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Introduction

During my Ph.D thesis I have studied new devices for the Internet network

infrastructure: Software Routers. Software routers are achieving a great

interest in the last years because they represent an even more realistic al-

ternative to commercial routers. Software Routers are realized using the

hardware of a Personal Computer, an open-source operating system and an

open-source routing software. In my work I have always used Linux oper-

ating system because it is becoming an interesting competitor for Windows,

with a number of users constantly growing. Quagga and Xorp represent the

most common open-source routing software and in my work I have studied

and tested both.

The interest in the Software Router employment has an economic mo-

tivation and a research motivation. From an economic point of view it is

important to highlight that the router market, like all networking equipment

one, is characterized by the development of proprietary architectures and by

a reduced number of companies: these aspects has led to commercial prac-

tices not based on free competition and so the final cost of such devices is

really high with respect to equipment complexity and performance. The in-

troduction of Software Routers can lead to an open multi vendor market. In

fact PCs hardware is available at low cost, their architectures are well doc-

umented and their performance evolution is guaranteed. Another important

aspect of Software Routers is that software is free and documented while in

the case of commercial devices software is not available. Of course it is im-

portant to evaluate Software Router performance; in this way such a device

has to be conformed with protocols it implements, it has to communicate

with different Software Routers and with commercial devices, and it should

have performance at least comparable with ones of a commercial device. So
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Introduction 8

before introducing a Software Router in a real environment, a testing activ-

ity need to be executed. The performance evaluation of Software Routers

represents the first activity of my work.

From a research point of view a Software Router is really useful to test

new networking solutions on a real device. In particular if a new protocol

or algorithm has been defined it is possible, thanks to open-source nature of

Software Router, to implement it on such a device and to evaluate benefits

and problems of the new solution in a real environment. Of course in my

work this is the most interesting aspect of Software Routers: I have used

this device as an instrument to evaluate a new solution I have realized. In

particular I have proposed a new routing algorithm to be used inside Open

Shortest Path First (OSPF) protocol instead of Dijkstra algorithm to speed

up routing table calculation after a topological modification. In this way it is

possible to reduce network convergence, which is the time for the network to

react when a topological modification happens, and so to improve network

performance. The requirement for a more responsive network is due to the

proliferation of real-time services, which need high performance in terms of

packets lost and delay. So to evaluate the performance of my algorithm I have

implemented it in the OSPF code of a Software Router and I have evaluated

OSPF performance of the Software Router in a real network topology when

my algorithm is used to compute new routing table after topological mod-

ifications. It has been also possible to compare my algorithm performance

with ones of a commercial device, in particular a Cisco router, and with ones

of an algorithm proposed in literature.

My thesis is organized into three Chapters. In Chapter 1 I will introduce

Software Routers explaining motivations for their introduction and describ-

ing Quagga and Xorp software; I will also briefly summarize most interesting

OSPF features. In Chapter 2 I will describe OSPF test methodologies and

in particular I’ll present two performance indexes to characterize OSPF per-

formance of a Software Router; after the evaluation of results obtained and

a software code analysis I’ll show a Quagga optimization which makes Soft-

ware Router performance comparable with ones of a commercial router. In

Chapter 3 I will discuss OSPF Fast Convergence and in particular I’ll ex-

plain the advantages of using an incremental algorithm in real Internet; after
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that I’ll describe our multi-path incremental algorithm in detail and with an

example. Our algorithm, after a complexity analysis, will be then compared

with the incremental version proposed by Cisco routers, through Black Box

measurements, and with an incremental algorithm proposed in literature,

through White Box measurements.





Chapter 1

Software Routers

1.1 Introduction

Routers are the key components of Internet network infrastructure: they are

interconnected through links or networks, forming a backbone network that

guarantees the communication between Internet users. The essential opera-

tion performed by a router is packet forwarding: when a router receives an IP

packet from one of its interfaces it has to evaluate packet IP header and select

the correct output interface through which the packet has to be forwarded.

The forwarding decision depends on router knowledge about network topol-

ogy; if a router knows the exact topology of network it can evaluate a path to

each destination and so it is able to forward every IP packet it receives. The

knowledge of network topology is based on communication between routers,

performed thanks to the implementation of various routing protocols.

From an hardware viewpoint, router essential components [1, 2] are:

• interfaces, that must implement the layers 1 and 2 OSI protocols on

the link they control;

• a central processor, that manages the router and implements routing

protocols to exchange routing information with other routers;

• a routing table, that collects all routing information so that IP destina-

tion addresses are associated to router output ports;

11
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• an internal switching fabric, that allows the information transfer among

previous router components.

Such an architecture is really similar to a Personal Computer (PC) archi-

tecture: a modern PC has several interfaces (Ethernet, fast-Ethernet, wifi,

etc..), a central processor unit (CPU) and a bus, which is the same solution

used by medium- and low-end router to implement the internal switching

fabric. A PC also provides basic TCP/IP modules: in particular if Linux is

used as operating system, a routing table is available and it is possible to

provide routing protocols support installing an open-source routing software,

free available in Internet.

The similarity among router and PC architecture and the availability

of open source routing software have led to a great interest for Software

Routers, devices composed by PC architecture, open-source operating system

and open-source routing software.

In next Sections I will analyze motivations for the introduction of such

devices and I will describe the most common open-source routing softwares,

Quagga and Xorp. Finally I briefly describe OSPF protocol because in next

Chapters I will compare OSPF performance of Software Routers and com-

mercial routers.

1.2 Software Router motivations

In this section I will describe the reasons for using a Software Router instead

of a commercial device, highlighting differences between router market and

PC market and emphasizing the advantages of managing an open-source

software that can be modified to support specific requirements.

The field of networking equipment in general, and of routers in particu-

lar, has always seen the development of proprietary architectures: there are

de facto two companies (Cisco [3] and Juniper [4]) covering the entire world

market. This means incompatible equipment and architectures, especially as

regards configuration and management procedures. This situation has given

rise to commercial practices which are not based on free competition, and

often the final cost of the equipment is high with respect to the offered per-
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formance and the equipment complexity. On the contrary for PC, standards

were defined allowing the development of an open multi-vendor market, at

least for the hardware components: in this way multivendor PC hardware is

available at low cost, because of large scale production, PC hardware archi-

tectures are well documented, and their performance evolution is guaranteed

by that of commercial PCs. Moreover in the case of commercial devices

software is not available while for Software Routers the software is free, doc-

umented and changeable; in this way it is possible to understand Software

Router behaviour, by a detailed code analysis, and to model its features to

specific requirements. An other interesting aspect of Software Router is that

code availability allows for the implementation of new networking solutions

(protocols, algorithms, etc...) and for their testing in real network scenario:

as explained later this aspect will be the most attractive for a researcher.

Software Routers have also a weak point: their performance cannot be com-

parable to ones of an high performance router so they can be an alternative

for low-end proprietary routers. Moreover, performance limitations can be

compensated by the natural evolution of the PC architecture performance.

For all reasons described before Software Routers are appealing alterna-

tive for low-end routers; in fact in the last years many projects in the world

propose free software and hardware implementations for routers based on PC

architecture. Each project has specific goals in terms of flexibility and per-

formance. Among all international projects I think the following are really

interesting.

• Click [5].

A pure software architecture based on Linux, and developed at the

MIT, well documented, and freely distributed. A peculiarity of the

Click architecture is the efficient dynamic definition of the router oper-

ations: through the interconnection of elementary blocks, named ”ele-

ments”, it is possible to control the behavior of the router in terms of

packet processing algorithms, queueing, dropping policies and schedul-

ing algorithms. The elements can be quite advanced and the definition

of new elements is very simple and is based on C++ language. The

results obtained allow to exploit the possibility of a software router
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approach based on standard PC hardware, as shown by the large pro-

cessing speed of packets.

• Freesco [6].

A free and open distribution of Linux, with reduced functionalities

and simpler configuration: all the software resides on a 1.44 diskette.

Freesco allows to implement easily bridge, switch and router, but the

maximum number of line interfaces is limited to 3 Ethernet cards and 2

modems. The router configurations allow only static assignments, and

dynamic algorithms and routing protocols are not supported.

• MikroTik [7].

Commercial product, relative cheap, with support to wireless access.

It provides also a free (but not open) software router, but with reduced

functionalities and without technical support.

• POLLENS [8].

POLLENS (Platform for Open, Light, Legible, Efficient Network Ser-

vices) is an ITEA project aimed at defining and realizing software solu-

tions which can be useful for operators to design, develop and configure

added-value services in IP networks. POLLENS provides a middleware

platform able to program new algorithms for the traffic control and

scheduling, to configure the network architecture and to add intelli-

gence to IP routers for supporting innovative services.

• Open Router [9].

European Community IST project, aimed at developing an high per-

formance and user-friendly router/firewall with a wireless access point

based on open hardware specifications and Open Source software. This

project is targeted to meet the requirements of the Small Office/Home

Office and Small and Medium-sized business market, with expected

lower costs than commercial solutions.

• Extensible Router[10].
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Developed at Princeton university, its goal is to build a prototype

router that can be easily extended to support new network services (in-

cluding overlay and peer-to-peer networks, firewalls, media gateways,

proxies, and cluster-based servers), and exploits commercially available

hardware components, including network processors. As a result, the

project is distributing two Linux kernel modules: VERA, which is a de-

vice driver (plus microcode and development tools) for Intel’s IXP1200

network processor, and SILK, which implements in-kernel forwarders

in the Scout path architecture.

• LIBEROUTER [11].

It is based on the development of a dual-stack (IPv6 and IPv4) router

based on the standard PC architecture. The main objective of this

project are threefold: performance, ease of configuration and con-

trol plane functionality. The project is based upon the concept of

programmable hardware: it has developed a FPGA-based accelerator

board named COMBO6, which is intended to take over the bandwidth-

and CPU-demanding tasks from the main processor and PCI bus.

• Quagga [12].

It is a free software that manages TCP/IP based routing protocols. It

is released as part of the GNU Project, and it is distributed under the

GNU General Public License. It supports the main routing protocols,

such BGP, RIP and OSPF. Zebra follows a modular approach to man-

age the routing protocols: thanks to the multiprocess architecture, it is

simple to modify or update the behavior of a routing protocol without

touching the other routing protocols.

• Xorp [13].

Developed at UC Berkeley, it is an open router software platform, aim-

ing to easy extensions for supporting future services. Xorp supports

different hardware platforms, from simple PC, to specialized network

processors, to dedicated hardware architectures. It also supports a va-

riety of routing protocols and control interfaces. Scheduling and buffer

management algorithms for QoS support are available.
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Quagga and Xorp are open-source routing software supported by Linux

and easy to modify, so they represent the best solution to create a Router

from a PC hardware with Linux operating system. In next Section I will

give a detailed description of Quagga and Xorp, highlighting differences and

strength points.

1.3 Quagga and Xorp

Quagga is a fork of GNU Zebra project [15] born in 1996 by an idea of

Kunihiro Ishiguro. Quagga is distributed under GNU public license (GPL)

[16], the same used by Linux kernel. GPL is a free software license that

allows to change software source code but also requires that derivatives of

the source code have to respect the original license: in this way open-source

nature of software is preserved.

Quagga is a routing software suite for Unix platform, in particular Linux,

FreeBSD and Solaris; it provides the implementation of the most common

unicast routing protocols, such OSPF, RIP and BGP. Quagga architecture

is reported in Figure 1.1. It is composed by some daemons (programs),

each one implementing a different routing protocol: for example ospfd is

OSPF daemon. There are also daemons with different scope, such zebra

and vty. Zebra establishes communication between underlying Linux kernel

and routing protocol daemons: for example when a routing update need

to be installed in kernel routing table zebra sends a specific message (using

API kernel method) to the kernel. Vty is an additional daemon allowing

the configuration of various routing protocols through a network accessible

Command Line Interface (CLI) that uses commands really similar to Cisco

configuration ones; in this way it is possible to say that Quagga management

is Cisco-like.

Quagga installation and configuration processes are quite simple for a

Linux user: a file has to be downloaded from Quagga site and three simple

commands have to be used to install software in a Linux PC. After that to

configure routing protocols a simple text file, for each protocol, has to be

properly written and, if further changes have to be made during Quagga

execution, CLI has to be used.
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Figure 1.1: Quagga architecture.
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Xorp (eXtensible Open Router Platform) is a younger project in respect

to Quagga; in fact it was born in 2002 within a core team based at Inter-

national Computer Science Institute in Berkeley with the support of many

companies, such Intel, Google and Microsoft. Xorp is distributed under BSD

license, a more permissive license than GPL because it allows proprietary

commercial use. This aspect has been exploited to realize in 2007 the first

commercial Software Router company, Vyatta [17], that use different x86

hardware devices with Debian Linux operating system and Xorp as routing

software. The main attractive characteristics of Vyatta products are lower

costs (50% saving) and better performance than similar Cisco devices. I think

that Vyatta project is a really important trial to verify Software Router ca-

pabilities in a real environment.

Figure 1.2: Xorp architecture.

Xorp is a routing software for Unix, Macintosh and Microsoft Windows

operating systems; it provides the same unicast routing protocols as Quagga

(OSPF, RIP, BGP) but also a multicast routing protocol, PIM-SM. Xorp

architecture is reported in Figure 1.2 and it is really similar to Quagga one:

there is a module for each routing protocol, a FEA module (analogous to
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zebra daemon) to communicate with kernel and a CLI user interface for

management. Differences regard the presence of RIB module, that manages

Xorp routing table, IPC finder process, that manages intra-modules com-

munication, and router manager process, that manages router configuration.

Xorp also uses some Click elements, that has to be installed in underlying

kernel. An interesting Xorp characteristic is that CLI is based on commands

really similar to Juniper ones (Juniper-like management).

1.4 Open Shortest Path First (OSPF) proto-

col

OSPF is an intra-AS link-state routing protocol. As for all routing protocols,

its purpose is to manage router’s routing table so that the best path to each

destination is used during packets forwarding. The intra-AS feature means

that it works inside an Autonomous System (AS), that is a collection of

routers and networks under the control of the same administrative entity.

The link-state feature is instead related to OSPF functioning; each OSPF

router describes its topological situation, in particular its active links, to

all other AS routers so that every router knows exactly the AS topology

(that is of course the same for each router). Router description is based on

the generation of a Link State Advertisement (LSA), an OSPF message in

which information about router are reported, in particular the list of router

interfaces with its neighbors and the metric of each link. LSA dissemination

is performed through flooding mechanism: when a router receives a new LSA,

an LSA notifying a topological modification, it sends this LSA through all

its interfaces, except the one it has received the new LSA from. In this way

a new LSA can reach every AS router without sending all LSAs needed from

the router generating the LSA.

As explained before every router knows exactly the AS topology thanks

to the LSAs received, which are stored in the LSA database. To compute the

shortest paths to all network destinations and so to construct routing table,

the router performs Dijkstra algorithm [18], having itself as root node: in

this way every router computes a different shortest path subgraph. The set
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of shortest paths can be defined as a subgraph because a Dijkstra feature is

that it computes all the shortest paths to a destination; so if for the same

destination there are more shortest paths (of course at the same minimum

cost), they all are inserted in the shortest paths subgraph. This OSPF aspect,

called Equal Cost Multi-Path (ECMP), is really important because it allows

load balancing support: traffic for a destination can be split, through a per-

flow differentiation, among available shortest paths. As I will better describe

in Chapter 3 OSPF multi-path support has been a relevant aspect of my

work.



Chapter 2

OSPF performance evaluation

In this chapter I will introduce the indexes characterizing OSPF performance,

highlighting test methodologies and required software to perform such a mea-

surements. After that I will extensive describe test methodologies to measure

two of the previous performance indexes, SPF computation time and switch-

ing time, showing the really interesting results obtained.

In particular I highlight the optimization performed on Quagga code that

makes Software Router performance comparable with ones of a commercial

device.

2.1 OSPF test methodologies

OSPF performance evaluation requires the execution of experimental tests.

All experimental tests can be divided in two groups:

• Black Box tests

• White Box tests

In Black Box tests the Device Under Test (DUT) has to interact with an

external system. The external system sends to the DUT specific signals and,

as a consequence, the DUT is forced to execute specific internal functions and

to send specific signals to the external system. These signals can be used to

understand DUT functioning and eventually to measure DUT performance

indexes. The advantage of Black Box tests is that they can be executed

21
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on different devices, so that results comparison is possible; in my case this

is a really important aspect because I can compare a Software Router with

a commercial router, even if I don’t know nothing about software code of

the commercial device. The weak point is that measurements need to be

processed to obtain results; in particular DUT internal functioning has to

be modeled so that it is possible to understand each signal received and to

associate each one to a specific internal function. In my case I’m sure that all

devices are conformed to OSPF specifications and so this issue is overcome.

White Box tests are performed inside the DUT: in particular functions

to be analyzed are started and monitored through internal sensors. In my

case a White Box test is performed inserting timestamps in OSPF code of

the DUT to evaluate starting time and finish time of a specific function. Of

course it is important that timestamps do not influence functions monitored

otherwise measurements will be incorrect. White Box tests are more easy to

be realized in respect to Black Box ones because it is not required to model

DUT functioning and to understand signal exchange with an external system.

But White Box tests can be performed only on devices with open code and

so, in my case, they could not be used to compare a Software Router with a

commercial one; as explained in Chapter 3 they will be used when different

algorithms on a Software Router has to be compared.

As a consequence of previous considerations I have to perform Black Box

tests to evaluate OSPF performance of a Software Router and a commercial

one. So I need an external system which is able to communicate with the

DUT and to analyze packets received by the DUT so that specific perfor-

mance indexes are evaluated. The external system can only be a PC, so

called Testing PC, with Linux operating system, the most known and used

open-source operating system; in fact with such a Testing PC I can choose

among a lot of free programs available on Internet and I can easily real-

ize custom-made programs to satisfy my own requirements. In particular

to perform all test methodologies the Testing PC need to use the following

softwares:

• Quagga: used to realize an OSPF module to communicate with the

DUT.
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• OTEG (OSPF Topology Emulator and Generator) [19]: a software re-

alized by my research team able to generate a network topology and

to create and send the OSPF packets describing this network topology.

The topology has to be described with a specific text format which is

used by a modified version of BRITE software [20, 21] for the network

generation. The generation and the sending of OSPF packets describ-

ing the emulated topology is realized by a modified version of SPOOF

[22] software.

• Ethereal: a Linux software used to capture and analyze IP packets (and

so also OSPF packets).

A really simple test-bed composed by the DUT and a Testing PC, with

previous software installed, can be used to evaluate different OSPF perfor-

mance indexes.

2.1.1 OSPF performance indexes

The performance characterization of an OSPF router is based on the detec-

tion of its main functions and on the definition of procedures to measure them

using OSPF control packets. This work has been completed by Benchmark-

ing Methodology Working Group (BMWG) of IETF [23] which has defined

OSPF performance indexes and methodologies for tests execution, described

in [24, 25, 26]. The three performance indexes defined by BMWG , each one

related to a specific function, are reported, with a brief description, in the

following list:

• LSA processing time.

When an OSPF router receives an LSA it has to control integrity, age,

if LSA is a new one or a duplicated one (already present in its LSA

Database), eventually it has to insert the new LSA in its Database

and sends an Acknowledge LSA. Of course LSA processing time is

influenced by LSA type (new or duplicate), LSA links number and

Database extension.

• LSA flooding time.
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When an OSPF router receives a new LSA it has to perform flooding

and so it has to transmit the new LSA through all its interfaces, except

the one it has received the LSA from. Also in this case LSA type, links

number and Database extension influence this performance index.

• Shortest Path First (SPF) computation time.

The execution of Dijkstra algorithm to compute all shortest paths is

the most onerous operation for an OSPF router. The time needed to

perform this function depends on network topology complexity and so,

as will be better described in next Section, on LSA Database extension.

Besides these three performance indexes proposed by BMWG I have also

defined a further one, which considers the interaction between control plane

(OSPF) and data plane:

• Switching time.

It represents the time for an OSPF router to update its routing table

after a topological event and so to switch traffic from an old path to a

new one.

In following Sections I will analyze in depth the last two indexes because

they give a full characterization of impact of OSPF router functions on net-

work performance and because results obtained represent the starting point

for Software Router modification. In fact, as a consequence of SPF compu-

tation time results, I’ll show how Software Routers need to be optimized to

be compared with commercial ones.

2.2 SPF computation time

In this section I’ll first describe test methodology to measure SPF computa-

tion time and then I’ll analyze results obtained on Quagga, Xorp and Cisco

2801 routers.
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2.2.1 Test-bed description

The test aims at determining how long it takes for a Device Under Test

(DUT) to complete the SPF computation. The DUT can be either a market

router or a PC based router. The test configuration used is reported in

Figure 2.1. The network topology is made up of two real routers (a testing

PC and the DUT) and a variable number of fictitious routers and networks,

so that the DUT will have to find the shortest paths to all the vertexes of

the emulated network, a vertex being either a network or a router. The

testing PC is running OTEG [19] software allowing: i) any network topology

to be generated; ii) Link State Advertisements (LSA) describing the network

topology to be generated and sent to the DUT.

Figure 2.1: Test-bed for the evaluation of the SPF computation time.

I’m going to describe the procedure allowing the measuring of SPF com-

putation time through Black Box measurements, performed according to

IETF specifications. To understand the test methodology proposed, it is

important to remember that OSPF routers use to schedule the instant in

which SPF computation starts to avoid to perform the calculation too many

times when receiving Update LSAs [14]. So, when an Update LSA arrives,

notifying for example an edge deletion or insertion in an emulated network

link, the SPF computation start time is scheduled with a fixed delay, a timer

is set and the SPF calculation starts only when the timer expires. Moreover,

another timer enforces a lag between two consecutive SPF computations. In

particular the following two timers are defined in [14]:

• spf delay : time between receiving an Update LSA and starting the
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SPF computation;

• spf hold time : time between two consecutive SPF computations.

The SPF computation time measurement consists of two different steps,

with different settings of these two timers. First, as shown in Figure 2.2, I

set both the timers to 0, so forcing the DUT to immediately start the SPF

computation when it receives an Update LSA.

Figure 2.2: Time measure TtotSPF .

In Figure 2.2 I denote with RTT the Round Trip Time and further I

assume that the propagation time is the same for the two directions: from

Testing PC to DUT and from DUT to Testing PC. The first step of the test

consists in loading the emulated network into the DUT and in sending an

Update LSA at time tsend u followed after a little delay by a Duplicate LSA

at time tsend d. The DUT processes the Update LSA in the time interval

Tu Lsa and starts to execute the SPF algorithm. Once begun, the SPF com-

putation process cannot be interrupted, and goes on till its end. Then the

DUT processes the Duplicate LSA in the time interval Td Lsa and sends back

immediately, according to the OSPF protocol rules, its Acknowledge LSA.

Thus I can use the Acknowledge LSA of the Duplicate LSA to understand

when the SPF computation ends. In particular in this first test I measure

the time TtotSPF , which represents the time difference between the sending of

the Update LSA at time tsend u and the receiving of the Acknowledge LSA of

the Duplicate LSA at time tsend d. As shown in Figure 2.2, the TtotSPF time

can be expressed as follows:

TtotSPF = RTT + Tu Lsa + TSPF + Td Lsa = Tov + TSPF (2.1)
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wherein:

• RTT is the Round Trip Time between the Testing PC and the DUT;

• Tu Lsa is the Update LSA processing time;

• Td Lsa is the Duplicate LSA processing time;

• TSPF is the SPF computation time;

• Tov = RTT + Tu Lsa + Td Lsa.

Hence in the performed measure I am able to evaluate TtotSPF but I am

interested in evaluating TSPF . In order to make this I evaluate Tov and

subtract it from TtotSPF obtaining TSPF , that is:

TSPF = TtotSPF − Tov (2.2)

So in order to obtain TSPF I estimate Tov by performing a second test

where I set both the OSPF spf delay and spf hold time timers to high values

(60 sec). This time the DUT receives the Update LSA and schedules the

SPF computation start time but does not execute it because the timers are

too high. Instead the DUT goes on processing the Duplicate LSA and sends

back the Acknowledge LSA of the Duplicate LSA as illustrated in Figure

2.3. The time difference between the sending of the Update LSA and the

receiving of the Duplicate LSA Acknowledge is exactly Tov.

Figure 2.3: Time measure Tov.
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2.2.2 Results

All performed tests are based on fully meshed network topologies, with each

router connected to each other through a different transit network. Figure

2.4 shows an example of fully meshed topology with 4 routers. It is important

to remark that in representing the emulated network as a directed weighted

graph [14], each router and each transit network becomes a vertex of the

graph, and each network-router link becomes an edge. Each edge is labelled

with a cost representing the interface cost of the link connecting a router to

a network [14]. In the following the cost of all the edges will be chosen to be

equal. When the Update LSA is sent as mentioned in Section II, a link cost

is varied and the SPF computation procedure has to be executed because

shortest paths could be changed.

Figure 2.4: Example of a fully meshed topology with 4 routers.

The SPF computation complexity will depend on the number of vertexes

and edges in the graph. Now let us denote with N the number of vertexes

and with M the number of edges of the graph. If we consider an emulated

network topology composed by R routers, we have that:

N = (R(R − 1))/2 + R (2.3)

M = 2R(R − 1) + 2 (2.4)
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The number of edges M is proportional to the number of vertexes N, in

particular from (3.1) and (3.2) we can assume that M = O(N).

Experimental values taken on a Software Router and on a commercial

router are reported in Figure 2.5. We report the SPF computation time as a

function of the number of network topology vertexes. The Software Router is

realized through a PC equipped with a 2.4Ghz processor, a 512MB memory

and Quagga 0.98 or Xorp 1.2 routing software. The commercial router is a

Cisco 2801, an access router with 128 MB of memory (no information avail-

able about processor). Notice as the experimental values taken on a Cisco

2801 router perfectly agree with the trend foreseen by the Dijsktra algorithm.

In fact as shown in Figure 2.5 we notice as the experimental measure curve

of the Cisco 2801 fits the curve 0.009NlogN very well. On the contrary the

results obtained on a router based on the PC hardware and equipped with

Quagga or Xorp routing software are quite different. Of the two Open Source

Routing Software, Xorp performs much better than Quagga. For example

when the number of vertexes is 5000, the SPF computation time in Xorp

is about 6 s. On the contrary the SPF time in Quagga increases up to 16

s as the number of vertexes reaches 5000 and measured values fit on the

4 ∗ 10−4N2 interpolating curve, as shown in Figure 2.5.

On the basis of these results we retain that some changes are needed

inside the Quagga code, to obtain performances comparable to commercial

routers. Next section is dedicated to Quagga optimization. Xorp results also

show a sub-optimal implementation of OSPF code: a more deep analysis has

explained that the weak point of implementation is LSA database, but I have

not performed a code optimization as for Quagga.

2.3 Optimization of the SPF Computation Time

in Quagga

The SPF computation is based on the Dijkstra algorithm: the algorithm

examines the directed weighted graph in order to find the shortest paths

from a root vertex to each other vertex in the graph. All these paths give

raise to a Shortest Paths subgraph (SP ), because of multi-path support:in
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fact SP is composed by all paths of minimum cost to each destination and

so it could happen that a destination is reachable through more disjointed

paths.

In Quagga the directed graph is itself represented by the LSA set, stored

in the LSA database. During the iterations of the algorithm all the vertexes

must be extracted, one by one, from the graph and inserted into the SP .

Moreover Quagga also uses the Candidate List, a structure that contains all

the reachable vertexes that have not yet been inserted but can be reached

from vertexes already inserted into SP . The Candidate List is used as a

step in the middle during the migration of the vertexes from the graph to

SP . Each of the reached vertexes is extracted from the graph, inserted into

the Candidate List and provided with a key that represents the total cost

needed to reach it starting from the root and crossing the minimum cost

path composed by only the vertexes that have already been inserted into

SP . According to the Dijkstras algorithm a vertex will be extracted from

the Candidate List and inserted into SP only when it becomes the node with

the lowest key in the Candidate List. The algorithm finishes when all of the

vertexes have been inserted in SP and that occurs when the Candidate List

becomes empty.

During the SPF computation the Candidate List is the most stressed

structure. Its management is the key point of the resulting global perfor-

mances, and it is performed by four different functions: the Extract-Min, the

Insert, the Decrease-Key and the Lookup functions.

In Quagga, the Candidate List is implemented with a linked list, whose

elements are stored in a key increasing order. It is possible to prove that

in this case the Dijkstra algorithm complexity is O(N2 + NM). We have

modified the Quagga original version with a patch available in [29]. In the

new Quagga version we have chosen the binary heap data structure to replace

the sorted list used in the original version.

2.3.1 A Binary Heap to Implement the Candidate List

A binary heap is a complete and balanced binary tree with a local sorting

[27]. Leaves are always inserted starting from the left, and a new level is
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actually created only when the previous one is complete. Thus the heap

depth is always less than logN , where N is the number of nodes. Each node

of the heap has a key, and the whole heap is locally ordered on these keys,

so that each node has a key lower than the ones of both its children. This

particular sorting ensures that the node with the minimum key is the root

of the heap.

The management of the tree is based on two internal functions: the

trickle-up and the trickle-down functions. The trickle-up function brings

up a node with a low key toward the root node. The trickle-down function,

on the other side, pushes down a node with an high key toward the leaves of

the heap. These two procedures are exploited in order to perform the three

main functions supported by the heap structure: the Insert, the Extract-Min

and the Decrease-Key functions.

The Insert function takes the new node and inserts it at the end of the

heap, i.e. makes it a leaf. Then it executes a trickle-up procedure on the

inserted node, and brings it up to its correct position. Notice that because the

Insert function needs at most logN sift-up operations, equal to the maximum

depth of the heap, its cost is O(logN).

The Extract-Min function removes from the heap the node with the lowest

key. This node is always at the root of the heap, and its extraction is almost

costless. After this extraction we have two sub-tree, that are themselves

ordered heap, and we need to fuse them into one single heap. To achieve this

result, the Extract-Min function takes the last leaf of the heap and puts it at

the root position, then executes the trickle-down procedure on it and pushes

it down to its correct position. Notice that because the Extract-Min function

needs the execution of at most logN trickle-down operations, its complexity

is O(logN).

Finally the Decrease-Key function changes the key of a particular node

to a lower value. Once the key value have been decreased, it executes the

trickle-up procedure on the node, and takes it to its new position. Notice

that to realize the Decrease-Key function, a number of trickle-up operations

at most equal to the maximum depth of the heap is performed. For these

reasons the Decrease-Key function cost is O(logN).

The Insert function and the Extract-Min function will be performed ex-
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actly N times. The number of times in which the Decrease-Key function is

performed depends on the values of the costs of the links. However it will be

always less than the number of edges, so we can assume that the Decrease-

Key function will be performed O(M) times. So the amortized costs are

O(NlogN) for the Insert function, O(NlogN) for the Extract-Min function

and O(MlogN) for the Decrease-Key function. Finally, because in Section

2.3.2 I will show that by modifying the LSA database data structure the

Lookup function is no more needed, the total cost of the new implemen-

tation of the Dijkstras algorithm in modified Quagga becomes as expected

O((M +N)logN). In particular when M = O(N) the amortized cost reduces

to O(NlogN).

2.3.2 The new Lookup Operation in the Candidate

List

Unfortunately the changes made to implement the Candidate List rise a new

problem: the binary heap need to scan one by one all the nodes to perform

the Lookup function, as the structure is only locally ordered, thus obtaining

again a O(N) cost. I have modified the LSA database data structure so

that the Lookup function becomes no longer needed at all. In particular for

each LSA, stored in the database, I have added an information denoting if or

not the LSA is in the Candidate List. In positive case the information also

denotes the position in the Candidate List where the vertex associated to the

LSA is stored. That allows a vertex associated to an LSA to be immediately

accessed during the execution of the Dijkstras algorithm. Further, because

the trickle-up and the trickle-down operations may change the position of a

vertex in the Candidate List, a pointer to the information of the associated

LSA is added for each vertex.

2.3.3 Results for New Quagga Version

The test evaluating the SPF computation time on the New Quagga version

produced experimental results that perfectly reflect the NlogN trend. The

measured values, varying the number of vertexes in the graph, are presented
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in Figure 2.6, and compared with the same measure taken on the Cisco 2801.

It is important to note that, comparing Figure 2.5 and 2.6, the SPF compu-
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Figure 2.6: The SPF Computation Time in a Cisco 2801 router and a Soft-

ware Router with new Quagga version.

tation time on the New Quagga version is always less than the time needed

on the original version, proving that the optimization have been successfully

done, and than the one in Xorp: in particular the curve of New Quagga

version fits the curve 0.0015NlogN very well. The obtained results are also

lower that the ones of Cisco 2801: this aspect can be explained highlighting

that computational capacity of the PC used for Software Router implemen-

tation is of course higher than the one of an access commercial router, such

Cisco 2801.
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2.4 Switching time

In this section I’ll describe test methodology to measure Switching time and

I’ll show results obtained on Quagga, Xorp and Cisco 2801 routers.

2.4.1 Test-bed description

This test determines the time for an OSPF router to reconverge the routing

table and redirect data traffic when a best route to a destination is available.

To determine the route reconvergence performance of a Device Under Test

(DUT) we use the test configuration reported in Figure 2.7.

Figure 2.7: Test-bed for the evaluation of the Switching time.

The DUT is connected to two testing PCs, called PC-A and PC-B re-

spectively . The PC-A is connected to the DUT with an only Fast Ethernet

Network Interface. Its function is to generate the data traffic that the DUT

will switch when a best route will be available. It generates UDP traffic by

means of the RUDE traffic generator [28]. The PC-B is connected to the

DUT with two Fast Ethernet Network Interfaces. Its function is to emu-

late a complex network topology and to generate some particular Link State

Advertisements (LSA) notifying to the DUT the availability of a best route

toward a destination network of the emulated topology. In particular the

PC-B allows the topology reported in Figure 2.8 to be emulated.

This topology is made up of the two routers B1, B2 and a variable num-

ber of fictitious routers and networks, so that the DUT will have to find the

shortest paths to all the vertexes of the emulated network, a vertex being

either a network or a router. So that the DUT ”sees” the emulated network
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Figure 2.8: Network topology emulated to perform Switching time test.

topology it is needed that the testing PC-B sends to the DUT some appro-

priate Link State Advertisements (LSAs) describing the emulated network

topology. For this reason the PC has been equipped with the OTEG software

illustrated and available in [19].

According to the test configuration reported in Figure 2.8, the data traffic

sent from the PC-A can reach any destination network Nd of the emulated

topology through two different paths each involving one of the two network

interfaces between the DUT and the PC-B. In particular if the costs c1 and

c2 of the networks N1 and N2 are equal, either of the paths will be chosen by

the DUT according to the cost values c3 and c4 of the networks N3 and N4.

At the beginning of the test we set c3 < c4 and all data traffic is directed

through the path including networks N1, N3 and router B1. Then the PC-B

will generate an update LSA with new cost c3 and such that c3 > c4. So the

DUT will process the update LSA, compute the new best paths by means

of the Dijkstra algorithm and update its routing table; after that the data

traffic will be switched on the best paths including networks N2, N4 and

router B2. The time this switching operation takes will be called Switching

Time. To summarize the test aiming at evaluating the Switching Time is

composed by the following steps:

1. The PC-B emulates a network topology and loads it on the DUT by
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sending the LSAs describing the topology. The cost of the networks N3

and N4 are chosen so that c3 < c4.

2. The PC-A sends data traffic to a destination network Nd of the emu-

lated network. According to the costs chosen in step 1, the DUT will

route the data traffic on the best path passing through Network N1.

3. PC-B sends an update LSA with new cost c3 and such that c3 > c4.

The PC-B also measures the time instant T1 in which the update LSA is

sent. After that the DUT has received and processed the update LSA,

computed the Shortest Path First (SPF) and updated the routing table,

the data traffic will be routed on the new path including network N2.

4. PC-B measures the time instant T2 in which the first packet of the data

traffic is received from the network interface connected to the network

N2.

5. PC-B calculates for the network Nd the Switching Time Ts = T2 − T1

In particular the test can be performed varying the destination network Nd.

Considering the OSPF protocol it is possible to say that Switching time is

composed by Lsa processing time, SPF computation time and FIB (Forward-

ing Information Base) update time and so it is easy to predict that Switching

time trend as a function of network vertexes will be really similar to SPF

Computation time one.

2.4.2 Results

The results I will describe have been evaluated varying the following input

parameters:

• Fp, the constant rate at which the packets are transmitted by PC-A;

• Lp, the length of packets sent from the PC-A;

• N , the number of vertexes of the directed graph representing the em-

ulated network topology.
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In all performed tests the routers B1 and B2 are connected to a fully meshed

network topology having each router connected to each other through a dif-

ferent transit network. The Switching time will depend on the number of

vertexes N in the graph representing the emulated network because one of

the components of the Switching Time is the SPF computation time.

I have performed the measurements in two different cases. In the first

case, called ”near vertex case” the chosen destination network Nd is near the

DUT, that is the vertex representing Nd in the directed graph is among the

first to be inserted in the Shortest Path subgraph when the DUT executes

the Dijkstras algorithm. In the second case, called ”far vertex case” the

chosen destination network Nd is among the latest vertexes to be inserted in

the Shortest Path subgraph. In the performed measure we can choose either

cases by modifying the cost of the edges connected to Network Nd.

Results obtained for the Software Routers (Quagga, New Quagga and

Xorp) have been compared, as for SPF computation time case, with ones

of Cisco 2801. The first conclusion I can make is that for Quagga there is

no differences in Switching time between ”near vertex case” and ”far vertex

case” while in the case of Cisco and Xorp switching time is lower in ”near

vertex case”; this means that Cisco router and Xorp Software Router update

their routing tables every time a destination is inserted in SP during Dijkstra

algorithm computation, while Quagga and of course New Quagga update

their whole routing tables at the end of Dijkstra process. So to have a

real comparison between a Software Router and a commercial one I have to

evaluate the only ”far vertex case”. In Figure 2.9 I have reported switching

time results for Quagga, Xorp and Cisco 2801 as a function of N for packet

length Lp=100 bytes and rateFp=5000 pack/s.

Results show that Switching time trend is really similar to SPF Compu-

tation time one; it is possible to note that Quagga optimization make the

Switching process faster than Cisco one. I can conclude that Switching pro-

cess is highly influenced by SPF computation phase while Lsa processing and

FIB update phases don’t affect its trend. Only for Xorp these two phases in-

fluences Switching time, making Xorp the one with higher time values (in the

case of SPF Computation time Quagga has performance worse than Xorp).
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The last thing to do is evaluating how Switching time is influenced by

traffic rate. So I have performed the Switching time test varying Fp and I

have observed that in all Software Routers (Quagga, New Quagga and Xorp)

results are independent from Fp while in Cisco it doesn’t happens, as reported

in Figure 2.10. This aspect can be explained with high computational ca-

pacity of PC that make OSPF performance independent than traffic rate for

the considered values of Fp.
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2.5 Conclusions

In this first part of my PhD work I have proposed some performance indexes

to characterize OSPF performance of a Router. In this way I have compared

a Software Router with a commercial access router: the first results have
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demonstrated that the most known open-source routing software, Quagga

and Xorp, have performance really worse than commercial router. So Quagga

and Xorp need a deep code analysis, to evaluate reasons of this results and to

be submitted to an optimization process. In particular I have realized a new

version of Quagga in which previous problems have been fixed so that the

Software Router has performance comparable, even better, than the ones of a

Cisco router. This work has also produced a patch [29] submitted to Quagga

community and inserted in the last version of the software. The conclusion

of this work is that a strong point for a Software Router is that it is possible

for an user to modify software code, to improve its performance and to make

available own work to all other open-source community members.



Chapter 3

A new multi-path incremental

algorithm

In this chapter I will analyze one of the most discussed problem of actual

routing protocols: the support of new real time services. Before introducing

new services requirement let’s summarize OSPF routing protocol features.

OSPF is a link-state protocols and use the well-know Dijkstra algorithm

to construct the router routing table. Its network performance can be charac-

terized with the convergence time, which represent the time for a network to

reconfigure itself when a topological event happens. The convergence time is

influenced by three different phases performed by routing protocol: detection,

flooding and Shortest Path First (SPF) computation. The detection phase

consists in identification of a topological change and, if no hardware detec-

tion mechanism is provided, depends on Hello messages exchange between

routers; the propagation phase consists in exchange of Update messages from

the router discovering the modification to all other network routers, through

flooding mechanism; the SPF computation is the phase in which the shortest

paths to all destinations are evaluated using Dijkstra algorithm.

The new real time services such VoIP and distributed gaming, which now

represent a great part of Internet traffic, require high network performance

in terms of delay and jitter. OSPF, such other intra-AS routing protocol, is

inefficient in such a scenario [30] because it was designed to support best-

effort traffic. In particular convergence time has to be hardly reduced from

42
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the actual 40-50 seconds to 100-200 ms; this purpose can be achieved intro-

ducing some optimizations in the three phases of the convergence process

[31, 32, 33]: the detection time can be reduced introducing the milliseconds

Hello mechanism, the flooding time can be reduced making the flooding mes-

sages the ones with highest priority and the SPF computation can be reduced

using an incremental algorithm instead of the Dijkstra one.

In this chapter I will introduce incremental algorithms for the single-

source shortest path problem and I will evaluate the applicability of past

algorithms in a networking scenario. After that I will propose a new incre-

mental algorithm that overcome past algorithms limitations and in particu-

lar that supports multi-path, allowing the evaluation of all possible shortest

paths to all destinations; in this way routers can perform load balancing for

some destinations through paths of minimum equal cost (ECMP: Equal Cost

Multi-Path). So I’ll propose the implementation of the proposed incremen-

tal routing algorithm in the OSPF code of the open-source routing software

Quagga: in this way I will show that Software Routers are a really important

tool to test new networking solution in a real environment. The performance

evaluation will be performed measuring the SPF computation time index of

an OSPF router [34] through black box and white box measurements: in the

first case our multi-path algorithm will be compared with Cisco incremental

one, in the second case with an uni-path incremental algorithm presented in

literature.

The chapter is organized into 6 sections. In section 2 incremental algo-

rithms definition, motivation and previous works are described. In section 3

our multi-path incremental algorithm is described, an example in case of link

deletion is reported and its complexity is evaluated. Test methodologies are

reported in section 4 and the main numerical results of black box and white

box measurements are shown in section 5 . Finally in section 6 conclusions

and further research items are illustrated.

3.1 Incremental Algorithms

In this section I will introduce motivations and previous works about incre-

mental algorithms. After that I will explain the advantages of the introduc-
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tion of an incremental algorithm in an OSPF network to meet real networks

requirements and I’ll show essential features that such an algorithm need to

have in a routing scenario.

3.1.1 Motivations

An algorithm to evaluate the shortest paths from a router to all AS des-

tinations is the key element of a link-state routing protocol. Actual intra

AS routing protocols, such as OSPF and IS-IS, make use of Dijkstra algo-

rithm: when a topological change happens all the Shortest Paths (SP ) are

calculated from scratch, not using the old shortest paths information.

The SP computation, performed by Dijkstra algorithm, is the hardest op-

eration for a router, because all CPU is used, but also the most problematic.

In fact when a topological change occurs and SP computation is executing,

the used routing table does not reflect the real network topology. In this

way data packets can pass through sub-optimal paths or even through paths

not more available and so they can be lost, degrading network performance.

This last case can happen when there is a link failure, which represents the

most dangerous event for a network.

In the last years some studies has been done to characterize the evolution

of a network topology, analyzing routing protocols messages and SP succes-

sions. In particular the work presented in [35], where the ISP of Michigan

State has been monitored for a year, demonstrates that consecutive SP s are

really similar, they differ on average for less than five links; a really interest-

ing result is that the 65% of SP computations produces the same SP that

was used before the topological event.

These results highlight that Dijkstra algorithm is inefficient in a real sce-

nario where only few operations have to be done to calculate new SP instead

of a full computation. These motivations have lead to the introduction of a

new class of algorithms for the computation of the shortest paths, the incre-

mental ones [36, 37, 38, 39]. They make use of the previous SP to calculate

the new one, computing the only SP influenced by the topological event. In

this way incremental algorithms meet real network requirements: computing

resources are saved, best paths are available first and so routing convergence
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can be highly reduced.

3.1.2 Previous works

In the past years various incremental algorithms for the single-source shortest

path problem in a directed and weighted graph have been presented. All this

works have been conceived for a most generic problem than a networking

scenario, so I analyze for each one its relevant proprieties.

The first interesting work has been presented by Ramalingam and Reps

[36], which propose an algorithm reacting to edge deletion or insertion. The

most interesting aspect of this work is the introduction of output complexity

model, in which the cost of a dynamic algorithm is evaluated as a func-

tion of the number of output updates caused by each input modification.

This model, with some variations, has been used by all other works. The

weak point of the algorithm is that for each node it maintains only distance

and outdegree information and not the useful information to calculate the

sequence of nodes representing the shortest paths from root node to every

topology node.

In [37] Frigioni et al. propose a dynamic algorithm reacting to edge

deletion, insertion and modification of weight, which maintains for each node

a list of children and a single parent; this last aspect means that the algorithm

does not support multi-path equal cost feature. Moreover two further data

structures, backward-level and forward-level lists, are maintained for each

node allowing the scanning of a less number of edges when the algorithm is

performed, with respect to [36].

In [38, 39] Narvaez et al. propose two different incremental algorithms to

be used when a link increases or decreases its weight. The first one [38] is the

dynamic version of three static algorithms, Dijkstra, Bellman-Ford and D´

Esopo-Pape, while the second one [39] is based on a Ball-and-String model,

using an original search criteria. As for [37], these two algorithms maintain

a completed SP structure, with parents and children list attributes for each

node, but they do not support multi-path.

Other works [40, 41] have been proposed to solve the same problem but

they do not introduce nothing new with respect to works described before
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3.1.3 Incremental algorithms in a networking scenario

Incremental algorithms described before cannot be directly used in a rout-

ing protocol because in a networking scenario they have to satisfy specific

requirements.

First at all an incremental algorithm has to be developed to react to the

most common events in a network. As shown in [35] edge deletion and inser-

tion are the topological changes that characterize an ISP routing protocol,

while edge metric modifications are really rare. A more deep analysis, pre-

sented in [42], demonstrates that 70% of unplanned events involves single

links. I can conclude that deletion and insertion of a single edge have to be

events the algorithms react to. In this way algorithms proposed by Narvaez

et al. cannot be used as they have been presented.

A really important aspect that a routing protocol algorithm needs to have

is multi-path support. This feature, already supported by OSPF protocol,

consists in calculating all shortest paths from a router to each destination.

Multi-path additional information is then computed by IP protocol: when

the router receives a packet directed to a specific destination, it can choose

among different next-hop routers, in general one for each shortest path. In

this way router can perform load balancing, choosing a specific next-hop for

each packet, or flow of packets, through some functions [43]. Multi-path

support, as well as allowing load balancing, also permits to improve TCP

performance: in particular works in [44, 45, 46] demonstrate that with some

TCP modifications to support path diversity, transport-layer performance

can be increased. Multi-path is a feature of static Dijkstra algorithm while

is not supported by Frigioni and Narvaez algorithms.

Another aspect to be considered is that the algorithm has to create a

routing table: in this way it has to operate with appropriate data structures.

In particular for each node some attributes has to be maintained: distance

from root, list of parents, list of children and list of next-hops. These last

elements represent the first routers in the paths from root to destination node

and they are just the next-hop routers to be inserted in the routing table:

they can be easily calculated from the list of parents attribute of each node.

The algorithm of Ramalingam, unlike others, does not maintain such a data
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structure.

Finally, an incremental algorithm to be used in a networking scenario has

to react to single edge deletion and insertion, to support multi-path and to

create specific data structures. In the next section I’ll introduce our incre-

mental algorithm supporting all previous aspects required in a networking

scenario and I’ll highlight its most important feature: multi-path informa-

tion is used to reduce SPT computation time and so to quickly re-configure

network, especially in a link failure scenario.

3.2 Our Multi-path Incremental Algorithm

In this section I introduce our multi-path incremental algorithm and I show

its behaviour in a link failure scenario. Our algorithm is a dynamic version of

Dijkstra static algorithm which react to single link deletion and insertion; its

relevant characteristic is how it make use of multi-path information to speed

up SP computation. Before describing our algorithm I have to introduce

some notations used in network graphs.

3.2.1 Terminology

Let G(V, E) denotes a weighted and directed graph where V is the set of

nodes and E is the set of edges; let r(G) denotes the root node of G. For

each directed edge e ∈ E, let S(e), E(e) and w(e) denote respectively its

source node, its end node and its weight. A path from a node x to a node

y is a sequence of edges connecting x with y; a cost equal to the sum of the

paths edges weights is associated to each path in the graph. The Shortest

Path SP (G) is the set of all shortest paths from r(G) to other nodes of the

graph and it is unique. Because I take into account the multi-path, more

than one minimum cost path from r(G) to a node w in SP (G) could exist.

They all have the same cost referred to as w distance.

Each node v ∈ V has different attributes: P (v) is the set of v parents

(a node p is a parent of v if S(e) = p, E(e) = v and e ∈ SP (G) ), C(v)

is the set of v children (a node c is a child of v if S(e) = v, E(e) = c and

e ∈ SP (G) ), D(v) is the set of v descendents (a node p is a descendent of v
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if it exists a path in SP (G) in which the node v precedes the node p), d(v)

is v distance and NH(v) is the set of v next-hops (a node p is a next-hop for

v if it exists a path in SP (G) from r(G) to p, for which p is the first node

after r(G) ). I need to introduce the attribute NH(v) of a node v because

in a routing protocol in Internet, a root node, to update its routing table,

needs to know, for every path to v, the first node to reach v. NH(v) can

be easily calculated from next-hop attribute of all v parents, so if P (v) =

p1, ......., pn then NH(v) = ∪p∈P (v)NH(p) = NH(p1) ∪ ..... ∪ NH(pn). The

NH(v) attribute needs to be recalculated even if, after a topology change, v

does not change any other attribute but a node of which v is a descendent

has changed its parents attribute. To easily know if a node x belongs to

the set of descendents of a node v, a nodes attribute marv(x) is used: if

marv(x) = 1 x is a v descendent, otherwise marv(x) = 0 and x is not among

the v descendents. The algorithm uses two set of edges: I(D(v)), all edges

incoming into the set of v descendents , and O(D(v)), all edges outgoing

from the set of v descendents.

The algorithm maintains a data structure, the candidate list Q, that

contains nodes whose attributes must be updated. An element in Q is the

triple (v, P, dnew), where v is the node to be updated, P is the new set of

parents and dnew is the new v distance. Two operations can be performed on

Q: EXTRACT and ENQUEUE. The first one extracts from Q the element

with the smallest dnew field. The second one adds one element to Q; if the

node is already in Q the dnew fields are compared: if the new dnew field is

smaller than the old one, the old element is replaced with the new one, if they

are equal it is only added the new P field to the old one, else no operation

is performed. The correctness of the incremental algorithm is reported in

Appendix.

3.2.2 Algorithm description

The incremental algorithm is divided into two phases: the initialization

phase, in which all nodes directly affected by deletion or insertion of edge

are updated, and the main phase, in which candidate list nodes are inserted

in SP (G). The formal description of the algorithm is reported below.
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procedure Insertion of edge e

Step-1

v = E(e), p = S(e)

if d(p) + w(e) > d(v) then

STOP

end if

if d(p) + w(e) = d(v) then

Go to Step-2

else

Go to Step-3

end if

Step-2

P (v) = P (v) ∪ {p}

C(p) = C(p) ∪ {v}

NH(v) = NH(v) ∪ NH(p)

for all n ∈ D(v) do

NH(n) = NH(n) ∪ NH(v)

end for

STOP

Step-3

∆ = d(v) − [d(p) + w(e)]

d(v) = d(v) − ∆

for all x ∈ P (v) do

C(x) = C(x) − {v}

end for

P (v) = {p}

NH(v) = NH(p)

C(p) = C(p) + {v}

marv(v) = 1

for all n ∈ D(v) do

d(n) = d(n) − ∆

NH(n) = NH(v)

marv(n) = 1
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end for

for all n ∈ D(v) do

for all y ∈ P (n) do

if marv(y) = 0 then

P (n) = P (n) − {y}

C(y) = C(y) − {n}

end if

end for

end for

Step-4

for all e ∈ O({v} ∪ D(v)) do

α = S(e), β = E(e)

if d(α) + w(e) ≤ d(β) then

ENQUEUE (β, α, d(α) + w(e))

end if

end for

end procedure

procedure Deletion of edge e

Step-1

v = E(e), p = S(e)

if p ∈ P (v) then

P (v) = P (v) − {p}

C(p) = C(p) − {v}

else

STOP

end if

if P (v) 6= {∅} then

Go to Step-2

else

Go to Step-3

end if

Step-2
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NH(v) = ∪p∈P (v)NH(p)

for all n ∈ D(v) do

NH(n) = NH(n) ∪ NH(v))

end for

STOP

Step-3

d(v) = ∞

P (v) = {∅}

C(v) = {∅}

NH(v) = {∅}

marv(v) = 1

for all n ∈ D(v) do

marv(n) = 1

end for

for all n ∈ D(v) do

Pext = {∅}

for all x ∈ P (n) do

if marv(x) = 0 then

Pext = Pext + {x}

end if

if Pext 6= {∅} then

P (n) = Pext

marv(n) = 0

NH(n) = ∪p∈P (n)NH(p)

else

d(n) = ∞

C(n) = {∅}

NH(n) = {∅}

for all x ∈ P (n) do

C(x) = C(x) + {n}

end for

end if

end for

end for
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Step-4

for all e ∈ I({v} ∪ D(v)) do

α = S(e), β = E(e)

if d(α) + w(e) ≤ d(β) then

ENQUEUE (β, α, d(α) + w(e))

end if

end for

end procedure

procedure Main

while Q 6= {∅} do

(v, P, dnew) = EXTRACT(Q)

∆ = d(v) − dnew

if ∆ = 0 then

Go to Step-1

else if ∆ > 0 then

Go to Step-2

end if

Step-1

P (v) = P (v) ∪ P

for all x ∈ P do

C(x) = C(x) + {v}

end for

NH(v) = NH(v) ∪ {∪p∈P NH(p)}

for all n ∈ D(v) do

NH(n) = ∪p∈P (n)NH(p)

end for

STOP

Step-2

d(v) = dnew

for all x ∈ P (v) do

C(x) = C(x) − {v}

end for

P (v) = P
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NH(v) = ∪p∈P NH(p)

for all x ∈ P (v) do

C(x) = C(x) + {v}

end for

marv(v) = 1

for all n ∈ D(v) do

marv(n) = 1

end for

for all n ∈ D(v) do

d(n) = d(n) − ∆

for all x ∈ P (n) do

if marv(y) = 0 then

P (n) = P (n) − {x}

C(x) = C(x) − {n}

NH(n) = ∪p∈P (n)NH(p)

end if

end for

end for

Step-3

for all e ∈ O({v} ∪ D(v)) do

α = S(e), β = E(e)

if d(α) + w(e) ≤ d(β) then

ENQUEUE (β, α, d(α) + w(e))

end if

end for

end while

end procedure

The initialization phase is different for edge deletion and insertion. Let

us start describing initialization phase when an edge e insertion happens,

denoting E(e) = v and S(e) = p. First it is checked, step-1, if the path

with e as last edge is a shortest one: if the path has a cost higher than d(v)

the algorithm stops, because the insertion of the edge e does not allow any

shorter path to be found. If the cost of the new path is equal to d(v), step-2,
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the new path has to be added to previous shortest paths of node v so it is

only changed parent-child relationship between p and v, adding p to v set of

parents and v to p set of children. Then for all v descendents it is recalculated

the next-hop attribute: it is important to highlight that this last operation

has to be done in an ordered way, so if for a node is recalculated next-hop

attribute then the same operation has to be done first for all its parents. To

do that, the set D(v) has to be ordered: a node always follows all its parents.

If new path cost is smaller than d(v), step-3, the new path is the only shortest

path of node v so all v attributes are changed: d(v) is now equal to new path

cost, p is the only v parent and NH(v) is equal to NH(p). Moreover v is

added to p set of children and it is deleted from its old parents sets of children.

Then the distances of the v descendents are updated and they are marked

using marv() attribute; so parent-child relationships between v descendents

and node external to D(v) are modified. In this way, every v descendent has

in its set of parents only v descendents nodes, in other words nodes belonging

to D(v) are reachable only through v and so their next-hop attribute is the

same of the v one. Finally all edges outgoing to v and D(v) are scanned to

find new possible shortest paths for node external to D(v).

Now I describe the initialization phase of our algorithm when an edge

deletion happens. The first thing to do is to check if edge e belongs to

SP (G). If e is not an SP (G) edge, the algorithm stops because the edge

deletion does not change SP (G). If e is an SP (G) edge, some preliminary

steps are performed: p is deleted from v set of parents and v from p set of

children. So it is checked if other paths of minimum cost exist, evaluating

P (v). If other paths of minimum cost exist, step-2, the algorithm uses this

multi-path information to easily re-compute SP (G): it is only changed the

next-hop attribute for v and all its descendents. If there are not other paths

of minimum cost, step-3, the algorithm try to reduce the number of affected

nodes using the multi-path information. First v passes in an unreachable

state: its distance is set to infinite, sets of parents, children and next-hop

are set to empty and the marv() attribute of its descendents is set to 1. For

every v descendents is evaluated the set of parents to find possible multi-path

not involving edge e. If at least one external path is found, the descendent

is deleted from the set of v descendents, its marv() attribute is set to 0,
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its set of parents is reduced with the only external parents and next-hop

attribute is updated. If there are not external paths, the descendent is put

in an unreachable state without deleting the set of parents and it continues

to belong to the set of v descendents, adding it to its parents set of children

composed by only internal nodes. In this way the set of v descendents,

for which the old parent-child relationships are maintained, is reduced to a

subset of nodes that has to increase their distance, while nodes with external

multi-paths are quickly updated. Finally all edges incoming into v and D(v)

are scanned to find new shortest paths for node internal to D(v). Notice that

the distance of these node has been set to infinite.

The last part of the algorithm is Q elements extraction and handling. If

Q is not empty its best element (v, P, dnew) is extracted and it is checked if

dnew is equal to v distance or dnew is smaller than v distance. In the first

case, step-1, new paths have to be considered so the algorithm only adds P to

P (v), v to new parents sets of children and it recalculates next-hop attribute

for v and its descendents. In the other case, step-2, new paths are the better

ones so v distance and relationship between v and its parents are changed:

P is new v set of parents, v is deleted from old parents sets of children and it

is added to new parents sets of children, next-hop attribute is recalculated.

The same operations are performed for all v descendents, deleting parent-

child relationship between them and nodes external to D(v). Finally, step-3,

all possible new shortest paths for external nodes are evaluated.

3.2.3 Example of edge deletion

I can explain with an example on a simple network how our multi-path

incremental algorithm works. Figure 3.1(a) shows a network graph, where

each link is bidirectional and weighted: for simplicity the two edges of the

same bidirectional link have the same cost. The solid thick arrows are all the

SP (G) edges while the thin dashed ones does not belong to SP (G).

Let us suppose that edge from node p to node v fails. In the initialization

phase of the incremental algorithm it is first checked if edge deleted belongs

to SP (G) and then all nodes affected by failure are checked: this set of nodes

is represented in Figure 3.1(b) with the dashed curve.
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The algorithm has to evaluate v set of parents to find possible multi-

paths: the only parent of v is p so v is unreachable and its attributes are

changed (d(v) = ∞, P (v) = {φ}, NH(v) = {φ}). The search of external

multi-path is performed for all v descendents, scanned in an ordered way.

For node l there are not external multi-paths while for node i there is an

external multi-path, with e as parent: so i is deleted from D(v), its set of

parents now contains the only node e, its distance remains 40 and its nexthop

attribute is recomputed. The SP (G) at this time is represented in Figure

3.1(c).

Scanning v descendents, the algorithm find an external equal cost path

for node t too. It has two parents: l, a v descendent, and i, just removed

from set of v descendents. So t is in turn removed from D(v), its distance

is not changed and its set of parents contains the only node i. The last v

descendents is s and for it there are not external multi-path so it is set to

an unreachable state. The unreachable nodes maintain their parent-child

relationships (C(v) = l, P (l) = v, C(l) = s, P (s) = l). After initialization

phase the algorithm produces the SP (G) represented in Figure 3.1(d).

The last thing to do in the initialization phase is to find new shortest

paths for affected nodes, through nodes external to D(v). In particular all

external incoming edges have to be evaluated. In this case for node v the

best path has a as parent and a cost equal to 35, so the element (v, a, 35) is

enqueued in Q, for node l it has t as parent and a cost equal to 70, (l, t, 70)

is enqueued in Q, and for node s it has q as parent and a cost equal to 65,

(s, q, 65) is enqueued in Q. Notice as during the initialization phase the set

of affected nodes has been reduced from five to three elements, only using

multi-path information.

In the main phase of the algorithm, the first element extracted from Q

is v: its new possible distance (35) is obviously better than the present one

(infinite) so all its attributes, except set of children, are changed (d(v) = 35,

P (v) = a, NH(v) = {p}); node v will certainly not be modified during the

last part of the algorithm, as explained in the correctness analysis. All v

descendents have to be updated, so d(l) = 45 , NH(l) = p, d(s) = 65 and

NH(s) = p. The second element extracted is s: its new possible distance is

equal to its distance, updated in the first step, so the algorithm simply stores
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(a) (b)

(c) (d)

(e)

Figure 3.1: Example of edge deletion. a) Network graph: the solid thick

arrows represents all the SP(G) edges. b) Set of affected nodes after edge

deletion. c) and d) SP(G) during the initialization phase of the algorithm. e)

Final SP(G) after that the operations of the algorithm have been performed.
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this new equal cost path adding q to P (s) and z to NH(s). Considering equal

cost multi-path the router r can reach node s through two different next-hop

routers and so it can balance traffic. The last element extracted from Q is l

but its new possible distance is bigger than the present one, so nothing has to

be done. The candidate heap is empty so the algorithm stops. Final SP (G)

is represented in Figure 3.1(e).

3.2.4 Algorithm extensions: weight and multiple edge

modifications

As explained in Section 3.1.3 I have proposed an incremental algorithm react-

ing to single edge deletion and insertion because these are the most common

events in a real network. However our algorithm can be modified to react

to edge weights modifications. In reality if an edge weight decrease happens

the same edge insertion procedure can be executed, while if an edge weight

increase happens a modified edge deletion procedure has to be performed:

if edge belongs to SP (G) and there are other paths of minimum cost, line

3-4 and Step-2 are performed; if not, line 2-3 are not executed, v distance is

updated and Step-3 is performed without deleting paths for node not hav-

ing multi-path but increasing their distance. The main procedure, in both

increasing and decreasing cases, is the same proposed in our algorithm.

Our multi-path algorithm can also be easily modified to handle multiple

edge modifications. In particular if both edge deletions and insertions hap-

pens, the algorithm need to execute first an an initialization phase in which

each delete edge is examined and then an initialization phase regarding in-

serted edges. In this way both initialization phases need to be extended;

let’s start describing modifications introduced for edge deletions, which are

really similar to ones regarding edge insertions. The first seven lines of Step-1

have to be performed for each deleted edge. Before performing Step-2 and

Step-3 the algorithm has to detect all nodes involved, the descendents of all

deleted edges, and to shift them in two subset: D1, that contains all nodes

still having at least one path of minimum cost, and D2, that contains all

nodes not having paths of minimum cost. It is relevant to highlight that D1

and D2 need to be ordered, as happens for D(v) in the case of single edge
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modification. After that Step-2 is performed on D1 nodes and then Step-3

is performed on D2 nodes. Modifications regarding initialization phase in

case of multiple edge insertions are really similar to ones of multiple edge

deletions, essentially based on detection of D1 and D2 subset of nodes.

Multiple link modifications, as explained in Section 3.1.3, are not common

events in a real network, and they will become more and more rare when a

millisecond Hello mechanism will be used.

3.2.5 Algorithmic complexity

In this section I’ll discuss the complexity of the incremental algorithm pre-

sented in the first section. The algorithm complexity depends on two follow-

ing topological parameters:

• N : number of nodes of the network topology

• Id : number of nodes changing distance attribute

• Ip : number of nodes changing parents attribute

• Idp : number of nodes changing both distance and parents attributes (

Idp = Id ∪ Ip)

• DMAX : maximum number of edges outgoing (or incoming) from a

node

The other elements influencing algorithmic complexity are the data structures

used to implement the candidate list, the parents and children lists of a node.

The candidate list has been implemented with a binary heap, a structure that

in case of Dijkstra algorithm allows to reach its theoretical complexity (as

explained in Section 2.3.1); if the heap contains n elements, a node extraction

and a node insertion have a cost of O(1) and O(log2n) respectively. Set of

parents and set of children of a node has been implemented with simply lists.

The insertion and the deletion of an element from a list of n elements have a

cost of O(1) and O(n) respectively. In this section is reported a deep analysis

of the incremental algorithm to evaluate its complexity. In each of the three

phases of the algorithm, the complexity is influenced by two operations: i)
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management of children and parents lists; ii) searching of external shortest

paths. In the following I report a complexity analysis for each of the phase

of the incremental algorithm.

3.2.5.1 Complexity of the ”insertion of an edge” phase

The complexity of the initialization phase in case of insertion is bounded by

operations of Step-3 and Step-4, when a better path is found: operations

performed when a new path of same cost is found (Step-2) have a lower com-

plexity. The cost of parents and children lists management is influenced by

element deletion. In particular at Step-3 each descendent of v is searched

and deleted from the children list of nodes external to the set D(v). Because

the set D(v) is composed from at most Id elements, each node in D(v) has at

most DMAX parents, each external node has at most DMAX and the search

cost of an element in the children list is linear with the number of stored

node, the complexity of the step-3 is O(IpD
2
MAX). At step-4, the complexity

is dependent on the searching of external shortest paths: all of the edges

outgoing from node v and from nodes in D(v) are scanned to find neighbours

not belonging to D(v) for which there are new shortest paths. These found

neighbours are stored in the candidate list Q. Because the number of edges

scanned is at most IdDMAX , the nodes stored in Q are the ones changing par-

ents in number equal to Ip, the cost of insertion of an element in Q is log(Ip),

the complexity of the step-4 is O(IdDMAX log(Ip)). Hence the complexity of

the ”insertion of a node” phase is O(IpD
2
MAX) + O(IdDMAX log(Ip)).

3.2.5.2 Complexity of the ”deletion of an edge” phase

The ”deletion of an edge” phase has a complexity depending on the Step-

3 and Step-4. In particular at Step-3, when no external paths are found,

each node in D(v) must be inserted in the children list of its own parents.

Because D(v) contains at most Id elements, each node has at most DMAX

parents and the cost of insertion of an node in the children list is O(1), the

complexity of the operations performed in Step-3 is O(IdDMAX). At step-

4, the complexity is dependent on the searching of external shortest paths:

all of the edges incoming to node v and nodes in D(v) are scanned to find
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new shortest paths to node v and to nodes in D(v). These found nodes are

stored in the candidate list Q. Notice that the number of edges scanned

is at most IdDMAX , the nodes stored in Q are the ones changing parents

and distance attributes in number equal to Idp. In fact nodes for which are

found new shortest paths are v descendents not having any external parent

in their parents lists, so their new external shortest paths certainly have

a distance greater than old one and parents not belonging to the parents

list of the node. According to these considerations and because the cost

of insertion of an element in Q is log(Idp), the complexity of the step-4 is

O(IdDMAX log(Idp)). Hence the complexity of the ”insertion of a node” phase

is O(IdDMAX) + O(IdDMAX log(Idp))

3.2.5.3 Complexity of the ”main” phase

In the main phase the complexity depends on extraction of a node with a

better distance (Step-2 and Step-3). Management of node attributes and

searching of new external paths have the same complexity of the operations

performed in insertion initialization phase but in this case the operation has

to be performed for each better node extracted (at most Idp times) so the

complexity of the ”main” phase is O(IdpIpD
2
MAX) + O(IdpIdDMAX log(Ip)).

Notice that according to the complexities evaluated in Section 3.2.5.1,

3.2.5.2 and 3.2.5.3, I can conclude that the complexity of the incremental

algorithm is O(IdpIpD
2
MAX) + O(IdpIdDMAX log(Ip)).

Algorithmic complexity depends on the number of nodes affected by edge

deletion or insertion. In the worst case, when all topology nodes change dis-

tance and parents attributes (Idp = Id = N) and the topology is fully meshed

(DMAX = N − 1), complexity is O(N4)), strongly worse than static Dijkstra

one (O(Nlog(N))). The worst case analysis is not the best way to charac-

terize an incremental algorithm, as discussed in [36, 37] where the output

complexity model is presented. In addition it is highly unlikely that a single

edge deletion or insertion affects all topology nodes, in fact, as discussed in

Section 3.1, consecutive SP are really similar.



Chapter 3. A new multi-path incremental algorithm 62

3.3 Performance evaluation and results

As discussed in the last part of the previous section, complexity analysis

cannot be a full characterization of our incremental algorithm. So I have de-

cided to evaluate algorithm behaviour in a real environment, implementing

it in a routing protocol, OSPF, and measuring protocol performance indexes

in different topology scenario. To implement incremental algorithm I have

used a routing software with an open code (Open-source routing software),

Quagga. Quagga is designed for Unix operating systems (Linux, BSD and

Solaris) and it provides TCP/IP based routing protocols, including OSPF,

RIP and BGP. The most interesting aspect of an open-source routing soft-

ware is its flexibility that allows evaluation of new routing feature, such as

our algorithm. I have implemented incremental algorithm in OSPF code of

Quagga software so that every time an edge deletion or insertion happened,

incremental algorithm, instead of Dijkstra one, is performed.

As discussed in Chapter 2 there are different indexes, defined by IETF

RFCs, to evaluate OSPF router performance indexes but certainly the most

interesting performance index to characterize our algorithm is SPF compu-

tation time [47, 48], time needed for a router to complete SPF computation.

So I have performed the same test described in previous Chapter and I have

also confirmed the obtained Black Box measurements, performing White

Box measurements. These have been accomplished by inserting timestamps

in OSPF code at the beginning and at the end of the procedure in which the

Shortest Paths are evaluated.

The performance evaluation has been carried out by emulating, by means

of OTEG software, on the DUT real network topologies measured within the

Rocketfuel project [49]. In particular I have considered the topology of two

USA Internet Service Providers: Verio, whose network is composed by 893

routers and 4150 links, and AT&T, whose network is composed by 729 routers

and 4366 links. All of the link costs have been set to 10. I have decided to

characterize algorithms performance in a link failure scenario because it can

cause data lost and so network performance degradation. Moreover the SPF

computation time in an incremental algorithm depends on link position and

on type of change occurring, so I have chosen to measure this time when the
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deletion of each single link of the Verios network occurs; after each deletion I

have re-inserted the link just deleted and then I have performed the successive

link insertion measure.

3.3.1 Black box measurements

Our multi-path incremental algorithm implemented in Quagga has been com-

pared to the one implemented in Cisco 2801, which is the only router company

offering an incremental algorithm inside its devices. In case of Quagga a PC

with 2,4 GHz processor and 512 MB RAM has been used, while Cisco 2801

is an access router with 128 MB RAM. The SPF computation time in the

case of link deletion for Verio topology is reported in Figure 3.2 as a function

of the link interested. In the figure I also report the time that the DUT

takes to run the Dijkstras algorithm. Obviously this time is constant and

independent of the link position in which failure occurs.

Observing Figure 3.2 you can notice that the incremental algorithm is

more efficient than the Dijkstra one, both in Cisco 2801 and Quagga . In fact

the average SPF computation time for incremental algorithm is 9,5 ms and

0,9 ms in Cisco 2801 and Quagga respectively while for Dijkstra algorithm

is 34 ms and 9 ms respectively. Hence the incremental algorithm in Quagga

allows for a 8 ms reduction in SPF computation time. That means to avoid

to loose 80 millions of bit in the case of a 10 Gbit/s link, if a link failure

happens.

The difference in terms of absolute values between Quagga and Cisco 2801

depends on different hardware involved: the PC has a high computational

capacity with respect to Cisco 2801. However a deeper analysis shows that

the incremental algorithm implemented in Cisco 2801 allows ”only” a saving

of about 72% in processing time with respect the case in which the shortest

paths would be evaluated by using the Dijkstras algorithm, while Quagga

saves about 90% in processing time.

The measure performed on Cisco 2801 shows that there are some links

whose failure causes an SPF computation time higher than the one obtained

when the Dijkstras algorithm is applied. For example in Figure 3.2, that

occurs for the link 1 whose failure determines an SPF computation time equal
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Figure 3.2: SPF computation time in Cisco 2801 and Quagga in the case of

link failure for Verio topology.
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Figure 3.3: SPF computation time in Cisco 2801 and Quagga in the case of

link failure for AT&T topology.
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to 48 ms against the 34 ms needed when the Dijkstras algorithm is applied.

This behaviour never happens in the incremental algorithm implemented in

Quagga. To better understand these results I have analyzed the topological

situation when link 1 is deleted. I have seen that in this case 571 nodes are

directed involved by link deletion (they represents D(v)) but 441 of them

have external multi-path: I know that in our multi-path algorithm these

nodes are updated during initialization phase while in Cisco I can suppose,

because software code is not available, that this information is not exploited.

Results obtained for AT&T topology are really similar to Verio’s ones

and are reported in Figure 3.3.

3.3.2 White box measurements

Our multi-path incremental algorithm has also been compared to the uni-

path algorithm proposed by Narvaez [38]. To do that I have implemented

the uni-path algorithm, with some modifications regarding mainly deletion

support and data structures used, in OSPF Quagga code. I have used the

same PC described in Black-Box measurements. The SPF computation time

for Verio topology is reported in Figure 3.4 in the case of multi-path and uni-

path incremental algorithm respectively, as a function of the link interested; I

have decided to order links in x-axis in decreasing order of SPF computation

time in multi-path algorithm. In Figure 3.4 I also report the time that the

DUT takes to run the static Dijkstras algorithm, which is different in the two

cases of uni-path and multi-path: in the first case Dijkstra compute a single

path of minimum cost for each destination, in the second case all shortest

paths to each destination and so I have two different values in the two cases.

Obviously Dijkstra uni-path and multi-path times are independent of the

link position in which failure occurs.

Observing Figure 3.4 you can notice that SPF computation time is always

less than static algorithm one. Furthermore the average SPF computation

time is 0,35 ms and 0,349 ms in multi-path and uni-path algorithm respec-

tively, while the static SPF computation time is 8,116 ms and 7,407 ms in

multi-path and uni-path cases; this means that the incremental algorithms

allow a saving of about 95% in processing time with respect the case in which
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Figure 3.4: Performance evaluation of the uni-path and multi-path incre-

mental algorithms in the case of link failure for Verio topology.
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the shortest paths would be evaluated by using the Dijkstras algorithm. A

really interesting consideration is that SPF computation time trend is really

similar for the two algorithms despite multi-path algorithm allows to com-

pute a more complex structure and so more information. In fact in the case

of a uni-path algorithm SP (G), referred to as USP (G), is a tree and so it has

exactly (N−1) links, where N is number of nodes; in the case of a multi-path

algorithm SP (G), referred to as MSP (G), is a graph, because all paths of

minimum cost have to be considered, and so it can have more than N links.

In Verio topology USP (G) has 892 links while MSP (G) has 1429 links, so

in this last case 500 links more belongs to SP (G) causing a higher number

of operations to be performed. The USP (G) and MSP (G) are referred to

the situation before each link deletion, because after that SP (G) can change

its structure.

Let us consider a subset of links to better understand the results: I only

consider the first 50 links because they cause the highest SPF computation

times in both algorithms. Results of this subset of links are presented in

Figure 3.5. Moreover I have reported in Table 3.1 the most significant links

with some information. In the case of uni-path algorithm I report for each

link, identified by its id, information about its affiliation to USP (G), that

can be Yes or No, number of descendents in USP (G) and SP computation

time. In the case of multi-path algorithm I report for each link information

about its affiliation to MSP (G), that can be Yes, No or YesMP if link end-

node has other paths of minimum cost, number of descendents in MSP (G),

number of descendents with other paths of minimum cost (MP Desc) and SP

computation time.

Analyzing results I can immediately see that multi-path algorithm re-

sults for the first six links of Table 3.1 are really better than uni-path algo-

rithm ones. These points reflect a common situation. In both MSP (G) and

USP (G) the deleted link has many descendents but multi-path algorithm al-

lows for a quicker SPF computation, two or three time faster than uni-path

algorithm, because it exploits multi-path information. For example the first

link regards the one with 448 descendents in USP (G) and 571 descendents in

MSP (G), but in this last case 441 descendents have at least another path of

minimum cost so the multi-path algorithm makes use of these information to
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Figure 3.5: Performance comparison of the uni-path and multi-path incre-

mental algorithms in the case of link failure for Verio topology. The SPF

computation time of the first 50 links of Figure 9 are reported.
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Table 3.1: Most relevant Verio links statistics

Uni-path Multi-path

Link-id USP Desc. Time(ms) MSP Desc. MP Desc. Time(ms)

1 Y es 448 6, 643 Y es 571 441 3, 435

3 Y es 261 3, 648 Y es 409 357 1, 826

5 Y es 331 4, 584 Y es 466 435 1, 622

7 Y es 325 4, 199 Y es 369 328 1, 576

16 Y es 91 1, 446 Y esMP 91 / 0, 774

21 Y es 83 1, 204 Y esMP 83 / 0, 719

2 Y es 55 1, 397 Y es 187 146 2, 072

4 Y es 28 0, 684 Y es 202 188 1, 628

6 Y es 35 1, 004 Y es 103 32 1, 581

8 Y es 26 0, 749 Y es 198 189 1, 431

9 No / 0, 366 Y esMP 219 / 1, 238

10 No / 0, 365 Y esMP 207 / 1, 185

stabilize these descendents in the initialization phase without inserting them

into Candidate List. This result is the most important for our multi-path

algorithm; in fact in a link failure scenario, which is the most dangerous for

a network because it can cause packet loss, when a lot of nodes are involved,

our algorithm allows a quick reconfiguration with respect to an uni-path

algorithm.

Another situation in which our algorithm performs better is when the end

node of deleted link has itself other paths of minimum cost: this happens for

links 16 and 21 in which the number of descendents is 91 and 83 respectively

and it is the same in USP (G) and MSP (G), but multi-path algorithm has

better reconfiguration times, an half of uni-path algorithm ones.

Obviously there are also situations in which uni-path algorithm performs

better. Links 2, 4, 6, and 8 have a lot of descendents in MSP (G) and

a few in USP (G) so nodes and links involved in SPF computation during

uni-path algorithm are much less and reconfiguration times are better. For

example link 4 has 28 descendents in USP (G) while it has 202 descendents
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in MSP (G). Most propitious situations for uni-path algorithm are the ones

of links 9 and 10: in this cases the deleted link does not belong to USP (G)

while it belongs to MSP (G) and it has also a lot of descendents. For example

link 9 does not belong to USP (G) but it has 219 descendents in MSP (G);

the difference in terms of SPF computation time is limited because the end

node of the deleted link has other paths of minimum cost and so multi-path

algorithm performs a limited number of operations.

In Figure 3.6 and 3.7 I report the results obtained for AT&T topology,

which are really similar to Verio’s ones.
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Figure 3.6: Performance evaluation of the uni-path and multi-path incre-

mental algorithms in the case of link failure for AT&T topology.
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Figure 3.7: Performance comparison of the uni-path and multi-path incre-

mental algorithms in the case of link failure for AT&T topology. The SPF

computation time of the first 50 links of Figure 9 are reported.
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3.4 Conclusions

The aim of this work was to propose and evaluate the performance of a

multi-path incremental shortest path algorithm implemented in the Quagga

routing software. First a new incremental algorithm has been realized so

that requirements of a networking scenario could be satisfied: in particular

the algorithm supports multi-path, reacts to the most common topological

events and allows for the creation of a routing table. After that a test-bed

has been realized and SPF computation time of the new version of Quagga,

with our multi-path algorithm, has been measured. The realized implemen-

tation performs well and allows for an SPF computation time lower than in

Cisco 2801. Moreover our multi-path incremental algorithm has been com-

pared with an uni-path incremental algorithm and it has been proved that

our algorithm performs better than the uni-path one in some topological sit-

uations, especially in a link failure scenario when a lot of nodes are involved.

The most interesting results has been that multi-path support of incremental

algorithm can be used to speed-up network convergence mechanism.





Conclusions

The work I have realized during my PhD thesis can be divided into two

phases: a first phase in which an OSPF performance evaluation of Software

Routers has been carried out, and a second phase in which a new multi-path

incremental algorithm for OSPF protocol has been defined and tested thanks

to Software Router device.

In the first part of my work I have described a Software Router, analyzing

the most common open-source routing software: Quagga and Xorp. After

that I have introduced OSPF protocol and its main features, in particular

Dijkstra algorithm and multi-path support, because OSPF is the protocol

I have studied in the rest of my work. In particular I have reported the

performance indexes to characterize an OSPF router. So I have directed my

attention to two performance indexes: SPF computation time, which rep-

resents the time for a router to compute Dijkstra algorithm, and Switching

time, which represents an index evaluating interaction between control plane

and data plane. So to have a performance comparison between Software

Routers and a commercial router I have realized a test-bed to evaluate these

indexes on both devices. After a results analysis I have concluded that the

two Software Routers considered, Quagga and Xorp, have performance worse

than a Cisco device. So I have performed a software code investigation and

I have detected the weak points of the Software Routers. Thanks to this

evaluation I have been able to realize a modified version of Quagga software,

accepted and included in official Quagga version, having performance better

than ones of Cisco access router. In this way I have proved that a Software

Router is a realistic competitor for a commercial device, as demonstrated by

Vyatta project, even if a performance evaluation and a further code modifi-

cation need to be executed before employment.
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The second phase has regarded the study of new requirements that rout-

ing protocols, in particular OSPF protocol, has to satisfy in a new Internet

scenario. I have shown that new real time services, such as VoIP, need a

more responsive network so that their requirements in terms of packet lost

and delay are fullfilled. So I have described OSPF Fast Convergence which

proposes modifications to OSPF protocol so that network convergence can

be reduced. I have focused my attention on the introduction of an incremen-

tal algorithm instead of Dijkstra one: an algorithm that, after a topological

modification, modifies the only network part really involved by modification

instead of calcuting all shortest paths from scratch. After a description of

past incremental algorithms proposed in literature and the observation that

these algorithms cannot be used in a networking scenario, I have proposed a

new solution: an incremental algorithm that reacts to link failure or insertion,

which are the most common events in a real network, that is able to construct

a routing table and that supports multi-path. This last aspect, multi-path

support, is the distinguish feature of my algorithm. The algorithm has been

described, its correctness has been proved and its complexity has been eval-

uated. To have a full characterization of the algorithm I have used the Soft-

ware Router ”instrument”: I have implemented the algorithm in the OSPF

code of Quagga and I have evaluated its performance measuring SPF com-

putation time. The performance evaluation has been realized comparing my

multi-path incremental algorithm with Cisco incremental algorithm, through

Black Box measurements, and with an uni-path incremental algorithm pro-

posed in literature, through White Box measurements. Results have shown

that my algorithm performs always better than Cisco incremental algorithm

and that its performance are really similar to uni-path algorithm ones, even if

the uni-path algorithm has to compute less information. In particular results

have highlighted that my algorithm performs better than uni-path one in a

link failure scenario when a lot of network routers are involved by topological

modification. I also have demonstrated that this behaviour is a consequence

of multi-path support, in fact my algorithm is able to exploit multi-path

information, to speed-up shortest paths computation and so routing table

update, especially in really critical topological situations.

In conclusion the multi-path incremental algorithm is the innovative as-
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pect of my work, but also Software Router characterization and its employ-

ment to evaluate algorithm performance represent interesting points of my

PhD thesis.



Appendix

Correctness of the Incremental Algorithm

In Lemmas 1-6 we provide some intermediate results. The correctness of the

Incremental Algorithm is proved in Lemma 7.

Lemma 1. In each stage of the algorithm if d 6= ∞ is v distance, there is at

least one path of length d from r(G) to v for each node in v parents list.

Proof. During step 4 of the insertion phase a new path is found for node v

and its new set of parents contains the only new parent p; for all v descen-

dents, each path external to the set of v descendents is cancelled deleting the

external parent of the path from v descendents set of parents. During step 2

of the deletion phase the old path through edge e is cancelled deleting node

p from P (v); during step 4 for all v descendents, paths internal to D(v) are

deleted. In the insertion and deletion phases when a new path (better or

equal than the old one) is discovered, a node in the candidate set of parents

is always added. In the main when a candidate node is extracted from Q

the parents list is replaced (better path) or expanded (equal paths) using

candidate set of parents. Therefore a parent in P (n) is associated with at

least one path from r(G) to n because there can be multiple paths from r(G)

to the parent.

Lemma 2. During the execution of the algorithm, SP (G) does not contain

any cycle.

Proof. In the insertion and main phases of the algorithm, when a new path

is found the new parent always has a distance smaller than the one of its new

child so there cannot be cyclic paths in SP (G).
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Lemma 3. The algorithm will terminate.

Proof. A node v can enter Q if its candidate set of parents is different from

the one in SP (G) (this attribute is different when the new distance is smaller

than or equal to v distance). Using Lemma 2, we know that exist a finite

number of paths and also, using Lemma 1, we know that each node can have

a finite number of sets of parents; so a node can enter Q a finite number of

time. Since one node is selected and removed from Q in each iteration, the

algorithm will terminate.

Definition A node v is consolidated at some step if its attributes will not

change during the rest of the algorithm.

Lemma 4. If node v is enqueued in Q with its distance attribute dmin equal

to its shortest distance from r(G), after a finite number of steps, node v will

be consolidated with its distance attribute dmin.

Proof. A node v enters Q only if its distance can be reduced or if its parents

list can be expanded through others shortest distance paths. When a node

v enters Q with its distance dmin the only attribute that can change (a finite

number of time) is its candidate parents list; when v will be extracted from

Q (it happens because of Lemma 3) it will not re-enter Q because all other

paths evaluated from this time have a distance bigger than dmin so v will be

consolidated.

Lemma 5. If node v is consolidated with its shortest distance, all descendents

of v in SP (G) will be consolidated with their shortest distances.

Proof. We prove the statement for all v children so we can extend the result to

all its descendents. Let c be a v child in SP (G) and let v be consolidate with

its shortest distance dmin. The child c will either have an update distance

dmin + w(e) (step 3b), where e is edge connecting v to c, or be examined in

step 5. In the first case, c cannot improve its distance furthermore and so it

can enter Q only if there are other paths of shortest distance; in the latter

case, c will enter Q with distance dmin +w(e) and it will extend its candidate

parents list attribute if there are multiple paths of shortest distance. In all

the cases c enter Q with its shortest distance and so, according to Lemma 4,

it will be consolidated.
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Definition After an edge deletion or insertion there is a set of nodes H not

having the shortest distance or all shortest paths from r(G). A germinal set

is composed by nodes whose descendents include all nodes in H .

To re-compute the correct SP (G) all germinal set nodes have to be de-

tected; so initialization purpose is to discover the germinal set.

Lemma 6. The initialization enqueues a germinal set of nodes with their

shortest distances in the list Q.

Proof. Let we start evaluating insertion phase. In the first steps all nodes

belonging to D(v) are updated with new shortest distances and parents at-

tributes; at this point the germinal set is the set of external nodes for which

exists shortest paths with parents belonging to D(v). This set of nodes is

discovered in the initialization phase because all edges outgoing the D(v) are

scanned and so they are enqueued in Q. In the deletion phase are evaluated

all affected D(v) nodes having external parents: the parents lists of these

nodes are changed and they are cancelled from D(v) with their descendents.

At this point nodes belonging to D(v) have a distance equal to infinite and

they have to be update, if possible. The germinal set is composed by nodes

belonging to D(v) for which exist shortest paths with external parents; these

nodes are detected scanning all edges incoming into D(v) and so they are

enqueued in Q with their shortest distances. Finally all germinal set nodes

will be consolidated.

Lemma 7. At the end of the algorithm, SP (G) contains the shortest paths

from r(G) to other nodes of the graph G.

Proof. From Lemma 3 we know that the algorithm will terminate. From

Lemma 6 we know that a germinal set of node is consolidated in a finite

number of steps, so from Lemma 5 all nodes not having the shortest distance

or all shortest paths from r(G) will be consolidated.
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