 1

...

a general expression of the mth discrete spatial derivative at x = xk can be derived combining

the Tartaglia scheme with the one shown in fig. (2-2). This rule is given by the following

equation:

F
(j)
k (t) =

1

∆j

b j2cX
i=−d j2e

(−1)(i+d j2e)
µ

j

i+
l
j
2

m¶Fk+i(t) where j > 0 (2.2)

substituting the rule formulated by eq.(2.2) into eq. (2.1) we obtain:

nX
i=−n

(−1)i+n
µ
2n

i+ n

¶
Fk+i(t) + (−1)nβ2nd

2Fk(t)

dt2
= 0 (2.3)

where

β = ∆ 2n

r
ρ

K

2Some author refer to this scheme as "Pascal triangle" by the way for patriotic reasons in those note we will
use the Italian reference.
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it can be noted that the constant β has the physical unit of [s]
1
n regardless of the physical

dimension of the scalar field F (x, t).

2.3 Derivation of a generalized analogue lumped circuit

2.3.1 Blackbox approach

First of all we need to introduce the concept of port. A port is a set of two access points

characterized by means of two quantities an intensive one we will label in the following with the

symbol Π and an extensive one we will label in the following with the symbol Φ3. It is crucial for

the definition of port that the quantity Φ going into the first access point is equal and opposite to

the one going out from the second access point as shown in fig (2-3 a). Moreover it is important

that the pair (Φ,Π) is complementary in power i.e. the product of the physical dimension of

those two quantities must have the physical dimension of a power [W ]. For example we can

chose Φ equal to the force "flowing through" the access point and Π equal to the difference of

velocity between the two access points4. A natural generalization of this concept leads to the

definition of a n ports system. There are two different ways to define a n ports system. The

first possibility is to define each of the n ports by mean of a pair of access point. In this case

the system will be characterized by 2n access points as shown in fig. (2-3 b) and will be referred

as usual as balanced configuration. Alternatively we can refer the definition of each port to a

common access point, in this case the system will be characterized by n+ 1 access points and

the Φ quantity flowing out from the common access point will be equal to the sum of all the

Φ quantities flowing in the remaining n terminals5. This situation shown in fig.(2-3 c) will be

referred as usual as unbalanced configuration. We’d like to remark that our definition of a n

ports system does not require to the pair (Φi,Πi) characterizing the ith port of the system to

have the same physical dimension to the pair (Φj ,Πj) characterizing the jth port of the system.

3An intensive quantity is a physical scalar quantity whose value does not depend on the amount of the
substance for which it is measured. It is the counterpart of an extensive quantity that conversely depend on
the amount of the substance for which it is measured. Moreover each intensive quantity is complementar to an
extensive one. i.e. the product of the phisical dimension of the two quantitites has the phisical dimension of a
power [W ].

4 It must be noted thet the force and the velocity are vectorial quantities so they must be projected in a given
direction in order to use them as extensive and intesive quantity associated with a port.

5 In the following we will refer to an access point as a terminal or vice versa.
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1Φ nΦ

nΠ1Π
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Π

Φ
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Π

Φ

Φ 2Π

1Φ

1Φ
2Φ

2Φ

nΦ

nΠ1Π
nΦ

2Π

1Φ

1Φ
2Φ

2Φ

nΦ

nΠ1Π
nΦ

1Φ nΦ

nΠ1Π

nΦ++Φ ...1

1Φ nΦ

nΠ1Π

nΦ++Φ ...1

Figure 2-3: a) One port system b) Balenced n ports system c) Unbalanced n ports system.

For example we can think a two port system in which a port will be characterized by the pair

(current, voltage) and the other port will be characterized by the pair (force,velocity) and so

on. This freedom in the choice of the physical nature of the ports compel us to precise that if

the unbalanced conflagration is used we need to assume the existence of a different reference

terminal for each different nature of the ports of the system.

2.3.2 Constitutive relation

Once we have introduced the concept of port we need to give a physical relation between the

two quantities related to the port, i.e. a constitutive equation. In order to give a constitutive

equation we need to chose one of the variables as independent and give a rule to express the

remaining dependent variable as a function of the independent one.

One port element

(α, β) element The most general linear constitutive equation it can be given [Chua (2003)]

states a proportional relation between the αth time derivative of the intensive quantity and the

βth time derivative of the extensive quantity. It is given for the linear case by the following

relation:
dαΠ

dtα
= R

dβΦ

dtβ
where α, β ∈ N and R ∈ R (2.4)
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The circuital symbol it has been chosen to be the one proposed in [Chua (2003)]. A thick black

band is needed at the bottom of the symbol in Fig. (2-4) in order to distinguish the intensive

quantity index α from the extensive quantity index β.

β
R

αΦ

Π

Φβ
R

αΦ

Π

Φ

Figure 2-4: Circuital symbol for an (α, β) element.

A different kind of constitutive equation can be obtained specifying the value of the intensive

quantity and leaving the extensive quantity not specified or vice versa.

Generalized independent Π source⎧⎨⎩ Π = Π0

Φ not specified

Φ Φ

Π
−+Φ Φ

Π
−+

Figure 2-5: Circuital symbol for a generalized independent Π sorce.

Generalized independent Φ source⎧⎨⎩ Φ = Φ0

Π not specified
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Φ Φ

Π

Φ Φ

Π
Figure 2-6: Circuital symbol for a generalized independent Φ sorce.

A special kind of independent source can be obtained choosing Π0 = 0 and Φ0 = 0

Generalized short circuit ⎧⎨⎩ Π = 0

Φ not specified

Π

Φ Φ

Π

Φ Φ

Figure 2-7: Circuital symbol for a generalized short circuit.

Generalized open circuit ⎧⎨⎩ Φ = 0

Π not specified

Φ Φ

Π

Φ Φ

Π
Figure 2-8: Circuital symbol for a generalized open circuit.
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Two ports element

Similarly we can define a two ports network by means of two constitutive equations relating

two dependant variables to the two remaining variables chosen as independent ones.

There exist a lot of admissible constitutive equations for two ports network, by the way we

will introduce only the ones that will be used in the following sections.

Generalized ΠCΠS ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π2 = GΠΠΠ1

Φ1 = 0

Φ2 not specified

(2.5)

−
+

1Π

1Φ
2Φ

2Π

1Φ 2Φ
−
+
−
+

1Π

1Φ
2Φ

2Π

1Φ 2Φ
Figure 2-9: Circuital symbol for a generalized Π controlled Π source.

Generalized ΠCΦS ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2 = GΠΦΠ1

Φ1 = 0

Π2 not specified

(2.6)

1Π
1Φ

1Φ

2Φ

2Π

2Φ
1Π

1Φ

1Φ

2Φ

2Π

2Φ
Figure 2-10: Circuital symbol for a generalized Π controlled Φ source.
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Generalized ΦCΦS ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2 = GΦΦΦ1

Π1 = 0

Π2 not specified

(2.7)

1Π

1Φ

1Φ

2Φ

2Π

2Φ
1Π

1Φ

1Φ

2Φ

2Π

2Φ
Figure 2-11: Circuital symbol for a generalized Φ controlled Φ source.

Generalized ΦCΠS ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π2 = GΦΠΦ1

Π1 = 0

Φ2 not specified

(2.8)

−
+

1Π

1Φ

1Φ

2Φ

2Π

2Φ
−
+
−
+

1Π

1Φ

1Φ

2Φ

2Π

2Φ
Figure 2-12: Circuital symbol for a generalized Φ controlled Π source.

Generalized lever ⎧⎨⎩ Π1 = nΠ2

Φ1 = − 1nΦ2
(2.9)
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1Π
1Φ

1Φ

2Φ

2Π

2Φ

n11Π
1Φ

1Φ

2Φ

2Π

2Φ

n1

Figure 2-13: Circuital symbol for a non inverting generalized lever.

⎧⎨⎩ Π1 = −nΠ2
Φ1 =

1
nΦ2

(2.10)

1Π
1Φ

1Φ

2Φ

2Π

2Φ

1 n1Π
1Φ

1Φ

2Φ

2Π

2Φ

1 n

Figure 2-14: Circuital symbol for a inverting generalized lever.

2.3.3 Impedance and admittance

We will define the impedance of a port by the ratio between the Laplace transform of the Π

quantity imposed through the terminal of a port and the Laplace transform of the Φ quantity

flowing through the same terminals when all the remaning ports are connected to a generalized

open circuit. As usual, we will refer to this quantity with the symbol Z(s) where s is the

Laplace variable. Similarly we will define the admittance of a port by the ratio between the Φ

quantity flowing through the terminal of a port and the Laplace transform of the Π quantity

between the same terminals when all the remaining ports are connected to a generazized short
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circuit. As usual we will refer to this quantity with the symbol Y (s). As an example we will

explicitly give the impedance Z(s) and the admittance Y (s) for an (α, β) element.

Z(s) =
Π(s)

Φ(s)
= R sβ−α (2.11)

Y (s) =
Φ(s)

Π(s)
=

sα−β

R
(2.12)

Similarly it is possible to define a cross-impedance Zij(s) (cross-admittance) as the ratio between

the Laplace transform of the Π quantity read at the port i and the Laplace transform of the Φ

quantity imposed at the port j when all the remainig port are connected to a generalized open

circuit (as the ratio between the Laplace transform of the Φ quantity read at the port i and

the Laplace transform of the Π quantity imposed at the port j when all the remainig port are

connected to a generalized short circuit ).

2.3.4 Same example of components identification

In this subsection we will introduce an identification for same of the basic elements introduced

above, when the pair (Π,Φ) assume an actual meaning. In the following we will give some

possible choices for the pair (Π,Φ) and we will indicate some special circuital symbols in order

to identify the same component for a different choice of the pair (Π,Φ) . For example once we

have fixed a given direction we can consider the projection of a force F along this direction as

an extensive quantity defining a port. It is quite easy to understand that the complementar

intensive quantity can be identified by the difference of the velocity v (along the same direction of

the force) between the two access points defining the port. Similarly we can choose as extensive

quantity the momentM along a given direction consequently we will obtain the difference of the

angular velocity ω between the two access points defining the port as a complementar intensive

quantity. A third possible example is obtained by choosing the Voltage V as intensive quantity

and the current I as its complementar extensive quantity. In the following of this chapter we

will show that the analogue circuit of eq. (2.3) can be obtained by a suitable connection of

(1, 0) elements, (0, 1) elements and generalized lever, so, in the following table, we will give an

interpretation of those components for the three possible pairs described above.
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Table 2-1: Interpretation of same basic component for different specification of the pair (Π,Φ) .
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2.3.5 One node to one port mapping

In order to design a circuit analogue to the discrete differential problem described by eq. (2.1)

we can initially associate a node of the mesh with a port of the analogue circuit as shown in

fig. (2-15). The basic idea we want to implement is to obtain a relation between the quantities

defining the ports of the system to be equal to the relation between the samples of the scalar

field F (x, t) i.e. eq. (2.1). For a reason that will appear more clear in the following sections we

will take the time derivative of eq.(2.1). There exist two different ways to associate a sample

with a port. We can choose to describe the samples dFk(t)
dt of the time derivative of the scalar

field F (x, t) either by means of the intensive quantity Π or by means of the extensive quantity

Φ characterizing the port.

node

0=x LMx =Δ=

Δ Δ Δnode

0=x LMx =Δ=

Δ Δ Δ
Figure 2-15: One node to one port mapping.

It should be noted that, depending on the physical nature of the scalar field F (x, t) (i.e. it

is intensive or extensive) just one of the two possible analogies could be coherent with the

definition of port we have introduced in the previous section. This issue will be developed in

the following.

dF
dt → Π analogy The purpose of this section is to design a circuit governed, in the Laplace

domain, by the following equation (i.e. eq. (2.3) where the symbol dFkdt has been replaced with

the symbol Πk representing an intensive quantity):

nX
i=−n

(−1)i
µ
2n

i+ n

¶
1

s
Πk+i(t) +∆

2n ρ

K
sΠk(t) = 0 (2.13)
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First of all we note that when n = 0 eq. (2.13) assumes the following simplified form:

1

s
Πk(t) +

ρ

K
sΠk(t) = 0 (2.14)

eq. (2.14) can be rearranged as follows:

³
Ksα1−β1 + ρsα2−β2

´
Πk(t) = 0 (2.15)

where α2 − β2 − α1 + β1 = 2. Eq. (2.15) can be interpreted from a circuital point of view

as the shunt of an (α1, β1) element of nominal value 1/K and an (α2, β2) element of nominal

value 1/ρ, as shown in fig. (2-16). We’d like to remark that in order to produce eq. (2.15)

it is needed the interconnection one node only, by the way if we have a mesh having a larger

number of nodes we can "attach" the basic circuit described above to each node.

2α

2β
1α
1β

( )
kk sK Π−=Π +−− 2211 βαβα

ρ

ρ=
R
1

K
R

=1 2α

2β
1α
1β

2α

2β
2α

2β
1α
1β

( )
kk sK Π−=Π +−− 2211 βαβα

ρ

ρ=
R
1

K
R

=1

Figure 2-16: One node to one port dF
dt → Π synthesis for n = 0.

In order to obtain the needed circuit when n > 0 we can introduce a useful mathematical

identity relating the coefficient of a finite difference scheme.

µ
2n

n

¶
= −

Ã −1X
i=−n

(−1)i
µ
2n

i+ n

¶
+

nX
i=1

(−1)i
µ
2n

i+ n

¶!
n > 0 (2.16)
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Substituting eq. (2.16) in eq. (2.13) we obtain:

−1X
i=−n

(−1)i
µ
2n

i+ n

¶
1

s
(Πk+i(t)−Πk(t)) +

nX
i=1

(−1)i
µ
2n

i+ n

¶
1

s
(Πk+i(t)−Πk(t))+ (2.17)

+(−1)n∆ 2n ρ

K
sΠk(t) = 0

equation (2.17) can be rearranged in the following form:

⎛⎜⎜⎝ nX
i=−n
i6=0

∙
− K

∆ 2n−1 (−1)i
µ
2n

i+ n

¶¸
sα1−β1 (Πk(t)−Πk+i(t))

⎞⎟⎟⎠+[∆ρ ] sα2−β2 (Πk(t)− 0) = 0 n > 0

(2.18)

where α2−β2−α1+β1 = 2. Eq. (2.18) can be interpreted as a balance of extensive quantities

flowing out from the kth node. A straight forward synthesis of eq. (2.18) can be obtained by the

interconnection of the kth nodes of the mesh with the previous n nodes and with the subsequent

n nodes by means of (α1, β1) elements. The nominal value of the component connecting the

kth node of the mesh with node k ± j is given by the coefficients of eq. 2.18. This connection

produce the terms in the summation of eq. (2.18).
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Figure 2-17: Basic circuit of the one node to one port dF
dt → Π synthesis.
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The extra term out of the summation sign can be obtained by interconnecting an (α2, β2)

element of nominal value 1/∆ρ between the kth node and the reference node. The basic circuital

scheme described above is shown in fig. (2-17) The complete circuital scheme can be obtained

by "attaching" the basic circuit shown in fig. (2-17) to each node taking care of avoiding

components doubling. This procedure will result in the circuit shown in fig. (2-18) for the

case of n = 6.It should be noted that this circuit assumes the form of the network porposed in

[Alessandroni et al. (2002)] when n = 2, α2 = 1, β2 = 0, α1 = 0, β1 = 1 and (Π,Φ) = (V, I).
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Figure 2-18: Complete circuit for the one node to one port dF
dt → Π synthesis for n = 6.

In the figure are drawn two gray triangles. The components inside those triangles don’t belong

to the circuit, by the way they are been plotted in order to highlight the structure of the

network. More precisely we will see in the subsequent section how it is possible to substitute

the subnetwork in the gray triangle with a suitable termination subnetwork taking in count for

the most general BC. The circuit shown in fig.(2-18) can be tough as the chain connection of a

proper number of the 12 ports (2n for the general case) basic section shown in fig. (2-19). In

this figure is put in evidence the opportunity to divide the not symmetric basic section in the

chain connection of two symmetric subnetworks; the first one containing an (α2, β2) element and

all (α1, β1) elements with negatie nominal value and the other one containing all the (α1, β1)
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elements with positive nominal value.
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Figure 2-19: Basic section for the one node to one port dF
dt → Π synthesis.

It should be noted that using this simple synthesis technique it is needed to use components

of negative values, moreover it is not clear how the circuit should be modified in order to take

care of the BC present at the edge of the spatial domain. In the following section it will be
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shown how this problem can be overpassed.

dF
dt → Φ analogy The purpose of this section is to design a circuit governed, in the Laplace

domain, by the following equation (i.e. eq. (2.1) where the symbol dFk
dt is replaced with the

symbol Φk representing an extensive quantity):

nX
i=−n

(−1)i
µ
2n

i+ n

¶
1

s
Φk+i(t) +∆

2n ρ

K
sΦk(t) = 0 (2.19)

First of all we note that when n = 0 eq. (2.13) assume the following simplified form:

1

s
Φk(t) +

ρ

K
sΦk(t) = 0 (2.20)

eq. (2.20) can be rearranged as follows:

Ksβ2−α2Φk(t) + ρsβ1−α1Φk(t) = 0 (2.21)

where α2 − β2 − α1 + β1 = 2. Eq. (2.21) can be interpreted from a circuital point of view as

the series of an (α1, β1) element of nominal value ρ and an (α2, β2) element of nominal value

K, as shown in fig. (2-20). We’d like to remark that in order to produce eq. (2.21) it is needed

to interconnect one loop only, by the way if we have a mesh having a larger number of nodes

we can "attach" the basic circuit to each node.

2α

2β
1α
1βρ=R KR =kΦ

( )
kk sK Φ−=Φ +−− 1122 αβαβ

ρ

2α

2β
2α

2β
1α
1βρ=R KR =kΦ

( )
kk sK Φ−=Φ +−− 1122 αβαβ

ρ

Figure 2-20: One node to one port dF
dt → Φ synthesis for n = 0.
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In order to design a circuit for n > 0 we can use the identity (2.16). Substituting eq. (2.19) in

eq. (2.16) and rearranging we obtain:

⎛⎜⎜⎝ nX
i=−n
i6=0

∙
− K

∆ 2n−1 (−1)i
µ
2n

i+ n

¶¸
sβ2−α2 (Φk(t)− Φk+i(t))

⎞⎟⎟⎠+ [∆ρ ] sβ1−α1Φk(t) = 0 n > 0

(2.22)

where α2 − β2 − α1 + β1 = 2. Eq. (2.22) can be interpreted as a balance of intensive quan-

tities of a loop k. having 2n + 1 edges. A straight forward synthesis of eq. (2.22) can be

obtained by the interconnection of 2n (α2, β2) elements in common between the loop associated

with the kth sample and loops associated with the previous and the subsequent n samples.

The nominal value of the component in common by the loop k and the loop k ± j is given

by the coefficients of eq. 2.22. This connection produce the terms in the summation of eq.

(2.22). The extra term out of the summation sign can be obtained by closing the loop with

an (α1, β1) element of nominal value ∆ρ. The basic circuit described above is shown in fig-

ure (2-21). The complete circuital scheme can be obtained by "attaching" the network shown

in fig.(2-21) to each loop taking care of avoiding complements doubling. This procedure will

result in a very complex structure that can not be represented by means of a planar graph

for the general case. Consequently the circuit must be designed for each value of n. A nice

inspiration can be obtained by the work of M. C. Hescher on the plane partition with polygonal

tiles.[Escher (2001)],[Schattschneider et al. (1990)]. For example the famous litograh named

"Reptiles" shown in fig. (2-22 a)) can give us a nice idea for deriving the topological graph for

n = 3. In this figure the reptiles going out from one side of the picture and going in from the

opposite side suggests the possibility to connect two edges belonging to two different loops with

a virtual tape constraining those two edges to be the same one, as remarked in fig (2-22 b)).
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Figure 2-21: Basic circuit of the one node to one port dF
dt → Φ synthesis.

)b)a )b)a

Figure 2-22: a) A famous 1943 litograph by M. C. Escher colled "Reptiles". b) The same

litograph with a dashed line enphatising the reptiles line as a virtual connection.

Based on this idea we can derive the topological graph for n = 3. It is shown in fig. (2-23),
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where the extensive quantities Φ0, ...,Φ±5 flowing in the heptagon loop are related with the

samples of the scalar field F (x, t). The two edges joined by the same tape must be thought

as the same edge. In order to make the picture more clear all the tapes except two are been

dashed.

5Φ5−Φ

2−Φ
2Φ 4Φ

4−Φ

3−Φ 1−Φ

0Φ

1Φ 3Φ
5Φ5−Φ 5−Φ

2−Φ 2−Φ
2Φ 4Φ

4−Φ 4−Φ

3−Φ 1−Φ 1−Φ

0Φ

1Φ 3Φ

Figure 2-23: Topological graph of the one node to one port dF
dt → Φ synthesis for n = 3 and

M = 11.

It should be noted again that this kind of synthesis requires the use of components having

negative nominal value, moreover it is not clear how to modify the network in order to produce

the analogue of the most general BC at the edge of the spatial domain.

Boundary condition

As we have observed previously the synthesis technique described in the previous subsections

has the advantage to be easily obtained from the algebraic manipulation of equation (2.1).

However on the reverse side of the coin we had put in evidence that it is not clear how to

modify the network in order to emulate the most general BC of the actual system. As known

from the PDE theory the BCs are part and parcel of the spectral properties of a differential

operator so their study is crucial in order to realize an incisive coupling between two systems.

In the following sub section we will show how this problem can be completely solved developing

a more sophisticated synthesis technique based on a variational approach.

33



2.3.6 A variational approach

In this section we will show how, using a variational approach, it is possible to associate to

the PDE (2.1) the consistent set of BCs. Let F (x, t) be a scalar field defined over the domain

x ∈ [0, L] and t ∈ R+, where the scalar x represents the space variable and it is measured in [m]
and scalar t represents the time variable and it is measured in [s]. In order to derive the PDE

and the consistent set of BC we will assume the potential energy U and the kinetic energy T

of the system to be both quadratic form defined as follows:

U =

Z L

0

1

2
K

µ
∂nF (x, t)

∂xn

¶2
dx (2.23)

T =

Z L

0

1

2
ρ

µ
∂F (x, t)

∂t

¶2
dx (2.24)

Assuming the dimensional unit of the scalar field F (x, t) to be [D] , consequently the unit of the

scalar K must be chosen to be [Kg][m]2n+1[s]−2 [D]−2 ; and similarly the unit of the scalar ρ

must be chosen to be[Kg][m] [D]−2 in order to make the unit of U and T to be [J ]. Once we have

defined the potential energy U and the kinetic energy T we can easily define the Lagrangian of

the problem L as:
L = U − T (2.25)

and the action between the two assumed instants of time t1 and t2 as:

A =
Z t2

t1

L dt (2.26)

The Hamilton principle stands that the evolution of a dynamic system from the instant of time

t1to the instant of time t2 is found imposing the stationariety of the action functional. The

requirement to be assumed for the instants of time t1 and t2 has the mathematical meaning of

setting:

δF (x, t1) = δF (x, t2) = 0 (2.27)

The needed stationary point can be obtained imposing to the first variation of the action (2.26)

to be zero. Substituting the (2.23) and (2.24) in the (2.25) and then the (2.25) in the (2.26) we
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obtain:

A =
Z t2

t1

ÃZ L

0

1

2
K

µ
∂nF (x, t)

∂xn

¶2
dx−

Z L

0

1

2
ρ

µ
∂F (x, t)

∂t

¶2
dx

!
dt (2.28)

Now evaluating the first variation of the (2.28), we obtain:

δA =
Z t2

t1

µZ L

0
K

µ
∂nF (x, t)

∂xn

¶
δ

µ
∂nF (x, t)

∂xn

¶
dx−

Z L

0
ρ

µ
∂F (x, t)

∂t

¶
δ

µ
∂F (x, t)

∂t

¶
dx

¶
dt = 0

(2.29)

Using the commutative property between the δ(.) and the ∂(.) operator we can write:

δA =
Z t2

t1

µZ L

0
K

µ
∂nF (x, t)

∂xn

¶
∂n

∂xn
( δF (x, t)) dx−

Z L

0
ρ

µ
∂F (x, t)

∂t

¶
∂

∂t
( δF (x, t))

¶
dt = 0

(2.30)

Now we need to integrate by part with respect to the space and the time variable x and t in

order to move the derivative from the variation of the scalar field F (x, t) to F (x, t) itself. We

obtain:

δA =
Z t2

t1

(
K

µ
∂nF (x, t)

∂xn

¶
δ

µ
∂n−1F (x, t)

∂xn−1

¶ ¯̄̄̄L
0

− ∂

∂x

µ
K

µ
∂nF (x, t)

∂xn

¶¶
δ

µ
∂n−2F (x, t)

∂xn−2

¶ ¯̄̄̄L
0

+ · · ·

(2.31)

· · ·− ∂n−1

∂xn−1

µ
K

µ
∂nF (x, t)

∂xn

¶¶
δF (x, t)

¯̄̄̄L
0

+ ρ

µ
∂F (x, t)

∂t

¶
δF (x, t)

¯̄̄̄t2
t1

+ · · · (2.32)

(2.33)

· · ·+
Z L

0

µ
(−1)n ∂n

∂xn

µ
K
∂nF (x, t)

∂xn

¶
+

∂

∂t

µ
ρ
∂F (x, t)

∂t

¶¶
δF (x, t)dx

¾
dt = 0

Using (2.27) in (2.32) and assuming the quantities K and ρ to be constants we can write the

following well posed differential problem:

(−1)nK∂2nF (x, t)

∂x2n
+ ρ

∂2F (x, t)

∂t2
= 0 (2.34)
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associated with the following boundary conditions (BCs) to be prescribed at the boundary

points x = 0 and x = L.

K
∂nF (x, t)

∂xn
= 0 or δ

µ
∂n−1F (x, t)

∂xn−1

¶
specified (2.35)

K
∂n+1F (x, t)

∂xn+1
= 0 or δ

µ
∂n−2F (x, t)

∂xn−2

¶
specified (2.36)

...

K
∂2n−1F (x, t)

∂x2n−1
= 0 or δF (x, t) specified (2.37)

As expected, as a result of the variational procedure, we get back the PDE governing a gener-

alized ondulatory phenomena moreover this procedure gives us the set of consistant BC asso-

ciated to this PDE. Now we will put in evidence some properties of the found BC. Looking at

eq. (2.35)...(2.37) it can be noted that the product of the two quantities of each line has the

dimension [Kg] [m]2 [s]−2 = [J ] . Moreover those equations shows that the two quantities that

appear in each line can not be assigned simultaneously. We will call the BC on the right of

each line of (2.35)...(2.37) the complementar to the BC on the left of the same line. As usual,

we will call the quantities on the right of each line related to space derivative of order [0..n− 1]
essential boundary conditions (EBC), and the quantities on the left of each line related to the

space derivatives of order [n..2n− 1] natural boundary conditions (NBC). As we noted before
each EBC is complementar to a NBC. Finally we want to note that in order to have a well

posed differential problem, we need to assign n BCs for each edge of the spatial domain (i.e.

x = 0 and x = L). Moreover, as we said before, each of those BCs must be chosen between an

EBC and its complementar NBC, so there exist 2n possible choices to constraint each edge of

the spacial domain.

2.3.7 one node to n-port mapping

As we show previously in order to have a well posed problem we need to impose n BCs for

each edge of the spacial domain, moreover we know that each of those n constraints must be

chosen between an EBC and the complementar NBC. As we have noted before, the product

of the physical dimension of an EBC with the dimension of the complementar NBC has the
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physical dimension of an energy [J ]. Furthermore, as we said before, a port is defined by means

of an extensive and an intensive quantity with the constraint that the product of those two

quantities has the physical dimension of a power [W ]. As well known the power and the energy

are related by a time derivative; this fact suggest the idea of mapping each pair of complementar

BC on a pair defining a port. More precisely we should map one node of the mesh on n ports

of the analogue circuit by imposing to each of the n pairs (dEBC/dt,NBC) to be associated

to a pair (Π,Φ) or with a pair (Φ,Π) defining each port, see fig.(2-24). So that once we have

chosen to describe the time derivative of the EBC by means of an intensive (extensive) quantity

automatically we are describing the complementar NBC with an extensive (intensive) quantity.

In such a way, it will be possible to realize each of the n BCs simply avoiding at each port the

intensive or the extensive quantity. More precisely we will close a port on a generalized short

circuit in order to satisfy the homogeneous EBC or we will close the same port on a generalized

open circuit in order to satisfy the homogeneous NBC (or vice versa). The further requirement

we need to accomplish in order to design the analogue circuit of the differential operator under

exam is the imposition to the port involving the EBC related to the scalar field F (x, t) itself

(i.e. without any space derivative) to be governed by the finite difference equation (2.1).
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Figure 2-24: One node to n ports mapping.
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This idea will allow us to produce a synthesis technique where it is clear how to realize the

required BCs. We will refer to this technique as one node to n port mapping. The derivation of

a lumped circuit, analogue of the differential operator described by eq.(2.34) and (2.35)..(2.37),

can be done in a couple of ways. We can describe the time derivative of the scalar field F (x, t)

either by mean of an intensive variable Π or by mean of a extensive variable Φ. As we said

before, depending on the nature of the scalar quantity F (x, t), only one of those analogies will

be coherent with the definition of port.

dF
dt → Π analogy Being the scalar field F (x, t) (without any spacial derivative) associated to

an EBC, once we have chosen to describe its time derivative by means of an extensive quantity

we automatically choose to express all the EBCs by mean of an intensive quantity. Moreover

we have shown that each EBC is complementar to a NBC; so once we have associated the

quantity Πj to the EBCj automatically we are describing the complementar NBCj with the

quantity Φj . At this point, in order to develop a synthesis technique, we need to go into more

depth in the study of the mathematical structure of the set of the consistent BC. It must be

noted that each BC is related to the previous one by mean of a spacial derivative. Moreover,

as we note before, the EBCs are related with the spatial derivatives between the order 0 and

the order n − 1 while the NBC are related to the spatial derivatives between the order n and
the order 2n − 1. Furthermore it should be noted that the derivative of order 2n appears in
the differential equation. Those considerations highlight that the basic operation we need to

perform is the first discrete spatial derivative. There exists four different ways for evaluating

a sample of the first discrete spatial derivative. Those four ways are related on the nature of

the input and the output of the circuit, in fact both of them can be represented by means of

either an extensive quantity or an intensive one. Those four circuits are described below. The

circuit able to realize a Π to Π first order spacial derivative can be easily realized using a ΠCΠS

having gain 1/∆ where ∆ is the step between to adjacent nodes of the mesh. This circuit is

shown in fig.(2-25).
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Figure 2-25: Basic circuit able to performe a Π to Π first order spatial discrete derivative.

The circuit able to realize a Π to Φ first order spatial derivative can be easily realized using a

bipolar (α1, β1) element as shown in fig.(2-26)

( )bas
R

Π−Π=Φ − 11
1 βα

aΠ bΠ
1α 1β
R

( )bas
R

Π−Π=Φ − 11
1 βα

aΠ bΠ
1α 1β
R

Figure 2-26: Basic circuit able to performe a Π to Φ first order spatial discrete derivative.

It should be noted that this circuit can realize a time derivative of order α1 − β1 too. The

circuit able to realize a Φ to Φ first order derivative can be easily realized using a ΦCΦS of

gain 1/∆ as shown in fig.(2-27).

Δ
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Δ
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Δ
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Δ
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Figure 2-27: Basic circuit able to performe a Φ to Φ first order spatial discrete derivative.

The circuit able to realize a Φ to Π first order derivative can be easily realized using a bipolar
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constitutive (α2, β2) element as shown in fig.(2-28). It should be noted that this circuit can

realize a time derivative of order β2 − α2 too. Now we need to properly connect those basic

circuits in order to reproduce the mathematical structure of the BC. Consequently we need to

use a suitable number of Π to Π circuit in order to evaluate the first n−1 derivatives (associated
with the EBCs), a Π to Φ circuit to perform the step involving the transition between the last

EBC (associated with the derivative of order n − 1) and the first NBC (associated with the

derivative of order n) and a proper number of Φ to Φ circuits to realize the derivatives between

the order n and 2n− 1 (associated with the NBCs),

R

( )baRs Φ−Φ=Π − 22 αβ

aΦ bΦ
2α
2βR

( )baRs Φ−Φ=Π − 22 αβ

aΦ bΦ
2α
2β

Figure 2-28: Basic circuit able to performe a Φ to Π first order spatial discrete derivative.

finally we need to use Φ to Π circuit in order to obtain the derivative of order 2n appearing in

the finite difference equation. As we note previously we need 2n+1 samples in order to obtain

a discrete derivative of order 2n, so we need to connect at least 2n+1 nodes. Connecting those

nodes using 2n pieces of the Π to Π circuit shown in fig.(2-25) we can produce 2n samples of

the the first spacial derivative. Connecting those 2n samples by means of another 2n− 1 pieces
of the Π to Π circuit we can produce 2n− 1 samples of the second spatial derivative. We can
iterate this procedure n − 1 times obtaining n + 2 samples of the (n − 1)th spatial derivative.
This derivative is associated with the last EBC. A circuit able to realize these features is shown

in fig. (2-29). It should be noted that this circuit realizes only the compatibility relation; in
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fact the elaboration is done only on the intensive quantities, while a constitutive relation, as we

mention before, requires a relation between a Π and a Φ quantity. The n+2 samples obtained

as an output of the previous circuital scheme must be elaborated in order to produce n + 1

samples of the nth spatial discrete derivative of the scalar field F (x, t) that is associated to an

NBC so it must be described by means of a Φ quantity. This means that we need to design a

suitable connection of n pieces of the base circuit shown in fig. (2-26). Having R = ∆/K This

connection is shown in fig. (2-30).
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Figure 2-29: Circuit scheme able to emulate the n EBC as Π quantities on the n lines.
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Figure 2-30: Circuit scheme able to evaluate the n+ 1 Φ samples of the spacial derivative of

order n starting from n+ 2 Π samples of the derivative of order n− 1.

Now we need to realize all the NBCs. We can properly connect n pieces of the basic circuit

shown in fig.(2-27) to elaborate n+1 samples of the nth spatial derivative in order to obtain n

samples of the (n+1)th spatial derivative. As we have done before we can iterate this procedure

n− 1 times obtaining 2 samples of the (2n− 1)th discrete spatial derivative. A circuital scheme
able to realizes the needed elaboration is shown in fig.(2-31). It can be noted that this circuit

realize only the balancing relations.
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Figure 2-31 Circuit scheme able to emulate the n NBC as Φ quantities on the n lines.
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Finally we need to use the two Φ quantities flowing through the two output ports of the

previous circuit as the input of the circuit shown in fig.(2-28) having R = 1
ρ∆ in order to realize

the differential equation 2.1. Now we need to connect the circuital schemes shown in fig.(2-

29), (2-30), (2-31) and (2-28) in such a way that each of the n terminal (each line of the fig.

(2-29) and (2-31)) is associated to the Π quantity of the jth derivative and the Φ quantity of

the (2n− j − 1)thderivative. The complete scheme of connection is shown in fig. (2-30). The
analogue circuit needed can be obtained repeating the circuital structure shown in fig. (2-32)

for each node of the finite mesh, taking care of avoiding element doubling. Comparing the finite

difference equation shown in the bottom of the figure with eq.2.1 it can be easily realized that

the double time derivative can be obtained by setting −α1 + α2 + β1 − β2 = 2. There exist a

lot of different choices, for example we can choose α1 = 0, α2 = 1, β1 = 1 and β2 = 0.
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Once we have drawn the complete scheme it is easy to recognize that it can be obtained by

the cascade connection of a basic 2n+ 1 terminals network. Such a basic network is shown in

fig.(2-33) where the index k and k+1 refers to a couple of generic adjacent nodes of the mesh.

Finally it can be noted that each of the n− 1 rows of the basic module is constitute by a given
connection of one ΠCΠS and a ΦCΦS. As shown in fig. (2-34) this scheme is equivalent to a

generalized lever.

−
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1
Δ
1

−
+
−
+

1
Δ
1

1
Δ
1

Figure 2-34: Circuital equivalence between a given connection of a ΠCΠS and a ΦCΦS and

an inverting generalized lever.

Using this circuital equivalence it is possible to redraw the basic module using generalized

levers and (α, β) elements only i.e. avoiding the use of generalized controlled source. As we

did before in fig. (2-35) we put in evidence the opportunity to represent the non symmetric

basic section as the cascade of two symmetric subsections. These subnetworks have a specific

physical meaning, in fact one of them takes in count all the constitutive relations and we will

refer to it as constitutive subnetwork; the other one groups all the generalized levers and realize

all the geometric and the balancing equations and we will refer to it as geometric/balancing

subnetwork. As we will show in the next section the subsection notion will be crucial in order

to guarantee the symmetry of the whole circuit. It should be noted that this circuit assumes

the form of the network porposed in [Andreaus et al. (2004)] and [Porfiri et al. (2004)] when

n = 2, α2 = 1, β2 = 0, α1 = 0, β1 = 1 and (Π,Φ) = (V, I).
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Figure 2-35: Basic section for the one node to n ports ∂F
∂t → Π synthesis with generalized

lever and (α, β) elements. The generalized levers are collected in the rigth subsection that

takes in count for geometrical and balancing equation, while the (α, β) elements are collected

in the left subsection that takes in count for the constitutive equation.
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dF
dt → Φ analogy An alternative choice is to describe the time derivative of the scalar field

F by means of a extensive quantity. Being the scalar F (x, t) associated to an EBC all the

remaining EBCs must be described by means of an extensive quantity. Proceeding as we have

done in the previous subsection, we can realize all the EBC by the circuital scheme shown in

fig.(2-36).
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Figure 2-36: Circuit scheme able to emulate the n EBC as Φ quantities on the n lines.

The constitutive relation between the (n−1)th discrete spatial derivative and the nth derivative
can be realized by means of the scheme shown in fig.(2-37) having R = K

∆
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oreder n starting from n+ 2 Φ samples of the derivative of order n− 1.

Now we can realize the n NBC elaborating the n + 1 samples of the nth spatial derivative by

means of a proper connection of the basic circuit shown in Fig. (2-38)
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Figure 2-38: Circuit scheme able to emulate the n NBC as Φ quantities on the n lines.
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Figure 2-39: Complete scheme for the one node to n ports ∂F
∂t → Φ synthesis.
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Finally we need to impose the discrete differential problem (2.1) relating the spatial derivative

of order 2nth to the spatial derivative of order zero (i.e. the function it self). The latter step

can be realized by means of the circuit shown in Fig. (2-23) having R = ∆ρ. In order to obtain

the final scheme we need to properly connect the circuits previously described. In particular

it is required that the Φ quantity describing the mth derivative will be associated with the Π

quantity describing the (2n−m− 1)thderivative. The complete scheme of connection is shown
in fig. (2-39). As we have done previously it is useful to extract a basic module of the complete

network. Using the circuital equivalence shown in fig. (2-33) we will derive the 2n port network

shown in fig. (2-40). It should be noted that, as he have done in the ∂F
∂t → Π analogy, it

is possible to split the 2n port network in the cascade connection of two different 2n port

networks. The first one takes in count the constitutive relations and the second one takes in

count the geometrical and the balancing relations. This subdivision will be useful in order to

make symmetric the analogue circuit of the differential operator over the whole spatial domain.

Finally it can be easily realized that for the one node to n port mapping the ∂F
∂t → Π analogy

and the ∂F
∂t → Φ analogy brings to the same circuital scheme, except that the first one has

an unbelanced representation while the second one has a balanced one. The only important

difference is that while in the first case the differential problem is described by means of the

Π quantity between the terminals of the (α2, β2) element, in the second case it is described by

means of the Φ quantities flowing through the (α1, β1) element. The latter property is true for

the one node to one port synthesis too, even if in that case the two circuits obtained for the

∂F
∂t → Π and the ∂F

∂t → Φ identification have different structures. Summarizing our observation
we can say that in both the synthesis techniques we described the samples of the samples of the

scalar field F (x, t) are related with the Π of the Φ quantities associated with the constitutive

(α, β) elements. This property must be kept in mind, in fact it will be fundamental when in

the next section in order to derive an external characterization of the circuit we will choose the

access point of the circuit. Before completing this section we want to note that the BC based

synthesis technique used in this section in order to derive a circuit analogue to a generalized

ondulatory phenomena can be used as a general synthesis technique of differential operators.
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Figure 2-40: Basic section for the one node to n ports ∂F
∂t → Φ synthesis with generalized

lever and (α, β) elements. The generalized levers are collected in the right subsection that

takes in count for geomentrical and balancing equation, while the (α, β) elements are collected

in the left subsection that takes in count for the constitutive equation.
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2.4 External characterization of the network

2.4.1 Introduction

The purpose of this subsection is to derive an external characterization of the network described

in the previous subsection. In order to produce a blackbox characterization of the system, first

of all, we need to choose the access point of the circuit. We want to describe how the samples

of the scalar field F (x, t), associated to each node, interact among them. In order to realize this

description of the system we need to choose the port associated to each node as the access point

to the system. More precisely we will use the sample of the scalar filed F as external independent

variable and the complementary quantity as dependent ones. This procedure will result in an

admittance characterization for the dF
dt → Π analogy and in an impedance characterization for

the dF
dt → Φ analogy. As we noted before, for the dF

dt → Π synthesis, the samples of the scalar
field F (x, t) are described by means of the Π quantities between the terminal of the (α2, β2)

elements, consequently, in this case, we should take the access ports of the system shunted with

those elements. Similarly for the dF
dt → Φ synthesis, the samples of the scalar field F (x, t) are

described by means of the Φ quantities flowing through the (α1, β1) elements, consequently, in

this case, we should take the access ports of the system in series with those elements. In the

following of this section we will derive those characterization for both the one node to n ports

and the one node to one port synthesis technique. Moreover, we will show how this procedure

will be used in order to derive a methodology to design the most general BC also for the one

node to one port synthesis.

2.4.2 One node to n ports mapping

∂F
∂t → Π analogy

As we noted in the previous subsection the complete network can be obtained by the cascade

connection of a number of basic networks shown in fig. (2-33) large as the number of nodes

in the mesh (i.e. M) shown in fig. (2-1). This connection produces a not symmetric system.

In order to obtain a symmetric system we need to connect it in cascade with a constitutive

subnetwork on the right edge or a geometrical/balancioum subnetwork on the left. Once the

system has been symmetrized we must apply the termination network taking in count for the

53



BCs As we said previously this synthesis technique map one node of the mesh in n ports of

the analogue circuit in such a way that the pair (Π,Φ) of ith port is associated with pair

(EBC,NBC) of the ith line of eq.2.37 (starting from the bottom), so that the homogeneous

EBC at the ith port can be simply imposed by interconnecting it on a generalized short circuit

while the complementar NBC can be imposed by closing the same port on a generalized open

circuit. In order to derive a general formulation of the problem (i.e. valid for each termination

condition) we will close the ith port (starting from the top) on a (α1, β1) element of nominal

admittance R = γi
K

∆2i−1 . This choice allows us to collect the term K
∆2n−1 from the admittance

matrix that we are evaluating6. This procedure can appear an unuseful complication by the

way it allows us to produce a general tractation, in fact we can obtain the short cut and the

open circuit conditions simply taking the limit for γi → 0 or γi →∞ respectively for i ∈ 1..n.
The basic section described above is shown in fig. (2-41 a) for the unbalanced case and in fig.

(2-41 b) for the balanced one.
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Figure 2-41: Termination section for the one node to n ports synthesis.

At this point we need to choose between the two possible symmetrization techniques. As we

6This fact can be easily understand if we think that each port of the circuit is connected to previous one by
means of a generalized lever having 1/∆ as trasformation ratio. It can be easily realized that the impedance at
the first port of a generalized lever is related to the impedance at the second port by means of the quatity 1/∆2.
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have said in the introduction we want to access the system shunting the ports to the (α2, β2)

elements or taking them in series with the (α1, β1) elements, so if we connect a constitutive

subnetwork and the termination section on the right of the whole circuit we will fall into an

unsolvable circuit. In fact for same BC we should obtain a port shunted with a generalized short

circuit or in series with a generalized open circuit. This observation suggests to symmetrize

the circuit by connecting a geometric/balancioum subnetwork on the left of the system. The

circuit described above is shown in fig. (2-42) for n = 6. As shown in the same figure the

generic element of admittance matrix yij can be evaluated connecting a generalized Π source

of nominal value Πi at the ith port and a generalized short circuit to all the remaining ports.

Then we need to measure the Φj quantity flowing through the jth port. The admittance yij

will be given by the ratio:

yij =
Πi
Φj

¯̄̄̄
Φk=0
k=1..M
k 6=j

(2.38)
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Figure 2-42: Circuital scheme for the external characterization for the one node to n port

F → Π synthesis.
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Now we want to investigate the mathematical structure of the admittance matrix we will obtain

using the procedure described above. First of all we need to understand how the access port

interact among them and with the termination section taking in count for the BC. Taking in

mind the synthesis procedure we had described in the previous section we can draw the scheme

shown in fig.(2-43). In this scheme we will show the node of the mesh and the analogue n nodes

associated to each of them.

n

n+2

2n+1

n

nn

n

n+2

2n+1

n

nn

Figure 2-43: Scheme of interaction among the nodes of the mesh.

From the calculation scheme we can note that 2n+1 sample are used to evaluate n+2 sample

of the spatial derivative of order n − 1 than those samples are used to impose the discrete
differential problem in the node in the middle. This means that each node interacts with the

previous and subsequent n nodes. Consequently each row (column) of the admittance matrix

will have only 2n + 1 non trivial elements. Moreover only the first n nodes and the last n

node of the mesh interacts with the boundary termination network. This property can be

expressed saying that the termination network will effect the n×n submatrices at the corner of

the admittance matrix (i.e. the termination condition doesn’t effect any element out of those

matrices). So evaluating the whole matrix Y for the general case we will obtain a matrix having
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the structure shown in fig. (2-44).
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Figure 2-44: Matematical structure of the admittance matrix.

This matrix is symmetric with respect of both the first and the second principal diagonals.

Consequently the n × n corner submatrices are symmetric too therefore they have (n + 1)n2

independent elements take in count the BCs. In particular the elements belonging to those

submatrices will be rational function for which the numerator and the denominator will be
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polynomial functions of the variables γi for i = 1..n. Additionally it is quite easy to realize that

the 2n + 1 elements on each of the rows and on each columns of the gray band are related to

the coefficients of the difference equation 2.1.

∂F
∂t → Φ analogy

As we note in the previous subsection the complete network can be obtained by the cascade

connection of a number of 2n + 1 terminals network shown in fig. (2-40) large as the number

of node in the mesh (i.e. M) shown in fig. (2-1).In order to obtain a symmetric system we

need to cascade connect a geometric/balancioum subnetwork on the left edge before applying

the termination network taking in count for the BCs. As we said previously, this synthesis

technique maps one node in n port in such a way that the pair (Φ,Π) of ith port has the

meaning of the pair (EBC,NBC) of the ith line of eq.2.37 (starting from the bottom), so that

the EBC at the ith port can be simply imposed by closing it on a generalized open circuit while

the complementar NBC can be imposed through a generalized short circuit. In order to derive

a general formulation of the problem (i.e. valid for each termination condition) we will connect

the ith port relative to the bound node to the reference node trough an (α1, β1) element of

nominal impedance γi
K

∆2i−1 in such a way we can obtain the short cut and the open circuit

condition simply taking the limit for γi → 0 or γi →∞ for i ∈ 1..n. As we said before in this case
the port should be taken in series with the (α1, β1) elements of the constitutive subnetworks.

The circuit described above is shown in fig. (2-43) for n = 6. As shown in the same figure the

generic element of admittance matrix zij can be evaluated connecting a generalized Φ source of

nominal value Φi at the ith port and a generalized open circuit to all the remaining ports. Then

we need to measure the Πj quantity between the terminal of the jth port. The impedance zij

will be given by the ratio:

zij =
Φi
Πj

¯̄̄̄
Πk=0
k=1..M
k 6=j

(2.39)
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Figure 2-45: Circuital scheme for the external characterization for the one node to n port

F → Φ synthesis.

Evaluating the whole matrix Z for the general case we will obtain a matrix having exactly the

same structure shown in fig.(2-43).

2.4.3 One node to one port mapping

∂F
∂t → Π analogy As we have done in the previous subsection we can derive the admittance

matrix of the circuit whose basic section is shown in fig. (2-19) for n = 6 by considering the

access ports of the network shunted with the (α2, β2) elements. The generic element of this

matrix can be obtained using the definition given by eq. (2.38). Applying this definition we will

find a matrix having the structure shown in fig. (2-44) except that for the corner submatrices

taking in count for the BCs. As we have remarked previously while we have shown a clear

procedure to impose BCs for the one node to n port mapping we have not a clear methodology

to impose BCs for the one node to one port mapping. This obstacle can be overpassed by

requiring to the admittance matrices of the two circuits to be equal. We have shown in fig.

(2-44) that the BCs effect only the symmetric n × n corner submatrices, moreover we have

remarked that those matrices have (n+1)n2 independent elements. So in order to make the two

admittance matrices equal we need to modify the elements belonging to the corner submatrices.

We need to design a termination subnetwork having (n+1)n2 degrees of freedom (i.e. (n+1)n2
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independent components) able to alter the values of the elements belonging to the corner (n× n)

submatrices. This problem can be solved by means of the termination section shown in fig. (2-

46),.where the (n + 1)n2 independent components are chosen to be proportional to
∆2n−1
K by

means of the parameter Γij i = 1..n and j = i..n. This choice allows us to collect the term

K
∆2n−1 from the admittance matrix that we are evaluating.
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Figure 2-46: Termination section for the one node to one port dF
dt → Π synthesis.

The procedure described above gives us a methodology to evaluate all the correct BCs for the

one node to one port mapping, in fact equating the elements of the two matrices one to one

we obtain a well posed linear system of (n + 1)n2 equations in (n + 1)
n
2 unknowns. Now we

need to properly connect the termination section shown in fig. (2-46) to the network shown in

fig. (2-19) for n = 6. Since we are describing the circuit by means of its admittance matrix

shunting the n ports of the termination network to the first and the last n port of the circuit,

we will add the (n× n) admittance matrix of the termination section to the (n× n) corner

submatrices of the circuit without BC. This connection scheme is shown in fig. (2-47). In

particular the unknowns will be associated with the nominal values of the elements (i.e. Γij

i = 1..n and j = i..n) while the note terms of the system will be the (n+1)n2 rational function

of the parameters γi for i = 1..n introduced in the previous subsection.
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Figure 2-47: Connection of the termination sections for the one node to one port dF
dt → Π

sysnthesis.

This means that solving the linear system we will find the most general values for the needed

components as a function of the parameter γi for i = 1..n. The actual values for each particular

BC will be obtained by taking the limit for γi → 0 or γi → ∞ for i = 1..n. Some examples of

this procedure will be given in the following chapter.

∂F
∂t → Φ analogy As we have done in the previous subsection we can derive the impedance

matrix of the circuit whose basic section is shown in fig. (2-21) by considering the access ports

of the network in series with the (α1, β1) elements. The generic element of this matrix can be

obtained using the definition given by eq. (2.39). Applying this definition we will find a matrix

having the structure shown in fig. (2-44) except that for the corner submatrices taking in count

for the BCs. As we have remarked previously while we have shown a clear procedure to impose

BCs for the one node to n port mapping we have not a clear methodology to impose BCs for the

one node to one port mapping. This obstacle can be overpassed by requiring to the impedance

matrices of the two circuits to be equal. We have shown in fig. (2-44) that the BCs effect only

the symmetric n× n corner submatrices, moreover we have remarked that those matrices have

(n+1)n2 independent elements. So in order to make the two impedance matrices equal we need
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to modify the elements belonging to the corner submatrices. We need to design a termination

subnetwork having (n + 1)n2 degrees of freedom (i.e. (n + 1)n2 independent components) able

to alter the values of the elements belonging to the corner (n× n) submatrices. This problem

can be solved by means of the dual network of the termination section shown in fig. (2-46).

This network can not be drawn for the general case so that we will show in fig (2-48) the circuit

obtained for n = 3.
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Figure 2-48: Termination section for the one node to one port dF
dt → Φ synthesis when n = 3.

Now we need to properly connect the termination section shown in fig. (2-48) to the network

whose basic section is shown in fig. (2-21). Since we are describing the circuit by means of its

impedance matrix connecting the n ports of the termination network in series with the first

and the last n port of the circuit, we will add the (n× n) impedance matrix of the termination

section to the (n× n) corner submatrices of the circuit without BC. This connection scheme is

shown in fig. (2-49).
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Figure 2-49: Connection of the termination sections for the one node to one port dF
dt → Φ

sysnthesis.

The procedure described above gives us a methodology to evaluate all the correct BCs for the

one node to one port mapping, in fact equating the elements of the two matrices one to one we

obtain a well posed linear system of (n + 1)n2 equations in (n + 1)
n
2 unknowns. In particular

the unknowns will be associated with the nominal values of the elements (i.e. Γij i = 1..n

and j = i..n) while the note terms of the system will be the (n+ 1)n2 rational function of the

parameters γi for i = 1..n introduced in the previous subsection. This means that solving the

linear system we will find the most general values for the needed components as a function of

the parameter γi for i = 1..n. The actual values for each particular BC will be obtained by

taking the limit for γi → 0 or γi → ∞ for i = 1..n. Some examples of this procedure will be

given in the following chapter.
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Chapter 3

External characterization of a

transducer

3.1 Introduction

In this section we will introduce a circuital model of a transducers. More precisely we will model

a transducer as a device able to "read" a given signal having an assigned physical dimension

from an access point of a given system and to "write" a new signal proportional to the read one

but having different physical dimensions. In this chapter we will introduce different circuital

models for a transducers. Each one of this models will include more characteristics than the

previous one. First of all we will give a model for a unidirectional transducer as two ports

hybrid network capable to modify the physical nature of a signal. Then we will describe a

bidirectional ideal transducer as a two ports network able to realize a transduction in both the

directions simultaneously. Then in order to produce a more realistic model of real device we

will include in the model of an ideal bidirectional transducer some parasitic elements taking in

count for the physical properties of the real device. Then we will dedicate some comment on the

possibility to neglect the asymmetries of the real transducers. In chapter 5 we will show how this

symmetrization can be fruitfully used in order to realize a coupled system. Finally we will give

some example of transducer starting from the equations describing the physical phenomenon of

interest and deriving from them the circuital model for the correspondent transducer
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3.2 Unidirectional ideal transducers

3.2.1 Introduction

As we have sad in the introduction a unidirectional transducer is a two port network able to

perform a conversion from the pair (Π1,Φ1) having a given physical dimension to the pair

(Π2,Φ2) having,in general, different physical dimensions. It must be noted that the read quan-

tity could be Π1 or the Φ1 but not both of them. Similarly the written quantity could be Π2 or

the Φ2 but not both of them. The previous argumentation makes clear that it will be possible

to characterize a unidimensional transducer in four different ways.

3.2.2 Y-configuration

A Y unidirectional ideal transducer is a device able to read the quantity Π1 without producing

any side effect on the pair (Π1,Φ1) characterizing the port where the device is connected and

to produce at the port 2 a signal Φ2 proportional with the signal Π1. In fig. (3-1) is shown the

equivalent circuit for this device.

1Π
1Φ

1Φ

2Φ

2Π

2Φ
1Π

1Φ

1Φ

2Φ

2Π

2Φ
Figure 3-1: Unidirectional ideal transducer. Y-configuration.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2 = y21Π1

Φ1 = 0

Π2 not specified

(3.1)
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3.2.3 Z-configuration

A Z unidirectional ideal transducer is a device able to read the quantity Π1 without producing

any side effect on the pair (Π1,Φ1) defining the port where the device is connected and to

produce at the port 2 a signal Π2 proportional with the signal Π1. In fig. (3-2) is shown the

equivalent circuit for this device.
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Figure 3-2: Unidirectional ideal transducer. Z-configuration.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π2 = z21Φ1

Π1 = 0

Φ2 not specified

(3.2)

3.2.4 G-configuration

A G unidirectional ideal transducer is a device able to read the quantity Φ1 without producing

any side effect on the pair (Π1,Φ1) characterizing the port where the device is connected and

to produce at the port 2 a signal Π2 proportional with the signal Φ1. In fig. (3-3) is shown the

equivalent circuit for this device.
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Figure 3-3: Unidirectional ideal transducer. G-configuration.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π2 = g21Π1

Φ1 = 0

Φ2 not specified

(3.3)

3.2.5 H-Configuration

A H unidirectional ideal transducer is a device able to read the quantity Φ1 without producing

any modification at the pair (Π1,Φ1) defining the port where the device is connected and to

produce at the port 2 a signal Φ2 proportional with the signal Φ1. In fig. (3-4) is shown the

equivalent circuit for this device.
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Figure 3-4: Unidirectional ideal transducer. H-configuration.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2 = h21Φ1

Π1 = 0

Π2 not specified

(3.4)

3.3 Bidirectional ideal transducers

3.3.1 Introduction

As we have said in the introduction a bidirectional ideal transducer is a two ports network able

to perform a bidirectional communication between the two ports of the system. More precisely

we can say that this device produces at a port a signal proportional to another signal read at

the other port. Simultaneously it writes at the latter port the complementar signal proportional
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to the signal complementar to the one written at the first port. Again we have four different

representations for this device.

3.3.2 Y-configuration

A Y bidirectional ideal transducer is a device able to read the quantity Π1 at the first port and

to produce at the second port a signal Φ2 proportional with the signal Π1. Simultaneously it

is able to read the quantity Π2 at the second port and to produce at the first port a signal Φ1

proportional with the signal Π2. In fig. (3-5 a) is shown the equivalent circuit for this device

while in fig. (3-5 b) is shown its circuital symbol.
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Figure 3-5: Bidirectional ideal transducer. Y -configuration. a) Complete circuital model. b)

Circuital symbol.

⎧⎨⎩ Φ1 = y12Π2

Φ2 = y21Π1
(3.5)

3.3.3 Z-configuration

A Z bidirectional ideal transducer is a device able to read the quantity Φ1 at the first port and

to produce at the second port a signal Π2 proportional with the signal Φ1. Simultaneously it

is able to read the quantity Π2 at the second port and to produce at the first port a signal Φ1
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proportional with the signal Φ2. In fig. (3-6 a) is shown the equivalent circuit for this device

while in fig. (3-6 b) is shown its circuital symbol.
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Figure 3-6: Bidirectional ideal transducer. Z-configuration. a) Complete circuital model. b)

Circuital symbol.

⎧⎨⎩ Π1 = z12Φ2

Π2 = z21Φ1
(3.6)

3.3.4 G-configuration

A G bidirectional ideal transducer is a device able to read the quantity Π1 at the first port and

to produce at the second port a signal Π2 proportional with the signal Π1. Simultaneously it

is able to read the quantity Φ2 at the second port and to produce at the first port a signal Φ1

proportional with the signal Φ2. In fig. (3-7 a) is shown the equivalent circuit for this device

while in fig. (3-7 b) is shown its circuital symbol.
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Figure 3-7: Bidirectional ideal transducer. G-configuration. a) Complete circuital model. b)

Circuital symbol.
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⎧⎨⎩ Φ1 = g12Φ2

Π2 = g21Π1
(3.7)

3.3.5 H-Configuration

A H bidirectional ideal transducer is a device able to read the quantity Φ1 at the first port and

to produce at the second port a signal Φ2 proportional with the signal Φ1.Simultaneously it is

able to read the quantity Π2 at the second port and to produce at the first port a signal Π1

proportional with the signal Π2. In fig. (3-8 a) is shown the equivalent circuit for this device

while in fig. (3-8 b) is shown its circuital symbol.
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Figure 3-8: Bidirectional ideal transducer. H-configuration. a) Complete circuital model. b)

Circuital symbol.

⎧⎨⎩ Π1 = h12Π2

Φ2 = h21Φ1
(3.8)

3.4 Bidirectional real transducers

3.4.1 Introduction

As we have said in the introduction a bidirectional real transducer is a two port network able to

provide a more detailed circuital model of a real component. It can be obtained by connecting

some parasitic element to both the ports of an ideal bidirectional transducer taking into account
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for a bipolar linear constitutive relation i.e. an (α, β) element. Again we have four different

representation for this device.

3.4.2 Y-configuration
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Figure 3-9: Bidirectional real transducer. Y -configuration.

⎧⎨⎩ Φ1 = y11Π1 + y12Π2

Φ2 = y21Π1 + y22Π2
(3.9)

3.4.3 Z-configuration
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Figure 3-10: Bidirectional real transducer. Z-configuration.

⎧⎨⎩ Π1 = z11Φ1 + z12Φ2

Π2 = z21Φ1 + z22Φ2
(3.10)
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3.4.4 G-configuration

(Π
1 ,Φ

1 ) (Π
2,Φ

2)

[G]α11

β11

α22 β22

2Π

2Φ

2Φ

1Π

1Φ

1Φ

(Π
1 ,Φ

1 ) (Π
2,Φ

2)

[G]α11

β11

α11

β11

α22 β22α22 β22

2Π

2Φ2Φ

2Φ2Φ

1Π

1Φ1Φ

1Φ1Φ
Figure 3-11: Bidirectional real transducer. G-configuration.

⎧⎨⎩ Φ1 = g11Π1 + g12Φ2

Π2 = g21Π1 + g22Φ2
(3.11)

3.4.5 H-Configuration
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Figure 3-12: Bidirectional real transducer. H-configuration.

⎧⎨⎩ Π1 = h11Φ1 + h12Π2

Φ2 = h21Φ1 + h22Π2
(3.12)
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3.5 Constitutive symmetry of real transducers

3.5.1 Introduction

In this subsection we will introduce a special kind of symmetry. This symmetry is needed to

describe how the parasite element connected at the first port of a real transducer depends on the

Laplace variable compared with the one connected at the second port. This notion is based on

the idea that a real transducer is symmetrizable when the ratio between the parasite element at

the first port and the one at the second port of a real transducer is independent of the Laplace

variable s. When this happens it is possible to connect to the first or the second port an extra

parasite element of equal constitutive nature in order to make the ratio equal to one. As usual,

it is possible to put in evidence four different kinds of constitutive symmetrization.

3.5.2 Y-symmetrization

Using the idea described above the Y -symmetrization can be obtained by shunting an extra

(α11, β11) element of value R11 to the first port and an extra (α22, β22) element of value R22 to

the second port, as shown in fig. (3-13).
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Figure 3-13: Circuital scheme for the Y -symmetrization of a real bidirectional transducer.

The Y -symmetrization procedure requires the fulfillment of the following constraint equations:

α11 − β11 − α22 + β22 = 0 (3.13)

1

R11
+

1

R11
=

1

R22
+

1

R22
(3.14)
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It is quite obvious that there exist many ways to satisfy eq. (3.14) from an analytical point

of view, even ifr in the practice it could be hard to modify the physical properties of the

transducer. By the way we will show in the fifth chapter how the notion of symmetrization of

a real transducer can be fruitfully used.

3.5.3 Z-symmetrization

Similarly the Z-symmetrization can be obtained by connecting an extra (α11, β11) element of

value R11 in series to the first port and an extra (α22, β22) element of value R22 in series to the

second port, as shown in fig. (3-14)

(Π
1 ,Φ

1 ) (Π
2,Φ

2)
[Z]

α22 β22

2Π

2Φ

2Φ

1Π

1Φ

1Φ

α11 β11α11 β11 α22 β22

(Π
1 ,Φ

1 ) (Π
2,Φ

2)
[Z]

α22 β22α22 β22

2Π

2Φ2Φ

2Φ2Φ

1Π

1Φ1Φ

1Φ1Φ

α11 β11α11 β11α11 β11α11 β11 α22 β22α22 β22

Figure 3-14: Circuital scheme for the Z-symmetrization of a real bidirectional transducer.

The Z-symmetrization procedure requires the fulfillment of the following constraint equations:

α11 − β11 − α22 + β22 = 0 (3.15)

R11 +R11 = R22 +R22 (3.16)

It is quite obvious that there exist many ways to satisfy eq. (3.16) for an analytical point of view,

even if in the practice it could be hard to modify the physical properties of the transducer. By

the way we will show in the fifth chapter how the notion of symmetrization of a real transducer

can be fruitfully used.

3.5.4 G-symmetrization

Similarly the G-symmetrization can be obtained by shunting an extra (α11, β11) element of

value R11 to the first port and by connecting an extra (α22, β22) element of value R22 in series
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to the second port, as shown in fig. (3-15).
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Figure 3-15: Circuital scheme for the G-symmetrization of a real bidirectional transducer..

The G-symmetrization procedure requires the fulfillment of the following constraint equations

α11 − β11 + α22 − β22 = 0 (3.17)

1

R11
+

1

R11
= R22 +R22 (3.18)

It is quite obvious that there exist many ways to satisfy eq. (3.18) for an analytical point of view,

even if in the practice it could be hard to modify the physical properties of the transducer. By

the way we will show in the fifth chapter how the notion of symmetrization of a real transducer

can be fruitfully used.

3.5.5 H-symmetrization

Using the idea described above the H-symmetrization can be obtained by connecting an extra

(α11, β11) element of value R11 in series to the first port and by shunting an extra (α22, β22)

element of value R22 to the second port, as shown in fig. (3-16).
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Figure 3-16: Circuital scheme for the H-symmetrization of a real bidirectional transducer.
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The H-symmetrization procedure requires the fulfillment of the following constraint equations

α11 − β11 + α22 − β22 = 0 (3.19)

R11 +R11 =
1

R22
+

1

R22
(3.20)

It is quite obvious that there exist many ways to satisfy eq. (3.20) from an analytical point

of view, even if in the practice it could be very to modify the physical properties of the trans-

ducer by the way we will show in the fifth chapter how the notion of symmetrization of a real

transducer can be fruitfully used.

3.6 Examples

3.6.1 A pinned rigid link

In the previous chapter we briefly discuss the constitutive relation of a two-ports system, there

we gave the constitutive equations for a generalized lever. In table (2-1) we gave same example

of generalized lever when its two ports are characterized by the same pair, here we give a new

interpretation for a generalized lever when its two ports are characterized by different pairs.

For example when the pair (Π1,Φ1) = (v, F )1 and the quantity n has the physical dimension

of a length [m] the second port will be characterized by the pair (Π2,Φ2) = (ω,M) and the

system will represent a rigid link pinned at one of its ends and free to slide on the other end.

This simple system is shown in fig. (3-17).

FM

F

FM

M

vω L
FM

F

FM

M

vω L

Figure 3-17: Mechanical model of a force moment transducer.

1A Π quntity must be associated with an incremental quantity, for exampe the velocity v1 of a point with
respect to the velocity v2 of a different point. So it should be correctly indicated with the notation ∆v = v1−v2.
By the way in those notes we will omit the symbol ∆.
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When we apply a force on the end free to slide, we obtain a couple proportional to the applied

force on the pinned end, while the force needed for the equilibrium is supplied by the ground

holding the pin which forms an unbalanced port with the slider. Similarly, if we apply a couple

at the pinned end, we produce a force at the end free to slide, while the couple need for the

balance is supplied by the ground holding the slider which forms an unbalanced port with

the pin. Moreover the angular velocity of the rigid link around the pin is proportional to the

translation velocity of the slider. The linearized constitutive equation for the physical device

described above are given by: ⎧⎨⎩ v = −Lω
M = LF

(3.21)

Based on the consideration exposed in the previous sections of this chapter we will give a new

interpretation of this element. In fact looking at equation (3.8) it is quite easy to realize that it

behaves exactly as an ideal bidirectional H transducer, so we will represent it with the circuital

symbol shown in fig. (3-18). In the figure is put in evidence the unbalanced nature of the

ports. It should be noted that as we say above, from a theoretical point of view, we need to

use two different reference grounds one for the angle and one for the position. In the following

subsection we will show how it is possible to design an unbalanced force to couple transducers.
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Figure 3-18: Force couple transducers, H model.

The ideality of the transducers achieve from the ideality of the pivot and of the slider. If those

constraints will be not ideal we should include some parasitic element taking in count for those

non idealities.
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3.6.2 Balanced force to couple transducers

In this subsection we will design a balanced force to couple transducers. It can be obtained by

the scheme shown in fig. (3-19) where two different unbalanced transducers are connected by

means of two rigid links, one holding the two pivot and the other holding the two slider. Those

links transmit the force and the couple respectively, realizing a series connection.
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Figure 3-19: Belanced force couple transducer.

It should be noted that this system is able to transduce a balanced force into a balanced couple.

The two rigid links are needed in order to "conduct" the force and the couple, by the way they

are always balanced and don’t need to be connected to the ground in order to work correctly.

The argumentation produced above make clear why the mechanical system shown in fig. (3-19)

behaves as an ideal bidirectional H transducer. the circuital symbol of this device is shown in

fig. (3-20).
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Figure 3-20: Belanced force couple transducer. H model.
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3.6.3 Piezoelectric transducers

In this sub section we will introduce a huge class of transducers which functioning is based on the

piezoelectric property of some materials. A complete description of a piezoelectric transducer

should include an introduction to the linear piezoelectricity. By the way, the aim of this work

is to give a circuital interpretation of the physical devices so that we will restrict our tractation

to furnish the pointwise constitutive equation for a piezoelectric crystal without deriving them.

A quite complete tractation of the phenomena can be found in [IEEE std. 246]. As usual, those

equations can be given in four different forms listed below:

⎧⎨⎩ Tij = cEijkl − ekijEk

Di = eiklSkl +
S
ijEk

(3.22)

⎧⎨⎩ Sij = sEijkl + dkijEk

Di = diklTkl +
T
ijEk

(3.23)

⎧⎨⎩ Sij = sDijklTkl + gkijDk

Ei = −giklTkl + βTikDk

(3.24)

⎧⎨⎩ Tij = cDijklSkl − hkijDk

Ei = −hiklskl + βSikDk

(3.25)

Where T and S are respectively the second order stress and strain tensors, cD (sD) and cE (sE)

are fourth order elastic stiffness (compliance) tensor measured keeping respectively the electric

displacement D and electric field E constant. Finally e, d, g, h represent different forms of the

third order piezoelectricity tensor. Those expression of the constitutive equations, although

exact, are employed in approximations which are valid under certain limiting circumstances.

The utility of each pair of constitutive equations depends on the fact that certain variables on

the right hand side are close to zero under some circumstances. Consequently, the proper set to

use in a given problem is dependent on the actual mechanical and electrical configuration. In the

case of interest described in fig. (3-21), where is shown a thin lamina of piezoelectric material

having length lp (along x1) width wp(along x2).and thickness hp (along x3). For this system we

can assume that the stress tensor and the electric field vector assumes the following form (for
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more details see [Crawley et al. (1987)],[Hagood et al. (1991)],[Hanagud et al. (1992)]):

T =

⎛⎜⎜⎜⎝
T11 0 T13

0 0 0

T31 0 0

⎞⎟⎟⎟⎠ , E =

⎛⎜⎜⎜⎝
0

0

E3

⎞⎟⎟⎟⎠ (3.26)
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Figure 3-21: A thin lamina of a piezoelectric crystal having a metallization on the top and the

bottom faces.

Once the constitutive equations (3.23) are given using the Voigth notation and the hypothesis

(3.26) are assumed we obtain the following one dimensional constitutive equation:

⎧⎨⎩ S11 = sE11T11 − d31E3

D3 = −d31T11 + T
33E3

(3.27)

In the following subsection we will describe how the pointwise constitutive equation (3.27) can

be used in order to design same actuators able to transduce extensional, bending and torsional

vibrations.

Extensional piezo transducers

Referring to fig. (3-21) we can obtain an extensional transducer by applying metallization of

negligible thickness on the top and the bottom bases of the piezoelectric lamina forming an

electrical port. Similarly we can use the left and the right faces (along x1) of the crystal as the

two access points of a mechanical port as shown in fig. (3.22).
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Figure 3-22: Extensional piezoelectric transducer. Physical device.

Based on the assumption (3.26) and on the geometry of the device we can derive the following

relation:

S11 =
x1
lp
, T11 =

F

wphp
, E3 =

V

hp
and D3 =

Q

lpwp
(3.28)

where, with abuse of notation, x1 is the elongation along x1 and F is the force applied to

the mechanical port., while V and Q are the voltage and the charge at the electrical port.

Substituting eq. (3.28) in eq.(3.27) and choosing F and Q as dependent variables we obtain

the following integral constitutive equations:

⎧⎨⎩ F =
hpwp
lpsE11

x1 +
d31wp
sE11

V

Q = −d31wp
sE11

x1 +
lwp
hp

³
sE11

T
33−d231
sE11

´
V

(3.29)

Taking the Laplace transform of the equations above they can be expressed as a function of the

pairs (F, v) and (I, V ) by: ⎧⎨⎩ F = y11(s)v + y12(s)V

I = y21(s)v + y22(s)V
(3.30)

where v is the elongation velocity along x1 and I is the electrical current. Moreover we have:

y11(s) =
1

s

hpwp

lpsE11
, y12(s) =

d31wp

sE11
, y21(s) = −d31wp

sE11
and y22(s) = s

lpwp

hp

µ
sE11

T
33 − d231
sE11

¶
(3.31)
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Comparing equation (3.30) with eq. (3.9) it easy to understand that an extensional real trans-

ducer can be interpreted as a real bidirectional transducer having as parasitic effect an (0, 1)

element at the mechanical port (i.e. an extensional spring) and a (1, 0) element at the electrical

port (i.e. a capacitor), as shown in fig. (3-23).
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Figure 3-23: Equivalent circuit for an extensional piezoelectric transducer.

Bending piezo transducers

A bending transducer is a system able to transduce the pair (∆ω,M) in the pair (∆V, I) (and

vice versa). It can be obtained by means of the physical device shown in fig.(3-24).
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Figure 3-24: Bending piezoelectric transducers. Physical model.
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Looking at figure (3-24) it can be realized that this transducer can be built by connecting

an extensional piezoelectric transducer between the two sliders of a balanced force to couple

transducers. In the figure is shown the polariry of the piezoelectric lamina. This quantity

is related to the sign of the transduction coefficient. This connection forces the ends of the

piezoelectric lamina to move together with the slider, moreover the force is transmitted from

the slider to the piezo actuator. The situation described above can be interpreted as the chain

connection between a balanced force to couple transducers and an extensional piezoelectric

transducer as shown in fig. (3-25).
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Figure 3-25: Bending piezoelectric transducers as the cascade of basic elemet.

Applying the classical technique of the circuit theory we can derive an external characterization

of the circuit shown in fig. (3-25). For example the Y model of the circuit can be expressed by

means of the following relations⎧⎨⎩ M = y11(s)∆ω + y12(s)∆V

I = y21(s)∆ω + y22(s)∆V
(3.32a)

where:

y11(s) =
1

s

h2hpwp

4lpsE11
, y12(s) =

hd31wp

2sE11
, y21(s) = −hd31wp

2sE11
(3.33)

and y22(s) = s
lpwp

hp

µ
sE11

T
33 − d231
sE11

¶

Comparing equation (3.32a) with eq. (3.9) it is quite easy to understand that a bending

transducers is a bidirectional real transducer having as parasitic component an (0, 1) element

on the mechanical port (i.e. an bending spring) and an (1, 0) element at the electrical port (i.e.
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a capacitance). The circuital symbol for this device is shown in fig. (3-26).
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Figure 3-26: Equivalent circuit for a bending piezoelectric transducer. Y model.

The system described in this section performs as we expect, by the way its functioning requires

the presence of the rigid link holding the pivots needed in order to transmit the force from one

side to the other of the system. In some application it could be needed to replace this link with

a deforming body. In this situation two pivots become an access port for the pair (F, v) as well

as for the pair (M,ω) . Sometimes this extra transduction is not desired and must be considered

as a side effect. In the following section we will show how to realize a pure bending transducer.

Pure bending piezoelectric actuator

A system able to produce a pure bending transduction can be obtained by means of the scheme

shown in fig. (3-27)
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Figure 3-27: Pure bending piezoelectric transducer. Physical model.
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This system can be obtained by connecting two bending transducers taking care of keeping the

two piezoelectric transducers with an inverse polarity. The two actuators must be connected

imposing to the rigid link of the first transducer to rotate together with the ones of the second

transducers. This mechanical connection can be obtained by shunting the mechanical port of

the two transducers. This connection guarantees that the rigid link holding the two pivot is

stress free and consequently it can be removed. Simultaneously, it can be easily realized that

by shunting the electrical ports of the two transducers we obtain a connection coherent with

the polarization of the piezoelectric. The situation described above can be interpreted as the

shunt between two bending piezoelectric transducers as shown in fig. (3-28).
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Figure 3-28: Pure bending transducers as the cascade of basic elements.

.The equivalent circuit of the whole system is shown in fig. (3-26) while the parameters

y11, y12, y21 and y22 defining the circuit can be obtained by doubling the values given in (3.33).

Torsional piezo transducers

As a last example we will describe a torsional piezoelectric transducer. It can be obtained by

means of the physical device shown in fig. (3-29).
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Figure 3-29: Torsional piezoelectric transducer. Physical model.

It is easy to realize that a torsional piezoelectric transducers can be obtained by referring to

the ground the mechanical port of the pure bending transducer. Consequently its equivalent

circuit can be obtained by referring the angular velocity ω (characterizing the mechanical port)

to ground. As shown in fig. (3-30).
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Figure 3-30: Equivalet circuit for a torsional piezoelectric transducer. Y model.

It should be noted that, from a theorical point of view, in this case we should refer to the symbol

M as the twisting moment instead of bending moment and we should interpret the parasitic

element on the mechanical port as a torsion spring instead of a bending spring. By the way,

this is exclusively a theorical clarification.
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Chapter 4

Derivation of some applications.

4.1 Introduction

In this chapter we will apply the theory developed in the previous chapters to some cases of

interest. First of all we will derive the needed circuit including the termination subnetwork

taking in count for the most general BC for the cases n = 0 n = 1 and n = 2 and for all the

possible kind of synthesis proposed. This general derivation should remark that the circuital

scheme obtained and the nominal values of the components are still independent from the

application. The only thing that changes from an application to the other is the physical

meaning of the quantity characterizing the ports of the circuits and the interpretation of the

components. Obviously a similar analysis can be performed for larger values of n.

4.2 Derivation of the zero order networks.

The equation governing the evolution of a discrete zero order ondulatory phenomena can be

obtained by choosing n = 0 in eq. (2.1) that will assume the following form:

KF
(0)
k (t) + (−1)0ρd

2Fk(t)

dt2
= 0 (4.1)

When n = 0 doesn’t exist any interaction between the node of the mesh, consequently doesn’t

exist any special requirement (i.e. BC) for the termination node of the spatial domain. This

means that in this case we can simply use the one node to one port mapping without lack of
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generality. The circuit obtained for the one node to one port synthesis are been derived in the

second chapter. The circuit obtained for the dF
dt → Π synthesis is shown in fig. (2-16) while the

one obtained for the dF
dt → Φ synthesis is shown in fig. (2-20). In fig (4-1) we will show those

two synthesis when the time derivative are realized using (1, 0) and (0, 1) elements.

ρ=
R
1

K
R

=1 0
1

1
0

kk sK Π−=Π −2

ρ

ρ=R KR =kΦ0
1

1
0

kk sK Φ−=Φ −2

ρ

a) b)

ρ=
R
1

K
R

=1 0
1

1
0

kk sK Π−=Π −2

ρ

ρ=
R
1

K
R

=1 0
1

1
0

kk sK Π−=Π −2

ρ

ρ=R KR =kΦ0
1

1
0

kk sK Φ−=Φ −2

ρ

ρ=R KR =kΦ0
1

1
0

kk sK Φ−=Φ −2

ρ

a) b)
Figure 4-1: One node to one port synthesis for n = 0. a) dF

dt → Π b) dF
dt → Φ.

In the following subsection we will give some examples of zero order ondulatory phenomena

(i.e. harmonic oscillators).

4.3 Some example of zero order networks

4.3.1 Mass-spring oscillator.

The Mass-spring oscillator can be derived by the general zero order theory by the following

interpretation of the general parameter:

General descriptor Actual descriptor Physical meaning

F (x, t) u(x, t) displacement

K k stiffness

ρ m mass

Table 4-1
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Over this condition the equation 4.1 becomes:

kuk(t) +m
d2uk(t)

dt2
= 0 (4.2)

The physical system can be represented by means of a pointwise mass m joined to the

ground by means of an extensional spring k, as shown in fig. (4-2).

ρΔk
m

v
ρΔk

m
v

Figure 4-2: Mass-Spring hoscillator.

dF
dt → Π synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general zero order circuit shown in fig. (4-1). As reported in

table 4-1 the scalar field F (x, t) is associated with the displacement u(x, t) so that the intensive

quantity Πk of the kth node will be associated with the velocity vk. Consequently the comple-

mentar extensive quantity will be associated with the force Tk. Based on those argumentations

using table 2-1 it is possible to specify the general circuit shown in fig. (4-1 a) for the case of

interest as shown in fig 4-3.

m
R

=1k
R

=1

kk vs
m
kv 2−−=

m
R

=1k
R

=1

kk vs
m
kv 2−−=

Figure 4-3: Equivalent circuit of a mass.spring hoscillator using the one node to one port

dF
dt → Π synthesis.
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dF
dt → Φ synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general zero order circuit shown in fig. (4-1). As reported

in table 4-1 the scalar field F (x, t) is associated with the displacement u(x, t) so that the

extensive quantity Φk of the kth node will be associated with the velocity vk. Consequently

the complementar intensive quantity will be associated with the force Tk. Being the velocity vk

an intensive representing it with an extensive quantity we will obtain a not coherent synthesis

where the nominal value of the mass is associated with the stiffness of a spring and viceversa.

Based on those argumentations using table 2-1 it is possible to specify the general circuit shown

in fig. (4-1 b) for the case of interest as shown in fig 4-4.

kR =mR =

kk vs
m
kv 2−−=

kv kR =mR =

kk vs
m
kv 2−−=

kv

Figure 4-4: Equivalent circuit of a mass.spring hoscillator using the one node to one port

dF
dt → Φ synthesis.

4.3.2 Torsional pendulum.

The Torsional pendulum can be derived by the general zero order theory by the following

interpretation of the general parameter:

90



General descriptor Actual descriptor Physical meaning

F (x, t) u(x, t) angular displacement

K kT torsional stiffness

ρ J rotational inertia

Table 4-2

Over this condition the equation 4.1 becomes:

kT θk(t) +m
d2θk(t)

dt2
= 0 (4.3)

The physical system can be represented by means of a disk having a rotational inertia equal

to J joined to the ceiling by means of a wire of negligible mass having a rotational stiffness

equal to kT , as shown in fig. (4-5).

θ

kT

J

θ

kT

J
Figure 4-5: Torsional pendulum.
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dF
dt → Π synthesis

In this section we will give an actual meaning to the components and the physical quantity gov-

erning the evolution of the general zero order circuit shown in fig. (4-1). As reported in table

4-2 the scalar field F (x, t) is associated with the angular displacement θ(x, t) so that the inten-

sive quantity Πk of the kth node will be associated with the angular velocity ωk.Consequently

the complementar extensive quantity will be associated with the torque Mk. Based on those

argumentations using table 2-1, it is possible to specify the general circuit shown in fig. (4-1 a)

for the case of interest as shown in fig 4-6.

Tk
R

=1

k
T

k s
J
k ωω 2−−=

J
R

=1
Tk

R
=1

k
T

k s
J
k ωω 2−−=

J
R

=1

Figure 4-6: Equivalent circuit of a torsional pendulum using the one node to one port dF
dt → Π

synthesis.

dF
dt → Φ synthesis

In this section we will give an actual meaning to the components and the physical quantity gov-

erning the evolution of the general zero order circuit shown in fig. (4-1). As reported in table

4-1 the scalar field F (x, t) is associated with the angular displacement θ(x, t) so that the exten-

sive quantity Φk of the kth node will be associated with the angular velocity ωk.Consequently

the complementar intensive quantity will be associated with the torque Mk. Being the angular

velocity ωk an intensive representing it with an extensive quantity we will obtain a not coher-
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ent synthesis where the nominal value of the rotational inertia is associated with the rotational

stiffness of a spring and viceversa. Based on those argumentations using table 2-1, it is possible

to specify the general circuit shown in fig. (4-1 b) for the case of interest as shown in fig 4-7.

k
T

k s
J
k ωω 2−−=

TkR =kωJR =

k
T

k s
J
k ωω 2−−=

TkR =kωJR =
TkR =kωJR =

Figure 4-7: Equivalent circuit of a torsional pendulum using the one node to one port dF
dt → Π

synthesis.

4.4 Derivation of the second order networks.

The equation governing the evolution of a discrete second order ondulatory phenomena can be

obtained by choosing n = 1 in eq. (2.1) that will assume the following form:

1X
i=−1

(−1)i+1
µ

2

i+ 1

¶
Fk+i(t) + (−1)1K

ρ
∆2

∂2Fk(t)

∂t2
= 0 (4.4)

that can be rewritten in extended form as follows:

Fk−1(t)− 2Fk(t) + Fk+1(t)− K

ρ
∆2

∂2Fk(t)

∂t2
= 0 (4.5)

The previous equation puts in evidence that when n = 1 there exists an interaction between the

kth node of the mesh and the previous and the subsequent node, consequently the left (right)

termination network taking in count for the BC will interact with the first (last) node. This

means that in this case it will be needed to evaluate all the possible termination conditions

using the one node to n ports network. Then, based on this synthesis, we will evaluate the
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right termination section for all the possible BC for both the dF
dt → Π and dF

dt → Φ synthesis.
As we said before we have in general 2n different types of BC, so in this case we will have the

four (21) different types of BC listed in the following table:

NBC1=0EBC1=0

type1 type2

NBC1=0EBC1=0

type1 type2

Table 4-3: All possible types of homogeneous BCs for the second order network.

4.4.1 One node to n ports synthesis

dF
dt → Π synthesis

As we have said in the second chapter the complete circuit for the one node to n ports mapping

can be obtained by the cascade connection of how many basic sections how many are the nodes

of the mesh; then we need to symmetrize the system including the symmetrization subnetwork,

finally we need to terminate the left and the right side of the whole circuit with two termination

sections shown in fig (2-41 a) The complete network obtained is shown in fig. (4-8).
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Figure 4-8: One node to n ports dF
dt → Π synthesis complete network for a second order

system.

Now we want to derive an external characterization of the circuit shown in fig.(4-8) In that
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figure we have explicitly shown the access port of the system. The admittance matrix Y of this

circuit evaluated from those ports is given below:

Y = Y1 +Y2 (4.6)

Y1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.7)

Y2 =
K

∆s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 −1 0 0 0 0 0 · · · 0

−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0

0 0 −1 2 −1 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 −1 2 −1 0 0

0 · · · 0 0 0 −1 2 −1 0

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 ψMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.8)

where

ψ11 = ψMM = 1 + γ1

It can be noted that the matrix Y2 takes in count the (0, 1)elements while the matrix Y1 takes

in count the (1, 0)elements. As we said previously the 1× 1 corner submatrices takes in count
for the termination subnetworks emulating the most general BC. The terms ψ11 and ψMM can

be specified in order to obtain all the needed BC. The two (2n) possible types of homogeneous

BC are listed in the following table:
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type1 type2

γ1 (∞)1 0

ψ11 2 1

Table 4-4

In the previous table we wrote that the type1 condition is obtained by taking the limit for

γ1 → 1 instead of γ1 → ∞ as expected from the theory we described in the second chapter.

Now we try to explain this fact. When γ1 goes to infinity the component of the termination

section becomes a generalized short circuit and so the (1, 0)element shunted with the first port

is connected between two copies of the reference node, and consequently can not be used as

a port of the system. This situation requires the definition of a reduced matrix having one

port less. In this situation shown in fig.(4-10) the elements in the dashed line don’t give any

contribution to the circuit and can be removed. The resultant circuit is equivalent to the old

one if we consider the termination component equivalent to one of the (0, 1)element of the

constitutive subnetwork (i.e. γ1 → 1).
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Figure 4-9: One node to n ports dF
dt → Π synthesis type1 BC for a second order system.

dF
dt → Φ synthesis

As we have said in the second chapter the complete circuit for the one node to n ports mapping

can be obtained by the cascade connection of how many basic sections how many are the nodes
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of the mesh; then we need to symmetrize the system including the symmetrization subnetwork,

finally we need to terminate the left and the right side of the whole circuit with two termination

sections shown in fig. (2-41b). The complete network obtained is shown in fig. (4-10).
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Figure 4-10: One node to n ports dF
dt → Φ synthesis complete network for a second order

system.

Now we want to derive an external characterization of the circuit shown in fig.(4-10). In that

figure we have explicitly shown the access port of the system. The impedance matrix Z of this

circuit evaluated from those ports is given below:

Z = Z1 + Z2 (4.9)

Z1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.10)

97



Z2 =
K

∆s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ11 −1 0 0 0 0 0 · · · 0

−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0

0 0 −1 2 −1 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 −1 2 −1 0 0

0 · · · 0 0 0 −1 2 −1 0

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 ξMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.11)

where

ξ11 = ξMM = 1 + γ1

It can be noted that the matrix Z2 takes in count the (1, 0)elements while the matrix Z1 takes

in count the (0, 1)elements. As we said previously the 1× 1 corner submatrices takes in count
for the termination subnetwork emulating the most general BC. The terms ξ11 can be specified

in order to obtain all the needed BC. The two (21) possible types of homogeneous BC are listed

in the following table:

type1 type2

γ1 (∞)1 0

ξ11 2 1

Table 4-5

In the previous table we wrote that the type1 condition is obtained by taking the limit for

γ1 → 1 instead of for γ1 →∞ as expected from the theory we described in the second chapter.

Now we try to explain this fact. When γ1 goes to infinity the component of the termination

section becomes a generalized open circuit and so the (0, 1)element connected in series with the

first port is flowed by a zero Φ quantity, and consequently can not be used as a port of the
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system. This situation requires the definition of a reduced matrix having one port less. In this

situation shown in fig.(4-11) the elements in the dashed line don’t give any contribution to the

circuit and can be removed. The resultant circuit is equivalent to the old one if we consider

the termination component equivalent to one of the element (1, 0)element of the constitutive

subnetwork (i.e. γ1 → 1).
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Figure 4-11: One node to n ports dF
dt → Φ synthesis type 1 BC for a second order system.

4.4.2 One node to one port synthesis

dF
dt → Π synthesis

As we have said in the second chapter the needed circuit can be obtained by means of the

circuit shown in fig. (2-18). Fixing n = 1 and satisfying the constraint α2 − β2 − α1 + β1 = 2

by means of the following positions α2 = 1, β2 = 0, α1 = 0 and β1 = 1 we obtain the circuit

shown in fig. (4-12) where the subnetworks inside the gray triangle (see fig. (2-18)) are been

replaced with suitable version of the termination sections shown in fig. (2-46).
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Figure 4-12: One node to one ports dF
dt → Π synthesis complete network for a second order

system.
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Now we can use the ports shown in fig. (4-12) in order to derive the Y matrix of the system. As

expected we will find a matrix having the structure shown in fig. (2-44). The corner submatrices

taking in count for the BC will depend on the parameter Γ11.

Y = Y1 +Y2 (4.12)

Y1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.13)

Y2 =
K

∆s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ11 −1 0 0 0 0 0 · · · 0

−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0

0 0 −1 2 −1 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 −1 2 −1 0 0

0 · · · 0 0 0 −1 2 −1 0

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 ΨMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.14)

where

Ψ11 = ΨMM = 1 + Γ11

As we explain in the second chapter we can evaluate the BCs for the one node to one port

mapping by equating the Ψij obtained in this synthesis technique with the ψij obtained for

the one node to n port mapping. This procedure brings to the following linear system of one
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((1/2)(1 + 1) = 1) equation in one unknown

1 + Γ11 = 1 + γ1 (4.15)

Solving this system for Γ11we obtain:

Γ11 = γ1 (4.16)

From the table above we are able to evaluate the value of all possible termination conditions.

We summarize those results in the following table:

type1 type2

γ1 (∞)1 0

Γ11 2 1

Table 4-6

dF
dt → Φ synthesis

Fixing n = 1 and satisfying the constraint α2 − β2 − α1 + β1 = 2 by means of the following

positions α2 = 1, β2 = 0, α1 = 0 and β1 = 1 we obtain the circuit shown in fig. (4-13).
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Figure 4-13: One node to one port dF
dt → Φ synthesis complete network for a second order

system.
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Now we can use the ports shown in fig. (4-13) in order to derive the Z matrix of the system. As

expected we will find a matrix having the structure shown in fig. (2-44). The corner submatrices

taking in count for the BC will depend on the parameter Γ11.

Z = Z1 + Z2 (4.17)

Z1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.18)

Z2 =
K

∆s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 −1 0 0 0 0 0 · · · 0

−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0

0 0 −1 2 −1 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 −1 2 −1 0 0

0 · · · 0 0 0 −1 2 −1 0

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 ΞMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.19)

where

Ξ11 = ΞMM = 1 + Γ11

As we explain in the second chapter we can evaluate the BC for the one node to one port

mapping by equating the Ξij obtained in this synthesis technique with the ζij obtained for

the one node to n port mapping. This procedure brings to the following linear system of one
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((n/2)(n+ 1) = 1) equation in one unknown

1 + Γ11 = 1 + γ1 (4.20)

Solving this system for Γ11 we obtain:

Γ11 = γ1 (4.21)

From the table above we are able to evaluate the value of all possible termination condition.

We summarize those results in the following table:

type1 type2

γ1 (∞)1 0

Ξ11 2 1

Table 4-7

In the following subsection we will give an example of a second order ondulatory phenomena.

4.5 An example of second order network

4.5.1 Extensional vibration on a beam.

The beam theory can be derived by the general second order theory by the following interpre-

tation of the general parameters:

General descriptor Actual descriptor Physical meaning

F (x, t) w(x, t) horizontal displacement

K KN extensional stiffness

ρ λ mass per unit of length

Table 4-8

Over this condition the equation (4.5) becomes:
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−wk−1(t) + 2wk(t)− wk+1(t) +∆
2 λ

Kn

∂2w
k
(t)

∂t2
= 0 (4.22)

As well known by the Euler beam theory, the differential descriptor involved in the BC can be

physically interpreted as follows:

differential description short description Physical meaning

w(x, t) w(x, t) horizontal displacement

KN
∂w(x,t)
∂x N(x, t) axial force

(4.23)

Table 4-9 (4.24)

consequently the BC assumes the following form:

Nk(t) = 0 or δ (wk(t)) specified (4.25)

Looking at eq. (4.25) it can be easily understand that the two different types of BC assume

in this case a precise physical meaning. The graphical symbols and the terminology used for

those BC are listed in the following table.

Nk(t)=0wk(t)=0

clamp free

Nk(t)=0wk(t)=0

clamp free

Table 4-10
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4.5.2 One node to n port mapping

∂F
∂t → Π synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general second order circuit shown in fig. (4-8). As reported

in table (4-9) the scalar field F (x, t) is associated with the horizontal displacement w(x, t) so

that the intensive quantity Πk of the kth node will be associated with the horizontal velocity

k.Consequently the complementar extensive quantity will be associated with the axial force

Nk. Based on those argumentations using table (2-1), it is possible to specify the general circuit,

shown in fig. (4-8) for the case of interest as shown in fig (4-14 a). In fig. (4-14 b) it is shown

the mechanical model of the basic section.

Figure 4-14: One node to n ports dF
dt → Π synthesis axial vibration on a beam analogy. a)

equivalent circuit, b) mechanical model.

∂F
∂t → Φ synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general second order circuit shown in fig. (4-10). As reported

in table (4-9) the scalar field F (x, t) is associated with the horizontal displacement w(x, t) so

that the extensive quantity Φk of the kth node will be associated with the horizontal velocity

k.Consequently the complementar intensive quantity will be associated with the axial force

Nk. Based on those argumentations using table (2-1) it is possible to specify the general circuit,

shown in fig. (4-10) for the case of interest as shown in fig (4-15).
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Figure 4-15: One node to n ports dF
dt → Φ synthesis axial vibration on a beam analogy.

Equivalent circuit.

4.5.3 One node to one port mapping

∂F
∂t → Π synthesis

The general circuit derived in the previous section can be now specialized for the case of interest.

As reported in table (4-9) the scalar field F (x, t) is associated with the horizontal displacement

w(x, t) so that the intensive quantity Πk of the kth node will be associated with the horizontal

velocity k. Consequently the complementar extensive quantity will be associated with the

axial force Nk. It should be noted that for n = 1 the one node to n ports mapping coincide

with the one node to one port mapping. The circuit obtained is shown in fig. (4-16 a) while in

fig. (4-16 b) it is shown the equivalent mechanical system.
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Figure 4-16: One node to one port dF
dt → Π synthesis axial vibration on a beam analogy. a)

equivalent circuit, b) mechanical model.
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∂F
∂t → Φ synthesis

Similarly the general circuit derived in the previous section shown in fig. (4-13) can be special-

ized for the case of interest. As reported in table (4-9) the scalar field F (x, t) is associated with

the horizontal displacement w(x, t) so that the extensive quantity Φk of the kth node will be

associated with the horizontal velocity k. Consequently the complementar intensive quantity

will be associated with the axial force Nk.
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Figure 4-17: One node to one port dF
dt → Φ synthesis axial vibration on a beam analogy.

Equivalent circuit.

4.6 Derivation of the fourth order networks.

The equation governing the evolution of a discrete fourth order ondulatory phenomena can be

obtained by choosing n = 2 in eq. (2.1) that will assume the following form:

2X
i=−2

(−1)i+2
µ

4

i+ 2

¶
Fk+i(t) + (−1)2K

ρ
∆4

∂2Fk(t)

∂t2
= 0 (4.26)

that can be rewritten in extended form as follows:

Fk−2(t)− 4Fk−1(t) + 6Fk(t)− 4Fk+1(t) + Fk+2(t) +
K

ρ
∆4

∂2Fk(t)

∂t2
= 0 (4.27)
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The previous equation puts in evidence that, when n = 2, there exists an interaction between

the kth node of the mesh and the previous and the subsequent two nodes, consequently the left

(right) termination network taking in count for the BC will interact with the first (last) two

nodes. This means that in this case it will be needed to evaluate all the possible termination

conditions using the one node to n ports network. Then based on this synthesis we will evaluate

the right termination section for all the possible BC for both the dF
dt → Π and dF

dt → Φ synthesis.
As we said before we have in general 2n different types of BCs, so in this case we will have the

four (22) different types of BC listed in the following table:

NBC1=0

ΕΒC2=0

EBC1=0

NBC2=0

type1 type3

type2 type4

NBC1=0

ΕΒC2=0

EBC1=0

NBC2=0

type1 type3

type2 type4

Table 4-11

4.6.1 One node to n port synthesis

dF
dt → Π synthesis

When n ≥ 2 in the one node to n ports mapping we have different lines associated with signals
having different meaning. Consequently, in this case, it is interesting to show the basic section.

In fig. (4-18) it is shown the basic section connecting the node kth with the node (k + 1)th

including both the constitutive and the geometrical/balancioum subnetwork. Based on the

notions given in the previous chapter we can identify the generalized lever acting between two

lines characterized by the two different pairs (Π1,Φ1) and (Π2,Φ2) as an ideal bidirectional

transducer.
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Figure 4-18: One node to n ports dF
dt → Π synthesis. Basic section of a fourth order system.

As we have said in the second chapter the complete circuit can be obtained by the cascade

connection of a number of basic sections large as the number of the nodes of the mesh. Then

we need to symmetrize the system including the symmetrization subnetwork. Finally we need

to terminate the left and the right side of the whole circuit with two termination section shown

in fig (2-41 a). The complete network obtained is shown in fig. (4-19).
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Figure 4-19: One node to n ports dF
dt → Π synthesis. complete network of a fourth order

system.

Now we want to derive an external characterization of the circuit shown in fig.(4-19). In that

figure we have explicitly shown the access port of the system. The admittance matrix Y of this
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circuit evaluated from those ports is given below:

Y = Y1 +Y2 (4.28)

Y1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.29)

Y2 =
K

∆3s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 −ψ12 1 0 0 0 0 · · · 0

−ψ12 ψ22 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 ψ(M−1)(M−1) −ψ(M−1)M
0 · · · 0 0 0 0 1 −ψ(M−1)M ψMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.30)

where

ψ11 = ψMM =
1 + 2γ1 + 5γ2 + γ1γ2

1 + γ1 + γ2
(4.31)

ψ12 = ψ(M−1)M =
2 + 3γ1 + 4γ2
1 + γ1 + γ2

(4.32)

ψ22 = ψ(M−1)(M−1) =
1 + 6γ1 + 6γ2
1 + γ1 + γ2

(4.33)

It can be noted that the matrix Y2 takes in count the (0, 1)elements and the transducers

while the matrix Y1 takes in count the (1, 0)elements. As we said previously the 2 × 2 corner
submatrices take in count for the termination subnetwork emulating the most general BC. The

110



terms ψ11, ψ12, ψ22 can be specified in order to obtain all the needed BC. The four (2
2) possible

types of homogeneous BC are listed in the following table:

type1 type2 type3 type4

γ1 (∞)1 0 ∞ 0

γ2 ∞ ∞ 0 0

ψ11 6 5 2 1

ψ12 4 4 3 2

ψ22 6 6 6 5

Table 4-12

In the previous table we wrote that the type1 condition is obtained by taking the limit for

γ1 → 1 and γ2 →∞ instead of γ1 →∞ and γ2 →∞ as expected from the theory we described

in the previous section. Now we try to explain this fact. When both γ1 and γ2 go to infinity

both the components of the termination section become generalized short circuit and so the

(1, 0)element shunted with the first port is connected between two copies of the reference node,

and consequently can not be used as a port of the system. This situation requires the definition

of a reduced matrix having one port less. In this situation shown in fig.(4-10) the elements in

the dashed circle don’t give any contribution to the circuit and can be removed.
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Figure 4-20: One node to n ports dF
dt → Π synthesis. Type 1 BC of a fourth order system.
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The resultant circuit is equivalent to the old one if we consider the first termination component

equivalent to one of the element (0, 1)element of the constitutive subnetwork (i.e. γ1 → 1) and

the second one equal to a generalized short circuit (i.e. γ2 →∞).

dF
dt → Φ synthesis

As we have done before, first of all we will show in fig. (4-21) the basic section connect-

ing the node kth with the node (k + 1)th including both the constitutive and the geomet-

rical/balancioum subnetworks. Based on the notions given in the previous chapter we can

identify the generalized lever acting between two lines characterized by the two different pairs

(Π1,Φ1) and (Π2,Φ2) as an ideal bidirectional transducer.
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figure 4-21: One node to n ports dF
dt → Φ synthesis. Basic section of a fourth order system.

As we have said in the second chapter the complete circuit can be obtained by the cascade

connection of how many basic sections how many are the nodes of the mesh; then we need to

symmetrize the system including the symmetrization subnetwork; finally we need to terminate

the left and the right side of the whole circuit with two termination sections. The complete

network obtained is shown in fig. (4-22).
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Figure 4-22: One node to n ports dF
dt → Φ synthesis. Complete network of a fourth order

system.

Now we want to derive an external characterization of the circuit shown in fig.(4-22). In that

figure we have explicitly shown the access port of the system. The impedance matrix Z of this

circuit evaluated from those ports is given below:

Z = Z1 + Z2 (4.34)

Z1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.35)
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Z2 =
K

∆3s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ11 −ξ12 1 0 0 0 0 · · · 0

−ξ12 ξ22 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 ξ(M−1)(M−1) −ξ(M−1)M
0 · · · 0 0 0 0 1 −ξ(M−1)M ξMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.36)

where

ξ11 = ξMM =
1 + 2γ1 + 5γ2 + γ1γ2

1 + γ1 + γ2
(4.37)

ξ12 = ξ(M−1)M =
2 + 3γ1 + 4γ2
1 + γ1 + γ2

(4.38)

ξ22 = ξ(M−1)(M−1) =
1 + 6γ1 + 6γ2
1 + γ1 + γ2

(4.39)

It can be noted that the matrix Z2 take in count the (1, 0)elements and the transducers

while the matrix Z1 take in count the (0, 1)elements. As we said previously the 2 × 2 corner
submatrices take in count for the termination subnetwork emulating the most general BC. The

terms ξ11, ξ12, ξ22 can be specified in order to obtain all the needed BC. The four (2
2) possible

types of homogenous BC are listed in the following table:
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type1 type2 type3 type4

γ1 (∞)1 0 ∞ 0

γ2 ∞ ∞ 0 0

ξ11 6 5 2 1

ξ12 4 4 3 2

ξ22 6 6 6 5

Table 4-12

In the previous table we wrote that the type1 condition is obtained by taking the limit for

γ1 → 1 and γ2 → ∞ instead of γ1 → ∞ and γ2 → ∞ as expected from the theory we

described in the previous section. Now we try to explain this fact. When both γ1 and γ2 go to

infinity both the components of the termination section become generalized open circuit and

so the (0, 1)element connected in series with the first port is flowed by a zero Φ quantity, and

consequently can not be used as a port of the system. This situation requires the definition

of a reduced matrix having one port less. In this situation shown in fig.(4-23) the elements in

the dashed line don’t give any contribution to the circuit and can be removed. The resultant

circuit is equivalent to the old one if we consider the first termination component equivalent to

one of the element (1, 0)element of the constitutive subnetwork (i.e. γ1 → 1) and the second

one equal to a generalized open circuit (i.e. γ2 →∞).
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Figure 4-23: One node to n ports dF
dt → Φ synthesis. type 1 BC of a fourth order system.

4.6.2 One node to one port synthesis

dF
dt → Π synthesis

As we have said in the second chapter the needed circuit can be obtained by means of the

circuit shown in fig. (2-18). Fixing n = 2 and satisfying the constraint α2 − β2 − α1 + β1 = 2

by means of the following positions α2 = 1, β2 = 0, α1 = 0 and β1 = 1 we obtain the circuit

shown in fig. (4-24) where the subnetworks inside the gray triangle (see fig. (2-18)) are been

replaced with the termination sections.
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Figure 4-24: One node to one port dF
dt → Π synthesis. Complete network of a fourth order

system.
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Now we can use the ports shown in fig. (4-24) in order to derive the Y matrix of the system. As

expected we will find a matrix having the structure shown in fig. (2-44). The corner submatrices

taking in count for the BC will depend on the parameters Γ11,Γ12 and Γ22.

Y = Y1 +Y2 (4.40)

Y1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.41)

Y2 =
K

∆3s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ11 −Ψ12 1 0 0 0 0 · · · 0

−Ψ12 Ψ22 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 Ψ(M−1)(M−1) −Ψ(M−1)M
0 · · · 0 0 0 0 1 −Ψ(M−1)M ΨMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.42)

where

Ψ11 = ΨMM = 3 + Γ11 + Γ12 (4.43)

Ψ12 = Ψ(M−1)M = 4 + Γ12 (4.44)

Ψ22 = Ψ(M−1)(M−1) = 7 + Γ12 + Γ22 (4.45)

As we explain in the second chapter we can evaluate the BCs for the one node to one port
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mapping by equating the Ψij obtained in this synthesis technique with the ψij obtained for

the one node to n port mapping. This procedure brings to the following linear system of three

((2/2)(2 + 1) = 3) equations in three unknowns

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + Γ11 + Γ12 =
1 + 2γ1 + 5γ2 + γ1γ2

1 + γ1 + γ2

4 + Γ12 =
2 + 3γ1 + 4γ2
1 + γ1 + γ2

7 + Γ12 + Γ22 =
1 + 6γ1 + 6γ2
1 + γ1 + γ2

(4.46)

Solving this system for Γ11, Γ12 and Γ22 we obtain:

Γ11 =
2γ2 + γ1γ2
1 + γ1 + γ2

Γ12 = − 2 + γ1
1 + γ1 + γ2

Γ22 = − γ2
1 + γ1 + γ2

(4.47)

From the table above we are able to evaluate the value of all possible termination conditions.

We summarize those results in the following table:

type1 type2 type3 type4

γ1 1 0 ∞ 0

γ2 ∞ ∞ 0 0

Γ11 3 2 0 0

Γ12 0 0 −1 −2
Γ22 −1 −1 0 0

Table 4-13
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dF
dt → Φ synthesis

Fixing n = 2 and satisfying the constraint α2 − β2 − α1 + β1 = 2 by means of the following

positions α2 = 1, β2 = 0, α1 = 0 and β1 = 1 we obtain the circuit shown in fig. (4-25) where the

subnetworks inside the gray triangle (see fig. (2-18)) are been replaced with the termination

sections.
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Figure 4-25: One node to one port dF
dt → Φ synthesis. complete network of a fourth order

system.

Now we can use the ports shown in fig. (4-24) in order to derive the Z matrix of the system. As

expected we will find a matrix having the structure shown in fig. (2-44). The corner submatrices

taking in count for the BC will depend on the parameters Γ11,Γ12 and Γ22.

Z = Z1 + Z2 (4.48)
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Z1 = ∆ρs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∆ρsI (4.49)

Z2 =
K

∆3s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 −Ξ12 1 0 0 0 0 · · · 0

−Ξ12 Ξ22 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 Ξ(M−1)(M−1) −Ξ(M−1)M
0 · · · 0 0 0 0 1 −Ξ(M−1)M ΨMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.50)

where

Ξ11 = ΞMM = 3 + Γ11 + Γ12 (4.51)

Ξ12 = Ξ(M−1)M = 4 + Γ12 (4.52)

Ξ22 = Ξ(M−1)(M−1) = 7 + Γ12 + Γ22 (4.53)

As we have explained in the second chapter we can evaluate the BCs for the one node to one

port mapping by equating the Ξij obtained in this synthesis technique with the ζij obtained for

the one node to n port mapping. This procedure brings to the following linear system of three
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((n/2)(n+ 1) = 3) equations in three unknowns

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + Γ11 + Γ12 =
1 + 2γ1 + 5γ2 + γ1γ2

1 + γ1 + γ2

4 + Γ12 =
2 + 3γ1 + 4γ2
1 + γ1 + γ2

7 + Γ12 + Γ22 =
1 + 6γ1 + 6γ2
1 + γ1 + γ2

(4.54)

Solving this system for Γ11, Γ12 and Γ22 we obtain:

Γ11 =
2γ2 + γ1γ2
1 + γ1 + γ2

Γ12 = − 2 + γ1
1 + γ1 + γ2

Γ22 = − γ2
1 + γ1 + γ2

(4.55)

From the table above we are able to evaluate the value of all possible termination condition.

We summarize those results in the following table:

type1 type2 type3 type4

γ1 1 0 ∞ 0

γ2 ∞ ∞ 0 0

Γ11 3 2 0 0

Γ12 0 0 −1 −2
Γ22 −1 −1 0 0

Table 4-14

In the following subsection we will give an example of a fourth order ondulatory phenomena.
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4.7 An example of fourth order network

4.7.1 The Euler beam.

The Euler beam theory can be derived by the general fourth order theory by the following

interpretation of the general parameters:

General descriptor Actual descriptor Physical meaning

F (x, t) u(x, t) vertical displacement

K KM bending stiffness

ρ λ mass per unit of length

Table 4-15

Over this condition the equation (4.27) became:

uk−2(t)− 4uk−1(t) + 6uk(t)− 4uk+1(t) + uk+2(t) = ∆
4 λ

KM

∂2u
k
(t)

∂t2
(4.56)

As well known by the Euler beam theory the differential descriptor involved in the BC can be

physically interpreted as follow:

General descriptor Actual descriptor Physical meaning

u(x, t) u(x, t) vertical displacement
∂u(x,t)
∂x θ(x, t) rotation of the transversal section

KM
∂2u(x,t)
∂x2 M(x, t) bending moment

KM
∂3u(x,t)
∂x3

T (x, t) transverse shear force

(4.57)

Table 4-16 (4.58)

consequently the BC assumes the following form:
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Mk(t) = 0 or δ (θk(t)) specified (4.59)

Tk(t) = 0 or δ (uk(t)) specified

Table 4-16 (4.60)

Looking at eq.4.59 it can be easily understand that the four different types of BC assume in

this case a precise physical meaning. The graphical symbols and the terminology used for those

BC are listed in the following table.

Tk(t)=0

θk(t)=0

uk(t)=0

Mk(t)=0

clamp glyph

hing free

Tk(t)=0

θk(t)=0

uk(t)=0

Mk(t)=0

clamp glyph

hing free

Table 4-17

4.7.2 One node to n port mapping

∂F
∂t → Π synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general fourth order circuit shown in fig. (4-18). As reported

in table (4-15) the scalar field F (x, t) is associated with the vertical displacement u(x, t) so

that the intensive quantity Πk of the kth node will be associated with the vertical velocity

vk.Consequently the complementar extensive quantity will be associated with the transversal

force Tk. The generalized lever (pinned rigid link) behaves as a bidirectional ideal transducer.
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Changing the pair (v, T ) in the pair (ω,M) characterizing the second line of the circuit. Based

on those argumentation using table (2-1) it is possible to specify the general circuit, associated

with the basic section, shown in fig. (4-18) for the case of interest as shown in fig (4-26 a). In

fig. (4-26 b) it is shown the mechanical model of the basic section.
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Figure 4-26: One node to n ports dF
dt → Π synthesis trasversal vibration on a beam analogy.

a) equivalent circuit, b) mechanical model.

Similarly the components of the general circuit shown in fig. (4-19) can be specialized once it

is known the physical meaning of the pair (Π,Φ) characterizing each line of the circuit. Using

table (2-1) we obtain the circuit shown in fig. (4-27 a). In fig. (4-27 b) is shown the mechanical

model of the whole beam.
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Figure 4-27: One node to n ports dF
dt → Φ synthesis trasversal vibration on a beam analogy.

Equivalent circuit.

124



∂F
∂t → Φ synthesis

In this section we will give an actual meaning to the components and the physical quantity

governing the evolution of the general fourth order circuit shown in fig. (4-21). As reported

in table (4-15) the scalar field F (x, t) is associated with the vertical displacement u(x, t) so

that the extensive quantity Φk of the kth node will be associated with the vertical velocity

vk.Consequently the complementar intensive quantity will be associated with the transversal

force Tk. The generalized lever (pinned rigid link) behaves as a bidirectional ideal transducer.

Changing the pair (v, T ) in the pair (ω,M) characterizing the second line of the circuit. Based

on those argumentation using table (2-1) it is possible to specify the general circuit, associated

with the basic section, shown in fig. (4-21) for the case of interest as shown in fig (4-28).

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

(Φk+1, Πk+1)

(vk+1,Τk+1)

(ωk+1,Μk+1)(ωk,Μk)

(Φk, Πk)

(vk,Τk)

(ω,Μ)

(v,Τ)
[H]

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

(Φk+1, Πk+1)

(vk+1,Τk+1)

(ωk+1,Μk+1)(ωk,Μk)

(Φk, Πk)

(vk,Τk)

(ω,Μ)

(v,Τ)
[H]

Figure 4-28: One node to n ports dF
dt → Φ synthesis trasversal vibration on a beam analogy.

Basic section.

Similarly the components of the general circuit shown in fig. (4-22) can be specialized once it

is known the physical meaning of the pair (Π,Φ) characterizing each line of the circuit. Using

table (2-1) we obtain the circuit shown in fig. (4-29).
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Z(s)=γ2ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)
Z(s)=γ1ΚΜ/(Δs)

Z(s)=γ2ΚΜ/(Δs)

Z(s)=γ1ΚΜ/(Δs)

[H] [H] [H] [H] [H]
Z(s)=γ2ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)

Z(s)= λΔs

Z(s)=ΚΜ/(Δs)
Z(s)=γ1ΚΜ/(Δs)

Z(s)=γ2ΚΜ/(Δs)

Z(s)=γ1ΚΜ/(Δs)

[H] [H] [H] [H] [H]

Figure 4-29: One node to n ports dF
dt → Φ synthesis trasversal vibration on a beam analogy.

Complete network.

4.7.3 One node to one port mapping

∂F
∂t → Π synthesis

The general circuit derived in the previous section can be now specialized for the case of interest.

The circuital scheme obtained is shown in the fig (4-30), in this figure we have explicitly shown

the access port of the system. As reported in table (4-15) the scalar field F (x, t) is associated

with the vertical displacement u(x, t) so that the intensive quantity Πk of the kth node will be

associated with the vertical velocity vk.Consequently the complementar extensive quantity will

be associated with the transversal force Tk. Conversely from the one node to n ports mapping in

this kind of network there are not any transducers and consequently each node of the network

will be characterized by means of the same pair (v, T ) .In fig (4-30 a) is shown a replica of the

general circuit shown in fig (4-24) where the components are been interpreted for the pair of

interest (v, T ) . As we did before, we will show in fig. (4-30 b) the mechanical equivalent system

where, also if not explicitly shown, the pointwise masses are constrained to move on a purely

vertical path.
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Figure 4-30: One node to one port dF
dt → Π synthesis trasversal vibration on a beam analogy.

a) equivalent circuit, b) mechanical model.

∂F
∂t → Φ synthesis

Similarly the general circuit derived in the previous section can be specialized for the case

of interest. The circuital scheme obtained is shown in the fig (4-31), in this figure we have

explicitly shown the access port of the system. As reported in table (4-15) the scalar field

F (x, t) is associated with the vertical displacement u(x, t) so that the extensive quantity Φk of

the kth node will be associated with the vertical velocity vk.Consequently the complementar

intensive quantity will be associated with the transversal force Tk. Conversely from the one node

to n ports mapping in this kind of network there are not any transducers and consequently each

node of the network will be characterized by means of the same pair (v, T ) .In fig (4-31 ) is shown

a replica of the general circuit shown in fig (4-25) where the components are been interpreted

for the pair of interest (v, T ) .
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Figure 4-31: One node to one port dF
dt → Φ synthesis trasversal vibration on a beam analogy.

Equivalent circuit.
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Chapter 5

Hybrid systems gyroscopically

coupled

5.1 Introduction

In this chapter we will introduce the system of equations describing a coupled system. A coupled

system can be obtained by interconnecting two different subsystems by means of a transducer.

Obviously it is not required for the two systems to have the same nature, the only important

point is that the transducers will be able to establish a bidirectional communication between

the two different subsystems. This structure, shown in fig. (4-1) will be referred as an hybrid

coupled system.

Sub 
System I

Sub 
System II

Transducers

Hybrid coupled system

Sub 
System I

Sub 
System II

TransducersTransducers

Hybrid coupled system

Figure 5-1: A hybrid coupled system as the set of two subsistems having different nature

communicating by means of a transducer.
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In particular we will assume that each of the two subsystems will be accessible by a certain

number of ports. The hybrid coupled system will be obtained by interconnecting one to one the

ports of the two subsystems by means of an array of bidirectional transducers, modelled as two

ports networks. First of all we will consider a one dimensional system described in the Laplace

domain by means of its impedance or its admittance depending on the convenience. Then we

will describe the performance of this system and we will compare them with the performance

of the same system coupled with a second subsystem by means of a single actuator. Finally we

will generalize the results obtained to the n dimensional case.

5.2 One dimensional coupling

5.2.1 Introduction

In this section we will study a system accessible from one port. This system will be described

in the Laplace domain by means of its impedance (admittance) and will be coupled to a similar

system by means of a bidirectional transducer. As we have shown in the previous chapter

a bidirectional transducer can be modeled in four different ways, similarly we can describe a

coupled system for each one of the four possible models of a transducer.

5.2.2 The case of ideal transducers

Y coupling

Here we model the first subsystem by means of a bipolar admittance Y1, this system is coupled

with a second subsystem modeled as a bipolar admittance Y2. The coupling is realized through

a bidirectional ideal Y transducer characterized by the two pairs (Π1,Φ1) and (Π2,Φ2). Finally

an independent Φ generator, of value bΦ is shunted to the admittance Y1 in order to give an
excitation to the system.
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[Y]

(Π
1,Φ
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(Π
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Φ Y1 Y2[Y]

(Π
1,Φ
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(Π
2 ,Φ

2 )

Φ Y1 Y2

Figure 5-2: One dimensional coupling. Y model.

The coupled system shown in fig. (5-2) can be described by means of the following system of

equations: ⎧⎨⎩ bΦ = Y1Π1 + y12Π2

0 = y21Π1 + Y2Π2
(5.1)

Z coupling

Here we model the first subsystem by means of a bipolar impedance Z1, this system is coupled

with a second subsystem modeled as a bipolar impedance Z2. The coupling is realized through

an ideal bidirectional Z transducer, characterized by the two pairs (Π1,Φ1) and (Π2,Φ2). Fi-

nally an independent Π generator, of value bΠ is connected in series with the impedance Z1 in
order to give an excitation to the system.

[Z]

(Π
1,Φ

1)

(Π
2 ,Φ

2 )

Π Z1 Z2
−
+ [Z]

(Π
1,Φ

1)

(Π
2 ,Φ

2 )

Π Z1 Z2
−
+

Figure 5-3: One dimensional coupling. Z model.

The complete system, shown in fig. (5-3) can be described by means of the following system of

equations: ⎧⎨⎩ bΠ = Z1Φ1 + z12Φ2

0 = z21Φ1 + Z2Φ2
(5.2)

G coupling

Here we model the first subsystem by means of a bipolar admittance Y1, this system is coupled

with a second subsystem modeled as a bipolar impedance Z2. The coupling is realized through
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an ideal bidirectional G transducer, characterized by the two pairs (Π1,Φ1) and (Π2,Φ2). Fi-

nally an independent Φ generator, of value bΦ is shunted to the admittance Y1 in order to give
the same excitation to the system.

[G]

(Π
1,Φ

1)

(Π
2 ,Φ

2 )

Φ Y1
Z2[G]

(Π
1,Φ

1)

(Π
2 ,Φ

2 )

Φ Y1
Z2

Figure 5-4: One dimensional coupling. G model.

The complete system, shown in fig. (5-4) can be described by means of the following system of

equations: ⎧⎨⎩ bΦ = Y1Π1 + g12Φ2

0 = g21Π1 + Z2Φ2
(5.3)

H coupling

Here we model the first subsystem by means of a bipolar impedance Z1, this system is coupled

with a second subsystem modeled as a bipolar admittance Y2. The coupling is realized through

an ideal bidirectional Y transducer, characterized by the two pairs (Π1,Φ1) and (Π2,Φ2). Fi-

nally an independent Π generator, of value bΠ is connected in series with the impedance Z1 in
order to give same excitation to the system.
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Figure 5-5: One dimensional coupling. H model.

The complete system, shown in fig. (5-5) can be described by means of the following system of

equations: ⎧⎨⎩ bΠ = Z1Φ1 + h12Φ2

0 = h21Φ1 + Y2Φ2
(5.4)
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5.2.3 Uncoupled system VS gyroscopically coupled system

Now we want to make a comparison between the uncoupled system and the coupled one. This

analysis can be made studying the two network functions obtained by the ratio between the

two independent quantities characterizing the transducer model and the impressed quantity.

For example, in the case of the Y coupling, the independent quantities are Π1 and Π2 while the

impressed quantity is bΦ. The uncoupled system can be obtained from by eq. (5.1) by avoiding

the transducer effect (i.e. y12 = y21 = 0 ). In this case we obtain:

Z01(s) =
Π1(s)bΦ(s)

¯̄̄̄
¯
y12=y21=0

=
1

Y1(s)
=

D1(s)

N1(s)
(5.5)

Z02(s) =
Π2(s)bΦ(s)

¯̄̄̄
¯
y12=y21=0

= 0 (5.6)

The second case of interest is obtained when the coupling coefficients y12 and y21 are equal and

opposite one to each other (i.e. y12 = −y21 = α). In this situation the coupling is referred as

gyroscopic and the two network functions of interest become:

Zα
1 (s) =

Π1(s)bΦ(s)
¯̄̄̄
¯
y12=−y21=α

=
Y2(s)

Y1(s)Y2(s) + α2
=

N2(s)D1(s)

N1(s)N2(s) + α2D1(s)D2(s)
(5.7)

Zα
2 (s) =

Π2(s)bΦ(s)
¯̄̄̄
¯
y12=−y21=α

=
−α

Y1(s)Y2(s) + α2
=

−αD2(s)D1(s)
N1(s)N2(s) + α2D1(s)D2(s)

(5.8)

In the following we will study the properties of those two network functions in both the frequency

and the time domain, comparing them for the coupled and the uncoupled case.

Frequency domain analysis

In order to perform a comparison between a coupled and an uncoupled system we need to specify

the form of the admittance Y1(s) describing the first subsystem. In this work the attention is

focused on the ondulatory phenomena. As we have deeply studied in the second chapter a

discrete version of those phenomena can be described by means of circuital network involving

(1, 0) elements, (0, 1)element and generalized lever. The simplest case we have studied is given
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by a zero order system shown in fig (2-16).The admittance of this system assumes the following

form:

Y1(s) = A
(s2 + s20)

s
(5.9)

it should be noted that (5.9) describes an harmonic oscillator (in the Laplace domain). It is

useful for our purpose to define an adimensional version of (5.9). In order to proceed with the

adimensionalization process we will make the following position:

s = s0s (5.10)

Y0 = As0 (5.11)

α = 2Y0α (5.12)

substituting (5.10) and (5.11) in (5.9) we can define an adimensional admittance Y 1(s) as

follows:

Y 1(s) =
Y 1(s)

Y0
=
(s2 + 1)

s
(5.13)

it should be noted that the adimentionalization parameter has been used in order to normalize to

a unit value the natural frequency and the amplitude of the oscillation. Now we need to properly

design the second subsystem Y2(s). In [Vidoli et al.(2000)] it was heuristically proven that in

order to guarantee the maximum energy transfer between the first (Y1(s)) and the second system

(Y2(s)), they should be governed by the same differential operator this results was expanded

in [dell’ Isola et al. (2003)]. This request guarantees that they will have equivalent spectral

properties, consequently can be established a multimodal resonance. This consideration brings

us to assume Y2(s) = Y1(s) and consequently Y 2(s) = Y 1(s). Under this assumption and using

(5.13) in (5.5)..(5.8) we obtain:

Z
0
1(s) = Y0Z

0
1(s) =

1

Y 1(s)
=

s

s2 + 1
(5.14)

Z
0
2(s) = 0 (5.15)

Z
α
1 (s) = Y0Z

α
1 (s) = Y0

Y0Y 1(s)

Y0Y 1(s)Y0Y 1(s) + (2Y0α)2
=

s(s2 + 1)

1 + (2 + 4α2)s2 + s4
(5.16)

Z
α
2 (s) = Y0Z

α
2 (s) = Y0

−2Y0α
Y0Y 1(s)Y0Y 1(s) + (2Y0α)2

=
−2αs2

1 + (2 + 4α2)s2 + s4
(5.17)
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It is interesting to compare
¯̄̄
Z
0
1(ω)

¯̄̄
with the

¯̄
Z
α
1 (ω)

¯̄
. First of all we need to evaluate those

functions.

¯̄̄
Z
0
1(ω)

¯̄̄
=

ω

ω2 − 1 (5.18)¯̄
Z
α
1 (ω)

¯̄
=

ω(ω2 − 1)
1− 2(1 + 2α)ω2 + ω4

(5.19)
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Figure 5-6:

In figure (5-6) are shown the two functions
¯̄̄
Z
0
1(ω)

¯̄̄
(dashed) and

¯̄
Z
α
1 (ω)

¯̄
(solid); looking

at the picture it can be noted that when a logarithmic scale is used the two split poles of¯̄
Z
α
11(ω)

¯̄
are symmetric with respect to the one of

¯̄̄
Z
0
1(ω)

¯̄̄
,.this distinctive feature happens if

and only if the resonance frequencies of the system Y2(s) are exactly equal to the ones of the

system Y1(s).This symmetry can be mathematically analyzed by evaluating the intersection

points between
¯̄̄
Z
0
1(ω)

¯̄̄
and

¯̄
Z
α
1 (ω)

¯̄
. Considering positive frequency and neglecting the trivial
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solutions we will find:

ωS =

q
1 + α2 − α

p
2 + α2 (5.20)

ωT =

q
1 + α2 + α

p
2 + α2 (5.21)

substituting (5.20) and (5.21) in (5.18) and (5.19) we will find:

¯̄̄
Z
0
11(ωS)

¯̄̄
=
¯̄̄
Z
0
11(ωT )

¯̄̄
=
¯̄
Z
α
11(ωS)

¯̄
=
¯̄
Z
α
11(ωT )

¯̄
=

1√
2α

(5.22)

the property expressed by equation (5.22) gives us a quantitative way to express this symmetry,

in fact it can be expressed by saying that the intersection points S and T between
¯̄̄
Z
0
1(s)

¯̄̄
and¯̄

Z
α
1 (s)

¯̄
assume the same value. In general when the resonance frequencies of the second system

don’t match with the ones of the first system this symmetry is lost and the points S and T

assume different values as shown in fig. (5-7) and (5-8).
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Figure 5-7:
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Time evolution

Now it is useful to give some descriptions of the time evolution of the uncoupled and the coupled

system. First of all we will derive the impulsive response for the uncoupled system. Having

the network function Z
0
11(s).the physical meaning of an impedance, the impulsive response

associated to it will represent the time evolution π01(t) of the Π quantity between the terminals

of the first system (i.e. Y1) when an impulsive Φ quantity of unitary amplitude is applied

through the terminals of the same system at t = 0. Consequently π01(t) can be evaluated by

computing the inverse Laplace transform of the network function Z
0
1(s). We will find

1:

π01(t) = L−1
n
Z
0
1(s)

o
= cos(t)u−1(t) (5.23)

1Where u−1(t) is the Havisade unit step function defined as follows:

u−1(t) =
1 t ≥ 0
0 t < 0
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similarly, even if it is trivial, we can define π02(t) as follows:

π02(t) = L−1
n
Z
0
2(s)

o
= 0 (5.24)

Comparing those two functions it is possible to note that when the first system is uncoupled

from the second one an impulsive excitation given to the first system produces an oscillation

of constant amplitude and unitary value in that system while the second one remains at rest.

This behavior is pointed out in fig. (5-9).
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Figure 5-9:

Similarly we can perform the same analysis for the coupled system by considering the functions
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πα1 (t) and πα2 (t) defined as follows:

πα1 (t) = L−1 ©Zα
1 (s)

ª
=

µ
cos(αt) cos(

p
1 + α2t)− α√

1 + α2
sin(αt) sin(

p
1 + α2t)

¶
(5.25)

πα2 (t) = L−1 ©Zα
2 (s)

ª
=

µ
− sin(αt) cos(

p
1 + α2t)− α√

1 + α2
cos(αt) sin(

p
1 + α2t

¶
(5.26)

Looking at eq. (5.25) and (5.26) governing the time evolution of the coupled system it can

be noted that now both πα1 (t) and πα2 (t) have a non trivial evolution. More precisely we can

recognize a shifting of the oscillation frequency from the uncoupled value 1 to the coupled value
√
1 + α2 this means that the coupling produces always an increment of the oscillation frequency.
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Moreover in the coupled system the amplitude of the fundamental oscillation is modulated with

a secondary frequency equal to the coupling coefficient α.This phenomenon known as beat. is a

different interpretation of the poles doubling we had observed in the frequency domain. In fig.

(5-10) it is shown the evolution of eq. (??) and (5.26) when α = 1
3
√
11
. This choice is motivated

by the fact that it forces the primary frequency to be a multiple of the secondary one.

Energetic consideration

In order to show how the coupling procedure is able to produce a transfer of the energy from

the first system to the second one it is crucial to study the time evolution of the energy of

the first and the second system for both the coupled and the uncoupled case. First of all we

need to derive an analytical form for the energy of a system characterized by the dimensionless

admittance (5.13) as a function of the pair (Π,Φ).characterizing the system. As usual we can

express the energy of the system e(t) in the following way:

e(t) =

Z
p(t)dt (5.27)

where p(t) is the power absorbed by a given system accessible from a port. As we have said

before the power absorbed by a port is given by the product of the quantity characterizing the

port, so we have:

e(t) =

Z
π(t)φ(t)dt (5.28)

In the previous subsection we derive an analytical form for the function π(t) so it can be

considered a known quantity. Consequently we need to manipulate expression (5.28) in order

to derive an expression depending on this function only. A suitable form of the energy can be

obtained by means of the following steps:

e(t) =

Z
π(t)L−1 ©Y 1(s)Π(s)ª dt = Z π(t)L−1

½
s2 + 1

s
Π(s)

¾
dt =

=

Z
π(t)L−1

½
Π(s)

s
+ sΠ(s)

¾
dt =

Z
π(t)

µ
L−1

½
Π(s)

s

¾
+ L−1 ©sΠ(s)ª¶ dt =

=

Z
π(t)

µZ
π(t)dt+

dπ(t)

dt

¶
dt =

Z µ
π(t)

µZ
π(t)dt

¶
+ π(t)

µ
dπ(t)

dt

¶¶
dt =
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=
1

2

µZ
π(t)dt

¶2
+
1

2
π(t)2 (5.29)

We can use expression (5.29) for evaluating the energy of the first and the second system for

both the coupled and the uncoupled case. First of all we need to evaluate the time integral of

the expressions (5.23)..(5.26).

Z
π01(t)dt = sin(t) (5.30)Z
π02(t)dt = 0Z
πα1 (t)dt =

cos(αt) sin(
√
1 + α2t)√

1 + α2Z
πα2 (t)dt = −sin(αt) sin(

√
1 + α2t)√

1 + α2

-20 20 40 60
t

__

-0.4

-0.2

0.2

0.4

e
__0

2H t
__L

-20 20 40 60
t

__

-0.4

-0.2

0.2

0.4

e__0
1H t

__L

Figure 5-11:

141



Substituting expressions (5.23) and (5.30) in (5.29) we will find the analytical expression for

the energy of the first and the second system. When we consider the uncoupled configuration

we obtain the following plots for the time evolution of the energy. Looking at fig.(5-11) it is

clear that when we give an impulsive excitation the energy of the first system rises suddenly

from zero to 0.5 at t = 0 and it stays at this constant value, while the energy of the second

system is always zero, i.e. there is not energy transfer from the first to the second system. In a

similar way it is possible to plot the time evolution of the energy for the coupled configuration.

It is illustrated in the following figure.
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From the fig. (5-12) it is clear that when we consider the coupled configuration the amplitude

of the energy of the first system rises suddenly from zero to 0.5 at t = 0 as well as in the

uncoupled case but now its value changes in time oscillating from this maximum value and

zero. Simultaneously the second system starts from a zero energy at t = 0 and increase its

energy until it reach the maximum value (i.e. the total energy of the coupled system) in

correspondence with the minimum energy of the first system (i.e. zero). At that instant the

energy of the first system is completely transferred to the second one. Then the energy starts

to come back to the first system until it goes back completely to it. In conclusion we can say

that the energy of the system oscillates from the two coupled systems with a given period.
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In fig. (5-13) it is shown that, as expected from the conservation of energy, the sum of the

energy of the first and the second system is equal to the total energy (i.e. 0.5) instant by

instant. It should be noted that the totality of the consideration we have done referring to the

Y-coupling can be replicated for the other kind of coupling without any sort of complication.
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5.2.4 The case of real transducers

In the previous subsection we have shown that the energy of an oscillating system can be

optimally transferred in a second system when the second system is equal to the first one and it

is coupled to it by means of an ideal bidirectional transducer. More precisely it should be noted

that the second system must be designed taking in count of the model we are using for the

coupling. This means that we need to make the admittance of the second system equal to the

admittance of the first system for the Y coupling while we need to make the impedance of the

second system equal to the admittance of the first system for the G coupling, and so on. Some

complications rise when we consider parasite effects of real transducers. In fact those parasite

elements break the symmetry of the coupling avoiding the suitable properties we had put in

evidence in the previous subsection. By the way in some case this problem can be overpassed

by choosing a suitable coupling model. In order to select the right model we need to use the

notion of constitutive symmetry we had introduced in the previous chapter. As usual there

exist four cases of interest.

Y coupling

If the transducers we are using to couple the two systems is Y symmetrizable we need to use

the Y coupling model, in fact comparing fig. (3-13) and fig. (5-2) is easy to verify that by

choosing

1

R11
= 0 (5.31)

1

R22
=

µ
1

R11
− 1

R22

¶
(5.32)

Y2 = Y1 +
sα2−β2

R22
(5.33)

we obtain a symmetric Y coupled system where the transducers can be thought as ideal and

the parasitic element at the first port can be thought to be part of the given system modeled

by means of the admittance Y1 as shown in fig (4-14).
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This procedure will result very useful when Y1 (or at least part of it) will have the same

constitutive nature of the term sβ2−α2
R22

in fact in this case this term can be realized by suitably

changing the value of some components. This argumentation will be much more clear when we

will give some examples in the following section.

Z coupling

If the transducers we are using to couple the two systems is Z symmetrizable we need to use

the Z coupling model, in fact comparing fig. (3-14) and fig. (5-3) is easy to verify that by

choosing

R11 = 0 (5.34)

R22 = (R11 −R22) (5.35)

Z2 = Z1 +R22s
β2−α2 (5.36)

we obtain a symmetric Z coupled system where the transducers can be thought as ideal and

the parasitic element at the first port can be thought to be part of the given system modeled

by means of the impedance Z1 as shown in fig (4-15).
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Figure 5-15:

This procedure will result very useful when Z1 (or at least part of it) will have the same

constitutive nature of the term R22s
α2−β2 in fact in this case this term can be realized by

suitably changing the value of some components. This argumentation will be much more clear

when we will give some examples in the following section.

G coupling

If the transducers we are using to couple the two systems is G symmetrizable we need to use

the G coupling model, in fact comparing fig. (3-15) and fig. (5-4) is easy to verify that by

choosing

1

R11
= 0 (5.37)

R22 =

µ
1

R11
−R22

¶
(5.38)

Z2 = Z1 +R22s
β2−α2 (5.39)

we obtain a symmetric G coupled system where the transducers can be thought as ideal and

the parasitic element at the fist port can be thought to be part of the system one modeled by

means of the admittance Y1as shown in fig. (4-16).
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This procedure will result very useful when Z1 (or at least part of it) will have the same

constitutive nature of the term R22s
α2−β2 in fact in this case this term can be realized by

suitably changing the value of some components. This argumentation will be much more clear

when we will give some examples in the following section.

H coupling

If the transducers we are using to couple the two systems is H symmetrizable we need to use

the H coupling model, in fact comparing fig. (3-15) and fig. (5-5) is easy to verify that by

choosing

R11 = 0 (5.40)

1

R22
=

µ
R11 − 1

R22

¶
(5.41)

Y2 = Y1 +
sα2−β2

R22
(5.42)

we obtain a symmetric H coupled system where the transducers can be thought as ideal and

the parasitic element at the fist port can be thought to be part of the system one modeled by

means of the admittance Z1as shown in fig. (4-17).
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This procedure will result very useful when Y1 (or at least part of it) will have the same

constitutive nature of the term sβ2−α2
R22

in fact in this case this term can be realized by suitably

changing the value of same components. This argumentation will be much more clear when we

will give some examples in the following section.

5.3 M-dimensional coupling

5.3.1 Introduction

In this section we will study a system accessible from M ports and described in the Laplace

domain by means of its open circuit impedance (short circuit admittance) matrix coupled to a

similar system by means of an array of bidirectional transducers. As we show in the previous

chapter a bidirectional transducers can be modeled in four different way, similarly we can

describe a coupled system for each one of the four possible models of a transducers.

5.3.2 The case of ideal transducers

Y coupling

Here we model the first M ports subsystem by means of its admittance matrix Y1, relating the

vector Φ1 with the vector Π1 this system is coupled with a secondM ports subsystem modeled

by means of its admittance matrix Y2 relating the vector Φ2 with the vector Π2. The coupling

is realized through an array of identical ideal bidirectional Y transducers. The jth transducers
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will be characterized by the two pairs
³
(Π1)j , (Φ1)j

´
and

³
(Π2)j , (Φ2)j

´
. Finally an array of

independent Φ generators, whose value will be given by the components of the vector bΦ. The
jth independent Φ generator is shunted with the jth port of the first subsystem.

[Y] [Y] [Y] [Y]

[Y1]

[Y2]

Φ1 Φ2 ΦΜ−1 ΦΜ

[Y][Y] [Y][Y] [Y][Y] [Y]

[Y1]

[Y2]

Φ1Φ1 Φ2Φ2 ΦΜ−1ΦΜ−1 ΦΜΦΜ

Figure 5-17

The coupled system shown in fig. (5-17) can be described by means of the following system of

equations: ⎧⎨⎩ bΦ = Y1Π1 + y12I Π2

0 = y21I Π1 +Y2Π2
(5.43)

Z coupling

Here we model the first M ports subsystem by means of its impedance matrix Z1, relating the

vector Π1 with the vector Φ1 this system is coupled with a secondM ports subsystem modeled

by means of its impedance matrix Z2 relating the vector Π2 with the vector Φ2. The coupling

is realized through an array of identical ideal bidirectional Z transducers. The jth transducers

will be characterized by the two pairs
³
(Π1)j , (Φ1)j

´
and

³
(Π2)j , (Φ2)j

´
. Finally an array of

independent Π generators, whose value will be given by the components of the vector bΠ. The
jth independent Π generator is connected in series with the jth port of the first subsystem.
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Figure 5-18:

The coupled system shown in fig. (5-18) can be described by means of the following system of

equations: ⎧⎨⎩ bΠ = Z1Φ1 + z12I Φ2

0 = z21I Φ1 + Z2Φ2
(5.44)

G coupling

Here we model the first M ports subsystem by means of its admittance matrix Y1, relating the

vector Φ1 with the vector Π1 this system is coupled with a secondM ports subsystem modeled

by means of its impedance matrix Z2 relating the vector Π2 with the vector Φ2. The coupling

is realized through an array of identical ideal bidirectional G transducers. The jth transducers

will be characterized by the two pairs
³
(Π1)j , (Φ1)j

´
and

³
(Π2)j , (Φ2)j

´
. Finally an array of

independent Φ generators, whose value will be given by the components of the vector bΦ. The
jth independent Φ generator is shunted with the jth port of the first subsystem.
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Figure 5-19:

The coupled system shown in fig. (5-19) can be described by means of the following system of

equations: ⎧⎨⎩ bΦ = Y1Π1 + g12I Φ2

0 = g21I Π1 + Z2Φ2
(5.45)

H coupling

Here we model the first M ports subsystem by means of its impedance matrix Z1, relating

the vector Π1 with the vector Φ1 this system is coupled with a second M ports subsystem

modeled by means of its admittance matrix Y2. The coupling is realized through an array of

identical ideal bidirectional H transducers. The jth transducers will be characterized by the

two pairs
³
(Π1)j , (Φ1)j

´
and

³
(Π2)j , (Φ2)j

´
. Finally an array of independent Π generators,

whose value will be given by the components of the vector bΠ. The jth independent Π generator
is connected in series with the jth port of the first subsystem.
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Figure 5-20:

The coupled system shown in fig. (5-18) can be described by means of the following system of

equations: ⎧⎨⎩ bΠ = Z1Φ1 + h12I Π2

0 = h21I Φ1 +Y2Π2
(5.46)

We will omit a complete tractation of the real transducers M dimensional coupling, by the way

we will give some example of it basing our tractation on the notion given for the one dimensional

case.

5.3.3 Uncouple system VS gyroscopically Coupled system

Now we want to make a comparison between the uncoupled system and the coupled one. This

analysis can be made studying the two matrices of network functions relating the independent

quantities defining the transducer model. and the impressed quantities. For example in the case

of the Y coupling the independent quantities are the vectors Π1 and Π2 while the impressed

quantity is the vector bΦ. The uncoupled system can be obtained from the general case described
by eq. (5.43) by avoiding the transducer effect (i.e. y12 = y21 = 0 ). In this case we obtain:

Π1(s) = Z01(s)bΦ(s)⇒ Z01(s) = Y−11 (s) (5.47)

Π2(s) = Z02(s)bΦ(s)⇒ Z02(s) = 0 (5.48)
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The second case of interest is obtained when the coupling coefficients y12 and y21 are equal and

opposite one to each other (i.e. y12 = −y21 = α). In this situation the coupling is referred as

gyroscopic and the two matrices of network functions of interest become:

Π1(s) = Z01(s)bΦ(s)⇒ Zα1 (s) =
¡
Y1(s) + α2Y−12 (s)

¢−1
(5.49)

Π2(s) = Z02(s)bΦ(s)⇒ Zα2 (s) = −α
¡
Y1(s)Y2(s) + α2I

¢−1
(5.50)

It is quite easy to understand that similar argumentation can be developed for the other model of

coupling. The complexity of the analytical calculations we had performed for the one dimesional

rise very quickly with the order of the problem, consequently it is quite unseasonable reproduce

those calculations for the general case. By the way we will give same notion about the principal

aspect of this work i.e. the energy balancioum of the uncoupled system versus the coupled one

when the two coupled system are identical (i.e. Y1(s) = Y2(s)). The energy of aM dimensional

system described by means of its admittance matrix Y(s) can be evaluated when it is known the

time evolution of the vector of the independent quantities defining the system by the following

expression:

e(t) =

Z
p(t)dt =

Z
ΠT (t)Φ(t)dt =

Z
ΠT (t)Φ(t)dt =

Z
ΠT (t)L−1 {YΠ(t)} dt (5.51)

This equation results in a very tedious calculation so it could be necessary to evaluate it by

means of numerical methods. In order to focus the attention on the energy transfer we will give

same example of the result of this calculation procedure fore the simplest second order network

(i.e. n = 1) and the simplest fourth order network (i.e. n = 2).

The simples Y model of a second order system is obtained by setting M = 3 in equation

(4.12). Following an adimentionalization procedure similar to the one described for the one

dimensional case we obtain:

Y =

⎛⎜⎜⎜⎜⎝
2

s
+ s −1

s
0

−1
s

2

s
+ s −1

s

0 −1
s

2

s
+ s

⎞⎟⎟⎟⎟⎠ (5.52)
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Starting From eq. (5.52) we can evaluate the impedance matrices Z01(s) for the uncoupled case.

It is given by:

Z01(s) = Y−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

s
¡
3 + 4s2 + s4

¢
4 + 10s2 + 6s4 + s6

s

(2 + 4s2 + s4)

s

4 + 10s2 + 6s4 + s6

s

(2 + 4s2 + s4)

s
¡
2 + s2

¢
(2 + 4s2 + s4)

s

(2 + 4s2 + s4)
s

4 + 10s2 + 6s4 + s6
s

(2 + 4s2 + s4)

s
¡
3 + 4s2 + s4

¢
4 + 10s2 + 6s4 + s6

⎞⎟⎟⎟⎟⎟⎟⎠
Exciting the system by means of an impulsive Φ quantity of unitary amplitude at the second

port (i.e. bΦ(t) = (0, δ(t), 0)) we obtain as expected for the total energy of the system the time

evolution shown in fig. (5-21). It should be noted that when at t = 0 the impulse reach the

system its total energy e01(t) rise suddenly from zero to a value equal to 0.5. This value doesn’t

change in time. Moreover being the matrix Z02(s) that characterize the second system for the

uncoupled situation equal to zero the total energy e02(t) of the second system will be always

equal to zero regardless for the impulse δ(t).This trivial evolution is shown in fig. (5-21)
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Figure 5-21:

Similarly we can evaluate the matrices Zα1 (s) and Zα2 (s) for the couple configuration. The
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expressions obtained are quite complex and will be omitted. Computing the total energy of

the two systems eα1 (t) and eα2 (t) for the same value of α we use in the one dimensional case

(i.e. 1/
¡
3
√
11
¢
) we obtain the time evolution shown in fig. (5-22). It should be noted that

the qualitative behavior of the time evolution is very similar to the one obtained in the one

dimensional case. The important point focused by fig. (5-22) is that it is still possible to transfer

the energy from the first system to the second one. Moreover the time needed for a complete

transfer depend only on the coupling parameter α and not on the order of the system. Finally

it should be remarked that the sum of the total energy of the first and the second systems is

equal to the total energy 0.5 instant by instant.

(i.e. n = 2).
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Figure 5-22:

The simples Y model of a fourth order system is obtained by setting M = 5 in equation

(4.40). Following an adimentionalization procedure similar to the one described for the one

dimensional case we can evaluate the impedance matrices Z01(s). The obtained expression is

omitted. Exciting the system by means of an impulsive Φ quantity of unitary amplitude at the
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third port (i.e. bΦ(t) = (0, 0, δ(t), 0, 0)) we obtain as expected for the total energy of the system
the time evolution shown in fig. (5-23). It should be noted that when at t = 0 the impulse

reach the system its total energy e01(t) rise suddenly from zero to a value equal to 0.5. This

value doesn’t change in time. Moreover being the matrix Z02(s) that characterize the second

system for the uncoupled situation equal to zero the total energy e02(t) of the second system

will be always equal to zero regardless for the impulse δ(t).This trivial evolution is shown in

fig. (5-23)
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Figure 5-23:

Similarly we can evaluate the matrices Zα1 (s) and Zα2 (s) for the couple configuration. The
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expressions obtained are quite complex and will be omitted. Computing the total energy of

the two systems eα1 (t) and eα2 (t) for the same value of α we use in the one dimensional case

(i.e. 1/
¡
3
√
11
¢
) we obtain the time evolution shown in fig. (5-24). It should be noted that

the qualitative behavior of the time evolution is very similar to the one obtained in the one

dimensional case. The important point focused by fig. (5-24) is that it is still possible to transfer

the energy from the first system to the second one. Moreover the time needed for a complete

transfer depend only on the coupling parameter α and not on the order of the system. Finally

it should be remarked that the sum of the total energy of the first and the second systems is

equal to the total energy 0.5 instant by instant.
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Figure 5-24:

5.3.4 same example of hybrid coupled system

In this section we will give same examples of hybrid coupled systems obtained by design an

electrical analogue of a given mechanical system and coupling them by means a piezo trans-

ducers. The most of those system are known in the literature on vibration damping even if
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they are been derived following a different approach. We will show how using the notion given

in this work it is possible to obtain a quite simple methodology able to produce the hybrid

system starting from the knowledge of the equation governing the given uncoupled system and

the constitutive equation of the transducer. As we did in the previous section we will give an

example of zero order system an example of second order system and an example of forth order

system.

An example of zero order system hybrid system

In the fourth chapter we propose the mass spring oscillators as an example of zero order system,

in the third chapter we describe the extensional piezoelectric transducers as an hybrid two ports

network. Now we show how, using the theory developed in this work, it will be possible to design

an electrical analogue of mechanical system. Obviously the labels "mechanical" and "electrical"

are restricted to this particular example.

k

mPIEZO CRYSTAL

Electrical
systemFk

mPIEZO CRYSTALPIEZO CRYSTAL

Electrical
systemF

Figure 5-25:

In figure 5-25 we show a realistic representation of the system under exam where one side of a

piezo crystal is fixed to the soil while the remaining one is fixed to the point wise mass connected

to the soil through an extensional spring. The velocity (Π quantity) of the mass is measured

with respect to the soil, being two mechanical access points of the transducer connected between

the mass an the soil those two elements are shunted As we said before a couple of metallization

on the top and the bottom faces of the crystal realize an electrical port. we will design a suitable

electrical system to be connected to this port. The first step we need to walk is to choose the

coupling model. As we said before this choice can be made looking at the consecutive symmetry

158



of the real bidirectional transducer we want to use to realize the coupling. In fig. (3-23) we

had shown the equivalent circuit for a extensional piezo transducers and we had highlight that

this device can be modeled as an ideal transducer having a extensional spring (i.e. a (0, 1)

element) as a parasite element on the mechanical port and a capacitor ( i.e. a (1, 0) element)

as a parasite element on the electrical port. It is easy to verify that those elements verify

the basic condition for the G and the H symmetrization, in fact they fulfill eq. (3.17) being

α11−β11−α22+β22 = 1−0−1+0 = 0.We chose to use the G coupling model. Consequently we
need to use a Y model for the mechanical system and a Z model for the electrical system. The

Y model of a mass spring oscillator has been derived in the previous chapter and it is shown in

fig. (4-3) while the equivalent, of the transducers is given in fig (3-23) while the equivalent Z

model of a zero order system is shown in fig. (4-1 a). Based on fig. (5-15) and Table (2-1) we

can draw the equivalent circuit of the hybrid system as shown in fig. (5-26).
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Figure 5-26:

The admittance of the mechanical system can be obtained by taking the Laplace transform of

eq. (4.2) and using the definition (2.12) We obtain:

Y1 = ms+
k

s
= Z1
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Locking at the fig. (5-26) and using eq. (5.38) and (5.39) we can write the following relation:

R22 =
1

R11
−R22 = k11 − 1

C22

Z2 = Z1 +R22s
β2−α2 = ms+

k

s
+

µ
k11 − 1

C22

¶
1

s
=

= ms+

µ
k + k11 − 1

C22

¶
1

s
= Ls+

1

Cs

Summarizing we can say that in order to guarantee the symmetry of the coupled hybrid system

we need to design the electrical system by connecting in series an inductor of inductance L = m

and a capacitor of capacitance C = C22/(C22(k + k11)− 1). It should be noted that the latter
value can assume in same case a negative value.

An example of second order system hybrid system

In the fourth chapter we propose the axial vibrations on a beam as an example of second order

system, in the third chapter we describe the extensional piezoelectric transducers as an hybrid

two ports network. Now we show how, using the theory developed in this work, it will be

possible to coupling this mechanical system with its electrical analogue. Obviously the labels

"mechanical" and "electrical" are restricted to this particular example.

Electrical networkElectrical network

Figure 5-27:

In figure 5-27 we show a realistic representation of the system under exam where an array

(four in the example) of a piezoelectric crystal is fixed to an hosting beam forced with axial

excitation and clamped at both the ends. Moreover each transducer is connected to a port of

the analogue electrical network. As we have seen in the second chapter a discrete version of

a beam under axial excitation can be though as set of point wise messes connected through

extensional springs. The horizontal velocity (Π quantity) of the masses is measured with respect

to the soil, being the two mechanical access points of each transducer connected between two
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adjacent masses the mechanical port of the transducer will result shunted with the extensional

spring connecting the two masses, as shown in fig. (5-28)
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Figure 5-28:

The first step we need to walk in order to design the analogue network is to choose a suitable

coupling model. As we said before this choice can be made looking at the consecutive symmetry

of the real bidirectional transducer we want to use to realize the coupling. In fig. (3-23) we

had shown the equivalent circuit for a extensional piezo transducers and we had highlight that

this device can be modeled as an ideal transducer having a extensional spring (i.e. a (0, 1)

element) as a parasite element on the mechanical port and a capacitor ( i.e. a (1, 0) element)

as a parasite element on the electrical port. It is easy to verify that those elements verify

the basic condition for the G and the H symmetrization, in fact they fulfill eq. (3.17) being

α11−β11−α22+β22 = 1− 0− 1+0 = 0.We chose to use the G coupling model. Consequently
we need to use a Y model for the mechanical system and a Z model for the electrical system.

The Y model of a beam excited by axial forces has been derived in the previous chapter and

it is shown in fig. (4-16 b) while the equivalent circuit of the transducers is given in fig (3-23).

The equivalent Z model of a second order system is shown in fig. (4-10). Based on fig. (5-19)

and Table (2-1) we can draw the equivalent circuit of the hybrid system as shown in fig. (5-29).
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Figure 5-29:

In the figure are shown the value of each component of both the electrical and the mechanical

side of the hybrid circuit. It can be noted that as we did before for a zero order system the

asymmetry introduced by the real transducer can be eliminated by using a G coupling model.

An example of forth order system hybrid system

In the fourth chapter we propose the transversal vibrations on a beam as an example of forth

order system, in the third chapter we describe the bending piezoelectric transducers as an hy-

brid two ports network. Now we show how, using the theory developed in this work, it will be

possible to coupling this mechanical system with its electrical analogue. Obviously the labels

"mechanical" and "electrical" are restricted to this particular example.

Electrical networkElectrical network

Figure 5-30:
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In figure 5-30 we show a realistic representation of the system under exam where an array

(four in the example) of a piezoelectric crystal in the bending configuration is fixed to an

hosting beam forced with transversal excitation and clamped at both the ends. Moreover each

transducer is connected to a port of the analogue electrical network. As we have seen in the

second chapter a discrete version of a beam under transversal excitation can be though as set of

point wise messes connected through pinned rigid link, moreover the pin of two adjacent rigid

links are connected through bending springs. The angular velocity (Π quantity) of the rigid

links is measured with respect to the horizontal position, being the two mechanical access points

of each transducer connected between two adjacent pins the mechanical port of the transducer

will result shunted with the bending spring connecting the two pins, as shown in fig. (5-31)
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Figure 5-31:

The first step we need to walk in order to design the analogue network is to choose a suitable

coupling model. As we said before this choice can be made looking at the constitutive symmetry

of the real bidirectional transducer we want to use to realize the coupling. In fig. (3-23) we

had shown the equivalent circuit for a extensional piezo transducers and we had highligthed

that this device can be modeled as an ideal transducer having a extensional spring (i.e. a (0, 1)

element) as a parasite element on the mechanical port and a capacitor ( i.e. a (1, 0) element)

as a parasite element on the electrical port. It is easy to verify that those elements verify

the basic condition for the G and the H symmetrization, in fact they fulfill eq. (3.17) being
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α11−β11−α22+β22 = 1− 0− 1+0 = 0.We chose to use the G coupling model. Consequently

we need to use a Y model for the mechanical system and a Z model for the electrical system.

The Y model of a beam excited by transversal forces has been derived in the previous chapter

and it is shown in fig. (4-26 a) while the equivalent circuit of the transducers is given in fig

(3-23). The equivalent Z model of a forth order system is shown in fig. (4-22). Based on fig.

(5-19) and Table (2-1) we can draw the equivalent circuit of the hybrid system as shown in fig.

(5-32).
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Figure 5-32:

In the figure are shown the value of each component of both the electrical and the mechanical

side of the hybrid circuit. It can be noted that as we did before for a zero order system the

asymmetry introduced by the real transducer can be eliminated by using a G coupling model.
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Chapter 6

RC Active Synthesis of the analogue

electrical network

6.1 Introduction

At the end of the previous chapter we have given some example of hybrid coupled systems

obtained by interconnecting a given mechanical system with an electric circuit analogue to

the mechanical system itself. The communication between the two subsystems is realized by

means of an array of piezoelectric transducers that perform a conversion of the mechanical

signal into an electrical one. The large knowledge available in the literature on electrical circuit

synthesis makes the transduction in the electrical form very suitable. The theory developed

in the previous chapters put in evidence how it is possible to obtain the electrical analogue of

a system of order 2n by properly connecting a certain number of capacitors inductances and

ideal transformers. The argumentation given above can convince us that we did the job since

the complete circuit can be obtained by connecting those basic elements, unfortunately it is

not true. In fact, the ideal transformers are theorical components and can not be constructed

by simply wrapping a wire. Moreover the value of inductance required for the component

identification could be very large or even negative. All those argumentations bring us to make

a point of the opportunity to design an active circuit whose behavior provides a best simulation

of the desired ideal behavior. In this chapter we will initially give an overview at the literature

on RC active circuits focusing our attention on the circuital complexity it is needed for the
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RC active synthesis of each basic component i.e. floating and grounded positive and negative

inductors, floating and grounded negative capacitors and ideal transformers. Once it is clear

how to realize each basic component the complete network can be obtained by the straight

forward connection of them. The described approach will produce a quite complex structure

involving a large number of active components that can effect the stability of the complete

network, moreover larger is the number of active components larger is the power needed to

supply them. Being the energy transfer the principal aim of this work it is crucial to safe as

much power as possible by decreasing the number of active component involved in the circuit.

In the final part of this chapter we will propose some new RC active strategy of synthesis

resulting in a strongly reduced circuital complexity.

6.2 Straight Forward synthesis

6.2.1 A brief overview on classical synthesis Technique

As we have said in the introduction a first possible approach to the realization of the circuital

networks described in the previous chapters is the straight forward synthesis of the basic circuital

components i.e. floating and grounded ideal transformers, floating and grounded positive and

negative inductors and floating and grounded negative capacitors. The problem of the design

of active synthetic active impedances was deeply studied in the past years in order to produce

integrated active filters. Consequently there exist a large literature on this topic. In the

following of this section we will give a brief overview on the classical solutions historically

proposed in order to obtain the needed components. The design of RC synthetic inductor has

been simplified when in 1948 a new two ports component named gyrator has been introduced

by B. D. H. Tellegen [Tellegen (1948)], in fact this device has the useful properties to produce

an inductive impedance at the first port when its second port is closed on a capacitor. More

precisely a gyrator is a two ports network described by means of the following constitutive

equations: ⎧⎨⎩ I1 = GV2

I2 = −GV1
or

⎧⎨⎩ I1 = −GV2
I2 = GV1

(6.1)
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Where G is called gyration conductance. The circuital symbol used for this component is shown

in fig. (6-1).

G

1V 2V

2I1I

2I1I

G

1V 2V

2I1I

2I1I

Figure 6-1: Circuital simbol for a gyrator.

As we said above when the second port of this component is chosen on a capacitor (i.e. V2 =

−I2/sC) at the first port we get an inductive impedance equal to Cs/G2 as can be easily verified
by using one of the two set of constitutive eq. (6.1). The gyrator can be even successfully used

in order to obtain an ideal transformer in fact the chain connection of two gyrator results in

an ideal transformer. This result can be easily proven, first of all we need to derive the chain

matrix of a gyrator. By using eq. (6.1) we can write

⎧⎨⎩ V1 = 1/G(−I2)
I1 = GV2

⇒ T =

⎛⎝0 1

G

G 0

⎞⎠
where T is the chain matrix of a gyrator. As known from the circuit theory the chain matrix

describing the chain connection of two ports network is obtained by the multiplication of the two

chain matrix describing each subnetwork. By performing the chain connection of two different

gyrators we obtain the following relation:

T = T1T2 =

⎛⎜⎝ 0
1

G1

G1 0

⎞⎟⎠
⎛⎜⎝ 0

1

G2

G2 0

⎞⎟⎠ =

⎛⎜⎝ 0
G1
G2

G2
G1

0

⎞⎟⎠ (6.2)

This relation can be used in order to write back the constitutive relations of the system obtained

by the chain connection of the two gyrators.

T⇒
⎧⎨⎩ V1 = G1/G2(−I2)

I1 = G2/G1V2
=

⎧⎨⎩ V1 = −G1/G2I2
I1 = G2/G1V2

(6.3)
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Making a comparison between the last of (6.3) and (2.10) we can realize that the new system

behaves as a generalized lever having n = G1/G2. Being both the ports of this system charac-

terized by the electrical pair (V, I) by using table 2-1 we can say that this behaves as a ideal

transformer1. The previous argumentations should convince us that most of the components

we need to design can be easily obtained once we have are able to synthetize a gyrator. In the

following subsection we will show same possible implemetation of gyrators, a more complete

overview on this subject can be found in [Kumar et al. 2002] The only renaming problem is

related to the synthesis of component having negative nominal value. This task can be solved

by introducing an ulterior two ports network known in the literature as negative impedance

converter (NIC). The constitutive equation of this network are given below.

⎧⎨⎩ V1 = V2

I1 = I2
(6.4)

The circuital symbol for a NIC is shown in fig. (6-2).
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Figure 6-2: Circuital symbol for a negative impedance converter.

Closing the second port of a NIC on a generic bipolar impedance Z we impose the following

relation. V2 = −ZI2 by using this relation together with eq. (6.4) we obtain at the first port
the relation V1 = −ZI1. This results can be expressed by saying that at the first port of a NIC
we obtain the negative of the impedance we are using to close its second port.

Once we have introduced those two fundamental networks, we can restrict our interest on

1Loking at eq. (6.3) and (6.1) we can recognize the constitutive relations we had used to define an ideal
transducer. This fact is not surprising if we look at the result shown in [Premoli et al. (2004)] where it is said
that the gyrator and the ideal transformer are the only two networks that can absorb istantaneous power from
one port and supply the same amount of istantaneous power from the other port. This means that the Y and
Z model of an ideal transducer can be thought as an hybrid ideal transformer while the G and H model of an
ideal transducers can be thought as an hybrid gyrator.
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the synthesis of those basic section. We will achieve this task in the following sub section.

6.2.2 RC-Active synthesis of a gyrator inductors and a NIC.

As we had said before there exist a lot of possible synthesis techniques in order to design an

RC-Active filter. By the way we will restrict our research to the synthesis involving ideal opera-

tional amplifiers (OPA) resistors and capacitors only. As well known an operational amplifier is

a three terminals network that can be thought as a grounded voltage controlled voltage source

having infinite gain. The fact that this voltage source is grounded implies the existance of an

intrinsic ground in each circuit containing OPAs. This reason forces us to consider each bipolar

element as a two port unbalanced network. For example a RC-Active floating inductor must

be thought as the circuit shown in fig (6-3).
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Figure 6-3: Equivalent circuit of an RC-Active floating inductor.

The same argumentation holds each time we want to consider a floating port. For example we

need to design an ideal transformer having a balanced port and an unbalanced port. When we

are implementing a synthesis of this element by using OPAs we need to consider this element

as a three ports unbalanced network as shown in fig. (6-4).
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Figure 6-4: Equivalent circuit of an RC-Active ideal transformer having one balanced and one

unbalanced port.
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As we said in the previous subsection an ideal transformer can be obtained by the chain con-

nection of two gyrators, consequently we are not interested in the synthesis of the circuit shown

in fig. 6-4. Conversely we are interested in the synthesis of a four terminals gyrator whose

equivalent circuit is shown in fig. 6-5.
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Figure 6-5: Equivalent circuit of an RC-Active gyrator having one balanced and one

unbalanced port.

An interesting OPA implementation of the circuital network shown in fig. (6-5) is due to G. J.

Deboo [?]. This circuit is shown in fig.(6-6).
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Figure 6-6: Deboo Gyrator-Type circuit.
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This circuit is really suitable for our purpose; in fact it can be used to realize all the positive

components we need. In fact by connecting a capacitor of nominal value C at the third port of

the circuit, we can obtain between the first and the second port a floating inductance of nomi-

nal value C/G2 where G is the conductance of the resistors shown in fig. (6-6). The described

circuit allows us to obtain a floating synthetic inductor by means of three OPAs. Alternative

circuital solutions involving Three OPAs can be found in [Reddy (1975)],[Senani (1978)] and

[Senani (1989)]. In the literature can be found also oldest solutions of active floating inductors

synthesized using four OPAs [Riordan (1967)] or, in more recent times solutions involving the

use of two OPAs only [Senani (1987)]. There exist also a circuital scheme due to H. J. Orchard

and A. N. Willson [Orchard et al. (1974)] involving the use of one OPA only in order to obtain

a floating inductor. This scheme, shown in fig. (6-7), is very relevant from a theorical point

of view by the way its high sensitivity to the variation of the components value makes it not

suitable for practical use.
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Figure 6-7: Orchard and Willson floating inductor using one OPA only.

Alternatively we can use the Deboo circuit shown in fig. (6-6) in order to obtain a gyrator

having both its port grounded by short cutting the first or the second port. In both the cases

one of the three OPAs in the circuit together with some resistors becomes redundant and

can be removed, so that is possible to obtain a grounded gyrator by means of two OPAs. In

[Antoniou (1968-1)] was shown that under certain conditions this circuit can become unstable
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and has been proposed some circuital modifications in order to solve this problem. As we said

above in order to obtain a floating ideal transformer whose equivalent circuit is shown in fig.

(6-4) we can connect an unbalanced gyrator with a balanced one. The argumentation given

above should make clear that this synthesis requires the use of three OPAs. Alternatively a

synthesis technique based on the scattering matrix was proposed in [Mussman et al. (1972)]

this approach require 3 OPAs for a grounded gyrator and 4 OPAs for a grounded transformer.

Another interesting solution able to produce a grounded transformer involving the use of two

OPAs only is given in [Yanagisawa et al. (1976)]. The circuital scheme is given in fig. (6-8).

−
+

−
+

G

G

G

G

nG

G( 1)nG n −

2 ( 1)G n −

1V
2V

1I
2I

−
+
−
+

−
+
−
+

G

G

G

G

nG

G( 1)nG n −

2 ( 1)G n −

1V
2V

1I
2I

Figure 6-8: Yanagisawa and Bhattacharjee grounded transformer.

In order to complete this brief overview we need to show some possible implementations of a

NIC. First of all we want to show a simple circuital scheme involving the use of one OPA only

able to realize a grounded negative impedance. This scheme is shown in fig (6-9).
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Figure 6-9: Grounded negative impedance converter.

The second scheme we want to show is able to realize a floating negative impedance by using

two OPAs. This scheme due to A. Antoniou [Antoniou (1965)] is shown in fig (6-10).
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Figure 6-10: A. Antoniou Floating negative impedance converter.

An analysis of the circuital scheme of fig. (6-10) brings to the following relation:

⎧⎨⎩ V1 − V2 = − Y2
Y1Y3

I1

I1 = −I2
(6.5)
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Looking at eq. (6.5) it is easy to realize that a negative floating capacitor can be obtained by

choosing Y1 and Y2 to be resistors and Y3 to be a capacitor while a negative floating inductor

can be obtained by choosing Y1 and Y3 to be resistors and Y2 to be a capacitor. We have now

all we need in order to design each of the circuital element, but before choosing this subsection

we like to focus our attention on the number of OPA needed to implement a basic section of

the circuital network described in the previous chapters. We will focus our attention on the

dF
dt → Π synthesis because, as we have shown in the second chapter, in this case it is possible
to extract a basic section for both the one node to one port synthesis and the one node to

n port synthesis. The basic section for the one node to one port synthesis is shown in fig.

(2-19) for n = 6. For a system of order 2n we need n inductors part of them are negative

and part of them are positive. Assuming that we can use 2 OPAs for each of them we need

to use 2n OPAs for each module. Similarly we can consider the basic section of the one node

to n ports synthesis whose basic section is shown in fig.(2-35). For a system of order 2n we

need one floating inductor and n− 1 ideal transformers having a floating port and a grounded
one. Assuming we need two OPAs for the inductor and five OPAs for the transformer we need

5n− 3 OPAs for each module. This means that this kind of network requires a larger number
of OPAs compared with the previous one. This argumentation suggests to use the one node to

one port synthesis and gives a practical motivation to the study of the termination condition

for this kind of network.

6.2.3 Some new strategies of synthesis

In the previous subsection we had produced an overview on the historically proposed synthesis

devoted to the realization of gyrators inductors and NICs then we had given a rough estimation

of the numbers of active components needed in order to obtain a basic section of each one of

the circuital network proposed presented in the second chapter. As we have seen this approach

results in a very large circuital complexity, moreover it doesn’t take care of the modality of

interaction of each component with the other ones. This means that the connection of two stable

active components can result in an unstable network. In this subsection we propose some novel

synthesis devoted to the implementation of a whole basic section considered as a multiports

system. As it will be clear in the following of this subsection, this strategy will strongly
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reduce the number of active components needed of each module, moreover this remarkable

simplification allows us to perform an analytical study of the stability of the system when the

active components are modelled including some not ideal features like the finite gain and the

finite bandwidth.

Tension Normalized fourth order line

A first solution devoted to the implementation of a basic section of a fourth order line has been

proposed in [Panella et al.(2005-1)], in this work a one node to one port network associated

with a fourth order line is proposed as the chain connection of a large number of basic section

as shown in fig. (6-11).
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Figure 6-11: A fourth order line as the chain connection of a large number of basic sections.

Focusing our attention on a single module show in fig. (6-12), we can write some relations

among the quantities describing this system as follows:

Vi =
¡
ICi−1 + IBi − ICi+1 + IBi+1

¢
ZA

IBi = (Vi−1 − Vi)YB (6.6)

ICi = (Vi−1 − Vi+1)YC

where

Za =
1

sC
, YB =

1

sL
, YC = − 1

s4L
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Figure 6-12: Basic section of a fourth order line.

The basic idea of this kind of synthesis is to normalize the current involved in this basic section

with respect of the impedance YB introducing three new tension lines taking in count for the

currents We put a bar over this virtual tension in order to distinguish them from the real ones.

Performing the described normalization eq. (6.6) become:

Vi = (V
C
i−1 + V

B
i − V

C
i+1 + V

B
i+1)TA

V
B
i = (Vi−1 − Vi)TB (6.7)

V
C
i = (Vi−1 − Vi+1)TC

where

TA =
1

s2CL
, TB = 1, TC = −1

4
(6.8)

Eq. (6.7) can be intepreted as the relations between blocks having transfer function TA TB and

TC . A blocks diagram able to implement eq. (6.7)
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Figure 6-13: Blocks diagram for a tension normalized fourth order line.

It should be noted that in such a circuit a true line characterized by means of the pair (V, I)

is splitted in two lines one bringing the real tension signal and the other one bringing a virtual

tension proportional to the current. The next step is to show a physical implementation of the

transfer functions TA TB and TC . TB and TC are simple gain transfer functions and can be

implemented by means of a classical scheme shown in fig. (6-14).

The implementation of TA is shown in fig. (6-15).
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Figure 6-15: Implementation of the trasfer function TA.

177



A comparison between the performance of the described synthesis with respect to the theorical

network are given in [Panella et al.(2005-1)].

Optimized RC-active synthesis I

An ulterior improvement to the synthesis of the network under exam can be obtained by making

a different choice for the coefficients α2, β2, α1 and β1 of the basic section shown in fig. (2-17).

As we explain in the second chapter we need to fulfill the following relation α2−β2−α1+β1 = 2.
The choice we did in the previous chapter was α2 = 1, β2 = 0, α1 = 0 and β1 = 1. Here we show

how a different choice of those parameters can make the RC-active synthesis much more simple.

In fact by choosing α2 = 2, β2 = 0, α1 = 0 and β1 = 0 all the (α1, β1) elements become (0, 0)

elements i.e. resistor of positive and negative value. It is quite simple to understand that the

positive resistors don’t require any active synthesis while the negative one require the use of a

NIC. On the other side the (α2, β2) elements become super capacitor and can be implemented

by the chain connection of an integrator having a transfer function T = 1/s and a normal

capacitor. An optimized solution can be obtained by splitting the transfer function T in the

following way:

T = T1T2 = (−1
s
)(−1) = 1

s

This trick allows us to access to a negative copy of the "integrated node" so that connecting

positive resistors to it they will appear as negative ones. a schematic implementation of this

technique for a fourth order system is shown in fig. (6-16).
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Figure 6-16: Optimized RC-active synthesys of a fourth order line.
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It should be noted that in this kind of synthesis the number of required active components is

constant and does not depend on the order of the system. The last thing we need to mention

before to close this section is to give an implementation of the transfer function T1 and T2.

T1 is a NIC and it can be implemented by using the one OPA scheme shown in fig (6-9) T2

can be obtained by the same scheme by interchanging the resistor closer to the first port with

a capacitor. The circuit obtained in this way derives the current instead of integrating the

voltage, but from a practical point of view those two operations are equivalent. Concluding we

can say that the Optimized RC-active synthesis (ORCSI) require the use of two OPAs for each

module, moreover a single capacitor is used to realize all the positive and the negative inductor

so that it is possible to realize proportional value of inductance by using proportional resistors.

The consideration expressed in this section are collected in [Panella et al. (2005-2)].

Optimized RC-active synthesis II

The ORCSI synthesis proposed in the previous section produces the needed ideal network when

the OPAs are considered ideal, but what happens when we include in the model some not

ideal feature? In [Paschero et al. (2006)] the stability of the ORCSI circuit was investigated

considering for the gain of the OPAs a dominant pole model. More precisely we assume the

gain of each OPA to assume the following form:

A(s) =
A0

(1 + τs)

where

τ =
1

2πfc

The stability of the system is investigated by plotting the roots locus for a fixed value of the

parameter fc and using A0 as varying parameter. The root locus that the ORCS I produces for

a wide range of variation of the parameter fc (0 Hz to 3000 Hz)2 is shown in fig. (6-17).

2For fc > 3000 Hz the system can be made stable.
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Figure 6-17: Root locus for the ORCSI synthesis.

Looking at the figure it is possible to note that the poles of the system converge to the expected

value on the imaginary axis from values having positive real part. This means that the system

must be considered unstable for finite values of the gain A0. The system can be made stable by

increasing the bandwidth over some kHz by the way the real components commercially available

do not have a so good bandwidth making this system not usable in the practice. This problem

can be solved in two different ways. The first one has been proposed in [Paschero et al. (2006)]

and it is based on a different circuital scheme of comparable complexity. This new scheme is

shown if fig. (6-18).
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Figure 6-18: Circuital scheme for the ORCSII synthesis.
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Performing a stability analysis of this new scheme we obtain the root locus shown in fig. 6-19.
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Figure 6-19: Root locus for the ORCSII synthesis.

Looking at the picture it is clear that the poles of the system converge to the ideal value for

values having negative real part when the cut frequency fc is greater than 130 Hz3. This means

that the this system can be considered stable when the ideal component are replaced with the

real ones. A useful inspiration for finding a different solution to the stability problem of ORCSI

synthesis can be found in [Senani (1989)]. The basic ideal is to replace each OPA with the pair

nullator norator and to apply some circuital transformation involving those bipolar elements.

A nullators norators model of ORCSI is shown in fig. 6-20.

3This value has to be considered indicative. In fact it depend on the coiche of the componets and the frequancy
of the poles we need to obtain. By the way the fact that under similar condition the ORCSII sinthesis can be
made stable for smaller values of fc with respect ot the ORCSI solution can be considered a general result.
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Figure 6-20: Nullators and Norators model of ORCSI.

Looking at the figure it is clear that a third nullator labeled with NU3 can be connected in

the circuit without producing any side effects. Now we can come back to OPAs by pairing

each norator with a nullator and removing the redundant nullator. It is quite easy to realize

that we can produce six different configurations, moreover if we consider real OPAs we can

make a distinction between the inverting and the not inverting terminals. Having two OPAs we

have four different ways to choose the sign. This additional degree of freedom let the possible

configurations rise to twentyfour. Performing the stability analysis trough the examination of

the root locus we can realize if there exist a configuration performing better than the original

version of ORCSI. In the table (6-1) we list the six fundamental configurations.

OPA1 OPA2

Configuration 1 NO1 NU1 NO2 NU2

Configuration 2 NO2 NU1 NO1 NU2

Configuration 3 NO1 NU1 NO2 NU3

Configuration 4 NO2 NU1 NO1 NU3

Configuration 5 NO1 NU2 NO2 NU3

Configuration 6 NU2 NO2 NO1 NU3

Table 6-1
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Each of those configurations will admit four different subconfigurations that we will label with

++,+−,−+ and − − . In the following we will report the plots of the roots locus for each

configuration. In order to save some space we will group the four subconfigurations of each

configuration in the two pairs (++,−−) and (+−,−+) . In fact it is quite easy to realize that
each subconfiguration belonging to the same pair can be derived by the same circuital scheme

by only changing the sign of the gain of each OPAs. We will plot in green (light gray) the locus

for 0 < A0 < ∞ (i.e.++ and +−) and in black the locus for −∞ < A0 < 0 (i.e.−− and −+).
In fig. (6-21)..(6-26) are shown the root locus for the six possible configuration.

Figure 6-21: ORCSI root locus configuration1. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.

Figure 6-22: ORCSI root locus configuration2. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.
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Figure 6-23: ORCSI root locus configuration3. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.

Figure 6-24: ORCSI root locus configuration4. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.

Figure 6-25: ORCSI root locus configuration5. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.
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Figure 6-26: ORCSI root locus configuration6. a) ++ in green (ligth gray) and −− in black.
b) +− in green (ligth gray) and −+ in black.

A visual inspection of those root loci can give us some qualitative information on the behavior

of the totality of the possible configurations. It is found that the configuration 1 can be made

stable by choosing the ++ subconfiguration while it is unstable for all the other subconfigura-

tions. The configuration 2 can be made stable by choosing the −+ subconfiguration while it is
unstable for all the other subconfigurations. The configuration 3 is unstable for all the possible

subconfigurations. The configuration 4 can be made stable by choosing the−+ subconfiguration
while it is unstable for all the other subconfigurations. The configuration 4 can be made stable

by choosing the +− subconfiguration while it is unstable for all the other subconfigurations.
Finally the configuration 6 can be made stable by choosing the ++ subconfiguration while it is

unstable for all the other subconfigurations. Those argumentations make clear that there exist

only four configurations among the twentyfour ones that can be made stable depending on the

position of the cut frequency of the OPAs gain. A quantitative measure, even if indicative, of

the critical bandwidth can be numerically evaluated. Using for the component the same values

we choose before we can obtain results comparable with the previous ones. Those results are
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listed in table (6-2).

++ +− −+ −−
Configuration 1 fc > 3000 X X X

Configuration 2 X X fc > 150 X

Configuration 3 X X X X

Configuration 4 X X fc > 165 X

Configuration 5 X fc > 0 X X

Configuration 6 fc > 2360 X X X

Table 6-2

Looking at table (6-2) it can be noted that among the five stable configurations the fifth one

is independent from the cut frequancy and must be considered the most interesting one. Two

of them are comparable with the ORCSII synthesis and can be considered still valuable while

the remaining two are not usable in the practice.
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Chapter 7

Concluding remarks

7.1 Conclusions

In this work we have shown how it is possible to obtain a circuit analogue of a differential

operator able to describe a large number of physical phenomena. We describe two different

synthesis techniques. The problem of deriving a suitable network able to realize the most

general boundary condition has been studied and completely solved for both the described

synthesis. One of this technique has to be considered general and can be applied in order to

find a circuit analogue to a different differential operator. The notion of circuit is extended to a

very general contest. This means that the same circuit can assume a different physical meaning

once the general quantity defining each port are specified.

In this work the transducers are modeled as hybrid two ports networks, where the word

hybrid is used to put in evidence that the two ports are in general characterized by quantities

having different physical unit. Some simple physical device has been described using this

approach.

A circuital model of a multidimensional coupled system is given and is used in order to show

some possible example.

In the last part of the work it is given an overview on the classical synthesis technique and are

been proposed some new RC active circuit including a reduced number of active components.
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7.2 Recommendations for future works

The circuital approach used in this work brings to a pure algebrical formulation. This de-

scription is very suitable in order to realize a digital elaboration on this kind of system. This

elaboration can be devoted to a large number of application, among them we can highlight

the vibration damping from whom this work take the inspiration. Another problems of great

interest are the harvesting the damage detection, the insonorization ecc. This work doesn’t not

look into those application but can be fruitfully used in order to explore those and a lot of other

problems.
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