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1. ABSTRACT 

 

Human mesoangioblasts (MABs) are vessel–associated progenitors able to 

differentiate into skeletal muscle and to reconstitute the damaged muscle fibers 

when injected into a Duchenne Muscular Dystrophy (DMD) mouse model (mdx), 

an incurable myopathy for which no therapy currently exists. Because of these 

features, human MABs are now entered clinical experimentation based upon 

allogeneic transplantation. However autologous cell therapy for DMD still faces 

significant limitations, first of all the large size of the dystrophin gene that 

hampers its allocation into conventional gene-delivery tools such as viral vectors.  

In order to overcome these limitations, a novel approach of autologous 

cell therapy to treat DMD was developed by transplanting dystrophic MABs 

genetically-corrected with a Human Artificial Chromosome (HAC) containing the 

entire dystrophin locus (DYS-HAC). The feasibility of this strategy was already 

proved: MABs derived from mdx mouse and genetically corrected with the DYS-

HAC, were able to engraft skeletal muscle and restore dystrophin positive fibers 

in dystrophic mice, resulting into a significant morphological and functional 

amelioration of the phenotype. 

 In the case of DMD MABs, an additional step of immortalization is 

fundamental before DYS-HAC transferring, which requires clonal expansion and 

analysis, since they undergo replicative senescence. To reversibly immortalize 

normal and dystrophic human MABs, lentiviral vectors encoding floxed hTERT 

IRES-HSV1-TK and Bmi-1 have been used.  

Normal clones have been characterized for proliferation and proper expression 

of hTERT and Bmi-1; they remained growth factor-dependent, contact-inhibited, 
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non tumorigenic and myogenic in vitro. Notably, upon transplantation into 

dystrophic mice, they engrafted skeletal muscle and restored dystrophin 

expression. I then moved to the immortalization of DMD MABs in order to 

transfer the DYS-HAC, obtaining immortalized DMD DYS-HAC MABs. These 

data set the conditions for future clinical translation of this experimental strategy 

for the treatment of the DMD patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

2. INTRODUCTION 

 

2.1 THE MUSCULAR DYSTROPHIES 

 

2.1.1 Clinical presentation  

Muscular dystrophies (MDs) are inherited neuromuscular disorders 

characterized by progressive muscle wasting and weakness leading to a 

wheelchair constriction and to a heart and/or respiratory failure in the most 

severe forms (Emery, 2002). MDs are all well defined pathologies recognized by 

drastic changes into common histological features such as variation in muscle 

fiber size, muscular fibers degeneration and regeneration with replacement of 

muscle by scar and fat. Nevertheless, they displayed a great heterogeneity due 

to the genetic basis, the clinical onset and the progress and the severity of the 

pathology (Manzur and Muntoni, 2009). For all these reasons, MDs can be 

divided into several groups, mainly in accordance with the anatomical distribution 

of muscle weakness: Duchenne and Becker (predominant proximal major 

involvement); Emery-Dreifuss; distal; oculopharyngeal; facioscapulo-humeral 

(FSHD); limb-girdle (LMGD, which is the most heterogeneous group) (Figure 

2.1.1.1). In several forms there is a cardiac involvement; additionally, some MDs, 

such as DMD, could also involve the central nervous system (where dystrophin 

is also expressed) resulting in a variable cognitive impairment (Emery, 2002).  

Both DMD and Becker MD (BMD) are X-linked disorders caused by 

mutations in the gene encoding the sarcolemmal protein dystrophin, an integral 

part of a complex that links the intracellular cytoskeleton with the extracellular 

matrix (Muntoni et al., 2003). DMD symptoms start in early childhood, with 
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difficulties mainly in running and climbing stairs; frequent enlarged calves, 

toe/waddling gait and Gower’s manoeuvre (a child climbs up his thighs, pushing 

down on them, to extend the hips and trunk), in addition to a frequent global 

developmental delay (Essex and Roper, 2001) are signs which can permit a 

easy recognition. An almost unequivocal marker for DMD diagnosis is the 

elevated level (10–100X normal, since birth) of serum creatine kinase (CK) 

(Manzur and Muntoni 2009). Weakness is initially proximal and progressively 

leads patients to be wheelchair bound by age 11-15. Pneumonia, and cardiac 

failure are the most frequent cause of death that usually occurs in the late 20s. In 

BMD the distribution of muscle wasting and weakness resembles DMD, but 

generally the disease is less severe, with some patients living without any 

symptoms until late in life. Dystrophin is normally absent in patients with DMD, 

whereas is reduced in amount or abnormal in size in patients with BMD (Monaco 

and Kunkel, 1988): this reflects the type of mutation in the dystrophin gene, as 

deletions that do not prevent synthesis of dystrophin amino and carboxy terminal 

domains (i.e. in frame deletions) lead to BMD (Muntoni et al., 2003). However, in 

rare DMD cases, dystrophin can be detected, or is occasionally undetectable in 

mild cases of this disorder (Hattori et al., 1999). Clinical diagnosis is validated by 

immunohistochemistry, immunoblotting and molecular analysis of the specific 

mutation (the most common being intragenic deletions, which account for 65% of 

dystrophin mutations). 
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Figure 2.1.1.1 - The muscular dystrophies. 

(a) Muscular groups predominantly affected in different forms of MDs. (b) Inheritance of the MDs. 

(c) Immunofluorescence staining of skeletal muscle sections of three different MD patients 

showing absence of sarcolemmal signal of dystrophin, alpha-sarcoglycan and laminin-alpha2. 

Adapted from Emery, 2002 and Bushby, 2009 (Bushby et al., 2009). 
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2.1.2 Duchenne Muscular Dystrophy: Genetic and Pathophysiology 

The genes and their protein products that are responsible of the majority of 

muscular dystrophies have now been identified. This happened more than 

twenty years ago both for DMD and BMD, when they were described as X-linked 

recessive genetic disease caused by mutations in the dystrophin gene located at 

locus Xp21 (Kunkel et al., 1985; Ray et al., 1985). Dystrophin is a rod-shaped 

protein which is supposed to be fundamental to protect sarcolemma from 

continuous and subsequent contractions, being the source of an indirect link 

between the cytoskeletal actin and the intermediate filaments in the muscle fiber 

with the extracellular matrix; as a matter of fact, the amino-terminal end binds to 

the cytoskeletal actin whereas the carboxyl-terminal end binds to the dystrophin 

associated glycoprotein complex (DGC) at the sarcolemma (Figure 2.1.2.1).  

Generally, the mutations in the dystrophin gene caused alteration of the 

reading frame, resulting in a severe reduction or absence of dystrophin in the 

skeletal and cardiac muscles, which turn into DMD (or BMD). In addition, 65% of 

DMD patients have intra-genic out-of-frame deletions and approximately 10% 

have duplications of one or more exons of the dystrophin gene. The remaining 

patients have point mutations or smaller gene rearrangements such as insertions 

of repetitive sequences, splice site mutations and intronic deletions. In general, 

out-of-frame mutations give rise to a strong reduction or a complete absence of 

dystrophin resulting into DMD phenotype, whereas in-frame mutations lead to 

the expression of a partially functional truncated protein, resulting in the milder 

form, the BMD. Nevertheless, in-frame mutations in actin and dystroglycan 

binding domains, which plays a crucial role for dystrophin function, can lead to a 

DMD phenotype, while some out-of-frame mutations are associated with BMD. It 
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is also important to remember that there is a high incidence of de novo mutations 

(Manzur and Muntoni 2009), which will make eradication of the disease by 

genetic counselling impossible. Absence/reduction in dystrophin expression 

causes disruption of the DGC and, as a consequence leads to an increased 

sarcolemma fragility that results in contraction-induced breakdown of muscle 

membrane, high levels of intra-cytoplasmatic calcium, followed by muscle fiber 

damage and tissue degeneration. Several dystrophin isoforms are also 

expressed in brain and heart, and their deficiency in these tissues is responsible 

respectively for mental impairment (though this had been questioned) and 

cardiomyopathy, which hang up with the muscular phenotype in approximately a 

third of cases.  

Currently there is no yet any efficacious treatment for muscular 

dystrophies. Since DMD is surely the most severe form, the majority of the 

efforts are focused on the management of this disease (Bushby et al., 2010a, 

2010b). Glucocorticoids remain the standard drug administered to dystrophic 

patients: it partially ameliorates symptoms and delays the progression of the 

disease (Muntoni et al., 2002). Respiratory care and treatment of cardiac 

complications is critical in later stages of disease, together with surgical 

correction of contractures, which might be helpful when walking and posture 

become difficult. 
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Figure 2.1.2.1 - Dystrophin-glycoprotein complex (DGC) organization. Schematic 

representation of the organization of DGC and aetiology of muscular dystrophies. Dystrophin 

interacts with cytoplasmic trans-membrane and extracellular protein in skeletal muscle. Mutation 

in the dystrophin and other members of DGC give rise to a variety of muscular dystrophies. BMD: 

Becker Muscular Dystrophy; DMD: Duchenne Muscular Dystrophy; CMD: Congenital Muscular 

Dystrophy; CYS: Cysteine; DG: Dystroglycan; LGMD: Limb Girdle Muscular Dystrophy; NOS: 

Nitric Oxide Sinthase. Taken from Khurana and Davies, 2003 (Khurana and Davies, 2003). 
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2.1.3 Experimental therapies 

2.1.3.1 Pharmacological therapy 

The main aim of drug experimental therapies is not to definitively cure but to 

ameliorate the dystrophic phenotype by decreasing inflammatory process, 

improving calcium homeostasis, increasing survival, commitment and 

proliferation of myogenic progenitors. Taken as a whole, the pharmacological 

approaches could provide an immediate and suitable therapeutic opportunity to 

ameliorate the life quality of DMD and other MDs patients and, most importantly, 

to delay the pathology progression with the perspective that, in time, other 

therapies may become available.  

Since the degeneration of skeletal muscle fibers is accompanied by 

chronic inflammation, which is finally responsible of sclerosis and of a reduced 

vascularisation (Deconinck et al., 1997), the main pharmacological approach 

concerns the use of corticosteroids (Muntoni et al., 2002; Manzur et al., 2004) 

that were responsible of a short term modest but significant reduction of 

inflammatory and immunological responses. A big deal of other drugs (Mozzetta 

et al., 2009) are now under pre-clinical or clinical experimentation: inhibitors of 

negative myogenic regulators such as myostatin and TGF-! signaling pathway 

(Bogdanovich et al., 2002);  other anti-inflammatory molecules (Muntoni et al., 

2002) among which the Nitric oxide (NO) (Brunelli et al., 2007); IGF1 (insulin 

growth factor 1), able to activate satellite cells and to increase muscle size  

(Musaro et al., 1999; Barton et al., 2002); chromatin modifying agents such as 

HDACs, responsible of an increase expression of genes involved into 

regeneration process such as follistatin (Minetti et al., 2006). Among these 

strategies, myostatin-neutralizing antibodies underwent clinical experimentation 
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but failed (Wagner et al., 2008). This is an indication that novel approaches are 

still needed.  

Other compounds, such as angiotensin-receptor blocker, can ameliorate the 

dystrophic phenotype of mdx mice (Wagner et al., 2008). Up-regulation of 

utrophin to counteract the loss of dystrophin in DMD is another interesting 

approach, and at that moment different studies are testing recently identified 

transcriptional activators of utrophin (Miura and Jasmin, 2006). Another 

approach targets mitochondria, inhibiting cyclophillin D, has proven to lead to 

benefits in dystrophic mouse models (Miura and Jasmin, 2006). 

 

2.1.3.2 Gene therapy 

The final aim of gene therapy is to replace or fix the mutated gene with a correct 

and functional form, thus reverting the pathological phenotype. The situation is 

particularly complicated for skeletal muscle genetic diseases: first, skeletal 

muscle is the most abundance tissue of the body and, therefore, there is the 

need to replace the mutated gene into a huge number of post-mitotic nuclei; 

second, in the case of DMD, the involved gene, dystrophin, is the largest gene of 

the human genome (entire genetic locus 2.4 Mb, cDNA 14kb), so it is difficult, or 

better impossible, to accommodate it into any classical delivery vector. For this 

reasons, a deal of different gene delivery systems has been tested and most of 

them are now under laboratory or clinical experimentation. 

 

Viral vectors 

DNA-based vectors have great potential for MD gene therapy. In particular 

adenoviral vectors have the peculiar ability of carrying up to 30kb of transgenic 
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DNA and to this purpose they have been largely used to deliver target genes to 

muscle (Welch et al., 2007). On the other hand their non-integrating nature, 

together with high immunogenicity, especially in the case of first generation 

vectors, the tendency to be silenced and the difficulty, in some cases, to cross 

skeletal muscle fibers strongly limit their use as gene delivery tools (Chen et al., 

1997; DelloRusso et al., 2002). 

Over the past decade, the generation of a new class of recombinant 

adeno-associated virus (rAAV) exhibiting a unique skeletal muscle tropism has 

provided significant progress in this direction (Blankinship et al., 2004; Asokan et 

al., 2010). Of particular interest is the combination of rAAV delivery strategy with 

truncated dystrophin small enough to be accommodated within a rAAV (Harper 

et al., 2002; Watchko et al., 2002). Systemic delivery of a truncated 

microdystrophin through AAV has been successful in mice (Gregorevic et al., 

2004), but the delivery of vector to all striated muscle in a larger organism still 

presents a challenge and evidence of rAAV efficacy in a large dystrophic animal 

model is now missing. Additionally, as reported for adenoviral vector, the 

immunogenicity of the rAAV capsid is a significant obstacle to long-term and 

repeated transductions of skeletal muscle (Yuasa et al., 2007). To overcome this 

problem, a transient immunosuppression (Wang et al., 2007) as well as 

intravenous rAVV delivery into neonatal dogs have been tested (Yue et al., 

2008); even if results are encouraging, additional evidences will be necessary to 

confirm these results. At the moment, AAV-mediated delivery of α-sarcoglycan 

to dystrophic mice has been shown to be successful (Pacak et al., 2007) and 

clinical studies in LGMD patients are in progress (Rodino-Klapac et al., 2008).  
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Another common way to deliver the therapeutic gene is the use of 

retrovirus-based vectors, such as HIV-derived lentiviral vectors but importantly, 

they cannot deliver more than 8kb of exogenous DNA. At difference with 

previously employed retroviral vectors, lentiviral ones are able to transduce non-

mitotic cells so, together with their lower tumorigenic potential related to 

insertional mutagenesis, they are interesting tool for therapeutic genes. 

Recently, integration-deficient lentiviral vectors have been generated which have 

a much lower risk of insertional mutagenesis than integrating lentiviral vectors 

(Wanisch and Yanez-Munoz, 2009; Banasik and McCray, 2010). Although 

integration-deficient lentiviral vectors can mediate stable expression in non-

dividing cells, they show transient expression in proliferating cells. This last issue 

still raises some concerns for their clinical use and the limited space for 

transgenes makes them unsuitable for large cDNAs, such as dystrophin. 

Integrating lentiviral vectors have been so far predominantly used for the ex vivo 

transduction of various types of stem cells, in order to use them for cell therapy 

studies in dystrophic animal models.  

 

Non-viral vectors: human artificial chromosomes (HACs)  

Although a large number of different approaches have been attempted to 

achieve efficient gene transfer and long-term gene expression, this challenging 

task remains unfulfilled as all current methods have limitations: low transduction 

efficiency; stable maintenance in host cells without integration into the host 

genome; appropriate expression; no risk of cellular transformation or stimulation 

of the host’s immune system.  

An alternative solution to overcome all these problems could be the use 
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of human artificial chromosome (HAC) (Kazuki and Oshimura, 2011). HACs are 

exogenous mini-chromosomes that can work as gene delivery vectors when 

transduced into stem or progenitor cells through a technique called “microcell-

mediated chromosome transfer” (MMCT) (Ren et al., 2006). HACs construction 

could be performed both by a “top-down approach” (engineered chromosomes; 

(Kuroiwa et al., 1998)  or a “bottom-up approach” (de novo artificial 

chromosomes; (Harrington et al., 1997a). Although the efficiency of HACs 

transferring into target cells is lower than that of conventional viral vectors, they 

present a deal of advantages over other conventional gene delivery vectors: I) 

since they are episomal, they replicate and segregate as natural chromosomes 

independently from the host genome, thus minimizing the problems of insertional 

mutagenesis and silencing (Harrington et al., 1997a; Ikeno et al., 1998; Guiducci 

et al., 1999; Kuroiwa et al., 2000; Katoh et al., 2004); II) HACs can faithfully 

mimic the normal pattern of gene expression because they can accommodate 

entire genomic loci, including upstream and downstream regulatory elements 

(Tomizuka et al., 1997); III) it is possible to maintain long-term correction of 

mutated genes because these vectors are mitotically stable throughout many cell 

divisions in human cells (Bayne et al., 2004; Ren et al., 2005) (Fig 2.1.3.2.1). 
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Figure 2.1.3.2.1 - Features of human artificial chromosomes (HACs).  

(a) Different techniques to construct HACs. (b) Size limits of gene delivery vectors. Maximum 

deliverable DNA size in each vector is described. HAC vectors can carry DNA larger than 1 Mb. 

The size limits depend on each vector. (c,d) Limitations and consequences of gene delivery with 

conventional vectors such as a virus or plasmid, and with HACs, respectively. Taken from Kazuki 

and Oshimura, 2011. 

 

  A new HAC vector containing the entire human dystrophin locus 

(DYS-HAC) has been recently generated (Hoshiya et al., 2009) (Figure 

2.1.3.2.2). This construct was transferred into mouse embryonic stem cells 

(ESCs) to create chimaeric pups expressing human dystrophin and could also 

be stably maintained into mesenchymal stem cells through their in vitro life. Most 

importantly, the same construct has been transferred to human DMD induced 

Pluripotent Stem Cells (iPSCs) (Kazuki et al., 2010), providing a unique gene 

and cell therapy tool for DMD. Surprisingly, so far there were no reports 

describing functional evidences of HAC efficacy in any animal model of genetic 

disease using stem cell-mediated gene-replacement therapy. Recently, the 
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transplantation into a murine model of DMD (scid/mdx mouse) of murine 

dystrophic mesoangioblasts (mdxMABs), previously corrected with the DYS-

HAC, results into a clear morphological and functional amelioration of the 

pathological phenotype (Tedesco et al., 2011). This is the first evidence of 

efficacy of a stem cell and HAC-mediated gene therapy in a preclinical model of 

DMD raising the potential for future clinical translation.  

 

 

 

 

 

Figure 2.1.3.2.2 - Map of dystrophin human artificial chromosome (DYS-HAC).  

The DYS-HAC vector contains the enhanced green fluorescent protein (EGFP) gene, the herpes 

simplex virus thymidine kinase (HSV-tk) gene, and several selection markers (bsd: blasticidin;  

puro: puromycin; HPRT gene). Both telomeres of the DYS-HAC are artificial. The centromere of 

the DYS-HAC is derived from human chromosome 21. Adapted from Hoshiya et al., 2009. 

 

  We can conclude this section by stating that potential application of 

HACs ranges from classical treatment of genetic disorders through gene and cell 

therapy by transferring the desired HAC into stem/progenitor/iPS cells, as well as 

generation of chimaeric mice to perform functional analyses in vivo (Fig. 

2.1.3.2.3). 
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Figure 2.1.3.2.3 - Schematic diagram of HAC employment to the treatment of genetic 

disease and in vivo functional analysis. a) HAC construction with gene(s) of interest b) 

Microcell mediated transfer (MMCT) of HAC either into c) mouse ES cells in order to generate 

chimaeric mice and d) for the gene and cell therapy using as a recipient specific stem cells or 

iPS. HSC, hematopoietic stem cell; iPS, induced pluripotent stem; MAB, mesoangioblast; mGS, 

multipotent germline stem; MSC, mesenchymal stem cell. Taken from Kazuki and Oshimura, 

2011. 
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2.1.3.3 Cell therapy 

The possibility of restoring proper gene expression into skeletal muscle via 

allogeneic or autologous, genetically corrected stem cell transplantation is 

already possible thanks to a number of studies on skeletal muscle stem cells. 

However, the cell therapies approaches still remains very expensive and in need 

of proof of efficacy as all the other strategies. Nevertheless, stem cell-based 

therapies will likely be used together with drugs (Chinen and Buckley, 2010), so 

that the future personalized medicine for MDs will certainly integrate different 

classical (i.e. drugs) and innovative therapies (i.e. gene repair/replacement) in 

order to achieve disease- and patient-specific definitive cures. 

In the last 80s, pioneering experiments in mdx mouse clearly showed 

that myoblasts could be transplanted into dystrophic muscle giving rise to 

dystrophin-expressing myofibers (Partridge et al., 1989). After this important 

discovery, different clinical trials for DMD started in the early 1990s; once 

finished, unfortunately they demonstrated the safety but also the absence of 

evident functional benefit derived from myoblast injections into the dystrophic 

injected muscles. This was mainly due to the poor survival and migration of 

myoblasts (Mouly et al., 2005). Subsequent experiments have been focused to 

optimize the use of myoblasts to treat MDs and a Phase I clinical trial has been 

completed some years ago (Skuk et al., 2006). Although encouraging results 

have been obtained, local administration is still a strong limiting point.  

In the last ten years, several adult-derived stem cells have been isolated 

(Jiang et al., 2002) (see 2.2.2 Unconventional myogenic stem cells); they 

have been characterized and used in animal transplantation experiments, and 

the promising results have opened up new possibilities for cell therapy in 
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muscular dystrophies (Peault et al., 2007). 

 

2.1.3.4 Mutation-specific strategies 

In this last years, other two interesting therapeutic approaches with the aim of 

targeting dystrophin genetic defect, have been developed: exon-skipping and 

nonsense codon suppression. The final goal is to target mRNA splicing or 

termination with these small molecules respectively (Nelson et al., 2009) and 

both strategies are now in phase II/III clinical trials (van Deutekom et al., 2007; 

Welch et al., 2007; Kinali et al., 2009). As a result, a Duchenne patient could turn 

into the milder Becker phenotype, since the action mechanism of exon-skipping 

or nonsense codon suppression lead to the expression of smaller but partially or 

completely functional dystrophin protein. Actually not all the mutations are 

“skippable” (Aartsma-Rus et al., 2009), depending where the mutation is located 

onto the gene, but is clearly known that the majority of dystrophin mutations are 

deletions within rod domain (from exon 44 to exon 55), which cause an alterated 

reading frame of dystrophin and result in a prematurely truncated protein 

(Muntoni et al., 2003).  

In this direction, exon-skipping has been tested in dystrophic animal 

models (Muntoni et al., 2003) and DMD trials (van Deutekom et al., 2007; Kinali 

et al., 2009). These studies utilize antisense oligonucleotides (AONs) and 

recently a variety of chemical variants and delivery methods have been tested. 

Two types of AONs are mainly used: 2!-O-methyl- phosphorothioate (2OMP) and 

phosphorodiamidate morpholino oligomer (PMO). Recently, a DMD trial based 

upon systemic PMO treatment showed the safety of exon-skipping strategy 

together with dystrophin expression restoration but no beneficial effects have 
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been shown (Cirak et al., 2011). Even if successful, exon-skipping has two major 

limitations: it requires life-long administration of very expensive oligonucleotides 

and is not applicable to all mutations. Another approach to systemically deliver 

antisense-based exon-skipping is through viral vectors which carry the cDNA of 

a U7 small nuclear RNA, a sequence complementary to the acceptor and donor 

splice site(s) of the exon(s) to be skipped (Goyenvalle et al., 2009). This strategy 

requires a gene therapy approach but, in contrast, it offers the possibility of 

permanent repair.  

About the nonsense codon suppression strategy, roughly 10% of all 

dystrophin mutations lead to the creation of a nonsense stop codon that result in 

a truncated protein that is rapidly degraded. Aminoglycoside antibiotics have the 

capacity to reduce ribosomal fidelity for recognizing these premature termination 

codons in the dystrophin transcript and, through this mechanism, induce 

ribosomal read-through of premature termination signals with generation of a full-

length protein with only one amino acid substitution (Barton-Davis et al., 1999). 

Aminoglycoside antibiotics were quite inefficient and showed significant toxicity 

after long-term administration. An extensive screening then led to a compound 

called PTC124 (ataluren) and phase I and II clinical trials demonstrated good 

safety and tolerability in DMD (Welch et al., 2007). Unfortunately, preliminary 

results of a large phase IIb clinical trial show that the functional amelioration 

caused by the molecule in treated patients did not reach statistical significance in 

comparison with controls. 
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2.2 SKELETAL MUSCLE STEM CELLS  

 

2.2.1 Conventional myogenic stem cells: Satellite cells 

            

2.2.1.1 Satellite cells origin and characterization 

Skeletal muscle, the most abundant tissue of the body, has the ability to 

regenerate new muscle fibers after injury or as a consequence of diseases such 

as muscular dystrophy (Carlson, 1973). Muscle fibers contain several hundred 

nuclei within a continuous cytoplasm, therefore, whether the process of 

regeneration depends upon the fusion of mononucleated precursor cells or upon 

the fragmentation of dying muscle fibers, which release new cells, remained 

controversial for a long time, even after the demonstration by Beatrice Mintz and 

Wilber Baker that multinucleated fibers are formed by the fusion of single cells 

(Mintz and Baker, 1967). Thanks to the pioneering work of Alexander Mauro we 

know that, during muscle regeneration, the main role is played by satellite cells 

(SCs), the canonical and resident stem cells of skeletal muscle (Mauro, 1961).  

SCs have been described for the first time as mononuclear cells located 

between the basal lamina of skeletal fibers, closely juxtaposed to the plasma 

membrane (Mauro, 1961) (Figure 2.2.1.1 A). SCs originate from somites (Shi 

and Garry, 2006; Sambasivan and Tajbakhsh, 2007), which are spheres of 

paraxial mesoderm that will generate skeletal muscle, dermis, and axial 

skeleton, but is still unknown the exact progenitor that gives rise to SCs.  

In physiological condition, SCs are present in healthy adult mammalian muscle 

as quiescent cells representing approximately the 2.5–6% of all nuclei of a 

muscle fiber (Beauchamp et al., 2000). In their quiescent state they expressed a 



 29 

panel of characteristic, but not unique, markers (summarized in Table 2.2.1.1): 

Pax7 (Zammit et al. 2006), Myf5 (Tajbakhsh et al., 1996), CD34 (Beauchamp et 

al., 2000), M-cadherin (Irintchev et al., 1994), VCAM-1 (Rosen et al., 1992), c-

met (HGF, hepatocyte growth factor, receptor) (Cornelison and Wold, 1997), 

CAM-1 (cell adhesion molecule-1) (Bischoff and Heintz, 1994), foxk1 (Garry et 

al., 2000) and Sydecans3 and 4 (Cornelison, 2001). In particular, the most 

important and widely used marker is Pax7, a transcriptional factor essential for 

SCs specification and survival (Kuang et al., 2006). In contrast, Pax3 is 

expressed only in quiescent SCs in a few specific muscle groups such as the 

diaphragm (Relaix et al., 2006). The basic helix-loop-helix (bHLH) myogenic 

regulatory factor 5 (Myf5) gene is expressed in the large majority of quiescent 

SCs, and for this reason mice expressing nuclear LacZ under the control of the 

Myf5 promoter (Myf5nlacZ/+ mice) have been useful for identifying and 

characterizing SCs (Tajbakhsh et al., 1996) (Figure 2.2.1.1 B). Some of the other 

listened surface markers are used by cell sorting for isolating “purified” SC 

populations, but since each marker is not exclusively expressed on SCs, a 

combination of different markers must be used. Alternatively, transgenic mice 

such as those expressing GFP under promoters that drive the expression of 

genes encoding SC markers, such as the Pax3 promoter, can be used to isolate 

SCs (Montarras et al., 2005; Day et al., 2007; Bosnakovski et al., 2008). 

 

 



 30 

 

 

Figure 2.2.1.1 - Satellite Cell. (A) Transmission electron micrograph of a satellite cell (SC) as 

identified by the plasma membrane (arrowheads) separating the satellite cell from adjacent 

myofibers, the continuous basal lamina surrounding the satellite cell and myofibers (arrows), and 

the heterochromatic appearance of the nucleus. MN, myonucleus within fiber nuclei. (B) Myf5-

nlacZ is expressed in myonuclei in fresh (day 0) single muscle fibers as well as activated satellite 

cells and myoblasts (day3) derived from Myf5-nlacZ mice (Beauchamp et al., 2000). Adapetd 

from Seale et al., 2001 (Seale et al., 2001). 

  

 In humans, SCs markers do not fully correspond to those of the 

mouse. As an example, human SCs are CD34 and M-cadherin negative (Peault 

et al., 2007) whereas the most common marker is CD56, although it also marks 

natural killer (NK) lymphocytes (Illa et al., 1992).  
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      Table 2.2.1.1 - Satellite cell markers. 

Markers 
(ref.) 

SC expression  Localization and 
function 

Prospective 
isolation* 

Expression in 
other tissues/cells 

Pax7 
(Zammit et 
al., 2006) 

100% of quiescent 
and activated SCs 

Nuclear; 
Transcription factor 

Pax7-GFP 
mouse 

Absent 

Pax3 (Relaix 
et al., 2006) 

Quiescent SCs (only 
in a subset of 
muscles) 

Nuclear; 
Transcription factor 

Pax3-GFP 
mouse 

Melanocyte stem 
cells, Shwann cells 

Myf5 
(Tajbakhsh 
et al., 1996) 

Most quiescent SCs 
and all proliferating 
SCs and myoblasts 

Nuclear; 
Transcription factor 

Myf5-nLacZ Absent 

Syndecan3 
and 4 
(Cornelison 
et al., 2001) 

98% of quiescent 
and activated SCs 

Membrane; 
Transmembrane 
heparan sulfate 
proteoglycan  

Cell sorting Brain, dermis, bone 
marrow, bone, 
smooth muscle, 
tumours 

VCAM-1 
(Rosen et al., 
1992) 

Quiescent and 
activated SCs 

Membrane; 
Adhesion molecule 

Cell sorting Activated 
Endothelial cells 

c-met 
(Cornelison 
and Wold, 
1997) 

Quiescent and 
activated SCs 

Membrane; HGF 
receptor 

Not used Many tissue and 
tumours 

Foxk1 (Garry 
et al., 2000) 

Quiescent and 
activated SCs 

Nuclear factor Not used Neurons 

Cd34 
(Beauchamp 
et al., 2000) 

Quiescent and 
activated SCs 

Membrane protein Cells sorting Hematopoietic, 
endothelial, mast 
and dendritic cells 

M-cadherin 
(Irintchev et 
al., 1994) 

Quiescent and 
activated SCs; 
Myoblasts 

Membrane; 
Adhesion protein 

Not used Absent 

Caveolin-1 
(Gnocchi et 
al., 2009) 

Quiescent and 
activated SCs; 
Myoblasts 

Membrane protein Not used Endothelial fibrous 
and adipose tissue 

Integrin "7 
(Blanco-Bose 
et al., 2001) 

Quiescent and 
activated SCs; 
Myoblasts 

Membrane; 
Adhesion protein 

Cells sorting Vessel associated 
cells 

Integrin !1 
(Kuang et al., 
2007) 

Quiescent and 
activated SCs 

Membrane; 
adhesion protein 

Cell sorting Many tissues 

Cd56 
(Betsholtz, 
2004) 

Quiescent and 
activated SCs; 
Myoblasts 

Membrane; 
homophilic binding 
glycoprotein 

Cell Sorting Glia, neurons and 
natural killer cells 

SM/C2.6 
(Fukada et 
al., 2004) 

Quiescent and 
activated SCs; 
Myoblasts 

Unknown Cell sorting Unknown 

Cxcr4 
(Sherwood et 
al., 2004) 

Subset of quiescent 
SCs 

Membrane; SDF1 
receptor 

Cell sorting Hematopoietic 
stem cells, vascular 
endothelial cells 
and neuronal cells 

Nestin (Day 
et al., 2007) 

Around 98% of 
quiescent SCs and 
myoblasts 
 

Intermediate 
filament protein 
 

Nestin GFP 
mouse 

Neuronal 
precursors cells 

 
 
* Prospective isolation: Direct isolation of cells from tissue, usually based upon cyto-fluorimetric 

sorting with antibodies directed against cell surface markers. Adapted from Tedesco et al., 2010.   
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 2.2.1.2 Satellite cells activation 

As previously described above, SCs are in a quiescent state during the major 

part of their life. In response to a muscle injury, SCs turn into an activate state 

starting to proliferate; at this point they are called myoblasts or myogenic 

precursor cells (mpc) (Dhawan and Rando, 2005; Price et al., 2007). There are 

several signals involved in SC activation, including HGF (Tatsumi et al., 1998), 

FGF (Floss et al., 1997), IGF (Musaro, 2005)  and NO (Wozniak and Anderson, 

2007), which come both from damaged skeletal muscle fibers and inflammatory 

cells.  

Activated SCs myogenic differentiation is mainly driven by Myf5 and 

MyoD (Tajbakhsh et al., 1996) and is followed by fusion into regenerating fibers. 

In the mouse, the process through which activated SCs fuse together to form 

skeletal muscle fibers takes roughly seven days (Zammit et al., 2002). During 

this time every single SC need to choose between different fates: the majority 

turn into Pax7+MyoD+ cells, which are committed to differentiation (Zammit et al., 

2004) whereas few SC downregulate MyoD and return to quiescence (to 

maintain the progenitor pool). This mechanism, through which SCs undergo 

asymmetric division maintaining self-renewal and a pool of progenitor ready to 

use, is finely controlled but is still unclear which molecules are involved in; 

among these, Notch signalling pathway is thought to regulate this process by 

promoting asymmetric divisions, although there is not agreement on the role of 

Numb (a Notch inhibitor and a cell-fate determinant) in inducing differentiation 

(Conboy and Rando, 2002) and sustaining self-renewal (Shinin et al., 2006).  

The asymmetric cell division is also demonstrated by the identification of a sub-

population of SCs able to retain BrdU after pulse-chase labelling, with some cells 



 33 

displaying selective template DNA strand segregation during mitosis (Shinin et 

al., 2006; Conboy et al., 2007). Moreover, Rudnick’s team confirmed the label-

retention model of SCs and demonstrated that approximately 10% of Pax7+ 

mouse SCs had never expressed Myf5 and that these cells are adherent to the 

basal lamina during asymmetric mitosis, generating one Pax7+Myf5– satellite 

“stem cell” and one Pax7+Myf5+ SC “progenitor”, eventually fated to differentiate 

(Kuang et al., 2007) (Figure 2.2.1.2.). The same group also described that 

Wnt7a regulates the symmetric expansion of Pax7+Myf5– SCs (Le Grand et al., 

2009). 

 

 

Figure 2.2.1.2 - Asymmetric cell division during activation of SCs.  

This figure illustrates the anatomy of a muscle fiber together with an adjacent small vessel. SCs 

and other unconventional myogenic cells (pericytes and hematopoietic, endothelial, and 

interstitial cells) are also depicted. SC activation in vivo is followed by an asymmetric division, 

with Pax7, MyoD, and Myf5 being expressed in differentiating cells and Pax7 in cells returning to 

quiescence in order to maintain a pool of progenitors. Adapted from Tedesco et al., 2010. 
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2.2.2 Unconventional myogenic progenitors   

The availability of cell-autonomous tissue-specific transgenic markers, allowed 

the unequivocal demonstration of the existence of myogenic progenitors 

originating from tissues other than skeletal muscle (Cossu, 1997). Upon 

transplantation (either bone marrow transplantation (BMT) or direct injection into 

skeletal muscle), these cells identified by transgene expression, participate in 

muscle regeneration of wild type and/or dystrophic mice and eventually enter the 

SC pool. The possibility that myogenic differentiation may depend upon fusion 

(and hence exposure to the dominant activity of MyoD) remains but, for skeletal 

muscle, this would be part of the physiological mechanism that creates the 

tissue. Below some examples of these unorthodox myogenic cells have been 

briefly described. 

 

2.2.2.1 Cells derived from ectoderm: neural stem cells 

To date, both murine and human neural stem cells are the only ectoderm-

derived stem cells that have been shown to differentiate into skeletal muscle 

when co-cultured with skeletal myoblasts or transplanted into regenerating 

skeletal muscle (Galli et al., 2000). Interestingly, cells expressing Myf5 exist in 

the brain and spinal cord, suggesting a cryptic potency that becomes apparent in 

vitro (Tajbakhsh et al., 1994).   

 

2.2.2.2 Hematopoietic cells (HSCs) 

The first evidence of in vivo generation of skeletal muscle from bone marrow 

cells was reported in 1998, in a study that used transgenic mice expressing a 

nuclear LacZ under the control of the striated muscle promoter myosin light 
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chain 1/3 fast (MLC3f) (Ferrari et al., 1998). After bone marrow transplantation 

(BMT) from the transgenic mice to an injured host muscle, unequivocal !-gal 

positive nuclei were detected in regenerated fibers, demonstrating that murine 

bone marrow contains transplantable progenitors that can be recruited through 

the circulation to an injured muscle, where they participate in muscle repair 

(Ferrari et al., 1998). This opened the possibility of treating muscular dystrophy 

by BMT, but work in mice indicated that, unfortunately, the frequency of this 

event was too low, even in a chronically regenerating dystrophic muscle and 

even if the SP (side population) progenitor–enriched fraction was transplanted 

(Gussoni et al., 1999; Ferrari et al., 2001).   

 To address this issue, subsequent experiments were directed to 

identifying a rare, potentially highly myogenic progenitor, but those studies have 

so far had modest success. The hematopoietic CD45+ fraction of the bone 

marrow has been identified as the cell population with myogenic potential 

(McKinney-Freeman et al., 2002) and retrospective analysis in a DMD patient 

that had undergone BMT confirmed the persistence of donor-derived skeletal 

muscle cells over a period of many years, again at very low frequency (Gussoni 

et al., 2002). Together these data suggested that HSCs, or a yet to be identified 

cell that expresses several markers in common with true HSCs, has myogenic 

potential. More recent approaches confirmed that hematopoietic cells have 

myogenic potential but disagreed on the stage at which myogenic differentiation 

would occur. One study reported that the progeny of a single mouse 

hematopoietic progenitor cell can both reconstitute the hematopoietic system 

and contribute, at low frequency, to muscle regeneration (Corbel et al., 2003). 

However, a similar study showed that in response to injury, CD45+ hematopoietic 
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progenitors contribute to regenerating mouse skeletal muscle through fusion of 

mature myeloid cells rather than fusion of the HSCs (Camargo et al., 2003). 

 A subpopulation of circulating cells expressing CD133 (also known as 

AC133), a well-characterized marker of HSCs, also expresses early myogenic 

markers (Torrente et al., 2004). When injected into the circulation of dystrophic 

immunodeficient scid/mdx mice, CD133+ cells have been found to contribute to 

muscle repair, recovery of force, and replenishment of the SC pool. The same 

group also isolated a population of muscle-derived stem cells expressing CD133 

(Benchaouir et al., 2007). Furthermore, when CD133+ cells from DMD patients 

were genetically corrected by lentivirus-mediated exon-skipping for dystrophin 

exon 51, they were able to mediate morphological and functional recovery in 

scid/mdx mice (Benchaouir et al., 2007). Thus, different sub-populations of 

hematopoietic cells, whose characterization is still incomplete, seem to possess 

myogenic potency, but none of these exhibit this property at high frequency.   

 

2.2.2.3 Cells derived from the mesoderm 

Many different types of mesoderm stem/progenitor cells have been shown to 

exhibit myogenic potential, usually after drug treatment, genetic modification, or 

co-culture with SCs or myoblasts. In some cases evidence of in vivo myogenesis 

has been documented. The list of such cells includes mesenchymal stem cells 

(MSCs), multipotent adult progenitor cells (MAPCs), muscle-derived stem cells 

(MDSCs), CD133+ cells, mesoangioblasts (MABs, see in details section 1.3 

Mesoangioblasts), endothelial progenitor cells (EPCs), and adipose-derived 

stem cells. More details can be found in previous reviews (Cossu and 

Sampaolesi, 2007; Peault et al., 2007). 
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 MSCs have been shown to be capable of skeletal myogenesis (Dezawa 

et al., 2005). However, recently, Perlingeiro and colleagues demonstrated that 

although Pax3 activation enabled the in vitro differentiation of murine and human 

MSCs into MyoD+ myogenic cells, these cells failed to cause functional muscle 

recovery in mdx mice, despite good engraftment (Gang et al., 2009). The reason 

for this failure remains unclear. 

 Initially identified as circulating cells expressing CD34 and fetal liver 

kinase-1 (Flk-1; also known as VEGFR2), EPCs (Asahara et al., 1997) were 

shown to be transplantable and to participate actively in angiogenesis in various 

physiologic and pathologic conditions (Asahara et al., 1997). It was then shown 

that freshly isolated human cord blood CD34+ cells injected into ischemic 

adductor muscles gave rise not only to endothelial but also to skeletal muscle 

cells in mice (Pesce et al., 2003). Consistent with this, Peault and colleagues 

have identified cells with high myogenic potential within the vascular endothelium 

of human adult skeletal muscle (Zheng et al., 2007). These human 

myoendothelial cells, which represented less than 0.5% of the cells in 

dissociated adult skeletal muscles, expressed both myogenic and endothelial 

cell markers (CD56+, CD34+, CD144+, CD45-), exhibited long term proliferation, 

had a normal karyotype, and when transplanted into scid mice were able to 

regenerate fibers in injured muscle (Zheng et al., 2007).    

Human multipotent adipose-derived stem (hMADS) cells, isolated from 

adipose tissue, differentiate into adipocytes, osteoblasts, and myoblasts (Meliga 

et al., 2007). Recently, the myogenic and muscle repair capacities of hMADS 

have been enhanced by transient expression of MyoD (Goudenege et al., 2009). 

The easy availability of their tissue source, their capacity for expansion ex vivo, 
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their multipotent differentiation, and their immune-privileged behaviour, suggest 

that hMADS cells could be an important tool for cell-mediated therapy for 

skeletal muscle disorders, although more robust functional evidences are 

needed. 

 

2.2.3 Skeletal muscle stem cells: preclinical DMD models and clinical trials  

Because of their features, SCs in particular were considered the best candidate 

for a cell therapy approach to treat muscular dystrophy. Pioneer studies 

demonstrated that intramuscular injection of normal myoblasts (Partridge et al., 

1989) into mdx mice, which lack dystrophin and are a model for DMD, resulted in 

fusion with host fibers and extensive dystrophin production.  

 As a consequence of this brilliant results obtained in mice, the early 

1990s reported the first myoblast transplantation in a young DMD boy 

demonstrating myoblast injections safety as well as dystrophin production (Law 

et al., 1990). Based upon these evidences, a great number of clinical trials were 

performed in DMD patients failing for a number of reasons (Law et al., 1991; 

Gussoni et al., 1992; Huard et al., 1992; Law et al., 1992; Karpati et al., 1993; 

Tremblay et al., 1993; Mendell et al., 1995; Morandi et al., 1995; Miller et al., 

1997; Neumeyer et al., 1998; Skuk et al., 2006). As a matter of fact, all these 

completely independent clinical experimentations testified the absence of any 

adverse events; otherwise not all showed dystrophin production and, in addition, 

no one can affirmed that there were some benefits from these injections 

(Partridge, 2000; Cossu and Sampaolesi, 2007).  

Probably this was due to different problems: I) intramuscular injection in several 

locations of a single muscle (or at most a few muscles) cannot elicit a general 
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effect and so II) intramuscularly injected cells distribute locally, implying that a 

huge number of injections will have to be performed in order to treat a complete 

muscle (Huard et al., 1992); III) immune responses toward the injected SCs;  IV) 

the quick death of the majority of the myoblasts in the first 72hrs after injection 

(Fan et al., 1996; Guerette et al., 1997).  

 Many subsequent preclinical studies aimed to improve the survival, 

proliferation, and differentiation of the SCs after engraftment. For example, 

transplantation in dystrophic mouse muscles of a single muscle fiber, which 

contained as few as seven SCs, led to an increasing number of new SCs that in 

turn generated more than one hundred new muscle fibers and could also be 

activated after injury (Collins et al., 2005). This is a much more efficient way to 

generate new muscle fibers than transplantation of cultured SCs, where normally 

the number of donor-derived new fibers that are generated is several orders of 

magnitude less than the number of injected cells. Unfortunately, this method 

would be difficult to translate into clinical protocols. In addition, in the past few 

years several groups have succeeded in prospectively isolating “pure” 

populations of SCs by using a combination of different markers (Montarras et al., 

2005). All these studies revealed that freshly isolated cells have a much greater 

capacity to generate dystrophin-expressing fibers in mdx mice than the same 

cells after in vitro expansion (Montarras et al., 2005).  

Recently, Torrente and colleagues reported the first CD133+ cell 

transplant (Torrente et al., 2007). They designed a phase I double blind trial with 

an autologous transplant of unmodified, and thus still dystrophic, muscle-derived 

CD133+ cells in 8 boys affected by DMD exclusively to test safety; and indeed, 
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no adverse events were reported. Another Phase I/II clinical trial on DMD 

patients is ongoing using mesoangioblasts. 

 

   

2.3 MESOANGIOBLASTS 

 
2.3.1 Origin and characterization of Mesoangioblasts 
 
In the last 10 years, a variety of studies showed the existence in almost all the 

body tissues of progenitors able to differentiate with a different extent into 

several cell types that do not correlate with their embryological origin: as an 

example, as already mentioned bone marrow cells differentiate into skeletal 

muscle (Ferrari et al., 1998; Gussoni et al., 1999), liver (Lagasse et al., 2000) 

and Central Nervous System (CNS) (Kopen et al., 1999; Brazelton et al., 2000; 

Mezey and Chandross, 2000) whereas in the CNS there are cells with the ability 

to differentiate into hematopoietic stem cells or skeletal muscle (Galli et al., 

2000). 

All these findings completely changed the idea of an unperturbed cell lineage, 

introducing the concept of plasticity and stimulating a deal of studies with the 

final goal to discover the best cell able to generate the desirable tissue. 

In this scenario, De Angelis and colleagues isolated from the embryonic murine 

dorsal aorta (a non canonical source of myogenic cells) a new subpopulation of 

cells expressing early endothelial markers but able to give rise to skeletal muscle 

(Bianco and Cossu, 1999; De Angelis et al., 1999; Minasi et al., 2002) (Figure 

2.3.1.1). These cells have been called mesoangioblasts (MABs) to underline the 
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possibility of a common progenitor both for vascular and mesoderm extra-

vascular tissues (Cossu and Bianco, 2003).  

 (Figure 2.3.1.2); this hypothesis was also supported by two distinct studies 

which suggested a common ancestor for endothelial cells and skeletal muscle 

fibers in somites (Kardon et al., 2002) and the existence of a common Flk1+ 

progenitor both for skeletal and cardiac muscle (Motoike et al., 2003). 

 

 

 

Figure 2.3.1.1 - Characterization of murine embryonic MABs isolated from dorsal aorta of 

E9.5 mouse embryos. A) RT-PCR panel revealed that endothelial and hematopoietic markers 

(VE-Cad, Flk1 and CD34), but not myogenic markers (Myf5 and MyoD), were expressed in 

dissected aorta (A). Total embryo extract was used as a positive control (+). Negative control 

(no RNA) is shown in the first lane (–). B) RT-PCR of the messages expressed by several cell 

lines (A4, A6, A14 and B13) from the dorsal aorta after 5 passages in vitro. Note expression of 

hemo-angioblastic but not of tissue specific markers such as Myf5 or Nkx2.5. C) Phase contrast 

morphology of one typical clone from embryonic aorta after passages in vitro. D) Skeletal 

myotubes are detected after co-culture of GFP-labelled MABs with C2C12 myoblasts. GFP-
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positive cells appear green, myocytes and myotubes expressing myosin heavy chains appear 

red, and cells expressing both appear yellow in the merged image (arrowhead). Adapted from 

Minasi et al. 2002. 

 

 

 

angiopoietic progenitors. This potential is retained in the offspring of the Flk-1" ancestor, defining 

a Flk-1 multiple mesodermal progenitor. Asymmetric divisions segregate the hematopoietic 

progeny of the hemangioblast in the luminal space, the progeny of mesoangioblasts in the 

subendothelial, abluminal space. Taken from Cossu and Bianco, 2003.  

 

As a matter of fact, murine MABs express Flk1 and other early but not 

late endothelial markers; due to their vascular origin, they are able to cross the 

vessel wall and, since it is easily possible to transduce them with lentiviral 

vectors, they have been used in preclinical models for muscular dystrophies. As 

result, intra-arterial delivery of either wild type or genetically corrected MABs 

ameliorated the dystrophic phenotype of mice lacking "-sarcoglycan, a model for 

LGMD (Sampaolesi et al., 2003). In addition, intra-arterial delivery of autologous 

adult canine MABs resulted too in extensive recovery of dystrophin expression 

Figure 2.3.1.2 - A hypothetical 

scheme trying to define the origin 

of the mesoangioblast. 

Environmental (ventral) cues drive a 

subset of angiopoietic progenitors to 

a hematopoietic fate. Unknown cues 

preserve a potential for 

differentiation towards mesodermal 

lineage to another subset of  
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and ameliorated pathologic muscle morphology and function in Golden Retriever 

dystrophic dogs (GRMD), the canine model for DMD (Sampaolesi et al., 2006).  

Cells with a similar features and behaviour have been isolated from 

microvasculature of human post-natal skeletal muscle (Dellavalle et al., 2007); 

these interstitial cells seem to represent a subset of pericytes since they 

expressed markers such as annexin, vimentin, desmin, PDGF receptor ! 

(Platelet-Derived Growth Factor beta) SMA (Smooth Alpha Actin) (Armulik et al., 

2005), NG2 proteoglycan and, most importantly, they are positive for Alkaline 

Phosphatase (ALP), an exclusive marker of perycites in skeletal muscle (Safadi 

et al., 1991). On the other hand, in contrast with embryonic murine MABs, 

human cells do not express any endothelial markers.  

These findings suggested that vessel-associated ALP+ human interstitial 

cells obtained from post-natal muscle biopsies could be considered the progeny 

of pre-natal mesoangioblasts that, during progression from a pre-natal to an 

adult state, switched from an endothelial-like to a pericyte-like phenotype. For 

this reason we called them pericyte-derived cells and they could considered the 

human counterpart  (human MABs) of embryonic murine MABs. In vivo, when 

transplanted intra-arterially into scid/mdx mice, human MABs give rise to 

dystrophin-positive muscle fibers ameliorating function and morphology of the 

dystrophic phenotype (Dellavalle et al. 2007). 

These results supported the evidence that human MAB (or pericyte-derived cell) 

represent a second myogenic precursor resident in adult human skeletal muscle 

but clearly distinct from a satellite cell; moreover, MABs are able to generate 

skeletal fibers expressing dystrophin when transplanted into a dystrophic 

muscle.  
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As mentioned above, MABs are distinct from satellite cells, the canonical and 

resident myogenic stem cells, for a number of fundamental differences. Firstly, 

they have an in vivo different adjacent anatomical position; pericytes are located 

underneath the basal lamina of small vessels, whereas satellite cells are located 

inside the basal lamina of muscle fibers. Secondly, satellite cells express MyoD, 

Pax7, Myf5, MEF2C, CD56 and M-cadherin, which are not expressed in human 

MABs that rather express ALP (not expressed in satellite cells) and other 

markers such as SMA, PDGFRb and desmin, that however are also expressed 

by activated satellite cells. Moreover human MABs express MyoD and Myf5 only 

on terminal differentiation, suggesting distinct myogenic differentiation kinetics 

(Fig. 2.3.1.3). Third and most important difference is related to the vascular 

origin of pericyte-derived cells, which confers the ability to cross of the vessel 

walls, a feature that is absent in satellite cell-derived myoblasts. 

Recently, we demonstrated that in mice pericytes transgenically labelled 

with an inducible ALP (Alkaline Phosphatase) CreERT2 are able to fuse with 

developing skeletal fibers and enter the satellite cell pool during normal post-

natal development. Moreover, the contribution of pericytes to muscle fibers 

increases threefold after acute injury or during chronic regeneration that occurs 

in muscular dystrophy (Dellavalle et al., 2011). Hence, we can conclude that 

MABs contribution to skeletal muscle happens during physiological post-natal 

development and is enhanced in pathological conditions. Taken together, these 

findings strongly support the idea that MABs could be considered as an ideal cell 

population for the future cell/gene therapy of muscular dystrophies. 
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Figure 2.3.1.3 - In vitro characterization of human MABs and comparison with human 

satellite-derived cells. A) Phase-contrast morphology of a polyclonal population isolated from 

an explant culture after 5 passages in vitro. B) Spontaneous differentiation of human pericyte-

derived cells, cultured in differentiation medium on matrigel coated dishes. C) Staining for ALP 

indicates expression at varying levels in most of cells outgrown from muscle explants. The inset 

shows floating cells, just removed from the muscle explant, all of which also express ALP. D) 

Immunofluorescence microscopy of human normal muscle stained with antibodies against M- 

cadherin recognizing satellite cells (green arrows), laminin (magenta) and ALP (red) recognizing 

pericytes (red arrows). Nuclei are stained in blue with DAPI. E) The time-course of expression of 

different myogenic markers is shown for pericyte-derived cells (upper panel) and for satellite cells 

(lower panel). F) RT–PCR analysis of the expression of MyoD, Myf5, Myogenin, Pax7, Pax3 and 

ALP in human fibroblasts, satellite cells, normal (N) and DMD pericyte-derived cells. Scale bars 

are 10 µm in A), 25 µm in B and 20 µm in C), D). Adapted from Dellavalle et al., 2007.  

 

2.3.2 Cell and gene therapy: past, present and future  

As described above, MABs are vessel-associated progenitors that express 

endothelial markers when isolated from the embryo or perycite markers when 

isolated from post-natal tissue. Thanks to their ability to differentiate into skeletal 
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muscle and to cross vessel wall. They can be delivered through the arterial 

circulation, reaching large areas of skeletal muscle tissue. Since MABs fulfil all 

the criteria required for a cell type to be used for gene and cell therapy (they are 

isolable from adult muscle biopsies, can be expanded in vitro, can be transduced 

with viral vectors and, most importantly), MABs have been used in preclinical 

models of DMD. Intra-arterial delivery of either wild type or genetically corrected 

murine MABs morphologically and functionally ameliorated the dystrophic 

phenotype of mice lacking "-sarcoglycan (Sampaolesi et al., 2003) (Figure 

2.3.2.1). In addition, intra-arterial delivery of wild-type post-natal canine MABs 

resulted in extensive recovery of dystrophin expression and ameliorated 

pathologic muscle morphology and function in GRMD dogs (Sampaolesi et al., 

2006) (Figure 2.3.2.2).  

 

 

    

Figure 2.3.2.1 - Alpha-sarcoglycan ("SG) expression in "SG null mice after intra-arterial 

transplantation of wild-type mesoangioblasts. Quadriceps from control (CTR) mice (left 

image), "SG null ("-SG KO) mice (central image), and treated "-SG null mice (injected with 

wild-type mesoangioblasts 2 months before sacrifice) (right image). Sections were stained with 

antibodies against "-sarcoglycan (red), laminin (green) and with 4’, 6’-diamidino-2-phenylindole 

(DAPI) (blue). Inset: Higher magnification of treated muscle with centrally located nuclei. Scale 
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bar: 100 µm. Adapted from Sampaolesi et al., 2003 

 

 

 

 

Figure 2.3.2.2 - Dystrophin expression in GRMD dogs treated with MABs transplantation.  

Immunofluorescence analysis of tissue from treated dogs with autologous genetically corrected 

MABs (a-a’) and with MABs from healthy donor (b-b’) revealed fibers (laminin, green) expressing 

dystrophin (red). Nuclei are stained with DAPI. Scale bar: 100 µm. Adapted Sampaolesi et al., 

2006. 

 

Recently, Tedesco and colleagues reported the first evidence of an 

effective stem cell mediated gene replacement therapy using a human artificial 

chromosome carrying the entire dystrophin locus (DYS-HAC). The transfer of 

DYS-HAC into murine dystrophic mdxMABS resulted in genetically corrected 

cells (mdx(DYS-HAC)MAB), which once injected both intra-muscularly and intra-

arterially into scid/mdx, are able to ameliorate functionally and morphologically 

the dystrophic phenotype (Tedesco et al., 2011) . 
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Figure 2.3.2.2 - Morphological and functional amelioration of mdx mice after injections 

with mdx(DYS-HAC) MABs. A) Immunofluorescence images showing dystrophin-positive fibers 

3 weeks after intra-arterial transplantation. Right images: dystrophin-positive fibers containing b-

gal–positive nuclei; b-gal/dystrophin double-positive fibers were difficult to identify because of 

cellular dispersion in the entire muscle [scale bars, 50 mm (bottom left), 30 mm (top right), and 

20 mm (bottom right)]. Note: mdxMABsDYS-HAC cells are positive for GFP (which is cloned onto 

DYS-HAC) and X-gal staining (clones used for in vivo experiments were previously infected with 

a nuclear LacZ lentivirus to increase detection). B) Immunohistochemistry showed a cluster of 

dystrophin-positive fibers, some of which contain X-gal–positive donor nuclei (tibialis anterior 

muscle), after intra-muscular injections. Upper inset: EGFP fluorescence on the same section. 

Lower inset: Sgca-positive myofibers in the same section demonstrating the re-assembly of 
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Dystrophin- glycoprotein complex (DGC) (scale bar, 100 mm). C) Evans blue dye (EBD) uptake 

assay for muscles in mice injected with mdx(DYS-HAC)MABs and after exhaustion on the 

treadmill test. The upper panel contains fluorescent stereoscopic images of tibialis anterior (TA) 

muscles. Images show less EBD fluorescence in the treated muscle and no EGFP-EBD co-

localization (scale bar, 2 mm). Dashed lines mark the level of the sections indicated by the 

arrows (scale bar, 1 mm). Transversal sections show less EBD-positive fibers in treated versus 

untreated muscles. (E) Force measurements of transplanted muscles. Left graph: normalized 

tetanic force of isolated tibialis anterior muscles from intramuscular transplant mice. Right graph: 

Mean values of specific force for a population of 100 single myofibers dissected from tibialis 

anterior muscles injected intramuscularly with corrected mdx mesoangioblasts. Myofibers were 

grouped into dystrophin-positive (dys+; n = 36), dystrophin partly positive (dys±; n = 31), and 

dystrophin-negative (dys#; n = 33) based on immunostaining after force determination (examples 

in the bottom row; scale bar, 30 mm). Error bars represent means ± SEM. *P < 0.005; **P < 

0.005; ***P < 0.0005, one-way ANOVA. Ns, not significant.  Adapted from Tedesco et al., 2011. 

 

Cells similar to murine mesoangioblasts have been isolated from human 

post-natal skeletal muscle and shown to represent a subset of pericytes and to 

give rise to dystrophin-positive muscle fibers when transplanted into scid/mdx 

mice (Dellavalle et al., 2007). Based upon these evidences, a phase I/II clinical 

trial with MAB allo-transplantation in DMD patients is ongoing.  

Although the MAB allo-transplantation may represent a real opportunity 

to cure the MDs, the autologous approach would represent the future and the 

final aim for the cell-based therapies. Unfortunately, as briefly mentioned above, 

human MABs undergo senescence thus preventing any in vitro cell manipulation 

and gene correction.   
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2.4 TELOMERES, TELOMERASE AND SENESCENCE  

 

2.4.1. Telomeres  

2.4.1.1 Telomere structure and function 

Since McClintock’s and Muller’s first descriptions in the 1940s, telomeres have 

been recognized as important capping structures that play a crucial role in 

distinguishing the real ends of linear chromosomes from bona fide double-

stranded DNA (dsDNA) breaks (McClintock, 1941). The DNA sequence of 

telomeres consists of tandem GT-rich repeats, (Blackburn, 2001), (TTAGGG)n in 

humans and other vertebrates, with a single-stranded 3-end overhang (Makarov 

et al., 1997; Wright et al., 1997): electron microscopy analysis has revealed that 

the single-stranded 3-end overhang penetrate the duplex telomeric DNA repeat 

array to form a D-loop and T-loop structure in vitro (Greider and Blackburn, 

1985; Griffith et al., 1999) (Fig.2.4.1.1.1). Telomere binding proteins function to 

maintain and regulate this typical structure in vivo. 

In recent years, a large number of studies has shown that telomere 

function is strictly linked to several essential biological functions such as cell 

cycle control, cellular immortalization, aging and cancer. Telomeres protect 

chromosomes from recombination, end-to-end fusion, and recognition as 

damaged DNA, provide a mean for complete replication of chromosomes and a 

functional organization of chromosomes in the nucleus; they have an important 

role in the regulation of gene expression thanks to the so called “telomere 

positional effect” and serve as a molecular clock that controls the replicative 

capacity of human cells and their entry into senescence. Nevertheless, there are 

still a several open questions about the molecular details of how a telomere is 
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monitored, regulated, and modified and how these functions can permit cell cycle 

progression (Stewart and Weinberg, 2006).  

 

 

 

Figure 2.4.1.1 - Telomere structure. A) Telomere (red) and centromere (green) localization of 

metaphase HeLa chromosomes (Hoechst) by fluorescence in situ hybridization (FISH). B) A 

putative structure of a capped telomere based on the T-loop model. Both telomere-binding 

proteins and the G-strand overhang are required to maintain telomere capping. Taken 

respectively from Stewart and Weinberg, 2006 and Blasco, 2003 (Blasco, 2003). 
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2.4.1.2 Telomere and replicative senescence  

In the 1960s, Leonard Hayflick’s work about cell proliferative potential created a 

new field of study. He simply observed that cells could pass through only a 

precise number of division cycles: cells that had reached this limited cell 

divisions number, later called Hayflick limit, were termed senescent. Such cells 

remained metabolically active but were no more able to divide (Hayflick, 1965). 

Importantly, Hayflick demonstrated that cells isolated from same individuals on 

multiple occasions, recapitulated this growth phenotype. These suggest that 

cells have an intrinsic mechanism capable of tracking the number of cell 

divisions through which they are able to undergo, preventing any further division. 

This led to the final hypothesis that a limited proliferative capacity plays an 

important role in aging (Hayflick, 1976).  

 A link between cell senescence and telomere was suggested in the 1990s, 

when the so called “telomere hypothesis” was described for the first time (Harley 

et al., 1990; Allsopp et al., 1992; Levy et al., 1992). Previously, in the 1970s, 

Watson and Olovnikov independently described the “end replication” problem, in 

which they suggested that linear chromosomes would be unable to replicate their 

extreme 3! ends faithfully (Watson, 1972; Olovnikov, 1973). According to their 

model, a small portion of chromosomal DNA would be lost following each 

complete round of replication, creating a problem if codifying sequences were 

located at the end of the chromosome (Fig. 2.4.1.2.1). This potentially dangerous 

problem was solved by existence of the telomere (Blackburn, 1991).  

To investigate this hypothesis, other researchers examined the telomeric 

DNA of human chromosomes during successive rounds of DNA replication and 

cellular division (Allsopp, 1992). They also followed a population of cells 
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throughout its replicative lifespan and demonstrated that mean telomere lengths 

were reduced progressively with each subsequent division, exactly as Watson’s 

(1972) and Olovnikov’s (1973) models predicted. Most importantly, cells isolated 

from the same individual and followed in several independent cultures entered 

into senescence with roughly the same average telomeric lengths. This crucial 

observation suggested that telomere shortening acts as a genetic clocking 

mechanism, as described by Hayflick, taking care of divisions number through 

which an individual cell lineage had passed both in vitro and in vivo. In addition, 

it was hypothesized that once the telomeres shortened to a certain 

predetermined length, these DNA sequences were responsible for triggering 

entrance into senescence.  All these results changed the scenario of 

chromosome replication setting the basis, together with the discovery of 

telomerase, for our current understanding of the link between telomere erosion, 

senescence and human aging.  These brilliant results earned to Carol Greider, 

Elizabeth Blackburn and Jack Szostack the Medicine Nobel prize in 2009.  
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Figure 2.4.1.2.1 - The DNA end replication problem. DNA replication starts at replication 

origins (a, black oval). The replication forks move in opposite directions (b). Because DNA 

polymerases only elongate in the 5! to 3! direction, each fork contains a leading (continuous) and 

a lagging (discontinuous) strand. Lagging strand synthesis is primed by short RNA 

oligonucleotides (wavy line). Terminal DNA is lost at the leading strand end because the parental 

5!-end-containing template is recessed (d). If RNA primers were laid down on the 3! overhang as 

depicted in (c), their removal would not lead to a net loss of sequence at the lagging strand. 

Finally, 5!-end processing occurs to regenerate a 3! overhang at the leading strand telomere (e, 

f). Taken from Hug and Lingner, 2006 (Hug and Lingner, 2006).  
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2.4.1.3 Cell senescence and human aging 

Currently, there are two non-mutually exclusive hypotheses to explain the 

molecular basis of cellular and, eventually, of organism aging (Aviv, 2004; Ben-

Porath and Weinberg, 2004; Vijg and Suh, 2005). The first suggests that aging is 

the result of the slow accumulation of damage that leads to cellular and 

eventually tissue deterioration. The other suggests that aging is the 

consequence of an intrinsic program, which is finely regulated by a biological 

clock, such as telomere length (Figure 2.4.1.3.1). As described above, in vitro 

human cells undergo a defined number of cellular divisions before undergoing 

replicative senescence, a state in which cells are still viable but not able to divide 

anymore.  

The role of telomere homeostasis and cell senescence in human aging 

has been supported by studies demonstrating a relationship between donor age 

and telomere lengths, correlations between in vitro growth capacity and donor 

age, and reduced in vitro growth capacity of cells isolated from patients suffering 

from various types of premature aging (progeria) when compared with normal, 

age-matched control cells  

(Martin et al., 1970; Lindsey et al., 1991; Faragher et al., 1993; Dimri et 

al., 1995). Although interesting and convincing and largely accepted, the work on 

telomere by Carol Greider, Jack Szostack and Elizabeth Blackburn has not yet 

conclusively demonstrated that telomere erosion is the primary causal force that 

drives human aging, especially for those tissue, such as muscle or brain, where 

differentiated cells do not divide. 
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Figure 2.4.1.3.1 - Model for the role of telomeres in cancer and aging. Long and constant 

telomeres are a typical feature of stem cells. In young or adult organisms, stem cells (blue 

rounded cells) repopulate tissues (square orange cells). During this process, stem cells undergo 

telomere shortening, which is partially counterbalanced by the action of telomerase. In old 

organisms, stem cell telomeres critically shorten being recognized as DNA damage. If the stem 

cells express aberrantly high levels of telomerase, stem cell mobilization is more efficient than 

normal. Under these higher mobilization conditions, tissue fitness would be maintained for a 

longer time, increasing lifespan and also the probabilities of initiating a tumour. Taken from 

Donate and Blasco, 2011 (Donate and Blasco). 
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2.4.2 Telomerase 

 

2.4.2.1 Telomerase structure and function  

Telomerase is a RNA-dependent DNA polymerase enzyme that is able to 

synthesize and to add the hexameric repeats, TTAGGG, to chromosome ends, 

maintaining the length of the telomeres and thereby extending the number of cell 

divisions providing in this way the molecular basis for unlimited proliferative 

potential (Blackburn, 1992; Holt and Shay, 1999; Shay and Wright, 2001). 

Telomerase consists of two essential components: one is the functional 

RNA component (in humans called hTR) (Feng et al., 1995), a template for 

telomeric DNA synthesis; the other is the catalytic protein (hTERT) that has a 

reverse transcriptase activity (Harrington et al., 1997b; Kilian et al., 1997; 

Lingner et al., 1997; Meyerson et al., 1997) (Fig. 2.4.2.1.1). hTR is highly 

expressed in all tissues regardless of telomerase activity (Shay and Wright, 

1999) whereas the expression of the human catalytic component hTERT is 

closely associated with telomerase activity (Yi et al., 1999). hTERT is generally 

repressed in normal cells and upregulated in immortal cells, suggesting its 

primary role in determining the enzymatic activity. The telomerase gene was 

recently mapped to 5p15.33 as one of the most distal genes on chromosome 5p 

(Shay and Wright, 2000).  

Since its first discovery in 1985 in Tetrahymena thermophila (Greider 

and Blackburn, 1985), telomerase activity was found to be absent in most normal 

human somatic cells but present in over 90% of cancerous cells and in vitro 

immortalized cells (Kim et al., 1994; Shay and Bacchetti, 1997). A big number of 

studies showed that expression of human telomerase alone is sufficient for the 
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immortalization of different cellular types (Bodnar et al., 1998; Ramirez et al., 

2001). Indeed, the introduction of the catalytic protein (hTERT) component of 

telomerase into normal fibroblasts and epithelial cells prevents shortening of the 

telomeres resulting in immortalization (Ramirez et al., 2001). The key role of 

telomerase in inducing immortalization is the maintenance of telomere length, 

not to produce a net increase in length (Shay and Wright, 2001). Transient 

expression of a cre-excisable telomerase results in a preferential lengthening of 

the shortest telomeres and an increase in lifespan proportional to the length of 

the shortest telomere (Steinert et al., 2000). Likewise, the inhibition of 

telomerase in immortalized human cells leads to progressive telomere 

shortening and cell death (Herbert et al., 1999). These results demonstrate that 

telomerase plays an important role in cellular aging and cancer, underlying the 

driving role of telomerase activity in the developing of diagnostic and therapeutic 

strategies.  

 

 

 

Figure 2.4.2.1.1 - Telomerase holoenzyme structure and maintenance of telomere length. 

A) Homo sapiens telomerase model: telomerase RNA secondary structure is based on the 

published model (Chen et al. 2000). A large set of additional proteins, which are not represented, 
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has been reported to interact with human telomerase. Taken from Hug and Lingner 

, 2006. B) The telomerase holoenzyme adds telomeric repeats, TTAGGG, in two successive 

steps: elongation (1) and translocation (2). The enzyme is composed of two main components: 

hTR is the telomerase functional or template RNA portion, and hTERT is the telomerase reverse 

transcriptase enzymatic portion. The telomeric end can binds to the template region of hTR and 

is elongated by the addition of the bases complementary to the template via the catalytic subunit 

(hTERT). The complex then pauses and translocates and repeats the elongation of the telomere 

(e.g. the human telomerase complex is processive). Taken from Granger et al., 2002 (Granger et 

al., 2002). 

 

2.4.2.2 Telomerase, senescence and immortalization 

As described above, every time the chromosome is replicated during each cell 

division, the result is the progressive loss of DNA at the chromosomal ends 

(Lodish et al., 1995). Cells that have reached their division limit (Hayflick limit), 

as determined by telomere length, undergo a process called ‘replicative 

senescence’ or ‘mortality stage 1’ (M1), in which cells are still alive and 

metabolically active but are no longer able to divide (Harley et al., 1990; Dimri et 

al., 1995). It may happen that cells succeed in bypassing senescence through 

inactivation of the p53 and/or Rb pathways, thus compromising genetic stability 

since telomeres continue to shorten becoming unable to protect the real 

chromosome ends. When this occurs, cells subsequently enter a second 

proliferative block referred to as crisis or mortality stage 2 (M2), which is 

characterized by short telomeres, end-to-end chromosomal fusions, anaphase 

bridges, and cell death by apoptosis (Counter et al., 1992; Shay and Wright, 

2005). On occasion, however, a rare clone can survive from crisis; such cell 

clones are considered immortal (Fig. 2.4.2.2.1). Analysis of telomeric DNA in 

these clones indicate that telomere lengths are maintained despite the high 
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number of cell divisions (Wright and Shay, 1992).  

 

 

 

Figure 2.4.2.2.1 - The telomere hypothesis. Telomere length (ordinate) is progressively lost 

during successive rounds of cellular division (abscissa), eventually leading to p53- and Rb-

dependent permanent growth arrest, referred to as senescence. Inactivation of p53 and Rb 

function allows continued cellular division and further telomere shortening. Telomeres eventually 

erode to a length at which they are unable to protect chromosome ends, resulting in crisis, i.e., 

end-to-end chromosome fusions and apoptotic cell death. Rare clones (1 in 107) may emerge 

from a population of cells in crisis. These clones maintain stable telomere lengths through the 

activation of a telomere maintenance mechanism, i.e., human telomerase catalytic subunit 

(hTERT) expression or the alternative lengthening of telomeres (ALT) mechanism. Taken from 

Stewart and Weinberg, 2006. 

 

However, escape from senescence and acquisition of an indefinite life 

span is an exceptionally rare event in human cells (1 x 10-7), so they are limited 

in their lifespan (Campisi et al., 2001). This limitation has hampered progress in 

isolation and expansion of tissue-specific progenitor or stem cells from different 
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tissues, indeed putting back also the possibility to largely employ it for 

experimental and/or therapeutic purposes.  

For these reasons, in the last years many groups tried to immortalize 

different human cell types in vitro by forcing the expression of different genes. 

Cell lines so obtained can be expanded, cloned and extensively characterized.  

Initially it was shown that the exogenous expression of viral oncoproteins, such 

as SV40 large T antigen (T-Ag), which acts through binding of Rb and p53 (Ali 

and DeCaprio, 2001) can only extend the replicative lifespan of human cells, but 

does not lead to actual immortalization. In the case of human myoblasts, 

expression of TAg produces chromosomal rearrangements reduces and delays 

cell fusions interfering at the end with myogenic differentiation (Mouly et al., 

1996). It was discovered that the introduction of the cDNA coding for hTERT into 

human fibroblasts, retinal pigment cells and endothelial cells was sufficient to 

trigger telomerase activity, to block telomere shortening and to maintain cells in 

proliferation beyond their usual lifespan (Bodnar et al., 1998; Vaziri and 

Benchimol, 1998; Chaouch et al., 2009). Tumour derived cell lines with 

telomerase activity usually showed limited and usually abnormal differentiation. 

However, works performed both on bone marrow stromal and endothelial cells 

showed that hTERT expression provokes an increase in their life span without 

hampering their differentiation potential (Yang et al., 2001; Shi et al., 2002)  

On the other hand, telomerase alone was not sufficient to immortalize different 

cell types: classically, genes encoding for at least two types of proteins have 

been used to immortalize human cells. First, is necessary to overcome the 

telomere shortening-related senescence with the introduction of hTERT and so 

reconstituting telomerase activity. Second, the use of proteins, such as Bmi-1 
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and cyclin-dependent kinase 4 (cdk4), that promote cell cycle progression (e.g., 

growth promoters or cell cycle inducers). In both cases, these proteins avoid 

senescence due to p16-mediated stress response (Ramirez et al., 2001): Bmi-1 

downregulates the p16 and p19Arf tumour suppressor genes encoded by the 

ink4a locus (Jacobs et al., 1999), whereas the over-expression of cdk4 

counteract the p16 effect. So, it has been demonstrated that is possible to 

successfully immortalize human cells by the expression of two genes, hTERT 

and a cell-cycle promoter such as cdk4 or Bmi-1 (Cudre-Mauroux et al., 2003; 

Ramirez et al., 2004; Saito et al., 2005; Zhang et al., 2006; Zhu et al., 2007).   

 

 

 

 

 

 

 

 

 

 

 

 



 63 

3. RATIONALE 

 

DMD is a neuromuscular genetic disease which primarily affects skeletal 

muscles leading to progressive paralysis and premature death (Emery, 2002; 

Emery and Muntoni, 2003). Although mutations responsible of DMD were 

identified several decades ago in the dystrophin X-linked gene (Kunkel et al., 

1985; Ray et al., 1985) and new gene therapy and stem cell transplantation 

strategies are under investigation (Tedesco et al., 2010; Goyenvalle et al., 2011), 

so far there are no successful and definitive treatments.  

Some years ago, a population of vessel–associated progenitors called 

mesoangioblasts (MABs) has been isolated and characterized showing that 

these cells are able to differentiate into skeletal muscle and to cross the vessel 

wall and the basal lamina of skeletal myofibers, offering the possibility to be 

injected into the arterial circulation for cell therapy protocols. As a consequence, 

the intra-arterial administration of both donor and genetically corrected MABs 

into different pre-clinical models of muscular dystrophy, resulted in a functional 

and morphological amelioration of dystrophic phenotype (Koenig et al., 1987; 

Galvez et al., 2006; Sampaolesi et al., 2006; Gargioli et al., 2008; Diaz-Manera 

et al., 2010; Tedesco et al., 2011). Cells similar to mesoangioblasts have been 

isolated from human post-natal skeletal muscles (human MABs), characterized 

as a subset of pericytes with myogenic potency (Dellavalle et al., 2007). These 

features, together with the observations that these cells are expandable in 

culture and can be easily transduced with therapeutic viral vectors, lead human 

MABs to be considered an eligible population for the gene and cell therapy of 

muscular dystrophies. Moreover, this extensive pre-clinical work set the 
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conditions for a Phase I/II clinical trial based upon human MABs intra-arterial 

allogeneic transplantation (EudraCT no. 2011-000176-33), currently ongoing at 

San Raffaele Hospital in Milan. 

However, transplantation of autologous genetically corrected muscle 

progenitor cells, would be preferable because immune suppression would not be 

required. On the other hand, there are still limitations for autologous cell therapy 

approach. One of the major challenge is represented by the fact that the 

dystrophin gene is the largest of human genome (genomic locus 2.4Mb, cDNA 

14Kb) (Koenig et al., 1987; Muntoni et al., 2003), preventing its accommodation 

into viral vectors for efficient gene delivery. In this direction, alternative gene-

replacement technologies have been developed and tested (Arnett et al., 2009) 

(see INTRODUCTION for details). All these strategies are promising but present 

disadvantages; exon-skipping and nonsense codon suppression cannot be used 

for all DMD mutations, just to mention a few. 

Human artificial chromosomes (HACs) are optimal candidate to 

overcome these obstacles (Kazuki and Oshimura, 2011). They can contain large 

genomic regions with regulatory elements and remains episomal avoiding the 

risk of insertional mutagenesis. For this reason, a human artificial chromosome 

containing the entire dystrophin locus (DYS-HAC) has been developed, giving 

rise to the possibility to employ it for DMD cell-/gene-therapy (Hoshiya et al., 

2009). Recently, the transfer of the DYS-HAC into murine dystrophic 

mesoangioblasts (mdxMABs) generated genetically corrected cells (mdx(DYS-

HAC)MABs) which significantly ameliorated muscular dystrophy upon 

transplantation into mdx mouse (Tedesco et al., 2011). 

 These results clearly showed the feasibility and the potential of this strategy 
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providing the basis for translating it into human cells. Nevertheless, human 

MABs will require an additional step to extend their proliferative capability, since 

they undergo replicative senescence upon long-term culture. As a matter of fact, 

an unlimited proliferative potential would ensure their survival after HAC transfer 

and selection, as already seen in human mesenchymal stem cells (Hoshiya et 

al., 2009). In this direction, the attention was focused to the development of a 

platform for engineering human MABs from both healthy donor and DMD 

patients containing excisable lentiviral vectors expressing immortalizing genes in 

a reversible fashion, such as hTERT, the catalityc subunit of telomerase, and 

Bmi-1, a cell cycle promoter (Salmon et al., 2000; Cudre-Mauroux et al., 2003). 

After verifying the feasibility and stability of the immortalization on procedure in 

vitro and in vivo using human MABs from healthy donors, DMD MABs have been 

successfully immortalized and genetically corrected with the  DYS-HAC. 

This work demonstrate translation of HAC-based gene-correction strategy to a 

human clinically relevant stem/progenitor cell population, reinforcing hopes for 

future DMD autologous therapy. 
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4. RESULTS 

 

4.1 hTERT AND Bmi-1-MEDIATED IMMORTALIZATION OF HEALTHY 

DONORS HUMAN MABs  

 

4.1.1 Isolation and lentivector-mediated immortalization of healthy donor-

derived MABs 

To investigate the possibility to achieve an unlimited proliferative 

potential through the combined expression of hTERT and Bmi-1, human MABs 

have been isolated from muscle biopsies of three different healthy donors: a 72 

years old female (healthy donor #1), a 22 years old female (healthy donor #2) 

and a 53 years old male (healthy donor #3). The different populations of cells 

obtained from muscle explants were FACS-sorted to separate MABs 

(AP+/CD56-) from myoblasts (AP-/CD56+) and fibroblasts (AP-/CD56-) (Fig. 

4.1.1.1A).  

AP+/CD56- sorted cells showed the typical MAB morphology appearing 

as small, triangular and adherent to the substrate with a number of floating cells 

which represented the proliferating fraction (Fig. 4.1.1.1B). Each population 

(healthy donor#1, #2 and #3) was then co-transduced with floxable hTERT and 

Bmi-1 lentiviral vectors at passage 3. In parallel MABs from each donor were 

transduced with a floxed GFP lentiviral vector to obtain a control population. 

hTERT/Bmi-1 and GFP polyclonal populations derived from healthy donor#1 

were then cloned by limiting dilution.  

Three hTERT+Bmi-1 clones were selected as well as GFP clones, one 

of this, GFP#B5, was used as a control (Fig. 4.1.1.1C-G). Selection of 
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hTERT/Bmi-1 expressing clones was performed evaluating both telomerase 

activity (due to hTERT catalytic subunit) and Bmi-1 expression. Indeed it is 

known that human MABs after more than 10 passages in culture showed down-

regulation of telomerase activity (Dellavalle et al., 2007). As expected, 

Telomeric Repeat Amplification Protocol (TRAP) revealed that hTERT/Bmi-1 

MABs had high levels of telomerase activity whereas GFP#B5 did not (Fig. 

4.1.1.1C). Bmi-1 protein expression levels were verified by Western Blot. As 

showed in Fig. 4.1.1.1D, Bmi-1 expression was clearly present only in 

hTERT/Bmi-1 clones; conversely, Bmi-1 protein was not detected in GFP 

control clones after the same number of passages in culture. 

Moreover, morphological analysis of hTERT/Bmi-1 #A1, #B2 and #C5 

clones suggested that exogenous expression of the catalytic subunit of 

telomerase hTERT and of the cell cycle promoter gene Bmi-1, did not alter the 

morphology of human MAB clones (Fig. 4.1.1.1E), which resembled the one of 

the paternal population (Fig. 4.1.1.1B, top left image).  

Proliferation ability of clones was assayed in terms of population 

doublings (PD) and BrdU incorporation. PD curves demonstrated that the 

combined expression of hTERT and Bmi-1 allowed human MABs to bypass the 

early senescence that normally occurs in vitro. Conversely, the GFP clone 

underwent senescence, as already observed for human primary MABs 

(Dellavalle et al., 2007) (Fig. 4.1.1.1F). These results were confirmed by BrdU 

incorporation assay; 1 hour pulse was performed at different passages/time 

points, showing a high proliferation rate for all the hTERT/Bmi-1 expressing 

clones but not for the GFP one (Fig. 4.1.1.1G). Moreover the rate of proliferation 

seem to be maintained stable with time, albeit at the first time point (p12) two of 
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three hTERT/Bmi-1 expressing clones (#A1 in blue and #C5 in orange) showed 

a lower rate of proliferation which is again increased in the subsequent time 

points (respectively p40 and p70) (Fig. 4.1.1.1G). This result was probably due 

to the fact that these clones bypassed a phase of proliferative crisis which had 

occurred at that passage and from which they exited re-starting to proliferate 

robustly later in time.  

In conclusion the combined expression of hTERT and Bmi-1 leads to a 

functional immortalization of human MABs, which retain their normal behaviour 

and continue to proliferate in culture with a stable proliferation rate. 
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Figure 4.1.1.1 - hTERT and Bmi-1 mediated immortalization of human MABs. 

A) Representative example of FACS-sorting analysis of a mixed population (myoblasts, 

fibroblasts and MABs) obtained from muscle explants. Cells were analyzed for their physical 
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parameters and then for the levels of conjugated fluorocromes AP-FITC and CD56-PE: only 

AP+/CD56- cells (P3) were sorted in order to obtain MABs without fibroblasts (P4) or myoblasts-

derived cells (P2) contamination. B) Phase contrast morphology of sorted MABs derived from 

three different healthy donors after 3 passages in culture (72 years old female = healthy donor 

#1; 22 years old female = healthy donor #2; 53 years old male = healthy donor #3). C) 

Telomeric Repeat Amplification Protocol (TRAP) performed on hTERT/Bmi-1 clones showing 

high telomerase activity which is not present in the control clone (GFP #B5). The figure shows 

gel containing a ladder of PCR products with 6 base increments per sample, each one 

corresponding to a telomeric repeat added by telomerase (i.e., the number of bands correlates 

with the telomerase activity). HeLa cervical carcinoma cells were used as positive control. D) 

Western Blot showing Bmi-1 expression (triplet 40-44 kDa). hTERT/Bmi-1 expressing clones 

presented Bmi-1 expression, not detected in control GFP clones. As positive control murine 

fibroblasts (10T/2) were used, whereas GAPDH was used as normalizer (37 kDa). E) Phase 

contrast morphology of hTERT/Bmi-1 #A1, #B2 and #C5 clones. F) Proliferation curves 

(Population Doubling = PD) of hTERT/Bmi-1 and GFP clones demonstrating that human MABs 

co-transduced with hTERT and Bmi-1 bypassed early replicative senescence phase.  G) Bar 

graph depicting proliferation of hTERT/Bmi-1 expressing MABs compared to GFP MABs as 

BrdU incorporation rate. Scale bar: 50 µm 
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4.1.2 Analysis of telomeric lengths of immortalized healthy donor MABs 

As previously showed (see section 4.1.1, Fig. 4.1.1.1C), the introduction 

of hTERT into human MABs restored telomerase activity. As a matter of fact, it 

is known that in humans telomerase activity is turned off during lat 

embryogenesis and foetal development, being absent in the majority of adult 

somatic cells (see INTRODUCTION, section 2.4.2.1). In all cases, expression of 

the catalytic subunit of telomerase hTERT is turned off, whereas the RNA 

component hTR is expressed regardless of telomerase activity and, as a 

consequence, only hTERT expression is directly associated with telomerase 

activity (Shay and Wright, 1999); for this reason only hTERT was forced in 

restored in human MABs to promote telomerase reconstitution.   

Indeed, after hTERT introduction a TRAP assay was performed on 

hTERT/Bmi-1 expressing clones at early and late passages to test the actual 

stability of hTERT transgene expression (under CMV promoter). The results 

showed that hTERT expression allows to a fully functional and stable 

reconstitution of telomerase (maintained also after 40 passages in vitro; Fig. 

4.1.2.1A).  

Moreover, to validate the specificity of telomerase activity, its  direct 

target were analyzed: the telomeres. To investigate this, I performed a 

Telomeric Restriction Fragments (TRF) assay, which is a Southern blot based 

upon a probe able to specifically recognize telomeric sequences. As expected, 

hTERT/Bmi-1 clones showed longer telomeres compared with control GFP 

clone, demonstrating that telomerase is active on its target (Fig. 4.1.2.1B). In 

addition, two out of three clones, hTERT/Bmi-1 #A1 and #C5, telomeric length 
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was stably maintained in time, although in the case of hTERT/Bmi-1 #C5 

telomeres appeared to be slightly longer.  

 

 

Figure 4.1.2.1 - Analysis of telomerase activity stability and of telomeric lengths. A) TRAP 

(Telomeric Repeat Amplification Protocol) assay of hTERT/Bmi-1 #A1, #B2 and #C5 clones at 

early (respectively at p17, p14 and p25) and late (at p40) passages showing a stable 

telomerase activity. HeLa cells were used as positive control and CHAPS buffer as negative 

one. B) TRF (Telomeric Restriction Fragments) southern blot was performed on hTERT/Bmi-1 

clones to verify the effect of telomerase on telomeric lengths. M) 2.5 Kb ladder; 1) GFP #B5 p5; 

2) GFP #B5 p15; 3) hTERT/Bmi-1 #A1 p17; 4) hTERT/Bmi-1 #A1 p40; 5) hTERT/Bmi-1 #B2 

p14; 6) hTERT/Bmi-1 #B2 p40; 7) hTERT/Bmi-1 #C5 p25; 8) hTERT/Bmi-1 #C5 p40; 9) CHQ 

standard. C) Quantification of telomeric lengths. 
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4.1.3 In vitro and in vivo safety of hTERT/Bmi-1 immortalized MABs 

Since a strong telomerase activity and a high proliferation rate are typical 

features of transformed cells, it was opportune to thoroughly investigate both in 

vitro and in vivo if the introduction of hTERT and Bmi-1 into human MABs led 

them to a cancerous transformation.  

Two classical in vitro assays were performed to test the growth 

inhibition by cell-cell contact (Fig. 4.1.3.1A) and the growth factor dependence 

(Fig. 4.1.3.1B) of hTERT/Bmi-1 expressing MABs. In both cases, proliferation 

was tested in terms of BrdU incorporation (1 hour pulse) 4, 8 and 12 days after 

the beginning of the experiments. In cell contact inhibition assay, there was a 

significant decrease in the proliferation, starting from 4 days in culture; in 

particular, the decrease was stronger after 12 days,  when cells were almost 

confluent (Fig.4.1.3.1A). Similar results have been obtained with the growth 

factor dependence assay; in this case the reduction of BrdU incorporation rate 

was even more striking and rapid (Fig.4.1.3.1B).  

These parameters were instead not maintained by cancer cells, such as 

HeLa cells (Fig. 4.1.3.1C). These results demonstrate that the immortalization 

process does not lead to in vitro transformation of human MABs, which retain 

their normal features, among these the capacity to be inhibited in the growth by 

cell contact and by the absence of growth factors and serum in the culture 

medium. 
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Figure. 4.1.3.1 - In vitro safety of hTERT/Bmi-1 immortalized MABs. A, B) Graph bar 

representations of BrdU incorporation showing responsiveness to the growth inhibition by cell 

contact (A) and growth factor dependence (B) of human hTERT/Bmi-1 expressing MAB clones 

compared to HeLa cells (C). Baseline = day after plating cells. ***, P # 0.0005; ns, statistically 

not significant. 
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Finally, the in vivo tumorigenicity of hTERT/Bmi-1 immortalized MABs 

was tested. In order to investigate it, single subcutaneous injections of 2 x 106 

cells were performed into immunodeficient scid mice and 4 mice were used for 

each hTERT/Bmi-1 #A1, #B2, #C5 clone and for hTERT/Bmi-1 polyclonal 

populations derived from healthy donor#2 and #3. In parallel, scid mice were 

injected with HeLa cells as positive control. The assay showed that 

immunodeficient mice injected with hTERT/Bmi-1 immortalized MABs did not 

develop any tumour after 12 months of follow up, whereas mice injected with 

HeLa exhibited prominent tumours in less than 3 weeks (data not shown). 

Results obtained both in vitro and in vivo demonstrate absence of tumorigenic 

potential of immortalized human MABs. 

 

4.1.4 Cre-mediated excision of the floxed transgene 

To test the functionality of the floxed lentiviral vectors in transgene 

excision, human MABs from healthy donor #3 were transduced with 

HLox.CMV.GFP.IRES.TK lentiviral vector and a 100% GFP positive polyclonal 

population was obtained (Fig. 4.1.4.1C). The floxed GFP vector was chosen for 

this assay since it was used as backbone to construct the immortalizing floxed 

lentiviruses hTERT and Bmi-1 we employed for this project, 

HLox.CMV.hTERT.IRES.TK and HLox.CMV.Bmi-1. Both lentiviral vectors have 

been constructed to guarantee the reversibility through two safety levels: Cre-

LoxP and TK-ganciclovir systems. First, transgenes are flanked by LoxP sites 

allowing their removal after Cre-recombinase expression. In a second moment, 

the fraction of cells that have escaped the Cre-excision of the transgene will be 

killed by the addition in the culture medium of ganciclovir. Ganciclovir molecule 
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becomes active only after its phosphorylation by viral timidine kinase (TK) and 

the active form inhibits viral DNA polymerase; as a consequence the 

administration of ganciclovir will kill all the cells that express the TK suicide 

gene. In our case, TK gene is cloned between LoxP sites and in IRES with the 

transgene of interest (hTERT, Bmi-1 and GFP) (Fig. 4.1.4.1A). This will allow to 

kill cells which did not undergo Cre-mediated transgene excision thus reverting 

the immortalizing status (Salmon et al., 2000; Cudrè-Mauroux et al., 2003).  

To verify the efficiency of the Cre-LoxP system, two different 

concentration of Cre-recombinase non-integrating lentiviral vector (Fig. 

4.1.4.1B) were used on healthy donor#3 GFP MAB population (100% of GFP 

cells) (Fig. 4.1.4.1C). Three weeks after infection, cells were analyzed by FACS 

to quantify the number of GFP positive cells that have escaped Cre-mediated 

excision.  FACS analysis revealed that the 80% of cells lose GFP expression 

using 250 ng/ml of Cre recombinase non-integrating lentiviral vector. The results 

obtained show that Cre recombinase expression led to a significant level of 

transgene excision, as already reported in literature for these HLox vectors 

(Salmon et al., 2000, Cudrè-Mauroux et al., 2003), extending this approach to 

human MABs.  
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Figure 4.1.4.1 - Cre recombinase non-integrating lentiviral mediated transgene excision. 

A) Schematic diagram of the HLox vector life cycle. The basic elements of HIV-based vectors, 

i.e. LTRs, SD, SA (splice donor and acceptor, respectively), !(packaging signal), Ga (fragment 

of gag), RRE (Rev-responsive element), have been described (Naldini et al. 1996). CMV: 

human cytomegalovirus immediate early promoter; EGFP: enhanced green fluorescent protein; 

IRES: internal ribosomal entry site of the encephalomyocarditis virus; HSV1-TK: thymidine 

kinase of herpes simplex virus type 1. In related constructs, Bmi-1 and hTERT cDNAs were 

inserted in place of EGFP. B) Map of Cre recombinase non integrating lentiviral plasmid NLS-

Cre. C) Immunofluorescence showing MABs from healthy donor #3 previously infected with 

HLoxGFP.IRES.TK at MOI 5. EGFP is shown in green, nuclei have been stained with Hoechst. 

Scale bar: 50 µm D) Bar graph representation of the % of GFP positive cells remained after Cre 

expression using a non-integrating lentivirus as gene delivery system. ***, P< 0.0005.  
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4.1.5 In vitro myogenic potential of immortalized human MABs 

Human MABs retain a variable spontaneous myogenic potential (Dellavalle et 

al., 2007) that physiologically decrease with in vitro passages (unpublished 

data). Despite this variability, to investigate if the immortalization process 

through hTERT and Bmi-1 exogenous expression could interfere with the 

myogenic program, an in vitro spontaneous skeletal muscle differentiation assay 

was performed culturing cells at high density in a specific differentiation 

medium. After ten days in differentiation medium, myotubes appeared; in 

particular hTERT/Bmi-1 clones differentiated with a low extent (Fig. 4.1.5.1A, 

top panel) similarly to their parental population (data not shown). On the other 

hand, hTERT/Bmi-1 healthy donor #2- and hTERT/Bmi-1 healthy donor# 3-

derived MABs differentiated with a good extent (Fig. 4.1.5.1A, bottom panel), as 

their non immortalized counterparts did (data not shown).  

To further prove their propension to myogenic conversion, hTERT/Bmi-1 

healthy donor #2- and hTERT/Bmi-1 healthy donor #3-derived MABs were 

induced to differentiate after lentiviral transfer of MyoD-ER, a myogenesis 

master-gene (Choi et al., 1990) fused with estrogen receptor (ER) in order to be 

expressed selectively after tamoxifen administration. Five days after MyoD 

expression and upon serum withdrawal, multinucleated myosin heavy chain 

(MyHC) positive myotubes were evident, demonstrating that this two polyclonal 

immortalized populations were characterized by a very high myogenic 

conversion rate (Fig. 4.1.5.1B). 

 All these data demonstrate that hTERT/Bmi-1 immortalized human 

MABs (both clones and polyclonal populations) are able to differentiate into 

skeletal myotubes in vitro, demonstrating that the immortalization process does 
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not interfere per se with the myogenic program. Moreover, myogenic potential of 

hTERT and Bmi-1 expressing MABs can be also exploited via MyoD 

overexpression. 

 

 

 

 

Figure 4.1.5.1 -  In vitro myogenic potential of immortalized MABs. A) Immunofluorescence 

analysis of spontaneous myogenic conversion of hTERT/Bmi-1 #A1, #B2, #C5 clones and of 
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hTERT/Bmi-1 healthy donor#2 and #3-derived MABs. B) Immunofluorescence analysis of 

MyoD-ER-induced myogenic differentiation of immortalized healthy donor #2 and #3-derived 

MABs. MyHC in red; nuclei were stained with Hoechst.  Scale bar: 50 µm. 

 

4.1.6 In vivo engraftment of immortalized MABs and dystrophin 

expression after transplantation into scid/mdx mice 

To investigate the in vivo myogenic potential of immortalized MABs, a single 

intramuscular (IM) injection of 5 x 105 of immortalized healthy donor#2-derived 

MABs was performed into immunodeficent dystrophic scid/mdx mice (choose to 

avoid immunorejection of human cells). Mice were killed 24 hours and three 

weeks after trasplantations, to evaluate respectively engraftment and their 

myogenic potency/dystrophin expression. 24 hours after transplantation, 

immunofluorescence against laminA/C (a human specific nuclear lamin) 

unequivocally revealed the presence of human cells (Fig.4.1.6.1A). At second 

instance, immunofluorescence analysis for dystrophin expression was 

performed three weeks after transplantation; in this case it was possible to 

detect dystrophin expressing fibers containing laminA/C positive nuclei, 

demonstrating contribution of immortalized human MABs in generating new 

myofibers. All these results suggest that hTERT/Bmi-1 human MABs are able to 

engraft the dystrophic skeletal muscle giving rise to myofibers that correctly 

expressed the restored dystrophin protein.  
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Figure. 4.1.6.1 - Intramuscular transplantation of immortalized human MABs. A) 

Immunofluorescence analysis for lamin A/C revealed engraftment of human cells (green) into 

scid/mdx mice skeletal muscle (Tibialis Anterior) 24 hours after a single intramuscular (IM) 

trasplantation. B) Immunofluorescence showing dystrophin positive fibers (red, membrane 

signal) generated by fusion of human laminA/C positive cells (red, nuclear signal) into 

dystrophic muscle (Tibialis Anterior) 3 weeks after a single IM trasplantation. Scale bar: 50 µm 
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4.2 IMMORTALIZATION OF DMD MABs AND GENE-CORRECTION WITH A 

DYS-HAC 

 

4.2.1 Isolation and immortalization of DMD MABs 

I previously demonstrated that introduction of hTERT and Bmi-1 results into an 

efficient immortalization of human MABs derived from healthy donors muscle 

biopsies. Moreover, I also showed that immortalization process does not lead to 

significant changes into the normal behaviour of human MABs. Even the 

reversibility of the system was confirmed by preliminary experiments, 

guaranteeing an important level of safety (see RESULTS section 4.1).   

Once tested the feasibility of this experimental approach on healthy 

donor-derived MABs, this strategy was translated to DMD patient-derived 

MABs. First, as previously described, a pure AP+/CD56- MAB population from 

DMD patient #4 was purified through FACS-sorting (Fig. 4.2.1.1A). After initial 

expansion, cells were co-transduced with hTERT and Bmi-1 floxed lentiviral 

vectors (Fig. 4.2.1.1B). Once confirmed the presence of telomerase activity (Fig. 

4.2.1.1C) and Bmi-1 protein expression (Fig. 4.2.1.1D), the myogenic potential 

of immortalized DMD #4 MABs was tested, demonstrating that they were still 

able to differentiate into skeletal muscle in vitro with the same extent of their 

parental not immortalized cells (Fig. 4.2.1.1E). All these findings confirmed what 

already proved for hTERT/Bmi-1 immortalized healthy donor-derived MABs, in 

particular that is possible to provide human MABs with an unlimited proliferative 

potential without causing any significant change in the normal cell behaviour. 
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Figure 4.2.1.1 - Characterization of immortalized MABs derived from DMD patient. A) 

FACS-sorting analysis of a mixed population (satellite cells, fibroblasts and MABs) obtained 

from a muscle explant of DMD patient #4. Cells were analyzed for their positivity or negativity to 

AP-FITC and CD56-PE: only cells AP+/CD56- (blue selection) were sorted in order to obtain 

pure MAB population. B) Phase contrast morphology of DMD#4 MABs compared to 

hTERT/Bmi-1 DMD#4 MABs showing that introduction of hTERT and Bmi-1 did not change the 

typical MAB phenotype. C) TRAP assay testing presence of telomerase activity in hTERT+Bmi-

1 DMD#4 MABs but not in not immortalized cells (N.I.). HeLa cells were used as positive 

control. D) Western Blot analysis confirming Bmi-1 expression (triplet 40-44 kDa) only in 

immortalized hTERT/Bmi-1 MABs. 10T/2 cells were used as a positive control and beta-tubulin 

(b-tub) as normalizer (50 kDa). E) In vitro myogenic potential of DMD#4 MABs versus 
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hTERT/Bmi-1 DMD#4 MABs demonstarting that immortalized cells were able to differentiate 

with the same extent of not immortalized cells (N.I.). Scale bar: 50 µm 

 

4.2.2 Construction and transferring of DYS-HAC into immortalized DMD 

MABs 

The transfer of HACs into human cells have been already demonstrated 

with immortalized mesenchimal stem cells (Hoshiya et al., 2009), setting the 

basis for doing this also in human MABs. This overall approach will provide a 

new autologous cell and gene therapy approach for the DMD treatment. A new 

DYS-HAC, called DYS-HAC2, was generated starting from DYS-HAC1 

(Hoshiya et al., 2009; Tedesco et al., 2011) by homologous recombination. 

DYS-HAC2 presents the main outstanding features of DYS-HAC1: telomeres 

and centromere for autonomous replication, entire dystrophin locus for proper 

and functional gene-correction, selection markers and LoxP sites for cloning. On 

the other hand, the deletion of EGFP reporter gene lead it to be less 

immunogenic; moreover, the addition of neomicin resistence between FRT sites 

allows its removal after FLP expression. All these changes have been 

performed with the aim of reducing the possibility of immunoreaction against 

DYS-HAC itself. (Fig.4.2.2.1A).  

DYS-HAC2 was then transferred into immortalized DMD #4 MABs. The 

tecnique used is called micro-cell mediated chromosome transfer (MMCT) 

which is based on the formation and fusion of small particles with one or more 

chromosome surrounded by nuclear and plasma membrane, which contain 

DYS-HAC. Chinese Hamster Ovarian (CHO) cells were used as donor cells for 

MMCT whereas the engineering of the HAC was performed on chicken B cells 
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(DT40) since they show a high frequency of homologous recombination (Fig. 

4.2.2.1B).  

After MMCT, immortalized DMD #4 cells have been maintained in 

culture for two days and then put under G418 (neomicin) selection in order to 

obtain DMD MAB clones containing DYS-HAC2 (DMD DYS-HAC). Three clones 

have been obtained from selection, # 4DYS-HAC 10, #4 DYS-HAC 11 and # 

4DYS-HAC 13 (Fig.4.2.2.1C). These results demonstrate the feasibility MMCT 

mediated HAC transfer to immortalized DMD MABs, opening in future the 

possibility to translate this gene-correction stategy for the cell therapy of DMD. 
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Figure 4.2.2.1 - DYS-HAC2 construction and transferring. A) Schematic map of Human 

Articifial Chromosome 2 containing the entire dystrophin locus (DYS-HAC2) obtained by 

homologous recombination from DYS-HAC1 (Hoshiya et al., 2009; Tedesco et al., 2011). The 

DYS-HAC1 vector contains the enhanced green fluorescent protein (EGFP) gene, the herpes 

simplex virus thymidine kinase (HSV-tk) gene, and several selection markers (bsd, puro- mycin, 

and HPRT gene). Both telomeres of the DYS-HAC are artificial. The centromere of the DYS-

HAC is derived from human chromosome 21. DYS-HAC2 still has it is own centromere (cen), 

telomeres (tel) and loxP sites such as DYS-HAC1, but has no EGFP to reduce immunoreaction 



 87 

and, moreover, neomicin (Neo) resistence is cloned between FRT sites, to allow FLP-mediated 

excision. B) Schematic diagram of the construction of various cells containing the DYS-HAC 

vector. The human dystrophin is located on the short arm of the human X chromosome. 

Chromosome manipulation was carried out in homologous recombination-proficient DT40 cells. 

To clone human dystrophin gene into the human artificial chromosome (HAC) vector using the 

Cre-loxP mediated chromosomal translocation, a loxP was targeted to the proximal locus of the 

dystrophin gene on the human X chromosome. Extra genes on the distal of the dystrophin gene 

were deleted by telomere-associated chromosome truncation in the DT40 cells. The modified 

human X chromosome fragment was transferred into Chinese hamster ovary (CHO) hybrids 

containing the HAC including the loxP vector by microcell-medicated chromosome transfer 

(MMCT). The dystrophin gene (2.4 Mb) was cloned into the HAC vector in CHO cells using Cre-

loxP mediated chromosomal translocation. From the CHO hybrids, the DYS-HAC vector was 

further transferred to human immortalized mesenchymal stem cells (hiMSCs) and mouse 

embryonic stem (ES) cells. The stability of the DYS-HAC was investigated in hiMSC cells. To 

study the expression of the human dystrophin gene on the DYS-HAC in vivo, the chimeric mice 

were produced from the ES cells containing the DYS-HAC. C) Transferring of DYS-HAC2 into 

immortalized human MABs derived from DMD patient #4 through MMCT tecnique. CHO 2-12 

clone was selected for MMCT after verifying the presence of DYS-HAC2 chromosome in a 

single and not integrated copy through fluorescent in situ hybridization (FISH) (left image); two 

days after transfer, cells were put under G418 (neomicin) selection (middle phase contrast 

image) and clones emerged three weeks after (right phase contrast image). Scale bar: 50 µm 

 

4.2.3 Characterization of DMD DYS-HAC clones  

To specifically verify the presence of the HAC and to avoid the 

possibility of any rearrangement, couples of primers have been designed to 

detect different HAC regions (1, 2, 3 and 4) and dystrophin exons (13, 14 and 

18) (Fig. 4.2.3.1A) that are missing in the DMD#4 patient (which presents a 

deletion spanning from exon 14 to exon 20). A clone used for MMCT (CHO 

DYS2-12) was chosen as positive control, whereas both CHO cells (without 



 88 

DYS-HAC inside) and immortalized DMD #4 polyclonal population were used as 

negative control. Primers to detect exon13 that is not deleted in DMD patient, 

and primers designed against exon 18 which is conserved between hamster 

and human genome has been used ss internal control. PCRs results, which are 

summarized below, clearly showed that all DMD #4 DYS-HAC clones were 

positive both for HAC regions and distrophin exons, demonstrating not only 

presence of DYS-HAC2 into human MABs but also a correct gene sequence 

(Fig. 4.2.3.1B). These results confirmed the feasibility of HACs transfer into 

human immortalized MABs. 

Subsequently, I investigated if the HAC was present in a single and not 

integrated copy into the host genome. For this purpose, one of the three clones, 

DMD DYS-HAC #11, was selected for further analysis. As shown by FISH, the 

DYS-HAC2 is present in a single copy which is not integrated into human 

genome but remains episomal. Notably, the experiment was performed after ten 

passages in culture without selection, showing that the HAC is stably 

maintained in human dystrophic MABs. Moreover, through a metaphase spread 

analysis, I demonstrated that the introduction of hTERT and Bmi-1 first and of 

the DYS-HAC2 later, do not perturb the ploidy of human DMD DYS-HAC MABs, 

supporting evidences of safety of this overall approach.  

To investigate the myogenic potential after DYS-HAC2 transfer, DYS-

HAC#11 clone was transduced with the inducible MyoD-ER lentivirus, mainly to 

reintroduce myogenic potency to these cells, which might have been lost their 

spontaneous capacity for skeletal muscle differentiation during MMCT high-

density cultures. Additionally, this step eliminated the variability in spontaneous 

myogenic potential observed among different mesoangioblast populations 
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isolated from mouse (Minasi et al., 2002), human (Dellavalel et al., 2007), and 

canine (Sampaolesi et al., 2006) pre-and postnatal tissues.  

Five days after tamoxifen induced MyoD overexpression, myotubes appeared, 

as demonstrated by immunofluorescence against MyHC. 

In vivo tumorigenicity of this clone was tested; scid mice (n=4) were 

subcutaneously injected and, untill now (3 months) they did not develop any 

tumour (data not shown). It will be obviously important to follow-up these mice 

to confirm the absence of tumorigenic potential. 

In conclusion, results demonstrate that is possible to gene-correct 

immortalized DMD MABs, which retain their classical behaviour. 
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Figure 4.2.3.1 - Characterization of immortalized DMD DYS-HAC2 clones. A) Schematic 

map of DYS-HAC2 with couples of primers designed against different HAC (HAC1, 2, 3 and 4) 

and dystrophin exons (Exon 13, Exon 14, Exon 18). B) Table summarizing PCR results. PCRs 

were performed on DMD DYS-HAC clones obtained from MMCT on immortalized DMD #4 

MABs. This patient presents a deletion from exon 14 to 20. As positive control for PCRs, CHO 

DYS2-12 clone used for MMCT was showed. DMD #4 immortalized MABs were used as 

negative control such as CHO cells. Primers used for detecting exon 18 recognized both 

hamster and human dystrophin exon. DMD DYS-HAC clones #10, #11 and #13 correctly 

presented all HACs regions. C) Example of Fluorescence In Situ Hybridization (FISH) on DMD 

DYS-HAC clone 11 showing the presence of DYS-HAC (green) in a single and not integrated 

copy. D) Giemsa staining of a representative methapase spread of the same clone showed in 

C). E) In vitro MyoD-ER induced myogenic potential of DMD DYS-HAC #11 clone both at low 

and high magnification. Scale bar: 50 µm  
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5. DISCUSSION AND FUTURE PERSPECTIVES 

 

Several years ago, a novel population of vessel-associated progenitors, 

named MABs, was isolated from the dorsal aorta of mouse embryo at E9.5 (De 

Angelis et al., 1999; Minasi et al., 2002). These cells showed the ability to 

differentiate into mesodermic tissues, including skeletal muscle and, due to their 

origin, they managed to cross vessel walls and basal lamina of skeletal 

myofibers after intra-arterial delivery, representing a unique feature among 

myogenic cells. This allowed MABs to reach large areas of skeletal muscle 

tissue when injected into the arterial circulation of different DMD preclinical 

models, thus resulting into a functional and morphological recover of the 

dystrophic phenotype (Sampaolesi et al., 2003; Sampaolesi et al., 2006; Galvez 

et al., 2006).  

In this direction, cells with a similar behaviour have been isolated from 

human adult muscles (Dellavalle et al., 2007) and a Phase I/II clinical trial for 

DMD based on allogeneic trasplantation of human MABs is currently ongoing. 

On the other hand, DMD autologous cell- and gene-therapy still 

presents some limitations, mainly related to the large size of the dystrophin 

gene and to the risk of insertional mutagenesis due to random integration 

pattern of lentiviral vectors used for the delivery of therapeutic gene. The 

generation of a Human Artificial Chromosome containing the entire dystrophin 

locus (DYS-HAC) allowed to overcome most of these limitations (Hoshiya et al., 

2009). In addition, it has been recently showed that the DYS-HAC transfer into 

MABs previously isolated from mdx mouse resulted into genetically corrected 

cells (mdx(DYS-HAC)MABs) able to ameliorate the dystrophic phenotype after 



 93 

intra-arterial administration. This is the first evidence of a stem cell mediated 

gene replacement therapy with an HAC for any genetic disease (Tedesco et al., 

2011).  

The aim of this project was to translate this strategy into human MABs, 

setting the condition for a future HAC-based cell therapy of DMD. 

In the case of human cells, an additional step of immortalization is 

necessarly required in order to extend their proliferative capability, thus 

preventing senescence during or after selection. Transfer of HACs in 

mammalian cells is inefficient (approximate frequency 10-5), so selection is 

required to isolate clones. This is easy in mouse cells that spontaneously 

immortalize in culture (Katakura et al., 1998), but not in human cells, for which 

in vitro spontaneous immortalization is a rare event.  

In this perspective, human MABs have been engineered to express the 

catalytic subunit of telomerase hTERT and the oncogene Bmi-1, as previously 

described for immortalization of human myoblast-derived cells (Cudrè-Mauroux 

et al., 2003). We first tested the immortalizing “cocktail” on human MABs 

derived from healthy donors. As a consequence, the first results showed that 

introduction of hTERT and Bmi-1 allows human MABs to bypass the early 

senescence which normally occurs after several passages in vitro, resulting in a 

potentially unlimited proliferative ability. This is demonstrated by the fact that all 

hTERT/Bmi-1 clones presented a strong proliferative rate together with a high 

telomerase activity, suggesting also that in human MABs the introduction of the 

catalytic subunit hTERT is sufficient to completely reconstitute telomerase. 

Moreover, BrdU incorporation assay at different passages showed that the 

proliferation rate of hTERT/Bmi-1 clones is maintained stable with time.  
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Having demonstrated the functional reconstitution of telomerase, which 

was stably expressed after a number of passages in culture, the next step was 

to verify telomerase activity on its direct biological targets, the telomeres. TRF 

Southern blot showed that all hTERT/Bmi-1 clones had telomeres longer 

compared to control clone. In particular, the ideal situation is the one of 

hTERT/Bmi-1 #A1 clone, which showed telomeres of a physiological and stable 

length, whereas hTERT/Bmi-1 #B2 and #C5 telomeres are respectively 

increased in length with time or slightly longer respect what described for 

human cells (15-25 Kilobases). By the way, this did not result into any changes 

of proliferation or stability of hTERT/Bmi-1 clones.  

On the other hand, high telomerase activity and unlimited proliferative 

potential are typical features of cancer cells. To test the possibility that the 

immortalization process may transform MABs, in vitro and in vivo assay were 

performed. To assay this option in vitro, two classical parameters that are lost in 

cancerous cells, such as cell contact inhibition and growth factor dependence, 

have been tested. Both experiments showed that immortalized MABs are 

sensitive to this parameters. To enforce what emerged from in vitro 

experiments, subcutaneous injections of hTERT/Bmi-1 clones and polyclonal 

populations were performed into immunodeficient mice. As result, mice injected 

with immortalized cells did not develop any tumour.  

In addition, to increase the safety of this immortalizing strategy, lentiviral 

vectors used for hTERT and Bmi-1 delivery have been appositely designed to 

present two important safety gateways. The first step consists in the Cre 

recombinase-mediated excision of immortalizing transgenes. The efficiency of 

Cre-LoxP system was tested on human MABs previously trasduced with 
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floxable EGFP; as delivery system a Cre non integrating lentiviral vector (NLS-

Cre) was employed. As a consequence of NLS-Cre transduction, the 80% of 

cells did not exhibit anymore EGFP expression. Subsequently, in order to 

eliminate the remaining 20% of cells that have escaped Cre-mediated excision, 

a second safety step was introduced in lentiviral designing: TK suicide gene 

was cloned in IRES with the transgene between LoxP sites. This means that 

cells, which did not undergo transgene removal by Cre, will be killed by addition 

in the culture medium of ganciclovir. The assay with ganciclovir is ongoing, to 

set the right concentration to selectively kill target cells, avoiding the so called 

“by-stander” effect.  

At the end, one of the most important point, is the capacity of 

immortalized MABs to differentiate into skeletal muscle as before, taking in 

account that each MAB cell line exhibited a variable myogenic extent in vitro 

and in vivo. Moreover, the inducible expression of MyoD into human 

immortalized MABs, demonstrate that is possible to strongly increase the 

myogenic potency of this cells. Therefore, immortalization process does not 

interfere per se with the in vitro intrinsic myogenic potential of human MABs 

whereas in vivo preliminary experiments to test the engraftment and the ability 

of human immortalized MABs together with dystrophin expression have been 

performed doing a single intra-muscular injection into dystrophic 

immunodeficient scid/mdx mice. In this case, it was possible to detect human 

cells into dystrophic skeletal muscle as well as dystrophin expressing myofibers. 

An extended number of in vivo experiments are ongoing and have been 

planned to better investigate not only the myogenic potential of these cells, but 
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also their capacity to engraft skeletal muscle upon intra-arterial injections, a 

MAB unique feature among myogenic cells. 

Concluding this first part, it is possible to say that immortalization of 

human MABs has been successfully obtained through combined lentiviral-

mediated expression of hTERT and Bmi-1. Moreover, hTERT expression stably 

reconstitutes telomerase enzymatic activity, which works properly on telomeres 

length, avoiding their shortening and so preventing replicative senescence. The 

immortalization process furthermore does not affect the typical features and 

behaviour of MABs, first of all their in vitro and in vivo myogenic potential, which 

could be also exploited via MyoD overexpression. Importantly, in vitro and in 

vivo assays confirm that immortalization process through hTERT and Bmi-1 

expression does not lead human MABs to a tumorigenic conversion, even with 

the immortalizing sequences still present in the genome. 

These overall results clearly suggest that introduction of hTERT and 

Bmi-1 is not dangerous for the genetic stability of human MABs; moreover it is 

possible, in case, to revert the immortalizing status of cells using a combination 

between Cre recombinase expression and ganciclovir administration. 

 

 

The second part of this project is focused on the immortalization of 

DMD human MABs in order to obtain cells ready to be transferred  with DYS-

HAC2. For this purpose, a DMD patient was chosen and immortalized as 

previously described. After verifying the immortalization, DMD MABs were 

subjected to DYS-HAC2 transfer through MMCT. Three DMD DYS-HAC clones 

have been obtained upon selection;  survival is a signal of the DYS-HAC2 
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presence, since selection resistance was conferred by HAC itself. Moreover, 

PCRs performed with different couples of primers designed to detect both HAC 

regions and dystrophin exons, confirmed DYS-HAC2 presence and avoid the 

possibility of rearrangements. These results show that is possible to 

successfully transfer HACs into DMD MABs, obtaining genetically corrected 

cells and that, after immortalization, they are able to survive during and after 

selection. In addition, a FISH assay, using a probe which recognize a portion of 

dystrophin that is deleted into DMD patient used for this study, showed that 

DYS-HAC2 is present in a single and not integrated copy into the host genome, 

whereas metaphase chromosome spread analysis, demonstrated that 

introduction of hTERT and Bmi-1 and then, of DYS-HAC2 did not lead to 

chromosomal instability. 

After MMCT high density cell cultures, the myogenic potential of DMD 

DYS-HAC clones was restored after transduction with a MYOD-ER lentiviral 

vector. As a matter of fact, after MyoD induction with tamoxifen, cells were able 

to differentiate in vitro with a high extent, showing so they retained an intrinsic 

myogenic potential. Future experiments will be planned to verify the in vivo 

myogenic potential of these cells in ameliorating the dystrophic phenotype 

together with deeper investigations on safety. 

 

All these results taken together strongly support the feasibility of a new 

autologous cell therapy approach to treat DMD, based on trasplantation of DYS-

HAC genetically corrected DMD MABs. The use of HACs as tool for the gene 

delivery could change the field of autologous cell theraphy, in particular for this 

pathology. If successful, this strategy would present many advantages over 
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conventional gene-correction systems, among these the avoiding of risk of 

insertional mutagenesis, an unlimited space for genes and cDNA that could be 

engineered in the HAC, no patient selection for mutation type and no immune-

suppression needing. 

Moreover, HACs can be further engineered to carry on additional genes 

with an improving effect on dystrophic phenotype such as MyoD, IGF-1 

(Musaro, 2005), PlGF (Gargioli et al., 2008), HSV-TK, MyoD-ER. In this 

direction, in our laboratory we are developing new-generation DYS-HAC vectors 

able to carry also floxed immortalizing sequences, thus completely avoiding the 

use of integrating lentiviral vectors.  

Currently, different experimental therapies are entering clinical trials but 

so far only exon-skipping promises a solution to treat DMD. On the other hand, 

also if successful exon-skipping is a mutation-specific gene-correction strategy, 

so a consistent number of mutations remained impossible to be corrected. In 

this case, transplantation of DYS-HAC genetically corrected human cells, may 

represents the best solution. 
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6. MATERIALS & METHODS 

 

6.1 ISOLATION FROM MUSCLE EXPLANTS AND CULTURE OF HUMAN 

MABs 

 

Cells were prepared from healthy donors and dystrophic patient (DMD) 

undergoing diagnostic biopsy (and later classified as non affected by secondary 

myopathies) and maintained in culture as previously described (Tonlorenzi et al., 

2007). Briefly, each muscle sample was stored in DMEM w/o FCS, with 

antibiotics and kept at 4 °C for a maximum of 24 hours before dissection. It was 

then rinsed in PBS without Ca2-Mg2and sharply dissected into 1–2 mm diameter 

pieces with a scalpel. Fragments were transferred to a Petri dish coated with 

type I collagen (1 mg ml–1 in 0.1 M acetic acid). The medium consisted of 

MegaCell DMEM (Sigma, St Louis, MO) supplemented with 5% FBS, 5ng/ml 

basic fibroblast growth factor (bFGF), 2 mM glutamine, 0.1 mM $ -

mercaptoethanol, 1% non essential amino acids, 100 IU/ ml penicillin and 100 

mg/ml streptomycin. The tissue fragments were cultured for 7–8 days. After the 

initial outgrowth of fibroblast-like cells, small round and refractile cells were 

observed. Because of their poor adhesion (many of these cells were floating), 

cells were collected by gently pipetting and plated on plastic with the MegaCell 

supplemented medium in low oxygen (5% O2 , 5% CO2 ) incubators to avoid 

oxidative stress. 
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6.2 CELL SORTING OF MABs 

 

The cells obtained from the muscle explants were a mixed population of 

MABs, and fibroblasts. To select MABs, a Cell sorter (DIVA Vantage, BD) was 

used to purify them (AP+/CD56-) from myoblasts (AP-/CD56+) and fibroblasts 

(AP-/CD56-). In order to do this, cells were harvested and resuspended in a 

solution containing 1% FBS and 2mM EDTA in PBS and incubated with AP-FITC 

(Santa Cruz) and CD56-PE (Milteny Biotec) antibody for 30 minutes at 4°C and 

then analyzed. A primary gate based on physical parameters (forward and side 

light scatter, FSC and SSC, respectively) was set to exclude dead cells or small 

debris. Then cells were analyzed for the expression of AP versus CD56. Only 

AP+/CD56- cells were collected to have a pure MABs population. 

 

 

6.3 LENTIVIRAL PRODUCTION, TITRATION AND TRANSDUCTION 

 

Lentiviral production was performed as previously described (Messina et 

al., 2010). Briefly, lentiviral particles were produced by transient transfection of 

the vector of interest in association with the packaging vectors (pREV, pD8.74 

and pVSV-G) in HEK293T. After 30 hours, culture medium from transfected cells 

was filtered with a 0.45 mm filter and 100-times concentrated after centrifugation 

at 20,000 rpm for 2hrs (at 20°C). Working concentrations were determined by 

titration on HeLa cells and processed through quantitative real time analysis of 

viral sequences.  

For integrating lentiviral transductions, human MABs were plated at a 



 101 

density of 105 cells. When cells reached 70-80% of confluence they were 

transduced. In detail, cells were incubated overnight (O/N) with the viral dilution 

in a final volume of 1 ml with polybrene, to increase infection efficiency. The day 

after, cells were rinsed in PBS and cultured with normal growing medium.  

In the case of transduction with non-integrating lentiviral vectors, human 

MABs were plated at density of 105 cells and incubated with 125 ng or 250 ng of 

virus in 1 ml suspension for 24 hours in presence of polybrene. The day after 

cells were rinsed in PBS and cultured with normal growing medium. 

The lentiviral vectors used for this study are the following: 

HLox.CMV.hTERT.IRES.TK, Hlox.CMV.Bmi-1 and Hlox.CMV.EGFP.IRES.TK 

(Salmon et al., 2000); MyoD-ER construct was kindly provided by Dr. Jeffrey S. 

Chamberlain (University of Washington School of Medicine, Seattle, USA) and 

used as previously described (Kimura et al., 2008); NLS-Cre non integrating 

lentiviral vector was designed, produced and titered by Angelo Lombardo 

(unpublished). 

 

 

6.4 CELL CLONING  

 

Cells were counted in a haemocytometer. The cell suspension was 

cloned by limiting dilution or by cell sorting facility to have single cell per dish. 
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6.5 TELOMERASE ACTIVITY ASSAY (TRAP) 

 

To evaluate the telomerase activity, TRAPeze® Telomerase Detection 

Kit (Chemicon) was used. Cells were collected and telomerase was extracted 

with CHAPS lysis buffer. The TRAPeze kit is a one buffer, two-enzyme system 

utilizing the polymerase chain reaction (PCR). In the first step of the reaction, 

telomerase adds a number of telomeric repeats (GGTTAG) onto 3’ end of a 

substrate oligonucleotide (TS) at 30°C for 30 minutes. In the second step, the 

extended products are amplified by PCR (33 cycles) using the TS and reverse 

(RP) primers generating a ladder of products with 6 base increments starting at 

50 nucleotides, each one corresponding to a telomeric repeat added by 

telomerase (i.e., the number of bands revealed on gel will then correlate with the 

telomerase activity).  

The PCR products were run on 10% non-denaturing polyacrylamide gel 

at 400V for 3 hours; the gel was then directly exposed with X-ray film. For 

additional details see TRAPeze Telomerase Detection Kit datasheet. 

 

 

6.6 WESTERN BLOTTING 

 

Proteins for western blot were extracted from cells using LEMLI buffer 

with 2% sodium dodecyl sulphate (SDS), 50mM Tris-HCl ph6.8, and 10% 

glycerol. Protein concentrations were determined by BCA protein assay (Pierce) 

using bovine serum albumin as standard and after determination DTT 

(dithiothreitol) was added. 50µg of proteins were loaded and separated by 8% 
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SDS polyacrylamide gel electrophoresis (SDS-PAGE) to detect Bmi-1 (triplet 

40-44 kDa). Proteins were then transferred to Amersham membranes (1hr at 

150mA), saturated with 5% milk in 0.1% Tween-20 (Sigma)-PBS and hybridized 

overnight at 4°C with Bmi-1 antibody (Millipore). The filters were then washed 

four times (10 minutes each at RT) with 0.1% Tween-20 (Sigma)-PBS and 

reacted with the proper HRP-conjugated IgGs (Amersham; 1:10000 dilution) for 

45 hour at RT, washed four times and finally visualized with the ECL 

immunoblotting detection system (Amersham). Mouse anti-beta-tubulin (50 kDa, 

Covance) and anti-GAPDH (27 kDa, Sigma) were used to normalize.  

 

 

6.7 POPULATION DOUBLING CURVE 

 

The proliferation ability of clones was evaluated plating 105 cells per 

clone. Every time cells reached 70-80% of confluence they were collected, 

counted with haemocytometer and expanded. Growth curves were obtained 

calculating Population Doubling (PD) as proliferation index. PD = logN/log2; N= 

cells collected/cells plated. 

 

 

6.8 BrdU INCORPORATION AND DETECTION 

 

To test BrdU (5-bromo-2-deoxiuridine) incorporation, 8 x 104 cells were 

plated. 24 hours after, cells were incubated 1 hour with 50µM BrdU diluted in 

standard growing medium. After incubation cells were fixed with Ethanol 95%, 
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Acetic acid 5% and then incubated 20 minutes with 1.5M HCl. 

Immunofluorescence staining was performed with Anti-BrdU detection kit 

(Amersham) according manufacturer’s instruction and nuclei were stained with 

Hoechst. BrdU+ and Hoechst+ cells were counted at fluorescence microscopy. 

The proliferation rate was calculated as percentage of BrdU+ cells on total 

number of nuclei (Hoechst+ cells).  

 

 

6.9 TELOMERIC RESTRICTION FRAGMENTS ASSAY (TRF) 

 

DNA was extracted from cells with Blood & Cell Culture DNA Mini kit (Qiagen) 

and TRF assay was performed with TeloTAGGG Telomere Length Assay Kit 

(Roche) according manufacturer’s instructions. Briefly, purified genomic DNA 

was digested by an optimized mixture of frequently cutting restriction enzymes 

(Hinf1 and Rsa1). The sequence specificity of these enzymes ensures that 

telomeric DNA and sub-telomeric DNA are not cut, while non-telomeric-DNA is 

digested to low molecular weight fragments. Following DNA digestion, the 

genomic fragments were separated by 0.8% gel electrophoresis at 5V/cm for 2-

4 hours and transferred by capillarity to a nylon membrane. The blotted DNA 

fragments are hybridized to a digoxigenin (DIG)-labeled probe specific for 

telomeric repeats and incubated with a DIG-specific antibody covalently coupled 

to alkaline phosphate. Finally, the alkaline phosphatase on the antibody 

metabolizes CDP-Star, a highly sensitive chemiluminescent substrate; this 

produces a visible signal that indicates the location of the immobilized telomere 

probe (and, hence, the TRF) on the blot. The average TRF length can be 
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determined by comparing the location of the TRF on the blot relative to a 

molecular weight and to a standard control. The signal responses were 

analyzed by a computer-assisted system derived from NIH Image 1. For 

detailed information see datasheet. 

 

 

6.10 CELL CONTACT INHIBITION ASSAY 

 

8 x 104 cells were plated in quadruplicate. BrdU incorporation was first 

assayed when cells were subconfluent (60-70%; baseline). Then BrdU 

incorporation rate was tested 4 days, 8 days and 12 days after the beginning of 

the experiment, when cells were left to go to confluence. HeLa cells were used 

as control. 

 

 

6.11 GROWTH-FACTOR DEPENDENCE ASSAY 

 

8 x 104 cells were plated in quadruplicate and BrdU incorporation was 

assayed to verify the proliferation rate in standard culture conditions (baseline). 

The day after cells were shifted in a growth factor and serum-free medium and 

BrdU incorporation was performed at different time point, 4 days, 8 days and 12 

days in growth factor and serum-free medium. HeLa cells were used as control. 
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6.12 IN VIVO TUMORIGENIC ASSAY 

 

Four scid immunodeficient mice/clone or /polyclonal population (n=24) 

were injected subcutaneously in the dorsal flank with 2 x 106 cells/200 µl of PBS 

(without calcium and magnesium) containing 0.2 international units of sodium 

heparin (Mayne Pharma, Australia). The mice are followed-up to investigate the 

capability of hTERT/Bmi-1 clones to give rise tumour formation. As technical 

positive controls, scid injected with HeLa cervical carcinoma cells were used (n = 

3/3 mice).  

 

 

6.13 FLOW CYTOMETRY 

 

Cells were harvested and resuspended in 1 ml of a solution containing 

1% FBS and 2mM EDTA in PBS. After PBS washing, cells were fixed in 2% 

PFA before FACS analysis. Analysis was performed on at least 10.000 events 

for each sample and determined using a FACScalibur flow cytometer (Becton 

Dickinson: BD). The acquisition was performed using CELLQUEST software 

(BD) and analyzed using FCS-express software. A primary gate based on 

physical parameters (forward and side light scatter, FSC and SSC, respectively) 

was set to exclude dead cells or small debris.  
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6.14 IN VITRO MYOGENIC DIFFERENTIATION ASSAY   

 

Skeletal myogenic differentiation of human MABs was induced by plating 

cells at confluence onto matrigel coated dishes and exposed to DMEM 

supplemented with 2% horse serum (EuroClone) from a minimum of 7 to a 

maximum of 10 days. When MyoD-ER was used, cells were exposed to 1%M of 

4-hydroxy-tamoxifen (4OHT; Sigma) for 24 hours and then switched to 

differentiation medium containing DMEM plus 2% horse serum and 4OHT. 

 

 

6.15 IMMUNOFLUORESCENCE  

 

Cells were washed with PBS and fixed with 4% paraformaldehyde 

(Sigma) at room temperature (RT) for 10 minutes, permeabilized with 0.2% 

Triton X-100 (Sigma) and 1% BSA (Sigma) in PBS for 30 minutes at RT and 

10% donkey and/or goat serum (Sigma) was used as blocking solution to 

reduce secondary antibody background signal. Muscle samples were frozen in 

liquid nitrogen cooled isopentane and serial 7 µm sections were cut with a 

cryostat (Leica). Cells and tissue sections were incubated overnight at 4°C with 

the following primary antibodies: mouse anti-dystrophin Dys1, Dys2 

(Novocastra); rabbit anti-laminin (Sigma); mouse anti-myosin heavy chain 

(MyHC; MF20, Hybridoma Bank rabbit anti-GFP (Chemicon); chicken anti-GFP 

(Millipore); mouse anti-laminA/C (Novocastra). 

 After incubation, samples were washed with 0.2% Triton X100, 1% BSA 

in PBS and then incubated with the appropriate 488, 546, 594 or 647-
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fluorochrome conjugated IgGs (Molecular Probes) together with Hoechst dye for 

1 hour at RT in 0.2% Triton X100-PBS. After three final washes, dishes or slides 

were mounted using mounting medium (Dako) and watched under fluorescent 

microscopes (Nikon and Leica). Images were analyzed using PhotoshopCS 

(Adobe) software. 

 

 

6.16 INTRA-MUSCULAR TRASPLANTATION  

 

3 weeks old scid/mdx mice were used for in vivo experiment. Mice were 

anesthetized with intra-peritoneal avertin (Sigma) in 0,9% saline. Intra-muscular 

delivery was done by injecting 105 cells diluted in 50 µl of PBS without calcium 

and magnesium into Tibialis Anterior muscles using a 30G syringe (BD).  

 

 

6.17 CONSTRUCTION AND GENERATION OF DYS-HAC2  

 

The DYS-HAC vectors were constructed from a HAC backbone 

named 21HAC2 and details about the procedure are available in reference 

(Kazuki et al., 2011). The targeting vector including two 3.8 kb and 2.6 kb 

fragments for homologous arms corresponding to human chromosome 21 and 

X locus in AL050305 and AP001657 (Hoshiya et al 2009, Kazuki et al 2010), pN 

for introducing 5! HPRT-lox71/FRT-Neo-FRT and deleting extra genes on 

DYSHAC1, was constructed in the pBSII backbone vector (Stratagene) using 

standard ligation technique (Hoshiya et al, unpublished). 
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6.18 METAPHASE CHROMOSOME SPREAD AND FLUORESCENCE IN SITU 

HYBRIDIZATION (FISH) 

 

To block cell into metaphase, human MABs were incubated overnight at 

37°C with 0.2 µg/ml Demecolcine (Sigma), trypsinized and incubated with 

0.075M KCl. After three washes with Carnoy’s solution (three parts of methanol, 

one part of acetic acid), one drop of cell suspension was spreaded on each 

microscope slide (pre-incubated in 50% ethanol). Cells were fixed on the slides 

with a Bunsen’s burner and kept for one week at -80°C. Chromosomal DNA was 

counterstained with Hoechst dye (Sigma) or with Giemsa staining and images 

were captured using a Leica (Germany) DMI6000B microscope equipped with a 

AF6000 system and LAS AF 2.3.5 software. A minimum of 20 metaphase per 

experiment was counted. FISH analyses were performed onto fixed metaphase 

spreads of each CHO or DMD hTERT/Bmi-1 clone using the biotin-labelled 

bacterial artificial chromosome (BAC) containing a human dystrophin region (cat. 

number RP11-954B16, from Chori, Children’s Hospital Oakland Research 

Institute).  

 

 

6.19 MICROCELL MEDIATED CHROMOSOME TRANSFER (MMCT)  

 

MAB hybrids containing the DYS-HAC were produced by MMCT 

technology from a donor Chinese hamster ovary (CHO) cells containing the 

DYS-HAC2 and maintained with 0.8 mg/ml G418 (Sigma). The DYS-HAC CHO 

hybrids were obtained from DT40 cells hybrids previously described (Hoshiya et 
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al., 2009). Briefly, the DT40 hybrids containing a single copy of a human X 

chromosome fragment (long arm deletion of X chromosome) were generated by 

MMCT from mouse A9 cells containing this fragment (Hoshiya et al., 2009) and 

maintained in culture in Roswell Park Memorial Institute (RPMI) medium 1640 

(Invitrogen) containing 10% FBS, 1% chicken serum (Invitrogen), 50µmol/l 2-

mercaptoethanol (Sigma), 100 IU ml–1 penicillin and 100 mg ml–1 streptomycin 

and G418 (Invitrogen) selection (1.5mg/ml). The modified X fragment containing 

the human dystrophin gene was transferred from the DT40 hybrids into the 

CHO hybrids containing the HAC vector by MMCT. Microcells were prepared by 

centrifuging 1 &  109 DT40 cells attached on flasks (Nunc) coated with poly-L-

lysine (Sigma) and were then fused with 1 &  106 CHO cells using 47% 

polyethylene glycol (PEG) 1000 (WAKO). CHO hybrids were selected in 0.8 

mg/ml G418 and picked for expansion. After construction of the HAC vector 

containing the entire human dystrophin gene (DYS-HAC) by site-specific 

translocation in CHO hybrids, transfer of the DYS-HAC2 vector from CHO cells 

to immortalized DMD MABs was performed using standard procedures 

(Hoshiya et al., 2009): target cells (hTERT/Bmi-1 DMD MABs) were PEG-fused 

with microcells prepared from CHO DYS-HAC 2-12 clone, screened by FISH. 

Finally, DMD DYS-HAC clones obtained were characterized by PCR (see 

MATERIALS & METHODS section 6.20) and FISH (see MATERIALS & 

METHODS section 6.18) 
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6.20 PCRs 

 

HACs regions of DYS-HAC2 vector were detected using the following primers 

and PCR conditions: 

• NeoN-F  5’- aaggaaaagctagcgccaccatgattgaacaagatggattgcac -3’ 

• NeoP-R  5'-aaggaaaaaagtttaaactcagaagaactcgtcaagaag-3' 

• DloxP3L 5'-gcatgggggaggagagaagagagatgta-3' 

• NeoR      5'-tgatcgacaagaccggcttcca-3' 

• #21CenG2L   5'-ctctaccattagaatggaaacgtcatc-3'  

• hCMV586       5'-cgtaacaactccgccccatt-3' 

Primers conditions:  

98°C, 1 minute 

98°C, 15 seconds 

68°C, depends on product size*  35 cycles  

72°C, 10 minutes 

• NeoN-F/NeoP-R     size 0.79 Kb, * 1 min  

• NeoN-F/DloxP3L    size 4 Kb, * 4,5 min 

• 21CenG2L/NeoR    size 7 Kb, * 7,5 min 

• hCMV586/NeoP-R  size 4 Kb, * 4, 5 min 

 

Human Dystrophin of DYS-HAC2 has been detected using following primers and 

PCR conditions: 

• DYS13F  5'-caatccatgggcaaactgta-3',  

• DYS13R  5'-ctgtgctgtactcttttcaagttttt-3' 

• DYS14F  5'-ctgaaagagttgaatgactggcta-3',  



 112 

• DYS14R  5'-cttggcgttttaggtcttcaa-3' 

• DYS12F 5’-ggccgggttggtaatattct-3’ 

• DYS12R 5’-ttgctttgtttttccatgct-3’  

Primers conditions: 

94°C, 5 minutes 

94°C, 1 minute 

56°C, 1 minute 

72°C, 1 minute                             35 cycles  

72°C, 5 minutes 

• DYS13F/13R        size 150 bp (exon 18) 

• DYS14F/14R        size 100 bp (exon 14) 

• DYS12F/12R        size 152 bp (exon 13) 

 

 

6.21 MICE 

 

Scid/mdx (C57BL/6 background) mice were housed both in Charles 

River Laboratories, Calco Italy and in San Raffaele Scientific Institute animal 

house. All mice were kept in specific pathogen free (SPF) conditions and all 

procedures involving living animals conformed to Italian law (D.L.vo 116/92 and 

subsequent additions) and were approved by the San Raffaele Animal Care and 

Use Committee (IACUC number 355).  
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6.22 STATISTICAL ANALYSIS 

 

Values were expressed as means ± s.e.m. Significance of the 

differences between means was evaluated by two-tailed Student’s t-test. P 

<0.05 was considered to be statistically significant. Data were analyzed using 

GraphPad Prism 5. 
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• HAC: human artificial chromosome 

• H&E: hematoxylin and eosin 

• HGF: hepatocyte growth factor 

• hMADS: human multipotent adipose-derived stem cells 

• HSC: hematopoietic stem cell 

• HSV-TK: herpes simplex virus thymidine kinase 

• hTERT: human telomerase reverse transcriptase 

• IF: immunofluorecence 

• IGF1: insulin-like growth factor 1 

• MAB: mesoangioblast 

• MAPC: multipotent adult progenitor cell 

• MD: muscular dystrophy 

• MDSC: muscle-derived stem cell 

• Mdx: X chromosome-linked MD (DMD mouse model) 

• mdx(DYS-HAC)MAB: mdx-derived MAB containing the DYS-HAC  

• MMCT: microsome-mediated chromosome transfer 

• MSC: mesenchymal stem cell 

• Myf5: myogenic factor 5 

• MyHC: myosin heavy chain 

• MyoD: myogenic differentiation 1 

• MyoD-ER: MyoD and ER fusion protein 

• NK: natural killer 

• NO: nitric oxide 

• Pax3: paired-box 3 

• Pax7: paired-box 7 
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• PCR: polymerase chain reaction 

• PDGFR: platelet-derived growth factor receptor 

• PSC: pluripotent stem cells 

• rAAV: recombinant AAV 

• RNA: ribonucleic acid 

• RT-PCR: reverse transcription PCR 

• SC: satellite cell 

• Scid: severe combined immune-deficiency 

• SDS-PAGE: sodium dodecyl sulphate polyacrylamide gel electrophoresis 

• Sgca: alpha-sarcoglycan 

• SP: side population 

• TA: tibialis anterior 

• TGF$: transforming growth factor beta 

• X-Gal: also abbreviated BCIG (bromo-chloro-indolyl-galactopyranoside) 

• WB: Western blot 
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7. LIST OF ABBREVIATIONS 

 

• 4OHT: 4-hydroxy-tamoxifen 

• AAV: adeno-associated vector 

• ANOVA: analysis of variance 

• AON: antisense oligonucleotide 

• AP: alkaline phosphatase 

• aSMA: alpha-smooth muscle actin 

• bFGF: basic fibroblast growth factor 

• BMD: Becker muscular dystrophy 

• BMT: bone marrow transplantation 

• CHO: Chinese hamster ovary 

• DMD: Duchenne muscular dystrophy 

• DMEM: Dulbecco’s modified Eagle’s medium 

• DNA: deoxyribonucleic acid 

• DYS-HAC: dystrophin-HAC 

• EBD: Evans blue dye 

• EPC: endothelial progenitor cell 

• ER: estrogen receptor 

• ESC: embryonic stem cell 

• FACS: fluorescence-activated cell sorting 

• FBS: fetal bovine serum 

• FISH: fluorescence in situ hybridization  

• GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

• GFP: green fluorescent protein 
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