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Summary

In this Ph. D. Thesis we will analyze some of the most used surrogate models,
together with a particular type of line search black box strategy. After introducing
these powerful tools, we will present the Canonical Duality Theory, the potentiality
it has to improve these tools, and some of their applications.

The principal contributes of this Thesis are the reformulation of the Radial Basis
Neural Network problem in its canonical dual form in Section 2.2 and the application
of the surrogate models and black box algorithms presented in this Thesis on various
real world problems reported in Chapter 3.
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Chapter 1

Predictive Models

Predictive models are mathematical models that aim to approximate the relation
between a vector of independent variables in input and a dependent variable in
output. Generally, the kind of problems that these models try to approximate are
divided into two classes, depending of the type of output they intend to predict:

• Classification problems: the samples can only belong to a finite number of
classes, also called labels. Examples for these problems are characters recog-
nition or the classification of the state of a certain disease for a patient;

• Regression problems: for these problems the mathematical models approxi-
mate the function that connects the input variables and the output variables.
There are several application for regression problem. One type of applica-
tion is the prediction of time series, like prediction of sales or meteorological
concentrations. Another type of regression is used to approximate complex
simulations obtained by costly cpu calculations.

The model creation is based on the use of couples of samples taken from the
phenomenon. The set of samples can be described in the following manner:

S := {(xi,yi),xi ∈ Rn,yi ∈ C), for i = 1, . . . ,l}, (1.1)

where C can be the set of the output classes in the case of classification, or the set
R in the case of regression, n is the dimension of the input and l is the number of
set samples.

The knowledge about the phenomenon the model is able to obtain is stored
within some parameters of the mathematical model itself, for example the weights
of the Neural Network, the Support Vectors of the Support vector machines or the
β parameters in the Response Surface Methodologies.

There are two kinds of ways to learn from the data:
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1 – Predictive Models

• unsupervised learning: the output of the samples are not known or not uti-
lized for defining the parameters of the mathematical models, and the relation
among the different samples are defined with clustering methods;

• supervised learning: both the information on the input and the output are
used in defining the parameters of the mathematical models.

In this chapter we will describe several mathematical methods that belong to
this kind of models and that are utilized in solving real world problems.

1.1 Artificial Neural Networks

1.1.1 Formal Neuron
The structure of a multilayer ANN is inspired by the brain’s structure of evolved
organisms. Basically, like the brain, it is a network formed by simple units that
are linked by connections. The simple unit that forms the network is the formal
neuron. This elementary unit performs a transformation of the vector x ∈ Rn in
the corresponding output y(x). The values of the vectors in input to the neuron are
multiplied for the weights that represents the synaptic connections. The weighted
sum of the vectors is compared with a threshold, and if the the sum is greater than
the threshold the neuron gives 1 as output or −1 otherwise.

As the output y(x) ∈ {−1,1}, this is a simple classification model. If we indicate
with the vector w ∈ Rn the vector of the weights, and with θ the threshold we have:

y(x) = g

 n∑
j=1

wjxj − θ

 = g(wTx− θ),

where the function g : Rn+1 → {−1,1} is called the activation function. In this
simple application, we can consider as activation function the sign function sgn(t).

The formal neuron can be considered a linear classifier that gives to a generic
input vector x a label with value y(x) = 1 or y(x) = −1 based on a linear discrim-
inating function g(wTx − θ). The values of the weights can be determined by a
learning process starting by the set of training samples:

T := {(xi,yi),xi ∈ Rn,yi ∈ {−1,1} for i = 1, . . . ,l}.

The samples in T are considered well classified by the formal neuron if:

wTx− θ ≥ 0 if yi = 1, wTx− θ < 0 if yi = −1.
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1.1 – Artificial Neural Networks

From a geometrical point of view this mathematical model finds the separation
hyperplane H = x ∈ Rn : wTx = θ that separates the two sets:

A = {xi : (xi,yi) ∈ T, yi = 1} B = {xi : (xi,yi) ∈ T, yi = −1}.

This problem is admissible only if the two sets A, B are linearly separable. The
formal neuron is unable of classify non linearly separable sets. It is possible to avoid
these problems by performing a transformation of the vectors in input but even
this option is subject to a great number of limitations. In order to surmount these
limitations, it is possible to use the formal neuron as a simple unit of a more complex
system. This system is the neural network.

1.1.2 Multilayer Neural Networks
In order to overcome the limitation of the formal neuron, an architecture of sev-
eral formal neurons connected among them is needed. This structure is known as
multilayer artificial neural network(ANN) [4]. A multilayer ANN is composed of:

• a number of n input units, without elaboration capabilities, that are associated
to the n attributes in input to the network;

• a set of N artificial neurons, characterized by activation functions, organized
in L ≥ 2 layers with L− 1 hidden layers in which the output of every layer is
the input of the successive layer;

• an output layer with K ≥ 1 neurons that are associated to the outputs of the
network;

• a set of oriented and weighted arcs that represent the connections between
neurons. We suppose that there are no connections between neurons of the
same layer, and that there are only forward connections without feedback ones.

This kind of networks are also known as multilayer feed-forward networks because
they only have forward connections in the neurons. This mathematical model has
the property of being an universal approximator of continue functions on a compact
set, that is, given any continuous function f : Rn → R defined on a compact set C ⊂
Rn, it is possible to build a 2-layer network with the property that, for any ε > 0 it
results

max
x∈C
|f(x)− y(x)| < ε.

From now on we will only consider neural networks with n neurons in the input layer
without elaboration capabilities, an hidden layer with N neurons with an activation
function in every neuron, and an output layer with a single neuron that performs
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1 – Predictive Models

a weighted sum of the outputs of hidden layer neuron. The weights between the
neurons of the input layer and the ones in the hidden layer will be indicated as wji,
for j = 1, . . . ,N, i = 1, . . . ,n, while the weights between the neurons of the hidden
layer and the output layer will be indicated as vj, j = 1, . . . ,N . For every neuron
there will be a threshold called θj. Every formal neuron with an activation function
g : R→ R performs a weighted sum of its inputs:

Yj(x) = g

(
n∑
i=1

wjixi − θj
)

j = 1, . . . ,N,

so the output function of the neural network y(x) is given by:

y(x) =
N∑
j=1

vjg

(
n∑
i=1

wjixi − θj
)
,

By adding the dummy weight wjn+1 for the threshold we can consider the vec-
tor wj = {wj1, . . . ,wjn,wjn+1} and the vector x = {x1, . . . ,xi,θj} and rewrite the
previous formula with these vectors:

y(x) =
N∑
i=1

vjg(wTj x).

The knowledge gained by the training is stored in the connections between neurons,
in particular it is stored in the weights associated with every connection, including
the dummy ones that may represent the thresholds. The learning process of the
ANN consists in adjusting wj,θj,vj, j = 1, . . . ,N, in such a way that the output y(x)
of the ANN is able to predict the value f(x) produced in a given environment by
the input x.

The learning process uses the training set S described in (1.1) with the set C
corresponding to the set R. Let us denote by W the n × N dimensional vector
collecting the weights {wj, j = 1, . . . ,N}, by v the N−vector with components
vj, j = 1, . . . ,N , with θ the vector with components {θj, j = 1, . . . ,N} and by
y(xi;W,θ,v) the output of the network given the input xi and the weights W,θ,v.
In this case the training is based on the solution of an unconstrained optimization
problem of the kind:

min
W,θ,v

E(W,θ,v) = 1
2

l∑
i=1

(y (xi;w,θ,v)− yi)2 + γ1‖w‖2 + γ2‖θ‖2 + γ3‖v‖2, (1.2)

where γ1,γ2,γ3 > 0 and ‖.‖ denotes the Euclidean norm.
In the function E(w,θ,v) the first term measures the distance between the output

of the network y(xi;W,θ,v) and the real output yi. As to the remaining three terms,
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1.1 – Artificial Neural Networks

they add a penalty on the norm of the weights W,θ,v that makes compact the
level sets of the objective function E(W,θ,v), and regularizes the class of functions
realized by the network; the first effect is beneficial for the convergence of the training
algorithm, the second one is exploited in cross-validation of the network, as we will
mention in the following.

Regarding the activation function g(·), it is supposed that it is differentiable and
sigmoidal. The most used ones are the logistic function:

g(t) = 1
1 + e−σt

,

and the hyperbolic function:

g(t) = 1− e−t
1 + e−t

.

1.1.3 Radial Basis Neural Network
Radial basis functions were introduced as a tool for interpolating multivariate func-
tions. For first we introduce the radial basis function for interpolation problems,
then we see how they can be employed in neural networks [4].

Given the set S := {(xi,yi),xi ∈ Rn,yi ∈ R, for i = 1, . . . ,l} the interpolation
problem consists in finding a function f : Rn → R such as

f(xi) = yi ∀i = 1, . . . ,l.

In order to solve this problem the following choice of the function f can be employed:

f(x) =
l∑

i=1
wiφ(‖x− xi‖),

where the function φ : R+ → R is a continuous function called radial basis function,
‖ · ‖ is the euclidean norm in Rn. The resulting function is a linear combination of
the φ functions that have as argument the distance ‖x− xi‖, and the weight of this
linear combination are the coefficients wi, i = 1, . . . ,l.

In order to calculate the values of the weight wi the following system of equations
must be solved:

Φw = y (1.3)

where y = (y1, . . . ,yl), Φ is the l× l matrix which the single element φij is given by:
φij = φ(‖xj − xi‖) and w is the vectors with components wi i = 1, . . . ,l. Once this
system of l variables in l unknowns is solved, it is possible to calculate the function
f .

5



1 – Predictive Models

In order to use the radial basis functions in neural networks, techniques from
the regularization theory are employed. Suppose that we want to approximate the
function g : Rn → R and the set of samples S := {(xi,yi), xi ∈ Rn,yi ∈ R,for i =
1, . . . ,l} is available for the training of the model. Regularization techniques search
for the approximating function f by minimizing a functional formed by two terms:

Γ(x,y) = 1
2

l∑
i=1

[yi − y(xi)]2 + 1
2λ‖Ψg‖

2, (1.4)

where λ > 0 is a regularization parameter, Ψ is a differential operator and ‖ · ‖ is a
norm in the space where Φ belongs.

The first term measures the distance between the approximating function and
the terms in the training set, while the second term is comprised by a functional
the penalizes the violation on some regularization terms on the function g(·). In
other words, the second term depends on some information already known about
the function, like for example continuity or differentiability. These informations are
contained in the differential operator Ψ.

It is possible to prove that under certain assumption on the differential operator
Ψ, the function f that solves the problem (1.4) has the form:

f(x) =
l∑

i=1
wiφ(‖x− xi‖), (1.5)

where φ : R+ → R is a radial basis function and w ∈ Rl is the solution of the linear
system:

(Φ + λI)w = y,

where I is the identity matrix. Equation (1.5) can be seen as the output of a
feedforward neural network with an hidden layer.

The neurons in the hidden layers will have as activation function φ, which argu-
ment will be the distance between the input vector and the center associated with
that neuron. In the output layer of this network there will be a single neuron that
operates a weighted sum of the outputs of the hidden layers neurons.

These networks have the following approximation property:

Theorem 1. For every continuous function g(·) on a compact set H, exists a reg-
ularized RBF in the form:

f(x) =
l∑

i=1
wiφ(‖x− xi‖)

that for every x belonging to H and for every ε > 0:

|g(x)− f(x)| < ε.
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1.1 – Artificial Neural Networks

One of the principal problems of regularized radial basis is that there is a neuron
in the hidden layer for every element in the training set. In this case, for large
datasets, it would become expensive to solve the P ×P system used to calculate the
weights wi.

For this reason generalized RBF were introduced. This kind of neural networks
have N < l number of neurons in the hidden layers, and the centers ci,i = 1, . . . ,N
of the RBF do not necessarily coincide with the points xi belonging to the training
set.

The expression of the regression function f is:

f(x) =
N∑
i=1

wiφ(‖x− ci‖),

in this equation there are two groups of variables, the weights wi and the centers
ci. This means that the generalized RBF depends non-linearly from its parameters,
differently from the regularized RBF.

This brings to a different formulation of the training problem for generalized
RBF. Given the training set S, the number of neuron in the hidden layer N , we
indicate with w the vector of the weights, that is w = (w1, . . . ,wN)T ∈ RN and with
c the vector of the centers c = (c1, . . . ,cN)T ∈ Rn.

The training problem of a generalized RBF neural network can be formulated in
a way similar to that of the 2-layer ANN, but it is possible to choose two different
strategies in order to perform the training:

• training with supervised weights and non-supervised centers;

• training with supervised centers and weights.

The first strategy is the most simple, and consists in choosing the centers among
the points of the training set, keep them fixed to a value and minimize the error
function utilizing the vector of weights w. The training consists in solving the
unconstrained minimization problem:

min
w

E(w) = 1
2

l∑
i=1

 N∑
j=1

wiφ(‖xi − cj‖)− yi

2

+ γ

2‖w‖
2 (1.6)

where the term γ > 0 is the regularization term for the weights. It is possible to
easily solve this problem thanks to the least square method. As a matter of facts, it
is possible to reformulate problem (1.6) like a least square problem in the following
manner:

min
w

E(w) =
∥∥∥∥∥
(

Φ(c)
√
γI

)
w−

(
y

0

)∥∥∥∥∥
2

7



1 – Predictive Models

where Φ(c) is a P ×N matrix which elements are Φij = φ(xi− cj), y = (y1, . . . ,yl)T
and I is the identity matrix.

The principal problem of this formulation is the choice of the vector of centers c
that must remain fixed for the entire training phase. If the centers are not chosen
well or their number is too small, the RBF NN could not yield good results.

The second strategy minimizes the error function in respect of both the centers
and the weights. Differently from the strategy that optimizes just the weights, this
fomulation is non-convex. If we denote by y(x;w,c) the output of the generalized
RBF ANN, then the problem becomes:

min
w,c

E(w,c) = 1
2

P∑
p=1

(y(xp;w,c)− yp)2 + γ1‖w‖2 + γ2‖c‖2.

This can be solved with several strategies:

• non-linear optimization algorithms: the algorithm minimizes the function by
changing the weight and the centers simultaneously, and in this case algorithms
for large non-linear optimization such as the LBFS are suggested;

• decomposition algorithms: this strategy divides the variables in the weights
variables block and in the centers variables blocks. For every iteration it fixes
one of the two blocks and minimizes the other. It has been proved that under
certain assumption, this algorithm converges to a local minimum point of the
error function.

As regards the approximation properties of this model, the generalized RBF
includes the regularized RBF and then they have the same function approximation
properties.

1.2 Support Vector Machines
Support Vector Machines(SVM) [34] are another type of learning machine for the
creation of predictive mathematical models. The fundamental model of the SVM was
developed by Vapnik [79]. The creation of the basic SVM model takes inspiration
from a fundamental problem of learning theory, that is the classification of points
belonging to two linearly separable sets.

We are given the following empirical data set:

S := {(xi,yi),xi ∈ Rn,yi ∈ {1,− 1}, for i = 1, . . . ,l},

and:
A = {xi ∈ S : yi = 1}

8



1.2 – Support Vector Machines

B = {xi ∈ S : yi = −1}

Where A and B are linearly separable, that is it exists a linear hyperplane
H = x ∈ Rn : wTx + b = 0 that divides Rn in two semi-spaces with all the points
belonging to the set A in one semi-space and all the points belonging to the set B in
the other semi-space. We are interested in finding the best linear hyperplane that
divides the two sets of points, that is the hyperplane with the maximum minimal
distance from the points of the set. This is a max-min problem that can be written
in the following way:

max
w,b

min ‖w
Txi + b‖
‖w‖

, (1.7)

where the term ‖wT xi+b‖
‖w‖ is also known as separation margin.

In order to construct the optimal hyperplane with the largest margin we have to
solve the following problem:

minw∈Rn,b∈R 1
2‖w‖

2

wTxi + b ≥ 1 ∀xi ∈ A
wTxj + b ≤ −1 ∀xj ∈ B

(1.8)

it is possible to prove that problem (1.8) is equivalent to problem (1.7) and that
problem (1.8) has a single global minimum.

By utilizing the labels yi = 1 for xi ∈ A and yi = −1 for xi ∈ B it is possible to
rewrite problem (1.8) in the following compact manner:

min 1
2‖w‖

2

yi[wTxi + b]− 1 ≥ 0 for i = 1, . . . ,l (1.9)

Problem (1.9) is a non-linear optimization constrained problem. In order to solve
this problem the Karush-Khun-Tucker conditions with the Lagrangian multiplier and
the Lagrangian function are used:

L(w,b,λ) = 1
2‖w‖

2 −
l∑

i=1
λi(yi[wTxi + b]− 1) (1.10)

Where λi are the Lagrange multipliers, while vector λ ∈ Rn is the vector of the Lan-
grange multipliers. The variables (w,b) are the primal variables, while the variable
λi are the dual variables.

To find the optimal point of problem (1.9) the derivatives of problem (1.10) with
respect to the primal variables must vanish:

∂

b
L(w,b,λ) = ∂

w
L(w,b,λ) = 0

9



1 – Predictive Models

that is:
l∑

i=1
λiyi = 0 (1.11)

and

w =
l∑

i=1
λiyixi (1.12)

By equation (1.12) the vector of weight is a linear combination of the input vectors
xi with corresponding non zero multiplier λi. These vectors are support vector of
the mathematical model. Another condition of the KKT is complementarity:

λi(yi[wTxi + b]− 1) = 0 for i = 1, . . . ,l (1.13)

With this condition we have that the support vectors, that is the vectors that do
not have corresponding multipliers at zero, are those that lie on the separation
hyperplane, this means that all the remaining training examples are irrelevant to
create the model.

By substituting the values of equation (1.11) and (1.12) in equation (1.10) it is
possible to eliminate the primal variables obtaining the following dual optimization
problem usually solved in this kind of application:

minλ∈Rl 1
2
∑l
i=1

∑l
j=1 yiyj(xi)Txjλiλj −

∑l
i=1 λi∑l

i=1 λiyi = 0
λi ≥ 0 i = 1, . . . ,l.

(1.14)

Problem (1.14) is a convex quadratic problem with a unique optimal solution.
It is possible to prove that the duality gap between the optimal solution of problem
(1.9) and (1.14) is zero and that the once the vector λ∗ is found it is possible
to find the vector w∗ by means of the (1.12) and the scalar b by means of the
complementarity conditions.

1.2.1 Nonlinearly separable case
In practice the case of linearly separable sets cannot be used because high level noise
in the that causes a large overlap in the classes. Given the two sets A e B, let’s
assume that they are not linearly separable, that is the system:

wTxi + b ≥ 1 ∀xi ∈ A
wTxj + b ≤ 1 ∀xj ∈ B

(1.15)

10



1.2 – Support Vector Machines

Is not solvable. It is possible to add the positive slack variables ξk with k = 1, . . . ,l
In order to make this system solvable:

wTxi + b ≥ 1− ξi ∀xi ∈ A
wTxj + b ≤ 1 + ξj ∀xj ∈ B
ξk ≥ 0 k = 1, . . . ,l

(1.16)

If a input vector xi is not correctly classified, the value of its corresponding ξi is
greater than 1. In other words the quantity∑l

i=1 ξi is an upper bound to the number
of classification errors. These kinds of models are known as soft margin classifiers.
In these mathematical models a good generalization proficiency is obtained by con-
trolling both the classifier capacity through the weights w and the sum ∑l

i=1 ξi in
the objective function. The last term is multiplied for a constant term C in the
objective function. This term determines a trade-off between the margin maximiza-
tion and the training error minimization. It is possible to write the corresponding
optimization problem in the following form:

min 1
2‖w‖

2 + C
∑l
i=1 ξi

yi[wTxj + b]− 1 + ξi ≥ 0 for i = 1, . . . ,l
ξi ≥ 0 i = 1, . . . ,l

(1.17)

like for problem (1.9) it is possible to find the corresponding dual problem of problem
(1.17) by using the Lagrangian function:

minλ∈Rl 1
2
∑l
i=1

∑l
j=1 yiyj(xi)Txjλiλj −

∑l
i=1 λi∑l

i=1 λiyi = 0
0 ≤ λi ≤ C i = 1, . . . ,l

(1.18)

This is a quadratic problem, just like problem (1.14) with the only notable dif-
ference being the upper bound C to the Lagrange multipliers λi. In this problem
the vector w and the scalar b are found in the same way of problem (1.14).

1.2.2 Nonlinear Support Vector Machines
The potentiality and the applicability of the SVM can be further expanded by using
Kernel functions.

Definition 1. given the set X ⊆ Rn, the a function

k : X ×X → R

is a kernel if it satisfies the following property:

k(x,y) = 〈φ(x),φ(y)〉 ∀x,y ∈ X

11



1 – Predictive Models

Where φ is a function φ : X → H, and H is an euclidean space with dot product
〈·,·〉.

Kernels are symmetric function and are used to create Gram matrices:

Definition 2. Given a function k : X × X → R and a set of patters P := {xi ∈
Rn,i = 1, . . . ,l} the l × l matrix with elements

Kij = k(xi,xj)

is called the Gram matrix (or Kernel matrix) of k with respect of the set of samples
P .

Gram matrices are symmetric and positive semidefinite. Support vector ma-
chines with kernels transform the input vectors of training set xi projecting them
from Rn to an euclidean space of dimension greater than n (or even infinite) called
feature space. This projection is performed through the application φ : X → H
where H is the feature space. This new problem consists in finding the optimal
linear hyperplane in the feature space that becomes non-linear when the problem
comes back in the input space, Rn.

In order to realize SVM that uses kernel functions it is possible in the (1.18) to
substitute the xTi xj in the objective function with their kernel transformation:

minλ∈Rl 1
2
∑l
i=1

∑l
j=1 yiyjk(xi,xj)λiλj −

∑l
i=1 λi∑l

i=1 λiyi = 0
0 ≤ λi ≤ C i = 1, . . . ,l.

(1.19)

In the objective function it is not necessary to know that explicit expression of the
φ(·) function, but just the kernel function k that is:

k(x,y) = 〈φ(x),φ(y)〉 = φ(x)Tφ(y).

Then, it is possible to write problem (1.19) in the following manner:

minλ∈Rl 1
2
∑l
i=1

∑l
j=1 yiyjφ(xi)Tφ(xj)λiλj −

∑l
i=1 λi∑l

i=1 λiyi = 0
0 ≤ λi ≤ C i = 1, . . . ,l.

(1.20)

Examples of most used kernels are:

• Linear kernel: the linear kernel is defined as k(xi,xj) = xTi xj, that is the dot
product between the two vectors, with Φ : Rn → Rn with Φ(x) = x.

12



1.2 – Support Vector Machines

• Polynomial Kernel: it is defined as k(xi,xj) = (axTi y+ b)p with p ≥ 1 a,b ∈ R.
In this case, the euclidean space H and the transformation Φ can vary even if
the same kernel is considered.

• Gaussian kernel: it is defined by k(xi,xj) = e−
γ‖xi−xj‖

2

2σ2 . It is a transformation
Φ : Rl → H where H is an euclidean space of infinite dimension.

1.2.3 Support Vector Regression
It is possible to expand the mathematical model of the SVM from the field of pattern
recognition to that of regression estimation. In this case the training set S will be
defined as: S := {(xi,yi),xi ∈ Rn,yi ∈ R, for i = 1, . . . ,l}. Differently from the SVM
for classification the output values of yi are real valued.

In order to not lose the mathematical properties of the SVM for regression case,
the ε-insensitive loss function is introduced:

|y − f(x)|ε = max{0,|y − f(x)| − ε}

This function does not penalize errors below the threshold ε ≥ 0. The reasoning
behind this choice comes from some properties of the original classification problem.
In classification, if a pattern is well classified and far from the margin, it does not
contribute to the creation of the margin itself. In other words it is not a support
vector, it does not add any further information to the model and it is located in a
so called ‘insensitive zone’. In the same way, if the output of a pattern is too close
to the original output, it must be placed into an insensitive zone.

The objective function that must be minimized is:

min 1
2‖w‖

2 + |y − f(x)|ε. (1.21)

The training error is zero if the following system is satisfied:

wTxi + b− yi ≥ ε for i = 1. . . . ,l
yi − wTxi − b ≤ ε for i = 1. . . . ,l

like for problem (1.17), it is possible to introduce two kinds for slack variables, for
every family of constrains:

wTxi + b− yi ≥ ε+ ξi for i = 1. . . . ,l
yi − wTxi − b ≤ ε+ ξ̂i for i = 1. . . . ,l
ξi,ξ̂i ≥ 0

13



1 – Predictive Models

the quantity ∑l
i=1 ξi + ξ̂i is an upper bound to the training error, so it is possible

to replace the second term in the objective function (1.21) with it, obtaining the
following constrained optimization problem:

min 1
2‖w‖

2 +∑l
i=1 ξi + ξ̂i

wTxi + b− yi ≥ ε+ ξi for i = 1. . . . ,l
yi − wTxi − b ≤ ε+ ξ̂i for i = 1. . . . ,l
ξi,ξ̂i ≥ 0.

(1.22)

Problem (1.22) can be reformulated by following the procedure made for problem
(1.9) by means of the Lagrangian function:

minλ∈Rl 1
2
∑l
i=1

∑l
j=1 yiyjk(xi,xj)(λ̂i − λi)(λ̂j − λj)−

∑l
i=1(λ̂i − λi)yi + ε

∑l
i=1(λ̂i − λi)

∑l
i=1(λ̂i − λi)yi = 0 i = 1, . . . ,l

0 ≤ λi ≤ C i = 1, . . . ,l
0 ≤ λ̂i ≤ C i = 1, . . . ,l.

(1.23)
In the objective function there is the kernel k(xi,xj) so the non-linear generalization
is also applicable to regression SVM.

1.3 Kriging methods
Kriging methods are a type of Gaussian surrogate models [33]. There are several
types of Kriging models and in this section we will talk about one of its most
used mathematical formulation, that is the Ordinary Kriging. The problem consists
in: given a random process F (·), we want to create an estimator f̂ of the values
of a sample path function f(·) of the random process F (·) in a point x̄, given
the function evaluations in the points x1, . . . ,xl. The Kriging method is a linear
estimator, because it estimates the value of the point x̄ by a linear combination of
the other l observations:

f̂(x̄) =
l∑
i=i

λi(x̂)f(xi)

the scalars λi(x̂) are solutions of a linear system and they depend on the choice of
the point x̂. the weights λi must be obtained so that the prediction error:

ε(x) = F (x)−
l∑
i=i

λi(x̂)F (xi)

14
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must be minimized. For this reason there are different assumptions for every for-
mulation of the Kriging problem. For ordinary Kriging, it is supposed that the
expected value E[F (x)] = µ is constant but unknown and the variogram, defined as
γ(x,y) = E[(F (x)− F (x))2], of F (x) is known.

In order to find the best approximation of the point x̄ the values of λi must be
chosen so that the estimator f̂(x̄) has the minimum variance:

min σ2 = minE
(f̂(x̄)−

l∑
i=1

λiF (xi)
)2 , (1.24)

considering the constraint:
l∑

i=1
λi = 1. (1.25)

This is a constrained optimization problem that can be solved by using the
Lagrangian function. For first equation (1.24) is manipulated in the following way
using the variograms and the rules of the variance:

σ2 = 2
l∑

i=1
λiγ(x̄,xi)− γ(x̄,x̄)−

l∑
i=1

l∑
j=1

λiλjγ(xi,xj) (1.26)

By differentiating eq. (1.26) and adding the condition on the constraint (1.25) it is
possible to obtain the following linear system of equations:

λ1
...
λl

 =


γ(x1,x1) . . . γ(x1,xl)

... . . . ...
γ(xl,x1) . . . γ(xl,xl)


−1

γ(x1,x̄)
...

γ(xl,x̄)

 (1.27)

after finding the values of λi,i = 1, . . . ,l it is possible to calculate the value of the
point x̂.

1.4 Response Surface Methodologies
Response surface methodologies(RSMs) [33] are another statistical tool used for
regression. This model tries to predict a response y that depends on controllable
input variables x1,x2, . . . ,xn by approximating the following relationship:

y = f(x1,x2, . . . ,xn) + ε

Where f is unknown and the term ε represents the variability not considered in the
function f . These variabilities can be measurement errors, noise, other variables
not accounted in the analysis and so on. ε is normally treated as a statistical error

15



1 – Predictive Models

characterized by normal distribution with mean zero and variance σ2. In this way
the expected value of the prediction y is:

E(y) = E(f(x1,x2, . . . ,xn)) + E(ε) = f(x1,x2, . . . ,xn)

In the majority of the cases, two types of RSM are used:
• first-order model:

y = β0 +
n∑
j=1

βjxj + ε (1.28)

• second-order model:

y = β0 +
n∑
j=1

βjxj +
n∑
j=1

βjjx
2
j +

n−1∑
j=1

n∑
i>j

βijxixj + ε (1.29)

Where the βj and βij are the parameters of the models. The first-order model
generates linear surfaces that are simpler to use than the non-linear surfaces gen-
erated by the second order model, but the second order model is more flexible and
generates surfaces that can easily adapt to a greater range of applications.

It is possible to represent the second order model with the first order model by
performing the following substitutions:

x2
j = xjj, xixj = xij

and obtain:
y = β0 +

n∑
j=1

βjxj +
n∑
j=1

βjjxjj +
n−1∑
j=1

n∑
i>j

βijxij + ε (1.30)

that is a linear model. In general any regression model that is linear in the model
parameters is a linear regression model, regardless of the shape of the response
surface it generates.

Problem (1.28) is a multiple linear regression model with n independent variables
and n+ 1 regression coefficients βi for i = 0, . . . ,n. In order to create the regression
model, we suppose to have the training set S := {(xij, . . . ,xin,yi),xij ∈ R,yi ∈ R for
i = 1, . . . ,l} with l > n. By using model (1.28) we obtain:

yi = β0 +
n∑
j=1

βjxij + εi i = 1, . . . ,l. (1.31)

The estimation of the model parameters will be performed with the least squared
method, that is the parameters β are chosen in order to minimize the sum of square
of the errors εi. The least squared function is:

L =
n∑
i=1

ε2 =
n∑
i=1

yi − β0 −
n∑
j=1

βjxij

2

(1.32)
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Function L must be minimized with respect to βi,i = 1, . . . ,n. In other words the
derivative with respect to βi,i = 1, . . . ,n must satisfy:

∂L

∂β0
= −2

n∑
i=1

yi − β0 −
n∑
j=1

βjxij

 = 0 (1.33)

and

∂L

∂βi
= −2

n∑
i=1

yi − β0 −
n∑
j=1

βjxij

xij = 0 i = 1, . . . ,n (1.34)

the conditions (1.33) and (1.34) can be rewritten as:

nβ0 + β1
∑n
j=1 xi1 + · · ·+ βk

∑n
j=1 xi1 = ∑n

j=1 yi
β0
∑n
j=1 xi1 + β1

∑n
j=1 x

2
i1 + · · ·+ βk

∑n
j=1 xi1xik = ∑n

j=1 xi1yi
...

β0
∑n
j=1 xik + β1

∑n
j=1 xi1xik + · · ·+ βk

∑n
j=1 x

2
ik = ∑n

j=1 xikyi

(1.35)

We note that there are n + 1 equations for n + 1 unknown that is the model pa-
rameters. It is also possible to express equations (1.31), (1.32), (1.33) and (1.34) by
matrix notation with:

y =


y1
y2
...
yn

 ,X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
... ... ... . . . ...
1 xn1 xn2 . . . xnk

 ,β =


β0
β1
...
βk

 ,ε =


ε1
ε2
...
εn

 ,

equation (1.31) becomes:
y = Xβ + ε

from this condition the least square function becomes:

L = εT ε = (y−Xβ)T (y−Xβ)

by expanding the terms we obtain:

L = yTy− βTXTy− yTXβ + βTXTβ = yTy− 2βTXTy + βTXTXβ,

since βTXTy is a scalar and its transpose yTXβ is the same scalar. the first order
condition for this problem is:

XTXb = XTy,
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by multiply both sides of equation for the inverse of the matrix XTX we obtain the
value of the estimator β

β = (XTX)−1XTy.

As said beforehand, any regression model that is linear in the parameters can be
represented as a first order regression model. Thanks to this property, it is possible
to further expand the model by substituting the vectors xj in the (1.28) with a
basis function f(xj) where f : Rn → R. Several choices can be made for the basis
function, the most used ones are:

• Polynomial function in the form:

f(x) =
np∏
i=1

pji , with 0 ≤ ji and
np∑
i=1
≤ npoly

Where np is the number of polynomials and npoly is a variable that controls
the order of the polynomial. This function generates a response surface that
approximates the output well in the case it is smooth over a large range of the
inputs. The major problem of this function is that the number of parameters
increases exponentially with the order of the polynomials, in other words the
higher the polynomial the higher number of samples is needed.

• Radial Basis Functions. Just like the neural networks, it is possible to use the
radial basis functions for the response surface models in the form:

f(x) = Φ(‖x‖)

The choice of the Φ function is similar to that in the neural networks. The
choice of this function generates a response surface well suited to model func-
tions with significant local changes.

There are also other options for the basis function. For example it is possible to mix
an affine term and a radial basis term to obtain a response surface capable of capture
the global trend together with local deviation as well, or a polynomial function with
a low grade mixed with a radial basis that captures very well the global trend and
local deviation.

1.5 Cross Validation
In the previous sections of this chapter we presented several mathematical models
for classification and regression. For every model there are two types of parameters.
The first type of parameters are the variables of the optimization problem which
optimal values are determined during the training phase, like for example the vector
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of weights w in the Neural Networks of the coefficients λi in the Support Vector
Machines. the second type of parameters are the so called Hyper parameters or
model parameters. These parameters are set before the training phase and in a cer-
tain sense determine the "model" of the learning machines. Examples of these model
parameters are the number of neurons N in the Neural Networks or the penalization
parameter C in the Support Vector Machines. Obviously the performances of the
mathematical model heavily depend on the choice of these parameters.

Before the training phase, it is possible to set the hyper parameters in order
to decide how much the model will fit the training data. For example high values
of N influences the NN model so that it tends to fit very precisely the samples in
the training set. But this choice also increases the model degrees of freedom. In
this way the trained model is very accurate when it comes to predicting the values
of the training set, but it fails when it comes to predict the values of new samples
taken from the same phenomenon. If such a thing happens, it means that the neural
network has extracted so much information on the training set that it also extracted
information not relevant to the phenomenon, in other words the Neural network
began to model the noise associated with the samples. The same thing can happen
for SVM or other mathematical models. This issue of surrogate models is known
as "Over-fitting". On the other hand, if these parameters are not chosen well, the
surrogate models could fail to extract enough information from the training set.

Because of these issues, normally the error on the training set is not a good
indicator of the predictive performances of the surrogate models. To solve this
issue, normally a new set of independent samples, know as Validation set, is used
to evaluate the performances of the surrogate model.

The strategies that tackle the problem of finding the best hyper parameters for
a surrogate model are known as cross validation methodologies. There are several
strategies to compute the cross validation error on the validation set. The most
simple one, normally used when a large quantity of data is available, is to simply
divide the set of samples into the training set and validation set, train different
models that differ for the choice of the hyper parameter and choose the one with
the lowest error on the validation set. This kind of strategy has the draw back that
it can be used only when there are a lot of samples available for the validation set,
in order for the validation error to give a good estimate.

A second strategy, used to solve this issue, is the k-fold cross validation. This
strategy consists in dividing the training set into k different partitions, and to train
the surrogate model using as training set only k − 1 of these sets, while leaving
the last set for calculating the validation error. After the first training, one of the
k − 1 partition is chosen as the new validation set, the old partition that was left
out is comprised in the training set and a new training is performed, until all the k
partitions are used as validation set. The final validation error will be the average
of the validation error on the single partitions.

19



1 – Predictive Models

In the case there are only a few samples available, the Leave One Out cross
validation strategy can be used. This strategy consists in training the surrogate
model with all the available samples less one, and then calculate the error on this
single sample left out. This training strategy is repeated leaving just one sample
out of the training set for every sample. The validation error in this case will be the
average of the error on every single sample.

One of the major drawbacks of this kind of strategy is the number of training
runs, especially if the training itself is quite computationally expensive. Further-
more, if the number of hyper parameters for the surrogate models is large, the num-
ber of these trainings could grow exponentially. Therefore there is a great interest
in defining efficient automatic techniques for tuning the model parameters.

A simple and widely used technique for computing a good combination of the
hyper parameters is to use a grid search with the cross validation technique [28]. The
hyper parameters are varied with a fixed step-size (usually on the log scale) in a large
set of values and the efficiency of the corresponding surrogate model is evaluated by
computing some kind of performance measure. This is a simple procedure, but it can
be time demanding if the grid is too dense. In fact in this case this procedure can
require a great number of model trainings and hence extremely large computational
times. On the other hand if the grid is too sparse, it can fail to find good values for
the parameters. An alternative method for cross validation will be presented in the
following chapters of this Thesis.

The validation error cannot be considered a genuine measure of the surrogate
model performances, because the hyper parameters are chosen according to that
value. For this reason, another set of samples, called the Test set, is used to calculate
the overall performance of the surrogate model. The Test set is a new set of samples,
never used in the training phase nor the validation phase.

1.6 Clustering
Clustering is an application of unsupervised learning [82]. In this section we will
introduce basic formulation of the clustering problem, expand it and present a simple
algorithm to solve it.

We assume to have a given set A of a finite number of points with A ⊂ Rn, that
is:

A = {x1, . . . ,xm}, xi ∈ Rn, i = 1, . . . ,m

The problem of clustering consists in partitioning the set A in a number of k subsets
Ai,i = 1, . . . ,k with the property that:

A =
k⋃
i=1

Ai
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In the case of hard clustering we also have the following condition:
Ai
⋂
Aj = ∅

The most common approach in clustering is to represent a partition Ai with its
cluster center called zi and to minimize a certain distance d(.,.) of the points of the
set A from the center zi. A point xj ∈ A will be assigned to the partition Ai if

d(xj,zi) = min
l=1,...,k

{d(xj,zl)}

So the clustering problem seeks to minimize the average of the distances on the
entire set A:

min 1
m

∑
xj∈A

min
l=1,...,m

d(xj,zl) (1.36)

This formulation for the clustering problem is know as the "Nonsmooth formulation"
because the term minl=1,...,m d(xj,zl) is not differentiable.

1.6.1 Smooth Formulation
It is possible to use the support functions [83] to derive an equivalent smooth for-
mulation for problem (1.36):
Definition 3. for any set C ⊂ Rk, the function σC : Rk → [−∞,+∞] defined by:

σC(v) := sup{uTv|u ∈ C},
is called support function of C.
Support functions are used to transfer the properties of sets via functions.
It is possible to give the following example of a support function for the unit simplex
set ∆ = {u ∈ Rk|∑k

j=1 uj = 1,uj ≥ 0,j = 1, . . . ,k}:

σ∆(v) = sup{uTv|u ∈ ∆} = maxj=1,...,kvj

In this way we can rewrite the nonsmooth term in (1.36) in the following way:
min

l=1,...,m
d(xj,zl) = −σ∆(di(z)) = min{wijdi(x)|wij ∈ ∆}

With:
(di(z) := (d(xi,z1), . . . ,d(xi,zk)) ∈ Rn

and wij ∈ ∆ being the "membership variables" associated with the cluster Ai that
are equal to one if the point xi is assigned to the cluster Aj. In this way the clustering
problem becomes:

min∑k
i=1

∑m
j=1wijd(xj,zi)∑k

i=1wij = 1, j = 1, . . . ,m
wij ∈ {0,1} i = 1, . . . ,k j = 1, . . . ,m

(1.37)

That is a mixed integer/continuous optimization problem.
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1.6.2 Problems correspondence
The proprieties described in this and the following three sections are an expansion
of the ones described in [81]. The aim of these sections is to describe the properties
of formulation (1.37) and of a basic k-mean algorithm to solve this formulation in a
inclusive framework.

Theorem 2. Given the set S ⊂ Rn and a set of centers z1, . . . ,zk ∈ Rn with Z =
[z1, . . . ,zk], we have that the problem:

minf(W,Z) =
k∑
i=1

m∑
j=1

wijD(xj,zi) wi,j ∈ S, zi ∈ Rn (1.38)

is equivalent to the problem

minF (W ) = {min
Z
f(W,Z)Z ∈ Rnk} W ∈ S (1.39)

Where the matrix W is an k ×m matrix that has as elements the weight wij

Proof. Hyp: (W ∗,Z∗) optimal solution of (1.38)
Thesis: (W ∗) optimal solution of (1.39)

from the hypothesis:

f(W ∗,Z∗) ≤ f(W,Z) ∀(W,Z) ∈ S × Rnk

we have:
F (W ) = f(W,Z(W ))

with
Z(W ) = arg min

Z
f(W,Z),Z ∈ Rnk

we have:
f(W ∗,Z∗) ≤ f(W,Z(W )) = F (W ) ∀W ∈ S

Hip: (W ∗) optimal solution of (1.39)
thesis: (W ∗,Z∗) optimal solution of (1.38)
Proof by contradiction, W ∗,Z(W ∗) is not a global minimum of problem (1.38), so
we have a (Ŵ ,Ẑ) optimal solution of (1.38) such as:

f(Ŵ ,Ẑ) < f(W ∗,Z(W ∗)) ≤ f(W,Z(W )) ∀W ∈ S

in the third member of the inequality we choose Ŵ :

f(W ∗,Z(W ∗)) ≤ f(Ŵ ,Z(Ŵ ))
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from the (1.39) we have:

f(Ŵ ,Z(Ŵ )) ≤ f(Ŵ ,Z) ∀Z ∈ Rnk

so we have:
f(Ŵ ,Z(Ŵ )) = f(Ŵ ,Ẑ)

that is:
f(Ŵ ,Ẑ) < f(W ∗,Z(W ∗)) ≤ f(Ŵ ,Ẑ)

Theorem 3. the vertexes of the problem:

S =
k∑
i=1

wij = 1, j = 1, . . . ,m wij ≥ 0,i = 1, . . . ,k,j = 1, . . . ,m (1.40)

are feasible for the problem:

k∑
i=1

wij = 1, j = 1, . . . ,m wij ∈ {0,1} i = 1, . . . ,k j = 1, . . . ,m (1.41)

that is the vertexes of (1.40) have integer values.

Proof. the point (Ŵ ) is a vertex of the set (1.40) if there are km active constraint
in that point. There are always m active constraints because of the first family of
constraints. Plus the first family of constrains forces at least m constrains to be non
zero. We note that if there are exactly m non zero ŵi they would be forced to 1 by
the first family of constraints. By contradiction, we suppose that the vertex Ŵ has
n > m fractional values. There are m active constraints from the first family and
km− n active constraints from the second family for a total of m + km− n < km
active constraints. Contradiction, Ŵ is not a vertex for (1.40).

So me have that Ŵ is a vertex if and only if it has m ŵi different from zero, that
are all set to 1 because of the first family of constraints, while the others are set to
zero, in other words Ŵ is feasible for (1.41).

Observation: with this we proved that if the objective function is concave, there
is no difference in using set (1.40) or set (1.41).
Observation: using the objective function (1.39) with set (1.40) or set (1.41) yields
the same results. On the other hand using (1.39) on a given set is equivalent to using
(1.38) on the same set, so we have:
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Theorem 4. the problem:

min f(W,Z) = ∑k
i=1

∑m
j=1wijD(xj,zi)∑k

i=1wij = 1, j = 1, . . . ,m
wij ∈ {0,1} i = 1, . . . ,k j = 1, . . . ,m

(1.42)

is equivalent to:
min f(W,Z) = ∑k

i=1
∑m
j=1wijD(xj,zi)

S = ∑k
i=1wij = 1, j = 1, . . . ,m

wij ≥ 0,i = 1, . . . ,k,j = 1, . . . ,m
(1.43)

1.6.3 KKT conditions
Here we refer to problem (1.43). Problem (1.43) can be divided into two partial
subproblems. in the first, given the vector Z̄ we minimize W:

minf(W,Z̄) ∀W ∈ S (1.44)

and the problem where we given W̄ and then minimize for Z:

minf(W̄ ,Z) ∀Z ∈ Rnk (1.45)

Definition 4. We call the point (W ∗,Z∗) that solves both the two subproblems:

f(W ∗,Z∗) ≤ f(W,Z∗)
f(W ∗,Z∗) ≤ f(W ∗,Z) (1.46)

partial solution.

Observation We have that:

minf(W,Z∗) = f(W ∗,Z∗) = minf(W ∗,Z) (1.47)

the optimal point of problem (1.44) with Z∗ fixed is W ∗ while the optimal point of
problem (1.45) with W ∗ fixed is Z∗.
We want to characterize the relation between the partial optimal solution and the
solution of problem (1.43)

Theorem 5. the point (W ∗,Z∗) is a KKT point of problem (1.43) if and only if it
is a partial optimal solution
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Proof. let’s write the KKT conditions for problem (1.43). First the Lagrangian
function L:

L(W,Z,µ,λ) =
k∑
i=1

m∑
j=1

wijD(xj,zi) +
m∑
j=1

µj

(
k∑
i=1

wij − 1
)
−

k∑
i=1

m∑
j=1

λijwij (1.48)

from this we have the following KKT conditions:

∂L
∂wij

= D(xj,zi) +∑m
j=1 µj − λij = 0 ∀i = 1, . . . ,k,j = 1, . . . ,m∑k

i=1wij = 1 j = 1, . . . ,m wij ≥ 0,i = 1, . . . ,k,j = 1, . . . ,m (admissibility)
λijwij = 0 λ ≥ 0 ∀i = 1, . . . ,k,j = 1, . . . ,m (complementarity)
∂L
∂zi

= ∂D(xj ,zi)
∂zi

∀i = 1, . . . ,k

A partial optimal solution is a KKT point of (1.44) and it satisfies the first three KKT
conditions of problem (1.43), and the partial optimal solution is also a KKT point
of problem (1.45) that satisfies the fourth condition of problem (1.43), obtaining all
the four conditions satisfied.
Let’s assume that (W ∗,Z∗) satisfies the KKT condition for the whole problem. It sat-
isfies the KKT conditions for both problem (1.44) and problem (1.45). So (W ∗,Z∗)
is a KKT point for the problem (1.43) and a KKT point for problem (1.44) and
(1.45). We have that problem (1.44) is linear so KKT conditions are necessary and
sufficient for point (W ∗,Z∗) to be an optimal solution.

For problem (1.45), we have from (1.47) that its optimal solution has the same
value of minf(W ∗,Z). it is already proved that minf(W ∗,Z∗) = f(W ∗,Z) and that
(W ∗,Z∗) is a KKT point for problem (1.45), so it follows that it is a minimum point
of the problem (1.45).
From the first condition of the KKT we obtain:

λij = D(xj,zi) +
m∑
j=1

µj

from this we can obtain the same conditions but written in scalar form:

(i) D(xj,zi) +∑m
j=1 µj ≥ 0 ∀i = 1, . . . ,k,j = 1, . . . ,m

(ii) (D(xj,zi) +∑m
j=1 µj)wij = 0 ∀i = 1, . . . ,k,j = 1, . . . ,m

(iii) ∑k
i=1wij = 1 j = 1, . . . ,m wij ≥ 0 i = 1, . . . ,k,j = 1, . . . ,m

(iv) ∂L
∂zi

= ∂D(xj ,zi)
∂zi

∀i = 1, . . . ,k

Now we define a property about the local optimality of problem (1.39). First we
define an important property about the derivatives.
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Theorem 6. suppose that:

1. V is the convex hull of all the pattens;

2. the objective function f and its derivatives in respect to wij are continuous;

3. A(W ∗) = {Z : Z minimizes f(W ∗,Z),Z ∈ V }.

The directional derivative of F at W ∗:

F ′(W ∗; d) = limα→0+ [F (W ∗,αd)− F (W ∗)]/α

Corresponds to

F ′(W ∗; d) = min{∇wf(W ∗,Z)Td : Z ∈ A(W ∗)}

we have the following general optimality lemma adapted for the (1.39):
Lemma: if W ∗ is an optimal solution of the problem (1.39) then we have:

F ′(W ∗ : d) ≥ 0

for each feasible direction d at W ∗.

Theorem 7. let (W ∗,Z∗) be a given point such that W ∗ is an extreme point of
(1.40) and Z∗ ∈ A(W ∗). Then W ∗ is a local minimum of the problem (1.39) if and
only if

F (W ∗) = f(W ∗,Z∗) ≤ min{f(W,Z);W ∈ S,Z ∈ A(W ∗)} (1.49)

Proof. Hyp: (1.49) is verified;
Thesis: (W ∗,Z∗) is a local minimum, that is F ′(W ∗ : d) ≥ 0 for every feasible
direction d.
From (1.49) maintaining Ẑ ∈ A(W ∗) fixed:

F (W ∗) = f(W ∗,Ẑ) ≤ min{f(W,Ẑ),∀W ∈ S}

We have:
∇Wf(W ∗,Ẑ)Td ≥ 0

This property is valid for an arbitrary Z ∈ A(W ∗) that means

min{∇wf(W ∗,Z)Td}|Z ∈ A(W ∗)} ≥ 0

that is:
F ′(W ∗; d) ≥ 0

for every direction d proving the thesis.
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Hyp: (W ∗,Z∗) is a local minimum of problem (1.39), that is F ′(W ∗; d) ≥ 0 for every
feasible direction d.
Thesis: (1.49) is verified
From the thesis F ′(W ∗; d) ≥ 0, and from the first theorem:

F ′(W ∗; d) = ∇wf(W ∗,Z)Td ≥ 0 ∀Z ∈ A(W ∗) (1.50)

We choose an arbitrary Ẑ ∈ A(W ∗). f(W,Ẑ) is linear in W . From the linearity of
f and the condition (1.50) we have that:

f(W ∗,Ẑ) ≤ min{f(W,Ẑ)} W ∈ S

but we choose an arbitrary Ẑ ∈ A(W ∗) so we have:

f(W ∗,Z∗) ≤ min {f(W,Z);W ∈ S,Z ∈ A(W ∗)}

proving the thesis.

In the case A(W ∗) is a singleton a partial optimal solution (W ∗,Z∗) of the problem
(1.38) is a optimal solution of the problem (1.39). because the (1.39) reduces to:

f(W ∗,Z∗) ≤ min{f(W,Z∗)W ∈ S}

that is the definition of W ∗ as partial solution.

1.6.4 Local optimality
In this section we present the condition for the set A(W ∗) to be a singleton. We say
that a distance D(.,.) is a Minkowsky metric if:

D(xj,zi) = (
m∑
l=1
|xjl − zil|p)1/p.

Our analysis will consider Wi that is the the i-th row of the matrix W . so we
have that f(W,Z) = ∑k

i=1 fi(Wi,zi) with fi(Wi,zi) = ∑m
j=1wijD(xj,zi). Then for

every row Wi we define Ai(W ∗
i ) = {zi = zi minimizes fi(Wi,zi),zi ∈ Vi}, where Vi

is a compact center that contain the center Zi. Obviously we have that A(W ∗) is
singleton if and only if Ai(W ∗

i ) is a singleton for i = 1, . . . ,k. In the next theorem
we give the conditions for Ai(W ∗

i ) to be a nonsingleton.

Theorem 8. let D(xj,zi) be a Minkowsky distance function. Then the set Ai(W ∗
i )

is nonsingleton if and only if:
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1. the points xj,j = 1, . . . ,m are collinear

2. ∑m
j=1w

∗
ij is even.

Proof. Hypothesis: the two conditions holds
Thesis: Ai(W ∗

i ) is nonsigleton
From the first condition we know that the points xj can be located on a line, that
is: xj = a + btj where a and b ∈ Rn are given and tj ∈ R. The solution Zi is in Vi
so we know that it lies on the convex hull of the patters xj forming the cluster. So
we have zi = a+ bθi. Let bT = (b1, . . . ,bn)T :

D(xj,zi) = (
m∑
l=1
|xjl − zil|p)1/p = (

m∑
l=1

bpl |θi − tj|p)1/p = |θi − tj|(
m∑
l=1

bpl )1/p

Substituting this value of D in the function:

fi(W ∗
i ,zi) =

m∑
j=1

wijD(xj,zi) = (
m∑
j=1

W ∗
ij|θi − tj|)(

m∑
l=1

bpl )1/p

the problem of finding the center zi reduced to find the scalar θi, that is the problem
to locate a point on a straight line. We will assume without loss of generality that
t1 ≤ t2 ≤ · · · ≤ tm. Can be shown that the optimal solution is θ∗i = tr where r is
the index that:

r−1∑
j=1

w∗ij <
m∑
j=r

w∗ij and
r∑
j=1

w∗ij ≥
m∑

j=r+1
w∗ij

that is the r corresponding to the median value of the wij. Since the wij are or 0 or
1, we have that ∑m

j=1wij is an integer value and from the second condition we have
that ∑m

j=1w
∗
ij is an even number so we have that θ∗i = tr or alternatively θ∗i = tr+1.

Furthermore by the convexity of the function all the points belonging to the segment
[tr,tr+1] are optimal solution. So Ai(W ∗

i ) is nonsigleton
Hypothesis: Ai(W ∗

i ) is nonsigleton.
Thesis: the two conditions holds
let’s assume for contradiction that Ai(W ∗

i ) is nonsigleton and the two conditions
do not hold. The function fi(W ∗

i ,zi) is a sum of strictly convex functions so fi is
strictly convex and it has a unique minimum which is a contradiction.

if the quadratic distance function:

D(xj,zi) = (xj − zi)T (xj − zi) (1.51)

Is used then we have:
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Theorem 9. Consider problem (1.43) where the quadratic distance function (1.51)
is used. Then partial optimal solutions are always local minimum points as shown
in Theorem 8.

Proof. Let (W ∗,Z∗) be a partial optimal solution with Z∗ = (z∗1 , . . . ,z∗2), with the
values for the single components as:

z∗i =
∑n
j=1w

∗
ijxj∑n

j=1w
∗
ij

for the first order conditions. It is a unique value, that is Ai(W ∗
i ) is a singleton for

i = 1, . . . ,k so A(W ∗) is a singleton.

1.6.5 A simple algorithm
In this section we will present a simple algorithm for clustering based on formulation
(1.43).
Algorithm:

1. Choose an initial point Z0 ∈ Rnk, and solve P1 with Z = Z0. Let W 0 be the
partial optimal solution at Z0. Set r = 0, for r = 0,1, . . .

2. Solve P2 with Ŵ = W r. the solution Z will be Zr+1. If f(Ŵ ,Zr+1) = f(Ŵ ,Zr)
then stop the optimal solution is (W ∗,Z∗) = (Ŵ ,Zr+1). Otherwise go to the
next step

3. Solve P 1 with Ẑ = Zr. The solution W will be W r+1. If f(W r+1,Ẑ) =
f(W r,Ẑ) then stop the optimal solution is (W ∗,Z∗) = W r+1,Ẑ. Otherwise let
r = r + 1 and to to step 2

Theorem 10. The algorithm converges to a partial optimal solution of the problem
(1.43) in a finite number of iterations.

Proof. We know that the feasible set has only a finite number of extreme points, so
the only thing to prove is that the algorithm visits an extreme point at most once
before stopping. let’s assume that this is not true and that exists two indexes r1
and r2 with r1 /= r2 and W r1 = W r2 , we get as optimal solution for problem P2
respectively Zr1+1 and Zr2+1. Since W r1 = W r2 we have that:

f(W r1 ,Zr1+1) = f(W r2 ,Zr1+1) = f(W r2 ,Zr2+1)

but the sequence {f(·)} generated by the algorithm is strictly decreasing(otherwise
the stopping criterion would be satisfied) so it is not true that W r

1 = W r
2 .
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This algorithm is the base framework of the k-mean algorithm largely used in
clustering problems. We note that this problem is easily attracted by shallow local
minima and is not able to obtain good solutions. There is another version of this
algorithm based on the nonsmooth formulation (1.36):
Algorithm:

1. take any k observations as centers of the first k clusters

2. assign the remainingm−k samples to the k clusters on the basis of the distance
function D(. . . )

3. after assigning the point to the clusters the center are recomputed and updated

4. if there is almost no observation that change cluster stop, otherwise go to step
1

Let (W ∗,Z∗) be a partial optimal solution of problem (1.38). we define the set
of its adjacent point as:

T (W ∗) = {W ∈ S : W an extreme point of S

and W ∗ and W differ of exactly 2 variables}
There is the following result

Theorem 11. Let W̄ ∈ S be such that F (W̄ ) ≤ F (W ) for all W ∈ T (W̄ ), then
W̄ is a local minimum point of problem (1.39) (note this is the reduced concave
problem).

Proof. Let d be any feasible direction in S at W̄ and dq, q ∈ Q be the the set of
extreme directions in S incident on W̄ . Extreme directions are those direction that
are incident on the extreme points of the set. We have that d = ∑

q∈Q uqd
q for some

uq ≥ 0. The directional derivate at W̄ is:

DF (W̄ ; d) = min{∇′wf(W̄ ,Z)Td : Z ∈ A(W̄ )} = min
{∑
q∈Q

uq∇′wf(W̄ ,Z)Tdq : Z ∈ A(W̄ )
}

∑
q∈Q

uq min{∇′wf(W̄ ,Z)Tdq : Z ∈ A(W̄} =
∑
q∈Q

uqDF (W̄ ; dq)

Since F (W̄ ) ≤ F (W ),∀W ∈ T (W̄ ) we have that:

DF (W̄ ; dq) ≥ 0 ∀q ∈ Q

That means: DF (W̄ ; d) ≥ 0. So from the lemma and the convexity of S we obtain
that W̄ is minimum point for the problem.
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This theorem is important in the case the k-mean algorithm at a point (W ∗,Z∗)
that is not a local minimum for the problem (1.39). It is possible to reach a min-
imal point for the problem by examining its adjacent extreme points and find the
minimum. Then from that point it possible to relaunch the K-mean algorithm.

The operation of examining the adjacent points it is not a complex one, as we
explain in the following. The total number of variables wij is mk. At the extreme
point of s, exactly m variables are in base, so the cardinality of T is m(k − 1).

Suppose that the point W ∗ is the point where the algorithm stops and it is not
a solution for problem (1.39). Suppose that the variable w∗eg = 0 is the one selected
to enter in the base and the variable w∗lg = 1 is the one selected to exit the base. In
this way we will obtain the point W r with wreg = 1 and wrlg = 0 and wrij = w∗ij for
all the others values of wij varying i and j.

By using the division of the W in rows Wi we have:

F (W r) =
k∑
i=1

min
zi

fi(W r
i ,zi)

this is equal to
k∑

i=1,i /=l,e
min
zi

fi(W r
i ,zi) + min

zl
fl(W r

i ,zl) + min
ze

fe(W r
i ,ze)

We note that
W r
i = W ∗

i for i = 1, . . . ,k; i /= e,l

hence:

F (W r) =
k∑

i=1,i /=l,e
min
zi

fi(W ∗
i ,zi) + min

zl
fl(W r

i ,zl) + min
ze

fe(W r
i ,ze)

With this we note that only the values linked to two centers (two rows of the W
matrix) must be recomputed. We have:

min
zl
fl(W ∗

l ,zl)−D(xg,z∗l ) ≥ min
zl
fl(W r

l ,zl)

note that D(xg,z∗l ) becomes zero because wrgl = 0. For the cluster e we have:

min
ze

fe(W ∗
e ,ze) +D(xg,z∗e) ≥ min

ze
fe(W r

e ,ze)

we have that the difference of the objective function between F (W r) and F (W ∗) is:

F (W r)− F (W ∗) = min
zl
fl(W r

i ,zl) + min
ze

fe(W r
i ,ze)− [fl(W ∗

i ,zl) + min
ze

fe(W ∗
i ,ze)]
(1.52)
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from the previous two inequalities we have:

minzl fl(W r
l ,zl)−minzl fl(W ∗

l ,zl) ≤ −D(xg,z∗l )
minzl fl(W r

l ,zl)−minze fe(W ∗
e ,ze) ≤ D(xg,z∗e)

By substituting these values in equation (1.52) we obtain:

F (W r)− F (W ∗) ≤ D(xg,z∗e)−D(xg,z∗l ) (1.53)

Because the point W ∗,Z∗ is solution for the problem P1 we have that the right hand
of the (1.53) is always no negative, and it gets smaller the higher is the probability
that F (W r) < F (W ∗). A quick way to improve an extreme point is to calculate the
right hand of (1.53) for e = 1, . . . ,k,g = 1, . . . ,m and w∗eg = 0, arrange the values in
ascending order and finally investigate the points with the highest rankings.

1.6.6 An algorithm to choose the number of clusters
If there is not enough information about the classes of the datasets, there could
be the difficulty in determining the right number of clusters k. A simple way to
determine this parameter is to begin from a small number of k and then gradually
increase it until a certain stopping criterion is satisfied. This means to apply an op-
timization algorithm several times for finding the global optimum or a good solution
of the problem, increasing the number of clusters each time.

The following method creates an algorithm [82] that begins the minimization
from a good starting point utilizing the information obtained by the previous steps
. The version of this algorithm uses the non-smooth formulation (1.36) and the
Algorithm 1.6.5:
algorithm

1. (initialization). Choose a tolerance ε > 0 and a positive number k0 as the ini-
tial number of clusters. select a starting point for the centers Z0 = (z0

1 , . . . ,z
0
n,

. . . ,zk0
1 , . . . ,x

k0
n ) ∈ Rn×k0 and solve the problem (1.36). Let Z1∗ be the optimal

solution solution. set k = k0.

2. select a point z0 ∈ Rn and solve the following optimization problem:

min fk(z) z ∈ Rn

where
fk(z) =

∑
a∈A

min{||z1∗ − a||, . . . ,||zk∗ − a||,||z − a||}
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find the point zk+1 ∈ Rn. Note that the solution of this problem is the best
point candidate to become a new cluster center, given the vector Z1∗

3. add a new cluster to the problem starting from the initial point zk+1,0 =
(z1∗, . . . ,zk∗,zk+1) and solve problem (1.36) with k + 1 centers

4. let xk+1,∗ be the optimal solution found in the previous step, if:

f(zk∗)− f(zk+1)
f(z1∗) < ε

then stop, otherwise set k = k + 1 and go to step 2.

We note that if this algorithm starts from k = 1 the clustering problem is a convex
optimization problem and that it is quite possible that the point zk+1,0 calculated
in the step 2 is not far from the solution of the problem (1.36) so it is possible that
it takes a moderate number of iteration for finding the optimal point.
As regards the choice of the tolerance value ε, large values of ε result in large clusters,
while small values of ε can produce small and artificial clusters.
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Chapter 2

Optimization Tools

In order to widen the fields in which the predictive models presented in the previous
chapter can be applied, and in order to improve their mathematical formulation
and accuracy, several optimization algorithms and theories are used. In this chapter
we present a class of Derivative-Free algorithms, that coupled with the surrogate
models permits to obtain approximate solutions for problems where the objective
function is not available in closed form. In the second part of this chapter we will also
introduce the Canonical Duality Theory and present an application of this theory
to the formulation of Radial Basis Function Neural Networks.

2.1 Black Box Optimization Algorithms
Generally, the types of optimization algorithms can be divided according to the
method and the informations they use to find the direction to use to move from the
current point xk to the new point xk+1. The definition of the direction dk is based
on creating a local model of the objective function in the current point and the
direction itself can be interpreted as the result of relatively simple approximations.
In general, the most important distinctions among the methods depends on the
information that the algorithm uses:

• methods that use the knowledge on the first order and second order deriva-
tives(Newton Methods);

• methods that utilize only the knowledge on the first order derivatives (Gradient
methods);

• derivative free methods that only use the evaluations on the objective function

Also it is important to define the convergence properties of such algorithms. That
is, chosen the initial point x0 we have:
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• Global convergence properties, that is the algorithms converges to a stationary
point of the objective function no matter the initial point x0

• Local convergence properties, that is the algorithm converges to a stationary
point of the objective function if the initial point x0 is in a neighborhood Ω of
said stationary point.

Among these optimization algorithms we are interested in black box algorithms
that only need evaluations of the objective function. On the other hand, we want
that these methods to be globally convergent to a stationary point of the objective
function.
This kind of methods are becoming more and more popular in the industrial and
scientific applications in which the first order derivatives of the objective function
f are not available, or in applications in which the objective function is not even
available in closed form. The most widespread examples can be the optimization of
a complex black box system where there is not complete information on the phe-
nomenon one has to manage, like for example the results from simulations, or other
complex systems where only samples of the characterizing function are available.
In this case it is possible to extrapolate the function through surrogate models and
optimize the surrogate function through these black box methods.
It is really important that not only these methods converge to a stationary point of
the black box function, but also that the convergence is fast enough. As a matter of
facts, in the case of optimizing a black box function which evaluations are obtained
from costly simulations, to obtain a good solution without wasting these function
evaluations is important.

An important class of derivative free methods are the so-called direct search
methods [23], [24], [25], which base the minimization on the comparison of objective
function in suitable trial points. Two of the most used subclasses of such methods
are:

• pattern search methods, which have the feature of evaluating the objective
function on specific geometric patterns;

• line search methods, which are inspired from gradient-based methods and per-
form one dimensional minimizations along suitable directions.

Each one of these methods present different and interesting features. The pattern
search methods can accurately sample the objective function in a neighborhood of
the current point and identify good directions along which the objective function
decreases with a good rate. On the other side, the line search algorithms can perform
large steps along the search direction and then exploit well a good direction. In other
words, if it is possible to combine these approaches it would be possible to create
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derivative free algorithms that are able to define good direction where the objective
function significantly decreases and to find a suitable step in order to exploit these
good directions with the minimum possible function evaluations.

As we said in the introduction of these methods, we are not only interested in
methods that quickly converge to a solution, but also to methods that assure the
convergence to a stationary point. In general, when it is possible to exploit the
information on the function gradient, it is possible to:

• compute and select good descend directions where the objective function has
an high decrease rate;

• find, thanks to suitable line search strategies, a suitable step size on the chosen
directions in order to exploit these directions and assure a sufficient decrease
of the objective function.

Algorithms that use information on the gradient have such good properties because
the gradient posses information on the local behavior of the function f in the cur-
rent point xk. As a matter of facts the i-th component ∇if of the gradient is the
directional derivative along the coordinate direction ei, while −∇if is the direc-
tional derivative along the coordinate direction −ei. Then gradient vector provides
information on the rate of change of the objective function along the 2n direction
[e1, . . . ,en, − e1, . . . , − en]. This guarantees that the gradient gives accurate infor-
mation on the local behavior of the objective function in the neighborhood of the
point where the derivatives are computed.
In order to get a good direction for the objective function in the point without
informations on the gradient a sampling strategy in the neighborhood of the point is
needed. This sampling is performed on a certain set of directions, and the properties
of these methods change according to the chosen set of directions. These directions
should be chosen so that the behavior of the objective function on these directions is
sufficiently indicative of its local behavior in the neighborhood of the current point.
Thanks to this property it is possible to:

• realize if the current point is a good approximation of a stationarity point of
the objective function;

• To find a specific direction along which the objective function decreases.

In order to analyze this class of particular methods, we begin with the uncon-
strained optimization algorithm presenting the a suitable set of search directions for
the objective function sampling and the conditions to have a globally convergent
algorithm with these directions. Then we introduce the different variation of this
unconstrained method and talk about their properties.
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2.1.1 Unconstrained Optimization Method
We consider the problem in the form

min
x∈Rn

f(x) (2.1)

and make the following assumption:

Assumption 1. The function f : Rn → R is continuously differentiable.

As said before, in order to overcome the difficulties caused by the absence of
information on the gradient, a suitable set of search directions pik,i = 1, . . . ,r as-
sociated with each point xk of the sequence generated by the algorithm should be
chosen. In order to characterize this set of directions with this particular property,
we introduce a new condition. This condition imposes that the distance between
the point generated by the algorithm and the set of stationary points of the objec-
tive function tends to zero if and only if the directional derivatives of the objective
function along these directions tend to assume nonnegative values. Formally this
condition can be posed as:

Condition 1. Given a sequence of points {xk}, the sequence directions {pik},i =
1, . . . ,r, are bounded and such that

lim
k→∞
‖∇f(xk)‖ = 0 if and only if lim

k→∞

r∑
i=1

min
{

0,∇f(xk)Tpik
}

= 0.

thanks to this condition we can state the following proposition

Proposition 1. Let {xk} be a bounded sequence of points and let {pik},i = 1, . . . ,r,
be sequences of directions which satisfy Condition 1. For every η > 0, there exist
γ > 0 and δ > 0 such that, for all but finitely many k, if xk satisfies ∇f(xk) ≥ η,
then there exists a direction pikk , with ik ∈ {1, . . . ,r}, for which

f(xk + αpik) ≤ f(xk)− γ‖f(xk)‖‖pikk ‖

This proposition assurers that, if the current point is not a stationarity point, it
is possible to assure a sufficient decrease of the value of the objective function f by
using the set of direction satisfying Condition 1. In other words Condition 1 assures
us to find a specific direction along which the objective function decreases, just as
we described in the previous section.

One of the most used set of directions that satisfy Condition 1 are the directions
on the coordinate of the axes

p1
k = e1, p2

k = e2, . . . , pnk = en.
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coupled with the directions

pn+1
k = −e1, pn+2

k = −e2, . . . , pnk = −e2n.

The global convergence of this class of algorithms can be guaranteed by using
some suitable sequences of points along search directions {pik},i = 1, . . . ,r, that
satisfy Condition 1. Thanks to Condition 1 we can characterize a stationary point
of f with the fact that the objective function does not decrease locally along the
chosen directions in points sufficiently close to the current point xk. This enables
us to define new general conditions for the global convergence of the algorithms by
means of sequence of points in which the value of the objective function does not
decrease for the directions {pik},i = 1, . . . ,r. Also in order to assure the convergence
we suppose that the following standard assumption holds:

Assumption 2. The level set

L0 = {x ∈ Rn : f(x) ≤ f(x0)}

is compact.

Thanks to this assumption we can state the following global convergence condi-
tion

Proposition 2. Let {xk} be a sequence of points; let {pik},i = 1, . . . ,r be sequences
of directions; and suppose that the following conditions hold:

(I) f(xk+1) ≤ f(xk);

(II) {pik},i = 1, . . . ,r satisfy Condition 1;

(III) there exist sequences of points {yki } and sequences of positive scalars {ξik}, for
i = 1, . . . ,r, such that

f(yik + ξikp
i
k) ≥ f(yik)− o(ξik), (2.2)

lim
k→∞

ξik = 0, (2.3)

lim
k→∞
‖xk − yik‖ = 0

then,
lim
k→∞
‖∇f(xk) = 0‖
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From the results obtained until now, we can affirm that Condition 1 is similar to
the gradient-related condition employed in gradient based algorithms, as it assures
a sufficient decrease of the objective function at every iteration plus the global
convergence.

The use of directions that satisfy Condition 1 is a common element of the globally
convergent derivative-free algorithms. In the pattern search algorithms the condition
(2.2) occurs by requiring only a simple decrease of f , while the (2.3) is satisfied by
imposing further restrictions on the search directions and on the step lengths. These
two conditions in the line search algorithms are satisfied by enforcing a sufficient
decrease of f depending on ξki and without imposing further restrictions on the
search directions.

Since Proposition 2 gives some common theoretical features of pattern and line
search approaches, it is suitable for defining algorithms which combine these two
approaches. In particular, thanks to the conditions given in that proposition it is
possible to propose algorithms that get sufficient information on the local behavior of
the objective function f , like in a pattern strategy and exploit the possible knowledge
of a good direction, like in a line search strategy.

In the following we report an algorithm that exploits these good features. The
basic idea of these algorithms is to sample, at each iteration k, the objective function
f along a set {pik}ri=1 of search directions. First promising directions are found, then
sufficiently large steps are performed along them. Both the sufficient decrease of the
objective function and the sufficient step length are realized thanks to a line search
approach.

This algorithm produces sequences of points with the property that every limit
point is a stationary point of f . This property can be obtained by investigating in
detail the behavior of the objective function along the search directions {pik},i =
1, . . . ,r and by using a derivative-free line search technique to ensure sufficiently
large movements along the good directions identified by the algorithm. The line
search is showed in the following pseudo code:

Algorithm 1 line search procedure: LS(α̃ik,yik,pik,γ,δ)
1: given α̃ik > 0,yik,pik,γ > 0,δ ∈ (0,1)
2: while f(yik + αikp

i
k) ≤ f(xk)− γ(αik)2 do

3: αik = αik
δ

4: until f
(
yik + αik

δ
pik

)
< max

[
f(yik + αikp

i
k),f(yik)− γ

(
αik
δ

)2
]

5: end while
6: return αik

The conditions expressed in the While loops correspond to the derivate free line
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search conditions. The derivative free algorithm is in the following.

Algorithm 2 Unconstrained optimization algorithm
1: given x0 ∈ Rn,α̃i0 > 0,i = 1, . . . ,r,γ > 0,δ,θ ∈ (0,1)
2: for k=0,1,. . . do
3: yik = xk.
4: for i = 1 to r do
5: if f(yik + αikp

i
k) ≤ f(yik)− γ(αik)2 then

6: compute αik with LS(α̃ik,yik,pik,γ,δ) and set α̃ik+1 = αik
7: else
8: set αik = 0 and α̃ik+1 = θα̃ik
9: end if
10: Set yi+1

k = yik + αikp
i
k.

11: end for
12: Find xk+1 such that

f(xx+1 ≤ f(yr+1
k ))

13: end for

At each iteration k the algorithm examines the behavior of the objective function
along all the search directions {pik}, i = 1, . . . ,r. Once it founds a direction on which
it is possible to have a sufficient decrease of the value of the objective function, it
produces a sufficiently large movement on that direction thanks to the line search
procedure. The new point xk+1 can be the point yr+1

k produced by the for loop in k
or any other point where the objective function is improved from f(yr+1

k ). Thanks
to this property it is possible to preserve the convergence properties even if the
approximation scheme for the objective function is changed in order to improve
the efficiency of the algorithm. In this algorithm it is possible to associate to each
direction pik a different initial step size α̃ik that is updated on the basis of the behavior
of the objective function along pik during the iterations. With the changing step size
for every direction it is possible to account the the changes of the objective function
f during the iterations even if the same set of direction is used. Notice that the
algorithm, similarly to the strong form of pattern search algorithms, has to examine
first f along all the r directions, while the current point xk is updated by means of
intermediate points yi+1

k when a sufficient decrease of f is obtained on the directions.
It is possible to state the following convergence result on the algorithm:

Proposition 3. Let {xk} be the sequence produced by Algorithm 2. Suppose that the
sequences of directions pik

r
i=1 satisfy Condition 1. Then, Algorithm 2 is well defined

and we have
lim
k→∞
‖∇f(xk)‖ = 0.
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2.1.2 Box Constrained Optimization Method
The method described in the previous section can also be easily expanded to be used
to solve box constrained optimization problems. Now we consider the problem

minimize f(x)
subject to l ≤ x ≤ u, (2.4)

Where x, l, u ∈ R, with l < u and f : Rn → R. This is a more general case of
the one described in the previous paragraph because it is possible to allow both
li = −∞ and ui =∞ for some (or all) i ∈ {i, . . . ,n}. From the (2.4) we can denote
the following feasible set

F = {x ∈ Rn : l ≤ x ≤ u}.

For the problem we define the following condition for stationarity:

Definition 5. A feasible point x∗ is a stationarity point of problem (2.4) if it satisfies
the following first order conditions:

∇f(x∗)T (y − x∗) ≥ 0 for all y ∈ F (2.5)

Like in the previous case, we do not have any information on the first order
derivatives of the problem, for this reason we use the same strategy adopted for the
unconstrained case and perform a sampling around the current point of the algorithm
in order to compensate for the lack of information provided by the gradient.

The presence of bound constraints imposes further restrictions on the choice of
the directions. As a matter of facts in a non stationarity point the direction d
must not be only a descend direction but also a feasible direction, that is it exists a
small enough step size along such direction that produces feasible points where the
objective function is reduced.

As in the unconstrained case, this method draws inspiration from the gradient
based methods in order to assure both global convergence properties and efficiency.
In general the main features of the algorithm are:

• an exploitable descent and feasible direction is obtained by investigating the
local behavior of the function around the current point by using a set of direc-
tion that satisfy Assumption 1. In this particular case, we use the coordinate
directions;

• Once an exploitable descend and feasible direction is found along a coordinate,
a new point is found by using a derivative free line search similar to the one
showed for the unconstrained case
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• the informations obtained in every single iteration can be used to build an
approximation model of the objective function in order to improve the local
behavior of the algorithm.

Similarly to the unconstrained case, for this algorithm the convergence to a station-
arity point of the objective function f has been proved as well.

The coordinate directions allow us to cope with the presence of box constraints.
As a matter of facts, this can be easily derived from the stationarity conditions
in (2.5). If the feasible point x̄ is not a stationary point of f , then there must
exist for condition (2.5) a feasible point y and an integer h ∈ {1, . . . ,n} such that
∇f(x̄)T (y − x̄)h<0. If we define with ᾱ = (y − x̄)h > 0, then by the fact that F is
formed by box constraints, we have

ᾱ∇f(x̄)eh < 0, x̄+ ᾱeh ∈ F .

From the continuity of the gradient and the convexity of the feasible set we have
that it exists a positive ᾱ such that:

f(x̄+ αeh) < f(x̄), x̄+ αeh ∈ F ,

for all α ∈ (0,ᾱ). For ᾱ = (y − x̄)h < 0 the same conclusion is valid with −eh
instead of eh. In other words, if x̄ is not a stationarity point, there is at least a
coordinate direction(or its opposite) on which the objective function decreases in
another feasible point. So by choosing a suitable step size, on such direction, it
is possible to obtain an improvement of the objective function. If the acceptable
step size goes under a certain threshold, the current point can be also considered
as a good approximation of a stationarity point. Thanks to this reasoning, the re-

Algorithm 3 line search procedure with expansion step: LSX(di,α,αmax,γ)
1: given di = ei,α,αmax,γ > 0,δ ∈ (0,1)
2: ᾱ = min

{
αmax,

α
δ

}
3: while f(xk + ᾱdk) ≤ f(xk)− γᾱ2 do
4: if α = αmax then
5: exit
6: end if
7: ᾱ = min

{
αmax,

α
δ

}
8: α = ᾱ
9: end while
10: αk = α
11: return αk

ported algorithmic model is able to find coordinate directions on which the objective
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function sufficiently decreases by sampling points on such directions. Once a good
direction has been detected, a derivative free line search technique is employed for
performing a sufficiently large step along it in order to exploit this descent direc-
tion as much as possible. Thanks to the sampling on the coordinate directions, we
are also able to overcome the the lack of gradient information. For this reason a
maximum value for the step αmax is determined and the actual step at iteration k
is determined by the the expansion step described in Algorithm 3

The maximum step αmax must assure that the points in which the algorithm
moves are feasible.

In the Algorithm 4, the basic iteration begins with examining the direction di,
in order to see if it is possible to find a feasible point on such direction where
the objective function decreases. In order to understand if the direction di is good
direction, the maximum feasible step length αmax along the di starting for the current
point xk is calculated. The trial step size α is determined by choosing the minimum
between αmax and ᾱki . The scalar ᾱki is computed on the basis of the objective
function behavior along the di in the previous iterations. in other words the value
stored in the scalar ᾱki represent the sensitivity of the objective function on the
direction di, hence representing a promising initial step-size. In the subsequent
condition it is verified that the direction is not only feasible but also of descent.

Once it has been verified that the direction is not only feasible, but also of
descend, the routine with the line search expansion step is employed. This routine
computes a sufficiently good estimate of the minimum of f along di without requiring
any information on the slope of the objective function. This routine is thought so
that the feasible and descent direction is exploited as much as possible. Then the
step size chosen by the line search routine is used as ᾱik+1.

If the direction di is not of descent, the direction −di is investigated. If this
direction does not produce a sufficient decrease of the function, αk is set equal to
zero and the scalar αik is reduced by a factor θ.

Once a good direction has been found, the candidate point x̄k+1 is generated.
In the final part of the algorithm, the new point xk+1 is generated, and coordinate
direction is selected in order to be analyzed in the next iteration. At each iteration
xk+1 can be always set equal to the candidate point x̄k+1 produced in the previous
part of the iteration. The index hk counts the number of successive iterations in
which such thing occurred. If the condition hk > n is verified, it means that the
algorithm generated enough points in the neighborhood and has enough information
about the local behavior of the function. In this case the next point xk+1 can be
generated by minimizing any approximation model of the objective function built
by using the information obtained until now. This does not affect the convergence
properties, but it can increase the efficiency.

After describing the algorithm we are able to state its convergence properties,
that are similar to the unconstrained case.
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Algorithm 4 Box Constrained Derivative Free Algorithm
1: Given x0 ∈ F ,θ ∈ (0,1),γ > 0,0 < ᾱi0 <∞,di = ei for i = 1, . . . ,n
2: i = 1,hk = 1
3: for k = 1, . . . do
4: Compute αmax such as xk + αmaxdi ∈ ∂F and set α = min{ᾱik,αmax}.
5: if α > 0 and f(xk + αdi) ≤ f(xk)− γα2 then
6: Call LSX(di,α,αmax,γ)
7: else
8: Compute αmax such as xk − αmaxdi ∈ ∂F and set α = min{ᾱik,αmax}.
9: if α > 0 and f(xk − αdi) ≤ f(xk)− γα2 then
10: set di = −di
11: Call LSX(di,α,αmax,γ)
12: end if
13: else
14: set αk = 0,ᾱik+1 = θα
15: end if
16: set x̄k+1xk + αkdi,ᾱ

i
k+1 = ᾱjk, for j ∈ {1, . . . ,n} and j /= i.

17: if hk ≥ n then
18: Find xx+1 such that

f(xk+1) ≤ f(x̄k+1) and xk+1 ∈ F ,

19: else
20: set xk+1 = x̄k+1.
21: end if
22: if xk+1 /= x̄k+1 then
23: hk+1 = 1
24: else
25: set hk+1 = hk + 1.
26: end if
27: Set i = mod(i,n) + 1,k = k + 1
28: end for
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Proposition 4. Suppose that f is bounded below on the feasible set F and let {xk}
be the sequence produced by Algorithm 4. Then:

• Algorithm 4 is well defined;

• every limit point of {xk} belongs to F ;

• we have

limk→∞ αk = 0 (2.6)
limk→∞ ᾱ

i
k = 0 for i = 1, . . . ,n. (2.7)

Proposition 5. Suppose that f is bounded below on the feasible set F and let {xk} be
the sequence produced by Algorithm 4. Then every limit point of {xk} is a stationary
point for problem (2.4).

2.1.3 Box Constrained Mixed-Integer Optimization Method
In the recent years, more and more problems where the variables could take both
continues and integer values arose. In general, these problems are tackled with
adaption of continuous optimization methods or discrete optimization methods. In
this section we present a further expansion of the two algorithms presented in the
previous sections that is able to manage problem with variables that can be both
continuous and integer. It is important to define the problem because it comes from
two distinct frameworks.

From now on we will consider the following bound constrained mixed variable
problem

min f(x)
l ≤ x ≤ u, (2.8)

xi ∈ Z i ∈ Iz xj ∈ R j ∈ Ic

Where x ∈ Rn,l,u ∈ Rn,Iz ∈ {1, . . . ,n} is the index set of the integer variables, and
Ic ∈ {1, . . . ,n} is the index set of the continuous variables and f : Rn → R is a
continuously differentiable function with respect to xi,i ∈ Ic. We also assume that
that X is a compact set, so li and ui cannot be infinite.

In order to define the local minimum points of this problem we introduce the two
following types of neighborhoods with respect to continuous and discrete variables,
that is given a point x̄ ∈ R, we define the two neighborhoods:

Bc(x̄,ρ) = {x ∈ Rn : xz = x̄z,‖xc − x̄c‖ ≤ ρ}

Nz(x̄) = {x ∈ Rn : xc = x̄c,‖xz − x̄z‖ ≤ 1}
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Due to the mixed-integer nature of the problem, different definitions of a local
minimum point can be used.

Definition 6. A point x∗ ∈ X is a local minimum of Problem (2.8) if, for some
ε > 0,

f(x∗) ≤ f(x), ∀x ∈ Bc(x∗,ε) ∩X,
f(x∗) ≤ f(x), ∀x ∈ Nz(x∗) ∩X, (2.9)

and, every point x̄ ∈ Nz(x∗) ∩ X such that f(x̄) = f(x∗) satisfies (2.9) for some
ε̄ > 0

Now let’s characterize the critical point.

Proposition 6. Let x∗ ∈ X ∩ Z be a local minimum of Problem (2.8). Then

∇cf(x∗)T (x− x∗)c ≥ 0, for all x ∈ X.
f(x∗) ≤ f(x) for all x ∈ Nz(x∗) ∩X. (2.10)

Note that a subset of the conditions is the same as the constrained derivative
free case. In other words a point x∗ is a critical point if it is stationary with respect
to the continuous variables and with respect to the discrete variables, that is it must
be a local minimum within the discrete neighborhood Nz(x∗).

The reported algorithm called DFL(Derivative-Free Linesearch), explores the
coordinate directions and updates the iterate whenever a sufficient reduction of the
objective function is found. Hence it performs a minimization distributed along all
the variables.

The basic ingredients of the method are the Continuous search and Discrete
search procedures. They are needed to explore the coordinate directions associated
with, respectively, continuous and discrete variables. The current point is updated
as soon as a sufficient reduction of the objective function is achieved by one of
the procedures. The continuous search is a modification of one reported for the
constrained case, that is Algorithm 3. The Discrete search procedure 6 is similar to
the Continuous search but the sufficient reduction is governed by a control parameter
ξ , which is reduced during the optimization process. This parameter is reduced
when any of the discrete variables is updated by the Discrete search procedure and
the current steps for the current variables are equal to one.

Every search direction di, for i = 1, . . . ,n is characterized by a tentative step
along that direction called ᾱ just like the continuous constrained case. In order to
reduce the step when it is needed, a constant factor θ ∈ (0,1) is adopted. The initial
point for the algorithm is x0. At every iteration k the Algorithm DFL explores,
starting from the current iterate xk, all the coordinate directions and produces the
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Algorithm 5 line search procedure for continuous variables: ContSear(ᾱ,y,d,α)
1: given γ > 0,δ ∈ (0,1)
2: if α < 0 then
3: α = 0
4: return α
5: else
6: if f(y + αd) ≤ f(y)− γα2 then
7: search the largest αmax so that y + ᾱd ∈ X ∩ Z. Set α = min {αmax,ᾱ}
8: else
9: if f(y − αd) ≤ f(y)− γα2 then
10: search the largest αmax so that y − ᾱd ∈ X ∩ Z. Set α = min {αmax,ᾱ}
11: set d = −d
12: end if
13: end if
14: end if
15: while α < ᾱ and f

(
y + α

δ
d
)
≤ f(y)− γ α2

δ2 do
16: α = α

δ

17: end while
18: α = min{α,ᾱ}
19: return α

Algorithm 6 line search procedure for integer variables: DiscrSear(ᾱ,y,d,ξ,α)
1: if α < 0 then
2: α = 0
3: return α
4: else
5: if f(y + αd) ≤ f(y)− ξ then
6: search the largest αmax so that y + ᾱd ∈ X ∩ Z. Set α = min {αmax,ᾱ}
7: else
8: if f(y − αd) ≤ f(y)− ξ then
9: search the largest αmax so that y − ᾱd ∈ X ∩ Z. Set α = min {αmax,ᾱ}
10: set d = −d
11: end if
12: end if
13: end if
14: while α < ᾱ and f (y + 2αd) ≤ f(y)− ξ do
15: α = 2α
16: end while
17: α = min{α,ᾱ}
18: return α
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intermediate points yik,i = 1, . . . ,n. When i ∈ Ic that is a continuous variables is
analyzed, the actual steps αik are computed in the same way as described for the
unconstrained case. If i ∈ Iz the algorithm performs the Discrete search, similar to
the Continuous search except for the fact that the sufficient reduction is governed
by the parameter ξk. The updating formula of tentative steps ᾱik is such that 1 ≤
ᾱik ∈ Z.

Algorithm 7 Algorithm DFL
1: Given θ ∈ (0,1),ξ0 > 0,x0 ∈ X ∩ Z,ᾱi0 > 0,i ∈ Ic,ᾱi0 = 1, ∈ Iz, and set di0 = ei

2: for k = 1, . . . do
3: set y1

k = xk.
4: for i = 1, . . . do
5: if i ∈ Ic then
6: call ContSear(ᾱ,y,d,α) and find α
7: if α=0 then
8: set αik = 0 and ᾱik+1 = θᾱik.
9: else
10: set αik = α and ᾱik+1 = α
11: end if
12: else
13: Call DiscrSear(ᾱ,y,d,ξ,α)
14: if α=0 then
15: set αik = 0 and ᾱik+1 = max{1, bᾱik/2c}.
16: else
17: set αik = α and ᾱik+1 = α
18: end if
19: end if
20: set yi+1

k = yik + αikd
k
i and dik+1 = dik

21: end for
22: if (yn+1

k )z = (xk)z and ᾱik = 1,i ∈ Iz then
23: set ξk+1 = θξ
24: else
25: set ξk+1 = ξ
26: end if
27: find xk + 1 ∈ X ∩ Z such that f(xk + 1 ≤ f(yn+1

k ))
28: end for

We now report the results for the convergence of the algorithm.

Proposition 7. Let {xk},{ξk},{yik},{αik},{ᾱik},i = 1, . . . ,n be the sequences produced
by Algorithm DFL. Then,
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1. Algorithm DFL is well-defined;

2. for all i ∈ Ic
lim
k→∞

αik = 0

lim
k→∞

ᾱik = 0

3.
lim
k→∞

ξk = 0

Proposition 8. Let {xk} be the sequence of points produced by Algorithm DFL. Let
H ⊆ 1,2, . . . be defined as in Proposition 7 and x∗ be any accumulation point of
{xk}H , then

∇cf(x∗)T (x− x∗)c ≥ 0, for all x ∈ X,

f(x∗) ≤ f(x̄), for all x̄ ∈ Nz(x∗) ∩X.

Theorem 12. Let {xk} be the sequence of points generated by Algorithm DFL. Let
H ⊆ 1,2, . . . be defined as in Proposition 7. Then,

1. a limit point of {xk}H exists;

2. every limit point x∗ of {xk}H is a stationary point of Problem (2.8).

2.1.4 Derivative Free Black Box Robust Optimization
In the previous sections, we started from a general unconstrained derivate free
method and then enlarged its applications to constrained optimization and mix
integer optimization. Another field where there is a great interest of research is
robust optimization.

Robust optimization tries to make the solution “robust” in the case of uncer-
tainty on the parameters of the problem. For many optimization problems, if the
parameters are slightly changed, the optimal solution can become infeasible or sub-
optimal. Robust optimization’s aim is to find a solution that is optimal in respect
of any realization of uncertainty in a given set.
The general formulation of the problem is:

minimize f(x,ui)
subject to hi(x,ui) ∀ui ∈ Ui,i = 1, . . . ,m. (2.11)

Where ui ∈ Rn are the disturbance vectors or parameters uncertainties and Ui ⊂ Rk

are the uncertainty sets.
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For most formulations a min-max approach is used, that is the problem consists in
minimizing(or maximizing) the objective function with maximizing(or minimizing)
the disturbance vectors or parameters uncertainties in the objective function or
in the constraints. The obtained solution gives the best design against the worst
possible realization of parameters.

One of the principal issues of robust optimization is tractability. Given a class of
nominal problems, for example linear programming problems or quadratic problems,
and a structured uncertainty set, what is the complexity of the corresponding robust
problem? Is this problem mathematically tractable and solvable?
Even with the advancements in the last years, most current methods are restricted
to convex problems such as linear, convex quadratic, conic quadratic, linear discrete
problems [1], [2], [3]. So other class of problems like robust formulations of general
non-linear problems cannot be easily solved. Also there are no proposed methods to
solve general black box robust optimization problems, like for example the problems
coming from circuit simulations or surrogate model functions.

In the following we present a black box optimization approach to robust opti-
mization.

The problem we want to solve is:

min
v∈V⊂Rn1

f(v) = min
v∈V⊂Rn1

max
w∈W⊂Rn2

g(v,w) (2.12)

where f : Rn1 → R, g : Rn1+n2 → R, some of the v variables are constrained to
assume integer values whereas the w variables are estimation of uncertain data or
implementation parameters. Let

V = {v ∈ Rn1 : lv ≤ v ≤ uv}
W = {w ∈ Rn2 : lw ≤ w ≤ uw},

where the variable can v and w can be both continuous or integer. Furthermore, let
us assume that V and W are both compact. In the following we will consider the
variable v as the original variables of the problem, while the w as the disturbance
vectors and parameters uncertainties.

The philosophy we want to follow in order to solve the problem is to find a solu-
tion that is a stationarity point in respect to the worst realization of the parameters
for that solution.

At every iteration k of the black box algorithm, the value of the objective func-
tion is maxw∈W⊂Rn2 g(v,w). In order to calculate even an approximation of this
maximum, the values of the variables v are set to their current values vk and a
black box maximization in respect to the uncertainty parameters is performed on
the function g(vk,w).

In other words we realize a double level black box optimization in which:
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• at the outer level we perform a standard black box optimization in respect to
the variables v ∈ V ;

• once we decide to calculate the objective function in a certain point vk a black
box maximization in performed in respect to the function g(vk,w).

So basically the framework is similar to the one of the Algorithm 7, but the
fundamental difference is that every time it is necessary to calculate the value of the
objective function, another black box optimization method is called.

This kind of strategy is also applicable to other black box strategies. As a
matter of facts at the inner level it is possible not only to use a generic local black
box optimization method, but also a general global optimization method in order
to find the solution.

2.2 Canonical Duality Theory
Duality is generally utilized for linear and quadratic problems. This procedures
consists in reformulating the original problem, also known as primal problem, into a
different but equivalent problem also called dual problem. The equivalence of the two
problems is given by the fact that the solution of the primal problem corresponds to
the solution of the dual problem and there is no duality gap between these solutions,
that is the value of the solution for the primal objective function is equal to the value
of the dual solution for the dual objective function.

The principal drawback of this theory is that this correspondence between the
primal and the dual formulation exists only for convex problems. For non-convex
problems and general complex systems, the duality gap exists, and even if it is
possible to reformulate a dual problem starting from the primal, these two problems
are not equivalent.

With the canonical duality theory developed in [6], it is possible to formulate a
perfect dual problem in the sense that there is no duality gap and the associated
triality theory can be used to identify both global and local optimal solutions. This
theory is composed by a canonical dual transformation methodology, a complemen-
tarity dual principle and a triality theory. The canonical dual transformation is
a versatile method which can be used to formulate perfect dual problems without
duality gap; the complementary-dual principle presents a unified analytic solution
form for general problems in continuous and discrete systems; the triality theory,
whose components comprise a saddle min/max duality and two pairs of double-min,
double-max dualities, can be used to identify both global and local extrema, and
to develop effective canonical dual algorithms for solving a wide class of noncon-
vex/nonsmooth/discrete optimization/variational problems.
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In order to demonstrate the application of this theory, let us consider the follow-
ing non-convex minimization problem:

(P ) : min
z∈Za

{
P (z) = 1

2〈z,Az〉 − 〈z,f〉+W (z)
}
, (2.13)

where A ∈ Rn×n is a given symmetric indefinite matrix, f ∈ Rn is a given vector,
〈v,v∗〉 denotes the bilinear form between v and its dual variable v∗,W (z) is a general
non convex function, and Za ⊆ Rn is the feasible space for the vector z.

Problem (2.13) represents the general format for an unconstrained optimization
problem and even for certain constrained problems as W (z) can be considered as an
indicator of certain constraint set.

The key step of the canonical dual transformation is to choose a nonlinear oper-
ator ξ = Λ(z) : Za → Ea, where Ea is the domain where ξ is defined, and a canonical
function V : Ea → R such that the nonconvex functionW (z) can be expressed in the
canonical form W (z) = V (Λ(z)). The function V (Λ(z)) is convex in respect of Λ. A
typical example for the nonconvex function W (z) could be the so-called double-well
energy:

W (z) = 1
2

(1
2‖z‖

2 − λ
)2
, (2.14)

which has extensive applications in mathematical physics [6] and network optimiza-
tion (see [9]). In this case the primal problem is

P (z) = 1
2

(1
2‖z‖

2 − λ
)2

+ 1
2z

TAz− fTz. (2.15)

For this example, we can simply choose ξ = 1
2‖z‖

2 and V (ξ) = 1
2(ξ − λ)2.

Once the nonlinear operator and the canonical functions has been chosen, the
canonical function V (Λ(z)) is said to be a canonical function on its domain if the
the duality mapping σ = V ′(ξ) from Ea = {ξ ∈ R| ξ ≥ 0} to its range E∗a = {σ ∈
R| σ ≥ −λ} is invertible and the conjugate function V ∗(σ) can be defined by the
Legendre transformation

V ∗(σ) = sta {〈ξ,σ〉 − V (ξ)|ξ ∈ Ea} , (2.16)

where the notation sta{g(ξ)|ξ ∈ Ea} stands for stationary point of the function g(ξ)
on Ea. As the function V (ξ) is convex in ξ, the solution is unique and the conjugate
function can be easily found. In the double well example the Legendre conjugate is
equal to

V ∗(σ) = 1
2σ

2 + λσ

Therefore, by using the equality W (z) = 〈Λ(z),σ〉 − V ∗(σ), the nonconvex func-
tion P (z) can be written in the form of the so-called total complementarity function
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Ξ(z,σ) (see [6])
Ξ(z,σ) = 〈Λ(z),σ〉 − V ∗(σ) + zTAz− fTz (2.17)

Function Ξ(z,σ) can also be regarded as the extended or nonlinear Lagrangian. As
a matter of facts if the mathematical operator ξ is chosen linear, the total com-
plementarity function corresponds to the standard Lagrangian form. In general,
it is possible to collect the linear terms in of the primal variable z to create the
term F (σ) and the quadratic terms to create the term G(σ) and rewrite the total
complementarity function in the following way

Ξ(z,σ) = 1
2z

TG(σ)z− F (σ)Tz− V ∗(σ)

From this total complementary function, the canonical dual function can be defined
by

P d(σ) = sta{Ξ(z,σ)|z ∈ Za}. (2.18)
By the stationary condition ∇zΞ = G(σ)z− f = 0, then on the dual feasible space

Sa = {σ ∈ E∗a | detG(σ) /= 0},

the problem dual to (P ) can be formulated as

(P d) : max
{
P d(σ) = −1

2F (σ)TG(σ)−1F ((σ)− V ∗(σ) | σ ∈ Sa
}
. (2.19)

For the double well total function, the total complementarity function is:

Ξ(z,σ) = 1
2z

TG(σ)z− 1
2σ

2 − λσ − fTz

Where G(σ) = σI + A and the term F (σ) = f. For this particular case the linear
term does not depend from the dual variable σ. The first order conditions of the
problem are

z = G(σ)−1f

and the dual problem is

P d = 1
2f

TG(σ)−1f− V ∗(σ)

Now we describe the general properties of this dual formulation.

Theorem 13. (Complementarity-dual principle [6]). Problem (P d) is canonically
dual to (P ) in the sense that if (z̄,σ̄) is a critical point of Ξ(z,σ), then z̄ is a feasible
solution of (P ), σ̄ is a feasible solution of (P d) and

P (z̄) = Ξ(z̄,σ̄) = P d(σ̄). (2.20)
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This theorem indicates that there is no duality gap between the critical point of
the dual problem and the critical points of the primal problem.
Theorem 14. (Analytic solution to (P) [6]). If σ̄ ∈ Sa is a solution of (P d), then

z̄ = G(σ̄)−1F (σ) (2.21)

is a feasible solution of (P ) and P (z̄) = P d(σ̄). Conversely if z̄ is a solution of (P ),
it must be in the form of (2.21) for certain solutions σ̄ of (P d).

This Theorem gives the relation that connects the critical points in the primal
problem to the critical points in the dual problem. It also suggest a relatively easy
way to find the solution of the primal problem once the solution of the dual has
been found.

In order to study extremalty conditions of the general analytic solution, we define
the two following subsets of Sa:

S+
a = {σ ∈ Sa|G(σ) � 0}, S−a = {σ ∈ Sa|G(σ) ≺ 0}.

Theorem 15. (Triality theory [6, 11]). Suppose that σ̄ is a critical point of P d and
that z̄ = G(σ̄)−1f. If σ̄ ∈ S+

a , then z̄ is a global minimizer of (P ), σ̄ is a global
maximizer of (P d), and

min
z∈Za

P (z̄) = Ξ(z̄,σ̄) = max
σ∈S+

a

P d(σ̄) (2.22)

If σ̄ ∈ S−a and Problem (P ) has the same dimension as (P d), then on a neighborhood
Z0 × S0 ⊂ Za × S−a of (z̄,σ̄), we have either

min
z∈Z0

P (z̄) = Ξ(z̄,σ̄) = min
σ∈S0

P d(σ̄) (2.23)

or
max
z∈Z0

P (z̄) = Ξ(z̄,σ̄) = max
σ∈S0

P d(σ̄). (2.24)

This triality theory gives a subset of the feasible set for the dual variable where
to search for the global solution of the problem. It can be used to identify both
global and local extrema of the nonconvex problem (P ). Extensive applications of
the canonical duality theory have been given in fields of computational biology [13],
mathematical physics [12], and discrete and network optimization [7, 10].

In Order to show the potentiality of the Canonical Dual Theory, we briefly show
in Figure 2.1 a one dimensional example of the double well energy function. It is
possible to notice that all the three critical points in the primal have corresponding
points in the dual problem and they have the same value of their respective objective
functions. On the right side of the figure there is S+

a . The global maximum of the
dual in S+

a corresponds to the global minimum in the dual problem. All the three
theorems previously reported are satisfied and the global solution of the problem is
easily found in the dual problem.
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Figure 2.1. Comparison between the primal problem (in blue) and the dual prob-
lem (in red) for the one dimensional double well function.

Some Issues and Warnings about the use of Canonical Duality

There are some issues about the use of canonical duality theory. Triality theory
was originally discovered in nonconvex mechanics [16]. The general warning that is
given about the target function is that it must be objective. Objectivity in physics
means that the objective function does not depend on the coordinates but only
certain measures as for example the lp norms. The function with such property can
be measured in several ways, but their values is always the same.

Definition 7. let

Q = {Q ∈ Rm×m|QT = Q−1,detQ = 1}

be a proper orthogonal rotation group. A subset Ya ⊂ Rm is said to be objective if
Qy ∈ Ya ∀y ∈ Ya and ∀Q ∈ Q. A real-valued function T : Ya → R is said to be
objective if its domain is objective and

T (Qy) = T (y) ∀y ∈ Ya and ∀Q ∈ Q

In other words the objective function does not depend on rotation. The canonical
duality theory was developed from physics where the target functions are objective
in order to be measurable, so if canonical duality theory is applied to non-objective
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2.2 – Canonical Duality Theory

functions it is not guaranteed to work well. Also for the dual canonical transfor-
mation, geometrical operators are used. Without objectivity, the use of geometrical
operators could not be theoretically well justified.

Another important issue is to destroy the symmetry of the problem, that is to
assure that there is some kind of internal or external input that destroys the state
of equilibrium in which the problem is. For example in the double well function, if
the linear term f is reduced we have the result showed in Figure 2.2. By lowering

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.2. Double well function problem with a low value for the external input,
the primal is in blue and the dual in red.

the value of the external input f, the two minima assume the same value of the
primal objective function and the corresponding critical points in the dual get closer
and closer. In Figure 2.3 the external input is zero. With this the symmetry is
restored, and the two critical points compensate each other making the singularity
in the dual disappear. Because of this compensation, there is only a critical point
in the dual that corresponds to the maximum in the primal. Because of this, if the
tryality theorem is applied to this problem and the global maximum is accepted
as the solution in the dual, the worst possible critical point, the maximum in the
primal problem, is chosen as optimal. It is possible to prove, for a great array of
applications, that with a small enough perturbation the resulting problem is still
equivalent to the original one.

Finally it is important to define, step by step, the domains of the primal and the
dual problem. As a matter of facts the general solution described in Theorem 15
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Figure 2.3. Effect of the symmetry on the double well function, the only critical
point in the dual (in red) is the maximum.

can be easily found once the set S+
a is defined. For more complex problems it can

be convenient to define other subsets in order to classify the solution.

2.2.1 Canonical Dual Radial Basis Neural Networks
We apply canonical duality theory on radial basis neural networks among the differ-
ent surrogate models we introduced in the previous chapter on the predictive models.
In detail we decided to apply this theory on the formulation that considers both the
weights and the centers as variables of the problem. We report the unconstrained
optimization problem once again here for convenience:

E(w,c) = 1
2

P∑
p=1

N∑
i=1

(wiφ(ci)− yp)2 + 1
2βw‖w‖

2 + 1
2β

N∑
i=1

n∑
j=1

c2
ji. (2.25)

This problem is non-convex, but from empirical experiments in [20] it emerged that
it generally yields neural networks with an higher precision than the ones trained
with strategy that uses only the weights as variables. However, due to the non-
convexity of the problem (2.25), there are some fundamental difficulties to find
the global minimum of the problem and to characterize local minima. Indeed, the
problem (2.25) is considered to be NP-hard even if the radial basis function φ(c) is a
quadratic function and n = 1 [17, 18]. Another issue that characterizes this problem,
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as we explained when we introduced this surrogate model for the first time, is the
choice of the regularization parameters βw and β2. In general a cross-validation
strategy is applied in order to find these regularization parameters. Until now it
was not possible to find a closed form for the optimal values of these parameters in
the general case. If it is possible to find at least an upper bound for these parameters,
the time needed to perform a cross validation would greatly decrease.

In this section we study the canonical duality theory for solving the general
Radial Basis Neural Networks optimization problem (2.25) and mainly analyze one-
dimensional case in order to find properties and intuitions that can be useful for the
multidimensional cases that will be analyzed in the following sections.

Primal problem for general Radial Basis Functions(RBF) and Dual For-
mulation

The general one dimensional non-convex function to be addressed in this paper can
be proposed in the following form:

P (c) = W (c) + 1
2βc

2 − fc,

where β is the regularization coefficient and f is a positive scalar close to zero. The
term −fc is not comprised in the original Radial Basis Neural Networks formulation
but we consider it for the general mathematical case. The non-convex functionW (c)
depends on the choice of the radial basis function φ(·):

W (c) = 1
2
(
wφ(‖x− c‖2)− y

)2
, (2.26)

where x, y and w belong to R. In applications the parameter w is also a variable,
but the original problem (2.25) is convex in w while non-convex in respect to the
center of the radial basis function c. Therefore, the one-dimensional non-convex
primal problem can be formulated as

(P) : min
{
P (c) = 1

2
(
wφ(‖x− c‖2)− y

)2
+ 1

2βc
2 − fc | ∀c ∈ R

}
. (2.27)

In order to apply the canonical duality theory to solve this problem, we need to
choose the geometrically nonlinear operator:

ξ = Λ(c) = wφ(‖x− c‖2) : R→ Ea. (2.28)

Clearly, this is a nonlinear map from R to a subsapce Ea ∈ R, which depends on the
choice of the Radial Basis Function φ(·). The canonical function associated with
this geometrical operator is

V (ξ(c)) = 1
2(ξ(c)− y)2 = W (Λ(c)). (2.29)
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By the definition introduced in [15], V : Ea → R is said to be canonical function on
Ea if for any given ξ ∈ Ea, the duality relation

σ = V ′(ξ) = {ξ − y} : Ea → Sa (2.30)

is invertible, where Sa is the range of the duality mapping σ = ∂V (ξ)/∂ξ, which
depends on the choice of the Radial Basis Function φ(·). The couple (ξ,σ) forms a
canonical duality pair on Ea × Sa with the Legendre conjugate V ∗(σ) defined by

V ∗(σ) = {ξσ − V (ξ)|σ = V ′(ξ)} =
(1

2σ
2 + yσ

)
. (2.31)

By considering that W (c) = Λ(c)σ − V ∗(σ), the primal function P (c) can be refor-
mulated as the so-called total complementarity function defined by

Ξ(c,σ) = Λ(w,c)σ − V ∗(σ) + 1
2βc

2 − fc

= wφ(‖x− c‖2)σ −
(1

2σ
2 + σy

)
+ 1

2βc
2 − fc. (2.32)

The function φ(·) can be a non convex function just like W (c). For this reason
we have to perform a sequential canonical dual transformation for the nonlinear
operator Λ(c). To this aim we choose a second nonlinear operator:

ε = Λ2(c) = ‖x− c‖2 (2.33)

which is a map from R to Eb = {ε ∈ R|ε ≥ 0}. In terms of ε, the first level operator
ξ = Λ(c) can be written as

ξ = U(ε) = wφ(ε). (2.34)

We assume that U(ε) is a convex function on Eb such that the second-level duality
relation

τ = U ′(ε) = wφ′(ε) (2.35)

is invertible, i.e.,

ε =
(
φ′
(
τ

w

))−1
, (2.36)

where the term
(
φ′
(
τ
w

))−1
is the inverse of the function φ′(ε). Thus, the Legendre

conjugate of U can be obtained uniquely by

U∗(τ) = τ
(
φ′
(
τ

w

))−1
− wφ

((
φ′
(
τ

w

))−1
)
. (2.37)
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We notice that ξ = wφ(ε). By substituting the value of ε given by (2.36) we find
a relation that connects the first level primal variable ξ with the second level dual
variable τ :

ξ = wφ

((
φ′
(
τ

w

))−1
)
. (2.38)

By plugging this in (2.30) we obtain

σ = wφ

((
φ′
(
τ

w

))−1
)
− y.

Generally speaking, it is possible, for certain functions φ, to use the canonical dual
transformation to find the relation between the first level dual variable σ and the
second level dual variable τ by means of the derivatives of φ(·) and the first primal
variable ξ. In general this relation is:

τ = wφ′
(
φ−1

(
σ + y

w

))
. (2.39)

Therefore, replacing U(ξ) = Λ(c) by its Legendre conjugate U∗, the total comple-
mentarity function becomes

Ξ(c,σ,τ) =
(
‖xp − ci‖2τ − U∗(τ)

)
σ − V ∗(σ) + 1

2βc
2 − fc. (2.40)

It is also possible to rewrite the total complementary function (2.40) in the following
form:

Ξ(c,σ,τ) = 1
2c

2(2τσ + β)− c(2τσx+ f)− U∗(τ)σ − V ∗(σ) + x2τσ. (2.41)

By the criticality condition ∂Ξ(c,σ,τ)/∂c = 0 we obtain

c(τ,σ) = 2τxσ + f

2τσ + β
. (2.42)

Clearly, if 2τσ + β /= 0, the general solution of (2.42) is

c = 2τxσ + f

2τσ + β
∀(σ,τ) ∈ Sa = {σ,τ | 2τσ + β /= 0} (2.43)

and the canonical dual function of P (c) can be presented as

P d(σ,τ) = −1
2

(2τxσ + f)2

2τσ + β
− U∗(τ)σ − V ∗(σ) + x2τσ. (2.44)
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By considering dual relation given in (2.39) we can write the total complementarity
function in terms of c and σ only

Ξ(c,σ) = 1
2c

2G(σ)− cF (σ)− U∗(σ)σ − V ∗(σ) + x2wφ′
(
φ−1

(
σ + y

w

))
σ (2.45)

where

G(σ) = 2wφ′
(
φ−1

(
σ + y

w

))
σ + β,

F (σ) = 2wφ′
(
φ−1

(
σ + y

w

))
xσ + f,

U∗(σ) = wφ′
(
φ−1

(
σ + y

w

))
φ−1

(
σ + y

w

)
− (σ + y).

Therefore, in terms of σ only, the canonical dual function can be written as

P d(σ) = −1
2
F (σ)2

G(σ) − U
∗(σ)σ − V ∗(σ) + x2wφ′

(
φ−1

(
σ + y

w

))
σ. (2.46)

Complementary-Dual Principle

In this section we present a theorem that is a particular case for Theorems 13 and
14, with its proof.

Theorem 16. If σ̄ is a critical point of (P d) and the term:

G′(σ̄) =
[
wφ′

(
φ−1

(
σ̄ + y

w

))
+ σφ′′

(
φ−1

(
σ̄ + y

w

))(
φ−1

(
σ̄ + y

w

))′]
/= 0 (2.47)

then the point
c̄ = F (σ̄)

G(σ̄) (2.48)

is a critical point of P and P (c̄) = P d(σ̄)

Proof. Suppose that σ̄ is a critical point of P d then we have

P d(σ̄)′ =
[
c̄2 − 2xc+ x2 − φ−1

(
σ̄ + y

w

)]
G′(σ̄)− (2.49)

σ

[
φ′
(
φ−1

(
σ̄ + y

w

))(
φ−1

(
σ̄ + y

w

))′
− 1

]
= 0

Notice that (
φ−1

(
σ̄ + y

w

))′
= 1
φ′ (ε) = 1

φ′
(
φ−1

(
σ̄+y
w

)) ,
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The third term in (2.49) is zero. The term G′(σ̄) is not zero from the hypothesis, so
we obtain

(x− c̄)2 − φ−1
(
σ̄ + y

w

)
= 0, (2.50)

that is
σ̄ = wφ

(
(x− c̄)2

)
− y. (2.51)

The critical point condition for the primal problem P (c) is

P ′(c) = 0→ −2w(x− c)φ′(‖x− c‖2)(wφ(‖x− c‖2)− y) + βc− f = 0.

By considering that φ′(‖x − c‖2) = φ′
(
φ−1

(
σ+y
w

))
and σ = wφ ((x− c)2) − y we

obtain
2w(x− c)φ′

(
φ−1

(
σ + y

w

))
σ + βc− f = 0, (2.52)

that is

c =
2φ′

(
φ−1

(
σ+y
w

))
σ + f

2φ′
(
φ−1

(
σ+y
w

))
σ + β

. (2.53)

By setting σ = σ̄ in (2.53) we obtain (2.43) proving that c̄ is a critical point of P (c).
For the correspondence of the function values we start from the dual function

P d(σ̄) = −1
2
F 2(σ̄)
G(σ̄) − U

∗(σ̄)σ̄ − V ∗(σ̄) + x2wφ′
(
φ−1

(
σ̄ + y

w

))
σ̄

add and subtract the term 1
2
F 2(σ̄)
G(σ̄) and substitute the value of c̄

1
2 c̄

2G(σ̄)− c̄F (σ̄)− U∗(σ̄)σ̄ − V ∗(σ̄) + x2wφ′
(
φ−1

(
σ̄ + y

w

))
σ̄

by reordering the terms we obtain(
‖x− c̄‖2wφ′

(
φ−1

(
σ̄ + y

w

))
− U∗(σ̄)

)
σ̄ − V ∗(σ̄) + 1

2βc̄
2 − f c̄,

Considering the (2.30), setting ε̄ = ‖x− c̄‖2 and φ′
(
φ−1

(
σ̄+y
w

))
= φ′(ε̄) we obtain:

[wφ′(ε̄)ε̄− wφ′ (ε̄) ε̄+ wφ(ε̄)] [wφ(ε̄)− y]−
[1
2(wφ(ε̄)− y)2 + y(wφ(ε̄)− y)

]
+

1
2βc̄

2 − f c̄ = w2φ(ε̄)2 − ywφ(ε̄)− 1
2(wφ(ε̄)− y)2 − ywφ(ε̄) + y2 + 1

2βc̄
2 − f c̄

by collecting the terms we obtain:

(wφ(ε̄)− y)2 − 1
2(wφ(ε̄)− y)2 + 1

2βc̄
2 − f c̄,
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that is
1
2
(
wφ(‖x− c̄‖2)− y

)2
+ 1

2βc̄
2 − f c̄ = P (c̄).

that proves the theorem

Theorem 16 shows that the problem (Pd) is canonically dual to the primal (P)
in the sense that the duality gap is zero.

Gaussian function

One of the most used RBF is the Gaussian function. In this section we will ana-
lyze the problem with φ(‖x − c‖2) = exp

{
−‖x−c‖

2

2α2

}
, where α is a parameter that

represents the standard deviation of the Gaussian function. In the Radial Basis
formulation normally there is not the linear term fc. The primal problem is:

minP (c) = 1
2

(
w exp

{
−‖x− c‖

2

2α2

}
− y

)2

+ 1
2βc

2 ∀c ∈ R. (2.54)

For this problem, the nonlinear operator ξ : R→ Ea from (2.28) becomes

ξ = w exp
{
−‖x− c‖

2

2α2

}
.

The expressions that define σ, V and V ∗ are the same as the general problem that
is:

• V (ξ(c)) = 1
2(ξ − y)2;

• σ = ξ − y;

• V ∗(σ) =
(

1
2σ

2 + yσ
)
.

The second order operator Λ2(c) : R→ Eb is

ε = Λ2(c) = ‖x− c‖2 = ε (2.55)

The second level canonical function becomes

U(ε) = w exp
{
− ε

2α2

}
.

And the second order duality mapping τ is

τ = wφ′(ε) = − w

2α2 exp
{
− ε

2α2

}
.
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So the Lagrende conjugate U∗ : S ′b → R is

U∗(τ) = τ
(
φ−1

(
τ

w

))′
− wφ

(
φ−1

(
τ

w

))′
= −2α2τ

(
log

(
−2α2τ

w

)
− 1

)
.

The derivative of the exponential function is the exponential function itself. This
simplifies the relation (2.38) between ξ and τ making it linear, that is ξ = − τ

2α2 .
The relation between σ and τ is:

τ = −(σ + y)
2α2

that is also linear. The total complementarity function becomes:

Ξ(c,σ) = 1
2c

2G(σ)− cF (σ)− U∗(σ)σ − V ∗(σ)− x2(σ2 + yσ)
2α2

where:

• G(σ) = β − σ2+yσ
α2

• F (σ) = −xσ2+xyσ
α2

• U∗(σ) = (σ + y)
(
log

(
σ+y
w

)
− 1

)
The dual problem is

P d(σ) = −1
2

(
−xσ2+xyσ

α2

)2

β − σ2+yσ
α2

−
(
log

(
σ + y

w

)) (
σ2 + yσ

)
+ 1

2σ
2 − x2(σ2 + yσ)

2α2 (2.56)

The domains of the variables in the primal and dual problems are:

• Eb = {ε ∈ R|ε ≥ 0}

• Sb = {τ ∈ R| −∞ < τ < 0} if w > 0, Sb = {τ ∈ R| −∞ < τ < 0} if w < 0

• Ea = {ξ ∈ R|0 ≤ ξ ≤ w}

• Sa = {σ ∈ R| − y ≤ σ ≤ w − y} if w > 0, Sa = {σ ∈ R|w − y ≤ σ ≤ −y} if
w < 0

Remark 2.2.1. Parameters β, x, y, and w play an important role in solving the
non-convex problem (P). In the original problem (2.27) one searches for the value
of c that brings the term w exp

{
−‖x−c‖

2

2α2

}
as closer as possible to y, that is σ =

w exp
{
−‖x−c‖

2

2α2

}
− y = 0.
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If y < 0 and w > 0 or y > 0 and w < 0 we will have that |σ| > 0. This means that
in the case of the exponential function, it would be better to choose c as bigger as
possible in order to make the exponential go to zero, but the result would never be
satisfactory as the error committed by the approximation would go close to −y as
c goes to infinity. The value −y is not a good value for the error as it is far from
zero. On the other hand if y and w have the same sign and |y| > |w| the value of
c will be x in order to have the exponential equal to 1 and to have the lowest value
for σ = w exp

{
−‖x−c‖

2

2α2

}
− y.

In order to have a realistic problem we will consider the case with y and w with the
same sign, and with |y| < |w|. The cases with y,w > 0 and y,w < 0 are equivalent,
so we will suppose that both y and w are positive without losing generality.

Theorem 17. Suppose that σ̄ ∈ Sa is a critical point of the dual problem (2.56)
with the corresponding c̄ = F (σ̄)

G(σ̄) ∈ R and that σ̄ /= y
2 . Then c̄ is a critical point of

the primal problem and:
P d(σ̄) = P (c̄). (2.57)

moreover, there are the following relations between the critical points of the primal
problem and the dual problem:

1. If (2σ̄+y) > 0 and G(σ̄) ≥ 0 or (2σ̄+y) < 0 and G(σ̄) ≤ 0 then if σ̄ is a local
minimum of the dual problem, the corresponding c̄ is a local maximum of the
primal problem; if σ̄ is a local maximum of the dual problem the corresponding
c̄ is a local minimum of the primal problem;

2. If (2σ̄+y) > 0 and G(σ̄) ≤ 0 or (2σ̄+y) < 0 and G(σ̄) ≥ 0 then if σ̄ is a local
minimum of the dual problem the corresponding c̄ is a local minimum of the
primal problem; if σ̄ is a local maximum of the dual problem the corresponding
c̄ is a local maximum of the primal problem.

Let xo =
√
−2α2Log

(
y

2w

)
. If σ̄ = −y

2 , then there is a corresponding critical point
to σ̄ in the primal problem if and only if the parameters x, y, β and w satisfy one
of the two following conditions:

βx+
(
β + y2

4α2

)
xo = 0

βx−
(
β + y2

4α2

)
xo = 0

(2.58)

and the corresponding critical point c̄ in the primal problem is always a local mini-
mum. If neither of conditions (2.58) is satisfied, σ̄ = −y

2 is always a critical point of
the dual problem, but it does not have any corresponding critical point in the primal
problem.
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Proof. The first order derivative for the dual problem is:

P d(σ̄)′ = −


x− − σ̄2x+σ̄xy

α2

β − σ̄2+σ̄y
2α2

2
1

2α2 + log
(
σ̄ + y

w

) [2σ̄ + y] = 0 (2.59)

so the term (2.47) is equal to 2σ̄ + y. If σ̄ /= −y
2 , the critical point equivalency and

condition (2.57) are consequences of Theorem 16.
To prove statements 1 and 2 we use the second order derivatives of the problems
P (c) and P d(σ)

P (c)′′ = β − 1
α2w exp

{
−‖x− c‖

2

2α2

}(
w exp

{
−‖x− c‖

2

2α2

}
− y

)
+ (2.60)

(x− c)2

α4 exp
{
−‖x− c‖

2

2α2

}(
2w exp

{
−‖x− c‖

2

2α2

}
− y

)

P d(σ)′′ = −2σ + y

σ + y
− 2log

(
σ + y

w

)
− 1
α2

x− −xσ2+xyσ
α2

β − σ2+yσ
α2

21 + (2σ + y)2

α2(β − σ2+yσ
α2 )

 .
(2.61)

Since σ̄ is a critical point of the dual, we have that P d(σ)′ = 0. Therefore when
σ̄ /= −y

2 : x− − σ̄2x+σ̄xy
α2

β − σ̄2+σ̄y
2α2

2

= −2α2log
(
σ̄ + y

w

)
(2.62)

By using condition (2.62) in (2.61) we obtain:

P d(σ̄)′′ = (2σ̄ + y)
2log

(
σ̄+y
w

)
(2σ̄ + y)

α2(β − σ̄2−σ̄y
α2 )

− 1
σ̄ + y

 . (2.63)

Noticing σ = w exp
{
−‖x−c‖

2

2α2

}
− y, it is possible to rewrite P (c̄)′′ in terms of σ̄, i. e.:

P (c(σ̄))′′ = β − σ̄2 − σ̄y
α2 + 2

α2 (σ̄ + y)(2σ̄ + y)
x− −xσ2+xyσ

α2

β − σ2+yσ
α2

2

. (2.64)

by using again condition (2.62) we obtain:

P (c(σ̄))′′ = 1
α2

[
α2
(
β − σ̄2 − σ̄y

α2

)
− 2(σ̄ + y)(2σ̄ + y)log

(
σ̄ + y

w

)]
. (2.65)
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It is also possible to rewrite equation (2.63) in the following form:

P d(σ̄)′′ = −(2σ̄ + y)
α2(β − σ̄2−σ̄y

α2 )− 2(2σ̄ + y)(σ̄ + y)log
(
σ̄+y
w

)
α2(β − σ̄2−σ̄y

α2 )(σ̄ + y)

 . (2.66)

Due to the fact that G(σ) = β − σ2−σy
α2 we have:

P d(σ̄)′′ = − 2σ̄ + y

G(σ̄)(σ̄ + y)P (c(σ̄))′′. (2.67)

From this relation we have four possible cases:

(2σ̄ + y) G(σ̄) P P d

> 0 > 0 ± ∓
> 0 < 0 ± ±
< 0 < 0 ± ∓
< 0 > 0 ± ±

Table 2.1. Relations between the second order derivatives of the primal problem
and the second order derivatives of the dual problem

From Table 1, we obtain:

1. if (2σ̄ + y) > 0 and G(σ̄) ≥ 0 or (2σ̄ + y) < 0 and G(σ̄) ≤ 0 then the second
order derivate of the primal problem and the second order derivate of the dual
problem have opposite sign at their critical points;

2. if (2σ̄ + y) > 0 and G(σ̄) ≤ 0 or (2σ̄ + y) < 0 and G(σ̄) ≥ 0 then the second
order derivate of the primal problem and the second order derivate of the dual
problem have the same sign at their critical points.

This proves statements 1 and 2.
The point σ̄ = −y

2 is a critical point of P d according to the second part of the (2.59).
The point c̄ corresponding to σ̄ = −y

2 is a critical point of the primal problem if and
only if P ′(c̄) = 0. We can use the (2.30) to find the relation between σ̄ and c̄ that
is:

σ̄ = ξ̄ − y → σ̄ = we−
(x−c̄)2

2α2 − y

c̄ = x±
√
−2α2Log

(
σ̄ + y

w

)
.

For σ̄ = −y
2 we obtain:

c̄ = x± xo. (2.68)

68



2.2 – Canonical Duality Theory

Substituting these values in the first order derivative of the primal problem:

P ′(c̄) = (x− c̄)
α2 we−

(x−c̄)2

2α2

(
we−

(x−c̄)2

2α2 − y
)

+ βc̄ (2.69)

and considering that w exp
{
− (x−c̄)2

2α2

}
= σ̄+y = y

2 and w exp
{
− (x−c̄)2

2α2

}
−y = σ̄ = −y

2
we obtain that the primal problem has a critical point at c̄ corresponding to the
critical σ̄ = −y

2 if and only if:

βx±
(
β + y2

4α2

)
xo = 0. (2.70)

This happens only for a particular configuration of the parameters w, β, x and y
that makes one of the roots the first term of the derivative (2.59):

−


x− − σ̄2x+σ̄xy

α2

β − σ̄2+σ̄y
2α2

2
1

2α2 + log
(
σ̄ + y

w

) = 0

be in σ̄ = −y
2 .

To prove that at σ̄ = −y
2 the critical point of the dual problem corresponds to a

minimum point of the primal problem we plug the value of σ̄ = −y
2 in the (2.64)

and obtain
P ′′(σ̄) = β + y2

4α2 ,

which is always a positive value.

Remark 2.2.2. From now on we will refer to the critical point σf = −y
2 as pseudo

dual critical point as it is a critical point of the dual problem that generally does not
have a corresponding critical point for the primal problem.

Choice of the critical point

In order to find the best solution among the critical points of problem (2.54) we
introduce the following feasible spaces:

S+
a = {σ ∈ Sa|G(σ) > 0} (2.71)

S−a = {σ ∈ Sa|G(σ) < 0} (2.72)

The following theorem explains the relations between the critical points:
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Theorem 18. Suppose that the point σ̄1 ∈ S+
a and σ̄2 ∈ S−a are critical points of

the dual problem, that σ̄i /= −y
2 for i = 1,2 and that c̄1 and c̄2 are the corresponding

critical points of the primal problem. Then if both c̄1 and c̄2 are local minima or
local maxima of the primal problem, the following relation always holds:

P (c̄1) = P d(σ̄1) < P (c̄2) = P d(σ̄2) (2.73)

Proof. This theorem is a consequence of the first theorem in triality theory [6].

Remark 2.2.3. The pseudo critical point σf = −y
2 will always be in S+

a as

S+
a :=

{
σ ∈ R

−y−
√

y + 4α2β

2 < σ <
−y +

√
y + 4α2β

2

}
.

From the results in theorem 18 it is always better to search for the dual critical point
in S+

a that corresponds to a minimum in the primal problem. In order to characterize
the solutions in S+

a and the domains in which search for the best solution, two
theorems are proposed in the following:

Theorem 19. Let σf = −y
2 be the pseudo critical point of the dual problem, xo =√

−2α2Log
(
y

2w

)
, x positive. Then:

• if x ∈ (0,xo) then σf is always a local minimum of P d(σ);

• if x > xo then:

1. if β > 0 and β < y2xo
4α2(x−xo) , σf is a local minimum for the dual problem;

2. if β > 0 and β > y2xo
4α2(x−xo) , σf is a local maximum for the dual problem;

3. if β > 0, β = y2xo
4α2(x−xo) , σf is an inflection point in which the first order

derivative is zero and that corresponds to a a local minimum of the primal
problem.

Proof. In order to understand that σf = −y
2 is a minimum or a maximum for the

dual we have to plug its value in the second order derivative of P d(σ) that is equation
(2.61) and analyze its sign. After the substitution we obtain

P d(σf ) = −

2log
(
− y

2w

)
+ 1
α2

 xβ

β + y2

4α2

2
 . (2.74)
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The first order derivate in β of (2.74) is − 2xβ2

α2
(
β+ y2

4α2

)2 , that is the function is mono-

tonic decreasing in β. The value of (2.74) in β = 0 is −log
(
− y

2w

)
that is positive.

If we make β go to +∞ we obtain:

lim
β→+∞

−

2log
(
− y

2w

)
+ 1
α2

 xβ

β + y2

4α2

2
 = −2log

(
− y

2w

)
+ x2

α2

that is the second order derivative of P d(σ) in σf is non negative for any value of
β > 0 if

x ∈ [−xo,xo]

If x does not satisfy this condition, from the (2.74) we have that the second order
derivative of the dual problem is positive in σf if β satisfies:

β >
−y2xo

4α2 (x+ xo)
and β < y2xo

4α2 (x− xo)
. (2.75)

On the other hand if:

β <
−y2xo

4α2 (x+ xo)
or β > y2xo

4α2 (x− xo)
(2.76)

there will be a local maximum in σf . As x is considered positive, the term −y2xo
4α2(x+xo)

is always negative, so β will always be greater than it.
If the condition β = y2xo

4α2(x−xo) is satisfied, the critical point σf is an inflection point
that also satisfies the first order condition and it has a corresponding minimum point
in the primal problem for theorem 17.

Remark 2.2.4. In the case of x negative, the conditions are changed in the following
way:

• if x ∈ (−xo,0) then σf is always a local minimum of P d(σ)

• if x < −xo then:

1. if β > 0 and β < −y2xo
4α2(x+xo) , σf is a local minimum for the dual problem;

2. if β > 0 and β > −y2xo
4α2(x+xo) , σf is a local maximum for the dual problem;

3. if β > 0, β = −y2xo
4α2(x+xo) , σf is an inflection point in which the first order

derivative is zero and that corresponds to a a local minimum of the primal
problem.
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The proof of these statement is similar to that of theorem 19 and can be omitted.

Remark 2.2.5. Theorem 19 shows the effects of the parameter β on the pseudo
critical point σf . Similar effects can also be obtained in respect to y, x, α, and w.
The reason we choose β is because it is an hyper-parameter that can be chosen by
the practitioner before performing the optimization.

For the next theorem, we introduce the two following subsets of S+
a :

S+
] =

{
σ ∈ S+

a |σ > −
y

2

}
(2.77)

S+
[ =

{
σ ∈ S+

a |σ < −
y

2

}
(2.78)

Theorem 20. Let σf = −y
2 be the pseudo critical point in the dual problem and let

the primal problem have a maximum of five critical points. Then

• if σf is a local minimum for the dual function, there will be a local maximum
in S+

] that corresponds to a minimum of the primal problem.

• if σf is a local maximum then:

1. there are no critical points in S+
] ;

2. there is at least one critical point in S+
[

Proof. In the dual problem there must be a singularity point in G(σ) = 0 that goes
to −∞, so if σf is a local minimum, there must be a local maximum in S+

] .
If σf is a local maximum, we prove condition 1 by negating the thesis and suppose
that there is a least one critical point in S+

] . As P d(σ) goes to −∞ if G(σ) → 0,
there will be no one, but two critical points in S+

] , a local minimum σ1 and a
local maximum σ2 with the relation P d(σ1) < P d(σ2). For theorems 17 and 18, σ1
corresponds to the second highest local maximum of the primal function c1, and σ2
corresponds to the lowest or second lowest local minimum of the primal function c2,
that is the relation P (c2) < P (c1) is satisfied. By Theorem 16 we have:

P d(σ1) < P d(σ2) = P (c2) < P (c1) = P d(σ1)

that is a contradiction.
To prove condition 2, it is sufficient to notice that if there are no critical points in
S+
] , for the triality theory there must be at least one critical point corresponding to

the global minimum in S+
a and this point will be in S+

[ .
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Figure 2.4. Dual algebraic curves with y = 1, w = 2, α =
√

2
2 and β = 0.1 in

respect to the internal input x

Depending on the parameters, the primal problem (2.54) can have at most five
critical points. There are several cases:

Case 1: Three critical points for P (c) and four critical points for P d(σ), two
critical point in S+

a and 2 critical points in S−a , with σf as local minimum. The
values of the parameters are y = 1, x = 1, w = 2, α =

√
2

2 , β = 0.1 (see Figure
2.5)). This case can be easily solved with the general canonical duality framework
[6], as the local maximum in S+

a corresponds to the global minimum of the problem,
and the local minimum and maximum in S−a correspond to the local minimum and
maximum in the primal problem.

Case 2: Five critical points for P (c), six critical points for P d(σ). The values
of the parameters are y = 1, x = 4, w = 2, α =

√
2

2 . The only parameter that
has changed in respect to Case 1 is x. With these parameters the problem becomes
multi-welled. By referring to Figure 2.6, the two critical points with the lowest
values of the objective function are c1 and c3, which belong to the same double well
and their corresponding dual critical points are in S+

a . The critical point c1 ' 0 has
its corresponding critical point σ1 close to the boundary of S+

[ which is visible in
Figure 2.7 that is an enlargement of Figure 2.6 around the boundary of S+

[ , near
−y.
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Figure 2.5. Primal(in blue) and dual(in red) functions for Case 1 with 3 critical points

For this case, we discover the following interesting phenomena:

• For small values of β (see Figure 2.6 with β = 0.1), the global minimizer of
P (c) is c3 which is also a desirable solution to the original problem, and the
corresponding dual solution σ3 is in S+

] .

• For big values of β (see Figure 2.8 with β = 0.12), the global minimizer of
P (c) is c1 ≈ 0, which is not a desired solution to the original problem. The
corresponding dual solution σ1 is in S+

[ . In this case, the local minimizer c3 is
the desirable solution with the corresponding σ3 ∈ S+

] .

Detailed explanation on this discovery is needed. By the fact that the critical point
(c1 ' 0) of P (c) is generated by the term 1

2βc
2, which is the regularization used

to make the objective function coercive and more regular, we understand that this
critical point is not a desired solution to the original problem. The corresponding
dual variable σ1 ∈ S+

[ is always near the boundary, because as c gets close to zero, σ
gets close to −y. Since σ = w exp

{
(x−c)2

2α2

}
− y is a measure of the prediction error,

the critical point c1 corresponding to this σ1 ∈ S+
[ has a high value of error and

should not be considered as a good solution.
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Figure 2.6. Primal(in blue) and dual(in red) functions for case 2 with 5 critical
points in the primal and 6 critical points in the dual.

On the other hand, the stationary point σ3 ∈ S+
] ⊂ S+

a corresponding to a
minimum of the primal, has a lower absolute value of σ than the one near the
boundary of S+

[ ⊂ S+
a . This means that the solution corresponding to σ3 ' 0

should have a better final prediction.
From Theorem 19 we know that by having a lower value of β, the pseudo critical

point σf is usually a local minimum such that the canonical dual feasible set S+
]

contains a local maximizer of P d(σ), which is corresponding to as a global minimum
of the primal problem. However, in high dimensional problems, we don’t know the
best regulation value β and the solution that corresponding to critical point in S+

]

could be a local minimum. Therefore, it is possible that the global minimum of the
problem may not be the desired solution.

Case 3: Three critical points for P (c) and four critical points for P d(σ), all
belonging to S+

a . The values of the parameters are y = 1, x = 4, w = 2, α =
√

2
2 and

β = 0.22 (see Figure 2.9). This case is similar to the previous one, and the solution
of the dual problem should be the critical point that corresponds to a minimum in
the primal problem with the value of σ closer to zero.

Case 4: Three critical points in the primal and four critical points in the dual,
but with two critical points in S+

a , two critical points in S−a and σf as local maximum.
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Figure 2.7. Critical point on the boundary of the dual function feasible set for case 2.

The values of the parameters are y = 1, x = 8, w = 2, α =
√

2
2 and β = 0.1 (see

Figure 2.10). If the value of the hyper parameter β is reduced it is possible to make
σf into a local minimum and return in one of the previous cases.

Case 5: One critical point in the primal problem and two critical points in the
dual problem. This case occurs when the quadratic term with beta dominates the
error function W (x). If this case occurs, it means that the value of β is too big and
the problem is not related with the original anymore, so one should choose a smaller
value of β to have a problem related to the original.
Based on the study of these cases, we can obtain the general idea to find the best
solution, i. e. the hyper parameter β should be set to a value that satisfies condition
(2.75) in order to have σf as a local minimum, then search for the critical point in
the domain S+

] . By using condition (2.75) we can impose an upper bound to the
value of the parameter β simplifying the issue of the cross validation.
This research leads to the following important results:

1. Global minimum of a nonconvex problem in complex systems may
not be the desirable solution to the problem considered.

2. In order to find the optimal solution for the original problem, we
should find the critical point of P d(σ) in S+

] ⊂ S+
a even if the corre-

sponding primal solution is not a global minimum.
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Figure 2.8. S+
a of the dual problem in the case of β = 0.12. The minimum near

the boundary σ1 is a global minimum.

2.2.2 Multidimensional Case
After introducing and analyzing throughly the one-dimensional case, we briefly an-
alyze the multidimensional case and give the a complementarity dual principle the-
orem. Like for the one-dimensional we apply a dual sequential transformation, but
this time to vectors, so the analysis is performed once again step by step. As this
case is more complex, we analyze the neural network with Gaussian type of radial
basis function.

The primal problem is:

P (c) = 1
2

P∑
p=1

(
N∑
i=1

wie
− ‖xp−ci‖

2

2α2 − yp
)2

+ 1
2β‖c‖

2 − f‖c‖ (2.79)

Where w ∈ RN is the vector of the weights, y ∈ RP is the vector of the samples
output, c is a matrix in Rn×N with ci as the i-th column of the matrix. We choose
the following geometrical nonlinear operator in order to apply the canonical duality
theory to this problem:

ξp = Λp(c) =
N∑
i=1

wie
− ‖xp−ci‖

2

2α2 p = 1, . . . ,P (2.80)
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Figure 2.9. Primal(in blue) and dual(in red) functions for the case 3 with three
critical points in the primal and 4 critical points in S+

a .

with Λ : RN → Ea ∈ RP. Λ is a nonlinear map from RN to a sub space Ea of RP .
The canonical function V : Ea → R associated with this nonlinear operator is:

V (ξ(c)) = 1
2

P∑
p=1

(ξp − yp)2 (2.81)

Where ξ is the vector in Rp which elements are the ξp = ∑N
i=1wie

− ‖xp−ci‖
2

2α2 . The
function V : Ea → R is a canonical dual function on Ea if for any given ε ∈ Ea the
following duality relation:

σp = ∂V (ξ)
∂ξp

= {ξp − yp},for i = 1, . . . ,P. (2.82)

is invertible for all p = 1, . . . ,P . The variables σp are the duality mapping of the
problem and they are defined on the range Sa. The couples (ξp,σp) for p = 1, . . . ,P
form a canonical duality pair on Ea×Sa with the Legendre conjugate V∗(σ) defined
by

V ∗(σ) =


P∑
p=1

ξpσp − V (ξ)|σp = ∂V (ξ)
∂ξp

∀p

 =
P∑
p=1

(1
2σ

2
p + ypσp

)
. (2.83)
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Figure 2.10. Primal(in blue) and dual(in red) functions for the case 4 with 3
critical points in the primal and 2 critical points in S+

a and 2 critical points in S−a
and σf as a local maximum.

The term W (c) can be replaced by the term 〈Λ(c),σ〉 − V ∗(σ) and the primal
function P (c) can be reformulated as the so-called total complementarity function
defined by:

Ξ(c,σ) = 〈Λ(c),σ〉 − V ∗(σ) + 1
2β‖c‖

2 − f‖c‖ = (2.84)

P∑
p=1

σp

(
N∑
i=1

(
wiexp

{
−‖xp − ci‖2

2α2

})
− 1

2σ
2
p − ypσp

)
+ 1

2β‖c‖
2 − f‖c‖

The radial basis function exp
{
−‖xp−ci‖

2

2α2

}
also creates nonlinearities in the problem.

In order to eliminate these nonlinearities, we have to perform a second sequential
canonical dual transformation for the nonlinear operator Λ(c). The second level
nonlinear operator we choose :

εpi(ci) = ‖xp − ci‖2 (2.85)

The first level geometrical operator becomes:

Γpi(c) = wiexp
{
− εpi

2α2

}
= Upi(ε) (2.86)
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with U : RN → Eb ∈ RP×N. In term of εpi the first level operator can be written as

ξp =
N∑
i=1

Upi(ε) =
N∑
i=1

wiexp
{
− εpi

2α2

}
p = 1, . . . ,P. (2.87)

Like for the first level dual transformation, we assume that the function U is convex
in ε. With such property the second-level duality relation:

τpi = ∂U

∂εpi
= − wi

2α2 exp
{
− εpi

2α2

}
(2.88)

is invertible for every p = 1, . . . ,P and i = 1, . . . ,N , that is the variable ε can be
expressed in respect to τ as

εpi = −2α2Log

(
2α2τpi
wi

)

for every p = 1, . . . ,P and i = 1, . . . ,N . The Legendre conjugate is:

U∗pi = −2α2τpi

[
ln
(
−2α2τpi
wi

)
− 1

]
p = 1, . . . ,P,i = 1, . . . ,N. (2.89)

As we have that U(c) = ∑P
p=1

∑N
i=1 εpiτpi + 2α2τpi

[
ln
(
−2α2τpi
wi

)
− 1

]
, the total com-

plementarity function can be rewritten from this form:

Ξ(c,σ,τ) = 〈U(c),σ〉 − V ∗(σ) + 1
2β‖c‖

2 − fc (2.90)

to the following form:

Ξ(c,σ,τ) =
P∑
p=1

σp

(
N∑
i=1

(
‖(xp − ci‖2τpi + 2α2τpi

[
ln
(
−2α2τpi
wi

)
− 1

])
− 1

2σ
2
p − ypσp

)
(2.91)

+1



2.2 – Canonical Duality Theory

Fji(τ ,σ) =
fji + 2

P∑
p=1

xjpτpiσp

 j = 1, . . . ,n i = 1, . . . ,N (2.94)

and

Fi(τ ,σ) =
n∑
j=1

Fji =
n∑
j=1

fji + 2
P∑
p=1

xjpτpiσp

 (2.95)

By reordering the terms in (2.91) according to the values of G(τ ,σ) and Fji(τ ,σ)
in (2.93) and (2.94) we obtain

Ξ(c,σ,τ) = 1
2

N∑
i=1

n∑
j=1

c2
ji

β + 2
P∑
p=1

τpiσp

− cji
fji + 2

P∑
p=1

xjpτpiσp

+
P∑
p=1

x2
jpτpiσp


(2.96)

−1
2

P∑
p=1

σ2
p −

P∑
p=1

ypσp + 2α2
P∑
p=1

σp
N∑
i=1

(
ln

(
−2α2τpi
wi

)
− 1

)
τpi

by using the first order derivative in cji, from the 2.96 we have that

∂Ξ(c,σ,τ)
∂cji

= cjiGi(τ ,σ)− Fji(τ ,σ)→ cji = Fji(τ ,σ)G−1
i (τ ,σ) (2.97)

by substituting the value of cji for j = 1, . . . ,n and i = 1, . . . ,N found in (2.97) we
find the dual problem in σ and τ

P d(σ,τ) = −1
2

N∑
i=1


(∑n

j=1

(
fij + 2∑P

p=1 xjpτpiσp
))2

β + 2∑P
p=1 τpiσp

+
n∑
j=1

x2
jpτpiσp

−U∗(τ,σ)−V ∗(σ).

(2.98)
from equation (2.88) we have that ξp = − 1

2α2
∑N
i=1 τpi. In this way we obtain that

σp = −
(
yp + 2α2

N∑
i=1

τpi

)
(2.99)

by using this relation, it is possible to write the dual problem only in respect to the
variable τ

P d(τ) = −1
2

N∑
i=1


(∑n

j=1

(
fij − 2∑P

p=1 xjpτpi
(
yp + 2α2∑N

k=1 τpk
)))2

β − 2∑P
p=1 τpi

(
yp + 2α2∑N

k=1 τpk
)

−

P∑
p=1

n∑
j=1

x2
jp

N∑
i=1

τpi

(
yp + 2α2

N∑
k=1

τpk

)
−2α2

P∑
p=1

(
yp + 2α2

N∑
k=1

τpk

)
N∑
i=1

τpi

(
ln

(
−2α2τpi
wi

)
− 1

)
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−1
2

P∑
p=1

(
yp + 2α2

N∑
i=1

τpi

)2

+
P∑
p=1

yp

(
yp + 2α2

N∑
i=1

τpi

)
. (2.100)

Remark 2.2.6. In the one dimensional case, the dual was written in respect of the
first level dual variable σ. In the multidimensional case such thing is not possible
as there are some terms, like for example the logarithms, where it is impossible to
substitute τ with σ.

if we define:

‖xm − cl(τ )‖2 =

 n∑
j=1

xjm − fjl − 2∑P
p=1 xjpτpl

(
yp + 2α2∑N

k=1 τpk
)

β − 2∑P
p=1 τpl

(
yp + 2α2∑N

k=1 τpk
)

2 (2.101)

First order derivative in τip is:

∂P d(τ )
∂τml

= −
(
ym + 2α2

N∑
k=1

τmk

)(
‖xm − cl‖2 + 2α2 ln

(
−2α2τml

wl

))
(2.102)

−δll2α2
N∑
i=1

τmi

[
‖xm − ci‖2 + 2α2 ln

(
−2α2τmi

wi

)]
m = 1, . . . ,P l = 1, . . . ,N

Where δll is defined as

δij =

1, if i = j

0 if i /= j

Now that we have the second order derivatives for the dual, we can prove the
complementarity dual principal in the multidimensional case.

Theorem 21. if τ̄ is a critical point of (P d) and yp + 2α2∑N
k=1 τ̄kp /= 0 for all

p = 1, . . . ,P , then the point c̄ ∈ Rn×N defined as:

c̄ji =

fji − 2∑P
p=1 xjpτ̄ip

(
yp + 2α2∑N

k=1 τ̄kp
)

β − 2∑P
p=1 τ̄ip

(
yp + 2α2∑N

k=1 τ̄kp
)


ji

(2.103)

is a critical point of P (c) and P (c̄) = P d(τ̄ )

Proof. From the first order conditions in (2.102) it must be true that the following
relation:

−
[(
ym + 2α2

N∑
k=1

τmk

)
‖xm − cl‖2 +

N∑
i=1

2α2τmi‖xm − ci‖2
]

= (2.104)
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−2α2
[(
ym + 2α2

N∑
k=1

τmk

)
ln
(
−2α2τml

wl

)
+ 2α2

N∑
i=1

τmi

(
ln
(
−2α2τmi

wi

))]
must be true for all m = 1, . . . ,P and l = 1, . . . ,N . In other words it must be
satisfied the condition:

−||xm − c̄l||2 − 2α2 ln
(
−2α2τml

wi

)
= 0 m = 1, . . . ,P l = 1, . . . ,N

that is:
τ̄ml = − wl

2α2 e
− ||xm−c̄l||

2

2α2 m = 1, . . . ,P l = 1, . . . ,N

the first order conditions for the primal problem are:

∂P (c)
∂chl

=
P∑
p=1

[
xhp − chl

α2 wle
− ||xp−cl||

2

2α2
N∑
i=1

(
wie

− ||xp−cl||
2

2α2 − yp
)]

+βchl−fhl = 0 (2.105)

by noticing that ∑N
k=1wke

− ||xm−ck||
2

2α2 − ym = σm = −
(
ym + 2α2∑N

k=1 τmk
)
and from

the (2.88) we obtain:

chl =
fhl − 2∑P

p=1 xhpτpl
(
yp + 2α2∑N

k=1 τpk
)

β − 2∑P
p=1 τpl

(
yp + 2α2∑N

k=1 τpk
) (2.106)

by substituting the value of the τ̄ml in the (2.106) we prove that c̄ji for j = 1, . . . ,n
i = 1, . . . ,N is a critical point for the primal problem.

For the functions value equivalence, we start from the dual problem (2.100) in
τ̄ perform the due substitutions and obtain:

P d(τ̄ ) =
 P∑
p=1

N∑
i=1
||xp − c̄i||2τ̄ip − U∗(τ̄ )

(yp + 2α2
N∑
k=1

τ̄kp

)
−V ∗(τ̄ )+1

2β||c̄||−
N∑
i=1

n∑
j=1

fjic̄ji

by considering that
P∑
p=1

N∑
i=1
||xp − c̄i||2τ̄ip − U∗(τ̄ ) =

P∑
p=1

N∑
i=1

wie
− ||xp−c̄i||

2

2α2

and that P∑
p=1

N∑
i=1

wie
− ||xp−c̄i||

2

2α2

(yp + 2α2
N∑
k=1

τ̄kp

)
− V ∗(τ̄ ) =

P∑
p=1

(
N∑
i=1

wie
− ||xp−c̄i||

2

2α2 − yp
)

we obtain that:

P d(τ̄ ) =
P∑
p=1

(
N∑
i=1

wie
− ||xp−c̄i||

2

2α2 − yp
)

+ 1
2β||c̄|| −

N∑
i=1

n∑
j=1

fjic̄ji = P (c̄)

that proves the theorem.
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Remark 2.2.7. If yp + 2α2∑N
k=1 τ̄kp = 0 for at least one p then we are in a pseudo

critical point, and as we have seen in Theorem 17, this point does not have any
corresponding point in the primal problem.

In conclusion, this application of canonical duality theory to radial basis neural
networks shows the potentially of this theory to simplify the non-convex primal
problem into a simpler problem. The multidimensional dual formulation given by
(2.100) is still under study as it presents even more issues than the one-dimensional
case, but solving these issues could bring a good contribute to the neural network
research community.
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Chapter 3

Applications

In this chapter we show the different applications on which the models and tools
presented in the previous chapters are utilized. Most of these problems are direct
applications of surrogate models to the regression of functions in some practical
context, while other application heavily integrate the black box methods and the
surrogate models in order to solve complex optimization problems.

3.1 Black Box Algorithm for Cross Validation
Like we said in Section 1.5, cross validation is an important phase to determine the
best hyper parameters of the model in order to get the best prediction as possible.
Also, always in Section 1.5, we reported one of the most simple and most used
strategy for cross validation, that is the grid search. As we already said, this simple
procedure can be too time demanding if the grid is to dense or not accurate enough
if the grid is too sparse.

To avoid the fore mentioned shortcomings, in literature the grid search has been
replaced by different optimization techniques. Most of such techniques can be di-
vided into two classes. In the first class, gradient based methods are used to de-
termine the model parameters that minimize a continuously differentiable estimate
of a generalization error such as leave one out error or k-fold cross validation error.
These methods have a fast convergence but suffer from the fact that they are local
methods that can be stuck into a stationary point of the problem and from the fact
that the goodness of the obtained points is affected by the error of the estimates
used as objective functions.

The second class of methods are based on global stochastic optimization tech-
niques, such as genetics algorithms , simulated annealing or swarm optimization.
These methods have a high probability of finding a good approximation of the
global minimum of a problem, but at the price of using a large number of function
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evaluations. Therefore when the number of function evaluation is limited by a prac-
tical stopping criterion (as in the case of determining the model parameter of SVM),
the obtained solution can be far from the global optimum and, often, from a local
minimum point.

In this research we follow the approach proposed in [35] and test the SVM sur-
rogate model. The main features of this approach are:

• The objective function to be minimized is a generalization error of the SVM
and not an approximation; therefore the quality of the obtained solutions does
not depend on the error of the approximation function.

• The use of derivative free methods for minimizing the black box objective
function consisting in generalization error of the SVM; this class of methods
have the advantages over global algorithms to get interesting points after a
few number of function evaluations; compared to gradient based algorithms
the derivative free methods are less attracted by stationary points.

In [35] the proposed method was tested on a few data sets of small and medium
size. The obtained results showed that the proposed approach seems to be interest-
ing.

The aim of this research is to confirm the interest of using a derivative free
strategy in choosing the model parameters of a SVM. In particular instead of using
a pattern search approach (as in [35]), we use a line search derivative free method
for boxed constrained problems proposed in [23] and reported in Chapter 2. The
motivation of this choice follows from the fact that the line search approach seems to
be efficient in saving the number of function evaluation(see for example the numerical
results reported in [36]). In order to evaluate better the possible potentialities of
the derivative free approach, we perform a wider numerical experimentation both
on classification problems and regression problems.

3.1.1 Black Box Optimization Problem
Given a particular choice of the model parameters, the prediction capability of the
SVM is validated on a new set of samples, different from those in the training
set. This set is denoted by V := {(x̂i,ŷi),x̂i ∈ Rn,ŷi ∈ H, for i = 1, . . . ,mv}
with H = {−1,1} for the classification problems, and H = R for the regression
problems. The values of these errors heavily depend on the choice of the model
parameters. Therefore all the SVM training procedures can be considered as a
black box function that, given a set of values of the model parameters, returns the
error on the validation set of the trained SVM. However the values of this black
box function heavily depend on the training set S and validation set V . In order
to have a black box less depending on the particular choice of the sets S and V
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the k-fold cross validation is usually used. We described the k-fold cross validation
strategy in Section 1.5. After this procedure, it is possible to evaluate the goodness
of the particular choice for the model parameters by computing the mean of the k
different MSE. In our experimentation we choose k = 10 as usually done in most
application. All this procedure can be considered a reliable black box function φ(·)
whose minimization should allow to determine good values of the model parameters.
In particular in the following we consider two black box optimization problems.

2 variables minimization (DF 2)

In this case we consider the model parameters C and σ. In particular we use the
black box function described before to define the following box constrained problem:

minφ(C,σ)
lC ≤ C ≤ uC (3.1)
lσ ≤ σ ≤ uσ.

As regards the bounds on the variables of the black box function and the starting
point for the derivative free algorithm, we followed the choices suggested in [28]. In
particular the pair (C,σ) were constrained by the following box constrains:

lC = 2−5 uC = 215

lσ = 2−15 uσ = 23.

and the starting point (C0,σ0) suggested is:

C0 = 1 σ0 = 1/num_features = 1/12

3 variables minimization (DF 3)

In the regression problem, in order to have an higher level of precision, we considered
as variable also the parameter ε. The derivative free algorithm for regression mini-
mizes the black box function φ(C,σ,ε) in the box constrained optimization problem:

minφ(C,σ,ε) (3.2)
lC ≤ C ≤ uC

lσ ≤ σ ≤ uσ

lε ≤ ε ≤ uε.

For the lower and the upper bound values we used for C and σ the same values
of the 2 variables optimization, while for ε we decided to set:
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lε = 10−5 uε = 105.

For the starting point, the values of C and σ are the same of the 2 variables
optimization, while for the initial value of ε we refereed to ([28]) setting ε0 = 0.1

We solved Problems (3.1), (3.2) by using the derivative-free algorithm for bound
constrained optimization described in Chapter 2.

3.1.2 results
In this section we report the numerical results obtained by the methods described
in Section 3.1.1 on several datasets taken from the literature. In particular the
approach that optimizes two parameters was tested on 10 problems of classification
and 21 problems of regression. The approach that optimizes three parameters was
used only on the 21 regression problems.

Before the training, the samples in the data are randomly shuffled and normalized
according to the mean and the variance of the samples in the training set.

After choosing the SVM parameters according to the k − fold validation error,
the reported results will be on a separate test set not utilized for the cross validation.

The aim of this numerical experimentation is twofold:

- First to understand if it is worthwhile to use an optimization procedure to
compute the value of the parameter of the SVM instead of using values dictated
from the experience.

- Second to understand the different features of the analyzed methods.

Classification

In the first part of our numerical experience we have considered a set classification
problems. In Table 3.1 we report:

• in the first column the name of the dataset;

• in the second column the number of features for that dataset;

• in the third and fourth columns the number of instances used for cross valida-
tion and test phases.

In our experimentation we use the percentage of success for the classification, namely:

Ec = ms/mt

where ms is the number of success and mt is the total number of samples in the test
set.
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Dataset Features Train Test
A1A 123 18500 12456
A2A 123 18100 12196
A3A 123 17600 11776
Clean 166 4200 2874
Faults 32 1100 841
Magic 10 11400 7620
Mush 112 4800 3324
RNA 8 357 23835
Spam 57 2700 1901

Svmguide 4 4200 2889

Table 3.1. Division of the classification data sets: 60% for cross valida-
tion and 40% for test

For the partition of the data in cross validation and the test set, we decided to
divide them with a ration of 60% for the k − fold and the remaining 40% for the
test set. The results obtained in our experimentation are summarized in Table 3.2,

Dataset Error D. Error GS Error DF 2 T G-S T DF G-S/DF
A1A 0.841 0.845 0.845 424307 29073 0.07
A2A 0.843 0.846 0.847 410245 31279 0.8
A3A 0.846 0.849 0.848 402262 29825 0.07
Clean 0.965 0.995 0.992 19414 2563 0.13
Faults 0.864 0.881 0.843 1450 350 0.24
Magic 0.871 0.875 0.875 189589 4218 0.02
Mush 0.999 1 0.999 18316 2239 0.12
RNA 0.887 0.904 0.955 7566 13262 1.75
Spam 0.921 0.932 0.926 4489 567 0.13

Svmguide 0.971 0.974 0.97 1695 184 0.11

Table 3.2. Results for the classification datasets

where we have reported:

• in the first column the name of the sets;

• in the second column the percentage of success on the test set obtained by
training the SVM on the training set by the default settings:

C = 1, σ = 1
nfeatures

; (3.3)
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• In the third column the test error obtained by the SVM were the parameters
C and σ were obtained by the procedure of the Grid Search;

• In the fourth column the test error obtained by the SVM where the parameters
C and σ were obtained by the procedure of the black box optimization that
optimizes two parameters;

• in the fifth column the total time in seconds needed by the grid search for
analyzing the whole grid.

• in the sixth column the total time in seconds needed for the black box opti-
mization to determine the optimal parameters;

• in the seventh column the ratio between the time needed for the grid search
method and the derivative free method.

First we notice that even in the default setting the precision of the SVM is quite
high. For this reason the two cross validation strategies in the majority of cases are
able to improve the prediction of just a small ratio in comparison to the original
solution. The only two cases were the cross validation is able to create models with
a largely better prediction is for the datasets “Clean” and “RNA”. These results
indicate that in general for classification it is always a good practice to apply cross
validation strategies in order to improve the prediction.

For the comparison of the two strategies it is possible to see that they are able to
yield similar results, with the grid search being sightly better. The biggest difference
is in the comparison of the time needed to get the solution. Just in one case, “RNA”,
the DF algorithm takes more time than the Grid Search to find a solution, that in
this case is quite better than the other method. For the remaining cases, the DF
method takes from a fourth to less than 1/50 times than the Grid Search method
to find a solution.

Regression

The second part of our numerical experimentation is centred on regression problems.
In Table 3.3 we report the same kind of data reported in Table 3.1 but for the
regression set. The tests this time were performed on 21 datasets. In Table 3.4 we
report the result in the following fashion:

• In the first column the name of the datasets;

• in the second, third, fourth and fifth columns the results for the initial point of
the minimization, the Grid Search, DF2 and DF3 methods respectively. The
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Dataset Features Train Test
Abalone 10 2500 1677
Bank 32 4900 3292
Boston 13 300 206
Cadata 8 12400 8240
Cal-h 8 12200 8260
Cpu-a 21 4900 3292
Cpu 12 4900 3292
Dati 12 4950 3298

Delta-a5 5 4300 2829
Delta-e6 6 4300 2829
Elevators 18 10000 6599

F16 40 8250 5500
Fried 10 24460 16308
House 16 13670 9114

Kinematic 8 4890 3263
MG 6 830 555
Pol 48 9000 6000

Puma8 8 4900 3292
Puma32 32 4900 3200
Space 6 1860 1247

Wisconsin 32 110 84

Table 3.3. Division of the regression data sets: 60% for cross validation
and 40% for test

performances are measured with the MSE error:

MSE := 1
P

P∑
p=1

(fp − yp)2,

Where P is the number of samples in input, fp are the results of the surrogate
models, and yp are the real outputs;

• in the sixth, seventh and eighth columns the time needed for the three methods
to find the solution

• in the ninth column the ratio between the time needed for the grid search
method and the DF2 method, while in the 10-th column the ratio between the
time needed for the grid search method and the DF3 method.
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Dataset Mse D. Mse G-S Mse DF2 Mse DF3 T G-S T DF2 T DF3 G-S/DF2 G-S/DF3

Abalone 2.65E-01 2.72E-01 2.67E-01 2.93E-01 9511 814 604 0.09 0.06

Bank 5.01E-01 4.71E-01 4.72E-01 4.66E-01 26626 3494 5129 0.13 0.19

Boston 1.97E-01 1.62E-01 1.43E-01 1.43E-01 769 243 387 0.32 0.50

Cadata 2.60E-01 2.45E-01 2.47E-01 2.46E-01 423723 25072 25681 0.06 0.06

Cal-h 3.42E-01 2.45E-01 3.50E-01 3.43E-01 379495 5006 7871 0.01 0.02

Cpu-a 6.50E-02 3.45E-01 2.83E-02 3.02E-02 20592 9563 14384 0.46 0.70

Cpu 5.03E-02 2.76E-02 2.82E-02 2.82E-02 25603 6990 13899 0.27 0.54

Dati 2.58E-01 1.71E-01 1.83E-01 1.83E-01 30149 10510 15287 0.35 0.51

Delta-a5 1.11E-03 3.84E-04 4.04E-04 2.61E-04 1121 104 2340 0.09 2.09

Delta-e6 2.17E-02 2.14E-02 2.13E-02 2.13E-02 36287 640 824 0.02 0.02

Elevators 1.49E-01 6.17E-02 6.37E-02 6.41E-02 257862 122193 114397 0.47 0.44

F16 2.96E-03 1.03E-03 9.93E-04 2.39E-04 5162 1001 11966 0.19 2.32

Fried 4.66E-02 4.35E-02 4.31E-02 4.31E-02 45 days 6 days 8 days 0.13 0.18

House 4.94E-01 4.00E-01 4.09E-01 4.10E-01 471245 90555 157347 0.19 0.33

Kinematic 1.07E-01 8.17E-02 7.96E-02 7.96E-02 39955 8747 11978 0.22 0.30

MG 2.63E-01 2.74E-01 2.63E-01 3.00E-01 1216 255 448 0.21 0.37

Pol 1.53E-01 3.82E-02 3.91E-02 3.63E-02 120741 40592 120701 0.34 1.00

Puma8 3.33E-01 3.28E-01 3.31E-01 3.28E-01 34927 2676 4149 0.08 0.12

Puma32 8.10E-01 6.71E-01 7.17E-01 7.12E-01 20817 10243 13630 0.49 0.65

Space 3.66E-01 3.58E-01 3.29E-01 2.91E-01 5475 1560 2321 0.28 0.42

Wisconsin 1.20E+00 1.21E+00 1.31E+00 1.35E+00 527 208 215 0.39 0.41

Table 3.4. Division of the classification data stress test

From these results, we see that three times on 21 the G-S method is not able to
improve from the default point, while the DF2 and DF3 methods are not able to
improve the results on four datasets on 21, three of these datasets are shared among
the three methods. In other words these datasets seem to have some particular
issues even if the data samples are randomly shuffled. In any case, when the cross
validation method improves the prediction, this improvement is substantial. For the
results the G-S method yields the best results on nine datasets while gives equal
results to DF3 on one dataset. On a close majority of the datasets the derivative
free methods are able to give better results than the grid search method, but in
general the two strategies seem to be equivalent. It is important to notice that even
if in the DF3 strategy the ε hyper parameter is optimized together with C and σ,
this method is not able to always give better results than DF2. In fact the derivative
free optimization that optimizes just two hyper parameters sometimes is superior.
From the point of view of the results DF2 and DF3 can be considered on an equal
standing.
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For the time needed to find the solution, the same behavior for the analysis per-
formed on the classification datasets can be observed. The derivative free methods
are able to obtain comparable results with the G-S method even in a 1/50 of the
time. The DF3 strategy, because it has more variables to optimize, takes more time
than the DF2 to converge to a solution.

As conclusion, we can say that applying a cross validation strategy is in the
majority of cases a convenient choice to improve the results. From our analyses
the reported methods are able to yield very similar results, but the derivative free
methods have the upper hand from the point of view of the time needed to find a
solution. Also the results seems to indicate that not always it is a good choice to
take more computational time to optimize all the three hyper parameters.

3.2 Ozone Forecasting
Air pollution is one of the principal problems that affect high-density urban areas
such as Rome. One of the most important background pollutant in cities char-
acterized by Mediterranean climate is the ozone. Ozone is a secondary pollutant,
which levels are influenced by the chemical reaction from pollutants directly emit-
ted from anthropogenic sources, usually defined as primary pollutants. A survey of
the complex photochemical reactions chains can be found in different works ([38],
[39]). A high concentration of Ozone usually causes respiratory problems and the
World Health Organization declared ozone as a pollutant that can cause relevant
effects on human health [40]. In this context, models to forecast short-term Ozone
levels can be used to plan a health warning system. Enlarging the period prediction
allows the authorities to adopt better measures to help the population. Therefore
an increment of the forecast period is an important research argument. Excluding
the case of ideal atmosphere composition, chemical reactions cannot be described by
simple models because they are characterized by complex and nonlinear relations
among pollutants and by some typical feedback behaviours of the NO2 and NO.
These reactions depend directly or indirectly by measurable variables like:

• The ones linked to long range transport of ozone;

• The incoming solar radiation;

• Turbulence conditions;

• The main compounds involving the reactions.

Therefore the ozone photochemical production can be described by high non-linear
relations and this justifies the use of non-linear mathematical models to simulate all
the phenomena connected to the Ozone production. Typical linear models, such as
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the statistical regression methods, are often used to approximate linear relations be-
tween variables and, therefore, they can be unsuitable to tackle such high non-linear
phenomena. Instead SVM are more suitable to approximate non-linear relations and,
hence, they should work better in respect to classical regression models to forecast
the Ozone levels. In literature several works successfully used Learning machines in
the field of ozone forecasting. For example [41] is centered on comparisons of results
between learning machines and regression models in forecasting daily ozone pollu-
tion. Other authors [42] use Neural Networks (NN) for forecasting daily peaks of
several pollutants in a forecast period of 48 hours, ozone included, while [43] makes
a 24-hour prediction on daily ozone peaks. Only few papers have considered the use
of SVM in pollutant forecasting [44], despite their interesting theoretical properties.
In this paper we have considered the data collected in the urban area of Rome in
the calendar year 2005. Such Data regard pollutants and meteorological variables.
Our main aims are to forecast hourly ozone levels in the short term (24/48 hours)
as best as possible and to get reasonable forecasts in the medium term (10 days).
Our approach is based on:

• The use of accurate optimization techniques both for training the learning
machines and for determining the parameters that define the SVM.

• A complete analysis of the input variables in order to extend the prediction
period.

3.2.1 Considered problem and data
As we said in the introduction, ozone is a secondary pollutant. Then a suitable
forecasting technique must convey enough information on the complex chemical re-
actions that happen in the atmosphere. A possible procedure is to use a learning
machine that extracts the needed information from a suitable data set. In this work
we use the data set obtained by a monitoring station of the ARPA LAZIO (Re-
gional Agency for Environmental Protection in Lazio) network in the urban centre
of Rome (the station of Largo Magna Grecia), which recorded hourly data through-
out the calendar year 2005. The data consists of both pollutant and meteorological
information. The pollutant data are: Carbon monoxide, Nitrogen oxide, Nitrogen
dioxide and Ozone. The Meteorological data are: Air Temperature, Global Solar
Radiation, Relative Humidity and Pressure. These data are widely considered the
most significant in ozone prediction by classical deterministic models [45] [46] [47].
A learning machine approach has the advantage of easily consider new type of infor-
mation and to evaluate if they are significant or not. As matter of facts the complex
chain of reactions that determines the ozone levels in the atmosphere is influenced
by phenomena not strictly connected to pollutant or meteorological information.
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Examples of such phenomena are anthropogenic emission or seasonality. So we con-
jecture that an improvement of ozone level prediction can be obtained by exploiting
information about these phenomena. For this reason we consider exogenous data
and for our experimentation we add four additional integer type of data to the me-
teorological and pollutant ones. Because of these considerations we utilize for our
learning procedures a model with pollutant, meteorological and exogenous variables
for a total of 12 variables in input. These input data are used to train different
learning machines to predict ozone levels with time lags increasing from 1 day to 10
days after the moment the samples in input are measured.

3.2.2 Prediction of the ozone pollutant
In this section we investigate the use of SVM as a tool to forecast ozone pollutant and
to point out hidden relations between ozone levels and exogenous input variables at
lag 0. Our analysis begins with investigating the data set at 24 hours and continues
analysing the data sets with enlarged prediction period. We do not only use the
MSE error to evaluate the goodness of the results, but also the R2 error, that is

R2 :=
σ2
f,y

σf ∗ σy
,

where σf,y is the covariance between the calculated output f and the real output
y, σf and σy are the variances of the calculated output and the real output respec-
tively. This coefficient varies in the interval [0,1] with 1 being the best possible value
achievable, it does not depend on the scale of the output and it indicates how much
well the models fit the original data.

Prediction at 24h

In this subsection we use the SVM to forecast the ozone levels in the short term
(24h). First we consider as input parameters of the SVM variables in Table 3.5
that are the pollutant and meteorological variables usually used in literature. After
utilizing the cross validation procedure DF2 the SVM yields the following results:

MSE = 0.237 R2 = 0.768

In order to have an idea of the effectiveness of the SVM in this particular class of
problems we compare its prediction with the one obtained with a standard statistical
technique. In particular we use the multiple regression [48] on the same data set.
We choose as the set of variables in input of the Multilevel Regression (MR) the
same set of input variables used for the SVM. The MR gives the following results:

MSE = 0.327 R2 = 0.667
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CO Carbon monoxide
NO Nitrogen Oxide
NO2 Nitrogen Dioxide
O3 Ozone
T Temperature

SolRad Solar Radiation
RHm Relative Humidity
P Pressure

Table 3.5. the eight standard variables

Comparing these results, we note that SVM prediction is more accurate. This is
probably due to the high non-linearity that characterizes the relations between the
input variables and the output. However these eight standard variables probably do
not represent all the possible variables that can influence the complex chemical and
physical phenomena in the atmosphere. For this reason we try to identify some other
variables that could influence directly or indirectly these phenomena. Since we do
not have more information besides the ones in the data set, we choose four additional
variables, which can be easily obtained, because they are recorded together with the
measures. These variables are reported in Table 3.6. With these 12 variables the

h hour of the day
DW Day of Week
DM Day of Month
M Month

Table 3.6. the four additional variables

SVM gives the following results:

MSE = 0.165 R2 = 0.828

We note that adding these four additional variables to the input gives a better
prediction. In fact both the MSE and the R2 improve significantly. This seems to
indicate that these four additional variables are strictly connected with the average
turbulence conditions during the ozone detection. The multiple regression with the
set of 12 inputs variables gives the following results:

MSE = 0.324 R2 = 0.674

By comparing the results obtained by the MR using eight and 12 parameters in
input, we note that the input parameter set with the additional variables does not
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produce significant improvements. Comparing the effects of the new four inputs
on the prediction of the SVM and the multiple regression, we note that, unlike the
SVM, the multiple regression is not able to reproduce the further information given
by these additional variables. The previous results seem to point out that SVM are
capable to represent better the possible non linear relations between these four new
variables and the ozone levels.

Enlarging the Period of Prediction

In this subsection we enlarge the prediction period. As we said in the introduction,
this is an important challenge in the field of pollution forecasting. In fact the
standard methods are not reliable in forecasting beyond 24/48 hours. Similarly to
the case of the 24h prediction, we start by using the standard eight meteorological
variables and we predict the ozone values with increasing forecasting periods. In
particular our period of prediction goes from the standard 24h (1 day) to 240h
period (10 days). In table 3.7 we reported the MSE and the R2 obtained by the
SVM and the multiple regression. We note that the results obtained by the SVM

Days MSE SVM 8i MSE MR 8i R2 SVM 8i R2 MR 8i
1 0.237 0.327 0.768 0.667
2 0.25 0.439 0.749 0.548
3 0.31 0.472 0.691 0.504
4 0.297 0.497 0.708 0.496
5 0.271 0.5 0.726 0.503
6 0.264 0.503 0.735 0.49
7 0.274 0.513 0.726 0.494
8 0.266 0.526 0.737 0.475
9 0.273 0.553 0.73 0.462
10 0.274 0.539 0.724 0.442

Table 3.7. Behaviour of the MSE error and R2 by using eight input variables

outperform the ones obtained by the multiple regression, both in term of MSE and
R2. As regards the behaviour of the prediction error of the SVM (see Figure 3.1) we
note that the MSE error worsens from the first day (24h) to second day (48h), it also
gets worse from the second day to the third day, and after the third day it becomes
almost constant around the value 0.26/0.27. The value of the MSE obtained by the
SVM in the period going from the third day to tenth day, is better than the value
of the error obtained by MR at 24h (1 day).

For the MSE of the MR (see Figure 3.1) there is a strong worsening from the first
day to the third day and after that day, the error steadily continues to get worse.
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Figure 3.1. Behaviour of the MSE error in SVM and MR with eight inputs.

Figure 3.2. Behaviour of the R2 error in SVM and MR with eight inputs.

As regards the R2 error (see Figure 3.2) it has a symmetric behaviour in respect
to the one of MSE. In particular for SVM we have a worsening of the R2 from the
first day to the third day and after the third day it becomes constant around 0.73,
that is better than the best value of the MR in the first day. The R2 error of the
MR (see Figure 3.2) after a strong worsening from the first day to the third day, it
continues to get worse in the following days. As second step in our attempt to obtain
good predictions for longer periods, we increase the number of the inputs variables.
We add to the eight standard meteorological variables (described in Table 3.5) the
four additional variables concerning the human activities and seasonal variability
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(described in Table 3.6). As regards the multiple regression results, we note that

Days MSE SVM 12i MSE MR 12i R2 SVM 12i R2 MR 12i
1 0.165 0.324 0.828 0.674
2 0.18 0.437 0.818 0.555
3 0.185 0.466 0.818 0.517
4 0.179 0.489 0.82 0.51
5 0.181 0.487 0.821 0.522
6 0.167 0.491 0.833 0.509
7 0.167 0.494 0.835 0.52
8 0.172 0.513 0.827 0.495
9 0.178 0.533 0.821 0.488
10 0.175 0.528 0.825 0.461

Table 3.8. Behaviour of the MSE error and R2 by using 12 input variables

there are no significant differences between the results reported in Table 3.7 and
in Table 3.8. This shows again that the MR seems to not be able to exploit the
information contained in the four additional input variables.

Figure 3.3. Behaviour of the MSE error in SVM and MR with 12 inputs.

In Figure 3.3 and Figure 3.4 we report the values of the MSE and R2 errors at
different days in the cases of SVM and MR with eight and 12 inputs. From Figure 3.3
is evident that the behaviours of the MSE for the MR eight inputs and MR 12 inputs
are almost the same. While the behaviour of the MSE for the SVM eight inputs and
SVM 12 inputs is different and the improvement of the error is conspicuous. Same
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behaviour can be seen for the R2 in Figure 3.3. In order to better understand the

Figure 3.4. Behaviour of the R2 error in SVM and MR with 12 inputs.

role of the four additional variables described in Table 3.6 in the prediction of ozone
pollutant levels, we report in Table 3.9 the R2 of the SVM model trained by using
as input only the four additional variables with the same DF2 strategy. We see in

Days R2 Days R2

1 0.7293 6 0.7184
2 0.741 7 0.7281
3 0.7398 8 0.7234
4 0.7361 9 0.7378
5 0.7118 10 0.7303

Table 3.9. Behaviour of the MSE error and R2 by using the four additional variables

Table 3.9 that the the R2 remains in an interval between 0.7118 and 0.7410. The
R2 begins with a relative good value and does not deteriorate itself from the first
day to the tenth day, and sometimes it even gets better. Comparing the results of
the R2 error in Table 3.9 with those in Table 3.7 and Table 3.8, we note that using
the set of eight inputs variables (see Table 3.5) in the first day of prediction the R2

error is better than the one obtained in Table 3.9, while the R2 from the second
day of prediction to the tenth day are comparable. This indicates that, as known,
the meteorological and pollutant variables have a significant role for the forecast in
the short term and their effect is reduced with the enlargement of the forecasting
period. These different behaviors obtained with eight variables and four variables
point out two interesting facts:
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• The results seem to confirm what is reported in literature: the meteorological
and pollutant variables are significant when the prediction is in the short
period.

• The four additional variables, that convey mainly with the seasonal variability,
are able to represent the common patterns of similar hours in similar days in
similar months.

The obtained results indicate that the best predictions can be obtained utilizing
all the 12 variables. Even if the set of eight variables gives a significant contribute
in the short term prediction, it also improves the forecast for longer periods and the
set of the four additional variables improve significantly the prediction in the first
day as well.

To summary we can say that The first part of the experimentation done in
this work is aimed to the attempt to obtain the ozone forecasts by using eight
standard inputs variables that represent the meteorological and pollutant data. The
SVM that uses these input variables produces a good forecast for the first day and
reasonable forecasts from the second day to the tenth day. The results obtained by
the SVM are compared with the ones obtained by a multiple regression technique.
This comparison seems to indicate that, at least for this particular problem, the
SVM has a better capacity to represent the non-linear relations between the input
variables and the output ones.

In the second part we investigated the possibility to improve the performance of
the SVM by exploiting further information not conveyed in the eight standard input
variables. To this aim, four additional inputs variables are added to the SVM: hour
of the day, day of the week, day of the month, month. In some sense these four
inputs should represent the human activity and the seasonal variability. These new
variables produce no changes in the forecasts obtained by the multilevel regression
technique, but improve significantly the forecasts of the SVM both in the short term
prediction and in the mid term prediction.

In conclusion the reported results indicate that a possible way to get reasonable
forecasts is to use optimized SVMs and suitable input sets composed by standard
variables and additional ones.

3.3 Sales Forecasting
This work is concerned with sales forecasting in a retail store of large distribution.
In past times managers of such stores normally used their experience to predict the
daily sales and to decide the resupply quantities. In more recent years, with the
development of computer aided decision making, especially in the bigger firms, the
use of mathematical methods has became more and more widespread. In years 70s
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and 80s the principal methods used were statistical methods based on time series
autoregressive models, like the ARIMA method, the Box-Jenkins method and the
Winter modification of the exponential smoothing method (see e.g. [65]). The
data used by these methods are taken from the same time series that one wants to
forecast, and that can be therefore considered as an output series.

The main concern of this work is how the amount of sales of a given commodity
depends on different suitable input attributes. The principal aim of this work is
to assess the relative effectiveness in sales forecasting of the three kinds of learning
machines: multilayer neural network, radial basis function neural network and sup-
port vector machines. The second aim is the comparisons with time series based
methods, using the real data of a retail store. A distinguishing features of the paper
is that it focuses on the effects of an abnormal input attribute, that is occurrence
of promotions on sales.

There are several works in literature that deal with these issues. One of the
first works dating to the 90s, [66] showed the superiority of ANN on the ARIMA
method in sales forecasting. A state of the art on the use of ANN in forecasting is
provided in [67]. In [68] several comparisons are made between learning machines
and statistical methods, showing from empirical results that learning machines have
an edge on statistical methods especially in periods of volatile economic conditions.
Sales forecasts on a weekly basis using different inputs are obtained in [74] and [75],
proving again the efficacy of ANN. As concerns SVM, their potential application in
sales forecasting is dealt with in [69]. Other works focus on the flexibility of learning
machines. For example in [70] fuzzy neural networks, and in [71] both fuzzy neural
networks and clustering methods are used to improve neural networks results. In
[72] and [76] particular optimization procedures are used, like genetic algorithms or
swarm optimization, to improve the forecast and to obtain better results than the
statistical methods. In a more general framework, see [73] and [78], the authors use
learning methods in the economical context of marketing for predicting consumer’s
future choices.

3.3.1 Experimental environment
In this section we describe how the learning machines have been used for sales
forecasting. In our application, we use two input-output time series, taken from
two different retail stores of the same chain of large distribution. As concerns the
output y we are interested in the daily sales of a particular kind of pasta of a popular
brand; as concerns the input vector x, we will describe below which attributes have
been taken into account. In particular we are interested in capturing the effects
of promotion policies on the sales. The input-output samples used for training,
validation cover four years: 2007, 2008, 2009 and 2010, while the dataset used for
testing is the year 2011.
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The first time series is taken from the retail store #1, which is characterized by a
bad storage management, so that stockout occurs often. This brings the difficulty
of not knowing whether an output sample is zero because there was no demand or
because there was stockout. We could choose to eliminate the samples with zero
output in order to make this dataset more reliable. But we chose to leave the set as it
is because in real application, such a thing often happens, and we are also interested
in see how the predictive models would behave. The second series is taken from
store #2, which has a good storage management, so stockout happens rarely.
In our forecasting we will use as input attributes subsets of the following set of 13
attributes:

• 9 calendar attributes, linked to the specific day in which the output is given:
month, day of the month and day of the week. The day of the week is repre-
sented by 7 mutually exclusive boolean attributes. These attributes bring into
consideration typical human behaviors and customs. For example on Saturday
it is expected to sell more than in the other days of the week.

• 4 problem specific attributes: one boolean attribute whose value is one if there
is promotion of the product in that day, zero otherwise, number of hours the
store is open that day and the daily price of the product; moreover the overall
number of receipts released that day in the store, which accounts for the overall
volume of sales.

As concerns the last attribute listed before, that is the number of receipts released
in the same day for which the forecast is done, we point out that of course its value
is not known. Therefore we implement a SVM for forecasting the number of receipts
per day. This SVM uses the years 2007, 2008, 2009 and 2010 for training and for
validation with a k-mean strategy. Then we use this SVM to produce a forecast of
the number of receipts in the 2011. This SVM uses in input 11 attributes: the 9
calendar attributes also used in forecasting sales, the number of hours the store is
open and a last attribute that indicates if in that day are expected high or low sales.
This attribute is 0 in normal days, 1 in days before festivities, -1 when the store is
open on Sundays and 2 on the day of Christmas eve and new year eve. A forecasted
attribute can be considered a risky choice for the robustness of the final predictive
model. However as we already said, we consider this attribute very important in
the prediction and it also can be used in place of the calendar attributes in order to
avoid the curse of dimensionality.
We realized several experiments changing the attributes in input:

• in the first experiment we use 4 inputs: promotion, number of opening hours,
price of the product and number of daily receipts (forecast);
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• in the second experiment we use 12 inputs: promotion, number of opening
hours, price of the product and the nine calendar attributes;

In the 4 inputs experiment we test the the goodness of final prediction with the fore-
casted attribute. In the 12 inputs experiment we test the goodness of the prediction
with the calendar attributes, but without the forecasted number of receipts.
The forecasting is executed by adopting the sliding window method often used in
this kind of applications. After eliminating the days in which the store is closed,
we divide the year of test, the 2011, into several intervals with four weeks worth of
data, for an overall numbers of 13 prediction periods. We use the samples of the
whole year 2011 for forecasting and testing.

the 13 sets of samples used for testing are denoted by Si,i = 1, . . . ,13. The
remaining samples in the training set are the set T .
For different learning machines, belonging to the three classes of Multilayer ANN,
RBF ANN, SVM, we first perform the k-fold cross validation procedure using the
set T to select the best performing hyper parameters for the learning machine; then
we use the selected machine to perform the forecast of the output samples in the
test set S1, and we measure the quality of the forecast by theMSE(S1) value. Then
we add the set S1 to the training set, repeat the training and cross validation phase
and we take the set S2 as new test set, and then measure the MSE(S2) value. The
procedure is repeated, until the last interval of the year 2011 is reached.
We adopt this strategy in order to simulate the typical behavior that a practitioner
would use in order to compute a prediction. In general a year-long prediction is
not applied, while a month(four weeks) long prediction is more realistic. It is also
realistic to put the most updated data when the prediction is performed. This is
the reason why we used this sliding windows methodology.

3.3.2 Computational results
In this section we report the results obtained in forecasting the sales during 2011,
making use of the different Learning Machines, and we make a comparison with the
forecasts provided by traditional statistical methods. In particular, for each store we
run nine computations, six for the three different learning machines by using the two
different configuration of input attributes, and three for statistical methods, the first
method being ARIMA, the second one being the exponential smoothing (ES) and
the third one being the Holt-Winter variation of exponential smoothing(HWES).

Forecast of Daily Receipts

Preliminarily we show the results obtained using a SVM for forecasting the number
of daily receipts in the 2011, used as input attribute. As already said, we used the
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Figure 3.5. Prevision of the receipts for the store # 1
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samples of the previous years for training validation, with the 11 input attributes
listed in Section 3.3.1.

In Figures 3.5, 3.6 it is possible to see the results for the receipts forecasting.
From the results we are able to notice that not only the SVM are able to follow
the weekly thread of the output, but also to understand when there are particularly
high values of the samples. In order to measure the goodness of the results, we used
the R2 error for this experimentation. We have:

R2
1 = 0.84 R2

2 = 0.70

Both the values of the of the R2 are high and indicate a good prediction rate of the
surrogate model.

Sales forecast in store #1

The results obtained after training with cross-validation the three kind of learning
machines, each one with two different configuration of input attributes, denoted by
4i and 12i are given in terms of MSE(Si),i = 1, . . . ,13 in Table 3.10. In the same
table are given the MSE(Si) values obtained using the three statistical methods.
All the reported results are on the test set not used for training. We notice that the

PERIOD SVM 4i SVM12i RBF 4i RBF 12i MULTY 4i MULTY 12i EXP EXP HW ARIMA

1 44.689 37.223 52.667 82.269 51.429 82.646 74.045 70.494 73.624

2 49.287 47.200 57.308 35.431 53.063 35.431 38.459 38.453 55.592

3 40.579 37.932 40.099 35.093 40.383 35.093 39.275 38.955 36.969

4 37.823 34.913 36.793 42.521 39.393 42.521 46.911 48.804 35.938

5 141.230 172.032 560.366 576.813 296.166 576.813 174.839 167.022 167.428

6 31.656 25.636 32.153 23.947 29.324 23.947 26.498 27.320 27.772

7 80.293 88.650 135.142 436.711 155.888 436.711 107.967 100.863 116.649

8 77.818 44.933 85.364 48.743 72.307 48.743 73.705 73.611 57.188

9 52.446 67.243 54.355 63.090 53.751 63.090 47.940 54.611 54.614

10 101.804 171.564 146.306 221.657 328.535 221.657 86.232 89.004 72.997

11 30.401 26.771 29.843 29.345 37.023 29.345 28.187 28.478 31.291

12 69.175 82.413 80.364 218.250 79.591 218.250 63.411 64.316 53.365

13 44.057 36.842 45.230 35.614 49.374 35.614 81.798 84.176 50.250

MEAN 61.751 67.355 104.677 142.967 99.248 142.997 68.406 68.134 64.310

Table 3.10. MSE results for all the 13 periods and all the predictive
models used for store # 1

SVM are able to get a better prediction than the other learning machines because
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Figure 3.6. Prevision of the receipts for the store # 2
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they have in average the best behavior. Also all the learning machines with four
inputs behave better than their 12 inputs counterparts. If we take a look to the
results period by period, the SVM 4i is able to get the best prediction for five
periods on 13, while the SVM 12i is able to get the best prediction for four periods
on 13 and the RBF 12i gives the best results for four periods on 13. The statistical
methods are never able to get the best prediction for a period. For the certain
periods of promotion that is period 5, 7 and 10 there is a substantial increase of
the error. The SVM are able to fare better than the other methods because their
error increases less. In figure 3.7 there are the results in the promotion periods

Figure 3.7. Periods of promotion for the store # 1

for the best learning machine configuration, SVM 4i, and the best statistical model
EXP HW, compared with the output. First we notice, especially for the periods of
promotion going from 26/4-9/5, 7/7-20/7 and 22/9-5/10, is that the weekly trend
is totally disrupted by the promotion effect. The output assumes values difficult to
predict and with an high variability. The statistical method, even in this periods of
promotion, follows its weekly trend, while the SVM are able to catch a part of this
consistent variability. From the results, the other learning machines have an high
value of the error because their prediction have an higher variability than the one
of the output causing them to have very high or really low values.
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Sales forecast in store #2

The results for the second store prediction are reported in Table 3.11. This store

PERIOD SVM 4i SVM12i RBF 4i RBF 12i MULTY 4i MULTY 12i EXP EXP HW ARIMA

1 883.66 1232.07 763.75 1630.49 852.83 4948.46 1354.73 1390.98 1383.15

2 295.33 296.26 314.21 388.25 284.21 444.86 271.18 302.91 270.31

3 213.98 202.82 244.40 183.79 230.87 179.07 180.51 149.12 167.61

4 70.49 54.72 70.77 56.48 62.40 49.64 56.58 68.92 55.53

5 364.84 405.70 357.89 323.32 342.93 799.31 617.09 614.62 574.86

6 58.11 72.57 64.25 70.25 55.68 171.86 49.07 48.73 42.81

7 506.85 586.05 682.59 536.77 559.03 713.07 862.46 828.62 853.50

8 133.93 121.03 139.66 109.84 156.32 140.58 130.26 139.43 134.73

9 31.07 60.66 44.61 52.87 30.32 49.14 50.86 57.77 45.72

10 687.71 496.86 790.20 468.41 603.22 349.52 1262.27 1220.03 1177.41

11 100.98 129.08 116.97 132.41 113.56 133.06 79.54 107.40 65.85

12 185.67 264.01 207.97 185.78 426.98 210.32 805.75 843.36 817.82

13 139.92 109.50 131.89 109.41 137.75 131.58 123.48 164.07 120.10

MEAN 281.21 283.56 301.76 324.56 281.21 308.54 454.74 462.85 444.64

Table 3.11. MSE results for all the 13 periods and all the predictive
models used for store # 2

has a more regular behavior with a more marked weekly trend. For this reason the
statistical methods are able to get the best prediction for four periods on 13. The
SVM 4i, even if it has the best prediction only on two periods on 13 has the best
average behaviour. Like for the previous series, during the period of promotion the
error committed by the predictive models greatly increases. The learning machine
models, especially those with four inputs, are able to preserve the error relatively low,
while the statistical models show poor performances if compared with the learning
machines. As a matter of facts they are able to give a better prediction than the
learning machines only in cases of particular regularity. In Figure 3.8 it is possible
to observe the behavior of the best configuration among the learning machine, in
the periods of promotion. For this series the statistical methods still has its weekly
trend that is not changed even in the periods of promotion. As a matter of facts the
values of the output are considerably lower than the SVM. On the other hand, the
support vector machine is able to follow the erratic behavior of the output better.

As conclusion, we can say that the learning machine have comparable, if not even
better, performances to the statistical methods when it come to forecast periods with
regularity with some kind of weekly trend while the surrogate models shows to have
the upper hand in periods of promotion.
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Figure 3.8. Periods of promotion store # 2

From the point of view of the inputs to choose in order to train the model, the 4i
configuration shows to have, in average, a better behavior than the 12i configuration.
This seems to indicate that the reduction of inputs in the model greatly helped the
prediction process.

3.4 Surrogate Modeling for Electronic Circuits
Circuit design is a phase of circuit manufacturing process. In the design devel-
opment a circuit must be tested in several ways in order to be ready for massive
production. These tests determine if a circuit satisfies its specifications in different
possible scenarios. If the circuit does not satisfy its specifications, it can bring to
circuit malfunctions or circuit failures. These tests are performed with computer
simulations. The computer simulates the behavior of the circuit for the time needed
to calculate its performances.

The time needed to perform a simulation changes according to the complexity
of the circuit, it can take from a minute to several days to complete it. Generally
speaking, these simulations can be considered costly. In industrial design there are
strict temporal limitation due to the time to market. This motivates the effort to
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make faster the phase of circuit analysis by resorting to the use of surrogate models
rather than to simulations. Surrogate models are mathematical models that use
couples of input-output samples to create a regression function that approximates
the relation between the input parameters and the output performances.

In the literature, several works about surrogate models applied to circuit simu-
lations are proposed. For example in [49] the authors use Kriging models to find the
effects of time-based degradation on circuit performances. In [50] the authors apply
Kriging models to LNA(Low Noise Amplifier) circuits with different optimization
strategies in order to define the best hyper-parameters of the model. The same
authors in [51] compare several surrogate models based on samples taken from a
first-order analytic model of the LNA circuit. In [52] Kriging models are compared
with a simple response surface methodology, obtaining good results. Another pa-
per [53] proposes quadratic polynomial methods in an application aimed to find the
design parameters able to maximize the lifetime of a circuit.

The more samples a surrogate model has in input, the more the model will be
accurate. Every sample in input is generated through a costly CPU simulation. So
there is a trade-off between the time needed to generate the set of samples used
for the model generation and the accuracy of the model itself. We will perform
experiments to see how the surrogate models behave when the number of samples
given in input decreases. In literature there are several papers on this trade-off
problem, for example in [54] several strategies and surrogate models are presented
and compared.

In this experimentation we use the Support Vector Machine(SVM) to create
surrogate models based on computer simulations and then compare them with one
of the most used surrogate model for this kind of applications, the Response Surface
Methodology(RSM) [55], realized in the commercial software WiCkeD [56], widely
used in the industrial sector . WiCkeD is a suite for circuit analysis, modeling,
sizing, optimization and surrogate model generation. The simulations are based on
actual circuits designed and produced by ST-Microelectronics. These circuits will
become components of actual consumer technology devices. SVM is a relatively new
tool for surrogate modeling and shows good performances for nonlinear regression
approximations ([57], [58], [59]). The relations between the input parameters and
the output performances of circuit simulations are characterized by a high degree
of nonlinearity, and the SVM can be a valuable tool in this kind of applications.
Moreover, the training process of the SVM is relatively simple, as it consists in
solving a convex optimization problem. This feature enables practitioners to obtain
the global solution of the optimization problem and to complete the training of the
SVM in a short time.

The principal aim of this work is to understand if the SVM are useful in modeling
actual industrial circuits, as in our future work we intend to use them in several
application in order to shorten the time needed to perform a circuit analysis. To
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this aim the SVM are tested on real circuits and the results are compared with
the RSM given by the software suite Wicked. This software platform implements
four types of basis functions: Polynomial, Radial Basis, Affine plus Radial Basis
and Polynomial plus Radial Basis (for further details see [60] Chapter 6). WiCkeD
selects automatically the basis function g(x) for the RSM as the basis function that
better fits the data given in the training set. After choosing the basis function,
Wicked solves the least square error problem for the RSM, generates the surrogate
model and tests it on the test set, that is the same of the SVM.

As we are also interested in using as few simulations as possible to obtain a
reliable model, we perform other tests reducing the number of samples in the training
in order to understand how many simulations are needed to obtain a reasonable
precision.

3.4.1 Experimental Set Up
In this section we explain how the surrogate models have been implemented.

In circuit design there are three types of parameters:
• Design parameters: these parameters are concerned with the sizing process of

the circuit, and are given by the geometrical dimensions of the devices that
the circuit designers will assemble into the actual circuit;

• Process parameters: these parameters represents statistical variations due for
example to the fluctuations in the manufacturing process of the circuit. The
process parameters are modeled with a Gaussian or with an uniform proba-
bility density function;

• Operating parameters: typical examples of these parameters are those that
model the operating conditions of the circuit, like supply voltage and temper-
ature.

The parameters are characterized by box constraints that determine the range
in which they can vary. These parameters are normally given in input to the simu-
lator together with a “netlist” that explains the connections in the circuit. A high
number of parameters in input causes the so called “curse of dimensionality”, so it is
convenient to use the less parameters as possible without losing information on the
phenomenon under examination. In order to handle this problem, the sensitivity
analysis method has been used in this work.

Sensitivities are calculated by finite differences. In its simplest form, a parameter
of interest z is altered by a small amount ∆z and the resulting variation for the i−th
performance vi, ∆vi = vi(z + ∆z)− vi(z), is used to calculate the sensitivity. If the
variation is under a certain threshold for every performance gi, the input parameter
is discarded.
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The performances of the circuit can be given by the delay between two waveforms,
the duration of an impulse, the variation of the voltage due to this impulse, the
slope of the change of voltage etc. These are the quantities that the SVM and RSM
are required to approximate, given the values of the input parameters. For every
performance we will report the interval of its specifications, in order to give a feeling
about the required precision.

After selecting the significant parameters, the sets in input to the surrogate
models are generated. Following many works presented in literature [77] we choose
the Latin Hypercube Sampling as Design Of Experiment scheme for generating the
points in the training and test set for both the SVM and WiCkeD RSM. The per-
formances corresponding to these design points are calculated using the simulation
software called ELDO. After generation, the samples are normalized in order to be

Figure 3.9. Flow chart for the experimental set up

ready for the training phase. Normalization helps the mathematical model that gen-
erates the regression function to better understand the importance of the variation
of a single parameter in respect of the output performance.

As concerns the software realization of the surrogate models, SVM are imple-
mented in the C programming language starting from the software available at [28].
The RSM are integrated within WiCkeD’s platform. An advantage of the SVM is
that we have direct access to the source code, thus adding flexibility in our imple-
mentation.

In order to determine the number of samples needed to obtain the desired pre-
cision, we perform an initial training of the surrogate models with a considerable
number of samples in the training set. After the first test, we decrease the number
of samples in order to see how the two models would fare. In other words we try to
stress the structure of the surrogate models to find a reasonable lower limitation to
the number of samples in the training set. This is an important test, because, as we
said in the introduction, the less simulations are used to realize a surrogate models,
the best it is from a design point of view. Both the SVM and RSM are trained on
the same training sets and every generated model is tested on the same test set,
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comprised of 500 samples not utilized in the in the training and model selection
phase.

The reported results on the test set will not only take into account the MSE on
the denormalized performances, but also the coefficient of determination R2:

3.4.2 Results of the Surrogate Models
In this section we report the results on two circuits designed by ST-Microelectronics.
First we present the circuit description and performances with their bounds, then
we apply a screening of the parameters. We also report the results and see the effect
the lowering of the number of samples has on the prediction. To get a feeling on
the desired degree of precision, we label as good the models with an R2 coefficient
that exceeds the 0.9, as satisfying the models that have R2 between 0.9 and 0.8, as
reasonable the models that have R2 between 0.8 and 0.6, and as bad the models
with R2 lower than 0.6.

Digital to Analog Converter

Figure 3.10. DAC architecture

First we present the results regarding a digital to analog converter circuit used
for voltage generation and timing in input of cells of flash memory products. Flash
memory products need different voltage levels to be applied to the memory cells
during operations (reading, programming, erasing). These voltages must follow
specific levels and timing for each operation. A DAC circuit controlled by a memory
micro-controller is commonly implemented for voltage generation. The architecture
of the DAC circuit is shown in Figure 3.10.

This circuit has in input 54 parameters. After a screening of the parameters
performed with a sensitivity analysis, the number of significant parameters is reduced
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to 28. The performances and their allowable bounds are reported in Table 3.12.

Performance Lower Upper
GAIN 0.5 2
SLOPE 1 3
VXP-3O3 1 5
VXP-6 5 7

VXPOK2 5.88 6.12
VXP-9 7 10

Table 3.12. Performance for the DAC circuit

In Table 3.13 we report the results with 28 parameters in input, using 1000
samples for training and 500 samples for testing for both the SVM and the RSM.

Per. SVM SVM RSM RSM
MSE R2 MSE R2

GAIN 5.1E-06 0.860 8.3E-06 0.773
SLOPE 1.8E-05 0.94 2.5E-05 0.909
VXP-3O3 2.7E-04 0.947 2.4E-04 0.952
VXP-6 4.9E-05 0.987 3.4E-05 0.991
VXP-9 1.6E-04 0.963 1.7E-04 0.960

VXPOK2 5.5E-03 0.933 6.0E-03 0.926

Table 3.13. Results for the 6 performances with 1000 samples in the training and
validation set and 500 in the test set.

On the overall the two methods yield similar results; in particular the SVM has an
edge in the prediction of the performances GAIN and SLOPE while the RSM gives
better results for the VXP-6. We also note that according to the values of R2 the
two surrogate models can be classified as good with respect to all performances, with
the only exception of the performance GAIN, to which nevertheless corresponds a
value of R2 to be classified as satisfying.

In Table 3.14 we report the results on the same test set of 500 samples used in
the previous experiment for the surrogate models obtained decreasing the number
of samples in the training set.

Overall the two methods have comparable results with the SVM being a little
better, especially when it comes to predicting the following performances: GAIN,
SLOPE, VXP-303 and VXPOK2, while the RSM is still better in the prediction of
the VXP-6.
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500 SVM SVM RSM RSM
MSE R2 MSE R2

GAIN 7.66E-06 0.79 1.18E-05 0.67
SLOPE 2.44E-05 0.91 3.46E-05 0.87
VXP-3O3 3.11E-04 0.94 3.06E-04 0.94
VXP-6 5.43E-05 0.99 5.80E-05 0.99
VXP-9 2.13E-04 0.95 1.72E-04 0.96

VXPOK2 8.34E-03 0.90 1.00E-02 0.88
200

GAIN 1.36E-05 0.62 1.89E-05 0.49
SLOPE 4.25E-05 0.84 5.46E-05 0.81
VXP-3O3 3.40E-04 0.93 4.70E-04 0.91
VXP-6 1.01E-04 0.97 8.62E-05 0.98
VXP-9 4.19E-04 0.90 4.21E-04 0.90

VXPOK2 1.29E-02 0.84 1.39E-02 0.83
100

GAIN 1.74E-05 0.52 2.07E-05 0.46
SLOPE 4.80E-05 0.82 6.13E-05 0.79
VXP-3O3 3.90E-04 0.93 4.70E-04 0.91
VXP-6 1.32E-04 0.97 1.03E-04 0.97
VXP-9 5.62E-04 0.87 5.55E-04 0.87

VXPOK2 1.82E-02 0.79 1.93E-02 0.76
50

GAIN 2.11E-05 0.41 2.26E-05 0.39
SLOPE 6.66E-05 0.76 8.57E-05 0.70
VXP-3O3 6.22E-04 0.88 8.48E-04 0.83
VXP-6 2.04E-04 0.95 1.97E-04 0.95
VXP-9 8.72E-04 0.80 9.03E-04 0.79

VXPOK2 2.18E-02 0.75 2.69E-02 0.69

Table 3.14. MSE and R2 results for the six performances of the DAC
diminishing the number of samples in the training of the training on the
same test set of 500 samples

The two models still have a good prediction capability even decreasing the num-
ber of samples in the training set. We note a steadily decrease of the surrogate
models precision. In particular if we take as example the results obtained with
only 50 samples in input, we note that the surrogate models for the performance
VXP-6 still yield good results, while there are still satisfying results for other two
performances, reasonable results for another performance and bad results for the
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remaining two.
From these results we can conclude that the surrogate models are able to give,

in the majority of cases, more than reasonable results even with a limited number
of samples in the training set, with the SVM yielding sightly better results than the
RSM.

DC-DC Converter

Figure 3.11. DC-DC Converter architecture.

Now we present the results regarding a DC-DC converter for AMOLED display
panels. It is important in this circuit the delays between the time the signal to turn
off/on the circuit is sent and the time the circuit is actually turned off/on. The
longer the difference between these delays is, the greater the unwanted diode re-
circulating phase is, hence increasing power losses. In Figure 3.11 a representation
of the circuit is shown, with its principal components:

• A chain of 4 CMOS inverter ;

• the High Side (PMOS) and the Low Side (NMOS) output stage;

• the driving signals.

The initial number of input circuit parameters is 84, but after performing a
sensitivity analysis only 19 inputs remain. In table 3.15 the performances of the
circuit are displayed, with their bounds. Delay1 indicates the delay between the
time the signal to turn on the circuit is sent and the time the circuit is actually
turned on, Delay2 is the same measure when the signal to turn off the circuit is
sent. Delay symmetry indicates the difference between Delay1 and the Delay2.
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Performance Lower Upper
Delay one 0 20E-9

Delay simmetry -3E-9 3E-9
Delay two 0 20E-9

Table 3.15. Performance for the DC-DC circuit.

In table 3.16 the results obtained by the SVM and RSM using training sets of
different sizes are reported. The test set is given by 500 samples and it is the same
for all the experiments.

1000 SVM SVM RSM RSM
MSE R2 MSE R2

D1 3.36E-18 0.93 2.94E-18 0.94
D2 1.17E-18 0.97 1.08E-18 0.97
DS 1.44E-18 0.95 1.29E-18 0.95
500
D1 4.64E-18 0.90 4.85E-18 0.90
D2 1.83E-18 0.96 1.71E-18 0.96
DS 2.13E-18 0.93 1.96E-18 0.93
200
D1 9.37E-18 0.81 8.35E-18 0.82
D2 4.78E-18 0.89 4.56E-18 0.89
DS 4.22E-18 0.85 4.08E-18 0.86
100
D1 1.14E-17 0.76 1.19E-17 0.75
D2 6.38E-18 0.85 7.70E-18 0.83
DS 6.49E-18 0.78 5.99E-18 0.80
50
D1 1.76E-17 0.65 1.59E-17 0.66
D2 9.08E-18 0.78 1.03E-17 0.78
DS 9.80E-18 0.69 8.97E-18 0.70

Table 3.16. MSE and R2 results for the three performances of the DC-DC
Converter diminishing the number of samples in the training on the same
test set of 500 samples.

The two surrogate models yield similar results for the DC-DC converter as well,
but differently from the DAC, this time the RSM perform slightly better. Overall
the two methods are able to give good results when there is a high enough number
of samples in the training set. The two surrogate models begin to have problems
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when the number of samples in the training goes below the 100 samples. In any case
even with only 35 samples in the training set, the two models are able to produce
reasonable predictions.

Conclusions

The aim of this work is to apply the surrogate model given by the Support Vector
Machine to real industrial circuits, in order to find a method of analyzing these
circuits without resorting to a heavy use of costly circuit simulations. To this aim
we are also interested in investigating what would happen if a limited number of
samples would have been given in input to the surrogate models. We confronted
the SVM with the benchmark normally used in this kind of industrial applications,
the model obtained by the Response Surface Methodology and obtained comparable
results. The obtained results can be reputed satisfying, especially when more than
500 samples are used for the training of the surrogate models. An interesting ob-
servation is that the surrogate models are able to give reasonable results for such a
complex problem of electronic circuit design even with a limited number of samples
in the training set.
In conclusion our experimentation indicates that the SVM is a valid surrogate model
for real industrial electronic circuits and it can be considered a valuable alternative
for applications in electronic circuit design.

3.5 Yield Optimization
A circuit must have a certain behavior in order to work well. This behavior is gen-
erally represented by the circuit performances and their constraints. If the circuit
performances satisfy the constraints, the circuit is considered to behave well. There
is a random variability on the circuit manufacturing process, and this variability de-
termines variations into the device parameters that cause the circuit performances
to be stochastic distributed, that is their values change from circuit to circuit. This
phenomenon is unavoidable, but in any case, the values of the circuit performances
must satisfy the constraints set by the designers no matter the random variabil-
ity. In the case the specification are not satisfied, the circuits must be discarded.
In other words a production with an high probability that the circuits satisfy the
specifications is a production with less costs and more economic benefit.

This problem becomes more and more intense with manufacturing processes that
scale down the size of the circuit components. The more the components are small,
the more a statistical variations affect the performances.

A measure that expresses the probability that the circuits satisfy the specifica-
tions is the yield, that is the percentage of circuits that satisfy all the performance
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specifications at the same time. Generally the yield of a circuit can be expressed
as a multivariate integral, that can be approximated through a Monte Carlo(MC)
analysis. The MC analysis is a flexible and practical tool that can be applied to
various circuits without decreasing their number of parameters or simplifying their
stochastic distributions. The greatest drawback of the MC analysis is that it re-
quires a great number of evaluations in order to be performed. These evaluations
grow with the number of circuit parameters. Every evaluation is performed through
a computer simulation. Circuit simulations can be costly, then performing a MC
analysis even on circuits of medium size, can be considered time expensive. In order
to decrease the cost of the analysis, the two principal strategies can be adopted:
change the type of sampling [63], or use surrogate methods, such as learning ma-
chines, to approximate the circuit evaluations [64], [61]. In this work we propose
an approach that combines the Support Vector Machines(SVM) and a derivative
free mix-integer black box algorithm in order to solve the circuit yield optimization
problem with a relatively low number of circuit simulations. Our method is com-
pared with the results of the the commercial software WiCkeD [56], widely used in
the industrial sector. The simulations are based on an actual circuit designed and
produced by ST-Microelectronics.

3.5.1 Problem Description
As we already said in the previous section, there are three kinds of parameters in a
circuit:

• Design parameters

• Process parameters

• Operating parameters

The objective of the yield optimization is to determine the design parameters
that maximize the yield in spite of the stochastic variations of the process parameters
and of the different possible values of the operating parameters. Let pd,pp,po be re-
spectively the design, process and operational parameters vectors, let fi,i = 1, . . . ,r
be the performances and let f li ,fui be lower and upper bounds on the performances.
The yield corresponding to a given value of design parameter pd, under operat-
ing conditions given by po is determined by the probability that the performance
fi(pd,pp,po) satisfies the bounds:

f li ≤ fi(pd,pp,po) ≤ fui i = 1, . . . ,r.

As said in the introduction, in order to approximate the probability of the real-
ization of fi(pd,pp,po), a Monte Carlo analysis is performed.
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3.5.2 Methodology

The base of our approach is to use the derivative free algorithms presented in Chapter
2 together with the SVM in order to find a good solution to the yield optimization
problem in a limited amount of time.

In the previous section, we presented the application of the SVMs as surrogate
model for circuit simulations. The SVM showed to have the potentiality to be
applied in this kind of application. In the previous section we presented SVMs that
approximated the entire phenomenon, modeling all the three kind of parameters
with a great variability. In order to reduce the variability that the SVMs have to
manage, we decided to create several local methods that manage less complexity.

In order to reduce the complexity we exploited some characteristics of the prob-
lem. First we decided to create SVMs that analyze the phenomenon only for the
worst case values of the operational parameters instead of all their possible values. in
order to find the worst cases of the operational parameters the worst case distances
are determined for each parameter. The worst case distances determine the worst
possible values of the operational parameters for the circuit when it is working. In
general, there are two worst case operational points for every performance, one is
the worst case for the upper bound of the performance, and the other is the worst
case for the lower bound of the performance. In general it is assumed that if the
specifications are satisfied at the worst cases, they are satisfied for the cases that
are not the worst ones. A SVM is created for every possible worst case for every
performance. In this way, by just doubling the number of the created surrogate
models for every performance, we greatly decrease the complexity that the model
has to manage.

Another strategy we use to decrease even further the complexity is to integrate
the training of the SVMs in the derivative free algorithm. The design parameters
are the only parameters that can be chosen by the designer. For this reason the
design parameters are the variables of the black box optimization algorithm. Every
time the algorithm needs to evaluate the objective function it sets the design pa-
rameters and creates a MC analysis around the current design point by varying the
process parameters. It is possible to create a SVM that for those values of the design
points, creates a Monte Carlo of the process parameters for a certain performance
in a certain worst case of that performance. If we define with l the number worst
cases points, a total of r × l SVMs trained at every iteration, it possible to obtain
an accurate model of the behaviour of circuits simulations varying the process pa-
rameters. As the variability that has to be modeled is low, less simulations than
the 1000 utilized in the previous application has to be used in order to create the
various SVM models. A summary of the strategy is showed in Figure 3.12. In order
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Figure 3.12. Strategy for the yield optimization.

to evaluate the yield, we utilize a zero-norm type of objective function:

l∑
j=1

r∑
i=1

m∑
k=1

log (max{0,fijk − fui }+ ε) + log
(
max{0,f li − fijk}+ ε

)

Where m is the number of points in the Monte Carlo, fijk is the the value of the
i− th performance for the j − th operative point of the k− th sample of the Monte
Carlo and ε is a positive number close to zero.

3.5.3 Results
SVM Precision

In order to have a sufficient precision for the surrogate models we decide that the
surrogate models must have a relative average error under the 3%. The expession
of the relative error is:

RE = 1
N

Pt∑
i=1

fi − yi
yi

Where Pt is the number of elements in the test set, fi are the values calculated
by the SVM and yi is the real output. We applied this strategy on the DC-DC
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converter for five cases of the operating parameters, a typical case and four worst
cases. There are only four worst cases instead of six because the worst cases of the
delay 1 and delay 2, both at the lower bound and upper bound, are the same. In
a first stage we used as training set 50 points for every analyzed case utilizing the
same strategy described in Section 3.4 for a total of 250 simulations used for the
training. This dataset covers the range the points around the average values to five
times the variance σ. The results of these surrogate models are tested on a test set

Dataset Delay 1 Delay 2 Delay S
50P-5_5sig.50K 1.10% 0.97% 33.12%

Table 3.17. RE for the delay 1, delay 2 and delay S with 50 points in the
training set for every analyzed case with a range of 5 σ and 10000 points in
the test set for every analyzed case.

of 10000 points for every analyzed case for a total of 50000 points. The values of the
delay symmetry varies between [−3.15 · 10−9,3.15 · 10−9], so a lot of values are near
zero. This means that for values near zero a non significant error like for example
an error of 10−11 greatly increases the average relative error. Nevertheless, the error
is still quite low for the delay symmetry.

Even if only 250 samples were used for estimating 500000 points, the results
satisfy our requests on the precision with a large margin. Probably the strategy of
intensely reducing the model variability created a phenomenon with low variation
that is easy to predict for the SVMs.

As the precision is higher than expected, we decrease the number of points in the
training sets until we don’t observe a strong decrease of the performances. In Table
3.18 are reported the results of the SVMs decreasing the points in the training set.
Even if such a decrease of the points in the training set is performed the prediction is

Dataset Delay 1 Delay 2 Delay S
40P-5_5sig.50K 1.18 % 0.83 % 52.67 %
30P-5_5sig.50K 0.98 % 1.12 % 32.77 %
20P-5_5sig.50K 1.34 % 1.26 % 37.17 %
15P-5_5sig.50K 1.59 % 1.31 % 40.34 %
10P-5_5sig.50K 3.06 % 2.05 % 66.94 %

Table 3.18. Results for the delay 1, delay 2 and delay S with decreasing points in
the training set for every analyzed case with a range of 5 σ and 10000 points in the
test set for every analyzed case.

still good. But we notice a strong decrease of the performance between the prediction
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with 15 points in the training set and 10 points in the training set. Plus the delay
1 error is over the 3% threshold.

Black Box Optimization Results

the optimization procedure is performed For every configuration of the training set
when the SVMs must be created in order to approximate the MC analysis, starting
from 50 points and arriving to 10 points. For every run of the optimization procedure
the optimal point is the same with the same number of iterations. This seems to
indicate that, even if there is a decrease in the precision of the surrogate models,
this decrease does not affect the measurements of the objective function and the
sequence of the points generated by the algorithm. In Table 3.19 the results between

Specification Yield Wicked Yield SVM
Delay 1 Lower 100% 100%
Delay 1 Upper 94.30% 89.50%
Delay 2 Lower 99.20% 100%
Delay 2 Upper 96.20% 94.90%
Delay S Lower 100% 100.00%
Delay S Upper 96.60% 100.00%
Total Yield 91.40% 89.30%

Table 3.19. Comparisons of the results between the proposed method and Wicked.

the black box method and the optimization tool used by wicked are reported. Both
the two optimization routines begin from the same same starting point. Wicked
has better results when it comes to making the delay 1 and the delay 2 satisfy the
specifications, while it has troubles for the delay symmetry. On the other hand,
the proposed method is able to find a design point that completely satisfies the
constraints for the delay symmetry at the cost of losing feasibility for the delay 1
and 2. The total yield is calculated as the percentage of circuits that satisfy all the
three performances at the same time. In general we can state that the two methods
are able to get comparable results, with Wicked being sightly superior.

From the point of view of computational complexity, the proposed method gen-
erates 75 circuits simulation every iteration in order to train the SVMs and the
solution is found after 86 iterations, for a total of 6450 simulations. On the other
hand Wicked takes 11000 simulation to find the solution.

In conclusion, from these preliminary results, the proposed method shows the
ability to find a comparable solution with the benchmark with only the 60% of
computational cost.
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Robust Optimization

The same problem was also solved with the robust optimization strategy described
in Chapter 2. In this case the optimization algorithm was directly connected to the
simulator. In this optimization strategy, at the outer level the design parameters
are modified minimizing the violation of the performances in respect to the bounds.
In the inner level the process parameters are modified maximizing the violation of
the performances in respect to the bounds. At every iteration of the outer level, the
value of the objective function corresponds to the process parameters that violate
the most the conditions on the performances. In Table 3.20 it is possible to observe
the results of this method. The robust optimization algorithm, at the cost of losing

Specification Yield Wicked Yield SVM Yield Robust
Delay 1 Lower 100% 100% 100%
Delay 1 Upper 94.30% 89.50% 93.80%
Delay 2 Lower 99.20% 100% 100%
Delay 2 Upper 96.20% 94.90% 96.00%
Delay S Lower 100% 100.00% 100.00%
Delay S Upper 96.60% 100.00% 100.00%
Total Yield 91.40% 89.30% 93.30%

Table 3.20. Comparisons of the results between the proposed method and Wicked.

a little percentage of feasibility for the delay 1 and delay 2, is able to get the 100% of
delay symmetry. The optimal point found can be considered superior to the optimal
point provided by the benchmark and the one found by the support vector machines.
The only draw back is the computational expense to get a solution. As a matter of
facts 18910 simulations are needed to find the optimal point.

The future research should be centered on testing the proposed methods on other
circuits and integrating the SVM in the robust optimization strategy in order to get
the best possible solutions in less time.
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Conclusions

In this Ph. D. Thesis several surrogate models were presented, reformulated and
applied on real world problems. For the future research we intend to continue devel-
oping the surrogate model approach, especially in robust optimization, and to create
a complete algorithm where it is possible to achieve a reliable yield optimization on
real consumer circuits.

From a more theoretical point of view, we intend to continue developing the
canonical dual formulation for the multidimensional case of the Radial Basis Neural
Networks and also develop a fast algorithm to find a solution. As we consider
the canonical duality theory as a powerful tool for finding the global minimum of
complex non-convex problems, our aim is also to expand this approach to problems
that are difficult to solve with their current formulation. One of these example is
the clustering problem, where the application of canonical duality could give birth
to a faster a more reliable formulation and strategy to find a global solution of the
problem.
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