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Introduction

The violation of the CP symmetry was discovered in 1964 in the K0 system and is one of

the open problems in particle physics. CP Violation in the Standard Model arises from

the presence of an irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark

mixing matrix. The unitarity condition of the CKM matrix can be written as a sum of

three complex numbers equal to zero, that can be presented in a form of a triangle, called

the “Unitarity Triangle”, in the complex plane. The fact that the area of the Unitarity

Triangle is different from zero is equivalent to the presence of CP violation in the Standard

Model.

CP violation in the B meson system has been clearly established in recent years.

Although these results are in good agreement with the Standard Model expectations, other

and more precise measurements of CP violation in B decays are needed to over-constrain

the Cabibbo-Kobayashi-Maskawa quark mixing matrix and search for new physics effects.

The angle γ of the Unitarity Triangle of the CKM matrix constitutes one of these crucial

measurements.

Various methods using B− → D̃0K− decays have been proposed to measure γ. Here,

D̃ indicates either a D0 or a D̄0 meson. All methods exploit the fact that a B− can

decay into a D0K− (D̄0K−) final state via b → cūs (b → uc̄s) transitions. These decay

amplitudes interfere when the D0 and D̄0 decay into the same final state, which can lead

to different B+ and B− decay rates (direct CP violation).

In this thesis a measurement of γ in B− → D̃0K− decay with the Dalitz analysis of

D̃0 → KSπ
−π+ is presented. The primary advantage of this method is that it involves the

entire resonant structure of the three-body D̃ decay, with interference of doubly Cabibbo-

suppressed (DCS), Cabibbo-allowed (CA), and CP eigenstate amplitudes, providing the

sensitivity to γ.

The analysis is based on an integrated luminosity of 208 fb−1 recorded at the Υ(4S)

resonance, corresponding to 218 · 106 BB̄ couples, and 21.6 fb−1 collected at a center-
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of-mass energy 40 MeV below with the BaBar detector at the SLAC PEP-II e+e−

asymmetric-energy B Factory.

The B∓ → D̃0K∓, D̃0 → KSπ
−π+ decay chains amplitudes A∓(m2

−, m
2
+) can be

written as

A∓(m2
−, m

2
+) = AB∓(B∓ → D̃0K∓)

[

AD(m2
∓, m

2
±) + rBe

i(δ∓γ)AD(m2
±, m

2
∓)
]

,

where m2
− and m2

+ are the squared invariant masses of the KSπ
− and KSπ

+ combinations,

respectively, AB∓ is the B∓ → D̃0K∓ decay amplitude and AD(m2
−, m

2
+) is the D0 →

KSπ
−π+ decay amplitude. Here rB and δ are the amplitudes ratio and relative strong

phase between the amplitudes B− → D̄0K− and B− → D0K−.

The D0 decay amplitude AD(m2
−, m

2
+) is determined through a Dalitz analysis of a

high-statistics sample of tagged D0 mesons from inclusive D∗+ → D0π+ decays recon-

structed in data.

Two models are used to parameterize the Dalitz structure: in the first model the Dalitz

amplitude is parameterized with a sum of Breit-Wigner functions (Breit-Wigner model),

in the second model the ππ S-wave component of the Dalitz amplitude is replaced with

the K-matrix formalism (K-matrix model). Even if the K-matrix model takes better

into account the case of overlapping resonances, to extract the CP parameters the Breit-

Wigner model is used since the K-matrix model is still preliminary and lacks a complete

evaluation of the systematic error. The K-matrix model is used in this analysis to evaluate

the contribution to the systematic error coming from the parameterization of the ππ S-

wave of the Dalitz amplitude and in particular from the introduction of the non-established

resonances σ and σ′.

Having determined AD(m2
−, m

2
+), the CP parameters are extracted with a simulta-

neous fit to the |A−(m2
−, m

2
+)|2 and |A+(m2

−, m
2
+)|2 distributions for the B∓ → D̃0K∓

sample. Both frequentist and Bayesian approach are used.



Chapter 1

CKM angle γ and
B± → D(∗)0K(∗)± decays

Forty years after its discovery in K0 system [1], the violation of the CP symmetry is one

of the open problems in particle physics. CP violation in the Standard Model arises from

the presence of an irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark

mixing matrix. The unitarity condition of the CKM matrix can be written as a sum of

three complex numbers equal to zero, that can be presented in a form of a triangle, called

the “Unitarity Triangle”, in the complex plane. In recent years the CP violation in the

B meson system has been clearly established [2], and although there is good agreement

with the expectations of the Standard Model, further measurements of CP violation in

B decays are needed to over-constrain the Unitarity Triangle and look for New Physics

effects. Among those a crucial test will be represented by the measurement of γ.

1.1 CP violation in the Standard Model

The electroweak sector of the Standard Model is a gauge theory based on the local group

SUL(2) ⊗ UY (1), which describes the symmetries of the matter fields. The Yang-Mills

electroweak Lagrangian is [3]:

L = −1

4
ΣAW

A
µνW

Aµν − 1

4
BµνB

µν + Ψ̄Liγ
µDµΨL + Ψ̄Riγ

µDµΨR , (1.1)

where the spinors ΨL and ΨR represent the matter fields in their chiral components, and

the field strength tensors are given by:

WA
µν = ∂µW

A
ν − ∂νW

A
µ − gεABCW

B
µ W

C
ν and Bµν = ∂µBν − ∂νBµ . (1.2)
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Family Quantum Numbers

1 2 3 T T3 Y Q = Y/2 + T3

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

1/2
1/2

+1/2
−1/2

−1
−1

0
−1

eR µR τR 0 0 −2 −1

(

u
d

)

L

(

c
s

)

L

(

t
b

)

L

1/2
1/2

+1/2
−1/2

+1/3
+1/3

+2/3
−1/3

uR cR tR 0 0 4/3 +2/3
dR sR bR 0 0 −2/3 −1/3

Table 1.1: Electroweak interaction multiplets.

Here WA and B are the SU(2) and U(1) gauge fields, with the coupling constants g and g ′,

and εABC is the totally anti-symmetric Levi-Civita tensor. The corresponding covariant

derivate is:

DµΨL,R =

[

∂µ + igΣtAL,RWAµ + ig′
1

2
YL,RBµ

]

ΨL,R , (1.3)

where tAL,R and 1/2YL,R are the SU(2) (weak isospin) and U(1) (hypercharge) generators.

The electric charge generator is related to the isospin and hypercharge by:

Q = t3L +
1

2
YL = t3R +

1

2
YR . (1.4)

The left and the right fermion components have different properties under the gauge group:

the left components behave as doublets while the right as singlets. In the symmetric limit

the two chiral component cannot interact each other, and thus mass term for fermions

(of the form Ψ̄LΨR) are forbidden. To give mass terms to fermions as well as to gauge

bosons, the electroweak theory is realized with a vacuum state only invariant under the

UEM(1) electric charge gauge transformation (spontaneous symmetry breaking) [4].

Since the SUL(2) ⊗ UY (1) symmetry is spontaneously broken into UEM(1), only the

linear combination of gauge fields with the quantum numbers of the photon remains mass-

less. A general linear combination between the gauge bosons associated to the generator

in Eq. 1.4 can be written:
(

Aµ

Zµ

)

=

(

− sin θW cos θW

cos θW sin θW

)(

W 3
µ

Bµ

)

(1.5)

where the angle θW is known as the Weak or Weinberg mixing angle. Once the symmetry

is spontaneously broken through the interaction with the Higgs field, Aµ remains massless
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while Zµ, W
+
µ and W−

µ acquire a mass term. W+
µ and W−

µ are defined as:

W±
µ =

1√
2
(W 1

µ ± iW 2
µ) . (1.6)

The bilinear terms in the fields Zµ and W±
µ can be identified as the mass terms:

M2
Z =

v2g2

2cos2θW
, (1.7)

M2
W = cos2θWM

2
Z , (1.8)

which implies tan θW = g′/gYφ. In therms of these new fields the fermionic currents are:

J±
µ = ΣfΨ̄

f (1 − γ5)γµt
±Ψf , (1.9)

J0
µ = Σf Ψ̄

fγµ

[

(1 − γ5)t
3 − 2Q sin2 θW

]

Ψf , (1.10)

Jem
µ = Σf Ψ̄

fγµQ Ψf , (1.11)

where Ψf represents the isospin doublet for the fermions fields (Tab. 1.1) with f acting

as a family index, (1 − γ5) is the left-handed chiral projector, and t± are the isospin

generator associated to the fields W±. The first current describes interactions which

change the electric charge, while the other two, produce transitions charge-conserving.

The Lagrangian 1.1 could be rewritten in two terms: one including interactions between

the neutral current and the Aµ and Zµ bosons, and another describing the interactions of

the W±
µ with the charged current:

LED = LCC + LNC , (1.12)

LCC =
g2

2
√

2
(J+

µ W
+
µ + J−

µ W
−
µ ) , (1.13)

LNC = −eJem
µ Aµ +

g2

2 cos θW
J0

µZ
µ , (1.14)

where e is defined as e = g2 sin θW .

Starting from the same doublet which gives masses to the gauge bosons it is possible

to introduce mass terms for the fermion fields. This imposes others restrictions on the

Higgs field. To obtain fermion mass terms like:

−Ψ̄LΓΨRφ− Ψ̄RΓΨLφ̃ where φ̃ = iσ2φ† (1.15)

invariant under SUL,R(2) transformations, the Higgs field is required to have isospin equal

to 1/2. The Γ matrices contain the Yukawa constants, which determine the strength of

the fermion couplings to the Higgs fields.
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The fermion mass matrix is obtained from the Yukawa couplings expanding φ around

the vacuum state:

M = ψ̄L MψR + ψ̄RM†ψL (1.16)

with

M = Γ · v . (1.17)

It is important to observe that by a suitable change of basis it is always possible to

make the matrix M Hermitian, γ5-free, and diagonal. In fact, it is possible to make

separate unitary transformations on ψL and ψR according to

ψ′
L = LψL, ψ′

R = RψR , (1.18)

and consequently

M → M′ = L†MR . (1.19)

This transformation does not alter the general structure of the fermion couplings in L.

Weak charged currents are the only tree level interactions in the SM that may induce

a change of flavor. By emission of a W an up-type quark is turned into a down-type

quark, or a νl neutrino is turned into a l− charged lepton.

Starting from an up quark that is a mass eigenstate, emission of a W turns it into a

down-type quark state d′ (the weak isospin partner of u) that in general is not a mass

eigenstate. In general, the mass eigenstates and the weak eigenstates do not in fact

coincide and a unitary transformation connects the two sets:





d′

s′

b′



 = V





d
s
b



 (1.20)

V is the Cabibbo-Kobayashi-Maskawa matrix [5, 6]. Thus in terms of mass eigenstates

the charged weak current of quarks is of the form:

J+
µ ∝ ūγµ(1 − γ5)t

+V d . (1.21)

With three fermion generations the matrix V could be expressed in terms of three

angles and one irremovable complex phase [6]. The CKM matrix is usually represented

as:

V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 (1.22)
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The irremovable phase in the CKM matrix allows possible CP violation.

The measurement of the elements of the CKM matrix is fundamental to test the

validity of the Standard Model. Many of them (actually the first two rows of the matrix)

are measured directly, namely by tree-level processes. Using unitary relations one can put

constraints on the top mixing |Vti|. Moreover the B mixing measurements, that involve

box diagrams, can give information also about Vtd and Vtb.

The CKM-matrix can be expressed in terms of four Wolfenstein parameters (λ,A, ρ, η)

with λ = |Vus| = 0.22 playing the role of an expansion parameter and η representing the

CP -violating phase [7]:

V =





1 − λ2

2
λ Aλ3(ρ̄− iη̄)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ̄− iη̄) −Aλ2 1



+O(λ5) (1.23)

which clearly shows how, for small values of λ = sin (θC), the CKM matrix tends to the

unitary matrix. Here an improved parameterization is used, given in [8], which is obtained

replacing the parameters ρ and η with:

ρ̄ = ρ

(

1 − λ2

2

)

η̄ = η

(

1 − λ2

2

)

(1.24)

In this way the power expansion in λ includes also O(λ4) contributions, so that the

deviation from the unitarity of the matrix is negligible in practice.

1.2 The Unitarity Triangle

The Wolfenstein parameterization offers a transparent geometrical representation of the

structure of the CKM matrix. The unitarity of the CKM matrix, V V † = 1, requires that

for any choice of i, j, k, l = 1, 2, 3

=[VijVklV
∗
ilV

∗
kj] = J

3
∑

m,n=1

εikmεjln , (1.25)

where J is called the Jarlskog invaraint. The unitarity of the matrix implies also various

relations among its rows and columns. Three of them are very useful for understanding

the Standard Model predictions for CP violation:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (1.26)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1.27)
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Figure 1.1: The rescaled Unitarity Triangle, all sides divided by V ∗
cbVcd.

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.28)

Each of these three relations requires the sum of three complex quantities to vanish and

so can be geometrically represented in the complex plane as a triangle. These are “the

unitarity triangles”. Eq. 1.25 implies that the all the unitarity triangles are equal in area

and that the area is equal to |J |/2. If the CP symmetry is violated the area of the triangles

is not zero. The B physics is related to the third triangle at least for what the B-Factories

can access. The study of the parameters of this triangle encompasses the physics of CP

violation in Standard Model. The openness of this triangle, due to the fact that all the

three sides are of the same order of magnitude, predicts large CP asymmetries.

The rescaled Unitarity Triangle (Fig. 1.1) is derived from Eq. 1.28 by:

• choosing a phase convention such that (VcdV
∗
cb) is real,

• dividing the lengths of all sides by VcdV
∗
cb,

• aligns one side of the triangle with the real axis,
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• makes the length of this side 1.

The form of the triangle is unchanged. Two vertexes of the rescaled Unitarity Triangle

are thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex are denoted by

(ρ̄, η̄).

This triangle is very important in B Physics. Both angles and sides can be measured

in a B factory and they can offer an independent test of the Standard Model. The

incompatibility of the new measurements with a triangle would be a proof of new Physics.

Depicting the rescaled Unitarity Triangle in the (ρ̄, η̄) plane, the lengths of the two

complex sides are:

Rb ≡
√

ρ̄2 + η̄2 =
1 − λ2/2

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

Rt ≡
√

(1 − ρ̄)2 + η̄2 =
1

λ

∣

∣

∣

∣

Vtd

Vcb

∣

∣

∣

∣

(1.29)

and the three angles are defined as:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

≡ π − α− β (1.30)

It is possible to perform various independent measurements of the angles and the

sides which can over-constrain the Unitarity Triangle and then test the Standard Model.

Moreover, if the Standard Model holds, it is possible to obtain informations on a particular

quantity from the constraints coming from the other quantities.

Various analysis exist differing mainly in the statistical approach. Fig 1.2 shows the

selected (ρ̄, η̄) region from the approach proposed in [9]. This analysis uses a Bayesian

approach and the following constraints:

• The relative rate of charmed and charmless b-hadron semileptonic decays which

allows to measure the ratio

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

=
λ

1 − λ2

2

√

ρ̄2 + η̄2 . (1.31)

The constraint from this quantity results in a circle in the plane centered at (0, 0).

• The B0
d − B̄0

d time oscillation period which can be related to the mass difference

between the light and heavy mass eigenstates of the B0
d − B̄0

d system

∆md =
G2

F

6π2
m2

W ηcS(xt) A
2λ6 [(1 − ρ̄)2 + η̄2] mBd

f 2
Bd
B̂Bd

, (1.32)
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Figure 1.2: Analysis of the Unitarity Triangle proposed in [9]. The used constraints are:
|Vub/Vcb|, ∆md, ∆md/∆ms and sin(2β).
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Figure 1.3: γ posterior probability density function obtained from the analysis of the Uni-
tarity Triangle proposed in [9]. The expected value of γ is (57.9 ± 7.4)◦.
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where S(xt) is the Inami-Lim function [10] and xt = m2
t /M

2
W . mt is the top mass

in the MS regularization scheme, mMS
t , and ηc is the perturbative QCD short-

distance NLO correction. The remaining factor, f 2
Bd
B̂Bd

, encodes the information of

non-perturbative QCD. The ∆md constraint can be represented by a circle centered

at (1, 0).

• The limit on the lower value for the time oscillation period of the B0
s − B̄0

s system

is transformed into a limit on ∆ms and compared with ∆md

∆md

∆ms
=

mBd
f 2

Bd
B̂Bd

mBsf
2
Bs
B̂Bs

(

λ

1 − λ2

2

)2

[(1 − ρ̄)2 + η̄2] . (1.33)

This give again a circle centered at (1, 0).

• CP violation in the kaon system which is expressed by |εK|

|εK| = Cε A
2λ6 η̄

[

−η1S(xc) + η2S(xt)
(

A2λ4 (1 − ρ̄)
)

+ η3S(xc, xt)
]

B̂K , (1.34)

where

Cε =
G2

Ff
2
KmKm

2
W

6
√

2π2∆mK

. (1.35)

S(xi) and S(xi, xj) are the appropriate Inami-Lim functions [10] of xq = m2
q/m

2
W ,

including the next-to-leading order QCD corrections [11, 12]. fK is the kaon decay

constant and ∆mK the neutral kaon system mixing frequency.

• The measurement of sin(2β) from the mixing induced CP asymmetry in Bd →
J/ψKS,L.

The Input values for parameters and constraints entering in the fit have been agreed at

the CKM Workshops [13], HFAG [14] and LP05 [15]

This constraint select the region on the (ρ̄, η̄) plane:

ρ̄ = 0.214 ± 0.047 (1.36)

η̄ = 0.343 ± 0.028

Fig 1.3 shows the γ posterior probability density function obtained with a Bayesian

approach, from the constraint used in Fig. 1.2. The expected value of γ is (57.9 ± 7.4)◦.
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1.3 γ measurement using B± → D̃(∗)0K(∗)± decays

The decay amplitudes of the channels B+ → D0K+ and B+ → D̄0K+ are proportional

respectively to the element Vub and Vcb of the CKM matrix and therefore their interference

is sensitive to the weak phase γ = arg(
VudV ∗

ub

VcdV ∗
cb

) [16]. The amplitude of the B+ → D0K+

decay is suppressed with respect to the amplitude of B+ → D̄0K+ since, as shown in

Fig. 1.4, the ratio between the two amplitudes is small due to the CKM factors:

|V
∗
ubVcs

V ∗
cbVus

| =
1

λ
· |Vub

Vcb

| ∼ 0.39 (1.37)

with |Vub

Vcb
| ∼ 0.086 and λ = sinθC ∼ 0.22.

V ∗
cb

Vus

B+ D0

K+

b

u

c s

u

V ∗
ub

Vcs

b

u

u

c
sB+

K+

D0

Figure 1.4: Diagrams of the B+ → D̄0K+ and B+ → D0K+ decays.

Moreover in the case of B+ → D̄0K+ decay the quarks forming the kaon can assume

any color, while in the other case they need to have the same color of the initial quarks

in the B meson. This reduces the amplitude of the B+ → D0K+ by a factor 3.

If we define the quantity rB as the ratio of the two amplitudes:

rB =
|A(B+ → D0K+)|
|A(B+ → D0K+)|

(1.38)

the expected values for rB is ∼ 0.1 from the current measurements.

The phase between the two diagrams contains two contributions: the strong phase

that preserves CP and the weak phase of the element Vub (the phase γ) that violates CP .

Different methods have been proposed for the measurement of γ from the interference

of the channels b → cus and b → ucs, The most important are the GLW, the ADS and

the Dalitz method.

1.3.1 The GLW method

The Gronau-London-Wyler (GLW) method [17, 18] is the first method proposed for the

measurement of γ with the B± → D0K± decays. It presents small theoretical uncertainty
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but it is strongly limited by the statistics. This method uses for the determination of γ

the decays B± → D0
±K

± where D0
± are D0 CP eigenstates: they are reconstructed from

final states with even CP , like π+π− and K+K− and odd CP , like Ksπ
0. The states D0

±

are defined as:

|D0
±〉 =

1√
2
(|D0〉 ± |D0〉) . (1.39)

It is possible to write the following relations between the amplitudes:

A(B+ → D0K+) = e2iγ · A(B− → D0K−) , (1.40)

A(B+ → D0K+) = A(B− → D0K−) .

Moreover from Eq. 1.39:

√
2 · A(B+ → D0

±K
+) = A(B+ → D0K+) ± A(B+ → D0K+) . (1.41)

These relations can be represented as two triangles in the complex plane:

2γ

D  K  )0 --A(B

-

=D  K  )0 +A(B+

D  K  )0 -A(B-

2 A(B D  K  )+0 ++

D  K  )0 +A(B+ 2 A(B D  K  )+0 -

Figure 1.5: Representation on the complex plane of the relation 1.41 between the ampli-
tudes used for the GLW method.

For the measurement of γ the following observables are used:

RCP± =
Γ(B+ → D0

CP±K+) + Γ(B− → D0
CP±K−)

Γ(B+ → D0K+) + Γ(B− → D
0
K−)

= 1 + rB
2 ± 2rB cos γ cos δB

ACP± =
Γ(B+ → D0

CP±K+) − Γ(B− → D0
CP±K−)

Γ(B+ → D0
CP±K+) + Γ(B− → D0

CP±K−)
=

±2rB sin γ sin δB
RCP±

(1.42)

where δB the strong phase between the two amplitudes, γ the weak phase and rB the

ratio of the two amplitudes.

Since rB is expected ∼ 0.1 the triangle of Fig. 1.5 tends to be degenerate. Very high

statistics is then required to use this method for the measurement of γ.
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1.3.2 The ADS method

The Atwood-Dunietz-Soni (ADS) method [19, 20] uses the B+ → D0K+ andB+ → D̄0K+

decays with the D0 decaying in flavor eigenstates. B meson decays in final states that can

be reached in two ways are considered: decay chains via the color allowed B decay followed

by the double Cabibbo suppressed D decay or via color suppressed B decay followed by

the Cabibbo allowed D decay. Fig. 1.6 shows the two possible decay chains. In this way

the two complete amplitudes has comparable amplitudes and so larger interfere terms can

be seen.

B+ → D0K+

B+ → D0K+ D0 → f

D0 → f

final state
same

suppressed

allowed

allowed

suppressed

Figure 1.6: Decay chain used by the ADS method

The amplitudes of the favored and suppressed B decays are related by the equation:

A(B+ → D0K+) = rBA(B+ → D0K+)eiγeiδB , (1.43)

where δB is the strong phase between the two amplitudes, γ the weak phase and rB the

ratio of the two amplitudes.

For the D0 decay:

A(D0 → f) = rDA(D0 → f)eiδD , (1.44)

with δD the phase between the amplitude of the two D decays and rD the ratio between

them:

rD =
|A(D0 → f)|
|A(D0 → f)| . (1.45)
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For the measurement of γ the following observables are used:

RADS =
Γ(B− → [f ]DK

−) + Γ(B+ → [f ]DK
+)

Γ(B− → [f ]DK−) + Γ(B+ → [f ]DK+)
(1.46)

= r2
D + rB

2 + 2rBrD cos γ cos(δB + δD)

AADS =
Γ(B− → [f ]DK

−) − Γ(B+ → [f ]DK
+)

Γ(B− → [f ]DK−) + Γ(B+ → [f ]DK+)

= 2rBrD sin γ sin(δB + δD)/RADS

where δ = δB + δD is the sum of the relative strong phases. A particular final states f of

the D0 decays is K−π+. The limit of this method is that the product of the Branching

ratios of the B and D decays is very small, so the method is limited from the statistics.

1.4 The Dalitz method

The Dalitz [21] method [22],proposed by Giry, Grossman, Soffer and Zupan, uses the

B± → D̃K± decays followed by a multi body D decay. The primary advantage of this

method is that it involves the entire resonant structure of the three-body D decay, with

interference of doubly Cabibbo-suppressed (DCS), Cabibbo-allowed (CA), and CP eigen-

state amplitudes, providing the sensitivity to γ. The γ analysis with the Dalitz model is

performed using the D0 → KSπ
−π+ decay but other D decays, such D0 → KSK

−K+

can be used. The advantage of using D0 → KSπ
−π+ arises from the complex resonant

structure of Dalitz amplitude that gives large interference regions in the Dalitz plot.

To perform the measurement of the angle γ the two CP-conjugate decay modes must

be measured: B± → D̃K± → (KSπ
−π+)D̃K

±, and a Dalitz plot analysis of the KSπ
−π+

final state originating from the intermediate D meson must be performed. In the following

D0 − D̄0 mixing will be neglected, which is a good approximation in the context of the

Standard Model [23].

Considering the following cascade decay

B− → D̃K− → (KSπ
−π+)D̃K

− , (1.47)

the amplitudes:

A(B− → D0K−) ≡ AB , (1.48)

A(B− → D̄0K−) ≡ ABrBe
i(δB−γ) . (1.49)
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The same definitions apply to the amplitudes for the CP conjugate cascade B+ →
D̃K+ → (KS π

+π−)D̃K
+, with the change of weak phase sign γ → −γ in Eq. 1.49. Since

the strong phase of AB is set to zero by convention, δB is the difference of strong phases

between the two amplitudes. For the CKM elements, the usual convention of the weak

phases is used.

For the three-body D meson decay the following quantity is defined:

AD(s12, s13) ≡ A12,13 e
iδ12,13 ≡ A(D0 → KS(p1)π

−(p2)π
+(p3))

= A(D̄0 → KS(p1)π
+(p2)π

−(p3)) ,
(1.50)

where sij = (pi + pj)
2, and p1, p2, p3 are the four-momenta of the KS, π

−, π+ respectively.

The magnitude A12,13 is by definition positive, so that δ12,13 can vary between 0 and 2π.

In the last equality the CP symmetry of the strong interaction together with the fact

that the final state is a spin zero state is used. With the above definitions, the amplitude

for the cascade decay is:

A(B− → (KSπ
−π+)D̃K

−) = ABPD

(

AD(s12, s13) + rBe
i(δB−γ)AD(s13, s12)

)

, (1.51)

where PD is the D meson propagator. The expression for the reduced partial decay width

is:

dΓ̂(B− → (KSπ
−π+)D̃K

−) =
(

A2
12,13 + r2

B A
2
13,12

+ 2rBRe
[

AD(s12, s13)A
∗
D(s13, s12) e

−i(δB−γ)
]

)

dp ,

(1.52)

where dp denotes the phase space variables, and the extremely accurate narrow width

approximation for the D meson propagator is used.

In general, there is no symmetry between the two arguments of AD in Eq. (1.51), and

thus in the rates over the Dalitz plot. A symmetry would be present if, for instance,

the three-body D decay proceeded only through ρ-like resonances. However, the product

AD(s12, s13)A
∗
D(s13, s12) in the interference term in Eq. (1.52) is symmetric under the

exchange s12 ↔ s13 followed by complex conjugation. This fact is used to simplify the

analysis.

The moduli of the D decay amplitude A12,13 can be measured from the Dalitz plot

of the D0 → KSπ
−π+ decay. To perform this measurement the flavor of the decaying

neutral D meson has to be tagged. This can be best achieved by using the charge of the
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soft pion in the decay D∗+ → D0π+. However, the phase δ12,13 of the D meson decay

amplitude is not measurable without further model dependent assumptions.

The Dalitz analysis needed to extract γ can be performed either in a model independent

way or utilizing a model which can be verified on control samples. The advantage of

introducing a model dependence is the reduction in statistical error due to the limited

number of free parameters. The price to pay is that a complete Dalitz plot analysis of

the data is needed and uncertainties on the Dalitz amplitude give large systematic errors

in the measurement of γ.

1.4.1 Model independent determination of γ

To perform a model independent determination of the angle γ it is useful to write the last

term of Eq. 1.52 using the trigonometric relation cos(a+ b) = cos a cos b− sin a sin b:

Re
[

AD(s12, s13)A
∗
D(s13, s12) e

−i(δB−γ)
]

= (1.53)

A12,13A13,12 [cos(δ12,13 − δ13,12) cos(δB − γ) + sin(δ12,13 − δ13,12) sin(δB − γ)] .

To compare with the data, an integration over at least some part of the Dalitz plot has

to be performed. Therefore a partition of the Dalitz plot into n bins is necessary:

ci ≡
∫

i

dpA12,13A13,12 cos(δ12,13 − δ13,12) , (1.54a)

si ≡
∫

i

dpA12,13A13,12 sin(δ12,13 − δ13,12) , (1.54b)

Ti ≡
∫

i

dpA2
12,13 , (1.54c)

where the integrals are done over the phase space of the i-th bin. The variables ci and

si contain differences of strong phases and are therefore unknowns in the analysis. The

variables Ti, on the other hand, can be measured from the flavor tagged D decays as

discussed above, and are assumed to be known inputs into the analysis.

Due to the symmetry of the interference term, it is convenient to use pairs of bins that

are placed symmetrically about the 12 ↔ 13 line, as shown in Fig. 1.7. Consider an even,

n = 2k, number of bins. The k bins lying below the symmetry axis are denoted by index

i, while the remaining bins are indexed with ī. The ī-th bin is obtained by mirroring the

i-th bin over the axis of symmetry. The variables ci, si of the i-th bin are related to the

variables of the ī-th bin by

c ī = ci s ī = −si (1.55)
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Figure 1.7: The partitions of Dalitz plot. The symmetry axis is the dashed line. On the
axes s12 = m2

Ksπ− and s13 = m2
Ksπ+ in GeV2.

while there is no relation between Ti and Tī. That had one used 12 ↔ 13 symmetric bins

centered on the symmetry axis, one would have had si = 0.

Together with the information available from the B+ decay, a set of 4k equations is

obtained:

Γ̂−
i ≡

∫

i

dΓ̂(B− → (KSπ
−π+)D̃K

−) =

Ti + r2
BTī +2rB[cos(δB − γ)ci + sin(δB − γ)si],

(1.56a)

Γ̂−
ī
≡
∫

ī

dΓ̂(B− → (KSπ
−π+)D̃K

−) =

Tī + r2
BTi +2rB[cos(δB − γ)ci − sin(δB − γ)si],

(1.56b)

Γ̂+
i ≡

∫

i

dΓ̂(B+ → (KSπ
−π+)D̃K

+) =

Tī + r2
BTi +2rB[cos(δB + γ)ci − sin(δB + γ)si],

(1.56c)

Γ̂+
ī
≡
∫

ī

dΓ̂(B+ → (KSπ
−π+)D̃K

+) =

Ti + r2
BTī +2rB[cos(δB + γ)ci + sin(δB + γ)si].

(1.56d)

These equations are related to each other through 12 ↔ 13 and/or γ ↔ −γ exchanges.

All in all, there are 2k + 3 unknowns in (1.56),

ci, si, rB, δB, γ (1.57)

so that the 4k relations (1.56) are solvable for k ≥ 2. In other words, a partition of the D
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meson Dalitz plot to four or more bins allows for the determination of γ without hadronic

uncertainties.

1.4.2 Measurement of ci and si at a charm factory

So far, the B decay sample has been used to obtain all the unknowns, including ci and

si, which are parameters of the charm system. A measurement of the parameters ci and

si can be obtained from a charm factory as CLEO-C. Doing so will reduce the number of

unknowns that need to be determined from the relatively low-statistics B sample reducing

the error in the measurement of γ.

The ci can be independently measured at a charm factory [24, 25, 26]. This can be

done by running the machine at the ψ(3770) resonance, which decays into a DD̄ pair.

If one D meson is detected in a CP eigenstate decay mode, it tags the other D as an

eigenstate of the opposite CP eigenvalue. The amplitude and partial decay width for this

state to decay into the final state of interest are:

A(D0
± → KS(p1)π

−(p2)π
+(p3)) =

1√
2

(AD(s12, s13) ± AD(s13, s12)) , (1.58)

dΓ(D0
± → KS(p1)π

−(p2)π
+(p3)) =

1

2

(

A2
12,13 + A2

13,12

)

± A12,13A13,12 cos(δ12,13 − δ13,12)dp ,

where D0
± ≡ (D0 ± D̄0)/

√
2. With these relations, one readily obtains

ci =
1

2

[
∫

i

dΓ(D0
+ → KS(p1)π

−(p2)π
+(p3)) −

∫

i

dΓ(D0
− → KS(p1)π

−(p2)π
+(p3))

]

.

(1.59)

Obtaining this independent measurements reduces the error in the measurement of γ by

removing k of the 2k + 3 unknowns.

In addition, if one of the D mesons decays into a non-CP eigenstate, it is possible to

measure the parameters si. If the ψ(3770) decays into a DD̄ pair of which one decays

into KSπ
−π+ and the other decays into some general state g the partial decay width

corresponding to the ith bin of the KSπ
−π+ Dalitz plot and the jth bin of the g final

state’s phase space is

Γi,j ∝ TiT
g
j̄

+ TīT
g
j − 2(cic

g
j + sis

g
j) , (1.60)

where T g
j , cgj , s

g
j are defined in Eq. 1.54. If, in particular, g = KSπ

−π+ and j = i (or

j = ī) it is possible to measure s2
i .

If the ith bin is divided it into ni sub-bins, such that the quantities A12,13, cos(δ12,13 −
δ13,12), and sin(δ12,13−δ13,12) do not change significantly within each sub-bin i′ Eq. (1.54a)
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may be written as

ci =
∑

i′

ci′ =
∑

i′

Ai′ Ai′ cos(δi′ − δi′)∆pi′ =
∑

i′

√

Ti′Ti′ cos(δi′ − δi′) , (1.61)

where the i′-th sub-bin is the 12 ↔ 13 mirror image of the i′-th sub-bin, Ai′ and δi′ are

the values of A12,13 and δ12,13 on sub-bin i′, taken to be constant throughout the sub-bin,

and ∆pi′ is the area of sub-bin i′.

This statement appears to introduce model dependence. In practice, however, the

high statistics in the tagged D sample and the charm factory ψ(3770) sample allow its

verification up to a statistical error, which can be measured and propagated to the final

measurement of γ.

Analogously to Eq. (1.54c), the quantities Ti′ = A2
12,13∆pi′ are defined, which are

measured using the tagged D sample. The ci′’s are assumed to be measured at the charm

factory, applying Eq. 1.59 to the sub-bin i′. Similarly, Eq. (1.54b) becomes

si =
∑

i′

√

Ti′Ti′ sin(δi′ − δi′) =
∑

i′

±
√

Ti′Ti′ − c2i′ . (1.62)

Eq. (1.62) removes the k unknowns si, and replaces them with the two-fold ambiguity

associated with the sign of the square root. Thus, the best approach is to have the signs

of si determined by the fit, while constraining their absolute values to satisfy Eq. (1.62).

Doing so will reduce the “strain” on the B decay sample, reducing the error on γ.

1.4.3 Model dependent determination of γ

If the functional dependence of both the moduli and the phases of the D0 meson decay

amplitudes AD(s12, s13) were known, then the analysis would be simplified. There would

be only three variables, rB, δB, and γ, that need to be fit to the reduced partial decay

widths in Eq. (1.52).

It is important to stress that the assumption on D0 meson decay amplitudes can

be tested. By making use of the high statistics tagged D sample, one can test that the

assumed shapes of the resonances are consistent with the data. While the error introduced

by using a particular Dalitz model is theoretical, it is expected to be much smaller than

the statistical error in the measurement of γ. It will become a problem only when the

B sample will be large enough to provide a precision measurement of γ. By then the

tagged D sample will have increased as well allowing even more precise tests of these

assumptions.
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A detailed description of the D0 meson decay amplitude parameterization is discussed

in Chapter 3.

1.4.4 Use of B± → D̃∗0K± decays

The γ analysis can also be performed using B− → D̃∗0K− [27] decay, and γ can be

extracted along with the amplitude ratio r∗B and strong phase difference δ∗B. In this case

the different δ∗B values depending on theD∗0 decay mode has to be considered. Considering

in fact the decay mode B− → D∗K−, the D∗ meson (denoted as D̃∗) can be written as:

D̃∗ = D∗0 + r∗Be
i(δ∗B−γ)D̄∗0 . (1.63)

Defining the D∗ CP eigenstates as (using the phase convention CP (D∗0) = D̄∗0 and

CP (D̄∗0) = D∗0 that does not affect observable quantities):

D∗
+ =

D∗0 + D̄∗0

√
2

D∗
− =

D∗0 − D̄∗0

√
2

. (1.64)

D̃∗ results:

D̃∗ =
D∗

+ +D∗
−√

2
+ r∗Be

i(δB−γ)D
∗
+ −D∗

−√
2

. (1.65)

Considering the D∗
+ and D∗

− decays in Dπ0 and Dγ and using ηX to denote the CP

eigenvalue of X = (π0, γ), ηD∗ = ηD × ηX × (−1)l where l is the angular momentum

between D and X. In the Dπ0 decay mode l = 1 for the angular moment conservation,

then ηD∗ = ηD and D∗
± → D±π

0. In the Dγ decay mode again l = −1 for parity

conservation then ηD∗ = −1 × ηD and D∗
± → D∓γ. Then the D neutral meson (denoted

as D̃) coming from the decay D̃∗ → D̃π0 can be written as:

D̃ =
D+ +D−√

2
+ r∗Be

i(δ∗B−γ)D+ −D−√
2

(1.66)

= D0 + r∗Be
i(δ∗B−γ)D̄0 ,

but the one coming from the decay D̃∗ → D̃γ is:

D̃ =
D− +D+√

2
+ r∗Be

i(δ∗B−γ)D− −D+√
2

(1.67)

= D0 − r∗Be
i(δ∗B−γ)D̄0

= D0 + r∗Be
i(δ∗B+π−γ)D̄0 .

Thus there is a shift of the strong phase of π between the to cases.
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The decay chain B∓ → D̃(∗)0K∓ rate can than be written as:

Γ∓ ∝ |AD(m2
∓, m

2
±)|2+r(∗)2

B |AD(m2
±, m

2
∓)|2+2κr

(∗)
B Re(AD(m2

∓, m
2
±)A∗

D(m2
±, m

2
∓)ei(δ

(∗)
B ∓γ)) ,

(1.68)

where m2
∓ is the squared invariant mass of the KSπ

∓ combination, AD(m2
−, m

2
+) is the

D0 → KSπ
−π+ decay amplitude, r

(∗)
B and δ

(∗)
B are the amplitude ratio and relative strong

phase between the amplitudes B− → D̄(∗)0K− and B− → D(∗)0K− and κ takes the value

+1 for B− → D̃0K− and B− → D̃∗0(D̃0π0)K−, and −1 for B− → D̃∗0(D̃0γ)K−.

1.4.5 Use of B± → D̃0K∗± decays

To use B± → D̃0K∗± [28] decays it must be taken in account the fact that the natural

width of the K∗− is not small (∼50 MeV) and the interference with the non-resonant

B− → D0(Kπ)−non−K∗ processes may not be negligible. This changes the relationships

between the unitarity angle γ and the experimental observables.

The amplitudes of the B− → (D0X−
s )p and B− → (D̄0X−

s )p processes, where p

indicates a point in the phase space of the final state and X−
s is a state with strangeness,

is:

A(B− → (D0X−
s )p) = Acpe

iδcp , (1.69)

A(B− → (D̄0X−
s )p) = Aupe

iδupe−iγ , (1.70)

A(D0 → f) = Afe
iδf , (1.71)

A(D0 → f̄) = Af̄e
iδf̄ , (1.72)

where Acp, Aup, Af and Af̄ are real and positive. The index p indicates the position in

the phase space of DX−
s , that is, Ac, Au, δc and δu generally vary as a function of p. The

subscript c and u refer to the b → c and b → u transitions, respectively. The amplitudes

Acpe
iδcp and Aupe

iδupe−iγ generally include both the resonant B− → D0/D̄0K∗− processes

and the non-resonant contributions. The amplitudes for the D0 decay can generally

include the case where D0 →3-body, for instance D0 → K0
Sπ

−π+; in this case Afe
iδf =

f(m2
−, m

2
+) and Af̄e

iδf̄ = f(m2
+, m

2
−), that is, Af , Af̄ , δf and δf̄ are functions of the Dalitz

plot coordinates m2
±, where m2

− and m2
+ are the squared masses of the K0

Sπ
− and K0

Sπ
+

combinations.

The amplitude of the process B− → D[→ f ]X−
s can be written as:

A(B− → (D[→ f ]X−
s )p) = AcpAfe

i(δcp+δf ) + AupAf̄e
i(δup+δf̄−γ) . (1.73)
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From Eq. (1.73) the rate of the process B− → D[→ f ]X−
s is:

Γ(B− → D[→ f ]X−
s ) =

∫

dp
(

A2
cpA

2
f + A2

upA
2
f̄ + 2AcpAfAupAf̄Re(e

i(δp+δD−γ))
)

, (1.74)

where δp = δup − δcp and δD = δf̄ − δf . The rate for the charge-conjugated mode is the

one in Eq. (1.74) with γ → −γ. Analogously, the partial rates Γ(B− → D0X−
s ) and

Γ(B− → D̄0X−
s ) are:

Γ(B− → D0X−
s ) =

∫

dp A2
cp , (1.75)

Γ(B− → D̄0X−
s ) =

∫

dp A2
up . (1.76)

Following the same notation as in [28], the quantities rs, k and δs are introduced, that

will be useful for the γ analysis:

r2
s =

Γ(B− → D̄0X−
s )

Γ(B− → D0X−
s )

=

∫

dp A2
up

∫

dp A2
cp

(1.77)

keiδs =

∫

dp AcpAupe
iδp

√

∫

dp A2
cp

∫

dp A2
up

(1.78)

where 0 ≤ k ≤ 1 for the Schwartz inequality and δs ∈ [0, 2π]. In the limit of a B →2-body

decay, such as B− → DK−:

rs → rB ≡ |A(B− → D̄0K−)|
|A(B− → D0K−)| ,

δs → δB ≡ strong phase of
A(B− → D̄0K−)

A(B− → D0K−)
. (1.79)

k → 1

In the case of theD0 → KSπ
−π+ decay, Afe

iδf = f(m2
−, m

2
+) and Af̄e

iδf̄ = f(m2
+, m

2
−).

The amplitude for the process B∓ → D[→ K0
Sπ

−π+]X∓
s can be written as:

A(B∓ → D[→ K0
Sπ

−π+]X∓
s ) = Acpe

iδcpf(m2
∓, m

2
±) + Aupe

iδup∓γf(m2
±, m

2
∓) , (1.80)

and the rate is

Γ(B∓ → D[→ K0
Sπ

−π+]X∓
s ) ∝ |f∓|2 + r2

s |f±|2 + (1.81)

2krs

{

cos(δs ∓ γ)Re[f∓f
∗
±] + sin(δs ∓ γ)Im[f∓f

∗
±]
}

≡ |f∓|2 + r2
s |f±|2 +

2krs|f∓||f±| cos(δs + δD(m2
∓, m

2
±) ∓ γ) ,
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where δD(m2
∓, m

2
±) is the strong phase difference between f(m2

±, m
2
∓) and f(m2

∓, m
2
±) and

rs, k and δs are defined in Eqs. (1.77) and (1.78).

The notation has been simplified using f± ≡ f(m2
±, m

2
∓) and f∓ ≡ f(m2

∓, m
2
±). The

parameterization given in Eq. (1.81) includes both resonant and non-resonant (Kπ)∓

contributions, since the amplitudes in Eqs. (1.69) and (1.70) include both.

1.5 Dalitz plot model

The K-matrix formalism provides an elegant way of dealing with strongly overlapping

resonances and multi-channel dynamics (resonances). It allows to generalize two-body

channel amplitudes to resonance production with final-state interaction. It was originally

introduced by Wigner [29] and Wigner and Eisbud [30] for the study of resonances in

nuclear reactions. The first use in particle physics goes back to an analysis of resonance

production in Kπ scattering by Dalitz and Tuan [31]. K-Matrix formalism arises in the

context of two-body scattering processes for which unitarity is a strong requirement and

then is extended to describe production decay processes.

1.5.1 Two body scattering

S-matrix formalism was developed by Heisenberg in 1942 [32]. In general, the amplitude

for an initial state |i > to be found in the final state |f > is written as:

Sfi =< f |S|i > , (1.82)

where S is called the scattering operator. One may remove the probability that the initial

and final states do not interact at all, by defining the transition operator T through:

S = I + 2i
√
ρT

√
ρ , (1.83)

where I is the identity operator. The factors 2 and i are introduced for convenience. ρ

represents the phase-space matrix and is diagonal by definition.

From conservation of probability, the scattering operator S is unitary:

SS† = S†S = I . (1.84)

From the unitarity of S it follows:

(T−1 + iρ)† = (T−1 + iρ) (1.85)
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which leads to the definition of the K-matrix:

K−1 = (T−1 + iρ) . (1.86)

From Eq. 1.85 one finds that the K operator is Hermitian:

K = K† . (1.87)

From time reversal invariance of S and T it follows that the K operator must be sym-

metric, i.e. the corresponding K-matrix is real and symmetric.

It is possible to eliminate the inverse operators in Eq. 1.86 by multiplying by K and

T from left and right and vice versa, to obtain:

T = K + iKρT = K + iTρK , (1.88)

obtaining for T :

T = K(I − iρK)−1 = (I + iKρ)−1K . (1.89)

1.5.2 Resonances in the K-matrix formalism

There are two possibilities for parameterizing resonances in the K-matrix formalism: (1)

Resonances can arise from constant K-matrix elements with the energy variation sup-

plied by phase space or (2) from strongly varying pole terms corresponding to a phase

motion [33]. They differ in their dynamical character. In case (1) they are assumed to

arise from exchange forces in the corresponding hadronic channels (molecular resonances),

so that dominant effects are expected near corresponding thresholds. The latter (2) (nor-

mal resonances) correspond to dynamical sources at the constituent level, coupling to the

observed hadrons through decay [33]. The dynamical origin of resonances has to be deter-

mined experimentally. In the approximation that the transition amplitude is dominated

by resonance production (scattering) one form for the K-matrix is the following:

Kij =
∑

α

gαi(m)gαj(m)

(m2
α −m2)

√
ρiρj

+ cij , (1.90)

where i and j are referred to the initial and final states, the sum on α runs over the

number of poles with masses mα and the coupling (or residual functions, expressed in

units of energy; s = m2) are given by:

g2
αi(m) = mαΓαi , (1.91)
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where gαi(m) is real (but could be negative) above the threshold channel i. The constant

K-matrix elements have to be unit-less and real to preserve unitarity. The corresponding

width Γα(m) is

Γα(m) =
∑

i

Γαi(m) (1.92)

for each pole α. In the simplest case of an isolated resonance and one single channel open

it reproduces the Lorentz-invariant Breit-Wigner resonance formula.

Let us consider a single, well isolated resonance α coupling to n open two-body chan-

nels, where the mass mα far above the thresholds of all two-body channels. The partial

widths may be given by the expression:

Γαi(m) =
g2

αi(m)

mα

= γ2
αiΓ

0
αB

2
l;αi(qi, qαi)ρi (1.93)

and the residual function by:

gαi(m) = γαi

√

mαΓ0
αBl;αi(qi, qαi)

√
ρi . (1.94)

It is qαi = qi(mα) the breakup momentum [34] in channel i at the K-matrix pole m = mα.

The Bl;αi(m) are ratios of centrifugal barrier factors in terms of the momentum in

channel i and the resonance breakup momentum for the orbital angular momentum l,

There are several parameterizations where some will be discussed in Sec. 1.5.3.

The γ’s are real constants (but they can be negative) and fulfill the normalization:

∑

i

γ2
αi = 1 (1.95)

which is motivated by unitarity. In practice, not all possible open channels are available

so that this normalization condition is difficult to implement. As fit variable is preferred:

g0
αi = γαi

√

mαΓ0
α (1.96)

The residual function is then given by:

gαi(m) = g0
αiBl;αi(qi, qαi)

√
ρi . (1.97)

The K-matrix total width Γ̃α and the K-matrix partial widths Γ̃αi are defined by:

Γ̃α =
∑

Γ̃αi = Γ0
α

∑

i

γ2
αiρi(mα) . (1.98)
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From these it is:

g0
αi =

√

mαΓ̃αi

ρi(mα)
,

Γ0
α =

∑

Γ̃αiρi(mα) , (1.99)

γ2
αi =

Γ̃αi

Γ0
αρi(mα)

.

It is important to notice, that the K-matrix total width Γ̃α does not need to be

identical with the width which is observed in an experimental mass distribution nor with

the width of the T -matrix pole in the complex energy plane.

In the simple case of a Breit-Wigner resonance far above the threshold for one possible

open channel, in which the different definitions of widths coincide. In the limit the masses

of the decay particles can be neglected compared to mα. it is Γ(mα) ' Γ0
α. In terms of

g0
αi the invariant K-matrix has the simple form:

Kij =
∑

α

g0
αig

0
αjBl;αi(qi, qαi)Bl;αj(qj, qαj)

m2
α −m2

+ cij . (1.100)

In particular the possibility that the g0’s can be negative is allowed.

1.5.3 Penetration factors

The threshold behavior of low energy scattering of hadrons may be studied in terms of

a non-relativistic potential V of range R, where V (r > R) = 0 the typical behavior of

strong interaction. Assuming purely elastic scattering of spin zero particles the potential

in its radial form is given as:

V = V (r) +
l(l + 1)

r2
(1.101)

the second term being the centrifugal potential. For the condition qR � l near threshold

the solutions of the Schrodinger equation approximately can be written in terms of the

phase shift δl of the partial wave l

tan (δl)(qR � l) = 2q · al · (q)2l . (1.102)

The factor (q)2l arises here due to the presence of the centrifugal potential and is ac-

cordingly called “penetration factor”. The factor al is constant and is the “scattering

length”.
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Figure 1.8: Ratios Bl(m,mα) = Fl(m)/Fl(mα) of Blatt-Weisskopf factors using a reso-
nance mass mα = 765 MeV/c2 (marked by the line) for l = 0, 1, 2.

The pion creation of nuclear resonances is inadequately described by only q2l. Hence,

Blatt-Weisskopf [35] proposed the more general form of the penetration factor which is

obtained by solving the radial equation for all qR. With these factors, the fits to the

(low-energy) cross sections become more reasonable. Widely used are Blatt-Weisskopf

barrier factors according to Ref. [36]. They are given in terms of the ratio z = (q/qR)2,

where qR corresponds to the range of the interaction. The factors Fl(z), normalized to

Fl(1) = 1, up to angular momenta l = 2 are:

F0(z) = 1 ,

F1(z) =

√

2z

z + 1
, (1.103)

F2(z) =

√

13z2

(z − 3)2 + 9z
.

In general, the penetration factors are part of a more complex form factor. The

form factors parameterize the underlying interaction (vertexes) (as already here a strong

potential is assumed). Hence, they introduce a model dependence in the analysis. In many

formulations phenomenological corrections are added to the penetration factors, which due

to their small in influence on the lineshape of resonances in practice are indistinguishable

on data.

Fig. 1.8 shows the ratios Bl(m,mα) = Fl(m)
Fl(mα)

of Blatt-Weisskopf factors using a reso-
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nance mass mα = 765 MeV/c2 for l = 0, 1, 2.

1.5.4 One channel resonances

In the case of a single resonance with one single channel opened, the K-matrix assumes

the form:

K =
m0Γ(m)

(m2
0 −m2)ρ

(1.104)

where m0 if the mass of the resonance. The mass dependent width is given by:

Γ(m) = Γ0

(

ρ(m)

ρ0

)

B(q(m), q0)
2 , (1.105)

where Γ0 is the K-matrix width and q(q0) is the breakup momentum for the mass m(m0).

Neglecting the angular momentum dependence of the amplitude, the invariant scattering

amplitude is:

T =
m0Γ0

m2
0 −m2 − im0Γ(m)

B(q(m), q0)
2 1

ρ0
. (1.106)

Eq. 1.106 contains the usual Breit-Wigner form. In this simple case observed width and

K-matrix width are identical. The Breit-Wigner lineshape and the phase shift for the

ρ(770) ( ππ elastic scattering) (m0 = 765 MeV/c2, Γ0 = 110 MeV/c2) are shown in

Fig. 1.9 (a) and (b), respectively. The phase in degree is calculated from the complex

amplitude T the following:

δ = 180 · atan(Im(T )/Re(T ))/π . (1.107)

Unitarity in the elastic case means, that the amplitude ρT can be identified with a

unitarity circle in the complex plane (Re(ρT ); Im(ρT )) centered at (0; 0.5), which reaches

the maximum i at the resonance position. This is the so called Argand diagram displayed

in Fig. 1.10. The quantity inelasticity measures the deviation from the unitary circle

inwards corresponding to intensity vanishing in the other channels the amplitude couples

to. It can be calculated from T :

η = 2 ·
√

(Re(ρT ))2 + (Im(ρT ) − 0.5)2 . (1.108)

1.5.5 Overlapping resonances

In the case of two resonances of masses mA and mB in ππ scattering at mass m the

formulation of the K-matrix is:

K =
mAΓA(m)

m2
A −m2

+
mBΓB(m)

m2
B −m2

. (1.109)
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Figure 1.9: (a): Breit-Wigner amplitude squared (|ρT |2) as function of invariant ππ mass.
The invariant amplitude |T |2 is superimposed as dotted line. (b): ππ phase shift δ which
reaches 90◦ at the resonance mass.

The mass dependent widths are given by:

Γα(m) = Γα0

(mα

m

)

(

q

qα

)

B(q, qα)2 . (1.110)

In the case |mB −mA| � |ΓB + ΓA| the K-matrix is dominated by either the first or

the second resonance, depending whether m is near mA or mB. The transition amplitude

T is then approximately:

T '
[

mAΓA(m)

m2
A −m2 − imAΓA(m)

]

+

[

mBΓB(m)

m2
B −m2 − imBΓB(m)

]

(1.111)

that is the sum of two Breit-Wigner.

In the case of m0 = mA = mB

T =
m0(ΓA(m) + ΓB(m))

m2
0 −m2 − im0(ΓA(m) + ΓB(m))

(1.112)

that is a single Breit-Wigner form with the total width being the sum of the individuals

widths.

Fig. 1.11 shows that the unitarity is violated when two Breit-Wigner amplitude are

added: TA + TB instead of T from (KA +KB).
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Figure 1.10: Argand diagram of the Breit-Wigner amplitude ρT : (Re(ρT ); Im(ρT )). Since
the process is completely elastic unitarity demands that the amplitude follows the unity
circle. The dots are plotted at equidistant ππ masses. The circle starts at (0,0). The
phase shift δ and the inelasticity are marked.

1.5.6 The P-vector formalism

So far “formation” of resonances, observed in two-body scattering ab→ cd has been con-

sidered. The K-matrix formalism can be generalized to describe the case of “production”

of resonances in more complex reactions. The key assumption is that the two-body system

in the final state does not simultaneously interact with the rest of the final state. This

model is called “isobar model” (See Fig. 1.12). One of the most important approach is

the P -vector formalism.

To preserve the two-body unitarity an approach was proposed by Aitchison [37]. The

Lorentz invariant amplitude, F , is given as:

F = (I − iKρ)−1P = TK−1P . (1.113)

This introduces the production vector P parameterizing the resonance production in the

open channels. For n contributing channels P and F are n-dimensional column vectors.

If the K-matrix is given as a sum of poles (Eq. 1.90), then the corresponding P -vector

is:

Pi =
∑

α

βαBL;αi(pi, pαi)g
0
αiBl;αi(qi, qαi)

m2
α −m2

, (1.114)

where βα (expressed in units of energy) carries the coupling of the resonance α to the initial
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Figure 1.11: Two overlapping resonances with the parameters: mA = 1270 MeV/c2,
ΓA = 180 MeV/c2, mB = 1560 MeV/c2, ΓB = 160 MeV/c2. The plot (a) shows the
amplitude squared, |T |2, for the two individual Breit-Wigner resonances. Plot (b) shows
the result of adding the resonance poles in the K-matrix (solid line). The dashed line cor-
responds to the naive sum of the two Breit-Wigner amplitudes |TA + TB|2, which exceeds
1 close to the resonance positions. Also the intensity does not drop to zero between the
resonance peaks. Plot (c) shows the corresponding Argand diagrams for the naive summa-
tion (open circles) and the K-matrix parameterization (black squares). While the latter
follows the unitarity circle the Breit-Wigner summation clearly is outside the unity circle
in contradiction to the unitarity requirement. Plot (d) shows the phase motion for the
K-matrix parameterization, where dashed lines mark the 900 and 2700 steps which cross
the phase shift at the masses mA and mB.
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Figure 1.12: Isobar model: the two-body system in the final state does not simultaneously
interact with the rest of the final state.

state. The centrifugal barrier factor, BL;αi(pi, pαi), is introduced ad hoc and depends on

the angular momentum in the production L. It is a function of the recoil momentum pi

of the resonance against the spectator.

The constant βα is in general complex ( βα = bαe
iφ, φ is a phase due to the initial

production process). For convenience βα is formulated in terms of the dimensionless β0
α

βα = β0
α

√

∑

i

(g0
αi)

2 . (1.115)

In the Case of an isolated resonance in a single channel, the P-vector is parameterized

as:

P = β0 ·BL(p, p0) ·
g2
0Bl(q, q0)

m2
0 −m2

(1.116)

and Eq. 1.90 is written as:

K =
g2
0B

2
l (q, q0)

m2
0 −m2

. (1.117)

The Lorentz invariant amplitude, F , is given as:

F (m) = β0 ·BL(p, p0) ·
m0Γ0

m2
0 −m2 − im0Γ(m)

Bl(q, q0)

ρ0
. (1.118)

This is the relativistic Breit-Wigner form multiplied by an arbitrary complex constant

(production strength) β0 and the centrifugal factor BL(p, p0). This form obtained with

the K-matrix model is equivalent to the one obtained with the Breit-Wigner model.
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Chapter 2

BaBar Experiment at PEP-II

2.1 Introduction

The primary goal of the BaBar experiment is the study of CP -violating asymmetries

in the decay of the B meson. Secondary goals are precision measurement of decays of

bottom and charm mesons and of τ leptons, searches for rare processes accessible because

of the high luminosity of PEP-II B-Factory.

The PEP-II B-Factory is an e+e− asymmetric collider running at a center of mass

energy of 10.58 GeV corresponding to the mass of the Υ(4S) resonance. The small Q-

value of the Υ(4S) → BB̄ decay results in B mesons almost at rest in the center of mass

frame. The electron beam in the High Energy Ring (HER) has 9.0 GeV and the positron

beam in the Low Energy Ring (LER) has 3.1 GeV. The Υ(4S) is therefore produced with

a Lorentz boost of βγ = 0.56. This boost makes it possible to reconstruct the decay

vertexes of the two B mesons, to determine their relative decay times ∆t, and thus to

measure the time dependence of their decay rates, since, without boost, this distance

would be too small (∼ 30 µ) to be measured by any vertex tracker.

The BaBar detector [38] has been optimized to reach the primary goal of the CP

asymmetry measurement. This measurement needs the complete reconstruction of a B

decay in a CP eigenstate, the flavor identification (tagging) of the non-CP B and a

measure of the distance of the two decay vertexes. To fulfill these needs, a very good vertex

resolution, both transverse and parallel to the beam direction, excellent reconstruction

efficiency for charged particles and a very good momentum resolution, efficient electron

and muon identification, with low misidentification probabilities for hadrons, are required.

A longitudinal section of the BaBar detector is shown in Fig. 2.1. The detector inner



36 BaBar Experiment at PEP-II

��

� �

���� ����

����

����

����

���

����

��������

�

���

����

�

�

�

�
�

Scale

BABAR Coordinate System

0 4m

Cryogenic
Chimney

Magnetic Shield
for DIRC

Bucking Coil

Cherenkov
Detector
(DIRC)

Support
Tube

e– e+

Q4
Q2

Q1

B1

Floor

y
x

z
1149 1149

Instrumented
Flux Return (IFR))

Barrel
Superconducting

Coil

Electromagnetic
Calorimeter (EMC)

Drift Chamber
(DCH)

Silicon Vertex
Tracker (SVT)

IFR
Endcap

Forward
End Plug

1225

810

1375

3045

3500

3-2001
8583A50

1015 1749

4050

370

I.P.

Detector CL

Figure 2.1: BaBar detector longitudinal section.

most part is reserved for the silicon vertex tracker (SVT), then there is the drift chamber

(DCH), the Cerenkov light detector (DIRC) and the CsI electromagnetic calorimeter

(EMC). All those detector sub-systems are surrounded by a solenoidal superconductor

magnetic field. The iron used for the return flux has been instrumented (IFR) for muons

and neutral hadrons, like KL and neutrons, detection.

The detector geometry is cylindrical in the inner zone and hexagonal in the outermost

zone: the central part of the structure is called barrel and it’s closed forward and backward

by end caps. The covered polar angle ranges from 350 mrad, in the forward, to 400 mrad

in the backward directions (defined with respect to the high energy beam direction). The

BaBar coordinate system has the z axis along the boost direction (or the beam direction):

the y axis is vertical and the x axis is horizontal and goes toward the external part of

the ring. In order to maximize the geometrical acceptance for Υ(4S) decays the whole
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detector is offset, with respect to the beam-beam interaction point (IP), by 0.37 m in the

direction of the lower energy beam.

A trigger system is used to separate collisions producing interesting events from those

that constitutes the noise, or the background, for instance, beam interactions with residual

gas. The trigger system is divided in two consequent levels: the level one trigger (L1) is

hardware based and is designed to have a maximum output rate of 2 kHz and a maximum

time delay of 12 µs, while the other level (L3), software based, has a throughput rate

limited to 120Hz in order to permit an easy storage and processing of collected data.

2.2 PEP-II B Factory

PEP-II is a system consisting of two accumulating asymmetric rings designed in order to

operate at a center of mass energy of the Υ(4S) resonance mass, 10.58 GeV. Tab. 2.1 shows

the various sub-systems parameters: a comparison between typical and design values is

presented. As can be easily seen from the table, PEP-II parameters have exceeded the

project ones in terms of instant luminosity and daily integrated luminosity achieving

recently the peak value of 1×1034 cm−2 s−1 with a daily integrated luminosity of 700 pb−1.

Parameters Design Typical

Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.48/2.5

# of bunch 1658 553-829
bunch time separation (ns) 4.2 6.3-10.5

σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz (µm) 9000 9000

Luminosity (1033 cm−2s−1) 3 9
Daily average integrated luminosity (pb−1/d) 135 700

Table 2.1: PEP-II beam parameters. Design and typical values are quoted.

Data is mostly collected at Υ(4S) peak energy. Tab. 2.2 shows the active processes

cross sections breakdown at peak energy. From now on the production of light quark pairs

(u, d, s) and charm quark pairs will be referred to as “continuum production”. In order

to study this non-resonant production ∼ 12% of data is collected with a center of mass

energy 40 MeV below the Υ(4S) mass value.

PEP-II measures radiative Bhabha scattering to provide a luminosity fast monitor
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e+e− → Cross section (nb)
bb̄ 1.05
cc̄ 1.30
ss̄ 0.35
uū 1.39
dd̄ 0.35
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼ 40

Table 2.2: Various processes cross sections at
√
s = MΥ(4S). Bhabha cross section is an

effective cross section, within the experimental acceptance.

useful for operations. BaBar derives the absolute luminosity offline from other QED

processes, mainly e+e− and µ+µ− pairs: the systematic uncertainty on the absolute value

of the luminosity is estimated to be about 1.5%. This error is dominated by uncertainties

in the Monte Carlo generator and the simulation of the detector.

The beam energies of the two beams are calculated from the total magnetic bending

strength and the average deviations of the accelerating frequencies from their central

values. The systematic error on the PEP-II calculation of the absolute beam energies is

estimated to be 5 − 10 MeV, while the relative energy setting for each beam is accurate

and stable to about 1 MeV.

The interaction region design, with the two beams crossing in a single interaction point

with particles trajectories modified in order to have head on collisions, is realized with a

magnetic field, produced by a dipole magnetic system, acting near the interaction point.

The collision axis is off-set from the z-axis of the BaBar detector by about 20 mrad in

the horizontal plane to minimize the perturbation of the beams by the solenoidal field. In

this configuration the particles and the beams are kept far apart in the horizontal plane

outside the interaction region and parasite collisions are minimized. Magnetic quadrupoles

included inside the detector’s magnetic field, and hence realized in Samarium-Cobalt, are

strongly focusing the beams inside the interaction region.

In order to keep track of PEP-II beams displacement with respect to the BaBar

detector, the interaction point position is computed on periodic intervals, using two-track

events. Interaction region dimensions (beam-spot) computed in that way are ∼ 150 µm

along x, ∼ 50 µm along y and 1 cm along z axis. The y dimension estimate is completely
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dominated by tracking resolution and can be improved by looking at luminosity variations

as a function of relative beams position. In particular, knowing the beam currents and

the x beam-spot dimension, it is possible to get a resolution on y (σy) ∼ 5 µm, value

that remain stable within 10% in a one hour time scale. Those measurements can be also

verified offline by measuring the primary vertex of multi-hadron events 1.

Fig. 2.2 shows the integrated luminosity obtained by PEP-II and collected by BaBar

from the beginning of data taking (November 1999) to the end of September 2005. This

analysis will make use only of data collected in Run 1-4 data taking periods (before

August 2004). This data sample corresponds to an integrated luminosity of 208 fb−1

recorded at the Υ(4S) resonance, corresponding to 218 · 106 BB̄ couples, and 21.6 fb−1

collected at a center-of-mass energy 40 MeV below.

2.3 Tracking system

The charged particle tracking system consists of two different components: the silicon

vertex tracker (SVT) and the drift chamber (DCH). The main purpose of this tracking

system is the efficient detection of charged particles and the measurement of their mo-

mentum and angles with high precision. These track measurements are important for

the extrapolation to the DIRC, the EMC and the IFR. At lower momenta, the SVT

measurements are more important while at higher momenta the DCH dominates.

2.3.1 The Silicon Vertex Tracker: SVT

The vertex detector has a radius of 20 cm from the primary interaction region: it is placed

inside the support tube of the beam magnets and consists of five layers of double-sided

silicon strip sensors detectors to provide five measurements of the positions of all charged

particles with polar angles in the region 20.1 < θ < 150. Because of the presence of

a 1.5T magnetic field, the charged particle tracks with transverse momenta lower than

∼ 100 MeV/c cannot reach the drift chamber active volume. So the SVT has to provide

stand-alone tracking for particles with transverse momentum less than 120 MeV/c, the

minimum that can be measured reliably in the DCH alone. This feature is essential for

1By reconstructing all the tracks in one event it is possible to have an estimate of primary vertex
position: Υ(4S) decay point in transversal plane. Given that the boost along the z axis produces a
relative displacement of the two B mesons this method has a relative poor resolution that get worse in
presence of long-lived particles.
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Figure 2.2: Integrated luminosity and obtained by PEP-II and collected by BaBar from
November 1999 to September 2005.

the identification of slow pions from D∗− meson decays. Because of these, the SVT has

to provide redundant measurements.

Beyond the stand-alone tracking capability, the SVT provides the best measurement

of track angles which is required to achieve design resolution for the Cerenkov angle for

high momentum tracks. The SVT is very close to the production vertex in order to

provide a very precise measure of points on the charged particles trajectories on both

longitudinal (z) and transverse directions. The longitudinal coordinate information is

necessary to measure the decay vertex distance, while the transverse information allows

a better separation between secondary vertexes coming from decay cascades.

More precisely, the design of the SVT was carried out according to some important

guidelines:

• The number of impact points of a single charged particle has to be greater than 3

to make a stand-alone tracking possible, and to provide an independent momentum



2.3 Tracking system 41

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 2.3: SVT schematic view: longitudinal section

measure.

• The first three layers are placed as close as possible to the impact point to achieve

the best resolution on the z position of the B meson decay vertexes.

• The two outer layers are close to each other, but comparatively far from the inner

layers, to allow a good measurement of the track angles.

• The SVT must withstand 2 MRad of ionizing radiation: the expected radiation dose

is 1 Rad/day in the horizontal plane immediately outside the beam pipe and 0.1

Rad/day on average.

• Since the vertex detector is inaccessible during normal detector operations, it has

to be reliable and robust.

These guidelines have led to the choice of a SVT made of five layers of double-sided

silicon strip sensors. The spatial resolution, for perpendicular tracks must be 10− 15µm

in the three inner layers and about 40µm in the two outer layers. The three inner lay-

ers perform the impact parameter measurement, while the outer layers are necessary for

pattern recognition and low pt tracking. The silicon detectors are double-sided (contain

active strips on both sides) because this technology reduces the thickness of the materials

the particles have to cross, thus reducing the energy loss and multiple scattering probabil-

ity compared to single-sided detectors. The sensors are organized in modules (Fig. 2.3).

The SVT five layers contain 340 silicon strip detectors with AC-coupled silicon strips.
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Figure 2.4: Cross-sectional view of the SVT in a plane perpendicular to the beam axis.

Each detector is 300µm-thick but sides range from 41mm to 71mm and there are

6 different detector types. Each of the three inner layers has a hexagonal transverse

cross-section and it is made up of 6 detector modules, arrayed azimuthally around the

beam pipe, while the outer two layers consist of 16 and 18 detector modules, respectively.

The inner detector modules are barrel-style structures, while the outer detector modules

employ the novel arch structure in which the detectors are electrically connected across

an angle. This arch design was chosen to minimize the amount of silicon required to cover

the solid angle while increasing the solid angle for particles near the edges of acceptance:

having incidence angles on the detector closer to 90 degrees at small dip angles insures

a better resolution on impact points. One of the main features of the SVT design is the

mounting of the readout electronics entirely outside the active detector volume.

The strips on the two sides of the rectangular detectors in the barrel regions are

oriented parallel (φ strips) or perpendicular (z strips) to the beam line: in other words,

the inner sides of the detectors have strips oriented perpendicular to the beam direction

to measure the z coordinate (z-size), whereas the outer sides, with longitudinal strips,

allow the φ-coordinate measurement (φ-side). In the forward and backward regions of the

two outer layers, the angle between the strips on the two sides of the trapezoidal detectors

is approximately 90 and the φ strips are tapered.

The inner modules are tilted in φ by 5, allowing an overlap region between adjacent
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modules: this provide full azimuthal coverage and is convenient for alignment. The outer

modules are not tilted, but are divided into sub-layers and placed at slightly different

radii (see Fig. 2.4).

The total silicon area in the SVT is 0.94m2 and the number of readout channels is

about 150 000. The geometrical acceptance of SVT is 90% of the solid angle in the c.m.

system and typically 80% are used in charged particle tracking.

The z-side strips are connected to the read-out electronics with flexible Upilex fanout

circuits glued to the inner faces of half-modules: as a matter of fact, each module is

divided into two electrically separated forward and backward half-modules. The fanout

circuits consist of conductive traces on a thin flexible insulator (copper traces on Kapton):

the traces are wire-bonded to the end of the strips.

In the two outer layers, in each module the number of z strips exceeds the number

of read-out channels, so that a fraction of the strips is “ganged”, i.e., two strips are

connected to the same read-out channel. The “ganging” is performed by the fanout

circuits. The length of a z strip is about 50µm (case of no ganging) or 100µm (case of two

strip connected): the ganging introduces an ambiguity on the z coordinate measurement,

which must be resolved by the pattern recognition algorithms. The φ strips are daisy-

chained between detectors, resulting in a total strip length of up to 26 cm. Also, for the

φ-side, a short fanout extension is needed to connect the ends of the strips to the read-out

electronics.

1st 2nd 3rd 4th 5th
layer layer layer layer layer

radius (mm) 32 40 54 91-127 114-144
modules/layer 6 6 6 16 18
wafers/module 4 4 6 7 8
read-out pitch (µm)

φ 50-100 55-110 55-110 100 100
z 100 100 100 210 210

Table 2.3: Parameters of the SVT layout: these characteristics are shown for each layer.

The signals from the read-out strips are processed using a new technique, bringing

in several advantages. After amplification and shaping, the signals are compared to a

preset threshold and the time they exceed this threshold (time over threshold, or ToT) is
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measured. This time interval is related to the charge induced in the strip by the charged

particle crossing it. Unlike the traditional peak-amplitude measurement in the shaper

output, the ToT has the advantage of an approximately logarithmic relation of the time

interval to the charge signal. This compresses the active dynamic range of the signal,

ensuring a good sensitivity in the lower range. When a particle crosses a silicon detector

a cluster of adjoining strips producing a signal is formed. The good signal resolution in

the lower range ensures a good determination of the tails of the cluster thus improving

the resolution on the impact point measurement.

The electronic noise measured is found to vary between 700 and 1500 electrons ENC

(equivalent noise charge), depending on the layer and the readout view: this can be

compared to the typical energy deposition for a minimum ionizing particle at normal

incidence, which is equivalent to ∼ 24000 electrons.

During normal running conditions, the average occupancy of the SVT in a time window

of 1µs is about 2% for the inner layers, where it is dominated by machine backgrounds,

and less than 1% for the outer layers, where noise hits dominate.

The cluster reconstruction is based on a cluster finding algorithm: first the charge

pulse height of a single pulse is calculated form the ToT value and clusters are formed

grouping adjacent strips with consistent times. The position x of a cluster formed by n

strips is evaluated with an algorithm called “head-to-tail” algorithm:

x =
(x1 + xn)

2
+
p

2

(Qn −Q1)

(Qn +Q1)
(2.1)

where xi and Qi are the position and the collected charge of i-th strip and p is the read-out

pitch. This formula always gives a cluster position within p/2 of the geometrical center

of the cluster. The cluster pulse height is simply the sum of the strip charges, while the

cluster time is the average of the signal times.

The SVT efficiency can be calculated for each half-module by comparing the number

of associated hits to the number of tracks crossing the active area of the half-module.

Excluding defective readout sections (9 over 208), the combined hardware and software

efficiency is 97%.

The spatial resolution of SVT hits is calculated by measuring the distance (in the plane

of the sensor) between the track trajectory and the hit, using high-momentum tracks in

two prong events: the uncertainty due to the track trajectory is subtracted from the

width of the residual distribution to obtain the hit resolution. The track hit residuals are
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Figure 2.5: SVT hit resolution in the z and φ coordinate in microns, plotted as functions
of the track incident angle in degrees.

defined as the distance between track and hit, projected onto the wafer plane and along

either the φ or z direction. The width of this residual distribution is then the SVT hit

resolution. Fig. 2.5 shows the SVT hit resolution for z and φ side hits as a function of

the track incident angle: the measured resolutions are in very good agreement with the

Monte Carlo expected ones. Over the whole SVT, resolutions are raging from 10− 15µm

(inner layers) to 30 − 40µm (outer layers) for normal tracks.

For low-momentum tracks (pt < 120 MeV/c), the SVT provides the only particle

identification information. The measure of the ToT value enables to obtain the pulse

height and hence the ionization dE/dx: the value of ToT are converted to pulse height

using a look-up table computed from the pulse shapes. The double-sided sensors provide

up to ten measurements of dE/dx per track: with signals from at least four sensors, a 60%

truncated mean dE/dx is calculated. For MIPs, the resolution on the truncated mean

dE/dx is approximately 14%: a 2σ separation between kaons and pions can be achieved

up to momentum of 500 MeV/c and between kaons and protons beyond 1 GeV/c.
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2.3.2 The drift chamber: DCH

The drift chamber is the second part of BaBar tracking system. Its principal purpose

is the efficient detection of charged particles and the measurement of their momenta and

angles with high precision. The DCH complements the measurements of the impact pa-

rameter and the directions of charged tracks provided by the SVT near the impact point

(IP). At lower momenta, the DCH measurements dominate the errors on the extrapo-

lation of charged tracks to the DIRC, EMC and IFR. The reconstruction of decay and

interaction vertexes outside of the SVT volume, for instance the K0
S decays, relies only on

the DCH. For these reasons, the chamber should provide maximal solid angle coverage,

good measurement of the transverse momenta and positions but also of the longitudi-

nal positions of tracks with a resolution of ∼ 1mm, efficient reconstruction of tracks at

momenta as low as 100 MeV/c and it has to minimally degrade the performance of the

calorimeter and particle identification devices (the most external detectors). The DCH

also needs to supply information for the charged particle trigger. For low momentum par-

ticles, the DCH is required to provide particle identification by measuring the ionization

loss (dE/dx). A resolution of about 7% allows π/K separation up to 700 MeV/c. This

particle identification (PID) measurement is complementary to that of the DIRC in the

barrel region, while in the extreme backward and forward region, the DCH is the only

device providing some discrimination of particles of different mass. The DCH should also

be able to operate in presence of large beam-generated backgrounds having expected rates

of about 5 kHz/cell in the innermost layers.

To meet the above requirements, the DCH is a 280 cm-long cylinder (see left plot in

Fig. 2.6), with an inner radius of 23.6 cm and an outer radius of 80.9 cm. It is bounded

by the support tube at its inner radius and the particle identification device at its outer

radius. The flat end-plates are made of aluminum. Since the BaBar events will be boosted

in the forward direction, the design of the detector is optimized to reduce the material

in the forward end. The forward end-plate is made thinner (12mm) in the acceptance

region of the detector compared to the rear end-plate (24mm), and all the electronics is

mounted on the rear end-plate. The device is asymmetrically located with respect to the

IP: the forward length of 174.9 cm is chosen so that particles emitted at polar angles of

17.2◦ traverse at least half of the layers of the chamber before exiting through the front

end-plate. In the backward direction, the length of 101.5 cm means that particles with
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Figure 2.6: Side view of the BaBar drift chamber (the dimensions are in mm) and
isochrones (i.e. contours of equal drift time of ions) in cells of layer 3 and 4 of an axial
super-layer. The isochrones are spaced by 100ns.

polar angles down to 152.6◦ traverse at least half of the layers.

The inner cylinder is made of 1mm beryllium and the outer cylinder consists of two

layers of carbon fiber glued on a Nomex core: the inner cylindrical wall is kept thin

to facilitate the matching of SVT and DCH tracks, to improve the track resolution for

high momentum tracks and to minimize the background from photon conversions and

interactions. Material in the outer wall and in the forward direction is also minimized in

order not to degrade the performance of the DIRC and the EMC.

The region between the two cylinders is filled up by a gas mixture consisting of Helium-

isobutane (80% : 20%): the chosen mixture has a radiation length that is five times larger

than commonly used argon-based gases. 40 layers of wires fill the DCH volume and form

7104 hexagonal cells with typical dimensions of 1.2×1.9 cm2 along the radial and azimuthal

directions, respectively (see right plot in Fig. 2.6). The hexagonal cell configuration has

been chosen because approximate circular symmetry can be achieved over a large portion

of the cell. Each cell consist of one sense wire surrounded by six field wires: the sense

wires are 20µm gold-plated tungsten-rhenium, the field wires are 120µm and 80µm gold-

plated aluminum. By using the low-mass aluminum field wires and the helium-based gas

mixture, the multiple scattering inside the DCH is reduced to a minimum, representing

less than 0.2%X0 of material. The total thickness of the DCH at normal incidence is

1.08%X0.

The drift cells are arranged in 10 super-layers of 4 cylindrical layers each: the super-
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Figure 2.7: Left plot: DCH position resolution as a function of the drift chamber in layer
18, for tracks on the left and right side of the sense wire. The data are averaged over all
cells in the layer. Right plot: measurement of dE/dx in the DCH as a function of the
track momenta. The data include large samples of beam background triggers as evident
from the high rate of protons. The curves show the Bethe-Bloch predictions derived from
selected control samples of particles of different masses.

layers contain wires oriented in the same direction: to measure the z coordinate, axial

wire super-layers and super-layers with slightly rotated wires (stereo) are alternated. In

the stereo super-layers a single wire corresponds to different φ angles and the z coordinate

is determined by comparing the φ measurements from axial wires and the measurements

from rotated wires. The stereo angles vary between ±45mrad and ±76mrad.

While the field wires are at ground potential, a positive high voltage is applied to the

sense wires: an avalanche gain of approximately 5×104 is obtained at a typical operating

voltage of 1960V and a 80:20 helium:isobutane gas mixture.

In each cell, the track reconstruction is obtained by the electron time of flight: the

precise relation between the measured drift time and drift distance is determined from

sample of e+e− and µ+µ− events. For each signal, the drift distance is estimated by

computing the distance of closest approach between the track and the wire. To avoid

bias, the fit does not include the hit of the wire under consideration. The estimated drift

distances and the measured drift times are averaged over all wires in a layer.

The DCH expected position resolution is lower than 100µm in the transverse plane,
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while it is about 1mm in the z direction. The minimum reconstruction and momentum

measure threshold is about 100 MeV/c and it is limited by the DCH inner radius. The

design resolution on the single hit is about 140µm while the achieved weighted average

resolution is about 125µm. Left plot in Fig. 2.7 shows the position resolution as a function

of the drift distance, separately for the left and the right side of the sense wire. The

resolution is taken from Gaussian fits to the distributions of residuals obtained from

unbiased track fits. The results are based on multi-hadron events for data averaged over

all cells in layer 18.

The specific energy loss (dE/dx) for charged particles through the DCH is derived from

the measurement of the total charge collected in each drift cell. The specific energy loss

per track is computed as a truncated mean from the lowest 80% of the individual dE/dx

measurements. Various corrections are applied to remove sources of bias: these corrections

include changes in gas pressure and temperature (±9% in dE/dx), differences in cell

geometry and charge collection (±8%), signal saturation due to space charge buildup

(±11%), non-linearities in the most probable energy loss at large dip angles (±2.5%) and

variation of cell charge collection as a function of the entrance angle (±2.5%).

Right plot in Fig. 2.7 shows the distribution of the corrected dE/dx measurements

as a function of track momenta: the superimposed Bethe-Bloch predictions have been

determined from selected control samples of particles of different masses. The achieved

dE/dx rms resolution for Bhabha events is typically 7.5%, limited by the number of

samples and Landau fluctuations, and it is close to the expected resolution of 7%.

2.4 Track reconstruction

The reconstruction of charged particle is based on the SVT and the DCH detectors.charged

particle tracking has been studied with large samples of cosmic ray muons, e+e−, µ+µ−

and τ+τ− events, as well as multi-hadrons.

Charged tracks are defined by five parameters (d0, φ0, ω, z0, tanλ) and their associated

error matrix. These parameters are measured at the point of closest approach to the

z-axis; d0 and z0 are the distances of this point from the origin of the coordinate system

in the x–y plane and along the z-axis, respectively. The angle φ0 is the azimuth of the

track, λ the dip angle relative to the transverse plane, and ω is the curvature. d0 and ω

are signed variables; their sign depends on the charge of the track.
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Figure 2.8: Track reconstruction efficiency in the DCH at operating voltages of 1960V
and 1900V as a function of transverse momentum (left plot) and of polar angle (right
plot). The efficiency is measured in multi-hadron events.

The track finding and the fitting procedures make use of Kalman filter algorithm [39] [40]

that takes into account the detailed distribution of material in the detector and the full

map of the magnetic field. First of all, tracks are reconstructed with DCH hits through

a stand-alone DCH algorithm, the resulting tracks are then extrapolated into the SVT

and SVT track segments are added and a Kalman fit is performed to the full set of DCH

and SVT hits. Any remaining SVT are passed to the SVT stand-alone track finding al-

gorithms. Finally, an attempt is made to combine tracks that are only found by one of

the two tracking systems and thus recover tracks scattered in the material of the support

tube.

The efficiency for track reconstruction in the DCH has been measured as a function of

transverse momentum, polar and azimuthal angles in multi-track events. These measure-

ment rely on specific final states and exploit the fact that the track reconstruction can be

performed independently in the SVT and the DCH. The absolute DCH tracking efficiency

is determined as the ratio of the number of reconstructed DCH tracks to the number of

tracks detected in the SVT with the requirement that they fall within the acceptance of

the DCH. Left plot in Fig. 2.8 shows the efficiency in the DCH as a function of transverse

momentum in multi-hadron events.

At design voltage of 1960V , the efficiency averages 98±1% per track above 200 MeV/c:

the data recorded at 1900V show a reduction in efficiency by about 5% for tracks almost
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Figure 2.9: Left plot: Monte Carlo studies of low momentum tracks in the SVT on
D∗+ → D0π+ events. a) comparison with data in BB̄ events and b) efficiency for slow
pion detection derived from simulated events. Right plot: resolution in the parameters
d0 and z0 for tracks in multi-hadron events as a function of the transverse momentum.

at normal incidence, indicating that the cells are not fully efficient at this voltage (see

right plot in Fig. 2.8).

The stand-alone SVT tracking algorithms have a high efficiency for tracks with low

transverse momentum: to estimate the tracking efficiency for these low momentum tracks,

a detailed Monte Carlo study was performed. The pion spectrum was derived from simu-

lation of the inclusive D∗ production in BB̄ events and Monte Carlo events were selected

in the same way as the data: since the agreement with Monte Carlo is very good, the

detection efficiency has been derived from Monte Carlo simulation. The SVT extends

the capability of the charge particle reconstruction down to transverse momenta of ∼ 50

MeV/c (see left plot in Fig. 2.9).

The resolution in the five track parameters is monitored using e+e− and µ+µ− pair

events: the resolution is derived from the difference of the measured parameters for the

upper and lower halves of the cosmic ray tracks traversing the DCH and the SVT. On this

sample with transverse momenta above 3 GeV/c, the resolution for single tracks is 23µm

in d0 and 29µm in z0. To study the dependence of resolution from transverse momentum,

a sample of multi-hadron events is used: the resolution is determined from the width of

the distribution of the difference between the measured parameters (d0 and z0) and the
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coordinates of the vertex reconstructed from the remaining tracks in the event: right plot

in Fig. 2.9 shows the dependence of the resolution in d0 and z0 as a function of pt. The

measured resolutions are about 25µm in d0 and 40µm in z0 for pt of 3 GeV/c: these

values are in good agreement with the Monte Carlo studies and in reasonable agreement

also with the results from cosmic rays.

Besides the criteria described above the tracks selected for this analysis are requested

to satisfy additional requests:

• A cut on the distance of closest approach to the beam spot in the x − y plane

(|dxy| < 1.5 cm) and along the z axis (|dz| < 10 cm) is applied. This reduces fake

tracks and background tracks not originating from the vicinity of the interaction

point. This cut is not applied to the tracks coming from the KS decay since the KS

decay vertex is distant from the interaction point.

• For tracks with p⊥ > 0.2 GeV/c at least one DCH hit is required. This cut is

not used for low momentum tracks since slow pions produced (for instance in the

D∗ → D0π decays) would be rejected.

• A cut on the maximum momentum of plab < 10 GeV/c, where plab is the laboratory

momentum of the track is applied. This removes tracks not compatible with the

beam energies.

• Tracks are required to be within the polar angle acceptance of the detector: 0.410 <

θlab < 2.54 rad. This ensures a well-understood tracking efficiency.

• Tracks with transverse momentum p⊥ < 0.18 GeV/c do not reach the EMC and

therefore they will spiral inside the drift chamber (“loopers”). The tracking al-

gorithms of BaBar will not combine the different fragments of these tracks into a

single track. Therefore dedicated cuts have been developed to reject track fragments

compatible with originating from a looper based on their distance from the beam

spot. In order to identify looper candidates, the minimal difference in p⊥, φ and

θ to all other tracks in the event is determined. Tracks passing selection criteria

(see Tab. 2.4), different for same-sign and opposite-sign track pairs, are flagged as

loopers and only the track fragment with |dz| closest to the beam spot is retained.

These criteria remove roughly 13% of all low-momentum tracks in the central part
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of the detector. On average, they lower the mean charged multiplicity per B meson

by less than 1%.

• Two tracks very closely aligned to each other are called “ghosts”. These cases arise

when the tracking algorithms splits the DCH hits in two track fragments. If two

tracks are very close in phase space (as defined in Tab. 2.4), only the track with the

largest number of DCH hits is retained. This ensures that the fragment with the

better momentum measurement is kept in the analysis.

Select tracks with Selection criteria

distance in x− y plane |dxy| < 1.5 cm
distance in z axis |dz| < 10 cm

minimum number of DCH hits NDCH > 0 if p⊥ > 0.2 GeV/c
maximum momentum plab < 10 GeV/c
geometrical acceptance 0.410 < θlab < 2.54 rad

Reject tracks if ∆pt = 100 MeV/c to other tracks and
loopers (p⊥ < 0.18 GeV/c) Same sign: |∆φ| < 220 & |∆θ| < 215 mrad

Opposite sign: |∆φ| < 190 & |∆θ| < 300 mrad
ghosts (p⊥ < 0.35 GeV/c) |∆φ| < 220 & |∆θ| < 215 mrad

Table 2.4: Summary of track selection criteria.

2.5 Cerenkov light detector: DIRC

The particle identification system is crucial for BaBar since the CP violation analysis

requires the ability to fully reconstruct one of the B meson and to tag the flavor of the

other B decay: the momenta of the kaons used for flavor tagging extend up to about 2

GeV/c with most of them below 1 GeV/c. On the other hand, pions and kaons from the

rare two-body decays B0 → π+π− and B0 → K+π− must be well separated: they have

momenta between 1.7 and 4.2 GeV/c with a strong momentum-polar angle correlation

of the tracks (higher momenta occur at more forward angles because of the c.m. system

boost). So the particle identification system should be:

• thin and uniform in term of radiation lengths to minimize degradation of the

calorimeter energy resolution

• small in the radial dimension to reduce the volume (cost) of the calorimeter
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Figure 2.10: Mechanical elements of the DIRC and schematic view of bars assembled into
a mechanical and optical sector.

• with fast signal response

• able to tolerate high background

DIRC stands for Detection of Internally Reflected Cerenkov light and it refers to a

new kind of ring-imaging Cerenkov detector which meets the above requirements. The

particle identification in the DIRC is based on the Cerenkov radiation produced by charged

particles crossing a material with a speed higher than light speed in that material. The

angular opening of the Cerenkov radiation cone depends on the particle speed:

cos θc =
1

nβ
(2.2)

where θc is the Cerenkov cone opening angle, n is the refractive index of the material and

β is the particle velocity over c. The principle of the detection is based on the fact that

the magnitudes of angles are maintained upon reflection from a flat surface.

Since particles are produced mainly forward in the detector because of the boost, the

DIRC photon detector is placed at the backward end: the principal components of the

DIRC are shown in Fig. 2.10. The DIRC is placed in the barrel region and consists of 144

long, straight bars arranged in a 12-sided polygonal barrel. The bars are 1.7 cm-thick,

3.5 cm-wide and 4.90m-long: they are placed into 12 hermetically sealed containers, called

bar boxes, made of very thin aluminum-hexcel panels. Within a single bar box, 12 bars are

optically isolated by a ∼ 150µm air gap enforced by custom shims made from aluminum

foil.
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Figure 2.11: Schematics of the DIRC fused silica radiator bar and imaging region. Not
shown is a 6 mrad angle on the bottom surface of the wedge.

The radiator material used for the bars is synthetic fused silica: the bars serve both

as radiators and as light pipes for the portion of the light trapped in the radiator by total

internal reflection. Synthetic silica has been chosen because of its resistance to ionizing

radiation, its long attenuation length, its large index of refraction, its low chromatic

dispersion within its wavelength acceptance.

The Cerenkov radiation is produced within these bars and is brought, through succes-

sive total internal reflections, in the backward direction outside the tracking and magnetic

volumes: only the backward end of the bars is instrumented. A mirror placed at the other

end on each bar reflects forward-going photons to the instrumented end. The Cerenkov an-

gle at which a photon was produced is preserved in the propagation, modulo some discrete

ambiguities (the forward-backward ambiguity can be resolved by the photon arrival-time

measurement, for example). The DIRC efficiency grows together with the particle inci-

dence angle because more light is produced and a larger fraction of this light is totally

reflected. To maximize the total reflection, the material must have a refractive index

(fused silica index is n = 1.473) higher than the surrounding environment (the DIRC is

surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-

filled expansion region (see Fig. 2.11), called the Standoff Box: the purified water, whose
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refractive index matches reasonably well that of the bars (nH2O = 1.346), is used to

minimize the total internal reflection at the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12

sectors of PMTs: it contains about 6000 liters of purified water. Each of the 12 PMTs

sectors contains 896 PMTs in a close-packed array inside the water volume: the PMTs are

linear focused 2.9 cm diameter photo-multiplier tubes, lying on an approximately toroidal

surface.

The DIRC occupies only 8 cm of radial space, which allows for a relatively large radius

for the drift chamber while keeping the volume of the CsI Calorimeter reasonably low: it

corresponds to about 17%X0 at normal incidence. The angular coverage is the 94% of

the φ azimuthal angle and the 83% of cos θCM .

Cerenkov photons are detected in the visible and near-UV range by the PMT array.

A small piece of fused silica with a trapezoidal profile glued at the back end of each bar

allows for significant reduction in the area requiring instrumentation because it folds one

half of the image onto the other half. The PMTs are operated directly in water and are

equipped with light concentrators: the photo-multiplier tubes are about 1.2m away from

the end of the bars. This distance from the bar end to the PMTs, together with the

size of the bars and PMTs, gives a geometric contribution to the single photon Cerenkov

angle resolution of about 7 mrad. This is a bit larger than the resolution contribution

from Cerenkov light production (mostly a 5.4 mrad chromatic term) and transmission

dispersions. The overall single photon resolution expected is about 9 mrad.

The image from the Cerenkov photons on the sensitive part of the detector is a cone

cross-section whose opening angle is the Cerenkov angle modulo the refraction effects on

the fused silica-water surface. In the most general case, the image consists of two cone

cross-sections out of phase one from the other by a value related to an angle which is

twice the particle incidence angle. In order to associate the photon signals with a track

traversing a bar, the vector pointing from the center of the bar end to the center of each

PMT is taken as a measure of the photon propagation angles αx, αy and αz. Since the

track position and angles are known from the tracking system, the three α angles can be

used to determine the two Cerenkov angles θC and φC . In addition, the arrival time of

the signal provides an independent measurement of the propagation of the photon and

can be related to the propagation angles α. This over-constraint on the angles and the

signal timing are useful in dealing with ambiguities in the signal association and high
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Figure 2.12: From di-muon data events, left plot: single photon Cerenkov angle res-
olution. The distribution is fitted with a double-Gaussian and the width of the narrow
Gaussian is 9.6 mrad. Right plot: reconstructed Cerenkov angle for single muons. The
difference between the measured and expected Cerenkov angle is plotted and the curve
represents a Gaussian distribution fit to the data with a width of 2.4 mrad.

background rates.

The expected number of photo-electrons (Npe) is ∼ 28 for a β = 1 particle entering

normal to the surface at the center of a bar and increases by over a factor of two in the

forward and backward directions.

The time distribution of real Cerenkov photons from a single event is of the order of

50ns wide and during normal data taking they are accompanied by hundreds of random

photons in a flat background distribution within the trigger acceptance window. The

Cerenkov angle has to be determined in an ambiguity that can be up to 16-fold: the goal

of the reconstruction program is to associate the correct track with the candidate PMT

signal with the requirement that the transit time of the photon from its creation in the

bar to its detection at the PMT be consistent with the measurement error of about 1.5ns.

2.5.1 Particles identification

An unbinned maximum likelihood formalism is used to take into account all information

provided by the DIRC: the reconstruction routine provides a likelihood value for each of

the five stable particle types (e, µ, π, K and p) if the track passes through the active

volume of the DIRC. These likelihood probabilities are calculated in an iterative process

by maximizing the likelihood value for the entire event while testing different hypotheses
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for each track. If enough photons are found, a fit of θC and the number of observed

signal and background photons are calculated. For Kaon identification different criteria

(called V eryLoose, Loose, T ight, V eryT ight ) are established, each one corresponding

to different efficiency and different pion misidentification probability.

In the absence of correlated systematic errors, the resolution (σ
C,track) on the track

Cerenkov angle should scale as

σ
C,track =

σC,γ
√

Npe

(2.3)

where σC,γ is the single photon angle resolution. This angular resolution (obtained from

di-muon events) can be estimated to be about 10.2 mrad, in good agreement with the

expected value (see left plot in Fig. 2.12). The measured time resolution is 1.7ns close

to the intrinsic 1.5ns time spread of the PMTs. In di-muon event data, the number

of photo-electrons varies between 20 for small polar angles at the center of the barrel

and 65 at large polar angles: this variation is well reproduced by Monte Carlo and can

be understood by the fact that the number of Cerenkov photons varies with the path

length of the track in the radiator (smaller path length at perpendicular incidence at the

center of the barrel). Also the fraction of photons trapped by total internal reflection rises

with larger values of | cos(θtrack)|. This increase in the number of photons for forward

going tracks corresponds also to an increase in momentum of the tracks and thus an

improvement of the DIRC performance.

The width of the track Cerenkov angle resolution for di-muon events is 2.4 mrad com-

pared to the design goal of 2.2 mrad (see right plot in Fig. 2.12). From the measured

single track resolution versus momentum in di-muon events and from the difference be-

tween the expected Cerenkov angles of charged pions and kaons, the pion-kaon separation

power of the DIRC can be evaluated: the expected separation between pions and kaons

at 3 GeV/c is about 4.2σ, within 15% of the design goal.

The charged kaon efficiency is compared to the charged pion misidentification in

Fig. 2.13. In the reconstruction of the invariant mass of the hadronic system, given

the difference in the kaon momentum spectrum, Fig. 2.13, a charged track is identified as

kaon if pK > 300 MeV/c.
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Figure 2.13: Charged kaon identification and pion misidentification probability for the tight
kaon micro selector as a function of momentum (left) and polar angle (right). The solid
markers indicate the efficiency for positive particles, the empty markers the efficiency for
negative particles. Note the different scales for identification and misidentification on the
left and right ordinates, respectively.

2.6 Electromagnetic calorimeter: EMC

The understanding of CP violation in the B meson system requires the reconstruction

of final state containing a direct π0 or that can be reconstructed through a decay chain

containing one or more daughter π0s. The electromagnetic calorimeter is designed to

measure electromagnetic showers with excellent efficiency and energy and angular reso-

lution over the energy range from 20 MeV to 9 GeV. This capability should allow the

detection of photons from π0 and η decays as well as from electromagnetic and radiative

processes. By identifying electrons, the EMC contributes to the flavor tagging of neutral

B mesons via semi-leptonic decays. The upper bound of the energy range is given by

the need to measure QED processes like e+e− → e+e−(γ) and e+e− → γγ for calibration

and luminosity determination. The lower bound is set by the need for highly efficient

reconstruction of B-meson decays containing multiple π0s and η0s. The measurement of

very rare decays containing π0s in the final state (for example, B0 → π0π0) puts the most

stringent requirements on energy resolution, expected to be of the order of 1−2%. Below

2 GeV energy, the π0 mass resolution is dominated by the energy resolution, while at

higher energies, the angular resolution becomes dominant and it is required to be of the

order of few mrad. The EMC is also used for electron identification and for completing

the IFR output on µ and K0
L identification. It also has to operate in a 1.5T magnetic
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Figure 2.14: The electromagnetic calorimeter layout in a longitudinal cross section and a
schematic view of the wrapped CsI(Tl) crystal with the front-end readout package mounted
on the rear face (not to scale).

field.

The EMC has been chosen to be composed of a finely segmented array of thallium-

doped cesium iodide (CsI(Tl)) crystals. The crystals are read out with silicon photo-

diodes that are matched to the spectrum of scintillation light. The energy resolution of

a homogeneous crystal calorimeter can be described empirically in terms of a sum of two

terms added in quadrature:
σE

E
=

a
4
√

E(GeV )
⊕ b (2.4)

where E and σE refer to the energy of a photon and its rms error, measured in GeV.

The energy dependent term a(∼ 2%) arises basically from the fluctuations in photon

statistics, but also from the electronic noise of the photon detector and electronics and

from the beam-generated background that leads to large numbers of additional photons.

This first term dominates at low energy, while the constant term b(∼ 1.8%) is dominant

at higher energies (> 1 GeV). It derives from non-uniformity in light collection, leakage

or absorption in the material in front of the crystals and uncertainties in the calibration.

The angular resolution is determined by the transverse crystal size and the distance

from the interaction point: it can be empirically parameterized as a sum of an energy

dependent and a constant term

σθ = σφ =
c

√

E(GeV )
+ d (2.5)

where E is measured in GeV and with c ∼ 4 mrad and d ∼ 0 mrad.
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Figure 2.15: EMC resolution as a function of the energy.

In CsI(Tl), the intrinsic efficiency for the detection of photons is close to 100% down

to a few MeV, but the minimum measurable energy in colliding beam data is about 20

MeV for the EMC: this limit is determined by beam and event-related background and

the amount of material in front of the calorimeter. Because of the sensitivity of the π0

efficiency to the minimum detectable photon energy, it is extremely important to keep

the amount of material in front of the EMC to the lowest possible level.

Thallium-doped CsI has high light yield and small Molière radius in order to allow

for excellent energy and angular resolution. It is also characterized by a short radiation

length for shower containment at BaBar energies. The transverse size of the crystals is

chosen to be comparable to the Molière radius achieving the required angular resolution

at low energies while limiting the total number of crystals and readout channels.

The BaBar EMC (left plot in Fig. 2.14) consists of a cylindrical barrel and a conical

forward end-cap: it has a full angle coverage in azimuth while in polar angle it extends from

15.8◦ to 141.8◦ corresponding to a solid angle coverage of 90% in the CM frame. Radially

the barrel is located outside the particle ID system and within the magnet cryostat:

the barrel has an inner radius of 92 cm and an outer radius of 137.5 cm and it’s located

asymmetrically about the interaction point, extending 112.7 cm in the backward direction

and 180.1 cm in the forward direction. The barrel contains 5760 crystals arranged in 48
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rings with 120 identical crystals each: the end-cap holds 820 crystals arranged in eight

rings, adding up to a total of 6580 crystals. They are truncated-pyramid CsI(Tl) crystals

(right plot in Fig. 2.14): they are tapered along their length with trapezoidal cross-sections

with typical transverse dimensions of 4.7×4.7 cm2 at the front face, flaring out toward the

back to about 6.1 · 6.1 cm2. All crystals in the backward half of the barrel have a length

of 29.6 cm: toward the forward end of the barrel, crystal lengths increase up to 32.4 cm

in order to limit the effects of shower leakage from increasingly higher energy particles.

All end-cap crystals are of 32.4 cm length. The barrel and end-cap have total crystal

volumes of 5.2m3 and 0.7m3, respectively. The CsI(Tl) scintillation light spectrum has a

peak emission at 560nm: two independent photodiodes collect this scintillation light from

each crystal. The readout package consists of two silicon PIN diodes, closely coupled to

the crystal and to two low-noise, charge-sensitive preamplifiers, all enclosed in a metallic

housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a clus-

ter of energy deposit: pattern recognition algorithms have been developed to identify

these clusters and to discriminate single clusters with one energy maximum from merged

clusters with more than one local energy maximum, referred to as bumps. The algorithms

also determine whether a bump is generated by a charged or a neutral particle. Clusters

are required to contain at least one seed crystal with an energy above 10 MeV: surround-

ing crystals are considered as part of the cluster if their energy exceeds a threshold of 1

MeV or if they are contiguous neighbors of a crystal with at least 3 MeV signal. The level

of these thresholds depends on the current level of electronic noise and beam-generated

background.

A bump is associated with a charged particle by projecting a track to the inner face

of the calorimeter: the distance between the track impact point and the bump centroid is

calculated and if it is consistent with the angle and momentum of the track, the bump is

associated with this charged particle. Otherwise it is assumed to originate from a neutral

particle.

On average, 15.8 clusters are detected per hadronic event: 10.2 are not associated to

any charged particle. Currently, the beam-induced background contributes on average

with 1.4 neutral clusters with energy above 20 MeV.

At low energy, the energy resolution of the EMC is measured directly with a 6.13

MeV radioactive photon source (a neutron-activated fluorocarbon fluid) yielding σE/E =
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Figure 2.16: Definition of the variables ri, ϕi and R0

5.0 ± 0.8%. At high energy, the resolution is derived from Bhabha scattering where the

energy of the detected shower can be predicted from the polar angle of the electrons and

positrons. The measured resolution is σE/E = 1.9±0.1% at 7.5 GeV. Fig. 2.15 shows the

energy resolution on data compared with expectations from Monte Carlo. From a fit to

the experimental results to eq. 2.4, a = 2.32 ± 0.30% and b = 1.85 ± 0.12% are obtained.

The constant term comes out to be greater than expected: this is mainly caused by a

cross talk effect, still not corrected, in the front-end electronics.

The measurement of the angular resolution is based on Bhabha events and ranges

between 12 mrad and 3 mrad going from low to high energies. A fit to eq. 2.5 results in

c = (3.87 ± 0.07) mrad and d = (0.00 ± 0.04) mrad.

2.6.1 Photon reconstruction

Neutral particles are selected as EMC local maxima energy depositions which are not

matched to any track. These energy clusters originate mostly from photons, thus momenta

and angles are assigned to be consistent with photons originating from the beam-beam

interactions.

Bumps are required to be within the calorimeter acceptance of the detector: 0.410 <

θ < 2.54 rad. A cut on the minimum energy E lab
γ > 30 MeV of neutrals has been applied
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to remove low energy photons associated with beam related backgrounds.

Additional backgrounds are due to hadronic interactions, either by KL or neutrons.

These backgrounds can be fought by applying requests on the shape of the calorimeter

clusters. In order to describe the lateral energy distributions of showers, the following

variables are defined: N , the number of crystals associated with the shower, Ei, the

energy deposited in the i-th crystal, numbering them such that E1 > E2 > . . . > EN ,

and ri, ϕi, the polar coordinates in the plane perpendicular to the line pointing from the

interaction point to the shower center centered in the cluster centroid (see Fig. 2.16).

Using these variables, one can define the variable

LAT =

N
∑

i=3

Eir
2
i

∑N
i=3Eir2

i + E1r2
0 + E2r2

0

, (2.6)

where r0 is the average distance between two crystals, which is approximately 5 cm for the

BaBar calorimeter. This variable is constructed to discriminate between electromagnetic

and hadronic showers based on their average properties. The sum starting from i =

3 omit the two crystals containing the highest amounts of energy. Electrons deposit

most of their energy in two or three crystals, so that the value of LAT is small for

electromagnetic showers. Multiplying the energies by the squared distances enhances

the effect for hadronic showers, compared with electromagnetic ones. The request of

LAT < 0.8 has been applied.

2.7 Instrumented Flux Return: IFR

IFR (Instrumented F lux Return) detector is dedicated to muon identification and neu-

tral hadrons detection (mainly K0
L) in a wide range of momentum and angles.

The IFR, as all the other BaBar subsystems, has an asymmetric structure with a

polar angle coverage that is 17◦ ≤ θlab ≤ 150◦. The IFR (Fig. 2.7) is made of 19 layers

of Resistive Plate Chambers (RPC) in the barrel region and 18 layers in forward and

backward regions, that are placed inside the iron layers used for the solenoidal magnetic

field return joke. The iron structure is subdivided in three main parts: the barrel one

surrounding the solenoid, made of 6 sextants covering the radial distance between 1.820 m

and 3.045 m with a length of 3.750 m (along the z axis); the forward end-cap and back-

ward end-cap covering the forward (positive z axis) and backward regions. Moreover,



2.7 Instrumented Flux Return: IFR 65

Figure 2.17: IFR view

# di readout # # strip strip len. strip larg. total #
section sectors coor. layer layer/sector (cm) (mm) channel

barrel 6 φ 19 96 350 19.7-32.8 ≈ 11k
z 19 96 190-318 38.5 ≈ 11k

end-cap 4 y 18 6x32 124-262 28.3 13,824
x 18 3x64 10-180 38.0 ≈ 15k

cyl. 4 φ 1 128 370 16.0 512
z 1 128 211 29.0 512
u 1 128 10-422 29.0 512
v 1 128 10-423 29.0 512

Table 2.5: IFR readout segmentation. Total number of channels is ∼ 53k.

two cylindrical RPC layers have been installed between the calorimeter and the magnet

cryostat in order to reveal particles exiting from the EMC. Those layers should cover the

φ regions not covered by the barrel. Cylindrical layers are subdivided in four sections,

each of them covering one fourth of the circumference: each of them has four RPC groups

with orthogonal readout strips. u − v helicoidal strips are placed inside along module’s

diagonals while φ and z parallel strips are placed outside. The summary of IFR readout

segmentation is given in Tab. 2.5.

Each end-cap has an hexagonal shape and is vertically subdivided in two halves in

order to allow internal subsystems access, if necessary. Vacuum tube and PEP-II focusing
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Figure 2.18: Planar RPC section with HV connection scheme.

elements are placed in the middle. Iron plates have a thickness ranging from 2 cm, for

the inner ones placed nearest to the interaction region, to 10 cm for the outer ones; this

means a total thickness of steel at normal incidence of ∼ 65 cm (nearly corresponding to

∼ 4 interaction lengths) in the barrel and ∼ 60 cm in the end-caps. Nominal distance

between iron layers in the inner barrel region is 3.5 cm while is 3.2 cm everywhere else.

The increased granularity of inner layers with respect to the outer ones is due to the

fact that the largest part of particles detected inside the IFR are interacting in the very

first material layers. Chosen segmentation is also the result of a compromise between the

subsystem cost (proportional to the volume) and the need of a good efficiency for low

momentum (> 700 MeV/c) muon detection, minimizing, at the same time, fraction of

K0
L’s that are not interacting inside the IFR. Result of this optimization is a not uniform

segmentation with iron plates that have thickness increasing with distance from beam

line. RPC section is shown in Fig. 2.18.

In each barrel sextant layers are kept together by a structure that reduces the coverage

of solid angle with active detectors of ∼ 7%. Active coverage of IFR detector is ≈ 2000m2,

for a total RPC modules number that is ∼ 900. Signals produced by particles crossing the

gas gap inside the RPCs are collected on both sides of the chamber by using thin strips

(thickness ∼ 40 µm) with width of the order of a centimeter. Strips are applied in two

orthogonal directions on insulating planes 200 µm thick, in order to have a bi-dimensional

view. In each barrel sextant each gap is hosting a chamber. This consist of a set of 3
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RPC modules of rectangular shape. Each module is ∼ 125 cm long along beams direction

with variable width in order to completely fill the gap. Each chamber is equipped with

96 φ− strip placed along z axis that are measuring the φ angle inside the barrel and 96

z − strip orthogonal to beams direction that are measuring z coordinate. z − strips are

subdivided into 3 panels of 32 strips with largeness, function of chamber radial position,

ranging between 1.78 and 3.37 cm. This projective geometry allows a constant number of

strips for all the various layers without decreasing detector resolution (each strip covers

the same azimuthal angle). The used gas mixture is made of 56.7% Argon, 38.8% Freon-

134a and 4.5% Isobutane. Working voltage for RPCs is ∼ 7.5 kV . Iron layers keeping

apart RPC planes are chilled by a water system that keeps the temperature ∼ 20oC.

RPC efficiencies have been measured by using cosmics taken on a weekly base. Mean

efficiency during 2000 run has been ∼ 78% for the barrel and ∼ 87% for the forward

end-cap, less than that one measured in June 1999 (∼ 92%). During the Summer 1999

the ambient temperature increased very much reaching about 32◦ to 38◦ inside the iron.

During such period the IFR had problems to run the full detector because the dark current

drawn by the chambers exceeded the total current limit provided by the power supply.

All the chambers drawing more than 200µA were disconnected. In October the chambers

were re-connected but they didn’t recover the full efficiency. The forward end-cap has

been completely reconstructed and installed in the Summer 2002: 5 intermediate RPC

layers were replaced by 2.54 cm of brass, 10 cm of steel were added after the last RPC

layer, an RPC (layer 19) was added in front of the forward end-cap, an RPC belt was

added in the barrel–end-cap overlap region. Barrel efficiencies are still decreasing and are

at ∼ 40% level while in the new forward end-cap, they are greater than 90%.

Muons are identified by measuring the number of traversed interaction lengths in the

entire detector and comparing it with the number of expected interaction lengths for a

muon of a given momentum. Moreover, the projected intersections of a track with the

RPC planes are computed and, for each readout plane, all strips clusters detected within

a predefined distance from the predicted intersection are associated with the track: the

average number and the r.m.s. of the distribution of RPC strips per layer gives additional

µ/π discriminating power. It is expected in fact the average number of strips per layer

to be larger for pions producing an hadronic interaction than for muons. Other variables

exploiting clusters distribution shapes are constructed. Selection criteria based on all

these variables are applied to select muons. The performance of the muon selection has



68 BaBar Experiment at PEP-II

been tested on samples of kinematically identified muons from µµee and µµγ final states

and pions from three-prong τ decays and KS → π+π− decays.

At the end of the summer 2004 RPC from Top and Bottom Barrel sextant have been

substituted with limited streamer tube (LST). Data recording Run-5 has been started

only in the second half of April 2005 so there aren’t still enough data to have a complete

evaluation of the LST efficiency and performance.

The efficiency of the LST is monitored daily using µµ pairs from colliding beams and

monthly from cosmic rays. The calculated efficiency results to be constant around 90%.

The geometric efficiency is 92.5%. The fluctuation of the efficiency are mostly related to

the fluctuation on the number of silent channels, but no loss of efficiency for each single

LST is detected.

For the π/µ discrimination the LST appear to work better than RPC ever did.



Chapter 3

D0 → KSπ−π+ Dalitz amplitude
parameterization

The dynamics of charmed-meson decays have been studied extensively during the past

decade. Dalitz-plot analysis of three body D decays have proven to be a powerful tool

to investigate the effects of the resonance structure, interference pattern, and final-state

interaction. Moreover, the Dalitz-amplitude parameterization of the D0 → KSπ
−π+

decay is essential for the measurement of the angle γ of the Unitarity triangle [22]. In this

context, a Dalitz analysis of the D0 → KSπ
−π+ decay has been performed. The Dalitz

amplitude is parameterized as a sum of relativistic Breit-Wigner resonances (referred to

as the “Breit-Wigner” model for the rest), including form factors and a term describing

the angular distribution of the two body decay of each intermediate state.

Given the low statistics of the current data sample, the Breit-Wigner model proved

sufficient for the measurement of γ. However, this parameterization gives a large system-

atic uncertainty to the measurement of γ (see Sec. 5.3.7) and in general cannot give a

satisfactory parameterization of the D0 → KSπ
−π+ amplitude since it works well only

in the case of narrow, isolated resonances. In fact, resonances are associated generally

with the poles of the S matrix in the complex energy plane, and the Breit-Wigner am-

plitude corresponds to only the most elementary type of the possible extrapolations from

the physical region to an unphysical sheet pole. In the case of broad resonances that

overlap significantly, a more complex formalism is required. This is particularly true for

the S-wave component of the D0 → KSπ
−π+ decay.

The K-matrix formalism is an approach ideally suited to the study of overlapping

resonances in multichannel decays. Although this approach was developed specifically

in the context of two body scattering, it can be generalized to the case of resonance



70 D0 → KSπ−π+ Dalitz amplitude parameterization

production in multi-body decays when the two body system in the final state is isolated,

and the two particles do not interact simultaneously with the rest of the final state in the

production process (isobar model). In addition, the K-matrix formalism provides a direct

way of imposing the two body Unitarity constraint that is not guaranteed in the case of

the Breit-Wigner model.

This chapter presents the parameterization of the D0 → KSπ
−π+ Dalitz amplitude 1

with the Breit-Wigner model and a model with the K-matrix formalism applied to the

π+π− S-Wave (referred to as the “K-matrix” model for the rest).

3.1 D0 → KSπ
−π+ selection

3.1.1 The D0 and D∗+ reconstruction

The D0 → KSπ
−π+ data sample is reconstructed from continuum e+e− → cc̄ events

through the following decay chain:

D∗+ → D0π+

D0 → Ksπ
−π+ . (3.1)

Selecting the data from the continuum allows to have a high statistics data sample with

a high purity while reconstructing the D0 from the D∗+ decay gives the possibility to

determine the flavor of the D0 from the charge of the pion coming from the D∗+ (slow

pion).

The neutral kaon is constructed from pairs of oppositely charged pions satisfying the

requests described in Sec. 2.4 The KS mass is required to be in the region (0.488− 0.508)

GeV/c2 corresponding to nearly 3 standard deviations around the fitted mean value.

Fig. 3.1 shows the distribution of the KS mass and the fit result. In order to remove

fake KS candidates, the KS decay distance from the D0 vertex is required to be greater

than 0.4 cm. The direction of the KS can be evaluated from the momentum of the two

pions (dir1) as well as from the direction of the flight distance from the KS and the

D0 decay vertexes (dir2). For a real candidate these two directions coincides. Defining

αKS
= (dir1, dir2), a cut on cos(αKS

) > 0.99 is required. These cuts have the property

of rejecting the fake KS and in particular helps in removing possible contamination from

1D̄0 → KSπ−π+ is implicit for the rest. The D̄0 Dalitz amplitude is obtained from the D0 one
swapping the two variables M 2(KSπ−) ↔ M2(KSπ+). The data sample contains both D0 and D̄0.
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Figure 3.1: Distribution of the KS mass and the fit result. The distribution is fitted with a
sum of three Gaussian. The region ±10 MeV/c2 around the fitted mean value is selected.

decays of D0 into four pions. In order to improve momentum resolution mass constraint

is applied to the KS and the D0.

The center-of-mass (CM) momentum of the D0 candidate is required to be greater

than 2.2 GeV/c to remove D0 coming from B decays.

The D∗ candidate is reconstructed combining the D0 candidate with pions with mo-

mentum below 0.6 GeV/c. Beam spot constraint is applied to the vertex fit.

3.1.2 Final selection

Since D∗+ → D0π+ and D∗− → D̄0π−, the charge of the slow pion tags the flavor of the

neutral D meson. For the selection of D0 → KSπ
−π+ events the reconstructed D0 mass

MD, and the mass difference ∆m = MD∗ −MD are used, where MD∗ is the reconstructed

mass of the D0π combination. The ∆m distribution (Fig. 3.2) is fitted with a sum of two

Gaussians for signal, and a threshold function

∆mbkg =
(

1 − e
−(∆m−∆m0)

c

)

(

∆m

∆m0

)a

+ b

(

∆m

∆m0
− 1

)

(3.2)

for background. The region of ±0.5 MeV/c2 (∼ 2σ) around the mean of the ∆m distri-

bution is selected.
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Figure 3.2: Distributions of ∆m and M(D0) (histograms), and the fit results (curves).
The selected region is (144.93 − 195.93) MeV/c2 for ∆m and (1.8539 − 1.8755) GeV/c2

for M(D0). The M(D0) distribution is plotted in the selected ∆m region.

The MD distribution is fitted with a sum of two Gaussians for signal and a first-order

polynomial for the background. Fig. 3.2 shows the distribution of D0 mass spectrum

in the ∆M selected region and the result of the fit. The region of 2σ (10.8 MeV/c2)

around the mean value of D0 mass distribution is selected. A sample of 215449 events

is obtained. The purity of the data sample is estimated to be 98.1% from a D0 mass

fit where the signal component is parameterized with a sum of two Gaussians and the

background component with a linear function. A detailed Monte Carlo study, described

in Sec. 3.1.3 has confirmed the possibility to estimate the purity of the data sample from

the D0 mass fit. Fig. 3.3 shows the distribution of the Dalitz plot and projections on the

three combinations of m2 for the daughter particles.

3.1.3 Background Composition

In order to estimate the background composition, the selection criteria described in the

previous section are applied to the uds, cc̄, and BB̄ generic Monte Carlo samples. The

M(D0) distributions of the different Monte Carlo components and the Data-MC compar-
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Figure 3.3: D0 → KSπ
+π− Dalitz plot projections, and the two-dimensional Dalitz plane.

The data sample contains 215449 events with a purity of 98.1%.
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Figure 3.4: M(D0) distributions of the different Monte Carlo components and the Data-
MC comparison. The small differences of the shapes of the two M(D0) distribution ex-
plains the small difference between the two purity values. The shapes of the background
components don’t present a peak in the M(D0) selected region.

ison are shown in Fig. 3.4. The fraction of the wrong flavor D0 is less than 0.1% and is

neglected.

A Monte Carlo study gives a purity of 98.9 % very close to the one obtained with the

M(D0) fit to the data sample then the value obtained from data is chosen. The small

difference between the two values comes from the small difference of the two D0 mass

distribution shapes. Moreover the MD distributions of the background components don’t

present a peak in the selected region; the parameterization of the background distribution

with a linear function represents then a good approximation.

3.1.4 Dalitz background parameterization

Since the M(D0) distributions of the background components don’t present a peak in the

selected signal region, the M(D0) sidebands can be used to parameterize the background

Dalitz distribution. The D0 mass constraint, in the sidebands regions, deforms the shape

of the Dalitz distribution, in particular the value of the masses and the widths of the
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resonances present in the background will be different from the real ones. To avoid this

problem the D0 mass constraint is removed for the Dalitz background parameterization.

Two sidebands are chosen: the “left” sideband centered at M(D0) = 1.8 GeV/c2 and the

“right” sideband centered at M(D0) = 1.92 GeV/c2. The width of both of them is chosen

equal to 30 MeV/c2; this value is small enough to avoid problems coming from the D0

mass not constrained, and large enough to have a sufficient number of events to perform

the Dalitz fit. The fraction of signal events in the sidebands is evaluated with a D0 mass

fit to the data sample.

The signal component is parameterized using the Breit-Wigner model described in

detail in Sec. 3.2, The background component is parameterized with sum of two terms:

• Resonant component: since the background is a sum of many different compo-

nents that don’t interfere between them and there is not a dominant component,

the Resonant component can be parameterized with an incoherent sum of Breit-

Wigner functions. The resonances used are: K∗−(892), K∗+(892), ρ0(770) and a

spin 0 KSπ
+ Breit-Wigner functions not corresponding to any real resonance but

introduced to parameterize a sample of not well reconstructed events that give a

Breit-Wigner shape in the Dalitz plot.

• Non resonant component: parameterized by a third-order polynomial in two dimen-

sions.

The relative fraction of the two background components are evaluated from the data

sample. In detail, the model of the background component is:

f · (|ρ0(770)|2 + c1 · |K∗−(892)|2 + c2 · |K∗+(892)|2 + c3 · |BW (m13, S = 0)|2) +

(1 − f) · |1 + a1 ·m12 + a2 ·m13 + a3 ·m2
12 + a4 ·m2

13 + a5 ·m12 ·m13 +

a6 ·m3
12 + a7 ·m3

13 + a8 ·m12 ·m2
13 + a9 ·m13 ·m2

12| (3.3)

where BW represent the effective Breit-Wigner function, S is the value of the spin, m12,

m13 are the KSπ
−, KSπ

+ invariant masses respectively, and f is the fraction of the

resonant term.

Fig. 3.5 shows the left and right sideband data samples and the fits result. The mass

and the width of the K∗−(892), K∗+(892), ρ0(770) are taken from the PDG [41], the

mass and the width of the effective Breit-Wigner are extracted from the fit of the right

sideband, where it is more visible, and fixed in the fit of the left sideband.
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Figure 3.5: Left and right sideband data samples and the fit results. The mass and the
width of the K∗−(892), K∗+(892), ρ0(770) are taken from the PDG [41], the mass and the
width of the effective Breit-Wigner are extracted from the fit of the right sideband, where
it is more visible, and fixed in the fit of the left sideband.
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Figure 3.6: Background parameterization Dalitz plot projections, and the two-dimensional
Dalitz plane.
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Fig. 3.6 shows the background parameterization Dalitz plot projections, and the two-

dimensional Dalitz plane. The values of the coefficients of the resonant component and of

the fraction f are obtained with a linear interpolation of the values of the two sidebands.

For the non resonant component, since the kinematically allowed region depends from

the value of the D0 mass, a more complicated technique must be used: two samples

are generated according to the fit results of the two sidebands, a momentum rescaling

is applied to the two samples in order to rescale them to the allowed Dalitz region, the

rescaled samples are merged according to the number of events of the two data samples,

then the merged sample is fitted with the third-order polynomial function.

3.1.5 Efficiency map

The Dalitz plot efficiency map is evaluated using a signal Monte Carlo sample of 2821000

events with the D0 allowed to decay isotropically. The 334853 events remaining after all

selection criteria are fitted to a third-order polynomial in two dimensions:

ε(x, y) = |1 + a1 · x+ a2 · y + a3 · x2 + a4 · x2 + a5 · x · y + (3.4)

a6 · x3 + a7 · y3 + a8 · x · y2 + a9 · y · x2|,

where x = m2
12 and y = m2

13 are the squared (Ksπ
−) and (Ksπ

+) masses of the D0 decay.

Fig. 3.7 shows the Dalitz distribution of the Monte Carlo sample and the fit result. Fig. 3.8

shows the projections of signal Monte Carlo and a flat distribution is superimposed, the

efficiency map is basically consistent with flat.

3.1.6 Resolution function

The imperfect momentum reconstruction of the tracks from the D0 leads to a modification

of the Dalitz structure. This effect worsens the agreement between the D0 → K0
Sπ

+π−

Dalitz plot distribution and the Dalitz model used to fit it, and causes about 2-3% of the

reconstructed D0 decays to lie outside the kinematically-allowed Dalitz region. In order

to improve the D0 daughters’ momenta resolution, a D0 mass constraint fit is applied

during the reconstruction. There are two advantages: 1) the uncertainty of the four-

momentum of the particles is reduced, giving a more precise measurement of the mass

squared variables used to define an event position in the Dalitz plot, and 2) the decay

position in these variables is guaranteed to respect the kinematic boundaries of the Dalitz

plot.
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Figure 3.7: Projections of signal Monte Carlo and efficiency map.



80 D0 → KSπ−π+ Dalitz amplitude parameterization

M(Ks pi-) [Gev^2]
0.5 1 1.5 2 2.5 3

Ev
en

ts
 / 

( 0
.0

27
 )

0

1000

2000

3000

4000

5000

M(Ks pi-) [Gev^2]
0.5 1 1.5 2 2.5 3

Ev
en

ts
 / 

( 0
.0

27
 )

0

1000

2000

3000

4000

5000

(a) M2

KSπ−

M(Ks pi+) [Gev^2]
0.5 1 1.5 2 2.5 3

Ev
en

ts
 / 

( 0
.0

27
 )

0

1000

2000

3000

4000

5000

M(Ks pi+) [Gev^2]
0.5 1 1.5 2 2.5 3

Ev
en

ts
 / 

( 0
.0

27
 )

0

1000

2000

3000

4000

5000

(b) M2

KSπ+

Figure 3.8: Projections of signal Monte Carlo and the efficiency map (blue line). A flat
distribution is superimposed (red line).

Even after the mass constraint some resolution effects are present. To evaluate the

effect of the of the resolution function on the shape of the Dalitz amplitude the event-by-

event difference in the generated and reconstructed (m12, m13) distributions is calculated.

Fig. 3.9 shows the distribution of the resolution function fitted with a sum of three Gaus-

sians.

The resolution as a function of the Dalitz variables is obtained in bins of (0.1 GeV2 ·0.1
GeV2) by fitting the resolution function for (m12, m13) with a sum of two Gaussians.

Fig. 3.10 shows the value of the shift and the width in the (m12, m13). The width has

a clear maximum in the region of the K∗(892) (Cabibbo allowed and double Cabibbo

suppressed).

In order to see the effect of the resolution function on the K∗(892) shape a sample

of 200k events is generated and the generated sample is smeared according to resolution

function of the Dalitz plot. Then both the generated and the smeared samples are fitted.

The K∗(892) is chosen since it take up the region of the Dalitz plot where is maximum

the resolution effect, moreover the K∗(892), together with the ρ0(770), is the largest

component of the Dalitz amplitude. The effect on the ρ0(770) is found not perceptible. In
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Figure 3.9: Distribution of the resolution function.

order to test the effect of the resolution function on a narrow resonance also the ω(782) is

considered. The generated and the smeared samples of K∗(892) and ω(782) are displayed

in Figure 3.11.

Since the amplitude of the ω(782) is quite small, the very small effect on its width can

be neglected. For K∗(892) there is no perceptible effect.

3.2 Breit Wigner fit

The Breit Wigner fit is the first Dalitz fit performed in the context of the γ analysis and

it is still the Dalitz fit used for the extraction of γ since the fit with the K-matrix model is

still preliminary and lacks a complete evaluation of the systematics for all the components

of the Dalitz amplitude. Even if it doesn’t describe the case of broad resonances that

overlap significantly, the Breit Wigner fit, given the low statistics of the current B data

sample, is proved sufficient for the measurement of γ as it will be shown in Sec. 5.3.7. It

is performed in a sub data sample of the one described in Sec. 3.1. This sample contains

81491 events with a purity of 97.64%. The efficiency map is parameterized using the

same function described is Sec. 3.1; the background, instead, is parameterized with a flat
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Figure 3.10: Shift and the width of the resolution function as function of the Dalitz plot.
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Figure 3.11: Distribution of the generated K∗(892) and ω(782)sample (blue points) and
smearing one (red points).

distribution.

3.2.1 Decay Amplitude

The Dalitz plot distribution (m12, m13) is fitted using the Breit Wigner model [42] that

uses the formalism of the isobar model. In this formalism, the decay amplitude f can be

written as a sum of two body matrix elements and a non-resonant term according to the

following expression:

f = a0e
iφ0 + Σare

iφrAspin(ABC|r) . (3.5)

Where A, B and C are referred to the D0 → ABC decay through an AB resonance r

(Fig. 3.12). The first term is the three body non-resonant term and the sum is over the

contributions from the intermediate two body resonances. The form factors Aspin(ABC|r)
are the usual Breit-Wigner terms.

For a spin zero resonance:

A0(ABC|r) = FDFr
1

M2
r −M2

AB − iMrΓAB
, (3.6)
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Figure 3.12: Representation of the three-body decay of D0 → ABC through an AB reso-
nance. The spin sum is performed to obtain the angular dependence of the decay.

where Mr is the mass of the resonance and MAB the AB invariant mass. For a vector

resonance:

A1(ABC|r) = FDFr

M2
AC −M2

BC +
(M2

D−M2
C)(M2

B−M2
A)

M2
r

M2
r −M2

AB − iMrΓAB
. (3.7)

Similar expressions hold for tensor particles:

A2(ABC|r) =
FDFr

M2
r −M2

AB − iΓABMr

[

(

M2
BC −M2

AC +
(M2

D −M2
C)(M2

A −M2
B)

M2
r

)2
]

−1

3

(

M2
AB − 2M2

D − 2M2
C +

(M2
D −M2

C)2

M2
r

) (

M2
AB − 2M2

A − 2M2
B +

(M2
A −M2

B)2

M2
r

)]

.

(3.8)

Here, ΓAB is a function of the mass MAB , the momentum pAB of either daughter in the

AB rest frame, the momentum pr of either daughter in the resonance rest frame, the spin

J of the resonance, and the width Γr of the resonance. The explicit expression is:

ΓAB = Γr

(

pAB

pr

)2J+1(
Mr

MAB

)

F 2
r . (3.9)

For ππ vector resonances (ρ(770) and ρ(1450)) the Gounaris-Sakurai (GS) Breit-Wigner

parameterization [43] is used.

The form factors FD and Fr attempt to model the underlying quark structure of the D0

meson and the intermediate resonances. The Blatt-Weisskopf penetration factors shown

in Tab. 3.1 are used. The one free parameter R represents the “radius” of the meson and

depends on the momentum pr of the decay particles in the parent rest frame. FD = 1

for the D0 and R = 1.5 GeV−1 for the intermediate resonances are assumed.
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Spin Form Factor Fr

0 1

1

√
1+R2p2

r√
1+R2p2

AB

2

√
9+3R2p2

r+R4p4
r√

9+3R2p2
AB

+R4p4
AB

Table 3.1: Summary of the Blatt-Weisskopf penetration form factors.

3.2.2 Fit results

An unbinned maximum likelihood fit is made in order to describe the population on the

Dalitz plot and to extract amplitudes anr, aj and phases φnr, φj. The likelihood function

is written in the following way:

L = x · ε(m2
±, m

2
∓)
∣

∣f(m2
±, m

2
∓)
∣

∣

2

∫

|f(m2
±, m

2
∓)|2 ε(m2

±, m
2
∓)dDP

+ (1 − x) , (3.10)

where 1 − x is the fraction of background events in the sample whose distribution is

assumed to be flat and ε(m2
±, m

2
∓) is the efficiency map determined in Monte Carlo sim-

ulation where the D0 was allowed to decay isotropically. The mass resolution effect is

found to be negligible all over the Dalitz plane if compared with intermediate resonance

width.

The fit fraction is defined as the integral of a single component divided by the coherent

sum of all components:

Fit Fraction =

∫ ∣

∣are
iφrA(ABC|r)

∣

∣

2
dDP

∫

∣

∣

∣

∑

j ajeiφjA(ABC|j)
∣

∣

∣

2

dDP
, (3.11)

where dDP indicates that the integral is performed over the Dalitz Plot. The sum of the

fit fractions for all components of a fit will in general not be one because of interference.

For fitting the Dalitz plot a model with twelve resonances is considered. This model is

described by the masses and widths listed in the PDG [41] (see Tab. 3.2). This leads to 18

two body decay amplitudes and phases, eight of which are KS +ππ with ππ = σ, ρ0(770),

ω(782), f0(980), σ′, f2(1270), f0(1370), and ρ(1450); five are KSπ
− + π+ with KSπ

− =

K∗(892), K∗
0(1430), K∗

2 (1430), K∗(1410), and K∗(1680); and three are KSπ
+ + π− with

KSπ
+ = K∗(892), K∗

0 (1430), and K∗
2 (1430).
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All the considered resonances are well established but the two scalar (π, π) resonances

σ and σ′, which were proposed by Belle [44]. The masses and widths of these two scalars

have been obtained from a fit with all phases and amplitudes floated together with the

masses and widths of the two resonances. Since there is an arbitrary overall normalization

factor and phase, the KSρ mode is chosen as reference and its amplitude is set to unity

and phase to zero.

Tab. 3.3 gives the result of the Breit-Wigner Dalitz fit. Fig. 3.13 and Fig. 3.14 show

the Dalitz distribution of the single resonances of the Breit-Wigner model. Fig. 3.15

shows projections of the fit result on top of data distributions and Fig. 3.16 shows zoom

of particular regions of the Breit-Wigner fit result.

3.3 K-Matrix fit

It is well-known that the Breit-Wigner model is only suitable for relatively narrow and

isolated resonances. The treatment of S-wave states in D0 → KSπ
−π+ requires a more

general formalism to account for non-trivial dynamics due to the presence of broad, over-

lapping resonances. The K-matrix approach, described in detail in Sec. 1.5 can be applied

to the case of resonance production in multi-body decays when the two-body system in

the final state is isolated, and the two particles do not interact simultaneously with the

rest of the final state in the production process. In addition, it provides a direct way of

imposing the unitarity constraint that is not guaranteed in the case of the Breit-Wigner

model. Therefore, the K-matrix method is suited to the study of broad and overlapping

resonances in multi-channel decays, solving the main limitation of the Breit-Wigner model

to parameterize the ππ S-wave states in D0 → KSπ
−π+ [45], and avoiding the need to

introduce the two σ scalars.

3.3.1 Decay Amplitude

The Dalitz amplitude AD(m2
−, m

2
+) is written in this case as a sum of two-body decay

matrix elements for the spin-1, spin-2 and Kπ spin-0 resonances (as in the Breit-Wigner

model), and the ππ spin-0 piece denoted as F1 is written in terms of the K-matrix:

AD(m2
−, m

2
+) = F1(s) + Σr 6=ππ S−waveare

iφrAr(m
2
−, m

2
+) , (3.12)
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Resonance Mass (MeV/c2) Width (MeV/c2) Spin

K∗(892) 891.66 50.8 1
K∗

0(1430) 1412 294 0

K∗
2(1430) 1425.6 98.5 2

K∗(1410) 1414 232 1

K∗(1680) 1717 322 1
σ 484 ± 9 (from fit) 383 ± 14 (from fit) 0

ρ0(770) 775.8 146.4 1
ω(782) 782.6 8.5 1

f0(980) 975 44 0

σ′ 1014 ± 7 (from fit) 88 ± 13 (from fit ) 0
f2(1270) 1275.4 185.1 2

f0(1370) 1434 173 0
ρ(1450) 1406 455 1

Table 3.2: Values for the masses and widths of the resonances used for the fit of the D0 →
Ksπ

−π+ Dalitz plot. The flavor tagged D sample from the continuum : D∗± → D0π±
s are

used. The values and the width for the two scalars σ and σ ′ are obtained floating them in
the fit, while the other are fixed according to the PDG2004 [41] values.

Resonance Amplitude phase (degrees) fit fraction (%)

K∗(892) 1.777 ± 0.018 131.0 ± 0.81 58.51
ρ0(770) 1 (fixed) 0(fixed) 22.33

K∗(892) DCS 0.1789 ± 0.0080 −44.0 ± 2.4 0.59

ω(782) 0.0391 ± 0.0016 114.8 ± 2.5 0.56
f0(980) 0.469 ± 0.011 213.4 ± 2.2 5.81

f0(1370) 2.32 ± 0.31 114.1 ± 4.4 3.39
f2(1270) 0.915 ± 0.041 −22.0 ± 2.9 2.95

K∗
0(1430) 2.454 ± 0.074 −7.9 ± 2.0 8.37

K∗
0(1430) DCS 0.350 ± 0.069 −344.± 10. 0.60

K∗
2(1430) 1.045 ± 0.045 −53.1 ± 2.6 2.70

K∗
2(1430) DCS 0.074 ± 0.038 −98 ± 30 0.01

K∗(1410) 0.524 ± 0.073 −157 ± 10 0.39
K∗(1680) 0.99 ± 0.31 −144 ± 18 0.35

ρ(1450) 0.554 ± 0.097 35 ± 12. 0.28
σ 1.346 ± 0.044 −177.5 ± 2.5 9.11

σ′ 0.292 ± 0.025 −206.8 ± 4.3 0.98
Non resonant 3.41 ± 0.48 −233.9 ± 5.0 6.82

Table 3.3: Amplitudes, phases and fit fraction of the different components obtained from
the likelihood fit of the D0 → Ksπ

−π+ Dalitz plot. The flavor tagged D sample from the
continuum : D∗− → D0π±

s are used. The total fit fraction is 1.24.
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Figure 3.13: Distribution of (m2
KSπ+,m2

KSπ−) for D0 decaying into ππ S-wave KS: f0(980),
f0(1370), σ, σ’, and K∗−(892)π+, K∗+(892)[Doubly Cabibbo Suppressed], ρ(770)KS.
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Figure 3.14: Distribution of (m2
KSπ+,m2

KSπ−) for D0 decaying into either ω(782)KS,

ρ(1450)KS, f2(1270)KS, K
∗−
2 (1430)π+, K∗−(1410)π+, K∗−(1430)π+, K∗−(1680)π+ or

K∗+(1680)π−[Doubly Cabibbo Suppressed decay].
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Figure 3.15: Result of the Breit-Wigner fit to the D0 → Ksπ
−π+ Dalitz plot, using the

flavor tagged D sample from the continuum : D∗± → D0π±
s . The three projections are

displayed : Cabibbo allowed (Ksπ
−), the (Ksπ

+) and the (π+π−). The Dalitz distribution
of generated events according to the fit result is also shown.


