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Chapter 1

Overview

1.1 Motivations

The novel technological challenges in the aerospace industry, such as, to mention a couple, mor-

phing aircrafts and the new generation of re-usable launch vehicles, request a refinement of the

available mathematical models and of the methodologies of analysis to guarantee a better predictive

capability during the design phase, and, eventually, during the operative life (see for an extensive

review of these problems Ref. [85]). In particular, with reference to the realization and develop-

ment of shape controllable vehicles (also known as morphing aircrafts), it is apparent the necessity

for the designers of mathematical models of the aircraft (meant, in the most absolute generality,

as a deformable body immersed in a fluid and, thus, subject to the most different aeroelastic and

aerothermoelastic interaction phenomena) that be at a time phenomenologically dependable and

easy to implement, and that, therefore, guarantee a high predictive capability of all the possible con-

figurations undertaken by the aircraft, and of the power necessary to let it undertake them by means

of some actuation mechanism. As, on the other hand, the goal of these systems is the maximization

of the aerodynamic efficiency, the reduction of weight and, thus, the abatement of the operative

costs, morphing aircrafts will be supplied of suitable control systems that permit them to reach

their goals in all the operative conditions. These control systems would be more easily implemented

if a dependable mathematical model of the structure and of the aeroelastic, thermo-elastic and

piezo-elastic (if this control be done by means of piezoelectric materials) interaction phenomena be

available, eliminating the model uncertainties that usually pain the development of effective control

systems.† Similar considerations are valid also with respect to the new generation of re-usable launch

vehicles, where, in particular, safety reasons impose more severe design constraint, that could be

better respected if efficient mathematical model, capable to predict the operative boundaries and

to assure an efficient structural optimization during the design phase, would be available. Obvi-

ously, the previous considerations are common to any engineering discipline, nonetheless, it is with

† The interested reader could refer to [61] for a presentation of control theory in presence and in absence of
dependable mathematical models underlying the phenomena to be controlled.
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2 State of the Art

explicit reference to the aerospace field that, this thesis has the ambitious goal to face some of the

problems presented. In particular, this thesis deals with the development of a mathematical model

for micro-structured continuum bodies, which are the natural setting when dealing with materials

having preferential directions,§ and faces three distinct problems of aerospace interest, in the frame-

work of the previous considerations, that are: (i) a simple microstructured piezoelectric shell model

with material fibers, inclined with respect to the normal, made of piezoelectric material, immersed

in a matrix, and actuated by means of a voltage, different for each fiber, applied at their edges;

(ii) the aero-thermo-elastic analysis of a swept composite wing, made of pyrolitic graphite material,

impacted by a laser beam; (iii) the multi-modal aeroelastic vibrations suppression of aircraft wings

by means of piezo-electric devices passively shunted.

1.2 State of the Art

In order to describe the state of the art in the structural modeling of advanced aerospace applications,

one would necessitate of a thesis itself. On the base of this consideration, in this section, the

attention will be limited only to few papers and authors who have mostly inspired the present work,

postponing a more complete reference to the existing literature, at the presentation and discussion

of the various issues in the main body of the thesis.

As it was anticipated in the previous Section the thesis deals with structural modeling for the

analysis and control of aerospace systems; thus, it could appear strange to quote as a first source

of inspiration a paper published on 1996 with the title “Smart biological systems as models for

engineered structures” (Ref.[103]). Actually, this paper provides a number of interesting examples

of biological structures featuring multifunctionality, hierarchical organization and adaptability, which

could be modeled (i.e., mathematically represented) with some of the considerations developed in

this thesis. On the other hand, engineering reproductions of these smart biological systems could

be efficiently employed in the design of advanced aerospace systems. Finally, note that, among the

keywords included by Srinivasan in his paper, “smart structures” and “multifunctionality” deserve a

special mention, indeed, they could be easily included as keywords for a project of morphing aircrafts

too.

With this goal in mind in this thesis it is developed a theory for micro-structured continuum bodies

which has found a relevant source of inspiration in the papers of Naghdi (Refs. [79, 80, 50, 81]),

Epstein (Ref. [36]), Simo (Refs. [97, 98, 100, 101, 102]), Rubin (Ref. [94]), and more recently

Wempner (Ref. [117]) and Di Carlo et al. (Ref. [33]). All these authors have elaborated theories of

shell-like and rod-like bodies which regarded them as continua with special shape and partitionability

§ To mention a couple of situations where materials manifest in preferential directions, consider the case of
piezoelectric materials, where the polarization direction plays a crucial role in their electro-mechanical behavior, or
the case of pyrolitic graphite materials that have a direction of transverse isotropy which bestow them interesting
properties in the thermal protection, for instance, of aerospace structures. Incidentally, let us observe that the previous
examples have been both considered in the applications of this thesis.
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and thus worthy of a special, coherent, kinematics. In particular, the work of Simo constitutes, in

the author’s opinion, the most comprehensive treatment of “geometrically exact” shells and rods

models, because, starting from a rigorous formulation of these models (often referred to as Cosserat-

type models), he arrives to a consistent implementation and numerical validation of the derived

equations. This same approach, to be compared to the more classical approach, for instance, of

Ciarlet (Refs. [24, 26, 25]), consisting of an asymptotic expansion of the displacement field, has

been considered in the developments. In particular, this thesis presents a novel exact formulations

for the equilibrium equations of a shell-like body, whose material fibers, or directors, are free to

distend and rotate.¶ The purpose of this investigation is directed towards the actuation of the

thickness distension feature of piezoelectric shells for the control of the sound radiated from the

surfaces of the shells themselves (Refs. [73, 74, 86, 83]). Furthermore, although the extensibility of

the fibers of shells is an issue widely studied and reported (see, for instance, Refs. [79, 101, 33]),

to the author’s best knowledge, this problem has not yet been solved using material coordinates in

the deformed configuration and using a variational approach. These isssues are important, the first

for the practical utilization of the formulation, the second to insure the optimality of the model.

Specifically, in the first Part of the thesis it is shown how the use of material (convected) coordinates,

virtual displacements, proper internal constraints, and suitable stress resultant definitions, allows

one to formulate a generalization of the Reissner-Mindlin model as a novel one that consists of the

Kirchhoff-Love model plus an additional vector equation describing the difference between the two

models, in particular the equilibrium equation in the fiber direction. The solution of the governing

equations, in terms of integral stress resultants, in the present configuration, enables one to deal

with finite deformations of the shell and to implement a control procedure for the sound radiated

by the shell, using a piezoelectric actuation mechanism. Finally, it is to be emphasized that the

formulation utilized facilitates the implementation in the case in which the fibers are placed in an

arbitrary direction. Illustrative examples show the usefulness of the proposed approach.

Regarding the applications considered in the second part, one may observe that they find their

natural setting in three different fields of the engineering community: (i) the field of electro-elastic

models in continuum mechanics; (ii) aeroelasticity and aero-thermo-elasticity; (iii) smart structures

and passive damping control theory.

With respect to the first field, the work of Podio-Guidugli (Refs. [83, 88]) and Vidoli (Refs.

[113, 114]) represent the closest references. The latter, in particular, was the first to emphasize

the importance of considering piezoelectric plate problems in which the polarization direction is not

coincident with the thickness direction. In the same framework, a natural source of comparison

is represented by Ref. [92]. In this paper, however, the attention is mostly directed towards the

determination of the minimum number of terms needed to represent the electric potential in respect

of the constitutive equations. Moreover, because the application presented in Chapter 6 is intended

¶ Note that, however, drill rotations (i.e., rotations about the director) are not permitted in the model being, as
it was observed in Ref. [97], irrelevant in shells, in sharp contrast with the theory of rods.
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to demonstrate the potentiality of the proposed model for micro-structured continua, the reader

should refer to Ref. [85] for a review of the most recent advances in the aerospace field with

respect, in particular, to the realization of morphing structures.

With respect to the second field, the paper of Achenbach (Ref. [13]), where a coupled thermo-

elastic formulation is presented, and the works of Librescu (Refs. [66, 58, 60]), where the composite

swept wing model was first developed, consitutes the pricipal source of inspiration.

Finally, with respect to the third field, the fundamental paper of N.W. Hagood and A. von Flotow

[55], that has set the bases for the modeling of passively controlled structures with piezoelectric

patches, deserves a special mention. Several advances have been carried out since that paper from

other investigators in that field, both from an experimental and mathematical point of view. In

particular, in Ref. [72], to the author’s best knowledge, for the first time this passive technique

has been employed to damp the aeroelastic vibrations and to enhance the aeroelastic stability. The

introduction in the analysis of more modes to be controlled has led to the consideration of different

multi-modal control strategies (see, for instance, Refs. [31, 118, 57, 6]), one of which is presented

and discussed in Chapter 8 with reference to an aeroelastic problem.

1.3 (Micro-) Structure of the Thesis

As it was observed in the first Section, the thesis has been divided into two parts: one theoretical, the

other mostly applicative. It is in this sense that one may talk of micro-structure of the thesis, prefig-

uring the meaning of one of the main concept faced in this work: the “micro-structure of continuum

bodies”. Without reporting the formal physical and mathematical definition of micro-structure within

the theory of continuum mechanics, which will be introduced and discussed extensively later in the

main body of the thesis, let us observe that if one thinks of the first part of the thesis as a space

(“support space” using the terminology of micro-structured continuum mechanics), whereabout the

main issues of “the structural modeling for aerothermoelastic analysis and control” are presented

and developed (in terms of equilibrium equations and limits of validity), and to the second part as a

complementary space (“fiber space” in continuum mechanics), with respect to the thesis itself (the

“body” in continuum theory), where those issues are applied (integrated one should say in the theory

of continuum mechanics), one gets a first perception of what it is meant for micro-structured con-

tinuum bodies. In particular, as it is apparent from these considerations the idea of micro-structure

is so general that it can be applied to a variety of cases and situations that makes this treatment

particularly general.

Even if the definiton of micro-structured continuum bodies suggested before is quite general, it

is not so far from the physical-mathematical definition that has been introduced for the first time by

Duhem (Ref.[34]), subsequentely developed by E. and F. Cosserats (Ref.[27]) in one, two and three

dimensions some years later, and that was finally employed by Germain in his theory of continuum

mechanics (Ref.[43]). As a partial proof of the validity and generality of the direct (micro-structure)
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approach, it can be observed that this theory has stimulated the production of an extensive literature

(see for instance Refs. [79, 52, 80, 97, 98, 100, 101, 102, 81, 82, 51, 94, 117, 33]), sometimes

also heavily criticized (see for instance Ref. [96]). On the other hand, it should be noted that

in this thesis some concepts of micro-structure theory are employed, in particular for the setting

of the kinematic descriptors, without renouncing to the Cauchy’s three-dimensional theory in the

deduction of the balance equations. In this sense, as it was observed in the previous section, the

same approach of [33] is adopted regarding rods and shells as three-dimensional bodies with special

shape and partitionability, whose deformations are restricted to be, in some precise sense, “rod-like”

and “shell-like”.

Entering in the details of the thesis, the first Part (“Micro-Structured Continua”) starts with

the presentation of a shell model that constitutes a point of departure for the subsequent enhance-

ments, giving the opportunity to introduce some classical concepts and ideas that will be developed

in the framework of micro-structured continuum theories and tensor analysis on manifolds. The

consideration of a single-director theory‖ (elsewhere known as first-order theory) will be an issue

common to all the formulations presented; nonetheless, the formulation may be easily extended to

the consideration of multi-director theories∗∗ (see for instance Refs. [80, 62]). Another issue, com-

mon to all the models presented, will be the derivation of the equilibrium equations from the Virtual

Work Principle. Moreover, in the derivation it is shown how the use of the Virtual Work Principle,

proper internal constraints, and suitable stress resultant definitions, allows one, in the framework of

the Reissner-Mindlin (RM) kinematical assumptions, to reduce the system of (dynamic) equilibrium

equations to one formally equivalent to that obtainable in the framework of the Kirchhoff-Love (KL)

hypotheses, with three additional equations describing the equilibrium in the fiber direction. From

the author’s point of view this is a very important aspect; indeed, in practical applications the dif-

ference between the RM and the KL formulations is small. Thus, it is convenient to recast the RM

equations into a format that emphasizes this feature. This is important not only from a conceptual

point of view (to show how the RM equations reduce in the limit to the KL equations), but also

from a computational point of view, because the resulting equations isolate the “big contribution”

(KL, of order zero) from the “small contribution” (RM equations of order one).

This goal is achieved in all the formulations presented, by exploiting in full the potentialities of the

Virtual Work approach, specifically, the arbitrariness of the virtual displacement from the deformed

configuration of the shell. Indeed, the virtual displacements δu(1), representing the tangential dis-

placement on the upper and lower surfaces, even in the context of the Reissner-Mindlin hypotheses,

can be expressed as the sum of the displacement due to the Kirchhoff-Love assumption and of an

‖ Actually, the definition of the director associated to a continuum with micro-structure is only in fieri in the first
approach, but it will be a relevant issue in the subsequent developments.
∗∗ It is worth noting that even if the so-called “higher-order theories” for rods and shells and the multi-director

theories of Cosserat’s bodies are, for some aspects, equivalent, nonetheless, they should be considered distinctly.
Indeed, while the latter belongs to the category of direct theories, the first should be referred to the category of
deductive theories (see, for instance, Ref. [33]).
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arbitrary additional displacement.

δu(1) = δu(1)

∣∣
KL

+ δu(1)

∣∣
RM

where δu(1)

∣∣
KL

is specified imposing the KL constraints¶ to the motion of the director.

In particular, in Chapter 2 the shell equilibrium equations are derived from the Virtual Work

Principle assuming that the position (x) of a generic material point of the shell in a 3D Euclidean

reference frame at a generic instant of time be a function of the position (p) of the corresponding

material point on the middle surface and of the distance (η), measured along the normal (n), to

the middle surface.‡ As a matter of fact, it can be noted that the previous representation does

not make use of material (or convective) coordinates. Indeed, as η is an arc-length, i.e., a mea-

sure of the distance from the mid-surface, a material point, identified in a generic configuration

at time (t1) by the triple of co-ordinates {ξ1, ξ2, η}, will be identified in a different istant of time

(t2) by
{

ξ̂1, ξ̂2, η̂
}

(with ξα 6= ξ̂α and η 6= η̂ in general).§ Let us note that, in the particular case

of the Kirchhoff-Love model a fiber initially normal remain normal after the deformation without

distension and so {ξ1, ξ2, η} would be material coordinates. On the other hand, if the fiber elonga-

tion would be permitted, even in the framework of the first Kirchhoff-Love kinematical hypothesis,

{ξ1, ξ2, η} would not be material coordinates anymore. Indeed, a material point on the upper surface

would be identified at time t1 by (ξ1, ξ2, h(ξ1, ξ2, t1)) and at time t2 by (ξ1, ξ2, h(ξ1, ξ2, t2)) being

h(ξ1, ξ2, t1) 6= h(ξ1, ξ2, t2).

To overcome the shortcomings indicated before, two other levels of approximation have been

considered, but only the last is reported in this thesis.‖ In particular, as an intermediate step, the

following representation of the shell geometry has been considered

x
(
ξ1, ξ2, ζ, t

)
= p

(
ξ1, ξ2, t

)
+ ζ h

(
ξ1, ξ2, t

)
n

(
ξ1, ξ2, t

)
ζ ∈ [−1, 1]

where p is a map representing the mid-surface, n is the normal to the mid-surface in the point

of coordinates {ξ1, ξ2}, finally, ζ, replacing η, is a measure of the distance from the mid-surface

¶ Classically (see for instance Ref. [106]) the KL constraints are identified by the two following conditions:

(i) Points [..] lying initially on a normal-to-the-middle plane [..] remain on the normal-to-the-middle surface after
deformation.

(ii) The normal stresses in the direction transverse to the plate can be disregarded.

Nonetheless, in order to retain this decomposition of the virtual displacements also in the new formulations presented,
a revised version of the previous constraints will be introduced and will be discussed in the following chapters.

‡ To measure, the importance and actuality of the formulation presented, especially with regard to the computa-
tional efficiency, the reader is referred to Ref. [63] that constitutes a very recent apport to the finite element modeling
of shell, starting from the consideration of classical shell theory.

§ What the author is meaining, in other terms, is that the normal does not remain normal during the motion;
thus, the material points lying on the normal to the mid-surface at

(
ξ1, ξ2

)
at a certain time, will be crossed by

another normal (i.e., a normal originated by another point on the mid-surface) in an other istant of time.
‖ A complete record of all the developments considered is contained in Ref. [90] using a tensorially invariant

approach, whereas in the present thesis also a co-ordinate free (or absolute) notation is employed.



(Micro-) Structure of the Thesis 7

parametrized with respect to the current thickness (h) of the shell. This formulation is characterized

by the fact that, in the framework of the KL model (not within the more general RM kinematical

hypotheses), {ξα, ζ} are material co-ordinates (and the upper and lower surfaces are co-ordinate

surfaces) even if the shell experiences thickness stretching.

The last step in the present derivation is the consideration of the following map for the represen-

tation of the shell geometry

x
(
ξ1, ξ2, ζ, t

)
= p

(
ξ1, ξ2, t

)
+ ζ q

(
ξ1, ξ2, t

)
= p

(
ξ1, ξ2, t

)
+ ζ }

(
ξ1, ξ2, t

)
m

(
ξ1, ξ2, t

)

where q is the director, i.e., a deformable vector field attached to every point of the material

surface (see Ref. [50]), whose current length is } (distinct from the current thickness h) and whose

associated unit vector is m. With the previous representation map any deformation of the body

is exactly accomplished in the KL and in the RM framework.‡‡ Nonetheless, it should be observed

that, although the previous representation is always valid for a shell-like structure in its reference

(undeformed) configuration (or, in a certain instant of time t̂), it restricts the material fiber of the

shell to remain straight. Even if characterized by this limitation, this model enables one to deal

with finite deformations, whereas the use of material convected coordinates is particularly indicated

for the solution of dynamical problems, for example, by means of a incremental numerical approach

(see Ref.[75, 76, 64, 97, 98]).

In an attempt to simplify the equilibrium equations, and their derivation from the Virtual Work

Principle, three distinct approaches in the development of the present model for thin shells are

followed.† These approaches have been identified by the following acronyms (borrowed from Ref.

[97]):

1. SNF = Surface Natural Frame

2. SMF = Surface Mixed Frame

3. SCF = Surface Convected frame

‡‡ It is now opportune to report an extract of a review paper on shells, written by Prof. Simmonds (Ref. [96]),
that constitutes one of the most significative attacks to Cosserat theories in the current literature. In his critical
review of shells’ theory Simmonds questions: Cosserat Theory. Who need it? I defy anyone to show me a physical
phenomenon in shells which cannot be explained in a simpler, more straight-forward way by conventional shell theory
(properly formulated and properly applied). And later Why introduce surface or shell coordinates unnecessarily? The
reference configuration of a general shell can be described simply as a 1-parameter family of smooth, non-intersecting
surfaces, characterized by a (thickness-like) parameter L, (a foliation). Thus, we may visualize a shell in its reference
configuration as looking like a curved cake, made of layers of different ingredients of variable thicknesses. We do not
need to answer to Simmonds in defense of a formulation that has been applied several times in the past, nonetheless,
we would like to point out that, at least for the analysis of a piezoelectric shell with material fiber inclined with
respect to the normal, considered in the applications, the Cosserat model represents the most natural framework.

† In which sense the shell must be considered thin will be clarified later, for the moment observe that the present
modeling is limited to one-director Cosserat surfaces, thus the it is assumed that the relative deformations of the
layers are linear with respect to the deformations of the surface.
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The first approach consists in the projection of the virtual displacement on the surface natural frame

which is a local frame (i.e., a frame associated to each material point on the mid-surface) composed

of the tangential vectors to the material lines on the mid-surface (in general not orthogonal to each

other), and of the normal to the mid-surface. This approach is apparently the most natural yielding

to the simplest system of equilibrium equations in the framework of RM kinematical hypotheses.

On the other hand, it will be shown that the consideration of a revised version of the KL material

constraint (i.e., no shear is permitted along the material fiber (or director) and the fiber does not

stretch), complicates so much the formulation and the expression of the final equilibrium equations,

that another approach to follow seems mandatory. The second approach serves, indeed, to overcome

these difficulties. In particular, in this case the virtual displacement are still projected along the

surface natural frame, but the displacement in the normal direction is then expressed as a combination

of the displacement along the fiber direction and of the in-plane displacement. In this case it will

be shown that the equilibrium equations in the RM hypotheses are very complicated, but they

simplify substantially when the revised KL constraints are introduced. Finally, the third approach

starts directly with the decomposition of the virtual displacements (and of the gradient) in the fiber

direction and in the in-plane direction. This approach, in particular, makes use of the layer basis

vectors (covariant and contravariant) evaluated on the mid-surface (i.e., for ζ = 0), besides, as the

contravariant vectors
o
g

1
and

o
g

2
identifies a plane orthogonal to the fiber g3, they represent the

natural frame for the derivation of the equilibrium equations when the revised KL constraints are

considered. In particular, the final expression of the equilibrium equations, their derivation and the

relation between the resultant shear terms§ will be put in comparison with those obtainable in the

simplest classical case considered in Chapter 2, and, at this regard, it will be shown that the third

approach is the one that best fits the consideration of the classical model both in the RM and the

revised KL frameworks.

The analysis will be carried out starting with the consideration of the displacement gradient in

the three approaches, then the equilibrium equations for the RM and for the revised KL model will

be obtained. A different, but equivalent, approach will also presented in the appendix. We have

called it the divergence approach, to be compared to the gradient approach chosen in the main

body of the thesis. In particular in the appendix it will be shown that the two approaches for the

derivation of the equilibrium equations from the Virtual Work Principle are completely equivalent.

* * *

Going to the second Part of the thesis (the so-called “fiber-space” or space for applications),

it can be observed that it is mainly composed of applications useful to illustrate and apply some

of the concepts developed in the first Part, and to face problems of interest for the aerospace

field. In particular, three different problems have been considered: (i) the case of a microstructured

§ It is worth recalling that in the classical KL model the shear terms can be let vanish in the equilibrium equations.
This property is still valid also in the refined models here presented, however, according to the approach employed,
the relation that permit them to vanish can be more or less intricate.
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piezoelectric shell with material fibers, inclined with respect to the normal, made of piezoelectric

material, immersed in a matrix, and actuated by means of a voltage, different for each fiber, applied

at their edges; (ii) the aero-thermo-elastic analysis of a swept composite wing impacted by a laser

beam; (iii) the multi-modal aeroelastic vibrations suppression of aircraft wings by means of piezo-

electric devices passively shunted.

In particular, the first application is directed to the implementation of the shell’s equilibrium

equations, assuming that the co-ordinate ξ2 is immaterial, in the sense that the external loads,

the boundary conditions, the constitutive relations, and, thus, the equilibrium equations do not

depend on this in-plane co-ordinate. Obviously, this assumption is made in order to simplify the

formulation. The main characteristic of this problem is, however, the consideration of a special

material assumption. Indeed, it will be assumed that the material fiber, in terms of which the

geometry of the shell is described, are made of piezoelectric material polarized in the fiber direction.

Moreover, consistently with the derivation of the first part of the thesis, it will be assumed that these

fiber be inclined with respect to the normal and actuated, exploiting the electro-strictive effect (or

converse piezoelectric effect), by means of the application of a voltage at the edges of each fiber.

The problem will be solved numerically using a finite difference procedure applied to the equilibrium

equations in terms of displacements. A complete derivation of the equilibrium equations in terms of

displacements will be also reported with reference to this particular problem.

The second application presented regards the analysis of the aero-thermo-elastic response of an

aircraft swept wing impacted by a laser beam. In particular, the equilibrium equations for the wing

structure will be derived from the Virtual Work Principle modelling the wing as a plate-like body

with appropriate internal constraints, and including warping effects, in the hypothesis of linearized

kinematics and small displacements from a reference configuration. As a matter of fact, observe

that this model was first introduced by Librescu in Ref. [66] and subsequently developed in Refs.

[104, 60, 47] for the aeroelastic tailoring of aircraft swept wings. Moreover, a closed form solution

will be found for the aeroelastic response of the wing, exposed to a time-dependent thermal field.

The thermal field will be supposed generated by a laser beam impacting the upper surface of the

wing, and, within this context, an uncoupled thermo-elastic model will be adopted. In particular,

the expression of the thermal field, acting on the system as an external input, will be obtained using

the Green’s function method performed for the particular case under consideration. Moreover, it

will be shown, as this excitation may be described as dependent on the internal status of the system

(i.e., the Lagrangean variables chosen for the model) in an equivalent way to what is normally done

in aeroelasticity to model the aerodynamic feedback from the elastic variables. Although considered

in a linearized context, the structural model of the wing will incorporate several non-classical effect

such as the transverse shear effects, the anisotropy of the constituent materials, as well as the

sweep angle. For computational purposes, and towards highlighting the effects of a number of

physical and geometrical parameters, the case of a rectangular single-layered swept wing composed

of a transversely isotropic material will be considered. Having in view its exceptional features in
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the thermal protection of aerospace structures[38, 84], the pyrolitic graphite, that features thermo-

mechanical transversely isotropic properties, will be considered. Moreover, it will be supposed that

the wing is immersed in a subsonic incompressible flow whose speed is below the flutter critical

speed of the system. Finally, the solution of the problem will be obtained analytically in a double

Laplace transform domain, where both the space and time co-ordinates are converted to their Laplace

variable space counterparts. Within this approach, the problem will be reduced to the solution of

an algebraic problem in the transformed kinematical unknowns.

The third problem regards the implementation of a passive technique for the suppression of aeroe-

lastic vibrations. In particular, this problem will be presented with respect to a multi-modal passive

piezoelectric approach consisting in shunting the piezoelectric patches, bonded to the structure, to

an electrical circuit tuned on the aeroelastic frequency of vibrations. This will be done with respect

to any flight condition,¶ enabling one to damp the aeroelastic response in all the flight range and,

eventually, to increase the flutter stability margin. The point of view adopted is substantially system-

atic, in the sense that the piezoelectric coupling will be integrated in a state-space representation of

the aeroelastic system (constructed on the basis of the approximated natural modes of the structure)

without entering in the details of the structural model and of the finite element procedure employed

to arrive at the state-space representation. Nonetheless, it is worth noting that this technique is

quite general being applicable to any type of structure experiencing a fluid-structure interaction

phenomenon unless a suitable number of piezoelectric patches are bonded to the structure itself and

are shunted by an electrical circuit. Finally, note that the state-space representation, in terms of the

modal co-ordinates, permits to recognize a number of coupling effects between the structural, aero-

dynamical, and piezoelectrical degrees of freedom, and, in particular, to analyze how the vibration

energy flows in the piezoelectric systems, and how the aeroelastic systems evolve under the effect

of the piezoelectric coupling.

At conclusion of this introduction, it is worth noting that each of the applications presented is

characterized by a high degree of multidisciplinarity. Indeed, all the applications deal with the in-

teraction of a structural system (solid mechanics) with non-stationary aerodynamics (fluid-structure

interaction) and in presence of electrical loads (active/passive piezoelectricity) or thermal loads

(thermoelasticity). It is also worth noting that, for the sake of simplicity, both the electro-elastic

and the thermo-elastic coupling have been limited to be unidirectional. Indeed, it has been assumed

that the electrical field, in one case, and the thermal field, in the other case, are completely as-

signed by the (electrical and thermal) boundary conditions and are not dependent on the current

deformation of the body. In particular, with respect to the piezoelectric coupling, it is apparent that

this is a very strong and restrictive assumption because it excluds a priori the induced potential in

the formulation of the problem. Indeed, as it is reported in Ref. [92] when both mechanical and

electrical loads are applied to the piezoelectric plate, it is thought that a more complicated variation

¶ In particular, in the numerical simulations the flight speed, flight Mach number and flight altitude will be varied.
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of the electric potential through the thickness would enhance the electro-mechanical coupling . As

a matter of fact, let us observe that the consideration of the induced potential for the derivation of

refined models of piezoelectric plates and shells has been extensively studied in the current literature

but yet a tangible estimate of its importance has not been found. The interested reader could refer

to the following papers for a review of the state of the art in this field [40, 39, 91, 83, 88, 92]. On

the other hand, the negligence of the effect of the current deformation on the temperature field,

even if considered in the theoretical developments of the second application, is traditionally assumed

in the current literature (see for instance Ref.[17]). However, it deserves to be mentioned the case

of a thermoelastic problem where the bi-directional coupling has been considered (Ref.[13]), and

that has inspired the formulation, and the solution, of the problem presented in Chapter 7.
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Part I

Micro-Structured Continua
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Chapter 2

A point of departure

Following the example of Marsden in Ref.[69], the first part of this thesis starts with an introductory

chapter, providing a quick survey of a few standard topics in shell theory, from a classical point

of view. Similarly to Ref. [69], one of the first tasks faced in the following chapters is to repeat

this material in the framework of tensor analysis on manifolds with reference to micro-structured

continuum bodies. Moreover, the basic idea, underlying the formal decomposition of the problem

in Kirchhoff-Love + Reissner-Mindlin (see Section 1.3), is here for the first time introduced and

employed to derive the equilibrium equations and the related boundary conditions. However, in the

present chapter the formulation is limited to the consideration of the proper kinematical hypotheses

underlying the Kirchhoff-Love and Reissner-Mindlin models, whereas in the following chapters this

approach will be extended to the consideration of a revised version of the hypotheses underlying

these models. Furthermore, whilst in the present chapter the derivation of the equilibrium equations

from the Virtual Work Principle starts with an appropriate expression of the divergence of the stress

tensor, in the following the analysis will adopt another point of view emphasizing the role of the

gradient of the virtual displacement field (see Appendix B for a comparison of the two approaches).

Finally, let us observe that, although the following chapters contain some dependence on the present

one, the reader with a background on shell theory may read it rapidly and go forward to the following

ones.

2.1 Introduction

In this chapter the equilibrium equations of a thin shell are derived from the Principle of Virtual Work.

The starting idea is to represent the geometry of the shell in the present (deformed) configuration

at time t by the following decomposition:

x
(
ξ1, ξ2, η, t

)
= p

(
ξ1, ξ2, t

)
+ η n

(
ξ1, ξ2, t

)
(2.1)
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The previous equation states that the position (x) of a generic material point (ξ1, ξ2, η, t) of the shell

in a 3D Euclidean reference frame at the time t is a function of the position (p) of the corresponding

material point on the middle surface and of the distance (η), measured along the normal (n), to

the middle surface.

It is worth noting that the previous representation does not make use of material or convective

coordinates, but it is performed at each instant of time. Indeed, as η is an arc-length, that is

a measure of the distance along the normal to the middle surface, a material point identified in

a generic configuration at time (t1) by (ξ1, ξ2, η) will be identified in a different instant of time

(t2) by
(
ξ̂1, ξ̂2, η̂

)
. Let us note that, in the particular case of the Kirchhoff-Love model a fiber

initially normal remain normal after the deformation without distension and so (ξ1, ξ2, η) would

be material coordinates. If the fiber elongation would be permitted, even in the frame of other

Kirchhoff-Love assumptions, the previuos one would not be material coordinates anymore, indeed,

a material point on the upper surface would be identified at time t1 by (ξ1, ξ2, h(ξ1, ξ2, t1)) and at

time t2 by (ξ1, ξ2, h(ξ1, ξ2, t2)) being h(ξ1, ξ2, t1) 6= h(ξ1, ξ2, t2). Moreover, note that the upper

and lower surfaces are not coordinate surfaces being the thickness variable along the middle surface

(i.e., h = h(ξ1, ξ2, t)), whereas, in the new formulation in which η is replaced by ζ, and which is

presented and discussed in the succeeding chapters, the upper and lower surfaces are coordinate

surfaces. Finally, note that if the material points in the layer would be mapped by a vector m

(m = m(ξ1, ξ2, t) = n + l) instead of by the normal in a generic instant of time, the coordinates

ξ1, ξ2, η would be material coordinates within both the assumptions of the Kirchhoff-Love and

Reissner-Mindlin models provided that no fiber elongation be permitted.

2.2 Surface geometry

Let the geometry of a surface S be described by:

x = p
(
ξ1, ξ2

)
(2.2)

The covariant base vectors on S are defined by†

aα :=
∂p

∂ξα
(2.3)

Their derivative is given by (first Weingarten and Gauss formula, see [53], p. 37, Eq. 1.13.47.a):

∂aα

∂ξβ
=

∂2p

∂ξα∂ξβ
= Γγ

αβ aγ + bαβ n (2.4)

† Henceforth, Greek indices span from 1 to 2, Latin indices span from 1 to 3. Also the Einstein convention on
repeated indices is adopted.
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where, by definition, the surface Christoffel symbols Γγ
αβ are given by:

Γγ
αβ :=

∂2p

∂ξα∂ξβ
· aγ (2.5)

and the covariant components of the second metric tensor:

bαβ :=
∂2p

∂ξα∂ξβ
· n (2.6)

Let n be the surface unit normal. Hence, n · aβ = 0, n · n = 1. Differentiating these with respect

to ξα one obtains

∂n

∂ξα
· aβ = −n · ∂aβ

∂ξα
= −bαβ (2.7)

and

∂n

∂ξα
· n = 0 (2.8)

Hence (second formula of Weingarten and Gauss, [53], p. 37, Eq. 1.13.47.c):

∂n

∂ξα
= −bαβa

β = −bβ
αaβ (2.9)

Also recall that the contravariant base vectors aβ are defined by

aα · aβ = δβ
α (2.10)

and

aβ · n = 0 (2.11)

Hence one has

a1 =
a2 × n√

a
(2.12)

a2 =
n× a1√

a
(2.13)

n =
a1 × a2√

a
(2.14)

where

√
a = a1 × a2 · n = ‖a1 × a2‖ (2.15)
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2.2.1 Layer geometry

Let us consider a layer of non-uniform thickness h = h (ξ1, ξ2). Let its geometry be defined by:

x = p
(
ξ1, ξ2

)
+ η n

(
ξ1, ξ2

)
=: x̂

(
ξ1, ξ2, η

)
[η ∈ (−h, h)] (2.16)

One identifies ξ3 with η. This is usual in the classical approach (see for instance [53], p. 373).

Hence the layer base vectors are defined by

gα :=
∂x̂

∂ξα
=

∂p

∂ξα
+ η

∂n

∂ξα
=

(
δβ
α − η bβ

α

)
aβ (2.17)

Also,

g3 :=
∂x̂

∂η
= n (2.18)

Note that

gα · g3 = 0 g3 · g3 = 1 (2.19)

For further utilization it is convenient to express the layer base vectors g1, g2, g3 in terms of the

surface base vectors a1, a2, n, as:

gk = T β
k aβ + T 3

k n (2.20)

where, using Eqs. (2.17), (2.18) and (2.19), one has

T β
α := gα · aβ = δβ

α − η bβ
α (2.21)

T 3
α := gα · n = 0 (2.22)

T α
3 := g3 · aα = 0 (2.23)

T 3
3 := g3 · n = 1 (2.24)

Also recall that the contravariant base vectors are defined by

gh · gk = δk
h (2.25)
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i.e.,

g1 =
g2 × g3√

g
(2.26)

g2 =
g3 × g1√

g
(2.27)

g3 =
g1 × g2√

g
(2.28)

with

√
g = g1 × g2 · g3 (2.29)

2.2.2 Upper and lower surface geometry

The upper (or lower) surface S(u) is given by the mapping

x = x(u)
(
ξ1, ξ2

)
:= x̂

(
ξ1, ξ2, η(u)

(
ξ1, ξ2

))
(2.30)

where the superscript (u) stands for upper. Since η(u) is not constant (but function of ξ1 and ξ2)

the upper surface is not a coordinate-surface. The base vectors on the upper surface are given by

a(u)
α =

∂x(u)

∂ξα
=

∂x

∂ξα
+

∂x

∂η(u)

∂η(u)

∂ξα
= g(u)

α + η
(u)
/α g3 (2.31)

where

η
(u)
/α =

∂η(u)

∂ξα
. (2.32)

The metric tensor on S(u) is given by (see Eq. (2.19))

a
(u)
αβ = a(u)

α · a(u)
β = g

(u)
αβ + η

(u)
/α η

(u)
/β (2.33)

The area of an outer-surface element, dS(u), is given by

dS(u) = ‖dξ1a
(u)
1 × dξ2a

(u)
2 ‖ =

√
a(u) dξ1 dξ2 (2.34)

with

a(u) = ‖a(u)
1 × a

(u)
2 ‖2 = ‖a(u)

αβ‖ (2.35)
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The unit normal to the upper surface is defined by

n(u) =
a

(u)
1 × a

(u)
2

‖a(u)
1 × a

(u)
2 ‖

=
a

(u)
1 × a

(u)
2√

a(u)
(2.36)

Using Eq. (2.31) and Eq. (2.26) yields

a
(u)
1 × a

(u)
2 =

(
g

(u)
1 + η

(u)
/1 g3

)
×

(
g

(u)
2 + η

(u)
/2 g3

)
=

√
g(u)

(
g3(u) − η

(u)
/α gα(u)

)
(2.37)

Thus, the outwardly directed normal to S(u) is given by

n(u) =

√
g(u)

a(u)

(
g3(u) − η

(u)
/α gα(u)

)
. (2.38)

or

n(u)
α = −η

(u)
/α

√
g(u)

a(u)
n

(u)
3 =

√
g(u)

a(u)
(2.39)

Equations (2.30)-(2.39) with superscript (l) instead of (u) hold for the lower surface except for a

change in sign for n(l) which is defined to be also outwardly directed

n(l) = −a
(l)
1 × a

(l)
2√

a(l)
= −

√
g(l)

a(l)

(
g3(l) − η

(l)
/αg

α(l)
)

(2.40)

or

n(l)
α = η

(l)
/α

√
g(l)

a(l)
n

(l)
3 = −

√
g(l)

a(l)
(2.41)

2.2.3 Lateral surface geometry

Let ξα = ξα (γ) describe the boundary contour of S (covered counter clockwise with respect to n

for increasing γ) with γ being an arclength. Moreover, assume that the lateral surface SC of the

shell is given in the form

x = xC (γ, η) := x̂ [ξα (γ) , η] = p [ξα (γ)] + η n [ξα (γ)] (2.42)

in other words surface SC is composed of lines normal to S.

Note that γ is an arclength only for η = 0. Thus, the base vectors are

∂xC

∂γ
=

∂x

∂ξα

dξα

dγ
= tαgα = t (2.43)

∂xC

∂η
= n (2.44)
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with tα = dξα/dγ and t = tαgα tangent to the curve x (γ) = x (ξ1(γ), ξ2(γ), η). Note that tα is

independent of η but t is a unit vector only for η = 0.

The outward unit normal to the lateral surface is

nC =
1√
aC

∂xC

∂γ
× ∂xC

∂η
=

1√
aC

t× n =
1√
aC

tγgγ × n (2.45)

with

√
aC =

∥∥t× n
∥∥. (2.46)

Note that aC = 1 for η = 0.

For later reference, let us introduce the vector ν =
√

a/g t × n =
√

a/g
√

aC nC . Note that

ν · n = 0. Hence ν = ναgα with

να = ν · gα =

√
a

g
tβ gβ × n · gα =

√
a

g
tβ gα × gβ · n =

{ √
a t2 for α = 1

−√a t1 for α = 2
(2.47)

Note that να are independent of η, whereas ν is a function of η. Again, ν is a unit vector for η = 0,

and coincides with nC .

2.3 Virtual work for a shell

In this section the equilibrium equations of a shell† are developed starting from the virtual work

theorem in the form

−
∫∫∫

V
T : δE dV +

∫∫∫

V
f · δu dV +©

∫∫

S
tA · δu dS = 0 (2.48)

where tA is the applied external surface force, f is the external volume force, and δu is a virtual

displacement compatible with the geometric boundary conditions, whereas δE has components

δεij =
1

2

(
δui/j + δuj/i

)
(2.49)

Recalling that T is symmetric, Eq. (2.48) can be rewritten as

δW =

∫∫∫

V
(Div T + f) · δu dV +©

∫∫

S
(tA − t) · δu dS = 0 (2.50)

where t = Tn.

In the following it will be useful to set S = SU

⋃
SL

⋃
SC (see Fig. (2.1)), and treat separately the

† Note that, in Eq. (2.48), the inertial forces have been neglected. Nonetheless, they could be included, via
d’Alembert principle, substituting f with f −ρ a, where ρ is the volume mass density and a the material acceleration.
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Figure 2.1: Geometry of the shell in the deformed configuration.

contributions from SU

⋃
SL and SC :

©
∫∫

S
(tA − t) · δu dS =

∫∫

SU
⋃

SL

(tA − t) · δu dS +

∫∫

SC

(tA − t) · δu dS (2.51)

2.3.1 Virtual displacement

In this work the formulation for the shell is obtained from the only assumption that the virtual

displacement is of the form (see Eqs. (2.16) and (2.18))

δu = δp + η δg3 (2.52)

Note that initially one should not assume δg3 to be such that g3 remains normal to the midsurface

SM . Thus, the present formulation implies only that the material lines along the normal remain

straight; however they do not remain normal, nor does the thickness remain constant.

It is convenient to express δu as

δu = δvα aα + δw n + η (δθα aα + δκ n) (2.53)

where

δvα = δp · aα (2.54)

δw = δp · n (2.55)

δθα = δg3 · aα (2.56)

δκ = δg3 · n (2.57)
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Note that for η = ±h one has 2δh = (δuh − δu−h) · n = 2hδκ. Hence, one has δκ = δh/h (i.e.,

δκ represents the relative virtual variation of the thickness). Furthermore, let us suppose the virtual

rotation of a material fiber normal to the middle surface as the sum of the rotation due to the

Kirchhoff-Love assumption (the fibers initially normal to the middle surface remain normal after the

deformation) and of a rotation due to the Reissner-Mindlin model, that is:

δθα = δθα

∣∣
KL

+ δθα

∣∣
RM

(2.58)

where

δθα

∣∣
KL

= δn · aα = −n · ∂δp

∂ξα
= −bβ

α δuβ − ∂δw

∂ξα
(2.59)

δθα

∣∣
RM

= (δg3 − δn) · aα (2.60)

Equation (2.53) may be recast as

δu =
1∑

k=0

ηk
(
δuα(k)

aα + δw(k) n
)

=
1∑

k=0

ηk δu(k) (2.61)

where

δuα(0)
= δvα δw(0) = δw

δuα(1)
= δθα δw(1) = δκ (2.62)

Note that a more general theory may be obtained by replacing, in Eq. (2.61),
∑1

k=0 with
∑N

k=0 .‡

In the following the formulation is presented with
∑N

k=0, and then it is reduced to the case N = 1,

from which the Midlin-Reissner theory (for which there exist five degrees of freedom corresponding

to δvα, δw and δθα) is obtained as a general case of the Kirchhoff-Love theory (in which n is

assumed to remain normal so that the degrees of freedom are only δvα and δw) with the retainment

of the thickness distension (corresponding to the sixth degree of freedom δκ).

‡ A very general case is obtained by replacing ηk with fn (η), using for instance Legendre polynomials or zig-zag
functions.
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2.3.2 Development of the volume term

In this section, the first term in Eq. (2.50) is recast in a more convenient form. Using a convenient

expression for the divergence of a second order tensor, given by Eq. (A.41), one obtains

∫∫∫

V
Div T · δu dV =

=

∫∫∫

V0

∂

∂ξp
(
√

g τ pqgq) · δu dV0 (2.63)

where dV0 = dξ1 dξ2 dη is the volume element in the image space ξ1, ξ2, η.

In view of the fact that the virtual displacement is expressed in terms of surface base vectors, aα

and n (see Eq. (2.61)), it is convenient to use Eq. (2.20) to express gk in terms of aα and n. This

yields

√
g τ pq gq =

√
g τ pq

(T β
q aβ + T 3

q n
)

=
√

a
(
σpβ aβ + σp3 n

)
(2.64)

with

σpr :=

√
g

a
τ pq T r

q (2.65)

where the use of the factor
√

g/a will be useful in expressing volume integrals in terms of surface

integrals.

Thus, one has

∫∫∫

V
Div T · δu dV =

=

∫∫∫

V0

∂

∂ξα

(√
a σαβ aβ +

√
a σα3 n

) · δu dV0

+

∫∫∫

V0

∂

∂η

(√
a σ3β aβ +

√
a σ33 n

) · δu dV0 (2.66)
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Consider the first term on the right hand side of Eq. (2.66)

∫∫∫

V0

∂

∂ξα

(√
a σαβ aβ

) · δu dV0

=

∫∫

S0

∫ hu

hl

∂

∂ξα

(√
a σαβ aβ

) ·
N∑

k=0

ηk δu(k) dηdS0

=
N∑

k=0

[∫∫

S0

∂

∂ξα

(√
a aβ

∫ hu

hl

σαβ ηk dη

)
− (

h/α

√
a σαβηk

)hu

hl
aβ

]
· δu(k)dS0

=
N∑

k=0

∫∫

SM

[(
nαβ

(k)/αδuβ(k)
+ bαβnαβ

(k)δw(k)

)
− (

h/α σαβ ηk
)hu

hl
δuβ(k)

]
dSM (2.67)

where we have used Eq. ((A.44)) and the following definition for the integral term of stress

nαβ
(k) :=

∫ hu

hl

σαβ ηk dη =

=

∫ hu

hl

√
g

a

(
ταγ T β

γ + τα3 T β
3

)
ηk dη =

=

∫ hu

hl

√
g

a

(
δα
γ − η bα

γ

)
τ γβ ηk dη (2.68)

Similarly, for the second term on the right hand side of Eq. (2.66), one has

∫∫∫

V0

∂

∂ξα

(√
a σα3 n

) · δu dV0

=

∫∫

S0

∫ hu

hl

∂

∂ξα

(√
a σα3 n

) ·
N∑

k=0

ηk δu(k) dηdS0

=
N∑

k=0

∫∫

S0

[
∂

∂ξα

(√
a n

∫ hu

hl

σα3 ηk dη

)
− (

h/α

√
a σα3ηk

)hu

hl
n

]
· δu(k)dS0

=
N∑

k=0

∫∫

SM

[(
qα
(k)/α δw(k) − bβ

α qα
(k) δuβ(k)

)
− (

h/α σα3 ηk
)hu

hl
δw(k)

]
dSM (2.69)

where we have used Eq. ((A.37)) and the following definition

qα
(k) :=

∫ hu

hl

σα3 ηk dη =

=

∫ hu

hl

√
g

a

(
ταβ T 3

β + τα3 T 3
3

)
ηk dη =

=

∫ hu

hl

√
g

a
τα3 ηk dη (2.70)
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In addition, for the third term on the right hand side of Eq. (2.66), one has

∫∫∫

V0

∂

∂η

(√
a σ3β aβ

) · δu dV0

=

∫∫

S0

∫ hu

hl

∂

∂η

(√
a σ3β aβ

) ·
N∑

k=0

ηk δu(k) dηdS0

=
N∑

k=0

∫∫

S0

√
a

[(
σ3βηk

)hu

hl
− n

∫ hu

hl

σ3βηk−1dη

]
aβ · δu(k)dS0

=
N∑

k=0

∫∫

SM

[(
σ3β ηk

)hu

hl
− n pβ

(n−1)

]
δuβ(k)

dSM (2.71)

where pβ
(−1) = 0 and

pβ
(k) :=

∫ hu

hl

σ3β ηk dη =

=

∫ hu

hl

√
g

a
τ 3q T β

q ηk dη

=

∫ hu

hl

√
g

a

(
δβ
α − η bβ

α

)
τ 3α ηk dη (2.72)

Furthermore, for the last term in Eq. (2.66), one has

∫∫∫

V0

∂

∂η

(√
a σ33 n

) · δu dV0

=

∫∫

S0

∫ hu

hl

∂

∂η

(√
a σ33 aβ

) ·
N∑

k=0

ηk δu(k) dη

=
N∑

k=0

∫∫

S0

√
a

[(
σ33 ηk

)hu

hl
− n

∫ hu

hl

σ33ηk−1 dη

]
n · δu(k) dS0

=
N∑

k=0

∫∫

SM

[(
σ33 ηk

)hu

hl
− n r(n−1)

]
δw(k) dSM (2.73)

where rβ
(−1) = 0 and

r(k) :=

∫ hu

hl

σ33 ηk dη =

=

∫ hu

hl

√
g

a
τ 3q T 3

q ηk dη

=

∫ hu

hl

√
g

a
τ 33 ηk dη (2.74)
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Finally, consider the virtual work by the volume force f . Using Eq. (2.61), the virtual work by the

force f may be expressed as

∫∫∫

V
f · δudV =

∫∫∫

V0

f ·
N∑

k=0

ηk
(
δuα(k)

aα + δw(k) n
)√

gdV0

=
N∑

k=0

∫∫

SM

(
f̂

α
(k) δuα(k)

+ f̂
3

(k) δw(k)

)
dSM (2.75)

where

f̂
k

(k) =

∫ hu

hl

√
g

a
ηk fkdη (2.76)

with fα = f · aα and f 3 = f · n.

Combining Eqs. (2.66), (2.67), (2.69), (2.71), (2.73) and (2.75) one obtains

∫∫∫

V
(Div T + f) · δu dV =

N∑

k=0

∫∫

SM

{
nαβ

(k)/α − bβ
α qα

(k) − n pβ
(n−1) + f̂

α
(k) −

[(
h/ασαβ − σ3β

)
ηk

]hu

hl

}
δuβ(k)

dSM +

N∑

k=0

∫∫

SM

{
qα
(k)/α + bαβ nαβ

(k) − n r(n−1) + f̂
3

(k) −
[(

h/ασα3 − σ33
)
ηk

]hu

hl

}
δw(k)dSM(2.77)

2.3.3 Virtual work from Su

⋃Sl

Consider the virtual work by t on Su

⋃Sl (see Eq. (2.51)). Using Eqs. (2.38), (2.40), (2.61) and

(2.64), one has

∫∫

Su
⋃Sl

t · δu dS =

∫∫

Su
⋃Sl

T nS · δu dS

=

∫∫

Su

T n(u)dSu +

∫∫

Sl

T n(l)dSl

=

∫∫

S0

[√
g

a(u)
T

(
g3 − h/α gα

) ·
N∑

k=0

ηk δu(k)

√
a(u)

]

hu

dξ1dξ2

−
∫∫

S0

[√
g

a(l)
T

(
g3 − h/α gα

) ·
N∑

k=0

ηk δu(k)

√
a(l)

]

hl

dξ1dξ2

=

∫∫

SM

{[(−h/α σαβ + σ3β
)
ηk

]hu

hl
δuβ(k)

+
[(−h/α σα3 + σ33

)
ηk

]hu

hl
δw(k)

}
dSM(2.78)
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On the other hand one has

∫∫

SU
⋃

SL

tA · δu dS =

=

∫∫

SU
⋃

SL

tA ·
N∑

k=0

ηk
(
δuα(k)

aα + δw(k)n
)√

aS dξ1dξ2

=
N∑

k=0

∫∫

SM

[
ηk+1

(
tαAδuα(k)

+ t3Aδw(k)

) √
aS

a

]η=1

η=−1

dSM

=
N∑

k=0

∫∫

SM

(
f̌

α
(k)δuα(k)

+ f̌
3

(k)δw(k)

)
dSM (2.79)

where

f̌
k

(k) =

√
aU

a
tkU +

√
aL

a
tkL n = even (2.80)

f̌
k

(k) =

√
aU

a
tkU −

√
aL

a
tkL n = odd (2.81)

Finally, considering Eqs. (2.77), (2.78) and (2.79) yields (note that the boundary terms in Eq.

(A.37) cancel out with the similar ones of Eq. (2.78))

∫∫∫

V
(Div T + f) · δu dV +

∫∫

SU
⋃

SL

(tA − t) · δu dS =

N∑

k=0

∫∫

SM

[(
nαβ

(k)/α − qα
(k) bβ

α − npβ
(n−1) + f

β
(k)

)
δuβ(k)

+
(
qα
(k)/α + bαβnαβ

(k) − nr(n−1) + f 3
(k)

)
δw(k)

]
dSM

where

f
k

(k) = f̌
k

(k) + f̂
k

(k) (2.82)
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2.3.4 Virtual work from SC

Consider the virtual work by t on SC (see Eq. (2.51)). Using the expression for the normal to SC ,

nC in Eq. (2.45), the virtual work can be written

∫∫

SC

nC ·T δu dS =

∫∫

SC

nC · giτ
ij δujdS

=

∫∫

SC

√
g

a
nC · gα

(
σαβ δuβ + σα3 δw

)√
aC dηdγ

=

∫∫

SC

να

(
σαβ δuβ + σα3 δw

)
dηdγ

=
N∑

k=0

∮
να

(∫ hu

hl

ηk σαβ dη δuβ(k)
+

∫ hu

hl

ηk σα3 dη δw(k)

)
dγ

=
N∑

k=0

∮
να

(
nαβ

(k) δu
(k)
β + qα

(k) δw(k)

)
dγ (2.83)

since nC · g3 = nC · n h = 0.

Next, consider the virtual work by tA on SC (see Eq. (2.51)),

∫∫

SC

tA · δu dS =

∮ ∫ hu

hl

tA ·
N∑

k=0

ηk
(
δuα(k)

aα + δw(k)n
)√

aC dηdγ

=
N∑

k=0

∮ (∫ hu

hl

√
aCηk tαA dη δuα(k)

+

∫ hu

hl

√
aCηk t3A dη δw(k)

)
dγ

=
N∑

k=0

∮ (
Sα

(k) δuα(k)
+ S3

(k) δw(k)

)
dγ (2.84)

where

Sk
(k) :=

∫ hu

hl

√
aC ηk tkA dη (2.85)

Combining Eqs. (2.51),(2.83), and (2.84) yields

∫∫

SC

(tA − t) · δu dS =
N∑

k=0

∮ [(
Sβ

(k) − να nαβ
(k)

)
δuβ(k)

+
(
S3

(k) − να qα
(k)

)
δw(k)

]
dγ (2.86)
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2.3.5 Equilibrium equations for the Reissner-Mindlin model

Let us introduce the hypotheses of the Reissner-Mindlin kinematical model for a shell, that is, express

the virtual displacement δu
(1)
α in the form of Eq.((2.58)). Thus, the virtual work can be written

δW =

∫∫

SM

{[
nαβ

(0)/α − bβ
α qα

(0) + fβ
(0) − bβ

γ

(
nδγ

(1)/δ − bγ
δ qδ

(1) − pγ
(0) + fγ

(1)

)]
δuβ +

[
qα
(0)/α + bαβ nαβ

(0) + f 3
(0) +

(
nδγ

(1)/δ − bγ
δ qδ

(1) − pγ
(0) + fγ

(1)

)
/γ

]
δw +

[
nαβ

(1)/α − bβ
α qα

(1) − pβ
(0) + fβ

(1)

]
δθβ

∣∣
RM

+
[
qα
(1)/α + bαβ nαβ

(1) + qα
(1)/α − r(0) + f 3

(1)

]
δκ

}
dSM +

∮ {[
Sβ

(0) − να nαβ
(0)

]
δuβ +

[
S3

(0) − νγ qγ
(0) − νγ

(
nαγ

(1)/γ − bγ
α qα

(1) − pγ
(0) + f 3

(1)

)]
δw +

[
Sβ

(1) − να nαβ
(1)

]
δθβ +

[
S3

(1) − να qα
(1)

]
δκ

}
dγ (2.87)

where the following relation has been used

cα ∂δw

∂ξα
= div (cα aα δw)− cγ

/γ δw (2.88)

and the Green-Gauss theorem in order to obtain an integral on the boundary.

It is worth noting that the integral terms related to the shear are not independent, indeed, the

following relation states:

qα
(0) = bα

γ qγ
(1) + pα

(0) (2.89)

Thus, the application of the Principle of Virtual Work (i.e., the virtual work must be zero for every

virtual displacement) leads to following system of equilibrium equations

nαβ
(0)/α − bβ

γ nαγ
(1)/α + fβ

(0) − bβ
γ fγ

(1) = 0 (2.90)

nαβ
(1)/αβ + bαβnαβ

(0) + f 3
(0) + fβ

(1)/β = 0 (2.91)

nαβ
(1)/α − bβ

α qα
(1) + +pβ

(0) + fβ
(1) = 0 (2.92)

qα
(1)/α + bαβnαβ

(1) − r(0) + f 3
(1) = 0 (2.93)
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and boundary conditions

Sβ
(0) − να nαβ

(0) = 0 or δuβ = 0 (2.94)

S3
(0) − νγ

(
nαγ

(1)/γ + f 3
(1)

)
= 0 or δw = 0 (2.95)

Sβ
(1) − να nαβ

(1) = 0 or δθ = 0 (2.96)

S3
(1) − να qα

(1) = 0 or δκ = 0 (2.97)

Note that Eqs. ((2.90)) and ((2.91)) are the equilibrium equations for the Kirchhoff-Love model,

Eq. ((2.92)) is relative to Reissner-Mindlin model being related to the shear of a generic section,

and Eq. ((2.93)) is relative to the equilibrium in the thickness direction due to the hypotheses of

fiber elongation assumed throughout in this work.
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Chapter 3

Preliminaries

In this chapter the formal description of the mathematical structure underlying the definition of

a micro-structured continuum is established. First a definition of micro-structure is reported and

its physical implication discussed, then, the mathematics needed to deal with this definition is

introduced, both from the point of view of the tensors analysis on manifolds (or modern continuum

mechanics) and from the point of view of classical mechanics (based on the definition of material

coordinates). In particular, in the following, vector and tensor fields, defined on domain of the three-

dimensional Euclidean point space E , will be used, so a rigorous definition of E , of the manifolds

immersed in it, which concur to the definition of the micro-structure of the continuum, and of

the related tangent spaces, is reported. Although, the theory is initially developed in its complete

generality, being applicable both to shell and rod-like bodies, then, for the sake of simplicity, the

analysis is confined to the study of shells.

3.1 Micro-structure: a definition

In this section, following Refs. [43, 97, 102, 33], the basic kinematic assumptions underlying the

definition of a micro-structured continuum are illustrated. First, let us introduce the definition of

micro-structured continuum quoting from Ref. [43]: “In the classical description, a continuum is a

continuous distribution of particles, each of them being represented geometrically by a point M and

characterized kinematically by a velocity Ui. In a theory which takes microstructure into account,

from the macroscopic point of view (which is the point of view of a continuum theory), each particle

is still represented by a point M , but its kinematical properties are defined in a more refined way. In

order to discover how to define the kinematical properties of a particle, one has to look at it from a

microscopic point view. At this level of observation, a particle appears itself as a continuum P (M)

of small extent. Let us call M its center of mass, M ′ a point of P (M), Ui the velocity of M , x′i
the co-ordinates of M ′ in a Cartesian frame parallel to the given frame xi with M as the origin, U ′

i

the velocity of M ′ with respect to the given frame, and xi the coordinates of M in the given frame.

33
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If one assumes for the moment that the xi are given, i.e., if one looks at a given particle, the field

U ′
i appears as a function of the x′i defined on P (M). As P (M) is of small extent, it is natural to

look at the Taylor expansion of U ′
i with respect to the x′j and also, as a first approximation, to stop

this expansion with the terms of degree 1. Then, with this assumption, one can write

U ′
i = Ui + χij xj (3.1)

The physical significance of this assumption is clear: one postulates that one can get a sufficient

description of the relative motion of the various points of the particle if one assumes that the relative

motion is a homogeneous deformation.”

The given definition of a micro-structured continuum body is quite general, being applicable to

any type of body for which an equation like Eq. (3.1) is true. On the other hand, another definition

of micro-structured continuum bodies can be given referring to the geometry of the body immersed

in the three-dimensional Euclidean space. This point of view is that used in Refs. [97, 102, 33],

where both theories of shells, plates and rods are developed regarding them as continua with a

special body structure and a special kinematics consistent with that structure. A central role in this

definition is played by the two complementary concepts of support and fiber spaces.

Let E be a 3-dimensional Euclidean space let V be the vector space associated with E and

denote with U := {v ∈ V | ‖v‖ = 1} the sphere of all vectors having unit length. One may think

of E as equipped with a Cartesian frame {O; e1, e2, e3} with orthogonal basis vectors ei ∈ U (i=

1, 2, 3); the Cartesian components of a vector v ∈ V are then vi := v · ei and, in particular, the

triplet (p1, p2, p3) ∈ <3, pi := p (p) · ci, of components of the position vector are the Cartesian

coordinates of a point p ∈ E .

Now a vector field w on a domain W ∈ V can be defined as a map

w : W 7→ V (3.2)

meaning that in every point p ∈ E there exists a rule (i.e., a map) which associates to p a vector

w ∈ V (examples of vector fields that will be considered later are the displacement field, the velocity

field, the acceleration field, etc).

At this point one may say a continuum micro-structured if there exists a (differentiable) manifold

S (the “support-space”) and another (differentiable manifold) F (the “fiber-space”), such that the

body (differentiable) manifold B can be written

B = S ⊕ F (3.3)

It is also quite worth noting that at this stage (by means of the previous abstractization) one may

deal with any type of structure and configuration, for instance, note that if S is a 2-D differentiable

manifold and F a 1-D differentiable manifold one is dealing with a shell-like structure (whereas if S
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is a 1-D differentiable manifold and F a 2-D differentiable manifold one is dealing with a rod-like

structure) where no restriction∗ is placed on the geometry of the main surface (line) and on the

geometry of main fiber (plane).† A helpful visualisation of our reasoning is reported in the following

table.

Table 3.1: Possible micro-structured continuum models
Model - Space Fiber Support

Rods ζ1, ζ2 =⇒ a = 2 ξ1 =⇒ α = 1
Shells ζ1 =⇒ a = 1 ξ1, ξ2 =⇒ α = 2

To state precisely the basic kinematic assumptions, underlying the definition of the two subset S
and F di B, let us define the configuration space C (a differentiable manifold) of a micro-structured

(one-director Cosserat) continuum as

C :=
{
(p,qa) : A ⊂ <n 7→ <3 × V 3−n

}
(3.4)

where n (n < 3) is the dimension of the support-space, 3− n is the dimension of the fiber-space,‡

whereas A ⊂ <n is an open set with smooth boundary ∂A , compact closure Ā , and points {ξα}.‖
Accordingly, one may define S and F to be

S :=
{
x ∈ <3‖ x = p with p : A ⊂ <n 7→ <3

}
(3.5)

and

F :=
{
x ∈ <3‖ x = ζa qa with qa : A ⊂ <n 7→ <3 and {ζa} ∈ B ⊂ <3−n

}
(3.6)

where B ⊂ <3−n is an open set with points ζa ∈ B, defining the domain of existence of the fiber

∗ Even if this second point of view has not yet been presented in details, it is apparent that while in the first
definition of micro-structure a central role is played by the hypothesis of smallness of the particle, here this hypothesis
has not (until now) been introduced. Nonetheless, it should not been forgot that the two definitions are fully equivalent
and this will be delucidated in the following developments where a formal expression of the kinematics is reported.
To this aim, note also, that, being the resulting models reduced models with respect to the three-dimensional Cauchy
theory, they lie on the assumption that the 3-D motion can be described (i.e., recovered) by the notion of the motion
of the support.

† Note that here the term “main” is used to indicate the support and fiber spaces: this should not be confused
with their reference configuration which one may consider coincident with the undeformed one. It is also worth noting
that frequently, especially, in shell theory (and also here), it is convenient to distinguish between the geometrical
middle surface (equidistant to the upper and lower surfaces) and the main one which could be, for instance, the locus
of the centers of mass measured along the thickness (or the fiber).

‡ Note that for n = 1 one has rods, whereas for n = 2 one has shells and plates.
‖ For the sake of generality (but with the risk to be puzzling) we use here Greek indices (α) to denote quantitites

(i.e., points, basis vectors, etc.) related to the support, so that α spans from 1 to 2 for shells, whereas α is equal to
1 for rod theories; and we use Latin indices (a) to list quantities related to the fiber space, so that a spans from 1
to 2 for rods, whereas a is equal to 1 for shell theories.
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space.§ Moreover, any configuration of the body is described by a pair (a triplet in the case of rods)

of vectors (p,q) ∈ C ((p,q1,q2) ∈ C for rod-like bodies), where:

(i) The map p : A 7→ <3 defines the position vector of each point of the support (i.e., the main

surface for shells, and the main line for rods)

(ii) The maps qa : A 7→ V 3−n define 3−n (i.e., 1 for shell and 2 for rod-like bodies respectively)

vector fields at each point of the support, referred to as director (or fiber) fields.

Starting from the previous considerations, one is led to define any configuration of the body

B ⊂ <3 as

B :=
{
x ∈ <3‖x = p + ζa qa where (p,qa) ∈ C and {ζa} ∈ B ⊂ <3−n

}
(3.7)

Alternatively to Eq. (3.7), one may state that the actual configuration of the body is represented

by the following expression¶

x = x̂ (ξα, ζa) = p (ξα) + ζa qa (ξα) for

{
α = 1, 2 and a = 1 (shells)

α = 1 and a = 1, 2 (rods)
(3.8)

where p (ξα) represent the position vector of the material point {ξα} in the support space, and qa

are the directors of order one (or fibers) representing the actual configuration of the fiber space

relevant to the support in the point {ξα} of the support space.

Similarly, the reference configuration, which may be assumed coincident with the undeformed

one (or the one assumed by the body at the initial time of observation of the motion), will be given

by

B0 :=
{
x0 ∈ <3‖x0 = p0 + ζa q0a where (p0,q0a) ∈ C and ζ ∈ B ⊂ <3−n

}
(3.9)

At this point, before proceeding further, it is important to comment on the physical implications

inherent the definition of the configurational space and of the actual configuration of the body given

in the previous equations (Eqs. (3.4)-(3.8)). For a better comprehension of our reasoning it would

be useful to refer again to the definition of micro-structured continuum given at the beginning of

this section. There it was observed that “... as P (M) is of small extent (...) one can get a sufficient

description of the relative motion of the various points of the particle if one assumes that this relative

motion is a homogeneous deformation”. Thus, it is clear that behind the kinematic assumption of

Eq. (3.7) there is the request that the relative motion leaves each fiber straight (in the case of

§ B reduces to an interval of R for shells.
¶ Although in Eq. (3.8) clear distinction is placed between the map and its value (the map is endowed with an

upper hat )̂ in the following such attention will be released without apparent misleading.
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shells) [plane (in the case of rods)] and that it is linear with respect to the co-ordinates ζa of the

fiber space. Of course, within this model the fiber is permitted to rotate with respect to the fiber

space but it cannot curve (or warp in the case of rods). This assumption can be clearly justified with

the request of thinness of the fiber with respect to the support (meaning that diam[F ] ¿ diam[S])

but it would not be necessarily introduced if a higher order director theory (i.e., a theory which,

considering a richer kinematics, be capable to describe the curving or warping of the fiber) would

be considered.∗∗

3.2 Shells as micro-structured bodies

Henceforth, for the sake simplicity, the theory will be developed renouncing to the generality of Eq.

(3.4) and confining the treatment to the case n = 2 , i.e., to the case of shell-like bodies. In this

case Eq. (3.8) reduces to

x = x̂
(
ξ1, ξ2, ζ

)
= p

(
ξ1, ξ2

)
+ ζ q

(
ξ1, ξ2

)
for ζ ∈ [−1, 1] (3.10)

To be more specific it has to note that q can be parametrized with respect to the thickness, thus

Figure 3.1: Geometry of an extensible one-director Cosserat surface.

∗∗ The interested reader could refer to Refs. [79, 80] for a detailed description of these models, or refer to the
third part of this thesis where, as an application of the present theory, a swept aircraft wing, starting from a plate-like
kinematic assumption, is modeled as a rod-like body including a number of non-classical effects such as the warping,
the transverse shear flexibility and the anisotrpy of the material constituents.
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emphasizing the extensibility feature of the fiber retained into the model, such that

q = }
(
ξ1, ξ2

)
m

(
ξ1, ξ2

)
(3.11)

where m ∈ U with U := {v ∈ V | ‖v‖ = 1} the sphere of all vectors having unit length. Moreover,

because in the following it will be made often use of classical concepts of continuum mechanics

(such as general co-ordinates, covariant and contra-variant vectors, covariant derivatives, etc) here

a short summary of some of these concepts is reported.††

At the cost to be repetitive, with respect to the results already presented in Chapter (2),‡‡ in the

following sections the geometry of the main surface, and of the layer, in the actual configuration

is presented and discussed. This repetition, limited to the definition of the surface geometry and

metrics, is made necessary by the fact that the consideration of a director distinct from the normal

in the actual configuration (and, eventually, in the reference configuration) leads to the introduction

of new quantities whose meaning can be better understood starting from a reconsideration of the

main surface and of the layer geometry. Specifically, one may assume that a general (or convected,

or material) curvilinear co-ordinate system∗ {ξα} is defined on the main surface. Moreover, to take

into account the “anormality” of the fiber in the actual configuration, one may decompose the fiber,

in each point of co-ordinates {ξα} on the main surface, in the orthogonal sum of a vector (h n) in

the direction normal to the tangent plane, and of a vector lying in the tangent plane (h l) and so

orthogonal to n. Consequently, one should define a second order tensor (C, see later) measuring

the variation of the fiber (in length and direction) on the main surface ranging over the surface.

This tensor has to be compared with the curvature tensor (B, see later) defined in the classical

approach, and measuring the variation of the normal (in direction) on the main surface ranging over

the surface.

3.2.1 Main surface geometry

Let the geometry of the main surface S be described by:

S :=
{
x ∈ <3‖ x = p with p : A 7→ <3

}
(3.12)

†† The interested reader is referred to Appendix (A) for a more detailed description of these concepts
‡‡ Note that those results were relevant to a simple model for shell sharing with the present model a few basic

concepts and the stategy for the obtainment of the equilibrium equations.
∗ Classically, theories of shells and rods have been introduced making use of the definition of a general co-ordinate

system, often referred also as material or convected co-ordinates. Illustrious examples of this type of approach can
be found in Refs.[53, 107, 108, 79, 36] and more recently in Refs. [97, 99, 23]. On the other side, in the modern
literature the use of general co-ordinates is often avoided, in favour of the abstraction of the set theory, and manifolds,
even if its physical meaning is particular apparent and useful for a immediate comprenhsion of the problem (cfr. Refs
[69, 35, 33], and, in particular, Ref. [69] for a presentation and comparison of the two approaches).
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or simply (i.e., renouncing to the abstraction of the set theory)

x = p
(
ξ1, ξ2

)
(3.13)

for {ξα} ∈ A ⊂ <2, general curvilinear co-ordinates on S. Note that, leaving ξ1 (ξ2) constant and

varying ξ2 (ξ1), p describes a curve in <3. These curves are referred to as material ξ2 (ξ1) lines,

being the image in the actual configuration of the straight lines ξ1 = const (ξ2 = const) in A .

The covariant base vectors on S (i.e., the tangent vectors to the material lines on S) are defined

by:

aα :=
∂p

∂ξα
(3.14)

The contravariant base vectors aβ can be defined by

aα · aβ = δβ
α (3.15)

and

aβ · n = 0 (3.16)

Hence one has

a1 =
a2 × n√

a
(3.17)

a2 =
n× a1√

a
(3.18)

n =
a1 × a2√

a
(3.19)

where

√
a = a1 × a2 · n = ‖a1 × a2‖ (3.20)

Their derivative is given by (first Weingarten and Gauss formula, see [53], p. 37, Eq. 1.13.47.a):

∂aα

∂ξβ
=

∂2p

∂ξα∂ξβ
= Γγ

αβ aγ + bαβ n (3.21)

where, by definition, the surface Christoffel symbols Γγ
αβ are given by:

Γγ
αβ :=

∂2p

∂ξα∂ξβ
· aγ (3.22)
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and the covariant components of the second metric tensor:

bαβ :=
∂2p

∂ξα∂ξβ
· n (3.23)

Let n be the surface unit normal. Hence, n · aβ = 0, n · n = 1. Differentiating these with respect

to ξα one obtains

∂n

∂ξα
· aβ = −n · ∂aβ

∂ξα
= −bαβ (3.24)

and

∂n

∂ξα
· n = 0 (3.25)

Hence (second formula of Weingarten and Gauss, [53], p. 37, Eq. 1.13.47.c):

∂n

∂ξα
= −bαβa

β = −bβ
αaβ (3.26)

Alternatively, using a direct (absolute) notation one can state

B := − Gradn = −aα ⊗ ∂n

∂ξα
= −bαβ aα ⊗ aβ = −bβ

α aα ⊗ aβ (3.27)

which represents the curvature tensor on S.

3.2.2 Layer geometry

Recalling Eq. (3.10) the layer base vectors are defined by

gα :=
∂x̂

∂ξα
=

∂p

∂ξα
+ ζ

∂ (} m)

∂ξα
(3.28)

Also,

g3 :=
∂x̂

∂ζ
= } m (3.29)

In order to compare the present model with the classical one presented in Chapter (2), the following

decomposition for g3 is here introduced

g3 = } m = h (n + l) (3.30)
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where h (h := } m ·n) is the semi-thickness of the shell in {ξα} (measured, by definition, along the

normal in {ξα}), whereas } is the semi-length of the fiber (i.e., a sort of thickness measured along

the fiber). Finally, l (l = lγ aγ = l · aγ aγ) is a vector lying in the tangent plane to S in {ξα}, that

measures the inclination of the fiber with respect to the normal. Note that, being m ∈ U (i.e., a

unit vector), the following relation for the length of l holds

m ·m = 1 =
h2

}2

(
1 + l2

)
=⇒ l := ‖l‖ =

√
1− h2

}2
(3.31)

For further utilization, it is important to consider the expressions of the layer base vectors on the

main surface†

o
gk := gk|ζ=0 (3.32)

or

o
gα := ak and

o
g3 = g3 (3.33)

This triad of vectors play a central role in our subsequent developments and define a particular

frame: the so-called Surface convected frame.‡ Also recall that the contravariant base vectors are

defined by

gh · gk = δk
h (3.34)

i.e.,

g1 =
g2 × g3√

g
(3.35)

g2 =
g3 × g1√

g
(3.36)

g3 =
g1 × g2√

g
(3.37)

with

√
g = g1 × g2 · g3 (3.38)

† The upper upper o ( o ) over the present kinematical descriptors serves to differentiate them from those defined
on the volume base and the surface natural frame, which are marked by an upper bar (¯). Similar distinction will be
taken into account also in the following developments to differentiate the work-conjugate dynamical descriptors.

‡ Note that this concept has already been introduced in Ref. [97], where in addition to the fixed inertial frame,
two different reference frames on the mid-surface have been introduced: exactly the Surface convected frame , and
the Director orthogonal frame (here not considered).
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Similarly, the contravariant volume basis vectors (
o
g

k
= gk|ζ=0) are





o
g

1
:=

o
g2 ×

o
g3√

o
g

= a1 − l1 n

o
g

2
:=

o
g3 ×

o
g1√

o
g

= a2 − l2 n

=⇒ o
g

α
= aα − lα n (3.39)

whereas for
o
g

3
one has

o
g

3
=

n

h
(3.40)

where it has been considered that, using Eq. (3.30), one has

√
o
g =

o
g1 ×

o
g2 ·

o
g3 = h

√
a (3.41)

It is worth noting that the contravariant vectors
o
g

1
and

o
g

2
lie in a plane inclined with respect to

the tangent plane of (−l · aβ) l. In other words, they identify the plane normal to the fiber in {ξα}.
The previous observation is particularly important being the basis of the following developments.

Before proceeding further, let us note that Eq. (3.28) may be conveniently expressed in terms of

the surface base vectors using Eqs. (3.30) and (3.23). Indeed, one has

gα :=
{

δβ
α − ζ

[
h bβ

α −
(
h lβ

)
/α

]}
aβ + ζ

(
h/α + h bαγ lγ

)
n (3.42)

Equation (3.42) may be recast appealing to the definition of shifters. In particular, one can define the

shifters between the volume and surface covariant vectors, and the surface and volume contravariant

vectors in the following way

{
gh = T k

h ak

ak = T k
h gh

=⇒ T k
h := gh · ak (3.43)

thus

gk = T β
k aβ + T 3

k n (3.44)



Shells as micro-structured bodies 43

where, using Eqs. (3.28) and (3.29), one has:

T β
α := gα · aβ = δβ

α − ζ
[
h bβ

α −
(
h lβ

)
/α

]
(3.45)

T 3
α := gα · n = ζ

(
h/α + bαβ h lβ

)
(3.46)

T α
3 := g3 · aβ = h lβ (3.47)

T 3
3 := g3 · n = h (3.48)

Similarly, using Eq. (3.30) one may express the volume base vectors in terms of their components

on the volume base vectors at the middle surface,i.e.,

gα :=
[
δβ
α − ζ h

(
bβ
α − lβ/α + bαγ lγ lβ

)]
o
gβ + ζ

(
h/α

h
+ bαγ lγ

)
o
g3 (3.49)

Again, introducing the definition of shifters between the volume base vectors and the surface con-

vected frame as





gh =
o

T
k

h

o
gk

o
g

k
=

o

T
k

h gh

=⇒
o

T
k

h := gh · o
g

k
(3.50)

one has

gk =
o

T
β

k

o
gβ +

o

T
3

k

o
g3 (3.51)

where, using Eqs. (3.49) and (3.40), one has:

o

T
β

α := gα · o
g

β
= δβ

α − ζ h
(
bβ
α − lβ/α + bαγ lγ lβ

)
(3.52)

o

T
3

α := gα · o
g

3
= ζ

(
h/α

h
+ bαβlβ

)
(3.53)

o

T
α

3 := g3 · o
g

β
= 0 (3.54)

o

T
3

3 := g3 · o
g

3
= 1 (3.55)

3.2.3 Derivatives of the base vectors

In the following section the derivatives of the layer base vectors, of the vectors of the surface natural

frame and of the surface convected frame, and their reciprocals (i.e., the contravariant vectors),

are reported. Their importance will appear clearly in the following sections because they enter into

the definition of the Gradient (both 3-D and 2-D) of a vector and tensor field, thus, they will be

instrumental for obtaining of the equilibrium equations for micro-structured continua starting from

the Principle of Virtual Work.
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The layer base vectors

∂aα

∂ξβ
=

∂2p

∂ξα∂ξβ
= Γγ

αβ aγ + bαβ n (3.56)

where, by definition, the surface Christoffel symbols Γγ
αβ are given by:

Γγ
αβ :=

∂2p

∂ξα∂ξβ
· aγ (3.57)

and the covariant components of the second metric tensor:

bαβ :=
∂2p

∂ξα∂ξβ
· n (3.58)

Let n be the surface unit normal. Hence, n · aβ = 0, n · n = 1. Differentiating these with respect

to ξα one obtains

∂n

∂ξα
· aβ = −n · ∂aβ

∂ξα
= −bαβ (3.59)

and

∂n

∂ξα
· n = 0 (3.60)

Hence (second formula of Weingarten and Gauss, [53], p. 37, Eq. 1.13.47.c):

∂n

∂ξα
= −bαβa

β = −bβ
αaβ (3.61)

The surface natural frame

Recall the derivatives of the surface base vectors introduced in Eqs. (3.21)–(3.26). In particular,

the curvature tensor is such that

∂aα

∂ξβ
= Γβ

γαaγ + bαβ n (3.62)

∂aα

∂ξβ
= −Γβ

γαa
γ + bα

β n (3.63)

and

∂n

∂ξβ
= −bαβ n = −bα

β n (3.64)
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where the Christoffel symbols of the second kind, the equality a3 = a3 = n, and the following

equation have been used

Γγ
αβ :=

∂aα

∂ξβ
· aγ = −aα · ∂aγ

∂ξβ
(3.65)

Moreover, note that

Γα
αγ =

1√
a

∂
√

a

∂ξγ
(3.66)

Indeed

∂
√

a

∂ξγ
=

∂

∂ξγ
(a1 × a2 · n) =

=
∂a1

∂ξγ
· a2 × n +

∂a2

∂ξγ
· n× a1 +

∂n

∂ξγ
· a1 × a2

=
√

a Γβ
1γ aβ · a1 +

√
a Γβ

2γ aβ · a2 =
√

a Γα
αγ (3.67)

The surface convected frame

Finally, consider the derivative of the base vectors of the surface convected frame. In general, one

has

∂
o
gk

∂ξp
=

o

Γ
h

kp

o
gh (3.68)

where

o

Γ
h

kp :=
∂

o
gk

∂ξp
· o
g

h
(3.69)

In particular

∂
o
gα

∂ξβ
=

o

Γ
γ

αβ

o
gγ +

o

Γ
3

αβ

o
g3 =

o

Γ
γ

αβ

o
gγ + cαβ

o
g3 = Γγ

αβ aγ + bαβ n (3.70)

thus dotting by aγ and n one obtains

Γγ
αβ =

o

Γ
γ

αβ + cαβ h lγ (3.71)

bαβ = cαβ h (3.72)

where cαβ are the components of an equivalent curvature tensor (indeed, they are related to the

components of the curvature tensor through Eq. (3.72)) whose definition is necessary as soon as a
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projection on the surface convected frame is considered. In particular one has,

cαβ :=
o

Γ
3

αβ :=
∂

o
gα

∂ξβ
· o
g

3
= −∂

o
g

3

∂ξβ
· o
gα (3.73)

Similarly, for the derivative of
o
g3, one has

∂
o
g3

∂ξα
=

o

Γ
β

3α

o
gβ +

o

Γ
3

3α

o
g3 = − cβ

α

o
gβ + dα

o
g3 (3.74)

where

− cβ
α :=

o

Γ
β

3α :=
∂

o
g3

∂ξα
· o
g

β
= −h

(
bβ
α − lβ/α + bαγ lγ lβ

)
(3.75)

dα :=
o

Γ
3

3α :=
∂

o
g3

∂ξα
· o
g

3
=

h/α

h
+ bαβ lβ (3.76)

Indeed,

∂g3

∂ξα
=

∂

∂ξα
[h (n + l)] = h/α (n + l)− h

(
bβ
α − lβ/α

)
aβ + h bαβ lβ n

= −h
(
bβ
α − lβ/α + bαγ lγ lβ

)
o
gβ +

(
h/α

h
+ bαβ lβ

)
o
g3 (3.77)

Note that Eqs. (3.70)-(3.76) may be regarded as a generalization of Gauss’ Weingarten’s formulae,

and the tensor C a generalization of the curvature tensor. Accordingly, one can define C in the

following way (cfr. Eq. (3.27))

C := cαβ
o
g

α ⊗ o
g

β
= cβ

α

o
g

α ⊗ o
gβ (3.78)

Finally, for later reference let us consider that

o

Γ
k

αk =
1√

o
g

∂

√
o
g

∂ξγ
(3.79)

Indeed

∂

√
o
g

∂ξγ
=

∂

∂ξγ

(
o
g1 ×

o
g2 ·

o
g3

)
=

=
∂

o
g1

∂ξγ
· o
g2 ×

o
g3 +

∂
o
g2

∂ξγ
· o
g3 ×

o
g1 +

∂
o
g3

∂ξγ
· o
g1 ×

o
g2

=

√
o
g

o

Γ
k

1γ

o
gk ·

o
g

1
+

√
o
g

o

Γ
k

2γ

o
gk ·

o
g

2
+

√
o
g

o

Γ
k

3γ

o
gk ·

o
g

3
=

√
o
g

o

Γ
k

kγ (3.80)
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3.3 Covariant derivatives

3.3.1 The surface natural frame

Recalling the definitions for the shifters between the volume and surface covariant vectors, and their

reciprocal (see Eq. (3.43)), one can express a generic vector field v in terms of its components on

the surface or volume base vectors as

v = v̄α gα + v̄3 g3

=
(
v̄α T β

α + v̄3 T β
3

)
aβ

+ (v̄α T 3
α + v̄3 T 3

3 )n

v = vαa
α + v3n

=
(
vα T β

α + v3 T β
3

)
gβ

+ (vα T 3
α + v3 T 3

3 )g3

(3.81)

where with an upper bar (̄) it has been denoted the components of the vector field referred to the

volume base vectors. Comparing Eqs. (3.81) one can obtain the following results which explain the

role of the shifters in terms of the components of a generic vector field

v̄k = T k
h vh vh = T k

h v̄(k) (3.82)

Contravariant Components

The covariant derivative of a generic vector field in a 3-D Riemannian manifold (i.e., using the

volume metric defined in the space) is given by

∂v

∂ξα
= v̄h

‖α gh = v̄h
‖α T γ

h aγ + v̄h
‖α T 3

h n (3.83)

∂v

∂ζ
= v̄h

‖3 gh = v̄h
‖3 T γ

h aγ + v̄h
‖3 T 3

h n (3.84)

where with the double vertical dash (‖) it has been denoted the covariant derivative with respect to

the volume metrics.

Similarly, using the surface metrics one has

∂v

∂ξα
=

(
vβ

/α − bβ
α v3

)
aβ +

(
bαβ vβ + v3

,α

)
n (3.85)

∂v

∂ζ
= vβ

,3 aβ + v3
,3 n (3.86)

where the slash (/) denotes covariant derivative with respect to the surface metrics and the comma

(,) partial derivative with respect to the co-ordinate ζ. In particular, recall that the covariant

derivative of a vector with respect to the surface natural frame can be defined

vβ
/α := vβ

,α + vγ Γβ
γα (3.87)
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From the comparison of Eqs. (3.83)–(3.86) one has

v̄h
‖α T γ

h = vβ
/α − bβ

α v3 (3.88)

v̄h
‖α T 3

h = bαβ vβ + v3
,α (3.89)

v̄h
‖3 T γ

h = vγ
,3 (3.90)

v̄h
‖3 T 3

h = v3
,3 (3.91)

Covariant Components

The covariant derivative of a generic vector field in a 3-D Riemannian manifold using its covariant

components is given by

∂v

∂ξα
= v̄h‖α gh = v̄γ‖α gγ + v̄3‖α g3 (3.92)

∂v

∂ζ
= v̄h‖3 gh = v̄γ‖3 gγ + v̄3‖3 g3 (3.93)

Similarly, using the surface metrics one has

∂v

∂ξα
=

(
vβ/α − bαβ v3

)
aβ +

(
bβ
α vβ + v3,α

)
n

=
[(

vβ/α − bαβ v3

)
T β

γ +
(
bβ
α vβ + v3,α

)
T 3

γ

]
gγ

+
[(

vβ/α − bαβ v3

)
T β

3 +
(
bβ
α vβ + v3,α

)
T 3

3

]
g3 (3.94)

∂v

∂ζ
= vβ,3 aβ + v3,3 n

=
(
vβ,3 T β

γ + v3,3 T 3
γ

)
gγ +

(
vβ,3 T β

3 + v3,3 T 3
3

)
g3 (3.95)

From the comparison of Eqs. (3.92)–(3.95) one has

v̄γ‖α =
(
vβ/α − bαβ v3

)
T β

γ +
(
bβ
α vβ + v3,α

)
T 3

γ (3.96)

v̄3‖α =
(
vβ/α − bαβ v3

)
T β

3 +
(
bβ
α vβ + v3,α

)
T 3

3 (3.97)

v̄γ‖3 = vβ,3 T β
γ + v3,3 T 3

γ (3.98)

v̄3‖3 = vβ,3 T β
3 + v3,3 T 3

3 (3.99)

Finally, some relations, that will be useful for the subsequent developments, are here reported

∂

∂ξα

(√
a καβ aβ

)
=
√

a καβ
/α aβ +

√
a bαγ καγ n (3.100)

∂

∂ξα

(√
a κα3 n

)
= −√a κα3 bβ

α aβ +
√

a κα3
/α n (3.101)
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3.3.2 The surface convected frame

Recalling the definitions for the shifters between the volume and vectors of the surface convected

frame, and their reciprocal (see Eq. (3.50)), one can express a generic vector field v in terms of its

components on the surface convected frame or volume base vectors as

v = v̄α gα + v̄3 g3

=

(
v̄α

o

T
β

α + v̄3
o

T
β

3

)
o
gβ

+

(
v̄α

o

T
3

α + v̄3
o

T
3

3

)
o
g3

v =
o
vα

o
g

α
+

o
v3

o
g

3

=

(
o
vα

o

T
β

α +
o
v3

o

T
β

3

)
gβ

+

(
o
vα

o

T
3

α +
o
v3

o

T
3

3

)
g3

(3.102)

where an upper bar (̄) serves to indicate that the components of the vector field are referred to the

volume base vectors and with a upper o (o) those referred to the surface convected frame vectors.

Comparing Eqs. (3.102) one can obtain the following results which explain the role of the shifters

in terms of the components of a generic vector field

v̄k =
o

T
k

h

o
v

h o
vh =

o

T
k

h v̄(k)
(3.103)

Contravariant Components

The covariant derivative of a generic vector field in a 3-D Riemannian manifold (i.e., using the

volume metric defined in the space) is given by

∂v

∂ξα
= v̄h

‖α gh = v̄h
‖α

o

T
γ

h

o
gγ + v̄h

‖α
o

T
3

h

o
g3 (3.104)

∂v

∂ζ
= v̄h

‖3 gh = v̄h
‖3

o

T
γ

h

o
gγ + v̄h

‖3
o

T
3

h

o
g3 (3.105)

where the double vertical dash (‖) denotes the covariant derivative with respect to the volume

metrics.

Similarly, using the metrics associated to the surface convected frame one has

∂v

∂ξα
=

(
o
v

β

∠α − cβ
α

o
v

3
)

o
gβ +

(
cαβ

o
v

β
+

o
v

3

,α − dα
o
v

3
)

o
g3 (3.106)

∂v

∂ζ
=

o
v

β

,3

o
gβ +

o
v

3

,3

o
g3 (3.107)

where the angle (∠) denotes covariant derivative with respect to the surface convected frame metrics

and the comma (,) partial derivative with respect to the co-ordinate ζ. In particular, recall that the

covariant derivative of a vector with respect to the surface convected frame can be defined

o
v

β

∠α :=
o
v

β

,α +
o
v

γ o

Γ
β

γα (3.108)
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From the comparison of Eqs. (3.104)–(3.107) one has

v̄h
‖α

o

T
γ

h =
o
v

β

∠α − cβ
α

o
v

3
(3.109)

v̄h
‖α

o

T
3

h = cαβ
o
v

β
+

o
v

3

,α − dα
o
v

3
(3.110)

v̄h
‖3

o

T
γ

h =
o
v

β

,3 (3.111)

v̄h
‖3

o

T
3

h =
o
v

3

,3 (3.112)

Covariant Components

The covariant derivative of a generic vector field in a 3-D Riemannian manifold using its covariant

components is given by

∂v

∂ξα
= v̄h‖α gh = v̄γ‖α gγ + v̄3‖α g3 (3.113)

∂v

∂ζ
= v̄h‖3 gh = v̄γ‖3 gγ + v̄3‖3 g3 (3.114)

Similarly, using the metrics of the surface convected frame one has

∂v

∂ξα
=

(
o
vβ∠α − cαβ

o
v3

)
o
g

β
+

(
cβ
α

o
vβ +

o
v3,α − dβ

o
v3

)
o
g

3

=

[(
o
vβ∠α − cαβ

o
v3

) o

T
β

γ +
(
cβ
α

o
vβ +

o
v3,α − dβ

o
v3

) o

T
3

γ

]
gγ

+

[(
o
vβ∠α − cαβ

o
v3

) o

T
β

3 +
(
cβ
α

o
vβ +

o
v3,α − dβ

o
v3

) o

T
3

3

]
g3 (3.115)

∂v

∂ζ
=

o
vβ,3

o
g

β
+

o
v3,3

o
g

3

=

(
o
vβ,3

o

T
β

γ +
o
v3,3

o

T
3

γ

)
gγ +

(
o
vβ,3

o

T
β

3 +
o
v3,3

o

T
3

3

)
g3 (3.116)

From the comparison of Eqs. (3.113)–(3.116) one has

v̄γ‖α =
(

o
vβ∠α − cαβ

o
v3

) o

T
β

γ +
(
cβ
α

o
vβ +

o
v3,α − dβ

o
v3

) o

T
3

γ (3.117)

v̄3‖α =
(

o
vβ∠α − cαβ

o
v3

) o

T
β

3 +
(
cβ
α

o
vβ +

o
v3,α − dβ

o
v3

) o

T
3

3 (3.118)

v̄γ‖3 =
o
vβ,3

o

T
β

γ +
o
v3,3

o

T
3

γ (3.119)

v̄3‖3 =
o
vβ,3

o

T
β

3 +
o
v3,3

o

T
3

3 (3.120)
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Finally, some relations, that will be useful for the subsequent developments, are here reported

∂

∂ξα

(√
o
g καβ o

gβ

)
=
√

a

[(
καβ

/α − bαγ καγ lβ
)

o
gβ +

bαγ καγ

h

o
g3

]
(3.121)

∂

∂ξα

(√
o
g κα3 o

g3

)
=
√

a

[
κα3

o

Γ
β

3α

o
gβ +

(
κα3

/α + κα3
o

Γ
3

3α

)
o
g3

]
(3.122)

3.4 The Displacement Gradient

3.4.1 First Approach: The Surface Natural Frame

The three-dimensional gradient of a generic vector field, as any 3-D tensor field, admits a unique

decomposition into tangential and normal components with respect to the reference surface

Gradv = ΠGradv + (n⊗ n) Gradv = ΠGradv + n⊗ (Gradv)T n (3.123)

where Π denotes the projection tensor operator over the tangent plane to the reference surface,

whereas n⊗n represents the projection tensor operator over the normal vector n.† Then, recall the

decomposition of the displacement vector field in tangential and normal components (v = u+w n),

thus Eq. (3.123) becomes‡

Gradv = ΠGradu + n⊗ n (Gradu)

+ Π (grad w ⊗ n + wGradn) + n⊗ n (grad w ⊗ n + wGradn)

= ∇⊗ u + n⊗ u′ + BTu⊗ n− wB +∇w ⊗ n + n⊗ n w′ (3.125)

where a prime ′ has been used to denote partial derivative with respect to ζ, and the following

identities have been used

(Gradu)T n = − (Gradn)T u (3.126)

Gradn = ΠGradn = − B (3.127)

Π (grad w ⊗ n) = 0 (3.128)

ΠGradu = ∇⊗ u + n⊗ u′ (3.129)

grad w = ∇w + w′ n (3.130)

† In Eq. (3.123) the following tensorial relation, which explains the juxtaposition operation between tensors (see
Ref. [94]), has been used

(a⊗ b)C = a⊗CT b (3.124)

where a, b are any two vectors, and C is a generic tensor.
‡ In the following the nabla operator (∇) has been employed to indicate the operation of gradient and divergence

in the two-dimensional manifold represented by the reference surface. In particular refer to Appendix (A) for a
definition of these operators, their use and derivation.
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and the following definition for the two-dimensional gradient, based on the metrics associated to

the surface natural frame, has been used

∇⊗ u :=

(
∂u

∂ξα
· aβ

)
aα ⊗ aβ ∀u : u · n = 0 (3.131)

Collect now from Eq. (3.125) all the terms that live in the support space ( 1 ), those associated

to the fiber space ( 2 ), and the transverse terms which can be grouped into two groups: one

representing in-plane the out-of-plane variation of some quantity ( 3 ) and the other associated to

the in-plane variation of some other quantity out-of-plane ( 4 ). Thus, the 3-D gradient can be

recast in following way

Gradv = 1 + 2 + 3 + 4 = (∇⊗ u− wB) + n⊗ n w′

+ n⊗ u′ + (∇w + Bu)⊗ n (3.132)

Invoking the one-to-one correspondence between the space of three-dimensional second-order tensors

and the space of 3×3 matrices (or linear transformations), and using Eq. (3.132), one can represent

the gradient of the displacement field v in the following matrix form

GradvT =

[
1 3

4 2

]
=

[
∇⊗ u− wB u′

∇w + Bu w′

]
(3.133)

It is worth noting that, in this equation, the structure and the inherent symmetry of this operator

(which are a reflection of the inner structure of the continuum or, if one prefers, of the structure

of the base manifold) is particularly apparent. Indeed, the first two columns are obtained by the

application of the 2-D gradient on the in-plane and out-of-plane components of the displacement

respectively, plus a coupling term which is due to the non-flatness of the support space, the third

column represents, instead, the out-of-plane (or “along the fiber”) variation of the in-plane and

out-of-plane components of the displacement.

3.4.2 Second Approach: The Surface Mixed Frame

It is also interesting, for the future developments, to report the expression of the displacement

gradient when only the out-of-plane displacement takes into account the “anormality” of the material

fiber. To this aim recall that g3 = h (n + l), thus, one has

u3 = v · g3 = h (l · u + w) (3.134)
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Substituting Eq. (3.134) in Eq. (3.132) one has

Gradv =
(
∇⊗ u− u3

h
B + l · u B

)
+ n⊗ n

(
u′3
h
− l · u′

)

+ u′ ⊗ n + n⊗
[
∇

(u3

h

)
−∇ (l · u) + Bu

]
(3.135)

In the previous equation it is apparent that, if the surface basis vectors are chosen to represent the

in-plane displacement together with Eq. (3.134),† then the gradient has a structure dissimilar to

that of Eq. (3.145), with the explicit dependence on the vector l which measures the inclination of

the fiber with respect to the normal.

3.4.3 Third Approach: The Surface Convected Frame

If one considered the tangent plane and the director as principal directions for the projection of the

virtual displacement (instead of the tangent plane and its normal), what would be the expression of

the gradient? In order to answer to this question, in this section some considerations are reported,

together with the final expression of the gradient which will be useful in the subsequent developments.

In particular, it will be shown that, when a revised version of the Kirchhoff-Love constraint is retained

into the model, it is natural to adopt as reference direction for the out-of-plane displacement that

of the material fiber or director and to refer to the surface convected frame the components of the

stress tensor and related fields.

First, recall that the displacement field can be written

v = u + w n =
o
u +

o
u3

o
g

3
(3.136)

where u3 measures the displacement along the fiber whereas
o
u is the displacement in the plane

normal to the fiber, and so it is distinct from u, and it is given by∗

o
u =

o
uα

o
g

α
(3.137)

where

o
uα =

o
u · o

gα = v · aα = uα (3.138)

Recalling the expression of the contravariant volume basis vectors (Eq. (3.39)), one can relates the

† This approach is equivalent to consider a non-orthogonal basis vector in an Euclidean vector space.
∗ The upper o on the vector

o
u serves to indicate that its components are evaluated on the contravariant volume

basis vectors for ζ = 0. A similar notation will be adopted later to indicate the stress resultant in those directions.
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displacement
o
u to the in-plane displacement u in the following way

o
u = uα (aα − lαn) = u− (l · u)n (3.139)

Note that, because l · n = 0, also the inverse relation holds

u =
o
u +

(
l · o

u
)

n (3.140)

Recall, finally, the relation between the displacement field along the fiber and that along the normal,

Eq. (3.134), thus, from Eqs. (3.139) and (3.134) it is apparent that what is subtracted from the

in-plane displacement in the normal direction when considering the projection along the fiber is

gained by the displacement field in the fiber direction.†

Let us now express the displacement gradient in terms of the displacement along the fiber simply.

To this aim, recall the expression of the covariant derivatives of the displacement field given in

Section 3.3.2. Thus, starting from the definition of gradient one has

Gradv :=
o
g

k ⊗ ∂v

∂ξk
=

o
g

β ⊗
(

∂
o
u

∂ξβ
+

∂
o
u3

o
g

3

∂ξβ

)
+

o
g

3 ⊗
(

∂
o
u

∂ζ
+

∂
o
u3

o
g

3

∂ζ

)

=
o

∇⊗ u + CT o
u⊗ o

g
3
+

o
g

3 ⊗ o
u
′
+

(
o

∇o
u3 − d

o
u3

)
⊗ o

g
3

− o
u3 CT +

o
u
′
3

o
g

3 ⊗ o
g

3
(3.141)

where the following definitions have been used

o

∇⊗ o
u :=

o
g

β ⊗
(

∂
o
u

∂ξβ
· o
gα

)
o
g

α
=

o
uα∠β

o
g

β ⊗ o
g

α ∀ o
u :

o
u · o

g3 = 0 (3.142)

C = cαβ
o
g

α ⊗ o
g

β
= cα

β

o
gα ⊗

o
g

β
(3.143)

d :=

(
∂

o
g3

∂ξβ
· o
g

3

)
o
g

β
= dβ

o
g

β
(3.144)

Eq. (3.141) may be recast as

Gradv = 1 + 2 + 3 + 4 =

(
o

∇⊗ o
u− o

u3 CT

)
+

o
g

3 ⊗ o
g

3 o
u
′
3

+ g3 ⊗ o
u
′

+

(
o

∇o
u3 + CT o

u− d
o
u3

)
⊗ g3 (3.145)

† Indeed, recall that g3 = n/h, so the thickness which explicitly appears in Eq. (3.134) is balanced by the
thickness of g3.
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It is worth noting that the expression of the displacement gradient maintains the same structure

already encountered in Eq. (3.132) also when considering the displacement projected along the

surface convected frame. The differences, a part from the name of the operators (
o

∇ instead of

∇, C instead of B, and the presence of the inedited d which measure the variation of the fiber

ranging over the main surface in the normal direction) is included in the definition of the covariant

differentiation on the surface convected frame.
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Chapter 4

Virtual work

In this chapter the mechanical virtual work and its reduction for the case of a microstructured

continuum body are studied. Following the considerations of the previous Chapter, in an attempt

to utmost simplify the resulting equilibrium equations, the analyses will be presented with respect

to three different frames: (i) the Surface Natural Frame; (ii) the Surface Mixed Frame; (iii) the

Surface Convected Frame. For each case the inner virtual work is derived and then, applying the

Virtual Work Principle (i.e., equating them), the final equilibrium equations are obtained together

with the related boundary conditions.

4.1 Preliminaries: inner virtual work for a 3-D body

In this Section the inner virtual work exerted by a 3-D Cauchy body, that will be useful for the

forthcoming developments, is derived.

The inner virtual work exerted by a 3-D Cauchy body in the deformed configuration due to the

application of a virtual displacement field may be written

Wi :=

∫

B
T ·Gradv (4.1)

where T is the three-dimensional Cauchy stress tensor (i.e., the stress tensor evaluated on the

actual configuration of the body), Gradv is the three-dimensional gradient of the assumed virtual

displacement field v, and B denotes the domain of integration (i.e., the space occupied by the body

in the actual - deformed - configuration). Recalling the definition of the 3-D gradient

Gradv := gk ⊗ ∂v

∂ξk
= v̄p‖k gk ⊗ gp (4.2)

one can expand the summation over indices k and p and isolate the following four groups

Gradv := v̄γ‖β gβ ⊗ gγ + v̄γ‖3 g3 ⊗ gγ + v̄3‖β gβ ⊗ g3 + v̄3‖3 g3 ⊗ g3 (4.3)
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Similarly, one can decompose the stress tensor (dual of the deformation tensor with respect to

the inner work) in the following way∗

T := τβγ gβ ⊗ gγ + τ 3γ g3 ⊗ gγ + τβ3 gβ ⊗ g3 + τ 33 g3 ⊗ g3 (4.4)

whereby, the inner virtual work exerted by the body per unit of volume can be written

T ·Gradv = τβγ v̄γ‖β + τ 3γ v̄γ‖3 + τβ3 v̄3‖β + τ 33 v̄3‖3 (4.5)

4.2 First Approach: The Surface Natural Frame

4.2.1 Inner Virtual Work

Applying Eqs. (3.94)-(3.99), which represent the volume-metrics covariant derivatives in terms of

the surface metrics, to Eq. (4.5) yields

T · Gradv = ταγT β
γ

(
vβ/α − bαβu3

)
+ ταγT 3

γ

(
v3,α + bβ

αuβ

)
+ τ 3γT β

γ vβ,3 + τ 3γT 3
γ v3,3

+ τα3T β
3

(
vβ/α − bβαu3

)
+ τα3T 3

3

(
v3,α + bβ

αuβ

)
+ τ 33T β

3 vβ,3 + τ 33T 3
3 v3,3 (4.6)

The previous equation may be recast in the following way

T ·Gradv =

√
a

g

[
σαβ

(
vβ/α − bαβu3

)
+ σα3

(
v3,α + bβ

αuβ

)
+ σ3β vβ,3 + σ33 v3,3

]
(4.7)

where

σαβ :=

√
g

a

(
ταγT β

γ + τα3T β
3

)
(4.8)

σα3 :=

√
g

a

(
ταγT 3

γ + τ 3αT 3
3

)
(4.9)

σ3β :=

√
g

a

(
τ 3γT β

γ + τ 33T β
3

)
(4.10)

σ33 :=

√
g

a

(
τ 3γT 3

γ + τ 33T 3
3

)
(4.11)

∗ For a 3-D Cauchy body the stress tensor in a symmetric tensor, thus the current decomposition could appear
artful; nonetheless, this decomposition is instrumental for the subsequent decomposition of the stress resultants (or
integrals) defined in the development of the shell theory.
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Equation (4.7) can also be written in the following compact (direct) form

T ·Gradv =

√
a

g

{
S̄ · (∇⊗ u− wB) + Q̄ · [n⊗ (∇w + Bu)]

+ P̄ · (u′ ⊗ n) + R̄ · (w′n⊗ n)
}

(4.12)

where with a prime (′) it has been denoted differentiation with respect to ζ and the following

definitions hold

v := u + wn =⇒ decomposition of the virtual displacements in

in-plane and out-of-plane displacements

S̄ := σαβ aα ⊗ aβ =⇒ restriction to the tangent plane of the shell

stress tensor

Q̄ := σα3 aα ⊗ n =⇒ in-plane transversal stress tensor

P̄ := σ3β n⊗ aβ =⇒ out-of-plane transversal stress tensor

R̄ := σ33 n⊗ n =⇒ normal stress tensor

Similarly, for the displacement gradient the following decomposition rules have been used

∇⊗ u := uβ/α aα ⊗ aβ =⇒ restriction to the tangent plane of the surface

gradient of the tangential displacement vector

∇w := w3,β aβ =⇒ surface gradient of the out-of-plane displace-

ment vector

B := −∇⊗n = bαβ aα⊗aβ =⇒ curvature tensor

For the forthcoming developments it is useful to consider the following representation of the

displacement field

v =
N∑

k=0

ζk
(
u(k) + w(k) n

)
(4.13)

where u(k) is the in-plane displacement of order k, whereas w(k) is the out-of-plane displacement of

order k. It is worth noting that if the summation in the previous expression is limited to the first
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order∗ this implies that the material line elements through the thickness remains straight after the

deformation (consistently with the formal representation of the shell-like structure considered in the

current configuration [see Eq. (3.10)]). Actually, the limitation of the summation in the displacement

field representation is necessary in order to guarantee that the kinematical model assumed in the

previous developments be consistent with the consideration of material co-ordinates, otherwise the

material points mapped by the director g3 would not be the same at each point (or configuration)

of the configurational space covered by the body during its motion, unless only a static analysis is

considered. Higher order theories within a consistent material modeling (in dynamics) require refined

kinematical models (i.e., multi-director theories). Finally, note that u(0) represent the displacement

in the tangent plane of the reference surface, u(1) the tangential displacement of the material points

in the layer, whereas w(0) and w(1) the corresponding out-of-plane displacements. Moreover, it is

straightforward to recognize that w(1) is directly a measure of the deformation (variation) of the

thickness.

At conclusion of this section, let us note that the previous developments could be obtained

also starting from the direct decomposition of the three-dimensional tensor gradient of the three-

dimensional displacement vector field. To this goal recall the expression of the displacement gradient

obtained of Eq. (3.132). Having in view this decomposition of the gradient operator, it is straight-

forward to associate to each term appearing in Eq. (3.132) a conjugate stress (dual with respect to

the inner work), such as the stress tensor may be written

T =

√
a

g

(
S̄ + R̄ + P̄ + Q̄

)
(4.14)

or, in matrix form

T =

√
a

g

[
S̄ Q̄Tn

P̄n R̄ · n⊗ n

]
=

√
a

g

[
S̄ q̄

p̄ r̄

]
(4.15)

where the following definitions have been used

q̄ := Q̄Tn (4.16)

p̄ := P̄n (4.17)

r̄ := R̄ · n⊗ n (4.18)

∗ At this point, it is important to comment on the relationship between the present formulation, which can
be intended à la Cosserat, and a standard Galerkin procedure for the approximate solution of the three-dimensional
equations. Following Ref. [94] one may state that (see [94, page 127] for further details) most of the already obtained
and future developments are consistent with a Galerkin approach which uses the kinematic assumption (3.10) and
two weighting functions (1 and ζ [or f (ζ)]).
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Thus, the inner virtual work may now be rewritten as (cfr. Eq. (4.12))

T ·Gradv =

√
a

g

{
S̄ · (∇⊗ u− wB) + q̄ · (∇w + Bu) + p̄ · u′ + r̄ w′} (4.19)

4.2.2 Integration along the thickness

Before proceeding further with the development of the inner virtual work, recall that the volume

integral can be written

∫

B
c dV =

∫

F

∫

S
c
√

g dξ1 dξ2 dζ =

∫

SM

∫ 1

−1

c̄ dζ dS =

∫

SM

c dS (4.20)

where

c̄ := c

√
a

g
(4.21)

and

dSM :=
√

a dξ1 dξ2 (4.22)

Let us now apply the virtual displacement representation of Eq. (4.13) in Eq. (4.12)

∇⊗ u =
N∑

k=0

ζk ∇⊗ u(k) (4.23)

∇w =
N∑

k=0

ζk ∇w(k) (4.24)

u′ =
N∑

k=0

k ζk−1 u(k) (4.25)

w′ =
N∑

k=0

k ζk−1 w(k) (4.26)

Introducing the following integral stress definitions

N(k) :=

∫

F
ζk S̄ (4.27)

p(k) :=

∫

F
ζk p̄ (4.28)

q(k) :=

∫

F
ζk q̄ (4.29)

r(k) :=

∫

F
ζk r̄ (4.30)
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Thus, using Eq. (4.12) one has

δWi =
N∑

k=0

∫

SM

[
N(k) ·

(∇⊗ u(k) −B w(k)

)
+ q(k) ·

(∇w(k) + Bu(k)

)

+ k p(k−1) · u(k) + k r(k−1) w(k)

]
dS (4.31)

Recalling the Green-Gauss theorem

∫

S
A · ∇ ⊗ b =

∫

∂S
Ab · n∂ −

∫

S
∇ ·A · b (4.32)

∫

S
a · ∇b =

∫

∂S
b a · n∂ −

∫

S
b ∇ · a (4.33)

and applying it in Eq. (4.31) one has

δWi =
N∑

k=0

∫

SM

{[− ∇ ·N(k) + BT q(k) + k p(k−1)

] · u(k)

+
[− ∇ · q(k) −N(k) ·B + k r(k−1)

]
w(k)

}
dS + B.T. (4.34)

where with B.T. it has been denoted the boundary terms, descending from the application of the

Green-Gauss theorem (Eqs. (4.32)-(4.33)),

B.T. =

∫

∂S

[
NT

(k)n∂ · u(k) + q(k) · n∂ w(k)

]
(4.35)

Applying the Virtual Work Principle (i.e., the virtual work is zero for any virtual displacement) one

gets the following six equilibrium equations (in the absence of external applied loads)

− ∇ ·N(k) + BT q(k) + k p(k−1) = 0 (4.36)

− ∇ · q(k) −B ·N(k) + k r(k−1) = 0 (4.37)

where the following definitions have been employed for the integral stress resultants in the transverse

and normal directions

q(k) := QT
(k)n (4.38)

p(k) := P(k)n (4.39)

r(k) := R(k) · n⊗ n (4.40)
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4.3 Second Approach: The Surface Mixed Frame

In this section another formulation will be developed starting from the geometrical assumptions on

the shell-like body. In particular, with reference to the Cosserat formulation for directed bodies a

formulation retaining the presence of an intrinsic principal direction not coincident with the thickness

is provided. This approach fully developed in [90] using a tensorial co-ordinate representation is here

reported using a direct, coordinate-free (or absolute), approach.

Recalling the relation between the displacement field in the material fiber and the one in the

thickness direction one has

u3 := v · g3 =
N∑

k=0

ζk
(
u(k) + w(k) n

) · h (n + l) =
N∑

k=0

ζkh
(
l · u(k) + w(k)

)
=:

N∑

k=0

ζk u3(k)
(4.41)

Thus the two-dimensional gradient and the derivative with respect to ζ of the out-plane displacement

(cfr. Eqs. (4.24) and (4.26)) become

∇w(k) = ∇
(u3(k)

h

)
− (∇⊗ l)T u− (∇⊗ u)T l (4.42)

w′ =
N∑

k=0

k ζk−1
(u3(k)

h
− l · u(k)

)
(4.43)

Equation (4.12) can now be rewritten

T ·Gradv =

√
a

g

{
S̄ ·

[
∇⊗ u− u3

h
B + (l · u)B

]

+ Q̄ · n⊗
[
∇

(u3

h

)
− (∇⊗ l)T u− (∇⊗ u)T l + Bu

]

+ P̄ · (u′ ⊗ n) + R̄ · (n⊗ n)

(
u′3
h
− l · u′

)}
(4.44)

Let us introduce the following definitions for the integral stress terms, representing the dynamical

descriptors dual of the kinematical ones when the out-plane displacement is directed in the material

fiber direction,†

Ŝ := S̄− l⊗ q̄ (4.45)

q̂ :=
q̄

h
(4.46)

p̂ := p̄− r̄ l (4.47)

r̂ :=
r̄

h
(4.48)

† The upper hat (ˆ ) over the present dynamical descriptors serves to differentiate them from those defined on
the surface basis vectors and the normal, which are marked by an upper bar (¯), and from another class of terms,
which will be introduced later, relevant to the director orthogonal frame, which are identified by an upper o ( o ).
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thus, Eq. (4.44) becomes

T ·Gradv =

√
a

g

{
Ŝ · ∇ ⊗ u +

[(
Ŝ ·B

)
l + h (B−∇⊗ l) q̂ + h B · (l⊗ q̂) l

]
· u

+ p̂ · u′ −
[(

Ŝ + l⊗ q̂
)
·B +

q̂

h
· ∇h

]
u3 + r̂ u′3 + q̂ · ∇u3

}
(4.49)

4.3.1 Integration along the thickness

Introducing for the displacement field the representation of Eq. (4.13) with the subsequent trans-

formation of Eqs. (4.41)–(4.43) one has

δWi =
N∑

k=0

∫

SM

{
N̂(k) · ∇ ⊗ u(k) +

[
N̂(k) ·B l + h (B−D) q̂(k) + h l⊗ q̂(k) ·B l + k p̂(k−1)

]
· u(k)

+ q̂(k) · ∇u3(k)
−

[
N̂(k) ·B + l⊗ q̂(k) ·B +

q̂(k)

h
· ∇h− k r̂(k−1)

]
u3(k)

}
(4.50)

where D is a measure of the correction to the curvature when the material fiber is not directed

through the thickness and it is given by∗

D = ∇⊗ l (4.51)

It is worth noting that the presence of the tensor D assures a coupling between the in-plane and

out-of-plane equilibrium equations also when a flat geometry for the reference surface is considered.

Indeed, in that case B = −∇ ⊗ n = 0 whereas D may be different from zero if the material

fiber is assumed not uniformly distributed on the reference plane. Thus, the application of a virtual

stretch in the plane will produce shear terms in the fibers direction because the fibers have different

directions moving in the plane.

Let us applying the Green-Gauss theorem in the form of Eqs. (4.32) and (4.33), thus

δWi =
N∑

k=0

∫

SM

{[
−∇ · N̂(k) + N̂(k) ·B l + h (B−D) q̂(k) + h l⊗ q̂(k) ·B l + k p̂(k)

]
· u(k)

−
[
−∇ · q̂(k) + N̂(k) ·B + l⊗ q̂(k) ·B +

q̂(k)

h
· ∇h− k r̂(k−1)

]
u3(k)

}
+ B.T. (4.52)

where the boundary terms (B.T.) appear due to the application of the Green-Gauss theorem, and

∗ Another way to understand the role of the tensor D is considering the gradient of the material fiber in the
bi-dimensional manifold represented by the reference surface. Indeed, recall that g3 = h (n + l) thus ∇ ⊗ g3/h =
−B +∇⊗ l.
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are given by

B.T. =

∫

∂S

[
N̂T

(k)n∂ · u(k) + q̂(k) · n∂ u3(k)

]
(4.53)

Applying the Virtual Work Principle one gets the following system of equilibrium equations (in

the absence of external applied loads)

−∇ · N̂(k) + N̂(k) ·B l + h (B−D) q̂(k) + h l⊗ q̂(k) ·B l + k p̂(k−1) = 0 (4.54)

−1

h
∇ · q̂(k)

h
+ N̂(k) ·B + q̂(k) ⊗ l ·B− k r̂(k−1) = 0 (4.55)

The previous system of equilibrium equations has to be compared with that of Eqs. (4.36)-(4.37)

obtained considering virtual displacements of order zero and one in the tangent plane and in the

normal direction to the reference surface. In particular it can be observed that Eqs. (4.54) and (4.55)

reduce to Eqs. (4.36)-(4.37) when the material fiber is not inclined with respect to the normal (i.e.,

l = 0). Moreover, while Eqs. (4.36)-(4.37) are composed of four terms, the divergence, the coupling

term through the curvature tensor, the out-of-plane transversal and normal stress resultants (only

for the first order equations), and the external loads (in a D’Alambert sense), in Eqs. (4.54) and

(4.55) there exist additional terms. These are related to the inclination of the material fiber along

which the virtual displacements and consequently the virtual work have been evaluated. Consistently

with the redefinition of the virtual displacement, and so of virtual deformations within the body, a

redefinition of the integral stress terms have been mandatory. These new quantities measure the

stress in the tangent plane and in the material fiber (both tangentially and normally to it). In this

sense it can be better understood the sign in front of the tensor D in Eq. (4.54). This term tends

to compensate the coupling of the in-plane tangential equation due to the presence of a positive

curvature.

4.4 Third Approach: The Surface Convected Frame

As a matter of fact let us re-obtain the equilibrium equations with a consistent choice of virtual

displacements. As it was observed at conclusion of the section on the displacement gradient, when

the in-plane displacement is assumed equal to that of Eq. (3.139), the displacement gradient can

be written as in Eq. (3.145); consistently, the stress tensor may be decomposed in the following

way

T =

√
o
g

g

(
o
σ

αβ o
gα ⊗

o
gβ +

o
σ

33 o
g3 ⊗

o
g3 +

o
σ

α3 o
gα ⊗

o
g3 +

o
σ

3β o
g3 ⊗

o
gβ

)

=

√
o
g

g

(
o

S +
o

R +
o

P +
o

Q

)
=

√
o
g

g

(
o

S +
o
r

o
g3 ⊗

o
g3 +

o
p⊗ o

g3 + g3 ⊗ o
q

)
(4.56)
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where the
o

S,
o

R,
o

P, and
o

Q are the conjugate pair of the displacement gradient in Eq. (3.145).

Accordingly, the inner virtual work can be written

T ·Gradv =

√
o
g

g

{
o

S ·
(

o

∇⊗ o
u− o

u3C

)
+

o
r

o
u
′
3 +

o
p · o

u
′

+
o
q ·

[
o

∇o
u3 − d

o
u3 + CT o

u

]}
(4.57)

where the new set of dynamical descriptors (
o
σ

hk
) are given by the following relations

o

S · o
g

α ⊗ o
g

β
=

o
σ

αβ
=

√
g
o
g

(
ταγ

o

T
β

γ + τα3
o

T
β

3

)
(4.58)

o
p · o

g
β

=
o
σ

3β
=

√
g
o
g

(
τ 3γ

o

T
β

γ + τ 33
o

T
β

3

)
(4.59)

o
q · o

g
α

=
o
σ

α3
=

√
g
o
g

(
ταγ

o

T
3

γ + τα3
o

T
3

3

)
(4.60)

o
r =

o
σ

33
=

√
g
o
g

(
τ 3γ

o

T
3

γ + τ 33
o

T
3

3

)
(4.61)

where
o

T
k

h are the shifters between the volume reference frame and the surface convected frame,

whose expression is given in Eqs. (3.52)-(3.55). Note that g3 is coincident with
o
g3 in a single-director

model and so the shifters
o

T
β

3 are zero, whereas
o

T
3

3 is equal to one.

4.4.1 Integration along the thickness

On the base of Eq. (3.136), one may use for the displacement field representation the following

relation instead of Eq. (4.13)

v =
N∑

k=0

ζk
(

o
u(k) +

o
u3(k)

g3
)

(4.62)

or

o
u =

N∑

k=0

ζk o
u(k) (4.63)

o
u3 =

N∑

k=0

ζk o
u3(k)

(4.64)
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Accordingly, the displacement gradient and the derivatives with respect to ζ of the displacement

field may be written

o

∇⊗ o
u =

N∑

k=0

ζk
o

∇⊗ o
u(k) (4.65)

o

∇o
u3(k)

=
N∑

k=0

ζk
o

∇o
u3(k)

(4.66)

o
u
′

=
N∑

k=0

k ζk−1 o
u(k) (4.67)

o
u
′
3(k)

=
N∑

k=0

k ζk−1 o
u3(k)

(4.68)

Thus, the inner virtual work, when the director orthogonal frame is chosen as reference frame to

compute the virtual displacements, becomes

δWi =
N∑

k=0

∫

SM

{
o

N(k) ·
(

o

∇⊗ o
u(k) − o

u3(k)
C

)
+ k

o
r(k−1)

o
u3(k)

+ k
o
p(k−1) ·

o
u(k) +

o
q(k) ·

[
o

∇o
u3(k)

− d
o
u3(k)

+ CT o
u(k)

]}
(4.69)

where integral stress resultants
o

N(k),
o
q(k),

o
r(k), and

o
r(k) are given by

o

N(k) :=

∫

F
ζk

o

S (4.70)

o
p(k) :=

∫

F
ζk o

p (4.71)

o
q(k) :=

∫

F
ζk o

q (4.72)

o
r(k) :=

∫

F
ζk o

r (4.73)

Let us applying the Green-Gauss theorem in the form of Eqs. (4.32) and (4.33), thus

δWi =
N∑

k=0

∫

SM

[(
−

o

∇ ·
o

N(k)

)
· o
u(k) −

(
o

N(k) ·C
)

o
u3(k)

+

(
−

o

∇ · o
q(k)

)
o
u3(k)

− o
q(k) · d

o
u3(k)

+ C
o
q(k) ·

o
u(k)

+ k
o
p(k−1) ·

o
u(k) + k

o
r(k−1)

o
u3(k)

]
dS + B.T. (4.74)
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where again with B.T. are denoted the boundary terms descending from the application of the

Green-Gauss theorem (Eqs. (4.32)-(4.33))

B.T. =

∫

∂S

[
o

N
T

(k)n∂ · o
u(k) +

o
q(k) · n∂

o
u3(k)

]
(4.75)

The application of the Virtual Work Principle limitedly to the inner work leads to the following

system of equilibrium equations

−
o

∇ ·
o

N(k) + CT o
q(k) + k

o
p(k−1) = 0 (4.76)

−
o

∇ · o
q(k) −C ·

o

N(k) − o
q(k) · d + k

o
r(k−1) = 0 (4.77)

It is worth noting that these equations have the same formal structure of those obtained considering

the surface natural frame as frame for representing the virtual displacements (Eqs. (4.36)-(4.37)).

Nonetheless, it is also worthy to recall that the definition of the dynamical descriptors appearing

here is different from that there, being the latter relevant to a different choice of displacements that

keep knowledge of the inclination of the fiber in the actual configuration of the body, whereas the

former affects only the actual configuration of the mid-surface.



Chapter 5

Kirchhoff-Love revised

5.1 Introduction

The issue of kinematical constraints has been extensively addressed in the current literature, but it

has also been criticized to an extent that, thus far, no complete agreement exist within the researchers

in this field, and at least two main approaches can be identified. In particular, in Ref. [96] it has

been argued that a correct approach in the modeling of simplifying shells (and rods) theories should

depart from constitutive consideration nor kinematical ones in order to avoid unacceptable physical

conclusions. In particular, the author suggests that, the limitation on the motion of the material

points within the body, have to be deduced as a consequence of the limitation of the possible

stresses arising in the body in any admissible motion. The author, in other words, has moved the

point of view from the kinematics to the dynamics, introducing between the lines, the concept of

active stress which perform work in the admissible motion. A different (and more conscious) point

of view has been taken by Gurtin and Podio-Guidugli in their paper on constrained elasticity. In

particular in Refs. [54, 89, 87] these authors have treated in a unified manner the definition of a

material constraint (as a limitation on the possible motion of a material point within the body) and

its consequences on the thermodynamics, and, consequently, constitutive relations, of the model.

This approach, following Ref. [112], start with an a priori additive decomposition of the stress into

reactive and active components with the reactive component assumed to be powerless in all motions

that satisfy the constraints and the active component given by a constitutive equation. The same

approach to the problem have also guided Dav̀ı in his formulation of anisotropic and piezoelectric

rod-like bodies (see Refs. [28, 29, 30]). In these works the internal constraints have been treated as

an exact mathematical restriction on the admissible motion and then consequences on the form of

the constitutive equations (deduced from the three-dimensional theory) have been addressed. This

same approach have also inspired Podio-Guidugli in Ref. [65] (and more recently in Ref. [33]) in

his derivation of a plate and shell theory from the three-dimensional linear elasticity. Nonetheless,

an important contribution to this issue has been given by Simo who, in the formulation of rod-like

69
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and shell-like models (see Refs. [97, 98, 100, 101, 99, 102]), has recovered the original treatment of

material constraints proposed by Kirchhoff and then elaborated by Love (cfr. [68]) which consists

in developing the theory from just a few hypotheses on the geometry and the kinematics of the

body (thus assigning the configurational space of the continuum) and then deducing the equilibrium

equations from the application of the virtual work (with an appropriate definition of the stress

resultants and couples). Interestingly enough, for his own admission, the model described above

falls within the class of constrained Cosserat models in which the directors are constrained to be

the orthonormal basis vectors. In this sense, it does not surprise that similar considerations and

treatments can be found in [94]. Note, finally, that in a recent paper (Ref. [21]) this issue has been

discussed again and the authors arrived to the conclusion that a geometrically-based approach has

to be preferred in the treatments of internal constraints.

At this point it is important to remark that, whilst the cited authors have developed theories

of constrained materials in contrast to the general theory of unconstrained materials, here, instead,

the concept of constraint is introduced in an instrumental way. Specifically, in a constrained theory

of the Kirchhoff-Love type one assumes that the motion of the body is carefully describable by

the motion of its main (or mid-) surface (if the thickness of the shell is small compared to the

other dimensions) and in this sense the displacement field of the layer is expressed in terms of

the displacement field of the main surface. Once the motion of the main surface is known (from

the solution of the associated equations and constitutive relations), the cited authors, such as, for

instance, Podio-Guidugli (cfr. Refs. [87, 33]), suggest to recover information of the relative motion

from the determination of the reactive stresses due to the constraints and, eventually, to determine

the consequent deformation of the micro-structure (or fiber) assuming a constrain backdown in the

final configuration of the Kirchhoff-Love type motion. Instead, the point of view developed here

consists in retaining information of the constrain backdown directly in the equilibrium equations of

the Kirchhoff-Love motion. This is done exploiting in full the potentiality of the Principle of Virtual

Work and then decomposing the displacement field in the sum of the displacement due to a pure

a Kirchhoff-Love type motion plus a relative displacement that takes into account the constrain

backdown. It is worthy, at this point, to recall the essence of the Virtual Work Principle. It states

that, at the equilibrium, the inner virtual work exerted by the continuum under the effect of a field

of realizable (see ref. [33]) velocities (or virtual displacements) must equal the work exerted by the

field of external forces acting on the continuum at the equilibrium under the same field of realizable

velocities. This implies that, if one selects, among the set of realizable velocities, those permitted by

a constraint he can recover the tensional state provided by the constrained motion. Subsequently,

selecting as virtual displacement that of an unconstrained motion one can determine the tensional

state due to this relative motion and then identify the exact deformation of the body. It is worth

noting that this decomposition is not done a posteriori and so the displacement field of the main

surface will take into account the real, unconstrained, motion of the shell, whereas in the other

approach the solution in terms of the in-plane unknwons remains the solution of the constrained
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model. In other words, here a coupled problem will be solved, where the coupling is between the

motion of the main surface and the relative motion of the layer, whereas the former approach see the

relative motion as a by-product (one-way coupling) of the motion of the main surface. Furthermore,

observe that in practical applications the difference between the RM and the KL formulations is

small. Thus, it is convenient to recast the RM equations into a format that emphasizes this feature.

This is important not only from a conceptual point of view (to show how the RM equations reduce

in the limit to the KL equations), but also from a computational point of view, because the resulting

equations isolate the “big contribution” (KL) from the “small contribution” (MR equations, i.e.,

those for k = 1).

This goal is achieved in this chapter, as said before, by exploiting in full the potentialities of the

virtual work approach, specifically, the arbitrariness of the virtual displacement from the deformed

configuration of the shell. Indeed, the virtual displacements δu(1), representing the tangential dis-

placement on the upper and lower surfaces, even in the context of the Reissner-Mindlin hypotheses,

can be expressed as the sum of the displacement due to the Kirchhoff-Love assumption and of an

arbitrary additional displacement.

δu(1) = δu(1)

∣∣
KL

+ δu(1)

∣∣
RM

(5.1)

where δu(1)

∣∣
KL

is specified imposing the KL constraints to the motion of the director. Classically

(see for instance Ref. [106]) the KL constraints are identified by the two following conditions:

(i) Points [..] lying initially on a normal-to-the-middle plane [..] remain on the normal-to-the-

middle surface after bending.

(ii) The normal stresses in the direction transverse to the plate can be disregarded.

Instead, in this thesis, in order to derive a simpler formulation for piezoelectric shells having piezo-

electric fibers through the thickness inclined with respect to the normal, a revised version of the

previous constraints will be introduced. Specifically, one may assume that:

(i) The fiber cannot stretch.

(ii) No shear is permitted along a fiber;

5.2 Material Constraints

The first constraint that has to be imposed is the unextensibility of the fiber, g3 · g3 = constant,

yields

δg3 · g3 = 0 (5.2)
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Recalling that g3 = h (n + l), one obtains δg3 · n + δg3 · l, or∗

δw(1) = − l · δu(1) (5.3)

alternatively, using Eq. (4.41), one has

δu3(1)
= 0 (5.4)

which means that the material fibers cannot stretch, but must retain their length in any admissible

motion (when the constraint is applied).

The second constraint to be imposed is the conservation of the covariant component of the

director during the deformation (see, for instance Ref. [94]), g3 · aα = constant, yields δg3 · aα =

− g3 · ∂δp/∂ξα, or

δg3 · aα =
(
u(1) + w(1) n

) · aα = u(1) · aα = − g3 ·
[
Grad

(
u(0) + w(0) n

)]
aα

= − [
Grad

(
u(0) + w(0) n

)] · (g3 ⊗ aα)

= −
{[

Grad
(
u(0) + w(0) n

)]T
g3

}
· aα (5.5)

It is worth noting that Eq. (5.5) does not mean that the angle between the tangent plane and

the director remains. To the contrary, when the base surface is deformed, a rotation of the fiber is

permitted in such a way that, if the tangent plane is stretched, then the angle between the director

and the plane is increased.

Using Eq. (3.132) and noting that (n⊗ n w′,u′ ⊗ n) aα = 0 one has

u(1) = − [(∇⊗ u(0) − w(0)B
)

+ n⊗ (∇w(0) + Bu(0)

)]T
g3 (5.6)

Thus, using Eq. (5.3), one obtains

w(1) = l · [(∇⊗ u(0) − w(0)B
)

+ n⊗ (∇w(0) + Bu(0)

)]T
g3

=
[(∇⊗ u(0) − w(0)B

)
+ n⊗ (∇w(0) + Bu(0)

)] · (g3 ⊗ l) (5.7)

Note that if the material fiber is assumed initially normal, then the application of the K-L material

constraint during the motion yields g3 = h n and from Eq. (5.6) one has

u(1) = − h
(∇w(0) + Bu(0)

)
(5.8)

∗ Recall that a virtual variation of p is equal to a virtual displacement of the reference surface (v(0) or δv(0)),
whereas a virtual variation of the director g3 coincides with a virtual displacement of the fiber (v(1) or δv(1)).



An illustrative example 73

5.3 An illustrative example

In order to prove the validity of the considerations exposed in the Introduction of the thesis and

of this Chapter, the case of an unextensible beam, immersed in a 2-D space, with transverse shear

effect included (classically denoted as Timoshenko’s beam theory),† where to apply some of the

concepts developed thus far, and to introduce some subsequent enhancements, is considered. In

particular, the equilibrium equations for the beam model will be written from the application of the

Virtual Work Principle both using the traditional Reissner-Mindlin kinematical hypothesis, and the

innovative KL+RM decomposition. In particular, it will be shown that, solving numerically the two

subsequent formulations, in one case, the one corresponding to the KL+RM decomposition and in

which the solution is sought in terms of transversal displacement and difference between the RM

and the KL rotation of the fiber, the numerical solution reproduce exactly the analytical solution,

found using a Laplace transform approach, whereas in the other case, the one corresponding to the

RM model in which the solution is sought in terms of transversal displacement and fiber rotation,

the numerical solution is affected by some errors. The main reason for the presence of these errors

is due to the smallness of the transverse shear for this particular problem. Therefore, in the case

in which the transverse shear is treated independently (RM+KL) one obtains good results, whereas

in the case when the transverse shear has to be obtained as the difference of the derivative of the

transverse displacement and of the fiber rotation the numerical solution brings errors due to the

closeness of the present model to the KL kinematical hypotheses. It is worth noting that in both

the numerical cases, it has been adopted a finite difference scheme with five points, and the same

level of discretization in the domain of integration so that the results are potentially equivalent.

This section is structured in the following way: first, the equilibrium equations for the beam

model will be derived using the Virtual Work Principle, then, the KL+RM decomposition will be

introduced to see how the equilibrium equations reduce in this limit, finally, a discussion of the

numerical and analytical results will follow after a brief presentation of the solution methodology

employed.

At conclusion of this section, it is worth noting that, recently, a paper has been published (see

Ref. [95]) focusing on the consideration of the unconstrained solution as a deviation from the

constrained one. Nonetheless, the analysis is there limited to the consideration of plane circular

arches, whereas, in the present thesis, is formulated in terms of arbitrary microstructured shells.

Moreover, in Ref. [95], the proposed model is not derived from a three-dimensional continuum as

done in the present activity. Finally, let us observe that, in the same reference, the equilibrium

† The interested reader will find further improvements relevant to beam models in Chapter 7, where an aero-
thermo-elastic application is presented, with particular emphasis on the effect of the transverse shear flexibility,
warping restraint and aero-thermo-elastic interaction. Furthermore, let us observe, that, while here the goal is
directed towards the evaluation of the KL+RM decomposition of the displacement field, there, the analysis does
not retain this decomposition: however, the Kirchhoff-Love (or more correctly the Euler-Bernoulli’s beam model)
represents an ideal landfall to which one arrives from the Reissner-Mindlin (or Timoshenko’s model) using material
considerations.
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equations are derived from a formal power series expansion of the exact measures of deformation,

whereas here the decomposition is treated in a more complete fashion on the basis of physical

considerations and exploiting the potentialities of the Virtual Work Principle.

5.3.1 Equilibrium equations

In this Section the equilibrium equations for an unextensible beam, of constant thickness, and

rectilinear axis, immersed in a 2-D space are derived in a way similar, but much more simplified, to

what has been done in the previous Chapters with reference to shell-like continuum bodies.

By virtue of the previous modeling hypotheses, the field of admissible displacements can be

written as

v (x, z) = z u1 (x) e1 + w0 (x) e3 (5.9)

where, as usual, the axis co-ordinate has been denoted with x and the corresponding unit vector

with e1, whereas the co-ordinate in the fiber direction (assumed normal to the reference axis) with

z and the corresponding unit vector (normal to the reference axis) with e3. Furthermore, in Eq.

(5.9), l represents the spanwise length of the beam, and A its cross section (or fiber). The inner

virtual work can now be written as

δWi =

∫ l

0

∫

A

(
σ11 δε11 + 2 σ13 δε13 + σ33 δε33

)
dA dx

=

∫ l

0

[M u′1 + Q (u1 + w′
0)] dx (5.10)

where M and Q are, respectively, the flexural moment and shear resultant, defined by the following

relations

M :=

∫

A
σ11 z dA (5.11)

Q :=

∫

A
σ13 dA (5.12)

Let us, now apply the integration by parts theorem in Eq. (5.10):

δWi = [M u1 + Q w0]
l
0 −

∫ l

0

[(M ′ −Q) u1 + Q′ w0] dx (5.13)

At this point let us introduce the KL+RM decomposition of the virtual displacements

u1 = u1|KL + u1|RM (5.14)

where the Kirchhoff-Love part of the displacement is given imposing the KL kinematical constraint
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of no shear deformation among the fibers. The KL constraint in this case is

ε13|KL = 0 =⇒ u1|KL + w′
0 = 0 (5.15)

whereas the Reissner-Mindlin part is the difference between the solution of the original problem and

the solution obtainable considering the material constraint in the motion, and, for this reason, it will

be denoted henceforth as ∆u1. Using Eq. (5.14) in Eq. (5.13) one has

δWi = [M ∆u1 −M w′
0 + Q w0]

l
0 −

∫ l

0

[(M ′ −Q) ∆u1 − (M ′ −Q) w′
0 + Q′ w0] dx (5.16)

Applying the an integration by parts in the preceding equation, one has

δWi = [M ∆u1 −M w′
0 + M ′ w0]

l
0 −

∫ l

0

[(M ′ −Q) ∆u1 −M ′′ w0] dx (5.17)

Similarly, for the external virtual work, considering both the work in the domain and the work on

the boundaries, one has

δWe =

∫ l

0

∫

A

(
f̂1 z u1 + f̂3 w0

)
dA dx + [m̄ u1 + q̄ w0]

l
0

=

∫ l

0

(g1 u1 + f3 w0) dA dx + [m̄ u1 + q̄ w0]
l
0 (5.18)

where g1 and f3 represent the resultant external loads acting on the beam, defined by the following

relations

g1 :=

∫

A
f̂1 z dA (5.19)

f3 :=

∫

A
f̂3 dA (5.20)

Introducing also in this case the KL+RM decomposition of the displacement field one has

δWe =

∫ l

0

(g1 ∆u1 − g1 w′
0 + f3 w0) dA dx + [m̄ u1 + q̄ w0]

l
0

=

∫ l

0

[g1 ∆u1 + (g′1 + f3) w0] dA dx + [m̄ u1 + (q̄ − g1) w0]
l
0 (5.21)

Before proceeding further, assume that the material is homogeneous and isotropic; consequently,

the constitutive relations may be written

σ11 = E ε11 = E z u′1 (5.22)

σ13 = 2 G ε13 = G (u1 + w′
0) (5.23)
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Invoking again the KL+RM decomposition, the previous system of constitutive relations becomes

σ11 = E z (∆u′1 − w′′
0) (5.24)

σ13 = G ∆u1 (5.25)

Using now the Virtual Work Principle one can write two systems of equilibrium equations and

boundary conditions for the original Reissner-Mindlin (or Timoshenko) problem and for the KL+RM

(or Bernoulli-Euler + Timoshenko) problem respectively.

Reissner-Mindlin formulation

In this case equating the inner virtual work in Eq. (5.13) to the external virtual work in Eq. (5.18),

one obtains the following system of equilibrium equations

w0 : Q′ + f3 = 0 (5.26)

u1 : M ′ −Q + g1 = 0 (5.27)

Similarly, the related boundary conditions, assuming a clamped-free condition, are

w0 = 0 and u1 = 0 for x = 0 (5.28)

Q = q̂ and M = m̂ for x = l (5.29)

Using the constitutive relations in Eqs. (5.22)-(5.23) in the integral relations of Eqs. (5.11)-(5.12),

substituting them in Eqs. (5.26)-(5.29), and introducing a redefinition of the displacement variables

(i.e., y1 := EIw0, y2 := EIu1), the equilibrium equations become

y1 : −k (y′′1 + y′2) = f3 (5.30)

y2 : −y′′2 + k y′1 + k y2 = g1 (5.31)

where k = GA/EI is the ratio of the transverse shear stiffness to the flexural stiffness. Similarly,

in terms of these new variables the boundary conditions become

y1 = 0 and y2 = 0 for x = 0 (5.32)

k (y′1 + y2) = q̂ and y′2 = m̂ for x = l (5.33)

RM+KL formulation

In this other case, to obtain the equilibrium equations from the application of the Virtual Work

Principle, one should equate the inner virtual work in Eq. (5.17) to the external virtual work in Eq.
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(5.21). In this way, one obtains the following system of equilibrium equations

w0 : M ′′ + g′1 + f3 = 0 (5.34)

∆u1 : M ′ −Q + g1 = 0 (5.35)

Similarly, the related boundary conditions, assuming a clamped-free condition, are

w0 = 0 and ∆u1 − w′
0 = 0 for x = 0 (5.36)

M ′ = q̂ − g1 and M = m̂ for x = l (5.37)

Using the constitutive relations in Eqs. (5.24)-(5.25) in the integral relations of Eqs. (5.11)-(5.12),

substituting them in Eqs. (5.34)-(5.37), and introducing the same new displacement variables

already defined (i.e., y1 := EIw0, ∆y2 := EI∆u1), the equilibrium equations become‖

y1 : y
(IV )
1 −∆y′′′2 = g′1 + f3 (5.39)

∆y2 : y′′′1 −∆y′′2 + k ∆y2 = g1 (5.40)

Similarly, the boundary conditions become

y1 = 0 and ∆y2 − y′1 = 0 for x = 0 (5.41)

∆y′′2 − y′′′1 = q̂ − g1 and ∆y′2 − y′′1 = m̂ for x = l (5.42)

As a matter of fact, in order to emphasize the simplification potentialities of the proposed approach,

the equilibrium equations should be recast in a different format. In particular, it may be observed

that the decomposition of the displacement field in a part related to the KL model plus a difference

between the KL and the RM model, which characterizes the obtainment of the equilibrium equations

in terms of the stress resultants (Eqs. (5.34)-(5.35)), may not be necessarily retained also in the

evaluation of the kinematical relations and, consequently, of the constitutive relations (Eqs. (5.24)-

(5.25)). Indeed, substituting Eqs. (5.22)-(5.23) in Eqs. (5.34)-(5.35), one obtains the following

system of equilibrium equations

y2 : y′′′2 = −g′1 + f3 (5.43)

∆y2 : y′1 = g1 − y2 +
1

k
y′′2 (5.44)

‖ As a matter of fact let us observe that the structural operator L appearing in Eqs. (5.39)-(5.40) and defined as

L :=
[
d/dx4 −d/dx3

d/dx3 k − d/dx2

]
(5.38)

is self-adjoint, and that, consequently, the previous system of equilibrium equations could be derived also as the
minimum of a functional.
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In this case, it is apparent that, although the structural operator is no more self-adjoint, the equi-

librium equations haqve been reduced to a system of two independent equations.† Indeed, the first

equation (Eq. (5.43)) is an equation containing only y2 and it may be solved independently; once

the solution in terms of y2 is known, one may use it to solve the second equation (Eq. (5.44)), that

is an equation of the first order in y1.
‡

5.3.2 Solution methodology and numerical results

The two systems of equilibrium equations previously presented, are, obviously, equivalent, therefore,

from the point of view of the analytical solution one should expect to find the same results, either

solving the former or the latter. On the other hand, solving numerically the two problems one will

find different solutions and in particular will observe that the numerical solution of the KL+RM

formulation is closer to the analytical solution than the RM one.

Analytical solution

Here the RM problem is solved using a Laplace transform approach.∗∗ In particular, let us observe

that one may rewrite Eqs. (5.30)-(5.31) in the following compact form

− Ly′′ + Ky′ + Hy = f (5.45)

where y = {y1, y2}T , and the matrices L, K and H are given by

L :=

[
k 0

0 1

]
, K :=

[
0 −k

k 0

]
, H :=

[
0 0

0 k

]
(5.46)

Similarly the boundary conditions can be written as

y′ + My = m (5.47)

† To facilitate the comprehension of our reasoning the reader should refer to the definition of triangular matrices,
and to the intrinsic advantages contained in the solution of algebraic problems characterized by such linear operators.
In this case, in fact, one can solve in cascade all the equations starting from the last and moving forward in the
substitutions.

‡ It is worth noting that the order of the previous system of equations is the fourth, equal to the number of
boundary conditions. Nonetheless, this fact should not lead to the conclusion that the system of Eqs. (5.39)-(5.40)
is not well-posed; indeed, in that case the order of the system is only fictitiously the seventh, as it may be proved
evaluating the order of the associated characteristic equation (i.e., the fourth).
∗∗ The interested reader is referred to Chapter 7 for an extensive presentation of the Laplace transform methodology

for the solution of structural problems.
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where m = {q̂, m̂}T , and the matrix M is given by

M :=

[
0 1

0 0

]
(5.48)

Thus, the analytical solution can be written as

y (x) = g (x)− A (x) [A′ (l) + MA (l)]
−1

[g′ (l) + Mg (l) + m] (5.49)

where the matrix A is defined as

A (x) := L−1
p

{[−p2 L + p K + H
]−1

}
(5.50)

and g is given by

g (x) := L−1
p

{[−p2 L + p K + H
]−1 Lx {f}

}
(5.51)

Implementing the previous relations the following results in terms of the displacements y1, y2 and

∆y2 (= y2 + y′1) have been found, having assumed the geometrical, material and loading data

reported in Tab. 5.1. In particular, Figs. 5.1 show the vertical displacement of the beam axis and

length l (m) 1.00
thickness t (m) 0.001
Poisson’ coefficient ν 0.2
k = 3/(2t2(1 + ν)) 1.25 106

m̂ 0
q̂ 0
g1 0
f3 2 107 t sin [πx/l]

Table 5.1: Piezoelectric material moduli.

the rotation of the fiber, whereas Fig. 5.2 shows the difference between the fiber rotation found

within the KL model and the exact solution due to the RM hypothesis.

Numerical solution

Here the KL+RM and the RM problem are solved numerically using a finite difference scheme.††

As it was observed earlier, the highest degree of the derivatives for the KL+RM formulation is the

fourth; thus, one may use five-points finite differences and obtaine a ∆x-accuracy expression. Using

†† The interested reader is referred to Chapter 6 for a presentation of the finite differences scheme employed for
the solution of structural problems.
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Figure 5.1: Analytical approach: displacement components of the beam.
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Figure 5.2: Analytical approach: difference of the solutions of the KL and RM models.

the same level of accuracy, the algebraic problem resulting from the numerical discretization of the

equilibrium equations and boundary conditions for both the RM (see Eqs.(5.45) and (5.47)) and

KL+RM (see Eqs. (5.39)-(5.42)) formulations has been solved. Finally, using the same material

and geometrical parameters already introduced in the previous Section, the following results in terms

of displacements have been found. In particular, Figs. 5.3 show the vertical displacement of the
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Figure 5.3: Numerical approach: KL+RM formulation. Displacement components of the beam.
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beam axis and the rotation of the fiber using the KL+RM formulation, whereas Fig. 5.4 shows the
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Figure 5.4: Numerical approach: KL+RM formulation. Difference of the solutions of the KL and
RM models.

difference between the fiber rotation due to the KL model and the one due to the RM hypothesis

using the same mixed formulation.

Similarly, Figs. 5.5 show the vertical displacement of the beam axis and the rotation of the fiber,
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Figure 5.5: Numerical approach: RM formulation. Displacement components of the beam.

whereas Fig. 5.6 shows the difference between the fiber rotation due to the KL model and the one

due to the RM hypothesis.

It is apparent, that, whilst the numerical discretization scheme based on the mixed KL+RM

approach reproduces accurately the results of the analytical approach, the numerical results available

with the RM formulation are affected by some errors in the ∆u1 displacement field (cfr. Figs. 5.6 and

5.4). These errors, as it has been already anticipated, are due to the fact that, for the problem under

exam (i.e., for the assumed transverse to bending stiffness ratio k), the KL kinematical hypothesis is

particularly accurate and thus the fiber rotation is almost given by the derivative of the transversal

displacement. In other words, the difference between the derivative of the transversal displacement

and the fiber rotation is small and should be trated in a separate manner: this is what has been

done in the KL+RM approach. Finally, it is worth noting that the numerical errors encountered in
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Figure 5.6: Numerical approach: RM formulation. Difference of the solutions of the KL and RM
models.

the solution of the RM problem would decrease decreasing the transverse to bending stiffness ratio

(i.e., increasing, for this particular problem, the thicknees of the beam).

5.4 Constrained Inner Work

5.4.1 First Approach: The Surface Natural Frame

Let us now apply the previous constraints (Eqs. (5.6)-(5.7)) in the expression of the virtual work.

Refer for the moment to Eq. (4.31), that, for convenience, is here reported in a form valid for

N = 1, i.e., for a single-director theory

δWi =

∫

SM

[
N(0) ·

(∇⊗ u(0) −B w(0)

)
+ q(0) ·

(∇w(0) + Bu(0)

)
+ N(1) ·

(∇⊗ u(1) −B w(1)

)
+

+ q(1) ·
(∇w(1) + Bu(1)

)
+ p(0) · u(1) + r(0) w(1)

]
dS (5.52)

Using the Green-Gauss theorem with respect to the first-oder terms in the previous equation, one

has (cfr Eq. (4.34))

δWi =

∫

SM

{[
N(0) ·

(∇⊗ u(0) −B w(0)

)
+ q(0) ·

(∇w(0) + Bu(0)

)]

+
[−∇ ·N(1) + B q(1) + p(0)

] · u(1)

+
[−∇ · q(1) −N(1) ·B + r(0)

]
w(1)

}
dS + BT(1) (5.53)
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then, introducing the constraints (Eqs. (5.6)-(5.7)) in the previous equation, one has

δWi =

∫

SM

{[
N(0) ·

(∇⊗ u(0) −B w(0)

)
+ q(0) ·

(∇w(0) + Bu(0)

)]

− [−∇ ·N(1) + B q(1) + p(0)

] · [(∇⊗ u(0) − w(0)B
)

+ n⊗ (∇w(0) + Bu(0)

)]T
g3

+
[−∇ · q(1) −N(1) ·B + r(0)

]
l · [(∇⊗ u(0) − w(0)B

)

+ n⊗ (∇w(0) + Bu(0)

)]T
g3

}
dS + BT(1) (5.54)

where BT(1) are the boundary terms due to the application of the divergence theorem with respect

to the first-order terms, and are given by

BT(1) =

∫

∂S

(
N(1)u(1) · n∂ + w(1)q(1) · n∂

)
(5.55)

Recalling that n · g3 = h and that a ·BTc = c⊗ a ·B for any vector a, c, and any tensor B, eq.

(5.54) may be recast as

δWi =

∫

SM

{
N(0) − g3 ⊗

[(−∇ ·N(1) + B q(1) + p(0)

)− (−∇ · q(1) −N(1) ·B + r(0)

)
l
]}

· (∇⊗ u(0) − w(0)B
)

dS
+

∫

SM

{
q(0) − h

[(−∇ ·N(1) + B q(1) + p(0)

)− (−∇ · q(1) −N(1) ·B + r(0)

)
l
]}

· (∇w(0) + Bu(0)

)
dS + BT(1) (5.56)

Finally, noting that (g3 ⊗ a) ·D = (h l⊗ a) ·D for any a ∈ VS and for any D ∈ TS ,∗ one has

δWi =

∫

SM

{
N(0) − l⊗ h

[(−∇ ·N(1) + B q(1) + p(0)

)− (−∇ · q(1) −N(1) ·B + r(0)

)
l
]}

· (∇⊗ u(0) − w(0)B
)

dS
+

∫

SM

{
q(0) − h

[(−∇ ·N(1) + B q(1) + p(0)

)− (−∇ · q(1) −N(1) ·B + r(0)

)
l
]}

· (∇w(0) + Bu(0)

)
dS + BT(1) (5.57)

For the sake of simplicity let us rewrite the previous equation in a more compact form

δWi =

∫

SM

{[
N(0) − l⊗ h

(
a(1) − b(1)l

)] · (∇⊗ u(0) − w(0)B
)

+
[
q(0) − h

(
a(1) − b(1) l

)] · (∇w(0) + Bu(0)

)}
dS + BT(1) (5.58)

∗ Recall that with VS and TS , the vector and tensor spaces associated to the reference surface (or support space)
of the body have been denoted respecetively.
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where a(1)
† and b(1) are the vector and scalar quantities in parenthesis which multiply the displace-

ment terms in Eq. (5.57). Thus, performing the Green-Gauss theorem on Eq. (5.58) one has

δWi =

∫

SM

{− [∇ · (N(0) − l⊗ h
(
a(1) − b(1)l

))−BT
(
q(0) − h

(
a(1) − b(1) l

))]
u(0)

− [∇ · (q(0) − h
(
a(1) − b(1) l

))
+ B · (N(0) − l⊗ h

(
a(1) − b(1)l

))]
w(0)

}
dS

+ BT(0) + BT(1) (5.59)

where BT(0) represent the boundary terms resulting from the application of the divergence theorem,

given by

BT(0) =

∫

∂S

[(
N(0) − l⊗ h

(
a(1) − b(1)l

))
u(0) · n∂

+ w(0)

(
q(0) − h

(
a(1) − b(1) l

)) · n∂

]
(5.60)

Using Eqs. (4.45)-(4.48) it can be proved that the following relation hold

− h a(1) + h b(1) l = −h
(−∇ ·N(1) + B q(1) + p(0)

)
+ h

(−∇ · q(1) −N(1) ·B + r(0)

)
l

= −∇ ·
(
h N̂(1)

)
+ q(0) (5.61)

Being the previous relation particular important for the following developments, its proof is here

reported. Note that the complexity of the passages needed to perform this proof motivates the

abandon of the direct notation in favour of the more mechanical component-based formulation (see

Ref. [37] for a discussion on the differences between the two approaches). Thus, let us write the

expression of the integral stress resultants in terms of the Cauchy stress resultants

nαβ
(k) = yαβ

(k) − h bβ
γ yαγ

(k+1) +
(
h lβ

)
/γ

yαγ
(k+1) + h lβ yα3

(k) (5.62)

qα
(k) = h yα3

(k) +
(
h/β + h bγβ lγ

)
yαβ

(k+1) (5.63)

pγ
(k) = yγ3

(k) − h bγ
β yβ3

(k+1) + (h lγ)/β yβ3
(k+1) + h lγ y33

(k) (5.64)

r(k) = h y33
(k) +

(
h/β + h bγβ lγ

)
yβ3

(k+1) (5.65)

where

ypq
(k) :=

∫ +1

−1

√
g

a
τ pq ζk dζ (5.66)

† The reader will note that, with a slight abuse of notation, the combination of resultant stress terms in paratheses
in Eq. (5.57) has been denoted with a symbol only slightly different from that used to represent the covariant surface
basis vector a1 (indeed, the footnote 1 is here in parantheses), clearly, they should not be confused.



Constrained Inner Work 85

Thus, Eq. (5.61) may be written in covariant components

− aγ
(1) + lγ b(1) =

(
nαγ

(1)/α − lγ qα
(1)/α

)
− (

bγ
α qα

(1) + lγ bασ nασ
(1)

)

−
(
pγ

(0) − lγ r(0)

)
= 1 − 2 − 3 (5.67)

where

1 := nαγ
(1)/α − lγ qα

(1)/α = yαγ
(1)/α −

[
h

(
bγ
β − lγ/β + bβσ lσ lγ

)
yαβ

(2)

]
/α

+ lγ/α h/β yαβ
(2) + lγ/α h bβσ lσ yαβ

(2) + lγ/α h yα3
(1) (5.68)

2 := bγ
α qα

(1) + lγ bασ nασ
(1) = bγ

α

(
h/β yαβ

(2) + h yα3
(1)

)

+ bασ lγ
[
yασ

(1) + (h lσ)/β yαβ
(2) + h lσ yα3

(1)

]
(5.69)

3 := pγ
(0) − lγ r(0) = yγ3

(0) − h
(
bγ
α − lγ/α + bαβ lβ lγ

)
yα3

(1) (5.70)

thus, recalling the definition of the dynamical descriptors given in Eq. (4.45) (and correspondigly

for the stress resultants) when the inclination of the fiber is retained into the model, one has

− h
(
aγ

(1) − lγ b(1)

)
=

(
h n̂αγ

(1)

)
/α
− nγ3

(0) (5.71)

or, in direct notation

− h
(
a(1) − l b(1)

)
= ∇ ·

(
h N̂(1)

)
− q(0) (5.72)

With the use of Eq. (5.61) the inner virtual (Eq. (5.59)) work may now be written

δWi =

∫

SM

−
{
∇ ·N(0) +∇ ·

[
l⊗

(
∇ ·

(
hN̂(1)

)
− q(0)

)]
−B

[
q(0) +∇ ·

(
hN̂(1)

)
− q(0)

]}
· u(0)

−
{
∇ ·

[
q(0) +∇ ·

(
hN̂(1)

)
− q(0)

]
+ B ·

[
N(0) + l⊗

(
∇ ·

(
hN̂(1)

)
− q(0)

)]}
w(0) dSM

=

∫

SM

−
{[
∇ · N̂(0) − (B−D)∇ ·

(
hN̂(1)

)
+ l ∇2

(
hN̂(1)

)]
· u(0)

+
[
∇2

(
hN̂(1)

)
+ B · N̂(0) + BT l · ∇ ·

(
hN̂(1)

)]
w(0)

}
(5.73)

Applying the Principle of Virtual Work to the previous equation one gets the following system of

equilibrium equations valid for a constrained material (à la Kirchhoff-Love) in absence of external
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loads∗

∇ · N̂(0) − (B−D)∇ ·
(
hN̂(1)

)
+ l ∇2

(
hN̂(1)

)
= 0 (5.74)

∇2
(
hN̂(1)

)
+ B · N̂(0) + BT l · ∇ ·

(
hN̂(1)

)
= 0 (5.75)

From Eq. (5.75) it is apparent that one can express the Laplacian operator in terms of the remaining

terms and substitute it in Eq. (5.74). Performing this substitution one has

∇ · N̂(0) −
(
B−D + l⊗BT l

)∇ ·
(
hN̂(1)

)
− l B · N̂(0) = 0 (5.76)

Before proceeding further, it is worth noting that Eqs. (5.75)-(5.76) represent the equilibrium

equations in terms of stress resultants when a constrained material is considered, or, if the formal

decomposition of the virtual displacement in Eq. (5.1) is carried out, they represent the contribu-

tions to the equilibrium state provided by the K-L part of the motion. In this sense the remaining

equilibrium equations (those for k = 1 in Eqs. (4.54)-(4.55)) provide the contribuion to the equilib-

rium of the R-M (or shearable) model, and for this reason they can be considered as a pertubation

from the K-L equilibrium due to the consideration of shear effects.

It is also worth noting that the substitution that has leaded to Eq. (5.76) is equivalent to express

the virtual displacement in the normal direction in terms of the virtual displacement in the fiber

direction plus the in-plane contribution as stated in Eq. (4.41).

5.4.2 Second Approach: The Surface Mixed Frame

As it was observed at the end of the preceding section the equilibrium equations relevant to the

K-L model in their final form could be obtained more directly considering a mixed approach in the

evaluation of the virtual displacements and work. In particular, using Eq. (4.41) (i.e., using the

so-called surface convected frame to project the displacement field), the constraint equation (Eq.

(5.6)) becomes

u(1) = −
{(
∇⊗ u(0) −

u3(0)

h
B + l · u(0) B

)

+ n⊗
[
∇

(u3(0)

h

)
−∇ (

l · u(0)

)
+ Bu(0)

]}T

g3 (5.77)

Let us rewrite Eq. (4.52) in the following compact form

δWi =

∫

SM

(
a(0) · u(0) + a(1) · u(1) − b(0) u3(0)

− b(1) u3(1)

)
dS (5.78)

∗ Although the present results are limited to the considertaion of only the inner virtual work, consideration of the
outer work produced by the external loads does not yield substantial modifications except for the presence of some
forcing terms in the equilibrium equations. The consideration of the outer mechanical work and of the other work
terms will be carried out later.
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Recalling he first material constraint of Eq. (5.4), and introducing Eq. (5.77) in the previous relation

one has

δWi =

∫

SM

{
a(0) · u(0) − b(0) u3(0)

− a(1)

[(
∇⊗ u(0) −

u3(0)

h
B + l · u(0) B

)

+ n⊗
(
∇

(u3(0)

h

)
−∇ (

l · u(0)

)
+ Bu(0)

)]T

g3

}
dS

=

∫

SM

{[
a(0) − h B a(1) −

(
B a(1) · g3

)
l + h D a(1)

] · u(0) −
[
g3 ⊗ a(1) − h l⊗ a(1)

]

· ∇ ⊗ u(0) −
[
b(0) − 1

h
B · g3 ⊗ a(1) − 1

h
∇h · a(1)

]
u3(0)

− a(1) · ∇u3(0)

}
dS (5.79)

where some tensorial identities, reported in the appendix and not displayed here, the following

relation have been used in Eq. (5.79)

[
g3 ⊗ a(1) − h l⊗ a(1)

] · ∇ ⊗ u(0) =
[
h n⊗ a(1)

] · ∇ ⊗ u(0) = 0 ∀u(0) ∈ VS (5.80)

Let us applying once again the Green-Gauss theorem on Eq. (5.79)

δWi =

∫

SM

{[
a(0) − h B a(1) + h∇⊗ l a(1) −

(
B a(1) · g3

)
l
] · u(0)

−
[
b(0) − 1

h
B · ∇g3 ⊗ a(1) − 1

h
∇h · a(1) −∇ · a(1)

]
u3(0)

}
dS + BT (5.81)

Noting that

h a(1) = −∇ ·
(
h N̂(1)

)
+ h q̂(0) (5.82)

and substituting to a(0) and b(0) their expression in terms of stress resultants, Eq. (5.81) reduces to

δWi =

∫

SM

{[
−∇ · N̂(0) + (B−D)∇ ·

(
h N̂(1)

)
+

(
N̂(0) ·B

)
l
]
· u(0)

−
[
∇2

(
h N̂(1)

)
+ Bl · ∇

(
h N̂(1)

)
+ h N̂(0) ·B

]
u3(0)

}
dS + BT (5.83)

The application of the Virtual Work Principle to Eq. (5.83) leads to a system of equilibrium equations

identical to that obtained at the end of the previous section after having expressed the former stress

resultants (defined on the surface natural frame) in terms of the latter ones (associated to the

surface convected frame).
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5.4.3 Third Approach: The Surface Convected Frame

Finally, let us adopt the director orthogonal frame for representing the in-plane displacement field

(see Eq. (3.138)), in this case the second K-L constraint becomes

o
u(1) = −

(
o

∇o
u3(0)

− d
o
u3(0)

+ CTu(0)

)
(5.84)

indeed, recall that

δ
o
gβ =

∂δp

∂ξβ
=

∂

∂ξβ

(
o
u(0) +

o
u3(0)

o
g

3)

=
o
uα(0)∠β

o
g

α
+ cα

β

o
uα(0)

o
g

3
+

(
o
u3(0),β

− dβ
o
u3(0)

)
o
g

3 − cαβ
o
u3(0)

o
g

α

=
(

o
uα(0)∠β

− cαβ
o
u3(0)

)
o
g

α
+

(
o
u3(0),β

− dβ
o
u3(0)

+ cα
β

o
uα(0)

)
o
g

3
(5.85)

thus, form Eq. (5.5) one has

δ
o
g3 ·

o
gβ =

o
u(1) · o

gβ = − o
g3 · δ

o
gβ = −

(
o
u3(0),β

− dβ
o
u3(0)

+ cα
β

o
uα(0)

)
(5.86)

From Eqs. (4.69) and (4.74), introducing the two constraint equations (Eq. (5.6)) and (Eq. (5.84)),

one has

δWi =

∫

SM

[(
−

o

∇ ·
o

N(0) + C
o
q(0)

)
· o
u(0) +

(
−

o

∇ · o
q(0) −

o

N(0) ·C− o
q(0) · d

)
o
u3(0)

+

(
−

o

∇ ·
o

N(1) + C
o
q(1) +

o
p(0)

)
·
(
−

o

∇o
u3(0)

+ d
o
u3(0)

−CT o
u(0)

)]
dSM + B.T.(5.87)

where with B.T. still denotes the boundary terms descending from the application of the Green-

Gauss theorem (see Eq. (4.75)). Before proceeding further, let us note that the previous equation

is almost identical to Eq. (2.87) relevant to the case of a shell whose normal fiber remains normal

after the deformation and whose thickness remains unchanged. In that occasion it was easily shown

the existence of an algebraic relation between the shear resultants via the curvature tensor, similarly,

it will be shown that also in this case an algebraic relation exist between the shear resultants (via

the tensor C) and the tensor of first order in-plane stress resultants. Indeed, recall that

o
n

αβ

(1) =

∫ +1

−1

ζ
o
σ

αβ
dζ =

∫ +1

−1

√
g
o
g

ζ

(
ταγ

o

T
β

γ + τα3
o

T
β

3

)
dζ

=

∫ +1

−1

√
g
o
g

ζ ταγ
(
δβ
γ − ζ cβ

γ

)
dζ = yαβ

(1) − cβ
γ yαγ

(2) (5.88)
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similarly for the shear stress resultants one has

o
q

α

(k) =

∫ +1

−1

ζk o
σ

α3
dζ =

∫ +1

−1

√
g
o
g

ζk

(
ταγ

o

T
3

γ + τα3
o

T
3

3

)
dζ

=

∫ +1

−1

√
g
o
g

ζk

(
ταγ ζ

o

Γ
3

γ3 + τα3

)
dζ = yαγ

(k+1) dγ + yα3
(k) (5.89)

and

o
p

β

(0) =

∫ +1

−1

o
σ

3β
dζ =

∫ +1

−1

√
g
o
g

(
τ 3γ

o

T
β

γ + τ 33
o

T
β

3

)
dζ

=

∫ +1

−1

√
g
o
g

τ 3γ
(
δβ
γ − ζ cβ

γ

)
dζ = y3β

(0) − cβ
γ y3β

(1) (5.90)

where the ypq
(k) are defined as the stress resultants on the Cauchy stress tensor, i.e.,

ypq
(k) :=

∫ +1

−1

√
g
o
g

ζk τ pq (5.91)

Combining eqs. (5.88)-(5.90) one obtains the following relation

o
q

α

(0) −
o
n

αβ

(1) dβ = cα
β

o
q

β

(1) +
o
p

β

(0) (5.92)

or, using a direct notation

o
q(0) −

o

N(1) d = C
o
q(1) +

o
p(0) (5.93)

Indeed, using Eqs. (5.88)– (5.90) in Eq. (5.92), one has for the right hand side of the equations

LHS = yαβ
(1) dβ + yα3

(0) −
(
yαβ

(1) − yαγ
(2) cβ

γ

)
dβ = yα3

(0) + yαγ
(2) cβ

γ dβ (5.94)

whereas the left hand side becomes

RHS = cα
β

(
yβγ

(2) dγ + yβ3
(1)

)
+ y3β

(0) − y3γ
(1) cβ

γ = y3β
(0) + yβγ

(2) cα
β dγ (5.95)
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Finally, due to the symmetry of the Cauchy stress tensor, it is proved that Eq. (5.92) holds. Using

Eq. (5.92) in Eq. (5.87) one has

δWi =

∫

SM

{[
−

o

∇ ·
o

N(0) + C
o

∇ ·
o

N(1) + C
o

N(0)d

]
· o
u(0)

+

[
−

o

N(0) ·C−
o

∇ ·
(

o

∇ ·
o

N(1)

)
−

o

∇ ·
(

o

N(0) d

)

−
(

o

∇ ·
o

N(1)

)
· d−

(
o

N(0)d

)
· d

]
o
u3(0)

}
dS + B.T. + B.T.|KL (5.96)

where with B.T.|KL denotes the boundary terms descending from the application of the Green-Gauss

theorem due to the KL hypotheses†

B.T.|KL =

∫

∂S
−

[
−

o

∇ ·
o

N
T

(1) + C
o
q(1) +

o
p

]
o
u3(0)

· n∂ (5.97)

Let us now apply the Principle of Virtual Work in Eq. (5.96), then, the equilibrium equations

relative to the Kirchhoff-Love part of the motion (see the introduction for a discussion of this issue),

in the absence of external loads are

−
o

∇ ·
o

N(0) + C
o

∇ ·N(1) + C

(
o

N(0)d

)
= 0 (5.98)

−
o

∇ ·
(

o

∇ ·
o

N(1)

)
−

o

∇ ·
(

o

N(1)d

)
−

(
o

∇ ·
o

N(1)

)
· d−

o

N(0)d · d−
o

N(0) ·C = 0 (5.99)

† The interested reader may refer to Appendix B for a presentation of these results starting from two different
strategies.
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Chapter 6

A simple micro-structured piezo-electric

shell

6.1 Introduction

This section is dedicated to the implementation of the theoretical model for micro-structured con-

tinuum bodies developed and discussed in the first part of the thesis, with special reference to the

case of a shell having fibers made of piezo-electric materials and inclined with respect to the normal.

Moreover, in order to simplify the mathematical treatment of the problem, it is assumed that the

shell be infinitely long in a direction, and that experiences only small deformations. The numerical

results and the equilibrium equations are limited to statics, furthermore, it is assumed that the shell

is loaded by means of an external electric field imposed across the boundaries. Moreover, the electric

field is assumed constant across the thickness (so that the electric potential is linear in ζ). As a

consequence of this hypothesis, the first Maxwell’s equation that governs the electrical unknowns

of the problem, is considered to be independent of (but influencing) the displacement field. This

is true as well for the constitutive equations that relate the electrical displacement field with the

deformations and the electric potential. Consequently, it will be obtained an equivalent beam model

capable of describing shear effects and thickness change. Finally, let us remark that the results are

intended to demonstrate the potentiality of the model and so a special fiber distribution is assumed

throughout the main surface.

6.2 Geometry and kinematical hypotheses

As it was already stated in the Introduction, here it is studied the deformation of a shell that, in the

undeformed configuration, is a flat plate with constant thickness h0. Moreover, in order to eliminate

a dimension, and thus to utmost simplify the formulation and the consequent analysis, it is assumed

that the shell have a symmetric distribution of loads and it be infinitely long in a direction. Thus,

93



94 Geometry and kinematical hypotheses

in the reference configuration one has

x0 (ξα, ζ) = p0 (ξα) + ζ q0 (ξα) (6.1)

where p0 represents the mid-surface in the reference configuration and it is given by

p0 (ξα) = ξ1 e1 + ξ2 e2 (6.2)

whereas, q0 represents the fiber distribution in the reference configuration and it is given by

q0 (ξα) = } (ξα) m (ξα) = h0

[
e3 + f

(
ξ1

)
e1

]
(6.3)

where f (ξ1) is a measure of the inclination of the fiber with respect to the normal in the reference

configuration,† and {e1, e2, e3} are the Cartesian base vectors chosen in the Euclidean space to

describe the geometry of the shell, with e1 and e2 lying in the reference mid-surface and e3 normal

to it. Moreover, it is assumed e2 to be the direction in which the shell is infinitely long.

Consistently, in the deformed configuration one may assume the shell given by the following map

x (ξα, ζ) = x0 (ξα, ζ) + v (ξα, ζ) = p (ξα) + ζ q (ξα)

= p0 (ξα) + v0 (ξα) + ζ [q0 (ξα) + v1 (ξα)] (6.4)

where v denotes the displacement field from the reference configuration. For the sake of notation

simplicity one may denote the Cartesian component of the displacement field in the following way

uk := vk · e1 for k = 0, 1 (6.5)

wk := vk · e3 for k = 0, 1 (6.6)

where it has been assumed the displacements in the e2 direction identically zero because of the

hypotheses of symmetry in that direction introduced before. Furthermore, one may denote the ξ1

co-ordinate simply with ξ, and the derivatives with respect to ξ with a prime (′).

Using the previous considerations and equations, the surface base vectors in the deformed con-

figuration may be written

a1 =
o
g1 =

∂p

∂ξ
= (1 + u′0) e1 + w′

0 e3 (6.7)

a2 =
o
g2 =

∂p

∂ξ2
= e2 (6.8)

† Note that, respect to the First Part of this thesis, where it has been chosen to indicate the fiber inclination with
l, here it has been preferred to use a scalar quantity and to denote it as f . Nonetheless, it should be noted that its
meaning and role in the formulation remains unchanged.
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Accordingly, the determinant of the metric surface tensor in the deformed configuration will be

a (ξα) := ‖a1 × a2‖ =

√
(1 + u′0)

2 + (w′
0)

2 (6.9)

whereas the normal is given by

n (ξα) =
a1 × a2√

a
=

(1 + u′0) e3 − (w′
0) e1√

(1 + u′0)
2 + (w′

0)
2

(6.10)

Similarly, for the volume base vectors one has

g1 =
∂x

∂ξ1
= [(1 + u′0) + ζ (h0 f ′ + u′1)] e1 + (w′

0 + ζ w′
1) e3 (6.11)

g2 =
∂x

∂ξ2
= e2 (6.12)

Finally, for the director (or material fiber vector) one has

g3 := q (ξ) = (h0 f + u1) e1 + (h0 + w1) e3 (6.13)

From Eqs. (6.11)-(6.13), setting {u0, w0, u1, w1} = 0, one obtains also the expression of the volume

base vectors in the reference configuration,‡ whereas the contravariant base vectors (associated to

the volume and surface covariant ones) are determined directly using Eqs. (3.17)-(3.18), (3.35)-

(3.37), and (3.39)-(3.40). Accordingly, one obtains, using the previous relations, all the information

needed to represent the deformed configuration of the shell once the displacement field is known.

In particular, the deformation tensor is given by

E =
1

2
(C−C0) =

1

2
(gkh − gkh0)g

k
0 ⊗ gh

0 (6.14)

where E is the Cauchy-Green deformation tensor, C = FTF is the right Cauchy-Green tensor (with

F = gk⊗gk0), and gk
0 are the volume contravariant base vectors in the reference configuration. We

will consider in the application only infinitesimal deformations, thus in this case the components of

the deformation tensor may be written

εhk =
1

2

(
gh0 ·

∂v

∂ξk
+

∂v

∂ξh
· gk0

)
(6.15)

With the use of the previous relations for the particular problem under consideration the components

‡ Note that, because it has been assumed that the material fiber are inclined with respect to the normal in the
reference configuration, g30 is different from e3.
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different from zero of the linear part of the deformation tensor may be written as

ε11 = (1 + ζ h0 f ′) (u′0 + ζ u′1) (6.16)

ε33 = h0 (w1 + f u1) (6.17)

ε13 =
1

2
[(1 + η h0 f ′) u1 + h0 (w′

0 + ζ w′
1) + h0 f (u′0 + ζ u′1)] (6.18)

Before proceeding further, it is worth noting that the previous relations represent the components

of the deformation tensor with respect to the volume base vectors in the undeformed configuration.

On the other hand, in the following the constitutive relations will be expressed in the deformed

configuration using a special frame which, according to the definition given in Ref. [97], may be

denoted “Convected Orthogonal Frame”, and is characterized by the fact that one of the base

vectors is along the fiber. This will be denoted by m, the other two by m1 and m2. The reason for

introducing this second frame will appear clear later. For the moment, let us only observe that in

our case m2 coincides with e2 and thus that m1 is equal to the unit vector parallel to
o
g

1
. In terms

of the mk base vectors the deformation tensor can be written

E = εhk gh
0 ⊗ gk

0 = ε̄hk mh ⊗mk (6.19)

where

ε̄hk := εpq (gp
0 ⊗ gq

0) · (mh ⊗mk) = εpq (gp
0 ·mh) (gq

0 ·mk) (6.20)

Using an array representation one arrives to the following relations which express the kinematical

relations (i.e., the relations between deformation and displacement components)

z = D (ξ, ζ) x′ + E (ξ, ζ) x (6.21)

where z (= {ε̄11, ε̄33, ε̄13}T ) is a column matrix whose elements are the ordered non-zero components

of the deformation tensor in the mk basis, whereas x (= {u0, w0, u1, w1}T ) is a column matrix whose

elements are the ordered non-zero components of the displacement vector field in the ek basis.

6.3 Electro-elastic constitutive equations

The main hypothesis underlying the present application and the mathematical model from which

it is derived, is the existence of a privileged direction in the material (denoted with q or g3). In

particular, one can assume that

(i) the polarization direction, for piezo-electric part of the constitutive relations, coincides with

the direction of transversal isotropy for elasticity tensor;
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(ii) g3 identifies such a direction.

Therefore, denotes with m the unit vector associated to g3, and let us call (as it was anticipated

at the end of the previous Section) m1 and m2 two mutually orthogonal directions to m. The

triad {m1,m2,m} constitutes the triad of orthonormal vectors, with respect to one can express

the constitutive relations. In particular, using the piezo-elastic constitutive relations given in Refs.

[83, 88], one has

T = CE−He (6.22)

d = HTE + Ke (6.23)

where T and E are the Cauchy stress tensor and the Cauchy-Green deformation tensor respectively,

d and e are the electric displacement and the electric field respectively, C is the 4-th order elasticity

tensor, H is the 3-rd piezo-electric coupling tensor, whereas K is the 2-nd order dielectric tensor.

Equations (6.22)-(6.23) can be simplified introducing a strong and restrictive hypothesis, already

mentioned in the Introduction, that the piezo-electric coupling be of one-directional type, in the

sense that one may assume that the electric field be completely defined by the electric boundary

conditions. In other words, one may assume that the electric field can affect the stresses but that

the stresses (or the mechanical deformations) cannot affect the electric field.‡ Thus, as it will appear

clearly later, the electric field results in an external load for the mechanical equilibrium§ of the shell.

Furthermore, one may assume that each fiber is electrically isolated from the others, and that,

consistently, the electric field is constant and directed only in the fiber direction. Finally, assuming

that the edges of each fiber can be accessed independently, one can assume that the electric field

be given by

e = e (ξ) m (ξ) = −∆φ (ξ)

2} (ξ)
m (ξ) (6.24)

where ∆φ (ξ) (= φupper (ξ) − φlower (ξ)) is the electric voltage difference applied at the edges of

each fiber.

‡ In a certain sense, the present approach may be intended as a “return to the past”. Indeed, although the current
literature is directed towards the implementation of coupled formulations for piezo-electricity (see, for instance, Ref.
[92]), here the coupling is neglected, because the interest is placed mostly in the definition of the kinematical
hypotheses needed to correctly model the mechanical, rather than electrical, unknowns.

§ As it was anticipated in the Overview of this thesis, the previous hypothesis are unusual in the current literature
of piezoelectricity even if an actuator mode for the piezoelectric material is invoked. On the other hand, the negligence
of the effect of the current deformation on the temperature field, is a hypothesis traditionally assumed in the current
literature of thermoelasticity (see for instance Ref.[17]). This fact permits to trace a clear link between the present
application, involving the analysis of piezoelectric bodies, with the following application that regards the analysis of
a thermoelastic problem in which a one-way coupling thermo-elastic model is considered. Finally, it is worth noting
that the role played by the electric voltage here will be played by the temperature field there, and, for this reason, a
similar solution methodology is used in the two cases.
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Using the previous equations the non-zero components of the stress tensor in the mk base vectors

can be written

τ̄ 11 = (λ + 2µ) ε̄11 + τ2 ε̄33 + δ1
∆φ (ξ)

2} (ξ)
(6.25)

τ̄ 33 = τ2 ε̄11 + τ1 ε̄33 + δ3
∆φ (ξ)

2} (ξ)
(6.26)

τ̄ 13 = 2η ε̄33 (6.27)

where λ, µ, τ1, τ2 and η are the elastic material moduli of a transversely isotropic material, whereas

δ1 and δ3 are the piezo-electric coupling coefficients (see Refs. [83, 88]).¶

Before proceeding further, it should be observed that Eqs. (6.25)-(6.27), are the components of

the stress tensor in the mk base vectors; on the other hand, the integral relations, that define the

stress resultants in terms of which the equilibrium equations for the shell model have been written,

refer to the components of the stress tensor in the gk base vectors. Hence, one may write

T = τhkgh ⊗ gk = τ̄hkmh ⊗mk (6.28)

thus one has

τhk := τ̄ pq (mp ⊗mq) ·
(
gh ⊗ gk

)
= τ̄ pq

(
mp · gh

) (
mq · gk

)
(6.29)

Similarly to the conclusion of the previous Section, one can arrive, using an array representation

for the non-zero components of the stress and deformation tensors, to the following relation

w = G (ξ, ζ) z + h (ξ, ζ) ∆φ (6.30)

where w (= {τ̄ 11, τ̄ 33, τ̄ 13}) is a column matrix whose components are the non-zero components of

the stress tensor in the gk basis, G is a matrix representing the elastic stiffness matrix, and h is the

piezo-elastic coupling vector.

6.4 Equilibrium equations

The equilibrium equations are given in terms of the stress resultants in Eqs. (5.98)-(5.99) for the part

of equilibrium due to the Kirchhoff-Love type motion, whereas the equations due to the difference

between the Reissner-Mindlin type motion (or effective motion) and the previous are obtained from

¶ In an attempt to create links between the different Chapters of this thesis, the interested reader should notice
that also in the following Chapter the case of a transversely isotropic material is considered. In particular, in that
case special attention will be placed in the evaluation of the effect of the transverse shear on the aerothermoelastic
response and stability of the model.
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Eqs. (4.76)-(4.77) for k = 1. In particular, in this case, one has

− o
n

11

(0)∠1 + c1
1

o
n

11

(1)∠1 + c1
1

o
n

11

(0) d1 = 0 (6.31)

o
n

11

(1)∠11 +
(

o
n

11

(0)d1

)
∠1

+
o
n

11

(1)∠1 d1 +
o
n

11

(0) d1 d1 +
o
n

11

(0) c11 = 0 (6.32)

− o
n

11

(1)∠1 +
o
q
1

(0) −
o
n

11

(1) d1 = 0 (6.33)

o
q
1

(1)∠1 + c11
o
n

11

(1) +
o
q
1

(1) d1 − o
r(0) = 0 (6.34)

Introducing an array representation, one can rewrite the previous system of equilibrium equations in

the following compact form

A (ξ) y′′ + B (ξ) y′ + C (ξ) y = 0 (6.35)

where y (=
[

o
n

11

(0),
o
n

11

(1),
o
q
1

(0),
o
q
1

(1),
o
r(0)

]
) is column matrix whose elements are the non-zero unknowns

stress resultants, whereas A, B and C are the matrices of coefficients that multiply the derivatives

of the stress resultants in the equilibrium equations‖

Now, recall the relations between the stress resultants and the components of the Cauchy stress

tensor (see Eqs. (4.58)-(4.61)), using again an array representation, one can express those relations

in the following form

y =

∫ +1

−1

L (ξ, ζ) w dζ (6.36)

where w has been already defined and represents the array of the non-zero components of the Cauchy

stress tensor, whereas L is a matrix whose coefficients are given by the shifters between the volume

and the surface metrics.

6.5 Boundary conditions

Similarly to the previous Section, also the boundary conditions can be easily obtained from the

discussion of the First Part. In particular, it will be assumed that the shell be clamped at one side,

and unloaded on the other. Therefore, the boundary conditions on the clamped edge will be written

x = 0 for ξ = 0 (6.37)

‖ The reader may have noticed that in Eqs. (6.31)-(6.34) the stress resultants are derived by means of covariant
derivatives, therefore, in matrices B and C will be the components of the curvature tensor and the Christoffel symbols
that where employed for the definitions of the covariant derivatives in the convected surface frame.
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whereas, using Eqs. (4.75) and (5.97), on the free edge one will have

Ty′ + Uy = 0 for ξ = l (6.38)

where T and U are two matrices whose elements are the coefficients of the stress resultants in the

boundary equations.

6.6 Kirchhoff-Love + Reissner-Mindlin decomposition

It is worth noting that till now the KL + RM decomposition has been employed only in the de-

termination of the equilibrium equations from the Virtual Work Principle. We have been entitled

to do that for the fact that the virtual displacements are an arbitrary set of displacements, and

in this sense one would not be constrained to solve the present problem in terms of the variables

employed to obtain the equilibrium. Nonetheless, the consideration of that decomposition also in

the definition of the real displacements would bring several advantages in the formulation, some of

which have been already enlightened in the First part of the thesis; in particular, one may observe

that the resulting structural operator is self-adjoint.

In particular, with reference to the problem under discussion, the First revised KL constraint,

under the hypothesis of small deformations, yields

g3 · g3 = const −→ v1‖KL · q0 = 0 (6.39)

thus, using Eq. (6.3) one has

w1‖KL = −f u1‖KL (6.40)

Similarly, for the second constraint one has

g3 · o
g1 = const −→ v1‖KL · ∂p0

∂ξ
= −q0 · ∂v0

∂ξ
(6.41)

thus, using Eq. (6.2) and Eq. (6.3) one has

u1‖KL = −h0 w′
0 − h0 f u′0 (6.42)

At this point setting that the displacement v1 is given by the sum of the displacement due to the

KL-type motion (v1‖KL), plus a corrective displacement that measures the distance between the

KL solution and the real (RM) solution.

Introducing the new set of displacement unknowns x̂ (= {û0, ŵ0, û1, ŵ1}), and using the previous
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relations one has

x = Â (ξ) x̂′ + x̂ (6.43)

where the matrix Â is obtained applying the transformation rule identified by the KL constraints and

KL+RM decomposition.

6.7 Solution procedure

Equations (6.21), (6.30), (6.35), and (6.36) constitute a system of 15 non-linear equations in 15

unknowns (w, x, y and z). They could be solved together, or, one can substitute them in order to

arrive to a smaller system of equilibrium equations in only four unknowns (the displacements x) with

a higher order of derivation. In the application presented it has been chosen to follow this second

way. In particular, substituting Eq. (6.21) in Eq. (6.30), yields

w = G (ξ, ζ) D (ξ, ζ) x′ + G (ξ, ζ) E (ξ, ζ) x + h (ξ, ζ) ∆φ (6.44)

Substituting, Eq. (6.44) in Eq. (6.36) yields

y = M (ξ) x′ + N (ξ) x + g (ξ) ∆φ (6.45)

where

M (ξ) :=

∫ +1

−1

L (ξ, ζ) G (ξ, ζ) D (ξ, ζ) dζ (6.46)

N (ξ) :=

∫ +1

−1

L (ξ, ζ) G (ξ, ζ) E (ξ, ζ) dζ (6.47)

g (ξ) :=

∫ +1

−1

L (ξ, ζ) h (ξ, ζ) dζ (6.48)

Similarly, substituting Eq. (6.45) in Eq. (6.35), yields

P (ξ) x′′′ + Q (ξ) x′′ + R (ξ) x′ + S (ξ) x = f (ξ) (6.49)
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where

P (ξ) := A (ξ) M (ξ) (6.50)

Q (ξ) := A (ξ) [2M′ (ξ) + N (ξ)] + B (ξ) M (ξ) (6.51)

R (ξ) := A (ξ) [M′′ (ξ) + 2N′ (ξ)] + B (ξ) [M′ (ξ) + N (ξ)] + C (ξ) M (ξ) (6.52)

R (ξ) := A (ξ) N′′ (ξ) + B (ξ) N′ (ξ) + C (ξ) N (ξ) (6.53)

f (ξ) := −{
A (ξ) [g (ξ) ∆φ]′′ + B (ξ) [g (ξ) ∆φ]′ + C (ξ) [g (ξ) ∆φ]

}
(6.54)

Again, introducing Eq. (6.45) in the boundary conditions (Eq. (6.38)), one has

Vx′′ + Wx′ + Yx = L for ξ = l (6.55)

where

V = TM (l) (6.56)

W = TM′ (l) + TN (l) + UM (l) (6.57)

Y = TN′ (l) + UN (l) (6.58)

L = −T (g∆φ)′ − Ug∆φ (6.59)

At this point one may introduce the KL+RM decomposition, which, by virtue of the considerations

of the previous Section, is equivalent to a change of variables defined by Eq. (6.43). Therefore,

substituting Eq. (6.43) in Eq. (6.49) one has

B̂ (ξ) x̂IV + Ĉ (ξ) x̂′′′ + D̂ (ξ) x̂′′ + Ê (ξ) x̂′ + S (ξ) x̂ = f (6.60)

where

B̂ = PÂ (6.61)

Ĉ = P
(
3 Â′ + I

)
+ QÂ (6.62)

D̂ = P 3 Â′′ + Q
(
2 Â′ + I

)
+ RÂ (6.63)

Ê = PÂ′′′ + QÂ′′ + R
(
Â′ + I

)
+ SÂ (6.64)

Similarly, for the boundary conditions at the clamped edge, one has

Â (0) x̂′ + x̂ = 0 for ξ = 0 (6.65)
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whereas, at the free edge, substituting Eq. (6.43) in Eq. (6.55) one has

F̂x̂′′′ + Ĝx̂′′ + Ĥx̂′ + Yx̂ = L for ξ = l (6.66)

where

F̂ = VÂ (6.67)

Ĝ = V
(
2 Â + I

)
+ WÂ (6.68)

Ĥ = VÂ′′ + W
(
Â′ + I

)
+ YÂ (6.69)

By means of the preceding relations, the system of 15 equations, whose maximum order of derivative

is the second, in 15 unknowns has been reduced to a system of only 4 equations, whose maximum

order of derivative is the fourth, in 4 unknowns (the KL + RM displacement components).

Before proceeding further, it is worth noting that the matrices comparing in the equilibrium

equations may be functions not only of the co-ordinate ξ but also of the present displacement being

the original equilibrium equations written in the deformed (or present) configuration, and being the

Christoffel symbols, among the others, function of the displacement field. Therefore, in order to

obtain the exact solution of the problem one should consider an iterative approach, that, starting

from an initial solution, determine the matrices comparing in the equilibrium equations (B̂, Ĉ, D̂,

etc.) from the data available at the previous step, and then solve for each step the linear part of

the system of equations. This is what has been done in this application, although only one step of

iteration has been considered for simplicity.

6.8 Numerical results

The numerical results here presented have been obtained using a finite difference numerical scheme.

The principal milestones of this numerical solution procedure are reported briefly in the following.

Because the maximum order of derivatives of the equilibrium equations is the fourth, one is

forced to use finite differences with five points to discretize the derivatives. Thus, introducing a

discretization of the domain with N + 1 nodes, and denoting with X the array of displacements x̂

evaluated in each node of the domain (i.e., X = {x̂ (ξ0) , ..., x̂ (ξk) , ..., x̂ (ξN)}T ), one may denote

the central finite difference of a derivative of order p as

X(p) = DC
4 X (6.70)

where DC
4 is the matrix of the central finite difference with five points. Similarly, for a finite

forward or backward difference one can substitute the upper C with an Fx or a Bx, where x is a

number denoting the number of nodes considered forward or backward to write the finite difference
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approximation.

To solve numerically the problem one has to build at every step (i) of the iteration the following

matrix based on the central difference approximation of the derivatives comparing in the equilibrium

equations

AC
(i) =




. . .

B̂(i−1) (ξk)
. . .


 DC

4 +




. . .

Ĉ(i−1) (ξk)
. . .


 DC

3 +




. . .

D̂(i−1) (ξk)
. . .


 DC

2

+




. . .

Ê(i−1) (ξk)
. . .


 DC

1 +




. . .

Ŝ(i−1) (ξk)
. . .


 (6.71)

Similarly, to take into account the nodes close to the boundaries one needs to define at each step two

other matrices AB1
(i) and AF1

(i) that are obtained using respectively one point forward and backward

finite difference approximations of the derivatives.

Furthermore, at the boundaries one has to impose the boundary conditions (Eqs. (6.65)-(6.66)).

To do that define, at every step, the two following matrices for the clamped edge

BF2 =




. . .

Â(i−1) (ξk)
. . .


 DF2

1 +




. . .

I
. . .


 (6.72)

and for the free edge

BB2 =




. . .

F̂(i−1) (ξk)
. . .


 DB2

3 +




. . .

Ĝ(i−1) (ξk)
. . .


 DB2

2 +




. . .

Ĥ(i−1) (ξk)
. . .


 DB2

1

+




. . .

Ŷ(i−1) (ξk)
. . .


 (6.73)

Similarly, for the load vector one has

b(i) = {0, f (ξ1) , ..., (ξk) , ..., (ξN−1) , L}T (6.74)

At this point, the solution of the problem can be obtained at every step inverting the matrix A(i)

constructed with the first two rows (in a vectorial sense) of BF2
(i) , the third and the fourth rows of

AF1
(i) , the rows from the fifth to the (N − 1)-th of AC

(i), the N -th row of AB1
(i) and the (N + 1)-th
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row of BB2
(i) . Once this assembly has been performed at every step, the solution of the problem is

thus reduced to the solution of the following algebraic problem

A(i)X(i) = b(i) (6.75)

The previous solution procedure has been conducted starting from a zero displacement condition

for the system for several value of initial inclination of the fiber and the corresponding results are

reported in the subsequent figures.
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Figure 6.1: Displacements of the main surface: a comparison in terms of inclination.
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Figure 6.2: Displacements of the fiber: a comparison in terms of inclination.

(a) f (ξ) = sin (πξ/l) (b) f (ξ) = sin (2πξ/l)

Figure 6.3: Microstructure of the shell: a visual representation of the fiber distribution in the
undeformed configuration.

In particular, the same material properties for the piezoelectric material that compose the fibers of

the shell reported in Refs. [83, 88] have been considered. For convenience, these material parameters

are reported in the following table (Tab. 6.1). Geometrically, it has been assumed that the shell

has a span of 1 meter and an initial thickness of only 2 mm. The numerical results are relevant

to a 20 nodes finite difference scheme and to a condition of constant electric voltage difference at
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µ (GPa) 24.95
λ (GPa) 82.30
τ1 (GPa) 120.00
τ2 (GPa) 83.70
η (GPa) 29.50
δ1 (C/m2) 11.80
δ3 (C/m2) 16.70

Table 6.1: Piezoelectric material moduli.

the edges of the fibers (∆φ = 10 kV ). Moreover, in order to evaluate the influence of the fiber

distribution on the displacement field, Figs. 6.4-6.5, show the static response, in terms of axis and

fiber displacements, for the two different fiber distributions schematically showed in Figs. 6.3.
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Figure 6.4: Displacements of the main surface: a comparison in terms of fiber distribution.
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Figure 6.5: Displacements of the fiber: a comparison in terms of fiber distribution.

Before concluding this Section, it is worth noting that the presented results have to be considered

only as preliminary ones, either because the problem, intrinsically nonlinear, has been solved only

in a first step of iteration, either because of the several modeling simplifications assumed in the

previous Sections. Finally, observe that the novelty of the proposed problem does not permit an

immediate validation of the results that should be verified either with refined numerical model, either

with experimental tests.
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6.9 Concluding remarks

In this Chapter, the model and the numerical solution of a infinitely long shell made of piezoelectric

fibers inclined with respect to the normal has been presented. Two aspects have to be underlined in

order to comment this application: first, that this problem has a natural setting in the formulation

discussed and developed in the First Part of this thesis, because of the importance that has been

placed on the inclination of the material fibers in the continuum, second, that this type of problems

opens a variety of interesting practical applications in the aerospace field (e.g., the design of morphing

wings), exploiting the potentiality of the piezoelectric materials and of the micro-structured continua.

Indeed, in our opinion this model can be viewed as a benchmark model for the definition of future

possible adaptive structures.

Finally, observe that, as it is apparent from the results presented, the actuation capabilities of the

structure are highly dependent on the fiber distribution. This fact places an interesting optimization

problem, that should be solved in order to obtain the best actuation performances and that will be

put under our consideration in the future developments.
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Chapter 7

Aircraft swept wing impacted by a laser

beam

7.1 Introduction

In this Chapter, a closed form solution for the aeroelastic response of an aircraft swept wing made

of advanced composite materials, whose upper surface is impacted by a laser beam is presented.

The expression of the thermal field acting on the system as an external input, has been obtained

using the Green’s function method performed for the case under consideration. For the aircraft

wing, an advanced structural model is developed by converting the equations of the 3-D elasticity

theory to the 1-D ones, and by including the effects of transverse shear, warping restraint, and

thermoelastic anisotropy of the constituent materials. It is supposed that the wing is immersed in

a subsonic incompressible flow whose speed is lower than the flutter critical speed of the system.

In order to generate the aero-thermo-elastic governing equations, a generalization of a previously

developed structural model for advanced aircraft swept wings[58, 59, 60, 45] made up of monoclinic

multi-layered composites is carried out. For computational purposes, and towards highlighting the

effects of a number of physical and geometrical parameters, the case of a rectangular single-layered

swept wing composed of a transversely isotropic material is considered. Having in view its exceptional

features in the thermal protection of aerospace structures[38, 84], the pyrolytic graphite that features

thermo-mechanical transversely isotropic properties is considered. Due to the time-dependence

of the thermal field, the unsteady aerodynamic theory of lifting surfaces has been considered in

the time-domain. Then, the problem is solved analytically in a double Laplace transform space

domain, where both the space and time co-ordinates are converted to their Laplace variable space

counterparts. Within this approach, the problem is reduced to the solution of an algebraic problem in

the transformed kinematical unknowns, and the solution in the physical space and time domain was

obtained via an inverse double Laplace transform. Although this analysis is confined to the study of

the dynamic aeroelastic response in the subcritical speed range, important information regarding the
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conditions of occurrence of the flutter instability can be obtained. In the presentation and discussion

of results, special emphasis has been placed on the effects of transverse shear flexibility, sweep angle,

laser power time dependence, and flight speed on aeroelastic response.

7.2 Geometry and kinematical hypotheses

The wing will be considered as plate-like body with appropriate internal constraints. This means,

for instance, that the geometry of the wing is represented by the following map

x (xα, x3, t) = p (xα, t) + x3 n (xα, t) [x3 ∈ (hl, hu)] (7.1)

where p (xα, t) represents the geometry of the midsurface at a generic instant of time t, whereas

n (xα, t) is the actual normal to the mid-surface and hl, hu are, respectively, the distances (with

sign) of the lower and upper surfaces from the reference surface. In the framework of linearized

kinematical model and small displacements with respect to a reference configuration one may always

assume the following representation for the displacement field

u (xα, x3, t) := x (xα, x3, t)− x (xα, x3, 0) = v (xα, t) + x3 w (xα, t) (7.2)

where it has been assumed as reference configuration the geometry of the wing at the initial time.

Thus, introducing an ortho-normal Cartesian reference system as reported in Fig. 7.1, one has

Figure 7.1: Geometry of the swept wing.

uα (xα, x3, t) = vα (xα, t) + x3 wα (xα, t) (7.3)

u3 (xα, x3, t) = v3 (xα, t) (7.4)

From Eq. 7.4 it is apparent that with it one introduces the first kinematical constraint into the

model, that is, no thickness distension is allowed. Moreover, Equation 7.3 is equivalent to say that
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the plate-like structure is composed of inextensible needles attached in the middle to the base surface

of the plate. At this initial stage they are free to rotate with respect to an arbitrary axis in the

reference plane.

In order to achieve a 1-D model of the wing structure one needs to impose other internal constraints

to the displacement field (i.e., to the material structure). Particularly, it will be assumed that the

rotation around the x2 axis is unaffected by the x1 coordinates, that means that all the fibers laying

on a chord (or chord-wise) will rotate rigidly

v1 (xα, t) = 0 (7.5)

w1 (xα, t) = θ (x2, t) (7.6)

where θ (x2, t) represents the rotation of the fiber with respect to the span-wise direction.

Furthermore, it will be assumed that warping (i.e., flexible rotation around x2) is permitted and so

one should consider

w2 (xα, t) = β (x2, t) + x1 g (x2, t) (7.7)

where β (x2, t) represents the rotation of the fiber on the reference coordinate axis x1, and g (x2, t)

is the rotation gradient in the x1 direction. Finally, one may postulate for the displacement in the

normal direction the following map

v3 (xα, t) = h (x2, t)− (x1 − x0 (x2)) θ (x2, t) (7.8)

where x0 (x2) is the position of the elastic axis along the chord.

Based on Eqs. 7.3-7.8, within the linear theory of elasticity (i.e., linear deformation tensor), the

engineering strain-tensor components εi are

ε1 := ε11 (xk, t) =
∂u1

∂x1

= 0 (7.9)

ε2 := ε22 (xk, t) =
∂u2

∂x2

= u2,2 + x3 (β,2 + x1 g,2) (7.10)

ε3 := ε33 (xk, t) =
∂u3

∂x3

= 0 (7.11)

ε4 := γ23 (xk, t) =
∂u2

∂x3

+
∂u3

∂x2

= β + x1 g + h,2 − x1 θ,2 + (x0 θ),2 (7.12)

ε5 := γ13 (xk, t) =
∂u1

∂x3

+
∂u3

∂x1

= 0 (7.13)

ε6 := γ12 (xk, t) =
∂u1

∂x2

+
∂u2

∂x1

= x3 θ,2 + x3 g (7.14)
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where Eq. 7.9 states that no deformation is considered in the chord-wise direction, similarly, Eq.

7.11 states that no thickness distension is permitted, and, eq. 7.13 that a chord section is rigid with

respect to the x2 = const plane and no shear is allowed between x1 and x3 axes. On the other

hand, Eqs. 7.12 and 7.14 state that shear between the x2 and x3, and x1 and x2 axes is allowed.

In view of Eqs. 7.9-7.14, it is apparent that a refined Euler-Bernoulli model (some times called

Timoshenko beam model) has been set up, in which shear is allowed.

7.2.1 Euler-Bernoulli model

For future reference, in this section the relationships, that should be considered among the displace-

ment unknowns in order to deal with the Euler-Bernoulli model, are presented and discussed.

From Eqs. 7.12, it is apparent that the following relations yield to the introduction of a unshearable

constraint of the chord section (i.e., a discard of the warping effect)

β = −h,2 − (x0 θ),2 (7.15)

g = θ,2 (7.16)

Substituting these relations in Eqs. 7.10-7.14 yields

ε2 = x3

[
−h,22 − (x0 θ),22 + x1 θ,22

]
(7.17)

ε6 = 2 x3 θ,2 (7.18)

Similarly, for the displacement filed one has

u1 = x3 θ (7.19)

u2 = u2 + x3

[
−h,2 − (x0 θ),2 + x1 θ,2

]
(7.20)

u3 = h− (x1 − x0) θ (7.21)

7.3 The equations of motion and the boundary conditions

In order to obtain the equilibrium equations and the related boundary conditions, introduce the

following functional:

J =

∫ t1

t0

(U − K +A) dt (7.22)



The equations of motion and the boundary conditions 113

where U is the strain energy, K the kinetic energy and A the external work. From the Hamilton’s

principle for non-conservative phenomena, one may easily obtain

δJ =

∫ t1

t0

{
−

∫

B
Σ ·Grad δu +

∫

B
ρ (H− ü) · δu +

∫

∂B
tA · δu

}
dt (7.23)

where Σ is the Piola-Kirchhoff stress tensor, H are the applied body forces, and tA are the applied

surface forces.

The first integral in Eq. (7.23) can be recast in the following way

∫

B
Σ ·Grad δu =

∫ l

0

∫

A(x2)

{σ22 (δu2,2 + x3 δβ,2 + x3 x1 δg,2)

+ σ23

[
δβ + x1 δg + δh,2 − x1 δθ,2 + (x0 δθ),2

]

+ σ12 (x3 δθ,2 + x3 δg)} dA dx2 (7.24)

where A (x2) is the cross section area and it is assumed function of the span-wise location. Let us

now introduce the following definition

T
(m,n)
ij :=

∫

A(x2)

σij xm
1 xn

3 dA (7.25)

then, one has

∫

B
Σ ·Grad δu =

∫ l

0

[
T

(0,0)
22 δu2,2 + T

(0,1)
22 δβ,2 +

(
T

(1,0)
23 + T

(0,1)
12

)
δg

+ T
(1,1)
22 δg,2 + T

(0,0)
23 δβ +

(
T

(0,1)
12 − T

(1,0)
23 + T

(0,0)
23 x0

)
δθ,2

+ T
(0,0)
23 x0,2 δθ + T

(0,0)
23 δh,2

]
dx2 (7.26)

Performing the integration by parts, i.e.,

∫ l

0

F δb,2 dx2 = [F δb]l0 −
∫ l

0

F,2 δb dx2 (7.27)

one has

∫

B
Σ ·Grad δu =

∫ l

0

{
T

(0,0)
23 x0,2 δθ − T

(0,0)
22,2 δu2 −

(
T

(0,1)
22,2 − T

(0,0)
23

)
δβ

−
(
T

(1,1)
22,2 − T

(1,0)
23 − T

(0,1)
12

)
δg −

(
T

(0,1)
12,2 − T

(1,0)
23,2 + T

(0,0)
23,2 x0

)
dθ

− T
(0,0)
23,2 δh

}
dx2 +

[
T

(0,0)
22 δu2 + T

(0,1)
22 δβ + T

(1,1)
22 δg

+
(
T

(0,1)
12 − T

(1,0)
23 + T

(0,0)
23 x0

)
δθ + T

(0,0)
23 δh

]l

0
(7.28)
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Let us now express explicitly the acceleration components in terms of the basic unknowns

ü1 = x3 θ̈ (7.29)

ü2 = ü2 + x3 β̈ + x1 x3 g̈ (7.30)

ü3 = ḧ− (x1 − x0) θ̈ (7.31)

Introducing the following definitions for the external body forces and the inertial properties of the

body

F
(m,n)
i :=

∫

A(x2)

ρ Hi xm
1 xn

3dA (7.32)

I(m,n) :=

∫

A(x2)

ρ xm
1 xn

3dA (7.33)

one has

∫

B
ρ (H− ü) · δu =

∫ l

0

{[
F

(0,0)
2 −

(
I(0,0) ü2 + I(0,1) β̈ + I(1,1) g̈

)]
δu2

+
[
F

(0,1)
2 −

(
I(0,1) ü2 + I(0,2) β̈ + I(1,2) g̈

)]
δβ

+
[
F

(1,1)
2 −

(
I(1,1) ü2 + I(1,2)β̈ + I(2,2)g̈

)]
δg

+
[
F

(0,1)
1 − F

(1,0)
3 + F

(0,0)
3 x0 −

((
I(0,2) + I(2,0) − 2 I(1,0) x0

+ I(0,0) x2
0

)
θ̈ +

(
I(0,0) x0 − I(1,0)

)
ḧ
)]

δθ +

+
[
F

(0,0)
3 −

(
I(0,0) ḧ− I(1,0) θ̈ + I(0,0) x0 θ̈

)]
δh

}
dx2 (7.34)

Before substituting the obtained results in Eq. (7.23), one should evaluate the virtual work exerted

by the surface tractions (or applied external surface forces) on the boundary. At this aim, let us

note that the boundary can be divided into three parts, specifically

∂B = Su ∪ Sl ∪ Sr (7.35)

where Su, Sl are the upper and lower surfaces of the wing, while Sr is the right side. Furthermore,

assume that the external loads acting on the upper and lower surfaces can be separated into two

parts, specifically, the aerodynamic load and a generic mechanical load (e.g., a blast)

tA = tA
aero + tA

mech (7.36)
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Moreover, for the aerodynamic load assume

(
tAaero

)
α

= 0
(
tAaero

)
3

= p+ on Su (7.37)
(
tAaero

)
α

= 0
(
tAaero

)
3

= p− on Sl (7.38)

which means that no viscous shear is considered in the model. Thus the integral of virtual work of

the surface tractions can be written

∫

∂B
tA · δu =

∫

Su∪Sl

tA
aero · δu +

∫

Su∪Sl

tA
mech · δu +

∫

Sr

tA · δu (7.39)

where the first integral reads

∫

Su∪Sl

tA
aero · δu =

∫ l

0

(L δh−M δθ + L x0 δθ) dx2 (7.40)

where

L :=

∫ TE(x2)

LE(x2)

∆p (x1, x2) dx1 (7.41)

M :=

∫ TE(x2)

LE(x2)

∆p (x1, x2) x1 dx1 (7.42)

Similarly, for the second integral in Eq. (7.212), one has

∫

Su∪Sl

tA
mech · δu =

∫ l

0

[
φ

(0,0)
2 δu2 +

(
φ

(1,0)
1 + φ

(1,0)
2,2 x0 − φ

(1,1)
2 − φ

(0,1)
3 + φ

(0,0)
3 x0

)
δθ

+
(
φ

(1,0)
2,2 + φ

(0,0)
3

)
δh

]
dx2 −

[
φ

(1,0)
2 δh +

(
φ

(1,0)
2 x0 − φ

(1,1)
2

)
δθ

]l

0
(7.43)

where by definition

φ
(m,n)
i :=

∫ LE(x2)

TE(x2)

[(
tAi xn

3

)
x3=tu

+
(
tAi xn

3

)
x3=tl

]
xm

1 dx1 (7.44)

Finally, for the third integral in Eq. (7.212), one has

∫

Sr

tA · δu = ψ
(0,0)
2 δu2 + ψ

(0,1)
2 δβ + ψ

(1,1)
2 δg +

(
ψ

(0,1)
1 − ψ

(1,0)
3 + ψ

(0,0)
3 x0 (l)

)
δ (7.45)

where by definition

ψ
(m,n)
i :=

∫

A(l)

tAi xm
1 xn

3 dx1 dx2 (7.46)
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Collecting all the terms and substituting them in Eq. (7.23), one finally obtains five equilibrium equa-

tions relevant to arbitrary variations of the five degrees of freedom, associated to the displacement

field by means of the internal kinematical constraints

T
(0,0)
22,2 + F

(0,0)
2 − I(0,0) ü2 − I(0,1) β̈ − I(1,1) g̈ = 0 (7.47)

T
(0,1)
22,2 − T

(0,0)
23 + F

(0,1)
2 − I(0,1) ü2 − I(0,2) β̈ − I(1,2) g̈ = 0 (7.48)

T
(1,1)
22,2 − T

(1,0)
23 − T

(0,1)
12 + F

(1,1)
2 − I(1,1) ü2 − I(1,2) β̈ − I(2,2) g̈ = 0 (7.49)

T
(0,1)
12,2 − T

(1,0)
23,2 + T

(0,0)
23,2 x0 + F

(0,1)
1 − F

(1,0)
3 + F

(0,0)
3 x0 −(

I(0,2) + I(2,0) − 2 I(1,0) x0 + I(0,0) x2
0

)
θ̈ −

(
I(1,0) − I(0,0) x0

)
ḧ−M+ L x0 = 0 (7.50)

T
(0,0)
23,2 + F

(0,0)
3 − I(0,0) ḧ +

(
I(1,0) − I(0,0) x0

)
θ̈ + L = 0 (7.51)

The associated boundary conditions are

T
(0,0)
22 = ψ

(0,0)
2 (7.52)

T
(0,1)
22 = ψ

(0,1)
2 (7.53)

T
(1,1)
22 = ψ

(1,1)
2 (7.54)

T
(0,1)
12 − T

(1,0)
23 + T

(0,0)
23 x0 = ψ

(0,1)
1 − ψ

(1,0)
3 + ψ

(0,0)
3 x0 (7.55)

T
(0,0)
23 = ψ

(0,0)
3 (7.56)

Equations (7.47)-(7.51) constitute a system of five differential equations of the second order whose

natural boundary conditions are represented by Eqs. (7.52) -(7.56) in the following five unknowns

u2 β g θ h (7.57)

7.3.1 Euler-Bernoulli equilibrium equations

In this section the equlibrium equations with respect to the Euler-Bernoulli model are reported.

Substituting Eqs. (7.15) -(7.16) in Eq. (7.24), one has

∫

B
Σ ·Grad δu =

∫ l

0

∫

A(x2)

{
σ22

[
δu2,2 + x3

(
−δh,22 − (x0 δθ),22

)

+ x3 x1 δθ,22] + σ12 2 x3 δθ,2} dA dx2 (7.58)
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Using the definitions in Eq. (7.25) and performing a double integration by parts one has

∫

B
Σ ·Grad δu =

∫ l

0

{
−T

(0,0)
22,2 δu2 −

(
−T

(1,1)
22,22 + x0 T

(0,1)
22,22 + 2 T

(0,1)
12,2

)
δθ

− T
(0,1)
22,22 δh

}
dx2 +

[
T

(0,0)
22 δu2 − T

(0,1)
22 δh,2 − T

(0,1)
22 x0,2 δθ − T

(0,1)
22 x0 δθ,2

+ T
(0,1)
22,2 (δh + x0 δθ) + T

(1,1)
22 δθ,2 − T

(1,1)
22,2 δθ + 2 T

(0,1)
12 δθ

]l

0
(7.59)

Similarly, for the work done by the external body forces, substituting Eqs. (7.15) -(7.16) in Eq.

(7.34) and using Eq. (7.32), yields

∫

B
ρ H · δu =

∫ l

0

{
F

(0,0)
2 δu2 +

(
F

(0,1)
1 + F

(0,1)
2,2 x0 − F

(1,1)
2,2 − F

(1,0)
3 + x0 F

(0,0)
3

)
δθ

+
(
F

(0,0)
3 + F

(0,1)
2,2

)
δh

}
dx2 −

[
F

(0,1)
2 δh +

(
F

(0,1)
2 x0 − F

(1,1)
2

)
δθ

]l

0
(7.60)

For the kinetic energy virtual variation one has to modify the acceleration components in Eqs.

(7.29)-(7.63) according to Eqs. (7.19) - (7.21)

ü1 = x3 θ̈ (7.61)

ü2 = ü2 + x3

(
−ḧ− x0 θ̈

)
,2

+ x1 x3 θ̈,2 (7.62)

ü3 = ḧ− (x1 − x0) θ̈ (7.63)

substituting these equations in Eq. (7.34) yields

∫

B
ρ ü · δu =

∫ l

0

{[
I(0,0) ü2 − I(0,1) ḧ,2 − I(0,1)

(
x0 θ̈

)
,2

+ I(1,1)θ̈,2

]
δu2

+

[
I(0,2) θ̈ +

(
I(0,1) ü2

)
,2

x0 −
(
I(1,1) ü2

)
,2
−

(
I(0,2) ḧ,2

)
,2

x0

+
(
I(1,2) ḧ,2

)
,2
−

(
I(0,2)

(
x0 θ̈

)
,2

)

,2

x0 +

(
I(1,2)

(
x0 θ̈

)
,2

)

,2

+
(
I(1,2) θ̈,2

)
,2

x0 −
(
I(2,2) θ̈,2

)
,2
− I(1,0) ḧ + I(0,0) x0 ḧ

+ I(2,0) θ̈ − 2 I(1,0) x0 θ̈ + I(0,0) x2
0

]
δθ
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+

[
(
I(0,1) ü2

)
,2
−

(
I(0,2) ḧ,2

)
,2
−

(
I(0,2)

(
x0 θ̈

)
,2

)

,2

+

+
(
I(1,2) θ̈,2

)
,2

+ I(0,0) ḧ− I(1,0) θ̈ + I(0,0) x0 θ̈

]
δh

+
[
−I(0,1) ü2 (δh + x0 δθ) + I(1,1) ü2 δθ + I(0,2) ḧ,2 (δh + x0 δθ)− I(1,2) ḧ,2 δθ

+ I(0,2)
(
x0 θ̈

)
,2

(δh + x0 δθ)− I(1,2)
(
x0 θ̈

)
,2

δθ

− I(1,2) θ̈,2 (δh + x0 δθ) + I(2,2)θ̈,2 δθ
]l

0
(7.64)

Finally, considering the work done by the surface tractions, Eq. (7.212), it can be noted that the

two first integrals, using Eq. (7.44), can be recast as

∫

Su∪Sl

tA · δu =

∫ l

0

(L δh−M δθ + L x0 δθ) dx2

+

∫ l

0

[
φ

(0,0)
2 δu2 +

(
φ

(0,1)
1 + φ

(0,1)
2,2 x0 − φ

(1,1)
2 − φ

(1,0)
3 + φ

(0,0)
3 x0

)
δθ

+
(
φ

(0,1)
2,2 + φ

(0,0)
3

)
δh

]
dx2 −

[
φ

(0,1)
2 δh +

(
φ

(0,1)
2 x0 − φ

(1,1)
2

)
δθ

]l

0
(7.65)

Similarly for the third integral one has

∫

Sr

tA · δu = ψ
(0,0)
2 δu2 +

(
ψ

(0,1)
1 − ψ

(1,0)
3 + ψ

(0,0)
3 x0

)
δθ

+ ψ
(0,0)
3 δh− ψ

(0,1)
2 δh,2 − ψ

(0,1)
2 (x0 δθ),2 + ψ

(1,1)
2 δθ,2 (7.66)

Collecting all the terms one obtains a system of three differential equations

δv2 : T
(0,0)
22,2 + F

(0,0)
2 −

[
I(0,0) ü2 − I(0,1) ḧ,2 − I(0,1)

(
x0 θ̈

)
,2

+ I(1,1)θ̈,2

]
+ φ

(0,0)
2 = 0(7.67)

δθ :
(
−T

(1,1)
22,22 + x0 T

(0,1)
22,22 + 2 T

(0,1)
12,2

)
+ F

(0,1)
1 − F

(0,1)
2,2 x0 − F

(1,1)
2,2 + F

(1,0)
3 + x0 F

(0,0)
3

−
[
I(0,2) θ̈ +

(
I(0,1) ü2

)
,2

x0 −
(
I(1,1) ü2

)
,2
−

(
I(0,2) ḧ,2

)
,2

x0

+
(
I(1,2) ḧ,2

)
,2
−

(
I(0,2)

(
x0 θ̈

)
,2

)

,2

x0 +

(
I(1,2)

(
x0 θ̈

)
,2

)

,2

+
(
I(1,2) θ̈,2

)
,2

x0 −
(
I(2,2) θ̈,2

)
,2
− I(1,0) ḧ + I(0,0) x0 ḧ

+ I(2,0) θ̈ − 2 I(1,0) x0 θ̈ + I(0,0) x2
0

]

+φ
(0,1)
1 + φ

(0,1)
2,2 x0 − φ

(1,1)
2 − φ

(1,0)
3 + φ

(0,0)
3 x0 −M+ L x0 = 0 (7.68)
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δh : T
(0,1)
22,22 + F

(0,0)
3 + F

(0,1)
2,2 −

[
(
I(0,1) ü2

)
,2
−

(
I(0,2) ḧ,2

)
,2
−

(
I(0,2)

(
x0 θ̈

)
,2

)

,2

+

+
(
I(1,2) θ̈,2

)
,2

+ I(0,0) ḧ− I(1,0) θ̈ + I(0,0) x0 θ̈

]
+ φ

(0,1)
2,2 + φ

(0,0)
3 = 0 (7.69)

7.4 Thermo-elastic constitutive equations

As it is apparent from the definition of the Hamiltonian functional in Eq. (7.22), we are not dealing

with a coupled thermo-elastic problem, but we are admitting that the temperature distribution is

not affected by the actual deformation of the structure. For this reason the temperature will enter

into the problem by means of the constitutive relations. In particular, in the frame-work of linear

thermo-elasticity one may refer to the Hooke-Duhamhel constitutive equation. Using a tensorial

notation this relation reads

E = F Σ + A T (7.70)

where F is the material flexibility tensor, whereas A is the tensor of thermal expansion coefficients.

An inverted expression of Eq. (7.70) is

Σ = C E−B T (7.71)

where C is the material compliance (or stiffness) tensor and B is related to A by means of the

following relation

B = C A (7.72)

Restricting ourselves to the case of monoclinic material and using a compact notation, Eq. (7.71)

can be written





σ1

σ2

σ3

σ4

σ5

σ6





=




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66








ε1

ε2

ε3

ε4

ε5

ε6





−





β1

β2

β3

0

0

β6





T (7.73)

where use has been made of the material symmetry hypothesis with respect to the plane x3 = 0 in

order to conclude that

α4 = α5 = 0 and Cα4 = Cα5 = C64 = C65 = 0 (7.74)
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It is worth noting that in the compact notation here used, the shear strain components (ε4, ε5, ε6)

and the coefficient of thermal expansion (α6) are equal to two times their tensorial counterpart, i.e.,

ε4 = 2ε23 = γ23 (7.75)

ε5 = 2ε13 = γ13 (7.76)

ε6 = 2ε12 = γ12 (7.77)

α6 = 2α12 (7.78)

For future reference, it is useful to explicit Eq. (7.72) using a compact notation

β1 = C11 α1 + C12 α2 + C13 α3 + C16 α6 (7.79)

β2 = C21 α1 + C22 α2 + C23 α3 + C26 α6 (7.80)

β3 = C31 α1 + C32 α2 + C33 α3 + C36 α6 (7.81)

β6 = C61 α1 + C62 α2 + C63 α3 + C66 α6 (7.82)

Now let us introduce the following hypothesis

O (σ33) ¿ O (σij) for i, j 6= 3 (7.83)

then, from Eq. (7.71) one has

ε3 = −C3α

C33

εα − C36

C33

ε6 +
β3

C33

T (7.84)

substituting Eq. (7.84) in Eq. (7.73) yields





σ1

σ2

σ6

σ4

σ5





=




Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55








ε1

ε2

ε6

ε4

ε5





−





γ1

γ2

γ6

0

0





T (7.85)
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where

Qαβ =
CαβC33 − Cα3C3β

C33

(7.86)

Qα6 =
Cα6C33 − Cα3C36

C33

(7.87)

Q66 =
C66C33 − C63C36

C33

(7.88)

Q44 = Q55 = C44 (7.89)

Q45 = C45 (7.90)

γα =
βαC33 − Cα3β3

C33

(7.91)

γ6 =
β6C33 − C63β3

C33

(7.92)

It is worth noting that, introducing the hypothesis (7.83), yields to a loss of information in terms

of the transverse thermal expansion coefficient, that is from Eqs. (7.91) and (7.79) - (7.82) one

obtains

γα = βα − Cα3

C33

β3 = Qαβ αβ + Qα6 α6 (7.93)

γ6 = β6 − C63

C33

β3 = Q6β αβ + Q66 α6 (7.94)

from which it is apparent the independence from the transverse thermal expansion coefficient (α3).

7.4.1 Composite structure

In this section the problem of composite laminated structure, of which the wing is assumed to be

composed, will be addressed. Specifically, we will assume the wing composed of N laminae of

monoclinic material each of thickness t(k) so that the thickness of the wing, at a certain location, is

t (x1, x2) =
N∑

k=1

t(k) (x1, x2) (7.95)

Let us now express the stress resultants defined in eq. (7.25) in terms of the strains using Eqs.

(7.85) and (7.95)

T
(m,n)
i =

∫ TE(x2)

LE(x2)

xm
1

[
N∑

k=1

∫ tu(x1,x2)

tl(x1,x2)

(
Q

(k)
ip εp + γ

(k)
i T

)
xn

3 dx3

]
dx1 (7.96)
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where use has been made of a compact notation also for the stress resultants. With the help of Eqs.

(7.9) - (7.14) one may write

εp = ap (x2) + x1 bp (x2) + x3 cp (x2) + x1 x3 dp (x2) (7.97)

thus

N∑

k=1

∫ tu(x1,x2)

tl(x1,x2)

(
Q

(k)
ip εp + γ

(k)
i T

)
xn

3 dx3 = A
(n)
ip (x1, x2) (ap + x1 bp)

+A
(n+1)
ip (x1, x2) (cp + x1 dp)− ϑ

(n)
i (x1, x2) (7.98)

where, by definition,

A
(n)
ip (x1, x2) :=

N∑

k=1

∫ tu(x1,x2)

tl(x1,x2)

Q
(k)
ip xn

3 dx3 (7.99)

ϑ
(n)
i (x1, x2) :=

N∑

k=1

∫ tu(x1,x2)

tl(x1,x2)

γ
(k)
i T (x1, x2, x3, t) xn

3 dx3 (7.100)

Integrating over x1, one has

T
(m,n)
i = B

(m,n)
ip ap + B

(m+1,n)
ip bp + B

(m,n+1)
ip cp + B

(m+1,n+1)
ip dp −Θ

(m,n)
i (7.101)

where, by definition,

B
(m,n)
ip (x2) :=

∫ TE(x2)

LE(x2)

xm
1 A

(n)
ip dx1 (7.102)

Θ
(m,n)
i (x2) :=

∫ TE(x2)

LE(x2)

xm
1 ϑ

(n)
i dx1 (7.103)

Let us now specialize these results to the present model. Using Eqs. (7.9) - (7.14) one has

a1 = 0

a2 = u2,2

a6 = 0

a4 = β + h,2 + (x0 θ),2

a5 = 0

b1 = 0

b2 = 0

b6 = 0

b4 = g − θ,2

b5 = 0
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c1 = 0

c2 = β,2

c6 = g + θ,2

c4 = 0

c5 = 0

d1 = 0

d2 = g,2

d6 = 0

d4 = 0

d5 = 0

(7.104)

With the help of the previous Equations, one may explicitly express the integral stress resultants

which appear in the equilibrium equations

T
(0,0)
2 = B

(0,0)
22 u2,2 + B

(0,1)
22 β,2 + B

(0,1)
26 (g + θ,2) + B

(1,1)
22 g,2 −Θ

(0,0)
2 (7.105)

T
(0,1)
2 = B

(0,1)
22 u2,2 + B

(0,2)
22 β,2 + B

(0,2)
26 (g + θ,2) + B

(1,2)
22 g,2 −Θ

(0,1)
2 (7.106)

T
(1,1)
2 = B

(1,1)
22 u2,2 + B

(1,2)
22 β,2 + B

(1,2)
26 (g + θ,2) + B

(2,2)
22 g,2 −Θ

(1,1)
2 (7.107)

T
(0,0)
4 = B

(0,0)
44

(
β + h,2 + (x0 θ),2

)
+ B

(1,0)
44 (g − θ,2) (7.108)

T
(1,0)
4 = B

(1,0)
44

(
β + h,2 + (x0 θ),2

)
+ B

(2,0)
44 (g − θ,2) (7.109)

T
(0,1)
6 = B

(0,1)
62 u2,2 + B

(0,2)
62 β,2 + B

(0,2)
66 (g + θ,2) + B

(1,2)
62 g,2 −Θ

(0,1)
6 (7.110)

For convenient reference to the original works on this model ([104, 58, 59, 60, 45, 44, 46, 47]) let

us introduce the following relations

B
(0,0)
22 = Ā22 B

(0,0)
44 = Ā44 B

(1,0)
44 = ¯̄A44 B

(2,0)
44 =

¯̄̄
A44 B

(0,1)
22 = B̄22

B
(1,1)
22 = ¯̄B22 B

(0,1)
26 = B̄26 B

(0,2)
22 = D̄22 B

(1,2)
22 = ¯̄D22 B

(2,2)
22 =

¯̄̄
D22

B
(0,2)
26 = D̄26 B

(1,2)
26 = ¯̄D26 B

(2,2)
26 =

¯̄̄
D26 B

(0,2)
66 = D̄66

(7.111)

Using Eqs. (7.111), the replacement of Eqs. (7.105) - (7.110) in Eqs. (7.47) - (7.51) leads to the

following system of equilibrium equations in the basic unknown ((7.57)

(
Ā22 u2,2

)
,2

+
(
B̄22 β,2

)
,2

+
(
B̄26 g

)
,2

+
(
B̄26 θ,2

)
,2

+
(

¯̄B22 g,2

)
,2

−Θ
(0,0)
2,2 + F

(0,0)
2 − I(0,0) ü2 − I(0,1) f̈2 − I(1,1) g̈2 = 0 (7.112)

(
B̄22 u2,2

)
,2

+
(
D̄22 β,2

)
,2

+
(
D̄26 g

)
,2

+
(
D̄26 θ,2

)
,2

+
(

¯̄D22 g,2

)
,2

−Ā44 β − Ā44 h,2 − Ā44 (x0 θ),2 − ¯̄A44 g + ¯̄A44 θ,2

−Θ
(0,1)
2,2 + F

(0,1)
2 − I(0,1) ü2 − I(0,2) f̈2 − I(1,2) g̈2 = 0 (7.113)
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(
¯̄B22 u2,2

)
,2

+
(

¯̄D22 β,2

)
,2

+
(

¯̄D26 g
)

,2
+

(
¯̄D26 θ,2

)
,2

+
(

¯̄̄
D22 g,2

)
,2

− ¯̄A44 β − ¯̄A44 h,2 − ¯̄A44 (x0 θ),2 − ¯̄̄
A44 g +

¯̄̄
A44 θ,2

−B̄26 u2,2 − D̄26 β,2 − D̄66 g − D̄66 θ,2 − ¯̄D26 g,2

−Θ
(1,1)
2,2 + Θ

(0,1)
12 + F

(1,1)
2 − I(1,1) ü2 − I(1,2) f̈2 − I(2,2) g̈2 = 0 (7.114)

(
B̄26 u2,2

)
,2

+
(
D̄26 β,2

)
,2

+
(
D̄66 g

)
,2

+
(
D̄66 θ,2

)
,2

+
(

¯̄D26 g,2

)
,2

−
(

¯̄A44 β
)

,2
−

(
¯̄A44 h,2

)
,2
−

(
¯̄A44 (x0 θ),2

)
,2
−

(
¯̄̄
A44 g

)
,2

+
(

¯̄̄
A44 θ,2

)
,2

+

[(
Ā44 β

)
,2

+
(
Ā44 h,2

)
,2

+
(
Ā44 (x0 θ),2

)
,2

+
(

¯̄A44 g
)

,2
−

(
¯̄A44 θ,2

)
,2

]
x0

−Θ
(0,1)
6 + F

(0,1)
1 − F

(1,0)
3 + F

(0,0)
3 x0 −

(
I(0,2) + I(2,0) − 2 I(1,0) x0 + I(0,0) x2

0

)
θ̈

+
(
I(1,0) − I(0,0) x0

)
ḧ−M+ L x0 = 0 (7.115)

(
Ā44 β

)
,2

+
(
Ā44 h,2

)
,2

+
(
Ā44 (x0 θ),2

)
,2

+
(

¯̄A44 g
)

,2
−

(
¯̄A44 θ,2

)
,2

+F
(0,0)
3 − I(0,0) ḧ +

(
I(1,0) − I(0,0) x0

)
θ̈ + L = 0 (7.116)

Similarly, for the boundary conditions in terms of the basic unknown one has

B
(0,0)
22 u2,2 + B

(0,1)
22 β,2 + B

(0,1)
26 (g + θ,2) + B

(1,1)
22 g,2 −Θ

(0,0)
2 = ψ

(0,0)
2 (7.117)

B
(0,1)
22 u2,2 + B

(0,2)
22 β,2 + B

(0,2)
26 (g + θ,2) + B

(1,2)
22 g,2 −Θ

(0,1)
2 = ψ

(0,1)
2 (7.118)

B
(1,1)
22 u2,2 + B

(1,2)
22 β,2 + B

(1,2)
26 (g + θ,2) + B

(2,2)
22 g,2 −Θ

(1,1)
2 = ψ

(1,1)
2 (7.119)

B
(0,1)
62 u2,2 + B

(0,2)
62 β,2 + B

(0,2)
66 (g + θ,2) + B

(1,2)
62 g,2 −Θ

(0,1)
6

−B
(1,0)
44

(
β + h,2 + (x0 θ),2

)
−B

(2,0)
44 (g − θ,2)

+
[
B

(0,0)
44

(
β + h,2 + (x0 θ),2

)
+ B

(1,0)
44 (g − θ,2)

]
x0

= ψ
(0,1)
1 − ψ

(1,0)
3 + ψ

(0,0)
3 x0 (7.120)

B
(0,0)
44

(
β + h,2 + (x0 θ),2

)
+ B

(1,0)
44 (g − θ,2) = ψ

(0,0)
3 (7.121)
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From Eqs. (7.112)-(7.121) it is apparent that in this modeling the thermal effect is treated in the

same manner as an external load. Moreover, the temperature enters into the problem both from

the equilibrium equations and from the boundary conditions.

7.5 Case study

In this section the previous model will be particularized to the case of a rectangular single-layered

and transversely isotropic wing subjected to a laser heating in a incompressible, inviscid flow.

7.5.1 Transverse isotropy

For a transversely isotropic material, in the frame-work of linear thermo-elasticity, the number

of material coefficients to be determined experimentally is seven. Nonetheless, by means of the

assumption contained in Eq. (7.83) and of the following considerations, one can recognize that the

number of thermo-elastic coefficients to assigned are only four, specifically, one has

Q11 = Q22 =
E

1− ν2
(7.122)

Q12 =
E ν

1− ν2
(7.123)

Q66 =
E

2 (1 + ν)
(7.124)

Q44 = Q55 = G′ (7.125)

γ1 = γ2 =
E

1− ν
α (7.126)

where E, ν, α are, respectively, the Young modulus, the Poisson modulus and the coefficient of ther-

mal expansion in the plane of isotropy, whereas G′ is the transverse shear modulus. It is remarkable

that, as already stated in Eqs. (7.93)-(7.94), any dependence from the transversal coefficient of

thermal expansion has been lost introducing the assumption of Eq. (7.83). Nonetheless, it should

be noted that in order to recover this material dependence the constraint of inextensibility along the

thickness should be relaxed.

7.5.2 Single layered rectangular wing

The introduction of the hypothesis that the wing is composed of a single layer of transverse isotropic

material, simplify considerably the model. In particular it is found that

tl 6= tl (x1, x2) tu 6= tu (x1, x2) (7.127)

LE 6= LE (x2) TE 6= TE (x2) (7.128)
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Because we are dealing with a rectangular, single-layered wing it is reasonable to choose the origin of

the coordinate axes in the center of the cross section. With this choice and the following definitions

tl = −h̄/2 tu = h̄/2 (7.129)

LE = −c/2 TE = c/2 (7.130)

one has

T
(0,0)
2 = c h̄ Q22 u2,2 −Θ

(0,0)
2 (7.131)

T
(0,1)
2 =

c h̄3

12
Q22 β,2 −Θ

(0,1)
2 (7.132)

T
(1,1)
2 =

c3 h̄3

144
Q22 g,2 −Θ

(1,1)
2 (7.133)

T
(0,0)
4 = c h̄ Q44 (β + h,2) (7.134)

T
(1,0)
4 =

c3 h̄

12
Q44 (g − θ,2) (7.135)

T
(0,1)
6 =

c h̄3

12
Q66 (g + θ,2) (7.136)

Similarly, let us express the non-zero inertial terms

I(0,0) = ρ h̄ c = m (7.137)

I(0,2) = ρ c
h̄3

12
= m

h̄2

12
(7.138)

I(2,0) = ρ h̄
c3

12
= m

c2

12
(7.139)

I(2,2) = ρ
h̄3

12

c3

12
= m

c2 h̄2

144
(7.140)

The equilibrium equations can now be recast in the following way

c h̄ Q22 u2,22 −Θ
(0,0)
2,2 + F

(0,0)
2 −m ü2 = 0 (7.141)

c h̄3

12
Q22 β,22 − c h̄ Q44 β − c h̄ Q44 h,2 −Θ

(0,1)
2,2 + F

(0,1)
2 −m

h̄2

12
f̈2 = 0 (7.142)

c3 h̄3

144
Q22 g,22 − c3 h̄

12
Q44 g +

c3 h̄

12
Q44 θ,2

−c h̄3

12
Q66 g − c h̄3

12
Q66 θ,2 −Θ

(1,1)
2,2 + F

(1,1)
2 −m

c2 h̄2

144
g̈2 = 0 (7.143)
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c h̄3

12
Q66 g,2 +

c h̄3

12
Q66 θ,22 − c3 h̄

12
Q44 g,2

+
c h̄3

12
Q44 θ,22 + F

(0,1)
1 − F

(1,0)
3 −M− m

12

(
c2 + h̄2

)
θ̈2 = 0 (7.144)

c h̄ Q44 β,22 − c h̄ Q44h,22 + F
(0,0)
3 −m ḧ + L = 0 (7.145)

where, because of the hypotheses on the geometry and of the location of the reference axes, one

may assume x0 = 0. Similarly, for the boundary conditions one has

c h̄ Q22 u2,2 −Θ
(0,0)
2 = 0 (7.146)

c h̄3

12
Q22 β,2 −Θ

(0,1)
2 = 0 (7.147)

c3 h̄3

144
Q22 g,2 −Θ

(1,1)
2 = 0 (7.148)

(
h̄2 Q66 − c2 Q44

)
g +

(
h̄2 Q66 + c2 Q44

)
θ,2 = 0 (7.149)

β + h,2 = 0 (7.150)

where a free-end condition at the right side of the wing (i.e., ψ
(m,n)
i = 0) has been assumed.

It is worth noting that the dynamics of the wing in its plane is independent of the the other

dynamics and so one may solve two separated problems involving one (u2) and four (β, g, θ, h)

independent unknowns respectively. Moreover, it is apparent that the thermal loads appear only

in the first three equilibrium equations and boundary conditions. These are the equations related

to arbitrary variations of the displacement in the span-wise direction and of the warping. Thus, it

can be concluded that, as already stated with respect to the thickness inextensibility constraint, the

discard of this effect (i.e., the introduction of unshearable constraint) would translate in a loss of

information, specifically, of thermo-mechanical coupling.

7.6 Thermal excitation

As it was stated in the Introduction, the case of a laser beam impacting the upper surface of the

wing is considered. Mathematically the problem may be stated in terms of the following system of

equations[17, 22, 116, 13]

Div (K∇T )− ρct
∂T

∂t
= 0 for x ∈ B, t ∈ T (7.151)

K∇T · n = q · n for x ∈ SU , t ∈ T (7.152)

∇T · n = 0 for x ∈ ∂B/SU , t ∈ T (7.153)

T = 0 for x ∈ ∂B, t = 0 (7.154)
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where T (x, t) is the temperature field, K is the thermal conductivity tensor,[20] ct is the specific

heat, n is the external normal to the surface body and q is the external heat flux impacting the

wing. Because we are dealing with a transversely isotropic thermal conductivity tensor, one has

K :=




k1 0 0

0 k1 0

0 0 k3


 (7.155)

Using the following co-ordinate transformation

x := ξ1 y := ξ2 z :=
√

k1/k3 ξ3 (7.156)

the original problem may be recast in the following form

k1∇2T − ρct
∂T

∂t
= 0 for x ∈ B, t ∈ T (7.157)

k1∇T · n = q · n for x ∈ SU , t ∈ T (7.158)

∇T · n = 0 for x ∈ ∂B/SU , t ∈ T (7.159)

T = 0 for x ∈ ∂B, t = 0 (7.160)

Note that the change of variables defined in Eq. (7.156) is equivalent to a virtual stretch or

contraction (depending on the ratio k1/k3) of space in the thickness direction (z).

In order to, determine analytically the temperature field within the body, a Green’s approach has

been performed.[19] Thus, one may associate to the problem in Eqs.(7.157)-(7.160) the following

adjoint one

k1∇2G + ρct
∂T

∂t
= δ (x− x∗) δ (t− t∗) for x ∈ B, t ∈ T (7.161)

∇G · n = 0 for x ∈ ∂B (7.162)

G = 0 for x ∈ B, t = t̂ (7.163)

where G (x,x∗, t, t∗) is the Green’s function for the problem under consideration, assumed zero at

the final time (t̂).

Multiplying Eq. (7.157) by T (x, t) and Eq. (7.161) by G (x,x∗, t, t∗), one has

T (x∗, t∗) = −
∫ t̂

0

∫

SU

1

ρct

G (x,x∗, t, t∗) q (x, t) · n (x, t) dS (x) dt (7.164)

Assuming for the body a rectangular parallelepiped configuration ,i.e.,

B = {(x, y, z) ‖0 ≤ x ≤ x̄; 0 ≤ y ≤ ȳ; 0 ≤ z ≤ z̄} (7.165)
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one obtains the following expression for the Green’s function

G (x,x∗, t, t∗) = −
∞∑

l,m,n=0

φlmn (x) φlmn (x∗) H (t− t∗) e
− k1λlmn

ρct
(t−t∗)

(7.166)

where H (t− t∗) is the Heaviside’s function,

φlmn (x) =
8

x̄ȳz̄
cos

lπx

x̄
cos

mπy

ȳ
cos

nπz

z̄
(7.167)

are the eigenfunctions of the Laplacian operator for this problem, and λlmn are the corresponding

eigenvalues

λlmn = −
(

l2π2

x̄
+

m2π2

ȳ
+

n2π2

z̄

)
(7.168)

Note that using the above expressions the temperature field in Eq. (7.164) may be recast as

T (x∗, t∗) =
∞∑

l,m,n=0

φlmn (x∗)
ρct

∫ x̄

0

∫ ȳ

0

φlmn (x)

∫ t∗

0

e
− k1λlmn

ρct
(t−t∗)

q (x, t) · n (x, t) dt dy dx

Finally, from Eq. (7.169) it is apparent that one can established for the temperature field a

relationship with the Lagrangean coordinates chosen for representing the displacement field and

thus obtain a closed-loop system between the thermal field and the displacement one. Specifically,

chosen a system of material coordinate on the upper surface of the wing, which may be considered

coincident with the Cartesian ones in the linear approximation, one has

n (x, t) :=
g1 × g2

‖g1 × g2‖ =

(
o
g1 +

∂u

∂ξ1

)
×

(
o
g2 +

∂u

∂ξ2

)

‖g1 × g2‖ (7.169)

where gα := ∂x/∂ξα are the tangent base vectors at the material coordinates on the surface.

Choosing a system of Cartesian coordinate coincident with that depicted in Fig. (7.1) and performing

a linearization one has

n (x, t) ∼= e3 − h,2 (y, t) e2 + θ (y, t) e1 (7.170)

Substituting Eq. (7.170) into Eq. (7.169) one may express the temperature field as the sum of

three contributions

T (x∗, t∗) = T1 (x∗, t∗) + T2 (x∗, t∗) + T3 (x∗, t∗) (7.171)
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where

T1 (x∗, t∗) =
∞∑

l,m,n=0

φlmn (x∗)
ρct

∫ x̄

0

∫ ȳ

0

φlmn (x)

∫ t∗

0

e
− k1λlmn

ρct
(t−t∗)

q1 (x, t) θ (y, t) dt dy dx

T2 (x∗, t∗) = −
∞∑

l,m,n=0

φlmn (x∗)
ρct

∫ x̄

0

∫ ȳ

0

φlmn (x)

∫ t∗

0

e
− k1λlmn

ρct
(t−t∗)

q2 (x, t) h,2 (y, t) dt dy dx

T3 (x∗, t∗) =
∞∑

l,m,n=0

φlmn (x∗)
ρct

∫ x̄

0

∫ ȳ

0

φlmn (x)

∫ t∗

0

e
− k1λlmn

ρct
(t−t∗)

q3 (x, t) dt dy dx

For a visual illustration of our reasoning in Fig. (7.2) a snapshot of the deformed configuration

Figure 7.2: Deformed configuration of the wing structure exposed to an external heat flux.

of the wing structure considered in the applications is reported. Here the laser beam is simbolized

by a set of arrows (q (ξ2, t)) whereas the normal is denoted by n (ξ2, t).

It is worth noting that Eqs. (7.172)-(7.172) may be seen as convolutions of the Lagrangean

variables θ and h respectively with respect to time, and convolutions and correlations with respect

to space. Nonetheless, explicit solutions of these integrals cannot be found, and in order to include

the thermoelastic feedback one could solve iteratively the displacement problem due to a thermal

input like T3 which does not depend on u, then obtain T1 and T2 by direct integration.

7.7 Aerodynamic loads

In this section the aerodynamic loads generated by the incompressible flow field over the wing, taking

into account the effect of the sweep angle, are reported and discussed. The formulation used here

is analogous to that employed by Theodorsen [105] and reported in Bisplinghoff et al. [16] but

including the effect of the sweep angle as developed in [70]. The first step in the consideration of
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an aerodynamic load over a body is to define the boundary condition on its surface. Specifically,

it is assumed the surface to be impermeable, that means the relative velocity with which the fluid

particle hits the body has normal component to its surface equal to zero, this requirement translates

in the following relation

(vair − vbody) · n = 0 (7.172)

where the air speed is measured in a rigid frame attached to the center of mass of the plane, and

thus†

vair = U∞c1 +∇ϕ (7.173)

whereas the velocity of the body is simply the derivative with respect to time of the displacement

field

vbody =
∂u

∂t
(7.174)

and the normal to the external surface of the body can be expressed

n =
g1 × g2√

g
=

1√
g

(
o
g1 +

∂u

∂x1

)
×

(
o
g2 +

∂u

∂x2

)
(7.175)

Substituting Eqs. (7.173)-(7.175) in Eq. (7.172) and retaining only the linear term, one has

∂ϕ

∂n
=

∂u3

∂t
+ U∞

∂u3

∂x1

(7.176)

In order to particularize this equation to the case of a swept wing, the following change of variable

is introduced

x̄1 = x1 cos Λ− x2 sin Λ (7.177)

x̄2 = x1 sin Λ + x2 cos Λ (7.178)

x̄3 = x3 (7.179)

Recalling that the displacement in the x3 direction in the rotated frame is

u3 = ū3 = h (x̄2, t)− (x̄1 − x̄0) θ (x̄2, t) (7.180)

† Following Podio-Guidugli [87], let E be a 3-dimensional Euclidean space, let V be the vector space associated
with E and denote with U := {v ∈ V| ‖v‖ = 1} the sphere of all vectors having unit length. We think of E as
equipped with a Cartesian frame {O; c1, c2, c3} with orthogonal basis vectors ci ∈ U (i= 1, 2, 3); the Cartesian
components of a vector v ∈ V are then vi := v · ci and, in particular, the triplet (p1, p2, p3) ∈ <3, pi := p (p) · ci,
of components of the position vector are the Cartesian coordinates of a point p ∈ E .
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one has

∂u3

∂t
=

∂h

∂t
− (x− x0)

∂θ

∂t
(7.181)

∂u3

∂x
= −θ cos Λ +

∂h

∂y
sin Λ− (x− x0)

∂θ

∂y
sin Λ +

∂x0

∂y
θ sin Λ (7.182)

where

x̄1 = x , x̄2 = y , x̄3 = z (7.183)

Equation (7.176) can now be written

∂ϕ

∂z
= ḣ− (x− x0) θ̇ + U∞ cos Λ [−θ + (h′ − (x− x0) θ′ + x′0θ) tan Λ] (7.184)

The study of thin airfoils oscillating in incompressible flow (developed by Theodorsen [105], and

discussed in Bisplinghhoff et al. [16, page 251, sec. 5-6]) yield to the following closed-form solution

for the lift and pitching moment due to oscillatory vertical translation and pitching (see [16, page

272, Eqs. (5-311) and (5-312)])

L = πρb2
[
ḧ + U α̇− ba α̈

]
+ 2πρUbC (k)

[
ḣ + Uα + b

(
1

2
− a

)
α̇

]
(7.185)

M = πρb2

[
baḧ− Ub

(
1

2
− a

)
α̇− b2

(
1

8
+ a2

)
α̈

]
+

+ 2πρUb2

(
a +

1

2

)
C (k)

[
α̇ + Uα + b

(
1

2
− a

)
α̇

]
(7.186)

Note that accordingly to Theodorsen’s method, the solution is composed of two parts: one, asso-

ciated with an appropriate distribution of sources and sinks just above and below the line z = 0,

and represented by the first addenda in Eqs. (7.185) and (7.186), satisfies the boundary condition

over the airfoil but produces no circulation and it is so-called the ”non-circulatory” part of the lift;

the other, produced by a pattern of vortices with countervortices along the wake to infinity is such

to fulfill the Kutta’s hypothesis without disturbing the boundary condition at the airfoil, and it is

associated with the Theodorsen’s function (C (k)) in Eqs. (7.185) and (7.186). Moreover, let us

note that the terms in brackets which multiply the Theodorsen’s function represent the normal ve-

locity of a fluid particle located at three-quartes along the chord (measured from the leading edge),

indeed:

w3/4 = ḣ− U∞θ − b

(
1

2
− a

)
θ̇ (7.187)
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where Eq. (7.184) has been employed and Λ = 0 has been considered. Actually, in Eqs. (7.185)

and (7.185) the expressions in brackets are different from Eq. (7.187) because in Bisplinghoff h is

positive downward while in Eq. (7.187) and (7.180) another more coherent convention (i.e., positive

upward) has been adopted.

Finally, let us note that in Eqs. (7.185) and (7.187), a represents the position of the elastic axis

(adimensionalized with respect to the semi-chord) measured from the origin (chosen to be at the

middle-chord).

In order to extend the previous model to arbitrary motions of the airfoil, and to include the

effect of the sweep angle in a way similar to that adopted by Marzocca et al. [70], let us refer to

Bisplinghoff [16, page 282, sec. 5-7] where the loads generated aerodynamically over an airfoil in

arbitrary motion is reported. There it is stated that the noncirculatory results are correct regardless

the nature of the unsteady motion, so long as it is small. The idea carried on by Wagner in its

problem of step change in angle of attack and extended by Kussner for a sharped-edge gust striking

the leading edge of the airfoil at t = 0, is based on the principle of superposition which is applicable

because of the linearity assumed through out the problem. In this sense the circulatory part of the

lift per unit span for any Fourier with unit amplitude of w − 3/4 is†

L̃c = −2πρUbC (k) (7.188)

Using the convolution integral in order to express the circulatory part of the lift in the time domain,

one has

Lc = −2πρUb

∫ t

−∞
φ (t− τ)

∂w3/4 (τ)

∂τ
τ (7.189)

where φ (τ) is the Wagner’s function given by (see [77, page 195, Eq. (8.85)]

φ (τ) :=
1

2π

∫ +∞

−∞

C (k)

jk
ejkτ dk (7.190)

This function describes the transient of the lift up to its steady value and formally represents the

response to the unit step of a system having the Theodorsen’s function as transfer function.

Equation (7.190) must be specialized for the case of a swept wing substituting Eq. (7.184) in it

Lc (y, t) = −2πρUnbn

∫ t

−∞
φ (t− τ)

{
ḧ− bn

(
1

2
− a

)
θ̈

+ Un

[
−θ̇ +

(
ḣ′ − bn

(
1

2
− a

)
θ̇′

)
tan Λ

]}
dτ (7.191)

† These considerations can be alternatively stated using a more systematic point of view and referring to Eq.
(7.188) as the transfer function of the lift with respect to w − 3/4 as the input.
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where it has been assumed the hypothesis ∂x0/∂y = 0 and also x = bn/2.

Similarly, for the noncirculatory terms, one has (see [16, page 260, Eq. 5-262])

Lnc = −
∫ bn

−bn

(pu − pl) dx

= 2ρ

∫ bn

−bn

∂ϕu

∂t
dx + 2ρUn

∫ bn

−bn

∂ϕu

∂x
dx

= 2ρbn
∂

∂t

∫ π

0

ϕu sin β dβ (7.192)

where

ϕu = −bn

π

∫ π

β

∫ π

0

w sin2 γ dγ dβ

cos γ cos β
(7.193)

Replacing Eq. (7.184) in Eq. (7.193) one has

ϕu = bn

[
−ḣ + Un (θ − h′ tan Λ)

]
sin β + b2

n

[
θ̇ + Un tan Λ θ′

]
sin β

(
1

2
cos β − a

)
(7.194)

where the following identities have been used

∫ π

β

∫ π

0

sin2 γ dγ dβ

cos γ − cos β
= π sin β (7.195)

∫ π

β

∫ π

0

(cos γ − a) sin2 γ dγ dβ

cos γ − cos β
= π sin β

(
1

2
cos β − a

)
(7.196)

Performing the integral in Eq. (7.192) one has

Lnc = πρb2
n

[
−ḧ + Un θ̇ − bna θ̈ − Un tan Λ

(
ḣ′ + abn θ̇′

)]
(7.197)

Similarly, for the aerodynamic moment one has

Mnc =

∫ bn

−bn

(pu − pl) (x− ba) dx

= 2ρbnUn

∫ π

0

ϕu sin β dβ − 2ρb2
n

∂

∂t

∫ π

0

ϕu (cos β − a) sin β dβ (7.198)

Performing the integral and the derivation with respect to time one gets

Mnc = πρb2
n

[
−Unḣ− bnaḧ + U2

nθ − b2
n

(
1

8
+ a2

)
θ̈

]

− πρb2
nUn

[
Unh

′ + Unabnθ
′ + abnθ̇′ + b2

n

(
1

8
+ a2

)
θ̇′

]
tan Λ (7.199)
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Note that Eqs. (7.197) and (7.199) reduce to Eqs. (7.185) and (7.186) for Λ = 0. Note also that

to derive Eqs. (7.197) and (7.199) the following results have been considered

∫ π

0

sin2 βdβ =
π

2
(7.200)

∫ π

0

sin2 β

(
1

2
cos β − a

)
dβ = −a

π

2
(7.201)

∫ π

0

sin2 β (cos β − a) dβ = −a
π

2
(7.202)

∫ π

0

sin2 β

(
1

2
cos β − a

)
(cos β − a) dβ =

π

2

(
1

8
+ a2

)
(7.203)

Grouping the terms of the non-circulatory part of the lift associated with the same order of derivatives

and those associated with the sweep angle, one has

Lnc1 = −πρb2
n

(
ḧ + bnaθ̈

)
(7.204)

Lnc2 = πρb2
nUθ̇ (7.205)

Lnc3 = πρb2
nU tan Λ

(
ḣ′ + θ̇′

)
(7.206)

similarly, for the aerodynamic moment

Mnc1 = −πρb3
n

(
aḧ + bn

(
1

8
+ a2

)
θ̈

)
(7.207)

Mnc2 = −πρb3
nUḣ (7.208)

Mnc3 = πρb2
nU

2θ (7.209)

Mnc4 = −πρb2
nU tan Λ

[
Unh′ + Unabnθ′ + abnθ̇

′ + b2
n

(
1

8
+ a2

)
θ̇′

]
(7.210)

In order to include the effect of the finiteness of the wing (i.e., of the three-dimensionality of the

flow over it), it is useful to recall that (see, for instance, [11, page 253] and [16, page 250]) there

exist some semi-empirical formulas which relate the lift slope for a finite wing to that of its airfoil

sections. Specifically, for a finite wing of general planform one has

dCL
dα

:= CLα

a0

1 + (a0/πAR) (1 + τ)
(7.211)

where a0 is the lift slope of the airfoil, AR is the aspect-ratio of the wing, and τ is a function of

the lift distribution over the span. Values of τ typically range between 0.05 and 0.25.

Once that the expression of the lift and of the aerodynamic moment have been obtained as

function of the sweep angle and of the aspect ratio, they can be replaced in the equilibrium equations

of the flexible wing under consideration. Specifically, recall that the aerodynamic loads in the
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Hamilton’s equation are

∫

∂B
tA · δu =

∫

Su∪Sl

tA
aero · δu +

∫

Su∪Sl

tA
mech · δu +

∫

Sr

tA · δu (7.212)

where the first integral is

∫

Su∪Sl

tA
aero · δu =

∫ l

0

(L δh +M δθ) dx2 (7.213)

and

L := −
∫ TE(x2)

LE(x2)

∆p (x1, x2, t) dx1 (7.214)

M :=

∫ TE(x2)

LE(x2)

∆p (x1, x2, t) (x1 − x0) dx1 (7.215)

where

∆p (x1, x2, t) := pu (x1, x2, t)− pl (x1, x2, t) (7.216)

7.8 Solution Procedure

In this Section the solution procedure enabling one to solve the aero-thermo-elastic problem consid-

ered in this Chapter, see Eqs. (7.47)–(7.51) is presented. With respect to a rectangular single-layered

wing, made of a transversely isotropic material uniformly distributed in the span-wise direction, a

number of stiffness quantities (see Eq. (7.102)) vanishes (i.e., B
(1,n)
ij = B

(m,1)
ij = B

(m,n)
26 = 0). The

remaining quantities can be written

B
(0,0)
22 := A Q22 B

(0,2)
22 := C1 Q22 B

(2,2)
22 := D Q22

B
(0,0)
44 := A Q44 B

(2,0)
44 := C3 Q44 B

(0,2)
66 := C1 Q66

(7.217)

where A is the area of the cross-section, C1 and C3 are the geometric moments of inertia with

respect to the chord-wise and thickness direction, and D is the warping rigidity, respectively given

by

A :=

∫ b

−b

∫ d/2

−d/2

dξ3 dξ1 C1 :=

∫ b

−b

∫ d/2

−d/2

ξ32

dξ3 dξ1

C3 :=

∫ b

−b

ξ12

∫ d/2

−d/2

dξ3 dξ1 D :=

∫ b

−b

ξ12

∫ d/2

−d/2

ξ32

dξ3 dξ1

(7.218)



Solution Procedure 137

Moreover, Q22, Q44, and Q66 are the nonzero elastic coefficients, which, for a transversely isotropic

material, can be written

Q22 :=
E

1− ν2
Q44 := G′ Q66 :=

E

2 (1 + ν)
(7.219)

Using the previous expressions, the governing equations Eqs. (7.47)–(7.51) are recast in a suitable

compact form by using the following set of unknowns

y1 := u2 y2 := β y3 := g y4 := θ y5 := h (7.220)

Substituting Eqs. (7.217)-(7.220) into Eqs. (7.105)-(7.110) and then in the equilibrium equations

(Eqs. (7.47)-(7.51)) one has

Ky′′ + Ly′ + Py + Mÿ = fA + fT + fM (7.221)

where K, L, P are the stiffness matrices whose expression is reported in Appendix C, whereas fA is

the vector of aerodynamic loads, fT is the vector of thermal load and fM is the vector of mechanical

loads resulting from the external time-dependent loads acting on the wing during the operational

flight of the flight vehicle (e.g., explosive blast loads). In particular, using Eqs. (7.220) into Eqs.

(7.185)-(7.186) one has

fA
(
y, ẏ, ÿ, y′, ẏ′, τ, ξ2

)
=





0

0

0

M
L





= A ÿ + B ẏ + C y′ + D ẏ′ + E

∫ τ

0

ϕ (τ − τ̂) ÿ (τ̂) dτ̂

+F

∫ τ

0

ϕ (τ − τ̂) ẏ (τ̂) dτ̂ + G

∫ τ

0

ϕ (τ − τ̂) ẏ′ (τ̂) dτ̂ (7.222)

where the matrices A, B, C, D, E, F, and G, whose expressions are reported in Appendix C, are

obtained comparing Eq. (7.222) with Eqs. (7.188)-(7.216). The boundary conditions, associated

to Eq. (7.221) and obtained performing the same transformations on Eqs. (7.52)-(7.56), at the

root (ξ2 = 0) and the tip (ξ2 = l = ξ2
tip), are

y (0, τ) = 0 (7.223)

R y′
(
ξ2
tip, τ

)
+ S y

(
ξ2
tip, τ

)
= c (τ) (7.224)

Note that in c are contained the thermal moments, which, for the particular temperature dis-

tribution considered in the application, enters into the problem just only through the boundary
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conditions.†

Performing the Laplace transform with respect to time on Eqs. (7.221)-(7.224) and assuming

zero initial conditions one has

Kỹ′′ + Ñ (s, Un) ỹ′ + Q̃ (s, Un) ỹ = −f̃T − f̃M (7.225)

where the tilde (̃) denotes Laplace transform with respect to time, s is the time counterpart in the

Laplace domain, and

Ñ (s, Un) := L− C− s D− s ϕ̃ G (7.226)

Q̃ (s, Un) := P + s2 (M− A− ϕ̃ E)− s (B + ϕ̃ F) (7.227)

where ϕ̃ is the Laplace transform of the Wagner’s function and it is given by

ϕ̃ := Lτ [ϕ (τ)] =
C (s)

s
(7.228)

Performing the Laplace transform with respect to space, and denoting with the upper bar (̄) the

corresponding Laplace transform quantities, and recalling that the wing is considered to be clamped

at the root (that is for y = 0), one has

¯̃y (p, s) =
[
p2K + pÑ (s, Un) + Q̃ (s, Un)

]−1 [
−¯̃fT (p, s)− ¯̃fM (p, s) + Kỹ′ (0, s)

]
(7.229)

where p is the space counterpart in the Laplace domain.

Let us define

¯̃H (p, s, Un) :=
[
p2K + pÑ (s, Un) + Q̃ (s, Un)

]−1

(7.230)

which can be regarded, a part the boundary conditions, as the aeroelastic operator. Thus Eq.

(7.229) may be cast as

¯̃y (p, s) = − ¯̃H (p, s, Un)
[
¯̃fT (p, s) + ¯̃fM (p, s)

]
+ ¯̃H (p, s, Un) Kỹ′ (0, s) (7.231)

Performing the inverse Laplace transform with respect to space one has

ỹ
(
ξ2, s

)
= −

∫ ξ2

0

H̃ (η, s) f̃
(
ξ2 − η, s

)
dη + H̃

(
ξ2, s

)
Kỹ′ (0, s) (7.232)

† Indeed, in the applications the external heat flux has been assumed uniformly distributed on the wing surface
depending only on time, whereas the elastic feedback in the temperature expression has not been considered.
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Let us introduce the following definition for the convolution integral

g̃
(
ξ2, s

)
:= −

∫ ξ2

0

H̃ (η, s) f̃
(
ξ2 − η, s

)
dη (7.233)

Thus

ỹ
(
ξ2, s

)
= g̃

(
ξ2, s

)
+ H̃

(
ξ2, s

)
Kỹ′ (0, s) (7.234)

and

ỹ′
(
ξ2, s

)
= g̃′

(
ξ2, s

)
+ H̃′

(
ξ2, s

)
Kỹ′ (0, s) (7.235)

The boundary conditions at the tip (Eq. (7.224)) are

R
[
g̃′

(
ξ2
tip, s

)
+ H̃′

(
ξ2
tip, s

)
Kỹ′ (0, s)

]
+ S

[
g̃

(
ξ2
tip, s

)
+ H̃

(
ξ2
tip, s

)
Kỹ′ (0, s)

]
= c̃(7.236)

thus

ỹ′ (0, s) =
[
R H̃′

(
ξ2
tip, s

)
K + SH̃

(
ξ2
tip, s

)
K

]−1 [
c̃− (

Rg̃′
(
ξ2
tip, s

)
+ Sg̃

(
ξ2
tip, s

))]
(7.237)

Finally, the solution vector, in the Laplace domain (with respect to time), may be written

ỹ
(
ξ2, s

)
= −

∫ ξ2

0

H̃ (η, s) f̃
(
ξ2 − η, s

)
dη + H̃

(
ξ2, s

)

[
RH̃′

(
ξ2
tip, s

)
+ SH̃

(
ξ2
tip, s

)]−1 [
c̃− (

Rg̃′
(
ξ2
tip, s

)
+ Sg̃

(
ξ2
tip, s

))]
(7.238)

It is worth to point out that, considering Eq. (7.238), the solution of the problem depends of the

convolution integral of the external load (distributed along the span) with the transfer function of

the system (H) and on the loads applied at the tip (c).

7.9 Numerical results

In this section the results concerning the aeroelastic response of a single-layered, uniform, rectan-

gular, swept wing are presented and discussed. The results have been divided into two parts: one

for the validation of the model and its features with respect to Goland’s one;[48, 49, 58, 67] and

another with regard to the aerothermoelastic response. In the first part, the dynamic characteristics

of the Goland’s wing in terms of Frequency Response Functions (FRFs), and, dynamic aeroelastic

stability analysis are presented. This analysis is developed comparing the different behaviour of

the FW and WR models respectively. In the second part, after an introduction on the hypotheses
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and assumptions of the external heat flux, and of the assumed material properties, it is shown and

discussed the effect on the laser beam on the aeroelasticity of the wing. Specifically, chosen as

reference configuration that of the straight wing with warping restraint included, the time histories

of the plunging and pitching degrees of freedom, due to the considered thermal excitation, are re-

ported and discussed with special emphasis on the effects of the transverse isotropy of the material

constituents, sweep angle, transverse shear flexibility, heat flux time variation and flight speed.

7.9.1 Model validation

The configuration, introduced by Goland in Ref. [48], has been considered as reference configuration

for the validation of the present model. Consistently the following geometrical and dynamical

characteristics have been assumed

l = 6.096 m bn = 0.9144 m a = −1/3

xcg = .2bn ω1,b = 50 rad/s ω1,t = 87 rad/s
(7.239)

where l is the mid-span, bn the mid-chord measured normally to the trailing edge, a is the non-

dimensional distance between the aerodynamic center and the elastic center, and xcg is the distance

between the center of gravity and the elastic center of the wing, whereas, ω1,h and ω1,t are respec-

tively the first uncoupled bending and torsion angular frequencies of the wing. Using the previous

numerical data, the dynamics and aeroelastic stability analysis of the free to warp and warping

restraint models (FW and WR) considered in the theoretical section of this Chapter have been

solved separately. Specifically, Fig. 7.3 shows the FRFs for the pitch and plunge degrees of freedom
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Figure 7.3: FRFs of the FW and WR models.

for the FW and WR models. It can be observed that the consideration of the warping restriction

affects mainly the first torsion frequency, which is increased from the original 95.68 rad/s of the FW

coupled model to the 130.75 rad/s of the WR coupled model, but not the bending one, which is

slightly increased from the original 48.12 rad/s of the FW coupled model to the 48.78 rad/s of the
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WR coupled model, a result which is expectable due to the constrained nature of this model. The

effect of the transverse shear flexibility in terms of the first bending and torsion angular frequencies

for the two models is reported in Tab. 7.1 The aeroelastic stability analysis is reported in Figs.

Table 7.1: Transverse shear flexibility effect on the
first bending and torsional frequencies (rad/s).

R (:= E/G′) ωFW
1,b ωWR

1,b ωFW
1,t ωWR

1,t

0. 48.12 48.78 95.68 130.75
20. 46.52 47.05 93.33 119.20
40. 45.05 45.49 91.14 110.58
60. 43.72 44.06 89.10 103.88
80. 42.47 42.75 87.21 98.52
100. 41.35 41.56 85.41 94.12

7.4-7.5 in terms of the frequency response functions and in Fig. 7.6 in terms of the determinant of
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Figure 7.4: FRFs of the FW model for varying flight speeds.
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Figure 7.5: FRFs of the WR model for varying flight speeds.
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Figure 7.6: < [∆ (ω)] and = [∆ (ω)] for 0 ≤ Un ≤ 240 m/s. Free warping model and warping model

the inverse of the aeroelastic operator (see Eq. 7.238) evaluated on the imaginary axis, that is

∆ (j ω, Un) := Det
[
RH̃′

(
ξ2
tip, j ω, Un

)
K + SH̃

(
ξ2
tip, j ω, Un

)
K

]
(7.240)

In particular, in Fig. 7.6 the real and imaginary parts of the ∆ are plotted for several flight speed,

accordingly, the flutter instability can be determined when < [∆] and = [∆] are simultaneously zero.

It is worth noting that also the divergence speed (or static aeroelastic instability) can be identified

from these graphs: specifically, in Figs. 7.4-7.5 the divergence corresponds to the flight speed at

which the FRF tends to infinity at zero frequency, whereas in Fig. 7.6 the static instability can be

found when the real and imaginary parts are equal to zero at zero frequency.

In order to evaluate the effect of the transverse shear flexibility on the aeroelastic behaviour

of the two models in Tab. 7.2 the flutter speeds and angular frequencies of the FW and WR

Table 7.2: Transverse shear flexibility effect on the flut-
ter speed (m/s) and angular frequency (rad/s).

R (:= E/G′) UFW
Flutter UWR

Flutter ωFW
Flutter ωWR

Flutter

0. 136.0 204.9 70.08 86.17
20. 133.0 184.1 68.09 79.94
40. 129.5 168.7 66.47 75.18
60. 127.0 156.7 64.80 71.40
80. 124.5 147.3 63.22 68.31
100. 122.0 139.6 61.82 65.71

models for various transverse shear flexibility ratios are reported.† It is worth noting that the flutter

instability appears, in both considered wing models, essentially in the torsional mode, and that the

WR model is more stable than the FW one. This is due to the fact that the warping restraint on

† The present results are identical to those already obtained by Karpouzian and Librescu in Refs. [58, 59, 60]
even using a different solution procedure.
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the root cross-section introduces torsion stiffness into the model so that the wing becomes more

rigid in twist. Opposite considerations apply with respect to the transverse shear flexibility effect; in

particular, from Tabs. 7.1-7.2, it can be observed that the increase of the flexibility ratio yields an

attenuation of the warping rigidity such that the WR model for R = 100 is almost aeroelastically

equivalent to the FW unshareable (i.e., for R = 0) model.

7.9.2 Aerothermoelastic response

In this subsection the aerothermoelastic response of the uniform rectangular wing, considered in the

previous section, and exposed to a time-depending laser beam, is presented. It is worth noting that

in our case the thermal excitation enters into the problem by means only of the boundary conditions

due to the cancellations of the thermal moments in the equilibrium equations when an un-coupled

formulation is considered and to the consideration of a uniform distribution of the external heat

flux along the span-wise direction. Indeed, in spite of Eqs. 7.172-7.172, where the temperature

field has been related to the Lagrangean variables of the system, here, the elastic feedback on the

temperature field has not been considered. For this reason the only contribution to the temperature

in the body is T3 which can be re-expressed in the following form

T3 (x, t) =
8qmax

ρctz̄

∞∑
n=0

(−1)n cos
nπz

z̄
e
− k1n2π2

ρctz̄2 t
∫ t

0

e
k1n2π2

ρctz̄2 t∗
q̂3 (t∗) dt∗ (7.241)

where qmax is the maximum value of laser power intensity applied as a load (in the following it

has been assumed equal to 107 W/m2), and q̂3 (t) is its time dependence, which in the present

applications has been assumed equal to

q̂ (τ) =
1

2

(
1− cos

τ

τ0

)
(7.242)

Having in view the previous considerations several aeroelastic analyses have been performed. Specifi-

cally, chosen as reference configuration that of a uniform unswept wing incorporating the warping re-

straint feature (WR model) and the effect of the transverse shear flexibility (R := E/G′ = 100[58])

the effect of the transverse isotropy of the material constituents, external heat period, flight speed,

transverse shear flexibility ratio, and sweep angle has been analysed.

In particular, Fig. 7.7 shows the time and frequency content of the input signal for four different

time periods (τ0 = 0.05, 0.1, 0.25, 0.5 s), whereas Fig. 7.8 shows the FRF of the pitch and plunge

degrees of freedom in vacuo in the wide range of angular frequencies chosen to evaluate the time

history of the aerothermoelastic response. It can be recognized that only for τ0 = 0.05 s the external

input is capable to excite all the modes of the wing contained in the frequency range, this is not

too much surprisingly because, as it is apparent from Fig. 7.7 for τ0 = 0.05s the heat flux is close

to a Dirac in the origin.
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Figure 7.7: Time and Frequency content of the thermal excitation. Free warping model and Warping
restraint model
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Figure 7.8: FRFs of the warping restraint model. Pitch and Plunge
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Figure 7.9: Temperature field.

In Fig. 7.9 a three-dimensional plot of the temperature field arising in the body due to the impact

of the laser beam is shown for τ0 = 0.1 s. It can be observed that the temperature after a transient
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arrives at a stationary value which is due to the imposition of impermeability conditions in Eq. 7.159

for the modeling of the thermal field.†

For reference purposes to the following results in Tab. 7.3 the reference values of the material

Table 7.3: Material and
aerodynamic reference
values.

R 100
ρ∞ 1.225 kg/m3

Un 100 m/s
τ0 0.1 s
Λ 0◦

k3 300 kg m/s3 K

and aerodynamic properties chosen in the analysis for the WR model are reported. Note that the

reference value for the thermal conductivity is that of the pyrolytic graphite in the plane of transverse

isotropy as reported in Ref. [41], whereas the specific heat is chosen such that the characteristic

thermal time is equal to the characteristic structural one (i.e., the first bending period).‡

In order to illustrate the effect of the anisotropy of the material constituents in Figs. 7.10 the
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Figure 7.10: Effect of thermal transversal isotropy. Pitch and Plunge

time histories of the pitch and plunge displacements in the reference configuration are compared

to those pertinent to other two different choices of thermal conductivity in the thickness direction.

In particular, for k3 = k1/100 a condition typical of a pyrolytic graphite material is approached

† Indeed, more realistically, prescribed surface temperature or convection boundary conditions should be imposed
accordingly to Ref. [17].

‡ Although this choice could appear instrumental, it is particularly useful in evaluating the thermally induced
vibrations of the wing as it is discussed in Ref. [17]. Indeed, the importance of the inertia effects increases as the
ratio of these two characteristic times becomes smaller; on the other hand as this ratio increases the inertia forces
disappear and the static solution alone remains.
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(see Ref. [41]). From this figure it is apparent that the consideration of a much smaller thermal

conductivity in the thickness direction yields an attenuation of the response. This result is not

surprising if compared with Eq. 7.156 where it was observed that the increase of the ratio k1/k3

corresponds to a virtual stretch of the space in the thickness direction.
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Figure 7.11: Effect of external heat flux period. Pitch and Plunge
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Figure 7.12: Effect of transverse shear. Pitch and Plunge

Figures 7.11-7.13 show the time histories of the pitch and plunge variables, for three different

heat flux time periods, four flight speeds, three different transverse shear ratios and three different

sweep angles. It is worth noting that in all the shown cases the plunge displacement starting from

zero increases in the negative sense and features an oscillatory character. This is consistent with

the assumption that the laser impacts the wing on its upper surface, thus extending the fibers of

the upper surface and so determining, in the instant times immediately subsequent the application

of the load, a negative deflection of the wing. In particular, the results presented in Figs. 7.12

deserve special attention. As said before, they represent the time histories of plunge and pitch for

three different choices of the transverse shear flexibility ratio. Someone, led from the observation

that an increasing of flexibility turns into a lowering of the natural frequencies, could expect that
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Figure 7.13: Effect of sweep angle. Pitch and Plunge

the increasing of the transverse flexibility would determine a generalized increment of the maximum

displacement for both the pitch and the plunge. With the help of the following figures and of some

physical considerations, it will be proved that this conclusion is wrong. Indeed, observe that, if

the transverse flexibility is increased, this means that the normal does not remain normal after the

deformation,‡ and, this means that, during the motion, part of the energy that would be expended

to curve the reference line of the beam, is, instead, expended to rotate the fibers with respect

to the normal.§ On the other hand the introduction of this type of flexibility, that, equivalently,

can be interpreted as the relaxation of the Euler-Bernoulli material constraint, affects the torsional

behaviour in an opposite way. Indeed, now each fiber (or section) of the wing receive less opposition

to its torsional motion from the preceding and succeeding fibers. These considerations are clarified

also by the following figures (Fig. 7.14–7.17). They represent the FRFs and time histories of the

aeroelastic system excited by a unit pulse at the tip for two different frequency ranges. It might be

noticed, in particular from the observation of the FRFs, that the natural frequencies of the pitch and

plunge displacements lower increasing R. Moreover, it might be noticed, either in the frequency and

time domains, that the increase of R yields a raising for the pitch and a lowering for the plunge of the

maximum displacement in correspondence of their first natural frequencies. Hence, the behaviour

of the aero-thermo-elastic analysis previously shown, where the thermal excitation operated as a

low-pass filter, is confirmed.

Finally, note that in Fig. 7.18 the approach of the dynamic response in the time domain has been

used to recognize the occurrence of the flutter instability. Indeed in this figure for Un = 150 m/s

the forced oscillations, especially for the pitch displacement, exhibits a divergent behavior.

‡ For a comprehensive analysis and theoretical presentation of the hypotheses underlying the definition of material
constraints, such that just introduced (referred as Euler-Bernoulli hypothesis [constraint] in the current literature for
the case of beams, and to Reissner-Mindlin hypothesis [constraint] in the case of shells) the reader is referred to Part
II of this thesis, where these issues have been introduced and employed in the framework of shells’ theory.

§ Note that in order to properly model the rotation of the fiber a representation of the displacement field has been
used that considers it as an independent variable (β), with the exception of releasing this independence as soon as
the shear strain would have been zero due to the consideration of an infinity transverse rigidity (i.e., null flexibility).
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Figure 7.14: Effect of transverse shear: FRF of the Pitch DOF.

0.1 0.2 0.3 0.4 0.5
Time, s

-2´10-7

-1´10-7

0

1´10-7

2´10-7

Pi
tc

h
R

es
po

ns
e R = 100

R = 50
R = 0

(a) Broadband

0.1 0.2 0.3 0.4 0.5
Time, s

-8´10-8

-6´10-8

-4´10-8

-2´10-8

0

2´10-8

4´10-8

6´10-8

Pi
tc

h
R

es
po

ns
e

R = 100
R = 50
R = 0

(b) Narrow band

Figure 7.15: Effect of transverse shear: time histories of the Pitch DOF.

200 400 600 800 1000 1200 1400
Angular Frequency, rad�s

-380

-360

-340

-320

-300

-280

-260

-240

Pl
un

ge
D

is
pl

ac
em

en
t,

dB

R = 100
R = 50
R = 0

(a) Broadband

20 40 60 80 100 120 140
Angular Frequency, rad�s

-380

-360

-340

-320

-300

-280

-260

-240

Pl
un

ge
D

is
pl

ac
em

en
t,

dB

R = 100
R = 50
R = 0

(b) Narrow band

Figure 7.16: Effect of transverse shear: FRF of the Plunge DOF.

7.10 Concluding remarks

In this chapter a study of the aero-thermo-elastic response of a solid rectangular wing impacted by a

laser beam on its upper surface, made of advanced material, and featuring several non-classical effects
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Figure 7.17: Effect of transverse shear: time histories of the Plunge DOF.
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Figure 7.18: Effect of flight speed. Pitch and Plunge

has been presented and discussed. From the theoretical point of view several aspects have been

addressed; in particular, it has been shown the presence of an elastic feedback in the determination

of the temperature into the body due to the application of the external input which is expected to

influence the aeroelasticity (and eventually stability) of the wing in the flight speed range. Moreover,

an efficient and clean solution methodology has been developed, finally, several non-classical effects,

such as the transverse shear flexibility and the warping restraint, have been considered and their

influence on the aeroelastic characteristics of a simple model have been evaluated. Being the

presented results limited to the simple configuration of a rectangular, uniform, single-layered wing

(whose basic results have been tested and compared with those present in the existing literature),

several enhancements and complexities can be expected to be presented in future works. In particular,

the effect of the elastic feedback in the temperature field will be addressed also in the numerical

analysis, and the effect of a multi-layer structure with as external layer thin coatings for thermal

insulation will be put under consideration by the authors in future works.
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Chapter 8

Aeroelastic vibrations suppression by

shunted piezo-electric patches

8.1 Introduction

Piezoelectric materials, with passive electrical loads, may be integrated into a host structure in order

to increase damping and then to reduce the amplitude of vibrations [55]. As shown in literature, a

resistive-inductive load forms, with the inherent capacity of the piezo element, a resonant circuit,

which behaves, when bonded on a vibrating structure, as a vibration absorber. As a mechanical

vibration absorber [55], the tuned electrical circuit provides a high damping in an almost flat fre-

quency response function (FRF ) around the mode of interest, on which the circuit were tuned.

Obviously optimal parameters of the resistor and of the inductor must be adopted [55] in order to

get the result mentioned above.

Home-made codes, based on a finite element (FE) description of the structure, were used in order

to get the modal parameters, natural frequencies and damping ratios, for systems with piezo patches

ideally bonded on them, and the possibility to use a FE commercial code (MSC.NASTRAN) were

pointed out [8]. Recently, this passive damping technique has been adopted in the aeroelastic field

[72], and a modal-based FE description of the piezo-host structure system with piezo elements

shunted by resistive (R) and resistive-inductive (R−L) loads were proposed and applied on a small

glider wing [5]. The modal-based FE approach were applied and extended to linear aeroelastic

systems, with a semi-active control procedure function of the flight conditions (i.e., flight speed, air

density, and Mach number) [7].

Unfortunately, this type of device - as the mechanical vibration absorber - only affects the mode on

which it is tuned [32]. Therefore, as it is usually necessary to damp the first two or three modes of

a vibrating structure, some strategies were used to face this problem [7]. The first one used piezo

patches tuned some on a mode and others on another mode. The second one adopted an external

electrical circuit in the form of a ladder network, so as to damp more modes simultaneously [57, 18].
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Numerical simulations of the circuit proposed in [57] with finite element models of simple vibrating

structures were presented in [10], where the difficulties to get the proper capacitors in order to damp

more than two modes were pointed out. Recently, a ladder network of the Foster type, using notch

filters, was suggested in [118]. Nevertheless, if many modes have to be damped, the total number

of the notch filters becomes too high.

In this thesis a different electrical circuit is presented. It uses notch filters, but in a ladder network

of the Cauer type [14], this solution limits the number of the notch filters, even if its behavior is

completely equivalent to the one in [118]. The electrical network, introduced into the FE commercial

code (MSC.NASTRAN, [56, 93]), permitted – with the modal-based FE description – a numerical

study of the dynamic and aeroelastic behavior of a small glider wing.

8.2 Theoretical Basis

Let us consider a laminar or piezo patch with e3 indicating the normal direction to the middle

plane of the element, and e1 and e2 two orthogonal directions in the plane. Supposing a linear

electromechanical behavior for the piezo material, considering for it a small finite Cartesian element,

and following [55], the local constitutive electro-mechanical equations in the Laplace domain are:

(
I

S

)
=

[
sCT

p sAd

d′L−1 ssc

](
V

T

)
(8.1)

where I represents the vector of electrical current flowing along the three directions, S the vector

of internal deformations, V the vector of electrical potential applied on the element through the

electrodes, and T the vector of internal stresses. If the inherent capacitance is shunted with a

passive electric load, the overall admittance (Ysh) is given by:

Ysh = Yoc + YL (8.2)

where YL is the admittance of the external circuit, and Yoc is the admittance in open circuit condition.

At the same time, the shunted piezoelectric compliance is written as:

ssh =
[
ssc − d′L−1ZshsAd

]
(8.3)

where Zsh is the overall electrical impedance, whose components are Zshi
= Zoci

ZLi
/ (Zoci

+ ZLi
),

i.e., the inverse of the relative components of the overall admittance Ysh.

When the piezoelectric element is uniaxially loaded with either a normal or a shear stress in the

plane orthogonal to the polarization direction (e3) where the electrodes of the considered plane are

present (e.g., loaded in the direction e1 or e2), the diagonal term of the compliance matrix relating
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the stress in the j − th direction with the strain in the same direction can be written as:

sshjj
= sscjj

[
1− Z̄sh3k

2
3j

]
(8.4)

where Z̄sh3 represents the nondimensional impedance of the shunted load with respect to the

impedance of the piezo in open circuit condition (Z̄sh3 =
Zshi

Zoci
), and k3j is the electromechani-

cal coupling coefficient.

Thus the nondimensional mechanical stiffness (K̄shjj
), normalized with respect to the one of the

piezo in open circuit condition, is [55]:

K̄shjj
=

1− k2
3j

1− Z̄sh3k
2
3j

(8.5)

Since the current due to the piezo deformation flows along the direction 3, hereafter, for the sake

of notation simplicity, the subscript 3 will be omitted.

8.3 Shunted electrical loads: Resistive and Resistive-Inductive

For a resistive electrical load (R), the nondimensional electrical impedance is equal to:

Z̄R
sh =

sCT
p

1 + sRCT
p

(8.6)

where CT
p is the piezo capacitance at constant stress. Substituting Eq. (8.6) into Eq. (8.5), one

can obtain, in the Fourier domain, the mechanical shunted stiffness of the passive element:

KR
sh(ω) = Ksc

{
1 + k̄2

[
1− 1

1 + (ωRCS
P )

2 + j
ωRCS

P

1 + (ωRCS
P )

2

]}
(8.7)

where k̄2 = k2
3j/

(
1− k2

3j

)
, and CS

P is the inherent capacitance of the piezo device at constant strain.

As one can see, the stiffness of the piezo element, with a resistive load, is frequency dependent and

similar to the one of models of viscoelastic materials which can be represented either by the Zener–

Biot or by a three–parameter model [3, 9]. As shown in [55], the maximum of the imaginary part

of the complex stiffness, Eq. (8.7), is reached at ωmax = 1/(RCS
P ), whereas the maximum relative

to the loss factor is ωη
max =

√
1− k2

3j/(RCS
P ). Since k2

3j is generally much lower than 1, it is

acceptable to assume that ωη
max ' ωmax. Thus, a suitable choice of R would permit to get ωmax

coincident with the natural frequency of the mode to be damped, ωn.

It is worth noting that, although the mode of the host structure to be damped is known, the natural

frequency of the overall shunted structure is unknown because it depends on the resistor which

loads the piezo device. Therefore, in numerical tests the eigenvalues have to be achieved with an
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iterative procedure, whereas in experimental tests several resistors should be used in order to get the

frequency at which the maximum damping is gained. Actually, the desired natural angular frequency

can be obtained from the natural angular frequencies relative to the short and to the open circuit

(ωnsc and ωnoc respectively1) with the following relationship [8]:

ω̂n =

√
(ωnsc)

2 + (ωnoc)
2

2
(8.8)

where ωnsc and ωnoc are the natural frequencies of the mode when the piezo circuit is short or

open respectively. Once ωnsc and ωnoc are evaluated, it is straightforward to get the resistive load

necessary to gain the maximum damping:

R =
1

ω̂nCS
P

(8.9)

Moreover, Eq. (8.7) can be recast as:

KR
sh(f) = Ksc

[
1 + k̄2

(
1− 1

1 + (α0f)2
+ j

α0f

1 + (α0f)2

)]
(8.10)

where:

α0 = 2πRCS
p (8.11)

Note that, considering the optimal resistance given by Eq. (8.9), the optimal value of α0 is equal

to 2π/ω̂n. When resistors (R) and inductors (L) are used to shunt the piezoelectric electrodes,

a resonant circuit is formed with the inherent capacitance of the piezo device. In this case the

nondimensional overall electrical impedance can be written:

Z̄RL
sh =

LCT
P s2 + RCT

P s

LCT
P s2 + RCT

P s + 1
. (8.12)

Substituting Eq. (8.12) into Eq. (8.5) one can easily obtain the complex stiffness of the shunted

passive element in the Fourier domain:

KRL
sh = Ksc

{
1 + k̄2

[
1− 1− ω2LCS

P − jωRCS
P

(1− ω2LCS
P )2 + (ωRCS

P )2

]}
(8.13)

As shown in [55], the behavior of the piezo material with its electrical circuit, when integrated

with the host structure, is almost like a vibration absorber. Similarly to the mechanical case [32],

if an almost flat frequency response curve of the overall structure around a natural frequency is

desired, optimum parameters should be used. Considering the analogy of the dynamical absorbers,

1 Note that in the technical literature the nomenclature ωE
n and ωD

n is also employed instead of ωnsc and ωnoc .
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the optimal value of the ratio between the electrical angular frequency and ωnsc (δ = ωel/ωnsc =

1/ωnsc

√
LCS

p ) can be obtained [55], and expressed in function of the angular frequencies of the

system in short and open circuit conditions [8, 5]:

δopt =
√

1 + K2
ij =

(
ωnoc

ωnsc

)
. (8.14)

where Kij is the generalized electromechanical coupling factor [55]. Furthermore the dissipation

tuning parameter (r = RCS
p ωnsc) is given by:

ropt '
√

2
Kij

1 + K2
ij

=
√

2

√
(ωnoc)

2 − (ωnsc)
2

(ωnoc)
2

ωnsc . (8.15)

Equations (8.14) and (8.15) can be used to express the optimal inductance and resistance as func-

tions of the natural frequencies of the system in open and short circuit conditions:

Lopt =
1

CS
p (ωnoc)

2
(8.16)

Ropt =

√
2 [(ωnoc)

2 − (ωnsc)
2]

CS
p (ωnoc)

2
(8.17)

Equation (8.13) can be rewritten as:

KRL
sh (f) = Ksc

[
1 + k̄2

(
1− 1− α1f

2

β(f)
+ j

α2f

β(f)

)]
(8.18)

where:

β(f) =
(
1− α1f

2
)2

+ (α2f)2 (8.19)

α1 = (2π)2LCS
p (8.20)

α2 = 2πRCS
p (8.21)

8.4 Modal coordinates approach

As discussed before, piezo devices, bonded on a structure, behave as a viscoelastic material or a

vibration absorber (depending on the resistive or resistive–inductive load), so it would be possible to

introduce them into a finite element model of a structure modeling them as brick-like elements or by

introducing a complex mechanical stiffness matrix to get complex eigenvalues, [9, 8]. Nevertheless,

some commercial finite element codes (e.g., MSC.NASTRAN [56], ABAQUS [2, 1]) have also the

possibility to consider viscoelastic finite elements in order to get the frequency response functions.

These codes typically perform the viscoelastic description considering a frequency dependent func-
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tion, given as a table of stiffness values versus frequency, to characterize the viscoelastic properties.

In this way, the elastic characteristics of a piezo devices, resistively shunted, can be integrated with

the structural FE description. Indeed, also the elastic properties of piezo patches shunted with RL

loads, can be usefully employed in the same manner. Therefore, in spite of the type of the electrical

load, the considered FE code provides the frequency response function of the whole system, when

the stiffness frequency table is assigned. Thus, supposing the piezo-patches perfectly bonded on the

structures, once the stiffness matrix is established, depending on the electrical loads, it is possible

to introduce this passive devices in the physical co-ordinates of the structural system by using the

equivalence with a viscoelastic material model. The stiffness matrix of a viscoelastic finite element,

referring to the notation used in the MSC.NASTRAN code [56], can be written as:

K(f) = K̄
G′(f) + jG′′(f)

Gref

(8.22)

where K̄ is the mechanical stiffness matrix of a generic viscoelastic finite element, G′(f) and G′′(f)

are two real function of the frequency f . Therefore, once K̄, G′(f), G′′(f) and Gref have been

derived from the equivalence with Eqs. (8.10) and (8.18), the equation of motion of the overall

structure can be derived.

Specifically, for a transversely isotropic material , the flexibility matrix of a piezoelectric element can

be written, assuming that the direction 3 is the axis of the transverse isotropy (or the polarization

axis), as follows:

s
(e)
sh (f) =




s
(e)
sc11 s

(e)
sc12 s

(e)
sc13 0 0 0

s
(e)
sc12 s

(e)
sc11 s

(e)
sc13 0 0 0

s
(e)
sc13 s

(e)
sc13 s

(e)
sc33 0 0 0

0 0 0 s
(e)
sc55 0 0

0 0 0 0 s
(e)
sc55 0

0 0 0 0 0 s
(e)
sc66




[
1− Z̄

(e)
sh3

(f)k2
31

]
(8.23)

Then the element stiffness matrix, for the principle of virtual work, becomes:

K(e)
p (f) =

∫

V ol(e)
Φ(e),T C(e),T s

(e)−1

sh C(e)Φ(e)dV (e) =

[∫

V ol(e)
Φ(e),T C(e),T s

(e)−1

sh C(e)Φ(e)dV (e)

] (
1− Z̄

(e)
sh3

(f)k2
31

)−1

(8.24)

where Φ(e) is the matrix of F.E. shape functions, C(e) is the differential operator relating strains to

displacements, and V ol(e) is the volume of the element.

Thus, from Eq. (8.57), Lagrange’s equilibrium equations of a system with Np piezoelectric passive
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elements can be written, in the Fourier domain, as follows:

{
−ω2(Ms + Mp) + Ks +

Np∑
e=1

(
K

(e)
(p,sc)

G′(e)(f) + jG′′(e)(f)

G
(e)
ref

)}
x̃ = f̃ (8.25)

where x̃ is the vector of nodal displacement in the Fourier domain, Ms and Ks are the mass and

stiffness matrices of the host structure, f̃ is the vector of external loads, and Mp and Kp are the

additive mass and stiffness matrix contributions of the piezo elements considered in the structure.

The frequency functions G′(e)(f) and G′′(e)(f) may be different for each patch, if distinct electrical

loads are considered, so a few modes can be affected. Thus, Eq. (8.25) permits to design the piezo

devices as multimodal tuned dampers.

Firstly, let us compare the frequency dependent functions in Eq. (8.57) with the one relevant to

resistive load, Eq. (8.10):

G′(f) + jG′′(f)

Gref

= 1 + k̄2

[
1− 1

1 + jα0f

]
(8.26)

After, the case of R− L load is considered:

G′(f) + jG′′(f)

Gref

= 1 + k̄2

[
1− 1

1− α1f 2 + jα2f

]
(8.27)

In the Laplace domain Eq. (8.27) yields (f = −j s
2π

):

G′(s) + jG′′(s)
Gref

= 1 + k̄2 − k̄2

α1

4π2
(s− s1)(s− s2)

(8.28)

where the poles s1 and s2 are:

s1,2 =
−α2

2π
±

√
α2

2

4π2
− 4α1

4π2

α1

2π2

(8.29)

In order to get the equivalence of the shunted piezo-patch device with a vibration absorber, 4α1

must be greater than α2
2 and, therefore, the previous equation becomes:

s1,2 =
π

α1

[
−α2 ± j

√
4α1 − α2

2

]
(8.30)

Using this analogy, it is possible to study the frequency behavior of complex structures assigning

suitable frequency functions depending on the electrical loads. On the contrary, it is possible to solve

the problem studying the whole structure in a modal basis. This approach, which seems particularly
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efficient, has been used in the numerical tests performed in the present thesis. The method, besides

reducing the FEM dimensions, permits not only to get a multimodal approach, but also to vary the

damping introduced by the piezo devices if required by the operative conditions, as also stated in

[72], where different flight parameters were considered in an iterative procedure to get the response

of a typical section model.

Moreover, considering linear aeroelastic systems with the unsteady aerodynamic modeled via finite–

state approach [78, 42, 71], it is possible to carry out response and stability analysis in a state–space

representation. Therefore, it would be possible to design an appropriate control law of electric

parameters for tuning the piezo-patches at each flight condition. Both multimodal analysis and

aeroelastic considerations, when shunted piezo-patches are considered, are not usually allowed in

commercial finite element codes; that is the reason to adopt the modal approach previously proposed

for mechanical systems in [110, 109, 111].

The real eigenproblem associated to the system in short-circuit condition is written as follows:2

[
−ω2

nM + Ks +

Np∑
e=1

[
K

(e)
(p,sc)

]]
φ(n) = 0 (8.31)

where φ(n) represents the n-th generic N -dimensional real eigenvector corresponding to the real

angular eigenfrequency ωn and normalized with respect to modal mass. Performing a variable

change in modal coordinates:

x = Φq, (8.32)

if only the first M modes are retained in the spectral analysis, the matrix Φ is a N ×M rectan-

gular transformation matrix. On the basis of the new modal coordinates, the input (ẽ)/output (q̃)

relationship in the Laplace domain is given by:


s2I + Ω2 +

Np∑
e=1

K̂
(e)
(p,sc)


k̄(e)2 − k̄(e)2

α
(e)
1

4π2 (s− s
(e)
1 )(s− s

(e)
2 )





 q̃ = ẽ (8.33)

where Ω2 is the diagonal eigenvalue matrix of the system with piezo in short circuit conditions (Ω2 =

ΦT
[
Ks +

∑Np

e=1

(
K

(e)
(p,sc)

)]
Φ) and K̂

(e)
(p,sc) = ΦT K

(e)
(p,sc)Φ is the stiffness matrix of a piezoelectric

element written in modal coordinates, whereas ẽ := ΦT f̃ represent the generalized force vector. In

the following aeroelastic application this vector will be splitted in two aerodynamic contributions,

2 In Eq. (8.31), M is the overall structural mass of the system, sum of the host structure and the piezo masses:

M = Ms +
Np∑
e=1

M(e)
p .
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i.e.,

ẽ = ẽA + ẽG (8.34)

where ẽA represents the modal aerodynamic load due to the elastic deformation of the structure,

whereas ẽG is the external modal load due to a gust.

8.5 Piezo modeling in linear Aeroelastic Analysis

In the linear modeling of the unsteady aerodynamic, the vector ẽA in Eq. (8.34) can be expressed

as a linear combination of the lagrangean variables q̃, i.e., , in the Laplace domain as:

ẽA = qDE(s; U∞,M∞)q̃ (8.35)

where qD = 1
2
%∞U2

∞ is the dynamic pressure and E is the so-called generalized aerodynamic force

(GAF) matrix. Let us consider the following approximated representation of the aerodynamic oper-

ator by means of a finite–state technique [78, 42, 71]: this consists on using the aerodynamic data,

given by the aerodynamic panel codes (i.e., the complex evaluation of the matrix E for prescribed

values of si = jωi), to determine a matrix polynomial approximation of such a matrix with respect

to the Laplace variable s. The structure of such approximation is given by:

Eapp(s) = A0 + A1

(
s c

2 U∞

)
+ A2

(
s c

2 U∞

)2

+ C

(
I

s c

2 U∞
− A

)−1

B (8.36)

where A0, A1, A2, A, B, C are matrices of interpolation in a specific range of flight speed depending

on the Mach number. The unknown matrices are obtained with a minimization process of the

global error between the sampled aerodynamic data in the frequency domain and the analytical

function given by Eq. (8.36) [71]. It is also worth pointing out that the process shown before,

basically consisting on substituting the aerodynamic matrix E (which originally is a transcendental

function of s, [16]) with a rational polynomial approximation in s, corresponds in the time domain

in approximating the aerodynamic time integral-differential operator with a purely differential one,

but with more (aerodynamic) states included. Indeed, the first three matrices have the same modal

model dimensions, while A has dimensions (Npoles, Npoles), B (Npoles, M), C (M, Npoles), where

Npoles is the number of the mentioned aerodynamic poles added in the finite-state approximation

process.

Referring to a condition with only one piezo (Np = 1) and without any external gust force, Eq.
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(8.33), considering Eqs. (8.34) and (8.36), yields:

[
s2I + Ω2 +

[
k̄2K̂(p,sc) − k̄2

α1

4π2 (s− s1)(s− s2)
K̂(p,sc)

]]
q̃ =

qD

[
s2c2

4U2∞
A2 +

sc

2U∞
A1 + A0 + C

(
sc

2U∞
I− A

)−1

B

]
q̃ (8.37)

Then, using the following positions:

ṽ = sq̃ (8.38)

g̃ =
k̄2

α1

4π2 (s− s1)(s− s2)
K̂(p,sc)q̃ (8.39)

r̃ =

(
sc

2U∞
I− A

)−1

Bq̃ (8.40)

h̃ = sg̃ (8.41)

(where v, g, h have the same dimensions of the modal model M , while r is Npoles dimensional)

the problem can be written in a first order form by introducing the following state-space matrix

(4M + Npoles)× (4M + Npoles):

Â =




0 I 0 0 0

V1 V3 V4 V2 0
2U∞

c
B 0 2U∞

c
A 0 0

0 0 0 0 I

k̄2 4π2

α1
K̂(p,sc) 0 0 −s1s2I (s1 + s2)I




(8.42)

where

V1 = −
[
I− qD

c2

4U2∞
A2

]−1 (
Ω2 + k̄2K̂(p,sc) − qDA0

)
(8.43)

V2 =

[
I− qD

c2

4U2∞
A2

]−1

(8.44)

V3 = −
[
I− qD

c2

4U2∞
A2

]−1 (
−qD

c

2U∞
A1

)
(8.45)

V4 =

[
I− qD

c2

4U2∞
A2

]−1

CqD (8.46)

It is worth noting that the dynamics of the mechanical system takes essentially place in q̃ and ṽ

subspaces, the aerodynamics in r̃, and the electro-dynamics of piezoelectric element in g̃ and h̃.
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Thus, as a matter of fact, the problem can be written in the Laplace domain:

sx̃ = Âx̃ (8.47)

where x̃ = {q̃, ṽ, r̃, g̃, h̃}T is the state-space vector, Â is an explicit function of flight speed

(U∞) and air density (%∞), and an implicit function of Mach number (M∞) through the matri-

ces A2, A1, A0, A, B, C; furthermore, Â is a function of the tuning parameters (α0, α1, and α2) of

the piezoelectrics devices, and of the electromechanical coupling coefficient (k31). In order to study

the system aeroelastic stability, problem (8.47) can be associated to a standard eigenproblem:

[
snI− Â(U∞, %∞, M∞, α1, α2, k31)

]
ũ(n) = 0 (8.48)

whose solutions, e.g., at various U∞, allow one to draw the locus of the roots sn and then to make

a stability analysis at fixed altitude (%∞) and Mach number (M∞).

8.6 Optimal Tuning within the Flight Speed Range

Because of the dependence on velocity of the state-space matrix Â, the choice of the optimal

parameters α0, α1 and α2 of piezoelectric devices must be done carefully. Indeed, poles and mode

shapes of the aeroelastic system change with flight-parameters and the pole mobility in the Gauss

plane can cause a loss of efficiency of piezo devices: then it should be appropriate to design a

law defining the dependence of the tuning on the flight parameters (e.g., the flight speed). This

goal has been achieved with two different procedures. First, it should be possible to maximize the

modal damping in the system parametrically varying the piezoelectric parameters for each airspeed.

Otherwise, one could evaluate at each airspeed the natural frequencies of the system in open and

short circuit conditions. Once these values are known, optimal parameters can be found from the

following equations:

α0 = (2π)RoptC
S
p = 2π

√
2

(fnoc)
2 + (fnsc)

2
(8.49)

α1 = (2π)2LoptC
S
p =

1

(fnoc)
2

(8.50)

α2 = (2π)RoptC
S
p =

√
2 [(fnoc)

2 − (fnsc)
2]

(fnoc)
2

(8.51)

Note that α0 is directly derived from Eqs. (8.8) and (8.9), whilst the optimal values α1 and α2

are obtained by Eqs. (8.16) and (8.17) considering their relations with the resistance/inductance

values. In the reported tests, the second procedure was adopted, because it seems to be quicker and

more controllable, although approximated. Indeed, Equations (8.16) and (8.17) are based on the
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hypothesis of undamped host systems even if they are successively applied in this thesis on damped

(or aeroelastic) systems.

8.7 Multi-modal damping control strategies

There are two different strategies to realize a multi-modal passive control with piezoelectric patches

Fig. (8.1). The first one consists of shunting each group of patches, bonded to the host structure,

with a R-L circuit - which behaves as a resonant circuit with the inherent capacity of the piezo

patch - tuned on a single natural frequency. A finite element modeling to represent the piezo-patch

dynamics has been introduced in Ref. [7] for a the vibration control of a single mode: the essential

issue of such approach are outlined in Appendix A.

The other method consists in using a single shunt network resonating at several natural frequencies

[57, 18, 10]. The problem of mode–by–mode filtering, is obviously of relevant importance, and

therefore notch filters have been adopted in [118]. On the other hand, it is remarkable that with

this second approach it is possible to use all the patches bonded on the structure in order to transfer

the vibrational energy into the electrical circuit and so to dissipate the energy associated to several

vibrational modes.

Figure 8.1: Multi-modal control strategies: 1a - A single group of piezo patch connected to a R−L
circuit; 1b - The whole piezo patches connected to a multi-modal network.

A ladder network of the Cauer type has been suggested in this thesis in order to reduce the

number of notch filters needed for a multi-modal approach with the Foster network introduced in

[118]. Obviously, the choice of the electrical elements of the network represents a crucial point
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in the behavior of this passive damping system. In fact, the notch filter components influence

the possibility of the multi-modal circuit to follow the mono-modal behavior close to the tuning

frequencies. Starting from solutions available in literature [118], an enhancement of the reliability

and robustness of such a technique, has been obtained employing the new shunt circuit mentioned

above, which presents a less sensitive behavior towards the filter components.

Figure 8.2: Wu’s shunt network to damp
three modes (Foster network)

Figure 8.3: Proposed shunt network to
damp three modes (Cauer network)

The layout of the Wu’s circuit and of the one proposed - relative to the considered three modes - are

reported in Figs. (8.2) and (8.3), respectively. In each mesh, a resistor and an inductor (Rxi, Lxi)

have been inserted in order to tune the piezoelectric system on each of the selected frequencies. It

is noteworthy that both the circuits use notch-filters (CN − LN) to filter one mode from another

and then to let the electric current flow in the subsequent meshes. The number of notch filters in

the two approaches is completely different as the modes to be damped increase. Nevertheless, only

three modes are tuned in the example presented and so the difference is of only one notch filter, but

for higher number of tuned modes, much less notch filters are necessary for the proposed circuit, as

shown in Tab.(8.1). The electrical components for the network of Fig.(8.3) are reported hereafter

no.ofmodes no.filters (Wu) no.filters (proposed)

3 3 2
4 6 3
n 1

2
n(n− 1) n− 1

Table 8.1: Comparison between the number of notch filters versus the number of modes, which
have to be damped, for the Wu’s circuit and the one proposed

as function of the piezo capacitance at constant strain CS
p and of the natural angular frequencies of

the whole system when the piezo patches have their terminals connected in short (subscript SC) or

open circuit (subscript OC). First, let us introduce the following quantity

ωSHi =

√
ω2

SCi + ω2
OCi

2
(8.52)

which represents an estimation of the natural frequency of the i − th mode selected in shunting
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condition [7, 4].

Starting from the first mesh, the optimal values, L1 and R1, are given by [7]:





R1 =
2

CS
p (ω2

OC1 + ω2
SC1)

L1 = 2ωSC1

CS
p ω2

OC1

√
ω2

OC1 − ω2
SC1

ω2
OC1 + ω2

SC1

(8.53)

It can be noted that these quantities are not affected by any other electrical components of the

network because, at the first natural frequency, the first notch filter should be open (ZN1 = ∞).

For the second mesh the following expressions are to be added to the previous ones:





RX2 = Re

[
1

Yopt2(ωSH2)− Yopt1(ωSH2)
− ZN1(ωSH2)

]

LX2 = Im

[
1

Yopt2(ωSH2)− Yopt1(ωSH2)
− ZN1(ωSH2)

](
1

ωSH2

)
(8.54)

Equations (8.54) guarantee that the parallel impedance of the first and second mesh equals the

optimal one for the second mode, Zopt2(ωSH2) = 1/Yopt2(ωSH2). The last mesh is disconnected

because ZN2 = ∞ at the frequency of the second mode. For the third mesh in Fig. (8.3) the

unknown electrical components are given by:





RX3 = Re




1
1

1

Yopt3(ωSH3)− Yopt1(ωSH3)
− ZN1(ωSH3)

− YX2(ωSH3)
− ZN2(ωSH2)




LX3 = Im




1
1

1

Yopt3(ωSH3)− Yopt1(ωSH3)
− ZN1(ωSH3)

− YX2(ωSH3)
− ZN2(ωSH2)




(
1

ωSH3

)

(8.55)

Due to the peculiar structure of the network, the unknown impedances (RXi, LXi), relevant to

further tuned modes, can be obtained generalizing Eqs. (8.55). As mentioned before, the parameters
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of the notch filters have to be established in function of the natural shunting frequencies of the modes

to be damped.

Let us now discuss the behavior of such a filter and its influence on the efficiency of the electrical

network. The filter impedance (ZN) is given by:

ZN =
jωLN

1− ω2LNCN

(8.56)

where the filter inductance can be evaluated as function of the capacitance and of the electrical

resonant frequency of the parallel circuit, coincident with the natural shunting frequency of the mode

to filter out (ωSH):

LN =
1

CNω2
SH

(8.57)

The filter behavior is represented in Fig. (8.4), where the magnitude of ZN is depicted versus

frequency for different CN
′s. It is apparent that the choice of the filter capacitance influences the

final behavior of the shunt circuit and in turn the efficiency of the passive damping control technique.

For the sake of simplicity, let us consider a bi-modal shunt circuit. As one can see from Fig. (8.5),

if the capacitance of the notch filter is very small, ZN has a very high magnitude (ZN → ∞)

for a broad frequency band astride the cut-off frequency, and therefore the filter can be practically

consider as open for each frequency of interest. On the contrary, for CN very high, as it is clear from

Fig. (8.5), being |ZN | extremely low, it is possible to consider ZN → 0 except for a very narrow

frequency band near the electrical resonant frequency of the filter.
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Figure 8.4: Impedance magnitude of the
notch-filter versus frequency and in function
of CN

Figure 8.5: Practical shunt circuit behavior
for two limit conditions of CN
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8.8 Numerical results

The host structure for the piezo patches is an actual wing of a remote controlled unmanned glider.

The wing has a fiber glass skin, two sandwiches spars in carbon fiber with glass fiber skin and spruce

core. Wing structural analysis has been performed by the finite element (FE) MSC.NASTRAN code

[56, 93], using quadrilateral elements to model the composite skin and the two composite spars.

A belt of piezo patches, whose properties are summarized in Tab. (8.2), has been ideally bonded, in

the FE model, to the glider surface near the root (Figs. (8.6)). In particular, 24 piezo patches have

been bonded to the upper surface and 24 to the lower one. The width of the piezo belt is about 7%

of the wing span. The comparison between the technique presented in [118] and the proposed one,

X

Y Z

X

Y Z

(a) Wing model

X

Y
Z

X

Y
Z

(b) Piezo belt model

Figure 8.6: Wing finite element model and layout of the piezo belt.

thickness (h) 0.38 mm
short-circuit Young modulus (Esc) 69. 109 Pa
open-circuit Young modulus (Eoc) 86.52 109 Pa

Poisson modulus (ν) 0.33
mass density (ρ) 7700 kg/m3

electromechanical coupling coefficient (k̄) 0.5

Table 8.2: Piezo patches properties

for a three-modal damping system, is based on the behavior of the overall shunt circuit impedances,

in terms of magnitude and phase, and on the glider wing FRFs. The three natural frequencies to be

controlled are: f I
n = 3.401 Hz, f II

n = 34.455 Hz and f III
n = 52.601 Hz, corresponding to the 1st,

4th and 6th mode respectively.

In Figs. (8.7) and (8.8) the magnitude and the phase of the shunt impedances, provided by the

Wu’s circuit (black line) and by the proposed one (red line), are depicted together with the mono-

modal reference optimal values: lines blue for the 1st, green for the 2nd and cyan for the 3rd mode

respectively. It is noteworthy that in the multi-modal approach the shunt impedance, in order to

tune the piezoelectric system on the different frequencies, must adapt itself, in the neighborhood



Numerical results 167

Figure 8.7: Shunt impedance magnitude
Figure 8.8: Shunt impedance phase

of the mode natural frequencies, on the curve of the corresponding mono-modal impedances. It

can be pointed out that some simplified hypotheses have been introduced in [118] and used in the

examples. Specifically, the resistors and inductors have been obtained taking account not of the

whole network components, but firstly considering a circuit with resistors only, and then deriving the

reactive components from the circuit with only the inductors and the capacitors. These assumptions

simplify the calculations of the unknown electrical components, but only permits to match the

reference behavior of the 1st mode (both in magnitude and in phase), whereas for the 4th mode the

magnitude is worse than the proposed network and for the 6th mode, although better in magnitude,

the phase diverges from the reference curve. At any rate, the FRF ′s in Figs. (8.9), (8.10),
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0.001

2 2.5 3 3.5 4 4.5 5
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Wu shunt circuit
New shunt circuit

Figure 8.9: FRF in the neighborhood of the
1st natural frequency.
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New shunt circuit

Figure 8.10: FRF in the neighborhood of the
4th natural frequency.

and (8.11), relative to the neighborhood of the three considered natural frequencies, reveal the

correctness of the considerations presented above. In fact, the proposed network always behaves

a bit better, although the two curves – the blue one achieved with the Wu’s circuit and the red

one gained with the proposed network – are practically the same. Therefore, the advantages of the

proposed circuit consists on its greater simplicity, more robustness and reliability, and to a lower

number of notch filter used. The results obtained till now were referred to the elastic vibrations of

the wing, that is without considering any aerodynamic load. From the aeroelastic point of view –
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Figure 8.11: FRF in the neighborhood of the 6th natural frequency.

because of the dependence of the state-space on velocity, air density and Mach number [42, 71] –

the choice of the optimal shunt parameters (L1, R1, LX2, RX2... etc.) must be carefully done.

A concise presentation of the used aeroelastic modeling in a state-space form has been reported in

Appendix B. Indeed, poles and modes of the aeroelastic system change with flight conditions and

that may cause a loss of effectiveness of piezo devices. In order to guarantee, in all flight conditions,

a correct coupling between the dynamics of the flow/structure system and the electric network,

shunted with the piezoelectric elements, a semi-active control could be used, [7, 15, 115]. Actually,

this approach would need to evaluate, at each operating condition, the actual aeroelastic poles and

thus the optimal shunt parameters to use during the flight. Therefore, resistors and inductors should

be changed according to the flight conditions, leaving unchanged the capacitances of the notch filters

fixed from the natural frequencies derived by the ground dynamical tests of the system. In other

words, the electrical components of the notch filter are determined by the actual natural frequency,

then LN is derived from Eq.(8.57). As example, the root locus function versus the airspeed, at fixed

Mach number (M = 0) and air density (ρ = 1.181 Kg/m3), is presented in Fig. (8.12).

The green lines show the root loci of the host structure alone, whereas the red lines represent the

root loci for the three-modal semi-active damping control. It is apparent the coupling between the

dynamics of the structure and that one introduced by the piezo patches in the region relevant to

the controlled poles (1st, 4th and 6th). Nevertheless, it is worth noting that in the multi-modal

approach, reported in Fig. (8.13), a loss of interaction is observed, in a restricted range of the flight

conditions of the 4th pole, due to the partial updating of the shunt circuit parameters. Indeed,

the optimal tuning should be carried out with respect both the resonance frequencies of the shunt
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Figure 8.12: Roots loci: the 1st, 4th and the 6th poles are controlled

circuit and the filter behavior out of design conditions. However in this thesis, the semi-active control

considers only the pole variation, while the filter behavior is not updated to the actual circuit. In

other words, although the notch filter is upgraded with the flight conditions, CN remains fixed, and

therefore it is possible to meet with the troubles presented in Fig. (8.56).

Finally, let us note that, because of the first pole stability, the dynamics of the piezoelectric devices

is capable to influence the aeroelastic dynamics of this mode in a limited range of flight conditions,

as shown in Fig. (8.15).

It is noteworthy that the bonded piezoelectric belt enhances the flutter limit. A comparison between

mono-modal and three-modal damping controls, applied on the 4th pole, which is the first to reach

the aeroelastic instability, is reported in Tab.(8.3).

mono−modal three−modal
UF m/s 113.40 112.90
Gain 3.94 % 3.57 %

Table 8.3: Comparison of the flutter limit velocities between the mono-modal and the multi-modal
techniques. The flutter velocity for the wing without piezo patches is UF = 109.0 m/s

The control strategy adopted for the 1st pole has been realized using a semi-active approach until

the airflow velocity of 55 m/s, then a static control has been used, because the pole becomes purely

real at U∞ = 59 m/s. For this reason, it is not possible to determine the tuning circuit parameters,

relevant to the first shunt mesh, by using Eqs. (8.53).

Although the enhancement in the flutter limit provided by the multi-modal approach is practically the
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Figure 8.13: Roots locus: zoom in the 4th pole
neighborhood.
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Figure 8.14: Roots locus: zoom in the 6th pole
neighborhood.

20

20.5

21

21.5

22

-2 -1.5 -1 -0.5 0 0.5

Im
m

ag
in

ar
y

Real

uncontrolled
semi-active control: 1st, 4th and 6th pole

Figure 8.15: Roots locus: zoom in the 1st pole neighborhood.

same as the mono-modal one, nevertheless the multi-modal technique could be preferred because,

from the point of view of the damping introduced by the piezo patches with respect to a gust

response, the multi-modal technique results to be more efficient, because more modes are damped.

In fact, for a flight speed equal to U∞ = 109 m/s (that is a velocity very close to the flutter margin

when no control is considered) and a gust input with constant unitary spectrum, the amplitudes

of the output spectra (in the semi-log plane) are as presented in Fig.(8.16). As one can see, both

the 4th and the 6th aeroelastic modes are affected by the piezo circuit, in particular it is evident

(for each mode) the behavior like vibration absorbers, which consists in splitting the original natural

frequency in two close modes. Figure (8.16), relative to the 4th modal co-ordinate, is actually

representative of the other co-ordinates, for which the spectral magnitudes have a similar behavior.

It is apparent that the piezo effect introduces damping only on the II and the III controlled poles.
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Figure 8.16: Gust response of the IV modal coordinate at U∞ = 109 m/s

Indeed, the I aeroelastic mode does not contribute to the instability.

In the following Figure (8.17) is reported the gust response as function of time, obtained by the

inverse Fourier transform of the function in Fig.(8.16). In this Figure, the damping introduced by
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Figure 8.17: Gust response in the time domain with and without piezo patches

the piezoelectric patches is clearly shown. This result confirms that the energy of the structural
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vibration is reduced, being possible to transform the mechanical energy into the electrical one and

to dissipate it in the piezo shunt system.

It is worth noting that the results shown – in terms of roots loci and gust response – are obtained

using a semi-active control, in other words, the actual parametric dependence of the state-space

representation on aerodynamics has been considered. Consequently, for each flight condition, the

piezoelectric patches are shunted to an adequate electrical load.

Hereafter, in order to show the robustness of the presented network, a comparison between the Wu

and the proposed shunted circuit – relative to the gust response – but out of the design conditions,

has been realized. Indeed, using shunted circuit components designed for the ground conditions

(U∞ = 0 m/s, and ρ = 1.1826 kg/m3), the numerical tests have been carried out in two different

flight situations. The tests conditions – in terms of airflow velocity and altitude (i.e., air density) –

are presented in Tab. (8.4).

U∞ = 0 m/s h = 0 m U∞ = 15 m/s h = 150 m U∞ = 50 m/s h = 1500 m
f1st (Hz) 3.401 3.371 2.734
f4th (Hz) 34.455 33.71 34.47
f6th (Hz) 52.601 51.63 49.58

Table 8.4: Comparison between natural frequencies in two different flight and design conditions.

The system poles change for different operative conditions, as shown in the previous table for the

natural frequencies, and for this reason the circuit parameters should be re-designed to tune the

piezoelectric system.
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Figure 8.18: Gust response at U∞ = 15 m/s,
h = 150 m: zoom in the 4th pole neighbor-
hood.
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Figure 8.19: Gust response at U∞ = 15 m/s,
h = 150 m: zoom in the 6th pole neighbor-
hood.

The gust responses of the glider wing, relative to the first test conditions and with the piezo devices

shunted to the proposed circuit (red line) and Wu’s circuit (green line), are depicted in Figs. (8.18),

(8.19), and (8.20). It can be pointed out that the response, obtained using the proposed network,

presents the typical dynamic damper behavior for each controlled pole. On the contrary, although

the application of Wu’s technique introduces some damping (less than the one obtained with the
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Figure 8.20: Gust response at U∞ = 15 m/s, h = 150 m: zoom in the 1st pole neighborhood.

proposed approach), it does not assure the tuning of the shunt circuit.

The response relative to the second flight conditions is shown in Figs. (8.21) and (8.22). The
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Figure 8.21: Gust response at U∞ = 50 m/s,
h = 1500 m: zoom in the 4th pole neighbor-
hood.
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Figure 8.22: Gust response at U∞ = 50 m/s,
h = 1500 m: zoom in the 6th pole neighbor-
hood.

response in the neighborhood of the 1st pole is not depicted because, in the considered conditions,

the 1st frequency is very close to zero. Therefore, since the first aeroelastic mode is almost static,

practically it does not exist a dynamical response in the 1st pole neighborhood. These final tests

ensure that it is possible to use the proposed shunt circuit out of the design conditions, that is out of

tuning, although in a limited range of flight situations. Moreover, the examples have emphasized the

issues associated to the use of the notch-filters. Indeed, the comparison, between the Wu’s approach

and the proposed one, has underlined how the reliability and the robustness of a piezoelectric passive

control are strictly connected to the simplicity of shunt network, i.e., to the notch filter number.

29th May 2005



174 Concluding remarks

8.9 Concluding remarks

In this chapter a multi-modal passive piezoelectric approach consisting in shunting the piezoelectric

patches, bonded to the host structure, to an electrical circuit tuned on the aeroelastic frequency of

vibrations has been presented. The point of view adopted is substantially systematic, in the sense

that the piezoelectric coupling is integrated in a state-space representation of the aeroelastic system

(constructed on the basis of the approximated natural modes of the structure), without entering

in the details of the structural model, and of the finite element procedure employed to arrive at

the state-space representation. The state-space representation, in terms of the modal co-ordinates,

has permitted to recognize a number of coupling effects between the structural, aerodynamical, and

piezoelectrical degrees of freedom, and, in particular, to analyze how the vibration energy flows in the

piezoelectric systems, and how the aeroelastic systems evolve under the effect of the piezoelectric

coupling. In particular, the possibility to damp different modes by a network of the Cauer type,

with notch filters, has been considered. This network permits to use less notch filters with respect

to other networks proposed in literature. The impedances are simple to derive, being the circuit a

ladder network. The proposed circuit is also more robust with regard to the out of tuning, as shown

in the thesis. For this reason, it was possible to synthesize the external circuit of the piezo elements

by using the data derived from the on ground tests of the glider wing, presented as example. It has

been shown that, the presented circuit behave as vibration absorbers also in flight conditions. The

numerical examples, presented in this Chapter, have demonstrated the usefulness of the proposed

circuit also in the aeroelastic field. The aeroelastic applications on an actual wing of a fully composite

glider have revealed the weak capability of these passive devices in improving the stability margin

of an actual aeroelastic configuration (the wing of a remote controlled unmanned glider), either by

using a mono or three-modal aeroelastic control. Nevertheless, it has also shown that these devices

are able to reduce the gust response amplitude, in the parametric range of working of the system,

whenever it is in the neighborhood of the controlled poles.

In conclusion, multimodal damping with some piezo devices, each with its electrical load, can be

obtained by suitable programs, which allow one to introduce the different electrical circuits or the

electrical networks into the stiffness matrix of the piezo devices. Therefore the dynamic behavior of

simple structures can be achieved and used in a pre-design program. The positive results obtained

press to investigate the possibility to introduce the presented methodologies (or similar), into those

mechanical finite element codes, which are commonly used in modelling aerospace structures.
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This thesis presents a novel mathematical model for micro-structured continuum bodies. Indeed,

continua with micro-structure have been considered as best candidate for the analysis and descrip-

tion of structural systems featuring an interaction between different disciplines (e.g., aero-elasticity,

thermo-elasticity, electro-elasticity). This attitude has been recognized to be an essential issue in

the development of the mathematical model as well as in the applicative examples considered, when

dealing with materials that show preferential directions in their constitutive nature.

In a first part, exploiting the potentialities of tensorial algebra and treating bodies as continua

with micro-structure, the equilibrium equations have been obtained, in the deformed configuration

in terms of the integral stress resultants, by means of the Virtual Work Principle. Therefore,

the resulting system of equilibrium equations has been recognized capable of describing non-linear

elasticity issues in presence of large displacement and/or large deformations. The use of the Virtual

Work Principle permitted to decompose the solution in two contributions. One associated to the

motion of the body in presence of a material constraint on the micro-structure, or fiber, of the

continuum, and the other expressing the difference between the exact solution in absence of that

constraint and of the constrained solution. One chapter has been dedicated to the presentation and

discussion of this constraint and, in order to illustrate the purposes and potentialities of the followed

approach, a simple applicative example (relevant to a rectilinear homogeneous and transversely

isotropic beam) has been considered, where the advantages contained in treating separately the two

contributions are apparent, from the computational and modelling points of view. The material

constraint chosen falls in the class of the Kirchhoff-Love-type, for shells, and Euler-Bernoulli-type,

for beams, and compared to it the Reissner-Mindlin model, regarding to shells, and the Timoshenko

model, regarding to beams, have been considered. In both cases, the constraint is kinematically

equivalent to a rigidity condition of the fiber to the support (mid-surface for shells, mid-axis for

beams) that prevents the fiber from rotating during the motion. In an attempt to apply these

models to an innovative structure made with piezo-elastic fibers not normal to the support in the

undeformed configuration, the previous constraints have been extended to the case of fibers inclined

with respect to the normal. Furthermore, in order to achieve the most formal simplification of

the resulting equilibrium equations, three distinct approaches have been analysed to express the

virtual displacement field. The first approach, denoted natural, employs the intrinsic reference

frame, associated to the support in any point; the second approach, employs a triad made of the
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tangent vectors to the mid-surface and the unit vector along the fiber; the third approach has been

characterized by the consideration of an orthogonal frame made of vectors orthogonal to the fiber

and of the unit vector along the fiber.

In the second part, following a conceptual continuity with the previous considerations, three

different problems of aerospace interest have been faced: the formal equivalence of the operators

describing the equilibrium and, consequently, of the modelling nature of the three problems, has

been clearly recognized in these applications. In particular, the first problem has regarded the

study of the static response of a shell, reduced to a one-dimensional continuum under appropriate

modelling hypothesis, whose fibers, inclined respect to the normal to the mid-surface, have been

assumed made of piezo-electric material with principal direction of polarization coherently oriented

with the chosen fiber direction. Via the imposition of an electric voltage difference at the edges of

each fiber reduced from a modelling point of view to an external load in the structural problem, it

has been possible to deform elastically the body and consequently to recognize this application -

developed within the line of the considerations exposed in the first part - as a possible candidate

for the description of the behaviour of possible future morphing structures capable of deforming up

to a desired configuration. The second problem regarded the analysis of the aeroelastic response

of a swept wing under the effect of a thermal excitation, reduced, also in this case, to an external

load acting on the structural system. The wing structure has been assumed made of homogeneous

and transversely isotropic material, with isotropy direction coincident with the fiber direction, this

time assumed normal to the mid-plane, both elastically and thermally. Finally, the third problem

regarded the presentation of a semi-passive damping technique for aeroelastic vibrations via the use

of piezoelectric patches properly shunted on an electrical load resonant a the frequencies of the

host aeroelastic system. The approach, exclusively of a systematic nature, permitted the integration

of the dynamics of the shunted piezoelectric system with that structural and aeroelastic, and it

has permitted to recognize how, from the point of view of the poles of the resulting system, these

dynamics interact and influence each other. The resulting damping of the aeroelastic vibrations has

been said semi-passive because in any flight condition the shunt circuit parameters have been tuned

to optimise the transfer of energy between the aeroelastic and piezoelectric systems and the thus to

enhance the vibration suppression.

It is worth noting that, in addition to the formal equivalence of the operators that describe the

equilibrium, another element of continuity among the applications presented is represented by the

presence of distinct phenomenological physical couplings. These multi-disciplinary couplings (electro-

elasticity, thermo-elasticity, aero-elasticity and their combinations) have been faced assuming that

the coupling was one-directional, or, in other words, that, the elasticity was influenced by the other

discipline (electricity or temperature) but the latter was not influenced by the first, except for the

case of the aeroelastic coupling. The principal reason inherent this choice is represented by the

request of a modelling simplification that justifies itself with the fact that the previous application

were intended more to the presentation of the qualities of the structural model than to description
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of the coupling itself. At this regard, it should not be forgot that the choice of assume the body to

be a continuum with micro-structure, has been done in order to describe coherently the behaviour

of materials and thus structures made of those materials, having a preferential direction.

Either the first and the second part are supplied of a bibliographic documentation that has

permitted to underline the innovative feature proposed.

It is now appropriate to discuss some of the enhancements that will be included in the future,

either from the theoretical and from the applicative side. In particular, from the theoretical side, the

importance of the decomposition of the motion in a part associated to the constraint and in a part

expressing the difference between the constrained and the unconstrained solutions has been pointed

out in the illustrative example contained in the first part, either from a conceptual (to show how

the unconstrained equations reduce in the limit to the constrained equations) and computational

point of view. These considerations should be evaluated in general, moreover, the consequences

associated to the three different strategies that can be followed adopting this decomposition will be

evaluated and compared. Indeed, the decomposition of the displacement field may be assumed: (i)

on the virtual displacement and coherently on the effective displacements in the final equilibrium

equations; (ii) on the virtual displacement but not in the final equations; (iii) on the final equations

but not on the virtual displacements. It is worthy to anticipate that whilst the first approach ensures

that the resulting structural operator be self-adjoint, the mixed approaches yield to a problem not

symmetric from the point of view of the equilibrium equations but potentially easier to be solved

because partially uncoupled. From the applicative side, in addition to expand the presented problems

to the considerations of a bi-directional coupling, the first application would deserve of an analysis

for determination of the fiber distribution capable of the best actuation performance for an assigned

final configuration to be reached by the structure.
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Appendix A

Tensors analysis and operations on tensors

A.1 Vectors and tensors

Following Refs. [87, 23], let E be a 3-dimensional Euclidean space, let V be the vector space

associated with E and denote with U := {v ∈ V | ‖v‖ = 1} the sphere of all vectors having unit

length. One may think of E as equipped with a Cartesian frame {O; e1, e2, e3} with orthogonal

basis vectors ei ∈ U (i= 1, 2, 3); the Cartesian components of a vector v ∈ V are then vi := v · ei

and, in particular, the triplet (p1, p2, p3) ∈ <3, pi := p (p) · ci, of components of the position vector

are the Cartesian coordinates of a point p ∈ E .

Now a vector field w on a domain W ∈ V can be defined as a map

w : W 7→ V (A.1)

meaning that in every point p ∈ E there exists a rule (i.e., a map) which associates to p a vector

w ∈ V (examples of vector fields that will be considered later are the displacement field, the velocity

field, the acceleration field, etc).

Let us now introduce a general (or convected, or material) curvilinear co-ordinate system
{
ξk

}

as a one-to-one smooth map that maps an open set U ⊆ E to <3 according to

(
x1, x2, x3

) 7→ (
ξ1

(
xi

)
, ξ2

(
xi

)
, ξ3

(
xi

))
(A.2)

Taking the partial derivatives of the position vector with respect to ξk one has

gk :=
∂xi

∂ξk
ei = xi

,k ei (A.3)

These vectors, known as covariant volume basis vectors, are the tangent vectors to the material co-

ordinates and constitute a triplet of independent vectors in terms of which any vector field can be

represented. Note that, the {gk} have a local definition in the sense that they represent the tangents
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to the material co-ordinates in a particular point p ∈ U ; moreover, they are linearly independent due

to the one-to-one correspondence between the ξk and the points p ∈ U , in fact the Jacobian of the

transformation xi 7→ ξk (xi) is not vanishing, so the {gk} are a basis for each (ξ1, ξ2, ξ3). Together

with the covariant basis vectors {gk} one can introduce also the contravariant basis vectors defined

as

gh · gk = δk
h (A.4)

where δk
h is the Kronecker’s delta, or

g1 =
g2 × g3√

g
(A.5)

g2 =
g3 × g1√

g
(A.6)

g3 =
g1 × g2√

g
(A.7)

with

√
g = g1 × g2 · g3 (A.8)

the metrics in p associated to
(
ξk

)
. Similarly, one can introduce a tensorial quantity, known as metric

tensor and its own inverse (both symmetric positive definite second rank tensors whose determinant

is given by Eq. (A.8)), defined by

G := gh · gk gh ⊗ gk = ghk gh ⊗ gk (A.9)

and its inverse

G−1 := gh · gk gh ⊗ gk = ghk gh ⊗ gk (A.10)

Thus, any vector field v ∈ V can be written

v := vk gk = vk xi
,k ei (A.11)

where

vk := v · gk (A.12)

or in terms of the contravariant basis vectors

v := vk gk (A.13)
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where

vk := v · gk (A.14)

Similarly, any tensor field T ∈ V has a unique representation in the basis of covariant, contravariant

or mixed basis vectors, given by∗

T := thk gh ⊗ gk = thk gh ⊗ gk = thk gh ⊗ gk = tkh gh ⊗ gk (A.15)

where

thk := T · gh ⊗ gk (A.16)

and similar definitions hold with respect to the remaining contravariant and mixed components in

Eq. (A.15).

A.2 Gradient, divergence, curl

From ”Tensor Analysis and Continuum Mechanics”, Ref. [37], Chapter 1.

It is assumed that the reader is familiar with the representation of vectors by arrows, with their

addition and their resolution into components, i.e., with the vector parallelogram and its extension

to three dimensions. We also assume familiarity with the dot product and later (p.36) with the cross

product. Vectors subjected to this special kind of algebra will be called Gibbs type vectors and will

be denoted by bold face letters.

In this and the following sections the reader will learn a completely different means of describing

the same physical quantities, called tensor algebra. Each of the competing formulations has its

advantages and its drawbacks. The Gibbs form of vector algebra is independent of a coordinate

system, appeals strongly to visualization and leads easily into graphical methods, while tensor algebra

is tied to coordinates, is abstract and very formal. This puts the tensor formulation of physical

problems at a clear disadvantage as long as one deals with simple objects, but makes it a powerful

tool in situations too complicated to permit visualization. The Gibbs formalism can be extended

to physical quantities more complicated than a vector (moments of inertia, stress, strain), but this

extension is rather cumbersome and rarely used. On the other hand, the vector appears as a special

case of a more general concept, which includes stress and inertia tensors but it is easily extended

beyond them.

In order to prove the previous statements and to introduce some useful concepts and operations

∗ Extensions to tensors of higher rank can be easily made considering the definition of Eq. (A.15), nonetheless,
in Appendix (A) some additional consideration on tensor fields of any order and the operations between tensors are
reported.
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on tensors, a parallel definition of Gradient, Curl and Divergence of a vector field will be presented.

The definition of these operators in Gibbs’ notation will be made using Ref. [12], whereas the

tensor’s counterpart will be addressed using Ref. [94].

Specifically, it will be showed how it is tortuous to express a consistent definition of the Curl

within the Gibbs’ notation for quantities different from scalars and vectors, compared to the elegance

and straightforwardness of the tensorial one. Indeed, very often a mixed definition of these operators

can be found in the existing literature, where tensors and Gibbs’ notation are used together leading

to unavoidable inconsistencies which bring misunderstandings and approximations.

Gradient

Gibbs’

The Gradient of a vector field can be defined as the linear transformation which, applied on an

arbitrary vector, gives the variation of the vector field in the direction of the vector on which it is

applied, i.e.,

Grad f :
∂f

∂v
= (Grad f)v (A.17)

Tensors’

The Gradient of a tensor of order n can be defined as a tensor of order n+1 which is obtained

multiplying tensorially the derivatives of the tensor, with respect to the covariant coordinates, with

the corresponding contravariant base vectors, i.e.,

Grad f : Grad f :=
∂f

∂ξj
⊗ gj for j = 1, 2, .. (A.18)

Curl

Gibbs’

The curl of a vector field is two times the axial vector of the skew-symmetric part of the Gradient

(Ref. [12, p. 149, note 21], where the axial vector is defined as the unique vector (w) associated

to any skew-symmetric tensor (W)such that Wv = w × v for any v.

Curl f : (Grad f)− (Grad f)T v = Curl f × v ∀v (A.19)

Alternatively, another definition which makes use of the Stokes’ theorem can be casted

Curl f := lim
∆S→0

∮

L
(f · ds) n (A.20)
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where S is a generic surface which has L as contour line, and n is the unit normal (coherently

chosen with the orientation defined in the space) to that surface. The above expression permits to

interpret the Curl operator as a measure of the infinitesimal circulation experienced by the vector

field in space, and in this sense the axial vector helps to identify the direction in which the field

rotates (or circulates).

Tensors’

The Curl of a tensor of order n can be defined as a tensor of the same order n which is obtained

multiplying vectorially the derivatives of the tensor, with respect to the covariant coordinates, with

the corresponding contravariant base vectors, i.e.,

Curl f : Curl f := − ∂f

∂ξj
× gj for j = 1, 2, .. (A.21)

Divergence

Gibbs’

The divergence of a vector field can be defined as the trace of the gradient of that field.

Div f : Div f := tr (Grad f) (A.22)

Alternatively, or geometrically, the divergence can be intepreted as a mean value of the variation

of the field along the three principal directions, in this sense the Green-Gauss theorem which is often

used to introduce this operator is very useful. Indeed, from this theorem one can interpret, more

correctly, the divergence as the infinitesimal flux outgoing a certain closed surface, or

Div f := lim
∆S→0

∮
f · ds (A.23)

Tensors’

The divergence of a tensor of order n can be defined as a tensor of order n-1 which is obtained

dot-producting the derivatives of the tensor, with respect to the covariant coordinates, with the

corresponding contravariant base vectors, i.e.,

Div f : Div f := − ∂f

∂ξj
· gj for j = 1, 2, .. (A.24)

Remarks

It is worth to point out that in the previous tensorial definitions of the differential operators, no

limit has been placed on the order of the tensor. This means that an easy generalization of these
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definitions can be obtained starting from the simple case of a vector field. On the other hand, as

it is apparent, for instance, in Ref. [12, page 149, note 48], an analogous generalization is not

always possible and other considerations have to be brought for the definition of a Curl of a linear

transformation. Moreover, because the scalar fields are tensors of order zero, it is clear that the curl

of a scalar has no meaning, involving the cross product of two tensors which can be defined starting

from its definition in vectorial notation; eventually, also the divergence could appear meaningless

involving the dot product between a scalar and a vector, nonetheless, this operation can still be

performed substituting the derivative with the gradient. Similarly, the tensor product of a scalar

with a vector can appear meaningless, and so the gradient. Nonetheless, it can be reduced to the

scalar multiplication of a vector.

Note also that, previously, attention has been placed in order to not use the word tensor in

the definition of the operators within the Gibbs’ formulation, unfortunately, often, in the present

literature it can be found a mixed and very confusing use of these two expressions.

A.3 On the divergence of a vector

In this appendix useful expressions for the divergence of a vector in three-dimensional and two-

dimensional spaces are obtained. Let us first introduce the Christoffel symbols, Γh
kp, defined by

Γh
kp :=

∂gp

∂ξk
· gh =

∂2x

∂ξk∂ξp
· gh = Γh

pk (A.25)

Then, the covariant derivative of a vector

∂gp

∂ξk
= Γh

kp gh (A.26)

Hence, one has

∂

∂ξk
(cpgp) =

∂cp

∂ξk
gp + cr Γp

rk gp = cp
/k gp (A.27)

where, cp
/k, is given by

cp
/k :=

∂cp

∂ξk
+ cr Γp

rk (A.28)

The divergence of a vector c in a three-dimensional space is defined by

div c := ck
/k (A.29)
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Recalling the invariant nature of tensors, the above is the appropriate generalization of the definition

in cartesian coordinates; using Eq. (A.27), one obtains

cp
/p =

∂cp

∂ξp
+ cr Γp

rp =
1√
g

∂

∂ξp
(
√

g cp) (A.30)

where the following relation has been used

Γp
rp =

1√
g

∂
√

g

∂ξr
(A.31)

For, using Eqs. (3.35)-(3.38)

∂
√

g

∂ξr
=

∂

∂ξr
(g1 × g2 · g3) =

=
∂g1

∂ξr
· g2 × g3 +

∂g2

∂ξr
· g3 × g1 +

∂g3

∂ξr
· g1 × g2

=
√

g
∂gk

∂ξr
· gk =

√
g Γk

rk (A.32)

Similarly, for two-dimensional spaces one has

div c := cα
/α =

∂cα

∂ξα
+ cβ Γα

βα (A.33)

Note that

Γα
αγ =

1√
a

∂
√

a

∂ξγ
(A.34)

For, using Eqs. (3.21), (3.26), (3.15) and (3.17)-(3.20) we have

∂
√

a

∂ξγ
=

∂

∂ξγ
(a1 × a2 · n) =

=
∂a1

∂ξγ
· a2 × n +

∂a2

∂ξγ
· n× a1 +

∂n

∂ξγ
· a1 × a2

=
√

a Γβ
1γ aβ · a1 +

√
a Γβ

2γ aβ · a2 =
√

a Γα
αγ (A.35)

Hence

div c :=
1√
a

∂

∂ξα

(√
a cα

)
= cα

/α (A.36)

Finally, note that using Eqs. (3.25) and (A.36) one has

∂

∂ξα

(√
a cα n

)
=

∂

∂ξα

(√
a cα

)
n−√a cα bβ

α aβ =
√

a
[
cα

/αn− cα bβ
α aβ

]
(A.37)
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A.4 On the divergence of a tensor

In this appendix a convenient expression for the divergence of a (second order) tensor is obtained.

Note that it is valid for an N -dimensional space. In particular, it is valid if the Latin indices are

replaced by Greek ones (used in the main body of this work for two-dimensional spaces).

Let us first introduce the covariant derivative of a tensor. Using Eq. (A.26)

∂

∂ξk
(cpq gp ⊗ gq) =

∂cpq

∂ξk
gp ⊗ gq + crq Γp

rk gp ⊗ gq + cpr Γq
rk gp ⊗ gq = cpq

/k gp ⊗ gq (A.38)

where

cpq
/k :=

∂cpq

∂ξk
+ cpq Γp

rk + cpr Γq
rk (A.39)

In a three-dimensional space, the divergence of a second order tensor C = cpq gp ⊗ gq is a vector

defined by

Div C := cpq
/p gp (A.40)

or, using Eqs. (A.32) and (A.38)

Div C :=
∂cpq

∂ξp
gq + crq Γp

rp gq + cpr Γq
rp gq

=
∂cpq

∂ξp
gq +

1√
g

∂
√

g

∂ξr
crq gq + cpr ∂gp

∂ξr

=
1√
g

∂

∂ξp
(
√

g cpq gq) (A.41)

Similarly, in two-dimensional spaces, using the convention on Greek symbols, one may define

Div C := cαβ
/α aβ (A.42)

or using Eq. (A.39) specialized to the two-dimensional case, i.e.,

cαβ
/α :=

(
∂cαβ

∂ξα
+ cγβ Γα

αγ + cαγ Γβ
αγ

)
(A.43)
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one has

cαβ
/α aβ =

∂cαβ

∂ξα
aβ + cγβ Γα

γα aβ + cαγ Γβ
γα aβ

=
∂cαβ

∂ξα
aβ +

1√
a

∂
√

a

∂ξγ
cγβ aβ + cαγ

(
∂aγ

∂ξα
− bαγ n

)

=
1√
a

∂

∂ξα

(√
a cαβaβ

)− bαγ cαγ n (A.44)

where Eqs. (3.21) and (A.35) have been used.

A.5 Operations on Tensors

In this Section some basic properties of the operations on tensors, that have been used extensively in

the main body of this thesis, are reported. In particularly, these notes are an extract of the extensive

appendix on this matter that can be found in Ref. [94].

Let us start, recalling that scalars (or real numbers) are referred to as tensors of order zero, and

vectors are referred to as tensors of order one. Higher order tensors can thus be defined inductively

starting from the notion of a vector. In particular, one may state that the quantity T is a tensor of

order two if it is a linear operator whose domain is the space of all vectors v and whose range Tv

is a vector. Consequently, by induction, the quantity T is called a tensor of order M (M ≥ 1) if it

is a linear operator whose domain is the space of all vectors v and whose range Tv is a tensor of

order M − 1.

In order to define the operations of tensor product, dot product, and juxtaposition for tensors,

one may refer to special tensors as it is reported also in Ref. [94].

Tensor Product

The tensor product operation is denoted by the symbol ⊗ and it is defined so that for an arbitrary

vector v, the quantity (a1 ⊗ a2) is a second order tensor satisfying the following relations

(a1 ⊗ a2)v = a1 (a2 · v) (A.45)

In generalizing these ideas, let A be a special tensor of order M which is formed by the tensor

product of a string of M (M ≥ 2) vectors (a1, a2, ..., aM), and let B be a special tensor of order

N formed by a string of N (N ≥ 2) vectors (b1,b2, ...,bM). It then follows that A satisfies the

relations

Av = (a1 ⊗ a2 ⊗ ...⊗ aM−1) (aM · v)

vA = (a1 · v) (a2 ⊗ a3 ⊗ ...⊗ aM) (A.46)
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Therefore, when v operates either on the right or the left side of A it has the effect of forming the

scalar product with the vector in the string closest to it, and it causes the result Av or vA to have

order one less than the order of A since one of the tensor products is removed.

Dot Product

The dot product operation between two vectors can be generalized to an operation between two

tensors of any order. For example, the dot product between a second order tensor and a third order

tensor can be written as

(a1 ⊗ a2) · (b1 ⊗ b2 ⊗ b3) = (a1 · b1) (a2 · b2)b3

(b1 ⊗ b2 ⊗ b3) · (a1 ⊗ a2) = b1 (b2 · a1) (b3 · a2) (A.47)

From the previous example it is apparent that the dot product between tensors of different order

does not necessarily commute, moreover, it can be seen that the tensor of smallest order controls

the outcome of the dot product operation. Finally, in general, the dot product A ·B of the tensors

defined before is a tensor of order |M −N |.

Cross Product

The dot product operation between two vectors can be generalized to an operation between two

tensors of any order. For example, the dot product between a second order tensor and a third order

tensor can be written as

(a1 ⊗ a2)× (b1 ⊗ b2 ⊗ b3) = (a1 × b1)⊗ (a2 × b2)⊗ b3

(b1 ⊗ b2 ⊗ b3)× (a1 ⊗ a2) = b1 ⊗ (b2 × a1)⊗ (b3 × a2) (A.48)

From the previous example it is apparent that the cross product between tensors of different order

does not necessarily commute, moreover, it can be seen that the tensor of smallest order controls

the outcome of the cross product operation. Finally, in general, the dot product A ·B of the tensors

defined before is a tensor of order |N | which is equal to the highest order tensor B.

Juxtaposition

The operation of juxtaposition is indicated when two tensors are placed next to each other without

an operator between. In particular, the juxtaposition operation causes only one of the vectors in

each tensor (the vector closest to each other) to be connected by the inner product. The remaining

vectors form a string of vectors connected by tensor products. The sorting of these vectors in the

string is the same as their sorting in the juxtaposition operation. The order of the resulting tensor

is the sum of the orders of the two tensors placed in juxtaposition minus two.
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In general, the juxtaposition AB of the special tensors defined before is a tensor of order (M +

N − 2) which is given by

AB = (a1 ⊗ a2 ⊗ ...⊗ aM) (b1 ⊗ b2 ⊗ ...⊗ bN)

= (aM · b1) (a2 ⊗ ...⊗ aM−1)⊗ (b2 ⊗ ...⊗ bN) (A.49)

From the previous example it is apparent that the juxtaposition operation is not commutative.

Furthermore, since only the closest vectors are connected by the inner product, it follows that the

juxtaposition of any order tensor A with a vector v, is the same as the dot product of the two

tensors

Av = A · v , vA = v ·A (A.50)

29th May 2005



190 Operations on Tensors



Appendix B

Gradient vs Divergence approach: a

comparison

In this chapter a comparison between the so-called “gradient approach” and the “divergence ap-

proach”is presented. Both the two approaches have been used in the main body of the thesis to

obtain the equilibrium equations and the related boundary conditions‡ for shell-like bodies. In par-

ticular, these notes are limited to the consideration of the “Surface Convected Frame” approach

(preferred to the other ones for its generality), and discuss the obtainment of both the equilibrium

equations and of the related boundary conditions.

B.1 Equilibrium equations

In this Section the equilibrium equations (Eqs. (4.76)-(4.77)) using the gradient and the divergence

approach respectively, starting from the expression of the inner virtual work already employed in the

main body of the thesis, are derived.

B.1.1 Gradient approach

It has been denoted with this name the approach that permit to obtain the equilibrium equations by

expressing the Gradient operator on the basis of the
o
g

k
vectors and then performing an integration

by parts.

‡ Recall, in particular, that in Chapter 2 the second has been used, whereas in the subsequent chapters the first
one has been preferred.
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Let us recall Eq. (4.57)

δWi =

∫∫∫

V
T ·Gradv dV =

∫∫∫

V0

T ·Gradv
√

g dξ1dξ2dζ

=

∫∫∫

V0

√
o
g

{
o

S ·
(

o

∇⊗ o
u− o

u3C

)
+

o
r

o
u
′
3 +

o
p · o

u
′

+
o
q ·

[
o

∇o
u3 − d

o
u3 + CT o

u

]}
dξ1dξ2dζ (B.1)

Focusing on the first term in the previous equation, one has

∫∫∫

V0

√
o
g

o

S ·
o

∇⊗ o
u dξ1dξ2dζ =

∫∫∫

V0

√
o
g

o
σ

βα

(
∂

o
uα

∂ξβ
− o

uγ

o

Γ
γ

αβ

)
dξ1dξ2dζ

=

∫∫∫

V0

[
∂

∂ξβ

(√
o
g

o
σ

βα o
uα

)
−

√
o
g

o

Γ
k

βk

o
σ

βα o
uα −

√
o
g

∂
o
σ

βα

∂ξβ

o
uα

−
√

o
g

o
σ

βα o

Γ
γ

αβ

o
uγ

]
dξ1dξ2dζ

=

∫∫∫

V0

[
∂

∂ξβ

(√
o
g

o
σ

βα o
uα

)
−

(
o

∇ ·
o

S

)
· o
u

]
dξ1dξ2dζ (B.2)

where the 2-D divergence of the tensor
o

S, with respect to the metrics of the
o
g

k
vectors, is defined

as

o

∇ ·
o

S =
o
σ

βα

∠β

o
gα :=

(
∂

o
σ

βα

∂ξβ
+

o

Γ
k

βk

o
σ

βα
+

o
σ

βγ o

Γ
α

γβ

)
o
gα (B.3)

Similarly, for the fifth term in Eq. (B.1) one has

∫∫∫

V0

√
o
g

o
q ·

o

∇o
u3 dξ1dξ2dζ =

∫∫∫

V0

√
o
g

o
σ

β3 ∂
o
u3

∂ξβ
dξ1dξ2dζ

=

∫∫∫

V0

[
∂

∂ξβ

(√
o
g

o
σ

β3 o
u3

)
−

√
o
g

o

Γ
k

βk

o
σ

β3 o
u3 −

√
o
g

∂
o
σ

β3

∂ξβ

o
u3

]
dξ1dξ2dζ

=

∫∫∫

V0

[
∂

∂ξβ

(√
o
g

o
σ

β3 o
u3

)
−

(
o

∇ · o
q

)
o
u3

]
dξ1dξ2dζ (B.4)

where the 2-D divergence of the vector
o
q, with respect to the metrics of the

o
g

k
vectors, is defined

as

o

∇ · o
q =

o
σ

β3

∠β :=
∂

o
σ

β3

∂ξβ
+

o

Γ
k

βk

o
σ

β3
=

1√
o
g

∂

∂ξβ

(
o
g
o
σ

β3)
(B.5)
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It is now apparent that the application of the previous relations (that may be regarded as an

extension of the Green-Gauss theorem) in Eq. (B.1) leads to the equilibrium equations reported in

Eqs. (4.76)-(4.77).

B.1.2 Divergence approach

It has been denoted with this name the approach consisting in applying first the Green-Guass theroem

in the 3-D body manifold, and then decomposing the 3-D Divergence operator in the 2-D and 1-D

manifolds that concur to the definition of the micro-structure of the body.

Recall the expression of the virtual work in the 3-D metrics

δWi =

∫∫∫

V
T ·Gradv dV =

∫∫∫

V0

τhk uk‖h
√

g dξ1dξ2dζ

=

∫∫∫

V0

τhk

(
∂ûk

∂ξh
− Γ̂r

kh ûr

)√
g dξ1dξ2dζ

=

∫∫∫

V0

[
∂

∂ξh

(√
g τhk ûk

)−√g Div T · u
]

dξ1dξ2dζ (B.6)

where the following definition for the 3-D Divergence operator has been used

Div T = τhk
‖h gk :=

(
∂τhk

∂ξh
+ Γ̂r

hr τhk + τhrΓ̂k
rh

)
gk =

1√
g

∂

∂ξh

(√
g τhk gk

)
(B.7)

Thus, using the definitions of the shifters (cfr. Eqs. (3.52)-(3.55)) and the definition of the stress

terms on the surface conveted frame (cfr. Eqs. (4.58)-(4.61)), one has

Div T =
1√
g

∂

∂ξβ

[√
o
g

(
o
σ

βα o
gα +

o
σ

β3 o
g3

)]

+
1√
g

∂

∂ζ

[√
o
g

(
o
σ

3α o
gα +

o
σ

33 o
g3

)]
(B.8)

With reference to the first term in the previous equation, one has

∫∫∫

V0

∂

∂ξβ

(√
o
g

o
σ

βα o
gα

)
· u dξ1 dξ2 dζ =

=

∫∫∫

V0

√
o
g

(
o
σ

βα

∠β

o
gα +

o
σ

βα
cαβ

o
g3

)
· u dξ1 dξ2 dζ

=

∫∫∫

V0

√
o
g

[(
o

∇ ·
o

S

)
· o
u +

o

S ·CT o
u3

]
dξ1 dξ2 dζ (B.9)

where Eq. (B.3) has been used to express the 3-D divergence operator on the 2-D manifold.
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With reference to the second term in Eq. (B.8), one has

∫∫∫

V0

∂

∂ξβ

(√
o
g

o
σ

β3 o
g3

)
· u dξ1 dξ2 dζ =

=

∫∫∫

V0

√
o
g

[(
o
σ

β3

∠β +
o
σ

β3
dβ

)
o
g3 −

o
σ

β3
cγ
β

o
uγ

]
dξ1 dξ2 dζ

=

∫∫∫

V0

√
o
g

[(
o

∇ · o
q

)
o
u3 + CT o

q · o
u

]
dξ1 dξ2 dζ (B.10)

where the definition of the divergence operator of
o
q in Eq. (B.5) has been used.

It is still apparent that the equilibrium equations, Eqs. (4.76)-(4.77), could be also obtained by

means of this second approach.

B.2 Boundary conditions

In this Section the boundary conditions (Eqs. (4.75) and (5.97)) are derived using the gradient and

the divergence approach respectively, starting from the expression of the inner virtual work already

employed in the previous Section. The analysis has been divided into two parts: the first related to

the work exerted on the upper and lower surfaces (that will enter the equilibrium equations for the

shell model), and the second related to the work on the contour (that represent the actual boundary

conditions for the shell model).

B.2.1 Upper and Lower Surfaces

In this section the expression of the boundary terms (from the point of view of 3-D elasticity) are

developed on the upper and lower surfaces, and it will be shown how they re-enter the equilibrium

equations of the shell model.

Gradient approach

Recalling Eqs. (4.67)-(4.68), from the third and fourth terms in Eq. (B.1) one has

∫∫∫

V0

√
o
g

(
o
r

o
u
′
3 +

o
p · o

u
′)

dξ1 dξ2 dζ

=
N∑

k=0

k

∫

S0

√
o
g

(
o
r(k−1)

o
u3k

+
o
p(k−1) ·

o
u(k)

)
dξ1 dξ2 (B.11)

From the previous Equation it is apparent that the virtual work on the upper and lower surfaces

contributes to the equilibrium in the domain of integration of the shell model, or, in other words, that

these terms enter the equilibrium equations and not the boundary conditions for the shell model.
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Divergence approach

In this case let us start from Eq. (B.6) and, in particular, let us concentrate on the first term in

that Equation for h = 3 (i.e., the derivative along the thickness).

∫∫∫

V0

∂

∂ζ

(√
g τ 3k ûk

)
dξ1 dξ2 dζ =

∫

S0

[√
g τ 3k ûk

]+1

−1
dξ1 dξ2 (B.12)

Recalling that

√
g τ 3k ûk =

√
g τ 3k gk · u =

√
g τ 3k

o

T
p

k

o
gp · u =

√
o
g

(
o
σ

3α o
uα +

o
σ

33 o
u3

)
(B.13)

thus substituting Eq. (B.13) in Eq. (B.12) yields

∫∫∫

V0

∂

∂ζ

(√
g τ 3k ûk

)
dξ1 dξ2 dζ =

N∑

k=0

∫

S0

√
o
g

(
o
p(k−1) ·

o
u +

o
r(k−1)

o
u3(k)

)
dξ1 dξ2 (B.14)

Again the previous result confirms the equivalence of the two approaches.†

B.2.2 Contour Surface

In this section the expression of the boundary terms coming from the virtual work on the contour

surface of the shell is developed.

Gradient approach

From the first term in Eqs. (B.2) and (B.4) one has

∫∫∫

V0

∂

∂ξβ

[√
o
g

(
o
σ

βα o
uα +

o
σ

β3 o
u3

)]
dξ1dξ2dζ

=
N∑

k=0

∫

S0

∂

∂ξβ

[√
o
g

(
o
n

βα

(k)

o
uα(k)

+
o
q

β o
u3(k)

)]
dξ1 dξ2 (B.15)

Now, recall that (see Section 2.2.3 for comparison) on the contour surface one has

dξ2 =
√

ac nc1 dγ (B.16)

dξ1 = −√ac nc2 dγ (B.17)

† As a matter of fact let us observe that the previous proofs could also be obtained (as it was done in Chapter 2)
starting from the expression of the normal to the upper and lower surfaces in terms of the covariant and contravariant
base vectors of the SCF. In particular, let us observe that, being ζ a material coordinate, the upper and lower surfaces
(respectively ζ = +1 and ζ = −1) are also co-ordinate surfaces and thus the normal to these surfaces is parallel to
g3.

29th May 2005



196 Boundary conditions

thus, substituting the previous relations in Eq. (B.15) one has

∫∫∫

V0

∂

∂ξβ

[√
o
g

(
o
σ

βα o
uα +

o
σ

β3 o
u3

)]
dξ1dξ2dζ =

N∑

k=0

∮

Γ

(
o

N
T

(k)ν ·
o
u +

o
q(k) · ν

o
u3(k)

)
dγ(B.18)

where ν = nc

√
ac

o
g is a vector parallel to outer normal to the contour line of the main surface.

Divergence approach

From Eq. (B.6) and, in particular, from the first term in that Equation for h = α, one has

∫∫∫

V0

∂

∂ξα

(√
g ταk ûk

)
dξ1 dξ2 dζ

=

∫

ξ2

∫ +1

−1

[√
g ταk ûk

]
ξ1 dζ dξ2 +

∫

ξ1

∫ +1

−1

[√
g ταk ûk

]
ξ2 dζ dξ1 (B.19)

Using again Eqs. (B.16) and (B.17), and recalling the expression of the stress terms on the SCF in

terms of the stress terms in the volume frame, one has

∫∫∫

V0

∂

∂ξα

(√
g ταk ûk

)
dξ1 dξ2 dζ =

N∑

k=0

∮

Γ

(
o

N
T

(k)ν ·
o
u +

o
q(k) · ν

o
u3(k)

)
dγ (B.20)

So it is proved the complete equivalence between the two approaches.‡

‡ Also with respect to the virtual work on the contour surface, note that one could alternatively (as it has been
done in Chapter 2) start from the virtual work on the contour surface, then express the normal to this surface in
terms of the base vectors of the Surface Convected Frame and finally obtain the same relations previously developed.



Appendix C

Model matrices for aero-thermo-elastic

analysis

In the following the expressions of the matricial operators introduced in Eq. 7.221 are reported (for

a definition of the coefficients used refer to the list of symbols reported in the nomenclature section)

M =




−I(0,0) 0 0 0 0

0 −I(0,2) 0 0 0

0 0 −I(2,2) 0 0

0 0 0 −I(0,2) − I(2,0) − I(0,0) x0
2 −I(0,0) x0

0 0 0 −I(0,0) x0 I(0,0)




K =




− A E

1− ν2
0 0 0 0

0 − C1 E

1− ν2
0 0 0

0 0 − D E

1− ν2
0 0

0 0 0 − C1 E

2 (1 + ν)
− C2 G′ 0

0 0 0 0 −AG′




L =




0 0 0 0 0

0 0 0 0 −AG′

0 0 0
C1 E

2 (1 + ν)
− C2 G′ 0

0 0 − C1 E

2 (1 + ν)
+ C2 G′ 0 0

0 AG′ 0 0 0
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P =




0 0 0 0 0

0 AG′ 0 0 0

0 0
C1 E

2 (1 + ν)
+ C2 G′ 0 0

0 0 0 0 0

0 0 0 0 0




c =





Θ
(0,0)
22

Θ
(0,1)
22

0

0

0





R =




A E

1− ν2
0 0 0 0

0
C1 E

1− ν2
0 0 0

0 0
D E

1− ν2
0 0

0 0 0
C1 E

2 (1 + ν)
+ C2 G′ 0

0 0 0 0 AG′




S =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0
C1 E

2 (1 + ν)
− C2 G′ 0 0

0 −A G′ 0 0 0




A =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 − (
1
8

+ a2
)

bn
4 π ρ∞ −a bn

3 π ρ∞
0 0 0 −a bn

3 π ρ∞ −bn
2 π ρ∞




B =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1
2
(1− 2 a) bn

3 π ρ∞ Un 0

0 0 0 bn
2 π ρ∞ Un 0




C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1
2

bn
3 π ρ∞ Un

2 tan Λ 0

0 0 0 0 0
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D =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 − (
1
8

+ a2
)

bn
4 π ρ∞ Un tan Λ −a bn

3 π ρ∞ Un tan Λ

0 0 0 −a bn
3 π ρ∞ Un tan Λ −bn

2 π ρ∞ Un tan Λ




E =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2
(

1
4
− a2

)
bn

3 π ρ∞ Un − (1 + 2 a) bn
2 π ρ∞ Un

0 0 0 (1− 2 a) bn
2 π ρ∞ Un −2 bn π ρ∞ Un




F =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (1 + 2 a) bn
2 π ρ∞ Un

2 0

0 0 0 2 bn π ρ∞ Un
2 0




G =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2
(

1
4
− a2

)
bn

3 π ρ∞ Un
2 tan Λ − (1 + 2 a) bn

2 π ρ∞ Un
2 tan Λ

0 0 0 (1− 2 a) bn
2 π ρ∞ Un

2 tan Λ −2 bn π ρ∞ Un
2 tan Λ
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