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Chapter 1

Introduction

Let X be a smooth, projective, absolutely irreducible curve over

the �nite �eld Fq and let K be the function �eld of X. For any

integer n > 0 let an denote the number of places of K of de-

gree n. Then Nn =
∑

d|n dad is the number of rational points over

the constant �eld extension KFqn. The Weil inequality (see [16])

states that

|Nn − qn − 1| ≤ 2gqn/2,

where g is the genus of the curve. A search for curves with many

points, motivated by applications in coding theory, showed that

this bound is optimal when the genus g is small compared to q

(see [6] for further details). When g is large compared to q sharper

estimates hold (see for example [10] for an asymptotic result or
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CHAPTER 1. INTRODUCTION 2

also [15] Chapter V). A similar problem arises from �nding curves

without points of degree n when n is a positive integer. In partic-

ular when X has no points over Fqn then g ≥ qn−1
2qn/2

. The genus 2

case was already considered in [11]. Moreover in a recent paper,

E. Howe, K. Lauter and J. Top [9] show that the previous bound

is not always sharp when n = 1 and g = 3 or 4. In the same

paper they cite an unpublished result of P. Clark and N. Elkies

that states that for every �xed prime p there is a constant Cp > 0

such that for any integer n > 0, there is a projective curve over

Fp of genus g ≤ Cpnp
n without places of degree smaller than n.

In this paper we prove that this bound is not optimal. In fact

we prove the following result.

Theorem 1.1. For any prime p there is a constant Cp > 0 such

that for any n > 0 and for any power q of p there is a projective

curve over Fq of genus g ≤ Cpq
n without points of degree strictly

smaller than n.

We show the existence of such curves by means of class �eld

theory. The basic facts and de�nitions about this topic are showed

in the third Chapter. In the second Chapter we give the basic

de�nitions and results about the arithmetic of function �elds. In
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the forth Chapter we generalize a result in [1] about the number

of ray class �eld extensions with given conductor m and we use

it in order to prove the bound of Clark and Elkies. In the last

Chapter the sharper estimate of Theorem 1.1 is proved. A table

of examples for q = 2 and n < 20 is also given.
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Chapter 2

Background and notation

By a curve over Fq we mean a smooth, projective, geometrically

irreducible curve over the �nite �eld Fq of characteristic p. Let X

be such a curve and let K be the associated function �eld. The

�eld K is a �nite extension of Fq(x) where x is a transcenden-

tal element over Fq (see [15] Appendix B for more details). The

constant �eld of K is the maximal �nite extension of Fq in K.

Let Y be a curve with associated function �eld L. A morphism

f : Y → X is a covering of X if it is surjective and separable (see

[15] Appendix A). A covering is abelian if the associated exten-

sion L/K is Galois with abelian Galois group. The degree of the

extension is called the degree of the covering.

A place of K is a maximal ideal P in some discrete valuation

4



CHAPTER 2. BACKGROUND AND NOTATION 5

ring OP ⊆ K (i.e. a principal domain in K with exactly one non-

zero maximal ideal). The degree of a place is the degree of the

residue �eld FP = OP/P .

To every place is associated a discrete valuation that is denoted

by vP (see [15] Chapter I). Let L/K be an extension of K and

let Q (resp. P ) be a place of L (resp. K). We write Q|P and

we say Q lies over P if Q ∩ K = P . The valuation vP can be

extended in a unique way to a discrete valuation vQ over Q. Then

the two valuation are related as follows: there is a positive inte-

ger e(Q|P ) > 0 such that vQ(x) = e(Q|P )vP (x) for all x ∈ K.

A place Q over P is unrami�ed if e(Q|P ) = 1. Otherwise it is

rami�ed. A rami�ed place Q|P is wild if p|e(Q|P ) and is tame

otherwise. A place P of K is unrami�ed in L/K if all the places

Q over P are unrami�ed, otherwise it is rami�ed. The extension

L/K is unrami�ed if all the places of K are unrami�ed, other-

wise it is rami�ed. Let f(Q|P ) denote the degree [FQ : FP ] of

the �eld extension FQ/FP , then we have the well-known formula∑
Q|P f(Q|P )e(Q|P ) = [L : K]. If L/K is a Galois extension

then f(Q|P ) = f(Q′|P ) and e(Q|P ) = e(Q′|P ) for any place Q

and Q′ in L over P so we get the simpler formula ref = n, where

n is the degree [L : K], the integer e is e(Q|P ), the integer f is
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f(Q|P ) and r is the number of places Q of L over P . In the sequel

we say that a place P is totally inert if f = n, is totally split if

r = n and is totally rami�ed is e = n. Similarly P is partially

inert if f > 1, is partially split if r > 1 and is partially rami�ed if

e > 1.

The next Lemma is an elementary tool when we want to com-

pute the rami�cation index in the compositum of two function

�elds.

Lemma 2.1 (Abhyankar's Lemma). Let K ′/K be a �nite sep-

arable extension of function �elds such that K ′ = K1K2 is the

compositum of two function �elds K1 and K2 with K ⊆ K1 and

K ⊆ K2. Let P ′ be a place of K ′ and let P = P ′ ∩ K and

Pi = P ′ ∩ Ki be the places under P ′ in K and Ki for i = 1, 2.

If at least one of the extensions P1|P or P2|P is tame, then

e(P ′|P ) = lcm{e(P1|P ), e(P2|P )}.

It follows from the previous Lemma that the compositum of

two unrami�ed extensions is still unrami�ed.

A divisor
∑

P nPP is a �nite formal sum of places. A divisor is

e�ective if nP ≥ 0 for every place P . There is a partial ordering

relation D ≤ D′ whenever D′ =
∑
n′PP has coe�cients nP ≤ n′P
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for every place P . The degree of D is the integer
∑

P nPdeg(P ).

The support Supp(D) ofD is the set of places P such that nP 6= 0.

We refer to [15] for the de�nition of the divisor Diff(L/K).

This notion is important because of the following Lemma.

Lemma 2.2 (Hurwitz Genus Formula). Let K be a function �eld

of genus gK with constant �eld Fq and let L/K be a �nite sep-

arable extension with constant �eld Fqd. Then the genus of L is

given by

2gL − 2 =
[L : K]

d
(2gK − 2) + deg(Diff(L/K)). (2.1)

We need only the following result for computing the degree of

the di�erent.

Lemma 2.3 (Dedekind's Di�erent Theorem). Let

Diff(L/K) =
∑
P

∑
P ′|P

d(P ′|P )P ′

be the di�erent of L/K, where P ranges over the places of K

and P ′ over the places of L. Then d(P ′|P ) ≥ e(P ′|P ) − 1 and

equality holds if and only if the place P ′|P is not wild rami�ed.

In particular d(P ′|P ) = 0 if and only if P ′|P is unrami�ed.

The set of the places of K is denoted by PK and the set of

divisors of K is denoted by DK . The degree zero divisors are
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denoted by D0
K . We can associate to every element z ∈ K its

principal divisor (z) ∈ D0
K . The set of principal divisors is denoted

by Prin(K). It is a well-known fact that the order of the quotient

group D0
K/Prin(K), denoted by hK , is �nite and it is called the

divisor class number of K (see [15], Chapter V).

Let L/K be a �nite Galois extension.

De�nition 2.1. Let Q be a place of L and P = Q∩K the place

of K under Q. The decomposition group of Q is the stabilizer of

Q in L

D(Q|P ) = {σ ∈ Gal(L/K)| σ(Q) = Q}.

The �xed �eld of D(Q|P ) in L is called the decomposition �eld

of Q.

Let σ ∈ Gal(L/K). We de�ne an isomorphism

σ : OQ/Q→ Oσ(Q)/σ(Q)

by

σ(z) = σ(z), z ∈ OQ,

where z ∈ FQ = OQ/Q is the residue class of z in FQ and

σ(z) ∈ Fσ(Q) is the residue class in Fσ(Q). When σ ∈ D(Q|P ),

the image σ belongs to the subgroup Gal(FQ/FP ).
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Proposition 2.1. Let Q be a place of L and let P = Q∩K. The

following sequence is exact

1→ I(Q|P )→ D(Q|P )→ Gal(FQ/FP )→ 1,

where I(Q|P ) is the kernel of the map σ → σ restricted toD(Q|P ).

Moreover |D(Q|P )| = e(Q|P )f(Q|P ) and |I(Q|P )| = e(Q|P ).

De�nition 2.2. The group I(Q|P ) of Proposition 2.1 is the in-

ertia group of Q.

If Q|P is unrami�ed then I(Q|P ) = {1} and D(Q|P ) is a

cyclic group isomorphic to Gal(FQ/FP ). In particular there is a

generator Φ ∈ D(Q|P ) such that the image Φ in Gal(FQ/FP ) is

the Frobenius morphism z → zu for z ∈ FQ, where u = qdeg(P )

is the cardinality of FP . This element Φ ∈ D(Q|P ) is called the

Frobenius automorphism Frob(Q|P ) of Q.

Let Q′|P be a place of L over P distinct from Q. Then

Q′ = σ(Q) for at least one σ ∈ Gal(L/K) and so I(Q′|P ) =

σI(Q|P )σ−1 andD(Q′|P ) = σD(Q|P )σ−1. Moreover Frob(Q′|P ) =

σFrob(Q|P )σ−1. In particular when Gal(L/K) is an abelian

group we get I(Q|P ) = I(Q′|P ) and similarlyD(Q|P ) = D(Q′|P )

and Frob(Q|P ) = Frob(Q′|P ) so we can de�ne without ambigu-

ity the Frobenius automorphism and the decomposition group at
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P as Frob(P ) = Frob(Q|P ) and D(P ) = D(Q|P ) respectively.

Proposition 2.2. Let L/K be an abelian extension and M be a

sub�eld of L containing K. For any place P of K we denote by

Frob(P ) the Frobenius automorphism in Gal(L/K). Then P is

totally split in M/K if and only if Frob(P ) ∈ Gal(L/M).

The following Lemma (see [12], Theorem 1) is an explicit ver-

sion of the well-known Chebotarev Theorem (see [5] Chapter 2).

Lemma 2.4. [Explicit version of the Chebotarev Theorem] Let

C ⊆ G be a conjugacy class in the Galois GroupG = Gal(M2/M1)

of a �nite extension M2/M1. Assume that the constant �eld of

M1 and M2 are the same. Let πC(d) be the number of places P

over M1 of degree d such that the coniugacy class [Frob(P )] is C

and let π(d) is the number of unrami�ed places P ofM1 of degree

d. Let ψC(d) =
∑

r|d rπC(r) and ψ(d) =
∑

r|d rπ(r). Then ψC(d)

is bounded by

|ψC(d)− |C|
|G|

ψ(d)| ≤ 2gM2

|C|
|G|

qd/2 + deg(D),

where D is the divisor given by the formal sum of all the rami�ed

places of M1.

Proof. Let χ : G → C∗ be a class function of G. For any un-

rami�ed place P of M1 and for any integer n ≥ 0 we de�ne
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χ(P n) = χ([Frob(P )]n) as the evaluation by χ of the n-power of

the conjugacy class of the Frobenius automorphism of P . When

P is rami�ed we de�ne

χ(P n) =
1

e(P )

∑
ω∈I(P ′|P )

χ([ωσ(P ′)]n),

where P ′ is a place ofM2 over P and σ(P ′) is an element of the de-

composition groupD(P ′|P ) such that its image σ inGal(FP ′/FP ),

as in Proposition 2.1, is the Frobenius morphism. It is easy to see

that χ(P n) is well-de�ned. We say that χ is averaged over the

rami�ed places. We de�ne

ψχ(d) =
∑
r|d

∑
deg(P )=r

χ(P d/r),

where P runs over the places of M1.

We denote by Ĝ the set of irreducible characters of G and by

ζMi
(t) =

∏
P∈PMi

(1− tdeg(P ))−1

the zeta function of Mi for i = 1, 2. By the Riemann hypothesis

for curves the polynomial ζMi
(t)(1− t)(1− qt) of degree 2gMi

(see

[15] Chapter V) is equal to

gi∏
j=1

(1− αi,jt)(1− αi,jt)
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for suitable algebraic integers αi,j such that |αi,j| =
√
q, where gi

is the genus of Mi.

For a given a character χ ∈ Ĝ we de�ne the L-function L(t, χ)

as 1 when t = 0 and

d

dt
log(L(t, χ)) =

∞∑
r=1

ψχ(r)tr−1,

when |t| < 1
q . This series is absolutely convergent for |t| < 1

q

so L(t, χ) admit an analytic continuation to the whole complex

plane.

It is easy to see that ζM1
(t) = L(t, χ0), where χ0 is the trivial

character, as one can easily verify by using the Taylor series for

the logarithm of ζM1
(t). In a similar way we can verify the relation

d

dt
log ζM2

(t) =
∑
χ∈Ĝ

d

dt
logL(t, χ)χ(1).

It follows that

ζM2
(t) = ζM1

(t)
∏

χ∈Ĝ, χ6=χ0

L(t, χ)χ(1).

When χ ∈ Ĝ is not the trivial character, the L-function L(t, χ)

is a polynomial (see [16]). By the Riemann hypothesis, this poly-

nomial can be written as
∏k

h=1(1 − βht) with |βh| =
√
q for

h = 1, . . . , k and the degree k of L(t, χ) is bounded by k ≤ 2gM2
.
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It follows that

d

dt
log(L(t, χ)) =

∞∑
r=1

ψχ(r)tr−1 =
∞∑
r=1

(
k∑
i=1

βri )t
r

and so

|ψχ(r)| ≤ deg(L(t, χ))
√
qr ≤ 2gM2

√
qr.

By the orthogonality relations for irreducible characters

∑
χ∈Ĝ

χ(C)
∑

deg(P )|d

χ(P ) =
∑

[Frob(P )]=C

|CG(C)| = |G|
|C|

ψC(d),

where P runs over the unrami�ed places of M1 and CG(C) is the

centralizer of C in G.

Similarly, when P is a rami�ed place, the sum
∑

χ∈Ĝ χ(C)χ(P )

is bounded by G
C so we can estimate

| |G|
|C|

ψC(d)− ψ(d)| ≤ |
∑
χ 6=χ0

∑
P 6∈Supp(D)

χ(C)χ(P )|+
∑

P∈Supp(D)

|G|
|C|

≤
∑
χ6=1

√
qd/2χ(1)deg(L(t, χ)) +

∑
P∈Supp(D)

|G|
|C|

≤ 2gM2

√
qd/2 +

|G|
|C|
|D|,

and the Lemma follows.
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Class �eld theory

3.1 Main de�nitions

In this section we introduce the Artin map and the ray class group.

The explicit construction of ray class �elds by means of Carlitz

modules will be showed in the next section.

De�nition 3.1. Let Q be a place of L lying over the place P of

K. We de�ne, for every integer n ≥ −1, the n-th rami�cation

group Gn(Q|P ) as

Gn(Q|P ) = {σ ∈ Gal(L/K)| vQ(σ(x)−x) ≥ n+1 for all x ∈ OQ}.

It follows by the de�nition that G−1(Q|P ) = D(Q|P ) and

G0(Q|P ) = I(Q|P ).

WhenQ′ = σ(Q) for a certain σ ∈ Gal(L/K) thenGn(Q
′|P ) =

14
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σGn(Q|P )σ−1 for all n ≥ −1. It follows that, when L/K is an

abelian extension, the group Gn(Q|P ) coincide with Gn(Q
′|P ) for

every place Q′ over P and for every n ≥ −1. In this case we can

also denote Gn(Q|P ) by Gn(P ).

We can extend the previous de�nition to any real number

u ≥ −1 by

Gu(Q|P ) = G[u](Q|P ),

where [u] is the integral part of u. Let gi = |Gi(Q|P )| be the

order of the group Gi(Q|P ) for i ≥ −1. We de�ne a real function

φ : [−1,+∞) → [−1,+∞) such that φ(u) = u for −1 ≤ u ≤ 0

and

φ(u) =
1

g0
(g1 + g2 + . . .+ g[u] + (u− [u])g[u]+1),

for u ≥ 0. It is very easy to see that the function φ is continuous,

strictly increasing, piecewise linear and concave on [−1,+∞). We

denote by ψ the inverse function. Then ψ is continuous, piecewise

linear, strictly increasing and convex on [−1,+∞).

Lemma 3.1. The real number ψ(n) is an integer for any integer

n ≥ −1.

Proof. The Lemma is trivial for n = −1 and n = 0. For n > 0 let
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u be the real number ψ(n). Then

g0φ(u) = g0n = g0 + . . .+ g[u] + (u− [u])g[u]+1,

by de�nition of φ. It follows that

u− [u] =
1

g[u]+1
(g0n− g0 − . . .− g[u]).

But G[u]+1(Q|P ) is a subgroup of Gi(Q|P ) for i < [u]+1 so u−[u]

is an integer by the Lagrange Theorem, so u is an integer.

A partial converse of the previous Lemma is the following.

Proposition 3.1 (Hasse-Arf Theorem). Let n ≥ −1 be an inte-

ger. Assume Gn(Q|P ) 6= Gn+1(Q|P ). Then φ(n) is an integer.

De�nition 3.2. We de�ne the upper rami�caton groupGu(Q|P ) =

Gψ(u)(Q|P ).

The completion ofK with respect to the valuation vP is unique

and we denote it by K̂P . The corresponding valuation is also

denoted by vP . In the sequel UP denotes the unit elements in

OP . We denote by ÔP and ÛP the valuation ring of K̂P and

the group of units of ÔP , respectively. It is easy to check that

ÔP = {x ∈ K̂P | vP (x) ≥ 0}. The n-th unit group is de�ned as

Û
(n)
P = {x ∈ ÛP | vP (x− 1) ≥ n},
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when n > 0 and Û
(0)
P = ÛP .

Assume now M is a complete �eld with respect to the valua-

tion v. Let L/M be a �nite abelian extension. There is a map

θL/M : M ∗ → Gal(L/M),

called the local Artin reciprocity map, that satis�es:

1. Ker(θL/M) = NL/M(L∗), where NL/M is the norm map;

2. if L/M is unrami�ed then θL/M(x) = Frob(P )v(x) for all

x ∈M ∗;

3. the image of U
(n)
M , the n-th unit group of M , is the upper

rami�cation group Gn(L/M) for all n ≥ 0.

We are going to de�ne a global Artin map of a function �elds

extension L/K in terms of the local Artin map θL̂Q/K̂P
, where P

runs over the places of K and Q is a place of L over P .

De�nition 3.3. The adele ring of K is the set

AK = {(xP )P , xP ∈ K̂P |xP ∈ ÔP for all but �nitely many places}.

Where P runs over the set PK of places of K.

The �eld K is canonically embedded in the adele ring AK via

the diagonal morphism.
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De�nition 3.4. The unit group JK of AK

JK = {(xP )P , xP ∈ K̂∗P | xP ∈ ÛP for all but �nitely many places}.

is called the idele group of K.

The idele group JK is a topological group. A base for the

topology is given by the neighborhoods of the unity

∏
P∈S

K̂∗P ×
∏
P 6∈S

ÛP ,

where S is a �nite set of PK .

The multiplicative group K∗ is canonically embedded in JK .

De�nition 3.5. The quotient group CK = JK/K
∗ is the idele

class group of K.

The class group is a topological group with respect to the quo-

tient topology.

Let L/K a �nite abelian extension of K. We de�ne the global

Artin reciprocity map θL/K : JK → Gal(L/K) as the product of

the local Artin reciprocity θL̂Q/K̂P
, where P runs over the places

of K and Q is a place of L over P . The map θL/K is well-de�ned

because Gal(L̂Q/K̂P ) ∼= D(Q|P ) = D(P ) (see [13] Chapter 2)

and so θL̂Q/K̂P
does not depend on the choice of Q.
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The multiplicative group K∗ is contained in the kernel of θL/K

so we can de�ne an homomorphism

(·, L/K) : CK → Gal(L/K)

induced by the global Artin reciprocity. We call (·, L/K) the

norm residue symbol of L/K. We describe the kernel of this

homomorphism.

The norm map NL/K : L∗ → K∗ can be extended to a mor-

phism

NJL/JK : JL → JK

such that the idele (xQ)Q∈PL is sent to (
∏

Q|P NL/K(xQ))P∈PK .

Let N L
K = (K∗NJL/JK(JL))/K∗ ⊆ CK . Then N L

K is a �nite

index subgroup of CK .

Theorem 3.1 (Artin Reciprocity). For any �nite abelian exten-

sion L/K there is a canonical isomorphism CK/N L
K
∼= Gal(L/K)

induced by the norm residue symbol.

For any open subgroupM of CK of �nite index there is a �nite

abelian extension L/K such that N L
K = M .

Moreover L1 ⊆ L2 if and only if N L2

K ⊆ N
L1

K .

In the sequel we use ray class �elds for constructing curves.

Let S be a �nite non-empty set of places and let m =
∑
nPP be
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an e�ective divisor of the function �eld K with support disjoint

from S. The S-congruence subgroup modulo m is the subgroup

Jm
S =

∏
P∈S

K̂∗P ×
∏
P 6∈S

Û
(nP )
P .

De�nition 3.6. A ray class group is a subgroup Cm
S of CK of the

form

Cm
S = (K∗Jm

S )/K∗

where Jm
S is a S-congruence subgroup modulo m.

The index of Cm
S in CK is �nite (see [13] Chapter 2 Section 4).

We denote by Km
S the function �eld associated to the subgroup

Cm
S by the previous theorem.

The conductor of an abelian extension L/K is the divisor

∑
P

cPP,

where P runs over the rami�ed places of K and cP is the least

integer u such that the upper rami�cation group Gu(L̂Q/K̂P ) is

trivial for any Q|P (see [13] Chapter 2 Section 3).

Theorem 3.2 (Conductor Theorem). The function �eld Km
S is

the largest abelian extension of K with conductor f such that

f ≤ m and such that every place of S splits completely.
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We end this section with a very useful tool that we will use in

the sequel.

De�nition 3.7. Let K be a complete �eld according to the valu-

ation v and let g(z) =
∑d

i=0 giz
i be a polynomial in K with d ≥ 1

such that g0 6= 0 and gd 6= 0. The Newton polygon of g is the

lower convex hull in R×R of the points (i, v(gi)) for all 0 ≤ i ≤ d

with gi 6= 0.

The following Lemma shows that Newton polygons are useful

for computing the roots of irreducible polynomials in algebraic

extensions. We will use it in order to compute the rami�cation

index of a place P .

Lemma 3.2. LetK be a complete �eld according to the valuation

v. Let g(z) be a polynomial inK and let I ⊆ R×R be the segment

of the Newton polygon of g joining (i, v(gi)) and (j, v(gj)) with

i < j. Let m = v(i)−v(j)
i−j be the slope of I and assume that the

slopes in the intervals [i− 1, i] and [j, j + 1] are di�erent from m.

Then there are exactly t = j−i distinct roots α1, . . . , αt of g(z) in

Kac with vL(α1) = · · · = vL(αt) = −m, where L is the splitting

�eld of α1, . . . , αt and vL is the unique extension of v to L.

Moreover the polynomial h(z) =
∏t

i=1(z− αi) is a polynomial
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in K[z] and h(z)|g(z).

We are going to see the case K = Fq(x) in more details in the

next section.

3.2 Carlitz modules

In the sequel we denote by R the polynomial ring Fq[x] contained

in the rational function �eld K and by Kac an algebraic closure

of K.

Let α ∈ EndFq(K
ac) the endomorphism α(y) = yq + xy, for

y ∈ Kac. We de�ne the ring endomorphism φ : R→ EndFq(K
ac)

by

φ(f(x))(y) = f(α)(y),

for y ∈ Kac. In this way Kac is an R-module and the action of

f ∈ R is

f(y) = φ(f)(y),

for y ∈ Kac. In the sequel, when there is no ambiguity, we denote

the action φ(f)(y) simply by yf .

The following properties are obvious

Lemma 3.3. Let y and z be elements in Kac. For any a ∈ Fq

and f , g ∈ R we have:



CHAPTER 3. CLASS FIELD THEORY 23

1. ya = ay;

2. yf+g = yf + yg;

3. (yf)g = yfg;

4. (y + z)f = yf + zf .

When f ∈ R and n is an integer, we de�ne the polynomial

[f, n] by the following properties

1. [f, n] = 0 if f = 0 or if n < 0 or n > deg(f);

2. [f, 0] = f ;

3. [xd+1, n] = x[xd, n] + [xd, n− 1]q;

4. [af+bg, n] = a[f, n]+b[g, n], for any a, b ∈ Fq and f , g ∈ R.

The proof of the following Lemma follows directly from the prop-

erties of [f, n].

Lemma 3.4. Let f ∈ R be a polynomial of degree n > 0. Then

[f, i] is well-de�ned for any integer i. Moreover

deg([f, i]) = (d− i)qi

for 0 ≤ i ≤ d and

yf =
d∑
i=0

[f, i]yq
i

for all y ∈ Kac.
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De�nition 3.8. Let f be a non-zero polynomial in R. The subset

Λf = {y ∈ Kac| yf = 0} of Kac is a Carlitz module. The splitting

�eld K(Λf) is called the cyclotomic function �eld over K with

modulus f .

The set Λf is an R-submodule of Kac. The derivative of the

polynomial yf with respect to y is f by the previous Lemma so the

extension K(Λf)/K is �nite and separable. Moreover K(Λf)/K

is a Galois extension because the action of σ ∈ Gal(Kac/K) on y

commutes with the action of f .

Lemma 3.5. Let f ∈ R be an irreducible monic polynomial and

n > 0 be an integer. Then Λfn is a cyclic R-module isomorphic

to R/(fn).

Proof. Before we assume n = 1. Let d be the degree of f . Then Λf

has exactly qd elements in Kac. Moreover Λf is a R/(f) module,

but R/(f) is a �nite �eld with qd elements so Λf
∼= R/(f) is a

cyclic R-module.

Now assume the result holds for n − 1. Consider Λfn−1
∼=

R/(fn−1). Then Λfn−1 is a cyclic module generated by λ. We get

a morphism β : Λfn → Λfn−1 by β(y) = yf . Then the kernel

of β is Λf . There is an element z ∈ Kac such that zf = λ so
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z ∈ Λfn and β is surjective. Moreover such z does not belong

to Λfn−1. We show that z generates Λfn. Let y be an element

of Λfn. Then yf = λg for a suitable g ∈ R because yf ∈ Λfn−1.

So yf = (zf)g = (zg)f and y − zg ∈ Λf . But Λf is generated

by zf
n−1

so y − zg = (zf
n−1

)h for a suitable h ∈ R. It follows

that y = zg + zhf
n−1

= zg+hf
n−1

and z generates Λfn. Finally the

morphism g → zg is clearly an R-module isomorphism between

R/(fn) and Λfn.

We have a similar result for f reducible.

Lemma 3.6. Let f , g ∈ R two monic polynomials and let h be

the greatest common divisor gcd(f, g). Then Λf ∩ Λg = Λh.

Proof. It follows from the properties stated in Lemma 3.3 and

from the Bézout identity for the greatest common divisor.

Corollary 3.1. Let f and g be two monic coprime polynomials

in R. Then Λfg = Λf + Λg.

Proof. Of course Λf + Λg ⊆ Λfg. But |Λfg| = qdeg(f)+deg(g) =

|Λf + Λg| because Λf ∩ Λg = Λ1 = {0} by the previous Lemma

so the inclusion is an equality.

Corollary 3.2. Let f ∈ R be a non-zero monic polynomial. Then

Λf is a cyclic module isomorphic to R/(f).
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Proof. Write the factorization of f =
∏k

i=1 f
ni
i in irreducible poly-

nomials. Then Λf = Λf
n1
1

+ . . . + Λf
nk
k

by the previous Corol-

lary. But Λfi
ni is a cyclic R-module generated by, say, λi for

i = 1, 2, . . . , k so λ = λ1 + . . .+ λk is a generator of Λf .

Now we can compute the Galois group of the extensionK(Λf)/K.

Let
∏k

i=1 f
ni
i be the factorization in irreducibles of the monic poly-

nomial f ∈ R and let U(f) = (R/(f))∗ be the group of units in

R/(f). Then U(f) is a multiplicative group. Its order u(f) is

u(f) = qdeg(f)
k∏
i=1

(1− q−deg(fi)).

Lemma 3.7. Let f ∈ R be a monic irreducible polynomial and

n > 0 be a positive integer. Then the degree [K(Λfn) : K] is equal

to u(fn) and the Galois group Gal(K(Λfn)/K) is isomorphic to

U(fn). Moreover the place P corresponding to f is totally rami-

�ed in K(Λfn)/K and all the other �nite places are unrami�ed.

Proof. Let λ be a generator of Λfn. We show that λg is an other

generator of Λfn if and only if gcd(f, g) = 1.

When gcd(f, g) 6= 1 then f |g so λg ∈ Λfn−1 so g is not a

generator of Λfn.

When gcd(f, g) = 1 then af + bg = 1 for suitable a and b in

R. So λ = λbg = (λg)b and λg is a generator.
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It follows that λg is a root of the polynomial c(z) = zf
n

zfn−1
in

Kac[z]. But

deg(c(z)) = qdeg(f
n) − qdeg(fn−1) = qdeg(f

n)(1− q−deg(f)) = u(fn)

so

c(z) =
∏

g∈U(fn)

(z − λg) (3.1)

and

f =
fn

fn−1
= c(0) = (−1)u(f

n)
∏

g∈U(fn)

λg. (3.2)

Let Q be a place of K(Λfn) over the place P of K corresponding

to the irreducible polynomial f and let e = e(Q|P ) be the rami-

�cation degree of the place P in K(Λfn)/K. Then e = vQ(f) =∑
g∈U(f) vQ(λg) ≥ u(fn) because λf

n

= 0 and so vQ(λ) ≥ 1 and

vQ(λg) ≥ 1 for any g ∈ U(f). It follows that e ≥ u(f). But

e ≤ [K(Λfn) : K] ≤ deg(c) = u(f) so the equality holds.

The morphism fromGal(K(Λfn)/K) to the set of generators of

Λfn which sends σ ∈ Gal(K(Λfn)/K) to σ(λ) is injective, because

λ is a generator of Λfn, and surjective because a polynomial h

determines an automorphism σ(z) = zh in Gal(K(Λfn)/K) if

and only if h ∈ U(fn). So

Gal(K(Λfn)/K) ∼= U(fn).
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Finally let g be an irreducible prime polynomial in R prime

to f . Let S be a place ofK(Λfn) over the place ofK corresponding

to (g). We show that vS(λ) ≥ 0. In fact if vS(λ) < 0 then, by

Lemma 3.4,

vS(λf
n

) = vS(λq
deg(fn)

) < 0,

because vS([fn, i]) = 0 for i = 0, . . . , deg(fn). But λf
n

= 0 so we

get a contradiction. In a similar way we get that vS(λh) ≥ 0 for

any h ∈ R.

We apply the Lemma 3.4 to the relation c(z)zf
n−1

= zf
n

and

we get c′(z)zf
n−1

+ c(z)fn−1 = fn. It follows that

c′(λ)λf
n−1

= fn

and so the valuation

vS(c′(λ)) = vS(fn)− vS(λf
n−1

) = −vS(λf
n−1

) ≤ 0.

But vS(c′(λ)) ≥ 0 because vS(λ) ≥ 0 so the equality follows. It

follows from [4], Chapter I, Section 4, that the place S is not

rami�ed.

Lemma 3.8. Let f and g be two monic coprime polynomials in

R. Then K(Λfg) is the compositum �eld K(Λf)K(Λg).

Proof. It follows from Corollary 3.1 and 3.2.
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Corollary 3.3. Let f ∈ R be a monic polynomial.

1. The degree [K(Λf) : K] is equal to u(f) and

Gal(K(Λf)/K) ∼= (R/(f))∗.

2. Let g ∈ R be an irreducible monic polynomial and let P

the �nite place corresponding to g. Then P is unrami�ed in

K(Λf)/K if g does not divide f . In this case the Frobenius

morphism Frob(P ) ∈ Gal(K(Λf)/K) satis�es

Frob(P )(λ) = λg,

where λ is a generator of Λf as R-module. The inertia degree

of P in K(Λf)/K is the multiplicative order of the image of

g in R/(f).

3. If g ∈ R is an irreducible monic polynomial that divides f

then the corresponding place P is rami�ed in K(Λf)/K and

the rami�cation degree is equal to u(gn) where gn is the max-

imum power of g such that gn divides f . The inertia degree

f(P ) of the place P in K(Λf)/K is equal to the multiplica-

tive order of the image of g in the quotient group R/( fgn ).

Proof. The �rst part follows from the last two Lemmas.
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For the second part, we know by de�nition that

Frob(P )(λ) ≡ λq
deg g

mod Q,

where Q is a place of K(Λf) over the place P . In particular

λg ≡ Frob(P )(λ) mod Q by Lemma 3.4 and by property 3 of

[g, i]. By Lemma 3.7 we know that Frob(P )(z) = zh for a suitable

polynomial h ∈ U(f). We have to show that λh ≡ λg mod Q

implies h = g. But this follows from the equation (3.1), in fact if

we take the derivative of both sides then

f = c′(z) =
∑

t′∈R/(f)

∏
t6=t′

(z − λt)

and valuating c(z)′ in z = λg we get

f =
∏

t∈R/(f),t6=g

(λg − λt) 6= 0,

where g is the image of g in R/(f). Then

g 6 |f

implies that

λt 6≡ λg mod Q

whenever t 6≡ g in R/(f). So

Frob(P )(z) = zg
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and the inertia degree is the order of the Frobenius automorphism

in Gal(K(Λf)/K). By Lemma 3.7 the order of Frob(P ) is the

order of g in R/(f).

Finally if f = gng′ and gcd(g, g′) = 1, then P is totally rami-

�ed inK(Λgn)/K and unrami�ed inK(Λg′)/K. The result follows

from part 2 and from the previous Lemma.

A di�erent result holds for the in�nite place P∞.

Proposition 3.2. Let f ∈ R be a monic irreducible polynomial

of degree d. Then the in�nite place P∞ is partially rami�ed in

K(Λf)/K. The inertia group I(P∞) has order e(P∞) = q−1 and

there are qd−1
q−1 places over P∞ so f(P∞) = 1 and I(P∞) = D(P∞).

Proof. Let Q be a place of K(Λf) over the place P∞. Let λ be a

generator of Λf and let L be the completion of K(Λf) over the

place Q. Let Q′ be the place of L over Q. Let c(z) be the minimal

polynomial of λ in K. Then e(Q′|P∞) = e(Q|P∞) = e(P∞)

because the extension is Galois and

c(z) = c0 + c1z
q−1 + . . .+ cdz

qd−1

with ci ∈ R and deg(ci) = (d − i)qi for i = 0, . . . , d by Lemma

3.4. So the Newton polygon over L has vertexes

(qi − 1, vQ′(ci)) = (qi − 1,−(d− i)qie(P∞)),
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for i = 0, 1, . . . , d. We apply the Lemma 3.2 to the segment I

connecting (0,−de(P∞)) and (q − 1,−(d − 1)qe(P∞)) so there

are exactly q − 1 roots α1, . . . , αq−1 ∈ Lac of c(z) of valuation

e(P∞)q(d−1)−dq−1 . But q(d− 1)− d ≡ d− 1− d ≡ −1 mod q− 1 so

q − 1|e(P∞).

Let F be the completion ofK respect to the valuation vP∞. We

apply Lemma 3.2 to the polynomial c(z) over the �eld F . The

polynomial h(z) =
∏q−1

i=1 (z − αi) belongs to F [z] and h(z)|c(z).

But the extension F/K is Galois so c(z) splits in factors of degree

q − 1 and there are at least qd−1
q−1 places in K(Λf) over P∞. It

follows that e(P∞) = q − 1.

Corollary 3.4. Let f ∈ R be a monic irreducible polynomial

and let n > 0 be a positive integer. Then the place P∞ is par-

tially rami�ed in K(Λfn)/K. The inertia group I(P∞) has order

e(P∞) = q − 1 and there are u(fn)
q−1 places over P∞ so f(P∞) = 1

and I(P∞) = D(P∞). In particular the constant �eld of K(Λfn)

is Fq.

Proof. Similar to Corollary 3.3.

From now on, given a monic polynomial f ∈ R, we consider

the sub�eld K(Λf)
I(P∞) �xed by I(P∞), where I(P∞) is the in-
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ertia group of P∞. By the previous Corollary, the extension

K(Λf)
I(P∞)/K is a Galois extension of degree u(f)

q−1 , unrami�ed

outside the �nite places dividing f , such that the in�nite place

P∞ is completely split. In other words K(Λf)
I(P∞) is the ray class

�eld K f
P∞

, where the divisor f ∈ DK is the set of zeros of f that

is the sum with multeplicities of the places corresponding to the

irreducible polynomials dividing f .

Example 3.1. Let q = 2 and f = x3 + x+ 1. Then

yf = y8 + (x4 + x2 + x)y4 + (x4 + x3 + x2 + 1)y2 + (x3 + x+ 1)y.

Let z ∈ Kac be a non-zero element in Λf . So

z7 + (x4 + x2 + x)z3 + (x4 + x3 + x2 + 1)z + (x3 + x+ 1) = 0.

Then K(Λf) = K f
P∞

= Fq(x, z) and the function �eld extension

K f
P∞
/K has degree u(f) = 23(1− 1

8) = 7. By the Hurwitz genus

formula (2.1), the genus of Kf
P∞

is

g = 1− u(f) +
1

2
deg(f)(u(f)− 1) = 3

because the place f is totally rami�ed and the rami�cation is tame.

A similar construction holds when P∞ is not the in�nite place.

We will see in a later section that we can get �nitely many di�erent

�eld extensions (see Theorem 4.1).
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When K is not the rational function �eld, the previous con-

struction can be generalized by means of Drinfeld modules, see [8]

for further details.

In the sequel we will often use the following formulas for the

degree and the genus of a ray class �eld extension of an arbitrary

function �eld K (see [2] Chapter 2, Section 5).

Theorem 3.3. Let K be a function �eld over the constant �eld

Fq of genus gK and let hK be the divisor class number of K. Let S

be a place of degree d and m =
∑k

i=1miPi be an e�ective divisor

of K where Pi are distinct places of degree ni for i = 1, ..., k such

that S 6∈ Supp(m) and k ≥ 0 is a non negative integer (we set

m = 0 when k = 0). Then the ray class �eld Km
S is a function

�eld over Fqd. The degree [Km
S : K] is equal to

dhK

k∏
i=1

(qni − 1)q(mi−1)ni

q − 1

if k > 0 and dhK otherwise. The genus gKm
S
of Km

S is given by

gKm
S

= 1 + hK(gK − 1), (3.3)

if deg(m) ≤ 1,

gKm
S

= 1 +
hK(qn − 1)(gK − 1)

q − 1
+
hKn(qn − q)qn(m−1)

2(q − 1)
, (3.4)
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if k = 1, the degree of P is n and m = mP with deg(m) > 1,

gKm
S

= 1+
hK
∏

i(q
ni − 1)

2(q − 1)
(2gK−2+deg(m)−

∑
i

deg(Pi)q
(mi−1)ni

qni − 1
),

(3.5)

otherwise.



Chapter 4

Ray class �elds

In the sequel K is a function �eld with constant �eld Fq.

It is a well-known fact that the maximal unrami�ed abelian

extension of K is in�nite because it contains all the possible con-

stant �eld extension. From now on we consider only unrami�ed

abelian extensions of K with constant �eld Fq. Let h = hK be the

divisor class number of K. Then h is the degree of every maximal

unrami�ed abelian extension of K with constant �eld Fq. There

are exactly h such extensions ofK (see [1], Chapter 8). We denote

them by K0
1 , . . . , K

0
h.

In this section we prove a similar result concerning also rami�ed

extensions and point out some consequences.

Theorem 4.1. Let m =
∑t

i=1miPi be an e�ective divisor and

36
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let ni be the degree of Pi for i = 1, . . . , t. We set m = 0 if t = 0.

We set also d = hK
q−1
∏t

i=1(q
ni − 1)q(mi−1)ni if t > 0 and d = hK

otherwise. Then there are exactly d abelian extensions of K of

degree d with conductor m and constant �eld Fq.

As before we denote such extensions by Km
1 , . . . , K

m
d . There

is no con�ict with the previous notation because the result con-

cerning unrami�ed extensions can be seen as a special case of the

previous Theorem.

Proof. In order to apply the Artin reciprocity Theorem 3.1 we

construct suitable subgroups of the Class group CK .

Let U0 be the subset of JK given by

U0 = {(xP )P∈PK ∈ JK |xP ∈ Û ∗P for all places P ∈ PK}

and let Um be the subset of U0 given by

Um = {(xP )P∈PK ∈ U0|xP ≡ 1 mod tmi

i for all i = 1, . . . , t},

where ti is an element in KPi with vPi(ti) = 1 for i = 1, . . . , t.

As before we set Um = U0 if m = 0. The �eld K∗ is canonically

embedded in JK and we denote it again withK∗ as in the previous

Chapter. Let Cm = Um/(K
∗ ∩ Um) be the classes of Um in CK .
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LetD0 be the subgroup of CK of classes of ideles x = (xP )P∈PK

such that the divisor

Div(x) =
∑
P∈PK

vP (xP )P

has degree 0. It follows from the de�nition of idele that Div(x) is

a �nite sum for all non zero x ∈ JK and D0 is well-de�ned because

the principal divisors have degree 0. Moreover U0 ⊆ D0.

The following sequence is exact (see [1], Chapter 8):

0→ D0 → CK → Z→ 0, (4.1)

where the map CK → Z is the degree of the divisor and it is

surjective by the Schmidt Theorem (see [15], Chapter V). Let

D be a divisor of degree 1. It is very easy to construct a class

x ∈ JK such that Div(x) = D. Let [x] ∈ CK be the class of x in

CK . The subgroup generated by Cm ∪ [x] in CK has �nite index

c = |D0/Cm| = hK
q−1
∏t

i=1(q
ni − 1)q(mi−1)ni if t > 0 and c = hK if

t = 0. In particular c = d. Let a1, . . . , ad be the representatives of

the cosets of Cm in D0. Then the subgroups Bi of CK generated

by Cm ∪ ([x] + ai) are d distinct subgroups of CK of index d such

that the image onto Z in (4.1) is surjective.

Let Km
1 , . . . , K

m
d be the function �elds corresponding to the

subgroups B1, . . . , Bd by the Artin map. By Theorem 3.1 they
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are abelian extensions of K of degree d. The constant �eld is Fq

by Theorem 3.1 because Bi contains the element [x]+ai of degree

1 for i = 1, . . . , d and so it is not contained in the norm group

N FqjK
K for any j > 1. Moreover they are unrami�ed outside m by

Theorem 3.2.

We show that Km
1 , . . . , K

m
d are all the abelian extensions of K

satisfying the hypothesis of the Theorem. Let L/K be an other

such extension and let G be the Galois group of L/K. Let M be

the norm group N L
K . By Theorem 3.1 G is isomorphic to CK/M

and M is a subgroup of CK of index d containing Cm such that

there is an idele y ∈ JK such that the class [y] is in M and

deg(Div(y)) = 1. Then D−Div(y) has degree 0 and so [x]− [y]

belongs to one coset ai + Cm for a suitable i ∈ {1, 2, . . . , d}. But

M ′ = Cm ∪ [y] is a subgroup of M ∩ Bi and the index of M ′ in

CK is d so M = M ′ = Bi and L = Km
i .

Remark 4.1. The proof of the previous Theorem shows that the

extensionsKm
1 , K

m
2 , . . . , K

m
d ofK are all contained in the constant

�eld extension of degree d of any one of them, say Km
1 Fqd. In

fact the compositum of function �elds Km
i K

m
j corresponds to the

intersections Bi,j = Bi ∩ Bj in CK by the Artin reciprocity map
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for i, j ∈ {1, . . . , d}. The image of the valuation of Bi,j by the

degree map in (4.1) is a subgroup of Z of �nite index d′|d. In

particular Km
i K

m
j = Km

i Fqd′ .

Remark 4.2. When the quotient group D0/Cm is cyclic we can

say something more about the subextensions of Km
i containing K

for i = 1, . . . , d. In fact let l be a divisor of d. Then there is

only one subgroup G of D0/Cm of index l. Let g1, . . ., gl be the

cosets representatives of G in D0/Cm. We denote by Fi the �elds

corresponding by the Artin reciprocity map to the subgroups Gi of

CK generated byG∪([x]+gi) for i = 1, . . . , l. The �eld extensions

Fi/K are all the abelian extensions of degree l unrami�ed outside

m with constant �eld Fq for i = 1, . . . , l.

Corollary 4.1. Let m be an e�ective divisor and d a positive

integer as in the previous Theorem. Let P be a place of K of

degree d′, let l be the positive integer gcd(d, d′) and Pi|P be a

place of Km
i over P for i ∈ {1, . . . , d}. If D0/Cm is a cyclic group

then f(Pi|P ) = 1 in at most l such extensions Km
i /K.

Proof. Assume that the place P is totally split in Km
i /K for at

least one i ≤ d, otherwise the proof would be trivial. Then P

is split in Km
j /K for j 6= i if and only if P is totally split in
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the compositum Km
i K

m
j /K. But Km

i K
m
j = Km

i Fqa for a suitable

integer a|d by Remark 4.1. By the properties of the constant

�eld extensions this is possible only when a|d′ and so a|l and

Km
j ⊆ Km

i Fql.

It follows from the proof of the previous Theorem that

l · ([x] + ai) ⊆ Bj

and so l · (ai − aj) ∈ Cm and the class of l · aj in the quotient

group D0/Cm is the class of l · ai. It is very easy to see that when

D0/Cm is a cyclic group generated by g the only classes aj such

that the class of l · aj is the same class of l · ai are the classes of

the elements ai + td
l · g for t = 0, . . . , l − 1 so there are at most

l such classes aj ∈ D0/Cm and there are at most l corresponding

�elds extensions by the previous Theorem.

Remark 4.3. When D0/Cm is not a cyclic group the Theorem

does not hold. As an example consider m be a sum of two places

of degree m of the rational function �eld Fq(x). Then a place P of

degree d′ with qm−1
q−1 |d

′ can be split in all the d extensions Km
i /K

where d = (qm−1)2
q−1 .

The previous Corollary can be generalized in the following re-

sult.
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Corollary 4.2. Assume the quotient group D0/Cm be cyclic as

in Corollary 4.1 and let s be a prime dividing d and let t be the

maximal power of s dividing d. Let Fi/K be the extensions of

degree t for i = 1, . . . , t as in the Remark 4.2. Let P be a place

of K of degree d′ and Pi|P be a place of Fi over P . Let l be the

gcd(d′, t) and let c ≥ 0 be the exponent such that t
l = sc. Assume

c ≥ 1. Then for each positive integer j ≤ c, the integer sj divides

f(Pi|P ) in at least l(sc − sj−1) such extensions Fi/K.

Proof. Let j′ denote the number lsc−j+1 and E1/K, . . ., Ej′/K

be the extensions of K unrami�ed outside m of degree j′ over K

by Corollary 4.1. If sj 6 |f(Pi|P ) for a certain i ∈ {1, . . . , t} then

the Frobenius Frob(P ) of P in Fi/K has order dividing sj−1. Let

Ei′/K be the only sub�eld of Fi of degree j
′ over K and let P ′i′ be

the place under Pi in Ei′. Then Frob(P
′
i′) = Frob(Pi)

j−1 = 1 so

f(P ′i′|P ) = 1. By Corollary 4.1 there are at most l such extensions

Ei/K such that f(P ′i |P ) = 1, say, E1/K, . . ., El/K. There are

exactly sj−1 extensions Fi/K over each Ei′ so s
j 6 |f(Pi|P ) in at

most lsj−1 extensions Fi/K and the Corollary follows.

Remark 4.4. In the previous Corollary when j = c we obtain

that t
l does not divide f(Pi|P ) in atmost t

s extensions Fi/K.
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4.1 An other proof of the Clark Elkies bound

When K is the rational function �eld Fq(x), we get as a Corollary

a result similar to the one of Clark and Elkies cited in [9].

In what follows we denote by ad the number of places of Fq(x)

of degree d. Of course we have
∑

d<n ad ≤ 1 +
∑n

d=1
qd

d ≤
qn−1
q−1

but this bound is too rough.

Lemma 4.1. The number of places of Fq(x) of degree strictly

smaller than n is at most q · q
n

n when n ≥ 1.

Proof. We prove it by induction over n. When n = 1 the result is

trivial. When n = 2 we have

a1 = q + 1 ≤ q(q + 1)

2
≤ q · q

2

2

and the result holds for every q ≥ 2. When n = 3 there are

a1 + a2 = q + 1 +
q2 − q

2
=
q2 + q + 2

2
≤ q · q

3

3

places of degree smaller than 3 and the result still holds when

q ≥ 2.

Suppose that
∑

d<n ad ≤ q · q
n

n , then∑
d<n+1

ad ≤ q · q
n

n
+
qn

n
= (q + 1)

qn

n
≤ q · q

n+1

n+ 1

when n ≥ 3.
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Corollary 4.3. For any �nite �eld Fq there is a positive integer

n0 such that, for any n > n0, there is a projective curve over Fq of

genus g < (n−2)qn
2(q−1) without points of degree strictly smaller than n.

Proof. Let m be a �nite place of K = Fq(x) of degree n > 1

corresponding to the polynomial f ∈ Fq[x] and let d = qn−1
q−1 . The

quotient group D0/Cm is isomorphic to Fq[x]∗/(f) (see also [14],

Chapter 1). In particular D0/Cm is a cyclic group. By Remark

4.2 there are d distinct totally rami�ed subextensions Km
i of K of

degree d with constant �eld Fq for i = 1, . . . , d.

We count the number of ray class �eld extensions Km
i /K with

at least one partially split place P of degree deg(P ) < n and

f(Pi|P ) < n
deg(P ) where Pi is a place of Km

i over P .

Let t be a positive integer smaller than n such that t|d. Let P

be a place of K of degree d′ < n and let l = gcd(t, d′). By Corol-

lary 4.1 there are at most l extensions Km
i /K for i = 1, . . . , d

such that P is totally split in a subextension of degree t and so

f(Pi|P ) ≤ d
t . We sum the number of all these possible subexten-

sions with (potentially) at least one place of degree smaller than

n for all P of degree d′ and t dividing d. There are at most q·qn/t
n/t

places of degree smaller than n
t so there is at least oneK

m
i without
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place of degree smaller than n whenever∑
t|k, t<n

[n/t]∑
d′=1

gcd(t, d′)ad′ < d (4.2)

But the last formula holds when n is large because the left hand

side in (4.2) is smaller than∑
t|k, t<n

t · q · q
n/t

n/t
≤

q · qn

n
+

n−1∑
t=2

t · q · q
n/t

n/t
≤

q · qn

n
+ 2q(n− 2)

qn/2

n/2
,

where the last inequality follows from

t · q
n/t

n/t
≤ 2 · q

n/2

n/2

whenever t ≥ 2 and n is large. In particular we get∑
t|k, t<n

[n/t]∑
d′=1

gcd(d′, t)ad′ ≤
q · qn

n
+ 4q · qn/2 < qn − 1

q − 1
= d,

when n is large.

The divisor class number of the rational function �eld is 1, by

the Hurwitz genus formula (2.1), so the genus g of Km
i may be

computed by the formula (3.4)

g = 1− q
n − 1

q − 1
+
n(qn − q)
2(q − 1)

=
nqn − 2qn − nq + 2q

2(q − 1)
<

(n− 2)qn

2(q − 1)
.

The result now follows.
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Remark 4.5. It is very easy to estimate the integer n0. In fact

one can prove that n0 = [6 logq(9/4)] < 14 is a possible value

of n0.

Example 4.1. We set q = 2 and n = 2. Let m be the place

m = (x3 + x+ 1)

of K = F2(x). There are 7 distinct, totally rami�ed at m, subex-

tensionsKm
i /K of degree 7 with constant �eld F2. These �elds, up

to the order, satisfy Km
i ⊆ Km

Si
where S1 = {(x)}, S2 = {(x+1)},

S3 = {(x2 + x+ 1)}, S4 = {(x4 + x+ 1)}, S5 = {(x4 + x3 + 1)},

S6 = {(x4 +x3 +x2 +x+1)} and S7 = {( 1x)} is the in�nite place.

The reader can easily check that all the places of degree prime

to 7 split exactly in one of the extensions Km
i given above, see also

the following Example. We have already seen in the Example 3.1

that the genus of Km
i is 3 for i = 1, . . . , 7.

In this manner we obtain three distinct curves (corresponding

to the function �elds Km
4 , K

m
5 and Km

6 ) of genus 3 without points

of degree 1 or 2. These examples of curves without points of

degree 1 or 2 are the ones with the smallest genus.

Example 4.2. In the previous Example we check that the place

P = (x3 + x2 + 1) is split in Km
3 /K. Let z ∈ K̂∗P ⊆ J be the
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element

z =
(x3 + x2 + 1)2

(x2 + x+ 1)3
.

By the local Artin map z corresponds to

Frob(P )vP (z) = Frob(P )2 ∈ D(P ) ⊆ Gal(Km
3 /K)

because P is unrami�ed inKm
3 /K. By Proposition 2.2 it is enough

to see that Frob(P ) is the trivial automorphism but z is in the

kernel of the Artin map via the embedding K̂∗P ⊆ JK because

z ≡ 1 mod x3 + x + 1 so [z], the class of z in CK , belongs to

Cm
S3

as in De�nition 3.6. So the Frobenius automorphism at P is

trivial. The result follows from Proposition 2.2.

Example 4.3. We set q = 2 and n = 4. Let m be the place

(x4 +x+ 1) of K = F2(x). A similar argument as in Example 4.1

above shows that the ray class �eld of conductor m with constant

�eld F2 such that the place P = (x7 + x4 + 1) splits completely

gives a function �eld of genus 14 without points of degree smaller

than n. This is not the best possible, in fact the subextension

F ⊆ Km
P of degree 5 over K has the same property but the genus

is 4. This is the best possible example when n = 3 and q = 2.



Chapter 5

A re�nement of the Clark-Elkies

bound

We can improve the result of Corollary 4.3 for large n by consid-

ering ray class �eld extensions of the rational function �eld with

conductor given by a sum of di�erent places.

In the sequel we assume thatK = Fq(x) is the rational function

�eld over Fq. As in the previous section the number of places of

degree t of K is denoted by at for any integer t > 0.

The next Lemma shows that there are many function �elds

without places of small degree when we consider ray class �eld

extensions of K.

Lemma 5.1. Let C1 > 0 and C2 > 0 be two real constants (not

depending on n) with C2 < 1. Let m > logq(n) be a prime

48
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number and let α ≤ am be a positive integer. Let q1, . . . , qα be

distinct places of K of degree m and let m be the divisor
∑α

i=1 qi.

We set d = (qm−1)α
q−1 . Let Km

1 , . . . , K
m
d be the abelian extensions of

degree d unrami�ed outside m as in Theorem 4.1. Then there is a

constant n0 such that when n > n0 and α > C1
n

logq(n)
then there

are at least C2d function �eld extensions Km
i of K such that the

inertia index f(Pi|P ) is greater than n
deg(P ) whenever P is a place

of K of degree deg(P ) < n
logq(n)

and Pi is a place of Km
i over P .

In the proof we use a well known Lemma and a trivial conse-

quence.

Lemma 5.2. Let s and m be odd prime numbers and let q be a

prime power such that s| q
m−1
q−1 but s 6 |q − 1. Then s = 2am + 1

for a suitable integer a > 0. In particular s > 2m.

Corollary 5.1. There is a constant cq > 0 such that whenm > cq

is a prime then there are at most m distinct primes dividing qm−1
q−1

and these primes are all greater than 2m.

Proof of Lemma 5.1. Let i be an element in {1, . . . , d} such that

Km
i /K is a function �eld extension with f(Pi|P ) < d

deg(P ) for at

least one place P of K of degree smaller than n
logq(n)

. As in the

proof of Corollary 4.3 we estimate the number of such extensions.
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Let k be the integer qm−1
q−1 . Let j be an integer in {1, . . . , α}

and let t be a power of a prime number s such that t divides k.

Consider the subextensions of K
qj
i ⊆ Km

i totally rami�ed in qj of

degree t for j ∈ {1, . . . , α}. Let d′ denote the degree of P and

let Pi,j be the place of K
qj
i under Pi with Pi,j|P . Let l be the

integer gcd(t, d′). It is easy to see, multiplying all the maximal

prime power t dividing k, that if for every prime power divisor t

of k the number t
l divides f(Pi,j|P ) for at least one j ≤ α then

k|f(Pi|P ) gcd(k, d′)

and so

f(Pi|P ) ≥ n

d′
,

because k > n and d′ ≥ gcd(k, d′). It follows that if f(Pi|P ) <

d
deg(P ) then there is at least one prime power t dividing k such that

t
l 6 |f(Pi,j|P ) for all j = {1, . . . , α}. For this reason, given a prime

power t dividing k, it will be enough to estimate only the number

of extensions Km
i /K such that t

l 6 |f(Pi,j|P ) for all j = 1, . . . , α.

The extensions K
qj
i /K are cyclic for j ∈ {1, . . . , α}. By Re-

mark 4.4 there are at most t
s distinct extensions K

qj
i /K of degree

t totally rami�ed in qj such that t
l 6 |f(Pi,j|P ). It follows that

there are at most
(
k
s

)α
di�erent extensions Kq1

i · · ·K
qα
i of K such
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that t
l 6 |f(Pi|P ) when P is unrami�ed. So we see that there are

at most

d

sα

extensions Km
i /K with deg(Pi) < n.

Now we consider the case P = qh, for a certain h ∈ {1, . . . , α},

is a rami�ed place. We consider m′ = m − P . For a similar

reasoning as above we get at most

d

(qm − 1)sα−1

extensions Km′

j for j ∈ {1, . . . , (q
m−1)α−1
q−1 } such that f(P ′j|P ) <

n
deg(P ) , where P

′
j is a place of Km′

j over P . But Km′

j ⊆ Km
i for

qm − 1 suitable i ∈ {1, . . . , d} and f(P ′j|P ) ≤ f(Pi|P ) so there

are at most

d

sα−1

extensionsKm
i /K ofK with f(Pi|P ) < n

deg(P ) when P ∈ Supp(m)

is rami�ed.

Now we sum the number of all such extensions for all the places

P of K, rami�ed or not, of degree smaller than n
logq(n)

and for all

prime s|k. So we prove the following inequality:∑
s|k

α∑
i=1

d

sα−1
+

∑
deg(P )< n

logq(n)

∑
s|k

d

sα
< (1− C2)d, (5.1)
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where P runs over the unrami�ed places of K of degree smaller

than n
logq(n)

. The left hand side in (5.1) is bounded by

α
∑
s|k

d

sα−1
+ q · q

n
logq(n)

∑
s|k

d

sα
, (5.2)

by (4.1). So we prove that

α
∑
s|k

1

sα−1
+ q · q

n
logq(n)

∑
s|k

1

sα
< 1− C2. (5.3)

By Corollary 5.1 there are at most m distinct prime numbers s

dividing k and all such s are greater than 2m by Lemma 5.2 when

m is large so the left hand side in (5.3) is smaller than 1 − C2

whenever

mα
1

(2m)α−1
+mq

n
logq(n)

q

(2m)α
< 1− C2,

or, also,

(2m)α >
qm

1− C2
(2mα + q

n
logq(n) ),

or also

α logq(2m) > logq(q
n

logq(n) + 2mα) + logq(
m

1− C2
) + 1.

It is very easy to check the last inequality in fact the right hand

side is smaller than

n

logq(n)
+ logq(2mα) + logq(

m

1− C2
) + 1,
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because the logarithm is a convex function and

α logq(2m) ≥ n

logq(n)
+ logq(2mα) + logq(

m

1− C2
) + 1

when n is large because α > C1
n

logq(n)
by hypothesis.

The proof of the following Lemma follows directly by the Hur-

witz genus formula (2.1). It is a generalization of (3.5).

Lemma 5.3. Let q1, . . . , qh be distinct places of K of degree

t1, . . . , th respectively. Let p1, . . . , ph be positive integers such that

pi|q
ti−1
q−1 for i = 1, . . . , h. Let Fi/K be ray class �eld extensions of

degree pi totally rami�ed in qi for i = 1, . . . , h. Then the genus

gL of the compositum �eld L = F1 · · ·Fh is smaller than

gL ≤
1

2

h∑
i=1

ti

h∏
j=1

pj.

Proposition 5.1. Let m and l be distinct prime numbers with l

and m greater than 3 logq(n) and let α and β be positive integers

with α ≤ am and β ≤ al. Let C1 > 0 be a real constant and

let C2 > 0 be a real constant with C2 < 1 as in Proposition 5.1.

Let q1, . . . , qα (resp. p1, . . . , pβ) be distinct places of K of degree

m (resp. l) with α > C1
n

logq(n)
. Let m be the e�ective divisor∑α

i=1 qi +
∑β

j=1 pj. Let k1 and k2 be the integers qm−1
q−1 and ql−1

q−1
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respectively and set d = (qm−1)α(ql−1)β
q−1 . Assume that k1 and k2 are

both prime to q − 1.

Then there is an integer n0 such that when n > n0 and

C2

2
d >

q · qn

n
,

there is a function �eld extensionKm
i /K for a certain i ∈ {1, . . . , d}

without places of degree smaller than n.

Proof. We may assume that l and m are smaller than n
logq(n)

oth-

erwise the proof would be more easy. By Lemma 5.1 there are at

least C2d function �eld extensions Km
i /K for i = 1, . . . , d such

that deg(P )f(Pi|P ) ≥ n whenever deg(P ) < n
logq(n)

and Pi is a

place over P . In one of these �eld extensions Km
i of K there is

a place of degree smaller than n only if there is a place P of K

of degree d′ < n with d′ ≥ n
logq(n)

such that P is totally split in

K
qj
i /K for all j ∈ {1, . . . , α} and in Kph

i /K for all h ∈ {1, . . . , β}

by Lemma 5.2 whereK
qj
i andKp

h are the ray class �elds ofK with

conductor qj and ph, respectively, contained in Km
i . We are going

to estimate the number of such function �eld extensions Km
i /K.

The rest of the proof is similar to the proof of Corollary 4.3.

For a �xed j ≤ α we considerK
qj
i /K for i ∈ {1, . . . , k1}. There

are at most d1 = gcd(d′, k1) function �eld extensions K
qj
i /K such
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that P is totally split by Corollary 4.1. Similarly for a �xed h ≤ β

there are at most d2 = gcd(d′, k2) function �eld extensionsK
qh
i /K

with i ∈ {1, . . . , k2} such that P is totally split. We denote by d′′

the greatest common divisor gcd(q − 1, d′). It follows that there

are at most dα1d
β
2d
′′α+β−1 extensions Km

i /K with i ∈ {1, . . . , d}

such that P is totally split.

Let Ad1,d2,d′ be the number of places of K of degree d′ totally

split in all the subextensions of degree d1d
′′ (resp. d2d

′′) of the

ray class �elds K
qj
i for i ∈ {1, . . . , k1} and j ∈ {1, . . . , α} (resp.

Kph
i for i ∈ {1, . . . , k2} and h ∈ {1, . . . , β}). Then

Ad1,d2,d′ ≤
qd
′

d′dα1d
β
2d
′′α+β−1

+ 2
gF

dα1d
β
2d
′′α+β−1

qd
′/2 + deg(m)

by Lemma 2.4 and so

Ad1,d2,d′ ≤
qd
′

d′dα1d
β
2d
′′α+β−1

+ (qd
′/2 + 1)(mα + lβ)

by Lemma 5.3.

By the previous Proposition there are at least C2d distinct

extensions Km
i /K such that f(Q|P )deg(P ) > n when deg(P ) <

n
logq(n)

but there are at most

n−1∑
d′= n

logq(n)

Ad1,d2,d′d
α
1d

β
2d
′′α+β−1
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extensions Km
i /K with at least one totally split place of degree d′

by Lemma 4.1. In particular this number is smaller than

n−1∑
d′= n

logq(n)

qd
′

d′
+ (qd

′/2 + 1)(αm+ βl)dα1d
β
2d
′′α+β−1, (5.4)

by Lemma 2.4. But

d1d
′′ ≤ d′ < n < k

1/3
1

and similarly for d2d
′′. Moreover αm + βl < 2 logq(d). It follows

that there are at most

n−1∑
d′= n

2 logq(n)

qd
′

d′
+ qn/2(αm+ βl)k

α/3
1 k

β/3
2 ≤

≤ q
qn

n
+ 2nqn/2 logq(d)d1/3

extensions Km
i /K such that at least one point of degree d′ < n is

totally split. The right hand side in the last equation is smaller

than C2d if

q
qn

n
<
C2

2
d

and

2nqn/2 logq(d)d1/3 <
C2

2
d.

The �rst condition holds by hypothesis, the second one holds when

n is large because d > q
n

logq(n) . So there is at least one function �eld

extension Km
i /K without places of degree smaller than n.
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In order to prove Theorem 1.1 we choose l and m greater than

3 logq(n) but smaller than C logq(n) for a suitable constant C > 0

and we �nd suitable α and β smaller than n with α or β greater

than C1
n

logq(n)
for an other suitable C1 > 0 such that the integer

d =
(qm − 1)α(ql − 1)β

q − 1

is bigger than 4q q
n

n but smaller than C ′4q·q
n

n for a suitable constant

C ′ > 1 (not depending on n). In fact, when d ≤ 4C ′q · q
n

n then

mα+ lβ ≤ n when n is large and the genus of Km
i is bounded by

g ≤ mα+lβ
2 d for all i ∈ {1, . . . , d}, by (3.5), so g ≤ n

2d ≤ 2C ′q · qn.

We will see that C ′ = q is a possible choice for C ′.

The existence of suitable α and β is proved by the next Lemma.

Lemma 5.4. Let l and m be coprime numbers with l < m < 2l.

Then there is a constant l0, such that when l > l0 then for any

real number r greater than q2m
3

there are two positive integers α

and β such that

r <
(qm − 1)α(ql − 1)β

q − 1
< rq. (5.5)

Proof. Let R be the real number logq(rq) + logq(q − 1). Taking

logarithm of both sides in (5.5) we get the equivalent condition

R− 1 < αqm + βql ≤ R, (5.6)
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where qm and ql denote the real numbers logq(q
m−1) and logq(q

l−

1).

Let L ⊂ R2 be the lattice generated by w1 = (qm, 0) and

w2 = (0, ql). The statement of the Lemma is equivalent to say

that there is a point of the lattice in the right-upper quarter of

the plane between the lines {x+ y = R + 1} and {x+ y = R}.

We denote by | · | the pseudo-norm over the vector space R2

given by |(x, y)| = |x+y|. This is not a norm because |(x,−x)| =

0 also when x 6= 0.

We look for an element v = hw1 − kw2 ∈ L with

|v| < 1 (5.7)

|v| > 1

2
(5.8)

and

0 < h < k ≤ m. (5.9)

Let u be an integer and let Fu be the Farey series of order u,

that is the set of the ascending series of the irreducible fractions

between 0 and 1 whose denominator does not exceed u. It is a

well-known fact (see [7], Chapter III) that when h1
k1

and h2
k2

are two

consecutive elements of the series then |h1k2 − k1h2| = 1.



CHAPTER 5. A REFINEMENT OF THE CLARK-ELKIES BOUND 59

When u = m is very easy to see that there is no element hk ∈ Fu

such that ql
qm

< h
k <

l
m when m and l are large. In fact for any

positive ε < 1

l

m
− ql
qm

< ε
1

m(m− 1)
, (5.10)

when m and l are large. Let h
k ∈ Fm the element preceding l

m in

Fm. Then
h

k
<

ql
qm

<
l

m
.

Choose v = (−hqm, kql) ∈ L.

It follows that |v| < 1 otherwise

ql
qm
− h

k
≥ 1

kqm
≥ 1

km
=

l

m
− h

k
.

In a similar way we see that |v| > 1
2 otherwise

ql
qm
− h

k
=

v

kqm
<

1

2kqm

so

l

m
− ql
qm

+
1

2kqm
>

l

m
− h

k
=

1

km

and so

l

m
− ql
qm

>
1

km
− 1

2kqm
>

1

4m(m− 1)

contradicting (5.10) with ε = 1
4 .
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Let z = cw1 be the maximum point of L over the x-axis such

that c is a positive integer and |z| < R. If R− 1 < |z| we choose

α = c and β = 0 and the Lemma follows.

Otherwise consider the points zi = z + iv ∈ L for all integers

i > 0. Then zi is in the right-upper quarter if i < c
h . Let t be

the integer [ ch ] > 0. We prove that R < |zt|. In fact by (5.8)

t|v| > 1
2 [ ch ] and so t|v| ≥ |w1| = qm because R > 2m3. So

R < (c+ 1)|w1| < |zt|. (5.11)

Let i be the minimal integer such that R − 1 < |zi|. Then

i is smaller than t by (5.11) and greater than 0 by assumption.

Moreover

|zi−1|+ 1 < R

because i was supposed to be minimal. So R is greater than

|zi−1|+ |v| = |zi| by (5.7) and so

R− 1 < |zi| < R.

Let α = c − ih and β = ik be the coordinates of zi. The real

number αqm + βql veri�es (5.6). This concludes the proof.

Proof of Theorem 1.1. We assume before q = p is a prime.
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Choose prime numbers l and m and two positive integers α

and β satisfying (5.5) in the previous Lemma with r = 4pp
n

n .

Such choice of r veri�es the hypothesis of the Lemma when n is

large and l andm are smaller than C logp(n) for a constant C > 0.

By the Bertrand postulate there are at least two primes smaller

than C logp(n) when C ≥ 12 so there are such integers.

It is easy to see that α < am and β < al if l and m are greater

than 3 logp(n) otherwise pmα+lβ would be greater than pn
3

and

it would not satisfy (5.5). In a similar way we see that α or β

is greater than, say, 1
48

n
logp(n)

otherwise pmα+lβ would be smaller

than pn/2 in contrast with (5.5). So we can apply Proposition 5.1

with C1 = 1
48 . We get a function �eld without places of degree

smaller than n for all n > n0 for a suitable constant n0. We have

already seen that the genus of such function �eld is smaller than

1
2(p−1)p

n by (3.5). Let Cp be the constant 1
2(p−1)p

n0. Then there

is a function �eld with constant �eld Fp without places of degree

smaller than n of genus smaller than Cpp
n for all integer n > 0.

Now let q = pc be a prime power of p. By the previous case

there is a function �eld K of genus gK ≤ Cpp
cn = Cpq

n over

Fp without places of degree smaller of cn. The constant �eld

extension KFq is a function �eld over Fq with the same genus



CHAPTER 5. A REFINEMENT OF THE CLARK-ELKIES BOUND 62

without places of degree smaller than n. This concludes the proof.

5.1 Tables

We list examples of curves over Fq without points of degree d′

such that d′ ≤ n when q = 2 and n < 20.

The integer d in the table is the degree of a function �eld

extension K/Fq(x) of the rational function �eld with genus g and

constant �eld Fq. In this table the �eld K is always a sub�eld of

the ray class �eldKm
S of conductorm. The irreducible polynomials

in the forth column correspond to the places in the support of m

with multiplicity. The polynomial in Fq(x) corresponding to the

place S totally split in Km
S /Fq(x) is showed in the last column.
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63
n g d m S

1 2 2 (x3 + x+ 1)2 (x3 + x2 + 1)

2 3 7 (x3 + x+ 1) (x4 + x+ 1)

3 4 5 (x4 + x+ 1) (x7 + x4 + 1)

5 12 7 (x6 + x4 + x3 + x+ 1) (x8 + x5 + x3 + x2 + 1)

7 48 17 (x8 + x7 + x6 + x+ 1) (x9 + x7 + x5 + x2 + 1)

8 78 7 · 7 (x3 + x2 + 1, x3 + x+ 1) (x9 + x7 + x2 + x+ 1)

9 120 31 (x10 + x3 + 1) (x11 + x9 + x7 + x2 + 1)

11 362 15 · 7 (x4 + x+ 1, x6 + x5 + x3 + x2 + 1) (x13 + x8 + x5 + x3 + 1)

12 588 31 · 7 (x5 + x2 + 1, x3 + x+ 1) (x13 + x12 + x10 + x7 + x4 + x+ 1)

13 1480 31 · 15 (x5 + x2 + 1, x4 + x+ 1) (x14 + x13 + x5 + x4 + x3 + x2 + 1)

14 3342 127 · 7 (x7 + x+ 1, x3 + x+ 1) (x15 + x14 + x13 + x7 + x6 + x4 + x2 + x+ 1)

15 8940 73 · 17 (x9 + x4 + 1, x8 + x5 + x3 + x2 + 1) (x16 + x14 + x13 + x11 + x10 + x7 + x4 + x+ 1)

16 19861 23 · 89 (x11 + x6 + x5 + x2 + 1, x11 + x9 + 1) (x18 + x17 + x11 + x9 + x7 + x4 + 1)

17 41440 89 · 63 (x11 + x9 + 1, x6 + x+ 1) (x18 + x17 + x16 + x11 + x9 + x4 + 1)

18 89415 127 · 89 (x7 + x+ 1, x11 + x9 + 1) (x19 + x18 + x15 + x14 + x11 + x7 + x3 + x+ 1)

19 95886 127 · 127 (x7 + x+ 1, x7 + x6 + 1) (x20 + x19 + x15 + x14 + x13 + x2 + 1)



Bibliography

[1] E. Artin, J. Tate: Class �eld theory. New York, W.A. Ben-

jamin (1967).

[2] R. Auer: Ray class �elds of global func-

tion �elds with many rational places. Disserta-

tion at the Oldenburg University, http://oops.uni-

oldenburg.de/volltexte/1999/457/pdf/Aueray99.pdf (1999).

[3] R. Auer: Ray class �elds of global function �elds with many

rational places. Acta Arithmetica 95, 97-122 (2000).

[4] J.W.S. Cassels, A. Frohlich: Algebraic number theory. Aca-

demic Press, London (1967).

[5] M. D. Fried, M. Jarden: Field Arithmetic. Springer Verlag

(1987).

64



BIBLIOGRAPHY 65

[6] R. Fuhrmann, F. Torres: The genus of curves over �nite

�elds with many rational points. Manuscr. Math., 89, 103-106

(1996).

[7] G.H. Hardy, E.M. Wright: An introduction to the theory of

numbers. Oxford Science Publications, Clarendon (1938).

[8] D. R. Hayes: Explicit class �eld theory in global function �elds.

Studies in algebra and number theory, Adv. in Math. Suppl.

Stud. 6, Academic Press, 173-217 (1979).

[9] H. Howe, K. Lauter, J. Top: Pointless curves of genus three

and four. Séminaires et congrès, 11, 125-141 (2005).

[10] Y. Ihara: Some remarks on the number of rational points of

algebraic curves over �nite �elds. J. Fac. Sci. Univ. Tokyo, 28,

721-724 (1981).

[11] D. Maisner, E. Nart: Abelian surfaces over �nite �elds as Ja-

cobians. With an appendix by Everett W. Howe. Experiment.

Math. 11, no. 3, 321-337 (2002).

[12] K. Murty, J. Scherk: E�ective versions of the Chebotarev

density theorem for function �elds. Comptes Rendus de



BIBLIOGRAPHY 66

l'Académie des Sciencies (Paris), Série I, Mathématique, 319,

No. 6, 523-528 (1994).

[13] H. Niederreiter, C. Xing: Rational points on curves over �-

nite �elds: theory and applications. Cambridge, Cambridge

University Press (2001).

[14] A. Rigato: Uniqueness of optimal curves over F2 of small

genus. Phd Thesis at Universitá di Roma Tor Vergata,

http://dspace.uniroma2.it/dspace/index.jsp (2009).

[15] H. Stichtenoth: Algebraic function �elds and codes. Berlin,

Springer-Verlag (1993).

[16] A. Weil: Courbes algébriques et variétés abéliennes. Paris,

Hermann (1971).


