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(a) K∗−(892) CA mass peak
region
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(b) K∗−(1430) and
K∗−(1680) mass region
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(c) K∗+(892) DCS mass re-
gion
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(d) higher mass (KSπ+) pro-
jection
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(e) ρ − ω mixing interference
region
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(f) higher mass (π+π−) pro-
jection with f0(980)

Figure 3.16: Zoom of particular regions of the Breit-Wigner fit result: K∗(892) mass peak
region, K∗(1430) and K∗(1680) on the Cabibbo allowed (Ksπ

−) projection, the region
of interference between the CA-DCS decays involving K∗(892) mesons, the higher mass
(KSπ

+) region, the ρ − ω mixing interference region, the higher mass (π+π−) projection
with f0(980).
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where F1(s) is the contribution of ππ S-wave states,

F1(s) =
∑

j

[I − iK(s)ρ(s)]−1
1j Pj(s) . (3.13)

Here, s is the squared mass of the ππ system (m2
π+π−), I is the identity matrix, K is the

matrix describing the S-wave scattering process, ρ is the phase-space matrix, and P is

the initial production vector [37],

Pj(s) =
∑

α

βαg
α
j

m2
α − s

+ fprod
1j

1 − sscatt
0

s− sscatt
0

. (3.14)

The index j represents the jth channel (1 = ππ, 2 = KK, 3 =multi-mesons (referred to a

final state with four pions), 4 = ηη, 5 = ηη′ [46]). The parameters βα and fprod
11 represent

the amplitude of the different components of the ππ S-wave and will be let float in the

fit.

The K-matrix parameters are obtained from Ref. [46] from a global fit of the available

ππ scattering data from threshold up to 1900 MeV/c2. The K-matrix parameterization

is:

Kij(s) =

{

∑

α

gα
i g

α
j

m2
α − s

+ f scatt
ij

1.0 − sscatt
0

s− sscatt
0

}

(1 − sA0)

(s− sA0)
(s− sAm

2
π/2), (3.15)

where gα
i is the coupling constant of the K-matrix pole mα to the ith channel. The

parameters f scatt
ij and sscatt

0 describe the slowly-varying part of the K-matrix element.

The Adler zero factor (1 − sA0)(s − sAm
2
π/2)/(s− sA0) [47] suppresses false kinematical

singularity at s = 0 in the physical region near the ππ threshold [48]. The production

vector has the same poles as the K-matrix, otherwise the F1 vector would vanish (diverge)

at the K-matrix (P-vector) poles. The parameter values used in this analysis are listed

in Tab. 3.4 [49]. The parameters f scatt
ij , for i 6= 1, are all set to zero since they are not

related to the ππ scattering process.

The phase space matrix is diagonal, ρij(s) = δijρi(s), where

ρi(s) =

√

1 − (m1i +m2i)2

s
(3.16)

with m1i (m2i) denoting the mass of the first (second) final state particle of the ith channel.

The normalization is such that ρi → 1 as s → ∞. An analytic continuation of the ρi
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mα gα
ππ gα

KK
gα
4π gα

ηη gα
ηη′

0.651 0.229 −0.554 0.000 −0.399 −0.346
1.204 0.941 0.551 0.000 0.391 0.315
1.558 0.369 0.239 0.556 0.183 0.187
1.210 0.337 0.409 0.857 0.199 −0.010
1.822 0.182 −0.176 −0.797 −0.004 0.224

f scatt
11 f scatt

12 f scatt
13 f scatt

14 f scatt
15

0.234 0.150 −0.206 0.328 0.354
sscatt
0 sA0 sA

−3.926 −0.15 1

Table 3.4: K-matrix parameters as obtained from Refs. [46, 49]. Pole masses (mα) and
coupling constants (gα

i ) are given in GeV/c2, sscatt
0 and sA0 are in GeV2/c4.

functions below threshold is used. The expression of the multi-meson state phase space

is written as [46]

ρ3(s) =

{

ρ31 s < 1 GeV 2

ρ32 s > 1 GeV 2

}

(3.17)

where

ρ31(s) = ρ0

∫ ∫

ds1

π

ds2

π

M2Γ(s1)Γ(s2)
√

(s+ s1 − s2)2 − 4ss1

s[(M2 − s1)2 +M2Γ2(s1)] [(M2 − s2)2 +M2Γ2(s2)]
,

ρ32(s) =
s− 16m2

π

s
. (3.18)

Here s1 and s2 are the squared invariant mass of the two di-pion systems, M is the ρ meson

mass, and Γ(s) is the energy-dependent width. The factor ρ0 provides the continuity of

ρ3(s) at s = 1 GeV2. Energy conservation in the di-pion system must be satisfied when

calculating the integral. This complicated expression reveals the fact that the ρ meson

has an intrinsic width. Setting Γ(s) = δ(s), where δ is the Dirac δ function, the usual

two-body phase space factor is obtained.

Fig. 3.17 shows the real part of the ππ phase space factor and the 4π phase-space

factor. Fig. 3.18 shows the K-matrix solution of the AS parameterization [46] of the ππ

scattering wave. The left plot shows the ππ S-wave intensity, where the absence of a

simple Breit-Wigner-like structure is apparent. The right plot shows the Argand Plot

Diagram for the ππ S-wave: it is clear that K satisfies unitarity, which is a fundamental

requirement of the S-matrix. In contrast, it is well known that unitarity is not respected

generally in the BW model. Fig. 3.19 shows the ππ scattering phase shift. There is a
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Figure 3.17: Left: The ππ phase-space factor. Right: The 4π phase-space factor. ρ(s) →
1 as s→ ∞. The x axis represents

√
s in GeV.
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Figure 3.18: Left: The ππ S-wave intensity, showing the lack of a simple Breit-Wigner
resonance structure. The x axis represents

√
s in GeV. Right: The Argand Plot Diagram

for the ππ S-wave component, showing the unitarity of the K-matrix parameterization.



3.3 K-Matrix fit 95

0.25 0.5 0.75 1 1.25 1.5 1.75

50

100

150

200

250

300

350

0.25 0.5 0.75 1 1.25 1.5 1.75

0.2

0.4

0.6

0.8

1

Figure 3.19: Left: The ππ S-wave phase shift. Right: The elasticity plot, indicating the
purely-elastic nature of the scattering process below 1 GeV. The x axis represents

√
s in

GeV.
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Figure 3.20: The Adler zero factor. The ππ threshold is suppressed when s near the
threshold. The x axis represents

√
s in GeV.
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strong phase variation around
√
s = 1 GeV and 1.5 GeV, which corresponds to the narrow

f0(980) and f0(1500) scalar resonances. The right plot shows the elasticity plot of for ππ

scattering. The process is purely elastic up to 1 GeV, while new channels (e.g. KK̄) open

up at higher energies and the scattering process becomes inelastic.

The masses and the widths of the other resonances are the same used for the Breit-

Wigner fit except the K∗(1680), which is incorrectly averaged by the PDG [50]. The LASS

experiment found the K∗(1680) in the K−p → K−π+n and K−p → K0π+π−n channels,

but with quite different masses and widths. Since only the K∗(1680) → Kπ channel is

considered, the average value should not be used. Tab. 3.5 lists the masses and widths of

the resonances used by the K-matrix fit.

3.3.2 Fit results

An unbinned maximum-likelihood fit is used to describe the population on the Dalitz plot

and to extract the Real and the Imaginary part of the complex amplitude of the different

components: Re{are
iφr} and Im{are

iφr}. The use of the Cartesian coordinates helps to

better estimate the components with lower amplitudes. The likelihood function is written

in the following way:

L = x · Psig + (1 − x) · Pbkg , (3.19)

where

Psig(m
2
±, m

2
∓) =

ε(m2
±, m

2
∓)
∣

∣f(m2
±, m

2
∓)
∣

∣

2

∫

ε(m2
±, m

2
∓) |f(m2

±, m
2
∓)|2 dDP

. (3.20)

Here x is the fraction of the signal events and 1− x is the fraction of background events.

f(m2
±, m

2
∓) is the signal Dalitz pdf which is described in Sec. 3.3.1. The background Dalitz

distribution Pbkg(m
2
±, m

2
∓) is described in Sec. 3.1.4. The efficiency ε(m2

±, m
2
∓) is deter-

mined in signal Monte Carlo simulation, where the D0 is allowed to decay isotropically

(Sec. 3.1.5).

Tab. 3.6 gives the result of the K-Matrix Dalitz fit. Fig. 3.23 shows the Dalitz distri-

bution of the ππ S-wave component resulting from the K-Matrix fit and the sum of the

four ππ scalar resonances from the Breit-Wigner fit. Fig. 3.21 shows projections of the fit

result on top of data distributions and Fig. 3.22 shows zoom of particular regions of the

K-Matrix fit result.
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Resonance Mass (MeV/c2) Width (MeV/c2) Spin

K∗(892) 891.66 50.8 1

K∗
0 (1430) 1412 294 0

K∗
2 (1430) 1425.6 98.5 2

K∗(1680) 1677 205 1
ρ0(770) 775.8 146.4 1

ω(782) 782.6 8.5 1
f2(1270) 1275.4 185.1 2

ρ(1450) 1406 455 1

Table 3.5: Values for the masses and widths of the resonances used for the fit in the K-
matrix model. Besides K∗(1680), other values are fixed according to the PDG2004 [41]
values.

Component Re{are
iφr} Im{are

iφr} Fit fraction (%)

K∗(892)− -1.127 ± 0.013 1.370 ± 0.012 59.71
K∗

0(1430)− 2.473 ± 0.044 -0.699 ± 0.041 8.73
K∗

2(1430)− 0.772 ± 0.023 -0.774 ± 0.028 2.84
K∗(1410)− -0.106 ± 0.030 0.037 ± 0.023 0.02
K∗(1680)− -1.268 ± 0.121 0.304 ± 0.108 0.75
K∗(892)+ 0.118 ± 0.005 -0.135 ± 0.004 0.61
K∗

0(1430)+ 0.388 ± 0.035 -0.149 ± 0.039 0.23
K∗

2(1430)+ 0.055 ± 0.022 -0.049 ± 0.023 0.01
ρ(770) 1 (fixed) 0 (fixed) 22.38
ω(782) -0.022 ± 0.001 0.034 ± 0.001 0.59
f2(1270) 0.834 ± 0.023 -0.423 ± 0.029 3.09
ρ(1450) 0.410 ± 0.040 -0.043 ± 0.067 0.15
β1 -3.338 ± 0.068 1.854 ± 0.080
β2 8.957 ± 0.113 2.467 ± 0.220
β4 14.163 ± 0.404 -0.879 ± 0.372

fprod
11 -10.008 ± 0.181 -4.756 ± 0.202

sum of π+π− S-wave 15.48

Table 3.6: Complex amplitudes are
iφr and fit fractions of the different components (KSπ

−

and KSπ
+ resonances, and π+π− poles) obtained from the fit of the D0 → KSπ

−π+

Dalitz distribution from D∗+ → D0π+ events. Errors are statistical only. Masses and
widths of all resonances are taken from [41], while the pole masses and scattering data
are from [46, 49]. The fit fraction is defined for the resonance terms (ππ S-wave term)
as the integral of a2

r|Ar(m
2
−, m

2
+)|2 (|F1(s)|2) over the Dalitz plane divided by the integral

of |AD(m2
−, m

2
+)|2. The sum of fit fractions is 1.15.
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Figure 3.21: Result of the K-Matrix fit to the D0 → Ksπ
−π+ Dalitz plot, using the flavor

tagged D sample from the continuum : D∗± → D0π±
s . The three projections are displayed :

Cabibbo allowed (Ksπ
−), the (Ksπ

+) and the (π+π−). The Dalitz distribution of generated
events according to the fit result is also shown.
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(a) K∗−(892) CA mass peak
region
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(b) K∗−(1430) and
K∗−(1680) mass region
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(c) K∗+(892) DCS mass re-
gion
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(d) higher mass (KSπ+) pro-
jection
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(e) ρ − ω mixing interference
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Figure 3.22: Zoom of particular regions of the K-Matrix fit result: K∗(892) mass peak
region, K∗(1430) and K∗(1680) on the Cabibbo allowed (Ksπ

−) projection, the region
of interference between the CA-DCS decays involving K∗(892) mesons, the higher mass
(KSπ

+) region, the ρ − ω mixing interference region, the higher mass (π+π−) projection
with f0(980).
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(b) Breit-Wigner fit

Figure 3.23: Dalitz distribution of the ππ S-wave component resulting from the K-Matrix
fit and the sum of the four ππ scalar resonances from the Breit-Wigner fit.

3.4 Fits comparison

Both Breit-Wigner and K-Matrix fit give a good description of the data. The Breit-

Wigner fit needs to introduce two non-established resonances σ and σ ′. This is due to

the fact that the Breit-Wigner parameterization works only in case of isolated resonances.

The ππ S-wave component, instead, is composed of different contributions that overlap

significantly. K-Matrix parameterization gives the correct parameterization in the case

of overlapping resonances and does not need the presence of the two resonances σ and σ ′.

Fig. 3.24 shows amplitude and phase of the F-vector (see. Eq. 3.13) resulting from

the K-Matrix fit and the corresponding quantity, defined as the sum of the four scalar ππ

Breit-Wigner functions, resulting from the Breit-Wigner fit. Both amplitude and phase

shapes result quite different in the two cases; in particular the f0(980) peak presents a

very different shape.

Fig. 3.25 shows the phase in function of the Dalitz plot for the two fits and the

difference of the two fits result. The value of the phase is sensibly different only in

the regions of the f0(980) and σ. Since these regions give small sensitivity to the γ



3.4 Fits comparison 101

M(Pi+Pi-)[GeV^2]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|F
|

0

20

40

60

80

100

(a) KM fit: amplitude of the F vector

M(Pi+Pi-)[GeV^2]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ar
g(

F)
-3

-2

-1

0

1

2

3

(b) KM fit: phase of the F vector [rad.]

M(Pi+Pi-)[GeV^2]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|S
um

(B
W

)|

0

20

40

60

80

100

(c) BW fit: amplitude of the ππ S-wave
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Figure 3.24: Amplitude and phase of the F-vector (see. Eq. 3.13) resulting from the
K-Matrix fit and the corresponding quantity, defined as the sum of the four scalar ππ
Breit-Wigner function, resulting from the Breit-Wigner fit.
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the Dalitz plot [rad.]

M(Ks Pi-) [GeV^2]
0.5 1 1.5 2 2.5 3

M
(K

s 
Pi

+)
 [G

eV
^2

]
0.5

1

1.5

2

2.5

3

-3

-2

-1

0

1

2

3

Phase

(b) Phase of the BW fit result as a function of
the Dalitz plot [rad.]

M(Ks Pi-) [GeV^2]
0.5 1 1.5 2 2.5 3

M
(K

s 
Pi

+)
 [G

eV
^2

]

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

(c) Difference of the phase of the two fits result
[rad.]

M(Ks Pi-) [GeV^2]

0.5 1 1.5 2 2.5 3

M(Ks Pi+) [GeV^2]0.5
1

1.5
2

2.5
3
0

0.5
1

1.5
2

2.5
3

0

0.5

1

1.5

2

2.5

3

(d) Difference of the phase of the two fits result
[rad.]

Figure 3.25: Phase in function of the Dalitz plot for the two fits result and the difference
of the two.
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measurement (see Sec. 5.2) it is expected to have a small systematic effect on γ coming

from the parameterization of the ππ S-wave component.

The sum of the fit fractions is smaller in the K-matrix fit (KM=1.15, BW=1.24). This

is due to the minor number of components in the K-matrix fit: four ππ scalar resonances

in the Breit-Wigner fit and only the F-vector in the K-matrix fit. The fit fractions of the

other components remain practically unchanged.
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Chapter 4

Event selection

4.1 Introduction

This chapter presents the B meson reconstruction. The importance of the different dis-

criminant variables and the background composition are discussed and the fixed param-

eters of the Likelihood function used for the extraction of the CP parameters are given.

A detailed description of the Likelihood function will be provided in Chapter 5.

The B mesons are reconstructed in three decay modes: B− → D̃0K−, B− → D̃∗0K−

and B− → D̃0K∗−. The B meson decays are reconstructed from the informations recorded

from the different detectors in the interactions with the decays final states. Then the infor-

mations coming from the single detectors are combined in order to produce B candidates

and, at the end, the candidate with the larger probability to be a real particle is chosen.

4.1.1 Pre-selection

The first step of the event selection, common to all the decay modes under study, is the

selection of multihadron events among the events logged by the on-line data acquisition

chain; many of them are in fact due, not to e+e− collision chain but to beam-gas or

beam-wall interaction.

A clockwise frame, called laboratory frame, is used with the z axis along the electron

beam line, the y axis along the vertical line toward the up direction with the origin in the

interaction point and the x axis along the center of the PEP-II ring. The polar angle θ is

evaluated from the z axis, the azimuthal angle φ is evaluated from the x axis.

Multihadron events are requested to have a minimum of three charged tracks in a

fiducial angular region (0.41 < θ < 2.54)rad. The tracks above are requested to have a
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momentum less than 10 GeV/c (to avoid non physical tracks), to be reconstructed in the

DCH and to originate within 1.5 cm in the xy plane (transverse to the beam axis) and 10

cm on z (along the beam axis) of the nominal beam-spot position. The primary vertex,

constructed from the tracks above, must be within 0.5 cm of the average position of the

interaction point in the xy plane and within 6 cm in z. Tracks with a large contribution

to the χ2 of the primary vertex fit are removed until the χ2 probability is greater than

1% (or only two tracks remain). Electromagnetic bumps in the calorimeter not associated

with charged tracks, that have an energy greater than 30 MeV in the fiducial volume

defined as (0.41 < θ < 2.409)rad and shower shape consistent with photon interaction,

are taken as neutral candidates. Charged tracks and neutral candidates are required to

have a total energy in the fiducial region greater then 4.5 GeV.

In order to reduce background from continuum events, the normalized second Fox-

Wolfram [51] moment of the event (R2) is required to be less than 0.5. The lth Fox-

Wolfram moment Hl is the momentum weighted sum of Legendre polynomial of the lth

order computed from the cosine of the angle between all pairs of tracks:

Hl =
∑

ij

|pi||pj|Pl(cos(θij))

E2
vis

, (4.1)

where Pl is the Legendre polynomial, i and j run over the tracks, pij are the tracks

momenta, θij is the opening angle between the tracks i and j, Evis is the visible energy of

the event. Neglecting the particle masses, energy-momentum conservation requires that

H0 = 1. For continuum events, H1 = 0, Hl ∼ 1 for l even and Hl ∼ 0 for l odd. R2 is the

ratio H2/H0.

The ratioR2 is one of the possible topological variables witch discriminate signal events

from continuum qq̄ (q = u, d, s, c) events on the basis of their characteristic topologies. In

a signal event, the primary e+e− pair produces a BB̄ par via the Υ(4S) resonance. the B

mesons have low momentum in the Υ(4S) frame (∼ 340 MeV/c), so the decay of each B

meson is nearly isotropic. Moreover, in a signal event there is no correlation between the

direction of the decay products coming from the two B mesons. On the contrary, in a qq̄

continuum event, the event shape has a two-jet structure, then there is a direction which

characterize the whole event (the jet axes). Fake B candidates from such events tend to

have less isotropic decay shape in the Υ(4S) rest frame, and the direction of the decay

products of the two B mesons candidates tend to be correlated, since they lie within the

two jets.
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The selection efficiency of the multihadron selection for BB̄ events is about 95%.

4.1.2 Data sample

For this analysis the data recorded from the BaBar experiment in the period (1999−2004)

are used. This data sample corresponds to an integrated luminosity of 208 fb−1 recorded

at the Υ(4S) resonance, corresponding to 218 · 106 BB̄ couples, and 21.6 fb−1 collected

at a center-of-mass energy 40 MeV below (off-peak data). The off-peak data are useful

to study the behavior of the continuum qq̄ events. Moreover a large Monte Carlo sample

is used for background studies.

4.2 B− → D̃0K− selection

4.2.1 The KS and D0 reconstruction

The KS are reconstructed from pairs of oppositely charged pions. The invariant mass of

the two pions is required to be within 9 MeV/c2 the nominal neutral kaon mass. Since

the KS decay vertex is distant from the beam-spot the tracks momentum is evaluated on

the KS decay vertex.

The D0 are reconstructed by making all possible combinations between the candidate

KS and two pions of opposite electric charge. The measured position of the D0 decay

vertex and momentum together with their measurement errors, are used to reconstruct a

D0 particle. The invariant mass of the D0 candidate is required to be within 12 MeV/c2 its

nominal mass. The neutral kaon and the two pions are tested for geometrical compatibility

with a single vertex asking that the fit procedure has converged. A kinematic mass

constraint is also applied refitting daughters D0 momenta.

The direction of the KS can be evaluated from the momentum of the two pions (dir1)

as well as from the direction of the flight distance from the KS and the D0 decay vertexes

(dir2). For a genuine candidate these two directions coincide. Defining αKS
= (dir1, dir2),

a cut on cos(αKS
) >0.99 is required. This cut has a property of rejecting the not genuine

KS and in particular helps in removing possible contamination from decays of D0 into

four pions.

The distribution of cos(αKS
) for the different Monte Carlo samples is shown in Fig. 4.1.
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Figure 4.1: The cosαKS
distribution obtained applying the final selection criteria. (Left

plot) Top row - from left to right - signal, Dπ and D0 → 4π samples. Middle row - from
left to right - B0 − B̄0 and B+B− samples. Bottom row - from left to right - cc̄ and uds
samples. (Right plot) Same zoomed in the [0.9-1] range.

4.2.2 The B meson reconstruction

A candidate B− is obtained combining a D0 candidate with one of the identified bachelor

kaon. The bachelor kaon is required to be identified as a tight kaon as described in

Sec.2.5.1. To guarantee the quality of this vertex the fit procedure is required to converge.

The main variables used in the B meson selection are the beam energy-substituted mass

(mES) and the energy difference (∆E).

The beam energy-substituted mass is defined as:

mES =
√

(
√
s/2)2 − p∗2B , (4.2)

where p∗ is the B candidate momentum in the Υ(4S) (CM) rest frame. Since |p∗B| �
√
s/2,

the experimental resolution on mES is dominated by beam energy fluctuations. Then with

an excellent approximation, the shapes of themES distributions forB meson reconstructed

in a final states with charged tracks only are Gaussian and practically identical. Otherwise

the presence of neutrals in the final states, in case they are not fully contained in the

calorimeter, can introduce tails.
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The energy difference is defined (making use of energy conservation) as:

∆E = E∗
B −

√
s/2 , (4.3)

where E∗
B is the energy of the B candidate in the Υ(4S) rest frame and

√
s is the total

energy of the e+e− system in the CM rest frame. The resolution of this variable is affected

by the detector momentum resolution and by the particle identification since a wrong mass

assignment implies a shift in ∆E. Signal events are Gaussian distributed in ∆E around

zero, continuum and part of the BB̄ background have a polynomial distribution and

background due to misidentification gives shifted Gaussian peaks. The resolution of this

variable depends essentially on the reconstructed B mode and can vary from 20 to 40

MeV.

Since the sources of experimental smearing are uncorrelated (beams energy for mES

and detector momentum resolution for ∆E), the two variables mES and ∆E are, in

practice, uncorrelated.

The overall efficiency on the signal events is equal to 18.0 ± 0.1 % (the efficiency is

calculated considering B− → D0K− and D0 → KSπ
−π+ and KS → π+π−).

The final selection is optimized in order to maximize the statistical significance and

to reduce the expected error on γ (using a Toy Monte Carlo technique):

• |cosθthr.| <0.8

• tight K-id on bachelor Kaon

• |M(D0) −M(PDG)| <12 MeV/c2

• |M(KS) −M(PDG)| <9 MeV/c2

• D0 and B vertex fit procedure required to converge

• cos(αKS
) > 0.99

• |∆E| < 30 MeV

• mES > 5.2 GeV/c2

The number of events with more than one B candidate is very small (about 1% for

the final sample of events with mES in [5.2, 5.3] GeV/c2 and ∆E in [-30, 30] MeV). The

candidate with the D0 mass closest to the PDG value is retained.
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Figure 4.2: mES distribution obtained after applying the final selection criteria. Top row
- from left to right - signal, Dπ and 4π samples. Middle row - from left to right - B0− B̄0

and B+ samples. Bottom row - from left to right - cc̄ and uds samples.

Fig. 4.2 shows the mES distribution of the different components after applying the

final selection criteria.

4.2.3 Continuum background suppression

The larger component to the background comes from continuum qq̄ events. To suppress

this background the following topological variables are used.

• cos(θ∗B): the polar angle of the reconstructed B meson in the Υ(4S) center of mass

system

• the Legendre monomials (L0 and L2): Lj =
∑tracks

i pi| cos (θi)|j

• cos(θthr.): the angle between the rest of event thrust axis and the B direction

The thrust axis [52] of an event is defined as the direction which maximizes the sum of

the longitudinal momenta of the particles. In a typical background event for a two-body
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decay, the decay products of each B candidate lie in one of the two jets, and they are

therefore approximately back-to-back. Thus the decay axis of the B candidate is roughly

collinear with the thrust axis for the rest of the event. For a true signal event, the B

decay axis is uncorrelated with the thrust axis of the rest of the event, which in that case

comes from the decay of the other B meson. A cut on |cos(θthr)| < 0.8 is requested.

If there is no correlation between the variables, no information is lost in simply making

separate requirements on each one, otherwise to fully exploit the power rejection of the

discriminating variables a linear combination of them is needed. In Linear Discriminant

Analysis [53], also known as the Fisher method, the discriminating variables which char-

acterize the events, are combined linearly to provide the best separation between the two

classes of events:

F =
N
∑

i=1

αixi . (4.4)

The discrimination task consists of determining an axis in the RN space of the discrimi-

nating variables such that the two classes are maximally separated. In order to apply this

method, one needs to know just the mean values of each variable over the full sample,

(µ̄), the means over signal and background separately, (µ̄b, µ̄s), and the total variance-

covariance matrix, U b,s
ij , that characterizes the dispersion of the events relative to the

center of gravity of their own sample. The distance between the projected points will

naturally be maximum along the direction defined by the line between µb and µs. Then

the segment (µ̄b, µ̄s) is the projection axis. The coefficients in Eq. 4.4 could be easily

computed from the equation:

αi =
N
∑

j=1

(U b + U s)−1
ij (µb

j − µs
j) . (4.5)

The distribution of the Fisher variable, using the variables described before, for Monte

Carlo continuum and signal events is shown in Fig. 4.3.

4.2.4 Data - Monte Carlo comparison

In order to test the goodness of the background composition obtained from Monte Carlo

a study of Data - Monte Carlo comparison is performed for the different variables used

in the analysis. For all the plots the colored histograms display the various Monte Carlo

components and the points the data. Comparisons for the relevant variables used for
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Figure 4.3: Distribution of the Fisher discriminant variable for continuum (top plot) and
BB̄ events (bottom plot). The distributions with points are obtained from off-peak data
for the top plot and from D0π control sample for the bottom plot. The histograms are
obtained from continuum Monte Carlo events for the top plot and signal Monte Carlo
events for the bottom plot.

the selection cuts are shown in Fig. 4.4. The KS and D0 invariant mass distributions

are plotted with respect to the PDG mass. The data distributions are slightly shifted

compared to the Monte Carlo ones, the cuts are far enough so that the efficiency obtained

on Monte Carlo will still be correct. These plots are obtained after having applied all the

cuts but the one on the displayed variable.

4.2.5 Sample composition

To fit the mES distribution, it is used a Gaussian for the signal and an empirical function

suggested by the ARGUS collaboration [54] for background. The ARGUS function is
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Fisher (third row). The distributions are obtained after having applied all the other cuts.
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defined as:
dN

dmES
= N ·mes ·

√
1 − x2 · exp

(

−ξ · (1 − x2)
)

, (4.6)

where x = mes/mmax and the parameter ξ is determined from the fit. The mmax, that

represent the endpoint of the ARGUS distribution, is fixed in the fit to mES, since it

depends only on the beam energy.

From this fit the parameter fs = N(DK)+N(Dπ)+N(4π)
Ncand

is extracted in the mES signal

region (>5.272 GeV/c2, see Tab. 4.1).

It is important to notice that the contribution from the “peaking background” (the

background that presents a peak in the mES signal region) is very small and is essentially

due to the B− → D0π− events. The fraction of this background can be obtained from

simple counting of Monte Carlo events or by fitting the ∆E distribution (see Tab. 4.1).

Fig. 4.5 shows the ∆E distribution of the different components with the final selec-

tion criteria in the mES signal region (mES >5.272 GeV/c2). In order to to exclude the

contribution from the B− → D̃∗K− events only the region between [-0.100,0.120] GeV

is considered in the fit. The events from DK and Dπ are parameterized with a Gaus-

sian distribution. For the DK events the Gaussian is centered on zero and its width is

σ(DK)(MC) = (14.6 ± 0.2) MeV.

The Gaussian distribution for the Dπ events is centered on < µ > (Dπ)(MC) =

(50.2 ± 1.2) MeV with width σ(DK)(MC) = (18.7 ± 1.0) MeV. The parameters from

the two Gaussian distributions are related. In fact the Gaussian describing the ∆E

distribution of the Dπ events is shifted by about 50 MeV and its resolution is the result

of the convolution of the bachelor track momentum resolution and the ∆E resolution of

the DK events:

N = N(DK)e−(∆E−µ)/2 σ2(DK) + N(Dπ)e−(∆E−(µ+0.05))/2 σ2(Dπ) + P1(y) , (4.7)

σ2(Dπ) = σ2(DK) +K ,

K =
√

σ2(Dπ)(MC) − σ2(DK)(MC) = 0.010 .

The global fit on the data and Monte Carlo are performed using Eq. 4.7 where the

width of the Gaussian distribution σ(DK) is obtained from the Dπ control sample (see

section 4.2.7). The results of the fits are shown in Fig. 4.5 and in Tab. 4.1.

The D0 Dalitz distribution of B− → D0π− is the same of B− → D0K− events without

the opposite D0 flavor admixture. Another possible source of peaking background, D0 →
4π has a negligible contribution (< 1%) after the cut on cos(αKS

).
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Figure 4.5: The plots on right (left) show the ∆E distribution as obtained on the data
(Monte Carlo) with the fit superimposed. The two Gaussian distributions for the DK and
the Dπ events are also shown.
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Figure 4.6: The plots on right (left) show the D0 invariant mass distribution as obtained
on the data (simulation) for events satisfying mES < 5.27 GeV/c2 and having removed
the cut on the D0 mass. The result of the fit is superimposed.
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Parameter Value from Data Value from Monte Carlo
fs (mES > 5.272 GeV/c2) 0.672 ± 0.049 0.669 ± 0.065

fs (mES > 5.2 GeV/c2) 0.219 ± 0.016 0.221 ± 0.023
fDπ 0.059 ± 0.012 0.028 ± 0.012

fcont (mES > 5.272 GeV/c2) - 0.854 ± 0.040
fcont (mES > 5.2 GeV/c2) - 0.905 ± 0.012

RCont. 0.221 ± 0.042 0.27 ± 0.06
RRS - 0.208 ± 0.033

Table 4.1: Values for parameters used in the likelihood. Whenever possible the values
obtained from Data are used. Most of the parameters are evaluated directly with the
likelihood fit (see. Sec. 5.1).

The fraction of combinatoric background events is obtained from a fit in all the mES

region.

To properly parameterize the Dalitz distributions of the background it is important

to evaluate the possible presence of true D0 (D0 decaying in KSπ
−π+) and the charge

correlation with the bachelor kaon. The presence of true D0, in fact, combined with a

randomly flavor-tagged kaon could be a potentially important background because for

half of the cases the kaon is of opposite sign and these events can be taken as B+ →
D̄0K+ events. For this reason the background is separated in continuum background and

background from BB̄ events, and in each category the number of true D0 is evaluated.

The relative fraction, normalized to the total non peaking background, of the continuum

events is obtained by fitting the mES distribution from the simulated data. The fraction

of true D0 coming from D∗ decays is expected to be small due to the ∆E cut. In the

simulation events the fraction of this events is < 2% then its contribution can be neglected.

A sizable contribution, instead, is found in the continuum events, totally coming from the

cc̄ events.

The total fraction of the true D0 in the combinatorial background can be obtained on

the data and compared with the one from the Monte Carlo. For this purpose the events

satisfying mES < 5.272 GeV/c2 are considered, having removed the cut on the D0 mass.

Fig. 4.6 shows the D0 invariant mass for data and Monte Carlo events. For simulated

events the plot are obtained using the corrected relative integrated luminosities processed

for the uds, cc̄ and the BB̄ events. The fit to the D0 invariant mass is performed by

fixing the mean and the width of the D0 to 1864 MeV/c2 and 6 MeV/c2 as found on the
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cc̄ simulation. The values are corrected considering that the only true D0 come from the

cc̄, and are shown if Tab. 4.1 (RCont.). Another important parameter is the fraction of

events with a true D0 associated with a negative charged kaon (RRS). This fraction is

obtained from simulation because there is not enough off-peak data.

In case of a true D0 the Dalitz distribution can be taken from the one of the D0 or

D̄0 depending of the charge correlation with the Kaon and according to this fraction.

The summary of the values and errors obtained for the different parameters is given in

Tab. 4.1.

4.2.6 Efficiency over the Dalitz plot and related systematics

The efficiency on the signal events over the Dalitz plot (m2(Ksπ
+) ≡ x vs m2(Ksπ

−) ≡ y)

is evaluated using a signal Monte Carlo sample with a flat Dalitz distribution. The Dalitz

plot is binned and the efficiency is fitted with a symmetric third-order polynomial function:

eff(x, y) = a0[1 + a1(x+ y) + a2(x
2 + y2 + xy) + a3(x

3 + y3 + x2y + xy2)] . (4.8)

It is checked that the shape of the efficiency correction, in Fig. 4.7, does not depend from

the Fisher and mES discriminating variables. The coefficients for the three subsamples,

B− → D0K−, B− → (D0π0)K− and B− → (D0γ)K−, are consistent within statistical

errors, therefore for the final fit the parameterization by combining all modes is taken.

For the systematics evaluation due to tracking and KS reconstruction, the efficiency

over the Dalitz plot has to be weighted according to the tracking efficiency and KS re-

construction.

4.2.7 The use of the B− → D0π− events

The B− → D0π− events can be used as a control sample to obtain some parameters for

the analysis. All the B− → D0π− selection criteria are identical to those applied for the

B− → D̃0K− analysis except that the events are selected in the ∆E region in the range

[+0.020-0.080] GeV (see Fig. 4.5). In order to have completely independent samples the

bachelor pion is required to be not identified as a loose kaon (see Sec. 2.5.1).

The overall background fraction is smaller than in the DK sample. Nevertheless the

BB background shows more important and complicated peaking structure coming from

many different components (charmless events, `+`− Ks π events .....) with respect to DK

case. Considering that rB, thus the fraction of b→ u-type decays, for this sample is much
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Figure 4.7: Fitted efficiency over the Dalitz (Ksπ
+) vs (Ksπ

−) for the Monte Carlo
sample. The color code indicates the value (in percent) of the fitted efficiency, note that
the color code is only meaningful inside the kinematically allowed Dalitz region. This is
taken from high statistics B− → D∗0K− signal Monte Carlo.

smaller that for B− → D̃0K− sample, it seems to be difficult to consider the use of this

sample for fitting the angle γ, but, being that in the signal region (mES > 5.272) the BB̄

events amounts to about 95% of the total number of the events, this sample can be used

to obtain the Fisher parameterization of the BB̄ events. The Fisher parameterization of

the continuum events is obtained using off-peak data sample in the signal region for mES

distribution.

For continuum events the distribution of the Fisher variable F is fitted with a double

Gaussian distribution:

f × e
−

(F−µ1)2

2σ2
1 + (1 − f) × e

−
(F−µ2)2

2σ2
2 . (4.9)

Since on peak data in the signal box contains 94% of BB̄ events, the distribution is fitted

using a double Gaussian for the BB̄ events and for the residual 6% of background events

fixing the parameters of a double Gaussian distribution as obtained from the fit on the

continuum events. The double peak structure is due to the very important weight of the
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|cosθthr.| variable in the Fisher variable. This effect can also be seen in Fig. 4.9 where the

Fisher variable with respect to | cos θthr.| is shown.

4.2.8 Background Dalitz shape

In order to perform the CP fit (described in Sec. 5) the Dalitz distributions for the various

backgrounds are parameterized. the Dalitz shape for continuum qq̄ is parameterized from

off-resonance data events selecting the D0 mass sidebands in order to exclude the real D0

(Mass(D0) < 1.85 GeV/c2 or Mass(D0) > 1.88GeV/c2 is requested). For generic BB̄

Monte Carlo events with no real D0 is used. The selection cuts are identical to those

used for the B− → D0K− , except the ∆E cut which is relaxed to have larger statistics.

Both the distributions (qq̄ and BB̄) are fitted by a symmetric second order polynomial

function:

a0 + a1(x+ y) + a2(x
2 + y2 + xy) , (4.10)

with m2(KSπ
−) ≡ x and m2(KSπ

+) ≡ y.

The fit result for qq̄ is shown in Fig. 4.10. For the BB̄ Monte Carlo the true D0

candidates are removed and the m2(KS, π
±) versus m2(KS, π

∓) distribution is made.

The fit result is shown in Fig. 4.11.

4.3 B− → D̃∗0K− selection

4.3.1 Events selection

The D0 and the KS are reconstructed using the same selection criteria used for the

B− → D0K− selection. The D∗0 is reconstructed in the two channels: D∗0 → D0π0 and

D∗0 → D0γ. The γ candidates for D∗0 → D0γ are requested to have a maximum lateral

moment (LAT , see Sec. 2.6.1) of 0.8. The π0 candidates are reconstructed combining

couples of photon with a energy greater than 30 MeV. The selected π0 are requested to

have a momentum in the interval [70,450] MeV/c and a mass in the interval [115,150]

MeV/c2. To improve the momentum resolution, the π0 candidates are kinematically fit

with their mass constrained to the nominal π0 mass. Before combining a D0 candidate

with a soft π0 or a photon to form a D∗0, a mass-constrained fit is applied to the D0. The

resolution of the D∗0 − D0 mass difference (∆m) is ∼ 1.2 MeV/c2 for D∗0 → D0π0 and

∼ 5.0 MeV/c2 for D∗0 → D0γ. Fig. 4.12 shows the ∆m distributions for D∗0 from Monte

Carlo signal events.
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Figure 4.8: Fisher discriminant variable obtained from the B− → D0π− analysis for BB̄
events (top distribution) and for continuum events (bottom distribution).
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Figure 4.9: Fisher discriminant variable versus | cos θthr.| on continuum Monte Carlo
events. The correlation is clearly visible.
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Figure 4.10: Distributions of m2(KS, π
±) for B± candidates (top plot) and m2(KS, π

∓)
for B± candidates (bottom plot). The points represent the qq̄ off-resonance data events,
the histogram the result of the second order polynomial fit and the dashed histogram the
projection of an uniform distribution.

Figure 4.11: Distributions of m2(KS, π
±) for B± candidates (top plot) and m2(KS, π

∓)
for B± candidates (bottom plot). The points represent the BB̄ Monte Carlo events, the
histogram the result of the second order polynomial fit and the dashed histogram the pro-
jection of an uniform distribution.



122 Event selection

The charged B is reconstructed adding the kaon to the D∗0 candidate and a kinematic

and geometric fit is performed to the whole decay. In this fit charged B and D0 decay ver-

texes are reconstructed. In order to improve the mES and ∆E resolution in the kinematic

fit the D∗0 and D0 masses are fixed to their nominal value. The resolutions, measured on

MC signal events, are 2.6 MeV/c2 and 16.7 MeV for mES and ∆E, respectively. As in the

B− → D̃0K− selection, the cut | cos θthr.| < 0.8 is required to suppress the background

from continuum production of light quarks. If multiple B candidates are found in the

same event after all the selection criteria are applied, the candidate with the smallest

χ2 = χ2(∆m,mπ0) for D0π0 and χ2 = χ2(∆m) for D0γ is chosen. The fraction of events

with multiple B candidates is 9% for D0π0 and 3% for D0γ. After the best choice selec-

tion the contamination of background events coming from true D0γ signal events into the

D0π0 signal sample and viceversa is completely negligible. The best choice algorithm has

an efficiency on signal Monte Carlo events of (75±3.0)% for D0π0 and (63±7)% for D0γ.

The correlation among the variables used in the χ2 calculation and the fitted parameters,

m2(Ksπ
+) and m2(Ksπ

−), is evaluated on signal Monte Carlo and it is negligible.

The final selection criteria, optimized in order to maximize the statistical significance,

are:

• |cosθthr.| <0.8

• tight K-id on bachelor Kaon

• |M(D0) −M(PDG)| <12 MeV/c2

• |M(KS) −M(PDG)| <9 MeV/c2

• |∆m− ∆m(PDG)| < 2.5 MeV/c2 in the D0π0 and < 10 MeV/c2 in the D0γ

• cos(αKS
) > 0.99

• |∆E| < 30 MeV

• MES > 5.2 GeV/c2

The overall efficiency is 4.3% for the D0π0 and 8.1% for the D0γ decay mode.
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Figure 4.12: The ∆m mass difference distribution for signal MC events. The distributions
are fitted with a single Gaussian in order to estimate the width and the mean value. For
the D0γ the Gaussian fit gives a rough estimation of the mean and of the width of the
distribution. Left plot: the ∆m width of D0π0 is around 1.2 MeV/c2. Right plot: the
∆m width of D0γ is around 5.1 MeV/c2.

4.3.2 Sample composition

Like the B− → D̃0K− selection, a fit to the mES distribution is performed after applying

the selection criteria in order to obtain an estimate of the event yield fs = N(D∗K)+N(D∗π)
Ncand

and Data-Monte Carlo comparison. Fig. 4.13 shows the data mES distribution with the

fit superimposed.

The background can be divided in two main categories: continuum background and

BB̄ background; the continuum is the dominant background. The BB̄ background is

composed by a peaking (in mES) component and a non-peaking component. The non-

peaking component can be parameterized as the continuum background and then is easy

to reduce. The peaking background, instead, is more difficult to reduce and is essentially

constituted fromD∗0π events that can be considerably suppressed applying the tight kaon-

id requirement on the bachelor track and the tight |∆E| < 30 MeV cut. The Fraction

of B− → D∗0π− (f(Dπ) = N(Dπ)
N(DK)+N(Dπ)

) events can be estimate simply counting the

number of events in Monte Carlo simulation or directly from the Data, evaluating the

D∗0π contribution fitting the ∆E distribution. The D∗0π signal is parameterized with a

Gaussian with a mean of (50.8± 0.2) MeV and a width of (21.0± 0.2) MeV, both fixed to

the Monte Carlo value. The fraction of D∗0π events evaluated on data in the range ∆E

[-30,30] MeV is given in Tabs. 4.2 and 4.3 and the fit result is shown in Fig. 4.14.

Another peaking background component comes from D0 → 4π decay but it has a
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Figure 4.13: The mES distribution obtained after applying the final selection criteria on
data. Data are represented by point with error bars, the fit PDF is superimposed.

negligible contribution after the cut on cos(αKS
).

The background composition is similar in the D∗0 → D0π0 and the D∗0 → D0γ, but

the amount of background is larger in the D∗0 → D0γ channel (see Fig. 4.13).

Like the B− → D̃0K− selection, the background is divided in continuum events and

BB̄ events as the two contribution in principle have different impact on the γ measure-

ment. The BB̄ events have similar shape variables to the signal events and they can have

a higher weight in the likelihood fit with respect to the cc̄ events; the BB̄ events have

also different fraction of true D0 and charge correlation with the bachelor charged track.

The relative fraction of continuum events (fcont.) is evaluated on Monte Carlo simulated

events. In the final CP fit this fraction will be directly estimated from the data sample

exploiting the Fisher variable information as discussed in Sec. 5).

As for the B− → D̃0K− case, to properly parameterize the Dalitz distributions of the

background is important to evaluate the possible presence of true D0 (D0 decaying in

KSπ
−π+) in both cc̄ and BB̄ background events (RBB̄ and Rcc̄). The fraction of true D0

can be estimated from Monte Carlo simulation by simply counting the number of true D0

and false D0 of each background sample after having applied all the cuts. The fraction

of true D0 for the overall background, can be estimated also in data with a D0 mass fit,

selecting events satisfying mES < 5.272 MeV/c2 and having removed the cut on the D0

mass. Fig. 4.15 shows the D0 invariant mass for data. In the fit to the D0 invariant mass
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Figure 4.14: The ∆E distribution obtained after applying the final selection criteria on
data. Data are represented by point with error bars, the fit PDF is superimposed. The
signal PDF is shown in red, while the PDF contribution for the D∗0π sample is reported
in blue.

the mean and the width of the D0 are fixed to 1864 MeV/c2 and 7 MeV/c2 as found on

the Monte Carlo simulation.

Another important parameter is the fraction of events with a true D0 associated with

a negative charged kaon. This fraction is obtained from Monte Carlo cc̄ (RRS
cc̄ ) and BB̄

(RRS
BB̄

) events and is given in Tabs. 4.2 and 4.3.

Even if the uncertainty on this fraction is large, the level of this background is low

and the systematic error is expected to be small. This is confirmed by ToyMC studies.

The summary of the values and errors obtained for the different parameters for the

CP Fit is given in Tab. 4.2 for D0π0 and in Tab. 4.3 for D0γ.

4.3.3 Data - Monte Carlo comparison

The Data - Monte Carlo comparison is performed for the relevant variables used in the

event selection. The agreement is pretty nice after the cut |cos(θthr.) < 0.8| is applied.

For all the plots the colored histograms display the various Monte Carlo components and

the points the data. Comparisons for KS and D0 mass, cos(θthr.), ∆m, mES, ∆E are

shown in Fig. 4.16 for D0π0 and in Fig. 4.17 for D0γ.
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Parameter Value from Data Value from Monte Carlo

fs (mES > 5.272 GeV/c2) 0.92 ± 0.04 0.91 ± 0.05
fs (mES > 5.2 GeV/c2) 0.53 ± 0.08 0.50 ± 0.07

fDπ 0.06 ± 0.07 0.05 ± 0.05

fcont (mES > 5.272 GeV/c2) - 0.64 ± 0.13
fcont (mES > 5.2 GeV/c2) - 0.88 ± 0.03

Rcc̄ - 0.27 ± 0.08
RBB̄ - 0.11 ± 0.06

RRS
cc̄ - 0.23 ± 0.11

RRS
BB̄

- 1

Table 4.2: Values for parameters for D0π0 used in the likelihood. Whenever possible the
values obtained from Data are used. Most of the parameters are evaluated directly with
the likelihood fit (see. Sec. 5.1).

Parameter Value from Data Value from Monte Carlo

fs (mES > 5.272 GeV/c2) 0.47 ± 0.10 0.62 ± 0.08
fs (mES > 5.2 GeV/c2) 0.22 ± 0.04 0.16 ± 0.04

fDπ 0.00 0.01 ± 0.09

fcont (mES > 5.272 GeV/c2) - 0.66 ± 0.06
fcont (mES > 5.2 GeV/c2) - 0.86 ± 0.01

Rcc̄ - 0.13 ± 0.02
RBB̄ - 0.16 ± 0.03

RRS
cc̄ - 0.16 ± 0.06

RRS
BB̄

- 1

Table 4.3: Values for parameters for D0γ used in the likelihood. Whenever possible the
values obtained from Data are used. Most of the parameters are evaluated directly with
the likelihood fit (see. Sec. 5.1).
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(a) D0π0 data sample
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(b) D0γ data sample

Figure 4.15: D0 invariant mass distribution as obtained on the data satisfying mES <
5.272 GeV/c2and having removed the cut on the D0 mass for D0π0 and D0γ. The result
of the fit is superimposed.

4.3.4 The use of the B− → D∗0π− events

The B− → D∗0π− control sample is very useful for resolution studies and for the pa-

rameterization of the shapes of the relevant distributions as Fisher discriminant, ∆E and

mES. The selection criteria are the same as for the B− → D̃∗0K− except the request

for the bachelor track not to be identified as a notAPion as described in Sec 2.5.1. The

|∆E| < 30 MeV cut is applied using the pion hypothesis for the mass of the bachelor

track. The background composition is quite different with respect to the B− → D̃∗0K−

and the peaking background is more consistent. The distribution of ∆E for the D0γ shows

a contribution from D0π events with a γ coming from combinatorial background, those

events present a peak in mES and are shifted around +100 MeV in ∆E, as confirmed

from the Monte Carlo simulation. They are parameterized with a second Gaussian in the

∆E distribution (Fig. 4.18).

Since the helicity distribution of the D0 respect to the D∗0 flight direction has dif-

ferent shapes for D0π0 and D0γ, it can, in principle, be used to characterize the signal

distribution. The D∗ is a vector meson and it has to be fully polarized when it comes

from the B− → D̃∗0K− decay. This explains the shapes of the helicity distribution which

can be calculated assuming a decay of a polarized vector meson into 2 pseudoscalar in

the case of D0π0, and into 1 pseudoscalar plus 1 vector in the case of D0γ. The helicity
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Figure 4.16: Data - Monte Carlo comparison for D0π0 for the relevant variables used for
the selection cuts.
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Figure 4.17: Data - Monte Carlo comparison for D0γ for the relevant variables used for
the selection cuts.
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shape is then ∝ cos(θHel)
2 for D0π0 and ∝ sin(θHel)

2 for D0γ. Fig. 4.19 shows the Data-

MC comparison after the selection cuts for the B− → D∗0π−. Helicity cuts have been

considered for the signal B− → D∗0K− but the significance and the purity of the sample

does not improve significantly, for this reason this variable is avoided from the selection.

The background composition is studied for the B− → D∗0π−. The composition of

the background is quite different respect to the B− → D∗0K− sample due to the more

relevant contribution of the BB̄ events. The contamination of events B− → D∗0K− in

the ∆E window (30 MeV with the pion hypothesis) is negligible. The fraction of signal

events can be estimated from the mES fit: fs = N(D∗π)+N(peak)
Ncand

= 0.96 ± 0.03 for D0π0

and 0.84 ± 0.02 for D0γ, where N(peak) is the number of peaking events in mES. The

peaking contribution can be parameterized as a Gaussian on top of the ARGUS function

which describes the combinatorial background as shown in Fig. 4.20.

The number of peaking events can be estimated on data performing a fit with the

relative fraction frel = 0.10± 0.04, of the peaking Gaussian to the ARGUS function fixed

to the value from the fit on MC simulation. The fraction is consistent for D0π0 and D0γ

and a common mean value is used. The parameters of the peaking Gaussian are also

fixed to the values σpeak = 3.4 MeV/c2, µpeak = 5.280 MeV/c2, from MC simulation fit.

Fig. 4.21 shows the mES distribution and the fit result for B− → D∗0π− obtained after

applying the final selection criteria.

4.3.5 Fisher discriminant

The major source of background events in this analysis is represented from continuum

events. To separate these events a Fisher discriminant is used. The variables used in

the Fisher discriminant are cos θthr., cos θB and the two Legendre monomials function of

order 0 and of order 2. θthr. is the angle of the thrust axis of the B meson with respect

to the rest of the event, while θB is the angle of the B meson with respect to the nominal

z direction of the beams. A detailed description of the events shape variables and of the

Fisher discriminant is given in Sec. 4.2.3. The θthr. is useful to separate jet events for which

the variable is peaked around 1, from BB̄ spherical events for which the variable is almost

uniformly distributed. The cos θB variable takes into account the ∝ sinθ2
B distribution of

the BB̄ events with respect to the ∝ 1 + cosθ2
B of the continuum events in the rest frame

of the Υ(4S).

The Fisher discriminant distribution is fitted with a double Gaussian for off resonance
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Figure 4.18: The ∆E distribution for B− → D∗0π− obtained after applying the final selec-
tion criteria. Data are represented by point with error bars, the fit PDF is superimposed.
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Figure 4.19: The cos(θHel) distribution for B− → D∗0π− obtained after applying the final
selection criteria. Data are represented by point with error bars.
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Figure 4.20: The mES distribution for B− → D∗0π− background events obtained after
applying the final selection criteria. Data are represented by point with error bars, the fit
PDF is superimposed. It is evident the contribution of peaking events which is parameter-
ized with a Gaussian function on top of the ARGUS function.
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Figure 4.22: The fisher distributions for off resonance data and B− → D∗π− events. Data
are represented by point with error bars, the fit PDF is superimposed.

events and for B− → D∗π− events. The agreement is pretty consistent with the Fisher

parameterization used for the D0K analysis.

Fig. 4.22 shows the fisher distributions for off resonance data and B− → D∗π− events.

4.3.6 Background Dalitz shape

The Dalitz parameterization for continuum and for BB̄ combinatorial events is different

in principle, as the continuum events are dominated by combinatorics tracks while the

BB̄ events have more consistent contamination of signal-like events. The off-resonance

events distribution is consistent with a flat distribution as shown in Fig. 4.23 then the

Dalitz distribution of continuum events is assumed to be flat. For the Dalitz background

parameterization BB̄ Monte Carlo events and off-resonance data are selected in order to

have a reasonable statistics using the D0 sidebands in the range |∆E| < 100 MeV. Due

to the low statistics of the BB̄ background it cannot be excluded an agreement with a

flat distribution in the Dalitz plot for the D0π0, even if a different structure in the D0γ

is visible. A fit of the Dalitz distribution for the m2(KS, π
+) and m2(KS, π

−) is also

performed with a 2D symmetric second order polynomial function:

a0 + a1(x+ y) + a2(x
2 + y2 + xy) , (4.11)

with m2(Ksπ
+) ≡ x and m2(Ksπ

−) ≡ y.
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Figure 4.23: Distributions of m2(KS, π
±) and m2(KS, π

∓) for B± candidates Off-
resonance events are represented by point with error bars, the continuous line represent a
flat distribution in the Dalitz plot.
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Figure 4.24: Distributions of m2(KS, π
±) and m2(KS, π

∓) for B± candidates. BB̄ events
are represented by point with error bars, the continuous lines represent a flat distribution
in the Dalitz plot.
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(a) Distribution for D0π0 events. (b) Distribution for D0γ events.

Figure 4.25: Distributions of m2(KS, π
±) (top plot) and m2(KS, π

∓) (bottom plot) for B±.
The points represent the BB̄ Monte Carlo events, the histogram the result of the second
order polynomial fit.
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In Figs. 4.23 and 4.24 are reported the relevant distribution for the BB̄ background

and for the continuum events. In Fig. 4.25 is reported the distribution for MC BB̄ events

((Ksπ
+) vs (Ksπ

−)). The histogram of the second order polynomial function from the fit

is overimposed.

4.4 B− → D̃0K∗− selection

4.4.1 Events selection

The D0 and the KS coming from the D0 decay are reconstructed using the same selection

criteria used for the B− → D̃0K− selection. The K∗− is reconstructed in the K∗− →
KSπ

− channel. Since the KS from the D0 and the KS from the K∗− have very similar

invariant mass resolution the same selection criteria are used for both of them. It’s also

required that cosαKS
(K∗) > 0.99 where αKS

(K∗) is the angle between the KS direction

of flight (line between the B vertex, that corresponds to the K∗ vertex and the KS

vertex) and its momentum. This cut is useful to suppress background of the type B− →
D0X−(X− → 3π) (for example X− = a−1 ).

For the selection the invariant mass of the K∗ and the cosine of the helicity angle of the

K∗ daughters are also used. cos θHel is defined as the angle in the K∗ rest frame between

the direction of flight of a K∗ daughter with respect to the direction of flight of the K∗

in the B rest frame (Fig. 4.26). As a cross check, the significance variation depending on

the K∗ mass cut and the cosine of the helicity cut is plotted in Fig. 4.27. This plot is in

agreement with the previous values than the selection is fixed as |mK∗−mK∗(PDG)| < 55

MeV/c2 and | cos θHel| > 0.35. Since the K∗ has spin 1 the angular distribution is a

function of the helicity angle, dN
d(cos θHel)

∝ cos2 θHel. The distribution for background

events instead is rather flat. In order to be consistent with the definition of the Fisher

discriminant used for the B− → D̃0K− selection, the same cut on |cosθthr| < 0.8 is

applied.

The final selection criteria, optimized in order to maximize the statistical significance,

are:

• |mKS
(D0) −mKS

(PDG)| < 9 MeV/c2

• |mKS
(K∗) −mKS

(PDG)| < 9 MeV/c2

• |mD0 −mD0(PDG)| < 12 MeV/c2
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• | cos θthr)| < 0.8

• D0 and B vertex fit procedure required to converge

• cosαKS
(D0) > 0.99

• cosαKS
(K∗) > 0.99

• |mK∗ −mK∗(PDG)| < 55 MeV/c2

• | cos θHel| > 0.35

• |∆E| < 25 MeV

• mES > 5.2 MeV/c2

The overall reconstruction efficiency for signal events is εSig = (11.1 ± 0.5)% after

all selection criteria are applied. The significance of the signal in the final signal region

|∆E| < 25 MeV and mES > 5.270 GeV/c2 is S/
√
S +B = 6.2.

4.4.2 Sample composition

The larger component of background comes from continuum events. This component can

be suppressed with the cut on | cos θT | < 0.8 and with the use of the Fisher discriminant

in the CP likelihood fit. The fraction of continuum events, fcont = Ncont

N
, after all the

cuts applied in the region mES > 5.2 GeV/c2 is obtained counting from Monte Carlo

simulation and the values obtained is fcont,MC = 0.60 ± 0.02 close to the one obtained

with the CP fit fcont,Data = 0.74 ± 0.07 from the data sample. The BB̄ events have

similar event shape distribution to the signal and they are suppressed with a tight cut on

|∆E| < 25 MeV.

The B− → D̃0K∗− decay can present background coming from decay modes with the

same final state particles of the signal. The signal final state is:

D0K∗− = [(π+π−)KS
π+π−]D0 [(π+π−)KS

π−]K∗− . (4.12)

Different decay modes are considered and they are found negligible.

The D0
4πK

∗− decay mode has a branching ratio smaller than to the signal, Br(D0 →
4π) = (7.3 ± 0.5) · 10−3. The contribution of this decay mode is negligible after applying

the request on cosαKS
> 0.99.
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Figure 4.26: In top-left plot (green) the distribution of the variable for the signal. In the
top-right plot the variable distribution for the background. In bottom-left the significance
as a function of the cut on the selected variable and in bottom-right the purity (histogram)
and the efficiency (point with error bars) as a function of the cut. (Top 4 plots) Sequence
of plot described above for the invariant mass of the K∗−. (Bottom 4 plots) Same plots
for cos θHel of the K∗− daughters.
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Figure 4.27: 2D plot of the significance with respect to the cut on the K∗ mass and the
cut on cos θHel. The color scale represent the value of the significance, it increases from
blue to red. The maximum value is 6.2 with |mK∗ − mK∗(PDG)| < 55 MeV/c2 and
| cos θHel| > 0.35.

The KSKSK
∗− decay mode has a branching ratio not reported on the PDG but it

is present in the generic BB̄ Monte Carlo used for this analysis. This contribution is

found negligible after all the selection criteria are applied. No events are found on ' 1

ab−1 BB̄ Monte Carlo sample where the decay mode was generated assuming Br(B− →
K0K̄0K∗−) = 10−5. Evidence of this background is searched on data in the D0 sidebands

(i.e. |mD0 −mPDG| > 20 MeV/c2 corresponding to almost 5 times the D0 mass signal

region) fitting the mES distribution after all the selection criteria applied and no statistical

evidence of this background is found.

TheD0π−π+π− decay mode has a relatively large branching ratioBr(B− → D0π−π+π−) =

(1.1 ± 0.4)% and it includes Br(B− → D0a−1 ) = (6.0 ± 3.3) · 10−3. 3 events of this de-

cay mode are found in ' 1ab−1 BB̄ Monte Carlo sample then this contribution can be

neglected.

The D0KSπ
− mode presents an identical final state to the signal but the (KSπ

−)

system decays with relative angular momentum L=0 instead of L=1. These events are

considered actually as signal events in the CP likelihood fit as they reach the final state

through b → u and b → c interfering amplitudes. These events will be referred in the
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Figure 4.28: The fit to the D0 distribution shows evidence of true D0 background events.
The events are selected in the mES sidebands (mES < 5.27 GeV/c2) with all the selection
cuts applied.

follow as signal Non-Resonant. It is shown in [55] that signal Non-Resonant has a relative

contribution of < 5% respect to the D0K∗−, in another B− → D0K∗− analysis.

As in the case of B− → D̃0K−, the background events are divided in events with

true D0 and with false D0 in order to characterize the Dalitz shape. The estimate of

the fraction of true D0 (R), is done on Monte Carlo events. The values are reported in

Tab. 4.4, together with the fraction of right-sign D0, RRS =
N

D0h∗−

ND0h∗−+N ¯
D0h∗− where h∗− is

a candidate K∗−. The fraction of true D0 is evaluated also on data considering the mES

sidebands. The fraction can be extracted from a fit to the D0 invariant mass using as a

Gaussian for the D0 signal plus a constant for the background. Due to the small statistics

the mean of the Gaussian is fixed to µD0 = 1864.5 MeV/c2 and the width to σD0 = 6.0

MeV/c2 from signal Monte Carlo fitted values. Since the fraction of true D0 is compatible

within the errors in BB̄ and continuum Monte Carlo events, it is assumed the same also

in data. Fig. 4.28 shows the fit to the D0 invariant mass distribution for data and for

Monte Carlo events.

After all the selection criteria are applied, the multiplicity of candidates on data in the

signal region (MES > 5.270 MeV/c2, |∆E| < 25 MeV) is Ncand = 1.055± 0.005. The best

candidate per event is chosen according to the minimum value of the χ2 = χ2(mD0 , mK∗):

χ2(mD0 , mK∗) =
(mD0 −mD0,PDG)2

σ2
D0

+
(mK∗ −mK∗,PDG)2

σ2
K∗ + Γ2

K∗

, (4.13)
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Fraction Estimate from generic MC Estimate from data
RCont (real D0’s in Cont) 0.21 ± 0.02 0.20 ± 0.06
RBB̄ (real D0’s in BB̄) 0.18 ± 0.02 0.20 ± 0.06
RRS

Cont (D0K∗− in Cont) 0.51 ± 0.06 -
RRS

BB̄
(D0K∗− in BB̄) 0.67 ± 0.06 -

Table 4.4: D0 fractions for background events are estimated from generic MC and data, for
the region |∆E| < 25 MeV and mES > 5.2 GeV/c2. In data the mES region is restricted
to 5.2 < mES < 5.27 GeV/c2 to exclude the signal events.

where σ is the experimental resolution on Monte Carlo signal events and ΓK∗ is the

intrinsic width of the K∗. The efficiency of the best candidate choice for signal events is

approximatively εbest = 75%, evaluated on Monte Carlo signal events.

4.4.3 Data - Monte Carlo comparison

Data - Monte Carlo comparison is performed for the relevant variables used in the events

selection. For all the plots the colored histograms display the various Monte Carlo com-

ponents and the points the data. Fig. 4.29 shows the comparison for cos(θthr), cosθHel,

the D0 and KS mass, ∆E and mES. A shift is evident in the mES distribution that can

be quantified as ∆mES = 1.7 MeV/c2.

4.4.4 Efficiency and Background Dalitz shapes

The Dalitz model PDF has to be corrected by efficiency non-uniformities across the Dalitz

plot, ε(m2
+, m

2
−). The correction is obtained by performing an unbinned fit to a third order

polynomial to the signal Monte Carlo where the D0 was allowed to decay isotropically

P (x, y) = 1 + a1 (x+ y) + a2 (x2 + y2 + xy) + a3 (x3 + y3 + x2y + xy2) . (4.14)

The parameterization is symmetrized for x = m2
+ and y = m2

−. Fig. 4.30 shows the Dalitz

plot distribution and the m2
+ and m2

− projections for this signal Monte Carlo sample. In

this figure the blue curves represent the result of the 3rd order polynomial fit, and the red

curves represent the projection for a perfectly flat efficiency. It can be seen that except at

the borders of the kinematically allowed region the efficiency correction is quite consistent

with a flat distribution.

The Dalitz distributions for the different background components (continuum, BB̄),

are evaluated from continuum and generic BB̄ Monte Carlo events after having removed
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Figure 4.29: Data - Monte Carlo comparison of the relevant variables used for the selection
cuts. The events in the plots are selected applying all the selection criteria but the one on
the displayed variable.



144 Event selection

events with real D0. The distributions for continuum and BB̄ are fitted to a symmetric

second order polynomial function, as given in Eq. (4.14) with a3 = 0. The distributions

and fit results are shown in Figs. 4.31 and 4.32, for continuum and BB̄ respectively.

The continuum Dalitz shape is also extracted from off-resonance data by selecting the

D0 mass sidebands in order to exclude the real D0 (D0 mass is required to be smaller

than 1.85 GeV/c2 and larger than 1.88 GeV/c2. Although the statistics is poor the shape

from off-resonance data agrees with that observed from the continuum Monte Carlo.

4.4.5 D0 fractions

The fraction of true D0 (R) and right-sign D0 RRS for continuum and BB̄ events is

reevaluated on Monte Carlo events by counting as described in section 4.4.2 but after

applying the best candidate choice algorithm. The values are reported in Tab. 4.5, which

are essentially unchanged compared to Tab. 4.4.

Fraction Estimate from generic MC

RCont (real D0 in Cont) 0.205 ± 0.022
RBB̄ (real D0 in BB̄) 0.180 ± 0.021
RRS

Cont (D0K∗− in Cont) 0.53 ± 0.06
RRS

BB̄
(D0k∗− in BB̄) 0.67 ± 0.06

Table 4.5: D0 fractions as estimated from generic MC, for the region |∆E| < 25 MeV
and mES > 5.2 GeV/c2.

4.4.6 Fraction of wrong sign signal events

According to the phase space Monte Carlo and applying the best candidate choice algo-

rithm, the fraction of wrong sign signal events is found to be 0.0043±0.0005 for mES > 5.2

GeV/c2. Therefore this component is neglected in the final fit.
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Figure 4.30: Dalitz efficiency mapping for signal MC (phase space), for |∆E| < 25 MeV
and mES > 5.2 GeV/c2 (m2

AB ≡ m2
+, m2

AC ≡ m2
−, m2

BC ≡ mπ+π−). The blue curve is the
result of an unbinned likelihood fit to a second order polynomial (after symmetrization of
the Dalitz plot) to the B− → D̃0K∗− signal Monte Carlo, while the red curve corresponds
to a phase space distribution.
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Figure 4.31: continuum background Dalitz shape from generic Monte Carlo, for |∆E| < 25
MeV and mES > 5.2 GeV/c2 (m2

AB ≡ m2
+, m2

AC ≡ m2
− and m2

BC ≡ mπ+π−). The blue
curve is the result of an unbinned likelihood fit to a second order polynomial (after sym-
metrization of the Dalitz plot), while the red curve corresponds to a phase space distribu-
tion.
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Figure 4.32: BB̄ background Dalitz shape from generic Monte Carlo, for |∆E| < 25 MeV
and mES > 5.2 GeV/c2 (m2

AB ≡ m2
+, m2

AC ≡ m2
− and m2

BC ≡ mπ+π−). The blue curve is
the result of an unbinned likelihood fit to a second order polynomial (after symmetrization
of the Dalitz plot), while the red curve corresponds to a phase space distribution.
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Chapter 5

Measurement of the CP parameters

A maximum likelihood fit technique is used to extract the CP parameters. As described

in detail in Sec. 1.4 the decay chain B∓ → D̃(∗)0K∓ rate can be written as:

Γ∓ ∝ |AD(m2
∓, m

2
±)|2 +r

(∗)2
B |AD(m2

±, m
2
∓)|2 +2κr

(∗)
B Re(AD(m2

∓, m
2
±)A∗

D(m2
±, m

2
∓)ei(δ

(∗)
B ∓γ))

(5.1)

where m2
∓ is the squared invariant mass of the KSπ

∓ combination, AD(m2
−, m

2
+) is the

D0 → KSπ
−π+ decay amplitude, r

(∗)
B and δ

(∗)
B are the amplitude ratio and relative strong

phase between the amplitudes B− → D̄(∗)0K− and B− → D(∗)0K− and κ takes the value

+1 for B− → D̃0K− and B− → D̃∗0(D̃0π0)K−, and −1 for B− → D̃∗0(D̃0γ)K−.

The likelihood obtained from Eq. 5.1 permits to extract directly the CP parameters

r
(∗)
B , δ

(∗)
B and γ, but it is effected to large non Gaussian effects. For a relatively small

dataset and for a small value of r
(∗)
B , the likelihood fit returns a biased estimate of r

(∗)
B

and of the r.m.s of δ
(∗)
B and γ. This is due to the fact that σ2(γ) is proportional to

1/(d2logL/d2γ) and d2logL/d2γ is proportional to r
(∗)
B , therefore it will be smaller for

larger r
(∗)
B . Since r

(∗)
B is positively biased the error returned by the maximum likelihood

fit is smaller than what it should be to represent the statistical fluctuation. Moreover,

while the linearity of γ and δ(∗) is verified, r
(∗)
B saturates at low truth values of r

(∗)
B ,

with a saturation region depending on the statistical contents of the data sample. The

saturation effect goes away with a data sample about ten times larger than one used for

this analysis. The nature of these non Gaussian effects, scaling with the size of the data

sample, is related to the small number of events in the region of the Dalitz plot sensitive

to r
(∗)
B and γ and to the polar coordinates representation of the space of the fit parameters

and, more particularly, to the positive definition of r
(∗)
B . Fig 5.1 shows the value of the

error on γ as a function of rB and the saturation effect of rB .
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Figure 5.1: Left: Error on γ as a function of rB. Right: rB value obtained in the
likelihood fit versus generated rB.

To avoid the effects described above the 4-dimensional Cartesian parameter space 1 is

defined by the variables z± = (x±, y±), with

x± ≡ Re(rB±e
i(δ±γ)) = rB± cos(δ ± γ)

y± ≡ Im(rB±e
i(δ±γ)) = rB± sin(δ ± γ) (5.2)

where ± refers toB± decays. With the choice of this particular basis no physics boundaries

have to be imposed to the fit variables and then there will be not non Gaussian effects

and biases in the fit results. In addition, Cartesian coordinates are largely uncorrelated,

while (rB, γ, δ) are significantly correlated.

Moreover, the Cartesian coordinates are sensitive to the direct CP violation: the

distance d between the measured (x, y) coordinates for B+ and B− coordinates is

d = [(x− − x+)2 + (y− − y+)2]1/2 = 2rB| sin γ| . (5.3)

Therefore a non null distance means evidence of direct CP violation.

In Cartesian coordinates Eq. 5.1 can be written as:

Γ∓(m2
−, m

2
+) ∝ |AD∓|2 + r2

B|AD±|2 + 2
{

x∓Re[AD∓A
∗
D±] + y∓Im[AD∓A

∗
D±]
}

(5.4)

1Here it is referred to B± → D̃0K± decays.
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with AD∓ ≡ AD(m2
∓, m

2
±) and r2

B = x2
∓ + y2

∓.

Eq. 5.4 is valid for both B± → D̃0K± and B± → D̃∗0K± decays. For B± → D̃0K∗±

decays, following what is proposed in [28], the decay rates can be written as:

Γ∓(m2
−, m

2
+) ∝ |AD∓|2 + r2

s |AD±|2 + 2
{

xs∓Re[AD∓A
∗
D±

] + ys∓Im[AD∓A
∗
D±]
}

(5.5)

where

xs± ≡ Re(κrB±e
i(δs±γ)) = κrB± cos(δs ± γ)

ys± ≡ Im(κrB±e
i(δs±γ)) = κrB± sin(δs ± γ) (5.6)

with x2
s∓ + y2

s∓ = κr2
s and 0 < κ < 1. In the limit of a null B∓ → D̃0(KSπ

∓)non−K∗

contribution, κ→ 1, rs → rb and δs → δ.

5.1 Likelihood fit procedure

To extract the CP parameters a fit procedure in different steps is performed. In order

to get from the data sample as many as possible parameters of the PDF shapes a yields

fit is performed. Once selection PDF shapes and yields are known, the Dalitz model is

added to the likelihood and a fit with only the CP parameters floated is performed.

5.1.1 Likelihood parameterization

The probability density function (PDF) distinguishes the following signal-background

components:

Signal(Sig).

Wrong sign signal (SigWS).

Continuum background (Cont), subdivided into two categories:

• real D0 (D0): The PDF distinguishes between real D0 mesons with a right (RS,

i.e. the D0 is seen as D0) or a wrong (WS, i.e. the D0 is seen as D̄0) sign random

bachelor track. This splitting is needed in order to account for the misinterpretation

of D0 decays as D̄0, which is relevant for the Dalitz structure. As the background

source are continuum events, this component does not contain CP violation (i.e.

rB = 0).

• fake D0 (comb).
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BB̄ background, subdivided into three categories:

• Dπ for DK events and DK for Dπ events (Dh). This background has different rB

and strong phase δ as the signal, but the same weak phase γ. This background is

not present in the case of B± → D̃0K∗± decays.

• real D0’s coming from a CP violating channel (like signal) and a combinatorial

wrong sign bachelor track from the other B (SigWS, i.e. the D0 is seen as D̄0). This

component has the same CP violation parameters as the signal, but the D0 is seen

as D̄0.

• other thanDπ/K (BB). This includes D(∗)0X candidates with either a missing parti-

cle or a particle from the other B decay, as well as events with a fake (combinatorial)

D0. This background type contains both peaking and non-peaking components (in

mES and ∆E). This category is itself separated into two subtypes:

– real D0 (D0). As before, the PDF distinguishes between real D0 mesons with

a right (RS) or a wrong (WS) sign random bachelor track. By definition this

category does not contain CP violating channels (i.e. rB = 0), which have

their own component (SigWS);

– fake D0 (comb).

The explicit separation of SigWS from BB̄ is needed since the D0 − D̄0 interference

(CP violating effects) is different. In the case of SigWS the interference effects are as in

the signal (with the D0 seen as D̄0, and vice versa), while in BB̄ the contribution from

wrong sign is either non-interfering, or it is different to that of the signal (in case that

there are CP violating residual channels).

The overall probability density function Pα can then be written as:

Pα = fSigPα
Sig + fDhPα

Dh + fSigWSPα
SigWS +

fCont

{

(1 −RCont)Pcomb
Cont +RCont

[

RRS
ContPα

Cont + (1 − RRS
Cont)Pα

Cont

]}

+

fBB

{

(1 − RBB)Pcomb

BB
+RBB

[

RRS
BB

Pα
BB

+ (1 − RRS
BB

)Pα
BB

]}

(5.7)
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for B± → D̃0K± and B± → D̃∗0K±, and

Pα = fSig(1 − κSigWS)Pα
Sig + fSigκSigWSPα

Sig +

fCont

{

(1 −RCont)Pcomb
Cont +RCont

[

RRS
ContPα

Cont + (1 − RRS
Cont)Pα

Cont

]}

+

fBB

{

(1 − RBB)Pcomb

BB
+RBB

[

RRS
BB

Pα
BB

+ (1 − RRS
BB

)Pα
BB

]}

(5.8)

for B± → D̃0K∗±. The parameters of Eq. 5.7 and 5.8 represent:

• α = D0, D̄0, and α denotes the CP conjugate state of α

• fj is the fraction for component j = Sig,Cont,Dh, SigWS,BB

• κSigWS is the fraction of wrong sign signal relative to (right sign) signal

• RCont (RBB) is the fraction of real D0/D̄0 in Cont (BB) background component

• RRS
Cont (RRS

BB
) is the fraction of right sign D0/D̄0 in Cont (BB) background component;

• Pα
j is the PDF for component j and real D0 (α = D0) or D̄0 (α = D̄0), while Pcomb

j

is the PDF for component j and fake D0.

5.1.2 Yields fit

Before extracting the CP parameters, a simpler fit can be performed in order to extract

the yields (fractions) of the different signal and background components, as well as many

as possible selection PDF shape parameters. The explicit dependence of the PDF:

Pα
j ≡ Pα

j (mES,∆E, F ) . (5.9)

The extraction of the component fractions and selection PDF shapes can be then per-

formed using an extended likelihood function

Lext =
e−ηηN

N !

∏

α

Nα
∏

i=1

Pα(i) (5.10)

where Pα(i) is the total PDF given by Eq. (5.7 and 5.8) for event i, N = ND0 +ND̄0 is the

total number of observed events, and η its expected value according to Poisson statistics.

The yields Nj can be calculated simply as Nj = ηfj, the fractions verifying
∑

j fj = 1.
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The multidimensionality of the PDF is factorized assuming that all these variables are

uncorrelated for all the components:

Pα
j (mES,∆E, F ) = Pα

j (mES)Pα
j (∆E)Pα

j (F ) . (5.11)

It is verified that for the final set of variables and their cuts used in the final fit the

correlations are either negligible or have no effect on the measurements. In the case of

B− → D̃0K∗− the variable ∆E are not used in the fit since the main reason to use ∆E in

the B− → D̃(∗)0K− analysis is to provide discrimination of the B− → D̃(∗)0π− background

events and there is no equivalent background in the B− → D̃0K∗− analysis.

The variable mD is excluded from the likelihood in order to avoid correlations with

the other discriminant variables and a tight cut at 2 sigma of the D0 mass is applied.

The yields fit is performed separately for B− → D̃(∗)0K− and B− → D̃0K∗−.

For B− → D̃(∗)0K− the D0K, (D0π0)K, (D0γ)K, D0π, (D0π0)π and (D0γ)π sam-

ples are used simultaneously in the ∆E region [−80, 120] ([20, 80]) MeV for DK (Dπ)

samples. For theDπ samples loose kaon PID veto is applied to remove contamination from

kaon sample and to insure that the samples are mutually exclusive. The signal, continuum

and BB̄ shapes of each D0K sample are assumed to be the same as for its D0π sample

partner, but are different among the different D0K (i.e. D0K, D0π0K, D0γK) samples,

with two exceptions. First, in the Monte Carlo simulation the ARGUS BB̄ parameter for

D0K and D0π samples are found to be significantly different, therefore they are assumed

to be different. Due to the small amount BB̄ contamination these parameters are fixed to

the values estimated from Monte Carlo in the ∆E signal region, [−30, 30] MeV and [20, 80]

MeV for D0K and D0π samples. For D0K samples the signal ∆E signal range is taken,

rather than the full range, to take into account the dependence of the combinatorial BB̄

background shape with the ∆E cut, since the final CP fit is performed in the signal ∆E

region (as described below). The effect of choosing these values rather than those of the

full ∆E range has a negligible effect in the determination of the other shape parameters.

The second exception is due to the presence of BB̄ mES peaking background on top of

the ARGUS combinatorial shape in the D0π samples only. According to the Monte Carlo

simulation the fraction of this type of background with respect to the combinatorial BB̄

is about 40%, with a width around 3.4 MeV/c2. Therefore, in the final fit and only for

D0π samples is added a Gaussian to the BB̄ background component, allowing to vary

the fraction since ∆E provides a handle to separate it. The Fisher shape for signal and
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Figure 5.2: D0K (top row), (D0π0)K (middle row) and (D0γ)K (bottom row) mES, ∆E,
and Fisher shapes in the ∆E region [−30, 30] MeV, compared to the data. Also shown are
the different background components: Sig(red), Dπ (blue), BB(green) and Cont(magenta).
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Figure 5.3: B− → D̃0K∗− mES, and Fisher shapes extracted from the fit in the ∆E
region [−25, 25] MeV, compared to the data. Also shown are the different background
components: Sig(red), BB (green) and Cont(magenta).

continuum is assumed to be common to all decay modes, after checking its consistency

among the different samples in the Monte Carlo simulation. The shape for BB̄ and Dh

background are taken as for the signal. The yields for all the different samples are taken

as independent and are floated simultaneously. This also includes the continuum and BB̄

yields since the Fisher discriminant provides some separation power. The mES variable

determines the fraction of signal while the Fisher discriminant determines the relative

background fractions for continuum and BB̄ background events.

For B− → D̃0K∗−, as said before, the ∆E variable is not used in the fit and the

region [−25, 25] MeV is selected. Moreover, since there is no equivalent B− → D̃(∗)0π−

channel, only the D0K∗ sample is used. The mES shape for the continuum is assumed

to be the same for B− → D̃0K∗− and B− → D̃(∗)0π−, as verified comparing continuum

Monte Carlo for both selections. For the signal component a common mES resolution

for B− → D̃0K∗− and B− → D̃(∗)0π− is used, while the mean value is taken different in

order to accommodate the apparent shift of ∆mES = 1.7 MeV/c2 for B− → D̃0K∗− data.

The ARGUS end point is left floating and assumed to be the same for B− → D̃0K∗−

and B− → D̃(∗)0π−. It was verified that the apparent mES shift for B− → D̃0K∗−

does not move the endpoint (this was checked by allowing two independent ARGUS
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endpoints). The Fisher discriminant is parameterized using two Gaussians, and the actual

values of the parameters for Signal and BB̄ component and for continuum are taken from

B− → D̃(∗)0π− control sample.

The yields extracted from the fit are shown in Tab. 5.1 and 5.2 respectively for B− →
D̃(∗)0K− and B− → D̃0K∗−. The fit projections for mES, ∆E, and Fisher for B− →
D̃(∗)0K− are shown in Fig. 5.2. The fit projections for mES and Fisher for B− → D̃0K∗−

are shown in Fig. 5.3.

Component D0K Yield D0π Yield
D0K D0π

BB 480 ± 129 912 ± 139
Cont 3091 ± 137 1968 ± 99
Dh 131 ± 15 3554 ± 122
Sig 292 ± 21 68 ± 33

(D0γ)K (D0γ)π

BB 305 ± 47 797 ± 85
Cont 735 ± 51 308 ± 38
Dh 21 ± 8 407 ± 76
Sig 42 ± 9 −18 ± 11

(D0π0)K (D0π0)π

BB 98 ± 23 141 ± 39
Cont 199 ± 24 111 ± 20
Dh 27 ± 7 829 ± 41
Sig 94 ± 11 28 ± 20

Table 5.1: D0K, (D0π0)K, (D0γ)K, D0π, (D0π0)π and (D0γ)π yields as extracted from
the combined shapes fit in the ∆E region [−80, 120] MeV for kaon samples and [20, 80]
MeV for pion data.

Component D0K∗ Yield

BB 31 ± 26
Cont 260 ± 28
Sig 47 ± 9

Table 5.2: B− → D̃0K∗− yields from PDF shapes fit in ∆ in[−25, 25] MeV region.
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5.1.3 Dalitz plot model

When the Dalitz plot model is added, the explicit dependence of the PDF becomes:

Pα
j ≡ Pα

j (mES,∆E, F )Pα
j (m2

ab, m
2
ac) (5.12)

where Pα
j (m2

ab, m
2
ac) is the Dalitz plot dependent part of the PDF.

In the current analysis two models are used to parameterize the Dalitz structure:

in the first model the Dalitz amplitude is parameterized with a sum of Breit-Wigner

functions (Breit-Wigner model), in the second model the ππ S-wave component of the

Dalitz amplitude is replaced by the K-matrix formalism (K-matrix model). A detailed

description of both methods is provided in Chapter 3. Even if the K-matrix model

takes better into account the dynamic in case of overlapping resonances, and not needs

the presence of non-established resonances, the BW model is used for this measurement

since the K-matrix model still lacks a complete evaluation of the systematics for all the

components of the Dalitz amplitude.

The K-matrix model is used in this analysis, as explained in Sec. 5.3.7 to evaluate the

contribution to the systematic error coming from the parameterization of the ππ S-wave

of the Dalitz amplitude and in particular from the introduction of the non-established

resonances σ and σ′. The K-matrix model will then used in the future as the reference

model for the extraction of the CP parameters.

An expression similar to Eq. 5.12 applies for fake D0, comb, where Pcomb
j (m2

ab, m
2
ac)

can be configured in a similar way to Pα
j (m2

ab, m
2
ac). The Dalitz shape for combinatorial

continuum events is estimated by using off-resonance data, as described in Chapter 4. The

correction for BB̄ combinatorial background is obtained from Monte Carlo simulation.

Note that by definition Pα
SigWS(m

2
ab, m

2
ac) = Pα

Sig(m
2
ab, m

2
ac). Pα

j (m2
ab, m

2
ac) for j = Sig,Dh

contain the D0 − D̄0 interference (i.e. rB 6= 0), while Pα
j (m2

ab, m
2
ac) for j = Cont,BB and

Pcomb
j (m2

ab, m
2
ac) do not contain D0 − D̄0 interference (rB = 0). An independent set of

CP -violation parameters is considered for j = BB (by default fixed to zero) in order to

study systematic errors induced by residual CP violating channels contributing to the

BB background. The CP violation parameters of the Dh background component are the

same as those of the signal of the other π/K bachelor signal mode.

The PDF described in Eq. 5.12 is then used for the extraction of the CP parameters.

The (D0π0)K and (D0γ)K channels can be combined from the point of view of CP physics

taking into account the opposite strong phase (δ∗(D0π0) = −δ∗(D0γ), see Sec. 1.4.4) in
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order to have more statistics (the different background levels is properly accounted for

in the full likelihood). The CP fit is performed to the B− → D̃(∗)0K− samples in the

∆E signal region range [−30, 30] MeV to reduce background contributions, especially

from B− → D̃(∗)0π− events. Thus the yields are also floated in the CP fit to account

for differences with respect to the previous shapes fit due to the different ∆E cut. The

fractions of real D0 and right sign D0 in both the Cont and BB background components

are fixed to the estimates found in Chapter 4. The additional input to the CP fit are the

efficiency correction across the Dalitz plot and the Dalitz shape for continuum and BB

background, both described in detail in Chapter 4.

5.2 Sensitivity on the angle γ

After the parameterization of the likelihood it is possible to explicitly show which are the

regions in the Dalitz plot which contribute the most to the determination of the angle γ.

In Gaussian approximation:

σ2(γ) ∝ 1
d2log(L)

d2γ

Sensitivity ∝ d2log(L)

d2γ
(5.13)

where L is the likelihood defined in Sec. 5.1.

For this reason a very high statistics Toy Monte Carlo sample of signal events is

generated according to the Breit-Wigner model and, event by event, the second derivative

with respect to γ of the log-likelihood is evaluated. The result is shown in Figure 5.4 where

each event is weighted by the value of the second derivative with respect to γ of the log-

likelihood. The region with higher sensitivity on γ is the one where the Cabibbo allowed

and double Cabibbo suppressed decays interfere.

5.3 Systematic uncertainties

Since in Cartesian coordinates base the CP parameters have Gaussian behavior, sys-

tematic uncertainties can be included very easily just by replacing σx±
and σy± by

√

σ2
x±

+ σ2
x±,syst

and
√

σ2
y±

+ σ2
x±,syst

, respectively. As the statistical uncertainties dom-

inate yet this measurement and the largest systematic uncertainties are uncorrelated

among the samples, it is appropriate to assume that the global correlations ρ± remain

unchanged with respect to their statistical values. In any case, it is checked that the
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Figure 5.4: Dalitz distribution of the very high statistics Toy Monte Carlo sample of signal
events. The values used to generate the sample are: rB = 0.125, γ = 75◦, δ = −180◦.
Each event is entering into the plot with a weight given by the value of the second derivative
with respect to γ of the log-likelihood. A maximum value for the weight to be plotted is
fixed in order to see in a finer way the structure of the weights over the Dalitz plot. The
black points correspond to the same events with weight equal to unity.
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Source x+ y+ x− y− x∗
+ y∗+ x∗

− y∗−
mES,∆E,F shapes 0.0105 0.0086 0.0088 0.0141 0.0196 0.0218 0.0218 0.0146
Real D0 fraction 0.0050 0.0047 0.0061 0.0036 0.0035 0.0049 0.0028 0.0032
Right sign D0’s 0.0157 0.0090 0.0070 0.0211 0.0065 0.0163 0.0108 0.0103

Eff. in the Dalitz plot 0.0078 0.0085 0.0089 0.0119 0.0067 0.0119 0.0040 0.0079
Tracking efficiency 0.0082 0.0080 0.0095 0.0123 0.0058 0.0109 0.0051 0.0046

Cont bkg. Dalitz shape 0.0195 0.0096 0.0160 0.0149 0.0133 0.0084 0.0083 0.0046
BB bkg. Dalitz shape 0.0026 0.0072 0.0069 0.0130 0.0061 0.0098 0.0029 0.0003

Invariant mass resolution 0.0031 0.0023 0.0022 0.0016 0.0031 0.0023 0.0022 0.0016
Dalitz amplitude and phases 0.0012 0.0069 0.0050 0.0033 0.0043 0.0138 0.0079 0.0079

SubTotal 0.0301 0.0226 0.0258 0.0368 0.0275 0.0373 0.0280 0.0223

Dalitz model (CLEO) 0.0317 0.053 0.0187 0.0215 0.0251 0.0676 0.0222 0.0270
Dalitz model (K-Matrix) 0.005 0.007 0.0025 0.0033 0.0031 0.0045 0.0068 0.0061

Table 5.3: Summary of the contributions to the systematic error in Cartesian coordinates,
(x±, y±) and (x∗±, y

∗
±).

Source xs+ ys+ xs− ys−

mES, F shapes 0.098 0.116 0.079 0.116
Real D0 fraction 0.028 0.036 0.033 0.025
Right sign D0’s 0.033 0.047 0.032 0.042

Efficiency in the Dalitz plot 0.067 0.091 0.059 0.044
Tracking efficiency 0.008 0.011 0.010 0.012

Background Dalitz shape 0.038 0.091 0.044 0.087
Invariant mass resolution 0.003 0.002 0.002 0.002

Dalitz amplitude and phases 0.004 0.014 0.008 0.008

SubTotal 0.132 0.184 0.118 0.160

Dalitz model (CLEO model) 0.033 0.046 0.034 0.034
Dalitz model (K-matrix) 0.007 0.006 0.008 0.006

Table 5.4: Summary of the contributions to the systematic error in Cartesian coordinates
(xs±, ys±).
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impact of the correlation on the confidence regions-intervals is very small (this check was

performed using the average correlation from Toy MC experiments instead of the values

measured in the data). Tab. 5.3 and 5.4 summarize the main systematic uncertainties of

the measurement in Cartesian coordinates, for the three decay modes.

5.3.1 mES, ∆E and Fisher shapes

The effect of fixing the PDF shapes in the CP fit is evaluated by performing a simultaneous

PDF shape and CP fit. Since the extraction of the shapes relies mainly on the Dπ sample,

the CP and shapes fit is performed simultaneously to the D(∗)K or DK∗ and Dπ samples,

with shapes fixed and floated. The systematics was then taken as the quadratic difference

of the errors reported by the two fits. In all cases the difference between the central values

of the two fits is well below the statistical difference.

For B− → D̃(∗)0K− the mES endpoint in the ARGUS parameterization is fixed in the

fit to 5.290 GeV/c2 (the same value is also used as integration limit of the mES PDF).

To estimate the effect of it in the determination of the signal yields and its impact on

the CP parameters it is varied by ±0.5 MeV/c2. The effect was found to be completely

negligible. For B− → D̃0K∗− the mES endpoint in the ARGUS parameterization is left

floating in the fit.

The effect of fixing in the fit the fraction of peaking BB̄ is evaluated. The fraction

is varied within the error calculated on signal Monte Carlo. Similarly the effect of fixing

the shape (from Monte Carlo estimate) of the BB̄ ARGUS parameterization for mES is

evaluated. In all cases the difference between the central values of the two fits is well

below the statistical difference.

5.3.2 Background composition

The fraction of realD0 is estimated from data and Monte Carlo, as explained in Chapter 4,

and the two values agree within the errors. The uncertainty due to the fraction of real D0

in background is estimated by varying this parameter within its statistical error from the

D0 mass fit on data, and then repeating the fit to the data sample. The larger between

the half difference between the two fits and the quadratic difference of the fit errors is

assigned as systematic uncertainty.

A potential difference in the number of real D0 in the continuum background between
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B+ and B− events could fake CP violating effects in the signal. No significant difference

between B+ and B− is found in Monte Carlo. Nevertheless, any potential effect are

taken in account by introducing an independent set of CP parameters for the continuum

background with a real D0. By repeating the nominal fit with this new set of parameters

a negligible impact on the CP parameters is found.

The fraction of right sign (RS) D0’s is taken from Monte Carlo simulation. This

contribution is estimated from the variation of the CP parameters in the fit to the data

sample when a value of 0.5 is assumed instead of the values given in Chapter 4. As before,

the larger between the difference of central values and the quadratic difference of fit errors

is taken. The change observed on the CP parameters is consistent with the larger between

the bias and the rms from a set of Toy MC experiments generated with the nominal value

and fit with 0.5.

5.3.3 Dalitz efficiency

To estimate the effect from the Dalitz efficiency the nominal CP fit is repeated by as-

suming a flat distribution instead of the 3rd order polynomial parameterization given in

Chapter 4. In addition, a systematic uncertainty due to tracking and KS reconstruction

efficiency over the Dalitz plot is evaluated by repeating the fit using alternative values

of the 3rd order polynomial parameterization coefficients with: i) the tracking efficiency

correction applied on the 2 pions from the D0 decay and the bachelor kaon; and ii) track-

ing efficiency correction applied to the pions from the KS decay. In all cases the larger

between the difference of central values and the quadratic difference of fit errors are taken.

The uncertainties from the two corrections are added quadratically.

5.3.4 Dalitz shape for combinatorial background

The Dalitz shape for combinatorial continuum events is estimated by using off-resonance

data, as described in Chapter 4. The correction for BB̄ combinatorial background is

obtained from Monte Carlo simulation. The systematics from this correction is estimated

from the difference on the CP parameters when flat distributions are assumed instead.

The larger between the difference of central values and the quadratic difference of fit errors

is taken.
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5.3.5 Limited mass resolution

The nominal Dalitz model assumes perfect mass resolution. Given that all the resonances

present in the D0 → KSπ
−π+ decay are quite wide compared to the estimated mass

resolution (about 4 MeV2 for a KSπ
+ mass squared of about 1 GeV2, the effect is expected

to be completely negligible. Only the ω(782) has an intrinsic width comparable to the

mass resolution (about 6 MeV2 for a squared π+π− mass of 0.8 GeV2, but the sensitivity of

the CP parameters is in this case suppressed. To evaluate the effect of the limited mass

resolution on the Dalitz plot, two different fits are performed to the reweighed signal

MC. The first fit used the reconstructed KSπ
+ and KSπ

− masses, while the second was

performed with the MC truth masses (perfect resolution). The difference of fit values was

taken as our systematic uncertainty. The errors from the fit for the different parameters

were basically unchanged between the two fits.

5.3.6 Statistical errors on Dalitz amplitudes and phases

The phases and amplitudes of the Dalitz model are fixed to the values found from the fit

to the high statistics D∗+ → D0π+ control sample described in detail in Chapter 3. The

effect coming from the statistical errors on the Dalitz amplitudes and phases is expected

to be not large. It is estimated by performing a simultaneous CP and Dalitz fit with

all these parameters floated. The uncertainty was taken as the largest value between the

difference of central values and the quadratic difference of the errors reported by the two

fits. The difference of central values is in all cases consistent with the quadratic difference

of the statistical errors.

5.3.7 Dalitz model systematic uncertainty

The systematic uncertainty related to the phenomenological parameterization of the D0

decay amplitude represents the main systematic error of the analysis. To evaluate it a

Toy Monte Carlo technique is used: a great number of Toy Monte Carlo experiments are

generated according to the Breit-Wigner Dalitz model. The experiments were then fit

using alternative models. To get ride of statistical fluctuations and avoid double counting

with the data statistical error, each sample is generated with very hight statistics.

The problem with this technique is which values for r
(∗)
B , rs, δ

(∗)
B , δs and γ, are used

in the generation of the experiments. Given the current large statistical errors taking the
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Figure 5.5: Dalitz analysis projections when the CLEO model is used. the three projec-
tions are displayed : Cabibbo allowed (Ksπ

−), the (Ksπ
+) and the (π+π−) (from left to

right respectively).

central values would be just a choice among others, especially if the effect turns out to be

multiplicative with the generated value. Unfortunately, it is verified that the systematic

uncertainty for all Cartesian components evaluated in this way strongly depends with the

values of r
(∗)
B , and rs, and smoothly with the values of δ

(∗)
B , δs and γ.

To avoid this problem each single experiment is generated with all the Cartesian

component generated randomly following independent Gaussian distributions with mean

and width values as measured in the data; this is possible since the Cartesian coordinates

behave almost perfectly as independent Gaussians. The rest of the procedure is identical

to what was described above. Taking the systematic uncertainty from the mean and rms

of the experiment-by-experiment differences for each component, the result is integrated

over the others then represent 1σ interval, independent of all the other variables.

To quote the systematic the CLEO model [42] is used: this model is equivalent to the

Breit-Wigner model but excluding the σ, σ’, K∗
0(1430) DCS, K∗

2 (1430) DCS, K∗(1410),

and ρ(1450) resonances. Fig. 5.5 shows a Dalitz fit to the D∗+ → D0π+ control sample

using the CLEO model: it is clear that this model doesn’t give a good description of the

data sample.

Although σ and σ’ are not established resonances, they are introduced in the Brit-

Wigner Dalitz parameterization to better fit the data distribution. In general all the

(π+π−) S-wave contribution is not well described with a sum of Breit-Wigner function.

To evaluate the effect of the bad description of the (π+π−) S-wave contribution, the K-

matrix model is used. The value of the systematic due to the (π+π−) S-wave is smaller
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than the one obtained from the CLEO model, as expected from Fig. 5.4 where the (π+π−)

S-wave gives a small sensitivity to the angle γ.

5.4 Results of the CP parameters

Using the likelihood defined in Eq. 5.12 the results of the CP parameter for for B− →
D̃0K−, B− → D̃∗0K−, and B− → D̃0K∗− are:

x− ≡ Re(rB−e
i(δ−γ)) = 0.077 ± 0.069(stat.) ± 0.026(exp. syst.) ± 0.019(model syst.)

y− ≡ Im(rB−e
i(δ−γ)) = 0.064 ± 0.092(stat.) ± 0.037(exp. syst.) ± 0.042(model syst.)

x+ ≡ Re(rB+e
i(δ+γ)) = −0.129 ± 0.070(stat.) ± 0.030(exp. syst.) ± 0.032(model syst.)

y+ ≡ Im(rB+e
i(δ+γ)) = 0.019 ± 0.079(stat.) ± 0.023(exp. syst.) ± 0.021(model syst.)

x∗− ≡ Re(r∗B−e
i(δ∗−γ)) = −0.131 ± 0.093(stat.) ± 0.028(exp. syst.) ± 0.021(model syst.)

y∗− ≡ Im(r∗B−e
i(δ∗−γ)) = −0.143 ± 0.105(stat.) ± 0.022(exp. syst.) ± 0.025(model syst.)

x∗+ ≡ Re(r∗B+e
i(δ∗+γ)) = 0.140 ± 0.093(stat.) ± 0.028(exp. syst.) ± 0.025(model syst.)

y∗+ ≡ Im(r∗B+e
i(δ∗+γ)) = 0.013 ± 0.120(stat.) ± 0.037(exp. syst.) ± 0.056(model syst.)

xs− ≡ Re(rs−e
i(δs−γ)) = −0.197 ± 0.201(stat.) ± 0.118(exp. syst.) ± 0.008(model syst.)

ys− ≡ Im(rs−e
i(δs−γ)) = 0.255 ± 0.303(stat.) ± 0.034(exp. syst.) ± 0.006(model syst.)

xs+ ≡ Re(rs+e
i(δs+γ)) = −0.066 ± 0.234(stat.) ± 0.132(exp. syst.) ± 0.033(model syst.)

ys+ ≡ Im(rs+e
i(δs+γ)) = −0.011 ± 0.324(stat.) ± 0.184(exp. syst.) ± 0.046(model syst.)

Fig. 5.6 shows the 68.3% (dark blue) and 95% (bright blue) confidence-level contours

(stat. only) in the (x±, y±) Cartesian fit parameter space for B− → D̃0K−, B− → D̃∗0K−,

and B− → D̃0K∗−. Translate these results in term of the parameters r
(∗)
(s) , δ

(∗)
(s) and γ

require a statistical treatment; both frequestist and Bayesian approach are used. The

statistical treatment will be discussed in detail in Chapter 6.
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Chapter 6

Interpretation of the results and
measurement of γ

In Chapter 5 the results of the CP parameters in Cartesian coordinates (see Eqs. 5.2

and 5.6) for the B± → D̃(∗)K(∗)± decay modes were provided. Cartesian coordinates were

introduced in order to avoid the non Gaussian effects present in the likelihood function of

the parameters rB, δ and γ. Moreover the statistical error on γ depends on the value of

rB, value that results biased in polar coordinates. For these reasons the translation of the

results of the CP parameters in term of r
(∗)
(s) , δ

(∗)
(s) and γ requires a statistical treatment;

both frequentist and Bayesian approach are used.

6.1 Frequentist interpretation of the results

In the classical (frequentist) approach, the confidence interval [p1, p2] for parameter p,

whose true value pt is unknown, is such that has a probability

P (p ∈ [p1, p2]) = 1 − α, (6.1)

of containing the unknown true value. The limits of the interval, p1 and p2, are functions

of the measured value of p. In particular the confidence interval will contain the unknown

true point pt in a fraction 1 − α of the experiments, or in other words, if the experiment

is carried out many times, a fraction 1 − α of those experiments will find the measured

point within the given confidence region. If Eq. (6.1) is satisfied, than the defined interval

covers at the stated confidence level, or that the interval has the correct coverage. In

the case of this analysis the confidence level is not 1-dimensional but 3-dimensional or
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7-dimensional as the unknown vector parameters of parameters is:

pt = (rt
B, γ

t, δt) or pt = (rt
B, γ

t, δt, r∗tB , δ
∗t, rt

s, δ
t
s) . (6.2)

The 3-dimensional (7-dimensional) confidence level regions determined are α = 19.9%,

72.1% (0.52%, 22.02%) corresponding to 1, 1.96 standard deviations respectively for each

single parameter (regardless the others), in the case of a 3-dimensional (7-dimensional)

Gaussian distribution or equivalently, χ2 distribution with 3 (7) degrees of freedom.

Finally for the statistical error on the single parameter is quoted the one correspond-

ing to the 19.9% confidence region (1 standard deviation ellipsoid). The methodology

used requires knowledge of the probability density function, PDF, of the fitted param-

eters z, as a function of the true parameters pt. This PDF can be obtained using toy

MC techniques, where large sets of experiments are generated and fitted using the full

experimental likelihood function Lexp.

6.1.1 Description of the method

Since the Cartesian fit parameter space presents a Gaussian and linearity behavior an

analytical parameterization of the PDF can be constructed:

d4P

d2z+d2z−
(z+, z−|pt) = G2

(

z+; rt
B cos(δt + γt), rt

B sin(δt + γt), σx+, σy+, ρ+

)

×

G2

(

z−; rt
B cos(δt − γt), rt

B sin(δt − γt), σx−
, σy− , ρ−

)

(6.3)

where

G2 (z;µx, µy, σx, σy, ρ) =
1

2πσxσy

√

1 − ρ2
e
− 1

2(1−ρ2)

»

(x−µx)2

σ2
x

+
(y−µy)2

σ2
y

−
2ρ(x−µx)(y−µy)

σxσy

–

(6.4)

and z± = (x±, y±) and p = (rB, γ, δ). The vectors zt
± and pt, defined equivalently to

z± and p respectively, are the corresponding parameters in the truth parameter space.

The Gaussian widths (σx±
, σy±) and the correlations ρ± (all the other correlations are

neglected) distributions can obtained either from the full experimental likelihood Lexp

Toy MC experiments or from the fit to the data sample itself, since the agreement with

the values found in data is very good.

Once the PDF of the fit parameters is constructed as a function of the true parameters,

the technical procedure to construct 3-dimensional confidence regions and their 1- and
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2-dimensional is as follows. The confidence level 1− α for each set of true parameters pt

is calculated as

α(pt) =

∫

D

d4P

d2z+d2z−
(z+, z−|pt)d2z+d

2z− , (6.5)

where the integration domain D (the confidence region) is given by the condition

d4P

d2z+d2z−
(z+, z−|pt) ≥ d4P

d2z+d2z−
(zdata

+ , zdata
− |pt) , (6.6)

i.e. it includes all points in the fit parameter space closer to the truth point than the data

point. The values of zdata
± are those given in section 5.4.

To construct the 3-dimensional confidence region (pt space) a large set of points are

generated pt ≡ (rt
B, γ

t, δt), in the ranges [0, 0.4], [−180◦, 180◦] and [0, 360◦]. For each

generated point pt the integral α(pt) is evaluated according to equations 6.5 and 6.6.

To build a 3-dimensional region of joint probability 1−α0, only those points for which

α(pt) ≤ α0 are selected. The 2-dimensional and 1-dimensional contours are then built by

projecting the 3-dimensional joint probability regions. The values α0 = 0.19875, 0.72092

correspond to the 1 and 1.96 standard deviations 3-dimensional ellipsoids, thus the 1-

dimensional projections represent the 1 and 1.96 standard deviations of each individual

parameter (1.96σ corresponds to a 95% probability content for the case of a 1-dimensional

Gaussian distribution [41, 56]) regardless the other parameters. These values of α0 are

the cumulative (upper) integral of a χ2 probability distribution for χ2 = 12, 1.962 and

ν = 3 degrees of freedom [41, 56].

This procedure results in a confidence domain with the minimum possible area and

so has maximum power to exclude alternative hypotheses. The integral 6.5 with the

contour condition given by Eq. 6.6 can be evaluated numerically, but an analytical eval-

uation is also possible by performing a change of variable to 4-dimensional hyper-spheric

coordinates.

The Neyman’s freedom to define the likelihood ordering offers also the possibility to use

alternatively the likelihood ordering proposed in [57] instead of that given in Eq. (6.6).

In this paper it is raised the issue of under-coverage produced by the usual orderings,

like the one used here, when measured parameters are bounded by physical limits. In

addition to the alternative ordering proposed by Feldman and Cousins [57], a possible

way out (also pointed out in their paper) is to allow the measured parameters to take

unphysical values. This requires knowing the PDF for non-physical values, which often
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Parameter 1σ 1.96σ
rB [0.051,0.184] [0,0.238]
γ [33,108] [213,288] –
δ [67,142] [247,322] –
r∗B [0.090,0.248] [0.027,0.318]
γ∗ [36,106] [216,286] [11,140] [191,320]
δ∗ [262,332] [82,152] [234,363] [54,183]

Table 6.1: The 1σ (1.96σ) intervals for rB, δ, γ (D0K) and r∗B, γ∗ and δ∗ (D∗0K). For
γ and δ the ±180 degree solution is also indicated.

raises conceptual problems. However, in this analysis this problem is not present since

the fit parameter space (Cartesian coordinates) is not bounded. Obviously, this does not

imply that the chosen and that of Feldman-Cousins provide exactly the same confidence

regions (this is the inherent freedom to the Neyman’s definition) but both provide regions

with the correct statistical coverage.

6.1.2 1- and 2-dimensional projections of confidence regions for

D0K, D∗0K and D0K∗

Applying this procedure separately to D0K, D∗0K and D0K∗, and projecting in 1 and

2 dimensions the projections of the 3-dimensional regions of 1 − α0 joint probability is

obtained. Figs. 6.1 and 6.2 show the 2-dimensional projections of the the 19.9% (dark

blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the D0K and

D∗0K modes. Similarly, figures 6.4 and 6.5 show the 1-dimensional projections, which

correspond to 1 and 1.96 standard deviation of each single parameter, regardless the

values of the others. The small statistic of the D0K∗ signal sample is not sufficient to put

significant constraints on the γ value itself: only the (krs − γ) 2-dimensional projection

is shown in Fig. 6.3.

In the 1-dimensional projections the projection of the PDF is also shown. Notice that

both the 2- and 1-dimensional projections show the ±180◦ ambiguity in γ(∗) and δ(∗). The

probability density functions for rB and r∗B show clearly the non-Gaussian behavior and

the poor sensitivity to small values as expected.

Table 6.1 reports numerically the one dimensional 1σ and 1.96σ intervals The results

include the intrinsic two fold ambiguity for γ(∗) and δ(∗).
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Figure 6.1: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue)
confidence-level 3-dimensional regions for the D0K mode.
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Figure 6.2: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue)
confidence-level 3-dimensional regions for the D∗0K mode.
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Figure 6.4: Probability density functions for rB, γ and δ together with the 1-dimensional
projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional
regions for the D0K mode.
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Figure 6.5: Probability density functions for r∗B, γ and δ∗ together with the 1-dimensional
projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional
regions for the D∗0K mode.
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6.1.3 Combination of D0K, D∗0K and D0K∗ decay modes

In order to obtain a more accurate measurement of γ the D0K, D∗0K and D0K∗ decay

modes are combined. The used method for the combination of the results is identical to

that used for each B decay mode separately, but now there are seven true parameters pt=

(rt
B,γt,δt,r∗tB ,δ∗t,rt

s,δ
t
s) and an 12-dimensional Cartesian space for the measured parameters

(z±, z
∗
±, zs±) = (x±, y±, x

∗
±, y

∗
±, xs±, ys±). The PDF in this case reads

d12P

d2z+d2z−d2z∗+d
2z∗−d

2zs+d2zs−

(z+, z−, z
∗
+, z

∗
−, zs+, zs−|pt) = (6.7)

d4P

d2z+d2z−
(z+, z−|rt

B, γ
t, δt)× d4P

d2z∗+d
2z∗−

(z∗+, z
∗
−|r∗tB , γ

t, δ∗t)× d4P

d2zs+d2zs−
(zs+, zs−|rt

s, γ
t, δt

s) .

The confidence level 1 − α for each set of true parameters pt is now calculated as

α(pt) =

∫

D

d12P

d2z+d2z−d2z∗+d
2z∗−d

2zs+d2zs−
(z+, z−, z

∗
+, z

∗
−, zs+, zs−|pt)

d2z+d
2z−d

2z∗+d
2z∗−d

2zs+d
2zs− , (6.8)

where the integration domain D (the confidence region) is given by the condition

d12P

d2z+d2z−d2z∗+d
2z∗−d

2zs+d2zs−
(z+, z−, z

∗
+, z

∗
−, zs+, zs−|pt) ≥

d12P

d2z+d2z−d2z∗+d
2z∗−d

2zs+d2zs−
(zdata

+ , zdata
− , z∗ data

+ , z∗ data
− , zdata

s+ , zdata
s− |pt) . (6.9)

Fig. 6.6 shows the two-dimensional projections in the r
(∗)
B − γ and krs − γ planes for

D0K, D∗0K and D0K∗. The errors are statistical plus experimental systematics. The

region of 1 (2) sigma equivalent 7D-ellipsoid corresponds to the one where αC is smaller

than 0.52% (22.02%)

The combination yields

γ = (67 ± 28 ± 13 ± 11)◦ , (6.10)

where the first error is statistical, the second is the experimental systematic uncertainty

and the third reflects the Dalitz model uncertainty. The contribution to the Dalitz model

uncertainty due to the description of the ππ S-wave in D0 → KSπ
−π+ is 3◦.

From this combination krs is constrained to be < 0.50 (0.75) at one (two) standard

deviation level. It is worth noting that the value of krs depends on the selected phase space

region of B− → D−(KSπ
−) events without introducing any bias on the extraction of γ.
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B − γ and krs − γ planes of the seven-

dimensional one- (dark) and two- (light) standard deviation regions, for D0K, D∗0K and
D0K∗.
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6.2 Bayesian interpretation of the results

The Bayesian interpretation of the results was used for the first measurement of γ with

the D0K and D∗0K decay modes. It doesn’t make use of the Cartesian coordinates

since Bayesian approach, using the information of the complete likelihood function, is

independent on the shape of the likelihood then is not affected by non Gaussian effects.

Moreover the effect of the bias on rB is completely irrelevant for γ and δ measurements

since no use is made of the concept of fitted rB value.

The likelihood function is interpreted as a probability density function for the truth

parameters, a correct estimator can be given by the average value of each parameter

according to its own PDF. This method to obtain an a posteriori distribution for each

parameter requires an a priori distribution, which is assumed flat in the space of polar

coordinates.

6.2.1 Description of the method

The estimation of the confidence regions/intervals with the Bayesian approach requires the

evaluation of the likelihood function Lexp ≡ Lexp(rB, γ, δ) in the whole range of definition

of rB, γ and δ, [0, 1], [-π,π] and [0,2π], respectively, with the yields floated at each given

CP point. The estimate of the confidence region for the CP parameters implies a choice

of a priori distribution. A uniform a priori distribution is assumed for each of the CP

parameters rB, γ and δ.

The confidence region D(C) at a given C confidence level the region in γ− rB space is

defined as:
∫

D(C)
drBdγ

∫ 2π

0
dδLexp(rB, γ, δ)

∫ 1

0

∫ π

−π

∫ 2π

0
Lexp(rB, γ, δ) drBdγdδ

= C . (6.11)

The D(C) definition is arbitrary (this is always the case for confidence region), it is

chosen to define it by starting the integration procedure by the maximum of the likelihood

function and by requiring that the likelihood value at any point in the boundary of D be

the same (integration over all likelihood values larger than the value at the boundary).

Notice that this can easily give disjoint region.

Similarly it is possible to define the 1-dimensional confidence interval at C confidence
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Parameter 68% CL (stat. only) 95% CL (stat. only) Central value
with error (1σ)

γ [-147,-65] [33,114] [-180,-23] [-2,157] [179,180] 70 ± 44
γ∗ [-140,-72] [41,108] [-172,-31] [9,148] 73 ± 35
δ [74,155] [253,335] [0,13] [189,192] [212,360] 114 ± 41
δ∗ [89,157] [269,337] [0,16] [55,195] [234,360] 303 ± 34
rB [0.01,0.13] [0,0.19] 0.087+0.041

−0.074

r∗B [0.08,0.22] [0,0.27] 0.155+0.070
−0.077

γ (combined) [-132,-83] [48,97] [-156,-50] [23,130] 70 ± 26

Table 6.2: Bayesian confidence intervals for γ(∗), δ(∗) and r
(∗)
B (statistical only). Angles

are given in degree. The Bayesian confidence intervals for the combination of the D0K
and D∗0K channels is also given. In the last column the central values with 1σ errors are
also reported. For the γ(∗) and δ(∗) intervals the ±180◦ solution is also indicated. For the
central values the expectation value using the experimental likelihood is quoted, and the
1σ error is given by the 68% confidence limit region around the expectation value. For
the phases the errors is symmetrized taking the largest between the positive and negative
errors.

level for, say, rB, as

∫

I(C)
drB

∫ +π

−π
dγ
∫ 2π

0
dδLexp(rB, γ, δ)

∫ 1

0

∫ π

−π

∫ 2π

0
Lexp(rB, γ, δ) drBdγdδ

= C , (6.12)

where again I(C) can be a set of disjoint interval. In this way it is expected that such

intervals have the correct coverage. Notice that the effect of the bias on rB is completely

irrelevant for γ and δ measurements (no use is made of the concept of fitted rB value).

6.2.2 1- and 2-dimensional confidence regions for D0K and D∗0K

Fig. 6.7 shows the confidence region for γ(∗) versus r
(∗)
B , for D0K and D∗0K. The red

region is the 68% CL region while the yellow one is the 95% CL. Similarly, figures 6.8

and 6.9 show the confidence regions for γ(∗) versus δ(∗) and δ(∗) versus r
(∗)
B , for D0K and

D∗0K. Figs. 6.10 and 6.11 show the probability density functions for r
(∗)
B , γ(∗) and δ(∗)

for D0K and D∗0K, respectively, obtained by integrating the experimental likelihood for

all the values of the other variables: γ(∗), δ(∗); r
(∗)
B , δ(∗); and r

(∗)
B , γ(∗).

On the same figures the confidence intervals at 68% (red) and 95% (yellow) CL are

shown. Notice that the likelihood distribution is nicely showing the ±π ambiguity in

γ(∗) and δ(∗). The probability density function for r
(∗)
B shows clearly the non-Gaussian

behavior as expected, showing the poor sensitivity to small values of r
(∗)
B .



6.2 Bayesian interpretation of the results 179

Br
0 0.05 0.1 0.15 0.2 0.25 0.3

(d
eg

)
γ

-150

-100

-50

0

50

100

150

BABAR
preliminary

Br
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(d
eg

)
γ

-150

-100

-50

0

50

100

150

BABAR
preliminary

Figure 6.7: 68% (red) and 95% (yellow) Bayesian confidence region in γ (∗) − r
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Figure 6.10: Probability density functions for rB, γ and δ for D0K. 68% (red) and 95%
(yellow)Bayesian confidence intervals are shown.
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Figure 6.11: Probability density functions for r∗B, γ∗ and δ∗ for D∗0K. 68% (red) and
95% (yellow) Bayesian confidence intervals are shown.
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Figure 6.12: Probability density function for γ for the D0K − D∗0K combination. 68%
(red) and 95% (yellow) Bayesian confidence intervals are shown.

Tab. 6.2 reports the confidence intervals for the various parameters (statistical only).

For the central values the expectation value using the experimental likelihood is quoted,

and the 1σ error is given by the 68% confidence limit region around the expectation

value. For the phases the errors is symmetrized taking the largest between the positive

and negative errors. The results include the intrinsic two fold ambiguity for the weak and

strong phases.

Fig. 6.12 shows the probability density function for γ from the combination of the

D0K and D∗0K likelihoods, integrated over rB, r∗B, δ and δ∗. The combination of the

D0K and D∗0K likelihoods yields

γ = (70 ± 26 ± 10 ± 10)◦ , (6.13)

where the first error is statistical, the second is the experimental systematic uncertainty

and the third reflects the Dalitz model uncertainty.
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and D0K∗ decays with present measurements from BaBar using all the methods [9].

6.3 Final results and constraint on the ρ̄, η̄ plane

Starting from the results of the CP parameters in Cartesian coordinates given in Sec. 5.4

using a frequentist method the following values for δ
(∗)
B and r

(∗)
B are found:

δ = 104(284)◦ ± 45◦(stat.)+17◦

−21◦(exp. syst.)+16◦

−24◦(model syst.) [0◦, 360◦] ,

δ∗ = 296(116)◦ ± 41◦(stat.)+14◦

−12◦(exp. syst.) ± 15◦(model syst.) [0◦, 360◦] ,

rB = 0.118 ± 0.079(stat.) ± 0.034(exp. syst.)+0.036
−0.034(model syst.) [0, 0.277] ,

r∗B = 0.169 ± 0.096(stat.)+0.030
−0.028(exp. syst.)+0.029

−0.026(model syst.) [0, 0.352] .

The small statistic of the D0K∗ signal sample is not sufficient to put significant constraints

on the γ, δ and rs values.

Combining the D0K, D∗0K and D0K∗ decays γ results:

γ = (67 ± 28 ± 13 ± 11)◦ , (6.14)

where the first error is statistical, the second is the experimental systematic uncertainty

and the third reflects the Dalitz model uncertainty. The contribution to the Dalitz model

uncertainty due to the description of the ππ S-wave in D0 → KSπ
−π+ is valuated using

the K-matrix Dalitz fit and found to be 3◦.

These results agree fairly well with those obtained using a Bayesian technique with

flat prior for γ, δ(∗) and r
(∗)
B .
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Figure 6.14: Projected errors on γ for the combination of several methods and all decay
modes described in the text, for rB = 0.1.

Fig. 6.13 shows the γ posterior probability density function obtained from [9] with a

Bayesian approach comparing the BaBar results from D0K, D∗0K and D0K∗ to Dalitz

and ADS+GLW methods alone and the selected (ρ̄, η̄) region from the BaBar measure-

ments with all methods.

The current measurement of the angle γ is still dominated from the statistic. The

larger contribution to the systematic error comes from the Dalitz model uncertainty. This

contribution will be sensibly reduced when the K-matrix fit will contain the complete

evaluation of the systematics for all the component of the Dalitz amplitude and will

become the only model used for the γ measurement. Since the statistical error of γ depends

by the value of r
(∗)
B and no precise measurement of r

(∗)
B exists it is difficult to project the

error on γ with the increasing of the integrated luminosity. Fig. 6.14 shows the projected

errors on γ for both the Dalitz method alone and the combination of all methods assuming

rB = 0.1: the points correspond to the values obtained with simulations, the curve is the

smoothed expectation obtained from a fit to those points assuming a 1/
√

∫

Ldt+constant

scaling with integrated luminosity. The horizontal band is the Dalitz model uncertainty

(≈ 6◦). Note that for the assumed rB, the Dalitz model systematic uncertainty will not be

a limiting factor, for both the Dalitz method alone and the combination of all methods.



184 Interpretation of the results and measurement of γ



Conclusions

This thesis presents a measurements of γ from the Dalitz analysis of the D̃0 → KSπ
−π+

decays in B− → D̃(∗)K− decays. Using a frequentist approach the following value of γ is

found:

γ = (67 ± 28 ± 13 ± 11)◦ ,

where the first error is statistical, the second is the experimental systematic uncertainty

and the third reflects the Dalitz model uncertainty.

These results agree fairly well with those obtained using a Bayesian technique with

flat prior for γ, δ(∗) and r
(∗)
B .

For the measurement of γ the Dalitz amplitude is parameterized as a sum of relativis-

tic Breit-Wigner resonances (Breit-Wigner model). This parameterization gives a large

systematic uncertainty to the measurement of γ and in general cannot give a satisfac-

tory parameterization of the D0 → KSπ
−π+ amplitude since it works well only in the

case of narrow, isolated resonances. This is not true in the case of the ππ S-wave of the

D0 → KSπ
−π+ decay amplitude.

A second parameterization of the D0 → KSπ
−π+ Dalitz amplitude is performed using

The K-matrix formalism for the ππ S-wave (K-matrix model). This parameterization is

used to evaluate the contribution to the systematic uncertainty due to the non correct

description of the ππ S-wave. This contribution is found to be 3◦.

The contribution to the systematic error that comes from the Dalitz model uncertainty,

that now is the larger contribution, will be sensibly reduced when the K-matrix fit will

contain the complete evaluation of the systematic error and the K-matrix model will

become the only model used for the γ measurement.

The K-matrix Dalitz fit has also proved that the two scalar resonances σ and σ ′ are

not necessary for the parameterization of the ππ S-wave component and that they appear

only when a Breit-Wigner model is used.
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The current measurement of the angle γ is still dominated by the statistic. With the

increase of integrated luminosity recorded by the BaBar detector the studies performed

on the K-Matrix will become critical to reduce the error.

With higher statistic the model independent approach will become useful for the mea-

surement of γ. In this perspective the measurement from CLEO−C of the parameter ci

and si of Eq. 1.54 will help to reduce the statistical error.

The only D0 decay mode considered so far is D0 → KSπ
−π+ since it is the one that

provides the best sensitivity on γ because of its resonance structure. Other modes, such as

D0 → KSK
−K+, even if less sensitive on γ, will help to reduce the statistical uncertainty.
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