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Introduction 

The goal of the present work is the development of an empirical model of optical and 

vibrational properties of natural and synthetic spinels. Single crystals of natural and 

synthetic spinels have been studied in detail by a combination of complementary 

methods with the aim to explore their physical properties, which in turn have been 

interpreted on the basis of spinel crystal chemistry. 

Multiple oxides with spinel structure represent minerals largely occurring in rocks as 

well as materials of high relevance from a technological point of view. To understand 

their physical properties the complete chemical, structural and crystal-chemical study 

is necessary. 

This study can be inserted in a multidisciplinary context, shown schematically in the 

tetrahedron in Figure 1, where every vertex is closely correlated to another.  

 

Fig. 1. Streamlined scheme of the multidisciplinary context in which the study of spinels is inserted.  

Understanding the relationships among environmental conditions (P, T, etc.), crystal 

chemistry (e.g., cation distribution), cation distribution and physical properties can 

help to exploit the spinel potential, both in Earth Sciences and in Materials Sciences. 
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One of the characteristics of the spinel structure is the flexibility in the range of 

cations and cation charge combinations that can be accommodated, making it a 

structure adopted by over a hundred compounds, many of them either important 

minerals or important commercial materials.  

On the Earth, many varieties of spinels occur as main or accessory minerals in 

different rocks, from the upper mantle to the crust, and their properties need to be 

understood in order to model the Earth interior. Being sensitive to temperature, 

pressure, oxygen fugacity, and bulk rock and fluid composition, intra- and inter-

crystalline equilibria in spinel are extremely useful for constructing mineral 

geothermometers, geobarometers and oxygen fugacity sensors (Della Giusta et al., 

1986; Ballhaus et al., 1991; Sack and Ghiorso, 1991; Princivalle et al., 1999; Lenaz 

and Princivalle, 2005). 

Spinel oxides have been also discovered in extraterrestrial materials, as for example 

in Martian meteorites. The identification and compositions of the spinels on Mars 

provide information and constraints on conditions of rock genesis and alteration. In 

addition, they can provide evidence for magnetism on the “red planet” or can give 

information about oxygen fugacity and the possibility of life on Mars (Wang et al., 

2004; Righter et al., 2009; Mayhew et al., 2013). 

Gem-quality natural spinels are appreciated as attractive and brilliant gemstone all 

over the world for their color range and vivid tone. Indeed thanks to the ability of 

accepting different cations with different valence in the structure, spinels exhibit a 

wide range of compositions and then a wide range of color. 

From a technological point of view, spinel oxides are suitable for a large variety of 

applications, from semi-conductors to catalysts, from refractory material to electrode 

for batteries, from magnetic devices to pigments for their electrical, mechanical, 

magnetic, thermochemical and optical properties (Shukla et al., 1999; Fernandez and 

de Pablo, 2002; Fierro et al., 2005; Gedam et al., 2009).  

Among the large variety of useful physical properties shown by spinels, this study 

deals with the optical and vibrational properties, through a multi-methodological 

approach using Electron MicroProbe, Single-Crystal X-ray Diffraction, Optical 
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Absorption and Raman spectroscopies. In particular, this study investigates how the 

minerals of the spinel group absorb or scatter radiation in the visible and infrared part 

of the electromagnetic spectrum, and the relationships with crystal chemistry. 

A large amount of natural spinels showing various colors and tone has been analyzed 

in the present work. Causes of color in minerals may be different, and Nassau (1987) 

provided a good overview of the various causes, most of them being related to 

transition metal ions, their valence and their coordination. However, more complex 

coloring mechanisms are difficult to characterize and often remain unexplained. To 

fully comprehend the origin of color in spinels, an accurate chemical and 

spectroscopic study has been performed using the optical absorption spectroscopy, 

which investigates the absorption of the ultraviolet, visible and infrared region of the 

electromagnetic spectrum (UV-VIS-NIR-MIR). It is concerned with transitions of 

electrons between outermost energy levels and can be used to identify the electronic 

transitions responsible for color and pleochroism in minerals. In addition this 

spectroscopy can provide information about the local structure around the 

chromophore ion such as the type of coordination, its symmetry and distortions, 

degree of covalency of bond distance and interactions with neighboring anions and 

cations.  

A larger set of spinel single crystals, including synthetic samples, has been 

investigated through the Raman spectroscopy, which is a non-destructive technique 

used to interpret atomic vibrations, with the aim to establish the correlations between 

the spectra and compositions. Raman spectra consist in unique vibrational 

fingerprints useful in routine identification of a multitude of materials, without 

necessarily knowing the structural origin of the individual spectral peaks. Several 

catalogues of Raman spectra of standard compounds have been published already, 

and many spectra collections can be found on the internet, but a significant number of 

these spectra are incorrect. In particular, dealing with spinels the study of natural 

samples is rather difficult, due to the ubiquitous presence of minor elements and the 

rarity of compositions close to the end-members. Synthetic single crystals belonging 
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to solid solutions have been investigated in this study and the results have been used 

to interpret the spectra of natural samples.  

 

The successful conclusion of the present study represents a marked increase of 

knowledge about the spinel system, and will have significant consequences in both 

Earth Sciences and Materials Sciences. In fact, the results of the present work extend 

the database of the Raman and optical spectra of spinels with different compositions, 

and the increased knowledge may be used:  

 for geological purposes, to define a method to obtain the main composition of 

spinels directly from the Raman spectra;  

 for gemological purposes, to clarify color mechanisms in spinels and to 

distinguish natural from thermally treated or synthetic spinels using the Raman 

and photoluminescence spectra;  

 for technological purposes, to interpret the color and improve chromophore 

efficiency of spinel-based ceramic pigments.  
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Chapter 1 

THE SPINEL GROUP 

1.1. Crystal chemistry 

Spinel minerals belong to a large group of composite oxides with a cubic symmetry 

(space group Fd ̅m) and the general chemical formula of AB2O4, where A and B are 

cations with variable valence. In natural spinels usually A represents divalent cation 

as Mg, Fe2+, Zn, Mn2+, while B represents trivalent cation as Al, Fe3+, Cr, and V 

(A2+B3+
2O4, so-called 2-3 spinels). Moreover, natural spinels may host also 

monovalent and tetravalent cations as Li, Ti4+ and Ge4+, giving compositions like 

A4+B2
2+O4 and A+B5

3+O8. In addition, thanks to the flexibility of the spinel structure in 

the range of cations and cation charge combinations, more than 150 oxide spinels 

with alternative compositions have been synthesized in literature (Hill et al., 1979). 

Following Palache et al. (1944) the classification of the naturally occurring members 

of the spinel group is based on the trivalent cation species (Al, Fe, Cr) and is shown 

in Table 1.1. 

Tab. 1.1. Classification of the main spinel end-members based on the trivalent cation species. 

 Spinel sensu stricto series 

(AAl2O4) 

Magnetite series 

(AFe3+
2O4) 

Chromite series 

(ACr2O4) 

Mg Spinel Magnesioferrite Magnesiochromite 

Fe2+ Hercynite Magnetite Chromite 

Zn Gahnite Franklinite Zincochromite 

Mn Galaxite Jacobsite Manganochromite 

Ni  Trevorite Nichromite 

Co   Cochromite 
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In addition to the end-members reported in Table 1.1, the spinels maghemite (-

Fe2O3), ulvöspinel (TiFe2+
2O4) and qandilite (TiMg2O4) are also naturally occurring, 

the former having a cation deficiency (  
 ⁄
   

 ⁄
   )Fe3+

2O4, the latter’s having the 

replacement 2Fe3+
 (Fe2+, Mg) + Ti4+. Furthermore, the V cation is often present in 

natural spinels as coulsonite, Fe2+(V3+)2O4, magnesiocoulsonite, Mg(V3+)2O4, and 

vuorelainenite (Mn)(V3+)2O4. In the spinel group the pure end-members are rare in 

nature; in fact these minerals exhibit a wide range of solid solutions, the crystal-

chemistry and thermodynamics of which have been extensively studied (O’Neill and 

Navrotsky, 1984 and references therein). Results revealed that every considered join 

has a specific behavior and physical properties dependent on composition (e.g., Della 

Giusta et al., 1996; Redfern et al., 1999; Andreozzi and Lucchesi, 2002; Lenaz et al., 

2004; Bosi et al., 2009; Lenaz and Skogby, 2013). The spinels may be subdivided on 

the basis of the dominant A2+ and B3+ ions, the varieties being designated by the next 

most dominant constituent. The ranges of composition of the main members of the 

spinel group are plot in the modified Johnston spinel prism (Fig. 1.1). The historical 

name picotite is conventionally used to describe Cr-bearing spinel and pleonaste for 

spinel containing some Fe2+. 

 
Fig. 1.1. Nomenclature and projection of different compositions in the Johnston spinel prism (after 
Haggerty, 1991). 
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The members of the spinel group are almost ubiquitous in most geological 

environments in the Earth’s lower crust and upper mantle, as well in extraterrestrial 

and even interplanetary materials.  In our planet, spinel-bearing mineral associations 

are frequent accessory minerals of both igneous intrusive and volcanic rock suites, 

regional and contact metamorphic rocks, and occur also as detrital grains in many 

sediments. Generally, MgAl2O4-rich spinel is considered the characteristic mineral of 

the uppermost lherzolite facies of the mantle. Moreover, spinels in which chromium is 

a non-negligible constituent are nearly ubiquitous, accessory minerals in low-

pressure, basic and ultramafic igneous and metamorphic rocks. The magnesium-rich 

silicate spinel (Mg2SiO4) is generally considered to be the dominant component of the 

lower part of the upper mantle.  

Typically mineral spinels can be found in three geologic situations: 1) as crystals in 

limestones and dolomites that have been subjected to contact metamorphism; 2) 

irregularly-shaped grains in basic igneous rocks; and, 3) as water-worn pebbles in 

alluvial deposits.   

Spinel is very resistant to chemical and physical weathering. It often occurs 

in marbles which are much less resistant to weathering. Spinel easily weathers out of 

the marble and is transported by streams. This places spinel in alluvial deposits which 

are often worked for gemstones. Most of the spinels are produced from alluvial 

deposits in Sri Lanka, Thailand, Cambodia, Vietnam, Myanmar. Other countries 

where spinel is mined include: Afghanistan, Nepal, Tajikistan, 

Australia, Madagascar, Nigeria, and Tanzania.    

As extraterrestrial material, the spinels are important constituent of many lunar rocks 

and meteorites. Magnetite, titanomagnetite, spinel, chromite and ulvöspinel were 

found in many Martian meteorites (Taylor et al., 2002; Xirouchakis et al., 2002; Yu 

and Gee, 2005) and lunar meteorites (Arai et al., 1996; Gross and Treiman, 2011). A 

new mineral with post-spinel structure "xieite” has recently been approved by the 

Commission on New Minerals, Nomenclature and Classification of the International 

Mineralogical Association (Chen et al., 2008). It occurs in the Suizhou meteorite 
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which underwent a strong collision in space, and is a high pressure polymorph of 

chromite. 

Studies of pre-solar grains in meteorites showed that Cr-bearing MgAl2O4 spinel is an 

abundant constituent of stardust (Gyngard et al., 2010). Besides, reflectance spectra 

of spinels indicate they may be present at the surface of some asteroids (Hiroi et al., 

1994; Sunshine and Cloutis, 1999). 

1.2. Structure  

The spinel structure (Fd3m) is made up an approximately cubic close-packed (CCP) 

array of O atoms with a unit cell containing eight formula units. The unit cell contains 

32 anions, 64 tetrahedrally coordinated  sites and 32 octahedrally coordinated sites, 

but A and B cations are distributed only in one-eighth of all tetrahedrally coordinated 

(T) and half of all octahedrally coordinated (M) sites to give the cell content of 

A8B16O32. In the spinel structural framework, M sites share half of their polyhedral 

edges, M and T sites share polyhedral corners, and tetrahedra show no mutual 

ligands. Perpendicular to each triad axis, layers of O atoms alternate with layers 

containing the cations, which, in turn, are made of layers occupied only by edge-

sharing octahedra (M) and layers with two isolated tetrahedral (T) occupied for every 

octahedra (Fig. 1.2). 

With the origin of the unit cell taken at the center of symmetry ( m3 ), the cations are 

fixed at special positions 8a (T) and 16d (M) at  1/8, 1/8, 1/8 and 1/2 1/2 1/2 fractional 

coordinates, respectively. Single oxygen atom also occupies a special position, 32e, 

with 3m symmetry but with a variable fractional coordinate (u,u,u). The oxygen 

parameter u is the distance of the nearest anion from the origin and can be used to 

define the distortion of the CCP array. 
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Fig. 1.2. Spinel structure, with cubic unit cell outlined in black, oxygen ions in green, tetrahedra and T 
sites in red and octahedra and M sites in blue color. 

For the ideal close packed structure, u = 0.25, the anions form an exactly cubic close 

packed array, and define a regular tetrahedral coordination polyhedron about the 8a 

sites (point symmetry 3m4 ) and a regular octahedron about the 16d sites (point 

symmetry m3 ). A distortion of the CCP arises when u ≠ 0.25, with the range of 

parameters u spanning from 0.24 to 0.27. When u increases, oxygen moves along 

the [111] direction, so the octahedral site becomes smaller and the tetrahedral site 

larger until, at u = 0.2625 they are equal in size. As the positions of cations A and B 

are fixed, the oxygen array expands (or contracts) around them. In this way, the 

octahedron undergoes angular distortion and its symmetry degenerates to m3  

(trigonally distorted octahedra), whereas the tetrahedron remains regular (Bosi et al., 

2007). The presence in T and M sites of transition elements with unpaired external 

electronic levels can cause large distortions in both sites, due to the Jahn-Teller effect 

(Fregola et al., 2012). In particular, cations with 3d9 or 3d4 orbitals such as Cu2+ and 

Mn3+ produce a reduction of octahedral site symmetry from m3   to 
m

4 or lower. For 

example, in the cubic spinels, when MMn3+ is present in low concentrations, the 

octahedra are deformed but don’t produce macroscopic effects such as point 
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symmetry modifications, since this distortion occurs random along the equivalent 

[100] directions. When a critical MMn3+ concentration and critical temperature are 

reached, mutual interactions between second-coordination spheres become 

important and all octahedra are deformed along the same direction, as in 

hausmannite (MnMn2O4),  lowering the symmetry to tetragonal I41/amd (Bosi et al., 

2002). 

In the spinel structure, only two parameters may vary with chemical composition 

and/or physical conditions: the oxygen fractional coordinate u and the cell edge a. 

Many studies on different spinel samples highlighted that a  is affected principally by 

the chemical composition of compounds, whereas u depends mainly on the cation 

distribution (Della Giusta et al., 1986; Princivalle et al., 1989; Lucchesi and Della 

Giusta, 1994). From the geometrical point of view, the unit-cell parameter is 

dependent only on the tetrahedral and octahedral bond distances, with the octahedral 

bonds exerting the greater influence, following the equation: 

 

 

   




 

22 OT8)OM(33OT5
311

8
a

     (1) 

The u parameter is geometrically related to the ratio of the bond distances, following 

the equation: 

 

 
 1R6

5.0R 
16

332R75.0




u        (2) 

 

where R = (M-O)2 /(T-O)2.   
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Every variation of u and a determines modifications of T-O and M-O bond distances, 

allowing for accommodation of various chemical components and/or cation ordering 

(Lavina et al., 2002). Similarly the octahedral and tetrahedral bond distances can be 

used to determine the two structural parameters, a and u. 

 8/13OT  ua          (3) 

 

8/323OM 2  uua         (4) 

 

Figure 1.3 shows relations that T-O and M-O distances have with a  and u. Many 

studies on different spinel samples highlighted that a is affected principally by the 

chemical composition of compounds, whereas u depends on the cation distribution in 

the unit cell, connected with thermal history of spinel and with physic and chemical 

conditions of the geologic environment (Della Giusta et al., 1986; Lucchesi and Della 

Giusta, 1994).  

 

Fig. 1.3. Relationships between T-O and M-O distances, expressed as fractions of a , and u. 
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It is well known that u strongly depends on thermal history of spinel and on physic 

and chemical conditions of the geologic environment. Princivalle et al. (1989) 

observed that u displays a constant value within the spinels from individual geological 

settings, even if there is a variation in bulk chemistry, whereas spinels with similar 

bulk chemistry but belonging to different geological environments exhibit a wide range 

of u values. Furthermore, Della Giusta et al. (1996) and Redfern et al. (1999) 

observed that u must preserve geologic history. Thermal experiments employing 

natural Mg-Al-Fe2+-Fe3+ spinels showed that the most sensitive parameter during 

changes in temperature is the oxygen coordinate, with u in normal spinels decreasing 

significantly during heating and increasing during cooling. 

In general, cations can reside on both types of sites, thus giving rise to a disordered 

cation distribution. If all A cations are in the T sites and all B cations are in the M 

sites, the spinel is called normal spinel. When half of the B cations occupy the T sites 

and the rest, together with the A cations occupy the M sites, the spinel is called 

inverse spinel. There are many examples of intermediate cases between normal and 

inverse spinel where a fraction of A and B cations are inverted and they are termed 

as partially inverse spinels. The cation distribution in spinels can be described by the 

general formula: 

T(A1-i Bi)
M(Ai B2-i)O4 

where i represents the so-called inversion parameter which can be defined as the 

fraction of B-type cations in the tetrahedral site and can vary from 0 to 1 from normal 

to inverse spinels, assuming the value of 2/3 for a completely random distribution (i.e. 

each single site displays the same occupancy: T(  
 ⁄
  

 ⁄
)M(  

 ⁄
  

 ⁄
 2O4), that is 

maximum disorder. However, the order-disorder of spinels is “non-convergent”, that is 

the same symmetry is maintained at any inversion, because it only involves a 

redistribution of cations over sites which are already differentiated In this way i may 

be used as a measure for cation disordering since it asymptotically approaches the 

value of 2/3 at elevated temperature for every composition (Sack and Ghiorso, 1991; 

Redfern et al., 1999). The cation distribution of natural and, above all, synthetic 
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spinels has been extensively studied using different technique and different 

experimental condition (O’Neill and Navrotsky, 1983; Della Giusta et al., 1996; 

Lucchesi and Della Giusta, 1997; Princivalle et al. 1999; Andreozzi et al. 2000; 

Andreozzi and Lucchesi, 2002; Bosi et al., 2009).  

The inversion parameter is affected by the temperature and thermal history, by 

chemical composition and by the cation site preference. 

The dependence of cation distribution on the equilibration temperature has been 

estimated for several end-members of the spinel group with various techniques (Della 

Giusta et al., 1986; O’Neill and Dollase, 1994; Waerenborgh et al. 1994; Harrison et 

al., 1998; Redfern et al., 1999; Andreozzi et al., 2000; Carbonin et al., 2002; Uchida 

et al., 2005). Although the values of the inversion degree reported in the literature are 

sometimes very different, all studies agree that increasing the temperature, the 

cations may be disordered between T and M sites: the higher the temperature the 

higher the disordered state. In this way, the cation distribution of spinel reflects the 

thermal history of the host rock and can be used as geothermometer (see paragraph 

1.3.). 

The cation distribution is also greatly influenced by the chemical composition, which is 

by cation radii and charge. The relationship between inversion parameter and 

chemical composition has been studied in several spinel solid solution series. The 

trend of the inversion parameter in a spinel solid solution series is influenced by the 

difference of the substituting cation radii (Andreozzi et al., 2001a; Andreozzi and 

Lucchesi, 2002; Lenaz et al., 2004; Lenaz et al., 2006; Bosi et al., 2007; Bosi et al., 

2009; Bosi et al., 2011; Fregola et al., 2011). Cation radii and charge effects have a 

tendency to counteract each other. In 2-3 spinels the B3+ cations generally possess 

small ionic radii and, thus, they may occupy the smaller tetrahedrally coordinated 

sites, involving the change of an inverse configuration. However, according to the the 

Verwey–Heilmann principle of maximal charge neutralization, the charge is 

neutralized efficiently by numerous anions in the first coordination shell, thus cations 

of high valence (B3+) may also occupy sites with higher coordination numbers (M 



 

14 

 

sites). This behavior is favorable to the normal configuration. It was shown that the 

effective radius of cation depends on the type of anions in the first coordination shell, 

and on the coordination number. Shannon and Prewitt (1969) were the first authors to 

examine the variations of ionic size in function of the coordination number and 

entered into a list of effective ionic radii (Tab. 1.2), improved later by O'Neill and 

Navrotsky (1983) and Lavina et al. (2002). 

Table 1.2. Effective ionic radii in tetrahedral and octahedral sites reported in literature. 

 Shannon and Prewitt 

(1969) 

O'Neill and 

Navrotsky (1983) 

Lavina et al. 

(2002) 

Cationic radii in the tetrahedral site 

Mg 0.57 0.585 0.586 

Zn 0.60 0.58 0.58 

Fe
2+

 0.63 0.615 0.62 

Mn
2+

 0.66 0.655 0.656 

Co
2+

 0.58 0.58 0.592 

Ni 0.55 0.565 0.56 

Al 0.39 0.39 0.394 

Fe
3+

 0.49 0.485 0.495 

Si 0.26 0.275 0.247 

Cationic radii in the octahedral site 

Al 0.535 0.53 0.528 

Cr 0.615 0.615 0.615 

Fe
3+

 0.645 0.645 0.645 

Mn
3+

 0.645 - 0.65 

V 0.64 0.645 0.642 

Ti 0.605 0.60 0.582 

Mg 0.72 0.715 0.702 

Zn 0.74 0.73 0.75 

Fe
2+

 0.78 0.74 0.77 

Mn
2+

 0.83 0.8 0.811 

Co
2+

 0.745 0.72 0.73 

Ni 0.69 0.69 0.68 
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Another explanation for the observed behavior for which the smaller B3+ cation is 

found in the larger octahedra and larger A2+ cation in the smaller tetrahedra is 

represented by octahedral site preference energy (OSPE). The OSPE is the 

difference between the crystal field stabilization energy (CFSE) for the octahedral and 

tetrahedral coordination and is a measure of a cation preference for the octahedrally 

coordination relative to the tetrahedral one (Tab. 1.3).  

Table 1.3. Crystal Field Stabilization Energy (CFSE) in T and M sites and Octahedral Site Preference 

Energies (OSPE) for Transition Metals in Oxide Structures (Burns, 1993). 
 

Number of  

3d electrons 
Cations 

Octahedral 

CFSE 

(kJ/mole) 

Tetrahedral 

CFSE 

(kJ/mole) 

OSPE 

(kJ/mole) 

0 Ca2+, Sc3+, Ti4+ 0.0 0.0 0.0 

1 Ti3+ –87.4 –58.6 –28.8 

2 V3+ –160.2 –106.7 –53.5 

3 Cr3+ –224.7 –66.9 –157.8 

4 Cr2+ –100.4 –29.3 –71.1 

4 Mn3+ –135.6 –40.2 –95.4 

5 Mn2+, Fe3+ 0.0 0.0 0.0 

6 Fe2+ –49.8 –33.1 –16.7 

6 Co3+ –188.3 –108.8 –79.5 

7 Co2+ –92.9 –61.9 –31.0 

8 Ni2+ –122.2 –36.0 –89.2 

9 Cu2+ –90.4 –26.8 –63.7 

10 Zn2+, Ga3+, Ge4+ 0.0 0.0 0.0 

 

As example, high-spin Cr3+ has one of the highest values for CFSE of any transition 

metal in octahedral coordination, which means that Cr3+ really prefers to be in 

octahedral coordination, thus Cr-spinels usually have normal configuration. Similarly, 

both Ni2+ and Cu2+ have relatively large values of OSPE, forming inverse spinel. 

Cations like Fe3+ and Mn2+ have zero OSPE, therefore, don’t have preference for 
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either tetrahedral or octahedral coordination, and thus will form both normal and 

inverse spinels depending on the site preferences of the other coexisting cations. 

It’s possible to determine orders of preference of divalent and trivalent cations for the 

octahedral site:  

Ni2+>Cr2+>Cu2+>Co2+>Fe2+>Mn2+ and Zn2+ 

Cr3+>Mn3+>Co3+>V3+>Ti3+>Fe3+  

This method is not always successful, and there are unsolved problems when d0, d5, 

and d10 ions are present because of lack of crystal field preference energy. For 

example, in the case of zinc spinels one could postulate an excess energetic 

stabilization for the zinc ion in the tetrahedral site, derived from its formation of sp3-

type covalent bonds, which would explain why all 2-3 zinc spinels are normal. 

The covalence character of a mineral is also influenced by the effect of the 

polarization. When large cation in the lattice, especially with a large charge, and a 

small anion with a large charge, are close to each other, the anion may attract part of 

the negative charge on the cation to itself, thus distorting the shape of the anion. This 

is called polarization, and indicates an increasing covalent character in the bond. In 

fact, greater charge and smaller size of the cation greater will be its polarizing power 

and the covalence nature of the bond length. 

In conclusion, the cation order–disorder effects in spinels give rise to important 

consequences in their thermodynamics and properties. Therefore, the study of the 

local structure of these compounds is of primary importance (Šepelák et al., 2007). 

1.3. Relevance of spinels in the geologic field 

Within the spinel group there is a wide variety of compositions, each showing different 

properties and interest. As already seen, the cation distribution is a function of the 

closure temperature and the cooling rate of spinels in host rocks. During crystal 

cooling, divalent and trivalent cations progressively order at T and M sites, 

respectively. The temperature at which such an exchange stops is defined as closure 
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temperature (Tc) and depends on cooling rate. The closure temperature depends on 

the cooling rate of the host rock so that, for rapid cooling, the closure of 

intracrystalline exchange between T and M sites occurs at a higher temperature, 

whereas a slow cooling allows a strong ordering and low Tc (Princivalle et al. 1989; 

Della Giusta et al. 1996; Lucchesi and Della Giusta 1997; Lucchesi et al. 1998; 

Princivalle et al. 1999; Uchida et al., 2005).  

Thermal experiments employing spinels of fixed chemistry showed that the most 

sensitive parameter during changes in temperature is the oxygen coordinate, u. As 

observed by Princivalle et al. (1989), spinels that underwent the same cooling history 

show rather constant u values in spite of their wide compositional ranges. On the 

other hand, in normal spinels u decreases significantly during heating and increases 

during cooling. In general, u less than or close to 0.2625 cooled more quickly than 

those with u higher than 0.2625. For example, chromian spinels from various suites of 

ultramafic rocks commonly show u values ranging from 0.2625 to 0.2631 (Della 

Giusta et al. 1986, Princivalle et al. 1989; Lenaz and Princivalle, 2005). Thanks to this 

temperature dependence, the spinels have been proposed as a potential 

geothermometer. Since olivine and spinel coexist in many igneous and metamorphic 

rocks such as peridotites, primitive basalts, and some type of meteorites, an Mg-Fe 

exchange geothermometer applicable to olivine-spinel assemblages was made 

(O’Neill and Wall, 1987; Ballhaus et al., 1991). An olivine-spinel thermometer was 

used also in ordinary chondrites by Votyakov et al., 1998. 

While the geothermometer described by Princivalle et al. (1999) allows calculation of 

the closure temperature for magnesium spinels from their cation distribution. It is 

based on the temperature-dependent intracrystalline exchange reaction MAl+TMg = 

TAl+MMg. The closure temperature can be obtained by the equation:  

Tc (°C) = 6640*B 

 where B = TAl/Altot + 0.101(1 – TMg – TAl) + 0.041(2 – MAl – MMg). The coefficients 

take into account the compositional influence of the other cations. The uncertainty 

associated with this geothermometer is ±20 °C. 
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Given the influence of the chemical composition on the cation distribution, different 

regions have been delineated based on the composition of spinels according to their 

tectonic settings (Barnes and Roeder, 2001). Some minerals of the group, particularly 

chromites, can be used as ‘‘petrogenetic indicators’’ (Irvine, 1965, 1967; Sack and 

Ghiorso, 1991). This is due to the fact that chromites associated with mafic–ultramafic 

rocks are very sensitive to conditions present during the crystallization of these rocks; 

therefore, they provide information regarding the tectonic settings in which their host 

rocks were formed. An example of relations between environment of rock formation 

and spinel composition could be the spinel-based classification for ophiolites from 

Dick and Bullen (1984) based on the ratios Cr/(Cr+Al) and Mg/(Mg+Fe2+). The Cr 

contents of homogeneous spinels could also provide a sensitive indicator of the 

degree of fractionation and of interactions between host liquids and wall rocks for the 

MORB-type basalts (e.g., Allan et al., 1988). 

Chromites are also major collector of the platinum group elements (PGE) and Ni-Cu-

PGE, which are of strategic importance due to their growing use in advanced 

technologies and the use of Pt, Pd, and/or Rh in automobile catalyst converters 

(Economou-Eliopoulos, 1996).  

The quantity of V in spinel can be used as a sensor of oxygen fugacity of terrestrial 

rocks, meteorites and asteroid. For example in chromites studied via XANES 

spectroscopy by Rigther et al., 2009, V pre-edge peak intensity and energy vary with 

fO2. The partitioning between spinel and olivine can be used as oxybarometer. 

Furthermore, the spinels, especially iron-spinels, are responsible of the most 

magnetism in rocks. In nature the most important magnetic spinel phase is the solid 

solution between magnetite (Fe3O4) and ulvöspinel (Fe2TiO4). The occurrence of 

magnetite is particularly important for palaeomagnetic reconstructions of the drifting 

continents over geological time and to provide information on the timing and the 

magnitude of the Martian dynamo, studying Martian meteorites (Antretter et al., 2003; 

Yu and Gee, 2005). The thermodynamic properties of this system are again a 

function of magnetic ordering in the magnetite-rich compositions, which yields a 
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ferrimagnetic spin structure below the Curie temperature with magnetic moments on 

octahedral sites aligned antiparallel to those on tetrahedral sites (Néel, 1948).   

Due to magnetic properties of the spinels, they are of great interest in geophysical 

research. Because spinels exhibit pressure-induced phase changes, they are often 

used as model minerals for deep-Earth mineralogy. The importance of the presence 

of spinel-type phases in the Earth’s mantle has recently led to high-pressure 

experimental studies of phase transformations (Winell et al., 2006) and 

measurements of sound velocities and elastic constants (Yoneda, 1990; Pasternak et 

al., 1994; Reichmann and Jacobsen, 2004, 2006).  

Recently a team of researchers from the University of Colorado (Department of 

Geological Sciences and Laboratory for Atmospheric and Space Physics) and the 

University of Alaska (Department of Chemistry and Biochemistry) hypothesizes that 

the spinels play an important role in the water-rock reaction producing hydrogen gas 

to sustain life in cool parts of the ocean’s crust or on Mars (Mayhew et al., 2013). 

These authors propose that H2 production is promoted by the transfer of electrons 

occurring at the surface of spinel mineral phases. Spinel phases that possess Fe(II) in 

their mineral structure may transfer electrons from those structural Fe(II) atoms to 

water (H2O) or protons (H+) adsorbed to the mineral surface, producing H2 gas. 

Spinel-bearing rocks, such as basalts are common on the surface of Mars and 

minerals diagnostic of the occurrence of water-rock reactions have also been 

detected on Mars’ surface, so the spinels could play a role in supporting putative 

microbial habitats on other terrestrial planetary bodies. 

1.4. Relevance of spinels in the gemological field  

Natural spinels are actively sought as gemstones by gem collectors for their excellent 

hardness (8 on Mohs scale), high clarity, high refraction index and wide palette of 

attractive colors. In fact, thanks to and the ability of accepting different cations with 

different valence in the structure, spinels exhibit a wide range of compositions. Most 

gems spinels have compositions close to spinel s.s., including the so-called ruby 
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spinel, one of the best examples of which is the “Black Prince’s ruby” in the Imperial 

State Crown. Chemically pure spinel s.s. is colorless, but minor amounts of coloring 

elements (chromophores) such as Cr, Co, Mn, Fe, V and Cu are responsible for a 

broad spectrum of colors from pink to red, purple to violet, light blue to vivid blue, 

green to bluish grey. Most appreciated are red spinels, but also pink to purple and 

blue are amongst the favorite colors on the gemstone market. Synthetic spinel is 

often used to imitate a variety of other gemstones, like ruby and sapphire.  

1.5. Relevance of spinels in the technological field  

Spinels are significant not only for the Earth Sciences but they are also some of the 

most studied substances in the Solid State Science, thanks to their remarkable 

mechanical, thermal, electrical, magnetic, and physical properties. For these 

properties, synthetic spinel materials are suitable for large varieties of applications as:  

 Pigments. Synthetic spinels are widely utilized by the ceramic industry as 

pigments for the coloration of ceramics, glazes, porcelain enamels, glass, 

paint, fibers, paper, cement, rubber, plastics, and cosmetics. In fact, spinel 

shows all the fundamental characteristics of a good ceramic pigment: thermal 

and chemical stability at high temperature, high chemical resistance (inert to 

the action of molten glass, frits or sintering aids), strong refractoriness (melting 

point >1500°C) and high refractive indices (>1,7). The solid solutions 

(Mg,Fe)(Al, Ti, Cr, Fe)2O4 are the most essential to ceramic technology 

because of their colors and stability (Maslennikova, 2001). Furthermore, 

cobalt-zinc aluminate spinels CoAl2O4 and (Co,Zn)Al2O4 are the only high-

temperature blue pigments widely used in ceramic industry. 

In addition, spinel crystal doped with Cr3+ ions (Cr:MgAl2O4) has been 

proposed as substitute of ruby crystal as the sensor probes of the fibre-optic 

thermometers, because of high melting temperature (T =2378 K), visible PL 

(λ=690 nm), and long PL lifetime (in ms order) (Aizawa et al. 2002). 
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 Refractory material. Spinel is a highly refractory material for its high melting 

point, excellent mechanical strength at ambient and elevated temperatures, 

superior corrosion, erosion, abrasion resistance and thermal spalling 

resistance. The major application areas of spinel refractory are burning and 

transition zones of cement rotary kilns, side-walls and the bottom of steel 

teeming ladles and checker work of glass tank furnace regenerators as it is 

resistant to corrosion by slag (Dal Maschio et al., 1988). Being an important 

refractory material it may also be used in advanced application like high-temp 

arc-enclosing envelops, humidity and infrared sensors, transparent windows, 

domes and armor material (Ghosh et al., 2004). 

 

 Semi-conductors.  Recently, the spinel oxides, for example ZnFe2O4, Zn2TiO4 

and NiFe2O4, were widely used as gas sensor materials to detect, measure 

and control the atmospheric pollution, because of their stability in thermal and 

chemical atmosphere and the good sensitivity to a variety of different gases 

(Gedam et al., 2009). 

 

 Catalysts. Among the transition metal oxides, chromium oxide has been known 

to be the most active component. MCr2O4 chromites with M = Cu, Co, Zn, Mg, 

Mn are bifunctional catalysis, which accelerate both the oxidation of 

hydrocarbons and CO and the reduction of NOx, with an activity sequence 

CuCr2O4>MnCr2O4>CoCr2O4>MgCr2O4>ZnCr2O4 (Pirogova et al., 2001). Also 

iron-cobalt–zinc manganites are efficient catalysts for the reduction of NO to N2 

by both propane and propene (Fierro et al., 2005). 

 

 Batteries. The spinel phase LiMn2O4 is well known as alternative electrodes for 

rechargeable lithium batteries. The main advantages of the spinel lithium 

manganese oxide are the low cost of manganese (because of its abundance in 

nature), better cell safety performance, and low toxicity to environment. (Julien 

and Massot, 2006).  
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Chapter 2 

SPECTROSCOPIC METHODS 

2.1. Introduction to Spectroscopy 

Spectroscopic methods are complementary techniques or sometimes even an 

alternative to the traditionally applied diffraction methods. The diffraction and 

chemical analysis are of great importance for a material characterization, but many 

problems are not amenable to such techniques and a spectroscopic characterization 

is required. Indeed, the X-ray diffraction analyses depend on the long-range 

periodicity of a crystal structure producing an average description. While the 

spectroscopic methods provide short-range information about the local structure 

around each cation, such as the coordination number, local chemical and 

crystallographic environment and site symmetry. One should regard these techniques 

as complementary, and use them in combination with structural and chemical 

analysis to the study of minerals. 

Although there are many different spectroscopic techniques, they all are concerned 

on the same basic principle: the interaction between various types of radiation (mainly 

electromagnetic radiation) and matter. Because of quantum mechanical wave-particle 

duality, the electromagnetic radiation can either be described as a wave or a particle, 

a photon. As a wave, it is represented by velocity, wavelength (), frequency () and a 

wave vector (k). As a particle, it is represented as a photon, which transports energy. 

When a photon is absorbed, the electron can be moved up or down an energy level. 

When it moves up, it absorbs energy, when it moves down, energy is released. Thus, 

since each atom has its own distinct set of energy levels, each element emits and 

absorbs different frequencies. Four types of radiation-mater interaction can be 

defined (modified from Geiger, 2004):  

1) There is no interaction between the incident radiation and matter. The radiation 

is transmitted with no change in its properties. 
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2) The interaction involves only a change in the wavevector, while the frequency 

of radiation remains the same. The incident radiation is scattered or diffracted 

elastically over a range of wavevectors. 

3) The incident radiation causes some internal excitation or transition, which can 

be vibrational, electronic or nuclear. Thus, the radiation is selectively absorbed 

by the matter promoting particles to a higher energy level. These are the 

absorption spectroscopy. For example the IR and optical absorption 

spectroscopy involve vibrational and electronic excitations, respectively, from 

E1 to E0, where E1>E0. 

4) The incident radiation couples with an internal process, a transition occurs and 

a following decay back to the ground state cause an emission of radiation 

having a different frequency. This process makes possible a wide range of 

methods including inelastic scattering (Raman spectroscopy), luminescence 

spectroscopy, etc. 

Normally, only the last two categories are considered to constitute different 

spectroscopic processes. 

The radiation of appropriate frequency provoked changes in the energy levels of the 

material from the ground state (i.e. at lowest energy state) to the excited states (i.e. at 

higher energy), and it is usually referred to as a transition. When the particle changes 

from one energy state to another, it must absorb or release the energy corresponding 

to the difference between the states, that is: 

ΔE = E1−E0 = h ν = hc/λ        (6) 

where E is the energy in joules, h is Planck’s constant (6.6  x 10-34 Js), c is the 

velocity of light (3 x 108 ms-1), ν is the frequency (Hz or cycles/s) and λ is the 

wavelength (cms). E1 is the energy of the excited state while E0 is the energy of the 

ground state, then the molecules absorbs ΔE when it is excited from E0 to E1 and 

emits ΔE when it reverts from E1 to E0. 
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The energy difference between ground and excited states cover the entire range of 

the electromagnetic spectrum from radiofrequency (~106 Hz) to X-ray and γ-ray 

frequencies (up to ~1020 Hz) (Putnis 1992).  

Each energy levels is associated with a different phenomenon involving for example 

nuclear spin resonance, electron spin resonance, molecular rotations and vibrations, 

valence electron transitions, core electron transitions, and nuclear transitions (Fig. 

2.1). Different regions of the electromagnetic spectrum provide different kinds of 

information. For example the visible range gives information about the electronic 

transitions involving the valence electrons, while the infra-red range brief about the 

molecular vibration, which involve stretching and bending of atomic bonds. 

Thus, the different spectra can provide compositional information, local structural and 

crystal-chemical properties. Often in order to fully understand the physical and 

chemical properties of some material, it is necessary applies a number of different 

techniques in a complementary mode. 

In this work, the emphasis will be on the molecular vibrations and the valency electron 

transitions in the IR, visible and ultraviolet regions of the spectrum, characterizing the 

spinels through the Raman and UV-VIS-NIR spectroscopy. 

 

Fig. 2.1. The electromagnetic spectrum with the different regions. The various transitions causing the 
absorption with the corresponding spectroscopic type are shown (above). At the bottom, there are the 
wavelengths, frequencies and energy associated with each regions.  
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2.2 Raman Spectroscopy 

The main spectroscopies employed to detect vibrations in molecules are based on 

the processes of infrared absorption and Raman scattering. They are widely used to 

provide information on chemical structures and physical forms, to identify substances 

from the characteristic spectral patterns (‘fingerprinting’), and to determine 

quantitatively or semi-quantitatively the amount of a substance in a sample. Samples 

can be examined in a whole range of physical states; for example, as solids, liquids or 

vapors, in hot or cold states, in bulk, as microscopic particles, or as surface layers. 

Raman scattering is less widely used than infrared absorption, largely due to 

problems with sample degradation and fluorescence. However, recent advances in 

instrument technology have simplified the equipment and reduced the problems 

substantially. These advances, together with the ability of Raman spectroscopy to 

examine aqueous solutions, samples inside glass containers and samples without 

any preparation, have led to a rapid growth in the application of the technique (Smith 

and Dent, 2005). 

Raman spectroscopy is a vibrational spectroscopy involving the use of light to probe 

the vibrational behavior of molecular systems and it is based on inelastic scattering, 

or Raman scattering, of monochromatic light, usually a laser in the visible. The 

Raman Effect occurs when light impinges upon a molecule and the oscillating electric 

field of the light polarizes (distorts) the electron cloud around the nuclei to form a 

short-lived state called a “virtual state” (Fig. 2.2). This unstable state is not 

necessarily a true quantum state of the molecule and the photon is quickly re-

radiated. The photon excites the system to a virtual state before decaying to the 

ground state (Rayleigh) or an excited vibrational state (Raman). In detail, when a 

monochromatic beam of light of frequency ν0 interacts with a molecule, most of the 

incident radiation is transmitted, refracted, reflected and scattered. Regarding the 

scattering, the most light is elastically scattered at the same frequency (ν0) and 

wavelength as that of the incident beam. This process is called Rayleigh scattering 

and does not provide useful information. However a small fraction of the incident light 
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(~10-5−10-8 of the incident beam intensity) can be inelastically scattered at different 

wavelengths and frequency ν1 (and so different energy) as a result of the interaction 

between the incident beam and the vibrational modes of the molecule. This process is 

called Raman scattering and depend on the chemical structure of the sample. The 

Raman scattered light therefore loses or gains a small increment of energy which 

corresponds to the energy of the vibrational mode. The radiation that is scattered at 

lower frequencies than the incident beam (ν0 -ν1) is referred to as Stokes scattering 

while the light scattered at higher frequencies (ν0 + ν1) is referred to as anti-Stokes 

scattering.  

 

Fig. 2.2. Energy diagram showing the IR, Rayleigh, Raman scattering and fluorescence processes 
(modified from Smith and Dent, 2005). 

Raman scattering is less intense than Rayleigh scattering and is directly proportional 

to the intensity of the incident beam and the concentration of the sample. According 

to the Maxwell-Boltzmann distribution law, the population of any excited level is 

always less than that of the ground state, therefore Stokes scattering is more intense 
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than anti-Stokes scattering provide similar information, normally only the Stokes side 

of the Raman spectrum is used to interpretation (Fig. 2.3). 

 

Fig. 2.3. Raman spectroscopy. Rayleigh, Anti-Stokes and Stockes scattering processes and the 
equivalent Raman bands. 

A spectrum comprises one or more bands which reflect the vibrational energies of the 

molecules within the analyzed sample; these in turn are related to the nature of the 

bonding. The Raman spectrum can be plotted as light intensity (usually given in 

counts, counts per second or arbitrary units) versus photon energy, expressed in 

wavenumber ( ̃). A wavenumber can easily be calculated from a known light 

frequency ν, using 

 ̃ = 
 

 
  

 

 
           (7) 



 

28 

 

where ν is the frequency of the photon, and c is the speed of light in a vacuum, 2.998 

× 1010 cm/s; the unit of the wavenumber is cm-1. While wavenumbers are generally 

used in IR absorption spectra, in Raman spectroscopy, the use of absolute 

wavenumber would be impractical, because it must depend on the wavenumber of 

the incident light. A wavenumber shift relative to the wavenumber difference between 

the incident and scattered light can be plotted (Fig. 2.4). This is called Raman shift,  ̃, 

can be calculated using the equation:  

 ̃   
  

 
 

      

 
          (8) 

where νi and νs are the frequencies of the incident and scattered photons, 

respectively. So the Raman shift is the difference between the wavenumbers of the 

Raman-scattered photon and the Rayleigh-scattered photon. By convention, the 

Rayleigh line is set at 0 cm-1 and Stokes and anti-Stokes bands have positive and 

negative relative wavenumbers, respectively (Nasdala et al., 2004b).  

 

Fig. 2.4. Raman spectrum plotted in terms of Intensity (arbitrary unit) versus Raman shift.  The x axis is 
given with three additional scales at the top to elucidate the relationship of the absolute and relative 
wavenumbers, frequencies and wavelengths (from Nasdala et al. 2004b). 
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Although different energy ranges are possible, the information of interest to most 

users is in the 4000-200 cm-1, since this includes most modes which are characteristic 

of a molecule. On the other hand, most Raman spectrometers readily measure the 

spectrum down to 100 cm-1, and often lower. 

The intensity of bands in the Raman spectrum of a compound is governed by the 

change in polarizability, α, occurs during the vibration. 

The deformation of the electron cloud induces an instantaneous dipole moment, μ,  

given by: 

μ = αE0 cos(ν0t)         (9) 

in which α is the polarizability of the lattice and E0 cos(ν0t) describes the strength of 

the oscillating electric field at a given time (t) where E0 is the amplitude and ν0 is the 

frequency of the radiation.  

Electron clouds are three-dimensional entities, and an incident electric field can 

induce a dipole in directions perpendicular to the direction of polarization. Therefore, 

the Equation 9 must be a tensor to incorporate the x, y, and z directions. In matrix 

form, this equation can be written as: 

(

  

  

  

)  (

 
         

         

         

)(

  

  

  

)                   (10) 

where the 3×3 matrix is called the polarizability tensor. 

Hence, Raman scattering will only occur when the molecular vibration produces a 

change in polarizability. If the polarizability does not change during a vibration, the 

vibration is not Raman-active. 

This is the main difference to infrared (IR) absorption, where vibrations of light and 

vibrations of the sample have the same frequency and the interaction depends on the 

dipole moment μ. 
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The intensities of the bands in the Raman spectrum are also dependent on the nature 

of the vibration being studied and on instrumentation and sampling factors. 

2.2.1 Symmetry, Group theory, Normal Modes and Selection rules 

The complex vibrations of a molecule are the superposition of relatively simple 

vibrations called normal modes or normal vibrations. If a normal mode has an allowed 

IR transition, it says that it is IR active. Similarly if a normal mode has an allowed 

Raman transition, it says that it is Raman active. 

The number of vibrations to be expected from a molecule with N atoms is 3N ‒6 for 

all molecules except linear systems where it is 3N ‒ 5. For simple mineral this 

equation can be used but when a mineral has a number of symmetry elements in its 

structure, it would have a huge number of degrees of vibrational freedom. In contrast, 

the number of observed vibrations is always limited. This is due to the periodic 

arrangement of atoms in the crystal lattice, which leads to a comparably small 

number of longitudinal and transversal lattice vibrations. So the vibration of a mineral 

lattice can be reduced to the corresponding primitive unit cell and its degrees of 

vibrational freedom. The number of vibrational modes in a highly symmetry crystal 

which may be observed in infrared and Raman spectroscopy is equal to 3n ‒ 3, 

where n is the number of atoms in the primitive unit cell.  

The symmetries of the normal modes can be classified by group theory. Group theory 

provides a powerful mathematical tool for predicting the infrared and Raman activities 

of all vibrational modes of even complex molecules and crystals. A group is a set of 

elements and symmetry operations, which express certain spatial relations between 

different parts of the molecule. 

Detailed explanation of Group theory is described by Rykhlinskaya and Fritzsche 

(2004), but a few concepts need to be presented here as relevant terms will be used 

during the discussion of theory and data. 
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Symmetry operations are geometric transformations that leave a molecule 

indistinguishable from its original orientation. The symmetry of minerals can be 

described in terms of the following five symmetry elements: 

1) The identity operator, E, leaves the structure unchanged; 

2) The rotation operator, Cn, rotates the structure through an angle of 360◦/n 

about an axis, where n is an integer; 

3) Vertical and horizontal mirror plane operators, σv and σh, reflect all atoms in the 

structure about a plane;  

4) A center of inversion operator, i, reflects all points in the structure across a 

center of symmetry; 

5) The rotation reflection operator, Sn, also known as an improper rotation, 

involves both a rotation and a reflection. 

Any unit cell of a mineral contains some set of one or more of these symmetry 

elements. The symmetry operations can be represented by matrices. A set of 

matrices that describe the symmetry operations belonging to a point group is known 

as a representation. A representation will depend upon the choice of basis 

coordinates. To prevent confusion as to which representation is being used, 

irreducible representations are introduced. Any arbitrary representation can be 

described by a linear combination of these irreducible representations. 

 

The symbols that refer to irreducible representations consist of a capital letters, and, 

in higher symmetry point groups where there is a center of symmetry, there would 

also be a g or a u subscript (for example, A1g modes). The capital letter gives 

information on the degeneration (if two different vibrations have the same frequency, 

i.e., they are equal in phonon energy, this is referred to one degenerate mode) and 

symmetry. There are four possible letters, A, B, E and F. A and B mean that the 

vibration is singly degenerate, with A modes being symmetric and B modes 

antisymmetric with respect to the main symmetry axis.  E means it is doubly 

degenerate and F means it is triply degenerate. The subscripts g and u are used to 
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describe modes that are respectively symmetric (g = gerade) and antysimmetric (u = 

ungerade) with respect to the symmetry center (Nasdala et al., 2004b). 

When two- and three-dimensional representations are present, instead of giving the 

full matrix form for the irreducible representation, it is more convenient to give only the 

character, which is the sum of the diagonal elements of a matrix. The number of 

irreducible representations belonging to a point group is equal to the number of 

symmetry classes of the point group. This allows the construction of a square 

character table, known as point group character table, which lists the characters of 

each symmetry class for every irreducible representation. The character table is the 

conventional way of tabulating symmetry information for molecular point groups. In 

the character table, as for example C2v point group table in Fig. 2.5, the symmetry 

elements are shown across the top. The first column contains the irreducible 

representations and across the line from the symbols representing the irreducible 

representations, there are a series of numbers for each. The numbers are either 1 or -

1 with the value of 1 usually for every symmetry element.   

 
Fig. 2.5. Character table of the C2v point group. 

The character table also contains information if a vibration is allowed or not.  Not all 

fundamental vibrational transitions can be studied by both IR and Raman 

spectroscopy because they have different selection rules. Selection rules tell us if a 

transition is allowed or forbidden. An allowed transition has a high probability of 

occurring and will result in a strong band. Conversely a forbidden transition's 

probability is so low that the transition will not be observed.  
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Look at the character table for the point group of the molecule, the end column gives 

information on the allowed transitions. If the symmetry label of a normal mode 

corresponds to x, y, or z, then the fundamental transition for this normal mode will be 

IR active. If the symmetry label of a normal mode corresponds to products of x, y, or z 

(such as x2 or yz) then the fundamental transition for this normal mode will be Raman 

active.  

The basic selection rule is that Raman scattering arises from a change in 

polarizability in the molecule. This means that symmetric vibrations will give the most 

intense Raman scattering. This is in complete contrast to infrared absorption where a 

dipole change in the molecule gives intensity and, at a very simple level, this means 

asymmetric rather than symmetric vibrations will be intense. 

One specific class of molecule provides an additional selection rule. In a 

centrosymmetric molecule, vibrations which are Raman active will not be infrared 

active, and vibrations which are infrared active will not be Raman active. This rule is 

known as the mutual exclusion rule. Only vibrations which are g in character can be 

Raman active and only vibrations which are u in character can be infrared active. This 

is because the g and u labels can be multiplied out and the final product must contain 

the totally symmetric representation and hence g. The rules are g X g = g, u X u = g 

and g X u = u. Since the Raman operators are g in character and the ground state is 

g, the excited state must be g if the vibration is to be allowed. In contrast, the infrared 

operator is u in character and so the excited state must be u if the vibration is to be 

allowed. In molecules without a centre of symmetry, there is no such specific rule.  

2.2.2. Applications 

Raman spectroscopy is a particularly attractive technique in many fields because is a 

non-destructive technique, suitable also for single crystals as small as a few hundred 

micrometers, no sample preparation is usually required, and Raman spectra are easy 

to obtain from solids, liquids, gases and from materials with low atomic weight 

elements. For these reasons, Raman spectroscopy is widely applied for routine 
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identification of materials, without necessarily knowing the structural origin of the 

individual spectral peaks.  

In mineralogy, Raman spectroscopy is widely used as a fingerprint tool for the 

identification of minerals and related phases. In fact, recently Raman spectroscopy 

becomes established in the description of new species or their redefinition (e.g. 

Wallwork et al., 2002; Kolitsch, 2003). Tables and database of known band positions 

have been published for minerals (Frost et al., 1999,  Table 2.1).  

Table 2.1. Characteristic frequency regions for various anionic groups (from Frost et al., 1999). 

Sulphides       <500 cm
-1

 

Hydroxides 3000-4000 cm
-1

 600-1200 cm
-1

     

Oxides   <1200 cm
-1

     

Carbonates   1300-1550 cm
-1

 800-890 cm
-1

 670-700 cm
-1

 

Nitrates   ~ 1050 cm
-1

 800-850 cm
-1

 715-770 cm
-1

 

Borates   1250-1350 cm
-1

 600-900 cm
-1

   

Sulphates   900-1250 cm
-1

   570-680 cm
-1

 

Tungstates     750-950 cm
-1

 250-450 cm
-1

 

Chromates     800-950 cm
-1

 350-500 cm
-1

 

Molybdates     750-950 cm
-1

 250-450 cm
-1

 

Phosphates   900-1150 cm
-1

   400-600 cm
-1

 

Arsenates     770-900 cm
-1

 350-400 cm
-1

 

Vanadates     700-900 cm
-1

 300-400 cm
-1

 

Silicates   800-1200 cm
-1

     

 

One advantage of Raman spectroscopy is that polymorphs with the same chemical 

composition can be easily distinguished (Etchepare et al., 1974; Rodgers, 1993) 

Today, Raman can also be a semi-quantitative tool that not only identifies which 

species are present but also the amounts. Semi- quantitative chemical information on 
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the composition of a mineral belonging to a solid solution can be obtained through a 

relationship between concentration of a particular end‒member and Raman shifts. 

This approach uses the Raman shift and not at all the intensities because the Raman 

shift is independent of a crystal orientation and hence of polarization effects and is a 

viable indicator of chemical composition (Nasdala et al., 2004b).  

Furthermore, structural information can be obtained in the study of the variation of 

Raman spectra with order-disorder phenomena in minerals (Keramidas et al., 1975). 

Thanks to the small size of the beam and the confocal optics, Raman spectroscopy 

can also use to characterize fluid and mineral inclusions in host minerals. Studying 

fluid inclusions, it’s possible to identify their gaseous, liquid, supercritical and solid 

components and to estimate the origin and formation conditions of solid phases inside 

inclusions (Burke, 2001). 

The study of inclusions find also geological applications in investigating both 

terrestrial (Kawakami et al., 2003) and extra-terrestrial (Popp et al., 2001) materials. 

Raman spectroscopy provides a powerful technique for identifying geological 

materials (minerals, glasses, melts and fluids) and for probing their behavior under 

extreme pressure and temperature conditions. Raman technique is commonly used to 

calculate the density of CO2 fluids, the chemistry of aqueous fluids, and the molar 

proportions of gaseous mixtures present as inclusions. Raman spectroscopy has 

been applied to measure the pH range and oxidation state of fluids (Frezzotti et al., 

2012). Recently, coupling vibrational spectroscopic techniques with studies in the 

diamond anvil cell (DAC) has permitted direct experimental investigation of minerals 

under extreme pressure and temperature conditions especially those of the Earth’s 

upper and lower mantle or those produced during impact of asteroids on the Earth’s 

surface. So Raman spectroscopy can be used to observe phase transitions and to 

model thermodynamic properties at both pressure and temperature of the Earth’s and 

planetary interiors. The measurement of the thermodynamic properties of minerals 

stable at high pressures is not straightforward because of the minute amounts 

available and because they are highly metastable at ambient pressure and high 
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temperature (Gillet, 2006). For instance, the most abundant mineral stable in the 

Earth’s lower mantle, (Mg,Fe)SiO3 perovskite, transforms upon heating above 600 K 

(Durben and Wolf, 1992). 

Recently, NASA and ESA currently consider Raman spectroscopy, either separately 

or in combination with laser induced breakdown spectroscopy (LIBS) or fluorescence, 

as a fundamental next generation instrument for the characterization of mineralogical 

and organic material during the exploration of Mars. During planetary surface 

exploration, a high priority is to identify and characterize surface materials, especially 

to do definitive mineralogy, in order to understand Mars evolutionary history. The 

ExoMars mission, a European mission to Mars scheduled to fly in 2018, will search 

for evidence of life. The spacecraft will carry an instrument to perform Raman 

spectroscopy on selected rock samples, to determine mineralogy and organic 

components. The knowledge of Mars through Raman spectroscopy also covers other 

aspects such as the study of potential terrestrial Martian analogues. 

 

Because the sensitivity of the Raman analysis to short-range order, silicate glasses 

and melt have been studied to provide information about differentiation of Earth 

materials and on the formation of natural glasses. 

In the field of gemology, both Raman and photoluminescence analyses has become 

extremely employed to verify the nature of the gemstones, to examine treatments, to 

detect synthetic and imitation stones and to explore solid and fluid inclusions.  These 

features in turn sometimes identify the provenance of a stone. To identify inclusions, 

fillers, waxes and other treatments is very important because they have an impact on 

gem valuation. 

2.2.3. Raman spectra of Spinel Group compounds 

Looking the point group character table in Table 2.2 and according to the group 

theory, spinel group should exhibit the following normal modes: 

A1g(R) + Eg(R) + F1g + 3F2g(R) + 2A2u + 2Eu + 5F1u(IR) + 2F2u. 
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The (R) and (IR) identify Raman- and infrared-active vibrational species, respectively.  

Table 2.2. The character table of the Oh point group, to which the spinel system belongs. 

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd  

A1g 1 1 1 1 1 1 1 1 1 1 x
2
+y

2
+z

2
 

A2g 1 1 -1 -1 1 1 -1 1 1 -1  

A1u 1 1 1 1 1 -1 -1 -1 -1 -1  

A2u 1 1 -1 -1 1 -1 1 -1 -1 1  

Eg 2 -1 0 0 2 2 0 -1 2 0 (2z
2
 − x

2
 − y

2
, x

2
 − y

2
) 

Eu 2 -1 0 0 2 -2 0 1 -2 0  

F1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx,Ry,Rz) 

F1u 3 0 -1 1 -1 -3 -1 0 1 1 (x, y, z) 

F2g 3 0 1 -1 -1 3 -1 0 -1 1 (xz, yz, xy) 

F2u 3 0 1 -1 -1 -3 1 0 1 -1  

 

Because the spinel structure is center symmetric, the active modes are mutually 

exclusive. Thus, the vibrational modes are either infrared- or Raman active. Spinel 

oxides have only five Raman active modes: A1g + Eg + 3F2g.  A common notation 

exists in most of the literature to distinguish between the Raman modes belonging to 

the same representation, and will be used in the present work. The three Raman-

active F2g modes are labelled F2g(1), F2g(2), and F2g(3), where F2g(1) is the lowest 

Raman shift  F2g mode and F2g(3) is the highest Raman shift of this vibrational 

species. 

The Raman spectra of minerals belonging to spinel group have been extensively 

studied in literature, Table 2.3 shows a summary of the Raman data from the 

literature. 
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Tab. 2.3. Raman data from the literature on AB2O4 spinels (modified from Hosterman, 2011). 
Shoulders of peaks are marked with sh. 

Spinel F2g(3) Eg F2g(2) F2g(3) A1g 

Chromites      

CdCr2O4 134 343 499 600 647 

CoCr2O4  454   692 

CuCr2O4 190   623 680 

FeCr2O4     686 

MgCr2O4 227 447 544 614 687 

MnCr2O4  457 511 600 685 

NiCr2O4 181 425 511 580 686 

ZnCr2O4 180 430,457 511 605 687 

Ferrites      

CoFe2O4 210 312 470 576 624sh, 695 

MgFe2O4 217 333 486 554 646, 715 

Fe3O4 193 306  538 668 

NiFe2O4   460sh, 492 574sh, 595 654sh, 702 

ZnFe2O4 221 246 355 451 647 

Aluminates      

CoAl2O4 201  516 615  

MgAl2O4 311 410 492 671 772 

ZnAl2O4 197 417 509 658 758 

 

Spinel oxides tend to exhibit Raman vibrational modes in the 100-800 cm-1 spectral 

region. Generally, strong bands are observed around 400-500 cm-1 and 700-800 cm-1 

region assigned to the Eg and A1g modes, respectively. The bands around 600 cm-1 

are assigned to the third F2g symmetry species, the bands around 480-520 cm-1 are 

assigned to the second F2g symmetry species, whereas, the bands around 200-300 

cm-1 are assigned to the first F2g symmetry species. 
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In some spinels, more Raman modes have been observed than those predicted by 

group theory. It has been suggested that most of these extra features are related to 

cation disorder. For example, an extra mode has been observed at 727 cm−1 in 

synthetic and heat-treated natural spinels that are thought to be partially inverted. In 

addition, asymmetric broadening of the most intense mode at 410 cm−1, Eg, has been 

related to cation disorder as it is observed only in synthetic or heat-treated natural 

spinel (Chopelas and Hofmeister, 1991; Cynn et al., 1992). 

Many Raman studies of pure spinel oxides have appeared in the literature (Table 

2.3), however, a systematic study of the changes of the line positions and their 

relative intensities into a solid solution is insufficient. The relationship between the 

vibrational modes and cation substitution is complicated, as the vibrational modes can 

be dependent upon the mass of the cations, the bonding forces, and the ionic radii. 

All these variables change with substitution of one cation with another (Hosterman, 

2011). For example, Malavasi et al. (2002) examined the Mg1−xMnxMn2O4 spinel 

system and they support the A1g mode is inversely proportional to the lattice 

parameter of the spinel, although the shift in wavenumber of the Raman-active mode 

is only approximately 1%. In addition to the information on the relationship between 

vibrational modes and structural parameters, such as unit-cell parameter, a detailed 

study of the change of the vibrational modes with the concentration of a particular 

end-member in a series could cause a semi-quantitative chemical analysis. For 

example Malézieux et al. (1983) examined the spinel‒magnesiochromite series and 

obtained a variation of the Raman shift with the chemical composition close to linear. 

Although there has been a large amount of experimental work on pure spinels, the 

literature is inconsistent with regard to the assignment of the specific atomic motions 

within the spinel lattice during the Raman-active vibrations.   

For example, the important A1g mode in literature has been assigned to: 

1. The symmetric breathing mode of the AO4 unit within the spinel lattice. The 

oxygen atoms move away from the tetrahedral cation along the direction of the 
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bonds. Neither the tetrahedral nor octahedral cations are in motion during this 

vibration (Cynn et al., 1992). 

2. The symmetric breathing mode of the octahedral unit (Marinković Stanojević et 

al., 2007); 

3. The random occupation of the octahedral sites by the A2+ and B3+ cations 

(Laguna-Bercero et al., 2007); 

4. The stretching of AlO4 tetrahedra (Barpanda et al., 2006). 

 

Besides, there is little discussion of the rule of the octahedral cations during the 

vibrations. Many researchers assume that all vibrational modes to motions involving 

solely the AO4 unit with octahedral cations remaining at rest (O’Horo et al., 1973; 

Verble, 1974; Cynn et al., 1992). But every oxygen atom is bound to three octahedral 

cations and only a single tetrahedral cation, so even if the cations in M site remain at 

rest, the bonding force between octahedral cations and the oxygen atoms must be 

relevant for determining phonon energies. So some authors assign many vibrations to 

the octahedral cation, especially the high-frequency vibrations (Preudhomme and 

Tarte, 1971; Laguna-Bercero et al., 2007; Marinković Stanojević et al., 2007).  

For the assignment of the vibrations in spinels important problems are that spectra 

are complicated by disordering of the cations and sample history and spinels can 

have a very large number of possible chemical compositions. Many researchers have 

worked to develop and use theoretical models by ab initio quantum chemical methods 

to calculate the vibrational modes of spinels (Johnson and Florián, 1995; de Wijs et 

al., 2002; Lazzeri and Thibaudeau, 2006). Such calculations can provide crucial 

support in the assignment of vibrational modes as correct calculations could predict 

frequencies, intensities, and atomic motions of the vibrations of solid solution spinel 

systems. 

2.2.4 Luminescence spectroscopy using Raman spectrometer 

In the Raman spectra of minerals are observed additional spectral features not 

assigned to Raman modes but to luminescence features. The general term 
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luminescence describes the ability of minerals to emit light after being excited with 

different kind of energy. The ion responsible for a particular luminescence feature is 

called a luminescent center. The wavelengths of the lasers (514, 532, 780 and 785 

nm) used to collect Raman spectra may excited multiple luminescence centers in 

various minerals. 

When electromagnetic radiation (light) interacts with a luminescent material, an 

electron is excited to a higher energy state. When the electron drops back down to 

the ground state it releases light of a specific wavelength or range of wavelengths, 

called radioactive decay (Fig. 2.1). There exist several types of luminescence, which 

are usually subdivided according to the lifetime of the excited state and type of 

excitation. The first differentiation is between fluorescence and phosphorescence to 

emphasize the fast and slow response of a mineral to the excitation. Fluorescence 

describes the almost immediate emissive return of the excited electron to its ground 

state, whereas phosphorescence occurs with a larger delay. Regarding to the type of 

excitation, luminescence can be excited in minerals by radiation of many different 

wavelengths; luminescence induced by light sources in the UV-visible range is called 

photoluminescence (this is what we are observing in the Raman spectra of this 

study). Other means of exciting luminescence in minerals include excitation by a high-

energy electron beam, called cathodoluminescence, excitation by corpuscular 

radiation, called radioluminescence, and excitation by heat, called 

thermoluminescence. Photoluminesce is an exceptionally sensitive technique 

because discrete energy levels of the sample can be excited separately with light of 

the respective wavelength, which makes it possible to distinguish among various 

luminescence centers (Nasdala et al., 2004a).  

In contrast to the Raman effect, which is causes by inelastic scattering of the laser 

light by the crystal lattice, photoluminescence is caused by the absorption of the 

excitation laser light. By absorption of the laser light, electron, excited by the energy 

absorbed, jumps from a higher energy level to a lower one, emitting photons.  
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Generally, fluorescence prohibits the recording of a Raman spectrum, because if 

fluorescence is much more intense than Raman scattering, hiding Raman features, 

so usually Raman spectroscopist searches a method to avoid fluorescence emission, 

like change the laser wavelength to avoid electronic excitation. But 

photoluminescence (PL) spectroscopy obtained on a Raman spectrometer can have 

many practical applications, because it is sensitivity to the local environment around 

the luminescent center, providing information about short range order and trace 

element (REE and transition metal cation). In fact, PL analysis can give qualitative 

information, detecting trace element in extremely low concentrations. For example, 

the detection limit for Cr3+ can be as low as ppb level, or even better. To best 

characterize a material by PL spectroscopy it would be important to have a range of 

lasers of different wavelengths available because lasers of different wavelengths may 

excite completely different defects or trace elements. Considering the sensibility to 

the low-defect concentrations, PL spectroscopy is extremely used today in gemology 

to demonstrate defect distribution in a gem material, to separate among natural, 

treated and synthetic gems and to detect REE elements which are often tracers of 

genetic conditions. 

2.3 Optical Absorption Spectroscopy 

Optical spectroscopy is concerned with the qualitative and quantitative measurements 

of the absorption, reflection and emission of light in the spectral range from near-

ultraviolet (40 000 cm-1) through visible (26 300- 12 800 cm-1) to near infrared (4000 

cm-1). Generally, studies of metal ion site occupancy, oxide states and concentrations 

are done on transparent minerals with the absorption spectroscopy in transmission 

mode. However, reflection measurements on samples totally absorbing the 

electromagnetic spectrum or on samples too thick for the transmission measurements 

are also possible. 

When a monochromatic beam of intensity I0 passes through a mineral, it leaves the 

sample with a smaller intensity I, because certain wavelengths are absorbed, often 
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leading to colored transmitted light. The amount of the radiation absorbed can be 

described by: 

 Transmittance T = I/I0      (11) 

 Absorbance  A = log (I/I0) = log (1/T)= -log T  (12) 

 

Often, in optical absorption the amount of light absorbed is linearly related to the 

concentration of the absorbing species and to the thickness of the sample, according 

to the Beer-Lambert law: 

A = εcd         (13) 

Where ε is called molar absorption coefficient in units such as l mol-1 cm-1 or cm2 mol-

1, c is concentration expressed in mol l-1 and d is the thickness measured in cm. Molar 

absorption coefficient depends on the chemical species and the energy of radiation. 

Specific values of molar absorption coefficient for different chemical species at 

specific wavelengths of light can be found in chemical reference manuals.  

Absorption spectra are obtained by passing light through a polished crystal slice 

which must be thin enough to transmit. An absorption spectrum shows the amount of 

radiation absorbed or transmitted at each energy. Energy units are often quoted in 

terms of wavelength, as well as wavenumber.  

Five types of processes generally contribute to the absorption spectra of minerals: 

1. Crystal field transitions: electronic transitions between unfilled d (or f) orbitals 

of transition metal such as Cr, V, Mn, Fe, Ni, Co and Cu.  These transitions 

involve rearrangement of the valence electrons; an electron from one orbital is 

promoted to a higher energy orbital in the same atom. These transitions give 

rise to absorption in the ultraviolet, visible and near-infrared region (40 000 ‒ 

4000 cm-1).  
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2. Charge transfer: electronic transitions which involve displacement of charge 

density from one ion of an atom to another of an adjacent atom. There are two 

ways in which this can occur 

 

 Ligand‒metal and metal‒ligand change transfer (LMCT, MLCT): charge 

transfer between an anion and a cation. An example is the transfer of 

electron density from a filled oxygen p orbital to a partially occupied Fe3+ 

d orbital. These transitions occur in the ultraviolet region (mostly > 30 000 

cm-1) with high probability and produce a very intense absorption, up to 

103 to 104 times higher than those of crystal field transitions.  

 Intervalence charge transfer (IVCT) also called Metal‒metal charge 

transfer (MMCT): electronic transfer involves movement of electron 

density between adjacent cations. The cations must have different 

oxidation states and, generally, they share edges or faces of coordination 

polyhedral. These transitions occur principally in the visible region (24 

000‒9000 cm-1) with intensities between 102 and 103 times stronger than 

transitions between 3d orbital energy levels. 

3. Band gap transitions: electronic transitions between the top of a valence band 

and the bottom of the conduction band. Transitions between bands occur when 

the electrons in the valence band absorb light that provides a sufficient amount 

of energy for the electrons to jump over the band gap into the conduction band. 

These transitions occur principally in the visible region (24 000‒4000 cm-1) 

and, usually, have less importance in minerals. 

4. Color centers: electronic transitions between the states localized at electron or 

hole point defects giving rise to absorption in the visible spectral range (25000‒

4000 cm-1). 

5. Overtones of vibrational transitions. Overtones and combination modes of 

molecules or charged atomic groups. Vibrational overtones occur in the near-
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infrared (8000‒4000 cm-1) and they are readily recognized because they have 

much smaller widths than electronic transitions which can occur in the same 

spectral region. 

 

Most of these processes are responsible for the color of many minerals and synthetic 

compound.  Crystal field d‒d transitions play a decisive role and will be discussed in 

detailed in the next paragraph.  

2.3.1 Crystal Field Theory (CFT) 

The crystal field theory is a model of chemical bonding applicable to transition metal 

and lanthanide ions, and it describes the origins and consequences of interactions of 

the surroundings on the orbital energy levels of a transition metal ion. 

The description of the interaction of the d (or f) electrons of a transition ion with the 

crystal field generated by the surrounding ligands requires background knowledge of 

quantum mechanics (QM). A comprehensive and advanced essay of the crystal field 

theory can be found in Burns (1993), but basic ideas on QM indispensable for 

understanding some of the rule that govern electron systems are shortly given in the 

following subparagraph.  

 One-electron systems 

The energy of the localized d or f electrons can be described by the time-indipendent 

one-electron Schrödinger equation: 

HΨ = EΨ         (14) 

where H is the so-called Hamiltonian, (i.e. the operator of the total energy of the 

system), and E is the total energy corresponding to the state (Ψ) under consideration. 

The position and energy of each electron surrounding the nucleus of an atom are 

described by a wave function, which represents a solution to the Schrodinger wave 

equation. In a spherical approximation and for a one-electron system the wave 

function for each electron in a spherical coordinate system (r, θ, φ), may be written as: 
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 (          (      
(       

      (15) 

This equation comprises the radial function, R(r), which depends only on the radial 

distance, r, of the electron from the nucleus, the angular functions Y which depends 

only on the angles θ and φ, and the spin function, χ, which is independent of the 

spatial coordinates r, θ and φ. 

The various solutions describing the possible state of one-electron system are 

parameterized by the four quantum numbers: 

1. The principal quantum number, n, describes the average distance of the 

electron from the nucleus and corresponds to the electron orbits or shell (e.g. 

K (n = 1); L (n = 2) M (n = 3) N (n = 4) etc.); 

2. The orbital quantum number, l, reflects the shape of an orbital and have values 

between 0 and (n-1). Letter symbols are given to the orbitals according to the 

value of /: s (l = 0), p (l =1), d (l = 2), f (l = 3) etc. 

3. The magnetic quantum number, ml, indicates how the orbital angular 

momentum is oriented relative to some fixed direction, particularly in a 

magnetic field. Its value can take all integral values from +/ to -/, or (2/+1) 

values in all. 

4. The spin quantum number, ms, An electron then can have two kinds of spin, 

parallel or antiparallel orientation, characterized by the quantum numbers ms = 

+ 1\2 and ms = - 1\2. Thus, each orbital can accommodate two electrons which 

spin in opposite directions. 

Atomic orbitals represent the angular distribution of electron density about a nucleus. 

The shapes and energies of these amplitude probability functions are obtained as 

solutions to the Schrodinger wave equation. The s orbitals are spherical, the p orbitals 

are dumb-bell shaped and the d orbitals crossed dumb-bell shaped. Each orbital can 

accommodate two electrons spinning in opposite directions, so that the d orbitals may 

contain up to ten electrons (Burns, 1993). The d orbitals are divided into 5 orbitals dxy, 

dyz, dxz, dx
2
-y

2
 and dz

2, and each orbital has four lobes in opposite quadrants (Fig. 2.6). 
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On the basis of their angular distribution, the 5 orbitals can be divided into 2 groups. 

Three of the orbitals, dxy, dyz and dxz, have lobes projecting between the cartesian 

axes. This group is designated t2g, where t refers to the three-fold degeneracy, 

whereas the subscript 2 indicates that the sign of the wave function does not change 

on rotation about the axes diagonal to the cartesian axes and the subscript g refers to 

the fact that the wavefunctions are symmetrical with respect to the octahedral center 

of inversion (gerade). The other two orbitals, dx
2
-y

2 and dz
2 have lobes directed along 

the cartesian axes. They are termed eg, where e stands for the two-fold degeneracy. 

The dz
2 orbital appears to have a different shape from the other four, this difference is 

only apparent because the dz
2 orbital is a linear combination of two orbitals, dz

2
-x

2 and 

dz
2
-y

2 having the same shape as the other d orbitals but which are not independent of 

them. 

 
Fig. 2.6. The shapes of the d atomic orbitals, representing the regions which contain most of the 
electron density. The orbitals are divided into two groups, t2g and eg on the basis of their orientation 
relative to the x, y and z axes. 

 Crystal field splitting 

In a free transition metal ion, or an ion in a spherical field, all of the 3d electrons have 

an equal probability of being located in any one of the five d orbitals, since these 
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orbitals have the same energy. When such transition metal ion is in a crystal 

structure, however, the relative energies of the 3d orbitals are controlled by the 

different repulsive energies of the anions coordinated to it. The effect of a non-

spherical electrostatic field on the five degenerate d orbitals is to lower the 

degeneracy by splitting the d orbitals into different energies about the center of 

gravity, or barycenter, of the unsplit energy levels. These energy splittings are 

described by the crystal field parameter Δi (or 10Dq) where the subscript i refers to 

the polyhedral type (i: c = cube; t = tetrahedron; o = octahedron). The CF splitting 

depends on the symmetry and geometry of the coordination polyhedron as well as on 

the type of the central transition metal ion and of the ligands surrounding the 

transition metal. Generally, electrons in orbitals which point towards the anions are 

repelled to a greater extent and their energy is raised relative to orbitals which project 

between the anions. For example, in a regular octahedral coordination, since the 

lobes of the electron distribution of the two eg orbitals point towards the anions,  

electrons in these two orbitals are repelled to a greater extent than are those in the 

three t2g orbitals that lie between the ligands (Fig. 2.7). The three t2g orbitals are 

lowered by 0.4Δo below, and the two eg orbitals raised by 0.6Δo above, the 

barycenter. The value of Δo or 10 Dq is obtained directly, or may be estimated, from 

spectral measurements of transition metal-bearing phases in the visible to near-

infrared region. 

In a tetrahedral coordination, the crystal field of the d-orbitals again splits into two 

groups (Fig. 2.7). But since dxy, dyz and dxz orbitals point towards the edges of the 

cube and the dx
2
-y

2 and dz
2 orbitals towards the cube faces, the CF splitting is inverted 

as compared to the octahedral case. The tetrahedron don’t have a center of 

symmetry, therefore the g indices are omitted from the representations (t2 and e). 

Furthermore, since the ligand electrons in tetrahedral symmetry are not oriented 

directly towards the d-orbitals, the energy splitting will be lower than in the octahedral 

case (Δt = - 4/9 Δo). 
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Fig. 2.7. Crystal field splitting of a transition metal ion (M
+
) in tetrahedral and octahedral coordination. 

 
The distribution of 3d electrons in a given transition metal ion is controlled by two 

opposing tendencies. First, repulsion and exchange interactions between electrons 

cause them to be distributed over as many of the 3d orbitals as possible with parallel 

spins. This is in accordance with Hund's first rule and lead to high-spine electronic 

configuration. Secondly, the effect of crystal field splitting is to cause electrons to 

populate 3d orbitals having the lowest energy, leading to the low-spin electronic 

configurations. The choice of electronic configuration occurs only in the ions 

possessing four, five, six and seven 3d electrons (such as Mn3+, Mn2+, Fe3+, Fe2+, 

Co3+, Co2+), the others possess only one electronic configuration. 

In both tetrahedral and octahedral coordination, the resultant net stabilization energy 

gain is termed the crystal field stabilization energy and is designated by CFSE. For 

example in the octahedral coordination, each electron in a t2g orbital stabilizes a 

transition metal ion in octahedral coordination by 0.4Δo, whereas every electron in an 
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eg orbital destabilizes it by 0.6Δo. The CFSE represents the algebraic sum of these 

factors.  

 Many-electron dN systems 

The methodical interpretation of optical absorption spectra of transition element 

compounds requires a many-electron dN system, taking into account the inter-electron 

interactions (i.e. repulsions) between the d electrons within an open-shell orbital set. 

The full Hamiltonian for the dN electrons in crystals must consider further 

perturbations in addition to the crystal field (CF): 

H = Hspher + Hee + HCF +HSO+HSS      (16) 

where Hspher denotes the free-ion Hamiltonian in the spherical approximation; Hee is 

the electron-electron repulsion effects within the ndN configuration not included in 

Hspher; HCF comprises the crystal field interactions (this contribution derives from the 

crystal field parameter 10Dq as explained above);HSO,SS represent the spin orbit and 

electronic spin-spin interaction. In the 4d and 5d transition elements the CF splitting 

prevails over the other interactions. 

 Tanabe-Sugano diagrams 

Using the group theory one can predict how levels split in CF of a given symmetry 

and then use the irreducible representations as already seen for the Raman 

spectroscopy. Tanabe-Sugano (TS) diagrams are used to predict absorptions in the 

UV and visible electromagnetic spectrum of coordination compounds. TS diagrams 

show the crystal field parameter, 10Dq, or Δ, divided by the Racah parameter B 

versus the energy, E, also scaled by B (Fig. 2.8).  

Three Racah parameters exist, A, B, and C, which describe various aspects of 

interelectronic repulsion. A is an average total interelectronic repulsion, and being 

constant among d-electron configuration, it is not necessary for calculating relative 

energies (i.e. it is absent from Tanabe and Sugano's studies of complex ions), while B 

and C correspond with individual d-electron repulsions (B is the most important of 

Racah's parameters). 
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Fig. 2.8. Tanabe-Sugano energy level diagram for a 3d6 ion in an octahedral crystal field. 

Each state is given and labelled by its symmetry (e.g. A1g, T2g, etc.). Term symbols 

(e.g. 3P, 1S, etc.) for a specific dN free ion are listed, in order of increasing energy, on 

the y-axis of the diagram. In the diagrams are included not only the electronic 

transitions "allowed" but also the electronic transitions "spin-forbidden". Intensities of 

absorption bands are governed by probabilities of electronic transitions between the 

split 3d orbital energy levels. The probabilities are expressed by selection rules. The 

primary selection rule is related to the conservation of parity (Laporte or parity 

selection rule). On the basis of this selection rule, the transitions are allowed only 

between orbitals which differ in the symmetry of their wavefunction, that is, one state 

must have a symmetric (g) wave function and the other an antisymmetric (u) wave 

function. This means that LMCT, and MLCT (from an oxygen p orbital to a metal d 
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orbital) will occur with high probability and the resulting absorption band will be 

intense. While, since d orbitals have identical parities, electron transfer between two 

different d orbitals is forbidden. The second selection rules are related to spin 

multiplicity and states that the total number of unpaired electrons on an atom must 

remain unchanged during an electronic transition. The transitions between states with 

different spin multiplicity are forbidden. Hence, for the high-spin d5 systems all 

transitions are spin-forbidden, leading to the light color of many Mn2+ and Fe3+ 

minerals.  

The electron d-d transitions are parity forbidden, but some of them are spin-forbidden 

and some are spin allowed. The spin-forbidden transitions produce very weak 

absorption bands, which may gain intensity by spin-orbit coupling of electrons and 

magnetic interactions between neighboring cations. The spin-orbit coupling is an 

interaction between the electron's spin and the magnetic field generated by the 

electron's orbit around the nucleus. Effects of spin-orbit coupling become increasingly 

important with rising atomic number, they are thus more noticeable in compounds of 

Co and Ni than they are in V- and Cr-bearing phases. 

2.3.2. Qualitative measurements in optical absorption spectra 

An analysis of the optical spectrum and its absorption bands provide information 

about type of transition metal cation, its valence, its crystallographic site and bond 

types. The valence and coordination symmetry of a transition metal ion in a crystal 

structure govern the relative energies and energy separations of its 3d orbitals and, 

hence, influence the positions of absorption bands in a crystal field spectrum. 

Measurements of absorption spectra of transition metal compounds and minerals are 

used to obtain Δi (10Dq) and to evaluate the CFSE of the ions. The magnitude of Δi 

depends on various factors: 

 types of the central transition metal ion: Dq increases with the oxidation state 

of the transition cation (M2+<M3+<M4+) and with the high or low-spin 

configuration (Mhs<<Mls). The observed variation of Dq with the transition ion is 
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summarized in the spectrochemical series of central atoms: 

Mn2+<Co2+≈Ni2+<Fe2+<V2+≈Cu2+<Fe3+<Cr3+<V3+<Co3+<Mn4+. 

 the symmetry of the coordination polyhedron. The relationship for crystal field 

splittings in octahedral, tetrahedral, body-centered cubic is Δo : Δc : Δt = 1 : - 
 

 
 : 

- 
 

 
 ;  

 types of the coordinating ligand atoms. A variation with the ligand type is 

observed and summarized in the spectrochemical series of ligands: S2-<Cl-<F-

<O2-≈OH-<H2O. 

 degree of covalency of cation-anion bond. The Racah B parameter, which is a 

measure of interelectronic repulsion and exchange interactions, provides a 

qualitative indication of bond covalency. The nephelauxetic series represents 

the order of decreasing Racah B parameters and correlates with increasing 

covalent bonding characters of ligands coordinated to a transition metal. The 

nephelauxetic series of ligands is: free cation >F-> H2O > OH-> Si-O > O2- > Cl- 

> S2-, while the nephelauxetic series of central atoms is: Mn2+ > V2+ > Ni2+ > 

Co2+ > Fe2+ > Cr3+ > V3+ > Fe3+ > Co3+>Mn4+. 

These factors may produce characteristic spectra for most transition metal ions, 

particularly when the cation occurs alone in a simple oxide structure. Each transition 

metal ions in a particular crystallographic site have specific absorption bands 

occurring in a part of the electromagnetic spectrum. 

Attributing absorption to a particular cation in a crystallographic site is also useful to 

identify the electron transitions responsible for the color. 

 Causes of color 

Color is the response of the eye to the visible light range of the electromagnetic 

spectrum. We perceive color when the different wavelengths composing white light 

are selectively interfered (reflected, refracted, diffracted, scattered, absorbed, or 

simply transmitted).  
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Several mechanisms can contribute to the coloration of a mineral; there are at least 

fifteen causes of color summarized from Nassau (1987) on the base of the 

fundamental process involved.  Most of the processes causing color, such as 

transition metal ions, charge-transfer phenomena and band theory, are discussed in 

the paragraph 2.3, with the first two mechanisms providing the colors in the most part 

of minerals. In the optical absorption, the positions of the absorption bands determine 

the actual colors observed, while the hue or vividness of color may be correlated with 

the intensities of the absorption bands. Regarding the transition metal ions, the 

oxidation state of a cation have a strong influence on both hue and the intensity of the 

color, for example, a beryl containing Mn2+ exhibits a delicate pink hue (morganite), 

while Mn3+ containing beryl occurs as bright red. Furthermore crystal field theory 

states that Mn2+ and Fe3+ transitions have a low probability of occurrence and hence 

they give rise to low-intensity absorptions and brighter colors. Drastic differences in 

color may arise when the same cation occurs in different coordinations. For example, 

Fe2+ in octahedral sites gives rise to the green color in peridot, while Fe2+ in distorted 

cube imparts a deep red color to almandine garnet. Also the nature of the neighboring 

atom of the cation can influence the color. For example, both green sphalerite and 

blue spinel are colored by Co2+ in tetrahedral sites, but the Co2+ ion in green 

sphalerite is connected to sulphur, while that of blue spinel is connected to oxygen 

(Fritsch and Roosman, 1987). The situation is complicated in those cases where the 

same cation with the same oxidation state and in the same coordination can produce 

different colors in different minerals even though it is surrounded by the same number 

of oxygen ions. For example, ruby and emerald owe their coloration to Cr3+ in 

octahedral coordination. This difference can be explained by the crystallographic 

environment around Cr3+. The difference in the local cation-anion distance can cause 

different colors. Information on the short-range ordering and local structure can be 

obtained by spectroscopic methods (see structural relaxation, paragraph 2.3.4). For 

example, Hålenius et al. (2010) suggests that color changes from pale red to dark 

green in Mg(Al1–xCrx)2O4 series, may be due to variations in Cr-O bond covalency, 

without or with very minor local Cr-O bond distance variation.  
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Regarding charge transfer, usually metal‒ligand change transfer absorptions are 

centered in the near ultraviolet band are broad enough to extend into the blue end of 

the visible spectrum, producing yellow to orange to brown colors (Fritsch and 

Rossman, 1988). For example, the deep yellow color of the heliodor, the golden 

variety of beryl, is caused by the O2- → Fe3+ charge transfer. Besides, the IVCT 

processes have great importance for the ferromagnesian spinel group, because the 

Fe2+‒Fe3+ IVCT is the prevailing mechanism color in these minerals, dominating the 

visible part of the spectrum with broad and intense absorption bands in the red end of 

the spectrum, producing a blue color (because also the violet light is suppressed by 

the O2- →  Fe3+ charge transfer). The IVCT also occurs between different metal ions. 

An important example is the Fe2+‒Ti4+ IVCT that gives the characteristic blue color to 

the sapphire.  

Color can also cause by electron transitions in magnetically exchange coupled pairs 

transitions (ECP) involving cations located at sites that share faces, edges, or just 

corners (e.g., Rossman 1975; Mattson and Rossman, 1987a; Taran et al. 2005). The 

spinels have a favorable structural basis for the formation of magnetically coupled 

TFe3+-MFe3+ clusters which can cause absorption bands (Andreozzi et al., 2001b). But 

also absorption bands due to exchange-coupled Fe2+–Fe3+ pairs generally occur in 

the iron-spinels close to or at the energies of the single-ion d–d transitions of the pair 

cations, and the extinction coefficients of the bands are strongly enhanced with 

respect to bands caused by single- ion d–d transitions (Hålenius et al., 2002). 

Band gap colors are produced in insulating and semiconducting materials. If the 

energy band includes all wavelengths of light the material is white or clear and an 

insulator. If the band includes the energies of part of the visible spectrum the material 

is a semiconductor and colored. Examples of minerals colored by band gap 

mechanisms are cinnabar, and cuprite, in which all wavelengths from violet to orange 

are absorbed, so that only red light is transmitted. 

Beside the processes already mentioned, also color centers and physical 

mechanisms, such as diffraction, dispersion and scattering, can determine color. For 
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example, internal scattering and interference phenomena cause iridescence in opal 

and some feldspars (e.g., moonstone). 

Color centers are created when a mineral is exposed to a high-energy radiation, 

which can change the oxidation state of metal ions or interact with “defect” in the 

crystal, such as vacancies or additional atoms. A vacancy type of color center is 

responsible for the green color of diamonds. An example of variation of the oxidation 

state after an irradiation is the amethyst, where Fe3+ occupying the silicon site in 

quartz is changed into Fe4+. Color centers are one of the few coloring mechanisms 

that can be removed by heating or exposing the mineral to strong light. 

2.3.3. Quantitative analysis in optical absorption spectra  

Quantitative relationship between intensity of an absorption peak and the 

concentration of an element in a crystallographic site can be established 

experimentally and it can be used to determine site occupancies. A constant 

correlation between the net linear extinction coefficients of the bands attributed to the 

MFe2+–MFe3+ IVCT increase as a function of the sample [MFe2+]•[MFe3+] concentration 

product in the spinel s.s.‒hercynite series (Hålenius et al., 2002), providing the 

possibility to determine the ferric concentration. 

Intracrystalline Fe2+-Mg2+ distributions in natural and synthetic orthopyroxenes have 

been determined from intensities of absorption bands in their polarized spectra 

(Steffen et al, 1988). Molar extinction coefficients of crystal field bands centered 

originating from Fe2+ ions located in pyroxene M2 sites enabled the iron contents to 

be estimated from the Beer-Lambert law equation. 

Variations of extinction coefficients and spectrum profiles with changes in chemical 

composition of a mineral provide information on cation ordering in the structure. 

Cation ordering in silicate minerals may also be indicated by changes of spectrum 

profiles with changing chemical composition of a mineral. For example, Fe2+ ordering 

in Mg-Fe pyroxenes was investigated by Goldman and Rossman (1979) and linear 

correlations between the Fe2+ concentration and intensities of the Spin allowed band 
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of the Fe2+ were observed in the spectra. These correlations provide a means of 

quantitatively determining the distribution of Fe2+ between the M(1) and M(2) sites of 

orthopyroxene crystals. 

Despite the fact that the CFSE constitutes only a minor contribution in regard to the 

total energy of a system, it can be the decisive force for the intra- and inter-crystalline 

transition ion distribution (Wildner et al., 2004). For example, as already seen in the 

chapter 1, the CFSE influences the intra-crystalline distribution of transition ions in 

octahedral and tetrahedral sites in the spinel group compounds. The intra-crystalline 

distribution is often predicted from the differences between the respective octahedral 

and tetrahedral CFSE, which are expressed as OSPE, octahedral site preference 

energy. For example, trivalent cations with high OSPE's are predicted to occupy 

octahedral sites in spinels and to form normal spinels.  

Concerning the inter-crystalline transition metal distribution, the CFT predict the 

partition behavior of transition metals between various coexisting phases, but several 

other competing mechanisms like crystal chemical effects also have to be taken into 

account. For example, Langer and Andrut (1996) investigated the distribution of the 

Cr3+ ion among paragenetic coexisting minerals in various rocks, confirming a 

positively relationship between the Cr3+ concentration and its CFSE in the respective 

mineral phase. 

 Structural relaxation  

Spectroscopic methods have demonstrated that the local structure often differs from 

the average structure as determined by diffraction methods, and that Vegard’s rule is 

not obeyed at the atomic scale due to lattice relaxation during atomic substitution 

(Galoisy, 1996). Vegard’s rule states that in a binary solid solution A1-xBxO the unit 

cell parameter ax can be expressed as a function of its composition: ax = aAOXAO + 

aBOXBO, where aAO and aBO represent the lattice parameter for the end-members, 

while XAO,XBO their respective molar fractions. According to the Vergard’s rule, the 

interatomic distance corresponds to an average value, equivalent to: 

〈        〉  〈   〉    (〈   〉  〈   〉     (17) 
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The model obeying this Vegard’s rule is called “virtual crystal approximation” (VCA) 

and it assume that all bond distances are equal regardless of their individual 

occupancy by A or B. 

Urusov (1992) proposed a geometrical model to quantify the deviation from Vegard’s 

rule through the relaxation coefficient (ε), expressed as: 

ε= (
〈B-O〉x-〈A-O〉

〈B-O〉-〈A-O〉
)                                                          (18) 

where 〈A-O〉 and 〈B-O〉 are the mean interatomic distances in the end-members  in 

question and are measured by diffraction methods, whereas, 〈B-O〉x is the local mean 

distance for the A1-xBxO, estimated by optical absorption spectroscopy. 

In a real crystals, the behavior of the exchanging cation in a solid solution falls 

between two extreme cases. The relaxation coefficient would be 0.0 for no relaxation, 

i.e., the case of the “virtual crystal” model obeying Vegard’s rule, and 1.0 for complete 

relaxation, i.e., the case of the “hard-sphere” model (Fig. 2.9).  

 

Fig. 2.9. A scheme of A-O and B-O bond distance changes dependent on composition. The dotted 
line indicates the VCA model (ε= 0); the dashed lines indicate HS model (ε= 1); the solid lines show 
the local bond distance (modified from Urosov, 1992).  
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The “virtual crystal” model assumes that the ions are located without local distortions 

at the “ideal” lattice sites of the average unit cell, and they are substituted without 

modification of the bond distances. In contrast, for the hard sphere model, the ionic 

radii are constant and the whole structure is expected to take up all modifications 

upon chemical substitution (Hålenius et al., 2010). In the case of absence of 

relaxation the individual bond distances in the mixed crystal are equal to their average 

values; it means 〈B-O〉x   〈A-O〉. In the case of full relaxation, instead, the 

interatomic bond distance will not change with the composition, it means 〈B-O〉x  

〈B-O〉. 

The local metal-oxygen distances in a solid solution can be achieved by optical 

absorption spectroscopy through the measurement the crystal field parameter 10Dq. 

In fact, the 10Dq value, in a hypothetical AO-BO solid solution, depends on the mean 

metal-oxygen bond distances by the relationship: 

      
 

 

    〈  〉

〈   〉 
       (19) 

Where ZLe is the effective charge of the ligands and 〈 〉 is the average radius of the d 

orbitals. These two values can be considered constant in the same metal ion in the 

same ligand environment (Burn, 1993) and then the equation 18 can be simplified as: 

           
 

〈   〉 
       (20) 

Knowing the B-O bond distance, 〈B-O〉x  , and the crystal field splitting parameter for 

the 3d metal cation, (10Dq)x=1, in the 3d metal-rich end-member (x = 1) of a binary 

solid solution, it is possible to calculate the local B-O bond distance 〈B-O〉x for any 

given composition (x < 1) on the binary from the recorded crystal field splitting (10Dq)x 

of that composition by applying the relation: 

〈B-O〉x  [(         (      ]
        (21) 
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Chapter 3 

MATERIALS AND METHODS 

3.1. Materials 

In the present work natural and synthetic single crystals of spinels were studied. The 

examined synthetic samples consist of: 

 Synthetic single crystals of spinel (10 samples) belonging to the MgAl2O4 

(spinel sensu stricto) - CoAl2O4 (cobalt spinel) solid solution. These samples 

were synthesized through the synthesis procedure described in the paragraph 

3.2. Then they were characterized using electron microprobe, single-crystal X-

ray diffraction, optical absorption and Raman spectroscopies.  

  

  Synthetic single crystals of spinel (10 samples) belonging to the MgAl2O4 

(spinel sensu stricto) - FeAl2O4 (hercynite) solid solution. These samples were 

already synthesized and a chemical, structural and optical characterization 

was performed by Andreozzi and Lucchesi (2002) and Hålenius et al., 2002. In 

the present study the samples of this series were characterized by Raman 

spectroscopy. 

 

 Synthetic single crystals of spinel (10 samples) belonging to the MgAl2O4 

(spinel sensu stricto) - MgCr2O4 (magnesiochromite) and to ZnAl2O4 (gahnite) - 

ZnCr2O4 (zincochromite) solid solutions. These samples were already 

synthesized and a chemical and optical characterization was performed by 

Hålenius et al., 2010. In the present study the samples of these series were 

characterized by Raman spectroscopy. 

Natural samples have different color, size and origin. They were characterized by 

Electron MicroProbe Analysis (EMPA) to obtain chemical composition and by Optical 

Absorption Spectroscopy (OAS) to investigate the causes of colors in the spinel group 

minerals. In addition, some samples were studied by the Laser Ablation-Inductively 
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Coupled Plasma-Mass Spectrometry (LA-ICP-MS) to obtain the quantitative chemical 

composition of the minor and trace elements, but in this study only the minor 

elements will be presented and discussed. Most of the natural samples were 

investigated by Raman spectroscopy to obtain chemical information and 

consideration of spinels from the study of the Raman active modes. 

Natural spinels were kindly furnished by: 

 Swedish Museum of Natural History (Naturhistoriska rikmuseet, NRM). A total 

of 19 samples coming from different geological environment were selected by 

the mineral collection of the NRM, among which 14 single crystals were 

extracted from the embedding rock, whereas 5 spinels were already in the 

form of single crystals. 

 

 Museum of Earth Sciences, University of Bari. Five single crystals spinels 

belonging to the mineral collection of the Museum were taken. 

 

 Private gemologists made available 4 gem-cut spinels with the equivalent 

rough samples, and 2 single crystal spinels.  

 

The features of the natural spinels and a scheme of the techniques used to 

characterize them are summarized in Table 3.1. 
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Sample Label Color Localities 
Investigated by 

EMPA 
LA-ICP-

MS 
OAS+ 
FTIR 

Raman 
+ PL 

 

ST Pink-Red Tanzania     

 

SX Violet Unkonwn     

 

2366 Blue-green 
Dalarne, 
Sweden 

    

 

31081 
Yellowish- 

Green 
Jakobsberg, 

Sweden 
    

500 μm 

500 μm 

200 μm 

Table 3.1. Natural samples investigated. 

500 μm 

Table 3.1. Natural spinels investigated and the techniques used to characterize them. 
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Table 3.1. Continued. 

Sample Label Color Localities 
Investigation by 

EMPA 
LA-ICP-

MS 
OAS+ 
FTIR 

Raman 
+ PL 

 

330763 
Light 
blue 

Dalarna, 
Sweden 

    

 

330764 Blue 
Dalarna, 
Sweden 

    

 

420491 Pink Ceylon, India     

 

440238 
Violet- 
Light 
blue 

Åker, Sweden     

 

 

200 μm 

500 μm 

200 μm 

200 μm 
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Table 3.1. Continued. 

Sample Label Color Localities 
Investigation by 

EMPA 
LA-ICP-

MS 
OAS+ 
FTIR 

Raman 
+ PL 

 

440243 Violet Åker, Sweden     

 

510941 
Light 
blue 

Levida, Spain     

 

510942 Blue Levida, Spain     

 

670275 Lilac Åker, Sweden     

 

 

200 μm 

100 μm 

200 μm 

100 μm 
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Table 3.1. Continued. 

Sample Label Color Localities 
Investigation by 

EMPA 
LA-ICP-

MS 
OAS+ 
FTIR 

Raman 
+ PL 

 

800801 Dark blue 
Catanzaro, 

Italy 
    

 

881694a Magenta Ceylon, India     

 

881694c Orange Ceylon, India     

 

881728 
Blue-
green 

Charlemont, 
Massachusetts 

    

 

 

500 μm 

500 μm 

200 μm 

500 μm 
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Table 3.1. Continued. 

Sample Label Color Localities 
Investigation by 

EMPA  
OAS+ 
FTIR 

Raman 
+ PL 

 

890290 
Blue-
green 

Sodermanland, 
Sweden 

    

 

890292b Magenta 
Burma, 

Myanmar 
    

 

890292c Orange 
Burma, 

Myanmar 
    

 

890292d Red 
Burma, 

Myanmar 
    

 

 

500 μm 

500 μm 

500 μm 

500 μm 
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Table 3.1. Continued. 

Sample Label Color Localities 
Investigation by 

EMPA 
LA-ICP-

MS 
OAS+ 
FTIR 

Raman 
+ PL 

 

Nat.1 
Light 

Purple 
Tunduru, 
Tanzania 

 
The equivalent 
rought sample 

 
The 

equivalent 
rought 
sample 

 
The 

equivalent 
rought 
sample 

 
The 

gem-cut 
sample 

 

Nat.2 Light blue 
Tunduru, 
Tanzania 

 
The equivalent 
rought sample 

 
The 

equivalent 
rought 
sample 

 
The 

equivalent 
rought 
sample 

 
The 

gem-cut 
sample 

 

Nat.3 Purple 
Tunduru, 
Tanzania 

 
The equivalent 
rought sample 

 
The 

equivalent 
rought 
sample 

 
The 

equivalent 
rought 
sample 

 
The 

gem-cut 
sample 

 

Nat.4 
Blue-
green 

Tunduru, 
Tanzania 

 
The equivalent 
rought sample 

 
The 

equivalent 
rought 
sample 

 
The 

equivalent 
rought 
sample 

 
The 

gem-cut 
sample 1 mm 

1 mm 

1 mm 

1 mm 
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3.2. Synthesis by Flux growth method 

Flux growth is the process of crystal growth from molten salt solvents at high 

temperatures. A high temperature solvent is called flux because it permits growth to 

proceed at temperatures well below the melting point of the growing phase. 

Major techniques for the crystal growth are the Verneuil, the Czochralski, the 

hydrothermal and the flux methods. Melt growth (Verneuil and Czochralski) are 

commercially the most important methods of crystal growth because the rate of 

growth is normally much higher than that possible by other methods. However the 

melt methods require sophisticated and expensive equipment, steep temperature 

gradient and involve high concentration of defects such as vacancies and dislocation 

in crystals. Hydrothermal growth, although requiring expensive and sophisticated 

equipment, provides high quality, defect-free crystals. Flux growth is the method by 

which a wide range of good quality crystals may be obtained with less sophisticated 

equipment.  

 The main advantages of this technique compared to growth from the pure melt are: 

 Lower temperatures. In fact, often the melting point of some materials is too 

high for apparatus available. The material melts incongruently or exhibits, at 

some lower temperature, a phase change which leads to severe stress or 

fracture; 

 

 Better quality crystals. In fact, crystals grown from melts may be be not well 

formed and non-stoichiometric due to the high vapor pressure of one or more 

of the constituents. 

 

Simple metals (Ni, Fe), oxides (B2O3, Bi2O3), hydroxides ((KOH, NaOH), salts (BaO, 

PbO, PbF2) can be used as solvents. However, eutectics, found in binary (PbO/B2O3, 

PbO/PbF2, BaO/B2O3, Li2O/MoO3) or ternary (PbO/PbF2/B2O3, BaO/Bi2O3/B2O3) 

diagrams, are generally preferred as a reason of their low temperature and their low 

viscosity. 
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In the present spinel synthetic samples belonging to the MgAl2O4-CoAl2O4 solid-

solution series were produced at the Department of Earth Sciences, Sapienza 

University of Rome (Fig. 3.1).  

 

Fig. 3.1. Experimental Mineralogy laboratory at the Department of Earth Sciences, Sapienza University 
of Rome. 
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The equipment consists in:  

 an ENTECH vertical furnace that may operate at maximum temperature of 

1400 °C, equipped with a multi-step temperature controller. Heating elements 

are at half height of the vertical and guarantee a homogeneous temperature 

zone of 30 cm.   

 

 a mass-flow controller that allow a continuous flow of mixed gas composed 

from pure CO2 and H2. These two gases are disposed to enter into the furnace 

for reduced atmosphere thermal runs.   

 

 an oxygen-fugacity sensor to measure the oxygen content of the atmosphere 

inside the furnace. 

 

 a computer for temperature and oxygen fugacity record through thermocouples 

and oxygen sensor. 

 

In the present study, flux growth method was used and experimental conditions were 

optimized to obtain high-quality single crystals of spinel belonging to the MgAl2O4 

(spinel sensu stricto) - CoAl2O4 (cobalt spinel) solid solution. 

3.2.1. Experimental conditions 

The growth of single crystals with the investigated compositions using the flux growth 

method depends on some experimental factors:  

1. cooling temperature range,  

2. cooling rate,  

3. flux content with respect to the total amount of nutrients,  

4. molar oxide proportions content in the starting mixture. Every element enters 

the growing spinel phase according to its melt/crystal partition coefficient, 

5. Flux/Nutrient ratio (F/N) 
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Ten experiment were carried out along MgAl2O4 (spinel sensu stricto) - CoAl2O4 

(cobalt spinel) solid solution, following the procedure described by Andreozzi, (1999). 

In the first experiment, CoAl05, the cooling rate of 4 °C/h was kept equal to those of 

Andreozzi (1999), whereas the cooling temperature range of 1200-900 °C was 

changed modifying the lower temperature from 900 °C to 800 °C in order to improve 

the size and shape of crystal. Results were not completely satisfactory in terms of 

crystal quality, so that in the other nine runs also the cooling rate of 4 °C/h was 

reduced to 2 °C/h in order to promote an increase of crystal quality (Table 3.2).  

The best flux/nutrients ratio of each composition was determined by trial and error as 

no literature data were found. It was observed that this ratio must be decreased in 

order to grow spinels with increasing contents of transition element oxides 

(Andreozzi, 1999). The F/N ratio of the crystals spinel synthetized in the present study 

changed from 1.50 to 1.40 (Table 3.2).  

Regarding the molar oxide proportions of the starting material, Andreozzi (1999) 

observed that crystals improve in both size and quality when some MgO excess over 

the stoichiometric ratio is added to the starting mixture, so an excess of MgO ranging 

from 0.10 (for Co-rich spinels) to 0.20 (for Co-poor spinels) was taken. 

The starting materials consisted of analytical MgO, Al2O3, and CoO powders (molar 

proportions used are reported in Table 3.2), which were dehydrated and dried at 1000 

°C for 12 h, before being mixed with Na2B4O7, used as flux compound. 
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Table 3.2. Flux grown spinels of the MgAl2O4-CoAl2O4 series: molar proportions of starting oxide 
mixture, flux to nutrient ratio (F/N), and experimental conditions. Sample name is referred to the 
percentage of CoAl2O4 end member that would be expected from oxide proportions. 
 

Run CoAl0.5 CoAl1 CoAl10 CoAl14 CoAl20 CoAl34 CoAl45 CoAl50 CoAl67 CoAl100 

MgO 1.20 1.20 1.15 0.96 0.95 0.76 0.65 0.60 0.43 - 

CoO 0.05 0.01 0.10 0.14 0.20 0.34 0.45 0.50 0.67 1.00 

Al2O3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

F/N 1.50 1.50 1.50 1.50 1.50 1.45 1.45 1.45 1.45 1.40 

T range 
(°C) 

1200-
800 

1200-
800 

1200-
800 

1200-
800 

1200-
800 

1200-
800 

1200-
800 

1200-
800* 

1200-
800 

1200- 
800 

Cooling 
range 
(°C/h) 

4°C/h 2°C/h 2°C/h 2°C/h 2°C/h 2°C/h 2°C/h 2°C/h 2°C/h 2°C/h 

CO2:H2 
(cm3/min) 

100:4 100:4 100:4 100:4 100:4 100:4 100:4 100:4 100:4 100:4 

Yield (g) 0.80 0.85 1.85 1.80 1.90 ~1.80 ~1.70 1.90 ~1.20 ~1.75 

Main size 
(μm) 

300 300 500 500 500 500 500 500 500 500 

*accidental quenching happened before the end of the slow cooling path 
 
 

Na2B4O7 was chosen because of its low melting point (742.5 °C), the low-energy 

barriers to crystal growth in the borate flux and its absence of interaction with spinel 

compositions. About 5 g of starting material were thoroughly ground and mixed under 

acetone in an agate mortar and then transferred to a 10 mL yttrium-stabilized Pt/Au 

(5%) crucible, covered by a platinum lid (Fig. 3.2.).  

 

Fig. 3.2.  Starting material in the yttrium-stabilized Pt/Au (5%) crucible. 

 

Yttrium-stabilized Pt/Au (5%) crucible was used for their good resistance to chemicals 

at high temperatures in reducing conditions. The crucible was suspended inside an 

ENTECH vertical furnace equipped with a multi-step temperature controller and an 

oxygen fugacity control system, which uses a binary gas mixture (CO2-H2).  

1 mm 
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Crystals were grown in a gas-controlled atmosphere, required for the reduction of 

Co3+ to Co2+. The reducing atmosphere was created by a continuous flow of high-

purity CO2 and H2 gases into the furnaces. The ratio CO2/H2 was maintained by gas-

flow controllers and was kept constant in the ratio of 100:4 (cm3/min). Oxygen fugacity 

ranged from 10−8 to 10−15 when temperature is decreased from 1200 to 800°C, 

respectively.  

The linear temperature profile of cooling was chosen with respect to the saw-tooth 

one, according to previous works in which crystal quality and size have seen to 

improve (Andreozzi, 1999). Thermal runs, schematized in Fig. 3.3, consisted of a 

rather steep increment in temperature up to 1200 °C, after which the temperature was 

kept constant for 24 h (for complete dissolution and homogenization of the oxide 

mixture) and subsequently decreased slowly to 800 °C at 2 °C/h cooling rate (with 

exception of the CoAl0.5 run that was cooled down at 4 °C/h). Shutting off the power 

to the heating elements ended thermal runs, and the material was rapidly cooled 

down to room temperature. 

 

Fig. 3.3. Thermal run expressed as time versus temperature. 

The products of each of the 10 experiments consisted of an intergrowth network of 

elongated, prismatic cobalt-magnesium borate crystals and octahedral spinel crystals 

embedded in minor sodium borate glass. The spinel crystals nucleate not only on the 

walls of the crucible and the surface of the melt but also in the bulk of material (Fig. 

3.4).  
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a)  

b)  

c)   

Fig. 3.4. Intergrowth of octahedral spinels and elongated, prismatic borate crystals at increasing 
magnification a) in the yttrium-stabilized Pt/Au (5%) crucible b) on the walls of the crucible and c) on 
the surface of the melt and in the bulk of material. 
 

By dissolving the glass phase and most of the borate crystals in warm and dilute HCl 

(10%) solution, the run products were reduced to euhedral and/or subhedral 

500 μm 

200 μm 

1 mm 
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octahedra of spinels of various sizes (Table 3.2). Ten single crystals of synthetic 

spinel belonging to the MgAl2O4-CoAl2O4 series, representative for different 

compositions, were chosen for the single crystal analyses on basis of quality in terms 

of size and shape (checked by binocular microscope) and crystallinity (checked by X-

ray single crystal diffractometer). The same crystals were used then for the following 

chemical electron-microanalysis, UV-VIS-NIR spectroscopy and Raman investigation. 

3.3. Single-Crystal X-Ray Diffraction   

Single-crystal X-ray Diffraction is an analytical technique which provides detailed 

information about the lattice parameters of crystalline substances, including unit cell 

dimensions, bond-lengths, bond-angles, and details of site-ordering. Directly related 

is structural refinement, where the data generated from the X-ray analysis are 

interpreted and refined to obtain the crystal structure.  

X-ray diffraction measurements were performed at the Earth Sciences Department, 

Sapienza University of Rome, with a Bruker KAPPA APEX-II single-crystal 

diffractometer, equipped with CCD area detector (6.2 × 6.2 cm2 active detection area, 

512 × 512 pixels) and a graphite crystal monochromator, using MoKα radiation from a 

fine-focus sealed X-ray tube (Fig. 3.5). The sample-to-detector distance was 4 cm. A 

total of about 1600 exposures for the natural samples and about 5000 exposures per 

the synthetic samples (step = 0.2°, time/step = 10 s) covering a full reciprocal sphere 

were collected.  



 

76 

 

 

Fig. 3.5. Bruker KAPPA APEX-II single-crystal diffractometer of the Earth Sciences Department, 
Sapienza University of Rome. 

The orientation of the crystal lattice was determined from 500 to 1000 strong 

reflections (I > 100 σI) evenly distributed in the reciprocal space, and used for 

subsequent integration of all recorded intensities. Final unit-cell parameters were 

refined by means of the Bruker AXS SAINT program from ca. 800 (natural spinels) 

and ca. 2300 (synthetic spinels) recorded reflections with I > 10 σI in the range 8° < 

2θ < 90°. The intensity data were processed and corrected for Lorentz, polarization, 

and background effects with APEX2 software program of Bruker AXS. The data were 

corrected for absorption using multi-scan method (SADABS). The absorption 

correction led to a significant improvement in Rint. No violation of Fd3m symmetry 

was noted. Sporadic appearance of forbidden space-group reflections was 

recognized as double reflections by their anomalously narrow reflection profiles.  

Structural parameters of chosen single crystals were obtained by X-ray single crystal 

diffraction analysis combined with the structural refinement. Structural refinements 

were carried out with the SHELXL-PC program (Sheldrick, 2008). Setting the origin at 

3m, initial atomic positions for oxygen atoms were taken from the structure of spinel 
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(Princivalle et al., 1989). Variable parameters were: scale factor, secondary extinction 

coefficient, oxygen positional parameter (u), Mg and Al occupancy in T and M sites, 

respectively, site-scattering values expressed as mean atomic number (m.a.n.), and 

atomic displacement parameters U(O), U(M), and U(T). No chemical constraint was 

applied during the refinement. To obtain the best values of statistical indexes (R1 and 

wR2) the oxygen site was modeled with neutral vs. full, ionized oxygen scattering 

curves, while neutral curves were used for the cation sites. In detail, the T site was 

modeled considering the presence of Mg and Co scattering factors, whereas the M 

site was modeled with the Al scattering factor. Three full-matrix refinement cycles with 

isotropic displacement parameters for all atoms were followed by anisotropic cycles 

until convergence was attained, that is, when the shifts in all refined parameters were 

less than their estimated standard deviation. No correlation over 0.7 between 

parameters was observed at the end of refinement. Table 3.3 summarizes the 

refinement details whereas the structural parameters will be described in next chapter 

(Table 4.6).  

Table 3.3.  X-ray diffraction data of the analyzed spinels single crystals along (Mg1-xCox)Al2O4. 

Crystal CoAl0.5 CoAl1 CoAl10 CoAl14 CoAl20 

Crystal sizes (mm) 0.200.200.12 0.220.210.18 0.220.200.15 0.200.200.16 0.200.200.20 

Reciprocal space 
range hkl 

–15  h  15 

–15  k  14 

–15  l  13 

–14  h  15 

–15  k  15 

–11  l  16 

–15  h  13 

–15  k  15 

–9  l  15 

–15  h  14 

–16  k  16 

–15  l  8 

–16  h  12 

–16  k  16 

–15  l  6 

EXTI 0.164(7) 0.22(1) 0.195(9) 0.090(3) 0.073(3) 

Set of read 
reflections 2552 2490 2452 2492 2465 

Unique reflections 132 132 130 133 132 

R int. (%) 2.57 2.08 1.46 2.26 1.87 

R1 (%) all 
reflections 1.56 2.11 1.86 1.28 1.49 

wR2 (%) all 
reflections 3.56 4.57 4.13 3.17 3.48 

GooF 1.239 1.322 1.330 1.178 1.293 

Diff. Peaks (±e/Å
3
) –0.36; 0.23 –0.53; 0.49 -0.50; 0.55 -0.37; 0.23 -0.36; 0.27 

Notes: EXTI = extinction parameter; R int. = merging residual value; R1 = discrepancy index, calculated from F-
data; wR2 = weighted discrepancy index, calculated from F

2
-data; GooF = goodness of fit; Diff. Peacks = 

maximum and minimum residual electron density. Radiation, Mo-K = 0.71073 Å. Data collection temperature = 

293 K. Total number of frames = 1500. 
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Table 3.3. continued 

Crystal CoAl34 CoAl45 CoAl50 CoAl67 CoAl100 

Crystal sizes (mm) 0.300.250.20 0.200.200.20 0.160.160.10 0.160.140.09 0.190.190.12 

Reciprocal space 
range hkl 

–9  h  15 

–14  k  10 

–16  l  16 

–11  h  15 

–15  k  16 

–15  l  13 

–13  h  16 

–14  k  11 

–13  l  16 

–10  h  15 

–16  k  16 

–15  l  7 

–14  h  15 

–15  k  15 

–15  l  7 

EXTI 0.045(2) 0.045(2) 0.23(1) 0.024(1) 0.026(1) 

Set of read 
reflections 

2471 2460 2567 2445 2484 

Unique reflections 129 132 133 133 131 

R int. (%) 2.58 4.49 1.86 1.55 2.40 

R1 (%) all 
reflections 

1.49 1.36 1.98 1.06 1.11 

wR2 (%) all 
reflections 

3.39 3.50 4.48 2.65 2.45 

GooF 1.376 1.244 1.286 1.153 1.286 

Diff. Peaks (±e/Å
3
) -0.56; 0.32 -0.30; 0.30 -0.70; 0.29 -0.30; 0.25 -0.28; 0.33 

Notes: EXTI = extinction parameter; R int. = merging residual value; R1 = discrepancy index, calculated from F-data; wR2 = 
weighted discrepancy index, calculated from F

2
-data; GooF = goodness of fit; Diff. Peacks = maximum and minimum residual 

electron density. Radiation, Mo-K = 0.71073 Å. Data collection temperature = 293 K. Total number of frames = 1500. 

 

3.4. Electron microprobe analysis 

Electron microprobe analysis was performed in order to obtain chemical composition 

of both synthetic and natural spinels crystals. For the synthetic spinels belonging to 

the MgAl2O4-CoAl2O4 series the analyses were carried out on the same crystals used 

for the structural refinements. Natural and synthetic single crystals were mounted in 

an epoxy disc, thinned, polished and carbon-coated for electron microprobe analysis 

(EMPA, wavelength dispersive mode) using a Cameca SX 50 instrument at the CNR-

IGAG laboratory c/o Sapienza University of Rome, operating at an accelerating 

potential of 15 kV and a sample current of 15 nA, with an incident beam size of ~1 

mm (Fig.3.6).  
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Fig. 3.6. Cameca SX 50 instrument at the CNR-IGAG laboratory c/o Sapienza University of Rome. 

 

No less than 5 spot analyses for each sample were performed to obtain the average 

chemical composition and a preliminary estimation of the compositional homogeneity. 

Standards used for the synthetic samples (with a semi-known composition) were 

periclase (MgO), corundum (Al2O3), and metallic Co. A synthetic MgAl2O4 spinel 

single crystal, produced and fully characterized by Andreozzi et al. (2000), served as 

a reference material. For the natural samples  the synthetic and natural standards 

used were corundum (Al), magnetite (Fe), wollastonite (Si), rutile (Ti), vanadinite (V), 

metallic Zn, Mn, Co and Ni, and synthetic MgAl2O4 (Mg) and MgCr2O4 (Cr) spinel 

single crystals, produced and fully characterized by Andreozzi et al. (2000) and 

Hålenius et al. (2010), respectively. 

A PAPCAMECA program (Pouchou and Pichoir, 1984) was used to convert X‑ray 

counts into weight percentages of the corresponding oxides. 

3.5. X-ray mapping technique in SEM/EDS analysis 

Compositional homogeneity of the synthetic crystals belonging to the MgAl2O4-

CoAl2O4 series was further investigated by SEM and demonstrated by image analysis 

coupled with energy-dispersive spectrometry (EDS) analysis using color coding to 

depict the 2D spatial distribution of the characteristic energy emission from respective 
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elements present in the samples. All the samples were carbon coated and analyzed 

at Earth Sciences Department, Sapienza University of Rome, by a SEM/EDS FEI 

Quanta 400 instrument operating at an accelerating voltage of 30 kV, a specimen tilt 

of 0°, a working distance of 9.7 mm and a magnification of 520× (Fig. 3.7). 

 

Fig. 3.7. SEM/EDS FEI Quanta 400 instrument. 

3.6 Cation distribution procedure 

Several different procedures may be adopted to determine cation distribution, and 

very satisfactory results have been obtained by combining data from single-crystal X-

ray structural refinements and electron microprobe analysis (Carbonin et al. 1996; 

Andreozzi et al., 2001a; Lavina et al. 2002; Bosi et al. 2004; Lenaz and Princivalle 

2011). This approach simultaneously takes into account both structural and chemical 

data and reproduces the observed parameters by optimizing cation distributions. 

Differences between measured and calculated parameters are minimized by the “chi-

square” function: 

 (     ∑ (
     (   

  
)
 

 
         (22)  
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where Oj is the observed quantity, σj its standard deviation, Xi the variables, i.e., 

cation fractions in T and M sites, and Cj(Xi) the same quantity as Oj calculated by 

means of Xi parameters. The n Cj quantities taken into account were: unit-cell and 

oxygen parameter, m.a.n. of T and M sites, total atomic proportions given by 

microprobe analyses, and constraints imposed by crystal chemistry (total charges and 

occupancies of T and M sites). Several minimization cycles of Equation 21 up to 

convergence were performed using a home-developed calculation routine.  F(Xi) 

values ≈ 1 mean good agreement among calculated and observed data 

The a0 and u values were linked to the cation site fractions (Xi) considering that the T-

O and M-O bond distances were calculated as the linear contribution of each cation 

multiplied by its specific site bond distance, the latter refined on the basis of analysis 

of more than 250 spinel structural data from the literature (Lavina et al. 2002). 

However, for the synthetic Co-spinels using the bond length of 1.972(2) Å reported for 

TCo2+-O in Lavina et al. (2002), low values in the minimization function were obtained 

only for the Co-rich terms. Best fits for all examined crystals were obtained using 

variable TCo2+-O bond lengths, ranging from 1.966 Å in the Co-poor terms to 1.972 Å 

in the Co-rich terms. The final cation distribution was obtained by using the average 

value of 1.969(3) Å for TCo2+-O along the entire solid-solution series. For the natural 

spinels the bond length of 1.949(1) Å was used for TZn-O, following Bosi et al. (2011) 

who showed that the TZn-O value varies as a function of the M site population, 

increasing from 1.949 Å (for MAl) to 1.980 Å (for MFe3+). 

Final F(Xi) values confirmed that all chemical and structural parameters were 

reproduced on average within ±2σ, and hence that the corresponding cation 

distributions are highly reliable. 

3.7. LA-ICP-MS instrument 

The analyses were carried out using an 193 nm ArF excimer laser ablation system 

(Lambda Physik, Göttingen Germany) coupled to an ICP-MS (DRC II +, Perkin Elmer, 

Norwalk, USA) (Ottinger et al. 2005). The samples were ablated for 40 s (10Hz, 60 

μm crater diameter) and the operating conditions are summarized in Table 3.4. The 
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reference material NIST 610 was used as external calibration standard and Al was 

used as internal standard. Data reduction and concentration calculation was carried 

out using the protocol as described in Longerich et. al. (1996).  

Table 3.4 Operating conditions of the measurement at LA-ICP-MS. 

Parameter Value 

Laser type ArF excimer 

Laser wavelength 193 nm 

Spot diameter (sample and 
standard) 

 

Repetition rate (sample and 
standard) 

10 Hz 

Laser energy 22 J/cm2 

He carrier gas flow rate 1.2L min-1 

RF power 1380 

Nebulizer gas flow rate 0.85 

Auxiliary gas flow rate 0.75 

Coolant gas flow rate 17.5 

Dwell time 10 ms 

Detector mode Dual (pulse and analog)  

 

3.8. Raman spectroscopy instruments 

The Raman analyses were carried out on the same crystals used for the structural 

refinements and chemical investigation, after removing the carbon-coated layer. In 

addition, five gems of natural spinels and a synthetic spinel synthetized by flame 

fusion Verneuil method were analyzed in order to distinguish between natural and 

synthetic spinels. 

Raman spectroscopy was performed on the single crystal sample using a Jobin-Yvon 

Horiba LabRam microRaman apparatus at the Physics and Earth Sciences 

Department “Macedonio Melloni”, Università degli Studi di Parma. (Fig. 3.8).  
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Fig.3.8. Jobin-Yvon Horiba LabRam microRaman apparatus. 

The experiment in generally consist to light up the sample with a laser beam, then the 

light from the illuminated spot is collected with a lens and sent through a 

monochromator. Wavelengths close to the laser line due to elastic Rayleigh scattering 

are filtered out (through the Notch filter) while the rest of the collected light is 

dispersed onto a detector (CCD). In detail, several spectra were recorded using the 

excitation of both the red 632.8 nm line of a He-Ne laser and the blue 473.1 nm line of 

a solid state Nd:YAG  laser.  A filter wheel reduced the laser power to less than 1 mW 

on the sample. Laser power was controlled by means of a series of density filters in 

order to avoid heating effects. The system was calibrated using the 520.6 cm−1 

Raman band of silicon before each experimental session. Spatial resolution was ~1 

μm, whereas spectral resolution ranges between 2 and 3 cm-1 depending on the laser 

source.  No attempt was done to measure oriented crystals. The peak positions were 

obtained from baseline-corrected spectra by least-squares spectral peak curve fitting 

using the computer program Labspec (Horiba). A Lorentzian profile was used in the 

peak profile analysis. At least 5 spectra were collected at different positions within the 

sample and the resulting spectra were found to be identical. The acquisition time 

ranges between 30 s to 180s. The typical Raman shift range for the spinel from 200 
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to 800 cm-1 was explored, but, in order to explore also the photoluminescence (PL) 

features, the analysis were carried up to 8000 cm-1. 

Raman and PL analysis were performed also with the GemmoRaman-532 instrument 

at the private laboratory of the gemologist Alberto Scarani (Fig. 3.9). Raman and PL 

spectra were recorded with the TEC-cooled 532nm DPSS laser (green) in the range 

225-4700 cm-1
. The acquisition time ranges between 200 s to 8000ms. Average 

acquisition number ranging between 6 and 50. Spectral resolution for the FWHM is 11 

cm-1.  

  
Fig. 3.9. GemmoRaman-532 instrument. 

 

3.8.1. Polarized Raman spectra 

In order to follow the shift and growth of each peak along the series, a polarized 

Raman study on single crystals was performed. In addition polarized Raman 

investigation represents a powerful tool for deducing the symmetry of vibrational 

modes. The assignment of Raman lines may be aided by measuring their intensity 

with a polarizing filter, first parallel and then perpendicular to the polarization of the 
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incident radiation. If the polarization of the scattered beam is the same as that of the 

incident beam (intense only in the parallel direction), then the Raman line is said to be 

polarized. If the scattered light is intense in both the parallel and perpendicular 

direction, then the Raman line is depolarized. 

Unpolarized, polarized and depolarized Raman spectra were taken for all the 

synthetic spinel crystals. The corresponding polarizability tensors for the Oh cubic 

symmetry are: 

A1g:  (
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Eg:  (
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To describe the particular experimental configuration, the notation of Damen, Porto 

and Tell (1966) is used to describe the direction and polarization of the incident and 

scattered light. This notation consists of four letters, a(bc)d in general, expressing the 

direction of the propagation of the incident radiation (a), the polarization of the 

incident radiation (b), the polarization of the analyzed radiation (c) and the direction of 

propagation of the analyzed radiation (d). For example in the case of X(XY)Z, the 

term outside the parentheses refer to the direction of the incident and scattered 

beams, respectively, while inside they refer to the polarization directions. Only totally 

symmetric vibrations (a normal mode with all characters = 1 in the character table) 

give rise to polarized lines.  Crossed polarizations of the incident and scattered light 

bring the modes about whose tensors contain the components out of the main 

diagonal. These are the F2g modes. The A1g and Eg modes can be observed when the 

incident and scattered beams are polarized in a parallel way. The analysis of the 

tensor components shows that the A1g mode is the only one that remains extinct in a 

depolarized experiment regardless of the crystal orientation. This allows its 
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identification immediately. On the other hand, the intensities of the other modes will 

vary depending on the crystal orientation. For examples, to distinguish the Eg modes 

from the A1g modes a rotation of the crystal by 45°C in crossed polarization is 

required (Shebanova and Lazor, 2003) 

Non-polarized micro-Raman spectra were obtained in nearly backscattered geometry 

with a Jobin-Yvon Horiba “Labram” apparatus, equipped with an Olympus microscope 

with ×10, ×50 and ×100 objectives and a motorized x–y stage. The blue 473.1 nm line 

of of a solid state Nd:YAG  laser was used as excitation; laser power was controlled 

by means of a series of density filters in order to avoid heating effects. The polarized 

Raman investigation was made in synthetic spinels in the epoxidic resin and an 

orientation of the crystal is quite difficult. Only the Z(XY) ̅ and Z(XX) ̅  spectrum were 

taken and not in a specific crystallographic orientation.  

3.9. Optical absorption spectroscopy instrument 

3.9.1. Experimental conditions of synthetic spinels 

Ten representative crystal fragments were selected along the MgAl2O4-CoAl2O4 

series. Nonpolarized room-temperature optical absorption spectra were recorded in 

the UV/VIS to NIR spectral range (330–2000 nm) on double-sided polished single 

crystals ranging in thickness from 13 to 390 μm with a Zeiss MPM800 microscope 

spectrometer equipped with Ultrafluar 10× objective and condensor lenses, Xenon arc 

75W and Halogen 100 W light sources, blazed concave monochromators and 

photomultiplier and photoconductive PbS-cell detectors. The spectra were recorded 

at the Mineralogy Department, Naturhistoriska Riksmuseet, Stockholm, using a spot 

with a measured diameter of 40 μm during three cycles at a resolution of 1 and 5 nm 

in the UV/VIS (330–800 nm) and NIR (800–2000 nm) spectral regions, respectively. 

The accuracy of determined absorption band energies in the UV/VIS-NIR region is 

estimated on the basis of measured Ho2O3-doped and Pr2O3/Nd2O3-doped calibration 

standards (Hellma glass filters 666-F1 and 666-F7) to be better than 60 cm–1. In the 

MIR range (2000–4000 nm) spectra were collected on the same single-crystal 
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absorbers as above during 128 cycles using a square-shaped 40 × 40 μm aperture at 

a spectral resolution of 4 cm–1 with a Bruker Equinox 55S FTIR microscope 

spectrometer equipped with a glowbar source, KBr beamsplitter and a MCT-detector. 

Recorded spectra were fitted using the peak resolution program Jandel PeakFit 4.0 

assuming Gaussian absorption bands. 

3.9.2. Experimental conditions of natural spinels 

Unpolarized room-temperature optical absorption spectra were recorded on single 

crystals in the spectral range 270-1100 nm (37037-9091 cm-1) at a spectral resolution 

of 1 nm using an AVASPEC-ULS2048X16 spectrometer attached via a 400 µm UV 

optical fiber to a Zeiss Axiotron UV-microscope (Fig. 3.10).  

 
Fig. 3.10. Zeiss MPM800 single beam microscope-spectrometer. 

The crystals studied by optical absorption spectroscopy are identical to the ones used 

for the EMP-analyses. These crystals were embedded in a thermoplastic resin, 

placed on a glass slide and polished on two parallel surfaces. The resulting thickness 

of each absorber was in the range 11–183 lm as determined by means of a digital 

micrometer. A 75 W Xenon arc lamp served as illuminating source, concave gratings 

served as monochromator, and a photomultiplier as detector. Spectra in the NIR 

spectral region from 1100 nm to 2000 nm (9091-5000 cm-1) were recorded on the 
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same crystal absorber with a Zeiss MPM800 single beam microscope-spectrometer 

using a 100 W halogen lamp as light source. Light detection was achieved by means 

of a photoconductive PbS-cell. The NIR-spectra were recorded at a spectral 

resolution of 5 nm. Zeiss Ultrafluar 10x lenses served as objective and condenser in 

all measurements. The size of the circular measure aperture ranged from 40 to 64 µm 

in diameter. The wavelength scale of the spectrometers was calibrated against Ho2O3 

doped and Pr2O3/Nd2O3 doped standards (Hellma glass filters 666F1 and 666F7) with 

accuracy better than 15 cm–1. 

Spectroscopic data were also measured within the NIR-MIR range (2000–9000 nm) 

by means of a FTIR spectrometer (Bruker Equinox 55S) equipped with an IR 

microscope, equipped with a glowbar source, KBr beamsplitter and a MCT-detector 

(Fig. 3.11). Spectra were collected on the same single-crystal absorbers as above but 

with a thickness of 0.098 mm during 128 cycles using a square-shaped 40 × 40 μm 

aperture at a spectral resolution of 4 cm–1.  

 

 
Fig. 3.11. Bruker Equinox 55S FTIR microscope instrument.  

Recorded spectra in the UV-VIS-NIR-MIR range were deconvoluted using the peak 

resolution program Jandel PeakFit 4.12. In the deconvolution process all fitted bands 

were assumed to be of Gaussian shape. The recorded UV-absorption edges were 

also fitted with a Gaussian function. No other constraints were applied during the 

fitting procedure. 
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Chapter 4 

RESULTS and DISCUSSION 

4.1. Synthetic blue Co-spinels 

Co-bearing spinels are very rare in nature, but are actively sought as gemstones due 

to their vivid, high-purity blue color that makes them more precious than sapphires. 

Previous studies evidenced small amounts of cobalt (CoO = 1 wt%) in natural gems 

of Sri Lanka (Shigley and Stockton, 1984) and in a sample from the island of Samos 

(Taran et al., 2009). Although the cobalt contents were very low, these natural Co-

bearing spinel crystals showed light and fancy blue colors. Up to a few decades ago 

cobalt was considered a coloring agent only of synthetic blue spinel, whereas the blue 

color in natural spinel was attributed solely to iron. However, Shigley and Stockton 

(1984) demonstrated that both cobalt and iron are capable of producing blue colors in 

materials, and considerably less cobalt than iron is required to produce an equally 

intense blue. Besides the above mentioned natural Co-poor spinel crystals, the only 

reported natural occurrence of a Co-rich spinel (CoO ≤ 22.8 wt%) is a very small 

crystal (∼200 μm large) included in a gem-quality blue sapphire from Bo Phloi, 

Thailand (reported as Bo Ploi in gemological literature), occurring in alluvial/eluvial 

deposits near basaltic outcrops (Guo et al., 1994).  

Synthetic CoAl2O4 spinel is a high-temperature oxide (melting point of 1955 °C), and it 

is the most stable compound of a family of spinel-structured oxides obtained from 

Co3O4 at progressive increase of Al contents (Tielens et al., 2006, 2009). From an 

optical point of view, the increase of Al results in the transition from black Co3O4 to 

dark green Co2AlO4, bright blue CoAl2O4, and white Al8/3O4, that is, γ-Al2O3. These 

color changes are functions of both the oxidation states and the structural position of 

the cobalt cations. The black color is caused by total absorption of visible light due to 

the interactions between Co2+ and Co3+ (i.e., comparable to Fe2+-Fe3+ in magnetite), 

the dark green color is ascribed to electronic transitions in Co3+ in octahedral 

coordination, and the bright blue color results from electronic transitions in Co2+ in 
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tetrahedral coordination (Burns, 1993; Fernández and Pablo 2002; Tielens et al. 

2006, 2009; Kurajica et al. 2011). Besides, when Co2+ is in octahedral coordination 

(as in pyroxene CaCoSi2O6) the hue becomes pink (Mantovani et al., 2012). From a 

coloring point of view, cobalt in tetrahedral coordination has a higher hiding power 

with respect to the octahedral coordination (Llusar et al., 2001). Cobalt aluminate was 

utilized since the Middle Ages under the pigment form of smalt (a potassium glass 

containing cobalt) and some authors also reported an uncommon use of cobalt 

aluminate pigment in ancient Egyptian ceramics (Bouchard and Gambardella, 2010). 

Except these few occurrences, the bright blue synthetic CoAl2O4, commercially well 

known as Thenard’s blue, has been extensively used, since the discovery of its 

industrial synthesis route in 1802, as a pigment (classified with the DCMA number 13-

26-2) for the coloration of ceramics, glazes, porcelain enamels, glass, paint, fibers, 

paper, cement, rubber, plastics, and cosmetics. Cobalt-bearing pigments, commonly 

Co-spinel and Co-olivine, are the most efficient and widely used blue ceramic 

pigments, but the spinel is strongly preferred to olivine since a navy blue color can be 

obtained with strongly reduced CoO content (42 wt% in CoAl2O4 against 71 wt% in 

Co2SiO4), besides some differences in color saturation (Eppler and Eppler, 2000). In 

addition to pigment industry, cobalt-aluminate and iron-manganite spinels have been 

successfully used for heterogeneous catalysis such as NOx reduction or the CO2 

reforming of methane (Hou and Yashima, 2004; Fierro et al., 2005). 

Because of the chemical complexity frequently observed in natural spinel samples, a 

large number of crystal-chemical studies have been performed on synthetic materials 

of well-defined compositions, with the objective to model their physical properties. As 

for example, CoAl2O4 has been extensively synthesized by several methods: sol-gel 

method (Sales et al. 1997; Areán et al. 1999), coprecipitation method (Chokkaram et 

al. 1997; Rangappa et al. 2007), polymeric precursor method (Cho and Kakihana 

1999; Gama et al. 2009), solid-state reactions (Chemlal et al. 2000; Melo et al. 2003; 

Suzuki et al. 2007), combustion synthesis (Mimani and Ghosh 2000; Li et al. 2003), 

hydrothermal synthesis (Chen et al. 2003), complexation method (Wang et al. 2006; 

Mindru et al. 2010) floating-zone technique (Maljuk et al. 2009). The solid solution 
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(Co,Mg)Al2O4 was explored by Angeletti et al. (1977), by calcination of alumina 

powder soaked in cobalt nitrate solution to 1200 °C. They obtained six compounds, 

mainly consisting of powder or nanosized particles of cobalt spinel. 

The chemical composition of synthetic powder materials is difficult to characterize 

accurately, especially when transition elements with more than one oxidation state 

are present. An alternative approach is to synthesize large single crystals, which offer 

the potential for high-accuracy material characterization. 

Despite the interest in CoAl2O4 (and Co-bearing materials with spinel structure) due to 

its physical properties, very little structural information is available in literature, and 

many aspects regarding electronic structure and cation distribution are not well 

understood or are even unknown. In this regard, the steric factors seem to be very 

important for the cation allocations in the structural sites as exemplified by, e.g., 

FeAl2O4, CuAl2O4, and CoAl2O4 spinels (Harrison et al., 1998; O’Neill, 1994; O’Neill et 

al., 2005), in which the small Al3+ cation prefers the larger octahedral coordination to 

the tetrahedral one. In these spinels, cation size and crystal field stabilization energy 

suggest that Fe2+, Cu2+, and Co2+ should prefer the octahedra, but the presence of Al 

obviously counteracts this behavior. The CoAl2O4 spinel is in fact an almost normal 

spinel with Co2+ ions ordered at the tetrahedrally coordinated (T) and Al3+ ions 

ordered at the octahedrally-coordinated sites (M) sites in the slightly distorted cubic 

close packed of oxygens. Previous studies on CoAl2O4 include investigations of 

electron density (Toriumi et al. 1978), crystal field transitions (e.g., Kuleshov et al., 

1993) and cation distribution as a function of temperature (O’Neill 1994; Nakatsuka et 

al. 2003). In particular, the latter authors highlighted that at high temperatures, limited 

fractions of the Co2+ and Al3+ ions may interchange their structural positions. 

Nevertheless, systematic investigation of the structural variations all along the entire 

(Mg1-xCox)Al2O4 solid-solution series is missing.  

In the present study, a flux growth method was used and experimental conditions 

were optimized to obtain high-quality single crystals of spinel with compositions 

corresponding to the solid-solution series MgAl2O4-CoAl2O4. Then the materials 
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obtained have been investigated by a combined chemical, structural and 

spectroscopic approach via scanning electron microscope (SEM), electron 

microprobe (EMP), and X-ray diffraction (XRD), in order to reveal structural details 

and improve our understanding of the factors that affect cation distribution and 

influences some of the physical properties (e.g., color).  

The following chemical, structural and spectroscopic characterizations have been 

published in the American Mineralogist (D’Ippolito et al., 2012; Bosi et al., 2012). Part 

of these data has been here rearranged, or implemented with further data for a more 

exhaustive description. 

4.1.1 Synthesis and chemical characterization 

Conditions adopted during flux growth proved to be well optimized as demonstrated 

by the large number of spinel single crystals obtained from every experimental run. 

Apart from the first tentative run (CoAl0.5, see experimental section), all subsequent 

runs had the same thermal path and cooling rate. Crystals were formed in the range 

between 1200 and 800 °C, with an exception being sample CoAl50, which by 

accident was quenched before the end of the slow cooling stage. The unintentional 

breaking of the wire that holds the crucible in the vertical furnace resulted in a rapid 

cooling of the crystals of this run in the middle of the growth process. In spite of this, 

good quality spinel crystals were retrieved and the quenching temperature was 

estimated to be approximately 1000 °C. Due to this difference in thermal history, it 

may be expected that the structural/physical properties of sample CoAl50 will differ 

from the general trends identified for the majority of the other samples. 

A large number of spinel single crystals were obtained from every experimental run. 

Crystals appear as inclusion-free, regular octahedra sized up to 1.2 mm in diameter, 

variable in color from light blue to intensely dark blue as a function of chemical 

composition (Table 3.2 in chapter 3). With rising  total cobalt content the saturation of 

the vivid blue color increases but no shift in color hue is observed along the series 

(Fig. 4.1).  
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In contrast, distinct color shifts were observed by the naked eye (and confirmed by 

optical absorption spectroscopy) in Fe2+- and Cr3+-bearing spinel solid-solution series 

previously synthesized (Hålenius et al., 2002 2010).  

a)   b)   

c)            d)   

Fig. 4.1. Photomicrographs of selected synthetic spinel single crystals: (a) sample CoAl1; (b) CoAl10, 
(c) CoAl20, (d) CoAl100.  Crystal size is approximately 300 μm. 

Besides large single crystals, solid crusty aggregates and loose microcrystalline 

powder were also obtained from most of the experiments and usually retrieved from 

the bottom of the Pt-crucible. SEM inspection showed that both the crusts and the 

powder consist of smaller spinel crystals (probably second generation or influenced 

by the interaction with the crucible walls) with octahedral shape and sharp edges (Fig. 

4.2).   
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a) b)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)  

Fig. 4.2. SEM images of selected small spinel samples retrieved at the bottom of the Pt crucible: (a) 
single crystals (magnification 600×); (b) crusty aggregates (magnification 100×); (c) a detail of the 
crusty aggregates with single crystal from 10 to 100 μm ((magnification 500×). 

Some samples showed a dendritic formation on the faces which exhibited the same 

chemical composition of the sample (Fig. 4.3). Despite the crystals are not subjected 

to quencing during the synthesis experiment, probably the samples felt the effect of 

the rapid cooling from 800°C to the room temperature. In fact, at slow rates of crystal 

growth, the interface between melt and solid remains planar, and growth occurs 

uniformily across the surface. At faster rates of crystal growth, instabilities are more 

likely to occur; this leads to the dendritic growth. These formations are up to 8 μm 

size and do not influence the analysis. 
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Fig. 4.3. Dendritic formation on the faces of the crystal spinel. 

 

Chemical characterization via EMP confirmed that both large and small crystals 

belong to the (Mg,Co)Al2O4 spinel series, without evidence of other phases. This is an 

experimental confirmation of what was expected on the basis of ab initio calculations 

by Tielens et al. (2009), who showed the larger thermodynamic stability of the 

CoAl2O4 phase with respect to other (Co,Al)3O4 phases. These authors also predicted 

that the formation process of CoAl2O4 is largely exothermic and consequently this 

phase is highly stable with respect to decomposition. The present spinels 

satisfactorily represent the whole MgAl2O4-CoAl2O4 solid solution as their CoAl2O4 

component ranges from 7 to 100 mol% (Table 4.1). 
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Table 4.1. Average chemical composition and unit-cell parameter (a) of synthetic crystals belonging to 
the MgAl2O4-CoAl2O4 series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cation sums are in excellent agreement with the expected value required from spinel 

stoichiometry and this is a good indication against any presence of Co3+. The 

absence of Co3+ in our samples was expected due to the strongly reducing conditions 

imposed during crystal growth, and it has been also confirmed by UV-VIS-NIR 

spectroscopy and crystal structure refinements. Moreover, EMP spot analyses 

indicate compositional homogeneity within a single crystal, further evidenced by 

SEM/EDS X-ray mapping, which displays for all samples the lack of chemical zoning 

via uniform spatial distribution of Co (Fig. 4.4). In contrast, in Cr-bearing synthetic 

spinels previously produced a strong Cr enrichment was observed in the core region, 

especially in samples with low nominal Cr-contents (Hålenius et al. 2010). 

  

Sample CoAl0.5 CoAl1 CoAl10 CoAl14 CoAl20 
MgO 25.9(7) 25.2(1) 24.2(9) 20.0(1) 17.8(7) 
CoO 3.6(5) 4.4(1) 5.3(1) 12.4(3) 16.9(3) 
Al2O3 70.5(4) 70.3(3) 70.2(3) 67.1(3) 66.2(3) 
Tot. 100.0 99.9 99.7 99.5 100.9 

Cations on basis of 4 oxygen anions 

Mg 0.929(4) 0.908(3) 0.878(4) 0.753(4) 0.676(4) 
Co2+ 0.069(1) 0.085(2) 0.103(3) 0.251(3) 0.344(3) 
Al 2.002(4) 2.005(4) 2.012(5) 1.997(5) 1.986(4) 

Tot.  3.000 2.998 2.993 3.001 3.006 
      

Sample CoAl34 CoAl45 CoAl50 CoAl67 CoAl100 
MgO 13.1(5) 10.5(4) 9.1(1) 6.0(1) - 
CoO 22.4(5) 27.2(6) 29.0(2) 34.0(1) 43.1(3) 
Al2O3 63.8(2) 62.3(3) 62.0(2) 59.3(6) 57.3(2) 
Tot. 99.3 100.0 100.1 99.3 100.4 

Cations on basis of 4 oxygen anions 

Mg 0.520(4) 0.424(6) 0.369(3) 0.252(5) - 
Co2+ 0.478(4) 0.590(14) 0.635(4) 0.768(4) 1.017(5) 
Al 2.001(5) 1.991(13) 1.997(2) 1.986(4) 1.989(5) 

Tot.  2.999 3.005 3.001 3.006 3.006 
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Fig. 4.4. SEM/EDS X-ray map of CoAl67 sample: (a) SEM image of a polished crystal; (b) uniform 
spatial distribution of Al concentration (c) uniform spatial distribution of Co concentration (d) uniform 
spatial distribution of Mg concentration. 

 

If a comparison between the composition of starting oxide mixture (reagents) and the 

composition of crystalline materials (products) is made, it is evident that the CoAl2O4 

component of our products does not show a linear relationship with the analogous 

component of the reagents, but rather a distinct symmetrical deviation (Fig. 4.5). In 

particular, the difference between products and reagents is zero at the two end-

members and reaches a maximum value of ca. 14% (in terms of CoAl2O4 component 

expressed in mol%) for the samples in the central part of the series (CoAl34, CoAl45, 

and CoAl50), reflecting a concentration of cobalt into the crystalline phase. It is 

noteworthy that opposite behavior was observed in the previously synthesized 

a b 

c d 
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MgAl2O4-MgCr2O4, MgAl2O4-FeAl2O4 and MgAl2O4-MnAl2O4 solid-solution series 

(Andreozzi and Lucchesi, 2002; Hålenius et al., 2010, 2011). A plot of corresponding 

data for those two binary systems shows a marked depletion of their transition metal 

component in the crystal products with respect to the starting reagents. Notably, the 

first two series show a marked depletion of their component in the crystals with 

respect to the starting reagents. On the opposite, the third one shows a strong 

enrichment of the MgCr2O4 component in the crystals. 

 

Fig. 4.5. Comparison (in terms of chemical components expressed in mol%) between crystal products 
and starting reagents along the solid-solution series MgAl2O4-AAl2O4 (with A = Co

2+
, Fe

2+
, and Mn

2+
) 

and MgAl2O4-MgCr2O4 series. Continuous lines = best fit to experimental data; dashed line = 1:1 ideal 
trend. 

 

This behavior may be tentatively explained by considering that partitioning of 

transition element cations between minerals and coexisting melt is strongly influenced 

by Octahedral Site Preference Energy (OSPE) in crystal structures. The OSPE 

parameter is the difference between the crystal field energy of a cation in octahedral 

coordination (CFSEo) and that in tetrahedral coordination (CFSEt). As for example, in 

several silicate systems a relationship between OSPE and distribution coefficients 

Mn
2+
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has been demonstrated for transition metal ions (Leeman and Scheidegger, 1977; 

Takahashi, 1978). The latter authors showed that the partition coefficient (toward 

crystals) between olivine and silicate groundmass follows the sequence Co > Fe > 

Mn, that is exactly what is predicted on the basis of CFSE and observed in Figure 4.5 

for spinels. In addition Klemme et al., (2006) calculated the partitioning of trace 

elements between spinel crystals and silicate melts, and found that the distribution 

coefficient of Cr is considerably higher than that of Co, in agreement with high value 

of OSPE of Cr3+ (Table 4.2). This is particularly relevant because  in borates and 

borate glass there are only availability of tetrahedral sites (Osipov and Osipova, 

2009), so that during the crystal growth from borate system, as in our case, transition 

metal ions will enter in the spinel crystals according to their OSPE. However, CFSE 

contributes less than 10% to the total lattice energy (Burns, 1993), so that other 

factors must have a larger influence on cation partitioning.  

According to Goldschmidt’s rules, when two different ions occupy a particular position 

in a crystal structure, the ion with the higher ionic potential (namely charge/radius 

ratio) forms a stronger bond with anions. In this light the behavior observed in Figure 

4.5 may be easily explained bearing in mind that the ionic potential is ranked Cr3+ > 

Co2+ > Fe2+ > Mn2+ (Table 4.2). 

 

Table 4.2. Ionic potential and OSPE for the different cation involved in the synthesis. 

Ion Ionic potential OSPE (kcal/mole)  

Cation 2+ 

Mn2+ 3.049 0 
Fe2+ 3.226 4.0 
Co2+ 3.378 7.4 

Cation 3+ 

Fe3+ 4.651 0 
Cr3+ 4.878 37.5 

 

On the basis of both the above interpretations and results previously obtained 

(Hålenius et al. 2010, 2011; Bosi et al. 2011), it seems that, better than electronic 

interactions, steric factors (e.g., size of the ions) are central to determine the cation 
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intra-crystalline distribution in the aluminate spinel structure as well as inter-crystalline 

partitioning between aluminate spinels and other phases. 

4.1.2 Structural and spectroscopic characterization (long and short range) 

The recorded optical absorption spectra show two intense absorption bands at ~ 

17.000 cm-1 (ν3)
 and ~ 8.000 cm-1 (ν2) in the visible and near infrared, and a weak and 

broad absorption bands at ~ 4.500 cm-1 (ν1)  in the medium infrared (Figs. 4.6 and 

4.7). Each of the three observed band regions is split in three absorption peaks due to 

first-order spin orbit coupling effects. 

 

Fig. 4.6. Nonpolarized single-crystal absorption spectra of the (Mg1–xCox)Al2O4 series. Complete 
spectra into the UV-region could not be recorded for the high-Co crystals CoAl34 to CoAl100 because 
of difficulties to prepare sufficiently thin absorbers (≤8 μm). 
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Fig. 4.7. Nonpolarized single-crystal absorption spectra of the split 
4
A2→ 

4
T2(F) transition in 

tetrahedrally coordinated Co
2+

 in the (Mg1–xCox)Al2O4 spinel series. Low Co-content in combination with 
limited crystal size and low molar absorption coefficient precluded recordings of this transition in 
sample CoAl0.5. 

 

These optical absorption spectra are in general agreement with published spectra of 

natural cobalt-bearing spinel (Taran et al. 2009) and in the spectrum of synthetic Co2+  

bearing MgAl2O4 (Dereń et al. 1994). The two main absorption bands, which increase 

in intensity with increasing cobalt content, are assigned to the spin-allowed electronic 

transitions 4A2→ 4T1(P) and 4A2→ 4T1(F) of TCo2+, in accordance with Tanabe-Sugano 

diagram for the d7 in tetrahedral crystal field. The third low-energy absorption band is 

due to spin-allowed transition 4A2→ 4T2(F) of tetrahedrally coordinated  Co2+. The 

absorbance in the three band regions vary greatly, with absorption caused by the split 

4A2→ 4T1(P) transition displaying a linear absorption coefficient ca. 2 orders of 

magnitude stronger than for the 4A2→ 4T2(F) transition. The triple band in the visible 

range absorbs green, yellow-orange and red light, causing peculiar blue coloration of 

Co-bearing spinels.  The reason for the observed low intensity for bands caused by 
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the latter transition is that they represent electric-dipole forbidden transitions. In 

spectra of the sample CoAl0.5 it was not possible to record bands caused by the 

4A2→ 4T2(F)  transition due to their low intensity in combination with low Co-

concentration and small crystal sizes. On the contrary, in spectra of the sample 

CoAl100, corresponding to the end-member CoAl2O4, it was impossible to observe 

peak positions of the strong bands caused by the split 4A2→ 4T1(F) transition due to 

very high absorption coefficients in combination with high Co-concentrations and 

difficulties to prepare sufficiently thin double-sided polished sections (thickness ≤8 μm 

would have been required). For the same reasons, peak positions of the extremely 

strong bands caused by the split 4A2→ 4T1(P) transition could not be determined from 

spectra of the samples spanning from CoAl34 to CoAl100. 

Energies of the observed bands caused by the three split spin-allowed transitions as 

determined from the peak fitting procedure are summarized in Table 4.3. 

Table 4.3.  Energies (cm
-1

) of absorption bands caused by spin orbit coupling split spin-allowed transitions in 
tetrahedrally cooordinated Co

2+
. 

Sample CoAl0.5 CoAl1 CoAl10 CoAl14 CoAl20 CoAl34 CoAl45 CoAl50 CoAl67 CoAl100 

Transition 

4
A2 (F)-

4
T2(F)  

4927 4916 4962 4913 4989 4891 4865 4886 4959 

 
 

4388 4360 4374 4344 4417 4346 4364 4320 4315 

 
 

3842 3834 3807 3799 3838 3839 3857 3833 3812 

 
          

4
A2 (F)-

4
T1(F) 

8196 8156 8153 8164 8149 8152 8161 8152 8103 
 

 

7178 7170 7212 7179 7187 7151 7195 7163 7276 
 

 

6512 6515 6509 6514 6512 6510 6524 6460 6579 
 

 
          

4
A2 (F)-

4
T1(P) 

17834 17802 17865 17813 17762 
     

 

17315 17394 17337 17406 17314 
     

  16606 16782 16614 16743 16755 
     

Note: Estimated relative standard uncertainties in band energies are 0.5%. 

 

The intensities of the absorption band vary linearly with the Co2+ content. A linear 

relationship (R2=0.98) between the linear absorption coefficient values of the 
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maximum absorption band at ~17000 cm-1  and the TCo2+ content (in apfu) is obtained 

(Fig. 4.8):  

α = 4176.5[TCo2+]          (23) 

Hence, a cobalt content of 0.001 apfu may provoke a linear absorption coefficient 

equal to 4 that is strong enough to produce a color. 

 

Fig. 4.8. Correlation plot between linear absorption coefficient of the absorption band at 17000 cm
-1 

and the 
T
Co

2+
 content (apfu).  

In addition it is evident from the peak positions of the fitted spectra that energies of all 

the observed main bands caused by electronic transitions in tetrahedrally coordinated 

Co2+ display only very marginal energy shifts with progressive Co2+-Mg substitution at 

the T site (Fig. 4.9). The observed behavior has practical consequences because, 

together with the increase of absorption band intensity as a function of Co2+ content, it 

is the reason for both the absence of color shift and the perceived intensification of 

blue color of the crystals along the series. Notably, this is significantly different from 

what is observed in MgAl2O4-FeAl2O4 and in MgAl2O4-MgCr2O4 spinel solid-solution 

series, where a marked color shift (and absorption intensification) from pale lilac to 

dark green and from light red to dark green was observed as a function of Fe2+ and of 

Cr3+ content, respectively (Hålenius et al. 2002, 2010) 
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Fig. 4.9. Variation of the peak positions of the three absorption bands along the series. 

The crystal field splitting parameter Dq, the Racah B-parameter and spin-orbit 

coupling -parameters for Co2+ at the T site may be calculated from the energies of 

the observed spin-allowed d-d transitions applying the Tanabe-Sugano equations 

(e.g. Oh et al,. 2000; Pappalardo and Dietz, 1961): 

4A2 (F)→4T2(F) (ν1):  10Dq+5/2 |0| 

    10Dq+|0| 

    10Dq-3/2|0| 

4A2(F)→4T1 (F) (2):  18Dq+9/4|1|   

18Dq-6/4|1| 

    18Dq-15/4|1| 

4A2(F)→4T1 (P) (3):  15B+12Dq+5/2|2| 

    15B+12Dq+|2| 

    15B+12Dq-3/2|2| 

Table 4.4 summarizes the parameters resulting from best fits of the energies of the 

spin-allowed transitions observed in our spectra for tetrahedrally coordinated Co2+.  
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Table 4.4. Energies (cm
-1

) of spin-allowed 
T
Co

2+
-bands and crystal field splitting, repulsion and spin 

orbit coupling parameters. 

Sample 1soc 2soc 3soc Dq B 0 1 2 

CoAl0.5 
 

7578 17044 421 799 
 

-283 -312 

CoAl1 4197 7556 17154 420 808 -283 -276 -257 

CoAl10 4181 7570 17060 419 802 -284 -279 -318 

CoAl14 4179 7563 17142 419 808 -303 -278 -268 

CoAl20 4157 7559 17105 418 806 -292 -276 -258 

CoAl34 4215 7546 no 420 
 

-300 -275 
 CoAl45 4174 7570 no 419 

 
-276 -276 

 CoAl50 4187 7544 no 419 
 

-263 -286 
 CoAl67 4161 7581 no 419 

 
-278 -261 

 CoAl100 4158 no no 416 
 

-306 
  *Energies (after spin orbit coupling reduction) of absorption bands caused by the 4A2 (F)-

4T2(F), 4A2(F)-4T1 (F) and 4A2(F)-4T1(P) transitions, respectively. no= not observed. 

 

The Dq values were calculated from the determined energies for bands caused by 

transitions to the 4T1-states. The Dq values are very similar (416–421 cm–1) and 

compare very well with the range of Dq-values between 370–420 cm–1 that were 

determined by optical absorption spectroscopy for a large range of Co2+-doped spinel 

compounds by Hochu and Lenglet (1998) and those reported for low Co2+ contents in 

MgAl2O4 (400 cm–1, Weakliem, 1962; Kuleshov et al., 1993) and in ZnGa2O4 (403 cm-

1, Abritta and Blak, 1991). Moreover, the Dq values compare very well with the value 

of 390 cm–1 determined for CoAl2O4 from magnetic neutron scattering experiments by 

Winkler et al. (1997). The presently obtained values for the Racah B-parameter (799–

808 cm–1), though limited to low-Co samples due to the above mentioned spectra 

limitations, are very close to each other and compare very well with those (790–815 

cm–1) calculated by Hochu and Lenglet (1998) for a range of aluminate spinels. 

Finally, the presently calculated spin-orbit coupling parameters (257–318 cm–1) are 

relatively high, a fact that has been frequently observed in spectral studies of several 

other Co-bearing compounds (e.g., Pappalardo and Dietz 1961) and also commented 

on (e.g., Wildner, 1996) but not been resolved. Pappalardo and Dietz (1961) 
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suggested that anomalously high λ-value for the 4A2(F)-4T1(P) transition may be due 

to strong spin-orbit mixing with the doublet terms derived from the 2G-state. 

The crystal field splitting parameter Dq shows only insignificant changes within the 

present spinel series. This behavior is significantly different from what was observed 

in MgAl2O4-FeAl2O4, MgAl2O4-MnAl2O4 and in MgAl2O4-MgCr2O4 spinel solid-solution 

series (Fig. 4.10). In the these series, a change in the Dq values, and then a marked 

color shift (and absorption intensification), were observed as a function of Fe2+, of 

Mn2+ and of Cr3+ content, respectively (Hålenius et al. 2002, 2010,2011). 

  

Fig. 4.10. Variation of the Dq value along the MgAl2O4-MgCr2O4 (data taken from Hålenius et al., 
2010); MgAl2O4-FeAl2O4 (data taken from Hålenius et al., 2002); MgAl2O4-MnAl2O4 (data taken from 
Hålenius et al., 2011) and MgAl2O4-CoAl2O4 (data taken from this study). 

 

Recalling the Dq ≈ 1/R5 ligand field relationship, this demonstrates that the local Co2+-

O bond distance at the T-site only marginally increases with increasing Co-content in 

the MgAl2O4-CoAl2O4 series (Table 4.5). In addition, the almost constant Racah B-

parameter for tetrahedrally coordinated Co2+ in this series suggests that any influence 
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of substitutional next nearest neighbor cations on the ionicity of Co2+-O bonds at the 

T-site is very small. Constant Racah B-parameters for tetrahedrally coordinated Mn2+ 

and hence comparable insensitivity to next-nearest neighbor effects on bond ionicity 

were also observed for TMn2+-O bonds in the MgAl2O4-MnAl2O4 spinel solid-solution 

series (Hålenius et al. 2011). 

Table 4.5. Calculated local tetrahedral Co-O bond length. 

Sample Dq (cm-1) TCo-O (Å) 

CoAl0.5 421 1.967 

CoAl1 420 1.968 

CoAl10 419 1.969 

CoAl14 419 1.969 

CoAl20 418 1.970 

CoAl34 420 1.968 

CoAl45 419 1.969 

CoAl50 419 1.969 

CoAl67 419 1.969 

CoAl100 416 1.972 

 

Structural parameters are summarized in the Table 4.6. The observed structural 

modifications are due to double causes:  

1. Compositional changes with TCo2+ → MMg substitution; 

2. Intracrystalline disorder, with a decrease of inversion, i.e., MAl content. 

The site distributions of Mg, Co2+ and Al and degree of inversion were obtained by 

combining structural and chemical data by means of a minimization procedure (Table 

4.7).  

The site distribution shows that the M site is dominated by Al and the T site is mainly 

populated by Mg and Co2+, with a marked preference of Co2+ for the tetrahedral 

coordination with respect to Mg (Fig. 4.11). Accordingly, the degree of cation 

inversion, expressed as the occurrence of Al at T sites, decreases from 0.24 to 0.13 

with increasing Co2+ content. 
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Table 4.6. Selected X-ray diffraction data of the analyzed spinels single crystals along MgAl2O4-
CoAl2O4 series. 

Crystal CoAl0.5 CoAl1 CoAl10 CoAl14 CoAl20 

Crystal sizes (mm) 0.200.200.12 0.220.210.18 0.220.200.15 0.200.200.16 0.200.200.20 

a (Å) 8.0851(3) 8.0848(4) 8.0840(3) 8.0875(4) 8.0902(3) 

u 0.26209(4) 0.26216(5) 0.26216(5) 0.26242(4) 0.26249(5) 

T-O (Å) 1.9198(6) 1.9207(7) 1.9206(6) 1.9250(6) 1.9266(7) 

M-O (Å) 1.9285(3) 1.9279(4) 1.9277(3) 1.9267(3) 1.9268(4) 

T-m.a.n. 13.06(6) 13.24(7) 13.48(7) 15.71(7) 16.91(8) 

M-m.a.n. 12.82(4) 12.86(5) 12.89(4) 13.03(4) 13.17(4) 

T-U
 11

 (Å
2
) 0.0048(2) 0.0046(2) 0.0047(2) 0.0049(1) 0.0050(1) 

M-U
 11

 (Å
2
) 0.0045(1) 0.0043(2) 0.0045(1) 0.0043(1) 0.0043(1) 

M-U
 12

 (Å
2
) -0.00013(4) -0.00013(4) -0.00011(4) -0.00016(4) -0.00018(5) 

O-U
 11

 (Å
2
) 0.0078(1) 0.0076(2) 0.0076(2) 0.0076(1) 0.0076(1) 

O-U
 12

 (Å
2
) 0.00021(7) 0.00017(8) 0.00017(8) 0.00015(8) 0.0002(1) 

Notes: a = unit-cell parameter; u = oxygen fractional coordinate; T-O and M-O = tetrahedral and octahedral bond lengths, 
respectively; T- and M-m.a.n.. = T- and M-mean atomic number; U

 11
 = atomic displacement parameter; U

 11
 = U

 22
 = U

 33
 

and U
 12

  = U
 13

 = U
 23

 (= 0 for T-site due to symmetry reasons) 
 

 

 

Table 4.6. continued 

Crystal CoAl34 CoAl45 CoAl50 CoAl67 CoAl100 

Crystal sizes (mm) 0.300.250.20 0.200.200.20 0.160.160.10 0.160.140.09 0.190.190.12 

a (Å) 8.0914(4) 8.0943(3) 8.0957(3) 8.1010(5) 8.1047(4) 

u 0.26281(5) 0.26308(5) 0.26251(6) 0.26321(4) 0.26355(5) 

T-O (Å) 1.9314(7) 1.9359(7) 1.9282(9) 1.9392(6) 1.9449(7) 

M-O (Å) 1.9248(3) 1.9235(3) 1.9280(5) 1.9242(3) 1.9226(4) 

T-m.a.n. 18.91(9) 20.34(10) 20.11(12) 22.10(11) 25.28(8) 

M-m.a.n. 13.26(4) 13.37(4) 13.75(5) 13.53(4) 13.88(5) 

T-U
 11

 (Å
2
) 0.0052(1) 0.0048(1) 0.0056(2) 0.00543(9) 0.00524(8) 

M-U
 11

 (Å
2
) 0.0044(1) 0.0039(1) 0.0045(2) 0.0045(1) 0.0040(1) 

M-U
 12

 (Å
2
) -0.00021(5) -0.00020(5) -0.00021(6) -0.00027(5) -0.00028(6) 

O-U
 11

 (Å
2
) 0.0078(1) 0.0071(1) 0.0088(2) 0.0078(1) 0.0074(1) 

O-U
 12

 (Å
2
) 0.0002(1) 0.0001(1) 0.0002(1) -0.00003(9) -0.0002(1) 

Notes: a = unit-cell parameter; u = oxygen fractional coordinate; T-O and M-O = tetrahedral and octahedral bond lengths, 
respectively; T- and M-m.a.n.. = T- and M-mean atomic number; U

 11
 = atomic displacement parameter; U

 11
 = U

 22
 = U

 33
 and 

U
 12

  = U
 13

 = U
 23

 (= 0 for T-site due to symmetry reasons) 
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Table 4.7. Structural formulae of the analysed spinel single crystals along MgAl2O4-CoAl2O4 series. 

Sample Formula 

CoAl0.5  T(Co0.06Mg0.70Al0.24) 
M(Co0.01Mg0.23Al1.76)O4 

CoAl1   T(Co0.07Mg0.69Al0.23) 
M(Co0.01Mg0.22Al1.77)O4 

CoAl10  
T(Co0.09Mg0.68Al0.23) 

M(Co0.02Mg0.21Al1.77)O4 

CoAl14  
T(Co0.23Mg0.55Al0.22) 

M(Co0.02Mg0.20Al1.78)O4 

CoAl20  T(Co0.31Mg0.48Al0.21) 
M(Co0.03Mg0.18Al1.79)O4 

CoAl34  T(Co0.44Mg0.37Al0.19) 
M(Co0.04Mg0.15Al1.81)O4 

CoAl45  T(Co0.54Mg0.30Al0.17) 
M(Co0.05Mg0.11Al1.83)O4 

CoAl50  T(Co0.52Mg0.27Al0.21) 
M(Co0.11Mg0.10Al1.79)O4 

CoAl67  T(Co0.67Mg0.17Al0.16) 
M(Co0.09Mg0.08Al1.84)O4 

CoAl100  T(Co0.87Mg0.00Al0.13) 
M(Co0.13 Mg0.00Al1.87)O4 

Notes: T = tetrahedrally coordinated site; M = octahedrally  coordinated site 

 

 

 

Fig. 4.11. Cation distribution in the T site along the MgAl2O4-CoAl2O4 series. Red symbols are used for the 
sample CoAl50. 
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The unit-cell parameter a of the (Mg,Co)Al2O4 synthetic spinel crystals increases from 

8.084 to 8.105 Å along the solid-solution series. In literature there are many X-ray 

powder diffraction investigations on the end-member CoAl2O4 (JCPDS file no. 44-

0160), all of them with an a-value close to 8.105 Å (Fig. 4.12). Only Angeletti et al. 

(1977) addressed the entire MgAl2O4-CoAl2O4 series, and the values of the unit-cell 

parameter they obtained are in line with those measured here. As it is well known, the 

structural changes in spinels may depend on both chemical composition and 

inversion parameter, which in turn is a function of thermal history (O’Neill and 

Navrotsky 1984; O’Neill and Dollase 1994; Harrison et al. 1998; Andreozzi et al. 

2000, 2001a; Andreozzi and Lucchesi 2002).  

 
Fig. 4.12. Unit-cell parameter a against Co

2+
 content in MgAl2O4-CoAl2O4 solid-solution series. Size of 

the symbols used is equal to or larger than standard uncertainties. Solid line = best fit to our data; 
dotted line = best fit to Angeletti et al. (1977) data: the two trends are parallel with the same slope 
(0.022). Dashed line = a values calculated for the MgAl2O4-CoAl2O4 solid-solution series at inversion 
zero. 
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The values of unit-cell parameter for the MgAl2O4-CoAl2O4 series at i = 0 were 

calculated from cation-to-oxygen distances refined, which are consistent with those 

reported in Lavina et al. (2002). Results show that the contribution of the inversion 

degree strongly affects the unit-cell parameter, which at i = 0 is quite insensitive to the 

substitution of Co for Mg (Fig. 4.12). The trend obtained for the present samples 

(which experienced a closure temperature of ca. 800 °C) and the trend calculated for i 

= 0 cross each other close to the composition of 60% CoAl2O4, that is almost 

coincident with the sample CoAl50, and this intercept is expected to be temperature-

invariant. This coincidence explains why the sample CoAl50 (which experienced a 

closure temperature distinctly higher than the others) shows a unit-cell parameter in 

line with the general trend. 

The observed variation of the unit-cell parameter a is mainly related to the strong 

variations in the tetrahedral bond length from 1.920 to 1.945 Å rather than to the 

considerably more limited variations in the octahedral bond length from 1.923 to 

1.929 Å (Fig. 4.13).  

 

Fig. 4.13. Relationship between unit-cell parameter (a) and tetrahedral and octahedral bond distances 
in the synthesized crystals. The linear fit and the determination coefficient (r

2
 = 0.97 and 0.83 for T-O 

and M-O, respectively) are calculated by using all points except for that of sample CoAl50. Symbol size 
is proportional to the analytical error. 
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In fact, the substitution Co2+ → Mg at the T site is not expected to cause any T-O 

bond distance change because the two cations have been shown to have very similar 

cation radii: as mentioned before, the optimized value for TCo2+-O distance equals 

1.969(3) Å compared to 1.966(1) Å for TMg2+-O (reported by Lavina et al. 2002). 

Consequently, any increase in T-O distance with increased incorporation of Co in the 

structure must be mainly ascribed to a decrease in Al content at the T site (Fig. 4.14). 

In this case, the CoAl50 sample agrees with the other sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14. Variation in tetrahedral bond length (T-O) as a function of Al content at the T site. Symbol 
size is proportional to the analytical error. 

Since the studied spinels contain only two types of divalent cations (Mg and Co2+) and 

only one type of trivalent cation (Al) and the size of Mg and Co2+ at the T site is very 

similar,  the only steric effect that may account for variations in Al ordering must be 

related to the cation occupancy of the M site. 

Hence, the small variation in TCo2+-O from 1.966 to 1.972 Å derived from optical 

spectra and optimization of site occupancies of cations appears to be inversely 

related to M-O: i.e., TCo2+-O increases with decreasing M-O. This behavior is in 

contrast with the variation in TCo2+-O shown to occur in the normal spinel of the binary 
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∼1.93 Å in Co3O4 to ∼1.97 Å in CoCr2O4, with increasing M-O from ∼1.92 to ∼1.99 Å. 

This dual behavior of TCo2+-O could be explained by considering that the series 

Co2+(Co3+
2–xCrx)O4 is characterized by a high degree of covalent bonding and Co3+ in 

the low-spin state, whereas the series (Mg1–xCox)Al2O4 is ionically bonded with all 

cations in their high-spin states. 

4.2. Natural multicolor spinels 

Minerals belonging to the spinel group occur in a wide range of colors, e.g. pink, red, 

orange, purple, blue and green, depending on the trace elements present.  As already 

handled in the Chapter 2, there are at least fifteen causes of color. In the spinels the 

different colors can be caused by simply a particular transition metal cation in a 

specific crystallographic site (crystal field theory), by an intervalence charge transfer, 

by a combination of two or more trace element absorptions and can be influenced 

also by a more complex mechanisms such as the structural relaxation (Hålenius et 

al., 2010). A detailed study on the causes of colors in the spinels is lacking. With the 

exception of Schmetzer et al. (1989), all the works present in literature are based on 

the investigation of a small number of samples, and, for most of these papers colors 

due to only one metal transition element were examined (Dickson and Smith, 1976; 

Shigley and Stockton, 1984; Taran et al., 2005, 2009; Malsy et al., 2012). However, it 

will be shown that two or more trace elements are often responsible for the great 

number of individual colors in natural spinels. In addition, Schmetzer et al. (1989) 

studied in detail the causes of several colors in many natural spinels, but, among the 

analyzed samples, the pink, lilac, violet and magenta spinels were missing. Many 

studies were performed on synthetic spinels but often the absorption spectra of these 

spinels differ from those of natural spinels because of the higher degree of disorder 

and a more complex composition of the former (Hålenius et al., 2002, 2010, Jouini  et 

al., 2006; Fregola et al., 2011; Aramburu et al., 2013). Thus, the interpretation of the 

optical spectra and the band assignment for the same absorption peaks are not 

always homogeneous.  
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In this study a large number of natural spinels having absorption spectra and colors 

well representative for the entire variability of color were explored by Electron 

Microprobe Analysis and UV-VIS-NIR-MIR spectroscopy, in order to obtain a 

systematic examination of the color causes in natural spinels.  

4.2.1 Chemical characterization 

Electron microprobe analyses were performed on the same portions of crystals 

characterized by spectroscopic analyses and revealed that the chemical composition 

of the natural spinel crystals investigated is almost homogeneous within each crystal. 

No color zoning was observed, but some red spinels, such as the sample 890292d, 

showed a chemical zoning of the Cr3+. The results of the chemical analysis are 

summarized in Table 4.8, whereas, for a better understanding, the crystal chemical 

formulae of the studied spinels are given in Table 4.9. They show that all the 

analyzed crystals contain Al as major trivalent component, and Mg or Zn as major 

divalent component. Thus the crystals show a prevalent spinel s.s. (MgAl2O4) or 

gahnite (ZnAl2O4) end-member component. The remaining composition is primarily 

dominated by Fe2+, which is present in all the samples, and also by Fe3+ (especially in 

the blue-green and violet samples) and Cr3+ (especially in the red and orange 

samples). The amount of Fe3+ was calculated on the basis of charge-balance 

requirements and the spinel stoichiometry (3 cations per 4 anions). Of course, the 

real amount and distribution of Fe2+ and Fe3+ in the samples can not be sure on the 

basis of only microprobe composition. A Mössbauer analysis can help to distinguish 

between Fe2+ and Fe3+ and their distribution in the T and M sites. However, because 

of the small sizes and concentrations of Fetot in the sample, a Mössbauer analysis is 

hardly achievable. Only minor contents of Mn, ranging between 0.001(1) and 0.019(1) 

apfu, and V, between 0.001(1) and 0.032(2) apfu, were also found for the blue-green 

and the red-orange samples, respectively.  
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Table 4.8. Chemical composition of the examined natural colored spinels. 

Sample Nat.1 Nat.2 Nat.3 Nat.4 ST SX 2366 

SiO2 0.02(1) 0.02(1) 0.08(13) 0.01(2) 0.00 0.01(1) 0.01(1) 

TiO2 0.01(1) 0.00 0.020(1) 0.01(1) 0.01(1) 0.01(1) 0.01(1) 

Al2O3 71.10(92) 70.14(81) 70.28(93) 70.52(57) 69.71(30) 70.38(20) 55.35(37) 

V2O3 0.05(2) 0.01(1) 0.01(1) 0.08(2) 0.14(3) 0.03(2) 0.01(1) 

Cr2O3 0.02(2) 0.01(2) 0.01(2) 0.02(1) 0.40(5) 0.02(1) 0.01(1) 

FeOtot 0.35(4) 1.83(9) 0.52(3) 1.47(3) 0.21(3) 1.58(10) 5.85(8) 

MgO 28.20(26) 27.18(25) 27.55(39) 27.76(29) 27.60(8) 27.37(14) 0.01(1) 

ZnO 0.012(3) 0.21(6) 0.32(5) 0.13(9) 0.95(7) 0.26(4) 39.71(38) 

MnO 0.02(2) 0.04(4) 0.03(3) 0.01(2) 0.00 0.08(2) 0.54(5) 

CoO 0.01(2) 0.03(3) 0.01(2) 0.01(1) 0.01(1) 0.01(1) 0.02(3) 

NiO 0.02(3) 0.01(2) 0.000 0.01(2) 0.02(3) 0.01(1) 0.01(1) 

Total 99.81 99.50 98.94 100.03 99.05 99.76 101.53 

Cations on the basis of 4 oxygens 

Si 0.000 0.000 0.002(3) 0.000 0.000 0.000 0.000 

Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Al 1.993(4) 1.985(2) 1.992(6) 1.980(9) 1.980(2) 1.984(3) 1.959(4) 

V 0.001(1) 0.000 0.000 0.002(1) 0.003(1) 0.001(1) 0.000 

Cr 0.000 0.000 0.000 0.000 0.008(1) 0.000 0.000 

Fe3+ 0.004(1) 0.015(2) 0.005(1) 0.017(1) 0.003(1) 0.015(2) 0.041(2) 

Fe2+ 0.002(1) 0.022(2) 0.006(1) 0.012(1) 0.001(1) 0.017(2) 0.106(2) 

Mg 0.999(4) 0.972(2) 0.988(8) 0.986(12) 0.990(2) 0.976(4) 0.000 

Zn 0.000 0.004(1) 0.006(1) 0.002(2) 0.015(1) 0.005(1) 0.880(9) 

Mn 0.000 0.001(1) 0.001(1) 0.000 0.000 0.002(1) 0.014(1) 

Co 0.000 0.001(1) 0.000 0.000 0.000 0.000 0.001(1) 

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Total 2.999 3.000 3.000 2.999 3.000 3.000 3.000 
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Table 4.8. Continued. 

Sample 30070 31081 330763 330764 420491 440238 440243 

SiO2 0.15(4) 0.02(2) 0.03(3) 0.01(1) 0.03(1) 0.03(2) 0.02(1) 

TiO2 0.03(4) 0.00 0.01(2) 0.02(2) 0.06(2) 0.00 0.03(3) 

Al2O3 53.91(15) 52.86(21) 70.23(45) 69.20(43) 70.69(24) 69.80(60) 70.21(45) 

V2O3 0.02(2) 0.02(3) 0.00 0.01(1) 0.29(5) 0.01(1) 0.02(2) 

Cr2O3 0.03(4) 0.01(1) 0.00 0.00 0.26(6) 0.01(1) 0.02(1) 

FeOtot 1.82(1) 2.62(15) 3.54(8) 5.51(12) 0.13(3) 2.51(14) 2.52(5) 

MgO 0.08(3) 1.06(2) 26.05(33) 24.71(27) 27.81(26) 26.71(45) 26.66(25) 

ZnO 42.97(1.3) 43.57(26) 0.25(7) 0.54(9) 0.30(9) 0.57(13) 0.51(11) 

MnO 0.02(2) 0.75(5) 0.12(5) 0.07(2) 0.00 0.17(4) 0.14(5) 

CoO 0.01(2) 0.02(4) 0.00 0.02(2) 0.02(1) 0.01(2) 0.01(1) 

NiO 0.00 0.01(1) 0.00 0.01(1) 0.01(3) 0.01(1) 0.01(1) 

Total 99.04 100.94 100.26 100.1 99.60 99.83 100.15 

Cations on the basis of 4 oxygens 

Si 0.005(2) 0.001(1) 0.001(1) 0.000 0.001(1) 0.001(1) 0.000 

Ti 0.001(1) 0.000 0.000 0.000 0.001(1) 0.000 0.001(1) 

Al 1.962(14) 1.915(6) 1.988(8) 1.982(8) 1.988(4) 1.975(15) 1.983(4) 

V 0.001(1) 0.000 0.000 0.000 0.006(1) 0.000 0.000 

Cr 0.001(1) 0.000 0.000 0.000 0.005(1) 0.000 0.000 

Fe3+ 0.017(1) 0.067(4) 0.011(1) 0.018(3) 0.001(1) 0.015(2) 0.016(1) 

Fe2+ 0.030(2) 0.000 0.060(1) 0.094(3) 0.002(1) 0.036(2) 0.035(1) 

Mg 0.004(1) 0.048(1) 0.933(12) 0.895(10) 0.990(7) 0.952(11) 0.952(6) 

Zn 0.980(14) 0.969(6) 0.004(1) 0.010(2) 0.005(2) 0.010(2) 0.009(2) 

Mn 0.000 0.020(1) 0.003(1) 0.001(1) 0.000 0.003(1) 0.003(1) 

Co 0.000 0.001(1) 0.000 0.000 0.000 0.000 0.000 

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Total 3.011 3.027 3.000 3.000 2.999 2.993 3.000 
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Table 4.8. Continued. 

Sample 510941 510942 630250 670275 800801 881694a 

SiO2 0.03(2) 0.01(1) 0.02(1) 0.08(9) 0.05(3) 0.01 (1) 

TiO2 0.01(1) 0.00 0.02(1) 0.04(3) 0.00 0.03(1) 

Al2O3 55.99(32) 56.62(19) 69.32(47) 67.71(90) 68.49(84) 69.97(62) 

V2O3 0.03(2) 0.01(1) 0.12(2) 0.01(1) 0.00 0.09(3) 

Cr2O3 0.02(2) 0.01(1) 0.21(3) 0.01(1) 0.02(3) 0.22(3) 

FeOtot 4.34(13) 6.71(48) 3.52(4) 4.16(12) 3.15(13) 0.63(4) 

MgO 2.38(14) 1.49(6) 24.21(27) 26.26(44) 23.41(25) 28.13(30) 

ZnO 37.58(63) 36.32(57) 2.70(8) 0.35(10) 5.17(34) 0.24(9) 

MnO 0.17(6) 0.19(5) 0.07(2) 0.20(2) 0.43(5) 0.02(2) 

CoO 0.01(2) 0.03(1) 0.00 0.01(1) 0.07(2) 0.02(2) 

NiO 0.03(3) 0.02(3) 0.02(3) 0.03(3) 0.03(3) 0.03(4) 

Total 100.59 101.41 100.21 98.85 100.82 99.39 

Cations on the basis of 4 oxygens 

Si 0.001(1) 0.000 0.000 0.002(2) 0.001(1) 0.000 

Ti 0.000 0.000 0.000 0.001(1) 0.000 0.001(1) 

Al 1.957(2) 1.970(3) 1.991(7) 1.947(11) 1.977(7) 1.977(4) 

V 0.001(1) 0.000 0.002(1) 0.000 0.000 0.002(1) 

Cr 0.000 0.000 0.004(1) 0.000 0.000 0.004(1) 

Fe3+ 0.041(3) 0.030(5) 0.003(1) 0.050(3) 0.022(3) 0.012(1) 

Fe2+ 0.067(3) 0.136(6) 0.069(1) 0.036(3) 0.043(3) 0.001(1) 

Mg 0.105(6) 0.066(3) 0.880(9) 0.955(14) 0.854(6) 0.998(6) 

Zn 0.823(11) 0.792(13) 0.049(1) 0.006(2) 0.093(7) 0.004(2) 

Mn 0.004(2) 0.005(1) 0.002(1) 0.004(1) 0.009(1) 0.000 

Co 0.000 0.001 0.000 0.000 0.001(1) 0.000 

Ni 0.001(1) 0.000 0.000 0.000 0.000 0.001(1) 

Total 3.000 2.999 3.000 3.004 3.000 2.999 
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Table 4.8. Continued. 

Sample 881694c 881728 890290 890292b 890292c 890292d 

SiO2 0.02(2) 0.02(1) 0.07(4) 0.02(2) 0.03(1) 0.01(1) 

TiO2 0.08(3) 0.01(1) 0.01(1) 0.23(4) 0.01(1) 0.06(2) 

Al2O3 70.26(72) 56.09(78) 69.49(58) 69.45(40) 69.04(66) 66.92(60) 

V2O3 0.23(3) 0.07(3) 0.00 0.07(2) 1.68(13) 0.05(2) 

Cr2O3 0.46(18) 0.02(2) 0.01(1) 1.04(13) 0.37(1) 4.25(75) 

FeOtot 0.10(2) 5.10(11) 3.58(7) 0.13(1) 0.52(7) 0.15(3) 

MgO 27.92(17) 1.52(2) 26.00(17) 27.76(30) 27.97(27) 27.75(33) 

ZnO 0.33(3) 38.77(50) 0.23(4) 0.03(5) 0.27(5) 0.08(5) 

MnO 0.02(2) 0.12(3) 0.13(3) 0.00 0.02(2) 0.00 

CoO 0.01(1) 0.00 0.01(1) 0.02(2) 0.01(1) 0.01(1) 

NiO 0.01(2) 0.02(2) 0.03(3) 0.00 0.01(1) 0.01(1) 

Total 99.44 101.72 99.56 98.75 99.93 99.29 

Cations on the basis of 4 oxygens 

Si 0.001(1) 0.001(1) 0.002(1) 0.000 0.001(1) 0.000 

Ti 0.001(1) 0.000 0.000 0.004(1) 0.000 0.001(1) 

Al 1.981(5) 1.955(9) 1.981(1) 1.972(5) 1.95(2) 1.914(16) 

V 0.005(1) 0.002(1) 0.000 0.001(1) 0.032 0.001(1) 

Cr 0.009(4) 0.000 0.000 0.020(2) 0.007 0.081(14) 

Fe3+ 0.001(1) 0.042(3) 0.018(1) 0.001(1) 0.010 0.002(1) 

Fe2+ 0.001(1) 0.084(3) 0.056(1) 0.002(1) 0.001 0.001(1) 

Mg 0.994(4) 0.067(1) 0.937(5) 0.997(5) 0.997 0.999(5) 

Zn 0.005(1) 0.846(13) 0.004(1) 0.001(1) 0.004 0.001(1) 

Mn 0.000 0.003(1) 0.002(1) 0.000 0.000 0.000 

Co 0.000 0.000 0.000 0.000 0.000 0.000 

Ni 0.000 0.000 0.001(1) 0.000 0.000 0.000 

Total 2.997 2.999 3.001 2.998 3.002 3.000 
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Table 4.9. Crystal-chemical formula of the natural spinels investigated. The dominant endmember component is written in red. 
Label cell is colored as the color of the sample. 

Nat.1 (Mg0.999Fe2+
0.002)1.001(Al1.993Fe3+

0.004V0.001)1.999O4 

Nat.2 (Mg0.972Zn0.004Fe2+
0.022Mn0.001Co0.001)1(Al1.985Fe3+

0.015)2O4 

Nat.3 (Mg0.988Zn0.006Fe2+
0.006Mn0.001)1 (Al1.992Fe3+

0.005Si0.002)1.999O4 

Nat.4 (Mg0.986Zn0.002Fe2+
0.012)1(Al1.980Fe3+

0.018V0.001)1.999O4 

Ni8967d (Mg0.002Zn0.931Fe2+
0.064Mn0.001Co0.001Ni0.001)1.01(Al1.994Fe3+

0.005Si0.001)2O4 

ST (Mg0.990Zn0.015 Fe2+
0.001)1.06(Al1.980Cr0.008Fe3+

0.003V0.003)1.994O4 

SX (Mg0.976Zn0.005Fe2+
0.017Mn0.002)1 (Al1.984Fe3+

0.015V0.001)2O4 

2366 (Zn0.880Fe2+
0.106Mn0.014Co0.001)1.001(Al1.959Fe3+

0.041)2O4 

30070 (Mg0.004Zn0.980Fe2+
0.017)1.001(Al1.962Fe3+

0.030Cr0.001V0.001Si0.005Ti0.001)2O4 

31081 (Mg0.048Zn0.969)1.017(Al1.915Fe3+
0.067Mn3+

0.020)2.02O4 

330763 (Mg0.933Zn0.004Fe2+
0.060Mn0.003)1(Al1.988Fe3+

0.011Si0.001)2O4 

330764 (Mg0.895Zn0.010Fe2+
0.094Mn0.001)1(Al1.982Fe3+

0.018)2O4 

420491 (Mg0.990Zn0.005Fe2+
0.002)0.997(Al1.988 Fe3+

0.001Cr0.005V0.006Si0.001Ti0.001)2.002O4 

440238 (Mg0.952Zn0.010Fe2+
0.036Mn0.003)1.001(Al1.975Fe3+

0.015Si0.001)2.001O4 

440243 (Mg0.952Zn0.009Fe2+
0.035Mn0.003)1 (Al1.983Fe3+

0.016Ti0.001)2O4 

510941 (Mg0.105Zn0.823Fe2+
0.067Mn0.004Ni0.001)1(Al1.957Fe3+

0.041V0.001Si0.001)2O4 
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Table 4.9. Continued. 

510942 (Mg0.066Zn0.792Fe2+
0.136Mn0.005Co0.001)1(Al1.970Fe3+

0.030)2O4 

670275 (Mg0.955Zn0.006Fe2+
0.036Mn0.004)1.001(Al1.947Fe3+

0.050Si0.002Ti0.001)2O4 

800801 (Mg0.854Zn0.093Fe2+
0.043Mn0.009Co0.001)1(Al1.977Fe3+

0.022Si0.001)2O4 

881694a (Mg0.998Zn0.004 Fe2+
0.001Ni0.001)1.003(Al1.977Cr0.004Fe3+

0.012V0.002Ti0.001)1.996O4 

881694c (Mg0.994Zn0.005 Fe2+
0.001)1(Al1.981Cr0.009Fe3+

0.001V0.005Si0.001Ti0.001)1.998O4 

881728 (Mg0.067Zn0.846Fe2+
0.084Mn0.003)1(Al1.955Fe3+

0.042V0.002Si0.001)2O4 

890290 (Mg0.937Zn0.004Fe2+
0.056Mn0.002Ni0.001)1(Al1.981Fe3+

0.018Si0.002)2.001O4 

890292b (Mg0.997Zn0.001Fe2+
0.002)1(Al1.972Cr0.020 Fe3+

0.001V0.001Ti0.004)1.998O4 

890292c (Mg0.997Zn0.004Fe2+
0.001)1.002(Al1.950Cr0.007Fe3+

0.0010V0.032Si0.001)2O4 

890292d (Mg0.999Zn0.001Fe2+
0.001)1.001(Al1.914Cr0.081Fe3+

0.002V0.001Ti0.001)1.999O4 
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Minor and trace elements were measured through LA-ICP-MS. The minor elements 

are reported in terms of ppm of the cation in the Table 4.10, whereas the trace 

elements were not considered in this study. 

Table 4.10. Minor elements measured by LA-ICP-MS reported in terms of ppm. 

Sample Si Ti V Cr Mn Fe Co Ni 

SX 496 58 183 378 214 7626 14.7 30.1 

ST 346 51 684 2300 12 1418 1.4 5.3 

Nat.1 357 68 170 420 90 6128 2.6 15 

Nat.2 337 4.8 5.1 4 140 13060 13.3 23.4 

Nat.3 358 52 15 4 68 3698 6.2 5.68 

Nat.4 242 71 162 322 60 10700 13.9 40.3 

2366 247 3 0.25 2.6 3623 40525 1.7 0.3 

30070 902 48 77.3 4.8 168 12650 1.4 3.1 

31081 200 6 0.4 59 3808 14920 6.7 1.9 

330764 339 103 21.4 10.8 537 40420 12.3 3.61 

420491 334 386 1912 1902 23 1022 0.4 1 

440243 418 181 51.5 21.1 1162 18840 7.7 4.5 

510942 264 11 227 4.5 1308 47517 107 30.1 

670275 337 58 14.2 20 1148 28900 10.3 11.3 

800801 648 2.5 3.8 2.8 2746 22680 611 80 

881694c 428 301 1376 3430 59 716 0.3 0.7 

881728 258 2.7 426 2.3 668 35160 2 1.1 

890292b 362 1276 448 7436 64.5 953 0.2 0.6 

890292d 348 350 250 27780 18.1 1312 0.25 1 
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 A preliminary inspection of sample colors as a function of chemical composition was 

tried reporting the molar percentages of gahnite (ZnAl2O4), hercynite (FeAl2O4), and 

spinel s.s. (MgAl2O4) components of the analyzed samples in a triangular diagram 

(Fig. 4.15). This diagram highlights that the different colors do not depend on the end-

member composition. In fact, while the samples having a gahnitic composition show 

colors close to the blue hue, the samples having a spinel s.s. composition show all 

kind of colors.  

 

Fig. 4.15. Chemical composition of the analyzed natural samples in a triangular plot in terms of 
gahnite, hercynite and spinel s.s. components. The colors of the square represent the color exhibited 
from the samples. 

This behavior is better underlined in a graph spinel s.s versus gahnite end-member 

where only the portions approaching to the end-member are plotted (Fig. 4.16). Thus, 

discrimination among the different colors on the strength of the principal component is 

not possible, especially for the spinel s.s.  
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Fig. 4.16. Chemical composition of the analyzed natural samples in terms of gahnite and spinel s.s. 
components. The colors of the square represent the color exhibited from the samples. 

 

Hence, the difference in colors is due to the minor transition metal cations. In order to 

highlight the role of the different transition metal elements on the colors, ternary 

diagrams were made. According to the dominant combination of minor elements, the 

pink, lilac, purple, violet, magenta, red and orange colored samples were studied in 

terms of the relative concentrations of FeOtot, Cr2O3 and V2O3 weight per cent (Fig. 

4.17a). The light blue, blue, blue-green, and green colored samples were studied in 

terms of the relative concentrations of FeOtot, CoO and MnO weight per cent (Fig. 

4.17b).  
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Fig. 4.17. Chemical composition of the natural spinels expressed in terms of their minor trace element: 
a) Pink, violet, magenta, red and orange colored spinels expressed in terms of the normalized 
concentrations of FeOtot, and Cr2O3 and V2O3 weight per cent; b) Light blue, blue, blue-green and 
green colored spinels in terms of the normalized concentrations of FeOtot, CoO and MnO weight %. 
The colors of the square represent the color exhibited from the samples. 

a 

b 
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The color of the spinels with magenta, intense red or orange coloration is caused 

mainly by a combination of Cr and V in the trivalent state. The Fe (both Fe2+ and Fe3+) 

has a secondary role in the coloration of these samples. In addition, when the 

amounts of Cr exceed the amounts of V, the spinels show an intense red and 

magenta color. On the contrary, when the amounts of V exceed the amounts of Cr, 

the spinels show an orange color. The other samples with a pink, violet, or blue and 

blue-green coloration show a strong influence of Fetot. The latter samples were put in 

a ternary diagram plotting their contents of Fe2O3, FeO and MnO (for the blue and 

green shade) or Cr2O3 (for the pink and violet shade) in order to discriminate the 

influence of Fe2+ and Fe3+ (Fig. 4.18). 

 

Fig. 4.18. Chemical composition of the natural spinels expressed in terms of Fe2O3, FeO and MnO (for 
the blue and green shade) or Cr2O3 (for the pink and violet shade) weight per cent. 

 

The ternary diagram in Figure 4.18 does not show any correlation between the kind of 

tone and the amount of Fe2+ or Fe3+. Bearing in mind that the Fe2+ and Fe3+ were 

calculated from the charge-balance and stoichiometry, the absence of any correlation 
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can be due to a lack of accuracy. The yellowish-green sample 31081 only contains 

Fe3+ and a fairly high amount of Mn. 

4.2.2 Spectroscopic characterization 

 Fourier transform infrared spectroscopy 

The spectra of all the natural samples were acquired in the NIR and MIR spectral 

ranges (2000-9000) and are reported in Figure 4.19 a. 

All natural spinels, with the exception of the 31081 sample, show a very intense 

absorption band in the NIR range centered at ~ 5000 cm-1 which is assigned, in 

agreement with previous studies, to spin allowed d-d transitions 5E→5T2 in Fe2+ 

located at the T sites. The strong band is spilt into four sub-bands, which cause a 

distinct shoulder at ~3500 cm-1, because of the dynamic Jahn-Teller effect of TFe2+ in 

the spinel structure (Skogby and Hålenius, 2003; Taran et al. 2005). The intensity of 

such band increases with the increasing of the Fe2+ content in the natural samples. 

The spectra with a linear absorption coefficient higher than 10 cm-1 belong to the dark 

blue, blue-green and lilac-violet colored spinels, whereas the spectra with a linear 

absorption coefficient lower than 10 cm-1 belong to the red, orange, magenta, pink 

and light blue colored spinels (Fig. 4.19b). Besides, the 31081 sample does not show 

the absorption band of the TFe2+, thus its yellowish-green color is surely not caused 

by the Fe2+ in the tetrahedrally coordinated sites but is probably influenced by the 

high Mn content. 
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Fig. 4.19. Single-crystal spectra of the natural spinels in the NIR-MIR range (9000-2000 cm
-1

): a) the 
spectra of all the natural samples; b) the spectra of the samples with a linear absorption coefficient 
lower than 10 cm

-1
. 

b 

a 
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The best fitting model of the TFe2+ absorption envelope in the interval 2000-9000 cm-1 

was obtained by applying a four-band model proposed by Skogby and Hålenius, 2003 

using the peak resolution program Jandel PeakFit 4.12 and assuming a Gaussian 

shape for the bands (Fig. 4.20). The parameters obtained through curve-fitting are 

summarized in Table 4.11. 

 

 

Fig. 4.20. Example of a fitted spectrum (sample Nat.4) showing the four band components (ν1, ν2, ν3, 
and ν4) of the split spin-allowed electronic d-d transitions 

5
E→

5
T2 in tetrahedrally coordinated Fe

2
. The 

thick black line represents experimental data; the colored lines represent the fitted Gaussian shaped 
bands. 
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Table 4.11. Curve fitting results of the four absorption bands of 
T
Fe

2+
 in the NIR and MIR. The parameter ν is the energy (cm

-1
) α is the linear 

absorption coefficient (cm
-1

), FWHM is the full width at the half maximum and A is the integral absorption coefficient (cm
-2

). 
 

 Nat.1 Nat.2 Nat.3 Nat.4 ST SX 2366 30070 330763 330764 420491 440243 

Thickness 
(μm) 

832 279 583 429 545 364 56 245 163 113 690 157 

ν1 4969 4973 5011 4989 5004 4992 4946 4949 5004 4994 5021 4953 

α1 0.60 1.49 1.09 1.65 6.56 30.69 162.67 18.8 141.17 141.98 4.03 82.39 

FWHM 1701 1550 1576 1495 1733 1584 1538 1426 1483 1497 1746 1717 

A1 1087 2459 1831 2630 12096 51734 266340 28550 222870 226270 7487 150620 

ν2 4675 4617 4629 4564 4616 4644 4614 4641 4611 4616 4666 4660 

α2 0.05 0.14 0.13 0.20 0.67 3.27 16.94 1.49 15.12 13.09 0.39 4.84 

FWHM 454 597 575 658 649 565 596 481 606 591 495 2930 

A2 24 89 79 138 466 1967 10740 764 9756 8241 204 568 

ν3 3935 4081 3993 4022 4036 3969 4044 4067 3975 3960 3859 4082 

α3 0.17 0.23 0.32 0.40 1.25 9.29 45.56 4.89 42.26 42.76 1.48 7.73 

FWHM 603 401 500 426 403 513 449 438 529 528 722 349 

A3 111 97 169 180 535 5068 21754 2281 23780 24037 1139 2873 

ν4 3535 3624 3597 3610 3591 3579 3612 3651 3576 3579 3482 3618 

α4 0.28 0.86 0.56 0.93 3.55 15.24 106.17 10.61 69.41 63.65 1.45 44.66 

FWHM 520 622 475 522 560 459 5299 504 494 470 513 649 

A4 153 573 282 518 2118 7444 59784 5694 36473 31842 793 30840 

Asum 1375 3218 2361 3466 15214 66212 358618 37289 292878 290390 9623 187264 
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Table 4.11. Continued. 

 510941 510942 670275 800801 881694a 881694c 881728 890290 890292b 890292c 890292d 

Thickness 
(μm) 

76 70 128 126 445 789 89 130 649 323 315 

ν1 4957 5123 4960 5080 5081 5162 4991 5029 5030 5028 5106 

α1 79.71 127.15 117.32 97.98 0.62 0.23 147.99 95.89 1.38 8.82 2.33 

FWHM 1720 1632 1572 1561 1644 1487 1412 1481 1513 1582 1422 

A1 145950 220910 196260 162750 1091 359 222400 151210 2231 14854 3528 

ν2 4533 4445 4683 4485 4619 4566 4642 4615 4526 4602 4562 

α2 9.65 40.91 9.12 25.09 0.1 0.06 20.4 14.25 0.19 1.14 0.7 

FWHM 565 708 544 809 607 676 581 593 632 593 615 

A2 5804 308500 5280 21616 63 45 12617 8985 129 718 459 

ν3 4084 4086 3967 4002 3929 3994 4015 3939 3933 4012 4103 

α3 17.83 26.117 31.508 29.07 0.24 0.09 52.541 37.14 0.5 2.353 0.67 

FWHM 423 416 503 436 580 523 496 591 506 463 484 

A3 8035 11556 16862 13482 146 52 27752 23377 266 1159 344 

ν4 3622 3635 3588 3579 3562 3592 3636 3562 3516 3579 3609 

α4 55.71 106.12 51.94 66.37 0.28 0.13 77.832 43.07 0.83 5.006 1.68 

FWHM 614 678 462 541 406 429 437 447 498 526 706 

A4 36461 76610 25567 38250 123 57 36201 20499 442 2801 1261 

Asum 196250 339926 243969 236097 1423 514 298971 204071 3068 19532 5593 
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Hålenius et al. (2002) showed an excellent linear correlation of the extinction 

coefficient of the 5000 cm-1 band (ν1) with sample TFe2+ concentration. Thus, an 

estimated Fe2+ content was calculated for the natural spinels here investigated, 

starting from the measured values of linear extinction coefficients and using the 

equation determined by Halenius et al. (2002). Good agreement between Fe2+ 

content calculated from OAS and Fe2+ content from microprobe analyses, were 

acquired, with exception of some samples for which the optical spectra results in an 

apparent overestimation of the TFe2+ content (Fig. 4.21). This can be due to a 

chemical zoning of the sample. In fact, the Fe concentrations recorded by microprobe 

analyses reflect the chemistry at the sample surface, while the optical spectra reflect 

the average chemistry through the entire sample thickness. 

 

Fig. 4.21. Natural spinels: comparison between the Fe
2+

 content calculated from microprobe analyses 
and that one calculated from OAS, according to equation reported in Hålenius et al., (2002). 

 

The position of the ν1 band varies slightly in the colored samples ranging from 4946 

cm-1 in a blue-green sample (2366) to 5162 cm-1 in an orange sample (881694c). The 

obtained values are in agreement with the values reported in literature (Lenaz et al., 

2004, Skogby and Hålenius, 2003). A relationship between the color and the shift of 

the position in the natural samples can not be found. To investigate the causes of 

these variations a structural study is required in order to relate the shift position with 

the bond distance of the different sample. 
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 UV-VIS-NIR spectroscopy 

The spectra of all the natural samples were acquired in the UV-VIS and NIR spectral 

ranges (30000-9000 cm-1). According to the color, the optical absorption spectra and 

the predominant transition metal, the natural spinels studied can be subdivided into: 

1. Spinels with dominant amount of Cr and V:  

 orange, red and magenta colored spinels; 

2. Spinels with dominant amount of Fe:  

 pink, lilac and violet spinels; 

 light blue, and dark blue spinels; 

 blue-green and dark green spinels; 

3. Spinels with dominant amount of Fe3+ and Mn:  

 A yellowish green spinel. 

 

In the investigated natural samples, traces of all important transition metal ions such 

as Fe2+, Fe3+, Mn, Cr, V, Co are detected analytically and thus, the resulting 

absorption spectra of most natural samples are composed of absorption bands 

caused by two or even more transition metal ions. This is responsible for the great 

number of colors and hue in natural spinels.  

1) Spinels with dominant amount of Cr and V  

The red, orange and magenta colored spinels are gathered in a group because their 

absorption spectra show a similar shape, with two strong absorption bands at ~ 

25500 cm-1 (with a shoulder at ~ 23900 cm-1) and at ~18500 cm-1 in the blue violet 

and green regions of the visible spectrum (Fig. 4.22).  

The absorption bands at ~25500 cm-1 and at ~18500 cm-1 are the principal 

responsible of the color in this group of spinel. Hålenius et al. (2010) stated that the 

position and intensity of these absorption bands largely determine a change in color 

from pale red to dark green with the increase of the Cr content along the MgAl2O4-
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MgCr2O4 series. This color variation is due to a shift of the spin-allowed Cr3+ d-d 

bands toward lower energies with increasing Cr contents. 

 

Fig. 4.22. Optical absorption spectra of the investigated natural spinels showing orange, red, magenta 
(and intermediate) colorations. a) OAS of an orange colored spinel (890292c); b) OAS of a dark orange 
colored spinel (881694c); c) OAS of a reddish orange colored spinel (420491); d) OAS of a  red 
colored spinel (890292d); e) OAS of a magenta-red colored spinel (890292b);  f) OAS of a reddish 
magenta colored spinel (ST); g) OAS of a magenta colored spinel (881694a). The colors of the spectra 
represent the color exhibited from the samples. 

As already seen in the chemical characterization, the orange and red colored spinels 

contain both Cr3+ and V3+ as chromophore ions, which absorption bands are 

superimposed in the optical spectra. In agreement with previous studies (e.g., 

Schmetzer et al., 1989; Lenaz et al., 2004; Hålenius et al., 2010), each absorption 

band of the natural studied spinels was fitted with three sub-bands representing the 

spin-allowed transition of MCr3+ and MV3+ (Fig.4.23). The V3+-bearing spinels show two 

intense absorption bands (c and f) at ~18700 cm-1 (ν1) and at ~25000 cm-1 (ν2) related 

to the spin-allowed d-d transition 3T1(F) →3T1(P) and 3T1(F) →3T2(F), respectively, in 

V3+ at the M sites. Besides, the Cr3+-bearing spinels show two intense and broad 
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bands at ~18600 cm-1 (ν1) and at ~25000 cm-1 (ν2) caused by spin-allowed electronic 

d-d transitions 4A2g→
4T2g(F) and 4A2g→

4T1g(F), respectively, in Cr3+ at the M sites. 

The point symmetry of the Cr3+-bearing M site is lowered from Oh (ideal octahedron) 

to D3d (trigonally distorted octahedron). As a consequence, the two excited 

spectroscopic states in Cr3+ are split into two spin-allowed d-d transitions. Hence, the  

two absorption bands are fitted with four sub-bands: e and g and b and d, 

respectively.  

Thus, after the fitting procedure, in the spinels with V concentration higher than Cr the 

bands c,f  prevail on the bands b, d, e and g.  

 

Fig. 4.23. Curve resolved spectrum in the spectral range 31000-9000 cm
-1

: a) fitting of an orange colored 
natural spinel (890292c); b) fitting of a red colored natural spinel (890292d). The red line in the UV-VIS 
range represent the low-energy wing of the UV absorption bands caused by oxygen to metal electronic 
charge transfer transition O

2-
 → Fe

2+
. 

 

In the spinel with high Cr concentration a weak and narrow absorption band occur at 

~29000 cm-1 assigned to the spin-forbidden transition 2A1g(
2G)→2T1g(

2G) of Cr3+ in 

octahedrally coordinated sites. Some spinels show an additional weak band at 

~15000 cm-1 attributable to the Fe2+-Fe3+ exchange interaction. In addition, all the 

spectra studied show the low-energy wing of the UV absorption bands caused by 

oxygen to metal electronic charge transfer transition O2- → Fe2+ or O2- → Fe3+. The 

results of the spectrum fits are summarized in Table 4.12. 
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Table 4.12. The observed energies (cm
-1

) of the red, orange and magenta colored spinels. 

 ST 420491 881694a 881694c 890292b 890292c 89292d Assignment Electronic transition 

a ‒ 28808 ‒ 28427 ‒ ‒ ‒ MCr3+ 
spin-forbidden transition 

2A1g(
2G)→2T1g(

2G) 

b 25757 25900 25670 25677 25865 25988 25865 MCr3+ 
spin-allowed electronic d-d 

transitions 4A2g→
4T1g(F) 

c 25560 25325 24875 25382 25590 25404 25424 MV3+ 
spin-allowed d-d transition 

3T1(F) →3T1(P) 

d 23808 23674 23781 23515 23910 23876 23724 MCr3+ 
spin-allowed electronic d-d 

transitions 4A2g→
4T1g(F) 

e 18803 18649 18670 18905 18886 18887 18887 MCr3+ 
spin-allowed electronic d-d 

transitions 4A2g→
4T2g(F) 

f 18051 18393 18523 18471 18725 18449 18758 MV3+ 
spin-allowed d-d transition 

3T1(F) →3T2(F) 

g 17202 17325 17253 18128 17914 17076 17797 MCr3+ 
spin-allowed electronic d-d 

transitions 4A2g→
4T2g(F) 

h 15014 14977 14582 ‒ 15438 14876 14977 Fe2+-Fe3+ 
Fe2+-Fe3+ exchange 

interaction 

i 11483 12348 12594 12323 12950 12011 ‒ MFe2+ 
spin-allowed d-d transition 

5T2g →
5Eg 
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The differences among the absorption spectrum of orange, red and magenta colored 

spinels are very slight (Fig. 4.24). The orange and red spinel spectra have the same 

absorption bands but, since the orange spinels have a significant amount of V, the 

absorption band centered at ~25500 cm-1 is wider in the spectra of the orange spinels 

than that in the red ones. A greater width of the bands causes a greater absorption of 

the violet and blue to green regions of the visible spectrum and thus a transmission of 

the orange region. 

 

Fig. 4.24. Optical absorption spectra of orange, red and magenta colored spinels. The center positions 
are reported for the principal bands. 
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Regarding the magenta colored spinels, they have considerable amount of Cr and 

secondary amount of Fe. In fact, magenta spinels show an absorption spectrum 

similar to that of red spinels but with some absorption bands attributable to the iron 

cation. With respect to the absorption spectrum of the red spinel, the band of the 

magenta spinels at ~25500 cm-1 is less intense and the band at ~ 18000 cm-1 

undergoes a red shift. In addition, the magenta spinels show an intense low-energy 

wing of the UV absorption band due to LMCT O2- → Fe2+. Consequently, magenta 

spinels exhibit a larger window in the blue region of the visible spectrum and their 

color is obtained combining equal amounts of red and blue light transmitted.  

2) Spinels with dominant amount of Fe 

As already seen in the paragraph 4.2.1 dealing with chemical characterization, iron is 

the main transition metal component causing various colors with different tone like 

pink, violet, blue and dark green in the natural spinels. The absorption spectra of 

these colored spinels are very similar but they differ in some small features which are 

revealed only with a detailed and careful investigation. Typical spectra of Fe-bearing 

spinels consist of a high energy absorption edge and a series of absorption bands 

superimposed on it. The results of the curve-fitting of pink, blue and green colored 

spinels are shown in the Figure 4.25 and the values of energy are summarized in 

Table 4.13. 

At least ten Gaussian curves are necessary for the fit of the pink spinels whereas in 

the case of the light blue and dark green spinels, twelve Gaussian curves are 

necessary for a satisfactory fit. For clearness a common labelling was taking for the 

same component bands in the different spectra. Most of the absorption bands are 

similar but others have different position, shape and intensity. The differences in the 

absorption spectra are caused by different total iron content, different amount of Fe2+ 

and Fe3+ and their distribution in the structural sites.  
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Fig. 4.25. Curve resolved spectra of  

pink , blue and green colored spinels 

(from base to top). 
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Table 4.13. Observed energies of the pink, blue and green colored spinels. The assignment of the absorption bands to the different transitions 
was made in agreement with previous studies (Schmetzer et al. 1989; Hålenius et al., 2002; Lenaz et al. 2004; Taran et al., 2005). 

 Nat.1 Nat.2 Nat.3 Nat.4 2366 30070 330763 330764 Assignment 

a 26797 26825 26830 26867 26697 26640 26822 26824 spin-forbidden transitions 
5
E → 

 3
E of 

T
Fe

2+
 

b 25801 25956 25819 25972 25709 25730 25943 25862 spin-forbidden transitions 
5
E → 

3
T2, 

3
T1 of 

T
Fe

2+ 

 

spin-forbidden transitions
 6
A1g → 

4
Eg (

4
D) of 

M
Fe

3+
 

c 24285 24852 ‒ 24675 24521 24870 24839 24692 

d ‒ ‒ 23779 ‒ 23101 ‒ 23595 ‒  

e 21879 21775 21679 21789 21693 21656 21722 21739 
6
A1g →

4
A1g, 

4
Eg transition of 

M
Fe

3+ 

spin-forbidden transitions 
5
E → 

3
T2, 

3
T1,

 3
E of 

T
Fe

2+
 f 21533 20955 20406 21025 21056 21112 20936 21112 

g ‒ ‒ ‒ ‒ ‒ ‒ 19861 19426  

h 18269 17986 17920 17921 17927 17943 18046 17905 spin-forbidden transitions 
5
E → 

3
T2 of 

T
Fe

2+
 

i ‒ 17004 ‒ 17335 17099 16932 16901 17020 spin-forbidden transitions 
5
E → 

3
T1 of 

T
Fe

2+
 

l ‒ 15843 ‒ ‒ ‒ 16063 ‒ ‒ 
spin-allowed transitions 

4
A2(F) → 

4
T1(P) of 

T
Co

2+
 

m 14992 15028 ‒ 15617
 

14958 14842 15301 15147 
M
Fe

2+
↔

M
Fe

3+
 IVCT 

n ‒ 12748 12899 12921 11921 ‒ 12255 12065 spin-forbidden transitions 
5
E→

3
T1 of 

T
Fe

2+
 

o ‒ 10904 ‒ ‒ 10479 10629 10881 10716 
spin-allowed d-d transition 

5
T2g →

5
Eg in 

M
Fe

2+
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Table 4.13. Continued. 

 440243 510941 510942 670275 800801 881728 890290 Assignment 

a 26794 26670 26624 26850 26775 26758 25906 spin-forbidden transitions 
5
E → 

 3
E of 

T
Fe

2+
 

b 25910 25874 25813 25860 25945 25821 25906 spin-forbidden transitions 
5
E → 

3
T2, 

3
T1 of 

T
Fe

2+ 

 

spin-forbidden transitions
 6
A1g → 

4
Eg (

4
D) of 

M
Fe

3+
 

c 24854 25032 24787 24455 24740 24803 24809 

d ‒ ‒ ‒ ‒ 23053 23255 23511 
spin-forbidden electronic d-d transition 

6
A1(S) 

→ 
4
Eg,

4
A1g(G) in 

T
Mn

2+
 

e 21820 21705 21685 21853 21766 21703 21751 
6
A1g →

4
A1g, 

4
Eg transition of 

M
Fe

3+ 

spin-forbidden transitions 
5
E → 

3
T2, 

3
T1,

 3
E of 

T
Fe

2+
 f 20994 21123 20926 20910 21179 21148 21265 

g ‒ ‒ ‒ ‒ 19157 19617   

h 17935 17826 17831 17861 18314 18089 18135 spin-forbidden transitions 
5
E → 

3
T2 of 

T
Fe

2+
 

i ‒ 16973 16757 ‒ 17021 16969 17115 spin-forbidden transitions 
5
E → 

3
T1 of 

T
Fe

2+
 

l ‒ 16048 15894 ‒ 15809 ‒ ‒ 
spin-allowed transitions 

4
A2(F) → 

4
T1(P) of 

T
Co

2+
 

m 14943 14741 14849 15128 14945 15006 15139 
M
Fe

2+
↔

M
Fe

3+
 IVCT 

n 13325 11559 12619 ‒ 12797 12350 12300 spin-forbidden transitions 
5
E→

3
T1 of 

T
Fe

2+
 

o 11458 10204 10544 ‒ 10848 10758 10822 
spin-allowed d-d transition 

5
T2g →

5
Eg in 

M
Fe

2+
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The spectra of the all the colored spinels show a strong UV-edge absorption at 

energy >> 30000 cm-1 which is due to O2- → Fe2+ and O2-→ Fe3+ charge transfer 

transitions and causes a strong absorption of the violet and blue component of the 

visible light (red line in the Fig.4. 25). The bands close to the UV-absorption edge 

at ~ 26800, 25800 and 24500 cm-1 (labelled a, b and c, respectively) are common 

to all spectra and could be assigned to spin-forbidden transitions 5E(D)  3E(D), 

for the a band, and 5E(D)  3T2(G), 3T1(G), for the b and c band, of isolated TFe2+ 

ions. The position of these bands is almost the same for all crystals, with 

exception of a very slight shift of the b band to 25700 cm-1 for the dark green 

specimen. In addition, the height of the bands increases with the total iron 

content. In all the spectra, a sharp band at ~ 21800 cm-1 (labelled e) is also 

present with a split component at ~ 20800 cm-1 (labelled f). Similar optical 

absorption bands were observed in natural spinels by Schmetzer et al. (1989) and 

Taran et al. (2005) and in synthetic spinel-magnesioferrite crystals by Andreozzi 

et al. (2001b). Schmetzer et al. (1989) assigned these bands to spin forbidden 

transitions 5E(D)  3E(G), 3T2(F), 3T1(F) of TFe2+, whereas the other authors 

assigned them to spin-forbidden 6A1g  4A1g, 
4Eg transitions of isolated MFe3+ ions 

(Taran et al. 2005), and to exchange-coupled interaction (ECP) 6A1g  4A1g, 
4Eg in 

TFe3+ - MFe3+ clusters (Andreozzi et al., 2001b). Since the bands e and f are 

present in the spectrum of the yellowish-green sample 31081, which not show 

evidence of TFe2+, the assignment to only spin forbidden transitions 5E(D)  

3E(G), 3T2(F), 3T1(F) of TFe2+ is not correct. Raman spectra in the paragraph 4.4 

(Fig. 4.60) show that only some natural spinels are disordered. On the basis of 

these evidence,  the absorption bands e and f of the investigated natural spinels 

are caused mainly by spin-forbidden 6A1g  4A1g, 
4Eg transitions of isolated MFe3+ 

ions but it is not excluded that it may be intensified by exchange-coupled 

interaction and by spin-forbidden transition of TFe2+, above all in spinels with low 

Fe3+ content.  

The largest discrepancy among the absorption spectra of pink, blue and green 

colored spinels stands between 20000 cm-1 and 10000 cm-1. The origin of the 

band system occurring in this range is not quite clear. It is very likely that some of 

them may be caused by spin-forbidden transitions of Fe2+. The absorption band at 
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~18000 cm-1 (labelled h) is dominant in the pink, lilac and violet colored spinels 

and could be caused by spin forbidden transition 5E(D)  3T2(H) of TFe2+ 

(Schmetzer et al. 1989; Taran et al. 2005). In the light blue and blue spinels, with 

the increase of the Fe content, an absorption band at ~17000 cm-1 (labelled i) 

becomes noticeable. Following Schmetzer et al. (1989) and Taran et al. (2005), 

this band could be due to spin forbidden transitions 5E(D)  3E(H) of isolated 

TFe2+ ions but it could be intensified by the presence of trace amount of Co2+ (as it 

will be proposed forward). In the blue-green and dark green colored spinels the 

previous bands become less intense and a dominant peak develops at ~15500 

cm-1 (labelled m). In the green spinels the total Fe content as well as the Fe3+ 

content increase. A band in similar position was assigned to 6A1g  4T2g transition 

of MFe3+ intensified by antiferromagnetic exchange interaction in MFe3+‒TFe2+ by 

Taran et al. (2005). But a relationship between the Fe3+ content and the intensity 

of the band m was not found in the studied spinels and the amounts of Fe3+ can 

not be responsible for the comparatively high intensity of this band. The  Fe2+-Fe3+ 

IVCT processes in oxygen-based structures are restricted to clusters of cations 

located in edge- or face-sharing polyhedra (Mattson and Rossman, 1987b; 

Hålenius et al., 2002), thus the MFe3+‒TFe2+ IVCT is not possible. On the other 

hand, exchange-coupled pairs in which the participating ions are located in 

polyhedra that share faces, edges, or just corners can act in spinel structures 

(Hålenius et al., 2002). The large widths displayed by the absorption band at 

~15500 cm-1 as well as their nonlinear dependence on Fe content indicate a 

cooperative electronic processes between Fe2+ and Fe3+. Hence, in agreement 

with Schmetzer et al. (1989) and Hålenius et al. (2002), the m band is assigned to 

MFe2+ - MFe3+ IVCT and/or MFe2+ - TFe3+ ECP interaction. This assignment is also 

well supported by the presence of the o band at ~10800 cm-1 attributed to a spin-

allowed transition (5T2g →5Eg) in octahedrally coordinated MFe2+, in agreement 

with literature (Schmetzer et al., 1989; Hålenius et al., 2002). 

The three subgroups (pink, blue and green colored spinels) are discriminated by 

the intensity and the width of the absorption bands (Fig. 4.26).  
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Fig. 4.26. Optical absorption spectra of pink, blue and green colored spinels (from base to top). 
The portions of the light absorbed are shown. The dash line indicates the shift of the maximum 
absorption in the 20000-10000 cm

-1
 range. 
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The component Gaussian bands in the pink, lilac and violet spinels are much 

broader than in the other subgroups. The intensity of some absorption bands 

increases with the total iron content: from pink to the green spinels. The most 

visible differences are shown between 20000 and 10000 cm-1. In this range the 

most intense absorption bands shift from 18000 cm-1 for the pink spinels to 15500 

cm-1 for the green spinels, whereas the blue spinels show an intermediate 

situation. This shift of the main absorption band causes obviously a shift in the 

absorption of the light from green for the pink spinels to red for the green spinels, 

originating the different colors. In addition, moving from pink to green spinels, the 

total amount of iron increases as well as the intensity of the strong UV-edge 

absorption at energy >>30000 cm-1 causing a strong absorption of the violet and 

blue component of the visible light.   

The linear absorption coefficients of the main bands in the range 20000-10000 

cm-1 were normalized and represented in the triangular diagram (Fig. 4.27). This 

figure shows as the pink spinels are characterized mainly by the absorption band 

at ~18000 cm-1, the green samples are characterized mainly by the absorption 

band at ~15500 cm-1, whereas the blue spinels have the 18000 cm-1 band as the 

main component but an important role may be played also by the absorption band 

at ~17000 cm-1. 
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Fig. 4.27. Ternary diagram expressed in terms of the normalized linear absorption coefficient of 
the main absorption bands in the 20000-10000 cm

-1
 region of the visible spectrum. The colors of 

the symbols represent the color exhibited from the samples. 

 

A similar situation was observed by Hålenius et al. (2002) in the synthetic crystal 

belonging to the spinel s.s.-hercynite solid solution, which varied in color from pale 

lilac to sky blue, green and deep green with increasing total Fe content. This 

variation of color was explained with an increase of the absorption of the blue light 

and of the band at ~14500 cm-1. The intensity of the latter band increases in a 

parabolic way with increasing Fe content (Fig. 4.28a). The same trend was shown 

by the MFe2+ and MFe3+ with increasing Fe content (Fig. 4.28b and c). Taking 

these features into consideration the authors proposed that the absorption band at   

~14500 cm-1 are caused by a  MFe2+ ‒ MFe3+  IVCT process.   
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Fig. 4.28. Correlation plots of the linear absorption coefficients of the absorption band at ~14500 
cm

-1
 (a), the Fe

2+
 content in apfu in the octahedrally coordinated sites (b), and the Fe

3+
 content in 

apfu in the octahedrally coordinated sites (c) as a function of the iron total concentrations in apfu. 
Values taken from Hålenius et al., 2002.  

 

In addition to the characteristic absorption bands of iron, spectra of some natural 

samples show minor absorption bands caused by electronic d-d transitions in 

other cations. For example, in the spinel with rather amounts of Mn, such as the 

sample 2366, a small absorption band at ~23500 cm-1 is observed (Fig. 4.29). 

This band shows very similar characteristic of the most intense absorption band 

shown by a synthetic spinel sensu stricto doped with low concentrations of Mn2+ 

(Jouini et al., 2006) and by a synthetic galaxite (Hålenius et al., 2007). This band 

was assigned in both the studies to the spin-forbidden electronic d-d transition 

6A1(S) → 4Eg,
4A1g(G) in TMn2+.  
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Fig. 4.29. Optical absorption spectra of a investigated natural sample 2366 containing significant 
amounts of Mn

2+
. 

 

In the recorded spectra only the most intense absorption band of the typical set of 

five was collected. In fact, the optical absorption intensities of the TMn2+ are quite 

low, because all transitions involving the ground state are parity- and spin-

forbidden, being the ground state the sextet A1 level whereas all the excited d-

levels doublet or quartet states. Because the low intensity of the absorption band 

found in the recorded spectra, it could be assumed that the TMn2+ do not influence 

significantly the colors in the spinel wherein it occurs. 

 The role of the Co2+ on the blue colored spinels 

The optical absorption bands in the range 20000-15000 cm-1 of the light blue, blue 

and blue-green colored spinels can be also intensified by the presence of Co2+ in 

tetrahedrally coordinated sites. Minor amounts of cobalt were detected in the 

investigated spinels. Because Co2+ occupies the tetrahedral position in the spinel 

structure which lacks a center of symmetry, TCo2+ is a strong absorber and its 

spin-allowed bands may be strong enough to appear in the spectra in spite of low 
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concentrations. Some natural spinels with Co concentrations between 0.001 and 

0.05 wt.% of Co were found and studied in literature by (Shigley and Stockton, 

1984; Harder, 1986; Schmetzer et al., 1989). Shigley and Stockton (1984) were 

the first authors who assumed that the cobalt is present in natural spinels in 

sufficient concentration to cause (or to help the Fe to cause) the blue color. Later 

Schmetzer et al. (1989) confirmed the hypothesis of Shigley and Stockton (1984) 

showing as extremely small amounts of cobalt in the range of 0.00X wt.% Co are 

sufficient to produce an intense blue coloration in spinels.  

In the Figure 4.30 the absorption spectra of synthetic spinel s.s. containing the 

same concentrations of Co and Fe, respectively, were compare. It is evident as 

the two spectra show extremely different intensities of absorption.  

This is due to the very strong intensity of the spin-allowed TCo2+ absorption, 

having the highest oscillator strength observed for 3d ions, which is one or two 

orders of magnitude greater for Co2+ than for the other ions such as Cr3+, V3+, 

Fe2+ and Fe3+.  

 
Fig. 4.30. Comparison between an absorption spectra of a synthetic spinel s.s. with a 11% of Fe

2+
 

(red line: He3a from Hålenius et al., 2002) and a synthetic spinel s.s. with a 11% of Co
2+

 (black 
line: CoAl10). 
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As already described above, the absorption spectrum of Co-bearing spinel 

consists of a broad absorption band, which is split into three components with 

maxima at ~18000, ~17000 and ~16000 cm-1. In the blue and blue-green natural 

spinels investigated in the present work trace elements contents of Co were found 

in the range between 0.001 and 0.061 wt.%. Hence, in some cases, the Co 

concentration is very greater than those optically investigated in literature. The 

spectra of these samples show the three typical components of the Co-bearing 

spinels but they appears at energies very close to the bands assigned to the Fe 

and a discrepancy among them is quite difficult (Fig. 4.31).  But the most 

characteristic feature of cobalt-bearing spinels is the presence of the absorption 

band at ~16000 cm-1, which is not found in the Fe-bearing spinels. 

 

Fig. 4.31. Optical absorption spectrum of a blue colored spinel (800801) containing significant 
amount of Co. The three components of the typical band of 

T
Co

2+
 are shown. 

 

In order to prove the role of cobalt in the blue coloration, the spectra of synthetic 

cobalt and iron spinels were compared in the right proportions to simulate the 

spectrum of the sample 800801 (Fig. 4.32). In spite of the very low amounts of 

cobalt (0.002 apfu), it is extremely evident that the cobalt influences the color 

more than iron in the central part of the VIS spectrum, that is in the range 20000-
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15000 cm-1. However the iron strongly contributes to reinforce the blue coloration 

of the spinels in the range 20000-26000 cm-1 with the intense absorption of the 

blue light due to the ligand-metal charge transfer.  

 

Fig. 4.32. Comparison among the natural intense blue sample 800801, a synthetic Co-bearing 
spinel CoAl10, and a synthetic Fe-bearing spinel He3a. The spectra of the synthetic spinels were 

divided by scaling factors (50 and 1.5, respectively) to simulate the spectrum of the sample 
800801.  

 

Taking the linear absorption coefficient of the sample 800801 from the equation 

23 (paragraph 4.1.2), a calculated Co content of 0.0016 apfu is obtained, in 

agreement with the actual chemical concentration of 0.0018 apfu obtained by LA-

ICP-MS analysis. 

3) Spinel with dominant amount of Fe3+ and Mn 

As already discussed in the chemical characterization paragraph, a yellowish 

green sample, labelled 31081, does not show evidence of Fe2+ in the NIR-MIR 

region. In addition, the sample displays relevant amounts of Mn, which by the 

charge balance results is supposed to be essentially in the oxidized form. Spinels 

with relevant amount of Mn are rare in nature and optical studies on Mn-bearing 

spinels are so scarce. The spectrum recorded between 30000 and 9000 cm-1 is 
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reported in Figure 4.33 and shows a strong UV absorption edge with a low-energy 

tail that rapidly falls off towards the visible range, an intense band at ~25500 cm-1 

and a series of weak but prominent bands in the visible range. The band 

assignment is quite difficult because of lack of studies of this kind of spectra in 

literature. Since the absence of Fe2+ in the spectrum of sample 31081 it is 

possible to observe all the  typical spin-forbidden of the Fe3+, which are usually 

obscured by the spin-allowed transition of Fe2+ in natural spinels. 

 

Fig. 4.33. Optical absorption spectrum and curve-fitting of the yellowish-green sample 31081.  

 

The absorption edge is probably caused by ligand to metal charge-transfer 

transitions of O2– → Fe3+ and O2– → Mn3+ type. The band a ~25500 cm-1 have the 

characteristics of the spin-forbidden transition 6A1g → 4Eg (4D) of Fe3+ in 

octahedrally coordinated sites. The band at ~23000 cm-1 was attributed to the 

spin-forbidden transition 6A1g → 4T2g (
4D) by Taran et al. (2005), but it could be 

intensified by the spin–allowed 5Eg → 5T2g transition in octahedrally coordinated 

Mn3+. As already mentioned, the relatively narrow sharp band  with maximum at 

~21700 cm-1 can be assigned to the 6A1g → 4A1g, 
4Eg transition of MFe3+ in 

agreement with Taran et al. (2005) and Andreozzi et al. (2001b). The weak band 

at ~21000 cm-1 is, most probably, a split component of the 6A1g → 4A1g, 
4Eg  
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transition of MFe3+. The very weak absorption at ~22400 cm-1 could be assigned to 

the spin-forbidden transition of the tetrahedrally coordinated Fe3+. In fact, as it will 

discuss in the paragraph 4.4, the Raman spectrum of the sample 31081 shows 

the characteristic peak at ~705 cm-1 caused by the disorder. The spinels with 

Mn3+ in the tetrahedra show a strong and prominent band at ~10800 cm-1 (Bosi et 

al., 2007). Since this band is not observed in the recorded spinel, the Mn3+ is 

assumed to be ordered at the M sites. The bands occurring at <19000 cm-1 are 

very difficult to assigned but they could be caused by the spin-forbidden transition 

6A1g → 4Eg (
4G) and 6A1g → 4T2g (

4G) of MFe3+ and TFe3+. 

In addition to the absorption bands due to Fe3+, some absorption bands of the 

spectrum of the sample 31081 could be intensified by small bands attributable to 

Mn3+. The absorption bands at ~23700, ~23050 and 21700 cm-1 can be affected 

also by broad bands due to the spin-forbidden transitions 5Eg → 3T1g , 
5Eg → 3Eg 

and 5Eg → 5A1g in the MMn3+, in agreement with Bosi et al. (2007). 

Moreover, the narrow absorption bands at ~27000, 25200, 23700, 21700, 21100 

and 20200 cm-1 show a strong similarity with the absorption bands due to electron 

transitions in TMn2+- MMn3+ pairs observed recently in a natural yellow spinel by 

Hålenius and Bosi (2014). 

The absorption spectrum of the 31081 sample absorbs the light in almost all the 

portions of the spectrum and allows passing the light of narrow regions close to 

18000 cm-1 (yellow-green light). A complete interpretation of the absorption 

spectrum of the sample 31081 needs further investigations. 

Further and more detailed studies are necessary in order to confirm particular 

assignment of difficult interpretation. In particular, given the extreme efficiency of 

Fe ions for visible light absorption, a Mössbauer spectroscopic study could be 

useful to determine the real proportions of Fe2+ and Fe3+. Furthermore, additional 

short-range sensitive techniques, as for example EXAFS spectroscopy, would be 

useful to know if differences in local bond distances may cause differences in 

colors. 
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4.3- Synthetic (Mg,Co,Fe)(Al,Cr)2O4 spinels: Raman study 

As predicted by group theory for spinels (paragraph 2.2.3), a correlation of the site 

symmetries with the crystal symmetry enables one to identify the irreducible 

representations that describe the normal modes of vibration associated with each 

atomic species: 

D3d (T sites): A2u + Eu + 2F1u + F2u 

Td (M sites): F1u + F2g 

C3v (O): A1g + A2u + 2F2g + 2F1u + Eg + F1g + Eu + F2u 

Thus, there are five Raman active modes (A1g + Eg + 3F2g) that might appear in 

the spectra. However, a breakdown in the Raman selection rules can occur due to 

various factors, such as the disordering, the presence of vacancies and general 

defects within the crystal structure which can affect the crystal symmetry. This can 

subsequently lead to an increase in the number of the Raman-active modes up to 

eight or nine. 

Although there has been a large amount of experimental and theoretical work on 

spinel in literature, a systematic study of the variations of the Raman shift and/or 

their relative intensities along spinel solid solutions is lacking. The relationship 

between the vibrational modes and cation substitution is not straightforward. 

When two cations are exchanged in the spinel solid solution, the vibrational 

modes can vary differently. They can be described by an one-mode behavior 

when the phonons vary continuously from the frequency of one end member to 

the frequency of the other end member. Anyway, two-mode behavior is also 

possible, for which a mixed crystal system possesses two distinct vibrational 

modes, close to the frequency of both end members, with intensities proportional 

to the fraction of each pure member within the mixed system (Chang and Mitra, 

1971; Preudhomme and Tarte, 1971). The Raman spectra of pure spinels are well 

known in the literature, but complete vibrational data is lacking for many of these 

mixed metal oxides. 
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In the present study three synthetic spinel series were investigated: 

1. MgAl2O4-CoAl2O4 solid solution (10 samples); 

2. MgAl2O4-FeAl2O4 solid solution (10 samples); 

3. MgAl2O4-MgCr2O4 solid solution (12 samples). 

These series were chose in order to examine how substitution of the divalent 

cation (for the first two series) and trivalent cation (for the last series) affects the 

Raman modes. 

In addition, chemical, structural and optical data of the three series are available 

(for MgAl2O4-CoAl2O4 series from this study; for MgAl2O4-FeAl2O4 from Andreozzi 

and Lucchesi, 2002 and Hålenius et al., 2002; for MgAl2O4-MgCr2O4 series from 

Hålenius et al., 2010). Moreover, the series have a common end-member 

(MgAl2O4) whose Raman spectrum is well known and examined in literature.  

If systematic change in the Raman shift with the variation of the chemical 

composition was found, Raman spectroscopy could be used to obtain semi-

quantitative chemical analyses when calibrated with suitable solid solution series. 

Furthermore, the method could also be used to detect cation order/disorder and 

possibly nonstoichiometry. 

In order to follow the shift and growth of each peak along the series, unpolarized, 

polarized and depolarized Raman spectra were collected for all the synthetic 

spinel crystals.  

4.3.1 The spinel s.s. (MgAl2O4) end-member 

Before dealing with the different spinel solid solution, it is useful to make a 

detailed investigation of their common end-member. There has been a significant 

amount of work done on MgAl2O4 spinel by Raman spectroscopy because it is 

considered as the prototype of the large class of solid oxides of geological and 

technological interest. (O'Horo et al., 1973; Fraas et al., 1973; Chopelas and 

Hofmeister, 1991; de Wijs et al., 2002, Lazzeri and Thibaudeau, 2006; Caracas 

and Banigan, 2009). However, most of the studies are focused only on the 

additional bands due to disordering of the cations (Cynn et al., 1992; Cynn et al., 

1993; Minh and Yang, 2004; Slotznick and Shim, 2008).  
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Unpolarized, polarized and depolarized Raman spectra of the synthetic spinel s.s. 

recorded are shown in Fig. 4.34a.  

 

 

Fig. 4.34. Raman spectra of a synthetic spinel s.s. crystal: a) Raman spectrum taken with crossed 
polarization (on the top), parallel polarization (in the middle) and without polarization (on the 
bottom), b) Unpolarized Raman spectrum in detail. 

a. 

b. 
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Raman spectrum of MgAl2O4 exhibits four intense Raman active modes at 308, 

409, 670 and 768 cm-1. In agreement with the previous studies these bands are 

assigned to the F2g(1), Eg, F2g(3), and A1g respectively (Fig. 4.34b and Table 

4.14). In fact, the polarized Raman spectrum shows the peak at 768 cm-1 which 

does not appear in the depolarized spectrum, thus assigning it to the A1g mode. 

The two F2g modes are clearly visible in the polarized spectrum, and the Eg mode 

is present in all spectra and to distinguish it from the others a particular orientation 

of the crystal is required.  The fifth Raman mode, F2g (2), was not observed in the 

experimental Raman spectra present in literature, but, in agreement with the 

calculated Raman spectra via ab initio calculation by de Wijs et al. (2002) and 

Lazzeri and Thibaudeau (2006), it could be the small and weak peak at 562 cm-1 

(Table 4.14). Since usually this peak is not observed in the experiment spectrum 

its assignment is not yet clear. The first F2g(1) mode has been assigned to the 

translation of the Mg cation in its tetrahedrally coordinated sites by Chopelas and 

Hofmeister (1991) and Slotznick and Shim (2008). Regarding the origin of the 

higher-frequency F2g modes at ~670 cm-1, there is no consensus in literature. In 

general, some authors state that this Raman mode is related to antisymmetric 

stretching mode of the MgO4 unit (O’Horo et al., 1973). Others, in contrast, claim 

that it is attributed to octahedral bending motion (Chopelas and Hofmeister, 1991; 

Slotznick and Shim, 2008 and Caracas and Banigan, 2009. 

Table 4.14. Comparison between experimental and calculated frequencies (cm
-1

) of the Raman 
modes in the cubic spinel structure of MgAl2O4. 

Raman 
modes 

This 
work 

de Wijs 
et al. 

(2002) 
Calc. 

Lazzeri & 
Thibaudean 

(2006) 
Calc. 

O’Horo 
et al. 

(1973) 
Exp. 

Fraas 
et al. 

(1973) 
Exp. 

Chopelas & 
Hofmeister 

(1991) 
Exp. 

Cynn 
et al. 

(1992) 
Exp. 

Slotznick 
& Shim 
(2008) 
Exp. 

F2g (1) 308 319 317 311 305 312 311 309 

Eg 409 426 408 410 405 407 409 410 

F2g (2) 562 570 557 ‒ ‒ ‒ ‒ ‒ 

F2g (3) 670 682 667 671 663 666 670 670 

A1g (i) 721 ‒ ‒ 727 715 ‒ 727 720 

A1g 768 776 762 772 770 767 770 768 
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The Raman-active A1g mode was almost univocally assigned to the Mg-O 

symmetric stretching vibrations in literature. The synthetic spinel spectrum shows 

an additional peak at 721 cm-1 which has A1g character. Cynn et al. (1992) 

observed that the position of this band is similar to those of Raman modes 

assigned as symmetric stretching vibration of AlO4 in Ca3Al2O8. Therefore, the 

721 cm-1 mode was assigned to the symmetric Al-O stretching vibration of AlO4 

groups created by the cation disorder. In effect, XRD-SC and structural refinement 

have calculated an inversion degree of 0.24 apfu for the investigated spinel s.s 

(Andreozzi et al., 2000). 

Another consequence of the cation disorder in the crystal is the appearance of a 

shoulder in the low-wavenumber part of the peak at 409 cm-1. Given that the 409 

cm-1 mode is assigned to the symmetric bending of Mg in the tetrahedra, its 

shoulder (at 385 cm-1) can be attributed to the bending mode for Al ions in 

tetrahedral sites, in agreement with the previous studies (Cynn et al., 1992; Minh 

and Yang, 2004). As suggested by Minh and Yang (2004), the 410 cm-1 mode and 

its shoulder could be good indicator for the cation disorder suffered by the crystal.  

4.3.2 The MgAl2O4-CoAl2O4 spinel series 

The systematic Raman study of the MgAl2O4-CoAl2O4 series is not present in 

literature and it can be useful from a technological point of view and geological 

point of view. In fact, the only literature studies on the CoAl2O4 end-member are 

mainly focus on blue pigments, known to be used in China since the Tang dynasty 

(de Waal, 2004; Kock and de Waal, 2007).  

The recorded spectra of the CoAl2O4 end-member (the CoAl100 sample 

described in the paragraph 4.1) are shown in the Figure 4.35a. Taking the 

polarized spectrum as a reference, in the depolarized spectrum the peaks at 708 

and 775 cm-1 do not appear, and the peaks at 201 and 516 cm-1 are very intense. 

Thus, the former two have an A1g character, while the latter ones have an F2g 

character. As in the case of spinel s.s,. the additional peak with the A1g character 

at 708 cm-1 is caused by the cation disorder. 
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Fig. 4.35 Raman spectra of the synthetic CoAl2O4 crystal: a) spectrum taken with crossed 
polarization (on the top), parallel polarization (in the middle) and without polarization (on the 
bottom), b) Unpolarized Raman spectrum in detail. 

a. 

b. 
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The unpolarized spectrum shows all the five theoretically expected Raman active 

modes, two of which (at 201 and 516 cm-1) more intense than the others. Both the 

measurements and the assignments of the peaks are in agreement with the 

values reported in literature (Fig. 4.35b and Table 4.15). 

Table 4.15. Comparison between the wavenumber (cm
-1

) of the Raman modes of CoAl2O4 from 
this work and those reported in literature. 

Raman 
modes 

This 
work 

Shirai et al. 
(1982) 

Jongsomjit 
et al. (2001) 

Kock and de 
Waal (2007) 

F2g (1) 201 201 198 201 

Eg 411 ‒ 412 408 

F2g (2) 516 516 519 509 

F2g (3) 619 615 619 617 

A1g (i) 709 705 690 ‒ 

A1g 775 755 753 767 

 

The polarized and unpolarized Raman spectra of the entire MgAl2O4-CoAl2O4 

series are shown in the Figure 4.36. The Raman study of a solid solution is 

complex because each spectrum is affected by the cation distribution. With the 

study of the polarized spectra it is possible to follow the shift of a peak along the 

series, allowing its assignment to a Raman active mode. The spectrum taken with 

the crossed polarization defines clearly the A1g mode for the last peak at ~775 cm-

1 and the additional peak at ~720 cm-1. The peaks at ~485 and ~615 cm-1 grow 

more markedly from the CoAl14 sample in the spectrum taken with the parallel 

polarization. In addition, these peaks show the same characteristics of the peaks 

at ~540 and ~660cm-1, respectively. This behavior leads to assign these peaks to 

the F2g(2) and F2g(3) modes, respectively. 
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Fig. 4.36. Raman spectra of the MgAl2O4-CoAl2O4 spinel series: spectra taken with crossed 
polarization (on the top), parallel polarization (in the middle) and without polarization (on the 
bottom). 
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The MgAl2O4-CoAl2O4 series studied in this work is affected by the substitution of 

Mg by Co2+ but also by the decrease of the inversion degree from 0.24 to 0.13 

along the series as already described in the paragraph 4.1.2. All the Raman-

active modes are detected, although some modes are very weak and difficult to 

distinguish from background noise across the entire series (Fig. 4.37).  

 

Fig. 4.37. Evolution of the unpolarized Raman spectra of synthetic spinels belonging to the 
MgAl2O4-CoAl2O4 series. 

Cobalt cation has a larger mass than the magnesium. Hence, from a simple mass 

on a spring model, the substitution Co2+→Mg should lead to lower vibrational 

frequencies. In fact, a slightly decrease of the Raman shift can be perceived for all 

the peaks with the exception for the A1g mode and the F2g(1) (Fig. 4.38). Another 

peak attributable to F2g(1) mode can be followed at ~200 cm-1 along the series 

but, with the exception for the CoAl2O4 end-member, its center position and 

intensity are uncertain. The Raman modes < 300 cm-1 are very complex because 

the vibration concerns the entire lattice.  Unlike as reported by Slotznick and Shim 

(2008) for the vibrations of the MgO4 and AlO4, the appearance in the recorded 

spectra of a new mode indicates that the vibrations of the MgO4 and CoO4 
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tetrahedra are not coupled each other, and thus, they can be treated as separated 

isolated vibrational units, showing a two-mode behavior. 

 

Fig. 4.38. Raman shift versus Co
2+

 content in MgAl2O4-CoAl2O4 spinels series. 
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The intermediate compositions exhibit more complex Raman spectrum because 

of the role of the cation substitution and the cation disorder. Up to the CoAl34 

sample, the Eg mode is the strongest peak, then, when the Co becomes the main 

divalent component, the F2g(2) dominates the spectrum. In fact, this latter mode is 

linearly dependent on the Co2+ concentration and can be attributed to the Co-O 

stretching vibration in the tetrahedrally coordinated sites in agreement with 

Bouchard and Gambardella (2010). Besides, starting from the CoAl14 sample the 

appearance of a wide shoulder at ~615 cm-1 of the F2g(3) mode is observed. This 

shoulder remains up to the CoAl2O4 end-member, whereas the peak at ~670 cm-1 

gradually disappears. From the literature the F2g(3) mode was attributed to 

vibration on either the tetrahedron or the octahedron, but the appearance of the 

shoulder from the CoAl14 sample might suggest a dependence on the octahedral 

cation. In fact, from the CoAl14 sample the Co2+ starts to occupy the octahedrally 

coordinated sites in a marked way (Fig. 4.39a). In addition the peak at 670 cm-1 

has a good correlation with the amount of MMg (Fig. 4.39b). 

 

Fig. 4.39. Correlation of (a) the amount of 
M
Co

2+
 versus the total amount of Co and (b) the amount 

of 
M
Mg versus the position in Raman shift of the F2g(3) mode. 

 

 

As already mentioned for the spinel s.s. end-member, the A1g mode is assigned to 

the symmetric stretching of the MgO4 tetrahedra within the spinel structure by 

many authors. However, as Preudhomme et al. (1971) have shown with extensive 

experimental data in their studies on spinels, the assumption that the higher-

frequency vibrations depend solely upon the tetrahedral cations is incorrect. In 

many studies the A1g mode shows a greater dependence upon the octahedral 

a b 
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trivalent cation than the tetrahedral divalent cation (Lenaz and Lughi, 2013, 

Bahlawane et al., 2009). 

In the MgAl2O4-CoAl2O4 series a good correlation (R2=0.98) between the unit cell 

parameter and the A1g peak can be observed (Fig.4.40). Bearing in mind the 

equation 1 in chapter 1, this behavior validates the hypothesis that the A1g mode 

is affected by both tetrahedral and octahedral cation. 

 

 

Fig. 4.40. Correlation between the unit cell parameter versus the A1g mode. 

 

Usually the Eg mode is attributed to the symmetric bending motion of the oxygen 

anions within the MgO4 tetrahedra. The peak at ~400 cm-1 remains in almost in 

the same position along the series but a good correlation between the TMg 

content and the Raman shift of this mode was not found. 

In the CoAl2O4 end member the most characteristic peak at 516 cm-1 is 

attributable to the F2g(2) mode. This peak can be followed along the series from 

the CoAl14 sample and a relationship between the center position of the F2g(2) 

mode and the Co content (Cotot) is obtained (Fig. 4.41): 

F2g(2) (cm-1) = -28.58 [Cotot] + 546.61     (24) 

Thanks to the equation 24, in the Co spinel it is possible to estimate the Co 

concentration by the Raman spectrum.  
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Fig. 4.41. Correlation between the center position of the F2g(2) mode and the Co content (apfu). 

4.3.3 The MgAl2O4-FeAl2O4 spinel series 

Despite the hercynite is a mineral common in many terrestrial and extraterrestrial 

rocks, Raman studies on the FeAl2O4 end-member are lacking in literature. In fact, 

iron oxides are poor Raman scatterers and strongly absorb in the range of the 

wavelengths of typical excitation lasers, and high laser intensities are required to 

obtain an adequate signal (Bauer et al., 2011). Regarding the FeAl2O4 end-

member there are very few studies in literature and all of them concern industrial 

material as pigment (Ospitali et al., 2005; Muralha et al., 2011). The MgAl2O4-

FeAl2O4 series was explored by Malézieux and Piriou (1988), but only three Mg-

rich component were analyzed.  

Polarized spectra of ten samples belonging to the MgAl2O4-FeAl2O4 series were 

recorded and are shown in Figure 4.42. The trend of the spectra is very similar to 

those in the MgAl2O4-CoAl2O4 series.  
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Fig. 4.42. Raman spectra of the MgAl2O4-FeAl2O4 spinel series: spectra taken with crossed 
polarization (on the top), parallel polarization (in the middle) and without polarization (on the 
bottom). 
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Even in this series only the spectra taken with parallel polarization exhibit the A1g 

modes at ~700 and 750 cm-1.  The peak at ~670 cm-1 seems to split in two 

contributions one more intense under parallel polarization and the other at ~615 

cm-1 under perpendicular polarization. Thus, the latter peak could be probably 

attributed to the Eg or A1g mode caused by the entrance of the iron in the 

structure. 

The detailed unpolarized spectrum of the hercynite end-member with the 

proposed peak assignment is shown in Figure 4.43.  

 

Fig. 4.43. Unpolarized Raman spectrum of the synthetic hercynite end-member with the proposed 

peak assignment. 

The values of the frequencies and their assignments are reported in Table 4.16 

and are compared with the only frequency values found in literature. Low-

frequencies modes are not enough intense to be distinguished from the 

background noise. In the collected spectrum the Eg mode shows a small shoulder 

at 359 cm-1. 
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Table 4.16. Comparison between the wavenumber (cm
-1

) of the Raman modes of FeAl2O4 from 
this work and those reported in literature. 
 

Raman 
modes 

This 
work 

Ospitali et al. 
(2005) 

F2g (1) ‒ 184 

Eg 394 ‒ 

F2g (2) 499 ‒ 

F2g (3) 610 593 

A1g (i) 695 701 

A1g 750 753 

 

 

The spinels belonging to the MgAl2O4-FeAl2O4 series were synthetized and then 

chemically and structurally characterized by Andreozzi and Lucchesi (2002). 

In order to investigate how the cation distribution influenced the Raman spectra, 

the structural formulae of the analyzed spinel crystals along the MgAl2O4-FeAl2O4 

series are reported in Table 4.17.  

Table 4.17. Structural formulae of the analyzed spinels along MgAl2O4-FeAl2O4 series. 

Sample Formula 

He2f T(Mg0.715Fe2+
0.046Al0.239)1

M(Mg0.239Al1.761)2O4 

He3a/b T(Mg0.640Fe2+
0.111Al0.249)1

M(Mg0.25Al1.75)2O4 

He4a/c T(Mg0.588Fe2+
0.188Al0.224)1

M(Mg0.227Al1.766Fe3+
0.007)2O4 

He5a/a T(Mg0.434Fe2+
0.347Al0.219)1

M(Mg0.215Fe2+
0.008Al1.762Fe3+

0.016)2.001O4 

He6a/e T(Mg0.366Fe2+
0.424Al0.194Fe3+

0.016)1
M(Mg0.178Fe2+

0.035Al1.768Fe3+
0.020)2.001O4 

He7a/b T(Mg0.267Fe2+
0.531Al0.192Fe3+

0.010)1
M(Mg0.153Fe2+

0.054Al1.772Fe3+
0.022)2.001O4 

He8a/h T(Mg0.185Fe2+
0.63Al0.168Fe3+

0.017)1
M(Mg0.118Fe2+

0.072Al1.770Fe3+
0.041)2.001O4 

He9a/h T(Mg0.101Fe2+
0.713Al0.152Fe3+

0.034)1
M(Mg0.076Fe2+

0.114Al1.774Fe3+
0.037)2.001O4 

He100c* T(Fe2+
0.849Al0.133Fe3+

0.018)1
M(Fe2+

0.153Al1.765Fe3+
0.082)2O4 

*The sample studied by Raman spectroscopy is He100e, which contains less Fe
3+

 than He100c 

(see Halenius et al. 2002) 

 

The evolution of the unpolarized Raman spectra along the MgAl2O4-FeAl2O4 

series can be followed in Figure 4.44. As in the case of cobalt, being the iron 

heavier than the magnesium, substitution of the magnesium atoms with the iron 
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should lead to lower vibrational frequencies. In fact, a similar trend between the 

spinels of the MgAl2O4-CoAl2O4 series and of MgAl2O4-FeAl2O4 series can be 

observed. Also in the Raman spectra along the MgAl2O4-FeAl2O4 series, the 

intermediate compositions show more complex spectra. Unlike the MgAl2O4-

CoAl2O4 series, in this series the spectra are affected not only by the substitution 

Fe2+ → Mg and the cation disorder, but also by the entrance of small amounts of 

Fe3+ in the spinel structure. 

 

 

Fig. 4.44. Evolution of the unpolarized Raman spectra of synthetic spinels belonging to the 
MgAl2O4-FeAl2O4 series. 

The wavenumber of all Raman-active modes of the spinels belonging to the 

MgAl2O4-FeAl2O4 series are plotted versus the iron composition in the Figure 

4.45. At medium-to high Fe contents, all Raman-active modes display a decrease 

in wavenumber. On the contrary, at low Fe content up to the He4a/c sample 

(~20% of FeAl2O4 end-member), the Eg, F2g(3), and A1g modes exhibit almost 

constant values. A similar trend was observed for Fe-poor samples by Malézieux 

and Piriou (1988). 
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Fig. 4.45. Vibrational mode peak positions along the MgAl2O4-FeAl2O4 series. 

After the 20% of the FeAl2O4 end-member a slowly polynomial decrease of 

wavenumber with the increase of iron content is observed. Crystal chemical data 

display that from the He5a/a sample Fe2+ starts to occupy the octahedrally 

coordinated sites and Fe3+ starts to occupy the tetrahedrally coordinated sites. 

Hence, the Eg, F2g(3), and A1g modes are affected by these exchanges more than 

the Fe2+→Mg substitution. In effect, the radius of Fe3+ in the tetrahedrally 

coordinated sites is smaller than that of Mg or Fe2+, thus, the entrance of Fe3+ in 
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the T site makes the T sites larger and consequently decreases the frequency of 

the vibrational sites. Analogous behavior of Fe3+ was described by Nakagomi et 

al. (2009) in the Raman spectra in the MgxFe3-xO4 spinels. 

As already mentioned, the A1g mode is associated to the symmetric stretching of 

the oxygen in the tetrahedra. The Figure 4.46 shows as up to the Fe-composition 

of 0.20 apfu the A1g mode does not change and then a rapid shift of the center 

position to lower frequency is observed. Since the Fe2+ starts to occupy the 

octahedrally coordinated site from Fe-composition greater than ~0.35 apfu (in the 

He5a/a), a strong effect of the presence of Fe2+ in the M site on the A1g mode is 

shown.  

 

Fig. 4.46. Variation of the position of the A1g mode (cm
-1

) with the increase of the Fe
2+

 content 
along the MgAl2O4-FeAl2O4 series. 

A good correlation (R2=0.96) between the position of the peak associated to the 

A1g mode and the ratio Fe/(Fe+Mg) was found for the composition with the Fe 

concentration greater than 0.20 apfu (Fig. 4.47). The calculated equation can be 

used to know approximately the chemical composition of spinels belonging to the 

MgAl2O4-FeAl2O4 series from the Raman spectra. 
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Fig. 4.47. Correlation between the position of the A1g mode (cm
-1

) and the ratio Fe/(Mg+Fe) along 
the MgAl2O4-FeAl2O4 series. 

 

The peak between 720 and 700 cm-1 with A1g character is attributed to the cation 

inversion. 

The F2g(3) mode at ~670 cm-1 is assigned to the asymmetric stretching of the 

oxygen in the MgO4 from O’Horo et al. (1973) but, as in the case of A1g, it is also 

affected by octahedral motion. A shoulder at ~600 cm-1 is observed, which 

increases in intensity to the detriment of the 670 cm-1 peak.  Therefore, the 

shoulder at 600 cm-1 could be assigned to the asymmetric stretching of the 

oxygen in the FeO4. 

As already mentioned, the Eg mode has a trend similar to the F2g(3) and the A1g 

modes. This trend and its presence also in the hercynite end-member suggest 

that the Raman-active mode Eg at ~400 cm-1 can not assign only to the symmetric 

bending in MgO4. 

 

4.3.4 The MgAl2O4-MgCr2O4 spinel series 

Magnesiochromite, MgCr2O4, is an important component of spinel in upper mantle 

peridotites and it is widely considered to be an important petrogenetic indicators. 

In fact, MgCr2O4, is thought to reflect primary crystallization from primitive mantle-

derived magma (Barnes and Roeder, 2001). In addition, magnesiochromite is the 

only ore mineral of chromium and is a commercially important refractory material. 
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Several Raman investigations of pure MgCr2O4 are reported in literature (Wang et 

al., 2002a; Yong et al., 2012; Hosterman et al., 2013). Moreover, the MgAl2O4-

MgCr2O4 series was studied by Malézieux and Piriou (1988) but only few 

intermediate compositions were investigated. The MgAl2O4-MgCr2O4 series 

provides a good opportunity to examine how substitution of the trivalent cation 

affects the Raman modes of this spinel system. In the present work twelve crystal 

spinels well representing of the entire series have been studied by polarized 

Raman spectra. The chemical and optical characterizations of these spinels are 

reported in Hålenius et al. (2010). Magnesiochromite has the Mg2+ and Cr3+ 

cations fully ordered in the tetrahedrally and octahedrally coordinated sites, 

respectively, because Cr3+ has a strong preference for the M site. Thus along the 

MgAl2O4-MgCr2O4 series a rapid decrease of the inversion from 0.24 to 0 was 

observed. 

The unpolarized Raman spectrum of the MgCr2O4 end-member shows well-

defined peaks at 445, 539, 609, 682 cm-1 in agreement with the values reported in 

literature (Fig. 4.48 and Table 4.18).  

 

Fig. 4.48. Unpolarized Raman spectrum of the MgCr2O4 end-member, with the assignment of the 
four peaks. 
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Unlike the Raman spectra seen so far, the peaks of the MgCr2O4 are very sharp 

because of the absence of the cation disorder. Following the previous studies, the 

peaks can be assigned to Eg, F2g(2), F2g(3) and A1g modes, respectively. 

 

Table 4.18. Comparison among the peak wavenumber (cm
-1

) observed in the present work for the 
MgCr2O4 end-member and those reported in literature. 

Raman 
modes 

This 
work 

Malézieux 
and Piriou 

(1988) 

Wang 
et al. 

(2002a) 

Yong 
et al. 

(2012) 

Hosterman  
et al. 

(2013) 

Lenaz 
and Lughi 

(2013) 

F2g (1) – – 227 – – – 

Eg 445 448 447 447 446 445 

F2g (2) 539 545 544 543 542 542 

F2g (3) 609 615 614 612 612 611 

A1g 682 685 687 684 685 683 

 

 

Polarized Raman spectra of the entire MgAl2O4-MgCr2O4 series are shown in the 

Figure 4.49. The spectra collected with the perpendicular polarization show more 

intense the F2g modes, whereas the spectra collected with parallel polarization 

show more intense the A1g mode.  
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Fig. 4.49. Raman spectra of the MgAl2O4-MgCr2O4 spinel series: spectra taken with crossed 
polarization (on the top), parallel polarization (in the middle) and without polarization (on the 
bottom).  
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Unpolarized Raman spectra are shown in detailed in the Figure 4.50. The 

chromium atom has mass larger than that of the aluminium atom. Therefore, from 

a simple mass on a spring model, the substitution Cr3+→Al3+ should lead to lower 

frequencies. In fact, a shift to low-frequency of the F2g(2), F2g(3) and A1g modes is 

observed, more marked in the last mode than the others. The Eg mode seems to 

show a two-mode behavior with a gradually decrease of intensity of the peak at 

~400cm-1 and a gradually increase of a peak at ~450 cm-1 in the Cr-rich spinels. 

 

 

Figure 4.50. Evolution of the unpolarized Raman spectra of synthetic spinels belonging to the 
MgAl2O4-MgCr2O4 series. 
 

Analysis of the Raman spectra shows that, as in the case of iron spinel, two 

trends can be observed for the A1g and F2g(3) modes. Initially the spinels do not 

respond to the Cr3+→Al3+ substitution and then a rapid decrease of the 

frequencies is perceived (Fig. 4.51). 
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Fig. 4.51. Evolution of the vibrational mode peak positions along the MgAl2O4-MgCr2O4 series. 

The F2g(1) modes first weakens and then disappears along the series, showing a 

strong reliance on the Al in the tetrahedra. The Eg mode at 400cm-1 remains 

almost in the same position and disappears in spinel with more than 50% of 

chromite component. However, from chromite component near 50% an additional 

Eg mode starts to growth at ~450 cm-1 (Fig. 4.52). Hence, the Raman-active Eg 
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mode can be assigned as a complex of vibration involving both Mg and Al or Cr  

atoms. 

 

Fig. 4.52. Eg modes in the MgCr15aa, MgCr10, MgCr7a and MgCr3a samples from the top to the 
bottom. The characteristic Eg mode in the Al-rich spinels is labelled Eg(Al), while the characteristic 
Eg mode in the Cr-rich spinels is labelled Eg(Cr). 

The F2g(2) mode intensifies with the increase of the Cr content. Its absence in the 

MgAl2O4 end-member can bring into question its attribution to the Mg-O motion in 

the tetrahedrally coordinated sites. 

The F2g(3) mode can be followed along the series and shows a good correlation 

with the Cr content (Fig. 4.53). Its frequency decreases due to the substitution of 

the aluminium with a heavier chromium atom. This peak develops a lower 

wavenumber shoulder only in the intermediate compositions. 
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Fig. 4.53. Correlation between the wavenumber of the F2g(3) mode and the MgCr2O4 fraction. 

 

Unlike the other studied series, the peak at ~727 cm-1 with the A1g mode character 

rapidly disappears, confirming the assignment to the symmetric stretching of the 

AlO4. 

The A1g mode becomes sharper and more intense along the series. As already 

mentioned, the A1g mode is attributed to the stretching of the Mg-O, but it is 

subjected to a strong influence of the trivalent cations. In fact, during this mode 

the oxygen atoms move away from the tetrahedral cation along the direction of 

the bonds. Neither the tetrahedral nor octahedral cations are in motion during this 

vibration. Malézieux and Piriou (1988) argued that the frequencies of the A1g 

mode are essentially conditioned by the valence force constants of the TA2+-O 

bond distance and by the O-O repulsion. The trivalent cation in the M site 

intervenes only in a deformation of the MB3+-O bond distance and thus as it 

conducts a bother on the A1g mode. 

A linear correlation between the Raman shift of the A1g mode and MgAl2O4 or 

MgCr2O4 fraction is observed (Fig. 4.54). An increase of the MgAl2O4 fraction 

would lead to an increase of the Raman shift of the A1g mode, while an increase of 

the MgCr2O4 fraction would lead to a decrease of the Raman shift. Following 

Malézieux et al. (1983), the equation obtained by a linear correlation between the 

frequency variations of the A1g mode and the ratio Cr/(Al+Cr) can give an 

estimated Cr and Al concentration in the spinel system (Fig. 4.55). 
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Fig. 4.54. Correlation between the Raman shift of the A1g mode and the MgAl2O4 fraction (open 
square) or the MgCr2O4 fraction (open rhombus). 

 

 

 

Fig. 4.55. Frequency variations of the A1g mode as a function of the ratio Cr/(Cr+Al). 

 

Moreover, an interesting correlation can be observed relating the variation of the 

A1g mode and the local Cr-O bond distances in the M sites reported in Hålenius et 
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al. (2010) (Fig. 4.56). Hence, the frequency of the A1g mode can also give 

information about the structural relaxation in the Cr-spinels. 

 

Fig. 4.56. Variations of the A1g mode with the local Cr-O bond distances in the M sites. 

 ZnCr2O4 end-member 

In addition to the spinels belonging to the MgAl2O4-MgCr2O4 series, also the 

ZnCr2O4 end-member characterized by Hålenius et al. (2010) was investigated by 

the Raman spectroscopy. The Raman spectrum shows all the five Raman-active 

modes in the form of sharp peaks (Fig. 4.57).   

 

Fig. 4.57. Raman spectrum of a synthetic ZnCr2O4 spinel. 
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Given that the Zn has a strong preference for the tetrahedrally coordinate sites 

and Cr3+ has a strong preference for the octahedrally coordinated site, the 

ZnCr2O4 is almost fully ordered. In fact, the peak attributed to the cation disorder 

does not appear and all the peaks are very narrow. The values of the 

wavenumber are in good agreement with those reported in literature (Table 4.19).  

 

Table 4.19. Comparison among the wavenumber (cm
-1

) observed in the present work for the 
ZnCr2O4 end-member and those reported in literature. 

Raman 

modes 

This 

work 

Wang et 
al.  

(2002b) 

Marinković 
Stanojević 

et al. (2007) 

Gupta
et al. 

(1993) 

Himmrich, 
and Lutz 
(1991) 

F2g (1) 182 180 195 186 181 

Eg 452 430 490 457 456 

F2g (2) 511 511 516 515 529 

F2g (3) 605 605 609 610 614 

A1g 687 687 690 692 690 

 

The Raman spectra of the various end-members characterized above are 

compared in Figure 4.58. Notably, every end-member exhibits a characteristic 

fingerprint. As an immediate consequence, from the position of the peaks it is 

possible to distinguish if a spinel belongs to the spinel series (AAl2O4) or to the 

chromite series (ACr2O4). The biggest difference between the aluminates and the 

chromates is located in the A1g mode. The chromates exhibit the A1g mode at 

lower frequencies in agreement with their heavier atomic mass. In addition, a 

careful inspection of the Raman shift and the relative intensity of the peaks will 

allow the discrimination among the various end-members. 
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Fig. 4.58. Comparison among unpolarised Raman spectra of synthetic spinel end-members. 

4.4 Raman spectra of natural spinels 

As already mentioned in the Chapter 2, the Raman spectroscopy is a powerful 

tool for the identification of minerals and related phases but to do this a detailed 

database is necessary. Very few samples of natural spinels have been 

investigated by Raman spectroscopy because the presence of several cations 

within the structure has generated difficulties of interpretation of the Raman shifts, 

due to the possibility for several cations to enter the octahedral and tetrahedral 
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sites. In fact, many natural spinels have complex chemical composition being a 

mixture of different end-members. As seen above, the various spinel end-

members show different fingerprint. The shift of the lines in the Raman spectrum 

gives the possibility to calculate the approximate chemical composition of the 

spinels using the positions of the lines.  

In order to increase the database of Raman spectra of spinels a large amount of 

natural spinels was investigated. These natural spinels are the same spinel 

crystals analyzed by Electron MicroProbe and Optical Absorption Spectroscopy 

and discussed in the previous chapter. As already mentioned, these natural 

spinels exhibit a spinel s.s. (MgAl2O4) or gahnite (ZnAl2O4) composition. The 

Raman frequencies recorded for the 22 natural spinels investigated are shown in 

Table 4.20.  

The Raman spectra of the studied natural spinels show two kind of fingerprint. 

Most of the samples with spinel s.s. composition exhibit four peaks at ~310, 404, 

663, and 765 cm-1. Natural spinels with gahnite composition shows three of the 

five Raman-active modes at 415, 657 and 763 cm-1 attributed to the Eg, F2g (3) 

and the A1g modes, respectively.  
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Table 4.20. Frequencies recorded for the Raman modes of natural spinels. sh=shoulder. 

Samples F2g(1) Eg F2g(2) F2g(3) A1g A1g 

Nat.1 312 406 ‒ 665 ‒ 766 

Nat.2 ‒ 405 ‒ 664 ‒ 766 

Nat.3 314 408 ‒ 667 ‒ 768 

Nat.4 317 410 ‒ 669 ‒ 771 

ST 313 408 ‒ 667 ‒ 768 

SX 313 408 ‒ 667 ‒ 769 

30070 357 
419 

442sh 
501 

526sh 
656 

624sh 
705 755 

31081 ‒ 417 508 
657 

626sh 
707 757 

330763 312 406 ‒ 664 ‒ 766 

330764 311 404 ‒ 662 ‒ 765 

440243 311 406 ‒ 
665 

650sh 
‒ 766 

510941 ‒ 414 ‒ 657 ‒ ‒ 

510942 ‒ 415 508 657 ‒ ‒ 

670275 313 406 ‒ 664 ‒ 767 

800801 313 406 ‒ 662 709 764 

881694a 310 406 ‒ 664 ‒ 765 

881694c 312 406 ‒ 665 ‒ 766 

881728 296 
413 

387sh 
‒ 

655 
622sh 

703 755 

890290 310 405 ‒ 664 ‒ 766 

890292b 377 
416 

429sh 
575 643 ‒ 749 

890292c 312 406 ‒ 665 ‒ 765 

890292d 377 
415 

431sh 
575 643 ‒ 749 
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In the Figure 4.59 two Raman spectra of natural blue spinels with different 

composition were compared. Sample Nat.2 (spinel s.s.) has the Eg mode more 

intense than the F2g mode, whereas the sample 510942 (gahnite) shows the 

contrary. In addition the gahnite sample shows the F2g (2) mode at 508 cm-1 unlike 

the spinel sample.  

Fig. 4.59. Comparison of the Raman spectra of two natural spinels with different composition. 

Consequently, in all the cases examined the discrimination among spinels with 

different principal component has been easily possible looking at the Raman shift 

and at the relative intensity of the peaks. 

Some spinels show the appearance of the peak at ~705 cm-1 attributed to the 

cation disorder (Fig. 4.60). In addition, with the appearance of the peak at ~705 

cm-1, often shoulders of the Eg, F2g(2) and F2g(3) modes are noticed. Hence, these 

shoulders could be assigned to the cations inverted. 
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Fig. 4.60. Raman spectrum of the yellowish-green 31081 sample. 

 

Taking into account the correlation found by Minh and Yang (2004) between the 

FWHM values of the ~410 cm-1 mode in the MgAl2O4 and the annealing 

temperature (reported in figure 4.61), information on the formation temperature 

can be extrapolated. In the natural spinels investigated the FWHM values of the 

~405 cm-1 mode range from 9 to 12 cm-1, thus their formation temperature is 

estimated to be below 750°C. 

 

Fig. 4.61. The FWHM values of the Eg mode as a function of the annealing temperature as 
reported by Minh and Yang (2004). The dashed lines represent the range of values found in the 
spinels investigated in this work.  
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Spinels with the same principal component and different minor elements have 

been compared, and the conclusion is that they show the same fingerprint (Fig. 

4.62). All the natural samples displayed in figure 4.62 have the spinel s.s. 

composition but different amount of chromophore ions like Fe2+, Fe3+, Cr and V, 

which cause the differences in colors. These features, however, do not create big 

change in the Raman fingerprint.  

 

Fig. 4.62. Comparison of the Raman spectra of natural spinels with the same major elements and 
different minor elements. The spectra are colored as the color of the sample. 

 

At highly meticulous inspection of Figure 4.62,, a small shift of the peaks can be 

perceived but a linear relationship between these changes and the chemical 

variation of the minor elements is not found. More detailed studies on the 

structural parameters are necessary.  

 

4.4.1 Comparison between natural and synthetic spinels 

Unlike natural spinel, the synthetic spinel frequently produces six to seven Raman 

peaks. A comparison of Raman spectra between a natural and a synthetic sample 

with similar composition is shown in the Figure 4.63.  
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Fig. 4.63. Comparison of the Raman spectra of a natural and a synthetic spinels with similar 
composition. 

The peaks in the synthetic and natural spinels show the same position of the 

Raman modes, but some systematically different features are observed. In the 

synthetic spinels an additional peak centered at 718 cm-1 is observed and it is 

attributed to the stretching vibration of AlO4 groups created by the rearrangement 

of some Al ions from octahedral to tetrahedral sites (i.e., cation disorder), in 

agreement with Cynn et al. (1992). In addition, a broadening of all the peaks is 

perceived. In particular, the FWHM of the main band at ~ 405 cm−1 increases from 

about 9 cm-1 in the natural spinel to 27 cm−1 in the synthetic spinel, and it 

becomes also asymmetric in the latter. 

As a conclusion, distinguishing natural unheated spinel from a re-heated or a 

synthetic spinel is simply a matter of looking at the line width of the 405 cm-1 

Raman peak and the presence of a peak at ~720 cm-1. This information may be 

very useful in gemological field, to disclose spinel gemstones re-heated with the 

purpose to enhance the color. 
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More recently, fluorescence features attributed to chromophoric ions and trace 

elements have been observed in Raman spectra, revealing important information 

about crystal chemistry. Analysis and interpretation of these features may help 

distinguish between natural, treated, and synthetic materials. 

In the field of gemology, both Raman and photoluminescence analyses have 

become extremely employed to verify the nature of the gemstones, and to detect 

synthetic and imitation stones.   

To investigate the photoluminescence features, the Raman spectra were recorded 

in a wide range of Raman shift, from 100 to 8000 cm-1 with blue laser and from 

200 to 4800 cm-1 with green laser (Fig. 4.64 and 4.65). To compare the spectra 

recorded with the two lasers and with those present in literature, the PL spectrum 

will be shown in terms of wavelength (nm). 

 

Fig. 4.64. Raman and photoluminescence spectrum of the Nat.2 sample taken with the blue laser 
(473.1 nm line of a solid state Nd:YAG). 
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Fig. 4.65. Raman and photoluminescence spectrum of the 440243 sample taken with the green 
laser (TEC-cooled 532nm DPSS laser). 

Despite of the low concentration, most of the PL spectra of natural spinels show 

the PL bands occurring in the range between 640 and 750 nm (5700-8000 cm-1). 

These bands are known by gemologists as 'organ pipes', characteristic shape of 

the Cr photoluminescence bands (Fig. 4.66). 

 

Fig. 4.66. Photoluminescence spectrum of a natural sample (Nat.1). 

The complex is composed from a principal prominent peak and numerous less 

intense peaks, corresponding the zero phonon lines (R and N lines) and their 
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phonon sidebands, respectively. The sharp and dominant R line at 685 nm arises 

from the class of Cr3+ ions, which has an ideal short-range order due to the spin-

forbidden transition 2Eg → 4A2g. The R line belongs to regular 16d site of spinel 

structure whereas the N lines are related to a coupling between the Cr3+ classes. 

The N lines can be interpreted as zero-phonon lines of different luminescence 

centers and are, therefore, spectroscopic analogues of the R line (Singh et al., 

2011). The N-line can reflect the local perturbations of the lattice. An increase of 

the lattice defects and the lattice disorder increases the numbers of centers of all 

the corresponding Cr3+ class. 

Natural samples showed narrow peaks, while the synthetic spinels showed 

broader and less resolved peaks (Fig. 4.67). The width of the PL-peaks is linked 

to the environment in which the Cr-ions are embedded. The disordering of the 

cations in the crystal structure changes this environment and thus causes a 

broadening (from 0.7 to 4.7 nm) and a shift of 3 nm towards IR of most intense 

peak in the synthetic spinels. In addition, the less intense bands are broadened 

and merged.  

 

Fig. 4.67. Photoluminescence spectra of a natural (black line), flux grown (red line) and Verneuil 
(blue line) synthetic spinels. 
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In Verneuil synthetic spinels the broadening and shift are more marked due to the 

presence of irregularities and defects in their crystal lattice, such as an excess of 

Al. Similar observations in PL spectra have been reported for heat-treated spinels.  

Different position of the R and N lines is shown by the samples with spinel s.s. 

and gahnite composition (Fig. 4.68). The R line of all the spinels with spinel s.s. 

composition appears at ~685.5 nm, whereas the R line of all the spinels with 

gahnite composition appears at ~686.7 nm.  The shift in the position of the entire 

spectrum maybe is due to the differences in the spinel structure in terms of both 

cation disorder and chemical composition.   

 

  

Fig. 4.68. PL spectra of Cr
3+

 in a natural spinel with a spinel s.s. composition (red line) and a 
natural spinel with a gahnite composition (black line). 
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4.5 A multi-analytical study of a natural blue gahnite (ZnAl2O4) 

Gahnite, ideally ZnAl2O4 is generally assumed to be a normal spinel regardless of 

temperature, with Zn ordered at the T site and Al at the M site, due to the strong 

preference of Zn for the tetrahedral coordination. End-member gahnite has not 

been observed in nature so far. Several Zn-rich gahnite minerals approaching the 

ideal composition have been reported (ZnAl2O4 component 94.5% Hicks et al., 

1985; 96.6% Yalçin et al., 1993; 98.7% Henry and Dutrow, 2001), but 

replacements by Fe2+ together with minor Mg2+, Mn2+, Fe3+, Cr3+ commonly occur 

in natural samples (Spry and Scott, 1986a; Appel, 2000). Zincian spinel occurs as 

an accessory mineral in a large number of geologic settings like metamorphosed 

massive sulphide deposits (Spry, 1987; Sundblad, 1994; Heimann et al., 2005; 

Praveen and Ghosh, 2007), aluminous metasediments and metavolcanics (Frost, 

1973; Spry and Scott, 1986b), granitic pegmatites and quartz veins (Gandhi, 

1971; Jackson, 1982; Batchelor and Kinnaird, 1984; Morris et al., 1997), marbles 

and skarns (Novák et al., 1997), diasporites and metabauxites (Yalçin et al., 1993; 

Feenstra et al., 2003) and sulfide-bearing granulites (Visser et al., 1992). 

Knowledge of the composition of zincian spinels is useful as an exploration guide 

to discriminate among a large variety of source environments. For example, Zn 

contents are high in spinels occurring in rocks that have experienced low-grade 

metamorphism and high oxygen and sulphur fugacity (fO2 and fS2), whereas Zn 

contents are lowest in high-grade metamorphic rocks (Heimann et al., 2005). 

Transparent natural gahnite can be used as gemstone because of its attractive 

range of colors from colorless to grey, blue and green depending on its Fe-

content, oxidation state and cation site occupancy (Schmetzer and Bank, 1985). 

Synthetic zinc aluminate spinel is transparent for wavelengths greater than 320 

nm, is highly reflective at wavelengths lower than 300 nm and possesses high 

thermal stability, low surface acidity, and high mechanical resistance. Due to its 

physical and optical properties, synthetic ZnAl2O4 has been widely used as wide-

gap semiconductor (energy band gap ~3.8 eV), as catalysts in various chemical 

and petrochemical industries and in ultraviolet photoelectronic devices and 

reflective optical coatings in aerospace applications. It was proposed also as an 

important phosphor host material for applications in thin film electroluminescent 
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displays and stress imaging devices (Valenzuela et al., 1997; Sampath and 

Cordaro, 1998; Van der Laag et al., 2004). 

In spite of the abundance of studies on the chemistry and petrogenesis of natural 

gahnite and on the physical properties of synthetic zinc aluminate spinel, a 

comprehensive, multianalytical characterization of a natural zincian spinel is very 

rarely found, especially for compositions approaching the gahnite end-member. In 

this study a natural gem-quality, inclusion free, single crystal of zinc aluminate 

spinel from the Jemaa district, Kaduna State (Nigeria), was studied. The sample, 

labelled Ni8967c, belongs to the mineral collection of the Museum of Earth 

Sciences, University of Bari. The crystal displays a pale blue-grey color, 

octahedral habitus and its dimensions are 2.5 mm x 2.7 mm x 2.3 mm (Fig. 4.69).  

 

Fig. 4.69. The natural pale blue-grey single crystal gahnite (Ni8967c) from Jemaa, Nigeria. 

 

Natural blue gahnite crystals from Jemaa (Nigeria) were previously described for 

gemological purposes by Jackson (1982), but they were not fully characterized.  

The single crystal gahnite Ni8967c was fully characterized by electron 

microprobe, single-crystal X-ray diffraction, Raman and optical absorption 

spectroscopies and the results were published in the Mineralogical Magazine 

(D’Ippolito et al., 2013). 

4.5.1 Chemical and structural characterization 

The Nigerian gahnite Ni8967c is chemically homogenous and shows a 

composition very close to that of the end-member gahnite, with ~94 mol-% of the 

ZnAl2O4 component. The remaining composition is dominated by the hercynite 
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component (FeAl2O4), with very minor content of Mn2+ and Mg. On the basis of 

charge-balance requirements and the spinel stoichiometry (3 cations per 4 

anions), a small amount of Fe3+ (0.012 apfu) was also calculated (Table 4.21).  

Table 4.21. Chemical composition of the Nigerian gahnite obtained by electron microprobe. The 

FeO and Fe2O3 contents were calculated on the basis of charge-balance requirements. 

Sample Ni8967c 

Al2O3 55.5(4) 

MnO 0.11(3) 

FeOtot 2.95(6) 

FeOcalc 2.43 

Fe2O3 calc 

ccalc 

0.52 

ZnO 41.7(4) 

MgO 0.03(1) 

Total 100.29 

Cations normalized to 4 oxygen atoms 

Al 1.987(3) 

Fe3+ 0.012(1) 

Fe2+ 0.062(1) 

Mn 0.003(1) 

Zn 0.935(4) 

Mg 0.001(1) 

Total 3.000 
Notes: digits in brackets are estimated uncertainties (1σ): for reported oxide concentrations, they 
represent standard deviations of several analyses on the crystal, while, for cations, they were 
calculated according to error propagation theory. 

Silicon, Ti, V, Cr, Ni and Co were not detected. The Nigerian mineral gahnite 

Ni8967c is one of the Zn-richest spinel samples studied so far, as it is evident 

from a comparison with the other zincian spinels described in literature (Fig. 4.70).  
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Fig. 4.70. Composition of the Nigerian gahnite Ni8967c and of zincian spinels reported in the 
literature: triangular plot in terms of gahnite, hercynite and spinel components. Red square: this 
work; color symbols: chemical composition of zincian spinel also characterized by structural and/or 
spectroscopic analyses. 

 

In accordance with the division of the paragenetic regimes defined by Spry and 

Scott (1986b) and Heimann et al. (2005), the composition of the Nigerian gahnite 

falls within the field of granitic pegmatites and that of diasporites and 

metabauxites (Fig. 4.71). On the other hand, in agreement with Jackson (1982), 

the Ni8967c sample can be ascribed to the former field. In fact, the latter author 

reported that the gahnite samples from Jemaa (Nigeria) occur in a pegmatite 

complex 3.2 km NNW of Jemaa. The hypothesis that gem-quality gahnite 

occurred as an accessory phase disseminated in pegmatites and quartz-

sillimanite veins of late Pan-African age (450-500 Ma) in central Nigeria was also 

proposed by Batchelor and Kinnaird (1984) for another blue-grey gem-quality 

gahnite. 
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Fig. 4.71. Zincian spinel composition in relation to paragenesis (redrawn from Heimann et al., 
2005): 1) Marbles; 2) Metamorphosed massive sulfide deposits and S-poor rocks in Mg-Ca Al 
alteration zones; 3) Metamorphosed massive sulfide deposits in Fe-Al metasedimentary and 
metavolcanic rocks; 4) Diasporites and metabauxites; 5) Granitic pegmatites; 6) Unaltered and 
hydrothermally altered Fe-Al-rich metasedimentary and metavolcanic rocks; 7) Al-rich granulites. 
Red filled square shows the chemical composition of the Nigerian gahnite Ni8967c. 

The cation distribution at the T and M sites of the investigated Nigerian gahnite 

was optimized by using a least-squares program to minimize the residuals 

between calculated and observed data (e.g., m.a.n. and bond distances). 

Octahedral and tetrahedral bond lengths (M-O and T-O, respectively) were 

calculated as the linear contribution of each cation multiplied by its specific bond 

length, the latter refined on the basis of analysis of more than 250 spinel structural 

data from the literature (Lavina et al., 2002). However, the bond length of 1.949(1) 

Å was used for TZn-O, following Bosi et al., (2011) who showed that the TZn-O 

value varies as a function of the M site population, increasing from 1.949 Å (for 

MAl) to 1.980 Å (for MFe3+). 

The empirical structural formula of the investigated Nigerian gahnite was 

optimized by constraining the small amounts of Fe3+ at M, in accord with the 

optical absorption spectroscopy results (see later), and the result is: 

T(Zn0.94Fe2+
0.03Al0.03)

M(Al1.96Fe2+
0.03Fe3+

0.01)O4  
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where very small amounts of Mg and Mn2+ (< 0.005 apfu) occur at T. Such a 

formula shows Zn and Al strongly ordered at T and M (respectively), and a very 

low degree of inversion (0.03) due to the cation exchange Fe2+  Al of the 

hercynite component. The presence of elements other than Zn and Al in the 

gahnite structure is considered to possibly cause very small departures from a 

completely normal cation distribution (Waerenborgh et al., 1994; Lucchesi et al., 

1998). In particular, the inversion of Fe2+ and Al in hercynite was proved to 

increase with temperature from 0.15 at 800 °C to 0.22 at 1150 °C for synthetic 

FeAl2O4 end-member (Harrison et al., 1998, Andreozzi and Lucchesi, 2002). On 

the contrary, the cation distribution of gahnite is very weakly dependent on 

temperature, as shown by Cooley and Reed (1972) and O’Neill and Dollase 

(1994) for synthetic ZnAl2O4 end-member, and by Andreozzi et al. (2001a) for 

synthetic (Zn,Mg)Al2O4: the inversion only increases from 0.00 at 800 °C to 0.06 

at 1400 °C. 

In summary, the cation distribution of the Nigerian gahnite Ni8967c is most likely 

due to its thermal history, but it was also modulated by its bulk composition. 

The unit-cell parameter value of the Nigerian gahnite is 8.0850(3) Å. This value is 

lower than those of the natural spinels studied in literature and is very close to 

those reported for the synthetic end-member ZnAl2O4 (Fig. 4.72). Small deviations 

from the approximately linear, decreasing trend can be due to the variation in 

chemical composition as well as in inversion degree.  
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Fig. 4.72. Zn-rich spinels: a cell parameter vs ZnAl2O4 component. Full circle: the Nigerian gahnite 
Ni8967c; Open circles: natural samples from literature (Saalfeld, 1964; Batchelor and Kinnaird, 
1984; Waerenborgh et al., 1990; Lucchesi et al., 1998; Suszkiewicz and Lobos, 2004; Reichmann 
and Jacobsen, 2006); Open squares: synthetic spinels reported in literature (O'Neill and Dollase, 
1994; Waerenborgh et al., 1994; Gaudon et al., 2009; Popović et al., 2009; Ardit et al., 2012). 

 

The unit-cell parameter depends on the tetrahedral and octahedral bond lengths 

according to the equation 1 in the Chapter 1. 

The T-O and M-O distances obtained from Nigerian gahnite are 1.9485(6) and 

1.9137(3) Å, respectively. Such distances are strictly related to cation radii at T 

and M sites. Natural gahnite samples studied in detail by structural investigation 

(Waerenborgh et al., 1990; Lucchesi et al., 1998) have Zn and Al contents lower 

than the present Nigerian sample, the former substituted by Mg, Fe2+ and Mn2+, 

and the latter by Fe3+. As a consequence of the difference among the ionic radii 

(Mn2+ > Fe2+ > Mg > Zn; Fe3+ >> Al), those samples show larger T-O and M-O 

bond distances (and thus also higher unit-cell parameter values) than our sample. 

Furthermore, as reported above, Bosi et al. (2011) showed that TZn-O bond-

length value is strongly affected by the cation population at the M site, so that in 

natural gahnite samples TZn-O increases with increasing substitution of Fe3+ for Al 

at M. 
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4.5.2 Spectroscopic characterization 

According to group theory, gahnite should exhibit five Raman active modes: 

A1g(R) + Eg(R) + 3F2g(R). 

A strong fluorescence was observed, but in spite of this, of the five Raman-active 

modes of the gahnite the two most characteristic and intense were recorded with 

the blue laser (Fig. 4.73).  

 

Fig. 4.73. Raman spectrum collected with the blue (473.1 nm) line of the Nd:YAG  laser of the 
natural Nigerian gahnite sample Ni8967c and a detail of the 420 cm

-1
 peak, symmetric Gauss-

Lorenzian (pseudo-voight) curve fitting. 

 

The observed peaks are ascribable to the Eg mode at 420 cm-1 and the high-

frequency F2g mode at 661 cm-1. In addition, the small peak at 510 cm-1 might be 

assigned to the medium-frequency F2g mode. These modes are in agreement in 

frequency with the measurements on natural gahnite and the calculations made 

using different models reported in literature (Table 4.22).  
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Table 4.22. Comparison between experimental and calculated frequencies (cm
−1

) of the Raman 
modes in the cubic spinel structure of ZnAl2O4. 
 

Modes 

 

This work 

 Chopelas and 

Hofmeister 

(1991) 

 
Fang et al.  

(2002) 

 López-

Moreno et al. 

(2011) 

Exp.  Exp.  Theory  Theory 

F2g(1)  n.d. 
 

196 
 

197  194 

Eg  420 
 

417 
 

442  427 

F2g(2)  510 
 

509 
 

520  513 

F2g(3)  661 
 

658 
 

665  655 

A1g  n.d. 
 

758 
 

784  775 

Note: n.d.- not detected 

 

The partial Phonon Density of States of ZnAl2O4 calculated by Fang et al. (2002) 

and López-Moreno et al. (2011) shows that the low-frequency motions are mainly 

due to Zn ions (< 250 cm−1), while the phonon modes with frequencies over 250 

cm−1 are due to O and Al, with a major contribution of O than Al. For example, the 

higher-frequency F2g mode is due to the motions of oxygen atoms (breathing 

mode) inside the AlO6 octahedra. No evidence was observed for the 727 cm-1 

band assigned by Cynn et al. (1992) to the vibration of AlO4 tetrahedra, and thus 

to the structural disorder; this is in agreement with the very low inversion degree 

obtained for the Nigerian gahnite. Indeed, also the Eg band at 420 cm-1 doesn’t 

show the asymmetry typical of the disordered spinel. In fact the symmetric Gauss-

Lorenzian (pseudo-voight) curve fitting of the 420 cm-1 peak shows an R2 of 

0.9983, indicating a negligible asymmetry (Fig. 4.73). 

The recorded UV-VIS-NIR-MIR spectra show a very intense absorption band in 

the NIR range centered at ~ 5000 cm-1 (Fig. 4.74a). It has been assigned, as 

already described above, to spin allowed d-d transitions 5E→5T2 in Fe2+ located at 

the T sites. The best fitting model of the TFe2+-absorption envelope in the interval 

2500-9000 cm-1 was obtained by applying a four-band model, with the bands 

centred at 4952, 4742, 4095 and 3675 cm-1 (Fig. 4.74b). The TFe2+ maximum 
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absorption band at 4952 cm-1 is shifted towards lower energies with respect to the 

analogous band observed at ~ 5200 cm-1 in the spectra of spinel-hercynite series 

by Skogby and Hålenius (2003). Indeed, in the spectra of magnesiochromite-

chromite series studied by Lenaz et al. (2004) the analogous band is shifted 

towards even lower energies, at ~ 4700 cm-1. Notably, the observed band position 

is inversely correlated with the T-O bond distances, i.e., T-O is 1.949 Å in the 

Nigerian gahnite and is 1.922 Å and 1.966 Å for the analogous synthetic spinels 

(containing 0.04 apfu of TFe2+) in the MgAl2O4-FeAl2O4 and MgCr2O4-FeCr2O4 

series, respectively. In addition, the population of the adjacent M sites and the role 

of the inversion cannot be ignored, as M is occupied by Al in the investigated 

gahnite, by Cr in the MgCr2O4-FeCr2O4 series and by a combination of (Al,Mg) in 

the MgAl2O4-FeAl2O4 series. This confirms the strong influence of the next-

nearest neighbors on the optical absorption transitions. 
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Fig. 4.74. Single-crystal spectra of the Nigerian gahnite Ni8967c in the UV-VIS-NIR-MIR range: a) 
the entire spectrum from 29000 cm

-1
 to 2000 cm

-1
; b) curve resolved spectrum in the spectral 

range 9000-2000 cm
-1

;
 
c) curve resolved spectrum in the spectral range 29000-9000 cm

-1
. Many 

small absorption bands, especially in the visible region, are hidden from the intense bands in the 
infrared region. 

Between the UV-edge and the high-energy wing of the NIR-band, i.e., centered in 

the VIS range, a series of very weak absorption bands occurs. They are strongly 
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superimposed, and 13 Gaussian curves were necessary for a satisfactory fit (Fig. 

4.74c). The origin of these bands has already been addressed above in the 

description of the blue spinels. Of the previously discussed absorption bands, 

those belonging to the VIS region (i.e., those named from f to r in Fig. 4.74c) are 

obviously responsible for the pale blue-grey color exhibited by the Nigerian 

gahnite. Accordingly, the blue-grey hue of the investigated Nigerian gahnite is 

mainly due to spin-forbidden electronic transitions in TFe2+ and to MFe2+  MFe3+ 

IVCT, as also described by Schmetzer et al. (1989). Indeed the poor saturation of 

the color is due to the low concentration of both Fe2+ and Fe3+. In general, the 

color of gahnite is highly sensitive to small variations in the Fe oxidation state. As 

for example, Jackson (1982) noted that on heating to 1000°C  in an oxidizing 

atmosphere, a blue Nigerian gahnite changed to a permanent blue-green color, 

becoming olive green at 1400°C. 
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Chapter 5 

CONCLUSIONS AND IMPLICATIONS 

Natural and synthetic spinel single crystals were analyzed by a combined 

chemical, structural and spectroscopic approach in order to investigate the optical 

and vibrational properties.  

5.1 Optical properties 

An accurate characterization by EMPA, XRD-SC and OAS of synthetic spinels 

belonging to the MgAl2O4-CoAl2O4 solid solution was made. The structural study 

shows a variation of the unit-cell parameter a from 8.084 to 8.105 Å mainly due to 

the variations in Al content at the T site. In fact, considering that the size of Mg 

and Co2+ at the T site is very similar, the only steric effect may account for varia-

tions in Al ordering. The optical study shows that Co-spinel strongly absorbs the 

light in the 18000-16000 cm-1 region of the visible spectrum. This absorption is 

due to Co2+ in the tetrahedrally coordinated sites and causes the typical blue 

coloration of the Co-spinel. A good correlation between the linear absorption 

coefficient value of the maximum absorption band at ~17000 cm-1 and the TCo2+ 

content is obtained. Even at very low concentrations of Co2+ the absorption is 

strong enough to cause a blue bright color. The absence of color shift and the 

perceived intensification of blue color of the crystals along the series is also 

underlined by the insignificant changes of the Dq parameter and the constancy of 

local Co2+-O bond distances within the present spinel series. This behavior is 

explained by considering that the MgAl2O4-CoAl2O4 series is characterized by the 

very similar size of Mg and Co2+, the ionic bonding and the Co2+ in the high-spin 

state. 

Optical properties of about thirty natural spinels coming from different geological 

environment were examined. These spinels show different chemical composition 

and color. From the chemical characterization most of them exhibit a prevalent 

spinel s.s. component (MgAl2O4), whereas the others show a prevalent gahnite 

(ZnAl2O4) component. The different colors do not depend on the main 
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composition. In fact, while the samples having a gahnitic composition show colors 

close to the blue hue, the samples having a spinel s.s. composition show all kind 

of colors from pink to orange to blue. The optical characterization show that the 

color of most of the natural spinels examined is caused by a combination of two or 

more minor elements such as Cr3+, V3+, Fe2+, Fe3+ and Co2+, occupying 

tetrahedrally (T) and/or octahedrally (M) coordinated sites in the spinel structure. 

The absorption bands related to every color were determined. Red, orange and 

magenta spinels owe their color mainly to the presence of Cr3+ and V3+ in the M 

sites which absorb the light in the violet-blue (~25500 cm-1) and green regions 

(~18500 cm-1) of the visible spectrum. The absorption sub-spectra of Cr3+ and V3+ 

are superimposed. When the contents of Cr3+ predominate on the contents of V3+, 

the spinels appear as red. When the contents of V3+ predominate on the contents 

of Cr3+, the band at ~25500 cm-1 broadens, this provoking a greater absorption of 

the violet and blue with respect to green regions of the visible spectrum and the 

spinels appear as orange. The magenta spinels have considerable content of Cr 

and secondary amount of Fe that shows a low-energy wing of the UV absorption 

band due to LMCT O2- → Fe2+  and a red shift of the band at ~ 18500 cm-1.  

All the pink, blue and dark green spinels, in spite of showing very different colors, 

have similar absorption spectra characterized by a strong UV-edge absorption at 

energy >> 30000 cm-1 and series of weak absorption bands in the visible range. 

The strong UV-edge absorption is due to the O2- → Fe2+ and O2-→ Fe3+ charge 

transfer transitions and causes a strong absorption of the violet and blue 

component of the visible light. The main differences among the spectra of the 

pink, blue and green spinels are: an increase of the intensity of the strong UV-

edge absorption at energy >>30000 cm-1 from the pink to the green samples; a 

different position of the most intense peak occurring in the range 20000 and 

10000 cm-1. The peak of maximum absorption moves from 18000 cm-1 for the pink 

spinels to 15500 cm-1 for the green spinels, and the blue spinels show an 

intermediate situation. The variation is caused by the increase of the iron total 

content and thus also of the Fe3+ content. In fact, the band at 15500 cm-1 in the 

green samples is due to the Fe2+-Fe3+ interaction.  
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LA-ICP-MS analysis has revealed that some natural blue spinels, especially with 

gahnite as the main component, show trace amounts of Co2+. These spinels have 

the same absorption bands of the synthetic cobalt spinel and have an intensity of 

linear absorption coefficient comparable to that calculated from the linear 

regression obtained for the synthetic ones. Hence, cobalt, in spite of its very small 

concentrations (in the range of 0.002-0.001 apfu), is able to influence the color in 

natural spinels.  

5.2 Vibrational properties  

Vibrational properties of three synthetic solid solutions (Mg,Co)Al2O4, 

(Mg,Fe)Al2O4 and (Mg(Al,Cr)2O4 were investigated by Raman spectroscopy in 

order to determine relationships between the Raman active modes and spinel 

crystal chemistry. The collected polarized spectra and the advantage of having 

many Raman spectra along each series were useful to assign every Raman peak 

to one or more vibration in the spinel structure.  

All the Raman spectra recorded show the predicted five Raman-active modes and 

an additional peak between the F2g(3) and A1g modes which can attributed to the 

cation disorder.  

The Raman spectra of the spinel samples belonging to the MgAl2O4-CoAl2O4 

series show an one-mode behavior with the exception of the F2g(2) mode which 

shows a two-mode behavior. A continuous and monotonous shift of the Raman 

modes of the F2g(3) and the F2g(2), toward lower Raman shifts is observed with 

the increase of the cobalt content. The A1g mode shows an increase of the Raman 

shift with the increase of the Co content, while all the remaining modes essentially 

maintain the same position. A good correlation between the F2g(2) mode shift and 

the Co content was found. Moreover, the A1g mode is linearly related to the unit 

cell parameter and can be usefully exploited to obtain structural information. 

The spinels belonging to the MgAl2O4-FeAl2O4 series show two different 

behaviors. At the beginning of the Fe2+-Mg substitution no spectral variations are 

observed; after the Fe component is higher than 20% a marked Raman shift 
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decrease is observed. A good correlation is found between the A1g mode and the 

ratio Fe/(Mg+Fe) for the iron composition higher than 20%. 

The Raman spectra of the spinels belonging to the MgAl2O4-MgCr2O4 series show 

an one-mode behavior for all the modes with exception of the Eg which shows a 

two-mode behavior. The relative intensity of the Eg mode at ~400 cm-1 and  ~440 

cm-1 can give information about the predominant Al or Cr end-member, 

respectively. Also for this series, initially the spinels do not respond to the 

Cr3+→Al3+ substitution but then a rapid decrease of the frequencies is perceived. 

The A1g mode can be related to the ratio Cr/(Cr+Al) in order to obtain chemical 

information from the Raman spectra. In addition, the local Cr-O bond distance in 

the octahedrally coordinated sites proves information on the structural relaxation.  

As a relevant conclusion, the relationships between Raman active modes and 

spinel principal component were established. This makes possible distinguishing 

each end-member from a characteristic fingerprint. In particular, from the position 

of the A1g mode it is possible to distinguish between spinel chromates and 

aluminates. However, discrimination among spinels with the same principal 

component and different minor elements, which cause the difference in colors, is 

not straightforward and requests more studies. 

Moreover, the detailed Raman study gave information about the cation disorder 

and then the genesis temperatures. Finally, a study of the fluorescence features 

attributed to chromophoric ions observed in the Raman spectra helped to 

distinguish between natural, thermally-treated, and synthetic materials.  

5.3 Implications  

The accurate spectroscopic study of the origin of color in materials with the spinel 

structure is crucial to improve the technological performance of existing ceramic 

pigments and/or to create new pigments. For example, no evidences of V-spinels 

exploited as pigments are found in literature and Cr and V spinel-based pigments 

could be patented. 
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Iron spinel is widely used in the ceramic pigment industry, and a detailed study of 

the change in the optical spectra will help to improve the synthesis conditions in 

order to obtain pink, blue or green pigments.  

Cobalt spinel (CoAl2O4) is also widely used in ceramics industry, together with 

cobalt olivine (Co2SiO4). However, the increasing price and limited availability of 

cobalt raw materials have made important to minimize the Co content and to 

enhance its coloring performance and stability in a wide spectrum of ceramic 

glazes. In recent years, extensive research has been conducted to develop new 

pigments by doping white or colorless materials with efficient chromophores, in 

order to lower as much as possible the cobalt consumption. The gahnite (ZnAl2O4) 

and willemite (Zn2SiO4) structures have been pointed out as interesting host 

lattices, since nice and intense blue colors can be produced with very low Co 

doping. There are few studies in literature on blue pigments based on spinel s.s. 

(MgAl2O4) structure (Ahmed et al. 2009; Duan et al., 2004). The Co spinels 

studied in the present work prove that the spinel s.s. is an excellent host lattice, 

provoking an intense blue color with very low Co concentrations. In addition, the 

spinel s.s. has a high melting point (greater than gahnite) and is both thermally 

stable at high temperatures and chemically stable in molten glazes. Hence, Co 

doped spinels are candidate to be new blue pigments with very low Co content. 

Furthermore, Co-rich natural spinels were already found in nature but none of 

these has yet been proposed to the IMA committee as new mineral. The complete 

and detailed characterization of the synthetic spinels belonging to the MgAl2O4-

CoAl2O4 series presented in this work will help recognizing the occurrence of Co 

spinel in nature by knowing in advance structural and spectroscopic features. 

Concerning the vibrational properties, an original empirical approach for the 

assignment of the Raman modes in spinel spectra was defined. The application of 

this new approach has relevant consequences for both geological and analytical 

purposes, as for example study of inorganic pigments used in historical art. In 

fact, Raman spectroscopy has become a routine technique for identification of 

materials and minerals, without necessarily knowing the structural origin of the 
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individual spectral peaks. Hence, this detailed Raman characterization of spinel 

end-members is useful for identifying what kind of spinel a rock or a pigment 

contain. Notably, this can be done by using a simple portable and non-destructive 

Raman spectrometer. Moreover, the availability of miniaturized Raman devices, 

together with the expansion of the spinel Raman spectra database, is candidate to 

acquire increasing importance for the extraterrestrial exploration.  

Raman spectral features are already used to discriminate untreated spinel 

gemstones from treated or synthetic ones in the gemological field, but they could 

be also useful to investigate in situ spinel inclusions in diamonds with the aim to 

extract information in situ on their crystallization environment and contribute to 

define mantle composition and physical properties.   
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